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Abstract

This thesis is concerned with the formulation and analysis of a sparse optimization framework for
the optimal placement of measurement sensors in inverse problems. At the focus of attention are
settings in which an unknown parameter entering a partial differential equation is estimated from
finitely many observations of the corresponding state. To mitigate the influence of measurement
noise we propose to determine the optimal number of sensors and their positions based on the
solution of a mathematical optimization problem. Therefore we minimize a suitable optimality
criterion for the distribution of the sensors which is modeled as a measure on the set of possible
candidate locations. The proposed sensor placement framework is applied for two model problems.
Suitable approximation approaches based on a finite element discretization as well as efficient solu-
tion algorithms are discussed. The last part of the thesis introduces a first order solution algorithm
for composite minimization problems in a general setting. Convergence of the method is addressed
and worst case convergence rates are derived. In the case of measure-valued optimization variables
the method is augmented by additional acceleration steps leading to improved convergence results.

Zusammenfassung

Diese Arbeit befasst sich mit der Formulierung und Analysis eines "sparsen" Optimierungsansatzes
fiir die optimale Platzierung von Messsensoren in inversen Problemen. Im Mittelpunkt stehen
Problemformulierungen bei denen unbekannte Parameter in partiellen Differentialgleichungen aus
endlich vielen Beobachtungen des zugehdrigen Zustands geschétzt werden sollen. Um den Einfluss
von Messfehlern zu verringern wird vorgeschlagen die optimale Anzahl von Sensoren und deren
Positionen basierend auf der Losung eines mathematischen Optimierungsproblems zu bestimmen.
Dahingehend minimieren wir ein geeignets Optimalitatskriterium beziiglich der Verteilung der
Messensoren. Diese wird als Maf auf der Menge der moglichen Positionen modelliert. Wir
wenden den vorgeschlagenen Ansatz zur optimalen Sensorplatzierung auf zwei Modelbeispiele
an. Geeignete Approximationsverfahren basierend auf Finite Elemente Diskretisierungen sowie
effiziente Losungsverfahren werden diskutiert. Im letzten Teil der Arbeit wird ein allgemeines Op-
timierungsverfahren erster Ordnung fiir Kompositminimierungsprobleme eingefiihrt. Konvergenz
des Verfahrens wird behandelt und Worst-Case Konvergenzraten werden hergeleitet. Fiir den Fall
mafwertiger Optimierungsvariablen wird die Methode mit zusétzlichen Beschleunigungsschritten
versehen. Dies fithrt zu verbesserten Konvergenzresultaten.
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1 Introduction

This thesis focusses on the description and analysis of an optimization based approach to the
placement of measurement sensors for the identification of unknown parameters in processes de-
scribed by partial differential equations (PDEs). With the advent of constantly rising computa-
tional capacities and steadily improving numerical methods, mathematical models as surrogates
for complex real-life processes have become a cornerstone and indispensable tool of modern day
science. Applications range from simulating the smallest of particles in chemistry or physics to
the characterization of global phenomena such as changes in the weather or the ocean current. In
many cases, such processes are well-described by a state variable whose dynamics are governed
by a system of partial differential equations. In most cases, a full description of such mathemati-
cal surrogates requires knowledge on the value of additional parameters entering in the equation.
These may arise in the modeling process or correspond to unknown physical quantities such as
material constants. Thus, rather than one particular partial differential equation to describe the
modeled process, we have given a parametrized family of possible ones.

A properly chosen mathematical model may enable to predict on the behavior of the underly-
ing process based on simulations. For this purpose, it is however indispensable to calibrate the
unknown parameters i.e. to select them such that the associated equation and its solution de-
scribe the modeled process most faithfully. A direct measurement of the parameters often requires
disproportional effort or is not possible at all. Inference on their value is only possible indirectly
by e.g. measuring the quantity resembled by the state variable. From a practical point of view,
this process of measuring observable quantities corresponds to conducting an experiment in which
data is collected by measurement devices or sensors. A sophisticated mathematical approach to
the problem of parameter identification is then constituted by solving a so-called inverse problem:
Here, we also describe the measurement process mathematically e.g. by an operator mapping the
state variable into the space of measurements. For each possible value of the unknown parameter
we can now solve the associated partial differential equation and plug the obtained state into the
measurement model. Subsequently, we identify a particular parameter such that the measure-
ments predicted by the associated mathematical model match those obtained in the experiment.

In practice, this task is aggravated by several factors. First, mathematical modeling usually
involves simplifying assumptions to yield equations that describe the modeled process sufficiently
good and that are still tractable with numerical methods. In particular, this implies that modeling
errors are present and there might be no parameter such that the response of the measurement
model matches the observed experimental data exactly. Moreover, the experimental data which
is used to infer on the unknown parameter is perturbed by measurement errors. These stem back
to the imperfectness of the involved measurement devices in the experiment. Last, in many cases,
the experimental data is given by a possibly small number of scalars where each one corresponds
to the measurement taken by a particular sensor. In contrast, the unknown parameter may be
a high-dimensional vector or even a distributed function. If there is such a discrepancy between
the amount of provided data and the dimension of the parameter space, the inverse problem
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is underdetermined and an exact identification of the unknown parameter is impossible without
further assumptions on its structure. The consequences on the inverse problem induced by the
described defects, are summarized under the notion of ill-posedness. A characteristic feature of
most ill-posed inverse problems is the discontinuity of their solutions with respect to the collected
measurements. Thus, slight changes in the experimental data due to measurement errors may
lead to the wrong conclusions on the unknown parameter if the problem is solved directly. As a
consequence, ill-posed inverse problems call for appropriate regularization strategies which allow
to compute stable approximations of their solutions. We refer, e.g., to the famous concept of
Tikhonov regularization or the Bayesian approach to inverse problems.

After obtaining an approximate solution to the inverse problem for a given set of experimental
data, we have to assess its reliability due to the presence of measurement errors. For this purpose
at least slight assumptions on the nature of these perturbations have to be made. In practical
experiments, measurements are not reproducible i.e. taking the same measurement twice leads to
slightly different outcomes. These inaccuracies stem back to the inability of an experimenter or of
the used sensor to repeat the measurement in the exact same way. This observation suggests to
adopt a probabilistic model for the measurement error and assume prior knowledge on its distri-
bution. As a consequence, since the approximate solution to the inverse problem depends on the
measurements, it should also be interpreted as realization of a random variable taking values in the
parameter space. In particular, we should drop the notion of identifying the unknown parameter
and replace it by the more appropriate term of parameter estimation to stress the randomness in
the problem. The distribution of the random parameter estimator depends on properties of the
measurement error model. For this reason, it allows to study the influence of perturbations in
the experimental data and assess the reliability of approximate solutions to the inverse problem
in a probabilistic sense. More generally, the results of the parameter estimation process rely on
the conditions of the measurement experiment such as the placement of available measurement
sensors and the amount of provided measurements. Poorly conducted measurements may yield
uninformative experimental data i.e. no conclusions on the value of the unknown parameter can
be made based upon them. In contrast, a well-planned experiment allows for an, in some suitable
sense, optimal estimation of the unknown parameters while simultaneously minimizing the overall
cost of the measurement process. This leads to the task of optimally designing experiments before
any measurements are taken in practice.

In the context of the present thesis, our focus lies on the inverse problem of estimating an unknown
parameter ¢ in some Hilbert space ) entering into a partial differential equation described by an
operator A(q,-). Inference on its value is possible based on a finite number of N € N scalar
measurements yé, 1 =1,...N, taken of the quantity resembled by the state variable y € Y. We
assume that the dependence between one of these measurements and the state is linear. Moreover,
each measurement yé is associated to a point z; in a compact set 2, C R?, d € N. For example, z;
may describe the position of the applied measurement sensor. Now, we model the action of the
sensor at x; € {2, on the state variable by an element O(z;) € Y*, i =1,..., N, in the topological
dual of the state space. As an example, if the elements of Y are continuous functions on (2,, then
we may consider a pointwise measurement taken at a point x;. The corresponding element in the
dual space Y* is given by the associated Dirac delta function O(z;) = §,,. The resulting inverse
problem now reads as

ﬁnd q S Qadu Yy S Y: <y70($i)>Y,Y* - yzla 1= 17 .. '7N7 A(q7y) = 07

where Q,q C @ denotes a set of admissible parameters and (-, -)y,y+ denotes the duality paring



between the state space Y and its dual Y*. The measurement at x; is subject to additive pertur-
bation by normally distributed noise &; ~ N(0,1/u;), ¢ = 1,..., N. The scalar quantity u; > 0
should be interpreted as diligence factor giving information on how carefully the data should be
collected at the corresponding measurement point. Measurement errors at distinct locations are
assumed to be uncorrelated. In order to mitigate the influence of perturbations in the measure-
ments on (approximate) solutions of the inverse problem, we fix a parameter ¢ € @) and consider
the associated Fisher information operator X*X~'X which acts on the parameter space ) as

N

(5(]1, X*2_1X5q2)Q = Z u; <8S[cj]6q1, O(.%‘Z)>y7y* (85[(}](5@, O(.ri)>y7y* V(Sql, 5(]2 S Q (1.1)
=1

Here, the sensitivity 95[q]: @ — Y describes the effect of perturbations in § on the associated solu-
tion y = S[¢] to the partial differential equation. The parameter § represents e.g. an a priori guess
to the solution of the inverse problem given the noise-free measurements. For optimal inference
on the unknown parameter entering into the partial differential equation, we propose to optimize
or design the measurement experiment in which the data y, is obtained, according to the solution
of a mathematical optimization problem based on properties of the Fisher information operator.
More in detail, we parametrize X*X~'X as a function of the number of measurements N € N,
their positions {z;}X, in the admissible set §2, as well as the diligence factors {u;}¥; C R and
solve the optimal sensor placement problem

. * —1 * —1
Zieﬂo,lﬁ?é%_'.,NGN[W(X Y7 X)+G(|ull;,)] where X*X7X fulfills (1.1)).

Here, ¥ denotes a scalar-valued smooth and convex design criterion. To capture the overall cost of
the measurement experiment, we add an additional convex term G(||ul|;,) to the problem which
involves the [; norm of the measurement weight vector ||ull;, = Zi\il u;. For example, we may
choose G(||ul|;,) = Bl|ull;; where 8 > 0 denotes the cost associated to a single measurement.

The optimal selection of measurement points and weights based on the Fisher information first
came up in the context of polynomial regression, [245]. Nowadays, such formulations form the
basis for the vast field of model-based optimal design of experiments which is concerned with the
optimization-aided selection of experimental conditions. If the dependence of the state variable y
on the unknown parameter is nonlinear, the obtained optimal solutions depend on the parameter ¢
leading to the notion of locally optimal designs, see e.g |217]. Approaches to cope with this depen-
dence include the consideration of robust/worst-case or averaged design criteria, [37,(171,217] as
well as sequential design approaches, |170], where one alternates between estimating the unknown
parameter and obtaining a new measurement setup based on the Fisher information of the current
estimate. Optimal design of experiments has been frequently studied and successfully applied for
processes described by ordinary differential equations, |71}244], and differential-algebraic equa-
tions, |20,38,169]. More recently, extensions of this concept to models given by partial differential
equations have been considered in e.g. [4,/15,|103}/138,|181]. We also point out to the thesis |57]
and the early work [157].

We emphasize that the optimal sensor placement problem has a combinatorial aspect due to the
unknown optimal number of measurements. This aggravates discussions on the well-posedness
of the problem, i.e. the existence of solutions, as well as the derivation of necessary optimality
conditions. Clearly, it also poses a serious difficulty for the practical computation of optimal mea-
surement setups. For this reason, the maximum number NV of measurements is often fixed a priori
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and the design criterion is only minimized with respect to the positions {x;}}¥; and the measure-
ment weights {u;}2¥,. In this case, optimal sensor placement is a nonlinear finite-dimensional
optimization problem. We point out that, while the design criterion as well as the regularization
term are assumed to be convex, the possibly complicated dependence of the Fisher information
operator on the positions of the sensors renders the sensor placement problem nonconvex in gen-
eral. In particular, first-order optimality conditions, if they can be derived, are only necessary but
not sufficient. Thus, the problem may admit a large number of stationary points which are not
necessarily (local) minimizers. As a consequence, the computation of a global minimizer to the
problem is not feasible in most cases. Moreover, we also mention that, if the problem is smooth,
the application of first-order optimization methods in order to compute a stationary point requires
derivatives of the Fisher information with respect to the positions of the sensors. This can be a
challenging problem in itself, see e.g. [116]|. For this reason, the admissible set {2, is often chosen
as a finite collection of points which correspond e.g. to nodal points of a triangulation. This
additional simplification reduces optimal sensor placement to a finite-dimensional convex mini-
mization problem for the measurement weights {u;}?Y,. For sensor placement problems with I,
regularization term in this setting we refer e.g. to [4,71,127|. It is, by now, a well-known fact that
penalizing the [; norm of the optimization variable favors optimal measurement weight vectors
that are sparse i.e. they will only contain few nonzero entries.

In the context of this thesis we will neither prescribe an a priori upper bound on the number
of used sensors nor will we, at least for most of the derived results, impose any restrictions,
beyond compactness, on the admissible set of possible sensor positions (2,. In particular, we
stress that (2, is not necessarily given by a finite collection of points. The main novelty of the
present work is to bypass the aforementioned difficulties, i.e. the non-convexity and combinatorial
nature of the problem, by embedding optimal sensor placement into a more abstract framework:

Associated to a vector of sensor positions x = (x1,...,zx)" € 2N and a vector of measurement
weights u = (uy,...,uy)’ € Rﬂ\r] we define the design measure u = Zfil u;0,,. We point out

that the total variation norm of this conic combination of Dirac delta functions equals the {1 norm
of the measurement weight vector u:

N
lull e = /Q du(z) = 3w = [ull,.
o =1

Moreover, for an arbitrary spatial point x € (2, consider the operator O(z) ® O(z) acting on the
parameter space Q) as

(0g1, [O(z) ® O(x)]dg2)q = (9S[d]0q1, O(x))y,y+«(0S[d]dg2, O(x))y,y= Vdq1,0q2 € Q.

Now, we make the important observation that the Fisher information operator can be equivalently
rewritten as an integral with respect to the design measure u:

N
X 5K = w(0() © O) = /Q 0() ® O()] du(z).

i=1

Here, integration has to be understood in the sense of Bochner. This reasoning leads to the sparse
sensor placement problem

u@r;ly(lno)[k’/(f(w)+G(HUHM)] st Z(u) :/QD[C’)(H«“)@@(OC)] du(z),



where we minimize with respect to the design measure u in the set of positive Borel mea-
sure M™(§2,) on the admissible set. Loosely speaking, this reformulation can be interpreted as
minimization problem for the distribution of the measurement sensors on {2, instead of minimizing
for the position of each sensor, the associated measurement weight as well as the overall number of
measurements separately. The crucial advantage of the new formulation is the linear dependence
of the Bochner integral on the measure u. As a consequence, in contrast to the original problem,
the resulting sparse sensor placement problem is convex. Moreover, the combinatorial nature of
the problem vanishes. This allows to treat sparse sensor placement as nonsmooth but convex
minimization problem. In particular, necessary and sufficient first-order optimality conditions for
optimal design measures can be derived.

Nevertheless, this comes at the price of having to deal with minimization problems on the space of
Borel measures M(f2,) which, in some sense, shifts the difficulties in the problem to the considered
function space. For example, the Banach space of Borel measures on (2, lacks desirable properties
such as reflexivity or smoothness which complicates the design and analysis of efficient numerical
solution algorithms. Moreover, we point out that we minimize over the whole set M™(£2,) rather
than only considering measures of the form u = EZ]\; 1 W0z, This is an, a priori, necessary
extension of the problem to discuss its well-posedness and to derive optimality conditions since
the cone of Dirac delta functions on {2, is not closed with respect to a suitable topology. We will
however discuss conditions which ensure the existence of a minimizer comprising finitely many
Dirac Delta functions. In particular, this is the case if the unknown parameter is finite-dimensional.
The number of Diracs in such a solution, their positions and the associated coefficients then provide
a solution of the nonconvex and combinatorial problem. This makes both problems essentially
equivalent with the crucial difference that the sparse sensor placement problem is convex.

A rigorous analysis of sparse sensor placement problems and their efficient algorithmic solution
are at the heart of this thesis. Moreover, for the practical computation of optimal measurement
designs, we present a discretization framework based on a finite element discretization of the
partial differential equation and, if @) is infinite-dimensional, on a sophisticated discretization of
the parameter space. All arguments are backed up by accompanying a priori error estimates. For
finite-dimensional parameter spaces, in contrast to prior approaches on robust optimal design, we
cope with the dependence of optimal solutions on the linearization point by providing stability
results and sensitivities for optimal design measures with respect to perturbations in the data
of the sensor placement problem. While the presentation of these results is restricted to the
important case of pointwise measurements and norm regularization i.e. G(||u||r) = Bllulm, we
are confident that an extension to more general measurement models and different regularization
terms is possible.

Before proceeding to a more detailed outline of the presented results, we give a brief overview on
similar approaches to optimal sensor placement and the rapidly developing area of optimization
with sparsity enhancing regularizers. This allows to put the derived results in the bigger picture
and highlights their novelty. As already mentioned at an earlier point of these introductory
remarks, optimal design of experiments based on the Fisher information of the parameter estimates
first came up in the context of linear regression in statistics. Here, the interest lies in a sophisticated
choice of sampling points in a set {2, in order to guarantee optimal inference on the unknown
regression coefficients from the obtained samples. Systematic approaches to this problem are
often based on the notion of approximate or continuous design theory stemming back to the works
of Kiefer and Wolfowitz |163,165]. This approach models potential measurement experiments as
probability measures over the design space {2,. The mass associated to a Dirac delta function
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in such a measure describes the fraction of available measurements that should be conducted at
the corresponding point in §2,. This idea has been further developed in numerous publications.
For further reference we point out to the monographs [9,[205,222] and [197,/198]. An extension
of this method to nonlinear models is based on linearization, see e.g. [107,[217]. A fundamental
pillar of continuous design theory is constituted by the famous Kiefer-Wolfowitz Theorem, [164]
166|, which allows to check if a given design measure is an optimal one. In general, optimal
designs cannot be given in closed form. If the design space {2, consists of finitely many points,
the algorithmic solution of the continuous design problem is usually based on the multiplicative
algorithm due to Silvey and Titterington, [241]. For general sets (2,, algorithms of the Fedorov-
Wynn type, [105,271-273|, are applied to compute optimal designs. These methods compute
optimal designs by the sequential selection of new sensors based on the gradient of the design
criterion and an update of the associated measurement weights. For an adaptation of continuous
designs to the estimation of finite dimensional parameters in a partial differential equation we
refer to |17,256] and the references therein. In the context of the present thesis, the continuous
design problem can be recovered by an appropriate choice of the regularization term G(||u||rq) if
the design criterion ¥ fulfils mild monotonicity assumptions which is the case for all prominent
examples. At this point, we emphasize that our results should not be seen as a simple adaptation of
this well-established approach. Quite the contrary, we also contribute to the theory of continuous
designs in a substantial way. First and foremost, we stress that, to our best knowledge, all previous
works in this direction were restricted to finite dimensional parameter spaces while we also deal
with the infinite-dimensional case. We provide a set of equivalent necessary and sufficient first-
order optimality conditions for the sparse sensor placement problem which reduce to the result
of the classic Kiefer-Wolfowitz Theorem if @ is finite-dimensional. We refer to Theorem
and Example Moreover, in Section we identify the Fedorov-Wynn algorithm as special
instance of a conditional gradient method. Based on the results obtained in Chapter [0} we derive
worst-case convergence rates for a general class of optimal design criteria. Most important, we
provide an accelerated version of the method reminiscent to those proposed by Wu, [269,270] and,
more recently, by Biedermann, [275|, and Boyd, |44]. In contrast to these previous works, we obtain
a provable improved convergence behavior of the method if additional structural requirements are
met. To the best of our knowledge, comparable results are only available if 2, consists of finitely
many points, |1,2]. Last, while the monograph [256] extends the idea of continuous designs to
parameter estimation problems with partial differential equations, it does neither touch the topic
of discretizing the problem nor does it study the influence of perturbations in the problem on the
obtained designs. To sum up, while our primary interest lies in parameter identification problems
with partial differential equations, the derived results may also have a considerable impact on
continuous design theory which is, traditionally, a topic studied in statistics. These considerations
highlight the strong interdisciplinary component of the present thesis.

For a complete overview, the sparse sensor placement problem

ue/]\[/lnir(lg,,)[w(z(u)) + G(HU”M)]

should also be discussed in the broader context of nonsmooth composite minimization problems.
By now, it is a well-known fact that a penalization of the total variation norm favours optimal
solutions that are sparse i.e. they are supported on sets of Lebesgue measure zero. In particular,
minimizers may be only supported on finitely many points. This observation makes measure-
valued optimization variables appealing for inverse problems. For example, we mention acoustic
and seismic inversion, [178,209], as well as super-resolution, [55,95]. In optimal control, sparsity



provides a suitable framework for e.g. the optimal placement of actuators, |54,(74,[113]. The overall
aim of the present thesis is to showcase the applicability of sparse minimization to the problem of
optimal sensor placement. As outlined in [73], sparse minimization problems are closely related
to the well-studied subject of state-constraint optimization.

The results contained in this thesis benefit from the advanced level of research in these fields
but we also contribute to them in several ways. For example, we point out to the sensitivity
results of Section which are based on generalizing techniques from the recent work [95]. The
finite element discretization framework in Sections and respectively, is inspired by the
variational approaches for sparse optimal control problems in [59,[210]. A characteristic trait of
sparse minimization problems is that sequences of perturbed optimal solutions obtained by e.g.
discretizing the problem, do not converge in the total variation norm but only with respect to
weaker topologies. Therefore, it is not obvious how to quantify the convergence of such sequences.
For finite-dimensional parameter spaces (), we will prove that the sparse sensor placement prob-
lem admits solutions consisting of finitely many Dirac delta functions. Considering a sequence
of such sparse measures, we study and quantify the convergence of the position and coefficient
associated to each Dirac delta. This can be achieved by extending results from semi-infinite opti-
mization cf. [191]. These considerations require additional structural assumptions on the problem
which we obtain by adapting the recent concept of non-degenerate source conditions, [94], from
super-resolution theory to the problem at hand. On a more abstract level, we will observe that
these convergence results imply convergence rates for sequences of sparse measures in a modified
version of the well-known Wasserstein distance, see e.g. [259]. This new measure of convergence is
computationally accessible which also allows to verify the obtained theoretical results in practice.
While the Wasserstein distance is a common tool in the theory of optimal transport, it was, to
the best our knowledge, not yet considered in sparse optimal control problems.

The last big topic that is covered in this work is the design and analysis of efficient solution
algorithms for optimization problems with measure-valued variables. As already pointed out at
an earlier point, this is a challenging problem for several reasons. First, the objective functional
contains the typically nonsmooth term G(||u||r¢). Second, the space of Borel measures lacks reflex-
ivity, smoothness and strict convexity. Most well-known methods do not yield a direct extension
to this setting. While this difficulty can be overcome by simply discretizing the problem, such
reasoning harbors the danger of yielding mesh-dependent optimization algorithms i.e. their con-
vergence behavior critically depends on the discretization parameters. For this reason, our interest
lies in the formulation and analysis of iterative solution algorithms in the function space setting.
Concrete practical realizations of such methods can be expected to show a mesh-independent con-
vergence behavior i.e. the number of necessary steps to reach some convergence criterion will be
essentially independent of the number of degrees of freedom in the discretization. One possibility
to tackle this problem, is to consider another, closely related, approach promoting sparse solutions
given by

. €
s () + Ol ) + 5o,
where L'(£2,) and L?(£2,) denote the spaces of integrable and square integrable functions on f2,.
By € > 0 we denote an additional regularization parameter. Note that for u € L'(£2,) there
holds [[ul|z1(q,) = |lullm. Obviously, this formulation no longer allows for optimal solutions
supported on finitely many points. However, since the total variation of w is still present in the
problem, the additional regularization still enhances sparsity to some extend i.e. optimal solutions
will be zero outside of a small subset of §2,. The uniform convexity of the squared L?({2,) norm
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facilitates the application of efficient function space based solution algorithms such as semi-smooth
Newton methods, [248257]. A solution to the original problem can then be obtained by applying
a continuation strategy for driving the regularization parameter ¢ to 0 as outlined in [208].

In this thesis we follow a different route and consider a solution algorithm for the original problem
based on the sequential addition of new Dirac delta functions. This is motivated by the method
presented in [50]. We identify the algorithm as a generalization of the well-known conditional gra-
dient method due to Frank and Wolfe, [112]. While its implementation is simple, the characteristic
slow convergence behavior of first-order optimization methods diminishes its practical utility. We
present an accelerated version of this algorithm alternating between inserting new Dirac delta
functions and optimizing the associated coefficients. This new Primal-Dual-Active-Point algo-
rithm is reminiscent of the methods presented in [44}/50]. However, we are the first to provide
improved convergence rates if additional structural requirements on the problem are met. The
derived results are not restricted to optimal sensor placement but also hold for far more general
problems involving vector-valued measures as optimization variable. We point out to Section [6.3
Due to the tight connection between measure-valued optimization problems and state constraints,
these new results also shed some new light on classical algorithms such as the exchange method
in semi-infinite optimization, see [97,278| and Example We also compare the new method to
the aforementioned continuation strategy and conditional gradient methods without acceleration
in order to highlight its practical efficiency.

This thesis is structured as follows. In the first chapter, Chapter [2| we provide a more profound
and mathematical introduction to inverse problems for parameter identification and the difficulties
caused by measurement errors. We sketch approaches to quantify the uncertainty induced by
random perturbations of the measurement data on approximate solutions of the inverse problem.
Finally, this reasoning leads to the formulation of sensor placement problems based on the Fisher
information operator in order to mitigate their influence and to obtain reliable estimates for the
unknown parameter.

In Chapter [3], we formulate the task of optimally planning measurement experiments as mini-
mization problem in the space of Borel measures over the set {2,. Well-posedness of sparse sensor
placement problems as well as necessary and sufficient first-order optimality conditions are in the
focus of Section [3.2.3] Based upon these results, we derive structural properties of optimal design
measures in Section Sufficient conditions for the existence of sparse solutions consisting of
finitely many Dirac delta functions are discussed. In particular, if the unknown parameter is finite
dimensional, optimal design measures with support size bounded in dependence of the dimension
of the parameter space exist.

Optimal sensor placement for the inverse problem of identifying a finite dimensional parameter
entering into a PDE is in the focus of Chapter [4] Inference on its true value is possible based on
finitely many pointwise measurements of the associated state variable. In Section [£.2] we discuss
this setting in the context of the proposed sparse minimization framework with G(||u|m) =
Bllulam.  Section draws a parallel between sparse sensor placement for finite dimensional
parameters and semi-infinite optimization problems. Section [£.4] is devoted to the formulation
and analysis of a numerical solution algorithm based on the sequential insertion of a new Dirac
delta function into the iterated design measure. Worst-case convergence results are concluded
from the discussions in Chapter [6] By augmenting the method with an additional post-processing
step, convergence of the iterated design measures towards a sparse optimal one can be shown.
Moreover, we provide an accelerated version of the algorithm for which improved convergence
results can be proven under suitable conditions. Stability and sensitivity analysis for sparse sensor



placement problems is presented in Section For the practical computation of optimal design
measures, the underlying PDE is discretized by linear finite elements. We derive estimates for the
discretization error in the cost functional as well as the Fisher information matrix associated to
optimal designs. Furthermore, a priori error estimates for the optimal positions of measurement
sensors and their optimal diligence factors are derived under additional structural assumptions on
the problem. Numerical examples confirm their optimality. To the best of our knowledge, we are
not aware of any comparable results. We point out that most of the results in Sections .1 and [4:2]
Section [£.4] with exception of Sections and [£.:4.5] as well as Section and the numerical
examples of Sections [4.7.1| and [5.4.2] are contained in similar form in the scientific paper [200]
which is loosely based on the author’s master thesis, [262].

Chapter [f] deals with sparse optimal sensor placement in the context of infinite-dimensional
Bayesian inversion with partial differential equations. Again, it is assumed that finitely many
pointwise measurements of the state variable are available in order to infer on an unknown dis-
tributed function entering into a PDE. The prior uncertainty on a suitable value for this function
is taken into account by modeling the unknown parameter as a Gaussian random field. Since
Bayesian inversion and optimal design of experiments in this context are a (relatively) new and
currently very active area of research, the first part of Section provides a concise introduction
to these topics. In Section we embed Bayesian optimal sensor placement into the sparse
minimization framework of Chapter As for finite dimensional parameter spaces, we proceed
with the presentation of a discretization framework based on a finite element surrogate for the
PDE. Furthermore, the infinite-dimensional parameter space is replaced by a finite-dimensional
subspace spanned by several eigenfunctions of the prior covariance operator. A priori estimates
for the error in the cost functionals as well as the optimal Fisher information operators due to the
finite element discretization as well as the approximation of the parameter space are presented.
An extension of the sequential point insertion algorithm from the previous chapter to the present
setting as well as its efficient numerical realization for a particular choice of the design criterion is
in the focus of Section[5.3] Numerical experiments in Section [5.4 highlight its practical efficiency.

In the last part of this thesis, Chapter [6] we take a closer look at efficient solution algorithms
for sparse minimization problems in the function space setting. For this purpose, we essentially
proceed in two steps. We recall that the space of Borel measure on 2, can be identified as
the topological dual of the separable Banach space of continuous functions on this set. In the
first part of the chapter, we embed sparse minimization into a more general setting and consider
the more abstract task of minimizing the sum of a smooth but not necessarily convex function
and a convex regularizer over the topological dual space of a separable Banach space. Besides
sparse minimization, this composite minimization framework also encompasses e.g. bang-bang
and minimum-effort control problems as well as optimization problems in the space of functions
with bounded total variation. In Section [6.2] we propose an iterative solution algorithm for this
type of problem based on a generalization of the well-known conditional gradient method. This
procedure generates a new iterate by taking a convex combination between the current iterate and
a solution to a certain (partially) linearized problem. We discuss (subsequential) convergence of
the generated iterates towards stationary points of the problem and derive worst-case convergence
rates if the smooth part is convex and fulfills additional regularity assumptions. More in detail, we
obtain sublinear convergence of the objective function values of the generated iterates towards the
global minimum of the problem which is characteristic for first-order optimization methods. This
result is sharp. Examples point out to possible applications for the method. The second part of
the chapter, Section [6.3], is devoted to the adaption of the generalized conditional gradient method
to certain composite minimization problems in spaces of vector-valued measures. It turns out that
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the linearized subproblems admit solutions supported on a single point. In particular, the method
may be realized such that all iterates are comprised of finitely many Dirac delta functions. We
discuss augmentations of the methods which e.g. guarantee sparsity of the iterates as well as of
the approximated solutions in certain cases. Most important, we propose an accelerated version
of the method, the Primal-Dual-Active-Point algorithm, which alternates between adding a new
Dirac-Delta function in each iteration and optimizing the coefficients of all Diracs in the iterate.
For this specific version of the algorithm, we are able to prove a linear rate of convergence for the
objective function values as well as linear convergence for the sequence of iterates in certain dual
norms if additional structural assumptions on the problem hold. This last chapter is based on the
paper [211] which will be soon submitted to a scientific journal. The results of Section are
taken from [209).

10



2 From inverse problems to optimal sensor
placement

This chapter of the thesis constitutes a brief introduction to the mathematical concept of inverse
problems. Moreover, it serves as a motivation for and a bridge to the sensor placement problems
considered in the remainder of this thesis. At first sight, the reasoning behind inverse problems
is simple: Assume that we have given a family of partial differential equations which depend on
an unknown parameter. To each equation, we can compute a solution which resembles physical
quantities, such as fluxes, concentrations or pressure. In order to select the most suitable math-
ematical model for the simulation of such phenomena, we take a finite number of measurements
on these quantities in an experiment. In the inverse problem, we now provide a mathematical
model for the measurement process. Its solution is then given by one particular partial differential
equation, or more precisely the associated parameter, whose solution minimizes the misfit between
the obtained measurements from the experiment and those predicted by the measurement model.
In practice, the solution of inverse problems is aggravated by several factors. For example, the
amount of provided measurements may not suffice to uniquely identify the unknown parameter.
Moreover, in most practical situations, measurements are subject to perturbations stemming back
to the imperfectness of the applied sensors. These defects add an additional bias to the problem
which has to be properly addressed. Clearly, these shortcomings are intimately related to the
setup of the experiment in which the measurements are collected. This observation suggests that
we can e.g. mitigate the influence of measurement errors on the solution of the inverse problem
by a sophisticated design of the experiment. In particular, this is possible by optimizing the ar-
rangement of measurement sensors and the overall number of performed measurements. In the
following chapter, we outline this reasoning mathematically and consider the task of optimal sen-
sor placement as a minimization problem based on the so-called Fisher information operator of
a suitable linearized parameter estimator. Similar formulations will then form the basis for the
abstract sensor placement framework presented in the remainder of this thesis. For a profound
introduction to the vast topic of inverse problems we refer to [16}21}/101,|155]. Optimal sensor
placement based on the Fisher information of the estimates dates back to the works of Smith, [245]
and Kiefer, |165] for linear regression. Extensions of these methods to nonlinear models are based
on linearization cf. [217]. An overview on comparable approaches for inverse problems with partial
differential equations is given in the monograph [256].

2.1 Notation and function spaces

We briefly introduce some of the notation used throughout this thesis. By R, R, we refer to the
real and nonnegative real numbers, respectively. The letters N, Z denote the natural and whole
numbers. The euclidean inner product on R, n € N, is denoted by (-,-)gn. The euclidean norm

11
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is given by | - |gn. Given two Banach spaces X and Y with Banach space norms || - ||x and || - ||y
as well as a linear mapping B: X — Y, we define the operator norm of B as

1Bllecxyy = sup [[Bely.
lpllx =1

The vector space
L(X,Y):={B|B: X Y linear, ||Bllzxy) <}

forms a Banach space together with the operator norm || - [|(x,y). Furthermore, the topological
dual space L£(X,R) of the Banach space X is denoted by X*. The associated duality pairing is
given by (-, ) x,x+. The adjoint operator to B € L(X,Y) is denoted by B* € L(Y*, X*). By Ker B
and Im B we further refer to the kernel and range of B, respectively. Given a Banach space X, an
extended real valued functional ¢: X — R U { +o0 } and a convex subset M C X we define the
domain of ¢ in M as

domyrp={ue M]|pu) <oco}.

The convex indicator function of M is denoted by 1.

Let {2 be a nonempty set, F a o-algebra on {2 and p a nonnegative measure on the measurable
space (£2, F). The triple (£2, F, u) is called a measure space. If u(£2) = 1 we speak of a probability
space. By B(f2) we denote the Borel o-algebra on 2. The Lebesgue measure on R, d € N, is
denoted by gy and the Lebesgue o-algebra is £(R?). Let 2 ¢ R? The classical Lebesgue
spaces LP(2), p € [1,00], are defined as the space of Lebesgue measurable functions (interpreted
in the almost everywhere sense) with finite norm

_ [ Unlel dun)'” petoc)
lellir(2) =
esssup,cn |¢(z)] p= occ.

Occasionally, we write

| e dun= [ o) dunte) 0 L@,
O O

to stress the argument of the integrand. We proceed in the same way for integration of suitable
functions with respect to general measures. If it is clear from the context that integration is under-
stood with respect to the Lebesgue measure, we further write [, f dur = [, fdz. By H'(£2), we
refer to the usual Sobolev space of functions ¢ € L?(f2) admitting square integrable weak partial
derivatives. If we incorporate additional zero boundary conditions (in the trace sense) into the
space, we write Hj (£2).

A measure pp on R, n € N, is called a Gaussian measure if there exist g € RV and a positive
definite matrix X € R™*™ with

pe(0) = ;/Oexp (—;(x — 20, X Nz — a:o))Rn> dz VO € B(R").

The scalar Z > 0 is a normalization constant ensuring pz(R™) = 1. The vector xg is called the
mean and Y is the covariance matrix of yugp. We adopt the usual convention and write up =

N(xo, 2)

12



2.2 The inverse problem

2.2 The inverse problem

In order to formulate the inverse problem, we first have to elaborate on the underlying mathemat-
ical model and the measurement procedure. For this purpose, let () denote a separable Hilbert
space of parameters with inner product (-, ) and induced norm ||-||g. Moreover, by Y and W we
refer to the so-called state and test space, respectively. Both are assumed to be reflexive Banach
spaces. The duality pairing between Y and its dual space Y* is denoted by (-, -)y.y+. Analogously
we proceed with W. Last, we consider a mapping A: Q x Y — W* describing a parametrized
family of differential operators. For a given parameter ¢ € @) an element y € Y is called an
associated state if

A(q,y) =0 in W™ (2.1)
As commonly done we introduce a semi-linear form as

a:QxY xW =R, (¢,y,9)— (¢, A(q,y))ww~

In the following, we write a(-,-)(:) to stress the, in general, nonlinear dependence of this weak
form on its first two arguments while it depends linearly on the element in the second bracket.
Now, we reformulate the partial differential equation in as a variational problem: Given a
parameter g € () we search for an element y € Y fulfilling

a(q,y)(p) =0 VpeW. (2.2)

Next, we give a mathematical description of the measurement process. To this end consider a
compact set 2, C R? d € N. We will refer to 2, as the candidate set of possible sensor locations.
On this subset, we assume the existence of a strongly continuous mapping

O:02,—-Y"

where O(z) € Y* models the action of a measurement sensor located at a spatial point = € (2, on
the state variable y. We give some examples to clarify this abstract definition.

Example 2.1. Let 2 be a convexr and bounded domain in RY, d < 3, and 2, C 2 a compact
subset. First we discuss pointwise measurements of a state variable y in the Sobolev space H?(12)
of functions y € L*(82) admitting square integrable weak derivatives up to order two. For a
given x € (2, the associated point evaluation of the state y € H?(82) is realized by the duality
pairing with the associated Dirac delta function 0. Clearly, §, defines a linear and continuous
functional on H?(§2) since

(Y, 62) m2(2),m2(2) = ¥(@) < |lylle < lylla20)

due to the continuous embedding of H?(§2) into the space of continuous functions C(£2,). Accord-
ingly, define the measurement mapping

O1: 2, = H*(2)*,  (y,01(2)) g2(0).12(02) = y()

We check that O is indeed a strongly continuous function. To this end, let a sequence {xy }ren C 2,
with x — x be given. Denoting by M(£2) ~ C(§2,)* the space of Borel measures on §2,, we readily
verify that the sequence {O1(xy)}ren converges with respect to the weak™ topology on M(2,) i.e.

(@, 01(zk)) (2, M(2) = P(TE) = p(7) = (9, 01())c(2,) M(2,) TP € C(§25).

13
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C

Since the space H?(£2) embeds compactly into C(§2,) we also have M(£2,) — H?(2)*. Thus we
conclude 6, — 8, strongly in H*(£2)*.

As a second example consider averaged measurements of the state variable over balls with fized ra-
dius around a spatial point x € £2,. The state space is given by the Y = L>°(§2). The measurement
mapping is defined as

1
0 90 (), 0 O 007 = S B i
r(x

for some R > 0. Again, it is easy to see that O2(x) defines a linear and continuous functional
on L*>°(82) for all x € £2,. Moreover observe that for any convergent sequence {xy}ren, Tk — T,

there holds

[02(zx) — O2(2) | oo(2y- = sup (@, Oa(wk) — O2(2)) poo (), 100 (02)*|
lell oo (2y<1

< |pe(Br(x) \ Br(zk)) + pr(Br(zi) \ Br(z))|
where the right hand side tends to zero as k — oco. Hence, Oy is a strongly continuous function.
A priori knowledge on the structure of the unknown parameter is incorporated by restricting the
parameter space to an admissible set Qg C Q. The inverse problem is now formulated as follows:
Given a vector of measurements yg; = (yé, e ,yév )T € RN, N € N, collected at a finite number

of distinct sensor locations {xi}fil, find a pair (q,y) € Quq x Y fulfilling the system of equations
defined as

<y7 O(xi»Y,Y* = yzda 1= 1a ceey Na a(q’ y)((p) =0 VSD ew. (23)

Now, we lay the focus on the solution of the inverse problem and the accompanying difficulties.
For this purpose, the following assumptions on the solvability of the underlying partial differential
equation are made.

Assumption 2.1. For every ¢ € Quq there exists a unique element y € Y fulfilling (2.2]). Fur-
thermore, the parameter-to-state mapping S: Quq — Y given by

S:Qua—Y, qr—y=S8[q

is at least continuously Fréchet differentiable with respect to the norm on @) in a neighborhood of
the admissible set Qqq. The Fréchet derivative of S is denoted by 9S: Q — L(Q,Y).

If the constituting operator A: @ x Y — W* is Fréchet differentiable, so is the induced form and
there holds

ay(y,q) 0y, ) = (0, Ay (¢, oY) ww=,  ag(y,q)(0q, ) = (@, A, (¢, y)dq)w,w-

for q,0q € Qua, ¥,0y € Y and ¢ € W, respectively. By definition of S we further observe that

a(q,S[q)) () =0 VYq € Qaa, w € W.

14
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Taking the total derivative with respect to ¢ in the above equation, we conclude that 9S[¢]dq € Y
for ¢ € Quq, 0q € Q, fulfills the linearized state equation

ay (4, S[d])(95(d]0q, ») = —ay(4, S[d])(dg, ) Ve € W.

This relation between the parameter and the state variable allows to eliminate the partial differ-
ential differential equation as an explicit constraint. We arrive at the reduced formulation

find ¢ € Qaa:  (S[q), O(zi))yy+ = yfi, 1=1,...,N.

Moreover, in the following we assume the availability of a sophisticated a priori guess § € Qqq On
the parameter value describing the modeled process most faithfully and the parameter-to-state
operator S is well-approximated by a first order approximation around it i.e.

Slq] ~ S[g] +0S[dl(q — §) Vg € Qua-

Now, we may also drop the constraints on the admissible set of parameters and consider the
linearized inverse problem given by

find g € Q:  (S[q), O(z:))yy= + (3S[d)(q — @), O(zi))vy- =yg i=1,...,N.  (24)

Let us introduce some additional notation to rewrite this problem in a more compact way. In
order to do so, observe that

(05[4)q, O(z4))y,y= = (0S[4]"O(xi),q)g VYge@, i=1,...,N,

where 0S[g]*: Y* — @ denotes the Banach space adjoint of 95[g]. Accordingly, we now introduce
the reduced measurement mapping

O: 2, = Q, =z~ 9S[q"O(x),
and the (linearized) parameter-to-observations map X € £(Q,R") as

Last, define the vector S[g](z) € RN with S[g](z); = (S[d],O(z;))yy for i = 1,...,N. We
assemble all N equations from (2.4) in one system to equivalently reformulate the linearized
inverse problem as

findge @Q: Xq=Xqg+yq— S[G)(zx). (2.5)

While this is a linear equation for the unknown parameter ¢ its solution is in no way straightforward
and has to be handled with care. To highlight this fact, recall the notion of well-posedness due
to Hadamard: A mathematical problem is well-posed in the sense of [129] if it admits a unique
solution for all admissible input data. Moreover, the obtained solution has to depend continuously
on the data. Translating this definition to the present case, a well-posed linearized inverse problem
of the form admits a unique solution for every vector of measurements y; € RY. Clearly,
these conditions are violated in most cases. On the one hand, we are often interested in identifying
high or even infinite dimensional parameters but only a small number of measurements is available.
In these underdetermined cases, i.e. if dim (@ > N, the inverse problem in may provide an

15
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infinite number of solutions since the kernel of X is nonempty. On the other hand, the problem
admits no solution if

Xq+yq— S[d)(z) ¢ Im X.

Note that the non-existence of a continuous inverse to X causes severe problems in practical
applications. There the measurement vector yy corresponds to data obtained by performing
measurements in a real experiment. In this case, it is reasonable to assume that the true data
is perturbed by measurement noise stemming back to the imperfectness of the utilized sensor.
However, due to the ill-posed nature of the equation in , small changes in the input data can
cause the non-existence of a solution to the perturbed problem or provide solutions that are far
away from the unperturbed one.

This observation suggests that the computation of a solution to the inverse problem without ac-
counting for the aforementioned difficulties leads to a severe misinterpretation of the obtained
estimates. Ultimately, this results in wrong conclusions on the most suitable choice for the un-
known parameter. In order to allow for a stable solution of the problem, we resort to so-called
regularization techniques. One particularly famous method for this task is given by (weighted)
Tikhonov regularization, [252|. In this approach, an approximate solution to the inverse problem
is obtained by solving the regularized Least-Squares problem

) 1. R R 1 R
ﬁgJ@J@?=§M7”%ﬂd@%ﬂﬂq—w—yﬁﬁw+§My%m—®% :

Here we minimize the trade-off between the misfit of the measurement data and a regularization
term that quantifies the distance of the parameter to the linearization point. Note that both
terms incorporate weighted Hilbert space norms induced by a matrix ¥~Y2 € RV*N and an
operator Ié/ 2, Q — @, respectively. For example, these allow to put special emphasis on the
measurement obtained by a specific sensor or to enhance expected structural features in the

approximate solution to the inverse problem. In particular, the operator Ié/ % can be unbounded
on @. Its @Q-domain Q C @) given by

0={qeQ| I o<}

is a, possibly proper, subspace of . The following assumptions are made.

1/2 c RVxN

Assumption 2.2. The matrix X~ is positive definite and Ié/ % is a closed linear

operator. Moreover there holds ¢ € Q.

Note that J(q,yq) = +oo for all ¢ € @ \ Q. Thus, the search for a minimizer of J(-,y4) can be a

priori restricted to the domain of Ié/ % We can define a Hilbert space structure on Q with respect
to the graph norm || - g induced by the inner product

(e =)o+ (T* T o

This is a consequence of the closedness assumption on Ié/ 2 In general, @ will not be identified
with its topological dual space denoted by Q*. By definition of the graph norm there holds

Q= Q=Q"— Q.

Thus, instead of finding a solution to an ill-posed system of equations, we now compute a minimizer
to an optimization problem. Imposing additional assumptions, its unique minimizer can be given
in closed form.
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Proposition 2.1. Define X1 = 2125712 qnd 7, = (13/2)*(13/2). Moreover, assume that
KerZ,? NKer X = {0} and Im(X*37'X +Iy) = Q*. (2.6)
Then the linear and continuous operator
X2 1X4+7y: 90— O (2.7)
admits a linear and continuous inverse
(X* 27X +T)7: 0" — Q.
Last, denote by yq € RN an arbitrary vector of measurements. Then the unique minimizer
of J(-,yq) over Q is given by
P = G+ (X DX+ To) (X T (g — S1a(2)). (2.8)

Proof. Let us first check that the operator from ({2.7)) is indeed linear and continuous with respect
to the correct norms. For this purpose, consider an arbitrary element g € Q. By definition of the
dual norm we obtain

qllo=>

= (Z7°Xq, T Xy + (5,74, 7ya)q
< (152X 2 gz + Dlldllo.
Its linearity is obvious. Furthermore, this operator is injective since
I - 1/2
(0, (X" 27X + To)ho.or = |57 Xalkn +1Z5%al% > 0 Vg€ Q\ {0},

This holds true due to positive definiteness of the matrix /2 and KerIé/ *AKerX = {0}.
Together with the surjectivity assumption from (2.6)) we conclude the existence of its continuous
inverse operator from the bounded inverse theorem.

We now calculate the Fréchet derivative of J(-,y4) with respect to the parameter at a given
element ¢ € Q. Applying the chain rule, we readily obtain

J (g, ya) = X*271(S[(x) + X(q— §) — ya) + Zolq — §) € Q.

Since J(-,yq) is a convex functional an element ¢¥¢ is a global minimizer of J(-,y4) on Q if and
only if the Fréchet derivative J'(¢¥4,y4) vanishes. We make the ansatz

X* 27N S[@)(x) + X(¢—4) —va) + To(g —§) =0 € Q°
and solve this equation for q. Rearranging we get
(X* 27X +To)g = (X* 27X + Tp)g+ X* X (yq — S[d)(x)).
Inverting the operator on the left we finally conclude
¢=q+ (X' Z'X +Zo) (X2 (yq - S[d)(2))).

Thus, by construction, the element ¢¥¢ from ({2.8]) is the unique global minimizer of J(-,yg)
over Q. O

Remark 2.1. Let us briefly point out that the first condition in (2.6) implies the finite dimen-

sionality of KerIé/ 2 and dim KerIé/ 2 < dim(Im X') < N. Moreover, if dim @ < oo, the second
condition in (2.6) is redundant since the injectivity of the operator implies its surjectivity if @ is
finite dimensional.
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2.3 Uncertainty quantification & optimal design

As already remarked at an earlier point of this chapter, it is, especially from a practical point
of view, necessary to discuss and quantify the influence of measurement errors on the obtained
approximate solutions to the inverse problem. This topic is in the focus of the following consider-
ations. We make the following assumption on the vector of measurements yq € RY.

Assumption 2.3. There holds y4 = y:ri + &, where yzl € RY denotes the unperturbed measure-
ments and € € RV is a vector of measurement errors.

We emphasize that we can only observe the sum yg of both terms i.e. the vectors yzl and &,
respectively, are unknown to us. Classical approaches to the treatment of measurement noise in
inverse problems are usually based on an a priori upper bound on the error i.e. |yg — yZl]RN <9
for some 6 > 0. In practical applications, measured data is not exactly reproducible i.e. per-
forming the exact same measurement twice usually leads to slightly different outcomes. These
deviations stem back to the inability of the experimenter or the used sensor to take the mea-
surement in the exact same way. Moreover, at rare occasions, measurement devices produce
outliers i.e. the difference |y; — yL\RN is considerably large. This observation suggests the use
of a less restrictive, stochastic model for the measurement errors. For this purpose, we consider
a probability space (D, F,P) and interpret the noise vector € € RY as realization of a random
variable e: D — RY. The following assumptions on its distribution are made.

Assumption 2.4. Let ¢: D — R be a N-dimensional Gaussian random variable distributed
according to ug = N (0, X). The components of e are mutually independent i.e. the positive defi-
nite covariance matrix X € RV*V is diagonal with Yij = 0ij/u;, where §;; denotes the Kronecker
delta and u; > 0,4,7=1,..., N.

In the following arguments, the weighting matrix for the measurement misfit term in the Least-

Squares estimator is always chosen as the unique positive definite square root of the inverse to the
noise covariance Y. That is El.;lﬂ = 0ijy/0;, 4,5 = 1,...,N. Given a vector y; = yji +ec RN

for a particular realization € of the measurement noise, we may now rewrite the solution to the
regularized Least-Squares problem as

¢ =+ (X ETX +Zo) (XY (ya — S[d)(x)))
=+ (X" 27X + Z0) (XD ) + e~ Sl)())).
By solving the regularized Least-Squares problem the uncertainty in the measurements is also
propagated into the obtained approximate solutions. Thus, we should also adapt a probabilistic
interpretation of the Least-squares solution and view ¢¥¢ as a realization of the estimator

§:D—Q, wr g+ (X*IDTX + I) (XD (y] + e(w) — S[d)(2)))

which is a random variable taking values in the parameter space. An element E[g] € @ is called
the mean of the estimator q if

/D (64, 7(@))o dP(w) = (60, E[d)g Véq € Q.
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2.3 Uncertainty quantification & optimal design

Accordingly, C € L(Q, Q) is called the covariance operator of g if

/D(5ql,q(w) —E[g])@(dg2, g(w) — E[q])q dP(w) = (d¢1,Cdq2)q Viq1,dq2 € Q.

Obviously, these expressions are only meaningful if g: D — @ satisfies appropriate integrability
conditions. However, due to the affine linearity of ¢ with respect to the measurement vector and
our assumptions on the random variable ¢ it is readily verified that

Elg) =4+ (XXX +Zp) " (X5 (v} — S[d)(«))
and that the covariance operator of ¢ is given by
C=(X*"2'X+ ) ' X" 2 I X(X* 271X +7y) !

Moreover the expected deviation of ¢ from its mean is represented by the trace of the covariance
operator:

Elllg - E[q]/13) - /Ilq [@l3) dP(w) = Trg(C) < 0o where  Tro(C) =Y (¢i.Céi)q

i€l
(2.9)

for an arbitrary orthonormal basis {¢; };c1, I C N, of the parameter space Q.

In the following sections we are interested in quantifying the capability of the random variable g for
estimating a particular parameter ¢* € (. Second, our interest also lies in the convergence of the
estimator in the vanishing noise limit i.e. if the measurement errors tend to zero in some suitable
sense. Therefore we first point out that we cannot make useful probabilistic statements about
the closedness of a particular realization ¢¥¢ to ¢* since such events occur with zero probability.
However, we can quantify the expected deviation of ¢ from ¢* in the squared norm on (. This
corresponds to the so-called mean squared error between g and g*.

Definition 2.1. Let a parameter ¢* € ) be given. The mean squared error between ¢ and ¢*
defined as

MSE(g, ") = E[|g - ¢"[3] = /D 12(w) — ¢ |3 Pw).

This term admits the following alternative representation.

Proposition 2.2. There holds

MSE(q,¢*) = ||E[g] — ¢"[|3 + Trq(C).
Proof. By definition we have

MSE(7 /Hq —¢*[§ dP(w)

= /D [IE[) - ¢*1I3 + 2(a(w) — Elg], E[q] - ¢*)q + l|d(w) — Eld]|3] dP(w)
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2 From inverse problems to optimal sensor placement

Since the first term no longer depends on w there holds
/D IE[g] - 4" (I3 dP(w) = [IE[q] — 4" (|-
Furthermore, using the definition of the mean, the second term vanishes since

/(@) ~Ela. Blg) - a")q P(w) = (Bla - Elg) Blal ~ a')q = 0.
The statement now follows by combining these observations with (2.9)). O

Let us give some interpretation to this result. We conclude that the mean squared error captures
both, the difference between the expected value of the given estimator and the parameter ¢* as
well as the variability of the parameter estimator around its mean. As a consequence, a small
mean squared error implies on the one hand that the expected value of § is close to ¢*. On the
other hand, we also deduce that realizations of § do not scatter significantly and are close to the
mean E[g] (and thus also ¢*) with a high probability. To sum up these arguments, the mean
squared error provides a suitable tool to assess the statistical quality of the parameter estimator ¢
for the task of estimating ¢*. In particular, if ¢* corresponds to the exact value of the unknown
parameter in the partial differential equations, i.e. the parameter corresponding to the most
suitable mathematical model, the mean squared error provides a measure for the influence of the
measurement errors on the obtained parameter estimates.

2.3.1 Overdetermined problems
Quantifying uncertainty

We first consider the identification of a finite dimensional parameter in Q >~ R” from overdeter-
mined observations. That is N > n and X € RV*" fulfills dim(Im X) = n. Consequently, the
matrix X*X !X is invertible due to the positive definiteness of X~!. For simplification let us
assume that no model error is present i.e. there holds

ol N
;gﬁggls[q}(w)JrX(q q) — yglry = 0.

Since the kernel of X is trivial, the solution ¢* to this minimization problem is unique. In this case,
we consider the maximum likelihood estimator, [110], which returns the most plausible parameter
value given the measurement vector yy4. It is recovered in the presented Tikhonov regularized
setting through choosing Ié/ 2=0. By invertibility of X*X~'X we obtain

g:D—RY, we g+ (X TN TN (XD y] 4 e(w) — S[dl(2))).
Due to the assumption on the existence of ¢* this estimator can be equivalently rewritten as
7:D—>RY, we ¢+ (X2 e (w).

Its mean is given by E[q] = ¢* i.e. this estimator is unbiased. The associated covariance operator C
is obtained as

C= (X2 X4+T) ' X2 X(X* 2 X + 7o) = (x*271Xx)" L.

20



2.3 Uncertainty quantification & optimal design

We recall that our primary motivation to consider weighted Least-Squares problems was given by
the ill-posedness of and the appearance of measurement errors. These defects prevented a
stable solution of the problem. Thus, we have to address if and in which sense stability of the
maximum likelihood estimator can be expected. For this purpose, we consider the vanishing noise
case i.e. the variance 1/u; of each measurement tends to zero. This condition implies that X' — 0
and that the measurement noise € ~ (0, X') converges to 0 in probability.

Calculating the mean squared error between ¢ and ¢* reveals
MSE(q, ¢*) = [E[q] — ¢*[3n + Trpn (X*271X) 7)) = Trgn (X*271X) 7). (2.10)

Now we estimate

% — _ * v— _ n||X||pyxn
Trpe (X* 271 X) ™) <0 (XFZ71X) 7| gnxn < ‘}X!%
RN

for some g € RN with Xq # 0, |g/gn = 1, independent of ¥. As a consequence, we conclude that
the maximum likelihood estimator is stable in the mean square sense i.e.

“max_1/u; — 0= MSE(q,q%) — 0.

i=1,...,

Besides the stability of ¢, these arguments also highlight that the mean squared error provides
a suitable stochastic tool to quantify the uncertainty on the true parameter ¢* caused by the
measurement errors in the estimation process. Moreover, its computation can be done without
knowledge of ¢*.

Remark 2.2. Tt is worthwhile to note that similar stability results also hold for the case of additional
modelling errors i.e. there holds

Xq+yh—S[g(x) ¢ Im X.

We briefly outline these ideas. For this purpose, consider a parametrized family of measurement
noises £, ~ N (0, X,) where ¥, = 0X for o > 0 and some positive definite diagonal matrix X' €
RN*N  The associated parametrized maximum likelihood estimator is given by

G D= RY, W= g+ (X2 TN XTE T ]+ oo (w) - S[)()
Note that the mean
¢' = Elgo] = 4+ (X271 X)X ] - Slal(@))
is independent of o > 0 and corresponds to the unique solution of the Least-Squares problem

mi | Z12(S[q)(x) + X (g — @) — 1) B

The mean squared error between g, and ¢ fulfills
MSE(o,q") = [Elgo] — 4'[fn + 0 Trn (X" 271 X)) = 0 Trpa (X" 27'X) ™) = 0
as 0 — 0. Thus, the parametrized random variables {G,}s>0 converge in the mean square sense

towards the solution of a deterministic weighted Least-Squares problem for the unperturbed mea-

surement vector yl;.
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2 From inverse problems to optimal sensor placement

Optimal sensor placement

Summing up our previous discussions, the mean squared error of the maximum likelihood estima-
tor provides a tool to quantify the deviation of the random variable ¢ from the true parameter ¢*.
Moreover, it tends to zero if the variances of the measurement errors, X;; = 1/u; > 0, are small.
In this case, realizations of ¢ will be close to ¢* with high probability. In practical applications,
a reduction of the measurement variances can be achieved by performing the same measurement
several times and average the different outcomes. Alternatively, a single measurement can be
performed with a better sensor. From a practical point of view, both of these possibilities are
only viable to some extent since taking repeated measurements and constructing or buying better
sensors is always associated with certain costs. Clearly, it is reasonable to assume that the overall
monetary budget of an experiment to obtain the measurements is limited. As a consequence, an
experimenter is usually interested in providing parameter estimates with small as possible mean
squared error while simultaneously keeping the cost of the measurement process low. Follow-
ing , the mean squared error between the estimator ¢ and the true parameter ¢* can be
given in closed form as the trace of its covariance operator

MSE(g, ¢*) = Trgn (X* 271 X)7H).

Note that this representation is independent of ¢* and solely depends on the so-called Fisher
information matrix X*X~1X with matrices X € R¥*" and X~ € RV*N given by

(Xq)i = (O(l‘i),q)Q, Eigl = (5,']‘11@' Vq S Rn, i,j = 1, .. .,N.

This crucial observation implies that the mean squared error of the estimator cannot only be
influenced by decreasing the variances of the measurements, i.e. by increasingu; > 0,7 =1,..., N,
but also by a sophisticated choice of the sensor locations {z;}¥ , and the overall number of
measurements N. In particular, we can a priori, i.e. before any measurements are carried out,
improve the estimator by an optimal choice of the measurement setup. Mathematically, the task
of optimal sensor placement can now be formulated as an optimization problem
zieno7g€i%+’NeN[Tar((X*E*IX)*l) +R(u)] st (Xq)i = (0(zi),9)q, Eigl = 0j;u,

for all g € R™, 7,5 = 1,..., N, where we minimize the mean squared error by parametrizing the
Fisher information as a function of the number of measurements, their positions and the reciprocal
of their variances. The regularization term R(u) captures the overall cost of the experiment based
on the vector of measurement weights u = (uy,.. .,uN)T. For general admissible sets (2,, we
emphasize that this minimization problem poses a serious challenge due to the unknown optimal
number of measurements and the possible severe nonlinearity or nonsmoothness of the observation
mapping O: 2, — R™.

A geometric interpretation of uncertainty
Another, more geometric way, of describing the influence of measurement errors on the maximum

likelihood estimator is based on the computation of its confidence region. For a confidence level a €
(0,1) and a realization € € RY of the measurement noise, we set

D)) = {0 € B [ J(a.ya) - min J(a.va) < 2202}
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2.3 Uncertainty quantification & optimal design

where yq = yzl + ¢ and 72 () denotes the (1 — a)-quantile of the x2-distribution with n degrees of

freedom. Note that this set can be rewritten in several equivalent ways:

Dla. )€ = { 4 € B | Jg.ya) ~ 1 T(a.ya) < 3(a)/2 ) (2.11)
= {q ER"[(q— ") X* 27X (q— ¢**) <2 () }
={geR" [q= ¢+ (X*TX) X" D2, [Selun < () |-
The mapping
D(g.a): D = P(RY), @ D(,0)((w))

is called the confidence region of ¢ to the confidence level a € (0,1). It is a random variable
taking values in P(R"™), the power sets of the parameter space. Loosely speaking, confidence
regions should be interpreted as follows: If we compute several realizations ¢(w) of the maxi-
mum likelihood estimator, then the true parameter ¢* is contained in « - 100% of the associated
realizations D(q, a)(e(w)).

Consequently, the size of these sets also provides a measure on the statistic quality of the estimator.
If the realizations of the confidence regions are small, we may conclude that realizations of ¢ are
close to ¢* with high probability. At this point, we stress that each realization D(g,a)(e(w)) is
an ellipsoid in the parameter space centered at g(w), see . For every fixed o € (0,1), its
shape and size are described by the Fisher information matrix X*X~!'X which is independent
of w € D. As for the mean squared error, this observation suggests that the confidence domains
of the estimator can be minimized a priori by a sophisticated choice of the sensor positions and
the variances of the measurements.

Again, this task is formulated as an optimization problem based on a parametrization of the
Fisher information by the measurement setup. For example, we may minimize the sum over the
eigenvalues of (X*X~1X)~! corresponding to the combined length of the ellipsoid’s half-axes. The
associated sensor placement problem is

i [T (ST R@) st (Xa)h = (O().ao. 51 = by
Thus, minimizing the half-axes of the confidence ellipsoids corresponds to reducing the mean
squared error of the maximum likelihood estimator. Another possible criterion to assess the qual-
ity of the obtained estimates can be based on the volume of D(g, a)(e(w)) which is, up to a
measurement independent constant, given by the determinant of the covariance matrix. Formu-
lating a sensor placemennt problem for minimizing this criterion leads to

i Det((X*2'X)™ ) +R t (Xq)i = (O(z; ol =6,
o, min o [Det(( )+ RW) st (Xa) = (O ao, T = by,
Minimizing the determinant of the covariance matrix is called the D-optimal design problem,
while optimizing its trace is usually referred to as A-optimality. For a reference we point out
to |222, Chapter 6]. We stress that both of these problems fit into a more abstract framework of

sensor placement problems described by

i U(X*YlX 1. (Xq); = i b =6, ;.
xmwglé%hNGN[ ( )+ R(u)] st (Xq)i = (O(xi), @)q, Xy = di.u
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2 From inverse problems to optimal sensor placement

Here, the optimal design criterion ¥ is a convex and differentiable function on the cone of positive
definite matrices. We adopt such an abstract formulation for the case of general parameter spaces
in Chapter [3] To finish these discussions, we point out to the consideration of nondifferentiable
optimal design criteria. One particular prominent example is constituted by the largest eigenvalue
of the covariance matrix, the E-optimality criterion, resembling the length of the longest half-axis
of the confidence ellipsoids, [84]. Such optimal design criteria are beyond the scope of this thesis
but represent an interesting topic for future research.

2.3.2 Underdetermined problems

It remains to comment on the situation of underdetermined measurements. That is the number
of observations NV is strictly smaller than the dimension of the parameter space ). To make
the following discussions more transparent, we restrict them to finite dimensional parameter
spaces Q ~ R™ with n > N. The case of infinite dimensional parameter spaces is briefly ad-
dressed at the end of this section. We point out that X € RN*" is not injective. Thus, the
matrix X*X 71X is not invertible and we have to choose a suitable nonzero regualizer Ié/ % to en-
sure the existence of (X*X~1X + Zy)~!. The regularized Least-Squares estimator is then defined
as

:D—=Q, we i+ (X' 2TX 4+To) (X (yl +e(w) — S[d](x))).
Assume that there is no modeling error present i.e.

min [05[d](2) + X (g = 4) = Yiler =0 (2.12)

Since X is not injective, we emphasize that the solution to this minimization problem is not
unique. In the following, we simply select one particular minimizer ¢* and evaluate the capability
of g to estimate ¢*. Due to the lack of sufficient information from the provided measurements and
the appearance of the regularization term in the problem, the regularized estimator ¢ is in general
biased i.e. E[gq] # ¢*. More in detail, there holds

Elg] - ¢"[rn = [(X*S7'X + L) ' X* 271X ~1d)(¢" — §)|rn
= |(X*Z 71X + L) ' To(¢" — §)lrn-
Consequently, the mean squared error between g and ¢* is calculated as
MSE(q, ¢*) = [(X* 27X + Zo) ' ZTo(¢* — §)|&n + Trrn (C),
where the covariance matrix C is given by
C= (X2 X+ 7)) ' X' 2 ' X(X* 271X +7p) L.

In contrast to the overdetermined case, we observe that the mean squared error depends on the
unknown parameter ¢*. This prevents its numerical evaluation and a sophisticated choice of the
measurement setup based on minimizing the mean squared error of the estimator. Moreover,
we point out that ¢* was more or less chosen arbitrary from the solution set to (2.12). These
observations suggest that the mean squared error is only of limited practical utility with regard
to optimal sensor placement in the present case.
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2.3 Uncertainty quantification & optimal design

Nevertheless, it would be desirable to formulate meaningful optimal design criteria to allow for a
rigorous and systematic choice of the measurement setup before the actual experiment is carried
out. For example, we may base the choice of an optimal measurement procedure on averaging the
mean squared error over possible values of ¢*, see e.g. [127]. To this end, we consider a probability
measure ug on the parameter space with finite second moments. That is fRn ¢ duo(q) < oo.
The pg-averaged mean squared error is defined as

/ (X 571X + Zo) " Zo(q — @)|3n duol) + Trgn (C) < oc.

Clearly, this averaged mean squared error no longer depends on the particular choice of ¢* and
can be minimized with respect to the measurement setup. However, this comes at the cost of
evaluating an integral over the parameter space. By assumption, the linearization point ¢ can be
interpreted as sophisticated a priori guess for the true unknown parameter. Thus it is reasonable
to consider probability measures whose mass is localized around ¢. A particularly interesting
observation can be made in the Gaussian case.

Proposition 2.3. Let IS/2 € R™ "™ be invertible and set g = N(Q,Io_l). Then there holds

/d (X* 271X + Zo) ' To(q — §) R dpo(q) + Trre (C) = Trge (X* 271X +Zp) ).
R

Proof. See |3, Theorem 2]. O

For general parameter spaces @), a straightforward adaption of this result remains valid. In the
general case, the mean squared error between ¢ and ¢* is given by

(X" 271X + Zo) ' X" 271X —1d)(¢" — @)1 + Tro(C),

whenever the operator X*X 1 X + 7, admits a continuous inverse. As in the finite dimensional
case we assume that Zy admits a continuous inverse and average the mean squared error with
respect to a Gaussian probability measure g = N(4,Z; 1) centered at the linearization point.
The covariance operator is again related to the regularization term in the estimator. In particular,
see Section E the Gaussian assumption on pg requires the operator 7 ! %o be of trace class
ie. Tro(Zy ]) < oo. For infinite dimensional (), this imposes a restriction on the decay rate of its
eigenvalues and implies that Z; is smoothing. Now, again following [3], we obtain

/QII((X*E_IX +Zo) XY TIX — 1d) (g — 91§ dhoa) + Trg(C) = Trg((X*E71X + I3 )).

Consequently, independent of the parameter dimension, a sophisticated choice of the measurement
setup can be based on minimizing the trace of the operator (X*X 71X +7y)~! € £(Q, Q). High-
dimensional parameter spaces ) further aggravate the numerical treatment of the associated sensor
placement problems. For example, evaluating the design criterion already requires the trace of an
inverse of a usually large and dense matrix whose computation is a formidable problem in itself.
These type of sensor placement problems and their efficient solution are in the focus of Chapter
We point out that the averaged optimal sensor placement formulations also admit an interpretation
as a certain bilevel optimization problem. Here, we aim to improve the measurement setup such
that the resulting estimator provides, on average, good reconstruction results on a set of training
parameters, described by the probability measure pg. Since we give a profound discussion of this
topic in Chapter [5| we do not go into greater detail at this point.
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2 From inverse problems to optimal sensor placement

Remark 2.3. For completeness we again pose the question whether the regularized Least-Squares
estimator is stable in the vanishing noise case. In the previous section, see Remark we observed
that the maximum likelihood estimator converges in the mean square sense towards the unique
solution of a deterministic Least-Squares problem if the noise tends to zero. Intuitively, we also
expect a similar behavior in the regularized case.

Let us outline these ideas for the case of regularizing with the euclidean norm. That is we
set Ié/ > = 1d where Id denotes the identity matrix. Again, consider a parametrized family of
measurement noises £, ~ N (0, X,) where ¥, = 0% for o > 0 and some positive definite diagonal
matrix £ € RV, Note that the deterministic Least-Squares problem for the unperturbed
measurement vector yjl

min |£713(81a) () + X (g = @) =yl (2.13)

admits infinitely many solutions since the kernel of X is non-trivial. The associated estimators
are given by

Go: D= RY, w— g+ (X T7X +01d) X TNy + 2 (w) — S[d](2)))

Its o-dependent mean is

Elg,] = 4+ (X" 571X + 0 1d) " (X* S (v} - S[d)(2)).
In the same way, its covariance matrix is determined as

Co=0(X*T'X +01d) ' X* T X(X* X +01d) .
For ¢ — 0 we conclude

(X*E'X 4+ 0l1d) X 22 o (21201
where (2 ~1/2X) denotes the Moore-Penrose inverse of -2y, Accordingly, there holds
Co =0, Elg,] = q =g+ (Z2x)1272(y] - S[4)(x)),

as 0 — 0. The limiting parameter ¢' is the unique minimum norm solution to (2.13) with respect
to the euclidean norm shifted by ¢, see e.g. [184, Theorem 20.9]. That is

q' = argmin{ ¢ — dlrn | g € argmin | Z7Y2(S[g)(x) + X(G— §) — y1)2x } :
geR™ geR”

Combining all previous observations, we obtain
MSE(7s, q") = [E[ds] — 4" [ + Trrn (Co) — 0

as o tends to zero.
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2.3 Uncertainty quantification & optimal design

2.3.3 Interlude: The Bayesian approach

Before proceeding to the main part of the thesis, we briefly outline a different regularization
strategy for the stable solution of the ill-posed inverse problem . Here, instead of solving
an optimization problem, we encode our prior uncertainty on a suitable choice for the unknown
parameter into a probability measure. Thus, besides our already probabilistic description of the
measurement error, we now also adopt a stochastic model for the parameter. Consequently, the
regularized solution to the inverse problem is not given by a single element qggst € @ but a
probability distribution pg on the parameter space. We refer to this method as the Bayesian
approach, see e.g. |153,/160]. For convergence results in the vanishing noise limit we point out
to [149/150] and Section 2.3 of [250]. As we will see, the Bayesian approach allows to asses the
statistical quality of the obtained regularized solutions based on well-known properties of proba-
bility measures. Similar to the case of Tikhonov regularization, this leads to the consideration of
scalar-valued optimal design criteria acting on the Fisher information operator X*X~1X.

The following arguments are restricted to the case of Q = R™, n € N. A profound descrip-
tion of the Bayesian approach for inverse problems with infinite dimensional parameter spaces and
optimal sensor placement in this context is given in Chapter [}] We briefly recall that the mea-
surement noise is modeled by a random variable ¢ distributed according to a Gaussian probability
measure up = N(0, ). Thus, its density function with respect to the Lebesgue measure on RV
is, up to a normalization constant, given by

1
71'noise(e) X exp (_2’€|221) Ve € RN

where the weighted euclidean norm is defined as |e[3,_; = (¢, ¥~ 'e)gn. In the Bayesian approach
we proceed similarly for the unknown parameter and describe our prior uncertainties by a Gaussian
distribution centered at the linearization point ¢. In more detail, we assume ¢ ~ pg = N(§,Zy 1)
where Zj is a positive definite matrix. We refer to pg as the prior distribution of the parameter.
The associated density function with respect to the Lebesgue measure on R” is

1 172 .
7Tprior(Q) X €xp <_2|IO/ (q - Q)’I%&"> vq € Rn

The random variables g and e are assumed to be independent. The regularized solution to the
inverse problem in (2.5)) for a measurement vector y; € R is now given by the posterior distri-

bution ,uggst which is a probability measure on the parameter space with density function

Wpost(Q) X 7Tnoise(‘s’[gﬂ (.Z‘) + X(q - qA) - Yd) 7Tprior(‘]) V(] S Rn' (214)

Loosely speaking, the posterior distribution combines our prior beliefs on the unknown parameter
and the information provided by the measurement data. This intuition is backed up its probability
density function which is large at parameters ¢ € ) that are close to the linearization point ¢,
with respect to the euclidean norm weighted by Zy, and at which the response of the mathematical
model approximately matches the measurement vector. A rigorous justification of this definition
can be based on Bayes’ Theorem and the notion of conditional density functions. We do not go
into greater detail at this point. Note that the statement in does neither require a Gaussian
distribution for the measurement noise or a Gaussian prior distribution for the parameter. In
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Yd

the present case however, it is readily verified that the posterior distribution oy is a Gaussian

probability measure characterized by

Pl = N(@d, (XXX + )7 1) with ¢y =4+ (X* 271X +Zo) 7' X* 2 Hyq — S[g)(x)).

pos

Observe that its mean is given by the unique global minimizer of

1 . N 1172 N
min | 21X (g — ) + Sld] ~ yalys + 1% (0~ Dl |
geR™ | 2 2

which is also referred to as the maximum a posteriori probability estimate. Clearly, this is closely
related to a Tikhonov regularized solution of (2.5) for the particular case of choosing the weighting
matrix in the regularization term as the square root of the inverse covariance operator.

In order to assess the statistical quality of the obtained solution we may now, e.g., quantify the
variability of the posterior distribution pY? . by computing the expected deviation of the associated

post
random variable from its mean qggst. By definition of the covariance operator this corresponds
to

[ 0= @l o) = Tren (X757 X + 7)),

Another frequently considered criterion is the negative of the expected information gain between
prior and posterior distribution, [249|, which is, in the present case, given by

log (Det((X*27'X +Zp)7 1)) .

We take a closer look on the derivation of this term in Chapter [5| Please note the similarity of
these two criteria to those introduced for Tikhonov regularization in the previous sections.

As for the Tikhonov regularized problems, we stress that both of these exemplary design criteria
are independent of the particular measurement vector yq € RY but depend on the position
of the sensors and the variances of the measurements through the Fisher information operator.
Thus, we may again, in a statistical sense, optimize the estimation process before performing any
measurements in practice by solving a minimization problem for the optimal measurement setup.
For an overview on Bayesian experimental design we point out to [68§].

To close these discussions we briefly summarize the most important observations of this chapter.
First, the inverse problem of identifying an unknown parameter from finite-dimensional data is in
general ill-posed. Thus, it calls for sophisticated regularization strategies. Second, it is reasonable
to assume that the provided measurements are subject to random perturbations. Through the
estimation process, the uncertainty in the measurement data is also propagated into the parameter
space. This has to be properly addressed by e.g. modeling the unknown parameter itself as a
random quantity or by viewing the Tikhonov regularized solution as a particular realization of a
suitable random estimator. Finally, we have observed that the statistical quality of the obtained
regularized solution to the inverse problem can be quantified independent of the measurement
vector yq based on properties of the Fisher information X*X~1X. Since this operator depends on
the measurement setup we can a priori, i.e. before any measurements are performed in practice,
improve the estimation process by solving a minimization problem

' U(X*NTlX 1 (Xq); = ; > =
zieﬁo,gé%Jr,NeN[( ) +R@)] st (Xq)i = (0(xi),q0)q. X;; = diju
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2.3 Uncertainty quantification & optimal design

for all ¢ € @, 4,5 = 1,...,N. Here we minimize with respect to the optimal number N of
performed measurements, the positions of the sensors {x;}}*, in the candidate set {2, as well as
the nonnegative measurement weights {ui}ij\il describing how careful each measurement should
be taken. The functional ¥ is a usually convex and differentiable function referred to as optimal
design criterion and R(u) is a suitable regularization term representing the cost of the experiment
based on the measurement weight vector u = (uy, ..., uy)'. This key observation builds a bridge
between inverse problems and the sensor placement formulations discussed in the remainder of the
present thesis.
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3 A sparse control approach to optimal
sensor placement

Throughout the course of this chapter we consider a general linear inverse problem given by

find ¢ € Q: ((’)(xi),q)Q:yfi:(O(:Ei),q*)Q—i-ei, i=1,...,N,

Here we aim to recover an unknown true parameter ¢* in a Hilbert space @) from a finite number of
observations yfj € R. Each of these NV € N measurements is obtained by taking the inner product
on ) between the parameter and an element O(x;) € Q,i=1,...,N. By O: 2, — Q we denote
a continuous function on a compact set 2, C R?, d € N. It maps a spatial point = € 2, to O(x)
in the parameter space which models the action of a measurement device or a sensor located at
this point.

As an illustrative example the reader may always think of situations in which inference on the true
value of the parameter is only indirectly possible through pointwise measurements of a continuous
function y = Su € C($2,). If S: Q — C(f2,) is a compact linear and continuous operator we
define O(x) = S*9, where ¢, denotes the Dirac delta function supported on x € 2. The resulting
function O: {2, — @ is continuous and fulfills

(O(x)7q)Q = (S*5x7Q)Q = <Su75$> = y(w)7

for all x € {2, and ¢ € Q). However we also stress that the following considerations are not limited
to this case.

The observation of the sensor at x; is subject to perturbation by additive noise ¢; drawn from a
random variable ; ~ N(0,1/u;). The strictly positive scalar u; € Ry \ {0} may be interpreted
as a diligence factor quantifying how carefully the observation at x; is taken. For example u;
might be related to the variance of the used sensor or gives the total number of measurements
taken at the same location. The measurement errors at two distinct locations are assumed to
be independently distributed. Assembling the N equations in one system we arrive at a linear
operator equation

ﬁnquQ: Xq:Xq*+6:yda izlv"'an

where € is a realization of the normally distributed random variable £ ~ N (0, X) and the observa-
tions are collected in the vector yq € RY. The parameter-to-observation operator X € £(Q,RY)
and the matrix X' are given as

Following the discussion in Section [2.3] the statistic quality of approximate solutions to this inverse
problem obtained by e.g. Tikhonov regularization methods, can be measured by scalar-valued
criteria ¥ acting on the Fisher information operator

XXX e £(Q,Q).
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3 A sparse control approach to optimal sensor placement

Again, we point out to the crucial observation that this operator is independent of the measure-
ments yg € RY but depends on the number and positions of the measurement sensors as well as
the statistical quality of the measurements

x=(z1,...,2n) € 2N, u:(ul,...,uN)TERf.

In this chapter we aim to mitigate the influence of the stochastic perturbation in the data on the
estimates of the parameter. For this purpose, we optimize the data acquisition process. More
in detail we will improve the measurement setup by an optimal choice of the number N € N
of measurements, their positions z; in {2, as well as the diligence factors u; € R, a priori, i.e.
before any measurements are performed in practice. We base our discussions on an optimal control
formulation of the problem given by

min P(XZTX) 4 G(ul,) st (Xq)i = (O(w). o, iyt =dyw,  (3.1)
xe2), ueRY NeN

for all ¢ € @ and i,j = 1,...,N. Here we minimize a given convex optimal design criterion ¥
acting on the Fisher information which is parametrized as a function of x € 2, u € Rf and
N € N. To account for the cost of the experiment in the sensor placement formulation we add a
second term to the problem involving the ; norm of the measurement weight vector. This creates
a trade-off between the statistic optimality of the measurement setup and its cost. For the specific
assumptions on G and ¥ we refer to the next section. If the maximum number N of sensors was
fixed and {2, consists of finitely many candidate locations such a regularization is known to induce
sparsity on the coefficient vector, i.e. an optimal weight vector u will only admit few non-zero
entries. For other optimal design approaches involving sparsity promoting regularizations we refer
to |4,[71,{127]. In contrast to these prior approaches the set of candidate locations for the sensors
does not need to be finite in the context of this thesis. Quite the contrary, our special interest
lies in admissible sets {2, containing a possibly uncountable number of points. Moreover, we also
do not prescribe an a priori upper bound on the possible number of sensors to be used in the
measurement process.

At first glance, in spite of the convexity of ¥, problem is non-convex due to the parameter-
ization in terms of the points z;, and has a combinatorial aspect due to the unknown number of
measurements N. The main feature of the approach considered in this thesis is to bypass these
difficulties by embedding the problem into a more general abstract formulation. Introducing the
set of positive Borel measures M™(£2,) on £2,, see Section we determine an optimal design
measure from

Lmin W)+ Gllulw), st () = / 0() ® O@)] du(x), (3.2)

o

where ||ul[r¢ is the canonical total variation norm. The operator Z(u) is given as the Bochner
integral of the pointwise Fisher information

I: 2, — SHS(Q,Q), z+— O(x)® O(x),

which assumes values in the space of self-adjoint Hilbert-Schmidt operators on @), see Section [3.1.1
For fixed = € §2,, the operator O(z) ® O(z) acts on @ via

(0q1[0(z) ® O()]dg2)g = (O(x),q1)0(O(x),092) Vg1, 6q2 € Q.
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3.1 Notation

Since the operator Z(u) depends linearly on the Borel measure, the new problem in (3.2} is convex.
We give a detailed description of the derivation of and its connection to in Section
Loosely speaking, instead of minimizing for the positions and the quality of individual sensors, we
now optimize the distribution of the measurements over the candidate set (2,.

Let us put this work into perspective. By choosing G as the convex indicator function of the
interval [0, K], we arrive at

ueAI}lliI(lQO)W(I(u)) subject to |lu||m < K, (3.3)
where K > 0 denotes the overall maximal cost of the measurements. Under certain conditions
on ¥ it can be shown that the inequality constraint in is attained for every optimal de-
sign. This relates closely to the concept of approximate designs introduced by Kiefer and
Wolfowitz in [165] for general linear-regression. This approach models possible distributions of
measurement sensors by probability measures on (2,. We refer also to [9,105,107,/198}[205}[222] for
the analysis of this kind of optimal design formulations. For the adaptation of this approach to
parameter estimation in distributed systems we refer to [17,256]. Indeed, some key results derived
in this context, can also be concluded from our general considerations. Most importantly, we de-
rive several equivalent first order optimality conditions for , which reduce to the well-known
equivalence theorem due to Kiefer and Wolfowitz, see |165], in this special situation. Moreover,
we stress that the references above only consider the case of @ = R™, n € N. From this point of
view our sensor placement formulation can be viewed as a natural generalization of this problem.
We further comment on the similarities of our approach to this classical one in the subsequent
chapters.

Furthermore, choosing G(||ul|pm) = B||u||pm for 5 > 0, we end up with a norm-regularized prob-
lem
min Y (Z(u)) + B||lu||m- 3.4
Lmin W(E() + Bl (3.4
Optimization problems with total variation regularization recently received increased attention.
We refer e.g. to |50,(74,195,[210]. In the context of optimal sensor placement a special instance
of problem (3.4) was considered in [200] for the task of optimizing the measurement setup in a
finite-dimensional, PDE-constrained, inverse problem. For a detailed discussion of sparse sensor
placement in this context we also refer to Chapter [ of the present work.

The aim of this chapter is to provide a rigorous and unified framework to prove well-posedness
of as well as to analyze the structure of design measures which are obtained from solving it.
While it is clear that is a more general formulation than , it can be shown that it admits
solutions of the form u = Zf\i 1 W;0, under certain conditions, making both approaches essentially
equivalent. Applications of this general framework to inverse problems with PDE constraints
involving an unknown finite dimensional parameter and to infinite-dimensional Bayesian inverse
problems with PDEs can be found in the subsequent chapters.

3.1 Notation

In this section we briefly introduce the additional notation which is needed throughout this chap-
ter. Most important, we summarize the necessary theoretical background on Borel measures and
Hilbert-Schmidt operators.
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3 A sparse control approach to optimal sensor placement

3.1.1 Hilbert-Schmidt operators

Throughout this chapter we consider a real separable Hilbert space ) equipped with the scalar
product (-,-)g. The induced norm is denoted by || - [|o. In general @ will not be identified with
its topological dual space @*. The corresponding duality pairing will be denoted by (-,-)g.g+. By
To: Q@ — Q* we denote the Riesz isomorphism

(0g1,Todg2)0.0+ = (0q1,0q2)q Voqi,dq2 € Q.

The space Q* is a Hilbert space with respect to the canonical scalar product

(0q7,0a3)q- = (T5,'641,05) 0.0+ 19dillo- = \/ (847, 647) Vg3, dq3 € Q.
Given a linear continuous operator B between ) and Q* we fix the following terminology.

Definition 3.1. Let B € £(Q, Q") be given. We define:

e B is called non-negative iff

<5q1,B5q1>Q7Q* >0 Vig1 € Q.

e B is called self-adjoint iff

(0q1, Bog2)g,0+ = (0q2, Boq1)g,0+ Vdq1,0q2 € Q.

e B is called positive iff B is self-adjoint and non-negative.

In the course of the following sections we will deal with several subsets in the space of bounded
linear operators between @) and Q*. We first fix the notion of trace class operators from @ into
itself, c.f. [243].

Definition 3.2. Let an orthonormal basis {¢;}ic1, I C N, of @ and B € L(Q, Q) be given. We
formally define the trace of B as

Trg(B) = > _(6i, Boi)g- (3.5)

1€l

An operator B € L(Q, Q) is called a trace-class operator on @ iff

Tro(|Bl) = Z(ﬁbz, (B*B)%Qbi)Q < oo.

1€l

Here |B| = (B*B)% € L(Q, Q) denotes the uniquely determined positive square root of the positive
operator B*B, [33].

If @ is infinite dimensional the trace of B € £(Q, Q) is not finite in general. However if its trace is
finite the value is independent of the chosen basis. Following these preparatory steps we introduce
the set of Hilbert-Schmidt operators on Q.
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3.1 Notation

Definition 3.3. Let B € £(Q, Q") be given. We call B Hilbert-Schmidt iff
Trq(B*B) =Y (¢1, B'Bdi)g = Y ||Bsil

i€l i€l

Q*<OO

The real vector space of Hilbert-Schmidt operators from @ into Q* is denoted by
HS(Q,Q") = {B € L(Q,Q") | Tro(B"B) < 0 }.

Analogously we define the vector space of self-adjoint Hilbert-Schmidt operators as
SHS(Q, Q") :=={ B € HS(Q, Q") | B self-adjoint } .
On HS(Q, Q") we consider the Hilbert-Schmidt scalar product

((B1, B2))us(Q,q+) = Trq(BiBz2) = 2(31@,32@)@*, B1, B € HS(Q, Q7). (3.6)
iel

Again, its value is independent on the choice of the orthonormal basis {¢;}ic1, see Lemma |12}
Lemma 12.1.1.].

Proposition 3.1. The vector spaces HS(Q,Q*) and SHS(Q, Q*), respectively, form separable
Hilbert spaces with respect to the norm

I Iis@a = y/{ Nis@in = [ 11+ dillhe,
el
induced by the Hilbert-Schmidt scalar product (3.6)).

Proof. For HS(Q, Q*) this is stated in, e.g., |12, Theorem 12.1.1]. Since SHS(Q, Q*) is a closed
subspace of HS(Q, Q*) the statement follows. O

Note that Hilbert-Schmidt operators are compact, |12, Proposition 12.1.3.]. The set of positive
Hilbert-Schmidt operators
Pos(Q, Q") := { B € SHS(Q, Q") | B is positive },

is a closed subset of SHS(Q, Q*). Given two elements ¢, ¢5 € @* we define the linear continuous
operator

G OeeL@QQ), [neela=dlnelee, «ed. (3.7)
The following corollary summarizes some properties of these rank 1 operators.

Corollary 3.2. There holds

71 ® ¢ € SHS(Q,Q"), ¢ ®qy € Pos(Q,Q%), i, ¢; € Q7
with

a1 ® a3 lluso,0+) = i g

Furthermore if we identify Q with its dual space the rank 1 operator g1 ® qo is of trace class on Q)
with

Tro([g1 ® @2]) = (q1,92)0, @1, @2 € Q.
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3 A sparse control approach to optimal sensor placement

Proof. We give a short proof of these facts. Given ¢}, ¢5 € Q* the operator induced by (3.7)) is
obviously self-adjoint and additionally non-negative if ¢i = ¢5. We calculate

Tro(lgf ® a3llaf @ a3)) = Y _ g @ asleilldy- = 15 11B- > (T a5, 1)%
i€l el
= gt 13- 175 311G = gt 1IE-

e

where we used that the Riesz isomorphism is an isometry. Taking the square root yields the result.

If Q ~ Q* we obtain

Tro([gn ® g2]) = Z((h, 9i)Q(a2, 9i)q = (41, 92)Q;
iel

from Parseval’s identity. O

To close this section we consider two special instances of the presented abstract setting.

Example 3.1 (Hilbert-Schmidt on R"™). Let us first consider the case of Q ~ Q* = R"™ equipped
with the euclidean scalar product

(¢1,%2)0 = (01, @2)rd = ¢ @2, @1, g2 € R™

In this case we readily identify £(Q, Q) with the space of n xn matrices R"*™. Since the parameter
space @ is finite dimensional every matriz B € R™ "™ is Hilbert-Schmidt and of trace-class on R™.
The Hilbert-Schmidt norm corresponds to the Frobenius norm

| Bllus@nzny = | Bllsym = y/ Trrn (BT B) =

The space SHS(R™,R™) is given by the symmetric matrices

Z ij, B € Sym(n).
ij=1

Sym(n) = {BE]R”X" | BTZB},
and the positive Hilbert-Schmidt operators are identified with the non-negative definite matrices
NND(n) = { B € Sym(n) | (d¢q, Bég)rn >0 Vdq e R"}.
Last we obtain

@O =qq forq,g €R"

Example 3.2 (Hilbert-Schmidt on L?(£2)). As a second exzample we consider Q = L*(£2) as the
space of square integrable function with respect to the Lebesque measure on 2 C R% open and
bounded. We identify L*(§2) with its dual space and consider the canonical scalar product

(91, %2)q = (@1, 92)12(2) = /QQ1Q2 dz  for qu, g2 € L*(£2).

Let B € HS(L?(R2), L*(£2)) be given. From the kernel theorem, [12, Theorem 12.6.1], B is Hilbert-
Schmidt on L?(£2) if and only if there exists kg € L*(2 x £2) with

[Bg](z) = /Qk?B(%y)CI(y) dy, |IBllus(rz),r2) = lkBllr2ioxe), ¢ € L*(£2),
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3.1 Notation

and almost all x € §2,. Furthermore B is self-adjoint if and only if kp(z,y) = kp(y,x) for almost
allz,y € £2,. Given q1, q2 € L*(£2) the associated rank 1 operator is identified with k € L*(2 x 12)
where k(x,y) = q1(x)q2(y) for almost all x,y € 2 and

(a2 ® 22)q) () = /Q (@) a)ay) dy = 0(@) (@ ao. Ve € Q.

3.1.2 Borel measures

In the following we consider an observation set {2, in which we allow the collection of measurements.
It is assumed to be a compact subset of R4, d € N. On 2, we define the space of regular Borel
measures M ({2,) as the topological dual of C(2,), the space of continuous and bounded functions
(see, e.g., |100]), with associated duality pairing (-, ) given by

(v} = /Q o(z) du(z) Yo € C(20),u € M(2,).

Let us recall some properties of this space. Given u € M(f2,) we can interpret it as a countably
additive function u: B(§2,) — R, where B({2,) denotes the Borel sets on (2,. Its associated total
variation measure |u| € MT(£2,) is defined as

lul(0) = sup { > ul(0i) | O € B(£2,), disjoint partition of O } ,
=1

for all O € B(£2,). The space of Borel measures M({2,) forms a Banach space with the norm
given by

[ullm = [ul(20) = (1, |ul) = sup  (y,u) = sup / p(z) du(z),
P€eC(£20), llplle<1 P€eC($20), llplle<1 /82
where || - ||¢ denotes the supremum norm on C(f2,). Given K > 0 the indicator function of

the (scaled) unit ball with radius K in M({2,) is denoted by Ijj,| <k (-). By MT(£2,) we refer
to the set of positive Borel measures on (2, (see, e.g., [230, Def. 1.18]),

M*T(82,) = {u e M(£2,) | (0, u) >0, Vo € C(£2,), ¢ >0},

with convex indicator function I,>0(-). Given u € M(S2,) there exist unique positive measures
ut,u” € MT(£2,) such that
w=u—u, Jullm = [[uT v+ o]

c.f. [109]. Furthermore its support is defined as

supp u = §2,\ (U{O € B(£2,) | O open, |u|(0) = O}) .

Since every u € M(f2,) is finite, i.e. u(f2,) < oo, it is a Radon measure and thus its support
is a closed set. A sequence {uy}ren C M(f2,) is called convergent with respect to the weak*-
topology with limit u € M($2,) if (p,ux) — (p,u) for k — oo and for all ¢ € C(§2,). This is
indicated by uir —* u. Throughout the following chapters, we frequently wish to quantify the
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3 A sparse control approach to optimal sensor placement

rate of convergence of a given weak* convergent sequence {uy }reny C M™T(£2,). In general, weak*
convergence does not imply norm convergence

up =" u # ||lug —uljm — 0.

As an easy example consider a sequence {zy}recn C 2, with z; — x and x, # « for all k € N.
Then it is readily verified that the corresponding Dirac delta functions fulfill 6, —* d, but
102, — 0z|lm = 2 for all k € N. As a consequence, the canonical norm is not suitable to quantify
weak* convergence. In the following consider a sequence {uy}reny C M™T(§2,) with limit u # 0.
Note that ||ug||m — ||ul|m ie. w.l.o.g we may assume uy # 0 for all £ € N. In order to metrize
the weak* convergence of such a sequence {uy}reny C M™(£2,) we observe that

up =" u s up/|lugllvm = w/lfullms ek lac = llullacc

Hence, to quantify the weak™ convergence we should account for the convergence of the norms and
the weak* convergence of the normalized measures. There are several possibilities to metrize the
weak* convergence of a sequence of normalized measures, c.f. the overview in [117]. As an example,
given two probability measures pq, j12, we consider their Wasserstein-1 distance, [259, Definition
6.1.], which is given (in its dual form) by

Wi (p1, p2) = sup { (o, 1 — pia) | 0 € CON(20), [lolluip <1},

using the Kantorovich-Rubinstein theorem, see [161]. Here, C%!(§2,) is the space of Lipschitz
continuous functions on {2, with ||¢||Lip denoting the Lipschitz constant, see also Section
We propose to quantify the convergence of a weak* convergent sequence {ug hreny C M™T(£2,) with
nonzero limit through the modified Wasserstein distance

Wi (up, u) = Wi ur/ lukllags w/lfulla) + [lurllae = [l (3.8)

We stress that the particular choice of the Wasserstein distance for the metrization of the weak™®
convergence seems quite arbitrary at first. In the subsequent parts of this thesis our special
interest lies in sequences consisting of sparse measures, i.e. measures given as a finite comic
combinations of Dirac delta functions. In this situation we largely benefit from the representation
of the Wasserstein distance as supremum over Lipschitz continuous functions. This allows to
discuss convergence rates for the Wasserstein distance of such sequences based on convergence
results for their support points and the associated coefficients. We further establish some kind
of equivalence between the modified Wasserstein distance W; and the norm on the dual space
of C%1(§2,). Additionally, for two probability measures consisting of finitely many Dirac delta
functions, the computation of W can be realized by solving a linear program, see e.g. [206, Section
2.7.], which is feasible if the number of support points is reasonably small. A closer inspection on
the choice of the metric and its impact on the convergence results derived in this thesis should be
a part of future work.

3.2 Sparse optimal sensor placement

This section is devoted to the derivation of the sparse sensor placement problem defined in (3.2))
and to clarify its connection to the formulation given in (3.1). Furthermore we state sufficient
and reasonable assumptions on the optimal design criterion ¥ as well as the regularization term
to allow for a rigorous analysis of the optimal sensor placement problem.

38



3.2 Sparse optimal sensor placement

3.2.1 The Fisher operator

To start, we assume that the measurement O(z) at a given spatial point depends continuously on
the position. Furthermore the parameter space () is identified with its dual space.

Assumption 3.1. Let Q ~ Q* be a real, separable Hilbert space. The observation operator
O0: 02, - Q, z— Ox),

18 continuous.

Given the total number of measurements N, a vector of sensor positions x = (z1,...,2x)" C 0N
and measurement weights u = (uy,...,un) € RY, we will call the triple (x,u, N) a measure-
ment setup in the following. Moreover, we recall the definitions of the associated parameter-to-
observation X € £(Q,R") and the inverse of the noise covariance matrix X1 € RV*¥ as

(Xq)i = (O(x:),q)g, X '=0dyw; Yge€Q,i,j=1,...,N.

The resulting Fisher information operator X*X~1X fulfills

N
(6q1, X* X7 X6q2)q = (X0q1, X7 Xoga)my = > wi(O(x:),601)0(O(:),62)¢  Yoqu, dga € Q.
=1

Using the rank 1 operator definition from Section [3.1.1] we now note that the Fisher information
operator can be equivalently rewritten as

N
XXX =) w[O(x) ® O(x:)] € L(Q,Q),
=1

In the following proposition we collect some properties of the pointwise Fisher information map-
ping

I: 0y = L£(Q,Q), z+ Ox)® O(x). (3.9)

Proposition 3.3. For every x € (2, the operator I1(x) as defined in (3.9) satisfies:
1. Given éq1,0qs € Q there holds

(6q1,1(x)dg2)y = (O(z),dq1)q (O(),0¢2)
2. The operator I(x) is positive, i.e. we have

(6g2, I(2)dq1) g = (I(2)dq2,6q1)g, (6q1,1(2)dq1)g >0 Viqi,dq2 € Q.

3. I(z) is Hilbert-Schmidt on Q and of trace class: Given an index set I C N and an orthonor-
mal basis {¢;}icr of Q we have

Tro(I(x)) = |1()llusqq = D (¢ [(@)i)g = 10()I4

el

Consequently, there holds I(x) € Pos(Q, Q).
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3 A sparse control approach to optimal sensor placement

The mapping I: 2, — SHS(Q, Q) is uniformly continuous.

Proof. Let dq1,0q2 € Q and = € {2, be arbitrary but fixed. By definition of the rank 1 operator
we have

(Sq1, 1(2)3q2) ) = (a2, [0() @ O()]da1) ) = <5q1, O(z) (O(x), 5q2)Q)Q
= (0(2),0q1)g (O(z),6q2) -

Using this characterization we directly conclude

(6q1,1(2)dg2) g = (O(2),6q1) o (O(),6g2) o = (1(2)0q1,02) ¢ »

as well as

(6q1, I(x)dq1) = (O(x),6q1)5) > 0.

Hence I(z) is self-adjoint and non-negative.
Since I(x) is a rank 1 operator, it is of trace class in () with

Tro(I(2)) = ) (¢, L(2)¢i)g = D (O(x),$:)g = (O(x), O(x))q = [O()|,

i€l i€l

where we used Parseval’s identity in the penultimate equality. Consequently it is also Hilbert-
Schmidt, I(x) € HS(Q, @), with

(@) s iq.q) = Tro((@)I(z)) = [O@)[14.

Taking the square root yields the desired result. It remains to prove the uniform continuity of I.
to this end let = € (2, and z; C (2, with lim; ,, z; = x be given. We compute

I1(z) = I(@)lEsiq.q) = 10@)G — 2 Tro (2)*1(x5) + 0(z;)llg.

Again, using Parseval’s identity we have

Trg(I(x)"I(x;)) = > (I(@)éi, I(x5)i) g

i€l

=D _l(0(),0(x)))q (O(2), $i)q (O(), 6:)]
i€l

= (0(), O0(x1))gy -

Due to the continuity of the observation operator O we conclude

lim Tro(I(2)"I(z;)) = lim [(O(2), O(z;))5] = 10(2) ],

Jj—00 Jj—00

and thus lim;_, || I(z) — I(xj)H%{S(Q’Q) = 0. Together with the compactness of (2, this implies
uniform continuity of I. O
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3.2 Sparse optimal sensor placement

Let an arbitrary measurement setup (x,u, N) be given. Associated to this triple we define the
sparse design measure

N
u=Y udy € M¥(Q).

=1

The mapping I: 2, — SHS(Q, Q) is uniformly continuous and thus strongly measurable with
respect to u. Furthermore we have

| 1 @lsq ) duta) < max 1@ g Il < .

Thus the Bochner integral of I with respect to the design measure is well defined due to the
separability of SHS(Q, @), [267, Theorem 24.8]. Calculating the integral reveals

N
X*ylx = ZuZ[O(a@Z) ® O(x;)] :/ [O(x) ® O(z)] du(z) = / I(x) du(z).

=1 o o

Consequently, we make the crucial observation that the Fisher information X*X~'X can be
represented as the Bochner integral of I with respect to the sparse design measure u = Zfil w;0z,.
Naturally we can extend this representation to every Radon measure u € M({2).

Proposition 3.4. Let u € M(£2,) and its Jordan decomposition

u=u"—u”, Jullv = e+ el et uT € MT(8,),

be given. Then the Bochner integrals of I with respect to ut and u™, respectively, are well defined.
Set

T(u) = Z(u™) — T(u~) = / 0@) ® O@)] dut () — / 0@) ® O)] du~(z).

o o

Then Z(u) € SHS(Q, Q) and the mapping
Z: M(£2,) — SHS(Q,Q), uw— Z(u), (3.10)
1s linear and continuous. There holds

IZI| £ am(52.),5HS(Q,Q)) < max 10(2)|1?

To prove these results, we recall a basic property of the Bochner integral.

Lemma 3.5. Let H be an arbitrary Hilbert space and let T € L(SHS(Q,Q), H) be given. Then
the function T1: 2, — H is Bochner integrable with respect to u € M™(§2,) and

TZ(u) z/ TI(x) du(x), (3.11)

i.e. applying T commutes with the integral.

Proof. See |8, Theorem 2.1]. m
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3 A sparse control approach to optimal sensor placement

Let us now prove Proposition [3.4]

Proof of Proposition[3.7 Let u € M(£2,) and its Jordan decomposition v = u* — u~ be given.
Due to the uniform continuity of I its Bochner integrals with respect to ' and u™ respectively
are well-defined and thus Z(u) € SHS(Q, Q). We proceed to prove the linearity of Z. Let two
measures u1,us € M(£2,), A € R be given. Note that in general (A\u' + u?)* # Auf +u. To
circumvent this problem let B € SHS(Q, @) be arbitrary but fixed. Using Lemma we obtain

TrQ(B*I()\ul + UQ)) = TrQ(B*I(()\ul -+ U2)+)) — TrQ(B*I(()\ul + u2)7))

= / Trg(B*I(z)) d(Auq + ug) () —/ Trg(B*I(z)) d(Aut + u2)™ (z)

o o

= )\/ Trg(B*1(x)) dui(z) +/ Trg(B*I(z)) dug(zx)

= ATrg(B*Z(w1)) + Tro(B*Z(uz)),

where we used the linearity of the Bochner integral in the second inequality, the linearity of duality
pairing between C(f2,) and M({2,) in the third one as well as the continuity of the trace. Since
B was chosen arbitrary we conclude Z(Auj 4+ u2) = AZ(u1) + Z(ug). This yields the linearity of Z.
Finally, given u € M({2,) we obtain

IZllss .0 < 1P las@.) + IZ@ ) lusi.)
< [ @lisqa @+ [ 1He)lisqq d@

< I
= 21:2%2}2 | (x)HHS(Q,Q) lullm,

where we used |u| = u™ 4+ v~ and

17 s < /Q 1) s . 45(2),

for all w € M™(£2,), c.f |8, Theorem 2.1]. Noting that

_ 2
gé%f Hl(x)HHS(Q,Q) = xnéf};j HO(JU)H@

see Proposition [3.3] we conclude

IZll com2,),8H5(0,0) < max 1O ()|*.

O]

Due to the linearity of the Bochner integral, some properties of I(z), x € {2,, are carried over to
Z(u) if u € MT(£2,).

Corollary 3.6. Let u € M*(£2,) be given. Then the Fisher information Z(u) satisfies:

1. The operator Z(u) is positive:

(6g2, Z(u)oq1) g = (Z(u)dq2,6q1) g,  (0q1,Z(u)dq1)g =0 Viqi,dq2 € Q.
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3.2 Sparse optimal sensor placement

2. The operator Z(u) is of trace class with
Trg(Z(w) = | 10()1} du(o).
Proof. Since Z(u) € SHS(Q, Q) it is self-adjoint. Given dq1,dga € @ we observe

G Zwdn)g = [ (Bar 1)) du() >0,

o

since I(x) is non-negative for every x € 2, and u € MT(£2,). Let an index set I C N and an
orthonormal basis {¢;};c1 be given. If I is finite, i.e. @ is finite dimensional, then we readily
obtain

Trg(Z(u) = Y (¢, Z(w)di)g 2/ Trq(I(z)) du(x) = /Q lO(@)]3) du(z).

icl 2

Assume that I = N. For n € N we define the continuous function

fo: 20 =R, fulz) = (¢4, 1(
i=1

There holds

n

/fn ) du(a Z / (61, (@)di)g du(@) = 3 (66 T(w)i)g

=1

Let us observe that for every n € N and = € 2, we have f,i1(x) > fuo(z) > 0 as well as
lim,, o0 fr(z) = HO(:E)HE2 Consequently, applying the monotone convergence theorem, see [100),
Theorem 2.7|, we can apply the limit on both sides to obtain

Trg(Z(w) = Jim [ /(o) dula) = /Q 10113 du(z).

n—0o0

This concludes the proof. O

3.2.2 Sparse optimal design

Let us now return to the modeling of the sensor placement problem. While the primary goal of
an optimal measurement setup is to minimize the uncertainty in the estimation of the parameter
it should also account for the costs of the experiment and either aim to minimize them simul-
taneously or ensure that overall budget constraints are respected. Assuming that the cost of a
single measurement is independent on the position of the measurement sensor and scales linearly
with the measurement weight, the cost of the experiment can be modeled by the ; norm of the
measurement weight vector u € ]Rf . To incorporate these costs in the optimal design problem we
will add a general, convex regularization term G(||ul|,) to the design criterion ¥. For example we
may consider

Gi(lall,) = Blull,, >0, or Ga(|lull,) = I k) ([lull,), K >0.
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3 A sparse control approach to optimal sensor placement

In this fashion, the experimenter may on the one hand create a trade-off between minimizing the
optimal design criterion ¥ and the cost of the experiment or, on the other hand, the total budget
for the experiment can be fixed a priori.

For the optimal inference of the unknown parameter we now propose to choose (x,u, N) by
minimizing the sum of a convex optimal design criterion ¥ acting on the parametrized Fisher
information operator X*X !X and the cost term:

min [@XCTX) +G(lul)] st (KXo = (O@),de, Tt =dyw,  (3.12)
xe2), ueRy, NeN
for all ¢ € @Q and i,5 = 1,...,N. For the concrete assumptions on ¥ and G, we refer to the

following section. Let N be fixed for the moment. Note that, despite of the convexity of ¥,
the dependence of the Fisher information operator on the pair (x,u) is in general non-convex.
Thus may admit a large number of local extrema which are not necessarily minima. Addi-
tionally the unknown optimal number of sensors as well as the, possibly complicated, geometry of
{2, may aggravate its algorithmic treatment. As a consequence, even if we knew that this sensor
placement problem admits a global minimizer its direct computation is in most cases infeasible.

As a remedy we consider the sparse sensor placement problem

Lmin () + Gl ()

where we minimize for the measure u € M™(2,) instead of the measurement setup (x,u, N). In
contrast, due to the linearity of the Fisher information operator Z, the mapping

Wol: MT(82,) =R, uw ¥(Z(u)),

is convex. Thus, is a convex optimization problem on the space of Borel measures M({2,)
and each of its extrema is a global minimum.

Let us clarify the connection between these two, seemingly different, approaches. Given a mea-
surement setup (x,u, N) we obtain that the corresponding sparse design measure u = Ei\il w; 0y,

fulfills
N
chone{éw|x€Qo}:{u:Zuiémi|N€N, ueRY, xGQéV}.
i=1

Furthermore we observe

N
lullag = ull, =) i
i=1

Consequently, instead of minimizing with respect to the number and positions of the sensors as
well as the measurement weights, we can directly minimize for the design measure:

uerﬂrzi(r}zo)[u'/(l(u)) + G(||ullm)] st. uw e cone{dy |z € 2} (3.13)

Up to now we have not discussed whether (3.12)) or, equivalently, (3.13]) admit optimal solutions.
As a matter of fact, this is not clear a priori, since the set of admissible design measures is not
sequentially compact with respect to a suitable topology on M™(2,). To obtain an, a priori,
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3.2 Sparse optimal sensor placement

well-posed problem we therefore replace the cone of all Dirac delta functions by its closure with
respect to the weak® topology obtaining

cone{d, | x € 2y} = MT(82,).

Hence, we arrive at . Under reasonable assumptions on ¥ and G, existence of an optimal
design measure 4 € M™(§2,) can be proven in this framework, see Section . In this light,
the sparse sensor placement reformulation follows naturally from by embedding it into a
rigorous analytic framework.

To close this section, we briefly comment on some features of the sparse sensor placement approach
that should be kept in mind throughout the following chapters. First, we stress that the existence
of a sparse optimal solution @ € cone{d, | * € (2, }, cannot be ensured in general. However
it is straightforward to see that admits an optimal solution (x,u, N) if and only if the
corresponding design measure @ = )., U;0z, minimizes in (P|). From this perspective both
formulations can be seen as equal with the crucial difference that is convex. In Section
we review conditions that guarantee the existence of an optimal design measure consisting of
finitely many Dirac delta functions, making both approaches essentially equivalent in these cases.
In particular, this is the case if @) is finite dimensional.

Furthermore, recall that all statistical arguments were made under the assumption that the number
of measurements is finite and the measurement errors are independently distributed. For sparse
senor placement problems we can construct simple examples, see Example admitting optimal
measurement designs which are distributed functions. From a statistical viewpoint it is up to
now unclear how to interpret non-sparse optimal designs. However we stress that any such design
can be approximated, in the weak™ sense, by a finite combination of Dirac deltas up to arbitrary
accuracy.

Last, in many works on optimal sensor placement with finite candidate set (2,, additional 0-1
constraints on the measurement weights are imposed. These might result from a binary interpre-
tation of the weight where 1 corresponds to taking a measurement at the sensor location and 0
means neglecting it. Usually, these conditions are relaxed, yielding box constraints on the vector
of measurement weights. That is, we require 0 < u; < 1,7 =1,..., N. For general sets {2, we
now outline that such additional constraints on the magnitude of the measurement weights are
not meaningful. This stems back to the fact that weight-constrained sensors tend to cluster. To
highlight this fact mathematically let us consider the observational domain {2, as the closure of a
bounded domain in R%. On §2, we consider conic combinations of pairwise different Dirac delta
functions with bounded coefficients

N
Mér()nst(go):{uEM+(Qo)‘U:Zuiéxi’ ﬂji#.’l/’j, Oguzgl, ’izl,...,N, NEN}
i=1

Since this set is not sequentially weak™ compact the sensor placement problem

; +
ue/\rfllf(lgo)[w(f(u)) + G([[ullm)] st we Mg (92), (3.14)
is not well-posed in general. To identify the weak* closure of M, . (£2,) let
N
u= Zuidgji ccone{d; |x €2}, x #xj, i,j€{l,...,N},
i=1
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3 A sparse control approach to optimal sensor placement

be given. Fix an index i = 1,..., N. For R > 0 the intersection {2, N Bg(x;) is nonempty and has

nonzero Lebesgue measure. Thus there exists a measure ult € ML (£2,) with

max |z — ;| <R, |Julf|m =w.
mEsuppuf

Letting R tend to zero we conclude qu —* u;0,,. Repeating this argument for each support point

and choosing R small enough we get supp ulR N supp uf“ =@ foralli=1,...,N as well as

const

N
uf = Zuﬁ e ME . (2,), uff —*u.
i=1

We deduce

MH(£2,) = cone{ 0, |z € 2y} C ML (2,) C M*(2,).

Consequently, replacing M7 . (£2,) by its weak* closure in (3.14) we again arrive at .

The preceding discussion specifically implies that sensor placement problems with 0— 1 constraints
on the measurement weights and no further restrictions on the number and positions of sensors
are not well-posed in general. One particular reason for this shortcoming is the assumption on the
independence of the measurement errors: Since multiple measurements at the same point do not
correlate taking several measurements at a single point is favorable and thus constrained sensors
are put arbitrarily close together.

3.2.3 Existence of optimal designs and optimality conditions

In this section we state assumptions on the optimal design criterion ¥ and the regularization
term which ensure the well-posedness of the sparse sensor placement problem. Subsequently, the
existence of solutions as well as first order necessary and sufficient optimality conditions for the
sparse optimal design problem are provided.

Let us first elaborate further on the Fisher information operator Z. For a rigorous analysis of
the sparse sensor placement problem we will require that Z maps weak* convergent sequences in
MT(£2,) to norm convergent sequences in its image space. While this trivially holds if @ is finite
dimensional this needs additional attention in the general case. First we therefore characterize the
Banach space adjoint of the Fisher operator Z defined in .

Proposition 3.7. The Fisher operator I is the Banach space adjoint of the operator
Z*: SHS(Q,Q) — C(£2,), Bw— ¢p, (3.15)

where the continuous function ¢p is given by pp(z) = (O(x), BO(x))q for every x € (2.

Proof. Let B € SHS(Q, Q) and u € M™(§2,) be given. Due to the linearity of the trace operator
and B we get

((Z(u), B))us(@.Q) = Tre(BL(u) = / Trq(BI(x)) du(x) = (I B, u),

o
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using the properties of the Bochner integral. Denote by {¢;}ic1, I C N, an orthonormal basis of
Q. We have BO(z) € @ and consequently

BO(x) =Y (BO(z),¢i)qoi(x) Va € 2.

1€l

Further calculations show that

Tro(BI(z)) = ) (¢, BI(2)di)g = Y _(BO(2),6:)q(O(x), $i)o (3.16)
i€l i€l
= (BO(x),0(x))q

where we used I(x) = O(z) ® O(x) for all z € §2,. Hence, we identify Z*B with the continuous
function ¢p, where pp(z) = Trg(BI(z)) = (BO(x),O(x))q. This gives the statement. O

As an immediate consequence we obtain the weak*-to-strong continuity of the Fisher information
operator Z.

Theorem 3.8. The Fisher-information mapping Z: M(£2,) — SHS(Q, Q) is weak*-to-strong se-
quentially continuous, i.e. given {ug}ren C M(£2,) there holds

up =" u = T(ug) — Z(u),

in SHS(Q, Q).

Proof. Let any weak™® convergent sequence {ui} C M(£2,) with up —* u, u € M(2,) be given.
We obtain

(Z(uk), B))us(Q.,q) = Tre(Z(uk)B) = ("B, ug),

for all B € SHS(Q, Q). Since Z*B € C(2,) we conclude

lim ((Z(ur), B))us(0.q) = (Z*B,u) = ((Z(u), B))us(0,0)-

k—o00

Thus Z is weak*-to-weak continuous. Due to the linearity of the Bochner integral we further
calculate

IZ(u) s (g.0) = Tro(Z(ur)Z(uy))
- /Q (O@), T(u)O(x))q dug(x)
— [ [ ©@.00)% durty) dus(a).
2o J 12,
Define j € C(£2, x £2,) by
z2: 02, x 2, > R, (z,y) — (O(m),@(y))%.

By B(£2,) ® B(£2,) we denote the tensor-product o-algebra on the cartesian product 2, x 2, and
ug X ug is given as the unique product measure of uy with itself on (£2, x 2,, B(£2,) ® B(§2,)).
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3 A sparse control approach to optimal sensor placement

We show that ux X up —* u X u in M(£2, x £2,). Therefore note that the span of all functions
feC(£2, x §2,) given by

f(xvy) = g(.ﬁlﬁ‘)h(y), g,h € C(Qo)v T,y € 2o,

is dense in C(£2, x 2,), see |226|. Given a finite linear combination of such functions
n
z,y) = Zgi(:p)hi(y), neN, gi,hi€C{2), x,yc 2, i=1,...,n,

we obtain

n

(fros Uk X UR) (2% 20) M(20x20) = (g0 ur) (hiy uge)].
=1

Passing to the limit for & — oo on both sides yields

B (fo, e X UR) (2% 20) M(20x20) = D (Gi W) Ty 1)) = (frny 1 X U)e( 205 20), M (20 % 20)

k—o0 ¢
=1

This gives the desired statement since weak® convergence was tested against a dense subset. We
proceed by calculating the limit

Tim (2, X k), x 2, M2, 2 / / 2 du(y)du(z)
= Tro(Z(w)Z(w) = [ Z(u )||12{S(Q,Q)-

By expanding we derive
klggo | Z(ug) — I(U)H%{S(QQ) = klggo[HI(uk)H%{S(QQ) - <<I(uk)aI(u)>>HS(Q,Q) + HI(U)”%{S(QQ)] =0,

where we used the weak convergence of Z(uy) and the strong convergence of HI(uk)H%{S(Q @)~ This
finishes the proof.

Concerning the design criterion and the regularization term in the optimal design problem, the
following assumptions are made.

Assumption 3.2. The functional ¥: SHS(Q, Q) — R U {400} satisfies:

A3.1 V¥ is convex and lower semi-continuous on Pos(Q, Q).

A3.2 The domain of ¥ in Pos(@,R) is nonempty and open in Pos(Q@, Q) with respect to the
topology induced by the Hilbert-Schmidt norm i.e. given a sequence { By }ren C Pos(Q, Q)
there holds

By, — B € dompys(g.q) ¥ = By, € dompeg(g.g) ¥

for all £ € N large enough. Furthermore ¥ is continuously differentiable on its domain. The
gradient of ¥ at B is denoted by V¥ (B) € SHS(Q, Q).
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3.2 Sparse optimal sensor placement

A3.3 ¥ is monotonous in the following sense:
By — B; € POS(Q, Q) = !I/(Bg) < !p(Bl),
for all By, B2 € Pos(Q, Q).

Assumption 3.3. The function G: R — RU{+oc0} is proper, convex and lower semi-continuous.
Furthermore it is monotonically increasing on R with lim;_,, G(t) = +00. There holds dom G C
R,.

While (A3.1), (A3.2) and Assumption[3.3 will ensure the well-posedness of (P)), the third assump-
tion, (A3.3), can be practically motivated. For example, given design measures uy,us € M™(§2,)
and A > 1, we conclude

U(Z(u1 +u2)) S¥(Z(w)), W(Z(Aw)) <& (Z(ur)).

Hence, adding new measurements or increasing the measurement weights decreases the value of
the design criterion. Thus the monotonicity assumption is reasonable since acquiring more or
better data should improve the estimator. A more geometric interpretation of (A3.3) is given in

Chapter [

Remark 3.1. While the assumption on the openness of the domain of ¥ might seem unusual at first
sight the following example demonstrates its necessity. In the finite dimensional case, Q = R", we
consider the A-optimal design criterion

Trgn(B~!) B € PD(n)

+00 else ’

a(B) = {

for B € Sym(n). Here PD(n) denotes the set of positive definite matrices. It is readily verified
that its domain is given by dom%¥, = PD(n) which is open in the set of non-negative definite
matrices.

Remark 3.2. Please note that we require the functional G to be equal to +o00 on (—oo, Ol. Clearly,
this poses no restriction since for a proper, convex and lower semi-continuous function G: R — R,
monotonically increasing on Ry with lim;_, o G(t) = 400, we may define G = G+ [ [0,00) @nd note
that

Y(w) + Gllullm) = ¥ (u) + G(lullavg) - Yu € MT(£2,).
The restriction of the domain of G is used to obtain compact necessary first-order necessary and

sufficient optimality conditions without distinguishing between the cases ||ug||am = 0 and ||ag||pm >
0. In particular, we stress that Assumption [3.3] allows to consider norm regularization

Gr(llullam) = Bllullae = Bllulla + Ljo,00) (llull 1)

for some B > 0 as well as norm constraints

Go(l|ullm) = Lo,k (lullm), K >0,

in a unified framework.
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3 A sparse control approach to optimal sensor placement

Now, we formulate the reduced design problem as

e in  Fu) = B + Gl

where ¥ (u) = ¥(Z(u)). In the following proposition we collect some properties of the reduced
functional .

Proposition 3.9. Let ¥ be given and let Assumptions (A3.1)—(A3.3) be fulfilled. The functional
1 satisfies:

1. For every u € M™(£2,) there holds Z(u) € Pos(Q, Q).
2. There holds
domM+(Qo) ¢ = {u S M+(QO) | I(u) S domPos(Q,Q) v } .
Furthermore the domain is weak* sequentially open: Given {ug}ren C M1 (£2,) we have

uF —* 1 € dompy+(g,) ¥ = IK € N: u¥ € domy+ ()¢, k> K.

3. The functional v is continuously Fréchet differentiable on dom ¢+ g,y . For a design mea-
sure u € dom g+ (go,) ¥ and du € M(§2,) the directional derivative ¥'(u)(du) is given by

U (w)(0u) = ((Z(0u), VI (Z(u)))ns(.q) = Tro(Z(u) VP (Z(u))).
The derivative ¥’ (u) € M(£2,)* can be identified with the continuous function
Vip(u)(z) = T°VE(Z(u))(z) = (O(x), VI(Z(u))O(x))g V€ (2. (3.17)
Moreover the gradient V1p: dom g+ g,y ¢ — C(£2) is weak*-to-strong continuous.
4. v is weak™ lower semi-continuous and conver on M™T(£2,).
5. 1Y is monotone in the sense that
Z(uz —u1) € Pos(Q, Q) = ¥(u1) > P(uz) Vui, uz € MT(£2,).
Proof. The first claim can be found in Corollary The sequential openness of dom y+(0,) 9
follows from the openness of the domain of ¥ in Pos(@, Q) and the weak*-to-strong continuity

of Z. For a given measure u € domy,+(p,) ¢ the differentiability of ¢ follows from assumption
(A3.2) by applying the chain rule. Using (3.15)) we obtain

¥ () (u) = ((Z(6u), V() )us(o.) = Tro(VI(Z(w)Z(0u)) = (T*VE(Z(w)), du),
for every ou € M(£2,). Hence we identify ¢'(u) € M(£2,)* with the continuous function
Vip(u) = TV (Z(u)) € C(£2,).
Additionally, we directly see that the mapping
Vip: dompg+(g,) % = C(£2),  urr Vip(u),

is weak*-to-strong continuous, using the continuity of V¥ and Z* as well as the weak*-to-strong
continuity of Z. Statements 4. and 5. can be derived directly from Assumptions (A3.1) and (A3.3)
using Z(ug) € Pos(Q, Q) and Z(ug) — Z(u) in SHS(Q, Q) for every sequence {uy }reny C M™T(£2,)
with weak* limit w. O
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We derive the following result on the gradient Vi by imposing further regularity assumptions on
the design criterion.

Lemma 3.10. Assume that ¥ is two times continuously Fréchet differentiable on its domain in
Pos(Q, Q). For every u € domy+(g,) 9 there holds Vip(u)(x) < 0 for all x € 2,. We further
have

~Vi(u)(x) = —(O(x), VE(Z(u))O(x))q = (= VE(Z(w)))2O(2) [}, (3.18)

for all z € 2,. Here, (—V¥(Z(u)))"/? € L(Q,Q) denotes the uniquely determined positive square
root of =N (I(u)).

Proof. Recall that Vi)(u)(z) = (O(z), V¥ (Z(u))O(x))q for all x € £2,. Let an arbitrary but fixed
B € domps(g,q) ¥ and 2z € () be given. For all € > 0 small enough we have

B + e[z ® z] € dompyg(g,g) ¥,
due to the openness assumption on the domain of ¥. Using Taylor approximation, we find
U(B+elz®z]) =¥(B)+ecTrg(V¥(B)[z ® 2]) + r(e),
where the remainder term fulfills lim._,o[r(¢)/e] = 0. As in we derive
Trg(V¥(B)[z ® 2]) = (V¥(B)z, 2)q-.
Since ¥ is monotone in the sense of (A3.3) and z ® z € Pos(Q, Q), we obtain
0>¥(B+e[z®z]) —¥(B) =cTrg(V¥(B)[z ® z]) + r(e).
Dividing both sides by € > 0 and passing to the limit for £ — 0 we conclude
(V¥(B)z,2)g <0 VzeQ.

The first statement follows by setting B = Z(u) and z = O(x) for every x € (2,.

Furthermore this implies —V¥(Z(u)) € Pos(Q, Q). Consequently there exists a unique positive
operator (—¥(Z(u)))/? with —#(Z(u)) = ((—W(I(u)))1/2)2, see [33]. Given an arbitrary x € (2,
we obtain

~Vy(u)(z) = —(O(), VE(T()O(x))q
= (Vo @) 2o@), (-veEw) ow)
= I(=V& (T () 20()3,

which finishes the proof. O
In the following we also assume that the sum of the reduced design criterion and the regularization
term is radially unbounded. Clearly, this assumption is fulfilled, e.g., if ¢ is bounded from below

on M*(£2,). We will comment on this additional assumption for the most popular choices of ¥
in the subsequent chapters.
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Assumption 3.4. The functional F is radially unbounded on M™(§2,): Given a sequence
{ug yren € M*(£2,) we have

lug||pm — 00 = F(ug) — oc.

The existence of at least one global minimizer @ € M (£2) to the reduced formulation is now
obtained by standard arguments. We give a proof for the sake of completeness.

Proposition 3.11. Assume that dom g+ (g,) F' is not empty, i.e.

dom p+(0,) ¥ Ndom gt (g,) G(I| - [[m) # 0.

There exists at least one optimal solution u to (P)) and the set of minimizers to s uniformly
bounded. If W is strictly convex on Pos(Q, Q) then the optimal Fisher information is unique.

Proof. Since dom g+ (g,)J is not empty, there exists u € M™(£2,) and an infimizing sequence of
design measures {u }ren with
Flu) <oo, F(ug)— inf F(u) < oo.
(w) ()~ _int - F(u)

W.lo.g we assume that uy € domy+(q,)j for all k& € N. Since j is radially unbounded the
sequence {uy}ren is bounded. Applying the sequential version of Banach-Alaoglu theorem, it
admits a subsequence denoted by the same symbol with u¥ —* @ € M*(§2,). Since ¥ is lower
semi-continuous on Pos(@, Q) we conclude

W(Z(m) < lminf U(Z(0), Nkl = (L) > (1L3) = ]y,

from the weak® convergence of {ug }ren and the weak*-to-strong continuity of Z. Combining these
results yields

F(u) <liminf F = inf F
R S

and thus the optimality of 4. The uniform bound on the norm of the minimizers follows from the
radial unboundedness of F. In the case of strictly convex ¥ uniqueness of the Fisher information
follows by a standard argument. O

This proposition does not give any statement on the structure of the optimal design measure u
as well as its sparsity pattern. Indeed, from the previous discussions, it is not even clear whether
there exists an admissible, sparse, design measure. This is however addressed in the following
corollary.

Corollary 3.12. Assume that dom y+(o,) F' is not empty. Then there exists

@ € dompg+(q,) F' N cone{ 0, | x € §2, }.

Proof. Let u € dompg+(p,) ¥ be given. Following the arguments in [50, Appendix A[, there exists
a sequence of positive measures {u }ren with

up € cone{ by [ & € Do}, up =" u, [Jurlla < fluflm,

for all k € N. Since the Fisher operator Z is weak*-to-strong continuous we additionally get
Z(ur) — Z(u) in SHS(Q,Q) as k — oo. Thus we have Z(uy) € dompyq,q) ¥ for all k large
enough due to the openness assumption on the domain of ¥ in Pos(@, Q). Since G is monotonically
increasing we conclude ug € dom y+(q,) F for all k € N large enough. O
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3.2 Sparse optimal sensor placement

Using the differentiability and convexity assumptions on ¥ we proceed to derive necessary and
sufficient optimality conditions.

Proposition 3.13. Let u € domp+(,) F' be given. Then @ is an optimal solution to if and
only if

(=Vip(a),u — ) + G(|ullm) < Gllullpm) Vi € MT(£25). (3.19)

Proof. Recall that the Fréchet derivative of 1) at 4 can be identified with the continuous function
Vi (a). Hence, following Proposition a measure 4 € dom yq+ (g, F' is optimal if and only if

—Vip(u) € (G|l - lm) + Tuzo () (@),
where the set on the right hand side denotes the convex subdifferential of the function
G- lm) + Luz0(:),

at u. By definition this is equivalent to (3.19)). O

Equivalently minimizers of are given by the roots of the non-negative primal-dual gap func-
tional ¥: M(£2) — Ry U {400} which is given by

() maxX,epq+(0,) (VY (1), u — v) + G([Jullpm) — G(lvl|m)] v € dompg+ o,y F
+00 else. '

Proposition 3.14. Let u € M™1(£2,) be given. Then u is an optimal solution of iff

u € argmin @(u), @(u)=0.
ueEM($2,)

Proof. By construction we have ®(u) > 0 for all u € M(£2,) and @(u) = +o0 for u ¢ dompy+(0,) J-
Rearranging (3.19) yields the optimality of @ if and only if

(V(a), 0 —u) + G([[alm) — G(llulla) <0 Vu € MT(2,).

Maximizing with respect to u € M™(§2,) on both sides, we conclude that this is equivalent
to @(u) = 0 and thus also @(u) < &(u) for all u € M(§2,). O

3.2.4 Structure of optimal measurement designs

In this section we will provide results on the structure of optimal measurement designs. In par-
ticular we provide a generalized version of the famous equivalence theorem due to Kiefer and
Wolfowitz, see [164.|165], in Theorem and prove the existence of optimal designs comprising
finitely many points under certain conditions.

Due to the positive homogeneity of the norm, structural properties of 4 can be derived from the
variational inequality (3.19)). For this purpose, given a function ¢ € C(2,) we recall the definition
of its negative part as [p]” (z) = — min{ep(x), 0} for all x € £2,.
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3 A sparse control approach to optimal sensor placement

Proposition 3.15. Let an optimal design t € M™(§2,) be given. The variational inequality (3.19)
s equivalent to

V@)~ lle € 0G(|ullr),  (=Vi(a),u) = [V (@)™ [lcllalm, (3.20)
where OG(||u||am) denotes the subdifferential of the convex functional G at ||u|| s i-e.

G(|lulla) = {m € R[m(m — [[a]sm) + G([[allm) < G(m) Vm eR}.

Proof. Assume that @ satisfies (3.20). Then for an arbitrary measure u € M™(£2,) there holds

(=V(u),u —w) + G([[ullpm) = =V @]~ llellalla = (Vi (@), u) + G(l[allm)
< IV ()] lle(lulla = llalla) + Glal )
< G([lullr),

where we used (—V(a),u) = ||[V(a)]” ||c]|alam in the first equality and
I[VY(@)]~[le € 0G([|ullm),

in the last inequality. This implies (3.19).
Conversely, assume that @ fulfills (3.19). Due to the monotonicity of G there holds

(=V(a),u—a) <0 Yue M (2), |lulla < l|afr
Hence we conclude
—Vi(@) € O (Tjuj <l () + Tuzo()) (@)-
Using Proposition 54 this implies
@€ 0 (Ljuju<liafn ) + Luzo ()" (=Vep(a)),
as well as
Ujulpe<tialiag ) + Luzo(-) " (=V(@))) = (~Vi(a), @).

Let us calculate the convex conjugate

(Lt () + Luz0())" (=Vy(@) = sup  (=Ve(u),u) = sup ([(@)] ,u)
e, e,

= V@)~ llellal -
This gives the second part of (3.20)). Consequently there holds
(=Vip(a),u) = [[V(@)] " llellallm + G(lalam) < Gllullag)  Vu € MT(£2,). (3.21)

We distinguish the following cases. First assume that @ # 0. By testing (3.21]) with the measure
U, = m/||al|pmu for every m € Ry we arrive at

V@]~ lle(m = l|ala) + Gllallym) < Gim)  Vm € Ry. (3.22)
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3.2 Sparse optimal sensor placement

Since dom G C Ry this yields ||[Vy ()]~ |lc € O0G(||ug||m). If we have
[]lae = IV (@)]~ lle =0,

then there holds 0 € 9G(0) due to the monotonicity of G on R;. Last we assume that ||a|, =0
and ||[V¢(@)] " |lc # 0. Then there holds

V@]~ lle = max —Vip(a)(z).

Choose & € 2, with =V (u)(z) = [|[VY(a)] " ||c. Testing (3.21) with @,, = md; for m € Ry we
again arrive at (3.22). In all cases we thus conclude

IV (@)]” lle € OG([|uflm),

finishing the proof. O

Going one step further, the second condition in (3.20)) can be equivalently reformulated as a
condition on the support of the design measure.

Lemma 3.16. Let ¢ € C(£2,) and u € M™*(£2,) be given. Then there holds
(=, u) = [lle] " llellullm < suppu {2 € 2 | —p(@) = l[¢]"lle } - (3.23)

Proof. Assume that the right side of the equivalence holds. Then we have
(o) = [ —pdut@) = [ el du(e) = o] lellul e

This proves the first direction. Conversely assume that (—¢,u) = ||[¢]”||c||u||pm holds. Assume
that [¢]~ # 0. In this case we obtain

1] lle = — min ¢ = max —p.

Let an arbitrary =z € {2, with —¢ < —mingepn, ¢ be given. Due to the continuity of ¢ and
a compactness argument there exists 6 > 0 with —¢ < —min,ep, ¢ on Bs(x) C §2,. For an
arbitrary nonnegative y € Co(Bs(z)) there exists ¢ > 0 such that ¢ — ty — mingen, ¢ > 0. From
this we conclude

0 < (p —ty — min ¢, u) = —(ty,u) <0,
x€S,

due to the positivity of y and u. Therefore u|g;(,) = 0 and Bs(z) C §2,\suppu. If [¢]” =0 we
have ¢ > 0. Argumenting similar as before we conclude

—p(x) =0 u—ae. x€ .

By distinguishing between the two cases v = 0 and u # 0 we again arrive at the right hand side

of (23). O

Collecting all the previous results the optimality of a design measure can be characterized through
the following series of equivalences.
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3 A sparse control approach to optimal sensor placement

Theorem 3.17. Assume that ¥ is two times Fréchet differentiable on its domain in Pos(Q, Q).
Then the following statements are equivalent:

o The measure & € M1 (£2,) is an optimal solution to (P).

There holds

(~=Vy(a),u—a) + G([[apm) < G(llullm) Yu e MT(£2).

There holds

— nin Vp(a)(z) € 0G(|lallav),  (=Ve(a), a) + min Vi (a)(z)l|a]rp = 0.

There holds

~ min Vy(a)(2) € 0G(alm). suppa C {x € Q| Vi (u)(#) = min Vi(a)() } .

There holds ®(u) < @(u) for all u € M(82,) and

b(u) = ueﬂg@o)uwwm — u) + G([[allm) = G(llullam)] = 0.

Proof. Due to the regularity assumption on ¥ there holds Vi (a)(z) < 0 for all x € 2,, see

Lemma Thus we have [V¢(a)]” = —V¢(a). The equivalence now follows from Propsi-
tion [3.13] Proposition [3.14] Proposition [3.15] and Lemma [3.16] O

We illustrate the abstract results of Theorem for two important choices of G.
Example 3.3 (Optimality/cost trade-off). Consider G(||ul|m) = Bl|lul|lpm where
G:R—= R, mw fm+ Iy (m)

for some positive cost parameter 8 > 0. Clearly, this functional fulfills Assumption[3.3 We first
calculate the set OG(||u||m). If ||a)|m > 0 we readily obtain

9G(|lulla) = {8}
In the second case, for ||ul|pm = 0, we get
m € 0G(0) & mec < fBe, Vee Ry & me (—0,[].

We conclude 0G(0) = [0,3]. Applying Theorem to both cases yields the optimality of u €
MT(£2,) if and only if

e there holds

=8 llulaq>0

c0.5] [a|m=o’ ‘" VY@= Bluly=0

€,

— min Vi(u)(x) {
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3.2 Sparse optimal sensor placement

e there holds

— min Vi(u)(x)

i {:B [l >0 ot (o € 2 | V(@) () = —BY .

€ (0,8 llufrm=0

e there holds

w € argmin @(u), P(u)= max [(Vi(a),u—u)+ Bllul|sm — Bllullm] =0,
ueM*(£2,) uEMT(£2,)

noting that for u = 0 the conditions
(=Vy(u),a) + Bllum =0+0=0, @=suppuC {z€ Q| VY(u)(z)=—-5},
are trivially fulfilled.

Example 3.4 (Fixed budget). In this example we fix the overall cost for the experiment. We
choose G(||ullm) = Lo k) (lullm). The parameter K € Ry \O denotes the budget for the experiment.
Straightforward computations yield

R flalae=0
OG([lallam) = 4 {0} 0 <lallm <K,
Ry Jlalm =K

where R_ denotes the non-positive part of the real axis. We calculate the primal-dual gap for a
design measure u € domp+(p,) F' in this case to obtain

(=Vi(u),v) = (Vi(u),u) — K min Vip(u)(x),

ax
bllvllm<K TENR,

D) = (Vi(uw).u) + _m

where we used Vip(u) < 0. Furthermore if admits optimal solutions there exists at least one
with ||| p = K due to the monotonicity of ¥. By application of Theorem[3.17 optimality of such
design measures is characterized through the following equivalent statements.

o There holds

(—Vy(u),u) + K min Viy(u)(z) = 0.

{L’E.Qo
o There holds

suppa < { 2 € 2, | Tu(a)(@) = mip v()(e) |

x€ef2,

o There holds

0= (Vy(u), ) — K min Vip(u)(z) < (Vi(u), u) — K min Vip(u)(z),

IGQO ZG.QO

for all w € dompy+(o,) I
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3 A sparse control approach to optimal sensor placement

Example 3.5 (Kiefer-Wolfowitz Theorem). In this last example we illustrate the results of The-
orem in the case of @ = R", n € N, G(|lul|m) = Ljo1)([[ullm) and the logarithmic D-optimal

design criterion
log(det(B™1)) B € PD(n
%(B)_{ g(det(B1) (n)
~+00 else

The corresponding optimal design problem is given by

ue/\rflly(lno) Up(Z(uw)) st Jullpm <1. (3.24)

In what follows we assume that an optimal design u exists. Observe that
Up(Z(ru)) = ¥p(Z(u)) —nlog(r) Vr e Ry \{0}.

Thus we conclude ||ul|pg = 1. The gradient of the reduced functional ¥p(u) = ¥p(Z(u)) at
u € domp+(0,) ¥p s given by

Vipp(u)(z) = —O(x) "Z(u)'O(x) V& € Q2.
Calculating the primal-dual gap in this case gives

&(u) = (Viop(u),u) + grcré%)z —V¢p(u)(x) = —n + max —Vipp(u)(x).

rE€fo
This leads to the following characterization:
e The measure i € M™(£2,) is a D-optimal design.
There holds

max —Vip(a)(x) = n.

There holds

suppu C {z € 2, | —Viyp(a)(x)=n}.

There holds

n = max —Viyp(u)(x) < max ~Vip(u)(x), w € dompg+(o,)¥p, ullm < 1.

This is exactly the statement of the well-known Kiefer-Wolfowitz theorem, [166] and [256, The-
orem 3.2[. From this point of view our results can be interpreted as a natural extension of this
classical result to a more general setting and the case of infinite dimensional Q.

We recall that the sparse sensor placement problem was introduced to avoid the non-convexity
and combinatorial nature of . Therefore it remains to comment on conditions that ensure the
existence of optimal measurement designs given as conic combination of finitely many Dirac delta
functions. If such an optimal design exists the measurement setup is described by the number
of support points, their positions and the associated coefficients. To this end we will mainly rely
on the characterization of the support of an optimal design measure from Theorem [3.17] as well
as the compactness properties of the Fisher information operator Z. We start by concluding the
sparsity of an optimal design @ if the set of global minimizers to V(@) is finite.
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3.2 Sparse optimal sensor placement

Corollary 3.18. Let an optimal design u € M™T(£2,) be given. Assume that
Bxt(n) = { & € 0 | V(@) = mip V(@) (o) | = {5}

Then we have:
o The optimal design measure i € M™(§2,) is sparse

N
=1

e Additionally assume that the optimal gradient is unique, i.e. Vip(u1) = Vi(ug) for arbitrary
optimal designs w1 # ts. Then every minimizer 4 of is sparse and there holds suppu C

Proof. From the support condition (3.23) we conclude suppu C {7;}&,. Hence there exists
w;>0,i=1,...,N, with u = Efil 1;0z,. This gives the first statement. For the second claim,
we observe that the uniqueness of the optimal gradient implies

Ext(u;) = Ext(u2) = {ii}fip

for arbitrary optimal solutions @1, @y € M™(£2,) to (P). The second statement now readily
follows from the first. O

The uniqueness of the optimal gradient holds for example if ¥ is strictly convex on its domain.
If the set of its global minimizers consists of finitely many points, the optimal design is unique
under an additional linear assumption condition.

Corollary 3.19. Assume that admits at least one optimal solution u and that ¥ is strictly
convez on its domain in Pos(Q, Q). Then we have:

e The optimal gradient Vi (u) is unique.

o If Ext(a) = {z;}Y, and the set {Z(0z,)}, is linearly independent then the optimal mea-
surement design is unique.

Proof. Since V¥ is strictly convex on its domain in Pos(Q, @), the optimal Fisher-information Z ()
and thus also Vi¢(u) = Z*VW¥(Z(u)) are unique. If, in addition, the second condition holds,
every optimal design u is given by @ = Zi\il u;0z, for some u; € Ry, i = 1,..., N following
Corollary Obviously the corresponding weight vector u = (ay,...,uy) € RJX is a solution
to

min F(u) :=
ueRﬁ

N
v (Z uz‘I(fsxi)) +G(||u||1)] , (3.25)
=1

where we fix the number and the position of the sensors and minimize only with respect to the
measurement weights. Due to the strict convexity of ¥ and the linear independence assumption,
the functional F' is strictly convex. Thus it admits a unique global minimizer. This gives the
statement. O
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3 A sparse control approach to optimal sensor placement

Let us now discuss situations in which the existence of sparse minimizers can be ensured. First, we
consider cases in which the image of 7 is finite dimensional. Loosely speaking, in this situation, the
information obtained through an arbitrary design measure can be obtained by a sparse one with
bounded support size at a lower cost. Since a more general statement is provided in Chapter [6]
see Theorem [6.32] we omit the proof at this point.

Theorem 3.20. Assume that dimImZ = n € N. Let u € MT(£2,) be given. Then there exists
€ M1 (82,) with

Z(u) =Z(a), |lallam < llullag,  #suppi < n.
Additionally, if there exists an optimal solution to , then there exists an optimal solution u
with #suppu < n.
As a special instance of the previous theorem, we conclude the existence of sparse minimizers if

Q = R" for some n € N.

Corollary 3.21. Assume that @ = R"™ for somen € N and admits an optimal solution. Then
there exists an optimal solution u to with #suppu < n(n+1)/2.

Proof. The statement readily follows from the previous theorem by noting that ImZ C Sym(n)
and dim Sym(n) = n(n +1)/2. O

In contrast, the situation is certainly more involved if the image of Z is not finite dimensional.
However, in certain situations the smoothness of V(@) implies that the set of its global minimizers
is a Lebesgue zero set. A similar argument has been used in e.g. [67]. As a consequence, for one
dimensional observation domains, all optimal measurement designs are sparse in this case.

Proposition 3.22. Let 2, be the closure of a nonempty open and bounded domain in R%. Assume
that admits at least one minimizer . Furthermore assume that

e the optimal gradient V() is unique.
e the optimal gradient is non-constant on {2, and analytic in int 2, with

arg min Vo (u)(z) < argmin Vop(u)(z), i =1,... N.
€S, €I,

Denote by g, the Lebesgue measure on {2,. Then there holds:
e For every u we have pr(suppu) = 0.

o If 2, = [a,b] for some a < b there exists a set {x;}}., C int (2, such that every optimal
design is given by

N
U= Wb, WERy i=1...,N
=1
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3.2 Sparse optimal sensor placement

Proof. Define p = Vi(u) — argmin,, Vi (@). Then p is non-constant and analytic on int £2,.
Let an arbitrary optimal design @ be given. We define Z(p) = {x € 2, | p = 0}. Obviously we
have Z(p) = Ext(u) C int §2,. Since p is analytic we have

pr(Z(p)) = pr(Ext(u)) = 0,

see e.g. |196]. Due to the support condition , we conclude p(supp @)z = 0, which gives the
first part of the proof. Secondly assume that 2, = [a,b] for some a < b. Then it is well-known
that the zeros of p, and thus the global minimizers of Vi (@), in int {2, are isolated. Assume now
that Ext(z) consist of at least countably many elements. Then there exists a sequence {z;}ien
with p(x;) = 0. Due to Bolzano-Weierstrass there exists z € 2, with x; — Z and, by continuity,
p(z) = 0. Therefore T € int {2, and Z is an accumulation point of Z(p). This gives a contradiction,
i.e. Ext(u) contains only finitely many points. The statement now follows from Corollary O
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4 Sparse sensor placement for
PDE-constrained inverse problems

This chapter is devoted to the inverse problem of identifying a finite dimensional parameter q €
Qaq C R™ entering the weak form of a partial differential equation

a(q,y)(p) =0 VpeY.

We refer to the next section for the precise assumptions on the underlying model. As an example,
we might consider the combustion process from [28] which is modeled as

a(q,y)(¢) = (Vy, V)2 + (aVy, )2 + (Dexp{—E/(d —y)} y(c — y), @) 12 » (4.1)

where the unknown parameter ¢ = (D, E) is given in terms of the activation energy E and the
pre-exponential factor D. On the one hand, the general setting covers problems in which the
unknown parameter g represents scalar unknown physical quantities such as material parameters
or artificial constants that arise in the modelling process. On the other hand, the parameter of
interest may also be a distributed function which is parametrized through finitely many degrees
of freedom. In both cases, to obtain an appropriate mathematical surrogate for the simulation of
the underlying physical process these parameters have to be well calibrated.

In what follows we assume that it is not possible to measure ¢ directly and inference on its true value
can only be made through measurements of the corresponding state y = S[g|. More concretely, the
measured data y; € RY will be obtained through finitely many pointwise measurements of y at a
set of points { x; }i\f C £2,, where 2, C 2 C R%, d € N, is a closed subset of the spatial domain
covering the possible observation locations. The data y, is assumed to be additively perturbed
by normally i.i.d distributed noise ¢, ; ~ N(0,1/u;) stemming from the sensors. Estimates for
the unknown parameter are obtained through realizations of a suitable Least-Squares estimator,
see (4.6]).

To mitigate the influence of the measurement errors on the estimator we will formulate and
analyze an optimal sensor placement problem based on a linearization of the underlying PDE-
model around a sophisticated a priori guess ¢ € R™. To this purpose, we define the associated
sensitivities {0yS[q]}}_, of S[g] with respect to perturbations of each parameter ¢;, k =1,...,n
at an initial guess § € @Quq, stemming either from prior knowledge or obtained from previous
experiments. No restrictions on the maximum number of measurements nor their positions are
made. Consequently, the optimal number of sensors IN, their positions and the measurement
weights u; will be obtained through solving

N

i U(XTY X +7 ’ 4.2
xiEQa,uiZglzuzll,-..7N,NEN ( * 0) +ﬁ;u“ ( )
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4 Sparse sensor placement for PDE-constrained inverse problems

where the design dependent matrix X T X~'X € Sym(n) is given by

N
X2 X =) woS[g)(:)08[4)(x:) ", 9S[d)(z) = (01S[d)(x),. .., 0nS[d](x) ", = € 02,

=1

We incorporated the design independent matrix Zp € NND(n) in the formulation. This can be
interpreted as a priori knowledge on the covariance matrix of the estimator stemming from pre-
viously collected data. Alternatively we may also adopt a Bayesian viewpoint and take Zy as the
inverse of the covariance operator corresponding to a Gaussian prior. Optimal design approaches
based on first-order approximations have been studied for and successfully applied to ordinary
differential equations |13, differential-algebraic equations |20|, and also partial differential equa-
tions |137]. Additionally, they also arise in sequential design approaches, see e.g. [170,172|. Here,
the experimenter alternates between estimating the unknown parameter and optimizing the ex-
periment based on a linearization of the underlying system around the current estimate. The data
that has been acquired in the previous experiments can thereby be included in a straightforward
fashion by choosing Zy = Z(uelq). The design measure ugq is chosen to represent the previous
experiments.

The first aim of this chapter is to demonstrate how we can fit this optimization problem into
the general framework presented in Chapter [3] to get rid of the combinatorial aspect as well-as
potential non-convexity arising in (4.2]). This leads to a convex sensor placement problem

i v(Z 7 P,
Lmin WT() +T0) + Blul (Ps)

where we optimize for a design measure u in the space of Borel measures rather than the individual
sensors. Here the matrix Z(u) € R™*™ is given by

Z(u) = , 05(d)(x)8S[4)(x) " du(z), I(u)ij = (9;5[d]8;Sd], u),
where the integration has to be understood in the sense of Bochner. While appears to
be more general as the original problem we will show that it admits solutions given by a linear
combination of Dirac delta functions. Their support points together with the associated coefficients
of the corresponding Dirac delta then constitute an optimal solution to the original problem ,
making both approaches essentially equivalent.

As an alternative to the regularization term we may instead put constraints on the total cost of
the measurement process leading to

in  ¥(Z(u)+ I t. <K, pPK
e i W) +To) st lullag < (P™)

for some budget K > 0. Both formulations, and (PX)), are closely linked (see Section :
On the one hand, in the case of no a priori knowledge on the prior covariance, i.e. for Zg = 0, the
solutions of both problems coincide up to a scalar factor, depending on either K or 5. On the other
hand, incorporating a priori knowledge, both problem formulations parameterize the same solution
manifold. The parameters 8 and K, respectively, provide some indirect control over the number
of measurements, which is the cardinality of the support of the optimal solution, in this case.
For practically relevant design criteria ¥ the inequality constraint will be active at every optimal
solution. This links (P"]) closely to the concept of approximate design introduced by Kiefer and
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Wolfowitz in the context of linear regression, see [165] and the discussion in the previous chapters.
For an extension to sensor placement problems based on first order approximations of nonlinear
models see [107,217]. In the context of partial differential equations such an approach to optimal
sensor placement was pursued in |17}256].

The results in this chapter delimit themselves from these previous approaches in several ways
by taking recent advances in the theory of measure-valued optimization problems into account.
Besides proving well-posed our main focus lies on three different aspects of problem (P3)). First we
provide a suitable solution algorithm for based on alternating between adding single sensors to
the design and optimizing their measurement weights. Here we essentially generalize the algorithm
presented in [44,[50]. By a careful convergence analysis, see Chapter @ we improve upon the
convergence results in these references and further derive convergence rates for the optimal design
measure with respect to a suitably chosen and computable metric. Since all considerations are
taken at the function space level we observe stability of this convergence behaviour with respect
to discretization of the observational domain and the underlying PDE model. In this context we
also discuss solution algorithms and improved convergence rates for , such as the well-known
Fedorov-Wynn algorithm, see [105,272]. Second we consider perturbations of the optimal design
criterion or the underlying PDE and study stability and sensitivity of the optimal design measure.
Note that these questions are of practical importance since the sensor placement problem itself is
based on a first-order approximation of the PDE model. However we are not aware of any results
in this direction. Finally, to solve or one has to compute the state y = S[q] as well
as the sensitivities {0;S[q]};_, of the state with respect to the parameters. In general, the state
and sensitivity PDEs cannot be solved analytically, but only numerically. We therefore analyze
a discretization scheme for based on a finite element discretization of the underlying PDEs
and a variational discretization approach for the design measure, see [59,/148|. Sharp a priori error
estimates with respect to the discretization parameter for the optimal design functionals as well
as the optimal design measure are provided.

The outline of this chapter is as follows. In Section [1.2] we focus on the existence and the structure
of optimal design measurements obtained through . In Section we shed light on the
connection between and a class of semi-infinite optimization problems, giving a geometric
interpretation of the optimal sensor placement problem. Section [4.4]is devoted to the numerical
treatment of the sparse sensor placement problem by accelerated conditional gradient methods,
see also Chapter [6] Stability and sensitivity analysis of the optimal design measure is in the focus
of Section In Section discretization of and a priori error estimation are considered.
To underline our results we present some numerical evidence in Section [I.7 We note that parts
of this chapter have been submitted for publication, see [200].

4.1 Parameter estimation and optimal design

4.1.1 Parameter estimation

Within the scope of this chapter we consider the identification of a parameter ¢ entering a weak
form a(-,-)(): Qqa X Y x Y — R, which can be non-linear in its first two arguments but is
linear in the last one. Here, we denote by Q.q C R™, n € N, a set of admissible parameters,
Y denotes a suitable Hilbert space of functions on a spatial domain 2 C R? d € N, which is
assumed to be open and bounded. We consider the state space Y = 7 + Y, where the function
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4 Sparse sensor placement for PDE-constrained inverse problems

¢ models (potentially) non-homogeneous (Dirichlet-type) boundary conditions in the model. For
every q € Qqq we introduce the state y = S[g] € Y as a solution to

yeY: a(qy)(e)=0 VoeV. (4.3)

The operator S: Quq — Y mapping a parameter g to the associated state is called the parameter-
to-state operator. We make the following general regularity assumption.

Assumption 4.1. For every g € Q,q there exists a unique solution y € Y N C(£2,) to (4.3). The
parameter-to-state mapping S with

S: Qua — C(£2,) with ¢+~ Slq] =v,

is continuously differentiable in a neighborhood of QJ,4 in R™. We denote the directional derivative
of S in the direction of the k-th unit vector by 0;S[q] € C(§2,) and by 0S][q] € C(£2,,R™) the vector
of partial derivatives.

We emphasize that under suitable differentiability assumptions on the form a(-,-) and Assump-
tion the k-th partial derivative dyr = OrSlql € Y NC($2,), k =1,...,n, is the unique solution
of the sensitivity equation

ay (4, 9)(0yk, @) = —ag, (¢, y)(¢), VYo e, (4.4)

where y = S[g] and aj, and aj, denote the partial derivatives of the form a with respect to the
state and the k-th parameter; see, e.g., [255,258|.

To estimate the unknown parameter we consider measurement data y, collected at a set of N
distinct sensor locations {:J:j}éyzl C §2,, where 2, C {2 is a closed set. In order to take mea-

surement errors into account we assume that the data yZl ~ S[q*|(z;) is additively perturbed by
independently unit normally distributed noise; see, e.g., [19]. Here S[g*](x;) denotes the response
of the model to an unknown parameter ¢*. Taking into account that multiple measurements can
be performed at the same location, we obtain that

vh = Sla'](x;) + ¢, & ~ N(0,1/u;), Cov(ej,e;) =0,

forall 7,7 =1,...,N, and j # i, where u; € N\ {0} denotes the number of measurements taken
at the j-th location. More generally, we assume that u; can be chosen arbitrarily in Ry \ {0}
in the following. In this case the measurement weights u; > 0 should be interpreted as diligence
factors giving information on how carefully the data should be collected at the corresponding
measurement point.

To emphasize that the data y, is a random variable conditional on the measurement errors we
will write yq(¢) in the following and define the least squares functional

N
1 .
Ja.€) =5 > u(Slg)(x) — yi(e))? (4.5)
j=1
as well as the possibly multi-valued least squares estimator
G: RY — P(R"™), G(e) = argmin J(q, ), (4.6)
quad

where P(R") denotes the power set of R”. Note that this estimator is the usual Maximum-
Likelihood estimator using the assumption on the distribution measurement errors ; ~ N (0, 1/u;).
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4.1.2 Optimal design

Since the measurement errors are modelled as random variables, the uncertainty in the data is
also propagated to the estimator. Consequently we interpret ¢ as a random vector. To quantify
the bias in the estimation and to assess the quality of computed realizations of the estimator, one
considers the non-linear confidence domain of ¢ defined as

D(q,a)(e) = {p € Qua | J(p,e) — mciznd J(gq,¢e) < 72(a)/2} , (4.7)

4€Qq

where 72 (a) denotes the (1 — a)-quantile of the y2-distribution with n degrees of freedom; see,
e.g., [2336]. We emphasize that the confidence domain is a function of the measurement errors and
therefore a random variable whose realizations are subsets of the parameter space. In this context,
the confidence level o € (0,1) gives the probability that a certain realization of D(g(e), ) (€)
contains the true parameter vector ¢*.

Consequently, a good performance indicator for the estimator ¢ is given by the size of its associated
confidence domains. The smaller their size, the closer realizations of ¢ will be to ¢* with a high
probability. Given a realization D(q, «)(€) of the non-linear confidence domain, its size only
depends on the position and the number of the measurements. To obtain a more reliable estimate
for the parameter vector, the experiment, e.g. the total number of measurements carried out,
their positions z;, and the measurement weights u; should be chosen a priori in such a way
that confidence domains of the resulting estimator are small. However, for general models and
parameter-to-state mappings S the estimator ¢ cannot be given in closed form. Therefore it is
generally not possible to provide an exact expression for D(q, a)(e).

To circumvent this problem we follow the approach proposed in, e.g., |[107,216| and consider a
linearization of the original model around an a priori guess ¢ of ¢* which can stem from historical
data or previous experiments. In the following, e € RY denotes an arbitrary vector of measurement
errors, and x € 2V, x = (z1,...,zy), with xj € §2,, 3 =1,..., N, stands for the measurement
locations. For abbreviation we write S[G](z) € RY for the vector of observations with S[q](x); =
S[G)(x;), 7 =1,...,N. Moreover the matrices X € RV*" and X~ € RV*N are defined as

X]k:(akS[(j](x]), EZ;l:(stuZ, i,j::l,...,N, k:l,...,n,

and are assumed to have full rank. We arrive at the linearised least-squares functional
Jiin (g, € Zuj dl(x;) + 0S[dl(x) " (g — @) — (),

which can be equivalently written as

Tinla,0) = 31X(a - d) + S1dl(@) ~ va(©)3

where |[v]5x-1 = vTX"1o for v € R™. In contrast to the estimator § from ({.6)), the associated
linearised estimator

th R — Rn (jlin(e) = arg ]gun Jlin(Qa 6)) (48)
geER™
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is single-valued and its realizations can be calculated explicitly (see, e.g., [251]), as
Gin(€) = ¢+ (XTZIX)TIXT I (ya(e) — S[d)(2)) - (4.9)

Due to the assumptions on the noise € the estimator ¢, is a Gaussian random variable with
Gin ~ N(Gin(0), (X "X71X)~1). The associated realizations of its confidence domain (see, e.g.,
[36]) are thus given by

D(Giin, @)(€) = {q ER" | g =G + (XTZ'X) XTI 25¢, |Gelpn < %(a)} , (4.20)

where | - |[gv denotes the Euclidean norm on RY. We point out that the linearised confidence
domains are ellipsoids in the parameter space centered around Gj,. Their half axes are given
by the eigenvectors of the Fisher-information matrix Z = X" X~'X with lengths proportional
to the associated eigenvalues. Their sizes depend only on the a priori guess ¢ and the setup of
the experiment, i.e. the position and total number of measurements, but not on the concrete
realization of the measurement noise. Consequently we can improve the estimator by minimizing
the linearised confidence domains as a function of the measurement setup, which leads to (4.2]).

4.2 Theoretical results

Motivated through the considerations in the previous section we propose to improve the estimator
by minimizing a design criterion acting on the matrix X ' ¥~1X as a function of the experimental
setup

i U(XTY x4+ 7, 4.11
xiego,u,.eRTéEl,.‘.,N,NeN[ ( +Zo) + Bllull, ], (4.11)

where the matrix Zy € NND(n) (e.g. Zy = 0) incorporates prior knowledge on the parameter, as
described in the introduction of this chapter.

Let us put this problem into the perspective of Chapter 3] We choose the parameter space as
@ = R™. From the discussion in Section we recall that SHS(R™,R"™) can be identified with
the symmetric matrices Sym(n) together with the Frobenius scalar-product. Since there won’t be
any ambiguities in this chapter we drop the indices and write

1A ym = 1/ (A, A)gym = /Tr(A*A), A € Sym(n).
.

Given vectors v, z € R™, the tensor v ® z € R™*" is simply given as the rank 1 matrix v®z = vz .
In the same way we identify Pos(R™,R™) with the set of non-negative definite matrices NND(n).
On NND(n) we consider the Lowner ordering given by
By < By By — B € NND(TL)
Furthermore, due to 95[¢] € C(£2,,R™), the pointwise Fisher-information
I: 2, — Sym(n), =z~ 0S[q(z)0S[q)(z)",

1s continuous.
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In this light, given x = (z1,...,2n) € 22 and u = (uy,...,uy) € RY we rewrite the Fisher-
information matrix as
N
XTEX = 3 woslil(@)oslilw) = [ oslal(e) © 0S(il(a) dulz).
i=1 0

where the measure u € M™1(£2,) is given by u = Ef\i 1 W0z, Thus (4.2) can be viewed as a
special instance of the general problem (3.12)) by choosing the observation operator O: 2, — R"
as O(z) = 05[¢](x) € R” for all x € 2,. We introduce the linear and continuous Fisher-operator

7z, see , by
Z: M(£2,) = Sym(n), Z(u)= /Q dS[4](x)dS[q)(x) " du(z),

where for u € M(S2,) the entries of the matrix Z(u) € Sym(n) are given as
Z(u)ij = (9:5(d)0;Sd), w) Vi,je{l,....,n}.
In the following, we consider the sparse sensor placement problem, c.f. also (P)),

ue./\I}ll“i'I(lQo)[W(I(U) + Zo) + Bllull m]-

Concerning the function ¥ the following assumptions are made.
Assumption 4.2. The function ¥: Sym(n) — R U {400} satisfies:
A4.1 There holds dom¥ = PD(n).

A4.2 V¥ is two times continuously differentiable at every B € PD(n).
A4.3 V¥ is lower semi-continuous and convex on NND(n).

A4.4 ¥ is monotone with respect to the Lowner ordering on NND(n), i.e. there holds

By <y By = W(By) > W(B,) VBi, By € NND(n).

Accordingly, the functional ¥(B) = (B + Tp) fulfills Assumption [3.2 with
domyNp () ¥ = {B € NND(n) | B+Zy € Pos(n) }.

While Assumptions (A4.1) to (A4.3) are important for the existence of optimal designs and the
derivation of first order optimality conditions, Assumption (A4.4) admits a geometric interpreta-
tion. Given two design measures u1,us € M™(§2,) with Z(u1), Z(u1) € PD(n) and Z(u1) <r, Z(u2)
the corresponding ellipsoids fulfill

E={06g€R" | 3¢ I(ux)dg <r} C & ={dg € R" | 6q" T(u1)dg <7}

for any r > 0. This ensures that ¥ is indeed a suitable criterion for the size of the linearised
confidence ellipsoids (4.10). For a similar set of conditions; see |256, p. 41]. The given assumptions
can be verified for a large class of classical optimality criteria, among them the A and D criterion

Tr(B~1), B € PD(n),

00, else,

—log(det(B)), N € PD(n),

00, else,

Wy (B) = { ¥p(B) = {
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corresponding to the combined length of the half axis and the volume of the confidence ellipsoids.
Additionally, one may also use weighted versions of the design criteria: for instance ¥} (B) =
Tr(WB~'W) allows to put special emphasis on particular parameters by virtue of the weight
matrix W € NND(n). However, we emphasize that the results presented in this chapter cannot
be applied to other non-differentiable popular criteria such as the E criterion defined by

max; {\;(B~')}, B € PD(n),

00, else.

Yp(B) = {

describing the length of the longest half axis and the length of the longest side of the small-
est box containing the confidence ellipsoid. In this case, one can for instance resort to smooth
approximations of the design criteria.

4.2.1 Existence of optimal solutions and optimality conditions

In this section we prove the existence of solutions as well as first order necessary and sufficient
optimality conditions for the optimal design problem . Additionally, results on the sparsity
pattern of optimal designs are derived. Let us first take a closer look on the Fisher operator Z. It
is readily verified that it is the Banach space adjoint of the operator

I*: Sym(n) = C(£2), with I%(B)= s,
where pp € C(£2,), given B € Sym(n), is the continuous function defined by
pp(x) = Tr (9814 (2)951d)(2) " B) = 05(d)(2) " BaS[dl(x) ¥z € 2, (4.12)
see Proposition Now, we formulate the reduced design problem as

.
i F() = () + Bl

where 9 (u) = ¥(Z(u) +Zp). In the following proposition we collect some properties of the reduced
functional.

Proposition 4.1. Let Assumptions (A4.1)~(A4.4) be fulfilled and let Zy € NND(n) be given.
The operator I and the functional v satisfy:

1. For every u € M™(£2,) there holds Z(u) € NND(n).

2. There holds dom g+ (0, ¥ = {u € M¥(£,) | Z(u) + Zo € PD(n) }. The domain dom py+ (g, 9
is weak* sequentially open in M™(§2,).

3. 1 is two times continuously differentiable on its domain with derivative
Vip(u) = I% (V¥(Z(u) + 1o)) € C(£2,)

Jor every u € dom g+ (g,) ¥ The derivative can be identified with the non-positive continuous
function

[V (u)] (x) = 8S[q](z) "V (Z(u) + To) dS[q](z) Yz € £2,. (4.13)

Moreover the gradient Vi): dompy+ (o) — C(§2,) is weak*-to-strong continuous. Given
u € dom g+ () ¥, the second derivative V2t (u) € LIM(§2,), M(826)%) is characterized as

(6uy, V) (u)dug) pe = Tr(Z(0ur)V2O(Z(u))I(Sug)), Vour,dug € M(2,).
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4. Y is weak™ lower semi-continuous and convex on M™(£2,).

5. ¥ is monotone in the sense that

T(ur) <p Z(uz) = ¥(u1) > ¥(ug) Yuy, ug € MT(82,).

Proof. Second order Fréchet differentiability differentiability follows from the differentiability as-
sumptions on ¥ by applying the chain rule. The rest of the claimed statements can be inferred
from Proposition [3.9 O

To ensure existence of optimal designs we make the following assumption on the objective func-
tional.

Assumption 4.3. The functional F(u) = ¢ (u) + B|u||sm is radially unbounded.

Remark 4.1. This additional assumption is fulfilled for the A and D-optimal design criterion
considered before, since

Blullan < Tr((T(w) +To)™) + Bllula,
as well as
Bllullan — ex log(ezllullan + [Zollsym) < —log(det(Z(w) +Zo)) + Bllullas,
for some positive constant cq,co > 0.
Since the regularization term is given by Gg(|lul|sm) = B||u||m and the function
Gp: R = RU+00, m = Bm+ Iy (m),
fulfills Assumption the following existence result is due to Proposition [3.11]

Proposition 4.2. Assume that domp+(o,y¢ # 0 and B > 0. Then there exists at least one
optimal solution g to (Pg)). Moreover the set of optimal solutions is bounded. If ¥ is strictly
convex on PD(n) then the optimal Fisher-information matriz Z(ug) is unique.

Next we give conditions for the domain of ¥ to be non-empty.

Proposition 4.3. Assume that 5 > 0 and
R"™ = span (RanZy U { 9S[d](z) | x € 2, }) .

Then there exists at least one optimal solution of (Pg|). Furthermore, every design measure u €
domp+(0,) ¥ consists of at least ng = n —rankZy support points.

Proof. According to Proposition [£.2] we have to show that there exists an admissible design mea-
sure. By assumption we can choose a set of n — rank Zy distinct points z; € (2, such that

R"™ = span (RanZo U {0S[g](x;) | j =1,...,n —rankZp}).
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Consequently, setting u = »12, 05, € MT(£2,), we obtain

T(u) + Zo = Y 05(a)(2;)050d)(x;)" + To € PD(n).
j=1

by straightforward arguments. For the last statement we simply observe that for a measure u
with less than ng = n — rank Zy support points, the associated information matrix Z(u) + Zy has
a non-trivial kernel. O

By applying standard results from convex analysis we derive necessary and sufficient first order
optimality conditions. Most important, we link the support points of an optimal design g to the
maximizers of —Vi(ug) > 0.

Lemma 4.4. Let 8> 0 be given. A measure ug € M1 (§2,) is a minimizer of if and only if
one of the following (equivalent) conditions holds

o There holds
=Vip(ug) € 9(B - [lm + Luzo(-))(up).
o There holds

sup  [(VW(ug), ug — v) + Blluglm — Bllvlm] = 0.
vEMT(2,)

o We have

— min Vi (ug)(x)

3 lu 0
- { B sl >0 " Guan), as) = Blaslia

<B lagllm=0"

e For all x € 2, we have

{= B lagllm >0

R VN < Jagl=o0

282 supp i C {z € 2 | = V(ag)(z) =6}

(4.14)

Proof. Since 1 is two times differentiable and monotone we have —V(u)(z) > 0 and thus also

— min V¢p(u)(z) >0
€,

for all measures u € M*(§2,) and z € £2,. Calculating the subdifferential of Gg at ||ug||m gives

(=00, 8] lagllm =0

0G5 (([iglle) = {8} + oy (15]100) = {{B} lslae >0

Furthermore we note that g is optimal if and only if

=Vi(ug) € 9(B| - [|m + Luxo(+))(ug) = BOllug||m + Olu>o(tp)

where the last equality holds due to the continuity of the norm. Thus we obtain the result by
applying Theorem |3.17| as in Example [3.3 ]
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Remark 4.2. For (P")) a similar optimality condition can be derived by the same techniques. A
measure @ € dom M+(2,) ¥ is an optimal solution of (P")) if and only if

suppalt c {:U c N, Vw(ﬁK)(w) = arg min Vw(ﬁK)(m)} ,

x€S,
where the condition on the support of @ is equivalent to

—(Vy(@’), a¥)y + arg min Voo (aX) (z) | @[ pm = 0,

€S,

yielding again the well-known Kiefer-Wolfowitz equivalence theorem; see [164,165] and [256, The-
orem 3.2|.

Since the Fisher-operator Z is a finite rank operator, uniqueness of the optimal solution is usually
not guaranteed. However, the existence of at least one solution with the practically desired sparsity
structure follows due to the finite dimensionality of the parameter space. This is addressed in the
following theorem. Moreover if the optimal Fisher-information matrix Z(u3) € Sym(n) is unique
and

{z €| —V(ug) =B} = {ai}ily, (4.15)

for some x; € £2,, i =1,..., N, then every optimal design is sparse and uniqueness of the design
holds under an additional linear independence assumption.

Theorem 4.5. Let u € M™1(£,) be given. Then there exists & € M (£2,) with
I(u) =Z(a), |lallm < llulla,  #suppa < n(n+1)/2.
Additionally, if there exists an optimal solution to , then there exists an optimal solution g
with #suppug < n(n+1)/2.
Proof. Since dim Sym(n) = n(n + 1)/2 this result is due to Theorem and Corollary O

Corollary 4.6. Let ¥ be strictly convex on its domain and assume that (4.15)) holds. Then every
optimal design ug is of the form ug = Zfil udy,, w; € Ry. If {Z(64,)}Y, is linear independent
then the optimal design is unique.

Proof. For a proof see Corollary and Corollary O

The proof of Theorem leads to an implementable sparsifying procedure which, given an ar-
bitrary finitely supported positive measure, finds a sparse measure choosing a subset of at most
n(n+1)/2 support points and yielding the same information matrix. The procedure is summarized
in Algorithm

Proposition 4.7. Letu =Y ;" | u;0,, be given and assume that {Z(0,,)}:" is linearly dependent.
Denote by Unew = Z{i | new.i>0} Unew,i0z; the measure that is obtained after one execution of the
loop in Algorithm[1. Then there holds

F(unew) < F(u), #suppUnew < #suppu — 1, supp tnew C SUpp u.
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Algorithm 1 Support-point removal

1. Let uw =Y ;" u;0,, be given.
while {Z(d;,)};~, linearly dependent do
2. Find 0 # u with 0 = >, W, Z(dg, ).
3. Set on = maxi{ ﬁi/ul- }, Upew,; — W; — ﬁi/,u.
4. Update Unew = Z{i | new >0} Upew,i0gz, -
end while

Proof. This is a special case of Proposition [6.33] O

In the last part of this section we will further discuss structural properties of solutions to ,
mainly focusing on their connection to (P]) and their behaviour for 3 — oc.

Proposition 4.8. The problems (P")) and (Pg)) are equivalent in the following sense: Given, for

fited K > 0, a solution a* to (P%)), there exists a 8 > 0, such that @’ is an optimal solution

to (Ps) and vice versa.

Furthermore, assuming that ¥ is strictly monotone with respect to the Lowner ordering in the
sense that

By — By € PD(n) = ¥(B;) > V¥(By), Bi,B; <€ PD(n),
we additionally obtain the following:

1. We have ||a* ||y = K for each optimal solution € to (P%)).

2. There exists a function

B:RA{0} = R \{0}, K = p(K),

such that each optimal solution @™ to (PY) is a minimizer of (Ps(rcy)-

Proof. Fix an arbitrary K > 0. By well established results from convex analysis (see, e.g., [43,
Proposition 2.153|) the norm-constrained problem (P)) is calm. Define the Lagrangian L as

Lt MH(2,) x Ry 5 Ry L{u, B) = v(u) + B (] — K).

A given measure @ € M*(£2,) is optimal for (P")) if and only if there exists a Lagrange multiplier
B > 0 with

a € argmin L(u,B), B(|a™|m — K) =0. (4.16)
ueEM(£2)

The set of Lagrange multipliers is independent of the choice of the optimizer @€, i.e. given two

arbitrary optimal solutions @f, a5 € M*(£2,) to (P%)) and B > 0 such that the pair (af, )
fulfills (4.16)), then so does (@, 3). For a proof we refer to, e.g., [43, Theorem 3.4]. This proves
the first statement.

Assume that ¥ is strictly monotone. Let @/ be an arbitrary optimal solution to (P*) with
|@®||;m < K. Using the strict monotonicity of ¥ we deduce that @/ # 0. Defining @ =

74



4.2 Theoretical results

(K/||af||p)u” there holds (%) < 9 (u®) since (K/|a*||p) > 1. This gives a contradiction
and [|a"||p = K.

It remains to show that for a given K the associated Lagrange multiplier denoted by B(K) is
positive and unique. To prove the positivity, assume that 5(K) = 0. Then we obtain

L@k, B(K))= inf L(u,B(K))= inf (u).

ueM(£2,) ueM+(£2,)

Given u € domy+(p,) %, we have ¥(2u) < 9(u) and consequently the infimum in the equality
above is not attained, yielding a contradiction. Assume that S(K) is not unique, i.e. there exist
B1(K), B2(K) > 0 such that each optimal solution a* of (P")) is also a minimizer of L(-, 31(K))
and L(-, B2(K)) over M1 (£2,). First we note again that 0 € M™(£2,) is not an optimal solution
to (P"]) due to the strict monotonicity of ¥. Additionally it holds ||@®||, = K. Without loss
of generality assume that 81 (K) < B2(K). From the necessary optimality conditions for (Pg, (k)

and (Pg,(k)), see ([4.14), we then obtain
—V(a") < B1(K) < B2(K), suppa’t C {x €Ny | — V(ar)(z) = Bo(K) },

implying @® = 0 which gives a contradiction. O

Many commonly used optimality criteria ¥ are positively homogeneous in the sense that there
exists a convex, strictly decreasing, and positive function ~ fulfilling

U(rB) =~(r)¥(B) Vr >0, BePD(n); (4.17)

cf. also [106, p. 26]. For example, both the A-optimal design criterion ¥4 (B) = Tr(B~!) and the
(non-logarithmic) D-criterion ¥p(B) = det(B~!) fulfill this homogeneity with v4 and vp given
by

—n

ya(r) =171 ap(r)=r

The following lemma illustrates the findings of the previous result, provided that Zy = 0. It turns
out that solutions to (P™)) can be readily obtained by scaling optimal solutions to (Ps))-

Proposition 4.9. Assume that Zy = 0 and ¥ is positive homogeneous in the sense of (4.17)). Let
ug be a solution to (Pg|) for some fized 3 > 0. Then

Kg/laslam  solves (PF). (4.18)

Proof. First we note that under the stated assumptions every optimal solution @ to (P fulfills
|a"||;m = K. Clearly, we have

min (P%) =  min Uu) = min Ku') = ~v(K) min(P?),
ue/w(oo),w( ) u'e/w(oo),w( ) = 7(K) min(P")
lullm=K vl m=1
by using the positive homogeneity of ¥. Thus, the solutions of (P are given by Ku!, where u'
are solutions of (P'). Now, using the fact that

min (Pgl) = min m

i K/ K| = mi K) min(P! K
I en (0 e V) + BK | = i [7(K) min(PT) + K]

the solutions g of (Pg)) can be computed as ug = K u!, where K minimizes the above expression
and u' € argmin(P'). Together, this directly implies (4.18]). O
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As we have shown in the case Zy = 0, i.e. in the absence of a priori knowledge, the optimal locations
of the sensors x are independent of the cost parameter 3 (resp, K), which only affects the scaling
of the coefficients u. However for Zy # 0 this is generally not the case. Loosely speaking, if the
a priori information is relatively good (i.e. Zy € PD(n)) and the cost per measurement is too high,
the optimal design is given by the zero function, i.e. the experiment should not be carried out at
all.

Proposition 4.10. Let Iy € PD(n). Then the zero function @ = 0 is an optimal solution to (Pgl)
if and only if B> By = —mingepn, VY (0)(z).

Proof. We first note that 0 € dom and fy = —mingeg, V¢(0)(z) < co. Clearly, for 8 > fy,
the zero function fulfills the optimality conditions from Lemma Thus, it is a solution to (Pg).
Conversely, for 5 < By, the optimality conditions are violated. O

4.3 An approach by convex duality

To conclude the discussion on the structure of optimal design measurements we mention a different
approach for the functional analytic treatment of by convex duality. For a dual viewpoint
on sparse optimal control problems we refer to [73,74]. In the context of optimal design problems
similar arguments have been used in, e.g., [1,/102,[221]. For simplicity set Zgp = 0. We rewrite the
sparse sensor placement problem as an unconstrained convex minimization problem

min W(Z() + Bl + Lizo(w). (4.19)

By applying the Fenchel-Rockefellar duality theorem, see e.g. [229, Section 31], we can identify its
dual problem as

min  ¥*(—B) s.t. 9S[g|(z) BoS[g)(x) < B Vz € 0, (4.20)
BeSym(n)

where ¥*: Sym(n) — R U {400} denotes the convex conjugate of ¥, see (6.5). Any optimal
solution ug to (4.19) corresponds to a Lagrange multiplier for the pointwise constraint in (4.20)).
These results are formalized in the following proposition.

Proposition 4.11. The following statements are equivalent:
o The measure i € M(£2,) is optimal for [4.19) and B € Sym(n) is optimal for (4.20).
e There holds B = —VW¥(Z(1)), 0S[q](z)" BOS[q](x) < B for all x € §2, and

<ﬁ3wzkameB%mmmm:mwM

Proof. The statement readily follows from applying |98 Proposition 4.1]. O

Hence, the results of Lemma [4.4] can be interpreted as a complementarity condition for the point-
wise constraint on 9S[g]" BOS[g] and its associated multiplier @g. To illustrate this result we
consider a concrete example.
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4.3 An approach by convex duality

Example 4.1. We consider the D-optimal design criterion with no a priori knowledge

— log(det(B)) B € PD(n),

+00 else

)

Up(B) = {

and the associated sensor placement problem

L min [~ log(det(Z(u) + Blulladl (4.21)

Let us calculate the convex conjugate of the log-determinant

@h: Sym(n) - RU{+o0}, B sup [Tr(B'By)+ log(det(By))].
B1€PD(n)

Let B € Sym(n) be given. First assume that there exists B € PD(n) with Tr(BTB) > 0. For
t € Ry define By =tB. Then we obtain

Vp(B) 2 sup [Te(B' By) + log(det(By))] = sup [ Tr(B' B) + log(det(B;))]

= tSIMJRp [t Tr(B' B) + nlog(t) + log(det(B))] = +oo.

Thus we conclude that a necessary condition for B € dom¥y, is given by Tr(BTBy) < 0 for all
By € PD(n) or, equivalently, —B € PD(n). Recall that for By € PD(n) the gradient of the log-
determinant criterion is given by VW¥p(By) = —Bl_l. Since the set of positive definite matrices is
open in Sym(n) we conclude

B e argmax[Tr(B"B)) —¥p(B,)] = V¥(B) = -B~ ' = B'.
B1ePD

Inserting this into the definition of the convex conjugate we get
U (B) = —n—¥p(—B ') = —n +W¥p(—B) = —n — log(det(—B)).
. The dual problem (4.20) is now readily given as

Berg})n(n) —log(det(B)) s.t. 9S[g](x)" BAS[4](z) < B Vx € 12, (4.22)

We give some geometrical interpretation to this problem. Note that if B € PD(n) is admissible

for (4.20) there holds
{oSlil(a) |z € 2} CEB) = {qeR" ¢ Bg< 8],

where the set on the right hand side is an ellipsoid, centred at the origin. Its shape is described by
B. Furthermore we have vol(€(B)) = c(n)det(B)~Y2. Therefore, for the log-determinant crite-
rion, the dual to the sensor placement problem is given by finding the ellipsoid of minimal volume
which covers all possible observation vectors 0S[G](z) € R™, = € §2,, see also [253]. Minimum
volume enclosing ellipsoid problems have been discussed in e.g. [175,219]. Due to the support con-
dition on the optimal measurement design we further conclude that the observation vector 9S[q|(z)
corresponding to an optimal measurement at T lies at the boundary of the associated ellipsoid.
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4 Sparse sensor placement for PDE-constrained inverse problems

These duality results establish an important connection between sparse optimal sensor placement
and so called semi-infinite programming, see e.g. |140,|187]. Here, the space of optimization
variables is finite dimensional, but an infinite number of constraints is imposed. Optimality
conditions and existence of a sparse Lagrange multiplier for these kind of problems has been
discussed in e.g. |43|. In this chapter we have chosen a primal approach to discuss the sparse
optimal sensor problem to demonstrate the applicability of the general framework presented in the
previous chapter. Moreover, we are confident that many of the ideas presented in the following
sections can be extended to more general and non-convex sparse optimization problems in a
straightforward fashion. However, this work largely benefits from the advanced level of research on
semi-infinite problems. We mention for example the a priori error estimates for the design measure
in Section which partly rely on techniques developed for a semi-infinite problem, c.f. [190}/191].
On the other hand, semi-infinite programming might also benefit from results obtained from the
study of sparse optimization problems. For instance, recently, c.f. [97|, the equivalence of an
accelerated conditional gradient method for sparse optimization problems, see Section [£.4] and an
exchange method for semi-infinite problems, see e.g. [278], has been shown. This allowed to derive
worst-case convergence rates for the latter one. In this light, numerical methods for semi-infinite
optimization might eventually also profit from the improved convergence results for accelerated
conditional gradient methods derived in the following section.

4.4 Optimization aspects

In this section we will elaborate on the algorithmic solution of . We consider two different
approaches. First, we present an algorithm relying on finitely supported iterates and the sequen-
tial insertion of single Dirac delta functions based on results for a linear-quadratic optimization
problem in [50] and [49]. By a closer inspection, the resulting algorithm guarantees convergence
of the generated sequence of measures towards a minimizer of together with a sub-linear
convergence rate of the objective function values. Additionally we propose to alternate between
point insertion and point deletion steps to enhance the sparsity of the iterates and to speed up the
convergence of the algorithm. These sparsification steps are based on the approximate solution of
finite dimensional optimization problems in every iteration. As an example we give two explicit
realizations for the point removal and discuss the additional computational effort in comparison
to an algorithm solely based on point insertion steps. If the finite-dimensional sub-problems are
solved up to optimality in every iteration, we are further able to show improved convergence rates
for the objective functional as well as rates for the iterates in a suitable metric. Moreover the
resulting algorithms can be combined with Algorithm [I]in a straightforward manner, guaranteeing
a sparse structure of the computed optimal design. Finally, the algorithm is compared to variants
of the Fedorov-Wynn algorithm for the algorithmic solution of .

Secondly, we adapt an approach based on a Hilbert space regularization of the original sparse
optimization problem. Here, the optimal design problem is replaced by a sequence of reg-
ularized optimization problems, which are amenable to proximal point or semismooth Newton
methods (which converge locally superlinearly) in function space. Algorithmic approaches for the
solution of non-smooth optimization problems based on Hilbert space regularizations have recently
increased in interest in the context of PDE-constrained optimization; see, e.g., [73,248|. Since such
an approach seems to be new in the context of sensor placement problems, we briefly describe it
for the sake of comparison at the end of this section.
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4.4 Optimization aspects

4.4.1 A generalized conditional gradient method

For the direct solution of on the admissible set M™*(£2,) we adapt the numerical procedure
presented in [50], which relies on finitely supported iterates. A general description of the method is
given in Algorithm 2] For convenience of the reader we give a detailed description of the individual
steps and their derivation below. Basically, the algorithm can be split into two parts. The first part

Algorithm 2 Sequential point insertion algorithm
1. Choose u' € domp+(,) ¥, #suppu! < n(n+1)/2. Choose My > 0 with |Jag|lr < Mo.
while &(u*) > TOL do
2. Compute V¢, = Vip(u”). Determine #* € argmin,c, Vipg(z).
0,  Vii(i*) = -5,
My, else
4. Select a step size s* € (0,1] and set uFt1/2 = (1 — s¥)uF + sFok.
5. Find «**! with supp u*t! C supp uF*t1/2 and F(u*t1) < F(uFH1/2), ||[ub1|m < M.
end while

3. Set v* = 9’“556;@ with 0% = {

(steps 2.—4. in Algorithm [2)) consists of adding a new sensor to the current measurement design.
In the second part (step 5.), we consider the minimization of the finite dimensional subproblem
that arises from restriction of the design measure to the active support of the current iterate. This
is motivated on the one hand by the desire to potentially remove non-optimal support points by
setting the corresponding coefficient to zero, and on the other hand by the desire to obtain an
accelerated convergence behavior in practice and, as we will see, also in theory.

This section is structured as follows: First, we focus only on the point insertion step and prove
its connection to a generalized conditional method as described in Chapter [6] Thus, by a suitable
choice of the stepsize s* in each step of the procedure we are able to prove a sub-linear convergence
rate for the objective functional value. In the second part, we consider two concrete examples
for the point removal step 5. and discuss the applicability of Algorithm [I] in the context of the
successive point insertion algorithm. Since most of the statements in this section are obtained
through applying the general theory in Chapter [6] we omit the majority of proofs in the following.

Let us first recall that the set of optimal solutions to (Pg|) is bounded by a constant M > 0. For
example, if ¢ is nonnegative on its domain, we can choose an arbitrary but fixed u € domp+(g,) ¥
to obtain

Bllasllm < Fug) < Fu),

for every optimal design g € M™1(§2,). Hence we can set My = F(u)/8. We now consider the
slightly modified problem

i + : pho
werr (@i P+ Bllulad (P5™)

Connected to this auxiliary problem we further define the primal-dual gap
P domM+(Qo) P — [0, OO),
which is given by

P(u) = sup [(Vip(u),u = v) + Bllullac = Bllvllm)] -
VEM* (20).[lvll m<Mo
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4 Sparse sensor placement for PDE-constrained inverse problems

In the next proposition we collect several results to establish the connection between the optimal
design problems (P3| and l’ Furthermore, the primal-dual gap gives an upper bound for the
error in the objective function value at the k-th iterate.

Proposition 4.12. Given ug € dom g+ (q,) ¥ the following three statements are equivalent:
1. The measure ug is a minimizer of .
2. The measure Ug is a minimizer of .
3. The measure ug fulfils $(ug) = 0.

Furthermore there holds

P(u) > F(u) — F(ug) =: rp(u), (4.23)
for all w € dom g+ 0,y ¥ with |[ul|pm < Mo and all minimizers g of 1D

Following relation (4.23]), the primal-dual gap @ is suitable to monitor the convergence of Algo-
rithm [2] Its numerical computation is discussed in an instance. We now connect the definition of
the new sensor v* (see step 2.-3.) to the minimization of a partial linearization of 1}

Lemma 4.13. Let u* € dom g+ (0,) ¥ be giwen. Then the measure P = 06, with 2% € 2, and
6% > 0 as defined in steps 2.-3. of Algom'thm@ s a minimaizer of

(Ve (u*), v) + B[]l adl- (P5™)

UEM+(QIB§E)|IMSMO
Moreover, vF realizes the supremum in the definition of the primal-dual gap:
D(u) = (Vop(u?), u? — o*) + Bllu*|p — Bllv* || -
Proof. We note that can be equivalently expressed as

Ter[%% %AIAHE?QO)’[MW(U’“), ) + Br] = Téf&iﬁo][r min Vi (uh)(z) + Br].
3]l pa=1

The concrete expression of v* follows now by a straightforward computation. Clearly, ®(u*) agrees
to — min l) up to a constant value. ]

We make the following two observations: First, we can interpret Algorithm [2] as a generalized
conditional gradient method as described in Chapter [} Second, as a by-product of the last result,
the convergence criterion @(u*) can be evaluated cheaply once the current gradient Vi (u*) and
its minimum point #* are calculated.

Remark 4.3. At this point, replacing (Pg|) by the equivalent formulation |D is crucial. In fact,
the partially linearized problem corresponding to the original problem

min (), )+ 8ol

is either unbounded or has an unbounded solution set in the case that mingecq, Vio(u)(z) < —p4.
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In the following, we will determine the stepsize s* according to a Quasi-Armijo-Goldstein condition.

We set s¥ = 4™ where v € (0,1),a € (0,1/2), uls“k = ub + s¥(vF — uF) and ny, is the smallest
integer fulfilling

askfd(uF) < F(ub) — F(ufk) (4.24)

For more information on the feasibility for this choice of the stepsize see the discussions around
Lemma [6.91

We now turn our attention to the convergence of Algorithm Therefore we note that Vi is
Lipschitz continuous on the sublevel sets of F.

Proposition 4.14. Let u' € domp+(0,) ¥ be giwen. Define the associated sub-level set Er(ub)
as

Ep(u') = {ue M¥(2,) | F(u) < F(u') }.

Then there exists L, such that

wp V() = Vi)

u1,u2€ER (ul) [Jur — uallm
w1 Fug

< Lyt (4.25)

Proof. Since ¥ is two times continuously differentiable on its domain, its gradient V¥ is Lipschitz
continuous on compact subsets. We observe that Er(u') is convex, bounded, and weak* closed.
Consequently, the set of associated information matrices

Z(Ep(u')) ={Z(u) + Ty | u € Ep(u') } C dom?,
is compact. For uy,us € Ep(u') we obtain
[V (u1) — Vip(uz)lle = |IT°VE(Z(u1) + Zo) — Z*V¥(Z(uz2) + Lo)llc
<N T £(symn), 2V (Z(ur) + Zo) — V¥(Z(uz) + Zo)|lsym
< Ligp ) I 7] £(symn) o)1 Z(w1) — Z(uz)||
< Lgp ) 1] £(symn),c(2o) 121 (M (920),8ym(n)) w1 — vzl ms

where Lz(g, (1)) denotes the Lipschitz constant of V& on T (Ep(u')). This completes the proof.
O

Combining all the previous results we conclude the following worst-case convergence result.

Theorem 4.15. Let the sequence {uF}en be generated by Algorithm@ with s* chosen according to
the Quasi-Armijo-Goldstein condition. Then {u*}ren is a minimizing sequence of F and admits a
weak™ accumulation point ug. Every such point is an optimal solution to (Pg|). Additionally there
holds

rp(u”) . . c1
< 1o g ) 20

Here, L, is the Lipschitz-constant of Vi on Ep(ul) and c; = 2v(1 — a)rp(uy).

rp(uk)

Proof. 1t is readily verified that the problem fulfills the prerequisites of Theorem [6.29, Thus, the
statement follows. O
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4 Sparse sensor placement for PDE-constrained inverse problems

4.4.2 Acceleration and sparsification strategies

As we have seen in the previous section, an iterative application of steps 2.—4. in Algorithm [2] is
sufficient to obtain weak® convergence of the iterates u*, as well as a sublinear convergence rate
for the objective function. However, it is obvious that the support size of the iterates u* grows
monotonically in every iteration unless the current gradient is bounded from below by —f8 or, more
unlikely, the step size s* is chosen as 1. Therefore, while the implementation of steps 2.-4. is fairly
easy, an algorithm only consisting of point insertion steps will likely yield iterates with undesirable
sparsity properties, e.g., a clusterization of the intermediate support points around the support
points of a minimizer to . In the following we mitigate those effects by augmenting the point
insertion steps by point removal steps, where we incorporate ideas from [44}50]. Without loss of
generality we can assume that My > 0 is chosen large enough such that

F(u*) < F?) < F(u?) = max{|ju| s, o2 m} < Mo,

due to the radial unboundedness of F. Given an ordered set of pairwise distinct points A =
{z1,...,xN}, we define the parameterization:

ug(u) = Z w0, YueRY, (4.27)
;€A

Now, we set A = A, = suppuFt1/2 my = #A and vFt! = uy(uFt!), where the improved

vector uF*! € R™* is chosen as an approximate solution to the (finite dimensional) coefficient

optimization problem

o Flua(u) = [{(ua(w)) + 5llully], (4.28)

that fulfills F(uf*1) < F(u¥*1/2). In this section, we focus on two special instances of this removal
step, which are detailed below.

In the first strategy, the new coefficient vector u**! = u**+!(oy) is obtained by
u"(0}); = max { ufﬂ/z — 0%, [Vzp(ukH/Q)(xi) + 5} , 0 } Vie{l,...,my}, (4.29)

where o, > 0 is a suitably chosen step size that avoids ascend in the objective function value. This
corresponds to performing one step of a projected gradient method on (4.28) using the previous
coefficient vector uFt1/2 as a starting point. Thus, step 5. in Algorithm |2 subtracts or adds mass
at support point x; for — Vi (uF+1/2)(2;) < B or —Vib(uF+1/2)(2;) > B, respectively. Furthermore,

the new coefficient u¥™! of the Dirac delta function &, is set to zero if

k+1/2
T o (Ve (@) + 8) <0,
removing the point measure from the iterate.

Secondly, we suppose that the finite-dimensional sub-problems (4.28) can be solved exactly and
choose

u*t! € argmin F(u4(u)). (4.30)
ueR’*

In this case, the conditions

suppuf T C suppuF T2 FuFtY) < FuFTY2), [l v < Mo,
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Algorithm 3 Primal-Dual-Active-Point strategy for (Ps))

while &(u*) > TOL do
1. Calculate Vi, = V¢)(uF). Determine 2% € argmingc, Vo ().
2. Set A = suppu® U {2*}, compute a solution to u**! of for A = Ay, and set
uktl — uA(uk"H).

end while

are trivially fulfilled. If all finite dimensional sub-problems are solved exactly, the method can be
interpreted as a method operating on a set of active points: In each iteration, the minimizer &*
of the current gradient Vi), is added to the support set to obtain A, = supp u* U {ka }. Then,
the problem is solved on the new support set to obtain the next iterate u**!. Note that
the next active set is given by Ay 1 = supp u*+1 U {a%k*l}, which automatically removes support
points corresponding to zero coefficients in each iteration. Furthermore the method terminates
after finitely many steps if Ay = Agy1 for some k € N. Since the subproblems are solved up to

optimality we conclude
V(@) = =8, Vo € suppu2 (Vi o) = Bl

Especially, the primal-dual gap at a non-optimal u* coincides, up to a constant, with the constraint
violation of the associated gradient, ®(u*) = —My(mingen, Vr(z) + B).

Finally, to be able to guarantee the a priori bound # suppu® < n(n + 1)/2 for the algorithmic
solutions, we can apply Algorithm [1f to the intermediate iterate u*t1/2 in step 5. of Algorithm
This ensures the convergence of the presented procedure towards a sparse minimizer of (Pg]).

Proposition 4.16. Assume that #suppu! < n(n +1)/2 and let u**1 be obtained by applying
Algorithm |1 to w*+Y/2 in each iteration of Algorithm @ Then the results of Theorem hold.
Furthermore we obtain #suppu® < n(n + 1)/2 for all k € N and consequently #suppiug <
n(n +1)/2 for every weak* accumulation point ug of u®.

Proof. See Theorem [6.36] O

We emphasize that the sparsifying procedure from Algorithm [I] can be readily combined with the
previously presented point removal steps in a straightforward fashion. In practical computations
we optimize the coefficients of the Dirac delta functions in the current support either by
or obtaining an intermediate iterate u*T3/4. Subsequently we apply Algorithm 1| Since in
both cases, the number of support points cannot increase, the statements of the last proposition
remain true.

Remark 4.4. Note that Algorithm [2]can be easily generalized to allow for the insertion of more than
one point in every iteration, which yields an additional practical speed up of the method. In detail,
the results of Theorem and Proposition hold true if the search direction v¥ € M*(2,)

from Lemma is more generally chosen as
m
b = Zuiémi, {w;};, C arg r(l)lin Vir(x), [|o¥||m = Mo
i=1 xello

if mingego, Vi, < —B. Moreover all results remain valid for Algorithm [3[if we compute u**! as
the solution of the coefficient minimization problem (4.30) with with a general active set Ay which
contains supp u* U { 21, }.
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4 Sparse sensor placement for PDE-constrained inverse problems

4.4.3 Improved convergence results

In this section we will improve on the convergence result of Theorem in the special case of
Algorithm . Therefore we briefly recall that given a minimizer @g of (Pg|) fulfills

—Viy(ug)(z) < B, Vaxe€ 2, suppug C{ze 2,| —V(ug)(zr)=p}.

We make the following assumptions on the optimal design criterion ¥, the maximizers of —V(ug)
and the local regularity of 9S[q].

Assumption 4.4. The design criterion ¥ is strictly convex on its domain and the interior of {2, is
not empty. Define the unique optimal gradient p = —V1(tig) and assume that there exists N € N
and Z; € int 2,, i =1,..., N, with

suppiig C {x € 2, | plz) = B} = {&:} Y.

Furthermore, the set {Z(dz,)}Y, is linear independent and there exists a constant R > 0 with

N

0r = Br(%:) Cint 2o, Bgr(z:)N Br(z;) =0, 05[4] € C*(2r,R") NC(£2,R").

i=1
for all 4,5 € {1,...,N}.
The assumption on the global maximizers of p together with the linear independence of the as-
sociated Fisher information matrices guarantee the sparsity as well as the uniqueness of the op-

timal design, see Corollaries and Moreover, we conclude that Z* maps continuously
to C2(2r) N C(£2,) since

T*B = 9S[{](z) " B8S[§](x) VB € Sym(n).
In particular, since p(z) = —Z*V¥(Z(ig) + Zo), we immediately get p € C*(2g) N C(£2,). To
derive improved convergence rates we demand that the following second order conditions for the
optimal Fisher information matrix Z(ug) and the optimal sensor positions {Z;}; hold.
Assumption 4.5. There holds g = Zl]il 0,0z, for some u; > 0 and
TI'(BV%?(I(’H,B) +IO)B) > ’YOHB”gym? VB € Sym(n)

Moreover the Hessian of p € C(£2,) N C%(£2R) is negative-definite at each Z;: there exists § > 0
with

—(¢, V*p(#:)Q)pa = O[C|ga, V(€ R

foralli=1,...,N.

For the rest of this section let Assumptions [1.4] and [£.5] hold. Obviously, the above assumptions
guarantee uniform convexity of ¥ around Z(ug) + Zo.

Corollary 4.17. There ezists a neighbourhood N(Z(ug)) of Z(ug) in Sym(n) with

(VSP(Bl -|-Io) — VEP(BQ +IQ), B — BZ)Syrn > %HBI — BQH%ym VBi, By € N(I(’(Lﬂ))
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Proof. Let By, Bo € NND(n) with B; + Zy € dom ¥, i = 1,2, be given. Using Taylor’s expansion
we get

(VW(Bl —+ Io) — VW(BQ + Io), Bl — BQ)Sym = (Bl — BQ, VQW(BC —+ IO)(Bl — B2))Sym

for some B¢ = B1+((B2—B1), ¢ € (0,1). Since ¥ is two times continuously Fréchet differentiable
its Hessian is uniformly continuous on compact sets. Hence by choosing N(Z(ug)) small enough
there holds N (Z(ug)) C dom¥ due to the openess of the domain and

~ o )
IV?W (B¢ + To) — V*W(Z(1g) + Zo)|| £(sym(n) Sym(n)) < 50 VB, By € N(Z(ug)),¢ € (0,1).

Combining both results and using the definiteness of V¥ at Z(ug)+Zy we conclude the statement.
O

We arrive at the following improved convergence rate for the objective function values.

Theorem 4.18. Denote by {u*}ren the sequence obtained through Algorithm @ Let the assump-
tions of Theorem[{.15, Assumption[].4] as well as Assumption[f.5 hold. Assume that the algorithm
does not terminate after finitely many steps. Then there exists 0 < ( < 1 and a constant ¢ > 0
independent of k with

re(uf) = F(uf) — F(ug) < (¥,

for all k € N large enough.

Proof. Due to the stated assumptions, the functionals ¥ (- + Zy), G, the operator Z, the unique

minimizer g and p fulfill Assumptions and [6.6| noting that p = |V (ag)|. Thus, we
can apply Theorem [6.70] taking Remark into account. This yields the desired result. O

The rest of this section is devoted to the establishment of convergence rates for the iterates u*
produced by Algorithm [3] Therefore let us briefly gather the facts so far. Due to the uniqueness
of the optimal design we have u* —* ug for the whole sequence. Furthermore we have —V1), — p
in C(£2,) and

—Vip(z) =B, Va € suppuF,

due to the optimality of u” for and k > 1. Combining this with the fact that by assumption
p(x) < f for all = & supp ug we conclude supp uF C g for all k large enough. Hence, by denoting
with uf € M™*(£2,) the restriction of u* to Bgr(%;), we also obtain u¥ —* @0z, =1,... N, by
testing u* with suitable continuous functions.

In general, norm convergence of {u*}reny on M(£2,) cannot be expected. We recall that the
iterates as well as the optimal design #ig are given as conic combinations of finitely many Dirac
delta functions which each correspond to the setup of a measurement experiment. From a practical
point of view, the most important question concerns the convergence of the sensor positions and
the associated measurement weights. In view of the aforementioned clustering effects, a sensor
located at an optimal position Z; is in most cases approximated by several sensors in the iterated
design u*. Consequently, the convergence of the sensors in the restricted design uf towards the
sensor represented by 41;0z, has to be addressed. Moreover, on a more abstract level, quantitative
convergence results for the sequence {u*}rcn can be obtained when resorting to weaker metrics.
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4 Sparse sensor placement for PDE-constrained inverse problems

These topics are covered by the following discussion For this purpose, let us first define the set of
Lipschitz continuous functions C%!(£2,) on §2, by

CO’1<QO> = {QO S C(QO) ‘ dL > 0: ’@(%1) — (p(l’g)‘ < L]ml — xQ‘Rd Va1, z9 € QO}.

For o € C%1(£2,), the quotient

HQDHL —  sup |90(331) - 80($2)|
ip =

r1,22€820, |x1 _thRd
T1#£T2

is finite and will be called its Lipschitz constant. The set C%1(£2,) together with the norm ||¢||co1 =
lelle + [l¢llLip forms a Banach space. Since Lipschitz continuous functions are in particular
continuous, we have C%'(§2,) < C(£2,) and thus M(§2,) — C%1(£2,)*, where the duality pairing
is realized as

(> Uheos gor = {9y 1) = / o (x)du(x),

o

for all u € M(£2,) and ¢ € C%1(£2,). Moreover, if e.g. §2, is quasi-convex, the space of Lipschitz
continuous functions on (2, can be identified with W1°°(£2,), the space of essentially bounded
functions with essentially bounded weak derivative, see [134, Theorem 4.1]. We now define the
modified Wasserstein distance of two measures as follows.

Definition 4.1. Given two probability measures i and ps we define their Wasserstein-1 Distance
as

Wi (p1, p2) = sup { (o, — p2) | ¢ € CH(12,), llelluip <1}

Let now up,us € M™T(£2,), ui,us # 0 be given. We define the modified Wasserstein distance
between uq and ug by

Wi (uy, u2) = Wi(ur/|lur || am, wz/[Jual|ag) + [|lut | — [Juzl|aal-

Since the Wasserstein-1 distance metrizes weak™® convergence, see [117], we have

up =" = Wiug/[lug | g w/l[ulla) =0, flugllagc = flullag

for every sequence {uy}reny C M™(§2,) with u # 0, k large enough. The following result relates
the modified Wasserstein distance to the norm on the dual space of C%(£2,)

lelleoss = sup { (o, whcon cone | 9 € CN(20), Niplleon <1}
Proposition 4.19. Let uy,us € M1(£2,) with uy,us # 0 be given. Then there holds
[ur — uallgoar < €y Wi (ur, u2),

Jor some constant ¢|jy,||,, > 0 depending on the norm of us.
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Proof. Let ui, ug € M™(£2,) be given. First we note that ||u;ljcorx < [Juillm, @ = 1,2, We
estimate

|ur — ualleoar < |[Jullam — lluallml + lluzllallur /lurl|am — w2/ [Jual| mll o

Define @1 = u1/||ui||pm and a2 = ua/||uz||pm. We obtain

[t — @l o = sup { {p, @1 —a2) | [lpllcor <1} <sup{(p, a1 —u2) | lllLip <1} = Wi, a2).

The statement readily follows. O

We now turn our attention to the modified Wasserstein distance between a sequence of sparse mea-
sures and its limit. Consider sequences {uf}reny C MT(£2,),i = 1,..., N, fulfilling # supp u¥ < oo

forall k € N, ¢ = 1,...,N as well as uf’ —* w;0,, for some x; € (2, and u; > 0. Define
ukf = Zf\i Lu¥ and the limit measure u = Zf\; 140z, The following theorem gives an upper

bound on the modified Wasserstein distance between u* and u in terms of their support points
and coeffcients, respectively.

Theorem 4.20. Without loss of generality assume that uf’ %0 forallkeNandi=1,...,N.
Then there exists a constant ¢y~ > 0 depending on the number of Diracs in the limit u and
its norm such that the estimate

k < R k W k _
W (') < i n( ps, max o = zilge + o [l =il + el = lrullaal),
(4.31)

1s valid.

Proof. We establish an upper bound for Wi (u*/||u*|| sp, u/||ul|p). Therefore note that given an
arbitrary but fixed zo € {2, there holds

(o uP /N[ WF = u/ [l ) = (o = (o), u*/|[u* | g =/ l[ull am)-
Hence the Wasserstein distance can be restricted to
Wi (11, p2) = sup { (o, 1 — pia) | ¢ € C¥M(92), [l@llLip < 1, @) =0} .
Each such ¢ € C%1(§2,) is uniformly bounded due to
lelle = max fo(2) — @(zo)l < [l¢llLiple — zolre < 2M,
where M > 0 is a constant bounding the elements of {2,. We estimate

kil k k k
(s u® /Nt = w/lfulla) ] < epug g (e llan = Nullmlllelle + (o, ™ = wl),

for some constant ¢, ,, > 0 only depending on the norm of u if & is large enough. We partition
the second term to obtain

N

N
(o, u —u)| <Y Jwig(as) = (p,up) < D llwi = [ufmlllelle + b lap(zs) — (o, uid]]-
=1 =1
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We proceed to

N
> lhwi = llugllalllelle + [ | v (a:) = (o, ui)]-

=1
< N( max_|u; — [|[uf | mlllelle + [uFm max  max |z — z;|ga).
i=1,...,.N i=1,..., wEsuppuf

Since ||u*||r is uniformly bounded, taking the supremum with respect to ¢ and combining the
previous estimates yields the result. O

Remark 4.5. Combining the previous results we specifically conclude

k k
_ . < o [, ]
Il = wllgo < €, 02X <x£§§uf [ = @ilge + max u; —lu; HM>

In fact, a similar estimate from below is also valid. Since the support points {xz}fil of u are distinct
there exists R > 0 such that Br(z;) N Br(z;) =0, i # j. Assume that suppuf C Bgr(z;) for all
keNandi=1,...,N. Let k ¢ Nand i € {1,..., N} be arbitrary but fixed. By & we denote a
smooth function with & (x) = 1 for all # € Bg(x;) and &(z) = 0 for all x € U;V:Lj# Bg(z;) and
assume that uf # 1;0,,. Then the function

@ () = sgn(w; — [[uf | m)&i(2) + |2 — 2il&i(2),
is not equal to zero and Lipschitz-continuous with Lipschitz norm ||¢¥||co1 bounded independently
of £ € N and i from above and below. Testing with u — uf we obtain

<90§7u - uk> - <(P??ui5$i - uf)

= Y [zl = zilga] + lui = Juflml = uflve min o — @ilge + [u; = [fuf ]|l
& TESUpp u;
TESUPP U;

Since ¢ was chosen arbitrary we conclude

lu* —ullcors > max (0f/ofllcoru® —u) > ¢ max [ min | — g+ [w; = [|uf] al],
i=1,...,N 1=1,...,N oﬁesuppuic

for some constant ¢ < 1/||¢¥||cos for allk € Nandi=1,...,N.

We apply these results to the sequence {u*}ren generated by Algorithm

Theorem 4.21. Denote by {u*}ren the sequence generated by Algorithm@ and let the assumptions
of Theorem hold. Then there holds u* = Zf\il uf with supp uf C Bgr(), uf # 0, for all
k € N large enough and all i = 1,...,N. Furthermore there exists 1 > ¢ > 0 and a constant
Claglp,N depending on the norm of ug and its support size N with

W (uk . @ -y 1k < o k
1w tg) + max, max o = Zilgs + mex [0 = fulllml < g

for all k € N large enough.
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Proof. The statement on the linear convergence of the support points and the coefficients again
follows by applying Theorem with noting that u*(Bgr(%;)) = ||[uF||m due to uF € MT(£2,).

The convergence result for the modified Wasserstein distance W then follows from the estimate
in Theorem H.201 O

Remark 4.6. Similar to the previous section, all convergence results remain valid if the intermediate
active set Ay is more generally chosen such that

supp u* U {:i‘k} C Ak, #Ar < oo,

i.e. more than one new sensor can be added in each iteration to further improve the convergence
behavior.

4.4.4 Computational cost of the sparsification steps

It remains to comment on the computational cost associated with the various point removal steps
presented in this section. First, we address the costs for the point removal steps based on the
approximate solution of the finite dimensional subproblems. Computing the new coefficient vector
u”® from requires the computation of the pointwise evaluation of Vw(ukﬂ/ 2) at the current
support points once. In our numerical experiments a suitable step size oy is found by a simple
backtracking line search to avoid ascend. Consequently, for each trial step size, the max-operator
in as well as the objective function is evaluated once. This can be done efficiently with cost
scaling linearly with the current support size my.

Secondly, if u” is determined from , we have to solve a finite-dimensional convex optimization
problem in every iteration. Since the most common choices for the optimal design criterion ¥ are
twice continuously differentiable, we choose to implement a semi-smooth Newton method. To
benefit from the fast local convergence behavior for this class of methods we warm-start the
algorithm using the coefficient vector u¥t1/2 of the intermediate iterate u*+1/2. This choice of the
starting point often gives a good initial guess for u**!. However, we emphasize that essentially any
algorithm for smooth convex problems with positivity constraints on the optimization variables
can be employed instead. In particular, interior point methods provide complexity bounds for the
solution up to machine precision in terms of the support size my; see, e.g., [46, Section 11.5]. In
light of this fact, the computational cost for the point removal steps can be regarded as a constant,
assuming that my is uniformly bounded through the iterations, e.g., by employing Algorithm
However, interior point methods cannot be warm-started in general, which is why we prefer semi-
smooth Newton methods in practice.

Finally, we consider the application of Algorithm [I] given a sparse input measure u with supp u =
{z;}}¥,. Step 1. amounts to the computation of the symmetric rank one matrices {Z(dz,)}¥,
which we identify with vectors {I(d,)}Y, c R™**1D/2 Additionally, in each execution of the
loop step 2. has to be executed, which requires to compute a vector @ in the kernel of the matrix

I(w) € RMHD/2XN " defined by
I(w)];i=1(0g,);, i=1,....N,j=1,...,n(n+1)/2.

This can be done efficiently employing either a SVD-decomposition or a rank-revealing QR-
decomposition. Furthermore, assuming that Algorithm [1] is applied to u*t1/2 for every k, this
loop will run at most once in each iteration. This can be seen in the following way: Let the
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k-th iterate u* in Algorithm [2| be given such that rank I(u*) = #suppu”. Note that this im-
plies #suppu® < n(n + 1)/2. Consequently we have either rank I'(u*+1/2) = # supp u**+1/2 or
rank I (uk+1/ 2) = # supp uF*t1/2 — 1. In the first case no sparsification by the post-processing can
be achieved. In the second case uFt1/2 = > jeiujdy; is at least sparsified once. After the first
execution of the sparsification loop, we obtain the measure upew = Y (i ] Unew.i>0} Upew,i0z; With
rank I (Unew) = # SUPD Unew, 1-€. Algorithm [1| terminates.

4.4.5 A comparison to the Fedorov-Wynn Algorithm

To close the discussion on sequential point insertion algorithms we briefly describe an analogous
approach for the solution of design problems with equality constraints

i vz 7 t. =K. 4.32
Lmn (T +T) sty (132

as they appear in the theory of approximate designs due to Kiefer and Wolfowitz. Due to the
monotonicity of ¥ every optimal design obtained through (4.32) is also a minimizer of the inequality
constrained problem

in W(Z(u)+7Zy) st <K. 4.33
e i P E(w) +To) st lullag < (4.33)

In the case of strict monotonicity the solution sets of both problems coincide, see Proposition
Note that (4.33)) can be equivalently rewritten as a composite minimization problem

ueg\n/li(r}?o)[iﬂ(lt) + Luzo(u) + Ly v < i (W)]-

Hence, to find a minimizer of we apply a (generalized) conditional gradient method. The procedure
is described in Algorithm Again, the new sensor v* is found as a solution of the linearized
problem

min (Vg v) st |jv <K,
i (TUn) st ol <

and convergence is monitored by evaluation of the primal-dual gap

ky _ . kN ko ky _ Ey .
P(u )—veﬁggr(lﬂo)wwk,u v) = (Vi u” — v%) = (Vihy, u”) K min V.

By a closer inspection, in the case K = 1, the resulting algorithm resembles the, at least among

Algorithm 4 Fedorov-Wynn algorithm for
1. Choose u! € domp+(g,) ¥, #suppu! <n(n+1)/2, [[ul||pm = K.
while &(u*) > TOL do
2. Compute V¢, = Vip(u”). Determine 2 € argmin,c, Vipg(z).
3. Set vF = K&,
4. Select a step size s* € (0,1] and set uFT1/2 = (1 — s*)uF + sFo*.
5. Find v**! with supp u*t! C suppu#+1/2 and F(uF*1) < F(uFt1/2) |ub1 v < Mo.
end while

statisticians, well-known Fedorov-Wynn algorithm, see [76}/105,272|, which is one of the funda-
mental pillars of approximate design theory. Its properties are a well-studied subject, albeit in
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most cases only the D-optimal design criterion is considered. In the same fashion as for the norm-
penalized problem however, the general theory presented in Chapter |§| implies the following
worst-case convergence rates for Algorithm [] and a general optimal design criterion ¥. Again we
consider stepsizes s*¥ = ™ where nj, € N is the smallest integer fulfilling

as*®(u") < ¢(uf) —p(ub), (4.34)
for some fixed a € (0,1/2), u';k = uF — sF(vF — k).

Proposition 4.22. Assume that the sequence {uF}ren is generated using Algorithm |{| with s
chosen according to (4.34). Then there exists at least one weak™® accumulation point u of {uk}keN
and every such point is a minimizer of (4.33)). Furthermore, defining r(u) = ¥ (u) — ¥ (u) there
holds

r(ul) B . c
T(uk) < m7 q_amm{Lm(;K,)Z, 1}.

Here, L1 is the Lipschitz-constant of Vi on the sublevel set
Ey i (u') = {ue M"(2,) | ¢(u) < o(ul), ulm <K},

and c; = 2y(1 — a)r(u'). Moreover, the algorithm can be implemented such that # suppu® <
n(n+1)/2 holds for all k € N and all accumulation points .

Throughout the years, numerous modifications of Fedorov’s and Wynn’s original algorithm were
made to enhance the sparsity of the iterates and to improve its convergence behavior. We only
name a few here. For example, in [132,[216] the authors provide inequalities which have to be
fulfilled by the gradient of the optimal design criterion for an arbitrary probability measure eval-
uated at optimal support points. Thus, non suitable candidate locations can be identified in each
iteration and left out of the problem. Heuristically, sensors at old support points could be moved
to a newly added one if they are sufficiently close, see |106,256]. More recently, Yu, see |276],
proposed to couple point insertion steps with moving mass between adjacent sensors according
to a nearest neighborhood exchange method, see |[41]. However, to our best knowledge, we are
not aware of any modifications guaranteeing a uniform bound on the number of support points as
done by the method proposed in Algorithm |1} Shortly after the initial papers, Atwood, c.f. [11],
proposed to augment Fedorov’s algorithm by Wolfe’s away steps, [268]. Instead of adding a new
sensor, an away step removes measurement weights from non-optimal support points and dis-
tributes it among more promising ones, [247|, similarly to the projected gradient update described
in (4.29)).

Given an ordered set of distinct points A we recall the definition of the parametrization w4
from (4.27). Early on, Wu, [269,270|, followed by several authors, |44},275]276|, proposed to
alternate between adding a new sensor at Z* to the iterated design u* in Fedorov’s algorithm and
updating the measurement weights by (approximately) solving

min P(ua(n), Ay =suppu® U{a"}, my = #Ay, (4.35)
ueR’'® |lull, <K

by e.g. a Newton-like algorithm. One realization of the proposed procedure is summarized in
Algorithm Again, since the subproblems are solved up to optimality, no convex combination
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Algorithm 5 Accelerated Fedorov-Wynn for (4.33))

while &(u*) > TOL do
1. Calculate Vi, = V¢)(uF). Determine 2% € argmin, e, Vo ().
2. Set Ay = suppu® U {2"}, compute a solution u**! of ([4.35) with [|[u**+!||;, = K, and set
WP = g ().

end while

has to be formed to ensure admissible iterates and convergence of the procedure. Due to the
monotonicity of ¥ we can furthermore guarantee ||u*||,( = K for all k € N. Thus we obtain

—(Vip,ut) = =K min  Vi(z), @(u") = K( min  Viy(e) - min Viy(2)).

x€supp uk x€supp uk

Since HukHM = K for all k£ € N, this method is reminiscent of a simplicial decomposition method,
see [204]/260] and [138], and of the accelerated method proposed in Algorithm[3] Indeed, imposing
similar second order conditions, a linear rate of convergence for the objective function value can
be shown in the same way as for the norm regularized problem. To our best knowledge, no
comparable results for the Fedorov-Wynn algorithm have been achieved so far in this direction.

Theorem 4.23. Let ¥ be strictly convex on its domain and uniformly convezr around Z(u) + Zy.
Define p = —0S[q] " VU(Z(q) + Zo)0S[q] and assume that mazqco,p(x) > 0 with
{x € 2, | plx) = m%xﬁ(x) } = {z;}, C int 02,.
xello

Assume that the set {Z(0z,)}Y, is linearly independent and let the unique optimal design be denoted
by u = ZZ]\LI ;0z, for somew; >0,i=1,...,N. Let there be R > 0 with

N
r = U BR(ji)7 BR(:Z"L) N BR('f]) = wa aS[(ﬂ S CZ(QR7Rn))
=1

foralli,je{1,...,N}, i #j. Furthermore, the Hessian of p at the support points is supposed to
satisfy

_(C) V2ﬁ(jZ)C)Rd > 0|C|I%&d’ VC € Rd?
foralli=1,...,N and some 6 > 0.

Finally, denote by {u*}ren C MT(82,) the sequence generated by Algorithm @ Then we have

uF —* @ and there exists 0 < ¢ < 1 and a constant ¢ > 0 with

b(uh) = (@) < et
for all k € N large enough.
Proof. This result follows again from Theorem O
Analogously, convergence rates for the optimal design measure as in Theorem [£.21] can be deduced.

For brevity, we resign from stating them here again.
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4.4.6 Algorithmic solution by path-following

As an alternative to Algorithm [2] we briefly describe a path-following approach. For simplicity
assume that ¥ is nonnegative on its domain. To compute a minimizer of (Pg|) we solve a sequence
of regularized problems given by:

. L €02
s dmn () = [0) + Bl + 5l Fae, ) (75)

In the limiting case for e — 0, the regularized optimal solutions approximate solutions of (Pg).
We state first order optimality conditions for solutions of the regularized problem and investigate
the case € — 0. For the sake of brevity, we omit most proofs.

Proposition 4.24. Let the assumptions of Proposition[{.9 be fulfilled. Then the following state-
ments hold:

1. For every € > 0 there exists a unique solution uj € L?(£2,) to 1}

2. A non-negative function ug € L?(£2,) is optimal if and only if

1
ujz = max {—E(Vl/}(u%) + B),O} . (4.36)
Consequently there holds ug € C(£2,) and

ug(z) > 0 if and only if — Vip(ugz)(z) > B.

3. Given any sequence {€ }cy with e, > 0, e — 0, the associated sequence ﬂ%’“ admits at least
one weak™ accumulation point and every such point is an optimal solution to (Pgl).

Proof. By assumption there exists u € M™T(£,) with ¥(u) < oo, i.e. Z(u) +Zy € PD(n).
Following [208, Appendix A.1], there exists a sequence {uy},.y C L?(£2,) with uy > 0 and
ur —* u. Consequently there also holds

Z(ug) +Zy — Z(u) + Iy € PD(n),

due to the weak*-to-strong continuity of Z. Thus we observe Z(u) + Zy € PD(n) and ¥ (uy) < oo
for all k large enough. The existence of at least one optimal solution uj now follows by similar
arguments as in Proposition [£.2] Its uniqueness follows due to the strict convexity of F.. The
necessary and sufficient optimality condition can be derived as in [248] and [61]. For the last result
we observe that given an arbitrary positive null sequence {e}; oy there holds

- B 1
Bllugl 1) < Fe(a5) < F(u) + glluliag,),

for an arbitrary but fixed v € domp+(p,) ¥ N L?(£2,) and all k large enough. Following the lines
of the proof in [208, Section 2.5] existence of at least one weak™ accumulation point of ﬂ%k as well
as its optimality for (Ps)) can now easily be deduced. ]
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Note that for fixed € > 0 the unique minimizer ﬂ% is a solution of

u — max {—i(V@/J(u)(m) + B), O} =0. (4.37)

Under additional regularity assumptions on the optimal design criterion ¥, the solution of this non-
smooth operator equation can be computed by a semi-smooth Newton method in function space;
see, e.g., |257]. To compute a solution for the original problem we employ a continuation
strategy for the regularization parameter €. For an initial small value € we compute the unique
minimizer ﬂ% to by solving . Then, in an outer loop, we decrease ¢, and use the
previous optimal solution as an initial guess for the next iteration. The procedure is summarized
in Algorithm @ For further references on path-following we refer to, e.g., [144-146]. We briefly

Algorithm 6 Path-following
1. Choose g1 > 0 and initial guess u! € dom g+, ¥ N L2(£2,).
while residual large do
2. Compute ' from using 122’_1 as initial guess.
3. Get g1 <e, l=1+1.
end while

address that Algorithm [6] in contrast to the post-processed version of Algorithm [2, might fail to
approximate any sparse minimizer of , see also |22, Theorem 26.20|.

Proposition 4.25. Assume that (Pg)) admits an optimal solution tig € L?(£2,). Then there holds
ug — U, where u € L?(92,) is the unique optimal solution to

. ) 2 .
ueIL%I(I}zo) [ull 2,y st we L7(2)N Ug%f(l}z) F(v). (4.38)

Proof. By assumption, the admissible set in (4.38)) is not empty, convex and weak™ compact.
Since the norm || - || 720,y is strictly convex, (4.38)) admits a unique solution @. Let @ € L3(£2,) N
arg minge v+ (0,) F'(v) be arbitrary. From the optimality of uj we conclude

B . €. _ € n
Fe(ug) < F(i) + Sl 720, < F(@5) + 5 lallzzqa,)-

We conclude [[u3z2(0,) < [ldlz20,) for every € > 0 small enough and all 4 € L3(£2,) N
arg min, e vq+(o,) £'(w). Since uj is bounded in L?(£2,) we extract a subsequence denoted by the
same symbol which converges weakly to @ € L?(f2,). This implies ﬂ% —* g, i.e. @ is an optimal
solution to (Pg), as well as ||@| 12(q,) < |4l 12(s,). Consequently @ = @ for every accumulation @ of
uj. The strong convergence follows from the weak convergence and [|uj|r2(0,) = [[Ullr2(0,). O

To end this section, we provide a simple example to illustrate the findings of the previous propo-
sition.

Example 4.2. We consider n =1, Zy = 0 and 0S[4|0q = dqg for some g € C(§2,), g # 0 and all
0q € R. In this case, the A-optimal design problem is given by

; ) 4.39
ue/{/(nir(lgo) <927u> +/8HUHM ( )
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From the necessary and sufficient first order optimality conditions it is easily deduced that a given
ug € M™T(£2,) is an optimal design if and only if

_ 1 _
lagllm = \VigEs Swpis {ze 2 [lgl)] = lglle -
C

As a consequence, if {x € 2, |g(x)| = |lgllc } has non-zero Lebesgque measure, Problem
admits both, solutions consisting of exactly one Dirac delta function as well as solutions in L?(£2,).
Following the previous Proposition, applying the path-following approach in this situation leads to
an optimal design ug € L?(£2,), while Algorithm @ gives a minimizer consisting of a single Dirac
delta function in one iteration.

4.5 Stability and sensitivity analysis

In this section we will elaborate on the stability and sensitivity of optimal measurement design
under perturbations of the sensor placement problem. To set the stage, we consider

Lmin Fa(u) = P(Z{Ax(w) + Do) + (Bo -+ A3) ullar (Pa)

where the cost parameter, the a priori knowledge as well as the Fisher information operator are
subject to a triple of perturbations A = (Aj, Ag, Az). In the following we will explore and
quantify how this bias in the data of the sensor placement problem influences the positions and
measurement weights of optimally placed sensors.

These questions naturally arise in the context of optimal sensor placement. Recall for example
that all previous considerations are based on a first order approximation of the parameter-to-state
mapping S. Ideally the linearization point should be chosen as the true parameter ¢*. This is
clearly impossible in practice since these quantities are unknown. For this reason one has to
resort to well-educated a priori guesses ¢ stemming e.g. from previous experiments. Since the
Fisher-operator Z depends on ¢ we can interpret the difference between the true parameter ¢*
and ¢ as a perturbation of the problem. Other perturbations of the Fisher information operator
may be induced by a low-rank approximation of the, possibly high-dimensional, parameter itself
or the parameter-to-state mapping S, see e.g. |6,30,/137]. Moreover, in cases in which the number
of measurements should be kept small, sensitivities of the optimal design and the optimal design
criterion with respect to perturbations in the cost parameter might help to identify less important
sensors. Finally, if several perturbed sensor placement problems have to be solved sequentially,
sensitivity results on the optimal design may be used to obtain a good initial iterate for the
algorithmic procedure presented in Section

Our main contributions are the following: Under mild assumptions we show that the support of
perturbed optimal designs is localized in the vicinity of the unperturbed optimal design points.
For vanishing perturbations, convergence results are presented. If, in addition, the unique optimal
design measure consists of finitely many Dirac delta functions and the curvature of the optimal
gradient does not degenerate in the vicinity of their positions we can prove additional results. In
this case the positions as well as the measurement weights of the perturbed optimal sensors de-
pend continuously differentiable on A, at least in the asymptotic regime. This allows for a Taylor
expansion of these quantities as well as the objective function with respect to the perturbation. In
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particular, this implies Lipschitz-stability of the optimal design measure in the modified Wasser-
stein distance introduced in Definition [4.1]

Let us discuss related work in this direction. To take perturbations of the model into account,
robust optimal design approaches based on min-max or average formulations were developed,
see [37,[218] and [217, Chapter 8]. We stress that in general no stability of the optimal design
measure with respect to the norm on M(f2,) can be expected, c.f. also [43| Remark 5.120|. Hence,
the abstract sensitivity results presented in |70] cannot be applied directly in this situation. Again,
we recall the dual relation between the sparse sensor placement problem and the semi-infinite
problem . Stability analysis of semi-infinite optimization problems is a well studied subject,
see e.g. [167,238,240]. The techniques presented in this section are closest related to the so called
local reduction ansatz, see [141,|142]. By imposing a suitable second order condition, we will
show that the perturbed optimal design problem can be reduced to a finite-dimensional
optimization problem for small perturbations A. Sensitivity results for the optimal positions as
well as the measurement weights are then obtained by applying perturbation theory for finite
dimensional nonlinear optimization problems. A similar route was taken in [95] in the context
of sparse deconvolution problems. While stability with respect to the canonical norm on M (£2,)
cannot be expected, the sensitivity results obtained through the reduction ansatz imply stability
with respect to the modified Wasserstein distance, see Definition In [239] a similar idea was
pursued, deriving stability results for the minimizer in a semi-infinite program by embedding the
space of Borel measures M™((2,) into the dual space of the Lipschitz continuous functions on (2,.
For completion, we also mention the works of [63./64] which discuss stability in the context of sparse
control of non-linear partial differential equations by embedding M(f2,) into Sobolev spaces of
negative order. However, no stability results for the optimal control beyond weak* convergence are
given. Finally, to the best of our knowledge, we are not aware of any results concerning stability
and sensitivity analysis in the context of approximate designs.

4.5.1 The perturbed optimal design problem

We start by collecting the general assumptions on the family of perturbed optimal sensor placement
problems. We assume that the interior int 2, of the observational domain {2, C {2 is non-empty.
Furthermore let Vi, V5 denote separable Banach spaces and set V = V; x Vo x R. The norm on
V is denoted by || - lv = || - vy + || - llva + | - | and the perturbations are assembled in a vector
A = (Ay, A9, Az). To take perturbations of the Fisher information into account we consider a
parametrization of the i—th sensitivity 0;S[¢] given by

9:S[d]: Vi x 25 - R (A1, z) = 9;S[A1)[d] (x). (4.40)

To improve readability we will drop the dependence of the corresponding sensitivity vector on the
linearization point ¢ in the following and denote 0;S[A;](z) := 0;S[A1][¢](x) for alli =1,...,n
and = € (2,. The associated perturbation mappings for the sensitivity vector and the pointwise
Fisher information are denoted by

0S: V1 X QO — Rn, (Al,.%') — aS[Al](.%‘) = (815[A1]($), A ,anS[Al](x))T,
as well as

I: Vi x 2, = Sym(n), (Ay,z)— dS[A](z)dS[A](x),
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4.5 Stability and sensitivity analysis

respectively. The corresponding perturbed Fisher information operator is given by
Z[A](u) = DS[A1](2)dS[A](z) Tdu(z) for Ay € Vi, u € M(£2,). (4.41)
2

As in Proposition we readily verify that Z[A;](u) € NND(n) for every positive measure u €
MT(£2,). Similarly, we define the perturbations of the a priori information matrix and the cost
parameter as

To: Vo — Sym(n), A Ty[As], B:R —= Sym(n), Az B[As]:= Fo+ As,

where By > 0 is a given reference cost parameter. Without loss of generality, the unperturbed
sensor placement problem is recovered for A = (0,0,0) € V. Furthermore, ¢ > 0 will denote a
generic constant which is independent of the perturbation A. We make the following regularity
assumptions on the perturbations and the optimal design criterion V.

Assumption 4.6. Assume that there exists u € M1 (£2,) with Z[0](u) + Zp[0] € PD(n) as well
as a neighbourhood Ny = Ny, x Ny, X Ny, of 0 € V such that:

A4.5 There holds 0S € C(Ny, x £2,,R") and
10:S[A1] = 8iS[0]lle < ellAnllvy VAL € Nys,

foralli=1,...,n.

A4.6 There holds Zy € C(Ny,, Sym(n)) with Zg(Az) € NND(n) for all Ay € Ny, as well as

1 Zo[A2] = Zo[0][Isym < cf| Azllvz-

A4.7 For Az € Ny, there holds S[As] > ¢o > 0 for a positive constant cg.

Remark 4.7. We are especially interested in perturbations of the sensitivity vector caused by
disturbances in the expansion point § of the first order approximation in the underlying model.
Hence we consider V; = R™ and

8S: Vi — C(,RM), Ay — dS[q+ Aql.

In this case, the regularity assumptions on the mapping 95, see (A4.5), can be directly inferred
from the continuous Fréchet differentiability of the parameter-to-state mapping S: Quq — C(£2,).
Higher order regularity of 95 can be concluded similarly, imposing additional regularity assump-
tions on the parameter-to-state operator S.

For A € Ny we consider the reduced form of the (perturbed) optimal sensor placement problem

in  Fa(u) = A
e i Fatu) = [, A) + Jlullad,

where the reduced design criterion ¥ (u, A) is given by

1

Y(u, A) = mw

(Z[A1](u) + Zo[A2]).

Note that we have incorporated the cost parameter in the smooth part of the objective function
for now. We first provide a stability result for the Fisher information.
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4 Sparse sensor placement for PDE-constrained inverse problems

Lemma 4.26. For all A; € Ny, we have

max [|1[A1](z) = I[0](2) lsym + IZ[A1] = Z{0]ll crm(2,). 8ymmy) < el Al

Proof. For x € (2, we readily obtain

I[A](2) — T[0)(2)|&ym = Tr((Z[A1](2) — I[0)()) " (I[A1](z) — 110 (x)))
=D (0:SIM](@)9;S[A1](x) — 0:5[0](2)9;5[0]())*.

i=1 j=1

Now we estimate

10::5[A1](2)8;5[A1] (x) — 8;5[0](x)8; [0 ()]
< [10:5[A]lel|9;51A1] = 9;S[0]lle + [[9;510][le[|0:S[A1] = 9:S[0]]|e,

for all 4,7 = 1,...n. From Assumption (A4.5) we now conclude
|0:S5[A1](2)9;5[A1] () — 9;5[0)(2)0;5[0] ()] < e([|0:S[Ax]lle + 18;5[0]]l)[[ Arllva,
as well as
10:5[Ax]lle < [10:S[0]]le + [|0:5[A1] = 8iS[0]lle < [|0:S[0][le + cllAllvs,
for all # =1,...,n. Combining the previous results gives
1[A1])(x) = T[0)(2) |y < cll A1l

which yields the first statement after taking the square root on both sides and maximizing for x.
Concerning the estimate for the operator norm of the Fisher information operator we observe that

IZ1A](u) = Z[0](u)llsym < ¢ max |[[[A1)(x) — T[0](z)lsym|lullae < el Aullva fJullag,
for all u € M(£2,). Hence the second statement readily follows. O
By use of the triangle inequality we immediately derive the following perturbation result.
Corollary 4.27. For all Ay € Ny, and all uy,us € M (82,) there holds
1Z{A1](u1) = Z10](u2) sym < el Axllv [[ur [ ae + [1Z10](ur) — Z[0](u2)l|sym,
where the constant ¢ > 0 is independent of ui,us € M™T(82,).

Proof. Let Ay € Ny, and uy,us € M1(£2,) be given. We split the difference up as

1Z[A1)(u1) = Z10](uz) sym < IZ[A1] = ZIO1ll coam(2.),8ym(my) 1w e + [1Z10] (ur) — Z[0](u2) [[sym.-

Applying the estimate of the previous lemma yields the statement. O
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4.5 Stability and sensitivity analysis

Due to the continuity of the perturbation mappings the domain of (-, A) will be non-empty for
small perturbations. In order to prove the existence of a perturbed optimal design we recall that
there exists My > 0 such that ||ug||pm < My. We consider the auxiliary problem

in_F . < 2M. P
e i Fatu) st ullves 2Mo (P4")

Proposition 4.28. For all A € Ny small enough there exists at least one optimal solution ua
to (P%O) with #suppua < n(n+1)/2. If ¥ is strictly convex then the optimal Fisher-information
matriz Z[A](@a) is unique.

Proof. By assumption, there exists u € M1 (£2,), ||ul]|am < Mo, with Z[0] + Zo[0] € PD(n). Hence
u € dompg+(0,) ¥(+,0). We estimate

IZ[0](w) + Zo[0] — Z[A1](u) — Zo[A2]llsym < c(l|Atllvi[lullm + [[A2llvs),

for Ay € Ny, and Ay € Ny,. Since PD(n) is open we conclude Z[A1](u) + Zy[A2] € PD(n) for
all A € Ny with ||A|ly small enough and thus v € dom g+, )¥(,A). Thus the admissible

set in is not empty. The existence of a minimizer to 1@'@' can now be concluded from
the weak™ compactness of the unit ball in M({2,) and the weak* lower semi-continuity of Fa on
MT(82,). The claim on the sparsity of the minimizer and the uniqueness of the Fisher information
matrix follow as in Proposition and Theorem O

We proceed to prove the convergence of the design measures {tia} acn, towards minimizers of (Pg))
as well as the stability of the optimal objective function value in (Pa)). Since the norm constraint
in 1@@’ is inactive at unperturbed optimal designs we conclude the existence of minimizers

to (Pa)-

Proposition 4.29. Consider a null sequence {Ay}, oy C Nv with Ay, = (Af, A5, A%). For each
k € N let up, € M™T(£2,) denote a minimizer to (PX}[CO), Then there exists at least one weak™

convergent subsequence of {Uia, }cy denoted by the same symbol with weak™ limit g € MT(£2,).
There holds

Y(an,, Ar) = ¥(a0,0), |laalm = laollae,  ZIAS](aa,) — Z[0](70)

for k — oo. Consequently, ua, is a minimizer of (Pa,) for k large enough. Furthermore, every
accumulation point of {ua, }ken is a minimizer of (Po). If there holds

#suppua, <n(n+1)/2, keN,

then the same holds for every accumulation point ug.

Proof. The sequence @, is uniformly bounded. Hence, by the Banach-Alaoglu theorem we can
extract a subsequence denoted by the same symbol with s, —* @ for some g € MT(£,). Since
the norm of @, is uniformly bounded we conclude

IZ[AT)(@a, ) — Z[0)(@0) Isym < c(| Atllv; + IZ0)(@a, — @o)llsym),

see Lemma and Z[A¥)(@a,) — Z[0](tp) in Sym(n). Moreover, due to Assumption we

obtain

T[A})(@a,) + ZolA3) — Z[0)(@o) + Zo[0] € PD(n),
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4 Sparse sensor placement for PDE-constrained inverse problems

and thus @4, € dompy+(g,) (-, 0) for k large enough. We note that

[, llm = (1, 9a,) = [lgollm = (1, @0) = [[aolla < Mo.

As a consequence we have ||ua, ||m < 2Mj for all k large enough. Since the norm constraint
in (P%ko) is inactive at @wa, it is also a minimizer of the unconstrained problem (Pa,). Let
u € M™(£2,) denote a solution to (Py). From the lower semi-continuity of F' on NND(n) we
deduce

(o, 0) + [[do] pm < liminfly(aa,, Ax) + [[ua,lm] < ¢(a@ 0) + [lalla

Therefore ug is a minimizer of the unperturbed problem. It follows that

1 1
Y@ Ar) = 5 V(Z[AY)(@a,) + Lo[A5) — =¥ (Z[0](ao) + Zo[0]) = ¥(ao, 0),
B() + A3 50
Since 6o was arbitrary, the same can be shown for every accumulation point. The result on the
number of support points follows due to Proposition [6.34] O

These results especially yield the existence of at least one sparse minimizer of for A €
Ny if the set of perturbations is chosen small enough. Analogously to the previous section, we
characterize a perturbed optimal design measure u by a condition on the gradient of the optimal
design criterion. To avoid distraction we will denote the gradient of ¥ (u, A) with respect to u by

Vut(u, A) € C(£2,) in the following.

Corollary 4.30. Let A € Ny be given and let upn € M (£,) be an optimal solution to (Pa).
Then there holds

—Vu(ua, A) <1, suppua C{z € 2| — Vyp(un, A)(z) =1}, (4.42)

where =V p(un, A) € C(£2,) is given by

1

" Bo+ Az

= e LA V(A () + To[45)
=~ OSANE) VZIA () + T A2 0[] (0)

—Vuip(aa, A)(z) = A"V (Z[AL(ua) + Lo[A2))

for all x € £2,.

Due to the lipschitzian dependence on the perturbations we derive the following stability result
for the design criterion.

Lemma 4.31. Let a null sequence {Ay}tren C Ny and an associated sequence up, —* w for
some u € dom g+ (0,) Y, Ak) N dompgt(o,) (-, 0) and ua, € dompg+(o,) (-, Ag) for all k € N
be given. Then there holds

[ (ua, M) = ¥(ua,, 0)] < cullt(uay, 0)|A5] + [1AT vy + | A5[hz), (4.43)

where the constant ¢, > 0 may depend on the weak™ limit u € M™(82,).
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Proof. Let such a sequence be given. We expand

Bl 5) (0, 0) = G (T (ua,) + DA — G (E0)(a,) + Tl0),
We start by estimating
G | A a,) + TolA]) — 2w E0)(va,) + Tol0))
Af 1
< 5o 1 | PO ) F Tl o T8 )+ TS~ (Z10] ) +TO])

By Taylor’s expansion we obtain
U(Z[AT](uay) + Zo[A%]) — (Z[0](uay) + Zo[0) =
Te(V¥ (Zg, (ua,) +Zog,)  (ZIAT](ua,) + To[A5) — Z[0)(ua,) — Zo[0])),

where T¢, (,) + To, = Z10](ua,) +Zol0] + G (Z1AH(ua, ) + Zo[ A5 ~ Z(0)(u.a,) ~ Zo[0]) for some
¢k € (0,1). Since the Fisher information and Zj are stable with respect to the perturbation we
conclude

IZ{0) () +Zo[0] — Z¢, (ua,) — Zoc, lsym (4.44)
< |[Z[0)(u) = Z[0)(ua,)llsym + |IZIAT)(way) + Zo[A5] — Z[0)(ua,) — Zo[0]lsym — O,

due to ua, —* u and the stability of the mapping Z[-]. Finally, we estimate
(Z[AY)(uay) + To[A5]) — W(Z[0](ua,) + Zo[0])]

< VO (Zg, (uay) + To.g)lIsym (IZIAT) (wa, ) — Z[0)(wa, ) llsym + 1 Zo[A3) — Zo[0]lsym)
< IV (Zg (ua,) + Zog) lIsym (1 AT Iva lua, e + 145 [lvz).

Since V¥: dom ¥ — Sym(n) is continuous, we have
HVLP(ICIC (uAk) +IU,Ck)||Sym < ¢y,

for all k¥ € N and some constant ¢, > 0. Combining all the previous results and noting that
Bo + AL > ¢q yields

1
[ (uay, Ar) = ¢(ua,,0)] < %IAQTIW(UAMO)\ +cu((1AT Iva fluay [l + 145 1v2),

for some constant ¢, only depending on w. This finishes the proof since {||ua, ||m}tren and
Y (ua,,0) are bounded. O

To close this section, we provide a Lipschitz stability result for the objective function value.

Theorem 4.32. Let a sequence of perturbations {Ax}ren C Ny with limg_00 A = 0 be given.
For k € N let up, denote an optimal solution to (Pa,). Assume that ua, —* ug € MT(£2,).
Then there holds

|Fa,(Ba,,) — Fo(to)| < cl|Axllv,

for all k large enough.
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Proof. First, we mention that g is an optimal solution to (Pp), see Proposition Moreover,
due to the convergence of the Fisher information matrices, there holds

Up,, o € domp+(g,) ¥ (-, Ax) N dompt(o,) (-, 0),
for all k large enough. By optimality of wa, and g respectively we obtain
Fa(ua,) — Fo(ua,) < Fa,(ua,) — Fo(to) < Fa, (o) — Fo(to)-
Taking the absolute value we thus conclude
[Fa (Ta,,) — Fo(uo)| < max{|Fa, (4a,) — Fo(ta,)], |[Fa, (o) — Fo(to)|}-

Note that Fa, (u) — Fo(u) = ¥(u, Ag) — ¥(u,0) for all u € MT(£2,) and k € N. By Lemma m

we obtain

max{|Fa, (aa,) — Fo(ua,)|, |Fa, () — Fo(ao)|}
< cag (maxc{[ 1 (7o, 0)1, [12(.a,., )| H A5 + [ AF vy + 125 v5)-

Due to the weak* convergence of @, and the continuity of (-,0) the sequence ¥ (@a,,0) is
bounded. Thus, the statement follows. ]

4.5.2 Stability and sensitivity of the design measure

In the previous section we have proven Lipschitz stability of the optimal function values with
respect to the perturbation. Concerning the optimal design measure however, only (subsequential)
weak* convergence has been shown. The aim of this section is to close this gap by providing
qualitative and quantitative statements on the location of the support points and the convergence
of the measurement weights.

Let us fix some additional notation and collect some general observations. To focus on the ideas
behind the proofs in this section we will assume that

A4.8 The functional ¥ is strictly convex on its domain.

Again, this is for example the case for the A as well as the D optimal design criterion. This implies
the uniqueness of the optimal Fisher information matrix Z[A](za) and the optimal gradient
Vu(aa, A) for all A € Ny. In the following, {Ax}ren C Ny will always denote a sequence of
perturbations with Ay — 0, while {aa, }ren € MT(£2,) is a sequence of associated optimal design
measures obtained from (Pa, ). W.Lo.g. we assume that s, —* g for some optimal solution g
of (Po).

Given a perturbation A € Ny and a solution 4 to , we recall that

Vup(ua, A)(x) <1, suppua C{z € | — Vuih(ua, A)(x) =1},

see Corollary Due to the strict convexity of ¥, the set of global maximizers to —V,¢(ua, A)
only depends on the perturbation A and not on the particular optimal design measure u. Hence
we will denote it by Ext(A) in the following. Furthermore, again for abbreviation we define the

mapping

p.: Ny — C(Qo), A= A = —Vuw(ﬂA, A)
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4.5 Stability and sensitivity analysis

Due to the assumptions on the perturbations and the weak*-to-strong continuity of the Fisher
information operator, pa depends continuously on A. For R > 0, we define the R-extensions of
the support of an optimal design iy € M™(£2,) by

SUPPR UA = U {Ze€||z—2| <R}
TESUPP UA
and of the corresponding set of global maximizers Ext(A) as
Extp(4d):= |J {#€]||z—il <R},
z€Ext(A)
respectively. First, we address stability results for the positions of optimally placed sensors.

Lemma 4.33. Let R > 0 be given. For all A € Ny with | Ay small enough, every optimal
solution ua to (Pl fulfills

suppua C Ext(A) C Extg(0).

Proof. Given R > 0 the extended set Extr(up) is open in 2,. Consequently, its complement in
Q,, K := 02,\Extr(ug), is compact. By construction we have py € C(Kp) and maxgeky, Po < 1.
Define r = 1 — maxgzex, po. Given an arbitrary x € Ext(A) we have
po(x) = 1+ po(x) — pa(z) =1 —|pa = Dolleg,) - (4.45)
Since the mapping
p: Ny = C(£2,) 0+ pa,
is continuous at zero, there exists ¢; > 0 with

_ _ T
P2 = Polleqo,) <5 ¥ € Ny, [Ally <er.

We conclude

r
po(x) >1— = >1—1r = max py,
p0<) 2 xeK);pO

and thus z € Extg(0). Since xz € Ext(A) was chosen arbitrarily and suppua C Ext(A) this
concludes the proof. ]

Remember that our special interest lies in optimal design measures consisting of finitely many
Dirac delta functions corresponding to point measurements at their respective positions. From
now on, let us assume that Ext(0) consists of finitely many distinct points:

_ N
A4.9 Ext(0) ={z € 2 |po(x) =1} ={Zip},_, C 2,
for some N € N. In virtue of Corollary every optimal solution 1y € M™T(£2,) to (Pp) is

sparse, i.e.

N

Uy = Zai,ﬂéii’o uio € Ry, 1€{1,...,N}.
i=1
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Let us discuss the results of Lemma [£.33] in this case. For this purpose, choose Ry > 0 with

BRl(-fi,O) ﬂBRl(i‘jp) = (Z), 1% j,1,5 € {1,.. . ,N} where BRl(Ei,O) = {.TU € £, ’ ‘.Z’ — .i'i’0| < Rl}.
(4.46)

The statement of the previous lemma readily translates to this situation as

N N
suppiia C | Br,(#i0) € | Br. (#i0),
=1 =1

if the perturbation A is small enough. From this we conclude that the support of an arbitrary
optimal solution #x to the perturbed problem is localized in small balls around the possible
support points of 4g.

To prove a stability result for the optimal measurement weights we combine the localization results
on the support of the optimal measurement design and the weak™ convergence result for vanishing
perturbations. To this end, let us denote the restriction of @4, onto Bg, (Z;0) by ﬂiAk, i=1,...,N.
Loosely speaking, if x; € supp g, we will prove that ”ﬂ’ZAk llm approximates @; in the limit while
up, converges strongly to 0 on the complement of the extended support

suppp, o = | ) Br,(Ti).

&;Esupp o
Our findings are summarized in the following proposition.
Proposition 4.34. Assume that ua, — g with tg = Zf\il 0,00z, .- Then there holds
N
supptia, C | J Br,(%i0), Br,(%i0) N Br,(Zj0) =0, i #j, i,j€{1,...,Na}, (4.47)
=1
for all k large enough. Furthermore we have
iy, [l — @ Vi€ {1,...,Ng}. (4.48)
In particular, if ;0 > 0 and k is large enough, then
supp iia, N Br, (%;) # 0.

Conversely we have

s s = | i g, () =+ 0,
20\Supbr, 0

as k — oo. Here suppg, ug denotes the closure of suppg, to in §2,.

Proof. Let j € {1,...,N} be arbitrary but fixed. Since the sets Bg, (z;), i = 1,...,N, are
closed and pairwise disjoint, Urysohn’s Lemma, see [266, 15.6], yields the existence of a function
@; € C(£2,) with

ng(ZC) =1, Vxe BRl(-fj,O) (pj(.ilf) =0, Vxe BRl(fi,O)a 1 E {1, - ,N}, 7 7& J-
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By testing ¢; with 4, we obtain

(pj,Ua,) :/Q pjdia, (z) :/ dua,(z).

Br, (Zj,0)

o

Due to the weak* convergence of u, we thus conclude
/_ dua, (x) = (@), us,) — (@), to) = Qj,
Br, (Zj,0)
as k — oo, which gives (4.47)). To prove the last statement, (4.48)), we note that

/ dfmk (.T) = Z / dﬁAk (:1:) — Z ;0= 0,
2,\Supp g, o ie{1,....N}  Bri(Fi0) ie{1,...,Ng}
U;,0=0 ti,0=0

where we used (4.47)). O

Up to now we have not discussed the stability of the optimal number of sensors. In the light of
Proposition we can readily assume that # suppua, < n(n+1)/2. By the results of Proposi-
tion [4:34] at least one perturbed optimal sensor is placed in the vicinity of each unperturbed sen-
sor. However it is possible that a single, optimally placed, Dirac delta function in the unperturbed
problem (Pp) is approximated by a larger number of perturbed ones since the design measures
only converge in the weak* sense. Hence, in most situations, we expect # supp i > # supp .
In the following we will focus on the question whether we can expect stability for the number of
optimally placed sensors under small perturbations in a more restrictive setting. For this purpose,
we again impose additional assumptions on Ext(0) and on the (local) regularity of 0S[A] for a
given A € Ny.

Assumption 4.7. Assume that Ext(0) = {Z; 0}, C int {2, and there exists R > 0 with
N

g = U Br(z;) C int £2,, BR(fl) N BR((Z‘]') =0, 9Se CQ(NV X QR,Rn) NC(Ny x £2,,R"),
i=1

foralli,j5 € {1,...,.N},i#j

Throughout the following considerations we tacitly assume that || Al|y is chosen small enough such
that suppua C 2r for every optimal design measure ua obtained from (Pal). We immediately
derive the following regularity result for pa.

Corollary 4.35. Let A € Ny be given. Then there holds pa € C*(£2R). Furthermore the mapping
p.: Ny — C?(2R), A pa is continuous at 0.

Proof. Let A € Ny be given. By assumption, the mapping

0S: NV1 — CQ(QR,RH), Al — 8S[A1],

is continuous. Hence the same holds for the perturbation mapping of the pointwise Fisher in-
formation I € C(Ny, x £2,,Sym(n)). The claimed statements follows from the definition of pa
as

pa =~ T @) VP A (@) + To[Aa]),
and I(][AQ] — IQ[O], Bo + A3 — By as well as I[Al](ﬂA) — I[O] (’Uo) for A — 0. ]
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In the following, we need a perturbation result for the Hessian of py.

Lemma 4.36. Let # € Ext(0) be given and assume that V*po(2) is negative definite, i.e. there
exists 0 > 0 with

~(¢, V2Po(&) Ot 2 OICIza, V¢ € R (4.49)
Then there exist Ry > 0 such that for all x € Br,(Z) C 2r and all A € Ny with ||Aly small
enough, we have

0
= VPa(@)Crs = GlClea,  YC ERY (4.50)

Proof. Let x € 2 and ¢ € R? be given. We expand

(¢ V2 ha()re = (¢ V2 Po(2)ra + (¢, (V2Po(z) — V2P0 (2) + V?pa(z) — V2P0 (2))C) ga -

Using the negative definiteness of the Hessian of pg, we estimate

(¢, V?pa(@)Q)ra < (=0 + [ V?po(x) — V?po(#)||gaxa + [P0 — Dallez(on)) I¢[7a-
Since py € C2(2g) and p. € C(Ny,C%(2r)) there exist constants Ry > 0 and € > 0 with

0

_ L 0 o
V2P0 (@) = V*Po(#)llgaxa < 3 [IPo = Palle(en) < 5

— 4 )
forallz € 2p, |r—&|ge < Rz and A € Ny, ||Ally < e. Combining these results with the previous
estimate we conclude (4.50)), finishing the proof. O
We are now able to strengthen the stability result on the global maximizers of pg if their curvature

is not degenerate.

Proposition 4.37. Let & € Ext(0) be given such that (4.49) holds for some 8 > 0. Then there
exists Ry > 0, with Br,(%) C 2r, Br,(2) NExt(0) = {Z}, such that for all A € Ny, || A|ly small

enough, we either have
Ext(A) N Bp,(2) =0 or Ext(A)NBg,(Z) ={2a}, (4.51)

for some £ o € Br,(&). Furthermore, if ua, —* tg with & € supp tg then only the second case is
possible and there exists a sequence {Za, tren C Bry(Z;i) with

Ext(Ag) N Br,(2) ={ZAa,},
for all k large enough.
Proof. Let such a & € Ext(0) be given. We start by proving the existence of Re > 0 such that (4.51))

holds for small perturbations. Since Ext(u) consists of finitely many points and {2z is open in 2,
we can choose Ry > 0 with

BR2(£2') C g, BRQ(.@) N EXt(ﬂo) = {.fl‘}

By choosing Ry small enough, see Lemma we conclude from (4.50)) that pa is strictly concave
and thus admits at most one of its global maximizers in Bpg, (%) for all A € Ny small enough.
Due to pa(x) <1, x € £, and ||palle(q,) = 1, the statement in (4.51) readily follows. O
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Roughly speaking, the previous result states that an unperturbed optimal sensor at a position &
is approximated by exactly one sensor in the perturbed problem if the curvature of py at & does
not degenerate. Hence, non-degeneracy of the curvature of py at every optimal sensor positions
guarantees one-to-one approximation of the sensors in the unperturbed problem by the perturbed
optimal ones. We adopt this condition as a standing assumption in the following. Additionally,
we impose regularity assumptions on the perturbations.

Assumption 4.8. Assume that there exists 8 > 0 with

—(¢, V2?P0(%4,0))pa > 0|¢[2a V¢ € RY,

for all ¢ = 1,..., N. Furthermore, the mapping Zy: Ny, — Sym(n) is two times continuously
Fréchet differentiable, the set {Z[0](0z, ,)}1.; is linearly independent and there exists 7o > 0 with

Tr(6 BV*¥(Z[0] (o) + Zo[0])dB) > 0||0B||sym;, VOB € Sym(n).

Note that as a consequence of these assumptions, the unperturbed optimal design measurement
ug is unique. In the following two technical lemmas we will prove that, as a consequence, the
optimal solution ua to ((Pa)) is unique for small perturbations. In the light of Proposition we
thus conclude

#supp g < #suppua < #Ext(A) < # Ext(0).

Moreover, the positions of the optimal sensors and the measurement weights depend continu-
ously on the perturbation. Consequently, if supp iy = Ext(0), all the inequalities above become
equalities yielding

#supp g = #supp ua = # Ext(0).
Hence, the number of optimal sensors is stable for small perturbations in this situation.

Lemma 4.38. For all A € Ny, |A|ly small enough there exist Z; o € Br,(Zip), i =1,... N, with
Ext(A) C {Z;a}N,. Moreover there exists a small neighborhood Ny of O such that the mapping
E.:Nv—)ﬁg, AH@A:(ﬂfLA,--- ,iN,A)T

)

is well-defined and continuous at zero.

Proof. Due to its continuity, pa admits at least one global maximum on Bg,(Z;) for all A € Ny
and i = 1,..., N. From the uniform convergence of pa towards pp and Ext(0) = {Z; 0}, we
conclude the existence of o > 0 such that

N
pa(z) <1—o0, Vze )\ U Br, (%i0),
i=1

for all A € Ny small enough. Let i € {1,..., N} be arbitrary but fixed. Again using the continuity
of p. we conclude max,cp,. Pa(*) > pa(Tio) > 1 — 0. As a consequence, each global maximum
of pa lies in the interior of the ball. Consequently it is unique since pa is strictly concave on
Br,(Z;0). We denote it by Z; . It remains to prove the continuity of X.. Assume that X. is
not continuous at 0. Then there exists € > 0 such that for all o = 1/k there is a perturbation
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Ay and |Xpa, — X0l > €. Let i € {1,..., N} be given. By boundedness of {2r we can extract a
subsequence of Z; o, denoted by the same symbol with Z; o, — Z € Bg,(Zi0). We conclude
1 —po(Zi,a,) < Po(Zio) — Pa(Zio) + Pa, (Ti,a,,) — Po(Zia,) < cllpa, — Dollc,

and consequently po(Z) = 1. By the uniqueness of the global maximum of py on Bg,(Z;p), we
have £ = Z; 9. This gives a contradiction since Z was an arbitrary accumulation point and 7 was
chosen arbitrarily. O

In the following we consider w.l.o.g perturbations in the smaller set Ny C Ny.

Lemma 4.39. For all A € Ny, the optimal solution ta = Zfil 0; A0z, o to (Pa) is unique.
Furthermore, the mapping

_ 3 N _ _ _ T
u: Ny - R}, A=ia=(0y4,...,0n54) ,

18 continuous at 0.

Proof. Let us first proof the uniqueness of the perturbed optimal design @a. From the previous
lemma we recall that Ext(A) C {Z; o}Y,. Thus, every perturbed optimal design is of the form
ap = Zi\il 0;0z, , for some u; € Ry. Fori = 1,...,N, we interpret I[0](Z;0) € Sym(n) as a
vector in R™+1/2XN \We assemble these vectors in a matrix

Vo = (1[0)(T10)] - 1[0)(Ex0)) € RPN,

Note that rank Vo = N due to the linear independence assumption. Similarly we proceed for the
perturbed problem, defining the matrix

Va = (I[A1)(Z1,4)] - - [T[A1](Zn.0)) € RPOHED/ZXN g A € Ny

From the continuity of the pointwise Fisher information and of X. we obtain lima_o||Va —
Wollgaxa = 0. Since the rank of a matrix is a lower semi-continuous function we conclude

N =rank Vj < liminfrank Vo < N.
A—0

W.l.o.g we can thus assume that Ny is chosen small enough such that rankVa = N for all
A € Ny. Consequently, the set {I[A1](z;,4)}Y, is linearly independent and the optimal design
U, is unique, see Corollary [3.19] It remains to discuss the continuity of the mapping a.. We prove
it by contradiction. Assume that there exists € > 0 such that for all ¢ > 0 there is an element
A with [@a — @ig|gy > € and || Ay < 0. Now choose a sequence of such perturbations Ay, € Ny
with || Ag|[v = 1/k and the associated coefficient vectors s, . By assumption there exists ¢ > 0
with |G, — Ug|gn > € for all k € N. This however contradicts 4, —* G and ([£.48). Hence the
mapping is continuous. ]

The rest of this section focusses on properties of the mappings X. and G. beyond continuity. We
make the following additional assumption.

Assumption 4.9. There holds supp ug = Ext(0), i.e. there exists w;o > 0,7 =1,... N with

N
Uy = E 1_11'705@10.
=1
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The aim of the following technical discussion is to establish Fréchet differentiability of the map-
pings X. and, ., respectively, in a neighborhood of 0. Choosing the neighborhood Ny small
enough we start by concluding the following corollary from the continuity of a..

Corollary 4.40. Let Assumptz’on hold. For all A € Ny there holds A >0,0=1,...,]N.

Proof. The claim follows immediately from the continuity of u. and w;9 > 0 for all+=1,..., N.
O

We make an important observation. Let us define the admissible set X 4 as the cartesian product
Xad = BRr,(Z1,0) X --- Br,(Zn,0). Due to the previous results, obtaining a solution ua to (Pa)) is
reduced to solving the finite dimensional, non-linear, optimization problem

min F(x,u, A)
x=(x1,..,N) " €Xad,
ueRY

<Z w;I[A) (s +Io[A2]> + (Bo +A3)HUH1] : (PX)

While we will never solve the, potentially non-convex, problem in practice, this relation
allows to break down the measure-valued problem to a finite dimensional optimization prob-
lem. We will use this fact in the following to infer stability properties of ua by applying ideas for
parametric optimization problems in finite dimensions to , see e.g. [43//88./108,168|. From the
regularity assumptions on the perturbations, Z[0](ug)+Zo[0] € PD(n) andu; > 0,i=1,..., N, we
conclude that the functional F is at least two-times continuously differentiable in a neighborhood
of (Xg,1p,0). We denote the partial derivatives of F with respect to x, u and A by 0xF, 0,F and
OAF, respectively. Second order derivatives are denoted by 0.0.F. Hence, is a nonlinear but
smooth optimization problem with additional constraints on the optimization variables. However,
since Xg € int X,q and 0;0 > 0,7 =1,..., N, these constraints are also inactive for the perturbed
solutions (Xa, ) due to their continuity with respect to A. As a consequence the tupel (Xa, A7)
fulfils the first order necessary optimality conditions for F(-,-, A) given by

OxF(xa, 010, A) =0, 0uF(xXa,un,A)=0. (4.52)

In order to keep the notation more compact we recall the parameterized design measure and the
gradient mapping

w: Xog x RY — MT(2,),  (x,u) = u(x,u) = Zul i

p: MY (02,) x Ny — C(2,) NC3(2R), (u, A) — p(u, A) = —Vuip(u, A).

Whenever p(u, A) is well-defined, we denote its gradient and its Hessian with respect to the spatial
variable x by Vp(u, A) and V?p(u, A). Furthermore, for i = 1,..., N, we (formally) define the
mappings

Gls Xoa x RY x Ny SR, (x,1, 4) o plu(x, ), A)(w:) — 1,

Gh: Xog x RY x Ny = RY, (x,u, A) = Vp(u(x,u), A)(z;).
As with the objective functional F we conclude that G} and GY%, respectively, are well-defined and

of class C! in a neighbourhood of (Xg,1ig,0), i = 1,..., N. Differentiating F at (Xa, 0, 4) it is
straightforward to verify that (4.52)) is equivalent to

Gi(xa,upn, A) = pa(Zin) +1=0, Gh(xa,un,A) = Vpa(z;a) =0,
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forall e =1,..., N. We consider the following system of non-linear equations

Gl(xa,un, A)

G{V(XA,uA,A)

G: Xog X RY x Ny — RY x (RH)V, Ju, A)
d + |4 ( ) (X u ) G%(XA,UA,A)

Gév(xA,uA,A)

Due to its optimality for , (Xa,04) is the unique root of G(+,-, A) in Xy X R]f. We are
now ready to state the main theorem of this section. Exploiting the equivalence between (P
and QMD the optimal positions of the measurement sensors as well as the measurement weights
depend at least (locally) continuously differentiable on the perturbation of the problem.

Theorem 4.41. Let Assumption (A4.8), (A4.9), Assumptions as well as hold.
The mappings x. and a. from Lemma[4.38 and Lemmal{.39, respectively, are at least continuously

Fréchet differentiable with
VAT 2 3 _ ~\—1 B _ ~
(v§ﬁ2> - <a(w7u)G(ZBAA,U_A,A)) 8AG($A,HA,A), (4.53)
for A € Ny. Here O(zn)G and OAG denote the Jacobian of G with respect to (z,u) and A.
Moreover, there holds

N

ZH@‘,A — Ziolga + [U5,4 — Wi 0]] < cl|Allv,
i=1

for some ¢ > 0.

Proof. If G is Fréchet differentiable at a given (x,u, A) € X,q X Rﬂy its partial derivative are
given in terms of Oy G (x,u,4) = Hi(x,u,A) + Ha(x,u,A). Let us characterize the ma-
trices Hy(x,u, A), Ha(x,u,A) € Sym(dN + N). Given dx = (dx1,...,6zy) € (RH)V and
Su = (duy,...,duy) € RY there holds

(0% du ) Hi(x,u, A) < s >
N

= Z[25ui(Vp(u(x,u), A) (), 0xi)pa + Wi (dzi, Vip(u(x, u), A)(x;)dx)gal,
i=1

as well as

(o du ) Ha(x,u, A) < i )

1
= ,80 + Ag TI“(A(X, u, 6X7 6“7 A)VZW(I[AI] (U<X, u)) + I(]([AQ]))A(X, u, (5X, 5117 A))

with the matrix A(x,u,0x,du, A) € Sym(n) given by

N
A(x,u,0x, 6u, A) =[S I[Ar] () + wiI'[Aq] (;) 4],
=1
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where I'[A](z;) denotes the first Fréchet derivative of I € C?(Ny, x £2g, Sym(n) with respect to
the spatial variable. We show that c'?(x,u)G(io,ﬁo,O) is invertible. First, note that due to the
optimality of (Xg, 1) for (P{"), the matrix Hi(X,g,0) simplifies to

N
o 0 _
( 0x du )Hl(Xo,uo,O) ( 5i(1 > = Z[ULQ((S.%Z',V2p0(xi70)(5$i)Rd].

i=1
From Assumption .8 we conclude

N
( ox du )Hl()_io,l_lo,()) < gﬁ ) S *Hzﬁi,[)wl'ih%@d.

Similarly we obtain

1) o
( 0x du )HQ(X, u, A) < (SE ) § —’70||A(X0,110,5X, 5u7o)||%ym‘

We distinguish two cases in the following.

Case 1: Assume that dx # 0 and du is arbitrary. From the previous discussion we readily deduce

N
o ox _
( 0x du )6(x7u)G(X07u070) ( Su ) < _ez;ui,ol(sxih%{d < 0.
1=
Case 2: Assume that 6x = 0 and du # 0. In this situation, we have

N

A(io, up, 5X, 511, 0) = Z[(Suif[()] (.fi,o) + ﬁi,ol [ T; 0 (5.7)1 Z 5112 .%1 0
=1

Since the set {I[0](Z;0)}Y, is linear independent, A(Xo, i, dx,5u,0) = 0 if and only if Su = 0.
Hence we have

o 5x o 0x
( 0x du )8(x7u)G(x0,u0,O) ( su ) = ( 0x du )HQ(Xo,uo,O) < su > < 0.

Combining both statements, we conclude that 0y )G (X0, 9,0) is invertible, since its kernel is
trivial. In virtue of the implicit function theorem, there exist neighborhoods Ny, N(X() and
N(ng) of 0 € Ny, X € Xyq and u € Rf respectively as well as C' mapping

I PN . T
X..NV*)NXad, HXA—(-TLA,---,-TN,A) )

N A N T
ad? = up = (ul,Aa cee 7uN,A) 5

such that @; o > 0forall¢=1,..., N and X¢ = Xg, Qg = G@p. Furthermore (X, a) is the unique
element in N(Xg) x N(up) fulfilling

G(Xa,00,A) =0, VAE Ny. (4.54)
Recall that the mappings X. and 4. from Lemma and Lemma [£.39] are continuous and

G(xa,1pn,A) =0 VAe Ny.
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As a consequence, for small perturbations A we obtain Xp € N(Xg) and ua € N(ug). Thus
XA =% and Up = Gx for all A € Ny. Thus, the restricitions of X. and @. to Ny are at least of
class C'. Without loss of generality we can assume that Ny was chosen small enough such that
NV C Ny yielding the statement. The formula for the derivative readily follows by taking the
total derivative in and applying the chain rule. O

To close this section, we discuss several results which are implications of the previous theorem.
Assume that the prerequisites of Theorem .41 hold. From the Lipschitz continuity of the optimal
sensor positions and the measurement weights we first infer a stability result for the optimal
measurement designs in the modified Wasserstein distance.

1

Proposition 4.42. There exist constants Cliio| v, N

such that

2 . —
Cllao| N depending on the norm of uy and N

||ﬁA - EOHCOJ* S cﬁﬁ()”M,NWl(aA7 fLO) S CﬁﬂoHM,N”AHV7

for all A small enough.

Proof. The result directly follows from the Lipschitz stability of X. and 1., respectively, and
applying Proposition and Theorem [4.20 O

Second, we provide a Lipschitz stability result for the optimal Fisher information matrix.

Corollary 4.43. Let ug and ua be the unique solutions to (Py) and (Pa)) for A € Ny, A small
enough. Then there holds

1Z10] (@) — Z[A1](@a)llsym < e[| Allv,

for some ¢ > 0 independent of A.

Proof. Let such a A be given. We start by splitting up the difference as
IZ[0] (o) — Z[A1](wa)l[sym < | Z0)(2a) — Z[A1] (@A) llsym + [|Z[0](@0) — Z[0](za)[lsym-
The first term is estimated by
IZ[0](2a) — Z[A1](ua)[[sym < [[Atllvi]laallm-

For the second term we expand

N
IZ[0] (o) — Z[0](@a) lsym < D, 185,01 [0)(Zi0) — Wi, AT[0](Zs,2)[|sym-
i=1
Since I[0] is at least two times continuously differentiable around Z;g, i = 1,..., N, it is also

locally Lipschitz continuous. Hence, for each ¢ = 1,... N, we estimate
[195,0[0](Z3,0) — 05, aT[0](Z3,2) [|sym
< |40 — W Al [ [0)(Zi,0) [|sym + c[@s,a||Zi0 — Zialge < (14 |[Uga])[|Allv-
Summing up yields
1Z[0])(t0) — Z[0)(za)lIsym < (N + [[ualr) | Allv

Since u A is uniformly bounded, combining both estimates yields the statement. O
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4.5 Stability and sensitivity analysis

Finally we define the optimal value function v associated to (P,) as

v: Ny >R, A~ min Fa(u).
U€M+(~Qo)

Following Theorem [4.32] we conclude that v is Lipschitz stable at 0. Moreover, using the differen-
tiability of X. and 1., the optimal value function admits a second order Taylor approximation, c.f.
also [122,/188|.

Proposition 4.44. For A eV and T small enough there holds

72 Y
v(rA) = v(0) + 7Dv(0)(A) + ?D%(O)(A, A) + o(7?),

where
DU(O)(A) = aAF(:_EOa ﬁOa O)Av
and

D*(0)(A, A) = 0A0 4 F(@0, 119, 0)(A, A)
+ 0204 F (g, Tig, 0)(A, VAT A) + 0u04 F(Ty, g, 0)(A, Vap A).

Proof. Following the previous arguments we obtain

v(rA)= min F_;(u) = min FX,U,TA =F(x_;,u A,TAA
(r4) ueEM(£2) TA( ) x=(21,...,2N) | €Xads ( ) ( Tar A )
ueRrY

Differentiating v(7A) with respect to 7 and setting 7 = 0, we obtain

~

Dv(0)(A) = 0xF (X0, Tip, 0)V axo A 4 8.F (X, g, 0)V aig A + 4 F (Ko, T, 0) A.
Due to the optimality of (X, lg) for (P}'), we have
OxF(X0,00,0) =0, 0uF(X0,10,0) =0,
and consequently

Dv(0)(A) = AAF (Ko, g, 0) A. (4.55)

Analogously, the formula for the second derivative DQU(O)(A, A) can be established by taking the
total derivative in (4.55). The statement now follows directly from Taylor’s formula. O

Most remarkably, a first order Taylor approximation of v can be obtained without an evaluation
of the sensitivities V aXg and V at1p. Similarly, first order Taylor approximations of the the sensor
positions and measurement weights are given through

X_4 =X+ TV A%oA + o(7), u_i=u+ TV Al A + of7).

Let us briefly summarize the findings of this section. A first attempt on establishing sensitivity
results for sensor placement problems with measure-valued designs was taken. Under mild assump-
tions, convergence of the perturbed measurement designs and Lipschitz stability of the optimal
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value function were established. By additional regularity assumptions on the global maximizers of
the unperturbed optimal gradient —V1)(1g,0), stability of the optimal number of measurements
can be proven. Hence the sparse optimization problem can be broken down to a finite-
dimensional dimensional problem . Exploiting the equivalence between those two problem
formulations revealed that the optimal sensor positions as well as the measurement weights de-
pend differentiable on the perturbation. Additionally, this led to Lipschitz stability result for the
optimal design measure in a modified Wasserstein distance.

As mentioned in the beginning, literature on sensitivity analysis in the context of optimal sensor
placement problems in particular, and for sparse optimization problems in general, seems to be
scarce. Hence, the results in this section should be seen as a first step in this direction, leaving room
for further investigations. A first natural question is to ask whether the regularity assumptions
on the perturbations and on the spatial regularity of the sensitivity vector 0S[A;] can be lowered
while maintaining the Lipschitz stability results for the optimal measurement design. Furthermore
it would be worth to investigate whether the differentiability of the positions and measurement
weights implies some kind of differentiable dependence of the optimal design on the perturbation.
Finally, from a practical point of view, the efficient numerical evaluation of the sensitivities daXq
and daug should be the topic of further research. Following the formula in Theorem one
needs at least matrix-vector products between a given dx and the Hessian of the continuosuly
differentiable function —V,(%g,0). Thereby we note that the sensitivities 05[A;] admit no
closed form in general, but are replaced by a discrete approximation over a grid on {2, see also
the following section. In the context of this chapter, a discrete surrogate of the k-th sensitivity is
obtained from a piecewiese linear finite element ansatz for the corresponding sensitivity equation.
Therefore the optimal discrete gradient —V, 1, (4p, 0,0) is given as a sum over products between
piecewise linear functions and thus it is especially not of class C2. Two possible strategies to
circumvent these difficulties could consist in either choosing higher order finite elements for the
discretization of the sensitivity equations or applying a gradient recovery type algorithm, see
e.g. [279], for the derivatives of —Vy,(ap,0,0).

4.6 Discretization and error estimates

The aim of this section is twofold: First, we provide an approximation framework for the sparse
sensor placement problem based on a finite element discretization of the state as well as the sen-
sitivity equations. In contrast, the space of design measures M™(2,) is not discretized. This
corresponds to the variational discretization approach in optimal control, see e.g |148|. As for
the continuous sensor placement problem we prove the existence of discrete optimal designs and
provide a discrete version of the first order optimality condition. Finally we prove the conver-
gence of the discrete optimal designs for a vanishing meshsize. For an application of variational
discretization in the context of optimal control problems with measure-valued controls we refer
to [59,|1364|176].

Second, assuming a suitable second order condition, we derive a priori error estimates for the
discretization error between a continuous sparse optimal measurement design and its discrete
counterpart. To be more concrete, given an optimal design ug = Zf\i 1 U0z, we will provide
convergence rates for the positions Z; of the optimal sensors as well as the diligence factors 1.
This implies a priori error estimates for the modified Wasserstein distance introduced in Definition
A priori error estimates for optimal control problems with measure-valued controls and
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elliptic PDE constraints are for example considered in [176] and |210]. In the latter one the
authors prove convergence rates for the control in the norm on the dual space of H%(£2). From
Section 4.3 we also recall that an optimal measurement design can be interpreted as Lagrangian
multiplier associated to a pointwise imposed constraint in the dual problem, see . A priori
error analysis for the Lagrangian multiplier in this context has been, e.g., conducted in |186]
and [190,[191]. In the latter ones, convergence rates for the support points of the optimal Lagrange
multiplier are provided. Last we recall that optimal control problems involving both, || - || 710,
and || - [[z2(0,), as regularization, admit optimal solutions supported on small sets, see also the
discussion in Section [£.4.6] A priori error estimates for these kind of problems are provided
in [61,/62,208,261|. To our best knowledge this work constitutes the first rigorous approach to the
discretization and error analysis of sparse sensor placement problems in the context of optimal
design of experiments.

4.6.1 Finite element discretization

In the following, the sets {2 as well as (2, are assumed to be polytopal (i.e. polygonal in two
dimensions and polyhedral in three dimensions). We discuss the approximation of (Pg|) by linear
finite elements. For this purpose we consider a family of triangulations { 7, }, of £2 with

0=JT 2=T7T (4.56)

where 7;? C Tj, denotes the union of all cells making up the observational domain. To each
T € Ty we assign two numbers p(T) and o(7") denoting the diameter of 7" and the diameter of
the largest ball inside of T', respectively. The size of the mesh is defined by h = maxpe7, p(T).
We assume that the triangulation fulfills the usual regularity conditions (cf., e.g., [62]) , i.e. there
exist constants p, o > 0 such that

By N}, we denote the set of nodes of the triangulation. For each h > 0 we now define the space of
continuous piecewise linear finite elements V}, on 7, and its dual space V" ~ M, as

Vii={yn €C(2) |yn, € AVT € Tr}, Mp={up € M(£2)|suppu, C Ny }.

In the following assume that Y;, = V;, N'Y is not empty. For each z; € N} we denote by e? €
V3, the associated nodal basis function. Finally, we introduce the nodal interpolation operators
in: C(2) = Vi and Ap: M(£2) = My, as

Zh(y) = Z y(xi)e?7 Ah(u) = Z <6?7u>51‘1

z; €N, z;ENG,

see, e.g., [59]. Note that Apu € M™(£2,) N My, for all u € MT(£2,) due to ([£.56). We define the
discrete state space Y, = 9y + Y5, where ¢ denotes an approximation of the Dirichlet boundary
data §. For a given ¢ € Q,q the discrete state equation y" = S"[q] is defined as

y" €V, such that a(q,y")(¢n) =0 Vep € Yy, (4.57)
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Analogously, for all k € {1,...,n}, the discrete sensitivity éy" = 9xS"[4] € Y, N C(§2,) at the
given a priori guess ¢ is given as the solution to

/

ay(‘jv yh)(éyhv Qph) = _a;k (Cj,@h)(wh) Vo € Yh, (458)
where g = S§"[g]. For the remainder of this section we make the following assumption.

Assumption 4.10. There exists hy > 0 such that for all h < hg and § € Quq the discrete
state and sensitivity equations, (4.57) and (4.58)), admit unique solutions. Moreover the discrete
sensitivities fulfill

lim max ||0,5[4] — 9xS"[d]]lc = 0.
h—0 &k

Note that these assumptions can be verified for a variety of settings, in particular the ones con-
sidered in Section [£.7] In the following, ¢ > 0 denotes a generic constant which is independent of
the meshsize h.

Discretization of (|Ps))

We define the discrete approximation to (Ps|) by

somin Fi(u) = [(u) + Blhulw), (Pan)

where ¢y (u) = ¥ (Zp(u) + Zp) and the operator Z, results from the discretization of the Fisher
operator 7 as

Tn: M(2,) — Sym(n), Tn(up)ij = (0:S"[410;5"d], un). (4.59)

As in the continuous case, given u € M(2,), the Fisher-Information Zj (u) admits an interpretation
as a Bochner integral

In(u) = Y 05"q)(x)05" g (x) " da.

Define the discrete pointwise Fisher-information as
I: 2, — Sym(n), x> dS"[q](x)05"[§](z)".

Initially, we do not discretize the optimal design space M™(£2,), which corresponds to a variational
discretization approach; cf. [61148]. However, we will show below that this is essentially equivalent
to an additional discretization of the measure space by Mjy,.

Turning to the study of , we observe that the discrete problem admits admissible points
provided that the discrete sensitivities fulfill
R"™ = span (RanIo U{8S"g)(z) | = € 12, }) .

Due to Assumption [£.10] this property of the discrete problem follows from the analogous property
of the continuous problem for A small enough. In the next theorem we prove existence of a discrete
optimal design. In addition we show that there exists at least one discrete optimal solution located
in the nodes of the triangulation.
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Theorem 4.45. Assume that 0S[q] fulfills the assumptions from Proposz'tion and let Assump-

tion hold. Then there exists hg > 0 such that for every h < hg the problem (Pgj) admits at
least one optimal solution tgp € M™(82,) fulfilling

Vip(tugn) > —B, suppig C {x € 2,| — Vu(ugy)(z) = B},

and #supp ug < n(n+1)/2. Moreover, for every optimal solution ugp of (Pgn) the interpolated
measure Ap(tgp) € My, is also optimal.

Proof. Let a constant My > 0 bounding the norm of continuous optimal designs be given. To
show the existence of at least one discrete optimal design we proceed as in the previous section
by considering the auxiliary problem

min  Fy(u) s.t. U < 2M,. 4.60
i Fy() st < 2 (4.60)

We have to show that the domain of F, on M™(2,) is not empty for all & small enough. Existence
of at least one minimizer g} to for h small enough then follows immediately. Moreover
the sequence {ug p }n>0 is uniformly bounded and ||ug | s < 2Mp for all h small enough. Conse-
quently g, is also a minimizer of the unconstrained problem .

By assumption there exists u € M™(§2,), |lullm < My with Z(u) + Zy € PD(n). Due to the
uniform convergence of the sensitivities 05}, [q], we have Z(u) — Z(u) for h — 0. Therefore, for h
small enough there holds Z,(u) + Zy € PD(n), since the set of positive definite matrices is open.
Thus u € dompg+(g,) Fr for all h small enough. The necessary and sufficient condition on the
gradient as well as the upper bound on the number of support points can be derived as in the
continuous case.

It remains to prove the existence of a solution supported in NVj. Given an arbitrary but fixed
u € M™(82,) we have

Th(Anw)i = <8,;Sh[cj]8k5’h[cj], Ahu> - <ih (aish[qwkshm) u>

for all i,k € {1,...,n}, by using properties of Ap; see [59, Theorem 3.5]. Let z € R™ be arbitrary.
Then there holds

21T (u)z

<Jash[4]ash[qu,u> - <<85’h[(j]Tz)2,u>
2

< Ze?@Sh[cj](mj)Tz ,u>.

z; €N,

Now, we estimate

2

< > e 08 dl(x)) ,U> S< > el (ZTash[@](l’j))Q,U>,

;€N z;EN,
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4 Sparse sensor placement for PDE-constrained inverse problems

with Jensen’s inequality, using the convexity of the square function and >, ., el(z) =1 for all
x € (2,. Expanding and rearranging yields

< 3 el (zTaSh[(j](xj)>2,u> :< > zTaSh[Q](a:j)aSh[(j](xj)Tz,u>

x;EN}, x;EN},
- <¢h (Jash [cj]@Sh[cj]Tz> u> - <Jash [G10S"d] " =, Ahu> =TT, (Apu)z.
Since z € R™ was arbitrary, this implies Z (u) <p, Z5(Apu) and therefore also
U(Zy(u) + Zo) > ¥ (Zp(Apu) + Zo),

due to the monotonicity of ¥ with respect to the Léwner ordering. Let ug be an optimal solution

of (Pg,p). From this and ||[Aptgplm < ||ugnl|lm we deduce that Aptugp, is an optimal solution to
(Es.1)- O

Note that this result, together with a straightforward adaption of Theorem[4.5 and Proposition
implies in particular that there exists an optimal solution to in My NM(£2,) which is com-
prised of at most n(n + 1)/2 distinct support points. Finally, we prove subsequential convergence
of discrete optimal solutions for h — 0.

Proposition 4.46. For h < hg denote by ugy an arbitrary optimal solution to (Pgp)). There
exists at least one subsequence of {ugp }), (denoted in the same way), converging in the weak™
topology for h — 0. Every accumulation point tug of { ug }h>0 is a minimizer of (Pg|) and

lagnllm = lusllae  Pnltgn) = ¥(ag).
Furthermore, if there holds
#suppugp <n(n+1)/2, Vh>0

then the same holds for every accumulation point.

Proof. The sequence { ug, } h>o 18 uniformly bounded by My in h. Thus, there exists a subsequence
denoted in the same way and a measure g € M™(£2,) with @g —* @g for h — 0. Due to the
weak™ lower semi-continuity of the norm and the uniform convergence of the sensitivities there

holds
w(ap) + Blluglla < lim inf[y (@) + Bllagnlml < d(@) + Bl v
Therefore ug is also an optimal solution of and
Un(g,n) + Bllugnlla — P(ag) + Blluglm-
Furthermore, due to the weak™ convergence of g j,, we obtain
ag,nllm = (1, ugp) = llusllm = (1, u5) = [[ag,nllm-

The convergence of ¢, (g ) is a direct consequence of the convergence of the objective function
values as well as the the convergence of the norms. The result on the number of support points
follows from Proposition again using that dim Sym(n) = n(n + 1)/2. O
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4.6 Discretization and error estimates

Observe that the different implementations of Algorithms [2] which are presented in Section
can be directly applied to . Following Theorem the position &* of the new Dirac delta
function can be chosen from Nj,. Therefore step 2. in Algorithm [2 amounts to the computation of
the discrete gradient Vi/y,(u*) and the determination of its maximum in Aj,. The latter one can
be done efficiently by O(#N},) operations.

Post-processing of the discrete design measure

By Theorem the support of an optimal design g can be limited to n(n+1)/2 points. In prac-
tice, this upper bound is often rather pessimistic. However, due to discretization error, the support
of a discrete solution #g} € My, of can be bigger than that of the continuous counterpart
ug, while still respecting the upper bound n(n + 1)/2. Usually, a sensor at a specific location
in the continuous solution appears spread out over several adjacent grid points in the numerical
solution. A similar effect has been observed and theoretically investigated in the context of sparse
deconvolution in the presence of noise; cf. [95]. As a remedy, we employ the following heuristic
post-processing of the discrete solution: First, we cluster the support of ug j, into N. < # supp ug,p
sets S; C £2,, with diam(S;) < Ch. Then, we construct a new design 4° = D ie1.N. uféxf with
uf = fSi diig ;, summing up the coefficients of each cluster, and x7 = fSi xdag,/uf the locations
by the center of mass. Note that this introduces an additional error in the location of the sup-
port points of order h, which is not worse than what we can expect from @j;. Additionally, the
weak*-convergence result for b — 0 from Proposition [4.46]is not affected by this post-processing.

Discretization of ()

We briefly comment on the discretization of the regularized sub-problems . We adapt the
approach from [61,208| and discretize the design by piece-wise linear finite elements on the obser-
vation set, denoted by Up. We endow this space with the lumped inner product defined for any
©, 9 € Uy, C C(£2,) in the usual way as

(0 ) o = / in(o0)(x)de.

o

The approximation of 1} is then defined as

. E 2 €
i {wh(/lhuh) + Bllunlla,) + 5 llunlizace,)n) (P 5)

where HuhH%Q(Q Vh = (wh, un)g,,n is the lumped regularization term. Here, the appearance of
Apwy, turns integrals involving the finite element function uy into appropriate lumped integrals,
i.e., we obtain

T (Anun)ij = (9;5"1d19;5"(d], un)i.
Note also that [lup||z1(2,) = [[unllm = [[Anunllm. The existence of an optimal solution to (£ 5,

for h small enough, can be shown by similar arguments as for the unregularized discrete problem.
Additionally uniqueness of the solution follows using the strict convexity of the regularization term.
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4 Sparse sensor placement for PDE-constrained inverse problems

The necessary and sufficient optimality conditions can be derived in a straightforward manner and
are equivalent to the point-wise projection formula

ﬂ;h(xi) = max {—i(v¢l7h(u%7h)($i) +B), 0} Vao; € NN 2, (4.61)

where 9 (0 ;) = ¥n(Apuj ;). For a discussion and comparison of different discretization schemes
of the regularized problem we refer to [208, Section 4.5.3].

4.6.2 A priori error estimates

This section is devoted to the derivation of a priori error estimates for the sparse sensor placement
problem. Therefore we strengthen our assumptions on the design criterion ¥ and the convergence
of the discrete sensitivities.

Assumption 4.11. There exists a positive, strict monotonically increasing and continuous func-
tion v: Ry — Ry with limy,_,+¢y(h) = 0 and

max [|04.5(g] — 95" [l < ¥(h),
for all A < hg. Furthermore, ¥ is strictly convex on its domain and there exists vy > 0 with
Tr(BV*¥(Z(ug) + Lo)B) > Y0l|Bl|3ym, VB € Sym(n). (4.62)

Here Z(ug) denotes the unique Fisher-information matrix.
Note that the continuous optimal Fisher information Z(tug) and V) (ug) as well as their discrete
counterparts Zp(ugp) and Vi, (ugp) are unique due to the strict convexity of ¥. We briefly

recall that (4.62) implies uniform convexity of ¥ in a neighbourhood N(Z(ug)) of the optimal
Fisher-information Z(ug), i.e

(V&(By + Io) — V(B + To), By — Bo)sym > %HBl — Byl VBi,Bs € N(Z(ug)),

see Corollary [£.17] Additionally, since ¥ is two-times continuously Fréchet differentiable on its
domain, the gradient V¥: dom¥ — Sym(n) is Lipschitz continuous on compact sets, i.e. given a
compact set M C dom ¥ there exists a constant Lj; > 0 with

IV (B1) — VO(By)llsym < Lar|Br — Ballsym  VBi, By € M.

Error estimates for the objective function

Let us first collect some perturbation results for the Fisher information Z and the optimal design
criterion .

Lemma 4.47. There exists a constant ¢ > 0 such that for all h small enough we have:

e maxgeq, [1(7) — In(2)|lsym + 1T — Zullcom(2.) symn)) < ¢v(h).
e For all By, By € Sym(n) there holds

IZ° By — I, Balle < (|| Billsymy(h) + || B1 = Bzllsym)-
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4.6 Discretization and error estimates

e For all uy,ug € dompg+(g,) ¢ N dompy+(p,) Pr we have

IVip(ur) = Vipn(uz)lle
< (Ve (Z(ur) + Lo)llsymy(h) + IV (Z(u1) + Zo) — V¥(Zn(u2) + Lo)llsym)-

Proof. Let x € (2, be given. We calculate

1(2) = In(@) & = Te((I(z) = In(x)) " (I(2) - In(2)))

n n

= > (9:S1dl(2)9;5[d)(x) — 0:5"[d)()0;5"(d) ().

i=1 j=1
Fori,7 =1,...,n we estimate
1:5(d)(2)9; 5[4 () — 2:5" () (2)0;5"[d) ()|
< 18:S[dlllcll95S1a) — 8;5™(dlllc + 118;5"(d]llc/12:S[d] — 0:5"[d]lc-
Due to the uniform convergence of the sensitivities we conclude

max [|I(z) ~ () |[3ym < cv(R)%.

Furthermore, let an arbitrary u € M({2,) be given. Using the properties of the Bochner integral
there holds

IZ(w) = Zn(w)llsym < max [[I(z) = In(2) [symllulave < y(R)ullrm-

The first statement now follows by taking the supremum over all u € M(£2,). Next, let By, By €
Sym(n) be given. We obtain

|Z°B1 — Iy Bslc < ||Z°B1 — Iy Billc + [|Z,B1 — I Ba|lc-
Using [|Z* — Z; || (sym(n),c(2)) = IZ = Zhll c(m(92,) Sym(n)) there holds
|Z°B1 — Iy Bille <17 = Znll com(o),8ym(n)) 1 Billsym < ev(h)[| B llsym-
In the same way we conclude
1Z5B1 — I Balle < | Znll c(am(20),8ymn)) 1 B1 — Ballsym < ¢l[B1 — Ba||sym,

since [|Zn | £(A1(2,),8ym(n)) 18 uniformly bounded as h — 0. Combining both estimates yields the
second statement. The final statement follows directly, noting that

Vo (ur) — Vipp(u2)lle = |T°VE(Z(u1) + Lo) — I, V¥ (Zn(uz2) + Zo)llc-
O

Lemma 4.48. Let a sequence {up}n~o0 C M (82,) with up, =* v € MT(£,) as h — 0. Assume
that u, up € dom g+ (,) Y Ndompy+(o,) ¥ for h small enough. For all h < hg small enough there
holds

[¥n(un) = P(un)| < cuy(h)|lunllm,

with some constant ¢, > 0 depending on u € M™(§2,).
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4 Sparse sensor placement for PDE-constrained inverse problems

Proof. Let such a sequence be given. By Taylor’s expansion we have
U (un) = (un) = Te(VE (I, (un) + o) T (Z(un) — Tn(wy))
where Z¢, (up) = Z(up) + ((Zn(up) — Z(up)) for some ¢, € (0,1). Obviously there holds
IZ(u) = Zg,, (un)llsym < [[Z(w) = Z(un)llsym + cy(h)[[unlam = 0,
for some constant ¢ > 0 independent of h and ¢ as h — 0. By using Lemma [4.47| we obtain

Te(V¥ (g, (un) +Zo) " (Z(un) — Zn(un))) < [V (L, (un) + Zo) syml|Z (un) — Zn(un)llsym
< [IV¥(Zg, (un) + Zo)llsymy (R) lunll m-
Since V¥: dom¥ — Sym(n) is continuous the norm || V¥(Z¢, (un) +Zo)||sym stays bounded. The

statement now readily follows. O

Since we do not discretize the set of admissible designs we conclude the following convergence
result for the optimal objective function values.

Theorem 4.49. Let arbitrary solutions ug to (Pgl) and tg, to (Pap)) ,respectively, be given. Then
there exists a constant ¢ > 0 with

[Fn(tgn) — F(ug)| < ey(h). (4.63)

Proof. Let a continuous optimal design uz as well as a discrete one ug 5 be given. Then there holds
ugp € dompg+(o,) ¥ and ug € dompg+(g,) ¥n due to the convergence of the Fisher information
matrices. Exploiting optimality we obtain

Fi(upn) — Flugn) < Fu(tign) — F(ug) < Fu(tug) — F(ug).
Consequently we conclude
| Fn(tg,n) — F(a)] < max{|Fp(ug,n) — F(ugn)l, | Fa(ug) — F(ug)]}.
Note that Fj,(u) — F(u) = ¥p(u) — ¢ (u) for all u € M*(£2,). Using Lemma we arrive at
max{|Fy,(up.n) — F(ugn)l; [Fa(ug) — F(ug)[} < ey(h) max{[|ugllm, [|us.nlla}-

Due to the weak™ convergence of the optimal designs, || 4| A is uniformly bounded. The state-
ment now readily follows. O

Additionally, the strict convexity of ¥ implies the following quadratic growth behavior.

Proposition 4.50. Let an optimal design ug be given. For every u € M™1(82,) with u €
dom pn+(,) ¥ we have

PZ(Es) = Z(w)l3ym < Flu) - F(ag).
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4.6 Discretization and error estimates

Proof. Let u € M™*(£2,) with u € dom g+ (g,) ¥ be given. Due to the the coercivity assumptions
on the Hessian we have

F(u) = F(ug) = (V¥(Z(up) + Lo), Z(u) — Z(up))sym + Bllulla = Bllaslam + %HI(u) — Z(tg) I3 ym-

Due to the optimality of ug we further obtain

(V(ug), u —tg) + Bllulla — Blltgll
= (V¥(Z(up) + Zo), Z(u) — L(up))sym + Bllullm = Bllusllm = 0.

This proves the claimed result. O

Combining the previous statements we arrive at the following convergence result for the Fisher
information matrix Z(ug) and the optimal gradient Vi) (ag).

Corollary 4.51. For all h small enough there holds
I1Z (@) — Tn(ts.n)llsym + [V (Z(ts) + To) — VE(Tn(upn) + o) llsym < cv/~(h),
as well as
IV (ug) = Vibn(@gn)lle < ev/~(h),

for some constant ¢ > 0.

Proof. Let a continuous optimal design g as well as a discrete one g, be given. We split up the
error as

1Z(ag) = Zn(ugn)llsym < [|Z(up,n) — Zn(tg,n)llsym + [1Z(@p) — Z(tgp)llsym-
The first term can be estimated by
1Z(ug.n) = Zn(ag,n)llsym < |12 = Znllcov(en),symmy ls.0llae < ev(h) || pllm-
Furthermore, for an arbitrary discrete optimal design ug ) we have
1Z(ag) — Z(upn)llsym < 1 Z(ug) = Zn(ap,n)llsym + ey (h)|[ap.nllim-

Therefore, we conclude Z(tug ) € N(Z(ug)) for all h small enough and all discrete optimal designs
ug,p. Thus there holds,

%HI(%) — (g I3ym < Fligp) — F(ug) = F(ugp) — Fu(tgn) + Fu(tgp) — F(ug).

Consequently

IZ(ag) — Z(apn)lEym < c(v(h) +(h)llagnllm), (4.64)

using Theorem and Lemma[4.47] Combining both estimates and taking the square root yields
the first statement due to the uniform boundedness of ||@gp|a4. The remaining results are now
obtained from the Lischitz continuity of V¥ on compact sets and Lemma [4.47 O
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4 Sparse sensor placement for PDE-constrained inverse problems

Error estimates for the optimal design measure

In the following we will derive a priori error estimates for the optimal sensors. We impose the
following assumption on the set of global maximizers to —V (@) and on the smoothness of 9S[q]
in its vicinity.

Assumption 4.12. Assume that the interior of {2, is non-empty and there exist Z; € int {2,,
i=1,...,N, such that the set {Z(dz,)}Y, is linear independent and

suppiig C {x € 26 | — Vip(tig)(z) = B} = {Z}1L,.
Furthermore there exists R > 0 with

N
2R = U BR(SEZ) C int £2,, BR(fZ) N BR(SE]') = (Z), @S[C_ﬂ S CQ(QR),
=1

foralli,j=1,...,N, i # j.

From this additional assumption we immediately derive that the adjoint of the Fisher information
maps continuously to (locally) smooth functions, i.e.

T*: Sym(n) — C(2,) NC*(2r) A 0S[4]" AdS[q),

is linear and continuous. Secondly, due to the linear independence assumption, the optimal de-
sign 1ig is unique. For abbreviation we define the continuous functions p € C(£2,) N C%(2g) and,
for every h < hg, pr, € C(£2,) as

P2 =Rz =V(ag)(x), pr: 2 =R, x> —Vi(ags) (),

respectively. For the rest of this section we will denote the gradient and the Hessian of p by Vp
and V2p respectively. Note that due to the to the optimality of @ig # 0 we have

p(r) < B Vwed, plx)=p Vp;)=0,

since Z; € int{2,, ¢« = 1,...,N. To derive error estimates for the position of the sensors we
further impose assumptions on the curvature of p in the support points, see also Section [£.4] and
Section L3l For convenience of the reader we restate them.

Assumption 4.13. Let ug be the unique optimal solution to (Pg)). Assume that ug = Zf\;l U0z,
for some @; > 0,7 =1,..., N and there exists § > 0 with

—(¢ V2p(%)Q)pa > 0|¢|pa V¢ € RY,

foralli=1,...,N.

Based on this assumption, we conclude the following quadratic grow condition for the optimal
gradient p.
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Proposition 4.52. There exists 0 < Ry < R with
N

0 _
pla) <B—Zlo— Zilpa Vo €| Br, (%), (4.65)
i=1
foralli=1,...,N. Moreover there exists o > 0 with
N
plx)<B—0 Vre)\ U Br, (Z:). (4.66)
i=1

Proof. Let us fix i € {1,...,N}. For x € Br(&;) we apply Taylor’s expansion to obtain
1
p(z) = p(@:) + (VP(Zi), & = Ti)ga + 5 (2 — Zi, V2p(a¢)(x — i)
where ¢ = Z; — ((x — ;) for some 0 < ¢ < 1. Since Z; is an optimal sensor position we have
p(z;) = B and Vp(Z;) = 0 respectively. We proceed by estimating the second order term as
(.%' — T, V%i(xd(.%‘ — Ei))Rd
= (2= 2, V?p(E:)(x — 3)) ga + (2 — 24, VP(2¢) — V2P(Z) (2 — 24) ) ga
< (||V2]3(x<) — V25(%;) || paxd — 0) |z — Til3a-

Due to the continuity of V2p on Br(Z;) there exists R > R; > 0 with

_ _ L 0
|z — Zilga < Ry = ||V?p(z) — V2B(Z;)||gaxa < 3
Noting that |z¢ — Zj|pe < |2 — Z4|ge We conclude
_ 0 _ =
p(x) < B — Z|x — xi|I2R<d Vz € Bpg,(Z;).
Since p admits its global maximum only in finitely many points z;, ¢ = 1,..., N we choose R; as

the maximum over the R;, i = 1,... N. This gives (4.65)). The existence of o > 0 such that (4.66]
holds follows due to the continuity of p and p(z;) = 8, ¢ = 1,...,N as well as p(z) < g for

ze 2, \UN {&:}. O

In the next corollary we localize the support of a discrete optimal design #g in the vicinity of
the continuous optimal sensor positions z;, : =1,..., V.

Corollary 4.53. For all h small enough there holds

N
pn(x) < B — % Ve € 2\ | B, (@). (4.67)

=1

Furthermore, given an arbitrary discrete optimal design ug ) we have supp ug C Uf\;l Bg, (7).

Proof. Let x € §2,\ Ui\il Bpg, (z;) be given. We estimate
pn(z) = p(e) + pp(z) = p(e) < B — o+ [|pn(z) = Dllc.

For all h small enough we have ||py(x) —pllc < 0/2, see Corollary 4.51} This gives (4.67). Let now
an arbitrary optimal solution tg , to (P s)) be given. If Zj, € supp g 5, then there holds pj, = 3, see
Theorem m Following (4.67)), this is only possible if Z;, € Bg, (Z;) for some i € {1,...,N}. O
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In the following we will also make use of the auxiliary function p € C(£2,) N C?(£2R) defined as
p: 2 =R x— —I*VU(Zy(up,pn) + o) (x)
Corollary 4.54. For all h small enough there holds
1B = Blle + 15 — DlIz2 () < cY(h),

for some ¢ > 0.

Proof. We directly obtain
1P — Blle < cllZn — Z| £ m2,),8ymn) | V(T (Ug,1) + Zo)llsym
as well as
1P = Dlle2(2r) < el T £(symn)c2(2x) IV (Z(tp) + Zo) — V¥ (Zn(tu,n) + Zo)llsym-
Following Lemma [£.47] and Corollary we have
IVW(Z(ug) + To) — V¥ (Tu(tign) + Lo)|3ym + 1Zn — Zll o .),8yminy) < cv(R).

Hence the desired estimates directly follow since || V¥ (Zy,(tg,1)+Zo)|/sym is uniformly bounded. O

As for p the gradient and the Hessian of p with respect to the spatial variable will be denoted by
Vp and V2P respectively. After these preliminary preparations we are now able to derive a first
intermediate estimate for the distances between continuous and discrete optimal sensor positions
respectively.

Lemma 4.55. Let h be small enough and let Ty, with pp(Zp) = B be given. Then there exists an
index i € {1,..., N} with

|Zh — Tilga < cv/7y(h),
for some ¢ > 0. Given a discrete optimal design ugj we get

max max |z — Zilga < ev/7(h), (4.68)

i=1,...N z€supp i, ,NBRr, (i)

for some constant ¢ > 0 independent of g .

Proof. Let such a Zj, be given. Then we have zj, € B, (Z;) for some index i € {1,..., N} due to
Corollary We estimate

0
B = pn(@n) = p(Tn) + pr(Zn) = P(Tn) < (@) + cv/7(h) < B — - |Tn — Zilga + /().
Rearranging and taking the square root yields

|z, — 7| < c/y(h).

This implies the first assertion. The statement in (4.68) readily follows from pp(z) = f for all
X € supp ugp.- ]
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In the following we improve the error estimate for the optimal sensor positions. To do so, we
proceed similarly to [191] and derive auxiliary results for the growth behaviour of the function p
in a neighbourhood of z;, ¢ = 1,..., N. These are summarized in the following two lemmas.

Lemma 4.56. Foreachi=1,..., N the function p admits a unique local mazximum a?f on Br,(Z;).
Moreover there holds

|Zi — & lra < e/y(h),

for some constant ¢ > 0.

Proof. By Assumption [£.11] the pointwise Fisher information
I: 2, — Sym(n) z+— 9S[q(x)dS[d](x)",

is two times continuously differentiable on 2z with Fréchet derivatives I’ € C*(2g, L(R?, Sym(n)))
and I" € C(2x, L(RY, L(R?,Sym(n))). Given A € Sym(n) we consider the continuous function

VplA]: 2r — R VplA](x); = — Tr(AT(I/(a:)ei)),

for x € 2,. Here ¢; € R? denotes the i-th canonical basis vector of R%, i = 1,...,d. Note that
p[A] is continuously differentiable on {25 for every A € Sym(n) and

Vp[V¥(Z(ug) + L)l = Vb, Vp[V¥(Zn(tgn) +Lo)] = Vb,
for all A > 0 small enough. Define now the function P € C'(£2g x Sym(n), R%) as
P: 2p x Sym(n) — R, (x, A) — Vp[A](z).

Fix an arbitrary index i € {1,..., N} and denote by V,P(z, A) € Sym(n) the partial derivative
of P at (z, A) with respect to . Then there holds

P (2;, VU (Z(tug) + To)) = Vp(Z:) =0, VP (2, V¥(I(ig) + To)) = V*p(Zs).

By assumption, the Hessian of p at Z; is positive definite and thus V,P (z;, V¥ (Z(ug) + Iop) is
invertible. From the implicit function theorem we get R;, ¢;, p > 0 such that for every A € Sym(n)
with ||V (Z(ug) — Allsym < p there exists a unique Z;(A) € Bg,(Z;) with P(Z;, A) =0 and

|Z:(A) — Zilga < || VO (Z(tug) +Zo) — Allsym-

We apply this result to A = VW (Z,(us,) + Zo) to obtain the existence of 7 := 7;(A) with
P(z!, A) = Vp(z!) = 0 and
| — Tilpa < ¢l VO(Z(1g) + To) = V¥ (Tn(asn) + Lo)llsym < cv/7(h).

Hence we have ' € Bg, (z;) for all h small enough. It remains to show that #/ is a local maximum
of p. For x € 2 we estimate

— (¢, V?B()C)ga = = (€. V?B(@)¢) ga — (€. (V?B() + VZp(2))C) pa
> = (¢, V?p(@:)¢) ga — (IV?D(x) = V?p(@1)llsym + cv/7(h))IC a
> (0~ [IV?p(x) = V2p() sym — cv/7(h)[C|fa-
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for all ¢ € RY. W.lo.g the radius Ry can be chosen small enough such that for all z € 2z we have

0
| = Zilpe < Ri = [[V?B(2) — V2B(Z:)[sym < 2

due to the continuity of V2p. Thus we conclude
2~ 0 / 2 4 2

for all € Bg,(%;), all ¢ € R? and all h small enough. Therefore § is strictly concave on Bg, (7;)

and the Hessian V2j(i!) is negative definite. Consequently, p admits a strict local maximum at

:i’f which is unique on Bpg,(Z;). Since i was chosen arbitrary and there are only finitely many z;
all constants can be considered as uniformly bounded in ¢. This gives the statement. O

Lemma 4.57. There exist 0 < Ry < Ry and a constant ¢ > 0 such that
e p(z) < B+cy(h) Yz e (.
o p(x) <B—-9 VreR,\UYL, Br (%)
o p(z) <p(E) — glv =3 Ra Vo € Br,(a]).

for all h small enough andi=1,...,N.

Proof. Let x € {2, be given. We immediately obtain

p(x) = pr(x) + p(x) = pu(x) < B+ = Palle < B+ ev(h),

see Corollary This proves the first result. The second statement readily follows due to the
uniform convergence of p towards p. Concerning the third claim we observe that iff € int {2, for all
h small enough and thus V(#?) = 0 for all i = 1,..., N. Fix an arbitrary index i € {1,..., N}.
Again by applying Taylor’s expansion we deduce

o) =5 + 5 (= 8, Valae) e — )

where x¢ = &' + ((x — #I') for some 0 < ¢ < 1. Observe that

j2¢ = Tilpa < |2 — & |pa + 1T — & |pe < cv/y(R) + |z — & |pa

Hence by choosing Ry = R1/2 we have z¢ € Bg, (7;) for all x € Bg,(Z?) and all h small enough.
From the concavity of p on Bg,(Z;), see (4.69), we conclude

- < 1 . - . . 0 . .
p@) = pa!) + 5 (¢ =21 VB @ — &), <P@Eh) - glo—&lBa Vo€ Bry(ah).

As before, since the index i was chosen arbitrary, all estimates can be derived with constants
uniformly bounded in i. O

Using these additional results on p we can now improve on the a priori estimate for the support
points T; derived in Lemma |4.55
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Theorem 4.58. Let Assumptions [{.11), [{.19 and [{.13 hold. For all h small enough and every
discrete solution gy, to (Pgp)) we have

max max |z — Zi|ga < c\/y(h) (4.70)
i=1,....N x€supp ug,nNBR, (Z:)

for some ¢ > 0 independent of tigy and h.

Proof. Let an arbitrary discrete optimal design g be given and fix an index i € {1,...,N}.
W.lo.g assume that supp tg s N Bg, (Z;) # (. For « € suppag, N Bg, (Z;) we readily obtain

@ — &g < |3 — Tilga + |z — Tilga < c(v/(R) + V/(R)),

from Lemma and Lemma Consequently, if h is chosen small enough, there holds = €
Br, (#}). Using Corollary we furthermore observe that there holds

B = pn(x) < p(x) + cy(h).

In virtue of Lemma [L.57] we conclude
_ s 0 -
B—cy(h) < p(z) < p(a}) — g!fﬂ — &3,
and thus, by rearranging
|z — &l 3. < p(Er) — B+ cy(h) <[P — Bullc + ev(h) + pr(2) — B < ey(h).

Here, the last inequality is obtained by applying Corollary and p"*(z) — B < 0 for all z € 12,
and all A small enough. Since all derived estimates do not depend on the chosen point x, we can
maximize both sides of the inequality with respect to € suppug N Bg, (Z;) and i € {1,...,N}.
Taking the square root concludes the proof. O

Based on the improved convergence rate for the optimal positions of the measurement sensors, we
proceed to prove an a priori error estimate for the diligence factors u;. In the following, given g p,,
its restriction to B, (Z;) will be denoted by ﬂ%7h, i =1,...,N. First, note that, up to now, we
have not discussed whether there is a discrete optimal sensor in a neighborhood of a continuous
one. Mathematically this reduces to the question whether supp gy N Brg, (Z;) # 0 for a given
discrete optimal design g and ¢ € {1,..., N}. This issue is discussed in the following lemma.

Lemma 4.59. Consider a sequence {ugp}n>o of optimal solutions to (Pgpl). For all h small
enough we have

N
supp g, C U Bpg, (%i), suppigp N Br, (Z;) # 0,

i=1

as well as Hﬁ%thM —y, foralli=1,...N.

Proof. The localization result on the support of ug ) readily follows from Corollary Fix an
arbitrary index i € {1,..., N}. Using Urysohn’s Lemma, there exists ¢; € C(£2,) with

N
(,01(:13) =1 Vxe BRI(.@), QDZ(.CC) =0 Vzxc U BRl(i'j)-
J=Lg#i
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Due to the weak™ convergence of g towards g we have
5l = (pis g p) — (i Ug) = T,

as h — 0. Since u; > 0 we thus obtain that supp ﬁlﬁ p 7 0 for all h small enough. This concludes
the proof. O

While the last lemma ensures the existence of a discrete optimal sensor in the neighborhood
of a continuous one it does not make a statement on the number of approximating points. In
fact, an optimal sensor at Z; in the continuous measurement design might be approximated by
a larger number of discrete ones clustering in Bpg, (Z;). Hence, the error between i; and the
norm of ﬂ,ie,h should be quantified. Furthermore, recall that for a given discrete design ugj the
interpolated design measure Axtig; € My, is also optimal, c.f Theorem From now on, we
assume that ug ), € My, for all b < hg.

Let us introduce the operator Z and the vector of measurement weights @ € RY\ {0} as
I:RN — Sym(n), uw uz (z;), u=(uy,...,an) ,

respectively. From the improved a priori error estimate for the optimal sensor positions we conclude
the following perturbation result.

Lemma 4.60. Let a sequence {Ug ntns0 C My, of discrete optimal designs be given. For h > 0
define the weight vector @ (Huﬁ pllMs s HﬂthM)T For all h small enough there holds

IZ(a") = Z(agn) lsym < enllagnllay/7(R),

for some ¢y > 0 depending on the support size of the continuous optimal design.

Proof. We decompose g, to obtain

N
IZ(0") = Z(app)llsym < Z 0 2(z:) — Z(ajs p) I sym-

Fix an arbitrary index i € {1,..., N}. By assumption, there exists N € N\ {0} with

Nh,i

j=1

for j =1,..., N™. Due to optimality and Theorem we have

__h ~h =2 /
p(ﬂfi,j) =P, |~’Uzg - 931‘|Rd < ey v(h).
From the regularity assumptions on 05[g] we conclude that the mapping

I: 2, — Sym(n), =z~ 0S[q(x)0S[q](z)"
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4.6 Discretization and error estimates

is Lipschitz continuous around #;. Using ||ﬂ’5h]| M= Z;V:hll ﬁ;‘z we estimate
Nh,i
. _ “hoT(= —h _ — _ -h
1881 (2:) — Z(asp) lsym < Y Wl (@) = 1(2] ) sym < ellh pllaalZi = 2]
j=1

Since i was arbitrary and ||gg|lm = 32N, HathM we obtain

1Z(0") = Z(iap p)llsym < eN g pllae  max max |z —Zi| < clugpllmvr(h)
i=1,...,N z€supp g, n,NBR, (Z:)

This finishes the proof. O

We are now ready to prove an a priori estimate for the discretization error between the measure-
ment weight @; and the sum of the discrete optimal measurement weights corresponding to sensors
in BR1 (i’z)

Theorem 4.61. Let Assumptions|{.11} |4.14 and |4.15 hold. Let a sequence {tgp}r>0 C My of
discrete optimal designs be given. If h is small enough we have

N
> i = [l < ey (B, (4.71)
=1

for some ¢ > 0.

Proof. First note that since {Z(dz,)}Y, is linear independent, the operator 7 has full rank and
Z*T € Sym(N) is invertible. We estimate

N

> lmi— [,

i=1

vl < ela—a"lgy < e (D) lpaxa| L (@ — @) gy

< el @ D) Hlpaxa I £symm &3 IZ (8 = 8" [Isym.
By construction we have Z(@1) = Z(ug) and thus
IZ(@ = 0")lsym = [ Z(@g) — Z(a")lIsym < I1Z(ag) — Z(upp)llsym + |1 Z(@") = Z(a@s,p) sym-
From (4.64), Lemma and the boundedness of ||ag || pm we obtain

IZ(ag) = Z(upp)llsym + |IZ(@") = Z(asn) lsym < ev/y(h).
O

Due to the sparsity of ug and ug, for all h < hg we also derive an error estimate for the optimal
measurement design in the modified Wasserstein distance as well as for the norm in C%'(£2,)*, see

Section 4.3
Theorem 4.62. Let Assumptions |4.11} |4.19 and |4.15 hold. Let a sequence {ugp}r>0 C My of
discrete optimal designs be given. For all h small enough we have

Haﬂ,h - aﬁ”covl* S cﬁﬁBHM,NWl(aﬁﬁ?a) S CﬁﬁgHM,N \% ’Y(h)7

1 C2
lasllateN? =g |l aN

where the constants c depend on the norm of g as well as its support size N .

Proof. The statement readily follows from applying Proposition [£.19] Theorem [.20] and the a
priori error estimates in Theorem and Theorem [4.61 O
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4.7 Numerical examples

We end this chapter with a numerical study of two test examples. In the following we consider
the unit square 2 = [0,1]2 and a sequence Tp,, k € {1,2,...,9}, of uniform triangulations of
Q2 with h;, = V2 / 2% Our aim in this section is twofold. First, we want to numerically illustrate
the theoretical results. Secondly, we want to study the practical performance of the different
Algorithms according to various criteria including the computational time, the evolution of the
sparsity pattern throughout the iterations and the influence of the fineness of the triangulation.
Since the small number of Dirac delta functions in these examples aid the practical performance
of Algorithm [3] we postpone a comparison between sequential point insertion algorithms and the
path-following strategy to the following chapter. In all examples we consider the A-optimal design
problem, i.e. ¥ = Tr(-+Zy)~! and the discrete state and the associated sensitivities 9S[g] are
computed for a fixed ¢ once at the beginning. During the execution of the different variants of
Algorithms 2] and [6] no additional PDEs need to be solved. Moreover, the gradient of the reduced
cost functional is given by

V()] (2) = — Te((Z(u) + To) " T(0) (T(w) + To) ™) = ~[[(Z(w) + To)S[ (@) |3 Vr € 2,

which relates the pointwise value of the gradient directly to the corresponding sensitivity vector
0S[](z) € R™. A corresponding computation on the discrete level allows for an efficient imple-
mentation based on a single Cholesky-decomposition of Z(u) 4+ Zy in each iteration. Moreover, a
corresponding expression for the Hessian-vector-product [VZ¢(u)(éu)] (z) for du € M(£2,) can
be derived by differentiating the above expression. In both examples, the assumptions on the
continuous and discrete state equation, see Assumption and Assumption [L.10] respectively,
can be easily verified.

4.7.1 Estimation of diffusion and convection coefficients

As a first example for the state equation (4.3]), we take a convection-diffusion process where for a
given ¢ € Qg = {q € R3 | 5 > ¢q1 > 0.25} the associated state y = S[q] € H}(£2) N C(£2,) is the
unique solution to

0 0
a(q,y)(p) =/ QVy Vo + go—L + gap—o- dw:/ fo du, (4.72)
0 &Ul 6$2 0

for all ¢ € H}(£2). The forcing term f is chosen as exp(3(z3 +x3)). This corresponds to the linear
elliptic equation

—Q1Ay+<g§>-Vy:f in 0,

together with homogeneous Dirichlet boundary conditions on 9f2. Here, the parameter ¢ contains
the scalar diffusion and convection coefficients of the elliptic operator. The observation domain
is chosen as 2, = 2 = [0,1]2. As a priori guess for the parameter we choose ¢ = (3,0.5,0.25) .
Note that while is a linear equation, the state y € H}(£2) NC(£2,) depends non-linearly but
differentiably on g. For each k € {1,2,3} the sensitivity dyx, = 0xS[g] € Ha(£2) NC(§2,) can be
computed from ([4.4). Due to the tri-linearity of the form a(-,-)(-) it fulfills

a(d, oyr) (p) = aler, §)(p) Vo € Hy(£2),

where ) = S[g] and e, € R? denotes the k-th canonical unit vector.
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First order optimality condition

In this section we numerically verify the discrete first-order necessary and sufficient optimality
conditions from Theorem Therefore we compute an A-optimal design for Example 1 on grid
level nine Ty, for § = 1 and Zy = 0. For the computation we use Algorithm [2| (together with
Algorithm |1 and a full resolution of the arising finite-dimensional subproblems), until the residual
is below machine precision. We obtain a discrete optimal design @, in M™(§2,) N M, with five
support points. By closer inspection we observe that two of the computed support points are
located in adjacent nodes of the triangulation. Applying the post-processing from Section
we obtain the design given in Figure . Alongside we plot the isolines of —Vay(ugp). As

i 1c

09k 115;441 09}
0.8} 0.8
0.7} 219;()68 071
0.6 |- 0.6
205 56758 205
041 041}
0.3 198;667 0.3
0.2 0.2}
0.1} 0.1}

0 ‘ . : : : : : : : ! 0 ‘ : : : ‘ : : : : !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X1 X1
(a) Optimal design g p,. (b) Isolines of =V, (tp.n).

Figure 4.1: Optimal design and isolines of the gradient.

predicted by Theorem —Vp(tugy) is bounded from above by the cost parameter § = 1
and the support points of ug align themselves with those points in which this upper bound is
achieved.

Confidence domains of the optimal estimator

Given the optimal design wy from Figure , and K > 0 we note that the measure ﬂhK =
(K/||ug,nl|m)up,p is an optimal solution to

in  Tr(Z -1 bject t <K,
wermin  Tr(@n(un)™) - subject to [lunfla <

since the A-optimal design criterion is positive homogeneous; see Proposition In this section
we compute the linearised confidence domains (4.10) of the least-squares estimator ¢ from (4.6
corresponding to ﬂhK for K =3-10%.

Note that, given a sparse design measure u, and the associated linearised estimator ¢, = ((jllin, (jﬁn, (jﬁn)T
see ([1.9), there holds Cov|Giin, Giin] = Zn, (u)~!; see the discussion in Section . Consequently we
have

3
Ih(u),;kl = Var[gh ], k€ {1,2,3} and Tr(Zy(u)™}) = ZVar[(jﬁn].
k=1
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Figure 4.2: Reference measures u; (left) and HhK’W (right).

As a comparison, we also consider the estimators corresponding to two reference designs of the
same norm. The first measure u; is chosen as a linear combination of three Dirac delta functions
. . . _KW . .

with equal coefficients while the second measure %, " is a solution to

min = Tr(WZ,(up) W) subject to [Jus||ym < K, (4.73)

ueM(£2,)

where W = diag(1,1,4), i.e. we place more weight on the variance for the estimation of g3. The
designs u; and u, W are depicted in Figure

For a better visualization we plot the 50%-linearised confidence domains of the obtained estima-
tors for the two dimensional parameter vectors (qi,¢2)7, (q2,¢3)", and (g3,q1)" in Figure
Additionally, for each design we report Tr(Zy,(u)~!) as well as the diagonal entries of Zp,(u)~! in

Table . As expected, since #g , is chosen by the A-optimal design criterion, we observe that

Table 4.1: Trace and diagonal entries of Zj, (u) !

o Ty Ta(w)y  Tn(w)s  Tr(Zn(u)™)

af  0.019 5627  5.955 11.601
wp  0.091  7.388  20.678 28.157
" 0023 1412 3.831 17.974
Tr(Zn (@)Y < Te(Zn(a™") ™Y < Te(Zn(ur) 7). (4.74)

Moreover we note that Zp (ak )I;kl < Ih(ul);kl for all k, i.e. the optimal estimator estimates all
unknown parameters with a smaller variance than the estimator associated to the reference design
u1. As a consequence, the linearised confidence domains of the optimal estimator are contained
in those of the one corresponding to u;; see Figure In contrast, considering aff’w, we have
Zh(af’w)g; < Ti(al)s3 and Ty (alff) ! < Ih(af’ )in for k = 1,2, i.e. the third parameter is
estimated more accurately by choosing the measurement locations and weights according to ﬂhK’W
while the variance for the estimation of the other parameters is larger. This is a consequence of
the different weighting of the matrix entries in . On the one hand, the obtained results show
the efficiency of an optimally chosen measurement design at least for the linearised model. On the
other hand, they also highlight that the properties of the obtained optimal estimators crucially
depend on the choice of the optimal design criterion V.
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(a) Ellipsoids for (q1,¢2)T. (b) Ellipsoids for (g2, q3)". (c) Ellipsoids for (g3, q1)%.

Figure 4.3: Confidence ellipsoids for the estimators associated to @ (blue), u; (red) and ahK’W
(yellow).

Comparison of point insertion algorithms

In this section we investigate the performance of the successive point insertion algorithm presented
in Section We consider the same setup as in Section i.e. we solve the A-optimal design
problem for Example 1 on grid level nine with 8 = 1 and Zy = 0. The step size parameters a and
v in (6.24) are both chosen as 1/2 throughout the experiments and the iteration is terminated if
either @(u*) < 107? or if the iteration number k exceeds 2 - 10*. The aim of this section is to
confirm the theoretical convergence results for Algorithms [2] and [3] as well as to demonstrate the
necessity of additional point removal steps.

Additionally we want to highlight the differences between the three presented choices of the new
coefficient vector u*t! concerning the sparsity of the iterates and the practically achieved accel-
eration of the convergence. Specifically, we consider the following implementations of step 4. in
Algorithm [2}

GCG In the straightforward implementation of the GCG algorithm we set uft! = u¥+1/2 je.
only steps 1. to 4. are performed.

SPINAT Here, we employ the procedure suggested in [50], termed “Sequential Point Insertion
and Thresholding”. In step 5., u**1 is determined from a proximal gradient iteration (4.29)).
The step size is chosen as o, = (1/2)"0¢k, where ogj > 0 for the smallest n € N giving
F(u(u**(o1,))) < F(u(uF*1/2)). In particular, given u#1/2 = 3", uf+1/25$i, we choose o
as

. ul

Note that by this choice of o, the coefficients of all points x € supp uFt1/2 with
=~V () (x) < B,

are set to zero in the first trial step (i.e. for n = 0).

PDAP Here, we consider Algorithm [3| i.e. the coefficient vector u**! is chosen as in by
solving the finite dimensional sub-problem up to machine precision in each iteration.
For the solution we use a semi-smooth Newton method with a globalization strategy based on
a backtracking line-search. The convergence criterion for the solution of the sub-problems
is based on the norm of the Newton-residual. As already discussed, this method can be
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interpreted as a method operating on a set of active points Ay, = supp u* (see section [4.4.2)),
we reference it by the name: “Primal-Dual Active Point”.

All three versions of the algorithm are also considered with an application of the sparsification step
in Algorithm 1 at the end of each iteration. In the following this will be denoted by an additional
L(+PP7).

10%

106 T T
— GCG — GCG

— GCG+PP E — GCG+PP |

SPINAT SPINAT
= SPINAT+PP |4 = SPINAT-+PP
—— PDAP —— PDAP

PDAP+PP PDAP+PP

Supp wi

10t [

rp(wk)

ST T T
\Y4

L L L - L 100 Il Il L - L
10° 10! 10? 10% 10 10° 10! 10? 10% 10

iteration counter k iteration counter k

(a) Residual 7r(u*) over k. (b) Support size # supp u* over k.

Figure 4.4: Residual and support size plotted over iteration number k.

In Figure we plot the residual 7z (u*) for all considered algorithms over the iteration counter
k. For[GCG]as well as[SPINAT]| we observe a rapid decay of the computed residuals in the first few
iterations. However, asymptotically both admit a sub-linear convergence rate, suggesting that the
convergence result derived in Theorem [£.15] is sharp in this instance. The additional application
of Algorithm [I] has no significant impact on the convergence behavior. We additionally note that
both [GCG| and [SPINAT] terminate only since the maximum number of iterations is exceeded
while the computed residuals 7z (u*) and thus also the primal-dual gap @(u*) remain above 1073.
In contrast, [PDAP] terminates after few iterations within the tolerance backing the findings of
Theorem Note however that this is far from being conclusive since Theorem cannot be
applied to the discrete problem due to the piecewise linearity of —V,(ug ). Additionally, for
fixed h, Algorithm [3]always converges in finitely many steps since possible support points are only
chosen from N}, and the subproblems are solved up to optimality. We examine the convergence
behaviour on a sequence of meshes in a following section.

Next, we study the influence of the different point removal steps on the sparsity pattern of the
obtained iterates in Figure [£.4D] For [GCG| we notice that the number of support points increases
monotonically up to approximately 60. This suggests a strong clusterization of the intermediate
support points around those of @g j, which is possibly caused by the small curvature of —Vy,(ug )
(see Figure in the vicinity of its global maxima. A similar behavior can be observed for the
iterates obtained through [SPINAT] However, compared to [GCG]|the support size grows slower due
to the additional projected gradient step in every iteration. Additionally, after reaching a threshold
at approximately k = 110, the support size decreases monotonically in the remaining iterations.
Concerning the application of Algorithm [I, we observe that the support remains bounded by
6 = 3(3 4 1)/2 as predicted by Proposition [£.16] We note that this upper bound is achieved in
almost all but the first few iterations for [GCG| and [SPINAT] In contrast, [PDAP)] yields iterates
comprising less than six support points independently of the additional post-processing. A closer
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inspection reveals that the loop in Algorithm [I]is not carried out in any iteration, i.e. the sparsity
of the iterates is fully provided by the exact solution of the finite-dimensional sub-problems.

T T T
— PDAP
— PDAP+PP |

100

T T

— GCG

— GCG+PP
SPINAT

= SPINAT-+PP

10° £

104 F

10% £

102

10t ——

rp (wi)
rr(wi)

10° ¢
1071 L
1072
10 3L
1074

I I I I I I I I I I I I ! I I I I I
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
computation time ¢ computation time ¢
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Figure 4.5: Residual rg(u*) plotted over the first second of the running time.

Last, we report on the computational time for the setup considered before, in order to account for
the numerical effort of the additional point removal steps. The evolution of the residuals in the
first second of the running time for [GCG| and [SPINAT] can be found in Figure [£.5a] We observe
that neither the additional projected gradient steps nor the additional application of Algorithm
lead to a significant increase of the computational time. For [PDAP]| the measurement times and
residuals for all iterations are shown in Figure We point out that [PDAP)| converges after
12 iterations computed in approximately 0.4 seconds in this example. This is comparable to the
elapsed computation time for computing 25 iterations of the [GCG| method. The small average
time for a single iteration of [PDAP]is on the one hand a consequence of the uniformly bounded,
low dimension of the sub-problem . On the other hand, using the intermediate iterate
uFT1/2 to warm-start the semi-smooth Newton method greatly benefits its convergence behavior,
restricting the additional numerical effort in of [PDAP]in comparison to [GCG|to the solution of a
few low-dimensional Newton systems in each iteration. These results again underline the practical
efficiency of the presented acceleration strategies.

Mesh-independence

To finish our numerical studies on Example 1 we examine the influence of the mesh-size h on
the performance of Algorithm 2 We again consider the A-optimal design problem for § =1 and
Ty = 0 on consecutively refined meshes 75, , I = 5,...,9. On each refinement level [ the optimal
design problem is solved using[GCG|and [PDADP], respectively. The computed residuals are shown in
Figure For both versions we observe that the convergence rate of the objective function value
is stable with respect to mesh-refinement. A theoretical investigation of this mesh-independence
property should be the subject of future work. Moreover the observed rate seems to be linear
which backs up the theoretical results on the improved convergence behaviour of Algorithm [3] see
Theorem However, since the continuous sensitivities as well as an analytic solution #g to
the continuous optimal are not available its requirements on the curvature of the optimal gradient
can not be checked straightforward. Additionally, in Figure [£.7, we plot the support size over
the iteration counter for each refinement level. For [GCG| we observe a monotonic growth of the
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Figure 4.6: Evolution of residuals rz(u*) over iterations k on different refinement levels.

support size up to a certain threshold. Note that the upper bound on the support size seems to
depend on the spatial discretization: the finer the grid, the more clusterization around the true
support points can be observed. In contrast, for PDAP] the evolution of the support size admits
a mesh-independent behavior in this example.
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Figure 4.7: Evolution of the support size on different refinement levels.

4.7.2 Estimation of a parameterized source term
In this section we consider the A-optimal for a linear elliptic PDE with a linear parameter-to-

state dependence. More concretely, for a given ¢ = (q1,q2) € R? the associated state y = S[q] €
HE(£2) N C($2,) is the unique solution to

a(q, y)(p) = /QVy Ve dz = /Q((hfl + qo.f2)p dz, (4.75)

for all ¢ € H}(£2). Here, the soure term is given as a linear combination between

fi(z1,z2) = sin(z1) sin((7/3)z2), fa(x1,x2) = —cos(1.777 % x1) sin((7/3)x2).
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4.7 Numerical examples

Obviously, this corresponds to a Laplacian equation with homogeneous Dirichlet boundary condi-
tions in which the right hand side is parameterized by g¢:

—-Ay=qfi+qfe in2, y=0 ondf

Due to the linearity of the parameter-to-state map the k — th sensitivity dyr = S, k = 1,2
fulfills

/ Voyi - Viodx = / frpdx, k=1,2.
2 [0}

We choose 2 = [0,1]2, 2, = [0.1,0.9)> and 3 = 1 as well as Zy = 0. The computed optimal design
ugp = 1_1}1‘533? + 1‘1’21650;21 on Tp,, comprising two optimal sensors is depicted in Figure alongside
the isolines of —Vp,(ugp).

This example is geared towards the verification of the a priori error estimates for the objective
functional and the optimal design which were presented in Section [£.6.2] Therefore let us briefly
discuss the assumptions made for their derivation. First we note that —V1)y,(us ) admits exactly
two global maximizers which align themselves with the support points of ugj;. Additionally,
we verify that the Fisher information matrices {Z, (1)}, are linearly independent. Hence
the discrete optimal design g} is unique. Due to the weak* convergence of the discrete design
measures this may also indicate a similar behavior in the continuous problem. From the smoothness
of the source terms fi and fa, respectively, we conclude 9;S € C?(K), see [118,/124], as well as

1085 = O Sllery < elIn(h)|h?, k=1,2,

for every open subset K CC 2 and for all h < hg small enough, c.f. [225]. Furthermore the
Hessian of the A-optimal design criterion is positively definite at Z(@g) + Zy. Consequently, since
Q, CC 2, Assumption is fulfilled with v(h) = |In(h)|h%?. However since the continuous
optimal gradient —V(iig) € C%(§2,) is unknown and —V1y,(tig) & C?(£2,) the verification of the
assumptions on its curvature is not directly possible and is therefore left for future work.

1 T T T T T T T T T 1r
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07} ] o7l 2 [_\ 2 /\; Z
) 1577 19,76 ) K ©
06} ; : i 06} | i@ | i\(’Qj
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X1 %1
(a) Optimal design g j,. (b) Isolines of —Vty (g.p)-

Figure 4.8: Optimal design and isolines of the gradient.

To verify the a priori estimates, we compute discrete optimal designs @gp, € Mp, N M7T(£2,) on

a sequence of triangulations 73, , k = 2,...,11. No analytic reference solution is available for this
example. Therefore we consider a sequence of uniform triangulations 7, , & = 1,...,12, of {2,
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4 Sparse sensor placement for PDE-constrained inverse problems

where 77“ is obtained from 7, by a slight perturbation of the node at (0.5,0.5). As a reference
Ug = 010z, + U203, we compute an optimal design on the finest grid 7212. We emphasize that the
support points of the reference measure are not included in the set of nodes N}, corresponding
to the finest grid 7p,,.

We evaluate the numerical results. Note that we do not expect to see the influence of the log-
arithmic factor |In(h)| in the computations. In Figure we display the convergence rates of
the optimal objective function values as well as the Fisher information matrices. As predicted by
Theorem we observe the full order of convergence for the optimal objective function values
Fp(ug ) and a reduced order of h ~ ~y(h) for the error of the Fisher information matrices Zp (ug 1),

see Corollary

10% T T T 10%

= 1Zn@sn) = Z(p)llsym n —— Wy (g 1, 3)
1071 | - |y (a5,,) — Fap) E == Wi (g, dp)
=== h,h? 101 £ |===h
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§ ot T _eezti
51 e 100F
R S St :
e - =
S 107° < 107!
g ~ 1072
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10~ 10-3 102 107! 1074 10-3 1072 107!
mesh size h mesh size h
(a) Errors for Fy,(ag,,) and Zy,(ag,p)- (b) Errors for Wi (blue) and W (black)

Figure 4.9: Convergence rates with respect to h.

The convergence rates for the modified Wasserstein distance W; (agn, up) and the Wasserstein-1
distance Wy (ugn/||ug.nllm,us/||ugl|pm) of the normalized optimal designs are displayed in Fig-
ure The Wasserstein distance between the sparse measures is computed by solving a linear
program following [206, p. 64]. As predicted by the theory, see Theorem the quantities
Wi (agn/|ugpllm, us/llugllam) as well as Wi (g s, ) admit an asymptotic linear rate of conver-
gence h =~ \/~(h). However, for the latter one, the convergence rate on coarser grids appears to be
better. To explain this observation we recall that Wy (g, tg) = Wi (tgn/|tg.nlm, us/laslam) +
ll1eg.nllm—l|@s||am|. For the special case of the A-optimal design problem with Zg = 0 we obtain

Bllallm = —(Vi(ag), ag) = Te(Z(ag) ™) = v(ag),

due to the optimality conditions. Analogously we deduce (g ) = B||usn|sm. Hence, in this
situation, we obtain

28/asllm — lagnllml = |F (@) — Fr(ugp)| < [In(h)|R?.

This explains the apparently better behavior of W, (ug,n, ug) on coarser grids, while its asymptotic
convergence rate is dominated by Wi (g s /||ug,nll M, @s/l|ws||m)-

Finally, we consider the convergence of the support points and the measurement weights as dis-
cussed in Theorem and 4.61} respectively. For every k = 2,...,11, the discrete optimal design
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Figure 4.10: Convergence rates for support points and measurement weights

consists of two distinct support points agp, = 1_1’1”“ %hk + 1_1}1”“ 5:7:;% such that
1 2

_ _h _
max max [T — Tj|ge = max|z;* — T;|pa.
1=1,2 gzcsupp ﬂ% h, i=1,2

Hence we compute the errors max;— 2 |Z! — Z;|gs and max;—; o [@? — @;|. The results are shown
in Figure For the distance of the support points we obtain, as predicted by Theorem
the reduced rate of h = y/(h). Note that since supp tig C N}, and h denotes the mesh size, this
estimate is in some sense optimal. The same rate can be concluded for the error of the coefficients,
see Theorem [£.61] albeit the computed rate seems to be somewhat wiggly. Let us shortly elaborate
on this seemingly strange behavior. In Figure we plot the convergence rate of the coefficients
and two lines indicating convergence of order h with different constants. As one can see, the error
alternates between both reference lines. This implies a linear convergence behavior of the error
with constants depending on the sequence of grids. For example the constants might depend on
the barycentric coordinates of the reference support points within the cells of the triangulation
Th, - A similar behavior, that strengthens this conjecture, has been observed and examined for the
convergence of the optimal control in a semi-infinite optimization problem, see [190].

Putting all previous observations into a nutshell, we conclude that the a priori error estimates for
the sparse sensor placement problem from Section [£.6.2] are sharp in general and thus optimal.
A next natural step is to consider meshes obtained by adaptive refinement based on a posteriori
error estimates instead of uniformly refined triangulations. As for a priori error estimation, a
starting point for such considerations may be provided by studying known concepts in state-
constrained and semi-infinite optimization. For references on adaptivity in this context we point
out [29./126,192.208.
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5 Sparse sensor placement for
infinite-dimensional Bayesian inverse
problems with PDEs

While we gave an in-depth discussion of sparse sensor placement for unknown finite dimensional
parameter vectors in the preceding chapter, many complex processes rely on mathematical models
incorporating unknown distributed functions. For example they may describe boundary and initial
conditions of the model or they directly enter the definition of the differential operator describing
the system. A study of optimal sensor placement problems in this context is in the main focus of
this chapter. We consider real-life processes, e.g. from physics or biology, which are mathematically
modeled by the weak form of a partial differential equation

a(g,y)(p) =0 Vo eW, (5.1)

This equation relates the state variable y € Y to an unknown parameter function ¢ € L?(£2). The
state space Y and the test space W are suitable sets of functions on a spatial domain 2 C R?,
d € N, which we assume to be open and bounded. For the precise assumptions on the underlying
PDE model we refer to Section [5.1.2] In the following, our interest lies in the inverse problem of
identifying a distributed function ¢* such that the associated partial differential equation and its
solutions provide a reasonable mathematical surrogate for the modeled process.

As in the previous chapters a standing assumption of the following discussion is that the parameter
cannot be measured directly. Inference on ¢* is only possible through a vector yq € RY containing
pointwise measurements of the quantity represented by the state y. These are taken at a finite
set of sensor sites {xz}f\il C 2, in an experiment. The set {2, C 2 denotes a compact subset
of possible sensor locations. Furthermore, the data is assumed to be subject to perturbation by
random additive noise £ ~ N (0, X) where X € RV*N ¥, =6, /u;, 4,7 =1,..., N. The positive
scalar u; > 0 models the diligence of the measurement taken at the point x;. An estimate for
the unknown parameter is then obtained by matching the expected response of the mathematical
model with the obtained measurements

findge L*(2), yeY: y() =y algy)(p)=0 YpeW

where yfi denotes the measurement obtained at z;, i =1,...,N.

We point out that the measurements in this problem are found in a finite dimensional observation
space whilst the unknown parameter is given by a distributed function in the infinite dimen-
sional parameter space L?(2). Without further knowledge on the parameter, e.g. its structure
or smoothness, this discrepancy implies that the described inverse problem is inherently ill-posed.
Thus it may admit infinitely many solutions or no solution at all. Moreover, the presence of mea-
surement noise may lead to a severe misinterpretation of the obtained results since solutions do
not depend continuously on the measurements. In order to circumvent these pathological cases
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

one usually resorts to sophisticated regularization techniques allowing for a stable solution of the
problem. Through this estimation process, the uncertainty of the measurements is also propa-
gated into the obtained results. In particular, a full discussion of the inverse problem requires
to quantify the influence of the measurement errors on the solution and to critically evaluate its
reliability. As already discussed in the previous chapters, the quality of the solution critically
depends on the measurement process. A careful choice of the used sensors and their positioning
in the spatial domain may on the one hand yield measurements from which we can, in some sense,
optimally draw conclusions on the parameter while mitigating the stochastic variability due to
the measurement errors. On the other hand, restricting the measurements only to informative
locations also keeps the overall cost of the experiment low.

The aim of this chapter is to provide and rigorously analyse an optimization framework which
allows for a systematic choice of the measurement setup before any measurements are performed
in practice. Obviously such a sensor placement formulation should also take the applied regular-
ization strategy for the solution of the inverse problem into account. For optimal sensor placement
based on Tikhonov regularization for high-dimensional parameters and the mean-squared error of
the least-squares estimator, we refer to [127128| and the METER method, [18]|. Engineering appli-
cations of these approaches include the optimal monitoring of gravity dams, [180], and impedance
imaging, [152]. More recently, probabilistic regularization approaches for inverse problems with
infinite dimensional parameter spaces have received considerable attention. In this context, the
uncertainty on the true value of the parameter is modeled by a probability measure on the pa-
rameter space, the so-called prior distribution. Instead of trying to compute a single function
satisfying the constraints in the inverse problem we update the prior knowledge on the unknown
parameter based on the obtained measurements and our assumptions on the measurement model.
This is done by applying Bayes’ Theorem. The solution to the inverse problem is then given
by a new measure, the posterior distribution, which reflects our remaining degree of uncertainty
on the parameter after observing the provided measurements. This framework allows to assess
the statistical quality of the obtained solution in a natural way by comparing properties of the
prior and the posterior distribution. For example, if its finite, we may compute the posterior
variance which quantifies the stochastic variability of the probability measure around its mean.
For a deeper discussion on the Bayesian approach to infinite dimensional inverse problems we
refer to [804/111,250]. Simultaneously to the advances in the theory of Bayesian inverse problems
with PDE constraints, the interest in optimal sensor placement for this type of regularization rose.
Similar to the finite dimensional situation of the previous chapter these approaches are based on
minimizing scalar-valued optimal design criteria acting on the Fisher information operator of the
parameter estimates. This includes e.g. infinite dimensional analogues of the A and D optimal de-
sign criteria. For references on this highly active line of research we point out to [3-6,10]. In [138] a
similar reasoning is applied to optimally place temperature sensors in a thermo-mechanical system.

Throughout the course of this chapter we will adopt this probabilistic view on inverse prob-
lems and model the uncertainties on the true value of the parameter as a Gaussian probability
measure. Moreover we again resort to a linearization of the model equation around a given a priori
guess § € L%(§2) and define the sensitivity operator 9S[§]: L?(£2) — Y describing the influence of
changes in the linearization point on the associated state variable. From the Bayesian viewpoint,
this linearization leads to a Gaussian approximation to the posterior distribution. In order to
improve the estimation results we propose to optimize the measurement process by solving the
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sensor placement problem

N

i U(X*YIX) + 5.2
zeNY, ﬂlﬂgf\’, NEN[ ( ) ﬁ;u] ( )

Here, ¥ denotes a convex optimal design criterion based on the Fisher information X*X~'X which
is parametrized by the measurement setup as

N
(6q1, X* X7 X6q2)12(0) = Y wi0S[q]6q1 (2:)0S[d)0q2 (i) Voaq1, dga € L*(£2).
=1

The additional term involving the total amount of measurements and the cost parameter 5 > 0
models the total cost of the measurement process. While this formulation is clearly motivated
by the problems presented in [36}/10] we point out that all of the previously mentioned works
discuss the problem of selecting optimal sensor positions in an a priori given finite set of possible
candidate locations in {2,. This reduces the sensor placement problem to a convex optimization
problem for the diligence factor u associated to the respective sensor. However, this problem is still
computationally challenging due to the infinite dimensional parameter space. A major novelty of
the present work is that sensors can be placed everywhere in a set of possible sensor locations (2,
which may contain an infinite number of candidate locations. Furthermore the optimal number
of placed measurement sensors is also subject to optimization and is thus not a priori fixed. In
particular, the possibly complicated dependence of the Fisher information operator on the sensor
positions renders the present problem non-convex. Obviously this fact complicates the algorithmic
solution of the sensor placement problem. We refer e.g. to [116] where the authors aim to place
a fixed number of sensors with prescribed diligence factors at optimal positions. In order to do
so they first discuss the computation of derivatives of the design criterion with respect to the
sensor positions. This is a computationally challenging problem in itself but crucial for derivative-
based optimization routines. Moreover we point out that the a priori unknown optimal number of
measurements additionally introduces a combinatorial aspect to the problem in our case. Clearly,
this further aggravates the algorithmic treatment of the problem.

In order to bypass these difficulties we consider the proposed sensor placement problem in the
framework presented in Chapter [3] Instead of optimizing for the individual sensors we rewrite the
problem and minimize with respect to their distribution. Mathematically these are modeled as
positive Borel measures on the set of possible sensor locations. This leads to the sparse sensor
placement problem

min [P(() + Bl

Here, given u € M™(£2,), the generalized Fisher information operator Z(u) is characterized by
(6q1,Z(u)dg2) 122y = (9S[4]6q105[4ldq2,u) Vdqu, dq2 € L%(92).

Note that this measure-based sensor placement problem is convex due to the linear dependence
of Z(u) on the optimization variable u. Thus we may study existence of solutions and sufficient
optimality conditions by resorting to results from convex analysis. Moreover its efficient numerical
solution can be based on a generalization of the Primal-Dual-Active-Point strategy presented in
the previous chapter. These methods only require the derivative of the optimal design criterion
with respect to the measure u and not with respect to the individual sensors. At last, in order
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

to numerically compute an optimal design, the PDE constraints as well as the parameter have
to be discretized. We base our discretization on a finite element surrogate for the PDE con-
straints and a variational discretization of the measurement setup. The parameter space L?(2)
is replaced by a finite dimensional subspace spanned by eigenfunctions of the prior covariance
operator. As already done for the finite dimensional case in the previous chapter, convergence
of these discretization schemes is proven and a priori error estimates between the discrete and
continuous optimal solutions are provided. Again, we are not aware of any comparable results in
this direction. As in the finite dimensional case we stress the similarity between our approach and
the notion of approximate design theory dating back to Kiefer and Wolfowitz, [165]. However,
to the best of our knowledge, there are no previous works on the extension of their reasoning
to infinite dimensional parameters entering in a partial differential equation. Thus the results of
this chapter should be interpreted as a first step towards optimal sensor placement accounting for
both, the infinite dimensional nature of the distributed parameter and a possibly infinite number
of candidate locations for the sensors.

To illustrate this rather abstract setting and to highlight the practical relevance of the proposed
method we give a short example. Given a suitable triple of unknown functions (g1, g2, q3) € L?(£2)3
we consider the elliptic diffusion equation

a(q,y)(¢) = (exp(q1) VY, Vo) 12(0) + (4202, Y, ¢) 12(2) + (430219, ©) 12(2) — (f50)12(2) = 0, (5.3)

for all ¢ in a suitable test space W. Similar models are frequently encountered in different
research disciplines. In geophysical sciences, for example, diffusion models such as the Darcy
equation, [235|, are simple surrogates for the subsurface flow of fluids. The diffusion coefficient
models the permeability of the underlying rock which is inferred from measurements of the fluid
pressure y. Knowledge of this quantity is critical to make reliable predictions on the diffusion of
nuclear waste due to a washout by groundwater or to optimize the recovery of underground oil
resources. Diffusion equations incorporating unknown distributed functions are also encountered
in oceanographie, [189,[265]. The state variable y models the concentration of a tracer substance
diffusing in the ocean. Point measurements of this quantity are then used to infer on the unknown
horizontal water velocities (ga, q3) € L?(£2)? as well as the diffusion coefficient ¢;. In both of these
examples researchers are faced with the problem of identifying a distributed function based on a
limited amount of available data.

This chapter is organized as follows. We do not assume that the reader is familiar with the
concept of probability measures on separable Hilbert spaces. In the following section we therefore
briefly elaborate on the necessary theoretical background on Gaussian measures on L?({2) and
linear Bayesian inversion. Thereafter we apply the Bayesian methodology to inverse problems
involving linearized PDE constraints in Section[5.1.2] Before proceeding to the optimal placement
of measurement sensors we first have to define suitable design criteria quantifying the statistical
properties of the obtained solution to the inverse problem. Several suitable examples and their
mathematical properties are studied in Section In Section we finally formulate the
optimal sensor placement problem based on the framework presented in Chapter | Existence
results as well as a structural characterization of optimal measurement designs are provided.
Their efficient numerical computation is in the focus of Section [5.3] Here we propose an extension
of the Primal-Dual-Active-Point method from Section [£.4.2] We point out that these discussions
are all based on the continuous problem which is formulated on the space of Borel measures. In
order to compute an optimal measurement setup in practice, the problem has to be discretized.
To this end, Section [5.2| puts the focus on suitable discretization strategies and the associated a
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priori error analysis. The presentation is complemented by numerical experiments which highlight
the practical efficiency of the proposed method.

5.1 Sparse Bayesian optimal design

5.1.1 A primer on Gaussian random fields and linear Bayesian inference

In this section we provide the necessary background on Gaussian measures on L?(2) and Bayesian
inference in infinite dimensional Hilbert spaces. Readers familiar with this concept may skip this
section and proceed directly to Section Since the focus of this thesis lies on the analysis
and the numerical treatment of the associated sensor placement problems we tend to keep this
presentation short and concise, providing additional references where necessary. In the following
we consider a probability space (D, F,P). Here D denotes a set of samples, F denotes a o-algebra
over D (a set of events) and P: F — [0, 1] is a probability measure

P(D)=1, PWM)=0, P (U oi> => P0y), O;eF, ICN
el el

Furthermore we need some tools from measure theory. Let us consider two measurable spaces
(X, A) and (Y,B). For a (A, B)-measurable mapping f: X — Y we recall the definition of its
preimage as

ffiB— A, f1O)={zcX|f(x)ec0}, YOcB.
Given a measure p: A — R, U {400} its push-forward under f is defined as
fFu: B—= Ry U{+oo}, O p(f~1(0)).
Let us first recall the definition of Gaussian measures on the real line, |77, Section 1.2.].

Definition 5.1. Consider the measurable spaces (D, F) and (R,B(R)). A probability measure
p: B(R) — Ry is called Gaussian if there exists m € R and o > 0 such that, if ¢ > 0, we have

(z—m

14(0) = \/21r7/oexp< 202)2> dz, YO € B(R),

or, whenever ¢ = 0,

u(O):{(l)’ Zig . YO € B(R).

To stress the characterization of u by m € R and o > 0 we write p = N'(m,0?) A (F,B(R))-
measurable mapping (: D — R is called a Gaussian random variable if the probability measure

p = C*P is Gaussian.

In the following definition, we now fix the notion of a Gaussian probability measure on L?(2).
We refer e.g. to [215, Definition 2.1.1.].
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Definition 5.2. Consider the measurable spaces (D,F) and (L?(£2),B(L?(£2))). Furthermore
given v € L?(£2) we denote the associated linear form on L?({2) by

v L) >R, z— (v, 2) 12(0)-

We call ;1 a Gaussian measure on (L?(£2), B(L?(£2))) if for every v € L?(§2) the probability measure
o = (V)% is a Gaussian measure on R.

Further let a (F, B(L?(f2)))-measurable mapping q: D — L?(§2) be given and set y = ¢*P. The
mapping ¢ is called a Gaussian random variable distributed according to p if p is a Gaussian
measure on L2(§2). In short we denote this by ¢ ~ pu.

In the following we will always think of q: D — L?(2) as a random field distributed according
to a Gaussian measure p. Let us now consider the measure space (L*(£2), B(L%(§2)), ). Given
f € LNL2(92), B(L*(12)), p) define

E[f(g)] = /D f(g(w)) dP(w) = /L £(2) du(z).

2(92)

Here the change-of-variables formula, [40, A.3.1.], was used in the second equality. The following
proposition is due to Theorem 2.1.2. and Proposition 2.1.4 in [215].

Proposition 5.1. Let ¢: D — L*(£2) be a Gaussian random variable distributed according to p.
Then there exist a unique function g, € L?(2) and a unique positive trace class operator Ty, i.e.

(6g1, Tybq2) 12(2) = (Tudq1, 6a2) 12(),  (6q1, Tudqr)r2(0) 2 0,  Trreg)(Ty) < oo
for all §q1 5qo € L*(82), with the following properties:
o EX(v,q)12()] = (v, ) 12(2) for all v € L*(£2).
o EX[(v,q = qu)r2(2) (2,4 — 4u)r2(0)) = (0, Tpz) 1200y for all v, z € L*(92).

e Var(q) := E*[||lqg — QMH%Q(Q)] = Tl"L2(Q) (Tu)-

Furthermore a Gaussian measure is uniquely defined by these properties.

Proposition 5.2. Let two Gaussian probability measures p1 and pz be given. Denote by qy,
and Ty, the associated function and positive trace class operator from Proposition respec-
tively, © = 1,2. Then there holds

Bl = p2 <= TMl = TM27 Q1 = Qus-
Definition 5.3. We call g, the mean and T}, the covariance operator of p.

Remark 5.1. It is worthwhile to note that given a random variable ¢ ~ p the associated covariance
operator T;, quantifies the uncertainty of ¢ in some appropriate sense. For simplicity assume
that g, = 0 and let 6q € L?(£2) be given. Following Definition the mapping

msq: D = R, w (q(w),0q) 2.0,
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is a scalar-valued random variable distributed according psq = N(0, qu). Its variance agq >0 is
calculated from the second property in Proposition [5.1] as

o3, = B*[(4,09) 2 ()] = (04, Tu0q) 12(02)-
Thus the weighted scalar-product
((S(LT,U«(SQ)LZ(Q) = HT;}/Q(SQH%Q(Q)v
provides a measure to quantify the uncertainty on g into the direction of 6q € L?(£2).

Since T}, is positive and of trace class on L?(£2) there holds T, € Pos(L*(£2), L*(£2)). Following
the discussion in Section there exists a function kg, € L?(2 x §2) with

[T,v](x) = /QkTM(J:,y)U(y) dy, Yove L*(0), kr,(x,y) = k7, (y,2), ae x,y € 2.

The function kr, € L%(2 x ) is called the covariance function of u. Recalling the Hilbert-
Schmidt theorem, see [264, Theorem VI.3.2|, and Lidskii’s theorem, [213], we deduce the following
results.

Proposition 5.3. There exists a sequence of scalars {\;i}ien, \i > Xiz1 > 0, i € N, and an
orthonormal system {¢;}ien of L*(82) with

Tudi = Nidi, v =qy+ Z(U, bi)r2(2)®in  Trreo)(Ty) = Z Ai < 00
=1 =1

for some q, € KerT,, and all v € L*(12).

The following result allows for an integral representation of the trace, |53, Theorem 3.1.].

Proposition 5.4. There exists a function /;:T# € LY () with

TILQ(.Q)(T/L) = Z)\Z = /QI;ZT# dﬂ?,
i=1

where {\;}ien denotes the sequence of nonnegative scalars from Proposition .
Remark 5.2. At first sight it might seem tempting to define the kernel function I%TM as
(x) = kr,(2,2) forae xz €

Indeed this holds true if k7, € C(§2 x £2). However this definition is in general not meaningful
since the set

Qg={(r1,22) €2 X 2|21 =22},

has zero Lebesgue measure. The kernel /;:T# € L'(02) is obtained through a pointwise averaging
of kr, on the diagonal set 2. For a deeper discussion on this subject we refer to Section 3 of [53].

149



5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

From the boundedness of Var(g) in Proposition [5.1| we conclude ¢ € L?(D, F,P; L?(£2)) and thus
also

g€ L*(D x 2,F ® L(2),P x pr;R),

see |90} II1.11, Theorem 17]. Here F ® L(§2) denotes the tensor o-algebra on the cartesian product
D x §2, uy, denotes the Lebesgue measure and P x uy, is the uniquely defined product measure.
This allows for a pointwise discussion of the random field ¢ in an almost everywhere sense. For
a.e ¢ € {2 we have

Q('?x) € L2(Da]:7IP); R)a Q('vm) ~ Py = Po Q('a'r)_l :N(QM(x)vaH(ZE"T))a

ie. q(-,x) is a scalar valued Gaussian random variable. In the same fashion, looking at it the
other way round, there holds q(w,-) € L?(£2) for w € D P-almost surely. We call q(w, ) € L?(£2)
a realization of ¢ or a draw from p.

The pointwise variance Var, of ¢ is defined by
Varg: 2, = Ry, / lg(w, ) — qu(x)* dP(w). (5.4)
D

Since ¢ € L*(D,F,P; L?(£2)) there holds Var, € L!(£2) and, due to Fubini-Tonelli, its norm is
given as

[ var@) do= [ [ fatorn) — au@)P dB)de = [ By do = [ faGw.) = gl dw)
(9} 2JD 2 D

= E"[l|q - Q,LLH%Z(_Q)] = Trr2(0)(T))- (5.5)
In the remainder of this chapter, covariance operators defined through the inverse of an unbounded
operator will play a central role.

Lemma 5.5. Let Zp: dompz(g)Zo — L2(£2) be a not necessarily bounded but closed operator with
dense domain. Assume that Ly is self-adjoint and nonnegative on its domain i.e

(1, Zog2) 12(0) = (Zoq1,42) 1202y, (@1,Zoq1)r2(0) > 0 Va1, g2 € dompz () Zo,
as well as Im7Zy = L2(Q). Then Ly is a bijection. Its inverse
Iyt L2 (Q) — L*(2),

is a bounded, self-adjoint and positive operator on L*(§2). Assume that Io_l 1s compact. Then
there exists a sequence of positive scalars {\;}ien, Ai > Aiy1 > 0, i € N, and an orthonormal

basis {¢; yien of L2(£2) with

Iy i = Ny, v = Z(’U,@)B(Q)(ﬁi, Vv € L*(12).

i=1

If 72 N < o0, then T), = Io_l 1S a covariance operator.
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Proof. The existence of Z; ' and its boundedness follows from [52, Theorem 2.21]. Furthermore
we readily obtain

(o a1, @2)r2(0) = (T 'a1. ToZy "a2) r20) = (a1, Ty ' a2) 1200
as well as
(T a ) r200) = (T a1, ToZy ') 12y > 0,

for all q1,q2 € L?(£2). The existence of a sequence of positive eigenvalues {);};en and associated
eigenfunctions {¢;}ien forming an orthonormal L?(2) basis follows from the spectral theorem,
see [52, Theorem 6.11], and KerZy = {0}. If the eigenvalues of Z; ! are summable it is a positive
trace class operator on L?(2). This gives the last statement. O

For the rest of this chapter we make the following standing assumption.

Assumption 5.1. The compact operator Iyt L2(0) — LZ(Q) is given by the inverse of an
operator Zy as defined in Lemma (5.5 There hOldb Trr20)(Zy ) < o0

Note that the operator Zy and its inverse are completely characterized through their eigenvalues
and the associated eigenfunctions since

Toqs = Z)\ (g1, ) 2 %ir Ly a2 = Z)\i(Q2a¢i)L2(Q)¢i Vg1 € dompz o) To, g2 € L*(2).
=1

Throughout the rest of this chapter we adapt this spectral representation of such operators. More
general, for s € [—1, 1] we define the s-th fractional powers of Z; as

Ig: dOHlLZ(_Q)IS —>L2 QHZ)\ Qa ¢Z L2(n d)
The L?(£2) domain of Z§ is given by

domyz2() I = {q € LX) | |1 TallEzia) = DA (0,6 < < } :

i=1
Associated to a Gaussian measure p = N (g, Z, 1) we define its Cameron-Martin space.

Definition 5.4. Let a covariance operator IO_ in the sense of Lemmawith eigenpairs (A;, ¢;)ieN
be given. Its Cameron-Martin space is defined as

H = dompz(p) Ty/* = {q € L*(Q) | ||Ié/2QH%2(Q) Z)\ (90, D720 < OO}
Proposition 5.6. The bilinear form (-,-)3: H x H — R with
(a1, 20 = (T 01, Ty ") L2(0 ZA (g1, 0i)(a2, i) Va1, g2 € H,

defines an inner product on H. The set H together with (-,-)y form a Hilbert space with respect
to the induced norm

gl = 12 %all 122 = V(@ ) Va € H.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Proof. Obviously (+,-)y defines an inner product on H. Since Zj is closed so is its square root Ié 2,

As a consequence the domain of Ié/ % is a Hilbert space with respect to the graph norm

lalle = /llal2q) + llal, Va e #,
which is induced by the inner product

(q1:@2)c = (q1,92)2(2) + (q1: @)1 Va1, 92 € H.

Again following [52, Theorem 2.21] we conclude

1/2
lallee < lalles al2q) < e 25" a) () < cllallalalzzey Vo€ H,
and some constant ¢ > 0 independent of ¢. Thus the graph norm and the H norm are equivalent

on H finishing the proof. O

Since Z ! the associated Cameron-Martin space and L?(£2) form a rigged Hilbert space
H S L2(0Q) ~ LX) — HF,

where the first embedding (and thus the second) is compact and dense. We give a concrete example
to clarify this abstract definition.

Example 5.1. Let 2 be a bounded convex domain in R, d < 3. Furthermore denote by A = — A
the Dirichlet Laplacian on §2. It is well known that A defines an isomorphism between L*(£2) and
its L?(£2)-domain

domyz (o) A = H?(£2) N Hy(£2),

equipped with the graph norm. Furthermore its inverse A~' is compact and positive. Applying
the spectral theorem yields the existence of an orthonormal basis {¢;}ien of L*(£2) and a zero
sequence {\; }ien of positive scalars with 0 < A\iy1 < N\, i € N, and

A=) Nilg, ¢ 2y Vg € LP()

=1

Recently covariance operators constructed from solution operators to fractional elliptic equations
have increased in interest. We consider fractional powers of the operator A~' defined by

AT q—ZA LG @)d Vg € LP(1),

for s € [1,2]. If e.g. 2 =1[0,1]% and s > d/2 the eigenvalues of A~° are summable, see e.g. [250,
Theorem 2.10]. Thus A~* yields a covariance operator. Let us characterize the space

/HSZ{QGIP |Z)‘ Qa¢1L2 <OO}

for a general bounded and convexr domain §2 and s € [1,2]. In the extremal cases s =1 and s = 2
we readily obtain

={a€ Hy(2) [ IVall2(0) < 00 } = Hy(92),
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5.1 Sparse Bayesian optimal design

as well as
={qe Hy(2) ||| - Aqllr20) < o0 } = H*(£2) N Hy(£2),

by partial integration. The remaining cases for s € (1,2) can be identified from the Hilbert scale
defined by (— A)~Y, [42)], through real-valued interpolation

W = [H2(2) 1 HY(Q), H D)y = HY(Q) N HY(2) s € (1,2).
For the last result we refer to [51, Chapter 14].

Remark 5.3. Following these considerations it is clear that Zy can be extended to an operator
from H to H* with

(a1, o) n = (q1,92)n  Vaq1,q2 € H.

The existence of its bounded inverse Z; L. %* — H is a direct consequence of the Lax-Milgram
Lemma. Since there will not be ambiguities in the following we denote the resulting operator in
both cases, as operator on ‘H and on dompzg)Zo, by the same letter. Moreover set s = —1 /2.

Then the operator Z, 1/2 maps L?({2) continuously into the Cameron-Martin space H. Thus its
adjoint operator (Z, 1/ 2)"‘ is linear and continuous between the topological dual space H* of H
and L?(2). However we will also frequently interpret I_l/ ? as operator from L?(£2) onto itself. In

this situation Z, Y2 i self-adjoint i.e. (Z,, Y 2) =7, 2 1o improve readability we also write Z, 1/2

for the adjoint operator in both cases.

An useful characterization of a Gaussian random field ¢ is given in terms of its Karhunen-Loéve
expansion, see [215].

Theorem 5.7. Let a covariance operator I&l in the sense of Lemma be given and denote
by (Ni, di)ien the associated eigenpairs. Furthermore let {(;}ien denote a family of i.i.d. random
variables with (1: D — R, {1 ~N(0,1). Define the function

q: D= L*(2), q(w,z)=qu(z +Z\fc} i (5.6)

Jor P-a.e. w € D, a.e. x € §2 and some g, € dompz(p) 13/2

w :,/\/(qu,Io_l).

. Then q is distributed according to

This representation allows to compute (approximate) draws from the measure p = N(qu,Zy 1)
by simply truncating the orthogonal expansion in (5.6) after a fixed number of terms n. A
realization ¢"(w,-) € L?(2) of the truncated field

¢": D= L*0), ¢"(wz)=qux +Z\FQ

can then be obtained by drawing from the finite dimensional distribution N'(0,1d), Id € R™*™,
once the eigenvalues {\;}7_; of Zy ! as well as the associated eigenfunctions {¢;}7_, are known.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Let us now discuss the inverse problem of identifying a distributed function from scarce observa-
tions. To this end we consider operator equations of the form

find g € L*(2): Xq =y, (5.7)

Here X € L£(L?(£2),RY) denotes a linear and continuous operator and y; € RY is a given finite
dimensional vector containing the collected data. Moreover we assume that there is no systematic
modeling error in the equation but the measurements are subject to additive perturbation i.e.

ya=Xq" +e

By ¢ € RY we denote the measurement noise and ¢* € L?(f2) denotes the unknown parameter
which we aim to recover. We adopt a probabilistic description of the measurement error and
assume that e is given as realization of a Gaussian random variable e: D — R distributed
according to ugp = N(0,X) where X' is a diagonal matrix with X;; > 0,4 =1,..., N. Our aim
is now to identify ¢* based on the observation yg;. Obviously this problem is inherently ill-posed
due to the discrepancy between the finite dimensionality of the data and the infinite dimensional
nature of the parameter. In particular we stress that the kernel of X is non-empty. Thus the
equation in may admit infinitely many solutions or no solution at all depending on whether
yq € Im X or not.

In order to obtain a, in some sense, well-defined formulation we resort to a different concept of
solutions to the inverse problem. To this end we follow a Bayesian approach and describe our prior
believes on e.g. the smoothness of ¢* through a Gaussian probability measure py = N (qo,Z, 1).
In the following we give a brief and intuitive introduction to this regularization concept for inverse
problems. As before we tend to keep this presentation short. For a more detailed discussion we refer
to [80,/111,[250]. Denote by q: D — L?({2) the Gaussian random variable distributed according
to po. Now, instead of trying to compute a point estimator ¢¥¢ € L?(2) fulfilling X = y; we
construct a probability measure g on L?(£2) which takes into account the prior knowledge on
the unknown parameter as well as the information provided by the collected data. As a first step
we impose additional assumptions on the relation between the prior distribution of the parameter
and the distribution of the measurement noise.

Assumption 5.2. The random field g: D — L?(§2) and the measurement errors e: D — R are
independent i.e. there holds

P (¢ ' (01) Ne H02)) = uo(O1)urp(02) YOI € B(L*(£2)), Os € B(RY).

Let us recall that the prior distribution pg = N'(qo,Z, 1) is given by the push-forward of IP under q.
Thus we have

#0(0) =P(¢"1(0)) =P({we D |q(w) € 0}) VO € B(L*(%2)).

Loosely speaking we should interpret po(O) as the probability that a particular realization of ¢
is contained in a Borel set O. Formally we now define the probabilistic solution to the inverse
problem (5.7)) as

wial0) = [ oo (<ixe- vk ) dul) YO BIA@) 63
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where |- |%_, = (-, X7 1)g~ and the normalization constant Z(y4) > 0 is given by
y R

1
Z(ya) :/ exp <—2|Xq—yd\2g—1> dpo(q)-
12(92)
Note that we have
1
0< [ e (310 -valt ) duola) < mo(0) <1 VO € BLH@)

Thus pya is a well-defined probability measure on L?(02) if the normalization constant Z(yy) is
bounded away from zero. In this case u)4 is called the posterior measure or posterior distribu-
tion given the data y4. Let us give some interpretation to this definition. To this end we remark
that uggst(O) is, up to a constant, given by the weighted integral of the characteristic function as-
sociated to O taken with respect to the prior distribution. The data-dependent weighting function

incorporates the discrepancy of the predicted response of the model and the observed data

1 Xq=1yd

: (5.9)
exp (—%|Xq — yd%,l) else

m(ya,-): L*(2) = [0,1] where n(yg,q) = {
for all ¢ € L?(£2). The function 1/Z 7(yg,-) is called the Radon-Nikodjm derivative of pdds with
respect to the prior distribution pg. Loosely speaking the weighting of the integral and its normal-
ization lead to a probability measure whose mass is concentrated on Borel sets O with po(O) > 0
and on which 7(yg,-) = 1. Thus the posterior distribution indeed incorporates both the prior
knowledge on the unknown parameter as well as the information provided by the data. This al-
lows to make statements on the relative probability of an event in the parameter space provided
that the particular data vector y,; was observed.

A mathematically rigorous justification of the definition in can be based on the notion of
conditional probability density functions. We sketch these ideas for the sake of completeness. To
this end recall the assumption on the additivity of the measurement noise and its independence
on the prior distribution. We define the (F, B(R"))-measurable function y; with

ya: D = RN, wis Xqw) +e(w). (5.10)
We interpret y4 as a random variable. Its distribution is given by
Hya = Py ' () = N (Xqo, XT3 ' X + X0).

Note that its distribution depends on that of the measurement noise as well as the prior distribution
of the random field ¢q. This raises the following central question of Bayesian inference: Given a
realization yq of the data yq which conclusions can be drawn on the distribution of the random
field g7 The answer to this question is given by the conditional probability distribution pigy,
describing the relative probability of events in the parameter space if we know that y, attains the
value yq.

The goal of the following considerations is to compute a closed form expression for this distribution.
As a first step we therefore compute the probability measure p,, 4 characterizing the distribution
of the random variable y4 given an arbitrary but fixed function q € L?(£2) for the parameter. To
this end we exploit the additivity of the noise and consider the random variable y4|q: D — RV
given by

Yala(w) = Xq +&(w)
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

for P-almost surely all w € D. The conditional distribution of the data given knowledge on the
parameter is now obtained as fi,,lq = P(yalq~'(-)). Since the noise ¢ is normally distributed
according to up = N(0, X) we conclude that p,,q is also a Gaussian with p,, 4 = N (Xq, ). In
particular this implies

1 1
uyd|q(0>=/oze><p (—QIy—XqI§-1> dy—/ —n(y.q) dy YO € BRY),

where Z > 0 is a normalization constant independent of q € L?({2). The function 1/Z (-, q)
with

1
" BY 5 001wl e (- XaRo) vy eRY
is called the conditional probability density function of yg4 given q.

For a fixed measurement vector y4; € RY we now define the likelihood function
1
v ): D) - 0.1 7(ya.a) =exp (510~ valb )

for all ¢ € L?(£2). Note that this definition coincides with that of the weighting function in .
The famous Theorem of Bayes, see e.g. |80, Theorem 14] , now states that gy, is absolutely
continuous with respect to pg and the Radon-Nikodym derivative is given by the scaled likelihood
function. More in detail we obtain

Jom(ya,q) duo(q)
fL2(Q) Yda )dMO( )

Ligly,(O) = YO € B(L?*(2)).

Substituting the definition of the likelihood we recover the posterior distribution from (/5.8)).

We summarize our findings in the following theorem. In particular the previous observations imply
that, in the present case, the posterior measure is Gaussian. Thus it is completely characterized
through its mean and covariance operator.

Theorem 5.8. Let yq € RN be given and assume that qo € H. Then upost as given by (5.8) is a
well-defined Gaussian probability measure on L*(§2) with

Mzgst = N(ngst) Cpost)‘

The posterior mean qggst € H and covariance operator Cpost € L(H*,H) are given by
iy =00 + Cpost X X ya — Xqo) € H,  Cpost = (X*Z'X +To) "' € L(L*(2), L*(12)).

Proof. These statements can be concluded directly from Example 6.23 and Theorem 6.31 in [250]
noting that uo(L?(£2)) = 1. O

To close this short introduction we briefly recap the Bayesian approach to inverse problems and
point out to its limitations. Recall that the starting point of our considerations was given by
the ill-posed deterministic inverse problem . In order to obtain a well-posed formulation we
resorted to a description of the prior believes on the parameter in terms of a random field. This
can be viewed as a probabilistic regularization of the problem in which we describe the uncertainty
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on the true value of the parameter by a probability measure. Applying Bayesian inference to the
problem should then be interpreted as a learning process in which we re-evaluate our current
knowledge on the distribution of the random field based on the obtained measurements and thus
reduce this uncertainty.

First we again stress that the solution to the Bayesian inverse problem is given by a probability
measure over the parameter space and not by a single function. This allows for probabilistic
statements on the unknown parameter rather than deterministic ones. For example the measure
of a ball in the parameter space with respect to the posterior describes our degree of certainty
that the observed data y, corresponds to the response of the mathematical model X for some
parameter q inside this ball. However it does not allow to draw conclusions on the plausibility of
particular realizations of the random field since

po({a}) = iy ({a}) =0 Vq e L*(92).

Nevertheless, from a practical point of view, it would be desirable to define a point estimator re-
flecting our belief on the most likely value of the parameter given the obtained data. Following |79|
one possibility to do so is the consideration of minimizers to the Onsager-Machlup functional

min 51Xq — yal%o1 + 30— aolfe (5.11)
Note that this minimization problem resembles a Tikhonov regularization of the inverse prob-
lem for the particular case of choosing the Cameron-Martin norm as regularization term.
Obviously, in the present case, the global minimizer to this problem is unique and coincides with
the mean g2 of the posterior distribution. We call it the mazimum a posteriori probability
estimator or, to shorten, the MAP.

These considerations clearly highlight the importance of properly choosing the prior distribution
and its tremendous influence on the obtained results. A first restriction on its choice is given by the
well-established assumption of a Gaussian prior distribution. This implies that the eigenvalues
of Iy ! are summable. In particular the elements of the associated Cameron-Martin space will
exhibit additional smoothness beyond L?({2) regularity. To illustrate this fact, we pick up on
Example and 2 = (0,1)?. The Cameron-Martin space H associated to Zy ' = (= A)™%, s >
d/2, is given by the Sobolev space H*NHg(£2). Thus, due to the Sobolev embedding theorem, [85)
Theorem 8.2], we get Holder regularity of the mean qggst. Moreover, while random draws from
e.g. N(0,(—A)~*) are almost surely not contained in H, |99, Proposition 4.22], the Kolmogorov
continuity theorem ensures (almost surely) their Holder regularity in this case. For a reference we
point out to Theorem 6.24 and Lemma 6.25 in [250]. This makes an application of the Bayesian
approach based on Gaussian priors questionable if we expect the true parameter ¢* to be e.g.
piecewise constant. Additionally we emphasize that a prior distribution which encompasses all
structural features of the unknown parameter would render Bayesian inference obsolete. Loosely
speaking, this observation implies that the choice of the prior has to be, at least partly, arbitrary.

The main focus of this chapter lies on the development of a sensor placement framework for
Bayesian inverse problems. In particular we assume that a prior distribution puy = N(qo,Zy 1)
which is suitable for the problem at hand is already provided. Thus we do not comment further
on this topic. However this critical point on the Bayesian approach should always be kept in mind
throughout the following considerations. For further discussion on the matter of choosing the prior
distribution in a sophisticated way we direct the reader to Chapters 3 and 10 in |228].
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5.1.2 Bayesian inference for PDE constrained problems

In this section we apply the presented Bayesian methodology to the inverse problems of identifying
a distributed parameter ¢ entering a partial differential equation from observations y, of the state.
More concretely, we consider the form

a(,)(): Qaa x Y x W = R,

which depends linearly on the elements of the second bracket but may dependent nonlinearly on
those embraced by the first one. The set of admissible parameters @),q is given as a subset of
L?(£2), where 2 C R? d € N, is open and bounded. The state space Y and the test space W are
assumed to be reflexive Banach-spaces. Given g € Q,q an element y = S[g] € Y is called the state
associated to ¢ if there holds

a(g,y)(p) =0 Vo eW. (5.12)

We make the following assumptions on its existence and regularity.

Assumption 5.3. The equation (5.12]) admits a unique solution y = S[q] € Y for every q € Quq-
Furthermore the parameter-to-state operator

S:QadﬁY’ QHS[(]],

is at least continuously Fréchet differentiable in L?(£2) on a neighbourhood of Qq.

The observations y4 will be obtained by taking pointwise measurements of the physical quantity
represented by the state y. To this end we assume Y N (£2,). Here, 2, C {2 is a compact set
of possible sensor locations. As in the finite dimensional situation of the previous chapter given
q € Qua, y = S[g] and 6q € L?(2) the associated sensitivity dy = 9S[q]éq € Y is the unique
element fulfilling

ay(q,y)(0y, ) = —ay(q,y)(6q, ) Ve €W, (5.13)

given sufficient regularity of the weak form a(-,-)(-). Here a;, and aj, denote the partial derivatives
of the form a with respect to the state and the parameter respectively. The following examples
aim to illustrate this abstract setting. In all of them we consider a bounded domain 2 C R?,
d < 3 which we assume to be convex and thus with Lipschitz boundary. Furthermore the state
and test spaces are chosen as

Y = H2(Q) N H(2) <5 C(2,), W = L*(92).

Example 5.2. We consider the identification of an unknown source term q € L*(£2) entering the
right hand side of a Poisson equation together with homogeneous Dirichlet-boundary conditions

—Ay=q n2, y=0 ondL.
The admissible set of parameters is fived to Quq = L*(§2) and the form a is chosen such that
aa.)(e) = [ [(=Ay=a)plds =0 Ve I¥@) (5.14)

Given q € L?(£2) it is well-known that (5.14) admits a unique solution y = S[q] € H*(2)NH}(£2),
see (124, Theorem 3.2.12]. The parameter-to-state operator

S: L*(02) —» HX(Q2)NH(2), ¢+~ Sq|

is linear and continuous. As a consequence we conclude dS[§)0q = S[dq] for all §, dq € L*(£2).
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Example 5.3. As a second example we aim to identify an unknown diffusion coefficient. To this
end we define the admissible set of parameters

Qaa={qeC®(2)|q>0} c L*(1).

The considered PDE is given in its weak form as
aa.0)0) = [ [ @0 = )l do =0 Vo€ L3(@),

The source term f € L*(82) is assumed to be known. Following the arguments in [58] there
evists a unique solution y = S[q] € H*(2) N HL(N) given ¢ € Qua. The parameter-to-state
operator S is Fréchet differentiable in a neighborhood of Qaq with respect to the topology on C%1(£2).
Given a direction 6q € CO'(2) and § € Qqq the sensitivity 6y = 0S[§]0q is the unique element
in H2(2) N HY(2) fulfilling

/ V- (§Véy)p dx = / V. (5qVSlil)e dz Y € L3()
(P4 (9]

At this point we note that the operator 0S[q] cannot be extended to a linear continuous operator
on L?(£2). Thus this problem cannot be fit directly into the framework considered in this chapter.
As a possible workaround we propose to consider a reparametrization of the parameter ¢ € C%1(£2)
as

q(z) = exp([Tp|(x)), pe€ L*(2), ae. x € 2, T:L*N2)—C% (),

where the operator T is e.g. a sufficiently smoothing convolution operator. The exponential func-
tion is applied to get rid of the positivity constraints in the parameter space. In the same moment
we stress that such discrepancies between the topology on the parameter space L*(£2) and the topol-
ogy needed to ensure differentiability of S are characteristic for e.q. parameter-to-state mappings
corresponding to nonlinear PDEs. Thus a rigorous extension of the approach presented in this
chapter in order to cover these cases should be in the focus of future research.

Example 5.4. Last we consider an unknown parameter q in the reaction term of a linear elliptic
PDE given by

—Ay+qy=f nf2, y=0 ondfl

The source term f € L%(£2) is again assumed to be known and the set of admissible parameters is

defined as

Qui={q€ L*(12) | g™ lL2(0) < €Quy } 5

where ¢~ (x) = —min{0, q(x)}, for a.e. x € 2, denotes the negative part of ¢ € L*(§2) . The value
of the constant cq,, > 0 will be fized in an instance. The associated weak formulation of the PDE
s now given by

a(0,v)(¢) = /Q (—Ay+qy— gl de=0 Vpe IA(0). (5.15)

In the following we will briefly prove that (5.15) admits a unique solution in H?(2) N H(£2). To

this end let us first consider the form

b Qua x HY(2) x HY(2) 5 R, bg)(y,¢) = /Q (Vy - Ve + qyg] d.
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Fory, ¢ € H}(2) and q € Quq we immediately infer

b(a)(y,y) = Hy”%(é(g) + /qu2 dz > HyH?{é(Q) - HT”B(Q)HZ/HQM(Q) > (1- CQH(HL%Q))H?J”?{&(Q),
where the constant cp > 0 depends on the domain. Second we obtain

(@) (y; ) <Yl uy )l mpe) + a2yl @) lella@) < U+ callall2@) 19l o) el )

If we choose cq,, < 1/cq then an application of the Lax-Milgram lemma yields the existence of a
unique function yy € H}(£2) fulfilling

b(Q)(yf> SO) = <(/7, f>Hé(Q),H*1 Vo € H(%(‘Q)>

for every f € H='. By a bootstrapping argument it is now readily verified that yy € H*(2)NH}(2)
whenever f € L*(§2). Furthermore it is readily verified that the operator

—A+qld: H*(2)N HY () — L*(Q),

is an isomorphism. Applying the implicit function theorem, see e.q. (86|, yields the existence of
an operator

St Qua: HQ(Q) HH&(Q), q+— Slql,

where y = S|q| is the unique solution to (5.15)). The mapping S is at least of class C' in a
neighborhood of Quq. Given a linearization point ¢ € Quq and a direction §q € L*(§2) the associated
sensitivity 0y = 0S[4]0q is the unique element in H*(2) N HL(2) fulfilling

/ (— Ady + ady)e] do = / saSldle dz Vi € L2(2)
(9 (9

Let us now return to the discussion of the general case. The true parameter, i.e. the distributed
function describing the model most faithfully, will be denoted by ¢* € Q.q. The point measure-
ments of the state y are taken at a finite number of sensors located at {x;}}¥., C 2,, N € N,
and the obtained measurements are assembled in a vector y; € R"™. To take measurement errors
into account we assume that no systematic model errors are present, i.e. the "true" measurement
at a point x € (2, is given by S[¢*](x), and the measurements are perturbed by additive noise
stemming from the sensors. For abbreviation, given q € Q.q4, we will write S[¢](x) € RN for the
vector of observations with S[g|(x); = S[q](z;), i =1,..., N, in the following and define

Yd: Qad < RY — RN> (Q>6) = S[Q](x) + e (516)

The obtained measurements are given by y; = yq(¢*,€) for some € € RY. Let (D,F,P) be a
probability space. We adopt a probabilistic description of the measurement error and interpret
¢ as a realization of an N-dimensional Gaussian random variable e: D — RY with ¢ ~ N(0, X)
where X' € Sym(N), X;; = d;;/u;. The constant u; describes how carefully the measurement
at x; should be performed. For example, if u; is an integer, it might resemble the total number
of measurements at the same position. More general u; corresponds to the quality of the used
sensor i.e. the reciprocal of its measurement error. The unknown parameter is now determined
by matching the collected data with the predicted response of the mathematical model

find ¢ € Qua:  Slal(z) =ya (5.17)
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5.1 Sparse Bayesian optimal design

In the following we simplify the problem by considering a first-order approximation of the under-
lying model around a sophisticated a priori guess § € Quq

Slgl = S[g] + 05[gl(q = ), ¢ € Qua-

In the same manner we linearize the mapping in ([5.16) and assume
ya(q,€) = Slgl(x) + X(¢ = q) + e,
where the operator X € L£(L?(£2,), R") is defined through
X: LX) = RY, (Xq)i = 0S[dlq(x:).

Finally we drop the constraints on the admissible set of parameters and formulate the linearized
inverse problem as

find g € L*(2):  S[dl(x) + X (¢ — §) = ya- (5.18)

Despite its linearity the inverse problem in is still ill-posed due to the finite dimensionality of
the collected data. To obtain a well-defined problem, we adopt the Bayesian viewpoint discussed
in the previous section to the problem. The uncertainty on the true value of the parameter is
modeled as a Gaussian random field ¢: D — L?(£2) distributed according to po = N(4,Zy").
Here, Zy 1'is a known covariance operator given by the inverse of an unbounded operator, see
Lemma [5.5] and Assumption Its eigenvalues and the associated eigenfunctions are denoted
by {\i}ien and {¢;}ien, respectively. We silently assume that the linearization point § € Qquq is
an element of the corresponding Cameron-Martin space H given by

H={ae1%(2) | 1% a2 < o0 } -

We assume that the random field distributed according to pp and the measurement noise ¢ are
independent. As an illustrative example the reader may recall the situation discussed in Exam-
ple and consider the prior covariance operators defined through the inversion of (fractional)
differential operator, e.g. Zy ' = (— A)™%, s > d/2, on 2 = [0,1]%. Here — A denotes the Dirichlet
Laplacian. The corresponding Cameron-Martin space is given by H*(£2) N HZ(£2). However we
also stress that the following analysis is not restricted to this setting.

Subsequently, the knowledge on the parameter is updated based on the collected data y,;. The
probabilistic solution of (5.18) is given by the posterior distribution

320(0) = [ s exp (~18lalla) + Xla = D) - vatr ) duola) VO € B,

1 ora .
2y = [, e (~5ISH) + X(0—0) - valt ) duoto)
L2(%2)
Due to the linearity of the model it is again a Gaussian measure, cf. Theorem with
uzgst = N(ngst,cpost) where  Cpost = (X* 271X + 7)1 (5.19)

and the posterior mean q}),’ﬁst € H is the unique minimizer to

1 A 1. 1,2 N
£%§|S[Q]($)+X(Q*Q)*Yd@,‘*l +§|\Io/ (4= I (0)-

161



5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

It admits an explicit representation as
q;z};gst =q+ Cpost(X*Zil(Yd — S[gl(x)))- (5.20)

We emphasize that for a fixed a priori guess ¢ the posterior covariance operator does not rely on
the measurement vector y4 € RY. However its depends on the measurement points {z;}¥ ; and
u;, 1 =1,..., N, through the Fisher information operator

T(u(x,u)) = X*X71X € L(LA(2), L*(1)).

To stress this dependence we denote the posterior covariance by Cpost(Z(u(x,u))) in the following.
Note that the Fisher information is positive and Hilbert-Schmidt on L?(f2). The latter property
follows due to the finite number of measurements.

Remark 5.4. We point out that it is also possible to consider the nonlinear inverse problem
from ([5.17) in the Bayesian context. As in the linear case we formally define the posterior measure
of g given y, by

03800) = [ e (=318t = vl ) dunla) O € BZHE),
2= [, e (31506 -t ) dnota) (5.21)

Imposing additional assumptions on S one can show that the relation in indeed defines a
probability measure, see [250, Chapter 4]. However, since S is non-linear, this posterior measure
is in general not Gaussian. While the optimal design criteria presented in the upcoming section
still remain meaningful in this situation, see e.g. [5], they usually do not admit a closed form
representation adding an additional level of complexity to the problem. Since such formulations
are out of the scope of this thesis, we will not comment further on this topic, however we stress
their relevance for future research. In this light, the proposed approach based on a linearization of
the underlying PDE can be interpreted as a Gaussian approximation to the true posterior measure.

5.1.3 Optimal design criteria for distributed parameters

As already stressed at several points in this chapter the solution to the Bayesian inverse problem
is given by the posterior distribution. This probability measure summarizes the current knowl-
edge or, equivalently, the remaining degree of uncertainty on the unknown parameter given the
vector of measurements y,. A complete discussion of the Bayesian inverse problem requires the
quantification of both the uncertainty in the estimate and the obtained amount of information.
This section aims to illustrate this process of uncertainty quantification.

To this end, a first goal of this section is to present several scalar-valued functions which quantify
the statistic properties of the posterior distribution. Surprisingly these well-established measures
of uncertainty depend exclusively on the prior distribution and the Fisher information operator.
In particular, they do not depend on the vector of measurements but are parametrized by the
positions {z;}X, of the measurement sensors and the diligence factors {u;}¥ ;. Thus, similar to
the finite dimensional situation in the previous chapter, they can serve as design criteria to compare
the statistic quality of different sensor configurations before any measurements are carried out in
practice.
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5.1 Sparse Bayesian optimal design

In the following sections we then proceed to the formulation and analysis of sensor placement
problems associated to the discussed Bayesian inverse problem. In this context we improve the
estimation process a priori, i.e. before any measurements are carried out, by optimizing one of
the presented design criteria with respect to the measurement setup. To this end we identify
mathematical properties that are common to all of the considered functionals. This will enable
us to treat the corresponding sensor placement problems in a rigorous and unified way in the
following sections.

The a posteriori covariance operator

As in the finite dimensional setting of Chapter [4] the covariance operator Cpost (Z(u(x,1))) will play
a major role in the following discussions. Let us first fix some notation. The topological dual space
of H will be denoted by H* in the following. By definition of ‘H the Riesz-isomorphism 7% : H —
H* is readily identified with Zy and

<5Q17 6(]1()7-[,’}-[* = (5QI7T’;;15(]T){H = (5q1>I(;15qT)H V5Q1 € 7_[’ 5QT eH".
On H* a Hilbert space structure is induced by the inner product
(047, 0g3 ) = (Ty a7, 6a3) - = (T 003, Ty '0a3 ) = (T /2007, Ty ' 1263) 12 ),

for all 6%, 6q5 € H*. The space H together with its topological dual and L?({2) form a Gelfand-
triple

H S L2(02) ~ L2(02)* < H*,

where the first embedding, and thus the second, is compact and dense. As a consequence, given
the eigenfunctions {@; }ien of Zy !, the sets

{Zo Poitien CH, {dikien C L), {Ty*di}ien C M,

form orthonormal bases with respect to the inner product on the respective spaces. Thus the
Hilbert-Schmidt norm of B € L(H,H*) is given by

> _1/2 —1/2 —1/2
||BH%{S(H,H*) = Z | B, il = 1Z, / BI, / s (z2(02),02(2))-
=1

Given a Hilbert-Schmidt operator B € HS(L?(£2), L?>(£2)) we immediately infer

| Bllusr,m) = ||I(;1/2BI(;1/2HHS(L?(Q),LQ(Q)) <Ly Ml ez, r2 ) 1 Bllus r2(),02(2))

i.e the spaces HS(L?(2), L?(§2)) and SHS(L?(£2),L?(£2)) continuously embed into HS(H, H*)
and SHS(H, H*), respectively.

We start by taking a closer look at properties of the posterior covariance operator and study
well-posedness of the mapping

Cpost: SHS(H,H*) — L(H*,H), B~ (B+1Iy) "}, (5.22)

163



5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

as well as its differentiability properties. To this end we adopt a variational description of B + Zg
given B € SHS(H,H*). This operator induces a symmetric bilinear form

a[Bl: HxH =R, a[B](q1,q) = (g1, Be2)un + (q1,2)n Va1, ¢2 € H.

Given f € H* we consider the variational problem of finding q; € ‘H with

a[Bl(ar, q2) = (a2, flumr Va2 € H. (5.23)

As a first step we establish well-posedness of this covariance equation under mild assumptions.

Proposition 5.9. Let B € SHS(H,H*) be given. Then there exists a constant cg > 0 with

(01, Bet)wa > —csllailly, Vo € H.
If cg < 1 then equation (5.23|) admits a unique solution for every f € H*. The operator
Cpost(B)i H* —>H, f|—>q]c,

is linear and continuous with ||Cpost(B)|| ey < 1/(1 —cB). If B € Pos(H,H*) we can
choose cg = 0 and there holds ||Cpost(B)l| £(2+320) < 1.

Furthermore, given By, By € SHS(H,H*) with cp,,cp, < 1, there holds

1B1 — Ball £33+

_ « < .
1Cpost(B1) = Cpost(B2) | 34,7y < A= cp )0 —cp)

Proof. Let B € SHS(H,H*) be given. The claimed existence of ¢g > 0 follows immediately. For
f € H* and ¢, g2 € H we have

a[Bl(q1,q2) = (q1, Ba2)r+ + (q1,02) % < (1Bl ey + Dl llallg2]l2;

as well as

alBl(q1,q1) = (g1, Ba)waw + (q1,01)n > (1 — cB)l|la1l|7,,

by the assumptions on B. Hence applying Lax-Milgram Lemma, see [52, Corollary 5.8], yields the
existence of a unique solution gf = Cpost(B)f € H to equation (5.23)) with

(1= cn)llarl3; < alBl(ar. ar) = {ar; Hrras < lagllrel fllaee-

This implies the desired estimate. If B € Pos(H,H*) we can choose ¢g = 0 yielding the estimate
[Cpost (B) || 2(3+2) < 1.

Let By, B2 € SHS(H,H*) with cp,, ¢p, < 1 and f € H* be given. Define qfl = Cpost(B1)f,
q? > = Cpost(B2) f and the difference dgy = qf b q? 2 respectively. We conclude

(1= )87 15 < alB1](3qy,6qr) = a[Ba)(qf?, day) — alBi)(g5?, 5qr)
= (¢/*, (B2 — B1)dqp)unr

B
< g2 wlloarllsll By — Ball cw.ae)

< ISl [10g ]l

B — B .
S T o 1B1 — Ba|lcp, 37

This proves the Lipschitz-stability of the covariance mapping. O
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Note that if cgp < 1 the operator Cpost(B) € L(H*,H) can be decomposed as

o~

Coost(B) = Ty *Crost (B)Ty /* where Cpost(B) = (Z; /?BI; "* +1d)7! € L(L2(12), L*(%2)).

We will refer to CApost(B ) as the prior preconditioned covariance operator. Due to the continuous
embedding of H into L?({2) the covariance operator Cpost(B) can further be considered as an
element of £(L?(2), L?(£2)). The following lemma characterizes its properties.

Lemma 5.10. Let B € SHS(H,H*) be given. If cg < 1 the operator Cpost(B) € L(L*(£2), L*(£2))
is positive and Hilbert-Schmidt on L?(£2). Furthermore it is of trace class in L?(2) and there
holds

By — By € POS(?‘[,H*) = TI"LQ(_Q) (Cpost(Bg)) < TI"LQ(_Q) (Cpost(Bl))>

for all By, By € Pos(H,H*).

Proof. Positivity of Cpost(B) on L?(£2) follows from the symmetry and coercivity of the form a[B].
We prove that Cpost(B) is of trace class. The Hilbert-Schmidt property then follows immediately.
Denote by {¢; }ien the orthonormal basis of L?(§2) given by the eigenfunctions of Z, ! By definition
we have H(biH%Q( ) = 1. Fix an arbitrary index i € N. Calculating the %" norm of ¢; reveals

163l|5- = (T i, by e = Ni( i di) = N

We obtain
Ai
(Qﬁi,cpost(B)Cbi)L?(Q) = <Cp0st(B)¢iyd)i>7-l,7-l* < ||¢i||g-[*HCPOSt(B)HE('H*vH) < 1— CB'
Summing over all indices we get
> JR Trr2o)(Zy ")
Trs2(0) (Cpost (B)) = D (61, Cpost (B)1) (e < 7= = D A= — o=
i=1 =1

Thus Cpost(B) € L(L?(£2), L*(£2)) is of trace class.

It remains to prove the last claim. Let By, Ba € Pos(H,H*) with By — By € Pos(H,H*) be
given and fix an arbitrary index ¢ € N. Recalling the definition of the preconditioned operator

Cpost(B) € L(L*(£2), L*(£2)) we arrive at

(61 Cpost (B2)di) 12(2) = Ni(is Coost (B2) 1) 12(2) = N1, (I e % A 1d) ™ i) 12(0)-

Expanding yields

(¢iaé\post(B2)¢i)L2(Q)
A 12, (7 1/27—1/2 _ -1/25 1/2 —15 1/2 ;.
- (Cpost(Bl) ¢z; (Cpost (Bl) IO (B2 Bl )Io Cpost(Bl) + Id) Cpost(B].) ¢1)L2(Q)
< [ICoost(B1)"?ill72(02) = (64: Coost(B1)éi) 12()-

Here the second inequality follows since the operator

D = Cyost(B1)'*Ty 2 (By = BI)Ty P Coo(B1)/? + 1d € L(LA(£2), LX(92)),
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

is self-adjoint and coercive with constant one due to (By — By) € Pos(H,H*). Thus its inverse
exists and

1D~ 2(z2(02),02(0)) < 1-
Since i € N was chosen arbitrary we obtain

Trr2(0) (Cpost(B2)) = > il i, Cpost(B2)di) 120
=1

<> (i, Cpost(B1)$i) £2(02) = Trr2(2) (Cpost(B1)),
=1

by factoring in Z, 2 This proves the claimed statement. O

We close this section by establishing differentiability properties of the covariance mapping.

Proposition 5.11. Let B € SHS(H,H*) with cg < 1 be given. Then the mapping
Cpost: SHS(H, H*) — L(H", H),

is at least two times continuosly Fréchet differentiable at B. Given §By,0By € SHS(H,H*) its
first and second derivatives are characterized by

VCpost(B)éBl = _Cpost(B) 5Bl Cpost(B) S E(H*,H),
V2Cpost(B) (6 B1, 6 Ba) = 2Cpost(B) 0B1 Cpost(B) dBa Cpost(B) € L(H*, H).

Proof. We only provide the proof for the first derivative, the formula for the second derivative can
be be established analogously. Let B, dB € SHS(H,H*) with ¢g < 1 be given. We have
(a1, (B+6B)a1) e > (—(cp + [10B sy llaillz Yar € H.
Thus Cpost (B + 0B) is well-defined if (cp + (|6 B|las(,n-)) < 1. Let f € H* be given and set
Q? = Cpost(B)fa qJ?JFJB = Cpost(B + 5B)f> vc]? = _Cpost(B)dBCpost(B)f-
Note that qu € H is the unique element fulfilling
a[B|(Vqf,q2) + dp[0B(qF q2) = a[Bl(VqF,q2) + (a7, 0Bg2) - =0 Vgo € .
Set dqr = qur‘;B — qf — qu. We estimate
(1 —cn)|16asl3; < a[B](dqy, dqy)
= a[B)(¢7 ", 6q5) — al B+ 6B)(q7 ", 6qy) + (af , 6 BSqy) 1 e
= (¢} - qu"SB, dBoq ), >

_ 1/ 12 10 B 1 i 2+ 194 124
~ (1 =cB)(1 —cB — [|0Blug(a,1+))

H*

where we used the Lipschitz stability of Cpos and

16Bl a7y < 9B lus(rmr)-

Dividing by [|0B|las(2,2+), 19¢7 /1% # 0 and taking the supremum over f € H* on both sides we
deduce the Fréchet differentiability of Cpost by performing the limit [|6 B||gg 2,2+ — 0. O
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Sparse A and D-optimal design

After these preparatory steps we are ready to formulate suitable optimal design criteria for
Bayesian inverse problems. We define the set BT (L?(£2)) as

{ B € SHS(L2(@2), (@) | 3es € 0.1): (Zy P01, BT, Pa0) 12(0) 2 ~enllailagey, @ € L) |

Note that this set is open in SHS(L?(£2), L?(£2)) and Pos(L?(£2), L*(£2)) C B*(L?(£2)). Moreover
if we interpret B € B*(L?(£2)) as Hilbert-Schmidt operator from # into H* we have

(g1, Be) s = (a1, B 12y > —cslla|3

for all g1 € H. Here we used H = domyz(q) 13/2 and the definition of the norm on H. Thus the
covariance operator Cpost(B) € L(H*,H) in the sense of Proposition [5.1]is well-defined.

First we discuss an infinite dimensional analogue of the A-optimal design criterion which is given
by the trace of the posterior covariance operator

Tr12(0) (Cpost(B)) - B € B (L2(R2))

(5.24)
+00 else.

Wy SHS(L*(2),L*(2)) = RU{+oc0} B+ {

We give some interpretation to this choice of the optimal design criterion. To this end we recall
the definition of the posterior measure pyay = N (ghost> Cpost (Z(u(x,1)))) given a vector of mea-
surement data yg € RY, see . By ¢¥¢: D — L?(£2) we denote the random field distributed
according to it. A first indicator for the quality of the obtained posterior measure is its variability
around the mean. An optimal measurement setup should lead to posterior measures whose draws
are close to qla, at least on average. To make these considerations rigorous we calculate the

variance of the posterior distribution as

yd
Var(g¥¢) = Efrest[[|¢¥¢ — qggst‘|%2((z)] = /L?(Q) llg — qggstHQLZ((z) dppose (@) = /QVarqyd dz
= TrL2(Q) (Cpost (Z(u(x,1)))),

where Vargy, denotes the pointwise variance of ¢¥¢, see and . In particular, this implies
that the left hand side of this equation is independent of the data vector y; € RY and corresponds
to the averaged posterior variance. Furthermore it only depends on the measurement setup through
the posterior covariance operator. Hence we can a priori, i.e. before the measurements are carried
out, improve it by minimizing the A-optimal design criterion for the Fisher information with
respect to the measurement setup.

A second motivation to consider the trace of the posterior covariance operator is given by the mean
squared error (MSE) of the posterior mean qggst. We recall the assumptions on the data model

ya: L2(2) xRY = RN (q,€) = S[dl(z) + X (¢ — ) + e

The obtained measurement vector is given by y; = y4(q*, €) where ¢* denotes the true value of
the unknown parameter and € is drawn from a Gaussian distribution pg = N (0,Y). Given a
function q € L?(§2) we define the estimator

gt BN = L2(R), e g,
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

A properly chosen measurement setup for the estimation of ¢* should result in an estimator qpogt ")
whose realizations are close to ¢*, e.g., with respect to the norm on L?(f2). Changes in the

measurement data due to noise should only lead to small changes in the estimated parameter.

Again we give some mathematical rigor to this intuition. Given ¢ € L?(£2) and the associated

va(q,)

bost  We consider its mean squared error

estimator g

Mgt a) = B It — o) = [ 188~ alfaqe) dns(e).

Evaluating the integral yields

MSE(qil&), q) = B2 [[|g4%) — g2 ) = /R laped? = allfae) dus(e) (5.25)

= [|(Cpost (Z (w3, w))Z(u(x, ) — 1d)(g — q)|[72(o
+ Trra () (Cpost (Z(u(x, ) Z(u(x, ).

A derivation of this equality can be found in [3]. The measurement setup should be chosen
to minimize the mean squared error for the true parameter ¢*. However, from the calculations
in we infer that MSE(qg‘ég(g*"), q*) depends on the unknown parameter itself and therefore
cannot be evaluated. As a remedy we demand that an optimal estimator should provide good
estimates for draws taken from g in an average sense. Averaging over the prior distribution gives
the expected mean squared error

Lo o 16857 ) (o) = Teioioy Coma Fu ), (520

which again corresponds to the trace of the posterior covariance operator. For a derivation of this
last step see again [3].

Let us take a closer look on the left hand side of the last equation. Given a vector of mea-
surements yd = ya(q,€) for some ¢ € L*(2) and ¢ € RY we recall that the associated MAP
estimator qpOSt € H is found as the unique solution to the linear-quadratic problem

mln*|Xq — vl + llaly

qEH 2
This allows for an interpretation of the minimization of the A-optimal design criterion with respect
to the measurement setup as a learning or bilevel problem for an optimal sensor distribution. We
briefly shed some light on this connection. Given a fixed measurement setup we may consider the
associated estimator given by

. 1
Gpost: RY = M, @iy = arg min 1 Xa=yali + lalfe
q

Thus for every vector y, of measurements we find qggst by minimizing a linear quadratic functional
in the lower level problem. In order to assess the quality of this estimator we first generate a test
set of parameters (described by the prior distribution of the random field). For each test parameter
we then obtain a set of artifical measurement data based on our assumptions on the measurement
noise. Subsequently the discrepancy between the expected result and the parameter proposed by
the estimator is calculated. A solution to the sensor placement problem is then found in the upper
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5.1 Sparse Bayesian optimal design

level problem as one particular sensor configuration whose associated estimator yields, on average,
the best reconstruction results.

In the following proposition we elaborate on the mathematical properties of the A-optimal design
criterion.

Proposition 5.12. The mapping W4: SHS(L%($2), L*(£2)) — RU {+o0o} has the following prop-
erties.

e On Pos(L?(02),L?(2)), W4 is non-negative and strictly conver.
e On Pos(L%(2), L*(2)), EIIA is at least two times continuously Fréchet differentiable. Given
8By, 6By € SHS(L2(£2), L?(2)) the Fréchet derivatives can be identified as
((VWA(B),dB1)) nsr2(02),02(2) = — Trr2(0)(Cpost(B)I B1Cpost(B)),
((0B1, V?Wa(B)dBa)) irs(r2(02),12(2)) = 2 Trr2(0)(Cpost(B)6 B1Cpost(B)d BaCpost(B)).

o The A-optimal design criterion is monotone. Given By, By € Pos(L?(£2), L?(£2)) we have

By — By € Pos(L?(2), L*(2)) = Wa(Bs) < Wa(By).

Proof. Following Lemma the A-optimal design criterion is non-negative on Pos(L?(2), L?(£2)) C
BT (L%(£2)). We further note that the L?({2) trace defines a linear continuous functional on £(H*, H)
since

Trrz(o)(B) < Z 11 1Bl a2 = Trroey(@o I Bll oz 2 VB € LIH*,H).

Continuity and Fréchet-differentiability of W4 at B € Pos(L%(§2), L*(£2)) now follows from the
linearity of the trace and the results of Proposition [5.11] In particular we obtain
((0B,V*WA(B)6B))us(12(2),12(02)) = 2 Tr12(02)(Cpost (B) BCpost (B)d BCpost (B))
= 2|[Cpost(B)"/*6 BCpost(B) fis(12(2) 12(02))-

Fix an arbitrary index ¢ € N. We proceed to estimate
> ~1/2 -1/25 —1/2

1Cpost (B)' /26 BCpost(B) il 12(2) = [|Cpost (B)*/*T, 126 BTy " Coose(B)Ty

1

¢z||L2(Q

> _ —1/2
Z o B ey P PRl

1 _ —1/2
|z5toBT, Y il 7200

B HCpost(B)_lH?Z(L2(Q)7L2(9))
where we used that
latllz2(2) = 1Coost(B) ™' Coose( B)arll () < [1Cpose( B) ez, | Coost(Bat | 20

for all ¢; € L?(£2). The norm in the denominator is further bounded by

1Cpost (B) ™l 2222202y = || 1d +I(J_1/2BIO_1/2||£(L2(Q),L2(Q)) < 1+ [|Bllas,m)
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Finally summing over all indices 7 € N we conclude

2
(1 + (| Bllas (e,

2Trr2(0) (Cpost (B) BCpost (B)d BCpost(B)) > E HZ()_I‘SBI()_l/z”?{S(m(n),m(n))-

(5.27)

Thus Wy is strictly convex on Pos(L?(£2), L?(§2)). Monotonicity of the A-optimal design criterion
on Pos(L?(£2), L?(£2)) follows from Lemma O

As a second example we comment on the infinite dimensional D-optimal design criterion. Given
a trace class operator T' € L(L?(2), L?(£2)) we define its Fredholm determinant by

o0

Det(T +1d) = [ [(1 + ),
=1

where {1;}2°, denote the eigenvalues of |T| = (T*T)Y?, see [119, Chapter IV]. For a given
Hilbert-Schmidt operator B € SHS(L?(2), L?(£2)) the operator I()_1/2BIO_1/2 is of trace class
on L?(§2). The D-optimal design criterion is now defined as the negative logarithm of the Fred-
holm determinant of Z, Y 2BIO_ 12, Recalling the definition of the prior-preconditioned covariance
operator

~

Coost(B) = (Zy *BIy ' +1d)7" € L(L2(2), L3 (),

this is, in a more compact way, stated as

~

. —log(Det(Cpost (B) 1)) B € BT (L*(12))
@p: SHS(L*(),L*(2)) - RU {400} B {+OO e, :

(5.28)

As for the A-optimal design criterion we clarify the interpretation of this definition. To this end
let a vector of measurement data yq € RY and the associated posterior measure uggst be given.
In Section we already mentioned that there are several possibilities to compare probability
measures, cf. [117]. In the following we quantify the distance between the prior measure o and

the posterior through their Kullback-Leibler divergence or relative entropy defined as

dMyCl dHYd d,uycl
d (13, po) = / log | —22 | dudiy(q) = / log | —22 | =2 dpg(q),  (5.29
1(Hposts Ho) o) g( o Hpast (@) o) &\ a0 o po(q),  (5.29)

see, e.g, |[174]. Here, the Radon-Nikodym derivative of the posterior with respect to the prior is
given by

d,ugd‘t 1
—P L L2(0) = [0,1], ¢~
i (@)= 0.1, 4 Zo(ya)

exp (=5 80d1) + Xa = D) - valh ).

with the constant Zy(y,) > 0 defined as

Zo(yq) = /L?(Q) exp (—;!S[Q](ﬂc) + X(g—q) — Yd|22—1> dpio(q)-
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5.1 Sparse Bayesian optimal design

While the Kullback-Leibler divergence fulfills some intuitive notions of a distance such as non-
negativity and

p1 = p2 < dr(p, p2) =0,

it does not define a metric on the probability measures as it lacks symmetry and does not fulfill
the triangle inequality.

Intuitively if the measured data y, € R provides a lot of information on the unknown parameter
the prior and the posterior measures differ significantly, i.e. their relative entropy dj(uggst, 140)
should be large. A measurement setup could now be chosen in order to maximize this distance.
However, as already pointed out for the mean squared error, this quantity depends on the concrete
realization of the data vector y,;. In order to obtain a criterion that is computable before the
measurements are carried out, we average over the prior distribution of the parameter and the
measurement noise. Following |3| we therefore calculate the expected information gain

1, .. .
/ / 1(1hd o) exp <—\5[q] () +X(¢—q) — y(i’221> dygdpo(q),
L2(2) JrRY 21(q) 2

where for fixed ¢ € L?(§2) the normalization constant Z;(q) > 0 is given by

2100 = [ o (318l + Xla -0 - v ) ava

Calculating the integral leads to

/L2 /RN Z1(q dr(Hpasts Ho) exp (—HS[Q](%)+X(q—(j)—yd|22_l> dy 4duo(q)
1Og(Det(Cpost (I(U(X, 11)))_1)).

Thus we might consider a measurement setup optimal if it maximizes the averaged Kullback-
Leibler divergence or equivalently the logarithm of the Fredholm determinant of the Fisher infor-

mation preconditioned by Z, 12 Since through the course of this thesis minimization problems are
studied we take its negative to arrive at the D-optimal design criterion. The following proposition
summarizes some of its properties.

Proposition 5.13. The mapping ¥p: SHS(L?(§2),L?(2)) — R U {+o0} has the following prop-
erties.

e On Pos(L?(02), L*($2)), Wp is strictly convex and weakly lower semicontinuous.

(
e On Pos(L*(92),L?(02)), WD is at least two times continuously Fréchet differentiable. Given
§By,6By € SHS(L?(£2), L?(02)) the derivatives are characterized by

((V¥D(B),0B1)) ms(r2(2),02(2)) = — Trr2(0)(Cpost(B)d B1),
((6B1, V2Wp(B)OBa)) ys(r2(2),12(2)) = Tr12(2)(Cpost(B)SB1Cposi(B)6 Ba).

e The D-optimal design criterion is monotone. Given By, By € Pos(L?(£2), L*(£2)) we have

By — By € Pos(L?(2), L*(2)) = ¥p(By) < ¥p(By).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Proof. Following [242|, the logarithm of the Fredholm determinant as a function on trace class
operators is Gateaux differentiable. Following this result, the Gateaux derivative VspW¥p(B) of
Wp at B € Pos(L?(§2), L?(2)) in the direction of §B € SHS(L?(£2), L?(£2)) is given by

~

VenPn(B) = Trp2(0)(Coost (B)Ty /6 BTy %) = Trpa(0) (Cpost (B)OB),

applying the chain rule. Here, the second equality follows since the trace allows for cyclic per-
mutations. Hence the Gateaux differential is linear and continuous. Invoking the results of
Lemma [5.11] we conclude its continuous dependence on B. Thus ¥p is Fréchet differentiable
on Pos(L?(£2), L?(£2)). The existence of the second Fréchet derivative now follows immediately
from the results for ¥4. Given a direction 6B € SHS(L?(2), L?(§2)) we further conclude

1
(1 + | Bllas,m))

TI'L2(Q) (Cpost (B)(SBCpost(B)éB) Z

—1/2 —1/2
T 0BT P s 1o ) 20

following the same steps as in the proof of Proposition [5.12] As a consequence, ¥p is strictly
convex on Pos(L?(£2), L?(12)).

It remains to prove the monotonicity of ¥p. Therefore let By, By € Pos(L?(£2), L?(£2)) with
6B = By — By € Pos(L?(2), L?(£2)) be given. By Taylor expansion we obtain

Wp(B1) — ¥p(B2) = Trr2 () (Cpost(Be)dB) > 0,
for some B¢ = By + ((By — By) € Pos(L*(2), L*(£2)), ¢ € (0,1). Here we used
TI"L2(Q) (Cpost(BC)5B) = TTL2(Q)(Cpost(BC)1/25Bcpost(BC)1/2) >0

This finishes the proof. O

Sparse goal oriented design

In many applications, the interest of an experimenter may not lie on the infinite-dimensional
parameter ¢ itself but on a finite dimensional quantity of interest p depending on the random
field. Such goal oriented inverse problems are considered, e.g., in [123,246]. In this situation,
optimal design criteria should reflect this fact and aim for uncertainty reduction in the quantity
of interest rather than the distributed parameter itself. We consider a linear dependence p = Mg
for M € L(L?(£2),R™), m € N. Consequently p is a normally distributed random variable with

p~N(po,Iyy): po=Mao, Iy, = M-Iy M.

Moreover the posterior measure of p given a vector of measured data y4 € RY is also a Gaussian
N (phast Coast (Z(u(x, 1)))) where

Yd M
post? Cpost

Prost = Mq (Z(u(x,1))) = M Cpost (Z(u(x, u)))M = M*(Z(u(x,u)) +Lo) " M.

As in the previous section, optimal designs may now be determined as to minimize the expected
mean squared error or as to maximize the expected information gain for the quantity of interest,
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5.1 Sparse Bayesian optimal design

see [104{138]. This leads to the formulation of the goal-oriented A and D-optimal design criteria

@S SHS(L*(2),L*(2)) - RU{+00} B

)

{TrRm(M*Cpost(B)M) B € BT(L2(2))

else
(5.30)
wS: SHS(L*(12),L*(2)) - RU{+oc} B~ {ljg(DetRm(M*Cpost(B)_lM)) B; e BT(L2(1)) |
(5.31)

respectively. Here, to avoid ambiguities, Trgm and Detgm denote the trace and determinant of a
matrix in R™*™, The following properties of these functionals can be inferred from well-known
results for the finite-dimensional trace and determinant as well as the differentiability of Cpost. We
omit the proof here for brevity.

Proposition 5.14. The goal oriented A and D-optimal design criteria as defined by (5.30))
and (5.31)), respectively, are convex, weak*-to-strong continuous, and at least two times contin-
wously Fréchet differentiability. Moreover they are monotone in the sense that

By — By € Pos(L2(12), L*(2)) = ¥§(By) < W§(B)), WS(By) <WS(By),
for all By, B € Pos(L?(£2), L?(02)).

5.1.4 Sparse sensor placement

We are now prepared to formulate optimal sensor placement problems for the Bayesian inverse
problem discussed in Section Motivated by the discussions of the previous section we propose
to determine an optimal number of measurements N € N, their positions x € Q(J)V and a vector of
measurement weights u € Rf by solving an optimization problem
min [V (Z(u(x,w))) + Blull,], (5.32)
xeNN, ueRQ, NeN
based on a parametrization of the Fisher information operator by the measurement setup. As
in the previous chapters, the parameter 8 > 0 models the cost of a single measurement and the
optimal design criterion ¥ is a convex, scalar-valued function acting on the Fisher-Information
operator Z(u(x,u)) = X*Y~1X. The operator X € L(L?(£2),RY) and ¥~ € RV*N are given
in terms of the measurement setup as
(Xq)i = 0S[4)6q (z:) Voq e L*(2), X' =6yw;, 4,5=1,...,N. (5.33)
Again, we will avoid the combinatorial and non-convex aspect of the minimization problem
in (5.32)) by replacing the admissible set of measurement setups with the set of positive Radon

measures M™T(£2,). To this end we first take a closer look at the Fisher-information operator.
Given x € 2, and §q € L?(£2) there holds

95(q)oq (x) = (0S[4l6q, 02) = (6q,05(q]"0x) 12(02)

where 0S5[¢]* denotes the adjoint of the solution operator to the sensitivity equation (5.13]). For
abbreviation, we set G® = 95[4]*d, € L?(£2) and refer to it as the Green’s function of 9S[g]* at
the point = € £2,. In the following lemma its continuity with respect to x is studied.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Lemma 5.15. The mapping
G: 0, — L*2), z— G°,

s uniformly continuous.

Proof. By assumption the operator 9S[q]: L*(£2) — C(§2,) is linear continuous and compact.
Due to Schauder’s Theorem the same holds for its adjoint. In particular this implies weak*-to-
strong continuity of 9S[g]*. Let {zk}ren C 2, with limy o 25 = = € (2, be given. Then the
corresponding Dirac delta functions converge in the weak* sense and thus

lim [zg — 2|ge = 0= lim [|G" — G| 12(0) = lim [[0S[q]"(0z, — 0z)|lL2(2) = 0.
k—o0 k—o0 k—o0
Together with the compactness of (2, this completes the proof. O

Remark 5.5. We pause for a moment to take a closer look at the Green’s function G* € L?(§2) of
the adjoint operator S[q]* at x € {2, and its computation. Assume that the partial derivatives

ay(q,S[d) () Y x W =R, ag(q,S[a])(): L2(2) x W = R

of a at (q,S[q]) give continuous bilinear forms. Furthermore for f € W* there exists a unique
element gy € Y with

ay (4, S[a) (g5, ) = (@, lww= Yo e W,
and the mapping
T-W*=Y, f— gy,

is linear and continuous. Since W is reflexive there holds T*: Y* — W. Furthermore we recall
that Y < C(£2,) and consequently M(£2,) <> Y*. Let 6q € L%(£2) be fixed for the moment. Then

fsq: W =R, @ —ay(q,S[d])(e,dq),

defines a linear and continuous functional on W, i.e. f5, € W*. We have 95[4loq = T fs;. Now,
given x € {2, set G* = T*), € W. By construction, G* fulfills the adjoint equation

ay(q, S[d))(#,G%) = ($,0z)v,y~ Vo eImT. (5.34)
Thus we obtain
(G*,6q) 12(2) = 0S[q]0q(x) = (G", fs,) ww= = ay(4, S[d])(9S[4]dq, G") = —ag(q, S[d])(dgq, G*).
From the continuity assumptions on the partial derivatives we infer that
—ag(q, S[a) (- G"): LX(2) = R, &g — —ay(g, S[4))(6q,G%),

gives a linear continuous functional on L?(§2). Applying the Riesz representation theorem it is
identified with G*. In particular, this implies that the evaluation of the mapping G" at a spatial
point € (2, requires the computation of the function G*, the Green’s function of the operator T,
fulfilling the partial differential equation in ([5.34)).
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5.1 Sparse Bayesian optimal design

We proceed with the characterization of the Fisher-Information operator. For x € (2, define
E* e L2 x 2) with k%(y,2) = G®(y)G®(2), for a.e. y,z € £

From Section we recall that L2({2 x §2) is isometrically isomorphic to the space of Hilbert-
Schmidt operators HS(L%($2), L?(£2)). We recall that this space and the space of self-adjoint
Hilbert-Schmidt operators SHS(L?(£2), L?(§2)) are Hilbert spaces with respect to the norm induced
by the Hilbert-Schmidt inner product

o0

({B1, Bo)yus(r2(a),r2(9)) = Trr2(o)(BiBa) = Y (B1,¢i)r2(0) (B2, 6i) 120,
=1

for all By, By € HS(L?(R2), L*(£2)). If B € SHS(L?(£2), L*(§2)) there exists a square-integrable
function kg € L?(2 x £2) with

[Bog](z) = /Q kp(y,z)0q(y)dy, kp(y,z)=kp(z,y) ae.y,z€ 2.
The positive Hilbert-Schmidt operator corresponding to k* is given by the rank 1 operator
I(z) = G @ G® € Pos(L?(2), L*(12)),
which acts on L?(2) via

(0q1, 1(2)542) 12y = (Ga1, [G" @ G™)0g0) p2() = (G” 001) p2(22) (G 602) 2
= 941601 (x) 05[d]0ga (),

for all dq1, dg2 € L?(£2). We make the following observations.

Proposition 5.16. The function
I: 0, — SHS(L*(),L*(2)), z— G*®G",

is uniformly continuous and thus Bochner-integrable with respect to w € M(£2,). There holds
T(u(x,u)) = X*X71X = I(x) du(z) = G* ® G* du(z),
2 2

for every measurement setup

N
x=(z1,...,2n5) €2V, u=(w,...,uy)’, u= Zuiéxi € M1(02,).

i=1

Proof. The uniform continuity of the mapping I(z) follows from Proposition Thus it is
Bochner integrable with respect to u € M(§2,). Let a vector of measurement positions x € 22,

a vector of measurement weights u € RJI and 6q1,8q2 € L?(£2) be given. Define u = Zfil u;0y,.
By definition of the operator X € £(L2(£2),RY) and X! € RVXN see (5.33)), we obtain

N

(6q1, T(w(x,1))0q2) 12(2) = (X6q1, B Xoqo)pw = »_ w;05(416q1 (2:) 0S[q)0qa(as).
P
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

In the same manner we compute

<(5Q17 [/ G"®G* du(x)] 5q2>
2 12(2)

u;(0q1, [G* ® G*']6q2) r2()

M= 1=

u;95(q)0q1(xi) 9S[q)dga (i)
1

.
Il

Since dq1, dgz € L%(£2) where chosen arbitrary combining both results yields the statement. [

Thus the sensor placement problem (5.32) fits into the general framework of Chapterby choosing
Q = L?*(£2) and

O: 2, —» L*(2), =+ G

In order to determine an optimal measurement setup we now interpret the distibution of the sensors
on the spatial domain as a Radon measure and solve the sparse sensor placement problem

L min W) + Blulladl (5.35)

Here, the Fisher operator Z maps a given u € M(£2,) to the associated Bochner integral:
T M(2,) — SHS(I2(02), I2(2)), u H/ G © Grdu(z),
2
which fulfills

[Z(u)dan](y) = , G*(Y)(G*,6q1)2() dulz),  (0g1,Z(u)dg2)2(0) = (05][d]6q1 0S[d]dg2, u),

for all §q1,8qo € L?(£2) and almost every y € £2. Its definition is formalized through the following
proposition.

Proposition 5.17. The mapping

T: M(92,) — SHS(L*(2),L*(2)), u— [ G"®G%du(z),
2

1s linear continuous with
| Z(w) ls(n2(2),22(2) < max IG* 1220 el -

Furthermore it is weak*-to-strong continuous.

Proof. For a proof of this statement see Proposition and Theorem setting Q = L?(£2) and
O(z) = G*. O

We make the following general assumptions on the optimal design criterion ¥.

Assumption 5.4. The function ¥: SHS(L?(£2), L?(£2)) — R U {+oco} satisfies:
A5.1 There holds Pos(L?(2), L?(£2)) C dom ¥.
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5.1 Sparse Bayesian optimal design

A5.2 ¥ is two times continuously differentiable on Pos(L?(£2), L%(£2)).
A5.3 ¥ is convex on Pos(L%(§2), L?(12)).

A5.4 ¥ is monotone in the sense that

By — By € Pos(L2(2), L*(2)) = W(By) < W(B;y) VBi, By € Pos(L*(12), L*(12)).
We emphasize that all examples considered in Section fit into these general assumptions. In
the following lemma the adjoint operator of Z is characterized.

Lemma 5.18. The Banach-space adjoint of the operator T: M(£2,) — SHS(L?*(£2), L*(2)) as
defined in Proposition|5.17 is given by

T*: SHS(L*(2),L*(2)) — C(£2,), B~ ¢p.
Here, the continuous function ¢p € C(£2,) is given by pp(z) = (G¥, BG)12(q) for all x € §,.

Proof. The statement is directly obtained by applying Proposition setting Q = L%(£2) and
O(x) = G*. O

We introduce the reduced problem formulation

e F) =) + B, (Ps)

where the functional 1 is defined as ¢ = ¥ o Z. The following proposition summarizes some key
properties of ¥. These can be inferred from the general theory of Chapter [3] see Proposition 3.9
and Lemma 310

Proposition 5.19. Let Assumptions (A5.1)~(A5.4) be fulfilled. The operator Z and the func-
tional ¢ satisfy:

1. For every u € M*(£2,) there holds Z(u) € Pos(L?(£2), L*(12)).
2. There holds dom g+ () = MT(82,).

3. 1) is at least two times continuously differentiable on M™(82,). For u € M (£2,) its first
derivative ' (u) = TV (Z(u)) € C(§2,) can be identified with the continuous function

[V (u)] () = (G*, V(T (w))G*) 2() = — | (=V¥(Z()) /2G|l 2(0) Ve € Lo (5.36)

Moreover the gradient Vip: Mt (£,) — C(£2,) is weak*-to-strong continuous.
Given u € M*(§2,), the second derivative V*i)(u) € L(M(82,), M(£2,)*) is characterized as

(6uy, V2 (u)dug) ms = Trrz(o) (Z(6u) V2 (Z(u))Z(0us)), Vouy,dus € M(£2,).

5. 1 is convexr on M1 (£2,).

6. Y 1s monotone in the sense that

T(ug — uy) € Pos(L3(02), L3(2)) = (uz) < ¥(u1) Vui, ug € MT(£2,).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

To ensure the existence of a solution to (Pg|) we impose additional assumptions on the objective
functional F'.

Assumption 5.5. The objective functional F' is radially unbounded on M™(£2,), i.e. given a
sequence {uy }reny C M™T(£2,) there holds

Observe that the regularization term in (Pg|) can be written as
Gp(llullam) = Bllullag - where  Gg: R =R, m = fm + Ijg o) (m).

The functional Gg obviously fulfills Assumption Hence the following results on the existence
and characterization of optimal measurement designs can be derived from the theory presented
in Chapter [3} We therefore omit most of the standard proofs and give references to the general
results where necessary.

Theorem 5.20. Let 8 > 0 be given and let Assumption [5.5 hold. Then there exists at least one
optimal solution ug € M™(£2,) to and the set of optimal solutions is bounded. If the design
criterion W is strictly convex on Pos(L*(2), L*(£2)) then the optimal Fisher information I(ug) is
the same for every optimal solution.

Proof. Given Assumptions and this statement follows from Proposition [3.11 O

The following example discusses Assumption [5.5]in the context of A and D-optimality.

Example 5.5. Obviously Assumption is fulfilled if ¥ is nonnegative on Pos(L?(£2), L?(12))
since then

Bllullpm < ¥(Z(w)) + Bllullm = F(u) Yu € M (12,)
This is e.g. the case for the A-optimal design criterion
A(Z(w)) = Trrz(0)(Cpost(Z(w)))-
For the D-optimal design criterion
Wp(Z(u)) = —log(Det(Z, /*Z(u)Z; /? +1d)),

the situation is more involved. To prove the radial unboundedness of Wp(Z(u))+ B||ul|m we proceed
as follows. Given u € M™(£2,) we conclude

~ log(Det(max [ G*[72(q lullmZy ' +1d)) < — log(Det(Zy *T(w)Zy /* + 1a)).
by a first-order Taylor approrimation. Define the differentiable function
iRy =R, me— —1og(Det(agé%>§ IG™ |12y Tyt +1d)).

We calculate

F'(m) = = max |G| a(g) Troa (o) (max |G [ 2 gymZy * +1d) 7 T ).
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Denoting by {\;}ien the eigenvalues ofI(;1 ordered by decreasing magnitude we can calculate the
trace explicitly to arrive at

)
f'(m) =~ max IG* 720 ; Ai(1+ max G F2(ymAi)
Let an arbitrary € > 0 be given and fir My > 0. There exists an index K € N with
oo
max 1G= 11720 | PBRRNIE! + max IG® 172 (gymAe) ™" < %v
i=K+1
for all m > M. Furthermore there exists Mo > 0 such that
K

T |2 |2 —1
a{fg};ﬁHG ||L2(Q)Z;)‘i(1+£%)j||G IZ2(ymAi) ™ <

)

| ™

for all m > Ms. Combining both statements yields
[/ (m)] = max |G* |7 g) D Ai(1 + max [ G|[7zymAi) ™" <
o 1:1 o

for all m > max{My, Ma}. Since ¢ was chosen arbitrary we conclude limy,_ f'(m) = 0 and,
applying L’Hospital’s rule,

o= 1im AUy g < ¥p(Z(w)

llam—oo [Jullm Iulia—oo = ullm—oo  ullm

<0.

Consequently for ||u||a large enough we have

2l < () + Bl

and we deduce that F(u) = ¥p(Z(u)) + B|lul|m is radially unbounded.

The rest of this section focuses on the structure of optimal design measures and their behaviour
for large B8 > 0. We start by deriving necessary and sufficient first-order optimality conditions
characterizing the support of ug.

Theorem 5.21. Let B > 0 be given. A measure ug € M™(£2,) is a minimizer of (Pg)) if and
only if one of the following (equivalent) conditions holds

o There holds
=V(ug) € BO||ugl|pm + OLuzo(ug).
o There holds

sup  [(Vip(ug), g — v) + Bllugllm — Bllvflm] = 0.
veEMT(£2,)
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o There holds

. _ =B llugllpm >0 _ o oAl
—;ren!% Vip(ug)(z) {S 8 lagla =0 o —(Vp(ug), ug) = Bllugl m-
o There holds
— min Vi (ag)(z) b llaslm>0 , suppug C {x € 2, | —Vy(ug)(z) =B}.
€N, < /8 ||7j’5HM =0

Proof. Since 1 is two times differentiable and monotone we have —V(u)(z) > 0 and thus also

— Iin Vih(u)(z) 2 0

for all measures u € M (£2,) and x € £2,. Calculating the subdifferential of Gg at ||ug||m gives

(=00, 8] [lugllam =0

0G5 (asllae) = {8} + 0o, (|751|0) = {{B} Jasllae >0

Furthermore we note that

B - llm + Luzo(-))(@) = BOl[al|m + Oluzo(@)

for all & € M(£2) due to the continuity of the norm. Thus we obtain the result by applying
Theorem [3.17] as in Example O

Remark 5.6. As in the finite dimensional case we stress that similar equivalent optimality condi-
tions can be derived for the norm constrained problem

i 3 <K,
e iin plu) st fulves

given a maximum cost K > 0 for the measurements. For the sake of brevity we resign from stating
them here and refer to the general case in Theorem [3.17] as well as Example [3.4]

In contrast to the situation discuessed in the previous chapter, existence of sparse minimizers
to may not be guaranteed since the parameter space is no longer finite dimensional. This
issue is addressed in the following corollaries. In general conclusions on the sparsity pattern of
minimizers to can be based on the support condition stated in Theorem . Additionally
the choice of the cost parameter 5 > 0 provides some indirect control on the support size of optimal
designs and thus the number of measurements. Last we emphasize that all optimal designs are
well-approximated by suboptimal sparse design measures up to arbitrary accuracy in a sense made
clear below.

Corollary 5.22. Denote by g € M*(£2,) an optimal design such that
{z €0 | = Vi(ug)(z) = B} = {2}y

_ . . L. . . _ N _ _ .
Then ug is given as a conic linear combination ug =) ; , W0z, for some u; € Ry, i=1,...,N.
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Proof. Since g minimizes in ((Pg)) we infer

suppilg C {w € 2, | — Vi (ug)(x) = B} = {Z:}},
from Theorem This finishes the proof. O

Corollary 5.23. There exists o > 0 such that for all B > By the unique solution to (Pg|) is given
by the zero measure.

Proof. The statement can be derived along the lines of proof in Proposition O

Corollary 5.24. Let an arbitrary minimizer ug to (Pg|) be given. For all ¢ > 0 there exists
Us € MT(82,) with

Uc € cone{d, |x€2,}, F(u)— F(ug)<e.

Proof. Let an optimial design g to (Pg|) and € > 0 be given. Following [50, Appendix A| there
exists a sequence {uy }reny C M1 (£2,) with

up € cone{ o, |z € 2,} VkeN, wu,—"ug.
The claimed statement now follows noting that

luklm = (Lug) — (1, ap) = lugllm,  (ux) — ¥(ug),

due to the weak* convergence of {ug}ren, weak*-to-strong continuity of Z and continuity of ¥
on Pos(L?(02), L*(£2)). O

5.2 Discretization and error estimates

In the following section we present a suitable approximation framework for the Bayesian sensor
placement problem . Therefore we proceed in two steps, first starting with a discretization
of the underlying state and sensitivity equations by linear finite elements. In contrast neither
the parameter space L?({2) nor the space of design measures M (£2) is discretized. Again, this
can be interpreted as a variational discretization approach. We discuss well-posedness of the FE-
discretized sensor placement problem and derive first-order optimality conditions. Most important
a careful study of the discrete Fisher information operator reveals that the FE-discretized problem
is equivalent to an additional discretization of the parameter space and the restriction of possible
sensor locations to the grid nodes of the mesh. Finally we prove convergence of the discrete optimal
design measures towards optimal solutions of and present a priori error estimates.

While a finite element discretization of the sensitivity equation implicitly leads to a finite dimen-
sional optimization problem the discretized parameter space is in general high-dimensional. This
makes a direct evaluation of the design criterion and its derivatives computationally infeasible and
thus prohibits its numerical solution, see also Section [5.3.2] Furthermore it may depend on the
linearization point ¢ which may differ significantly from the true value of the parameter. There-
fore, in a second step, we consider the approximation of the parameter space L?(f2) through the
subspace spanned by the first n eigenvectors of the a priori covariance operator. This approach
corresponds to a truncation of the Karhunen-Loeve expansion corresponding to g after n terms,
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

i.e. we only consider the directions in which the prior distribution admits the largest uncertainty.
Subsequently, sensors are placed to optimally infer the coefficients in this basis representation.

Last, to obtain a computationally feasible problem, we combine both discretization concepts and
analyse the resulting fully discrete problem. Convergence results for the discrete optimal design
measurements as well as a priori error estimates with respect to the spatial mesh-size h and the
tail sum of the eigenvalues corresponding to the neglected eigenvectors are derived. The results
are illustrated on the A and D-optimal design problem highlighting the practical relevance of the
proposed approach.

Efficient computational methods for discrete approximations of sensor placement problems asso-
ciated to infinite dimensional Bayesian inference are e.g. considered in [4,/6]. In contrast to the
present work the authors consider only finitely many candidate locations for the placement of
the sensors. The PDE constraints as well as the underlying parameter space are approximated
using a finite element ansatz and the coefficients of the unknown parameter in the correspond-
ing basis expansion are treated as random variables. This results in high-dimensional discrete
parameter spaces and large covariance matrices. Evaluating e.g. the A-optimal design criterion
in this situation requires calculating the trace of the inverse to a large and dense matrix, usually
stemming from the discretization of the fractional power of an elliptic differential operator. In
order to make the resulting discrete sensor placement problems computationally feasible, different
tools from stochastic linear algebra such as randomized trace estimation, [231], are applied and
low-rank approximations of the design-dependent posterior covariance operator are considered.
In particular the authors exploit the low-rank rank structure of the parameter-to-observable map
due to the finite number of sensors. A comprehensive comparison between several existing ap-
proaches including their computational costs is provided in [6] together with stability results for
the evaluation of the optimal design criterion and its gradient. However, we are not aware of any
pre-existing works dealing with the case of vanishing discretization parameters or a priori error
estimation.

5.2.1 Finite element discretization

We first discuss a discretization of based on a finite element ansatz for the underlying state
and sensitivity equations. In the following, the sets {2 and 2, are assumed to be polytopal
(i.e. polygonal in two dimensions and polyhedral in three dimensions). We consider a family of
triangulations { 7p, };,-o of 2 which resolve the spatial domain {2 as well as the observational
domain (2,

n=U71T 2=T (5.37)

TETh TeTy

Here 7Y C T, denotes the union of all cells making up the observational domain. To each
triangulation we assign a positive scalar h > 0 denoting the maximal diameter of a cell K € Tp,.

By N}, we denote the set of nodes of the triangulation. For each h > 0 the space of continuous
piecewise linear finite elements Vj, on 7}, and its dual space V; ~ My, are defined as before by

Vi={yn €C(Q) lyn, € VT €T}, My = {up, € M(R) |suppup C Np, }.
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5.2 Discretization and error estimates

By Y, C V}, as well as W), C V}, we denote the discretized state and solution spaces, respectively.
We recall the nodal interpolation operators ip,: C(£2) — V}, and Ay, : M(£2) — My, as

Z‘h(y) = Z y(xi)e?7 Ah(u) = Z <€?7u>6$1

x; ENh Z; ENh

where e, i € {1,...,#N}} denotes the nodal basis function associated to a node z; € N},. The

7
discretized state equation is described by a continuously differentiable form

ap: Qad X Yh X Wh — R.
For a given q € Qqq an element yh €Y}, is called an associated state if
an(g,y")(n) =0 Vo € Wh. (5.38)

In the following we assume existence and uniqueness of the state y" = S"[G]. Analogously, given
8q € L?(£2), the discrete sensitivity 04" € Y}, at the a priori guess § € Quq is a solution to

/

ap, (49" (0Y", on) = —a}, (4, 9") (8¢, 1) Vpn € Wi, (5.39)

where 9" = S"[§]. The forms aj, - aj, q denote the partial derivatives of aj; with respect to the
state and the parameter. For the remainder of this section we make the following existence and
stability assumptions for the considered discretization.

Assumption 5.6. There exists hg > 0 such that for all h < hg, § € Quq and dq € L?(£2) the
discrete state and sensitivity equations, and , admit unique solutions y" = S"[g]
and §y" = 05"[g]6q. Moreover the operator 9S"[§]: L%(£2) — C(£2,) is linear and continuous and
there exists a positive, strictly monotonically increasing and continuous function v: Ry — Ry
with limj,_,+~y(h) = 0 and a constant ¢ > 0 independent of h such that

1(0514) — 05"[@)dallc < ev(R)lIoall L2 (a).

holds for every dq € L?(12).

Discretization of (Ps) and stability estimates

Let h < hg be given. As in the continuous case we observe
05"4)0q (x) = (08"[4)8q. 2) = (0S"[4]* 8z, 6a2) 12(02) = (G, 80) 1202

for all z € £2,, ¢ € L*(2) and GF = 05"[4]*6,. Due to the compactness of the operator
0S"q): L*(2) — C(£2,) the mapping

Gy: 2y — L*(92), z— G%,
is uniformly continuous. We now define the finite element approximation to (Pg|) by

o Fi(un) = [hn(un) + Bllunllml, (Ps.n)
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

where the reduced functional is given as ¥y (u) = ¥(Z(u)). Here, the discrete Fisher information
operator 7y stems from a straightforward discretization of Z by

Ty : M(£2,) — SHS(L?(02), L*(02)), ur—>/ ? ® G du(z).

Accordingly we define the discrete pointwise Fisher information as
In: 2, — SHS(L*(2), L*(22)), =+ Gf @G

Note that we neither discretize the space of design measures M™(£2,) nor the parameter space
L?(£2). This corresponds to a variational discretization approach.

Before proving the existence of minimizers to (Pg)) we present several stability results for the
Green’s function G7 and the Fisher information operator Zj,.

Lemma 5.25. For all h < hg there holds

max [|G* — Gl r2(o) < ev(h); (5.40)
for some constant ¢ > 0 independent of h.

Proof. By definition of G* and G} we obtain

IG* = GillLz@) = sup  (G* = G}, 0q) 120y = (0S[d)0q — 0S"(q)6q, x) < ey(h),
6q€L2(.Q)7
||5Q||L2(Q):1
for all x € £2, using the estimate from Assumption O

Proposition 5.26. For all h < hg small enough we have
max ||1(z) — In(2)|lusr2(2),22(2)) + 1T = Zull comeas) v 22(2),020)) < ¢v(h),

CEEO

for some constant ¢ > 0 independent of h.

Proof. Denote by {¢; }ien an orthonormal basis of L?(£2) and fix x € 2,. By definition we have
1762) = ot 1) = oz (010) = )T (0) = )

= Z e 2)¢ill 720

Fix an an arbitrary index ¢ € N. We estimate

[(I(z) = In(2))@illL2() = IG*(G*, di) r2(2) — G* (G, ¢i) 2 | L2 (02)
< |(Ghs ) 2 IIG* = GillL2(2) + |GT |L2(2)[(GT = G, @i) L2 ()

Squaring both sides and applying Young’s inequality we conclude

I(Z(2) = In(2))illF2 (o) < 20(GF, 00) T2 () IGT = GillTa) + 1GT 1 72(0) (G = GT, 61)T2(0))-
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5.2 Discretization and error estimates

Recall that due to Parseval’s identity there holds ||’UH%2(Q) =32, gbi)%z(m for all v € L%(92).
Summing over all ¢ € N in the above inequality we arrive at

I((2) = Tn(@)fis (20 2200y < 201G 7200y + 1GEI 221G = Gill72(0)-
The norms of G* and G} are uniformly bounded with respect to = € (2, and h. Applying
estimate ([5.40]) thus yields

2 2
;ne%)j () — Ih(x)||HS(L2(Q),L2(Q)) < cy(h)7,

for some ¢ > 0. The first result is now obtained through taking the square root. The stability
estimate for Z is deduced immediately from

1Z(w) — Zn(w)llusz2(0),r2(2) < max 11(z) = In(z) las(n2(2), 222 Il m;

for all uw € M(£2,). O

Roughly speaking, the following proposition states that given an arbitrary design measure a better
Fisher information can be obtained at a lower cost by only placing sensors in the nodes of the
triangulation.

Proposition 5.27. Let h > 0 and u € M1 (£2,) be given. Then there holds

Ty (Apu) — T(u) € Pos(L*(2), L2(2)), [ Anullan < llulas. (5.41)

Proof. We proceed similarly to the proof of T heorem Let an arbitrary but fixed u € M™(£2,)
and z € L?(£2) be given. The second statement, ||[Apul|p < |lullag, follows from elementary
properties of Ay, see [59, Theorem 3.5]. Let us proof the first one. Testing with z € L?(£2) we
obtain

2

(2, Tn(u)2) 12 = <(G'h,z)%2(m,u> - <(85h[(j]2)2 u> - < S et () (a;) u>

T GNh
Now, we estimate

2

< > ehoshga(z;) u> §< > el (85h[cj]z(xj)>2,u>,

z;EN, z;EN,

i

x € {2,. From this point on we follow exactly the steps in the proof of Theorem obtaining

< > (05" alz ()’ u> - <¢h (GSh[cj]z)Z,u> - <(ash[cﬂz)2 ,Ahu>.

a:je./\fh

with Jensen’s inequality, using the convexity of the square function and le N, el(x) =1 for all

Thus we conclude

(2 Tn()2) 120 < <(ashmz)2 ,Ahu> = (G 2)a() » Ant) = (2 Ta(An)2) 2 ).

Since z € L?(£2) was arbitrary, this implies Zp,(Apu) — Zp,(u) € Pos(L?(£2), L?(£2)) finishing the
proof. O
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

We are now ready to prove well-posedness of (Pgp)). In addition, using the results of the previous
proposition, there exist optimal measurement designs supported in Nj,.

Theorem 5.28. Let 8 > 0 be given. For all h < hg small enough there exists at least one
minimizer ugp, € MT(£2,) to (Pa) fulfilling

—Vipy(tugp) < B, suppigy C {x € 2| — Vi (ugn)(x) = B}.

Here the discrete gradient is given by
—Vin(ugn) (@) = —(Gf, VO (Th (s n) G 2 (0) = (V¥ (Zn(ugn) > G720,

for all x € (2,. Moreover the set of minimizers to (Pgp) is bounded uniformly in h. Given a
sequence of discrete optimal designs {ugp}r>0 it admits at least one weak™ accumulation point
and every accumulation point tg is an optimal solution to (Pg|).

Proof. Let h < hg. From Theorem [5.20] we recall that the set of continuous optimal designs is
bounded by a constant M. Consider the auxiliary problem

i v (1, U .t < 2My. 5.42
womin W(T(w) + Blasalad st ullu < 20y (5.42)

Since Fy, is weak*-to-strong continuous on M™(§2,) this problem admits at least one minimizer
ug,p. We proceed to show that the additional norm constraint is inactive if A > 0 is chosen
small enough. By construction the sequence {ug p}n>0 is uniformly bounded. Extracting a weak*
convergent subsequence g, —* 4 € M7 (£2,) denoted by the same symbol, we note

In(ugn) = Z(a), |agpllm = lallm,  Ynltgn) — (@),
as h tends to 0. Let an arbitrary minimizer ug of (Pg|) be given. Since ||ug||pm < 2Mo we conclude
F(u) = lim Fj(u < lim Fy(ug) = F(ug).
(@) = lim Fy(up,p) < lim Fy(ug) = F(ug)

Thus @ is a minimizer of (Pg|). In particular this yields @] s < 2Mp. From the weak™ convergence
of {tg p}n>0 the same holds for ug p, choosing h small enough, since

upnllm = (L agn) — (1, a) = [|ul|m-

As a consequence, the norm constraint in is inactive at #gj from which we infer its opti-
mality for . As the subsequence as well as the accumulation point were chosen arbitrary
the statement on the existence of discrete optimal designs, their uniform boundedness and their
convergence follows.

The necessary and sufficient condition on the discrete optimal gradient Vi, (ug) as well as its
representation are derived as in the continuous case. O

Proposition 5.29. For every discrete optimal design ugy, the measure Apug), € M*(2,) N M,
s also optimal.

Proof. For an arbitrary discrete optimal design g, h > 0 we have

U(In(upn)) + Bllugnllm > O (Zn(Antp,n)) + Bl Atg pllam,

due to the monotonicity of ¥ and Proposition The statement follows. O
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5.2 Discretization and error estimates

Remark 5.7. A straightforward combination of the previous results immediately yields
Fh(u) > Fh(/lhu) Yu € M+(Qo). (5.43)

At first sight it might seem strange that any optimal design measure is outperformed by a sparse
one supported in the grid nodes given that the parameter space L?(§2) is infinite dimensional.
Therefore it is worthwhile noting that the parameter space is implicitly approximated due to the
finite dimensionality of the discrete state space Y. More in detail defining the L?(£2) complement
of the kernel as Qj, = ker S"[g]" we can decompose

L*(2)=Q,®Q), dq=(Id—Py,)éq+ Po,dq,
for all §¢ in L?(£2). Here Py, denotes the orthogonal L?({2) projection onto @Qp,. Thus we conclude
05"(qloq = 05"(q)Po,dq, G}, € Qn, Tn(u) € SHS(Qn, Qn),
for all 6q € L?(02), x € 2, and u € M(£2,). Especially this implies dim(ImZ,) < dim(Qy). In
this light, Proposition and can be interpreted as a stronger version of Theorem [3.20]

We illustrate the implicit discretization of the parameter space for several examples. Here we
emphasize that some of the discretized PDEs considered in the following correspond to parameter-
to-state operators S which are not differentiable in L?(£2) but only with respect to a stronger
topology. In particular, the corresponding linearized operator 4S[g] is not continuous on L?(£2).
However after discretizing the model the discrete operator 5"[¢] can be extended to a linear and
continuous operator between L2?(£2) and C(f2,). We include these examples for the purpose of
highlighting the different outcomes of the implicit discretization on the parameter space and the
dependence of @, on the underlying PDE. The spatial domain 2 C R¢, d < 3, is assumed to be
a bounded convex domain.

Example 5.6. Let us first consider the finite element discretization of Example[5] Here, given a
direction 6q € L%(£2) and § € L?(2) the discrete sensitivity 6y" = 0S"[§]6q = S"[0q] € ViyNHE (£2)
is given as the unique element in Vi, N\ HY($2) fulfilling

/ Véyn - Vopdx = / dqppdx, Vop € VN H&.
02 2
We characterize the kernel of S"[G] as
ker DS"[§] = {5q € L*(0) | / Sqpndr =0, Yy € Vi, N H () } = (Vi nH3(2))".
2

Thus we conclude Qp, = Vi, N H(£2).
Example 5.7. In the following example, the unknown parameter q enters in the transportation
term of an elliptic PDE. Given ¢ € WV®(£2), 0, = 0 a.e. in {2, the associated discrete state
yn = SG] € Vi, N HE () is given by the unique solution to
/ [Vyn - Veon + 49deyn — feon] dz =0 Vep, € Vi N H{ ),
19

for some known source term f € L2(£2). The discrete sensitivity oy, = 0S"§)dq € Vi, N HL () in
a direction 5q € L%(£2) fulfills

/Q[Wyh -Veon + Gp0y, oyplde = — /Q 6qonOs yndx,  Vep € Vi, N Hy (92).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

We obtain
ker 95 [g] = {5q € L*(92) | / 0q0z,ynpndz =0, Veon € Vi N Hy(£2) }
0
% 1 i
= {qE V7| 3en € VN Hy(£2): qzamyh%}
= Qn,
where the space of piecewise linear and not necessarily continuous function on Ty is given by
Vh¢:{¢hEL°"(Q) | ony € Pi VTEE}.
To prove this note that

0q € Q;—Zr & /Q 8q0z, ynndr =0, Vo, € VN HE(2) & dq € ker@Sh[cj].

Example 5.8. Last we deal with the identification of a distributed diffusion coefficient, see Eux-
ample . For G € CY1(0), the discrete state y, = S"[q] fulfills

| [expl@)Van - Vi = fin) da =0 Vion € Vi HY ()
The sensitivity equation for Sy, = 0S"[4)dq, 6q € L*(£2), is derived as
/Q exp(q)Véyy, - Vopdr = — /Qexp(@)5quh Vpdz, Vep € Vi, N H(2)
Before proceeding we note that exp(q) > 0 on 2 and

(641, 002) 12(02) = (exp(§)da1,042),  Voqn, dgz € L*(92),

induces an inner product on L?(£2). The induced norm is obviously equivalent to the canonical
norm on L?(£2). The kernel of the discrete solution operator dS"[q] is now given as

ker 95"[q] = { 5qg € L*(0) | /Qexp(cj)(squh -Vpdz =0, Ve € VN HY(N) }

TA

={qe VY| 3pn € Vi, NH{(2): ¢=Vyy - Vep} *
T4

= thu

where the orthogonal complement is formed with respect to the L?j(ﬂ) iner product. Here we
define the space of piecewisse constant finite element functions on Ty, as

Vi ={onel®@Q) on, e P TET}.

This can be proven analogously to the previous example.

In the following theorem error estimates for the objective functional values are provided.
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5.2 Discretization and error estimates

Theorem 5.30. Let a sequence of discrete optimal designs {tgp}n>0 with tgp —* g be given.
For h < hg small enough there holds

[Fn(up.n) = Fug)| < ey(h), (5.44)

for some ¢ > 0 independent of h.

Proof. By optimality of %ig and g we have
Fi(ugn) — Fugn) < Fu(tgn) — F(ug) < Fu(tig) — F(ug).
Note that Fj,(u) — F(u) = ¥p(u) — 1 (u) for u € M*(£2,). Thus we obtain

|Fh(gn) = Flug)| < max{[pn(tsn) — ¢ (upn)ls [¥n(s) — (ag)l}- (5.45)

We proceed by Taylor expansion to obtain
[ (tg) — P(ug)| = | Trra (o) (V¥(Ze () (Zn(tpn) — Z(ug))]
< IV(Ze (ap)) lms(r2(0),12(2) 1Zn(us) — Z(us)lns(r2(2),22(2)
< [V (Za (up)) I nsr2(2), L2 | @sllmy (h),

where 71 (ig) = Z(ug)+C(} (Tn(ug)—Z(ug)) for some ¢} € (0,1) depending on h < hg. Analogously
given ug p we get

[on(tign) — ¥(tgn)| = | Trr2 (o) (V¥ (Ze2 (s n)) (Zn(tp,n) — Z(tsn))|
< IV (Zez () lns(2(0),12(2) 1 Tn(tig,n) — Z(tg ) lus2(0),12(2)
< [V (Zez (g ) llus(2(2),12(2)l1tg,nllmy (h),

with Zci(ﬂﬁvh) = I(ugp) + C(In(tupp) — I(ug)) for some (7 € (0,1) again depending on h.
Observe that there holds

1Z(ug) — L1 (up)lus(r2(2),2(2)) < I1Zn(ts) — Z(up)lusr2(2),12(2)) < cv(h)llsllm,
as well as
1Z(up) — Lz (up,n)llus(z2(2),r2(02))

< || Z(up) — Z(up.n)llusz2(2),L2(2)) + 1Z(0sn) — Zn(us ) llusp2@).02(2)
< ||Z(up) — Z(ug.n)llus(z2(2),c2(2)) + cv(M)|dsnllm-

From the strong convergence of {Zj,}r~0, the weak* convergence of {ugp}r>0 and the uniform
boundedness of {||ug.4||a}r>0 We conclude

IV (L (ug)) — V(L (ug))lus(r2(0),22(02)) + IV (Ze2(tign)) — VO (Z(up))llusr2(0),12(2)) — 0,
as h tends to 0. Thus we further estimate (5.45) yielding

|Fr(ug,n) — F(ug)| < | VU (Z(up))llusr2(2),L2(2) 7 (7).

for some ¢ > 0 independent of A > 0. O
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A statistical interpretation of variational parameter discretization

Discretizing the underlying equation but not the parameter space can be interpreted as a vari-
ational discretization approach to the Bayesian inverse and the sensor placement problem. We
close this section by shedding some light on the statistical consequences of the finite element
discretization on the inverse problem. To this end let go: D — L?(§2) denote the Gaussian
random field distributed according to the prior distribution po = N(§,Zy 1). Again, we abbrevi-
ate S"[q](x) = (S"[G](z1),...,S"[g](xxn))T. Consider the discrete (linearized) inverse problem

find g € L*(2):  S"[d)(z) + Xn(qg— 4) =ya where (Xpq); =0S"[d](z:),

for all i = 1,...,N and a given vector of measurements y; € RY. As in the continuous case

its solution is given in terms of the posterior distribution M;Lg;g- This probability measure is a

Gaussian whose mean and covariance operator are defined by
qp;))s’g = (j + Cpost(XhE (Yd - Sh[(ﬂ(x)))v Cpost - (XhE_th + 1—0)_1

Recall that the covariance operator of a Gaussian measure p = N (g, T,) allows to quantify the
uncertainty of the associated random field ¢*: D — L?(£2) along given directions in the parameter
space. More precisely, we observed in Proposition [5.1] that there holds

E“[(5q,qu - qM)] = /LQ(Q)((Sq’ q— qH)%Q(Q) dM(Q) = (5Q>TN5Q)L2(_Q)
for all §¢ € L?(£2). As a consequence, the differences
/ (6.4 — a0)* dpo(q) —/ (80, — apoxi)* diperi (9) = (8a, (Zg " — Chot)a) 12(02) = O,
L2(92) L*(%2)

for all 6q € L?(2), can be interpreted as a measure of directional uncertainty reduction that was
achieved through incorporating the knowledge provided by the measurements y,.

To illustrate this fact let us consider the prior-preconditioned Fisher information operator
I,V x; 2 X, P e L(LA(), L2()).

This operator represents the information provided by the mathematical model through the mea-
surement setup filtered by the prior. Obviously it is positive, self-adjoint and has at most rank N.
If it is not equal to zero, it admits a strictly positive eigenvalue ¢ > 0 with associated eigenfunc-
tion ¥ € L2(§2). Due to the definition of the preconditioned Fisher information operator there
holds ¥ € H. Furthermore, since H = Im Ié/ 2, there exists an element v € L?(§2) with Z,, 12, — 9.
Let us quantify the uncertainty reduction provided by the measurements in this dlrectlon. We
readily calculate

(v, Cpost0) 12(2) = (0, (X5 E " Xp +To) ') 1202
= (Ty o, (T, P X 2 X0 T 1) Ty ) g
1

= Q+1(U IO )L2(Q)‘
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5.2 Discretization and error estimates

Thus the amount of uncertainty reduction that occurs in this direction is given by

(U,IO_I’U)L2(Q) — (v, CpostV) 12(0) = T (v, Iy! v)r2(2)-

1+

In particular, if o is large, i.e. o/(0 + 1) & 1, the measurements y, are highly informative in this
direction of the parameter space.

In contrast, if dq € Q; we readily obtain

(8q,CRo00) r2() = (60, Z5 '6q) 120

and consequently
[, Goa-a duo@ - [ (Goa- it duite) = 0a. (@ - T )a)rae) =0,
L2(02) L2(02)

Thus, in such directions, no uncertainty reduction can be achieved by solving the FE discretized
inverse problem. The variability of the posterior distribution on Q;{ is completely characterized
by the prior.

Let us put this observation into the context of sparse sensor placement problems. While is
still formulated as a sensor placement for the Gaussian random field ¢ in L?({2), any measurement
design u € M™(£2,) only provides information for the parameter on the finite dimensional space
Q. For example, the A-optimal design criterion might be rewritten as

Trr2(0)(Zn(u) +Zo) ™) = Trq, (Zn(u) + Zo) ') + Trgr (Z5 ),

where the second term is independent of the design measure u and cannot be reduced through
optimizing the measurement setup. In particular the associated sensor placement problem is
equivalent to solving

min [Tr Tn(uw) +Zo) ™) + Bllu . 5.46

ue/w(no)[ Qn(Zn(u) +Zo) ") + Bllul|nm] (5.46)

To give a rigorous statistical interpretation of this observation let us consider the Gaussian random
variable obtained through projecting the random parts of g onto Qp,

Pg,q: D — L*(2), w~ ¢+ Pg,(qw) —q).

Clearly, Pg, g is an affine linear transformation of a Gaussian random field and thus again Gaussian.

Its prior distribution is given by ,ug? =N (q0 " P, Ty 1PQh) with mean QO = §. Arguing similarly

Qn,yd

to our discussion on sparse goal-oriented design criteria, we obtain its posterior distribution pi5oc¢

as

Qn,Yd CQh

) 5 ~ h ~
:ugohstyd = N( post post) where Onyi = =4q + PQh (qpobs,g - CI), C];?ost PQhC

qpost PQh '

post

Now, calculating the averaged pointwise posterior variance of the projected random field yields

/L s 107 057 Wiz QUG = Triao) (PG P
h h
= TrQh (PQthostPQh) + TI'Q;LI' (PQthostPQh)
= Trg, (Cpost)
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

This admits an intuitive interpretation. Due to the discretization of the PDE model we cannot
obtain any additional knowledge on the unknown parameter on the complement of the finite
dimensional subspace @} through measurements of the (linearized) state variable and the FE
discretized model. Thus, intuitively, optimal sensors should be chosen in order to, at least, provide
as much certainty on the projection of the parameter onto ). This intuition is captured by the
semi-discretized problem in a mathematically rigorous way.

5.2.2 Spectral discretization

In general a straightforward algorithmic solution of is infeasible since the discrete parameter
space @, is usually high-dimensional, see also the discussion in Section [5.3.2] To reduce the
dimension of the parameter space we propose to replace the space L?(£2) with a subspace spanned
by finitely many eigenvectors of Z; . We first discuss this approach for the continuous model i.e.
with no additional FE discretization.

Denote by {A;}ien the eigenvalues of Zj I ordered by decreasing magnitude and by {@;}ien the
associated eigenfunctions. Given a truncation parameter n € N we define the linear subspace
V, C L?(0) as

Vo, = span{¢1,...,dn} = {Zvi@- | v; € R, i—l,...,n}.
i=1
The orthogonal L?(£2) projection onto V;, will be denoted by

Py L*(2) =V, v Z(Ua¢i)L2(Q)¢i-

i=1

Discretization of (Pg))
The spectral discretized sensor placement problem is now defined by

e Bl (0 = 167 + Bl P3)

where ¢"(u) = ¥(P,Z(u)P,). We make the following additional regularity assumption on the
optimal design criterion ¥.

Assumption 5.7. For every n € N large enough there holds
A.4.5 Given My > 0 and B € Pos(L?(02), L*(£2)), | Bllus(z2(02),02(2)) < Mo, we have

0 <W(P,BP,) —¥(B)<cmy Y. i,
i=n-+1

for some constant cps, > 0 which may dependent on My but not on B.

We verify this assumption for A and D optimality.
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Example 5.9. For the A-optimal design criterion ¥a(B) = Trr2(0)(Cpost(B)) we have

n 00
!I/A(PnBPn) = TrLQ(Q) (Cpost(PnBPn)) = Z[(¢iaCpost(PnBPn)¢i)L2(Q)] + Z )\ia
i=1 i=n+1

forn € N and B € Pos(L*(£2), L*(£2)). Let us verify Assumption in this case. Let an operator
B € Pos(L*(£2), L*(£2)) with || Bllus(r2(2),12(0)) < Mo be given. Applying Taylor’s expansion we
obtain

0 < WA(PyBP,) — Wa(B) = Trp2()(Cpost(Bc)* (B — PuBP,))
= Tr2(2) (Cpost(B¢)? = PuCpost(B¢)*Pu) B),

where B = B+ ((P,BP, — B) € Pos(L*(£2), L*(£2)) for some ¢ € (0,1). Further estimates reveal

Tl”LQ(Q)((Cpost(BC)2 - Pncpost(BC)2Pn)B)
< IBllr2(0),r202) Trr2(02) (Cpost(Be)? = PaCpost(Bc)? P)

oo
= Bllcz2(oni2@) D, Coost(Bo)dillZ2 (-
i=n+1

Recalling that ||Cpost(Be)l £ae= 320) < 1, see (B.9), [|¢ill7,+ = Ai, and that SHS(L?(£2), L?(£2)) embeds
continuously into L(L?(12), L*(£2)) we conclude

Wa(PoBP,) —Wa(B) < My ) A
n+1

Example 5.10. Concerning the D-optimal design criterion we have
W (P, BP,) = —log(Det(Z, /2P, BP, I, V/? + 1d)),

for all B € Pos(L?(£2), L*(2)) and n € N.

Let B with || Bllus(r2(0),2(2)) < Mo be given. Proceeding as for the A-optimal design criterion we
obtain

0 <¥p(PpBP,) —¥p(B) = Trp2(0)(Cpost(Be) (B — PaBFy)),
with B = B + ((P,BP, — B) € Pos(L%*($2), L*(12)). We further estimate
Trr2(2)(Cpost(Be)(B — PuBPy)) < Trrz(g)(Cpost(Be) — PuCpost(Be) Po) || Bll £(12(2),12(2))-
After calculating the trace we end up with

Up(PaBP,) —¥p(B) < Trr2(0)(Cpost(Be) — PnCpost(Be) Po) || Bll£(L2(02),22(2))

= |Bllusr2(o).r22)) Y, (9iCpost(B)éi)r2(a)
i=n+1
<My > A
1=n-+1
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Existence of a minimizer to |D can be concluded from the monotonicity of the design criterion.
Due to the discretization of the parameter space the number of optimal sensors can additionally
be bounded in dependence of the truncation parameter.

Theorem 5.31. Let n € N large enough be given. Then there exists at least one minimizer
ug € M (£2,) to (P with #suppuj < n(n + 1)/2. Furthermore a measure uj € MT(82,) is
optimal for (Pg) if and only if

—"(up) < B, suppiug C {x €N, | — Y"(ug)(z) = },
where the continuous function —w"(ﬂg) s given by

—V () (x) = —(PaG®, VO (PuTy (T5) ), PaG®) 120
= (V@ (PZ(u}) Pa) > PaG"|[72 )

Proof. Let n € N large enough be given. Since ¥ is monotone in the sense of Assumption [5.4] we
conclude

F(u) = ¥(Z(u) + Bllulm < U (PuZ(u)Po) + Bllulm = F™(u)  Vu € MT(£2).

In particular, this implies radial unboundedness of F". Existence of a minimizer and the conditions
on the gradient can now be concluded as in the continuous case. The result on the existence of a
minimizer a3 with # supp aj < n(n—+1)/2 follows by a straightforward adaption of Theorem
noting that dim(Im P,ZP,) < n(n +1)/2.

The following proposition addresses convergence of minimizers to the spectral discretized prob-
lem |D as n — 0o.

Proposition 5.32. Forn € N large enough let uj € MT(£2,) denote a minimizer of lb Then
the sequence {ag}neN admits at least one weak™ accumulation point ug as n — oo and every such

point is a minimizer of (Ppgl).
Proof. Let such a sequence be given. Exploiting the monotonicity of ¥ we conclude

F(a}) < F™(@) < F'"(u) < F(u) —cu Y A
n+1

for some arbitrary but fixed u € M™(§2,), a constant ¢, > 0 only depending on u, and all n € N
large enough. As a consequence {F(u}))}nen and thus {||@;| s }nen is bounded. We extract a
weak™ convergent subsequence {ﬂg}neN , denoted by the same symbol, with limit ug € M™(£2,).
Denote by @ a minimizer of (Pg|). Then there holds
SN ny < 1 neany < 1 o) — F(a).
F(ug) nh_}rrgo F(up) < nh_}rgoF (up) < nh_)n(f)loF (u) = F(u)

This implies optimality of ug for (Ps)). Since the weak™ accumulation point was chosen arbitrary
the statement follows. O

As a straightforward consequence of Assumption[5.7]the approximation error in the optimal objec-
tive function values is bounded by the tail sum of the eigenvalues corresponding to the neglected
orthonormal basis functions.
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5.2 Discretization and error estimates

Theorem 5.33. For n € N large enough denote by uj € MT(£2,) an arbitrary optimal solution
to (Pg). Given a sequence {’L—Lg}neN with W} —* g as n — oo there holds

o
Fha) - Flag) <c S A
i=n+1

for all n € N large enough and some constant ¢ > 0 independent of n € N.

Proof. Let such a sequence be given. From its weak* convergence we get the existence of a constant
Mo > 0 with [|Z(a3)||xsr2(0),22(2)) < Mo for all n € N. By comparing objective function values
we conclude

|F™(u) — F(g)| < max{y" (ag) — ¥ (@g), o (@s) — ¥(up)} < earg Y N
n+1

using Assumption [5.7] This yields the statement. O

A statistical interpretation of spectral discretization

As for the finite element discretized problem we give a statistical interpretation of the
spectral discretization approach. To this end we denote denote by ¢: D — L?(2) the Gaussian
random field distributed according to the prior distribution po = N(§,Zy 1). As a first step we
recall the definition of the space V;, as the span of n eigenfunctions {¢;}}' ; corresponding to the
largest eigenvalues of the prior covariance operator. Moreover, if ¢; is an eigenfunction to A; > 0,
we calculate

Euo[(¢i7q - Q)%Q(Q)] = (¢l7161¢2)L2(Q) = )‘i7

Thus the magnitude of the eigenvalue quantifies the amount of prior uncertainty in the direction
of the associated eigenfunctions. In order to measure the amount of information that we obtain
on the unknown parameter by solving the inverse problem we compute these directional variances
also for the posterior distribution.

To this end, denote by ¢¥¢: D — L?(f2) the Gaussian random field distributed according to the
posterior distribution uya = N () Cpost). Furthermore we recall the definition of the posterior
covariance operator as Cpost = (X *X 71X 4+ Zy)~!. In the following we compute the difference

between directional prior and posterior variances

R Yd _
El(6,q — )3aay) — BP9 (6, ¥ — @2 2agn] = (64 (T = Coost) ) 12(02) (5.47)

for each eigenfunction ¢ of 7 1 with associated eigenvalue A > 0. Note that this difference is
always non-negative and (¢,Z; 1¢>) r2(2) = A. Thus if this quantity is approximately A then the
posterior uncertainty of the random field in this direction is small. This means that a significant
amount of information on the unknown parameter along this direction is obtained by solving the
inverse problem. We readily calculate

(6, Coost B 2(2) = M8, (Zy X 271X, 15 % 4+ 1d) 71 6) 12 g
= A= N (2 + XI; X)X g2
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Here we used the Sherman-Morrison-Woodbury formula for the inverse and Z, Y qu = \72¢. As
a consequence, we obtain

y
E0((6,q — §)3a(c)] — BP9t (6,67 — ¥)2a(y) = NI(E + XTIy X)X 62y, (5.48)

Let us interpret this statement. In order to do so we introduce the random variable y; modeling
our prior believes on the distribution of the measurements as

ya: D> RY, we S[gl(2) + X (q(w) — 4) + e(w).

Due to the statistical independence of the measurement noise and the prior distribution of the
parameter we conclude that y,4 is a Gaussian random vector distributed according to

Hyq = N(S[d](z), XI()_lX* +X).

In particular, there holds
1 ] o — R
i 0) = [ exp (=31(5+ XT3 X2y = Slala)lEn ) ay VO € BEY)

Given a concrete vector of measurements y; € RY, the weighted euclidean inner product

(£ + XT ' X)) T2 (ya = S[al (@) = ((va — S[al(x), (2 + XTIy X*) " (ya — S[é](m)))(RN )
5.49

is often referred to as the information on the distribution of the measurements provided by the
vector y4. Intuitively, this terminology can be justified as follows: Suppose that the vector yg € RV
corresponds to real -life measurements taken in an experiment. Now, based on these observations,
we re-evaluate our prior believes on the distribution of the measurements y4. If the misfit term
in is small, i.e. yq is close to the mean of y4, the obtained measurements back up our
prior believes but no significant new information is obtained. However, if this term is large, the
vector yq is far away from S[g]|(z). This either implies that the observed measurements are an
outlier or that the prior distribution of the measurements is incorrect and needs to be adjusted.
In this case the vector y4 can be seen as highly informative.

Second, we recall the Karhunen-Loéve expansion of the Gaussian random field ¢ as
g(w,x) = 4(z) + > VAG(w)di(x),
i=1

for P-a.e. w € D and almost every x € {2. Here the coefficient functions are given by a family of
1.i.d scalar-valued random variables {(;};eny with (1: D — R, ¢ ~ N(0,1).

Now we split up the right hand side of ([5.48)) as
(24 XTI X)X 20 = A A2+ XI ' X)) T2 X g2 (5.50)

The first factor, A > 0, describes our prior knowledge on the random field. Obviously, significant
uncertainty reduction can only be achieved if there is substantial prior uncertainty for the random
field along the direction of ¢. Additionally, reducing uncertainty is only possible if the obtained
measurements are sensitive with respect to changes in the random field along this direction. This
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5.2 Discretization and error estimates

is captured by the second factor in ((5.50). To make these arguments rigorous we consider random
perturbations of the measurement mean in the direction of ¢. More precisely, we define

dya: D = RN, dy(w) = S[dl(x) + X Py(q(w) — q) = S[d)(z) + (¢,a(w) — DX,

where Py denotes the L?(£2) orthogonal projection on the one-dimensional subspace spanned by ¢.
Now, we compute the information, in the sense of (5.49)), for every realization of dy; and average
over its distribution. This yields

[ 15+ X251 X2 bya(w) = Sl @) B dB()
= [ 68 (54 XT X)X )
= \(Z 4+ XZy X)X 6|2 n
using the formula for the expectation of a quadratic form. In particular, if ¢ € Ker X there holds
AMEZ+ XTI X)Xy =
i.e. no uncertainty reduction can be achieved in this direction by solving the inverse problem.

Similar to the FE discretized case, we now interpret the spectral discretization approach as a
variational discretization of the inverse problem. To clarify this connection let us recall that the
set of eigenfunctions {¢;}ien to Zy ! forms an orthonormal basis of L?(£2). Now, consider the
spectral discretized inverse problem

find g € L*(2):  S[d(x) + Xn(g — ) = ya, (5.51)

where the linearized parameter-to-observation operator X is replaced by the reduced model X,, =
XP,. This corresponds to a low-rank approximation of the sensitivity operator 9S[¢] in the
reduced basis {¢;}! ;. Again note that, from this perspective, we only discretize the underlying
equation but not the parameter space. The solution to this inverse problem in the Bayesian
approach is given by the posterior distribution ,upg;? which is characterized by its mean and
covariance operator

qusltd_qA—i_ post(X 2" (Yd_Sh[(ﬂ(m)))? Cpost (X 2 1X +IO)

As for the original problem, let us quantify the amount of uncertainty reduction that we achieve
through incorporating the information provided by the measurements in this case. To this end
denote by ¢™¥¢: D — L?(2) the Gaussian random field distributed according to y™¥¢ and let ¢
be an eigenfunction of Z; ! The corresponding eigenvalue will be denoted by A. Evaluating the
difference between prior and posterior uncertainty now yields

R n,yq n n _ *\ —
EP(6,q — 4)2a()] — BP0t [(6, 4" ¥ — @228 2agey] = N2U(Z + XuTy  X3) 72 X2

If ¢ corresponds to a neglected eigenvalue, i.e. ¢ € V,,, we readily obtain

n,y
]:Ey‘poséi [(¢7 qn Y — onst )LQ(Q)} ((;5, postgi))L2 (¢7Ial¢)L2(Q) =A
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Thus in such directions no uncertainty reduction can be achieved by solving the spectral discretized
inverse problem ([5.51). However aggregating the directional pointwise variances in these directions
we observe that

o0
Tryr (Chost) = Tryr(Zg) = D Ai <00, Tryr(Chog) = 0
i=n-+1

as n — o0o0. From this perspective we may interpret the presented spectral discretization as a
restriction of the inverse problem to the subspace V,, spanned by the directions of largest prior
uncertainty. On its complement, if n € N is large enough, the variability of the random field is
already small due to the provided prior knowledge. This reduces the infinite-dimensional inverse
problem to a finite dimensional one.

In the remaining directions, uncertainty reduction can still be achieved by solving the inverse
problem but only to a smaller extend than in the full model. More precisely, for ¢ € V,, we
obtain

n,¥Yd Yd
0 < Efeost [(¢, ¢4 — qgézg)%z((z)] — Efeest (¢, g% — qg&ﬁ?)izm)]
= (&, (Cost — Cpost)9) < AillChost — Cpost s+,
< AP X*SX Py — XS X | pae 009
S ATI‘LZ(_Q) (Io_l/Q(X*Z_lx - PnX*Z_lXPn)I()_l/Q)

<ed > NZTVPXilEn Sed DN
i=n-+1 i=n+1

for some constant ¢ > 0 independent of ¢. Here we used the Lipschitz continuity of the posterior
covariance mapping, see Proposition the continuous embedding of SHS(H, H*) into L(H, H*)
and the definition of the norm on SHS(#, H*).

In particular these observations suggest that if the sequence of eigenvalues {\; };cny converges fast
enough to zero we can restrict the parameter space and thus the inverse problem to a small number
of uncertain directions. On this subspace we can achieve uncertainty reduction comparable to that
provided by the full model through solving the spectral discretized inverse problem. In contrast,
on the complement of this low dimensional space we are already certain about the behavior of
the random field due to the small directional prior variances. Thus they can be left out of the
problem.

Clearly, these observations also yield implications for the corresponding sensor placement prob-
lem 1’ For example, computing the spectral discretized A-optimal design criterion reveals

Wa(PZ(u)Py) = Tro, (PaZ(u) P+ Zo) ") + Tryr (PuZ(u) P+ Tp) ™)

o
= Try, (PZ(u)Pn+Z0) )+ > A
i=n+1

As a consequence, finding a measurement setup that minimizes the averaged variance of the
posterior distribution obtained by the spectral discretized problem boils down to solving

smin [Ty, (PZ() P+ Zo) ™) + Bl ] (5.52)
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It is straightforward to see that this is equivalent to minimizing the trace of a n x n matrix:

in[Tren ((Z"(u) +25) ) + : 5.53
we i MTren (27 (w) + Z6) ™) + Bllulad] (5.53)
Here Z' € Sym(n) is a diagonal matrix with (Z7');; = 1/X\; for i = 1,...,n, and the matrix

Z"(u) € Sym(n) is given by
I"(u) = /Q 05"[4]()05" (g (x) " du(x), 9S"(q)(x) = (8S[d)¢1 (2),...,0S[dén ()",

for x € £, and u € M™T(£2,). This problem fits into the general framework presented in the
previous chapter. Note that 0S[q|¢; (v) = (G% ¢i)r2() for all i = 1,...,n. To clarify the
connection between these two problems we introduce the mapping

Pn: Lz(Q) — Rn: q— ((q7 ¢1)L2(Q)7 sty (Q7 ¢n)L2(Q))T'

Now we readily obtain

TrVn((PnI(u)Pn + IO)_I) = Z(eiv Pn(PnI(u)Pn +IO)_1P:Lei)R”
i=1
= Trgn ((P,Z(uw)P} + P, ZoP:) ™)
= Trgn (Z"(u) + Z5) 7).

As for the finite element discretization these two equivalent problems can be interpreted as sensor
placement problems to optimally infer on suitable projections of gq. Let us first consider the
projection of the random parts of ¢ onto the subspace V,,

Py.q: D — L2(Q), w— 4+ Pp(q(w) — q).

Due to the linearity of the projection, Py, ¢ is a Gaussian random field distributed according
to ,ué)/" (a4, P Zy 1P,). Computing its posterior distribution given the measurements and the spectral
discretized inverse problem gives

Vn; Vn’ n ‘/n7 N , R 3
:U’pos%’d = N(qp Yd CV ) where yd _ q + PVn( nYd Q), CV

_ n
ost ) ~post qpost qpost - post T PVnC PVn'

post

Its averaged posterior is readily calculated as

Vn, Vi,
/[/2(9) Hq - qpostyd ||%2(Q) dlu’pos%,d - TrL2(Q) (Pncgostpn)

= Tl"Vn (PnCSOStPn) + TI"VJ (Pncn P )

post*t n
= TrVn (Cgost) .

Moreover we observe that
n
Py,q(w) =G+ Palqw) =) =G+ > _ VNili(w)¢i for P—a.e weD.
i=1

From this perspective, the minimization problem in ((5.52)) corresponds to finding a measurement
setup in order to optimally infer on the first n terms in the Karhunen-Loéve expansion of the
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Gaussian random field ¢ by solving 1} In the same way, we can motivate the problem in (5.53)
by considering the vector-valued random variable assembling the random scalar coefficients of the
first n terms appearing in the KL-expansion of q.

To close this section we point out that all of the preceding discussions concerning the spectral
discretization inherently rely on an appropriate choice of the prior distribution for the estimation
problem at hand. In particular, we base the construction of the subspace V,, on our belief on the
directional prior variances of the random field. However the measurements and the mathematical
model may provide significant information in the neglected directions. Following the ex-
pected uncertainty reduction in such directions is dampened by our already strong prior beliefs ,
i.e. the small variance of the random field, in these directions. Vice versa, the measurements might
not be sensitive with respect to an element ¢ € V,, i.e. perturbations of the unknown parameter
along such directions only slightly affect the obtained measurements. Consequently no significant
uncertainty reduction can be achieved in these directions by solving the inverse problem. This
again stresses the dependence of the Bayesian approach in the presented setting on a sophisticated
choice of the prior distribution.

5.2.3 Fully-discrete problem

We proceed by combining the two presented discretization approaches to obtain a sensor placement
problem which is amenable to the solution by sequential point insertion algorithms. Therefore we
replace the parameter space L?(£2) by V,,, n € N, and the continuous solution operator to the
sensitivity equation dS[g] by its discrete counterpart 9S"[g] for h < hg. We end up with the fully
discrete problem

elin Fy(u) = [¢5 () + Bllul ml, (P5.1)

where the reduced functional is given by ;! (u) = ¥ (P, Zp,(u)Py,). The following theorem addresses
existence of fully discrete optimal designs as well as their convergence behaviour for vanishing
mesh-size and n — oo.

Theorem 5.34. Let 8 > 0, h < hg small enough and n € N large enough be given. Then there
exists at least one optimal solution uj ;, to (Pg,)). Every optimal design g, fulfills

—Vyi(agy) < B, suppig, C {x € Qo — Vi (ap,)(x) = B}
Here the discrete gradient is given by

=V (ugn)(x) = = (PG, VU (P (g ) Pr), PaGh)12(0)
= (=Y (PuTp(@s.0) Pa) > PG 172 02)»

Given a sequence {ﬂg hIh>0nen of optimal designs there exists at least one subsequence denoted by
the same symbol which converges in the weak* sense as h — 0 and n — oo. Every accumulation

point g of {ﬂg hYh>0neN i an optimal solution to ([Pg).

Proof. First let us consider an arbitrary weak* convergent sequence {upn}tn>0nen C MT(£2,),
Upn —* 4, for some u € MT(£2,), as h — 0,n — co. Then there holds

i (1T (unn) = Z@) sz 2@y + lunallv el =0
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as well as

|5 (unn) — ()] < & (Zn(unn) = T(Z@)[+M Y\,
i=n+1

for some constant M with ||up, ,||m < M. Hence we conclude F}'(up, ) — F(u) for h — 0, n — oo.
We show the existence of at least one discrete optimal design uj ), € MT(£,). Therefore we
proceed along the lines of proof in Theorem [5.28 and consider the auxiliary problem

min  F'(u) st. ||u < 2M, 5.54
Lmin ) st v < 200, (554)
for some constant My > 0 bounding the set of optimal solutions to (Pg|). Given h >0 and n € N
there exists a minimizer to (5.54) and the sequence {4 }n>0nen admits a weak™ convergent
subsequence with limit point @#g. Denote by @ € M™(£2,) an arbitrary optimal solution to (Pg).
From the previous discussions we conclude
F(ug) = lim Fj'(ug,) < lm Fy(u) = F(u).
( B) h—0,n—00 h( 'B’h) ~ h—0,n—00 h( ) ( )
Thus g is an optimal solution to (Pg|) and ||ug||m < Mp. Due to the weak™ convergence we
also have [[ugpl|m < 2Mp yielding the optimality of uj , for [P% ). Since the weak* convergent
subsequence as well as 4z were chosen arbitrary the same holds for every accumulation point.

The necessary (and sufficient) optimality condition on the gradient are derived as in the previous
sections. [

Due to the finite element discretization of the sensitivities the existence of an optimal design
supported in the grid nodes is concluded. Combining this observation with the finite dimensionality
of the parameter space V,, its support size can be further bounded in dependence on n.

Proposition 5.35. Assume that there exists an optimal solution to 1} Then there exists an
optimal design wj , € MT(2) N My, with #suppuj, < n(n+1)/2.

Proof. Let an arbitrary dq € L?(§2) be given and define I7'(u) = P,Z5(u) P, for u € MT(£2,).
First we follow Proposition to obtain
(69, Ty (w)6q) 12(0y = (Pndq, Tn(u) Padq) 12(2) < (Prdq, In(Apu) Prdq) 120
= (561711?(/1%)561)1:2(9)
and [|Apul|pm < |Julm. Consequently we have F)'(u) > Fj'(up) for up = Apu € MT(82,) N My,
Furthermore, due to the discretization of the parameter space, we readily infer

dim(ImZ7) < n(n+1)/2.

By combining the statements of Theorem and Proposition this yields the existence of a
measure 4} € MT(£2,) N M), with
n(n+1)

Ti(an) = I (un),  Naglim < llunllag, - #suppay < ———.

Since the design measure u € M™(§2,) was chosen arbitrary all considerations especially apply to
optimal designs obtained from 1} Therefore we conclude the existence of an optimal design
g, € MT(£2,) N M, fulfilling supp aj , < n(n+1)/2. O
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Error estimates for the objective functional

The rest of this section is devoted to a priori error estimates between the fully discrete prob-
lem (P ,) and the continuous one. Based on the stability results for Z;, and Assumption we
conclude the following estimate for the optimal objective function values.

Theorem 5.36. For h < hg small enough and n € N large enough denote by ug g, an optimal
solution to |i Given a sequence {ﬂg hYh>0neN With uy, —* ug as h — 0, n — oo there holds

| Fy (ug ) — Fug)| < c ( >N +7(h)> ; (5.55)
i=n+1
for h > 0 small enough, n € N large enough and some ¢ > 0 independent of h and n.

Proof. Let such a sequence be given and denote by My > 0 a constant bounding the norm of its
elements. Again, comparing objective function values yields

| F3 (g p) — F(ug)| < max{|yp (ag ) — ¢ (ag )l [¢n (ug) — ¢(ug)l}-

Noting that {Zp,(u} j,) }rh>0nen is uniformly bounded in SHS(L2($2), L?(£2)) we proceed to
max{[yp, (@ ) — P (ugp)|s[0n (as) — P (ug)l}y
<o S N max{ln(@ ) — G )] [9n(5) — $(as)]).

1=n-+1

The remaining term on the right-hand side can be estimated along the lines of proof in Theo-
rem [5.30] yielding

max{[yn (g ,) — V(g p)l; [Yn(tg) — P(ug)ly < ey(h).

for some constant ¢ > 0 independent of n € N and h > 0. Combining all previous results yields
the statement. O

Error estimates for the Fisher information operator

Finally we provide a priori error estimates for the convergence of the optimal Fisher information
in the case of ¥ = ¥4 and ¥ = ¥p respectively. Recalling the results of Proposition [5.12| we derive
the following quadratic growth condition.

Lemma 5.37. Let ¥ = W4. Then the optimal Fisher information Z(tug) is the same for every
optimal solution g to ([Pgl). There exist a neighborhood N(Z(ug)) of Z(ug) in SHS(L?(12), L*(£2))

as well as a constant g > with
70 j— _ —1/2 _
2 % NZ(u) — Z(up))Zy Bs(z2(0),12(02)) < F(u) — F(ag),

for all w € M™(£2,) with Z(u) € N(Z(ug)).
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5.2 Discretization and error estimates

Proof. Uniqueness of the Fisher information Z(ug) follows from the strict convexity of ¥4 on
Pos(L?(£2), L?(£2)). Given a direction § B € SHS(L?(£2), L?(£2)) we calculate

({68, V2WA(Z(ug))d B) ) ns(12(02),12(2)
= 2Tr12(2) (Cpost (Z(1))d BCpost (L (1) )0 BCpost (Z (1)) (5.56)
> 'YOHI()_l(SBI()_l/ZHIQ{S(L?(.Q),L?(Q))’
for some ~y > 0, see also the proof of Proposition We apply Taylor’s formula to obtain

V(Z(u)) = ¥(Z(ug)) + (V¥ (Z(ap)), Z(u) = Z(up)))ns (2 (2),12(2))

1

+ 5 {(T(w) = Z(ug), V(T (uc))(Z(u) = T(ag))ns(z2(2).2(2),

with u¢ = ug + ((u — ug) for some ¢ € (0,1). Note that we have
1Z(uc) — Z(up) lus(r2(2),02(2)) < 1Z(w) — Z(up) lus(r2(2),02(2))
for all u € MT(£2), ¢ € (0,1). From the continuity of V¥ at Z(iig) as well as
||I()_1(5BI()_1/2||HS(L2(!2),L2(Q)) < c|l0Bllus2().r2) VOB € SHS(L?(12), L*(R2)),
we thus conclude the existence of a neighborhood N (Z(ig)) of Z(ug) in SHS(L?(£2), L*(£2)) with
((0B, VW A(Z(u¢))6B) ) us(r2(02),12(2))
= ((0B, V*WA(Z(1p))0B))us(12(2),12(2)

+ (6B, (V2WA(Z(uc)) — V*OA(Z(up)))6B)ms(r2(2).12(2))
Y0 | — —1/2
z 5 I 0BT, " s z2(2).22(2))

for all u¢ = g + ((u — @g), where ¢ € [0,1) and u € MT(£2,), Z(u) € N(Z(ug)). By optimality
of ig we further have

(V¥(Z(up)), Z(u) — Z(ug)))us(r2(2),r2(2)) + Bllullm — Bllusllam = 0,
for all u € M™(§2,). Combining the previous statements we arrive at

_ 70 — _ —1/2
F(u) - Flag) > 2 Z5 (Z(w) - T(as) Ty s 2 )02y

for all u € MT(£2,) with Z(u) € N(Z(ag)). Thus the statement follows. O

A similar result holds for the D-optimal design criterion.

Lemma 5.38. Let ¥ = Yp and consider an optimal solution ug. Then the optimal Fisher in-
formation Z(ug) is the same for every optimal solution ug to (Pg|). There exist a neighborhood
N(Z(ug)) of Z(ug) in SHS(L?(£2), L*(£2)) as well as a constant o > with

Y0, +—1/2 _ —1/2 _

T P (@) = Z@) Iy sz 120y < F(w) = F (),

for all w € M™(£2,) with Z(u) € N(Z(ug)).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Proof. The proof follows along the lines of the previous lemma with the sole difference of noting
that

((0B,V*¥p(Z(1ig))dB))us(r2(2),r2(02)) = Trr2(02)(Cpost (Z(1p)) 0 BCpost(Z(1i3))6 B)
—-1/2 —-1/2
> ||z, 0BT, s (z2(2),12(2)):
for some v9 > 0 and all B € SHS(L?(2), L*(2)), see also the discussion in the proof of Proposi-
tion 513 O
The following proposition provides an a priori error estimate for the optimal Fisher information
associated to the A-optimal design problem.

Proposition 5.39. Let ¥ = ¥, and denote by {uﬁ nth>0neN @ sequence of optimal solutions
to (| W ) with uﬂ —* g as h — 0, n — oo. Then there holds

1Zy  (PaZn () P — I(ﬂﬁ))z(;l/Q||HS(L2(Q),L2(Q)) <c | Y Ai+q(h)
i=n+1

for all h > 0 small, n € N large enough and some constant ¢ > 0 independent of h and n.

Proof. Let such a sequence be given. We first split the error as

1Zg (P Zn (@ ) P — T(as) Ty 2 sz ), 12()
n va—1/2
<N Tg H(PZn(@f ) P — Tn(uf )T, / Ius(z2(2), L2( )
+ 12y NTn (@ ) — T(ag)) Ty P luse o) L2y (5-57)

The first term on the right hand side of the inequality above is further divided into

1Zo  (PaZn (@ ) P — Tn(uh )T, HHS L2(2),L2(2))
<N Zg (PaZi (@) P — PaTi (3 1)) 2 s (), pay
+ 1 Zg N (PaTn (@l ) — Tn(@h p) Ty sz ),02(2)

We estimate
I1Zo  (PaTZn () P — P, Ih(uﬁ )Ly HHS L2(2),L2(2))
< |z, 2 PoTn (@3,) (P — 1d) s z2(02),02(2))
. —3/2
< N PZn(a ) lusz2(92),222) 1 Zo 2P, - 1d)[| s (22 (02),22(2)
as well as
I1Z  (PuZn (@ ) — Tn(af )Ty HHS L2(02),12(2))
—3/2
< NZn (@3 ) sz, 2@ 1o 2 (Br — 1) (22 (),22(02) -

Moreover, we conclude

| PnZn (g ) [l (p2 (), .2(2)) < N1 Zn(Ws0) lusz22),2(2)) < 1 Znll o) sz @), L2 1,0l m-
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5.2 Discretization and error estimates

Thus, the sequence {P,Zp(uj j,)}r>0nen is uniformly bounded in HS(L%(£2), L?(£2)) due to the
strong convergence of {Z,}p>0 and the weak™ convergence of {ujj ; }n>onen. Last, we estimate

i A3 < i A2,

i=n+1 i=n+1

—3/2
175 (P, — Id)[|as(r2(02),22(02)) =

using Jensen inequality for concave functions. Putting these results together we obtain

\Zo H(PuZi (@ ) P — PaTn(@2 )Ty sz i2y < ¢ Y A

i=n-+1
for some constant ¢ > 0 independent of A > 0 and n € N.
We split up the second term on the right hand side in (5.57)) as
_ n _ ~1/2
175 (Zn(@g ) — Z(s))Zy a2, 122 (5.58)
_ n an 7 1/2 _ n oo 1/2
<Ny N @n (@) — T(a% )Ty P s ).z + 1 To M (T (@h,) — Z(Uﬁ)) / lus(L2(2),L2(2))
< e|(Zn(ah ) — Tuh p)) lmscrzo).200) + 1Zo (T () — Z(ag))Zy ”HS L2(0),L2(2))-

Following Proposition the first term is estimated by
| (Zn(uf ) — Z(ag p)lsz22),2(2) < 1Zn — Zll comee) 1822 (2),22(2)) 148,11 M
< ey(h)||ug gl m-

From the weak® convergence of {uf , }n>0nen we further deduce Z(uj,) — Z(ug) strongly in
SHS(L2($2), L?(£2)) and thus I(uj,) € N(Z(ug)) for all b > 0 small and n € N large enough.
Hence we obtain

- _n L1/ _n _
|76 (T (@) = Z(@s)) Ty " [irs(ra ) r2(0)) < F(@30) ~ F(ug).
from Lemma [5.37] We proceed by estimating
F(ugy) — F(ug) < F(ug,,) — Fy'(ug ) + Fp'(ag ) — Fug)
< |F(aj,) — Fu(ag )| + |Fy(ag,) — Fag)].

Here the second inequality follows due to the monotonicity of ¥. Using the estimates obtained in
Theorem and its proof we conclude

F(ag,) — Flug) < cy(h) + e > N,
i=n+1

for some constants cj,cz > 0 independent of h > 0 and n € N. Plugging all previous estimates

into ([5.58) we obtain

_ n _ —1/2 >
\Zo H(Tn (@) — T(@s)) Ty P Imscrzqoy 2y < ¢ | v(B) + (v + S A,
1=n+1

for some constant ¢ > 0 independent of h > 0 and n € N due to the uniform boundedness of
{ﬂg,h}h>0,neN- Combining all previous results yields the desired statement. O
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

For the D-optimal design problem a similar statement can be proven by the same arguments albeit
with respect to a stronger norm. We omit the proof for the sake of brevity.

Proposition 5.40. Let ¥ = ¥p and denote by {agﬁ}bo’neN a sequence of optimal solutions
to 1) with ujg , —* ug as h — 0, n — oo. Then there holds

—1/2 . 1/2 =
[Frndd (PnZn(ug ) Pn — Z(up))Z, / Hs(L2(2),22(2)) < ¢ Z Ai +7(h),
1=n+1

for all h > 0 small, n € N large enough and some constant ¢ > 0 independent of h and n.

Conceptually the proof of Propositions and [5.40] follows the same steps as the corresponding
one for the Fisher information matrices derived in Section [£.6.2l However the obtained results
highlight a significant difference between sensor placement problems for finite and infinite dimen-
sional parameters. To make this clear observe that we have Z(ug) € SHS(L?(12), L?(£2)), but,
surprisingly, the derived a priori estimates only hold in weighted Hilbert-Schmidt norms involving
fractional powers of the compact operator Z; ! For the D-optimal design criterion, e.g., we obtain
convergence rates in the norm on the weaker space SHS(H, H*) since

—1/2 —1/2 = —1/2
1Zo / 0BI, / ”I%IS(L2(Q)7L2(Q)) - Z 16, / ¢z||%1 = H‘;B”%IS(H,”H*)'

i=1

This stems back to the fact that while ¥ is two times continuously differentiable with respect to
to the norm on SHS(L?(£2), L*(§2)), coercivity of its second derivative at Z(@g) is only given in a
weaker norm. In sensor placement problems for a finite dimensional parameter this phenomenon
does not occur since all norms on the symmetric matrices are equivalent. This can be interpreted as
an instance of the well-known two norm discrepancy which arises frequently in infinite dimensional
optimization problems, see e.g. [65]. Moreover we emphasize that the choice of the weaker norm
depends on the optimal design criterion.

We close this part of the thesis by elaborating on the limitations of the results derived above.
One of the standing assumptions throughout this section is the availability of the eigenvalues
and associated eigenfunctions corresponding to the a priori covariance operator. While for some
choices of Z L and £2 analytic expressions are available, this is in general not the case. In these
situations we have to resort to discrete approximations of its first n eigenpairs.

Obviously, this introduces an additional approximation error to the problem. Additionally, e.g. if
the discrete sensitivities and eigenpairs are obtained on the same spatial mesh, this leads to a cou-
pling between the finite element and the spectral discretization error. This is due to the fact that
while we might expect optimal convergence rates for the eigenfunctions in L?(£2), the constants
in the necessary stability estimates usually depend on the associated, continuous, eigenvalue, see
e.g. [39,156]. However, if the discrete eigenpairs are determined on a sufficiently fine grid, different
from the one used to approximate the PDE, we might assume that the overall error is dominated
by the FE and spectral approximation error.

Finally we have to make a critical remark on the proposed full discretization scheme. To this
end, for better illustration, we consider again the A-optimal design problem. In order to arrive
at the fully discrete problem we can proceed along two paths. We may first replace the
parameter space L?({2) by the truncated space V. Proceeding in this direction we obtain
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5.3 Optimization aspects

which fits into the framework discussed in Chapter [l Subsequently we discretize the state and
sensitivity equations according to Section Changing this order we first arrive at the semi-
discrete problem (Pg)). Following the discussions in Section this reduces the A-optimal
design problem to minimizing the trace of the posterior covariance operator on the implicitly
discretized space 05, The additional spectral discretization now amounts to replacing the space Qp,
by V,,. From this perspective this step can be interpreted as a non-conforming approximation of @y,
since V,, ¢ @Qp in general. Obviously this introduces an additional error depending on how well
elements in @)y, are approximated through the truncated space V,,. This also indicates that it may
be appropriate to consider a full discretizations of based, e.g. on further approximations of
Qp, and 0S"[g]. We leave this for future research.

Nevertheless the proposed discretization scheme seems reasonable in many situations. If the state y
depends nonlinearly on the parameter ¢ we may adopt a sequential viewpoint on optimal sensor
placement. That is to say we alternate between the estimation of the unknown parameter and
the determination of a new measurement setup based on a linearization of the model around the
current point estimate. Especially in the first iterations of this process the linearization points may
be far from the true value of the parameter and the linearized models are only of limited utility.
In this case it seems appropriate to place sensors in order to reduce the uncertainty that stems
from the prior believes. From the concluding remarks of Section [5.2.2) we recall that the directions
of highest uncertainty with respect to the prior span the space V,,. It is also worthwhile to note
that the FE discretized parameter space (, may depend on ¢. Thus, in general, it needs to be
determined or approximated in every iteration of the sequential procedure. In contrast the prior
knowledge Z; 1 and thus the vectors spanning up V,, are independent of the linearized model. As
a consequence they may be pre-computed once at the beginning and, if possible, stored for further
usage. Altogether, we point out that the discussions in this section do not claim any completeness
and should merely be seen as a first attempt to a rigorous discretization concept of sparse sensor
placement problems respecting both the infinite dimensional nature of the parameter as well as
the possible continuity of the observational set (2,.

5.3 Optimization aspects

In this section we briefly cover the algorithmic treatment of and extend the Primal-Dual-
Active-Point method presented in Section [£.4] to optimal sensor placement problems for infinite
dimensional parameters. Furthermore we comment on their practical realization for the A-optimal
design criterion.

5.3.1 Algorithmic treatment

For an efficient numerical solution of we again exploit the, at least expected, sparse structure
of optimal measurement designs and consider algorithms based on the sequential placement of
single measurement sensors. To this end, given a sparse initial design measure u' € M™*(£2,), we
recall the definition of the associated sublevel set of F' as

Eg={ueM"02,)|Flu)<F(u')}.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Since F' is radially unbounded there exists a constant My > 0 bounding the norm of elements
in E,,. For convenience of the reader the Primal-Dual-Active-Point strategy is now again sum-
marized in Algorithm [} To monitor its convergence we define the primal-dual gap of the k-th
iterate u* as

b(u) = sup (Ve (), u—v) + Bllullaa = Bllvlla)] = Mo(8 + min Vip(u")).
VEMT(20),||v]|m <M T€S2,

As in the previous chapter this quantity provides an upper bound on the error in the objective
functional

®(uf) > F(uF) - F(ug) >0 Vu* € B,,.

Furthermore there holds @(ug) = 0 if and only if ug € M™(£2,) is a minimizer of (Pg)). Given

Algorithm 7 Primal-Dual-Active-Point strategy for (Pgl)

while &(u*) > TOL do
1. Calculate Vb, = V¢)(uF). Determine 2% € argmin, e, Vb ().
2. Set A = supp(u¥) U {2}, compute a solution to u**! of (5.59) for A = Ay, and set
WP = g ().

end while

an ordered set of finitely many distinct points A = {z1,...,znx} C 2,, N = #A, we define the
parametrization by

ug: RPA 5 M(92), uw Z ;0.
;€A
As in the finite dimensional setting of the previous chapter we compute a global minimizer of (Pg|)
by alternating between choosing a new sensor location Z* fulfilling

&% € arg min Voo (u®)(z)
xEQo

and solving the coefficient optimization problem

u* ! € argmin F(u4(u)), (5.59)
uERfA

for the choice of A = suppu® U {#¥}. The new iterate u**! is then obtained as u**! = u(u®*!).
Note that this definition also ensures that the iterates are pruned after each iteration i.e. all Dirac
delta functions with zero coefficient are removed from the iterate.

We can interpret Algorithm [7]as a special instance of an accelerated generalized conditional gradi-
ent method. Consequently we derive worst case convergence rates for the objective function values
of the generated iterates following Theorems and applied to the special case of positive
measures.

Proposition 5.41. Letu! € M1 (82,) be given. Then V) is Lipschitz continuous on the associated
sublevel set E,1, i.e. there exists a constant L, > 0 with

sup [Vip(ur) — Vip(uz)llc

ut, w2€E 1 [ur — uallrt
U Fug

<L,

208



5.3 Optimization aspects

Proof. The proof follows the one for Proposition noting that the set
I(B) = {Z() | u € By } C Pos(TA(2), IX(2)),

is a compact subset of SHS(L?(£2), L?(£2)) due to the weak* sequential compactness of E,1 and
the weak™-to-strong continuity of Z. O

Theorem 5.42. Assume that the sequence {u*}en is generated using Algorithm @ Then {u*}ren
is a minimizing sequence for F. Furthermore it admits a weak™® convergent subsequence denoted by
the same symbol. Every weak* accumulation point ug of {uF}ren is an optimal solution to (Pg).
There holds

re(ut) B . c
rp(uf) < m, q_amln{Lul(zljwo)Q, 1}. (5.60)

Here, L, is the Lipschitz-constant of Vip on E, and c; = 2y(1 — a)rp(ul) for some arbitrary
but fized v € (0,1), a € (1/2,1).

Remark 5.8. We emphasize that Algorithmmcan be readily applied for the solution of ,
and nce the design criterion ¥ is not discretized in any of these problems the results of
Theorem Fxﬂ remain valid with an appropriate adaption of the appearing constants. Moreover,
applied to or W, the method can be modified to ensure #suppu® < n(n —1— 1)/2 for

all k € N, see Proposmon ? For ) and 1 ) the search for the minimizer #*¥ € 2, in
step 2. can be restricted to {2,, see Proposmon

We stress that, up to now, we have not been able to improve on the sublinear convergence rate
for the Primal-Dual-Active-Point method applied to the continuous problem . One particular
reason for this shortcoming lies in the aforementioned two norm discrepancy. In particular, the
standard examples of A- and D-optimality already show that we cannot expect quadratic growth
conditions of the form

IZ(w) = Z(ap)lis (2 (), 20y < Fu) = Flag) Yue MF(2), Z(u) € N(Z(ag)),

to hold in a neighborhood N(Z(ug)) of the optimal Fisher information since the Hessian of ¥
is in general not coercive with respect to the L?(£2) Hilbert-Schmidt norm. However, following
Lemma and Lemma similar results can be obtained by replacing the Hilbert-Schmidt
norm with a weaker norm depending on the concrete choice of the optimal design criterion. This
situation is not yet covered by the convergence results derived in Chapter [6] but poses an inter-
esting question for future research. In particular, improved convergence results for the continuous
problem ([Pg|) would suggest the uniform boundedness of the constants appearing in the upcoming
improved convergence results for the spectral discretized problem with respect to the truncation
parameter.

The remainder of this section is concerned with improved convergence results for the adaptation
of Algorithm [7] to the semi-discretized problems and the fully discrete one, respectively.

We start by proving the finite termination of Algorithm [7] when applied to the finite element
discretized problems and . To improve readability we provide the statement for the
first one. All arguments carry over to in a straightforward way. For the rest of this chapter
we define N? = N}, N £2,.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

In order to apply the Primal-Dual-Active-Point strategy to (Pgsp)) we first have to discuss the
computation of the new sensor location #* € (2, fulfilling

i* € arg min Vo, (u®). (5.61)
€S,

At first sight, this is a challenging problem in itself since the discretized gradient is neither an
element of V}, nor differentiable and convex. In Propositionwe have already proven that
admits at least one optimal solution #g j, supported in the nodes of the finite element triangulation.
In view of this result it is tempting to circumvent the global minimization of V1), (u*) by restricting
the search for the new Dirac delta position to the grid nodes. However, it is unclear whether the
resulting sequential point insertion method still corresponds to a Primal-Dual- Active-Point method
on the discretized problem. In the following proposition we give a positive answer to this question
by proving

arg min Vo, (u*) C arg min Vb, (u®).
zENY TE€N,

This implies that (5.61]) boils down to sorting the values of the discretized gradient in the grid
nodes. As an immediate consequence we further conclude the (grid-dependent) finite termination
of the Primal-Dual-Active-Point strategy when applied to the FE discretized sensor placement
problems.

Proposition 5.43. Consider Algomthmlj applied to and assume that u' € MT (2 )ﬂMh
Then the new sensor location &* € 2, can be chosen fmm NP for all k € N. Denote by {uF} pen

the sequence generated by Algorzthm@ with &% € NP for all k € N. Then there exists k € N with
ubFtl =¥ i.e. the algorithm terminates after ﬁmtely many steps.

Proof. Let us first prove that there holds

uin, Vo (u)(x) = min Ven(u)(a) Yu € M (2;)

Given u € M™(£2,) we observe that Vi), (u) < 0 on §2, and

min Vi (u)(2) = Vi (u)(2) = —||(=V@Tn()*ChlIF2(0) = — D (0S[A0a: ()%,
=1

for some & € 2, and d¢; = (—=V¥(Tp,(u)))/?¢; € L*(2), i € N. Recalling the properties of the

interpolation operator A and the measure-theoretic form of Jensen’s inequality we estimate

(0S[aldg: (2))* = ((9S[@)0as, Andz))* < ((9S[d16a:), Ands)-

for every i € N since 05[g|0g; € V3. Combining both results yields

min Vi (u)(z) 2 — ;((55[ d16¢i)?, Apdz) = (Vb (u), Andsz).

Using Apdz € M (2,) N My, and ||Apdz]|am < 1 we finally arrive at

zlg}\}lo Vipn(u)(z) 2 min Ve (u)(z) = (Vin(w), 4pds) 2 ;gkﬁ Vb (u) ().
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k

Setting u = u* we now conclude that Z* can be chosen from N e

We proceed to prove the finite termination property. By assumption we know u! € M™¥(2,)NMy,.
Thus, by induction, we get u*T! € M*(£2,) N M, from

supp u* ! C suppu® U {&*} ¢ NP,

for all k € N. Since the finite dimensional suproblems in Algorithm [7] are solved up to optimality
we have j(uF*1) < j(u*) if ©* is not optimal. Thus we conclude

k
suppu*tt € PP\ [ {suppu'}, keN,
=1

where P(N}) denotes the power sets of V. Consequently Algorithm m converges after at most
#P(NY) < oo iterations. This completes the proof. O

The remainder of this section focuses on improved convergence results for the sequence of iter-
ates {u*}ren generated by applying the Primal-Dual-Active-Point method to the spectral dis-
cretized problem 1) To this end we first recall some additional notation. We consider the
continuous operators

PTL: L2(‘Q) — an q— ((Qa ¢1)L2(Q)7 ) (Q7 ¢n)L2(Q))T'

as well as 7™ : M(£2,) — Sym(n) given by
I"(u) = /9 05" [4)(2)0S"[d)(x) " du(x), 9S"[dl(x) = (9S[@)¢1 (x),...,0S[dl¢n (2))

for all u € M(£2,) and x € £2,. For abbreviation we set 9;S[q] = 9S[§]¢; € C(£2,), i =1,...,n.
Last, we introduce the optimal design criterion

g™ Sym(n) - RU{+o0}, B+~ ¥(P;BP,)
on the space of symmetric matrices. We make the following observations.

Lemma 5.44. Let n € N large enough be given. Then the functional W™ has the following prop-
erties:

e There holds NND(n) C dom ¥™.

e The functional U™ is two times continuously differentiable and convex on NND(n).
e The functional U™ is monotone with respect to the Loewner ordering on NND(n).
e There holds

U(P,I(u)P,) = U"(IT"(u)) Yu € M(£2).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Proof. We only prove the last statement, the remaining claims follow from the assumptions on ¥
and the linearity of P,,. Given two arbitrary functions g1, go € L?(£2) we readily calculate

(g1, PaZ(u)Pug2)r2(0) = D D (a1, 6i) 12(2) (@2 85) 12(02)(0:5™ (410, 5™ 4], w)

i=1 j—1
= (Pna1, 7"(w)Prga)pa
= (Q17 PZIH(U)PTLQQ)LQ(QM

From this observation we conclude

P, Z(uw)P, =P; 7" (u)P,, Vu e M(£2,).
Thus the desired statement follows. O
In order to improve on the sublinear convergence of the Primal-Dual-Active-Point method we

interpret the spectral discretized optimal design criterion ¥ = ¥ (P, - P,)) o Z as the composition
of U™ and the operator Z". Thus we rewrite problem as

s min, F™(w) = [0(I"(w)) + Bllulladl

Note that F™ is radially unbounded on M™(§2,) since F(u) < F™(u) for all u € M*(£2) due
to the monotonicity of ¥. Since Z™ maps continuously into the space of symmetric matrices this
rewritten problem resembles the sensor placement problems discussed in the previous chapter. As a
consequence, improved convergence results can be concluded by arguing similarly to Section [£.4.3]
To this end, we first comment on the coercivity of the Hessian V2¥™,

Lemma 5.45. If ¥ is strictly conver on Pos(L?(£2), L2(£2)) then W™ is strictly conver on NND(n).
In this case, the projected optimal Fisher information I”(ﬂg) and thus PnI(ﬁg)Pn are the same
for every optimal solution uj to 1} In addition, if there exist a constant vy > 0 and a norm ||- ||

on SHS(L?(£2), L*(2)) with
((0B,V*W (P, Z(u}) Pn)dB))us(r2().r2(0) = Wll0B|° V6B € SHS(L?*(12),L*(£2)),  (5.62)
then there exists a constant vy > 0, possibly depending on n € N, with

Tree (SBV?U™"(I"(1))6B) > 4§ 10B3ym Y68 € Sym(n).

Proof. Let By, Bs € NND(n) with By # Bs be given. It its readily verified that there holds P} B;P,, €
Pos(L?(£2),L?(2)), i = 1,2. For s € (0,1) we conclude

Wn(Bl + S(B2 — Bl))

W(PZ(Bl + S(BQ — Bl))Pn)
< ¥ (P,BP,) + s(¥(P},BP,) — V(P B P,))
= V" (B1) + s(¥"(B2) — ¥"(B1))

and strict inequality holds if and only if P} B;P,, # P} BsP,,. Assume that P} (B; — By)P,, = 0.
Testing with ¢;, ¢4, 4,7 = 1,...,n, from left and right, respectively, we then get

0= (¢, Py,(B1 — B2)Ppnoj)12(00) = (B1 — Ba)ij.
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This contradicts By # By. Thus strict inequality holds and ¥™ is strictly convex on NND(n). In
particular, this implies that the projected Fisher information matrix Z" (ﬁg) is the same for every
optimal solution @ to |D By definition, the uniqueness of P, 7 (ﬂg)Pn also follows.

Now assume that holds. For 6B € Sym(n) we calculate
Trpn (68, V2™ (I"(w))0B) = Trp2(0)(V2W(PZ(a}) Pa)B) > 70||P0BP,||.
Recalling that
P:0BP, =0 c SHS(L?(2), L*(2)) & 6B = 0 € Sym(n).

it is straightforward to verify that ||P}-P,|| defines a norm on the symmetric matrices. Since Sym(n)
is finite dimensional this new norm is equivalent to the Frobenius norm i.e. there exists a con-
stant 67 > 0, possibly depending on n € N with

[ P5SBP,|? > 1§ 16B|&yn VOB € Sym(n).
This finishes the proof. O
We adopt the assumption on the strict convexity of ¥ and its curvature around the optimal

projected Fisher information operator for the rest of this section.

Assumption 5.8. Let ¥ be strictly convex on Pos(L?(§2), L?(§2)). Moreover there exists a con-
stant o > 0 with

(0B, VAW (PT(2) Pa)OB) s z2(y 122y = WlI0BI? OB € SHS(LA(12), LA(92)),
This assumption together with Lemma [5.45| imply the uniform convexity of ¥™ in a neighbor-

hood N(Z"(ug)) C NND(n) of the unique optimal projected Fisher information matrix Z"(uj)
depending on the truncation parameter n € N. There holds

(VU"™(By) — V¥"(B3), B1 — B2)sym > V?DHBl — BQ”%ym VB1, By € N(I"(ug))

for some v > 0. We further assume additional regularity of the sensitivities 0;S[¢], i =1,..., N,
and define p" = —(Z")*V¥™(Z"(u})).

Assumption 5.9. Assume that there holds
{ze,|p"(x)=8)={z}Y, Cint 2,
Moreover the set {Z"(6z,)}Y, is linearly independent and there exists R > 0 with
N
2 = U BR(EZ) C int £2,, BR(EZ) N BR(SE]‘) = @, ) 75 7, 8Sn[(ﬂ € Cz(QR,Rn) ﬂC(QO).
i=1

Along the lines of Corollary [4.6, we conclude that this assumption guarantees the uniqueness and
sparsity of the optimal solution uj = Zfil 1,0z, to 1) Moreover it is readily verified that the
Banach space adjoint of Z" maps continuously to C2(£2g) N C(§2,) since

[(Z™)*B](z) = 85™[q](x) " BOS™[§](x) VB e Sym(n), z € £2,.

In particular there holds p" € C?(2zr) NC(£2). As a last ingredient we impose additional assump-
tions on the curvature of p" and the coefficients of ug.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Assumption 5.10. There holds supp uj = {z;}¥,, ie. @;>0,i=1,...,N, and there exists a
constant 0 > 0 with

—(¢, V2" (@)C)ga = O5IC[2a V¢ €R?

andall2=1,..., N.

Interpreting the spectral discretized optimal design criterion as 9™ = W™ o Z™ it is now readily
verified that lD and the associate optimal solution ug fulfill the prerequisites of Theorem
We conclude the following improved convergence result for the residual in the spectral discretized
problem.

Theorem 5.46. Let the sequence {u*}ren C M™T(£2,) be generated by applying Algorithm @

to 1) and let Assumptions and hold. Then there exist constants c,, R, > 0

and G, € (0,1) with

N

supp u¥ C U Bg, (%), suppu* N Bg, (z;) #0, i=1,...,N,
i=1
as well as
k - — k k
7. - = - <
rr(u Hz’:??.),{szesupprﬁ%%m o o = Tilga + max [0 — [[u]gy, @ llml < enGrs

for all k > k, € N. All appearing constants may depend on the truncation parameter n € N,

We point out that under the same assumptions convergence rates for the modified Wasserstein
distances of the iterates can be obtained along the lines of Theorem

5.3.2 Implementation details

To close this section we discuss the practical realization of Algorithm [7]applied to the fully discrete
problem l} In view of the numerical experiments presented in the following section we focus
on the A-optimal design criterion

Ya(u) = Ya(Z(u)) = Trrz(o)(Coost(Z(w))),  Cpost(Z(w)) = (Z(u) +Zo) ™", u € MT(£2,),

and consider its evaluation as well as the efficient computation of its gradient. Given a design
measure u € M7 (£2,) we recall that the evaluation of the gradient at a given spatial point x € (2,
can be related to the Green’s function G* by

Vi (u)(z) = (G, Cpost(Z(w))*G") 12(2) = ~[|Cpost(Z(w) G*|[72 ().

Let us now consider the fully discretized problem for given n € N and h < hg small
enough. Throughout the following discussions we assume that the first n eigenpairs {(\;, i)},
of Iy 1 are either analytically available or good approximations can be obtained numerically by
e.g applying several steps of an Arnoldi iteration to a discretization of Zj ! Furthermore the
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truncation parameter n € N is reasonably small in the sense that the discrete sensitivities 9S"[g] €
C(£2,, V") defined by

SMGl: 2, = R™, x> (8S"[gén (2),...,05"Glpn (x)) T,
can be pre-computed and stored for further use. The k—th component of dS"[g] is denoted
by OxSt[q] € C(£2,), k = 1,...,n. We emphasize that besides one solve of the discrete state
equation (5.38) and n solutions of the sensitivity equation (5.39) to obtain 0;S"[4] = 05"[q]¢x,

k =1,...n, no additional PDE solves will be required in the following. This allows for an efficient

and fast solution of (}

Arguing similarly as in Section [5.2.2] a fully discrete A-optimal design can now be obtained by
solving the sensor placement problem

weim (o (Zh () +28) ™) + Blluflaa)- (5.63)

Here, given a design measure u € M™({2,), the matrices Z{} € PD(n) and Z}'(u) € NND(n) are
characterized through

(Z8)ij = dijhis Tii(w)ij = (9:Spla) 0;Splal u),  ij € {L,...,n}.
With a slight abuse of notation we abbreviate 17 (u) = Trgn ((Z}'(u) + Z§) 1) for u € MT(£2,).

Efficient evaluation of the covariance operator

In all steps of Algorithm [7] matrix-vector products between the covariance matrix (Z*(u) + Z¢) !
corresponding to a sparse design measure u € M™((2,) and a potentially large set of vectors
{0¢i}ie1, I C N need to be computed. Since the dimension of the discretized parameter space
is assumed to be reasonably small we comment on an efficient realization of this task based on
Cholesky decompositions. Here we exploit the structure of the covariance matrix and the sparsity
of the design measure. Set N = # suppu < co. We distinguish between two cases.

Case 1: Assume that N > n. In this case we compute the Cholesky decomposition of the matrix
i (u) + I = GG' in O(n®) operations and solve (Z}'(u) + I{)z = dg; by forward-backward
substitution for all i € I. This can be realized in O(#1I - n?) operations.

Case 2: Second consider N < n and let u = Zfil u;0,,. The associated Fisher-information matrix
can be decomposed as Z'(u) = XT X 71X where the matrices X € RV*" and X1 € RV*N are
defined as

Xjk:aksh[(ﬂ(ﬂj‘j), Ei;l:éijui, i,jzl,...,N, ]{:1,...,71.
Applying the Sherman-Morrison-Woodbury formula, [130], we obtain
(Zh(uw) +I5) ' = (XTZ X +13)
= (@)~ (@) XD X () KT S e ()
where Id € RVY*N is the identity matrix and Eiglﬂ = 6i;v/Ni, 1,5 € {1,...,N}. Since I} is a

diagonal matrix calculating its inverse is straightforward and can be done in O(n) operations.
Furthermore a Cholesky decomposition of

d+X 12X (1) ' X T2 12 = GGT,

can be obtained in O(N3) operations. Solving the systems (I7'(u) + Z{)z = dg;, i € I, then
requires a combined effort of O(#I- (n + N? 4+ n - N)).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Evaluation of the optimal design criterion

Based on the previous arguments we now discuss the efficient evaluation of the A-optimal design
criterion for a given sparse design measure u = ) . ; w;d,,. As before we distinguish two cases.

Case 1: Let N > n. In this situation we compute a Cholesky decomposition of Z;'(u) +Zg = GGT
and observe

n n

Trgn (7 () +Z5) 1) = Y _(ei, (Th(w) + I§) 'ei)rn = ) 1G " eilfn.

i=1 i=1
Hence the optimal design criterion is evaluated in O(n?) operations.

Case 2: If N < n we compute a Cholesky decomposition of
d+2 12X (@) X Te" V2 = GGT.

Similar calculations as before show

Trgn ((Z5 (u) +Z6) 1) = Y[\ = MG 272X ],
i=1

where X.; € RY denotes the i-th column of X. Consequently the objective functional can be
evaluated in O(n - N?) operations.

Evaluation of the gradient in step 1.

The new sensor location ¥ € (2, in step 1. of Algorithm [7] is found as a global minimizer of

Vi (uF). Due to Proposition the search for the new point can be restricted to N)?. Thus
given a sparse design measure u = Zf\il u;0,, we have to efficiently evaluate the gradient Vi}! (u)
for every & € N?. A similar computation as on the continuous level gives

Vg (u)(x) = —(0S[d)(x), (Z}; (u) + I3) ?0Sp1dl (@)rr = —(Z}; (u) + Z3) " 0S,1d) () |-

Similar to the continuous case this relates the gradient to the sensitivity vector 9S"[] € C(£2,,R™).
This allows for its efficient evaluation in O(n?® + #N e n?) operations, if N > n, and

O(N? + #NP(n+ N?+n-N))

operations if N < n. Moreover the representation of the gradient also facilitates a parallelization
of its computation.

Simultaneous insertion of multiple points

While the insertion of a single point in every iteration of Algorithm [7] guarantees the convergence
of the procedure, the number of Dirac deltas in the approximated optimal design will affect the
practical performance of the algorithm. In order to accelerate the convergence of the method
in practice we consider the following heuristic multi-point insertion strategy. First the gradient
ng(uk) is evaluated in the grid nodes contained in £2,. If u* is not an optimal solution we have
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Vi (ub)(z) < —B for z € NP. In order to obtain a set of new candidate locations we first build
the connectivity graph of the nodes N} and compute the subset

Ny ={z€Q,|ze N, Vypr(uf) < -8} C N

Subsequently, we compare the value of the gradient in each node x € N,  with those of the
neighbouring ones. We call z € N, a local minimum of the current gradient Vil (uk) if z
minimizes V17 (u*) over its adjacent grid nodes. All local minima of the gradient in this sense
are assembled in a set of promising new sensor locations N,’f Then the elements of this set are
ordered and we add the M points :itf ,i=1,... M, corresponding to the smallest local minima to
the active set

Ay, = suppuF U {25}

Here M is an a priori chosen maximal number of new Dirac delta functions. The new iterate u**!

is now found by solving the finite dimensional subproblem on Aj. Since the global minimizer
ik e N 2 of the gradient is an element of N ff the convergence guarantees derived in the previous
section remain valid.

Sequential point insertion for (Pg )

We briefly discuss the numerical realization of Algorithm [7]for the FE-discretized sensor placement
problem and highlight the differences to the fully discrete case. For simplification we assume
that the implicitly discretized parameter space Q) is given by Vj. Adapting the arguments in
Example this is e.g. the case for the identification of the right hand side of the Neumann
Laplacian with zero order term. Under these assumptions the semi-discrete problem A-optimal
design problem is equivalent to solving

smin [Ty, (Za() +20)™) + Bl ] (564

Setting 1, (u) = Try, ((Zn(u) + Zo)~1) our special interest lies in the numerical realization of the
point insertion step (step 1. in Algorithm E[) As before we have to compute the discrete gradient
on the grid points contained in §2,. We assume that the discrete set N} is large and, in particular,
it is not possible to pre-compute the discretized Green’s function G7 for every possible sensor
location. Given z € N we derive

Vn(u)(x) = — (G}, (Zn(u) + Lo) °G) 12() = ~I1(Tn(w) +Zo) " G120

for a sparse design measure u € M™(§2,). To obtain the evaluated gradient we proceed in two
steps. First we determine G. As on the continuous level we compute a function G; € W, fulfilling
the discrete PDE

a;z,y(‘j? Sh[(ﬂ)(goh,g]f) = <90h75x> Von € Y.
The function G} € V), is then identified with
_a;z,q(§?7 S[(ﬂ)(gl{fv ) € Vi;,k =~ Vh.

Second, we need to compute the application of (Zj,(u) + Zo)~! to G¥. To this end, we recall
that Zy is often modeled as a differential operator. In particular, it is infeasible to pre-compute
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

its (discretized) inverse and we can only compute the action of (Zj,(u) 4+ Zp) ! on a given function
by numerically solving the associated covariance PDE. In order to find the new sensor location
this procedure has to be repeated for every x € N leading to a total of 24N} PDE solves for
one evaluation of the gradient. While this seems reasonable if N} is small we recall that sensor
placement problems with a possibly infinite number of candidate sensor locations in the continuous
problem are at the heart of this thesis. In this light the proposed evaluation strategy is numerically
prohibitive. To illustrate this fact we again consider the identification of the right hand side of
a Laplacian equation and 2 = 2, i.e. N? = Nj,. In this case, computing Gy € Vp, for every
x € N}, is equivalent to computing the sensitivity operator 95" [G]. This corresponds to inverting
the associated stiffness matrix which is infeasible.

We draw several conclusions from the discussions in this section. On the one hand they justify, at
least to some extend, the proposed full discretization of the problem by a low-rank approximation
of the parameter. This leads to sensor placement problems which are amenable for efficient and
practically fast solution algorithms. On the other hand they highlight again that the results of this
chapter should be understood as a first step on sensor placement problems with both, an infinite
dimensional parameter and infinitely many possible sensor locations. For example they open up
new questions on the efficient numerical solution of . As described, a first computational
bottleneck in Algorithm applied to is given by the search for a global minimizer of V) (u¥)
in a subset of the grid nodes. To mitigate the computational complexity of this step we may e.g.
resort to randomized methods for the compuation of the minimum. Furthermore sophisticated
low-rank approximations of 95"[§] could be considered. Finally these results suggest the use of
adaptive methods to keep both, the number of sensor locations as well as the number of parameters,
as small as possible. Altogether this leaves space and need for future research.

As a last remark we point out that we did not discuss the efficient numerical solution of the finite
dimensional subproblems in step 2 of Algorithm [7] One particular reason for this approach is that
the overall convergence rate of the algorithm is independent of the method used for their solution.
In particular, any algorithmic procedure for smooth and convex optimization problems with box
constraints can be used. However we stress that the previous considerations on the efficient
evaluation of the design criterion and its gradient also apply to the subproblems. Moreover we are
confident that these arguments can be extended to the computation of higher order derivatives as
used in Newton-like methods or interior point procedures.

5.4 Numerical examples

We close this chapter with the study of two numerical examples. First we consider the task of
inferring on the distributed source term entering in a Laplacian equation. The main focus of
this example lies on the influence of the cost parameter 3, the truncation parameter N and the
a priori covariance operator Z; 1 on the sparsity pattern of the optimal design. In a second,
more practically motivated, example, we again consider optimal sensor placement problems for
the estimation of a diffusion coefficient, which is modeled as a log-normal distributed random
field. The primary goal in this example is to study the scalability of the primal-dual-active-point
method as well as to compare it to the continuation strategy discussed in Section In what
follows, we consider the unit square 2 = £2, = [0,1]? and a sequence Ty, , k € {1,2,...,8}, of
uniform triangulations of 2, with hj, = v/2/2F. The parameter ¢ is modeled as a Gaussian random
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field distributed according to po = N(0,Z; 1). The prior covariance operator Z; 1is given as the
inverse of

Ty = c1(— A +ep Id)°.

Here A denotes the Dirichlet Laplacian on {2 and the values of s > 1 and c¢;, ¢3 > 0 control
the smoothing properties of Z 1. We will be specify these constants for each example sepa-
rately. Due to the tensor structure of the spatial domain, analytic expressions for the eigen-
pairs ()‘(i,j)v B(ij))ijen of 1'0_1 can be obtained. In detail, we get

i) = (72(i% + 52) + e2) "% /e, B(i5) (71, T2) = 2sin(mizy) sin(mjrs) Vi, j € N. (5.65)

Consequently the random field ¢ admits a Karhunen-Loéve expansion in terms of ¢; ;) as

0= D> S AinCinPig) = DD i) where qqjy ~N(0, X ) VijeN.

i=1 j=1 i=1 j=1

After truncating both series after N € N terms we obtain the discretized random field

N N
™ =D i) d6q) ~ N0 A) Vij €N

i=1 j=1
In the following examples, the truncated random field describes our prior uncertainty on the true
value of an unknown parameter entering into a partial differential equation. For optimal inference
on the parameter we take pointwise measurements of the state variable according to a solution
of the A-optimal design problem ([5.63). The a priori matrix Iév is chosen as a diagonal matrix
with

[Z0'] . = 1/ Aaj), k=N(G—1)+4, i,je€{1,...N}. (5.66)

To visualize the obtained optimal design measures we stick to the post-processing procedure
discussed in Section and replace clusters of optimal sensors by a single Dirac delta function
located at their center of mass. Its coefficient is given by the added measurement weights of all
sensors in the cluster.

5.4.1 Estimation of a distributed source term

As a first example we consider the identification of the distributed source term in a diffusion
process described by the Laplacian with mixed Dirichlet and Neumann boundary conditions. We
define the Dirichlet part of the boundary as I'p = {0, 1} x (0, 1) corresponding to the left and right
boundaries of the unit square. Given q € L?(£2) the associated state y = S[q] € H(£2) N C(£2,)
fulfills

1
a(q’y) :/ [Vy VSO - 4q90:| dr =0 th € HI(Q), ©p = 0 on FD,
Q
as well as y = 0 on I'p. Due to the linear dependence between state and parameter, the sensitiv-

ity dy(; ;) of the state with respect to q(; ;), 4,7 = 1,..., N, fulfills

1
a(q, 8¢ jyy)(p) = /Q [V(S(i,j)y Vo — 4¢(i,j)90:| dz =0 Vpe H' (), p=0onIp

and d(; jy =0 on I'p.

i)
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Estimation for different 3

We fix the smoothing parameters to ¢; = 107, ¢co = 10 and s = 2. In this section we tend to
illustrate the influence of the cost parameter 8 > 0 on the optimal design measure and thus also on
the estimates for the unknown parameters. For this purpose, we consider a reference parameter ¢*
which is obtained as a realization of the random field ¢V /4 for N = 20 and h = hg. It is depicted
in Figure alongside the associated state and two additional realizations of ¢V /4. we especially
point out to the different scales of the obtained realizations which indicates high variability in the
prior distribution. Now, we set the truncation index to N = 12 and compute A-optimal designs
for B = 1,1073,1075. According to each obtained measurement setup ag = vazhl u;dz,, we
generate a vector of measurement data yg € RV» with y;l = y*(z;) + € where ¢; is a realization
of g; ~ N(0,1/u;). Subsequently, we compute the posterior distribution upost of ¢V /4 given the
data y4. The computed optimal designs are displayed in Figures [5.2] [5.3] and [5.4] Alongside each
measurement design, we plot the mean of pYd given by the MAP estimate qggst as well as two
realizations of ¢V /4 given yq € RV,
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(c) Realizations of ¢V /4.

Figure 5.1: Reference parameter ¢*, associated state y and realizations of random field.

Let us first interpret the structure of the obtained optimal designs. We observe that the number
of placed sensors grows as the cost parameter 8 decreases. This verifies the interpretation of g as
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Figure 5.2: Optimal design, MAP estimate and draws from posterior for 5 = 1.

tool to provide indirect control on the sparsity optimal solutions to the sensor placement problem.
Moreover, we note that all obtained designs are symmetric with respect to the z; and o axis.
For large 3, sensors are exclusively placed in the center of {2, while for smaller values of the
cost parameter we also get optimally positioned sensors towards the boundary. We recall that
A-optimal designs are chosen to minimize the pointwise posterior variance of the random field. In
order to explain their structure, we should therefore take a look at the pointwise prior variance
field of the unknown parameter. Furthermore, the uncertainty in the parameter is also propagated
into the solution of the partial differential equation. Therefore, it is also necessary to interpret the
(truncated) state oy = Zfi 1 Zf\i 14(i.)0(i,j)y as random field. The pointwise variance of the state
variable describes our prior uncertainty on the true value of the measurement at a point z € 2, if
no additional measurement errors are present. Intuitively, if measurement resources are limited,
i.e. (B is large, it is reasonable to only take measurements at points in which the prior uncertainty
of the state variable is large. We plot the pointwise prior variances of the parameter as well as
the state in Figure Note that both functions are symmetric. Furthermore their maximum is
assumed in the center of (2, and they become smaller towards the boundary. In particular, we
point out that the pointwise variance of the parameter is equal to zero on the whole boundary
which is a consequence of the predescribed homogeneous Dirichlet boundary conditions in the
prior covariance operator. Thus, if 5 is large, i.e. the cost of a single measurement is high, the
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Figure 5.3: Optimal design, MAP estimate and draws from posterior for f = 1073.

optimal design proposes to only place measurements at points of highest prior uncertainty. As
gets smaller, additional measurements may also be performed at points corresponding to smaller
prior uncertainty in order to further decrease the posterior variance. We also point out that the
A-optimal design criterion measures the variability of the posterior measure pYa around its mean
as well as the expected mean squared error of the MAP estimator. Consequently, as 3 decreases,
we may, on the one hand, expect that random draws from the posterior distribution are close
to qpost On the other hand, qpost should be close to the reference parameter ¢*. This intuition
is, at least visually, confirmed by our numerical results. Additionally, they again highlight the
dependence of the Bayesian approach on the provided prior distribution.

Optimal designs for different truncation and smoothing parameters

Second, we study the dependence of the optimal design on the number of unknown parameters
in the KL expansion of the random field as well as the exponent s > 1. For this purpose we
choose the smoothing parameters ci,co as in the previous examples and set the cost parame-
ter to 8 = 0.01. Subsequently, A-optimal designs for N € {5,10,15 20} and s € {1.6,2} are
computed. The resulting design measures uﬁ 5, can be found in Figures and respectively.

We draw several conclusions based on these results. First, we note that the number of unknown
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Figure 5.4: Optimal design, MAP estimate and draws from posterior for 8 = 107°.

parameters ¢ ;), 4, = 1,..., N, in the truncated KL-expansion ¢V grows quadratic with N.
However, the support size of the computed A-optimal designs does not. Quite the contrary, the
number of Dirac delta functions remains constant for N large enough. This stems back to the
smoothing properties of the prior covariance operator Z; l'ie. the convergence of its eigenval-
ues \(; ;) towards zero. Clearly, the rate of convergence at which this sequence approaches zero
and thus the exponent s critically impact the obtained results. In fact, we point out that there is
almost no visual difference between the optimal designs associated to N = 5 and N = 20 for s = 2.
This indicates, at least for the present example, that we may obtain a good approximation to an
optimal design for the original problem by solving the spectral discretized sensor placement prob-
lem for only a small number of modes. However, we again stress that these observations inherently
depend on the choice of the prior distribution. We also recall Theorem and Proposition [5.35
which give an upper bound of n(n +1)/2 for n = N - N on the number of Dirac delta functions
in a fully discrete optimal design. The present results show that this upper bound is overly pes-
simistic in general. Moreover, we point out that the support sizes of the designs corresponding
to N = 20, #supp EJBV n = 15 and # supp a]ﬁ\’ n = 93, respectively, are small in comparison to
the number of possible sensor locations N, = 66049. In particular, the computed results may
hint at the existence of a sparse solution to the continuous optimal sensor placement problem.
However, this is far from being conclusive. Last, the computed results provide, to some extend,
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Figure 5.5: Pointwise prior variances for unknown parameter (left) and associated state (right).

a visual confirmation of the weak® convergence result on the spectral discretized optimal designs,
see Proposition [5.32]

5.4.2 Estimation of a distributed diffusion coefficient

The setting in this second example is motivated by the task of estimating spatially varying diffusion
parameters, which is a common problem in, e.g., geophysical applications. Therefore we consider a
stationary diffusion process, where the unknown parameter is the distributed diffusion coefficient.
We again set 2 = [0,1]? to be the unit square and define the Dirichlet boundary as I'p =
{0,1} x (0,1). For g € R"® ~ R¥*¥ for some N € N we define the parametrization

N N
1
N . . . .
q" (z) = B Zl Zl 4(i,j)9(,j), Where qb(i’j)(xl, x9) = 2sin(mizy) sin(mjzs).
i=1 j=

Given ¢ € RNVX¥ the associated state y = S[q] is the unique element of H'(£2)NC(£2,) satisfying
a(q,y)(p) = /Q[exp(qN)Vy Vo —foldz =0 VYpec HY(2), p=0on Ip. (5.67)

for some known source term f € L?(§2) and y = x1 on I'p. It can be easily seen that (5.67)
corresponds to the linear equation

-V (exp(qN)Vy) =f in £2,
Y= on I'p, (5.68)
exp(¢™)d,y = 0 on 92\ I'p.

Note that due to the linearity of the equation, the sensitivity d(; jyy = 9; ;)S[q] € HY(2)NC(£2,)
of the state with respect to the (i, 7)-th entry of ¢ for ¢,5 € {1,..., N} satisfies

1
a(q, 0 5y)(p) = — /Q 5%6.9) exp(q") Vy - Vedz Vo € H'(2), ¢ =0o0n I'p

and 5(i7j)y =0 on FD.
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Figure 5.6: Optimal designs L_LJBV ,, for different N and s = 1.6.

Optimal designs for different right hand sides

In contrast to the previous example the dependence of the state on the unknown parameter is
nonlinear for this one. Thus, the sensitivity operator 95[g] depends on the linearization point ¢
as well as the associated state y = S[G]. Therefore, this example is suitable to study the influence
of changes in the state equation on the obtained optimal designs. For this purpose, we consider
the diffusion equation in for two different right hand sides f given by

_ 2 _ 2
fi(z1,22) =0, 5 exp <_(£E1 0.75)* 4 (z2 — 0.5)

fa(r,22) = Nore 202

We consider a total of n = N - N = 400 terms in the parametrization of ¢" and set 8 =1, ¢; =
1075 and ¢y = 10. The linearization point is chosen as § = 0. We interpret the expansion
coefficients ¢; j, 4,7 = 1,... N, as random variables with q(; j) ~ N(0, AGij))s see , for s = 2.
Let us briefly give some interpretation to the considered setup. As described at the beginning
of this chapter equation (5.68)) models the diffusion of a fluid in a porous medium {2 whose
permeability is described by the unknown diffusion coefficient. The state variable y is given by
the fluid pressure. A priori we do not have information on the true permeability and thus it is
assumed to be constant on {2, i.e § = 0. Furthermore, choosing f = f; = 0, corresponds to the
assumption that the net fluid flow into and out of (2 is zero. In a different scenario, water is
continuously pumped into the ground through a pipeline or a well located at (0.5,2.5). This is

> , (x1,22) € £2,.
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Figure 5.7: Optimal designs EJBV ,, for different N and s = 2.

modeled by the smoothed Dirac delta function fo. We set ¢ = 0.01 in the following. For both
choices of f a Bayesian A-optimal measurement design with ZJ' chosen according to fors =2
is computed using the Primal-Dual-Active-Point method. The resulting measures are displayed in
Figures[5.8 and In order to interpret the obtained results we plot the pointwise variance of the
random field dy = Zf\i 1 Z;V: 14(i,5)%i,j)y alongside. Note that the variance depends on the state
variable y = S[g] and thus on the right hand side f. By construction, the pointwise prior variance
of the random field ¢" is (up to scaling) the same as in Figure For f = f1 = 0 we make similar
observations as in the first example. The pointwise prior variances of the state and the parameter
are symmetric. This symmetry is also recovered in the A-optimal design. Moreover, note that
some of the optimal sensors are again placed at locations in the center of {2, corresponding to
points of highest prior uncertainty. In contrast, the optimal design corresponding to fs is still
symmetric with respect to the x; axis but optimal sensors cluster towards the center of the well
at (0.75,0.5) while none of them are placed close to the left part of the boundary. An, at least
partial, explanation is provided by the pointwise prior variance of the (linearized) state which peaks
at this point and is considerably smaller outside of a small neighborhood. Nevertheless, we point
out that optimal sensors are also placed at locations in which the prior variance of the parameter
is large but the uncertainty on the true value of the measurement is small. This stresses that
optimization based Bayesian optimal sensor placement entangles information provided by both,
the mathematical model and the prior distribution.
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Comparison of point-insertion and path-following: No a priori knowledge

In this section we compare the performance of the Primal-Dual-Active-Point method (Algorithm
and the algorithmic solution approach based on the Hilbert-space regularization (Algorithm @ on
the computation of Bayesian A-optimal designs for the diffusion coefficient example. Such a
comparison was postponed until now, since the small number of parameters in the numerical
examples contained in Chapter [4] aid the performance of the PDAP method. Let us briefly recap
the path-following approach. For € > 0 we determine the unique solution ﬂjﬁv,f to the regularized
discrete problem

. n 3 m,
win (67 (Ayan) + Bllunllae,) + 5 lunl220,0]. (P57)

Up EVh,up>

where ”uh“%Q(Qo n = (in(u2),1) o, n denotes the lumped regularization term and 7, for n =
N x N, denotes the discretized Bayesian A-optimal design criterion. For a more detailed discussion
of this problem we refer to Section[4.6] To compute a solution of the unregularized problem, which
is recovered for € = 0, we employ a continuation strategy for the regularization parameter ¢ as
described in Section [£.4.6] Since both algorithms are fundamentally different and partly rely on
different computational routines, a comparison in terms of number of steps is difficult. For this
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reason, we focus on the computation times in the following. We place special emphasis on the
qualitative influence of the mesh width and the support size of the optimal design.

Therefore we consider the A-optimal design problem for the diffusion coefficient example with
different V € N and on different refinement levels of the spatial discretization. The cost parameter
is chosen as 8 = 1. In order to provide some control over the minimum number of Dirac deltas in
the optimal design measure af;’ ;, we formally assume that no a priori knowledge is present, i.e. we
first set I(])V = (0. The parameter-to-state mapping is linearized at ¢ = 0 € RV*N . Given a fixed
N € N and h small enough such that the discrete design problem admits an optimal solution
ﬂjﬁv 5, We note that # supp ﬂjﬁv p=n=N 2. ¢f. Proposition . Consequently, by increasing N we
also raise the number of optimal Dirac delta functions that both algorithms have to identify.

Let us briefly comment on the implementation of the two different algorithms. For PDAP we stick
to the description in Algorithm [7]without an additional application of the post-processing strategy
in Algorithm. The iteration is stopped at step k if the primal-dual gap fulfills ®(u*) < 1079, For
Algorithm |§| we set e7 = 1073 and ¢ = el,l/m for [ > 1. For each [ the regularized sub-
problem is solved by using the semi-smooth Newton method presented in [208]. We include
a globalization strategy based on a damping of the Newton steps to ensure a decrease of the
regularized objective function value in every iteration. The arising linear systems are solved by
a cg-method up to machine precision. If the norm of the right-hand side in the Newton system
is smaller than some tolerance, ¢; is decreased as described above. For a relevant comparison, we
compute the residual at the end of each iteration in PDAP and at the end of each step in the
semi-smooth Newton method for . Note that, as for the previous example, we only take the
computational time for the iterations of each Algorithms into account; the state and sensitivity
equations are solved beforehand.

In the following we choose N € {5,15} and consider the discretized design problems (P
and (5.63) on the grid T, for levels k € {5,8}. Since Z3' = 0 there holds 0 ¢ supp Yp. As a

consequence, we have to construct an initial iterate different from zero. To account for the different
regularities of the solutions to the corresponding continuous problems, we choose the initial iterate
u! for the solution of as a linear combination of (N + 1)? Dirac delta functions (located in
nodes of the coarse grid) while the starting point %} € Vj, C L2(§2,) for the solution of (Pé\f;fl) is
chosen as 4! = 1. Observe that 7p(al) # rr(u'). However, we stress that we are interested in a
qualitative comparison of both algorithms rather than a quantitative one. The results can be found
in Figure [5.10] First, we note that the runtime for both algorithms is affected by the increased
number of support points for larger N. In fact, on grid level eight, we obtain # supp ﬂjﬁv p = 98
for N = 5 and # supp ﬁ p = 630 for N = 15, respectively. Clustering adjacent support points
as described in Section we obtain 30 and 240 clusters, respectively, and the post-processed
solutions (as described in section are given in Figure On both grid levels we observe
that the computation time for PDAP is affected more than the one for Algorithm 6] by the increased
support size of the optimal design. This is a consequence of the different update strategies for the
iterates in both algorithms. In each semi-smooth Newton step in Algorithm [f] the current iterate
is updated globally on (2,. In contrast, at most one new support point is added in each iteration
of PDAP. Hence, if the support of the optimal solution is increased, so is the number of necessary
iterations in PDAP, explaining the increase of the computation time.

Let us now consider the influence of the number of grid points of the spatial discretization. Here,
we observe that the path-following algorithm is affected more, which can be explained as follows:
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Figure 5.10: Residuals 7z (-) for various number of parameters and discretizations plotted over
computation time ¢ in seconds for I[J)V =0.

For each € > 0 the unique optimal solution to 1) is given by the component-wise projection
formula

_N,e

1
g}, (i) = max {—g(Vl/th(ug,f)(xl) +5), 0} Va; € N,

where w;‘h(ag,f) = wﬁh(Ahag\f;f). This indicates that the set of nodes in the support of the
solution depends on the fineness of the discretization. As a consequence, the path-following method
can only exploit the increased sparsity in later iterations (for smaller ¢), which leads to larger
computational times on finer grids. In contrast, in PDAP we only need to calculate the gradient
V@Z)}l‘(uk) as well as its maximum on the whole domain, while the dimension of the occurring
sub-problems and thus also the size of the linear systems in the semi-smooth Newton method
can be bounded independent of the discretization in every iteration. Together with the mesh-
independence observations for the residual and the support size from Section this explains
the better scaling of the successive point insertion algorithm with respect to the number of nodes
in the triangulation.
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Figure 5.11: Optimal designs for Z)Y = 0 and N = 5 (left) and N = 15 (right) on grid level eight.

Comparison of point-insertion and path-following: A priori knowledge

To conclude this section, we again consider the previous setup in the Bayesian setting. Concretely,
we choose 7)Y € PD(N?) according to (5.66) with ¢; = 107°, c; = 10 and s = 2.

Since Ty is positive definite we can choose the starting point for both algorithms as u! = 0. In
Figure the computed residuals for the path-following algorithm and PDAP are shown. For
the path-following algorithm we again observe an increased computation time with respect to the
spatial discretization in comparison to PDAP. Due to the positive definiteness of Zy, the support
of the solution is not bounded from below by n = N?2. Concretely, on grid level eight there
holds # supp ﬂé\fh = 26 for N = 5 and # supp aé\fh = 38 for N = 15, i.e. the number of optimal
Dirac delta functions does not increase as significantly as in the case of Iév = 0 for larger N.
Consequently, we also observe a better behavior of the computation time for PDAP with respect
to N. The corresponding optimal designs can be found in Figure[5.13] As in the first example, the
displayed designs are obtained by the post-processing procedure described in Section [£.6.1] which
leads to 10 and 18 connected clusters of the support for N =5 and N = 10, respectively.

Accelerating Primal-Dual-Active-Point methods

In the previous sections we observed that PDAP scales well with respect to the spatial discretiza-
tion while it does not scale well with respect to the support size of the optimal design. As discussed
earlier, this is mainly caused by inserting only one point in every iteration. To remedy this defect,
we implement the heuristic multiple point insertion strategy discussed in Section More in
detail, instead of only adding a global minimizer #* of Vzp}?(uk) in each iteration, we update the
active set by adding the grid points corresponding to the M < n(n + 1)/2 smallest local min-
imizers of the gradient. The upper bound on the number of inserted Dirac deltas ensures that
the dimension of the sub-problems in PDAP stays uniformly bounded throughout the iterations.
However, we note that in our numerical experiments this upper bound was never attained. The
resulting algorithm will be referenced as Multi-PDAP in the following.

To compare the three algorithms we again consider the A-optimal design problem for the diffusion
coefficient example on Ty, with N € {5,15}. The cost parameter and a priori knowledge are
chosen as f =1 and Iév = 0, respectively. The computed residuals over the computation time
are plotted in Figure [5.14 We observe that the insertion of multiple points in each iteration
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Figure 5.12: Residual rp(-) for different N and discretizations plotted over computation time ¢ in

seconds for Z}V given by the prior (5.66).

significantly improves the speed of convergence of the successive point insertion algorithm, which
shows the practical efficiency of the proposed heuristic strategy. Finally, we again stress that all
comparisons between the two implementations of PDAP and Algorithm [f]should not be understood
quantitatively; the path-following algorithm may possibly be accelerated by, e.g., the inexact
solution of the regularized sub-problems.
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6 Algorithmic framework

In the last part of this thesis we elaborate in greater detail on the numerical solution algorithm for
the optimal sensor placement problems considered in Chapter {4 and Chapter |5l To this end we
recall that the major challenges in this context are given by the non-smoothness of the objective
functional and the non-reflexivity of the measure space. A first naive approach on its solution
would be to consider numerical solution methods for the discretized problems i.e. we replace
the space of Radon measures M({2) by the space M, of measures supported in the nodes of a
grid. This reduces the problem to a finite dimensional one. While the resulting problems still
remain non-smooth their efficient numerical solution can be realized by applying a large variety
of well-studied algorithms. For examples we point out to semi-smooth Newton methods, [194],
the fast iterative shrinkage-thresholding algorithm (FISTA), [26], and the alternating direction of
multipliers method, [45]. However such reasoning harbours the danger of yielding mesh dependent
solution methods. That is to say that while a particular algorithm may be efficient for the solution
of the discrete problem associated to a fixed discretization parameter its convergence behaviour
can critically depend on h.

To some extend the mesh dependent behaviour of a particular algorithm can stem back to the
fact that its description may not remain meaningful on the space M({2). For this reason we are
interested in the derivation of iterative solution methods for the continuous problem on the space
of Radon measures. Obviously function space based solution approaches are at first glance only
of limited utility since the computation of a minimizer usually still requires a discretization of
the problem. However adapting such methods to the discretized problems often yields algorithms
with a mesh independent convergence behavior, [147,/162|. Thus while each step of the method
may suffer from increasing computational complexity for decreasing h the number of iterations to
fulfill a suitable convergence criterion is stable with respect to the discretization parameter.

The main goal of this chapter lies in the analysis of an efficient iterative numerical solution algo-
rithm on the function space level. To this end the presentation is divided into two parts. Since the
aforementioned difficulties are not restricted to the particular case of Radon measures we embed
the considered sensor placement problems into the larger framework of composite minimization
problems

min [f(u) + g(u)]-
Here we minimize the sum of a differentiable function f and a convex but not necessarily smooth
regularizer g over a possibly non-reflexive Banach space M. Similar problems have received
tremendous attention in the context of optimal control and inverse problems over the last decades.
This is owed to the fact that the right choice of the space and the nonsmooth regularizer enhances
desirable structural features in its minimizers. Given a spatial domain {2 we refer e.g. to the
broadly discussed topic of sparse regularization for M = M({2), |50|, the bang-bang structure of
minimizers in the case of M = L*°(§2), |72|, and the staircaising effect for functions of bounded
total variation M = BV({2), |227]. However this comes at the price of having to deal with
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6 Algorithmic framework

spaces M lacking many desirable properties for the analysis of the problem. For example we
stress that all of the previously stated spaces are non-reflexive, not strictly convex and non-
smooth. In particular this makes their function space based solution highly challenging since
many well-known algorithms do not yield extensions to such problems. Moreover we highlight
that the unit ball in those spaces is neither compact with respect to the strong nor the weak
topology. For iterative solution approaches to the problem this raises the question if and in which
sense convergence of the generated iterates can be expected. As a remedy we point out that all of
the mentioned spaces admit an interpretation as the topological dual space of a separable Banach
space C. This allows to tackle these problems by resorting to weaker topological concepts. Thus
we may restrict ourselves to this type of spaces without loosing much of the desired generality.
Note that these considerations once again underline the additional care that has to be taken when
discussing algorithms on infinite dimensional spaces.

In the first part of this chapter we demonstrate that the described class of composite minimization
problems can be solved by an adapted version of the conditional gradient method, [112]|. In more
detail the method is based on the iterative solution of partially linearized subproblems

uFt = oF 4 R (P — b)), o € argmin[(Vf(uF),0) + g(v)], s € [0,1],
vEM
where (-,-) denotes the duality pairing between M and its predual space C. We show that this
generalized conditional gradient iteration is indeed suitable for the solution of composite mini-
mization problems and yields provable qualitative and quantitative convergence guarantees under
mild assumptions. Several instructive examples highlight the simplicity of the method and point
out to possible applications.

In the second part of the chapter the presented algorithm is applied to sparse minimization prob-
lems

min [F(Ku) + G(||u||rm)]- (6.1)

UEM g

The optimization variable is searched for in a subset M4 of M ({2, H), the space of Borel measures
which assume values in a Hilbert space H on a set 2. Here K denotes a linear continuous operator.
For example it may be given as the solution mapping associated to a linear equation or, as in the
previous chapters, we identify it with the Fisher operator Z. The functional F' is a scalar-valued,
smooth and not necessarily convex function, while G is a, in general, nonsmooth but convex
function acting on the total variation of uw. Regularization terms of this particular form are
known to favor optimal solutions which are sparse i.e they are zero outside of a Lebesgue null
set. This observation makes measure-valued optimization variables appealing for a wide range of
applications. Besides the sensor placement framework developed in this thesis we point out to
actuator placement problems, [74], acoustic inversion, [32,209], and super-resolution, [55}95|.

Function space based solution methods for this type of problems can be founded on path-following
strategies in order to circumvent the non-reflexivity of the space M({2, H). Here the original
problem is replaced by a sequence of regularized ones
. €02
min (F(Kw + G(lulao,m) + 5l ) (6.2)
over the Hilbert space L?(£2, H). Note that the appearance of the L' ({2, H) norm in the objective

functional still promotes optimal solutions which are nonzero only on small subsets of (2. Further-
more in the limiting case for € — 0 the regularized solutions approximate solutions to the original
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one. We point out, e.g., to [208| for a reference. For fixed ¢ > 0 those problems are amenable
for efficient function space based solution methods such as semi-smooth Newton, [139}248]|, or
proximal-type methods, [233}[234]. However the convergence behavior of these algorithms may de-
teriorate for small values of . In the practical realization it is therefore necessary to start at a large
value of . A solution to the original problem is then obtained by alternating between decreas-
ing the regularization parameter and a possibly inexact solution of the corresponding regularized
problem using the previous iterate as a warmstart. Thus a complete analysis of path-following
methods requires a rigorous convergence analysis of the method used for the solution of the reg-
ularized problem in dependence of € , a quantification of the additional regularization error and
sophisticated update strategies for the parameter.

In contrast we base the algorithmic solution of sparse minimization problems on the presented
generalized conditional gradient method. Its application does not require an additional regular-
ization of the problem. It turns out that this method computes a minimizer by sequentially adding
new Dirac delta functions, i.e. measures supported on a single point, to the current iterate. Thus
it yields measure-valued iterates supported on finitely many points. While its implementation
is fairly easy it generally suffers from the characteristic slow convergence behavior of first-order
optimization methods. This also prohibits a solution of the problem to high precision.

We emphasize that the idea of using sequential point insertion algorithms for sparse minimization
is not new. For an overview of previous works in this direction we point out to Section In this
context we also refer to optimization problems with regularizers promoting sparsity of solutions in
a given basis see e.g. [47,81]. A standard tool for the algorithmic solution of this type of problems
are iterative shrinkage algorithms [48|. In [49] the authors identify this procedure as a special case
of the generalized conditional gradient method on the problem.

The main novelty of the present work is the analysis of an accelerated version of the conditional
gradient method based on alternating between point insertion and coefficient optimization steps.
We show that under additional structural assumptions on the problem, cf. also the notion of
non-degeneracy in 95|, this improved version yields a linear rate of convergence for the objective
function values as well as the iterates in a suitable dual norm. To the best of our knowledge we
are not aware of any comparable results.

6.1 Problem setting

Throughout the course of this chapter we consider the following composite minimization problem

min j(u) := [f(u) + g(u)]. RY)

ueM
Here the function f will in general be non-convex but smooth in a sense made clear below while g
is convex but typically non-differentiable. The optimization variable u is searched for in a Banach
space M. It is given by the topological dual space of a separable Banach space C. We will refer
to C as the predual space of M. The norm on C is denoted by || - |[[¢. In general the space C will
be non-reflexive i.e. C g M*. The corresponding duality pairing between ¢ € C and v € M is
denoted by (p, u) = (g, u)e pq- Furthermore we recall the concept of weak*-convergence on M.

Definition 6.1. A sequence {uy}reny C M is called weak* convergent with limit u € M if

(o, up) = (p,u) VYo eC.
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6 Algorithmic framework

Whenever {uy}ren converges weak™ to u € M it is denoted by uy —* .

The space M is equipped with the topology induced by the corresponding dual norm

lullpmg = sup (u,) Vue M.
LPEC,HSDHCSI

In particular it is a Banach space with respect to the induced norm. Given an extended real valued
functional ¢: M — RU {+0c0 } and a convex weak* closed subset M C M we define the domain
of ¢ in M as

dompy;p={ueM|p(u) <oo}.

If M = M the index will be dropped.

6.1.1 Existence of minimizers

The proof for the existence of at least one minimizer to (@D will be based on Tonelli’s direct
method, see e.g. |78, Chap. 1]. Thus we require the relative sequential compactness of bounded
sets in M with respect to a suitable topology. For the case of a general non-reflexive space this is
neither true for the strong topology, i.e. the topology induced by the norm on M, nor the weak
topology. As a remedy we recall the following sequential version of the Banach-Alaoglu theorem,
cf. |52, Corollary 3.30] which holds due to the separability of the predual space.

Proposition 6.1 (Banach-Alaoglu). Let { ug }reny € M denote a bounded sequence in M. Then
there exists a subsequence {uk]. }jen and an element u € M with ug;, —" u.

Thus norm bounded sets in M are relative sequentially compact with respect to the weak™ topol-
ogy. Throughout the course of this chapter we impose the following general assumptions on the
objective functional under consideration.

Assumption 6.1. The functions f and g fulfill:

A6.1 The extended real-valued functional g: M — R U {+oc0} is proper, i.e. not equal to 400,
convex and (sequentially) weak* lower semi-continuous on M.

A6.2 The extended real-valued function f: M — RU {400} is proper and (sequentially) weak™
lower semi-continuous on dom g. There holds

dom j = dom f Ndom g # 0,
and for every sequence { uy }reny C dom g we have

up =" u = f(u) <liminf f(ug).
k—ro0

Furthermore, restricted to its domain, f is (sequentially) weak™ continuous. Given a sequence
{ug treny C dom f there holds

up =" u € dom f = f(ug) — f(u).
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A6.3 The domain of j is (sequentially) weak* open in domg in the following sense: Given
{ug }ren C dom g there holds

up ~*uedomj=3keK:u, €domj Vk>k.
A6.4 On dom j the function f is assumed to be Gateaux-differentiable. For every u € dom j the
Gateaux derivative f’(u)(-) of f can be identified with V f(u) € C, i.e. there holds
I'(uw)(0u) = (Vf(u),0u) Véue M.
Furthermore the mapping
VfiM—=C uw— Vf(u)

is (sequentially) weak*-to-strong continuous.

A6.5 The functional j: M — R U {+o0o} is radially unbounded. For every sequence {uj}reny C
dom g there holds

||| g — 00 = j(ug) — +oo.

The existence of a global minimizer to follows by standard arguments.

Proposition 6.2. There exists at least one optimal solution to . Moreover the set of optimal
solutions is bounded.

Proof. Since j is proper we have
7= inf j(u) < +o0.
J uEM']( )

Denote by up C dom j, k € N, an arbitrary infimizing sequence for j. For all k large enough we
have

7= inf 7§ <7 < 741.
j ulélMJ(U)_J(uk)_er

Due to the radial unboundedness of j there exists a constant ¢ > 0 with |Jug|[ag < ¢ for all k¥ € N.
By Proposition [6.1| there exists a subsequence of uy (denoted with the same index) and an element
@ € dom g with up —* . By assumption g is weak™* lower semi-continuous on M and f is weak™
lower semi-continuous on dom g. Since {uy}ren C dom g we arrive at

j(u) <liminf j(ug) = 7,
k—o0

from which we conclude 7 € R and the optimality of 4 € dom j. It remains to show the boundedness
of the set of minimizers. To do so assume the contrary i.e. there exists a sequence {uy }ren with

Jjlur) =7 VkeN, |ug|pm — oo.

This however contradicts the radial unboundedness of j. Thus the set of minimizers to () is
bounded. O
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6.1.2 Optimality conditions

The aim of this section is to establish first-order necessary optimality conditions for @ Since
f is assumed to be smooth in the sense of A6.4 and ¢ is convex we can therefore mainly rely
on well-known results from convex analysis and non-linear functional analysis. Associated to the
convex functional g we introduce its subdifferential at a point © € M by

dg(u) ={p €C| (p,i—u) +g(u) < g(a) Vie M}, (6.3)

At this point we briefly pause to point out that the convex subdifferential of g is defined as subset
of the predual space C. This is in contrast to its usual definition as a subset of the dual space M*
(formed with respect to the norm topology on M). In particular the set dg(u) may be empty
for an arbitrary u € M. The following proposition however states that the subdifferential at a
minimizer of necessarily contains the negative gradient of f.

Proposition 6.3. Let u be a minimizer to . Then there holds
(=Vf(u),u—u)+g(a) <g(u) VueM. (6.4)
Equivalently, this can be expressed by —V f(u) € dg(u). Vice versa, if f is convex, every u € dom j

which fulfils (6.4) is a global minimizer of @D

Proof. We give the proof for the sake of completeness. Let u € M be an optimal solution to .
First we note that holds trivially if © € dom g. Now, given an arbitrary u € dom g we have
@+ t(u — u) € dom j for all positive ¢ small enough due to A6.3. Using the optimality of @ and
the convexity of g we obtain

0<j(a+tu—n)—j@) <f(a+tlu—u)—f(u)+tg(u)—g(@).
Dividing both sides of the inequality by ¢ and letting ¢t — 0 yields
0 < f'(u)(u—a)+g(u) — g(a).

By rearranging and f/(u)(a—u) = (V f(u),u — u), see A6.4, we conclude (6.4]) since u € dom g was
chosen arbitrary. Due to the definition of the subdifferential this is equivalent to —V f(u) € dg(a).

Assume now that (6.4]) holds at @ and f is convex. Then we have

0 <(Vf(@),u—1u)+g(u) —g(@) < fu) — f(@) +g(u) —g(u) = j(u) —j(@) YueM,
which yields the optimality of . O
While (6.4) provides a simple necessary condition for the optimality of @ it is only of limited
practical use without any further characterization of the set dg(@). In particular it does not allow
to infer on the structural properties of minimizers to @ In the following proposition we provide

an important result from convex analysis which allows to characterize the subdifferential of g by
properties of the convex conjugate function

g:C—oRU{+0}, ¢ Sél}\)/t[(cp,w — g(u)]. (6.5)
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Proposition 6.4. Let ¢ € C and u € M be given. Then there holds

¢ € dg(u) & g(u) +g*(») = (p,u) & u € Ig*(p), (6.6)

where the subdifferential of g* at ¢ is given by
g7 (p) ={ue M| (u,¢—¢) +g"(p) <g(¢) Vpel}.

Proof. The statement is obtained from Proposition 5.1 and Corollary 5.2 in |98, Chapter 1| noting
that g is weak™ lower semi-continuous. O

Corollary 6.5. Let u € M be an optimal solution to @ Then there holds

—Vf(a) € 0g(u) < g(u) + g"(=V f(a)) = (=Vf(u),u) & u € dg*(=V f(u))
Proof. The statement readily follows by combining Proposition [6.3 and Proposition [6.4} O

In the following example, we illustrate how these results allow to derive equivalent first-order
optimality conditions.

Example 6.1. Let G: R — RU{+oo} be proper, convex, lower semi-continuous and monoton-
ically increasing on Ry with limy_oo G(t) = 400. Further assume that dlomG C Ry. We set
g(u) = G(||ullm). This setting includes the case of mnorm regularization g1(u) = Gi(||ul|lm) =
allul|pm where we choose Gi(m) = am + Ijg o) (m) for a > 0. The, at first sight unnecessary,
indicator function of the nonnegative real axis, will allow for a simpler statement of first order
optimality conditions. We stress however that its appearance does not change the optimization
problem. Additionally, norm constraints can be considered by setting

g2(u) = Iy <o () = Lo, aro) (el an)-

Here I, <M, denotes the indicator function of the ball B, (0) with radius Mo > 0 in M, i.e.

0 lullm < Mo
+oo  ullm > Mo

Ty () = {

It is straightforward to verify that g is proper, convex and sequentially weak™ lower semi-continuous
on M. If u € M is an optimal solution to @D then Pmposz’tion yields

(=Vf(u),u—u)+G(ul|pm) < G([[um) VueM. (6.7)
Let us first assume that @ # 0. Due to the monotonicity of G we immediately derive
(=Vf(@),u—u) <0 YueM, |ullpm < [alum,

or, equivalently —V f(u) € 0 (IH.HMSHQ—L”M) (a). Let us calculate the convex conjugate of the indi-
cator function as

(L imstalng) (@)= sup (o, u) = lumllelle Ve €C.

[ull m<lall ae
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We conclude ||a||p||V f(@)]lc = (—V f(u),u). Consequently, testing with uy, = (m/||a||pm)u
form € Ry yields

IVf(@)lle (m = [lullrm) + G(lum) < Gim)  Vm e Ry.
Collecting all the previous results we get that every non-zero minimizer 4 to fulfills
(=Vf@),u) = Vi@lelllr, [V (@lle € dG(|ullrm),

where OG(||u||p) denotes the convex subdifferential of G at ||u||sm. If uw = 0 the inequality in (6.7)
simplifies to

(=Vf(0),u) + G(0) < G([[ul| m) Vue M. (6.8)
Consider an arbitrary but fived u € M, ||ul|pm = 1, and m € Ry. Testing with mu yields
m(=V f(0),u) + G(0) < G(m) Vm e Ry.

Since u was chosen arbitrary we can take the supremum over u € M, ||u||pm =1, on both sides of
the inequality to arrive at

m|[Vf(0)lle + G(0) < G(m) Vm € Ry,
where we recall the dual representation of the norm on C.

lelle = sup (p,u) VYo eC.
lull m=1

Thus we conclude

0= (=Vf@),u) =IVi@lcllulr, [V (@)lec e dG(|ulr)-

6.2 Generalized conditional gradient methods

In this section we elaborate on the algorithmic solution of @D on the function space level by
generalized conditional gradient methods. To this end we first review the results on the original
conditional gradient method for constrained minimization problems. Subsequently the method is
adapted to general composite minimization problems. We discuss the convergence of this general-
ized algorithm and show that its worst-case convergence guarantees are on par with those of the
original method.

6.2.1 Conditional gradient methods for smooth functions

To motivate our course of action in the following sections let us first consider the minimization
of a smooth and convex function f: R” — R, n € N, with Lipschitz continuous gradient over a
convex and compact subset M C R™. Obviously this problem can be fit into the general setting
considered in the previous section by choosing the spaces as M ~ C = R" together with the
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euclidean norm and the nonsmooth function g as the indicator function I; of the compact set.
Thus we arrive at
min f(u) = min j(u) = [f(u) + Iy (u)] (6.9)

In this case existence of a minimizer 4 € M follows due to the Weierstrass theorem. The necessary
and sufficient optimality condition is given by

(Vf(@),u—a)gn >0 Yue M.

For the sake of simplicity we assume the uniqueness of 4 throughout this introductory remarks.
The algorithmic solution of constrained optimization problems with smooth objective functional is
a well-studied subject. We refer e.g. to the monographs [35,203|. In particular the minimization
problem in can be solved by applying a projected gradient iteration defined by

1 1
e M, ot =Py (uf - Vb where  Py(u) = min = |u — v|3n. (6.10)
L veM 2

Here L denotes the Lipschitz constant of Vf. Note that the sequence of iterates is feasible,
i.e. {u*}rey C M, by definition of the projection. It is well known that the iterates {u*}ren
define a minimizing sequence for f on M and the objective function values converge at a sublinear
rate

.k .

u®) —j(u) < Vk e N
i) = @) < ,
for some constants ¢, ¢ > 0 independent of the iteration number. If f is strongly convex on M

the convergence is linear i.e.
jWh) —j@) <ot vkeN,

for some ¢ € (0,1). Even for non-strongly convex f a convergence rate of 1/k% can be recovered
by adding additional improvement steps such as Nesterov acceleration |201, Chapter 2|. For a
discussion of projected gradient methods in the broader context of general Hilbert spaces we refer
to [34,121].

As an alternative to projected gradient methods we consider a conditional gradient iteration
defined by

e M, ot =uF 4+ PP —uF), oF € argmin (VF(uF),v)pa, s*€[0,1]. (6.11)
veEM

This method was originally proposed in a paper by Frank and Wolfe, [112], for the minimization of
a quadratic function over a polytope. The term conditional gradient method was coined in |185].
Feasibility of the iterates is ensured by taking u**1 as a convex combination between the previous
iterate ©* and an auxiliary variable v given by a minimizer to a linear program over M. A
sublinear rate for the convergence of the sequence {f(u*)}ren towards the global minimum of f
on M can be proven for various choices of the step size s*. We mention for example the closed
loop step sizes rule of [91]

0 (Vf(ub), u¥ —v*)gn =0
Vf k , k_ .,k n Vf k , k_ .k n
sh={ ¢ gﬁu)kt_bvkﬁzm 0<! gﬁg)kqi:k\q\)im <1, (6.12)
(Vf(u"),u”—v")gn
! LS e
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and implicit step sizes based on line minimization

s € argmin f(u¥) st ub =uF 4+ s(F —ub), (6.13)
s€[0,1]

or an Armijo-Goldstein backtracking on the objective functional, [92]. The method is also known
to converge for open loop step size sequences, [93}/159,274|, fulfilling

s£ 50, Y s =+oo, (6.14)
=1

whose determination may neither require evaluations of the objective functional f nor the Lipschitz
constant of its gradient Vf on M. In particular this covers the choice of s¥ = 2/(k + 2).

However in contrast to projected gradient methods the sublinear rate is tight even for strongly
convex f. For a reference we point out to the example in [56]. Stronger convergence results can
only be expected under more restrictive assumptions on the geometry of the admissible set, the
function f and/or the location of the minimizer. We give a brief overview in the following. In [125]
the authors establish linear convergence if f is strongly convex and @ lies in the interior of M.
A similar result is derived in [25] for a conditional gradient method applied to convex feasibility
problems over a general convex and compact set M. Moreover a linear rate of convergence is
provided in [83,/185] for convex f on strongly convex sets if the norm of Vf(u) is uniformly
bounded away from zero for v € M. Here M is called strongly convex with respect to | - |gn if
there exists 6 > 0 with

0
ur, ug € M, uz € R", |usglgn =1, s € [0,1] = su; + (1 — s)ug +s(1 — s) + §’u1 — ug|nuz € M.

For example the unit ball with respect to the euclidean norm is strongly convex. In several
papers, [91,92], the assumptions on f and the admissible set are replaced by a growth condition
on the linear functional induced by the optimal gradient

arg 1;\n4in(Vf(ﬂ), V)pe = {a}, (VF(@),u—a)gn > 0lu — a3 (6.15)
ve

Note that these works do neither require strong convexity of the function f nor of the set M. If M
is a polytope the first condition together with the fundamental theorem of linear programming
implies that u is a vertex. One interesting and relevant application of those results is illustrated in
Example More recently a 1/k? rate independent of the location of the minimizer was obtained
in [115] for strongly convex f and M. We emphasize that all of these improved results are either
based on closed loop step size choices, , or implicit step sizes, , which take into account
information on the current iterate. For the general open loop step size rule no improved
results can be expected even in the outlined restrictive settings.

A second line of work puts the focus on acceleration schemes in order to improve the convergence
behavior of conditional gradient methods. We also give a brief sketch of these approaches. To
give some geometric interpretation for the following discussion let us assume that the admissible
set is a polytope and 0 € M. Then M can be represented as the convex hull of the finite set A
containing its vertices. Thus we can restate the minimization problem as

1{2]%}1]0(“) s.t. ueconv(A)—{Z)\vv\ Z)‘”:L )\UZO}'

veEA veEA
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From linear programming theory it is well-known that a linear functional attains its minimum on
a compact and convex polytope at a vertex. As a consequence we can choose

v¥ € arg min(V £ (uF), v)re N A.
veER™

In particular if we set u® = 0 there exists a set of vertices A with
Ap c (v} c A, uF e conv{Ay}.

From this perspective the conditional gradient method can be interpreted as follows. In each
iteration we select one vertex v* of the polytope M. The new iterate is then found by moving
from u* towards v* along the connecting line. By construction u**! lies in the simplex spanned by
a subset Ay, of the previously determined vertices {v*}¥_;. Acceleration schemes can now be based
on the vertex representation of u*. In [268] Wolfe proposed to add the possibility of performing
an alternative step

v* € argmax(Vf(uF),v), uftt =uF + Fk —oF), sF >0,
VEAL_1

instead of the conditional gradient update which allows the iterate to move away from previously
considered vertices. Linear convergence of conditional gradient methods based on Wolfe’s away
step is discussed in |2,{114,[179]. Obviously the new iterate can also be determined by minimizing f
over the smaller simplex

uPt € argmin f(u) st u € conv{Ag}.
ueM

This version of the algorithm is known as fully corrective conditional gradient, [151], or simplicial
decomposition, [260|. Since the number of vertices is bounded the method converges in finitely
many steps if v¥ € Ay, for all k € N is ensured. In the context of machine learning similar methods
are known by the name of boosting or forward greedy selection. Linear convergence of such a
method on a finite dimensional predictor problem with sparsity constraints is proven in [236].
Note that both accelerated versions can be also applied for general convex and compact M by
identifying them with the closure of the convex hull of their extremal points. This is a consequence
of the Krein-Milman theorem. However we are not aware of any improved convergence results in
the case that the number of extremal points is infinite as for e.g. the euclidean unit ball.

Certainly these results raise the question in which situations a conditional gradient method should
be given preference over the apparently better behaving projected gradient iteration. A first ar-
gument in favour of the conditional gradient algorithm lies in the complexity of the occurring
subproblems. Computing the projection in corresponds to minimizing a quadratic approx-
imation of f at the current iterate over M:

1 1 L
w1t € argmin —|v — v + —Vf(uk)h%d = argmin[f(u*) + (VF(u*),v — uF)gn + Z|v — ¥ 3]
veM 2 L veM 2

In contrast the conditional gradient step only requires the minimization of a linear model:

= argmin(Vf(uk),v)Rn = argmin[f(uk) + (Vf(uk),v — uk)Rn].
veEM veEM

While computing projections can be cheaply realized for many sets there are certainly relevant
problems in which this step represents a computational bottleneck. As an example we point out
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to minimization problems over subsets of the positive semi-definite matrices. Calculating the
projection of a given u with respect to the Frobenius norm onto such admissible sets requires its
full singular value decomposition, |46}, Section 8.1]. On the contrary to solve the linear subproblems
in only one leading eigenpair of V f(u*) needs to be computed, [133].

Secondly conditional gradient iterates often exhibit certain desired structural properties depending
on the geometry of the feasible set. For example if f is minimized over the I* unit ball the element
v* can be chosen as a multiple of a canonic basis vector in R”. Thus, assuming that «° = 0, the
iterate u* is a sparse vector containing at most k non-zero entries. Similarly if M is a bounded
subset of the positive semi-definite matrices the method can be realized to yield iterates u* which

are low-rank.

Most importantly however we point out that a straightforward extension of the projected gradient
method to infinite dimensional spaces requires reflexivity and strict convexity of M. We point
out to |207| for a reference. In contrast the conditional gradient method generalizes naturally to
minimization problems in non-reflexive Banach spaces. As a matter of fact the aforementioned
improved convergence results in [83}/91,/92}|185] all hold in this general setting when we replace
the euclidean norm in the previous considerations by the corresponding Banach space norm. The
following two examples highlight this advantage of the conditional gradient method and the as-
sociated flexibility. In the first one we consider a bang-bang control problem on L?(f2). Here
the objective functional is not strongly convex and a projected gradient iteration only yields a
provable sublinear rate of convergence which is however also observed in practice. In comparison,
linear convergence of the conditional gradient method can be obtained by interpreting the admis-
sible set as a subset of the space of Radon measures. The second example deals with constrained
minimization problems in spaces of measures. One of the main results of this thesis establishes a
linear rate of convergence for an accelerated conditional gradient method for this type of problems.
For more details we direct the reader to Section [6.3]

Example 6.2. Consider a bounded domain 2 C RY, d € N, a desired state yq € L*(2) and a
linear operator K : L*(£2) — L?(£2) which we assume to be injective and compact. In the following
we aim to compute the unique minimizer u of

1
Iél(i]l’l fu) = §HKu—yd||%2(Q) where U = {u € LX) | Ju(z)| <1 a.e x € 2},
u ad

It is well-known that @ is characterized by the bang-bang condition

{1} [K"(Ku—yq)l(x) <0
u(x) € { [-1,1] [K*(Ku—yq)|(z) =0  for a.e. x € {2 (6.16)
(1} [K*(Ka - ya))(z) > 0.

Interpreting Uaq as a subset of L(£2) a realization of the projected gradient method for its com-
putation is given by

uw =0, ul(z)= min{ 1, max{uf(z) — s*[K*(KuF — yy)](x), -1} } for a.e. x € £2,

where s* > 0 is a suitably chosen step size see e.g. [214]. Note that the Hessian of the objective
functional V2 f(u) = K*K is compact for every u € Uuq. In particular this implies that f is not
strongly convex on the admissible set and the projected gradient method only guarantees a sublinear
rate of convergence on this problem.
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6.2 Generalized conditional gradient methods

Alternatively we consider Uyg C L'(£2) € M(£2) and compute @ by applying the following condi-
tional gradient iteration

1 [K*(Eu" —ya)l(z) <0

1 [K*(Kuk (@) > 0 for a.e. x € (2.

w¥ =0, uFtt=uF 4 sF P — k), WF(z) = {

Choosing the step size s* € [0, 1] according to the line minimization rule (6.13) leads to
sk = min{ 1, max{(K*(Ku* —y),u* — vk)Lz(Q)/HK(uk - vk)H%Q(Q), 0} } ,

where division by zero results in +o0o. While this method also only guarantees a sublinear rate in
general a better convergence behavior can be expected if additional structural assumptions on the
adjoint state K*(Ku — yq) in the vicinity of its roots are imposed. More in detail we require the
existence of a constant ¢ > 0 such that for all € > 0 there holds

p({ € Q] [K*(Ka—yg) (@) =0}) =0, pp({ze —es[K*(Ka—yd>1<x>Se}><sca)
6.17

Note that the first condition together with imply that u s strictly bang-bang i.e. it achieves
the upper or the lower bound almost everywhere in 2. We point out that the assumptions in
are well-established in the context of bang-bang optimal control problems see e.g. [66,82]. From the
bang-bang condition (6.16|) and [66, Proposition 2.7] we now infer

argénin(K*(Ka - yd),v)Lz(Q) ={u}, (K*"(Ku-—yq),u— ﬂ)Lz(Q) > 0llu — ﬂH%l(Q)
veEUad

for all uw € Uyq and some positive constant 0 > 0. Thus Theorem 3.1 in [92] yields the existence
of ¢ € (0,1) such that the conditional gradient sequence {uF}ren satisfies

Fb) = f@) + o — )| o) < eCF,

for some ¢ > 0 independent of the iteration number k. To the best of our knowledge there are no
comparable results for the projected gradient method under the additional assumptions of (6.17]).

Example 6.3. Let 2 C R?, d € N, be a compact set and denote by M(S2) the space of Radon
measures on (2. In this example we consider minimization problems of the form
min u) = F(Ku) s.t. ||u < My, 6.18
min f) = P st [l < My (6.15)
where K: M(£2) =Y s a linear and continuous operator taking values in a Hilbert space Y and
the functional F:' Y — R is convexr and continuously differentiable. The optimization variable u
is searched for in the set of positive Radon measures M1 (£2). An additional upper bound My > 0
on the total variation of the measure is enforced. Moreover we assume that the adjoint operator
of K satisfies K*:'Y — C(§2). Following the discussions in Section a giwen admisstblie
measure 4 € M™(§2) is a minimizer of (6.18)) if and only if

{0} 1%lla1 € [0, Mo)
[0, +00)  [[allm = Mo

)

I(E*VEF(Ku))™ e € {

and u fulfills the sparsity condition
supp@ C {2 € 2| [(K*VF(Ka)) |(z) = [(K*VF (K@) |c}, ((K*VF(Ku))*, @) =0.
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Here (p)~ = —min{0, p} and (p)" = max{0, p} denote the negative and positive part of a func-
tion ¢ € C(£2) respectively.

To compute such a minimizer we apply a conditional gradient iteration which is defined as
uO =0, uk:-i—l — uk: + Sk(vk o uk)’
where vF € MT(82) is given by

Myé; ingeo[K*VF(Ku* <
ok = 0% m?n colK"VE( uk)](x) - 0, ke argmin[K*VF(Kuk)](:c).
0 mingeo[K*VE(Ku")](z) > 0 0]

While sublinear rates of convergence for conditional gradient methods on similar problems have
been established in several recent works, [44},50, 97,200,209/, we are not aware of any results on
conditions or acceleration schemes that guarantee an improved convergence behaviour. In particular

there holds
ut,uz € MY(2),  |uillm = |luzllm = Mo = |Jug + s(ug —ur) || = Mo Vs € [0,1].

Thus the admissible set in (6.18) is not strongly convex and the arguments of Levitin, [185], and
Demyanov, (83, cannot be applied to obtain improved convergence rates. Furthermore, denoting
by (-,-) the duality pairing between C(£2) and M(S2), we readily obtain

argmin (K*VF(Ku),v) = {v € MT(2) | suppv C argmin[K*VF(Ku)](x), ||[v]|lm = Mo } ,
veMt(02) z€E
l[v]l m<Mo

if minge[K*VF(Ku)] < 0. As a consequence, assuming the extremality condition

argmin (K*VF(Ku),v) = {u}

vEMH ()

[Vl m< Mo
from Dunn’s papers, [91,192], implies that the optimal solution to (6.18)) is unique and given by
a single Dirac delta function i = Mydz for some T € (2. Moreover, even in this case, quadratic
growth conditions of the form

(K*VF(Ka),u—a) > 0llu—al3y Yue M (2), [ullp < My,

cannot be fulfilled for any 0 > 0. To see this take a sequence of points {xy}reny C (2, with xp #
Z, x, — x. Then it is readily verified that the sequence of Dirac delta functions {uy}ren defined
by up, = Moby,, fulfills

(K*VF(Ku),up —u) =0 but |jup—u|m=2My VkeN.

In Section [6.3.0] we close this gap by providing an accelerated version of the conditional gradi-
ent method which achieves a linear rate of convergence on problem (6.18|) if certain structural
requirements are met. Amongst other things we assume uniqueness and sparsity of the minimizer
to 1.e. w consists of finitely many Dirac delta functions. In summary we obtain

Fu) = £(@) + [[u* = allon ) < et
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for some constants ¢ > 0, ¢ € (0,1) and all k € N large enough. Here || - ||co1(g)« denotes the
canonical norm on the dual space of the Lipschitz continuous functions. Note that we have

M(0) — ()

i.e. we obtain quantitative convergence statements for the iterates in a weaker norm. We point out
the similarity of this result to the improved convergence statement for the bang-bang optimization
problem in the previous example. There the admissible set Uyq is given by the unit ball in L>°(12).
However the convergence of the iterates {u*}ren is quantified with respect to the norm on the
weaker space L1(£2).

6.2.2 Conditional gradient methods for composite minimization

In the following we present a generalization of the conditional gradient method for the solution of
the composite minimization problem . To this end we first provide some preparatory results.
Recall that the set of minimizers to @D is bounded by some My > 0, see Theorem Associated
to this constant define the auxiliary problem

min  [f(u) + g(u)]. (Pr)

lull m<Mo
The following proposition states the equivalence of and the original problem .

Proposition 6.6. The set of minimizers to (B) and (Bag)) coincide. If w € M is a minimizer
of then there holds

(=Vf(@),u—u)+g(u) <g(u) VueM, [ul|pm < Mo. (6.19)

If f is convex, this condition is sufficient for optimality.

Proof. The equivalence of the set of minimizers to both problems follows immediately by comparing
objective function values. The variational inquality in (6.19)) can be deduced from Proposition
O

As a consequence we may consider a minimization algorithm for the constrained problem in
order to compute a minimzer of @ We stress however that j is in general non-convex and thus
the variational inquality in the last proposition is only necessary and not sufficient for optimality.
Elements u € dom j fulfilling will be called stationary points. In the following proposition
these points are related to the roots of the non-negative primal-dual gap ¢: M — Ry U {+o0}
given by

B(u) = { TvagMoKVf(u% u=v)+g(u) - g(v)], ‘< dom j (6.20)

Proposition 6.7. Let 4 € dom j be given. Then u fulfills (6.19) if and only if &(u) = 0.

Proof. Assume that @ fulfills (6.19). Reordering yields

(Vf(u),a—v)+g(u) —gv) <0 VoeM, [jv]a < Mo.
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Maximizing with respect to v, ||[v[[a < Mo, on both sides we conclude ¢(u) < 0. Since ¢ only
assumes non-negative values the statement follows. Conversely if @ fulfills #(u) = 0 we readily
obtain

(Vf(u),u) +g(u) <(Vf(a),v) +g(v) YvoeM, |vlr < Mo.
By rearranging both sides we arrive at (6.19)). O

Remark 6.1. Let {¢;}ien denote a countable dense subset of C. Since C is separable the weak™
topology on every closed ball B C M is metrizable. A suitable metric is given by

oo
d: Bx B— R, (u,us) Z%Kgpi,ul — ).
i=1
For a reference we point out to |52, Theorem 3.28|. In metric spaces sequential openness and
opennes with respect to the corresponding metric are equivalent. We draw several conclusion
from this discussion. Due to Assumption A6.3 given an arbitrary u € dom j, |[u|pm < My there
exists € > 0 with

Bi.(u) ={uedomg| d(u,u) <e, ||uljm < Mo} C dom .
Moreover, since the mapping
di-,u): M =R, uw~ d(u,u)

is convex, the set By.(u) is convex as well. In particular, given sequences {u}}ren, {u5}ren C
dom g we have

=, b =g, max{ bl el < Mo VE € N = + s(ub —ub) € By.(a),

for all s € [0,1] and all k£ € N large enough.

Clearly every measure u fulfilling the variational inequality in and in particular every mini-
mizer of (@D fulfills &(u) = 0. As a last preliminary step we consider well-posedness results and
first-order optimality conditions for partial linearizations of . For brevity we define the
convex function

garer M = RU {00}, uer g(u) + Ly < ().

Lemma 6.8. Given an arbitrary uw € domj there exists at least one minimizer v € M of the
partially linearized problem

min Vf(u),v)+g(v)l. in
o i (Vf(uw),v) + g(v)] (Piin)

Furthermore v € M, ||9||pm < My, is a minimizer to (Buw) if and only if
b€ g (~VF(u). (6.21)

Proof. The linearized objective functional
Jlin': M—=RU {+OO}7 V= <Vf(u), U> + g(U) + IHUHMSMO<’U);

is proper, convex and weak* lower semi-continuous on M. Furthermore the norm of every infimiz-
ing sequences for jj, is bounded by Mj. Existence of a minimizer to ((1i,)) can now be concluded
as in Proposition The necessary and sufficient optimality condition in are obtained by
applying Proposition and Proposition [6.4 ]
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Algorithm 8 Generalized conditional gradient method (GCG) for (g)
1. Let u® € domj, [[u®||p < M.
while ®(u*) > TOL do
2. Determine v* € M such that

v® € argmin [(Vf(uF),v) + g(v)].

lvllam<Mo

3. Choose s* € [0,1]. Set uF+1/2 = uF 4 sF(vF — uF).
4. Choose u**t € M with j(uF*t1) < j(u¥+1/2) and [|uf+1 ||\ < Mo.
end while

The generalized conditional gradient method (GCG) for the solution of () is summarized in
Algorithm [§ In the k-th step of the method an intermediate iterate is obtained as convex combi-
nation uF*+1/2 = ¥ + sk (vF — u*) for some s* € [0, 1] between the current iterate u* € dom j and
a minimizer v® € dom g of the partially linearized problem

min (V). ) + g(0)]. (6.22)
llvllam < Mo

Clearly if M C R"™ is a compact and convex set we recover the conditional gradient iteration
described in by setting g = Ip;. Note that the auxiliary problem in corresponds to
the minimization of a composite functional comprising a linear approximation of f at the current
iterate ©* and the non-smooth term g. The new iterate u**! is now chosen from the sublevel set
associated to uFt1/2

e fue M ju) < ), el < Mo b

In particular the choice of uf+1 = u*+1/2 i possible. From this point of view step 4. in Algorithm
should be interpreted as a black box improvement step which allows e.g. to accelerate the algorithm
or to exploit structural properties of the iterates. However it is not necessary to ensure convergence
of the method in the following. Possible realizations of this step for a concrete problem are
discussed in Sections and

Remark 6.2. We point out that the additional norm constraint in is crucial in order to
ensure the well-posedness of the conditional gradient step. In fact the partially linearized problem
without additional norm constraints

min[(V F(uF), v) + g(v)]

may be unbounded if e.g. ¢ is positive homogeneous.

Let us briefly summarize previous approaches in this direction. Generalized conditional gradient
methods for minimization problems on finite dimensional spaces are considered in |14,131}/195224].
The general Hilbert space case is covered in [49]. In particular this last work provides convergence
results for the sequence of iterates for general f. Additionally a sublinear rate of convergence for
the objective function values is shown assuming convexity of f and Lipschitz continuity of the
gradient V f. We stress however that composite minimization problems in Hilbert spaces can be
solved by proximal gradient methods if the computation of the prox-operator, [199], associated
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to ¢ is inexpensive. These methods rely on a fix-point reformulation of the subdifferential in-
clusion —V f(u) € dg(u) and generalize the projected gradient iteration from (6.10). Proximal
gradient methods yield linear convergence of the objective functional values for strongly convex
objective functionals. For general convex j a 1/k? rate can be ensured by adding suitable ac-
celeration steps. As a reference we point out to [27,[202] for a discussion of these methods on
finite dimensional spaces and to [48](75,233| for the general Hilbert space case. Moreover if f
and ¢ admit additional regularity the fix-point formulation of the optimality condition may be
amenable for efficient solution methods such as generalized Newton-type algorithms, [223}257]. In
contrast improved convergence results for GCG methods on problems incorporating nonsmooth g
other than convex indicator functions are scarce. We are only aware of [24]. There the authors
consider the important case of norm-regularized problems, i.e. g = || - || m for some g > 0, in
finite dimensions. Linear convergence of an accelerated conditional gradient scheme based on a
smooth reformulation of the problem is proven if the associated norm balls are polytopes. The
constants appearing in the convergence estimate heavily depend on the geometry of the norm ball
and, possibly, the number of its vertices. This makes a straightforward extension of this result to
infinite dimensional spaces impossible.

The main motivation for the application of generalized conditional gradient methods in the context
of this thesis are minimization problems where the space M is given by the dual space of an infinite
dimensional separable Banach space. Important examples include the space of essentially bounded
functions M = L*°(£2), the space of Radon measures M = M ({2) and the space of functions with
bounded total variation M = BV(£2) on a subset 2 C RY, d € N. The algorithmic solution of
these type of problems on the function space level is challenging since M generally lacks desirable
properties such as reflexivity, strict convexity and smoothness. The aim of this section is to show
that the generalized conditional gradient method from Algorithm (8| is able to cope with both,
the composite structure of the objective functional as well as complicated spaces M. The simple
structure of the resulting algorithm is highlighted on several instructive examples.

To the best of our knowledge generalized conditional methods on general Banach spaces have only
been considered recently in [274,277]. There the authors assume that M is a complete normed
space. The analysis in the present work distinguishes itself from those two papers in several
points. First the authors limit their discussion to the case of convex functions f and only consider
quantitative convergence results. Qualitative results on the convergence of the iterates are only
provided in the case of reflexive M. Note that this is in part a consequence of the assumed
generality in these papers. In particular since no further assumptions beyond completeness of
the space M are made it is unclear in which topology the unit ball is compact. In contrast we
exploit the duality relation M = C* and the implied weak™ compactness of the unit ball to provide
qualitative convergence guarantees for the objective function values as well as the iterates even
if f is nonconvex. In the convex case these results are strengthened and quantitative statements
are derived. In this context additional effort has to be paid due to the potential openness of the
domain of the smooth part which is a topic that is also not covered by these prior works. While
this may seem as a minor technical difference we recall that this additional assumption on the
domain is indeed crucial to deal with the sensor placement problems of the previous chapters. A
second key difference lies in the choice of the step size. We comment on the details at a later point
of this section. Last we point out that there has been considerable work on GCG methods on the
space of Radon measures. For a discussion on known results in this case we refer to Section [6.3}

Let us now return to the analysis of the generalized conditional gradient method in Algorithm [§]
Since j is nonconvex in the general case only (subsequential) convergence of the iterates {u*}ren
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towards stationary points can be expected. To monitor the convergence of the GCG method we
thus consider the primal-dual gap @ of the iterates as termination criterion. By construction there
holds

D(u*) = (Vf(u"),u*) + g(u®) = (V[ (u*),0%) — g(o). (6.23)

As a consequence the termination criterion can be evaluated cheaply once a solution of the partially
linearized problem is obtained.

Remark 6.3. Obviously the presented algorithm implicitly assumes that the linearized subproblems
in step 2. can be solved efficiently and their computational cost is neglectable in comparison to a
solution of the original problem by a different method.

Remark 6.4. At this point let us justify the term primal-dual gap for the functional @ in . To
avoid unnecessary additional notation we restrict the following discussion to convex functions f.
However similar arguments are also valid in the nonconvex case. Define the constrained dual
objective functional

Mo M — RU{+oo},  ur f(u) + gar (u)
as well as its predual or primal counterpart
Mo: C = RU{+00}, = —f(¢) — ghy, ()
Let u € M denote an optimal solution of . This implies
u € Oy, (—=V f(1)).

Moreover we get u € Jf*(V f(u)) from the differentiability of f at u. We conclude that V f(u) € C
is a maximizer of pyy, since

0=a—uedf*(Vf(u))—0gr,(=VF(@) O () + g (=)(Vf(@) = —0pa, (V[ (u)),

where we used the inclusion rule for the subdifferential of a sum. Furthermore due to the continuity
of f on its domain strong duality holds

(@) = min dasy(u) = maxpar, () = = min —pas, () = pasy (VS (@)

Now denote by {u*}rcn the sequence generated by Algorithm |8l We obtain

F@P) + F(VF(@F) + gag (uF) + gigy (= V f ("))
= (VF(u?), u*) + gasy (uF) + gisy (= V f ("))
(Vf(u"),d") + g (u®) = (Vf (u),0%) = gary (vF)
o(uk).

dasy (u*) = pary (V f (uF))

Here we used v* € 8g}‘wo(—Vf(uk)), {Vf(uF)} = 0f(u*) and Proposition From this perspec-
tive the functional @ gives the gap between primal and dual objective function values associated
to (Vf(u*),u*) in each iteration.
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Naturally the convergence of the proposed method will depend on the choice of the step size s*. As
already mentioned in the preliminary discussions convergence of the classical conditional gradient
scheme is provable for a large variety of step sizes. For abbreviation we set

uf = uf +s(v* —uF) Vs elo,1].

s =

In [274,277] the authors establish convergence of a generalized conditional gradient scheme in
Banach spaces for two particular choices of the step size. More concretely open loop and mini-
mization step sizes similar to those in and are studied. Here we point out that the
first choice does not yield a descent method while the second choice amounts to the solution of a
one dimensional minimization problem in every iteration.

In the present work we base our algorithm on a generalization of the well known Armijo-Goldstein
condition cf. [49]|. This particular choice of the step size guarantees descend in every iteration and
its determination only requires a backtracking line search on the objective functional.

Definition 6.2. Let v € (0,1), a € (0,1/2]. The step size s* is chosen according to the Quasi-
Armijo-Goldstein condition if s*¥ = 4™ where n; € N is the smallest integer with

ay™d(u®) < j(u®) = j(ubn,). (6.24)

The following lemma illustrates that this choice of the step size is always possible if u* is not a
stationary point.

Lemma 6.9. Let an arbitrary measure u € dom j be given. Assume that ®(u) > 0 and denote by
v € dom g the solution of the associated partially linearized problem . Define us = u+s(v—u)
and the extended real-valued function

() = j(us)

W: [0,1]] = RU{—c0} W(s)= )

The function W is upper semi-continuous on (0,1] and there holds liminfs .o W(s) = 1.
Proof. Since the domain of j is sequentially weak™ open in dom g there holds us; € dom j for all s

small enough. Due to the definition of v we have

](u) _j(us) — ](u) _j(us)
s (u) s((Vf(u),u=v) +g(u) - g(v))

From the mean value theorem we get the existence of (s € [0,1] and 45 = u + (5(us — u) € dom j
with

W(s) =

Using the convexity of g, we estimate

s{Vf(as),u—v) +g(u) = glus) _ s ((V[(as),u —v) +g(u) = g(v))
s (Vf(u),u—v) +g(u) —g(v)) — s (VF(u),u—v)+g(u) —g(v))

Since (s is bounded independently of s, there holds @y —* u for s — 0. Due to the weak*-to-strong
continuity of V f, the right-hand side of the inequality tends to 1 yielding liminf,_,o W(s) > 1.
The upper semi-continuity of W on (0, 1) follows directly from us € domg for all s € (0,1] and
from the lower weak™ semi-continuity of j on dom g. O
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Before proceeding to the proof of convergence results for Algorithm [§ we discuss the abstract
generalized conditional gradient method for the special case of norm regularization

min - f(u) + Blullam;
lull < Mo

where 5 > 0 denotes a given regularization parameter. In this case it is readily verified that a
solution to the linearized problem in the k-th iteration is given by any v* € M fulfilling

My |[Vf@F)|ec =28 ‘
0 IVfuh)le<B

In particular if |V f(u¥)||c > B the algorithmic solution of the linearized subproblem requires the
computation of an element 9% € 9| — V.f(u*)||c. The following examples describe the generalized
conditional gradient iterations for the norm regularized problem and two choices of M. While
the space of optimization variables is non-reflexive and not strictly convex in both cases the
computation of an element in the subdifferential can be done analytically. This underlines the
simple structure of the presented method.

Example 6.4. Let 2 C R?, d € N, be a bounded domain. Set C = L'(£2) and M = L*>(£2) with
the usual norms

(Vf(h),o*) = =V f@®)elo*lam, 0¥l = {

WM@Z/WN%\WWmeWMN
N xESf2

for ¢ € L*(£2) and u € L>(£2). In this case the optimization problem () can be related to so
called minimum effort control problems, [72]. Denote by u® the k-th iterate generated by the GCG
method and set p* = —V f(uF). A solution v* to the partially linearized problem is obtained by
scaling the sign of pF:

ok — Mosgu(p®) |p*llpi0) > 8
0 1P¥] 1) < B

1 pFx)>0

or a.e. x € (2.
~1 pFx) <0 4

sgn(p”)(z) = {

In particular this implies that v* admits a strict bang-bang structure i.e. its image only contains
two values.

Example 6.5. As a second exzample consider a bounded domain 2 C R% d € N and a time
interval I = [0,T], T > 0. By Co(£2) we denote the space of continous functions on §2 which
are zero at the boundary. Its dual space is given by the space of Radon measures on {2 which we
identify by restricting elements of M(§2) to the interior

We consider C = L*(1,Co(2)), the space of all strongly measurable functions p: I — Co(82) for

which the associated norm
ww:¢ﬂwwmma

is finite. This space is a separable Banach space due to the separability of Co({2) see e.g. [265,
Theorem 1.5.18]. Its topological dual space is given by M = L2.(I, M(S2)), the space of weak*
measurable functions u: I — M(£2) with finite dual norm

\MWzVﬁMW%@%
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The associated duality pairing between C and M is given by

(o) = /I (o(®), s A, 9 €C, ue M.

For a reference on this dual identification we point out to [96, 8.20.3]. Optimal control problems
on the space L2.(I, M(82)) are analyzed in [60,/25]).

Let u* denote the GCG iterate in the k-th iteration and set p* = —V f(uF) € C. Then p* in-
terpreted as a scalar-valued function on I x §2 is carathéodory. Thus there exists a measurable
selection #F: I — 2 with [pF(2F,t)] = |p*(,t)lle) for a.e. t € 1. If p* # 0 we define the
function *(t) = (pk(a:t,t)/HpkHc)éif for a.e. t € I. As in [60, Theorem 3.3] we now argue that

- . - 1 .
o € Ly (M) with (8% = e /I PE @) PR (1), 03 ) oty mac) dt = [P le.

As a consequence a solution vF to the linearized subproblem is given by a time-dependent Dirac
delta function moving along a measurable trajectory:

kik
g { G5 lptlle > 8

IP*lle i . aF c argmax p(x,t)| for ae tel.
0 IP*[le < 8 zeQ

6.2.3 Convergence analysis

This section is devoted to the derivation of convergence results for the generalized conditional gra-
dient method. The following presentation is divided into two parts. First we prove subsequential
weak* convergence of {u*}.cy towards stationary points of j under no additional assumptions
on f. Second, convexity of f and additional smoothness of V f is assumed. In this case {u*}ren
defines a minimizing sequence for j and the objective function values converge sublinearly. Since
the general problem encompasses minimization of smooth functions over convex and compact
sets in R™ this result is sharp, [56]. Furthermore every weak* accumulation point of {u*}zcy is a
global minimizer of j.

Convergence in the general case

As a preparational step we establish semi-continuity properties of the primal-dual gap &.
Lemma 6.10. Given a sequence {up}treny C domj with weak* limit u € domj there holds
liminfy o0 P(ug) > @(u).

Proof. For an arbitrary v € M, |[v|]jap < My, we obtain
D(ug) > (Vf(ug), up — v) + glug) — g(v).
Taking the limes inferior for kK — oo on both sides of the inequality yields

lim inf @(ux) > (Vf(3), & - v) + g(a) - g(v),

due to the weak* convergence of {ug}reny and the continuity properties of Vf and g. Since v
was chosen arbitrary, we can maximize over all v € M, ||v||m < Mp from which we conclude
lim infy 00 P(ug) > P(w). O
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By construction the norms of the GCG iterates {u*}ey are uniformly bounded by My. Applying
the Banach-Alaoglu Theorem we can thus extract at least one weak* convergent subsequence. The
following theorem characterizes the weak* accumulation points of {u*}ren.

Theorem 6.11. Assume that the sequences {uF}pen, {112} ren and {vF}pen are generated by
Algorithm [§ and let f and g fulfil the requirements of Assumption[6.1. Then there exists at least
one subsequence of {u*}ren converging in the weak* sense. Every weak* accumulation point @ of

{uFYren fulfills D(4) = 0.

Proof. Without loss of generality assume that ®(u*) > 0 for all k. By construction we have
max { [|u|| a1, [0F|m} < Mo for all k € N. Consequently we can extract subsequences (denoted
by the same index in the following) such that u* —* % and v* —* ¥ for some @, ¥ € dom g. Due
to the choice of the step size s* there holds {u*}reny C dom j and

j(u) < liminf j(u*) < j(u°) < oo

k—o0

Thus we get @ € dom j. From

> k) =it <) = (@), < oo,

k=0

we additionally conclude limg_,o[j(u¥) — j(u**1)] = 0. We will prove the claimed result by
contradiction. For this purpose, assume that 0 < ®(#) < liminfj_,o, @(u¥). From the definition
of the Quasi-Armijo rule, see (6.24)), we obtain

j(w*) = ()
D (uk)

0 < ook < J0F) = (k2

< ) <

Taking the limit superior yields

limy, o0 [(u") — j(u*t)]
0<ali k<
=@ liis;ip - lim inf_, oo P(uF)

)

from which we conclude that s* — 0 as k — oo, since lim inf,_,o, ¢(u¥) > 0 by assumption. From
the convergence of the step sizes we get s*/y < 1 for all k large enough as well as

uk+1/2 K u, uk + 7(,016 o uk) S

Again using (6.24]) we obtain for k large enough that:

aste(uF) ,
T > ) = (e - b))

Moreover, see Remark , for every s € [0,s%/9] we have u* + s(v* — u¥) € domj if k is
chosen large enough. Again, by possibly passing to a subsequence, there exists 8% € [0, s* /4] and
ik = uk 4 38 (v¥ — u¥) € dom j with @% —* @ and

3 () — j (" + (85 /9) (0% — uF)))
sk /[y

(VF@F), u* = o*) + g(u¥) — g(v*) < < ad(ub).
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due to the mean value theorem and the convexity of g. Considering the term on the left-hand
side, there holds

(VF(@h),u* —*) + g(u") = g(v") = (VF(a") = VF(u"),u® = o*) + D(u").
Combining the previous arguments and rearranging we obtain
(VF(@") = Vf(uh),u —o*) < (a = 1)),
and consequently

0= lim (Vf(a¥) — VF(ub), uF —o")] < (o — 1) liminf &(ub),

k—oo k—o0

where we used the weak* convergence of @¥, u* as well as the continuity properties of V f. Dividing

both sides by a—1 < 0, we conclude (@) < liminfy_,o, @(u¥) < 0, which gives a contradiction. [J

Rates of convergence for convex f

Throughout this section we make the following additional assumptions on the smooth part f.
Assumption 6.2. For an arbitrary ug € dom j define the sublevel set

Ej(uo) = {ue M]ju) < juo)}-
Let the following additional assumptions hold

A6.6 Let f be convex on Ej(ug) for every ug € dom j.

A6.7 The gradient V f is Lipschitz-continuous on sublevel sets, i.e. for ug € dom j there exists a
constant L,, > 0 only depending on j(ug) with

[Vf(u1) = Vf(uz)lle < Lugllur — uzllpm Vur,ug € Ej(ug).

Since j is now convex every of its stationary points @ € M is a global minimizer. We define the
residual of j as

rj: M —=RU{+o0}, u— j(u) —éreu/\r/llj(ﬁ)

By convexity of f the residual can be bounded by the primal-dual gap @. Furthermore, the
following growth estimate for j at «* in the search direction is obtained.

Lemma 6.12. For every u € dom j there holds
ri(u) < d(u). (6.25)

Fiz an index k € N. Let uF, v* be generated by Algorithm @ Further let a step size s € [0,1]
with u¥ = uk + s(v* — u¥) € E;(u®) be given. Then there holds

) = 04) < () + T (st — o) (6.26)
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6.2 Generalized conditional gradient methods

Proof. We first proof (6.25)). This clearly holds for u & dom j. Let u € dom j be given. From the
convexity of f on sublevel sets we readily obtain

J(u) = j(@) < (Vfu),u—a)+ g(u) — g(a).
The right hand side is estimated by

(Vi(u),u—1u) +g(u) —g(u) < max (Vf(u),u—1u)+g(u)—g(u)] = 2(u),

T wllm<Mo

using ||u]|ap < M. This yields the claimed result. We proceed to the second claim. Due to the
convexity of the sublevel set E;(u’) we obtain

Jug) = j(u¥) = = s(V ("), u* —oF) + g(uf) — g(u¥) + /:(Vf(ua) = Vf(u?),v* —u*)do,

with u, = uf + o(v* — u¥) € E;(u®) for o € [0, s]. Using the convexity of g, ||@[|pm < My and the
definition of v* we obtain

—s(VF (), ut = %)+ g(ub) — g(u¥) < —s ((TF(u"), ub = oF) + g(uh) — g(u"))

where the right-hand side simplifies to —s®(u*). Due to the Lipschitz continuity of Vf(u*) on
E;(u®) we get

/0 (VF(tg) — VFR), o — u¥)do < [0 — o /0 IV (u0) — VI edo

S
gLuoHvk—ukm/ odo
0
L 0 k k
= L ok — )

Combining both estimates yields the proof. O

Due to the possibly open domain of f in M we also need the following technical lemma concerning
the continuity properties of the function W which was introduced in Lemma

Lemma 6.13. Let u € dom j with &(u) > 0 be given and denote by v € dom g the solution to the
associated linearized problem (Pin). If v € domj we have W € C ((0,1)). Otherwise there exists
s € (0,1] with W € C((0,38)) and lim,_,—; W(s) = —oc.

Proof. Since u is not optimal the function W is proper. Set us = u + s(v — u) and define the
convex auxiliary function
7:00,1] = R s+ j(usy),
Since ®(u) > 0 there exists s € (0, 1] with j(s) € R. We further conclude
(0,8) C domgyj, 8 =supdomy ] € (0,1].

Note that j is continuous on (0, §), see [98, Proposition 2.5]. Let us distinguish two cases. If v €
dom j there holds § = 1. From its definition we thus get W € C((0,1)). In the second case
if v € dom j there holds

s € dom[O,l] Js sl_lfI_lgj(us) = +00,
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6 Algorithmic framework

due to the openness assumption on the domain of f. Hence we conclude
W eC((0,5)), lim W(s)= —o0,
S—— S

which finishes the proof. O

Collecting all the previous results we can prove a sublinear rate of convergence for the residuals
of the iterates generated by Algorithm [§

Theorem 6.14. Assume that the sequences {uF}, {uFt1/2} and {vF}, k € N, are generated by
Algom‘thmlg with {s¥}ren chosen according to the Quasi-Armijo-Goldstein condition with param-
eters a € (0,1/2], v € (0,1). Let Assumption and Assumption hold. Furthermore let
D(uF) > 0 for all k € N. Then {u*}ren is a minimizing sequence for j and there holds

k rj(u®)
r](u ) -1 +qk7

(6.27)

c
- nd —— 1
¢ = amin { L0 M2 }

where ¢ = 2y(1 — a)r;(u®). Moreover there exists a weak* accumulation point @ of {u*}ren and
every such point is a global minimum of j.

Proof. By the definition of the step size s* as well as there holds
astr;(uF) < astd(ur) < rj(uk) — ry(htV/?),
which yields
ry(uFT2) < (1 — ash)r; (uh). (6.28)

Since ®(u¥) > 0 we obtain s¥ # 0 for all k. Two cases have to be distinguished. If s* is equal to

one we immediately arrive at
LAY
rj(u”)

7 (uf)

Tj(uk+1) < Tj(uk+1/2) < (1 o Oc)Tj(Uk) < 'rj(uk) —«

In the second case, if s* < 1, there exists §* € [s¥, s /] with

J(u?) = j(u* + 8 (F — u*))
FD(uF) ’

o =
using Lemma and applying the intermediate value theorem to W. Consequently, u* + s(v¥ —
uf) € Ej(u) for all 0 < s < 8% due to the convexity of j. Because of the Lipschitz-continuity of
Vf on Ej(uo), Lemma can be applied and, defining Ju¥ = v* — ¥, there holds

G(uP) — j(uf + 8 ouk) Lo8* || 6u*(3, Los* ||6u*|3,

- >1— >1 - 2w .
“ Sk (uF) = 2 B(uk) 2 &(uF)

The last estimate is true because of 8¢ < s¥/v. Note that Ju* # 0 since #(u¥) > 0. Reordering
and using (6.25]) yields

P (uk)
Lyo [[o% — u*|3,

rj(u®)

Lyo|[ok — k|3,

1>58>29(1-a) >2v(1 — )
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6.2 Generalized conditional gradient methods

Combining the estimates in both cases and using r;(uF*1) < r;(uF*1/2), the inequality

(41 (R 1/2 (F AN
0 S T] (’LL 5 ) S T] ('LL 5 ) S ’r]'(uo) — qk r]'(uo) Vk; c N (629)
rj(uf) rj(uf) rj(uf) rj(u?)
holds, where the constant g is given by
) 2v(1 — ) 1 C[(29(1 = a)ri(u®)
= ri(u’ > J 1 :=
=l )“mm{Luonvk — [ rj<uk>} - O‘mm{ ALp(Me)? ST

if s* < 1 and ¢, = « otherwise. The claimed convergence rate (6.27) now follows directly from the
recursion formula , see |92, Lemma 3.1]. Following Theorem there exists at least one
subsequence (denoted by the same index) of u* with weak* limit @ and ¢(#) = 0. Since j is convex
every stationary point is an optimal solution of and thus a global minimizer of j. ]

To close on the discussion of generalized conditional gradient methods for the solution of we
point out to quantitative convergence statements if the smoothness assumptions on the gradient
are relaxed. In particular the assumption on the Lipschitz continuity of V f can be replaced by

A6.7 The gradient V f is Holder-continuous of order « € (0, 1] on sublevel sets i.e. for ug € dom j
there exists a constant L,, > 0 only depending on j(ug) with

IV f(ur) = Vf(u2)lle < Lugllur —u2|y  Yu1,u2 € Ej(ug),

which yields a reduced rate of convergence

ri(u® K —a)ri(uY
ri(uh) < 0+ ngh)r jr(ﬁq])f)n, ¢ = amin { (/(1 +Lj:((21M0)1)+3( ),1} . (6.30)

This result can be established along the same lines as in the Lipschitz-continuous case. We outline
the necessary steps for the sake of completeness. If Vf is Holder-continuous of order x € (0, 1] on
the sublevel sets of j the estimate in (6.26) generalizes to

L
J§) = 3(uF) < —sP(uF) + 7 (slu — ¥
K

If the step size s* in the k-th iteration of the GCG method is equal to one we immediately get

P () m(uk)_a(m(uk))”””

For s < 1 we conclude

Lyo|lv* — w35

Sk > i/(l—i_’i)ﬁ}/(l_o‘) r.(uk)l/n‘

Combining these observations we obtain

() ) () )
S = = poe o (2m)
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where the constant g, is equal to « if s* = 1 and

ot 00— 1 0 w0 ar()
et mm{\/Luouvk—ukrrw’w'f)w 2O\ T Te@ime

if s* < 1. The convergence rate in (6.30) now follows from [212, Lemma 6]. To our knowledge the
only paper providing similar results for conditional gradient methods on functions with Holder
continuous gradient is the recent preprint [274].

Remark 6.5. Consider the minimization of a differentiable function on a ball of radius My > 0 i.e.

min  f(u).

l[ull < Mo

Recently, see e.g [159], sublinear convergence rates for the classical conditional gradient method
based on the assumption of bounded curvature

Cr= s [2(f(us) — Fu) — s(VF(u),v—u))] < oo,
lelsclolagsit

us=u+s(v—u)

were established. This assumption is weaker than requiring Lipschitz continuity of the gradient
in the sense that the Lipschitz constant of V f on the ball gives an upper bound for the curvature
constant. In particular there holds

82
Flus) = F(w) < s(Vf(u), 0" —u) + ZC,

which is an analogue of the estimate in (6.26)). For an extension of this approach to the Holder-
continuous case and composite minimization problems we refer to [274]. We emphasize that a
straightforward adaption of this concept to the setting considered in this chapter is not possible
since dom f will be a proper subset of the admissible set in general. Thus the definition of the
curvature constant is not meaningful in the present setting. In our previous considerations we
circumvented such problems by assuming the Lipschitz continuity of V f only on the sublevel sets
of f rather than the whole ball. Second we point out that the major difficulties in the problems
considered in this thesis lie in the non-reflexivity of the space M and not in a lack of regularity for
the function f. Therefore further discussions on the topic of curvature constants are postponed
to future work.

6.3 The Primal-Dual-Active-Point method

This section is devoted to the discussion of generalized conditional gradient methods for mini-
mization problems with measure valued optimization variables. To this end we consider sparse
minimization problems of the form

min [F(Ku)+ G(|lullm)],

UEM g

where M, is a subset of the space of vector measures M(f2, H) on the spatial domain {2 which
take values in a Hilbert space H. The operator K is assumed to be linear and continuous and F
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is a differentiable function. In contrast the second term G(||u|/a() is in general non-smooth. For
the precise assumptions on the appearing functionals and operators we refer to Section [6.3.2]

The rest of this section is structured as follows. In Section[6.3.1]a brief introduction to the necessary
theory on Hilbert space valued vector measures is given. Section focuses on the application
of Algorithm [§] to sparse minimization problems. It turns out that the method can be based on
a sequence of finitely supported measures. In each step of the algorithm a single new Dirac delta
function is added to the current iterate based on the solution of a partially linearized problem.
Worst case convergence results for these kind of methods are derived. The remainder of the chapter
is devoted to a discussion and rigorous analysis of additional improvement steps to augment the
procedure. If the operator K has finite rank we prove existence of a minimizer comprising only
a finite number of Dirac delta functions in Section In this case the method is implemented
with a sparsification step which ensures a uniform bound on the number of support points in the
iterates. This guarantees convergence to a finitely supported stationary point. Second we propose
an accelerated variant of the GCG method which is based on alternating between adding new Dirac
delta functions and optimizing their coefficients in Section Imposing additional structural
assumptions on the problem this new Primal-Dual-Active-Point method yields linear convergence
of the objective function values see Section Moreover we also quantify the convergence of
the iterates through several criteria such as the distance of their support points to the optimal
ones.

To close this introductory part we briefly reflect on comparable results from the literature and
the major novelties of the present work. Generalized conditional gradient methods for concrete
realizations of the presented setting have recently received considerable attention. We refer e.g.
to [44150,97,1200,209]. In all of these papers a sublinear convergence rate for the objective func-
tion values is proven. We also mention the early work of Fedorov and Wynn, 105,272 and
subsequent papers, e.g. [197,/269,[270,276], on comparable algorithms in the context of approxi-
mate design theory in statistics. Most of these prior works consider scalar valued measures and
convex objective functionals. This section aims to extend conditional gradient methods to the case
of general vector-valued measures and provide convergence results for convex and nonconvex ob-
jective functionals. In this context the main contributions of the present work lie in the improved
convergence statements contained in Sections [6.3.3] and [6.3.4. In particular we emphasize that
acceleration steps for the GCG method similar to those in Section were already proposed
in [44150,97,[209,/270]. However to the best of our knowledge this work is the first to improve
on the usual sublinear worst-case convergence rate of the objective function values for conditional
gradient methods in this case. Additionally we are not aware of any approaches to quantify the
convergence of the iterates or to guarantee the uniform boundedness of their support size.

6.3.1 Vector measures

For the rest of this chapter let £2 C R?%, d € N, be compact and denote by H a separable Hilbert
space with respect to the norm || - ||z induced by the scalar product (-,-)g. In the following H is
identified with its topological dual space. A countably additive mapping u: B(f2) — H is called
a vector measure. Associated to u we define its total variation measure as

lu|: B(£2) = Ry, |ul(O) =sup { Z lu(O) ||z | O; € B(£2), disjoint partition of O } .
i=1
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The space of vector measures with finite total variation is now denoted by
M(2,H) ={u: B(f2) - H | u countably additive, |u| <oo}.

For each vector measure u € M(§2, H) we thus clearly have |u| € M™(£2). The support of u is
defined as the support of the corresponding total variation measure, see Section [3.1.2

supp u = supp |u/.

The space M ({2, H) is a Banach space with respect to the norm

[ulla = lul(2) = [l[ulll m(e) =/Q dful.

For a reference see the discussion in [183 Chapter 12.3|. Furthermore for u € M(£2, H) it is easy
to see that

[w(O)|[# < |ul(0) VO € B(£2).
In particular this implies that w is absolutely continuous with respect to |u|, i.e. there holds
[u|(0) = 0= [[u(O)|[p =0 VO € B(O).
Moreover there exists a unique function
u' € L®(02,|ul; H) with Ju(z)|lg =1 |u|—ae. z€ £,

such that u can be decomposed as

u(O):/O du:/ou' dlu| YO € B(%2).

We point out to [182, Chapter 12.4| for a reference. The function v’ is called the Radon-Nikodym
derivative of u with respect to |ul|, see [87]. We refer to this splitting of u in terms of its Radon-
Nikodym derivative «’ and its total variation measure |u| as its polar decomposition. For abbre-
viation we write du = v/d|u| in the following.

By C(2, H) we further denote the space of bounded and continuous functions on 2 which assume
values in H. It is a separable Banach space when endowed with the usual supremum norm

lelle = max le@)la Yo elC(2,H),

see e.g. |7, Lemma 3.85]. Following Singer’s representation theorem, |135|, its topological dual
space is identified with M(2, H) where the associated duality paring is given by

(p,u) = / (p(@),v(x))m dlul(z) Ve €C(2,H), ue M(2,H).
2
As a consequence we conclude

lulac= suwp (pu)= sup / (o), o' (@)n dlul(z).
peC(2,H) 0eC(2,H) J 2
lelle<1 lelle<1
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The duality relation between the space of vector measures and the space of H-valued continuous
functions allows to consider minimization problems over M ({2, H) in the general framework pre-
sented in the previous sections. In this context we emphasize that from an application point of
view, see Example and the presentations in the previous chapters, it is also necessary to treat
situations in which the objective functional is minimized over a proper subset My,q C M(£2, H)
instead of the whole space. The remainder of this section is therefore devoted to the study of
admissible sets given by

Maa = M(2,0) = {u e M(2,H) | u(0) € C YO € B(2)}. (6.31)

Here C' denotes a closed and convex cone, see Definition [6.3] in the Hilbert space H. While we
already discussed the special case of positive scalar-valued measures, i.e. H =R and C =R, in
the previous chapters the following motivational example justifies a discussion of this matter in
the presented generality.

Example 6.6. Set [ = [0,T], T > 0, and H = L*(I). In this situation our special interest lies
on vector measures u giwven by a finite sum of Dirac delta functions on fized points of the spatial
domain with time dependent coefficients:

N
u=>» Wb, NeEN, weL*(I), z; €02, i=1,... N
=1

For example we might think of u as an ensemble of heat sources located at the positions {»Tz}f\;
The functions {ui}ﬁvzl represent the intensities of the individual sources. From a modeling point
of view it is reasonable to choose the coefficient functions from the cone of almost everywhere
non-negative functions

Li(I)={uel*I)|u(t)>0 aetel}.

It is straightforward to see that the set of finitely supported vector measures with nonnegative
coefficient functions

N
Mn(92,L2(1)) = {ueM(Q,Li(I)) |u=> Wb, NeN, e Li(I), 7, € 2, i= 1,...,]\7}
=1

1s embedded in the larger set
{ue M(Q,L*D) | v (z) € LL(I) |u|—ae z€2}. (6.32)

The results in this section answer some important questions regarding these sets. First we establish
the equivalence between the set in and M(2,L%(I)) defined according to (6.31). Second
we characterize it as the polar cone of a closed cone in C(£2, L*(I)). In particular this implies its
weak* closedness. Last, the embedding of M (82, L% (I)) into M(£2, L2 (£2)) turns out to be weak*
dense i.e. every vector measure u € M(£2, L2 (I)) can be weak*-approzimated by a sequence of
finitely supported ones with nonnegative coefficient functions.

Let us first fix the notion of a convex cone in a general Banach space.

Definition 6.3. Let X be a Banach space with topological dual space X* and duality pair-
ing <'a >*
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e A nonempty set C' C X is called a convex cone if

0€C, Aup+uyeC, XeR;y\{0}, uj, ugeC.

e The polar cone C° C X* of C' is defined as

CO={x"€X"|(x,x), <0 Vxe&X}.

We emphasize that the polar cone of a convex cone C'is closed with respect to the weak* topology
on X*. In the following C' C H will always denote a nonempty closed and convex cone. The
associated H-projection onto C' is defined as

1
Po: H— C, uw~— argmin~|jv—ul|%.
veCc 2

The next proposition summarizes some key properties of the projection Pg.

Proposition 6.15. Let C C H be a convex and closed cone. Then there holds (C°)° = C and
u = Po(u) + Peo(u), (Pee(u),Po(u))g =0 Yue H,

as well as

HPc(ul) — Pc(UQ)”H < Hu1 — LIQHH Vul, Uy € H. (6.33)

Proof. The first statement can be found on [46, p. 53]. The remaining claims follow from the
discussions in [154, Section II]. O

In particular the non-expansiveness of the projection, (6.33]), implies the continuity of the func-
tion

Folp): 2= C, ww Pole(@)), [[Po(@)le < llelle Ve € C(82,H).
The set of continuous C- valued functions on (2 is denoted by
C(02,C)={peC(2,H) | px)eC Yre N}
Obviously C(£2,C) is a convex cone which is closed with respect to the norm on C(£2, H).

We now turn to the study of the set M(£2,C) as defined in (6.31]). Again it is straightforward
to verify that M(£2,C) is a convex cone. In the following we aim at a characterization of its
elements u € M(£2,C) in terms of the Radon-Nikodym derivative «’ with respect to |u|. To this
end consider an arbitrary u € M(2, H) with du = u' d|u|. Given ¢ > 0 define the averaged
integral of u’ by
D(, 2, ¢) L W(B.(2)) !
[ = T o /U = T 7D
ul(Be(2)) " ° |ul(B(2))
Remark 6.6. We briefly point out that the integral in (6.34]) is indeed well-defined in a |u| almost
everywhere sense since

/ o dlu|(z) |u| —ae z € 0. (6.34)
B:(x)

lu| ({z € 2|3 >0:|ul(B(x))=0}) =0.

This statement is implicitly contained in the proof of Theorem 1.29 in [104].
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We arrive at the following vector-valued version of the Lebesgue differentiation theorem.

Proposition 6.16. Let u € M(£2, H) with polar decomposition du = u’ d|u| be given. Then there
holds
lim ||u/(z) — D(u,z,¢)||lg =0, |u|l—ae z€N (6.35)

e—10

Proof. Let {hy}ren denote a dense subset of H. For every k € N there exists a set Oy € B(£2)
with |u|(Ox) = 0 as well as
. 1 / / /

lim ———— u(y) — hillg dlu|(y) = ||u'(z) — hillg Yz € 2\ Oy,

B o, 1)~ el ) = ) — ] \
following the scalar version of the Lebesgue differentiation theorem c.f. [104, Theorem 1.33]. Define
the set O = [J;cy On and let 6 > 0 as well as 2 € £2\ O be given. Choose k € N such that |u/(x) —
hi|lgr < 6/2. Then |u|(O) = 0 and there holds

. / / . 1 ! !/
i )~ DO 2o < B s [ ) @)l Ay
. 1 / /
< i B o 1) el + () = ]l

= 2||UI(ZC) — hllg <.

Since O is a |u| null set and § > 0 was chosen arbitrary the statement follows. O

The following theorem is a direct consequence.

Theorem 6.17. Let u € M($2,C) with polar decomposition du = u' d|u| be given. Then there
holds
W(z) € C  |u| —ae z € Q.

Vice versa if we have u € M(£2, H) with u'(x) € C for |u|-a.e x € 2 then v € M(02,C).

Proof. Let u € M(§2,C) and € > 0 be given. Then there holds
1
D/ x,e) = —————u(B:(x)) € C |u| —a.e. x €N
Jul(B=(z)) °
since u(0) € C for all O € B(£2) and |u|(B:(z)) > 0 for |u|-a.e 2 € £2. In perspective of the results
in the previous proposition we thus conclude

W (z) = lim D(u/,z,¢e) € C, |u|—a.e. x€ £,

e—10

since C is closed.

Conversely assume that u € M(£2, H) with «/(z) € C for |u|-a.e € 2. Let an arbitrary u € C°
be given. By definition of the Bochner integral we obtain

(1, u(0)) 1 = /O (u, o (2)) g dJul () < 0
<0

for O € B(£2). Since u € C° was chosen arbitrary we conclude u(O) € (C°)° = C for every
set O € B(£2). This yields u € M(£2,C). O
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Combining both statements we arrive at
M(2,C)={ueM(2,0)|d(x)eC |ul—ae zeR}.
The following theorem establishes the weak* closedness of M(£2,C).
Theorem 6.18. Let C' C H be a nonempty closed and convex cone. Then there holds
C(2,C°)° = M(£2,C). (6.36)

In particular M(£2,C) is weak™® closed.

Proof. As already discussed before C(§2,C°)? is a closed and convex cone in C(§2, H). Thus we
obtain the second statement directly by proving the first one. Given an arbitrary u € M({2,C)
and ¢ € C(£2,C°) expanding the duality pairing yields

<%w=ﬂ§mmwmmmmmzm

since the integrand is nonpositive for |u|-a.e € £2. Therefore there holds M(£2,C) C C(£2,C?)°.
Now let an arbitrary v € C(£2,C°)° and a compact set O € B(§2) be given. If u(O) ¢ C there
exists u € C° with

a:= (u,u(0))g > 0.

Since |u| is regular there are an open set Oz € B(f2) and a bump function x € C({2) with

=1 €0
0C 0 [u(0:\0)< 5, x@)q=0 ze2\0;.
€[0,1] else

By construction the function ¢, = uy is an element of C(£2, C°) and
(Pu,u) > a— |u|(02\ O) > % > 0.
Thus we conclude
u(0) € C, VYO € B(£2), O compact.

If O € B(£2) is an arbitrary Borel set the regularity of |u| yields the existence of a compact set Of
and an open set O3 with

O] COCO;cC 2, |[u(05\07)<e,
for every € > 0. This implies
[w(0) = w(OD | = [[w(O\ O < [ul(O\ OF) < |ul(05\ 07) <e.

Since u(05) € C, € > 0, and C is closed this implies u(O) € C. Therefore u € M(£2,C) has to
hold finishing the proof. O
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6.3 The Primal-Dual-Active-Point method

As a consequence the cone M(£2, C') can be identified with the weak™ closure of the cone of finitely
supported C-valued vector measures.

Proposition 6.19. Define the set
N
My(02,C) = {UGM(Q,C’) |u:Zui(Szi, NeN wel, z €0, i= 1,...,N}.
i=1

Let w € M(£2,C) be given. Then there exists {ug}reny C Mn(82,C) fulfilling ||uk||pm < ||u|lm
and up, —* u. In particular we have

Mn(2,C) = M(2,0).

Proof. The proof is a slight adaptation of the corresponding one for the case of C' = R™, m € N,
presented in |50, Appendix A|. Let u € M(£2,C), u # 0, be given. Fix an arbitrary index k € N.
For x € 2 we define Q% = 27%] —1/2,1/2]¢ and set

up= Y u(@QFN2)s, € My(2,0).

re2—kzd

It is straightforward to see that

U @no)y=0, @Q5n2)n@,n2)=0 Vai, 2, €27%2¢,
rc2—kzd

and thus

lurllave =D w(@EN2) g < [ul(2) = [ulla.
z€2~ k7

Consider an arbitrary ¢ € C(§2, H) and £ > 0. Since {2 is compact there holds

g

lp(y) — o(z)| < Ve e27Fz24 ye QFn,

~ ullam

and all £ € N large enough. We estimate

(pou—up) < > [(p(y) — (@), v () mldlul(y) < e.
xe2~kzd Qkne

Since € > 0 and ¢ € C(§2, H) were chosen arbitrary we conclude the first claimed statement. From
the weak™® closedness of M(§2,C) we further obtain

M(2,C0) C Mn(2,C)" € M(£2,0C).

This finishes the proof. O
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6.3.2 Generalized conditional gradient methods for vector measures

We now turn to the study of the sparse minimization problem

uef{/ln(i}Zl,H)j(u) = [F(Ku) + G([[ullm) + Tavo,c)(w)] (B

Here I 4(0,c) denotes the indicator function of the set M({2,C). In order to ensure well-posedness
of this problem the following standing assumptions are made.

Assumption 6.3. Let the following assumptions hold.

A6.8 Let Y be a Hilbert space and let K: M(2,H) — Y be a linear and weak*-to-strong con-
tinuous operator with adjoint K*: Y — C({2, H).

A6.9 The function G: R — R is proper, convex, lower semi-continuous, and monotonically in-
creasing on Ry with G(t) — oo for t — co. There holds dom G C R.

A6.10 The set C C H is a nonempty, closed and convex cone. Furthermore the domain of the
functional j is nonempty and j is radially unbounded.

A6.11 The function F': Y — R U {400} is lower semi-continuous on
Yoa :={Ku|u e domG(|-[|m)"M(£2,C)}.
Moreover, F' is continuously Fréchet differentiable on
Yoq:={Ku|uedomj}.

The set ?ad is open in Y,4. The Fréchet derivative of F' at y € ?ad will be denoted by VF(y).

Remark 6.7. Note that these general assumptions on the convex function G in particular allow for
a unified treatment of norm penalized problems G (||ullm) = Bllullam + Lo o0y ([[ulla1) for 8> 0
and norm constraint problems Ga(||ul|am) = Ijo,a10)([|wl|a1), Mo > 0.

Corollary 6.20. The functions f = F o K and g =G o |- ||m + Lyo,c) fulfill Assumption ,

Proof. The claimed statement follows immediately noting that the weak™ closedness and convexity
of M($2,C) imply the weak™ lower semi-continuity of I c) on M(§2, H) and applying the chain
rule yields

F(w)(0u) = (K*VF(Ku),0u) You € M2, H),

for u € dom j. ]

As a consequence existence of minimizers as well as first order necessary optimality conditions can
be obtained from the general results in Propositions and

Proposition 6.21. Let Assumption hold. There exists at least one optimal solution u €
M(2,C) to (BM). Set p= —K*VF(Ku) € C(2,H). Then there holds

(p,u—u) + G(|lullm) < G(llullm)  Vu € M(£2,C). (6.37)
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6.3 The Primal-Dual-Active-Point method

Throughout the rest of this chapter we will refer to 4y = Ku as the optimal state and, with a slight
abuse of notation, to the continuous function p = —K*VF(Ku) as the adjoint state associated
to ©. Let us turn to a structural characterization of minimizers obtained from (/).

Theorem 6.22. Let u € domj C M(£2,C) be given. Then (6.37)) holds if and only if

(p,u) = [|Pe(®)llellallam,  [Pe®)le € 0G([|ullm) (6.38)

Proof. First assume that (6.38) holds for 4 € dom j. Let an arbitrary u € M(£2,C) be given. We
estimate

<ﬁju>=/g(ﬁ(:ﬂ),U'($))H dlul(z) S/Q(Pc(ﬁ(z)),U'(w))H dlul(z) < [|Pe(®)llcllullam-

Putting everything together yields

(pyu—u) + G([[ullm) = =[[Po®@)llcllallv + (p,u) + G(llallm)
< [[Po(@)lle(ulla = [lallm) + G(lalla)
< G(l[ullm)-

Since u € M(S2,C) was chosen arbitrary the variational inequality (6.37)) follows.
Conversely assume that (6.37)) holds. First let @ # 0 hold. From the monotonicity of G we infer

(pu—u) <0 VueM(2,C), |lulm < ||ulm
or, equivalently,
P € OLpm(2,0) () + L psiial v (D) (@)
Applying Proposition yields

Lm0y T L u<talln) @) = sup (p,u) = (P, u).
WeEM(2,0)
lull m <Nl

For an arbitrary measure u € M(£2,C), |lul|am < ||| m, we readily obtain
(p,u) < /Q(Pc(ﬁ(ff»’))’ul(ﬂ«“))H dlul(z) < [[Po(p(@))lcllallam- (6.39)

Let & € 2 with | Po(p(2))||g = ||Pc(p)||c be given and define

i = | {O Folp) =0
= [lalla § po@) . i
e % Po(@) #0

S

e M(02,C).

We claim that @ achieves equality in (6.39)). If Po(p) = 0 this trivially holds. In the second case
we compute

(Po(p(£)) + Poo (p(2)), Po(p(2))) 1
|1 Po(p)lle

(P, 0) = [lu] m = [[allmllPe (@)l
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where we used (Pco(p(z)), Po(p(z)))n = 0, x € £2. Consequently we conclude

(D, a) = [[allpml[ Pe(P)lle-
In a similar way we get

sup (p,u) =m|Pc(d)|lc ¥Ym e R;.
wEM(2,C)
llull pm<m

Combining these results the variational inequality (6.37)) can be reformulated as
1P (P)llc(m — [[ullam) + G(l[ullam) < G(m)  Vm € Ry

By definition of the subdifferential and dom G C R, this yields the second condition in ([6.38)).
The case 4 = 0 follows by similar arguments finishing the proof. O

Example 6.7. For the the examples of norm regularization G1(||u||am) = Bllullam and norm con-
straints Ga(||ullam) = Ljo,ar) ([[wl|m) the subdifferential inclusions in (6.38) are given by

{8t lalla #0
[0,8] llallae=0"

0} lllve [0.Mo)
0.+50) l[allw = Mo

|Pe(P)lle € 0G () = {

|Po(P)lle € 0Ga(lm) = {

The first condition in (6.38]) can be equivalently expressed through a sparsity condition on the
total variation measure |u| and a projection formula for the Radon-Nikodym derivative a'.

Proposition 6.23. Let ¢ € C(£2,H) and u € M(£2,C) with polar decomposition du = u'd|u| be
given. Then the following two statements are equivalent:

o There holds

(o, u) = [[Po(p)llcllullm- (6.40)

o There holds

supp [u| C {z € 2| [|[Po(p(2)||a = [|Pc(e)llc } (6.41)
as well as

u(z) = ||pc( NE Po(e(x)) if [Pe(e)lle #0

(Peo(p(@)), 4/ () =0 if |Pe(p)c =0 } Jul —a.e. z € 0. (6.42)

Proof. Assume that (6.40) holds. If || Pc(¢)||c = 0 the support condition in (6.41]) becomes trivial
and

(0, u) = (Poo(p), u) = /Q(Pco(so(m))aU'(x))Hd|UI($) =0
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Since the integrand is non-positive it vanishes |u|-almost everywhere. This yields (6.42)) in this
case. Let ||P.(¢)|lc # 0. We readily observe that

[ Pe(p)llellullm = (@, u) < (Pelp),u) < ||Pe(e)lcllullm-
Therefore there holds

(Pe(p),u) = | Po(e)llellullm-

Rearranging this equality and writing out the duality paring yields

/Q[(PC(SO(x))vUI(x))H = [[Pe(@)lle] dlul(z) = 0. (6.43)
By estimating

(Po(p(@)),u'(2)u < |Po(e@)|allv' @)l < [|1Pc(e)lle, (6.44)
it follows that the integrand in (6.43) is non-positive and thus vanishes for |u|-a.e. = € £2. Accord-
ingly there holds

(Po(e)(@), v (@) = I1Pc(e)llc  |ul —ae x €.

In perspective of this can only be valid if

1
I1Po(p)lle
for |u|-almost all z € 2. Therefore holds. It remains to show the inclusion for supp |u|
in (6.41). W.lLo.g assume u # 0. To this end we note that the function

h: 2= R_, h(z)=|Fcle(@)lla — [Pe(e)lle,

is continuous, non-negative and its integral with respect to |u| vanishes. Let an arbitrary point & €
2 with h(z) < 0 be given. Since h is continuous this holds in a whole neighborhood Bs(Z). Let
an arbitrary nonnegative function y € Cy(Bs(Z)) be given. Then there exists ¢ > 0 small enough
such that h +ty < 0 on §2. We conclude

1Pe(e) (@)l = [1Pe(@)lle, '(x) = Fo(e)(@),

0> (h+ty,u) = t{y,u) > 0.

Due to the arbitrary choice of y this implies |u| () = 0 and Bs(%) C £\ supp |u].

Conversely let (6.41) and (6.42) hold. If || Pc(¢)|lc = 0 we immediately get

(o, u) = /Q(Pco(w(iv)),U'(fv))H dlul(z) = 0 = [[Pe(@)llcllullar

In the second case, for ||Po(¢)|lc # 0, we split the integral to obtain
(oyu) = /Q (Pe(p(@)), o (2))ar dlul(z) + /Q (Peo(p(2)), () dlul(x)

1
~ Pe(@le /Q(Pc(w(x))’PC(SO(«T)))H dlul(z)

= [|Pc(o)llellwlam-

(
Here we again used that (Pgo(p(x)), Po(e(x)))g = 0 for |ul-almost every x € §2. This finishes
the proof. 0
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Throughout the following discussions we will restrict ourselves to optimal vector measures @ #
0 with non-degenerate adjoint state p, i.e ||[Pc(p)|lc # 0. As a consequence of the previous
proposition the optimality of u € M({2,C) is characterized by necessary conditions on its polar
decomposition.

Theorem 6.24. Let u be an optimal solution to (@) with polar decomposition du = @'d|u|
and Po(u) # 0. Then we have

1P (p)lle € 0G([|ullm),

as well as

supp [u] C {z € 2| |Pe(@(@))lla = Pc®@lc}, @(x)= Fe(p(x))  |u| —ae. x € 2.

L
1Pe(P)lle

These conditions are sufficient for optimality if F' is convex on its domain.
Proof. The statement follows immediately by combining Propositions [6.21] and [6.23] O

The following two corollaries highlight how these necessary first order optimality conditions allow
to draw further conclusions on structural properties of minimizers to

Corollary 6.25. Let a minimizer @ to (') be given and assume that | Pc(p(z))||g achieves its
mazimum in a finite collection of points:

{ze Q| IPc(@@)n = Pc®)lc} = {z:}iL:. (6.45)

Then u is given as a sum of Dirac delta functions, i.e. there holds

u= Zc Po(p(%;))dz,
||PC HC () ) .T)

for somec; e Ry, i=1,... N.
Proof. From the inclusion condition on supp |u| we infer |u| = Zfil Cidz, for some ¢; € Ry,
i =1,...,N. The claim now directly follows from the characterization of the Radon-Nikodym

derivative yielding

L 1

N
=) &ui(@)ds, (@)= T FeP@)

O

Corollary 6.26. Assume that F is strictly convex on its domain. Then the optimal state y and
adjoint state p are the same for every minimizer to @ Furthermore assume that (6.45)) holds
and that the set

{K(Pc(p(7:))dz,) |i=1,...,N} CY, (6.46)

is linearly independent. Then (B admits a unique minimizer 4 € M(£2,C).
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Proof. The prove for the uniqueness of the optimal state is standard: assume that there are two

optimal solutions 7, @ to ith Kuy # Kiuy. Set us = uj + s(ug + uy) for s € (0,1).

Then us is also a minimizer of (*Y)). Since F is strictly convex we conclude

ue/{/ln(lg,H)](u) = J(us) < (1 —s)j(ur) + sj(uz) = j(us).

This gives a contradiction. The uniqueness of the adjoint state follows now due to p = —K*VF(g).
Assume that (6.45)) holds and that the set in (6.46]) is linear independent. Moreover define the

operator
K:RV Y, ve v K %;))0z,;)-
Tl 2 Z o)

Following Corollary [6.25| every minimizer @ to @ is of the form

N
1
T — Wl gp(Z:)0z,,  ||[tilla € Ry
Obviously the vector (||ay|g, ..., |ax|lz)" is given by an optimal solution to
min F(Kv) 4+ G(||v]1). (6.47)
UGR+

Since the set in is hnearly independent we conclude that the operator K is injective. Thus
the composite functlonal FoK is stricly convex on its domain in R and admits a unique

solution. Combining all previous considerations yields the uniqueness of the minimizer to ().
O

The remainder of this section is devoted to the algorithmic solution of @ by applying the
generalized conditional gradient method described in Algorithm [§f To this end we make the
following observation.

Lemma 6.27. There ezists u € dom j N My(£2,C).

Proof. Let an arbitrary u € domj be given. Following Proposition there exists a se-
quence {uglren C Mn(£2,0) with u® —* u, [[uF|p < |lul|a. Since the domain of F in Y4
is open and G is monotonically increasing on Ry we conclude u; € dom j for all k£ large enough.
This completes the proof. O

As a consequence Algorithm [8) can be started from a finitely supported iterate u® € My(£2,C)
in the domain of j. Furthermore let the constant My > 0 be chosen to bound the norms of the
elements in the sublevel set

Ej(w’) = {ue M(2,0) | j(u) < ju’)}.

This choice is possible due to the radial unboundedness of j. Denote by u* the iterate in the
k-th step of Algorithm [8| and by p* = —K*VF(Ku") the associated adjoint state. The new

273



6 Algorithmic framework

intermediate iterate is determined as convex combination between u* and a solution v¥ to the
partially linearized problem

. k

—pF vy + G 6.48
UGAI?EB,C)< p,v) (llvllam) (6.48)
o]l m< Mo

The following proposition states that this problem admits at least one solution supported on a
single point in 2.

Proposition 6.28. Let u¥ € dom j be given and set p* = —K*VF(Ku*) € C(2, H). Choose a
point 2% € 2 with || Pc(p* (&%) = |Pc(p*)|c and

{0} | Po(p¥)|le < inf OG(0)
[l s < Mo, [[0*]an € § OG*(I1Pe(@®)lle)  I1Po(®®)lle € Unejo.n) OG(m) - (6.49)
{Mo} | Pe(pF)|c > sup 0G(Mp).
Then the measure
0 Po(pF) =0
k k
V" = [[v7 || m k(3h : (6.50)
{ﬁ?g?p(w)c) Ope Po(*) #0

is a minimizer of (|6.48]).

Proof. We note that with the substitution v = mo for m € [0, My] and © € M(£2, H), ||o||m < 1,
the problem (/6.48]) can be decomposed into

. . k ~
- G(m)].
mita se iyl WO+ Gm)
Iolm<t

Due to the non-negativity of m we estimate

m(=p#. 1) = =m [ (@), @) dlil(@) = —m | (el @), 7 @) (@) = —m] Peeh) e
for every v € M(£2,C), ||o]|m < 1. Accordingly a solution to the inner problem is given by

) {0 Pc(p*) =0

V=19 Pc(*(2)) k ’
e % Fo®) #0

& € argmax || Po(p® ()| 1.
€S

To solve the outer problem it thus suffices to consider

min _[—m||Pe(p®)|lc + G(m)].

me(0,Mo]

By standard arguments, m € [0, My] is optimal if and only if

1Pc ()l € DG () + Ijo,n1y) () (170).

Since Ijg ) is continuous on the interior of its domain we can split the subdifferential to obtain

1Pc (™)l € 8G(m) + 8o a15) ().
Distinguishing between the three different cases in (6.49) completes the proof. O
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Example 6.8. For a better illustration of the previous proposition we derive the condition in (6.49))
for the case of norm regularization Gy (Jull ) = Bl1ullv-+Ij,se) (]l ) and norm constraints Ga(lully) =
Lo an([ullm). In the second case we can clearly assume that My = My. For G1 we obtain

{0} 1Pc(p*)lc € [0,8)
[v*llm € S [0, o] |[Pe(p®)lc = B8
{Mo}  ||Pc(®)|lec > B

In the norm constrained case we analogously conclude

[0l € {[O»Md 1Pl =0
{Mo}  |[Pe(@)lle >0

We summarize the resulting generalized conditional gradient method in Algorithm [9] As a conse-

Algorithm 9 Generalized conditional gradient method for vector measures
while ¢(u*) > TOL do
1. Compute p¥ = —K*VF(Ku*). Determine 2% € argmax,., ||Pc(p*(2))|lc and ||v*]| s
according to (|6.49)).

0 Po(pF) =0
2. Set vF = |[vF
e {ﬁ%& Wb Po) £0
3. Select stepsize s* € [0,1] and set uFt1/2 = b + sF(vF — uF).
4. Set Aj = supp [uF| U {#F} and find ub*! € C#4% such that u**+! = Uy, (uF*!) with
j(uk-i-l) < j(uk+1/2).
end while

quence of the previous proposition we may compute a minimizer to @ based on the sequential
insertion of a single Dirac delta function into the current iterated vector measure u®. Thus,
since u® € My(£2,C), there holds u* € My(82,C) for all k € N. It is however important to note
that the GCG step only allows for a removal of points in the unlikely case of s* =1, i.e. u¥ is re-
placed by the solution v* to the linearized problem. In particular if @ admits a unique sparse
minimizer % each of its Dirac delta functions may be approximated by an ever growing number
of point measures in the iterate v*. This leads to undesired clustering of Dirac delta functions
around the optimal positions. To mitigate these effects we include a black box point removal step
into the method, see step 4. In order to discuss these additional optimization steps we consider

an ordered set of distinct points A and the associated parametrization U4 defined by
A={z;e|i=1,...,N}, Uyg: HY = M(2,0), uHZuZIZ (6.51)

The point removal procedure in step 4. of Algorithm [9]is now based on the approximate solution
of an auxiliary problem on the Hilbert space H#A

min j(Ua(w) = F(KUAW) + G(IUaW) |x0), - with [ Ua(wllav = ZHquH, (TM(A))

where the set A is chosen as A = supp |[u¥| U {2*}. Thus, loosely speaking, we fix the positions
of the Dirac delta functions in the current iterate u* and approximately optimize their coefficient
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functions while ensuring j(u#*t1) < j(u¥+1/2). In particular this choice implies ||u¥||, < My for
all k € N and all Dirac delta functions whose coefficient functions are zero get removed from the
iterate due to the choice of the set Ay. Similar approaches were already considered for the sparse
minimization problems in [44] and [50]. The present work delimits itself from these previous
instances by deriving improved convergence statements for the GCG method when augmented
with two particular realizations of this additional step, see Section and [6.3.4] As in the
general case we emphasize that the improvement step is not necessary to ensure convergence
of the algorithm, i.e. we can choose u*t! k+1/2 - However, as we will see in the following
considerations, a sophisticated choice of the point removal step greatly benefits the sparsity of the
iterates as well as the overall convergence of the method.

= Uu

Remark 6.8. For completeness we also mention the possibility to include improvement steps based
on a parametrization of the vector measure by its support points. Therefore given N € N, and a
coefficient vector u € CV let us define

N
U(z,u): 2V - M(2,C), 20> Wb,
=1

In contrast to (B*!(A)) we now fix the coefficients of the measure and approximately minimize
for the optimal positions

min j(U(e,w)) = FKU(z,w) + G(U )00 (6:52)
For example the authors in [50] propose to move the Dirac delta functions according to the gradient
flow of the smooth part F(KU(z,u)) with respect to the positions. This bears similarity to the
particle gradient flow method discussed in |69]. The authors in [44] advocate a solution of
by first order methods. Note that these suggestions presuppose that the adjoint operator K* maps
continuously to C(£2, H) and, given y € Y, the gradient V[K*y] is readily available. In the prac-
tical parts of this thesis however we apply the presented optimization algorithm to problems that
stem from a finite element discretization Kj, of the operator K with Ky & C'(£2, H). Moreover,
even if F' is convex, the position problem is in general nonconvex. Thus it may admit a
large number of stationary points and the computation of a global minimizer may be infeasible.
In contrast, if F is convex so is the coefficient problem . For these reasons improvement
steps based on point moving are out of the scope of this thesis and will not be discussed in more
detail.

As in the general case the termination criterion for Algorithm [9]is based on the primal-dual-gap of
the iterates @(u¥). From the definition of v*¥ and (6.23) the primal-dual-gap is readily calculated
as

D(uh) = (=p*,u*) + G([[u* | m) + [Pe®®)llev®a = G0 | am)-
The following worst-case convergence results are a direct consequence of Theorem and

Theorem 6.29. Let ', K and G fulfill Assumption. Let the sequence {uF}ren be generated by
Algorithm [9 where the stepsize is chosen according to the Quasi-Armijo-Goldstein condition with
parameters v € (0,1), a € (0,1/2]. Then the following convergence results hold true:

o There exists at least one weak* convergent subsequence of {u*}ren. Every weak* accumula-
tion point U of {u*}ren is a stationary point, i.e. &(u) = 0.
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o If F' is convex on its domain and VF is Lipschitz continuous on
KEj(u®) = { Ku | j(u) < j(u’) }, (6.53)

with Lipschitz constant Lo then F o K is Lipschitz continuous on E;(u®) and {u*}ren is
a minimizing sequence for j. Each of its weak™ accumulation points is a global minimizer
of 7 and there holds

0
i i (u’) . c
T](u ) - l—i—qk’ 1=« m{4Lqu§’ }’

with ¢ = 2y(1 — a)r(u®) and Ly = L0 ”K*H%(YC(Q H))"

Proof. The first result is readily obtained from Theorem Second assume that F' is convex
and its gradient VF is Lipschitz on K Ej(uo) with Lipschitz constant Ly 0. Define the reduced
functional f = F o K. Obviously f is convex on its domain and we have

sup [V f(u1) = Vf(u)lle < sup K| zveoml|VE(Kur) = VE(Kug)lly

ul,uzeEj(uO) ul,uzeEj(uO)

< sup Lo K 2y eo,mlun — uzlla
Ul,UQEEj(UO)

Thus Vf is Lipschitz continuous on Fj(u®) with constant L, = LKUOHK*H%(YC(Q my- The
remaining statements now follow by applying Theorem [6.14] O

Remark 6.9. Let us briefly summarize some previous convergence results for generalized conditional
gradient methods in spaces of vector measures:

[50]: Here the authors provide a sublinear rate of convergence for the special case of
C=R", Glulm) = Blullm + Ipooy(lullr),  F=1/2] —yall}-

The step size s* € [0,1] is chosen to maximize a lower bound on the expected descend in
the k-th iteration

2
s* € arg min[—sd(uF) + = ||K (ub — v*)||2].
s€[0,1] 2

[44]: This work considers a general smooth and convex function F' and
V=R" C=Ry, G(ullm) = T (lullm)-

A fixed step size s* = 2/(k + 2) is used in the proof of the sublinear convergence rate.
We point out that the authors do not assume Lipschitz continuity of the gradient VF' but
suppose that the curvature constant of F, see e.g. |[159], on { Ku |||ul|pm < My } is bounded.

While both of these works focus on different problems it is worthwhile to discuss the differences in
the proofs of these results. Similar to our approach the authors in [50] describe and analyze the
conditional gradient method directly on the non-reflexive space M(£2,R™). In contrast the second
paper relies on an equivalent reformulation of the problem as minimization problem for a smooth
function over a finite dimensional compact set. As a matter of fact we might proceed along the
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same path for the discussion of Algorithm [0} Let us outline these ideas for the nonsmooth norm
regularized problem
min  j(u) = [F(Ku)+ B||u , 6.54
i () = [P + Al (6:54)
lullm<Mo
where we assume dom F' =Y and Lipschitz continuity of VF on the whole domain for simplicity.
To this end define the compact and convex admissible set

Waa == {(y,m) | m € [0, Mp], Fue M(£2,C), [lulm <m:y=Ku}CY xR4.

It is straightforward to see that u € M({2, C') minimizes in (6.54)) iff m = ||a||m and § = Ku give
a minimizing pair for

min  h(y,m) = [F(y) + fm]. (6.55)

(ym)EWaa
Since the function A is smooth and W, is convex and compact a classical conditional gradient
method can be applied to compute a minimizing pair (y,m). We claim that such a method is
(almost) equivalent to the application of Algorithm@to with uF+1 = #+1/2_ More precisely,
the algorithms may be realized to ensure Ku* = y* and ||u¥||p¢ < m* for k& € N. Set the initial
iterate to (y°,m%) = (Ku®, ||u®|| ). The proof is done by induction. Given an iterate (y*,m*)

with Ku* = y* and ||u*||»¢ < m* the new descent direction (54*,dm*) in the conditional gradient
method for (6.55) is found by solving the linearized problem

i dyh(y*, mk), 6y) + dph(y*, m*)om) = i F(y*),0 oml.
(5y,5%relwad[( yh(y®,m"), 6y) + Omh(y”, m”)om] (M%relwad[(v (y"), 0y)y + Bom]

Obviously one minimizer to this problem is given by (6y*,dm*) = (Kv*, |[v*||s) where v* is

chosen according to Algorithm @ Choosing the same stepsize s* in both algorithms we get
yk+1 _ K(uk + Sk(’l)k o uk)) _ KukH, Huk+1HM < mk + SkHUk”M _ mk+1_

In particular this implies j(u*) < h(y*, m*) for all k € N. Since Vh = (9yh, diyh) is Lipschitz
continuous the classical convergence results for the conditional gradient, see e.g. [92]|, can be
applied to conclude the sublinear convergence of h(y*, m*) towards its minimum value on Woq

i h(y.m) — i — i,
o (y,m) e nin C)J(U) j(uw)

As a consequence the sublinear convergence of j(u*) towards j(a) also follows.

There are several reasons why we decided to stick to a discussion of generalized conditional gradient
methods on the measure space i.e. without reformulating the problem. First such a reformulation
clearly requires the linearity of the operator K. Thus conditional gradient methods for sparse
optimal control problems with nonlinear state equation, see e.g. [63}64], cannot be discussed in
this way. In contrast we based our convergence analysis on the general results of Section
which obviously allow to consider far more general problems. In particular the discussions on the
structure of solutions to the partially linearized problems and the subsequential weak* convergence
of the sequence {u*}ren extend naturally to the case of smooth but nonlinear control-to-state
mappings K.

Second we aim to improve on the convergence results of Theorem [6.29)in the following two sections.
More precisely we prove linear convergence of the residual rj(uk ) under additional assumptions on
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the minimizers of @ for a particular choice of the point removal step in Algorithm @ As already
mentioned in the introductory part of Section [6.2] there are several works on improved convergence
rates for the classical conditional gradient method with and without additional acceleration steps.
However these results usually require uniform convexity of the objective functional or uniform
lower bounds on its gradient. Moreover additional geometric properties of the admissible set
such as polyhedricity or strong convexity are needed. In this context note that h(-,-) is not
uniformly convex due to the linear dependence on m and the structure of the set W,4 can be
fairly complicated. As a consequence, to the best of our knowledge, none of these pre-existing
works allow to obtain the improved convergence results for the solution of based on the
reformulated problem . Moreover we also provide convergence rates for the measure valued
iterates {uk} keN Which requires to exploit certain structural properties. These considerations make
a direct analysis of Algorithm |§| on M(£2, H) indispensable.

6.3.3 Sparsification for finite rank operators

This section is devoted to generalized conditional gradient methods in the important special case
of K being a finite rank operator i.e. dimIm K < oo. For better illustration we may pick up
on Example In this case K: M(£2, L*(I)) — RY gives, for example, averaged values of the
temperature field induced by the heat source u on a finite number IV of observational patches. The
main result of this section comes in two parts. First we give a constructive proof for the existence of
a finitely supported optimal solution to (@ provided that K has finite rank. In a second step we
augment Algorithm [9] by an additional sparsification step which ensures subsequential convergence
towards sparse stationary points of j. To this end let an arbitrary measure u; € M(£2,C') be given.
Associated to it we consider the minimum norm problem

i t Ku=K
ueﬂrg(lgm\\UHM s u Uy (B(u1))

Since the operator K is weak*-to-strong continuous the solution set

Uy ={ue M(£2,C) | usolves (P(uy))) },

is nonempty, convex and weak* closed. We recall the notion of an extremal point of the solution
set as well as the Krein-Milman theorem c.f. [43| Theorem 2.19].

Definition 6.4. An element u € Uj is called an extremal point of Uy if for all v1, vo € U;
and s € [0, 1] there holds

u=(1—8)vy + svy = v1 = v2 = u.

Theorem 6.30 (Krein-Milman). The set U; is the weak™ closure of the convex hull of its extremal
points:

Ui =conv{u € U | u extremal } .

Proof. Since Uj is convex, nonempty and weak™* closed the set of its extremal points is nonempty.
Taking the weak™® closure of their convex hull we obtain U; following the Krein-Milman Theo-
rem, |43, Theorem 2.19|. O
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In the following theorem we show that every extremal point of U; is supported on at most N
points.

Theorem 6.31. Suppose that dimIm K = N < co. The extremal points of Uy can be written as
a linear combinations of no more than N Dirac delta functions:

N
{uelU | u extremal } C {Z 0y,

w, € C, z; € 02, i—l,...,N}
=1

Proof. Let u € Uy be extremal. The proof will be done by contradiction. Assume, therefore, that

supp |u| consists of more than N points. Then, there exists a disjoint partition {2 },_; , of

the set {2 with o
lu[(£2;) >0 foralli=1,...,N +1.

Define for ¢ = 1,..., N + 1 the restrictions
u; = uln, € M(£2,C).

It is clear that |lu;||m = |u|(£2;) > 0 and |Ju||pm = EN'H ||ui||m. Now, we consider the renormal-

ized measures and their image under K, i.e.
Ui

— w;=Kvy;eImK CY,
[Jwill a

v; =

and look for a nontrivial solution A € R¥+1\ {0} of the system of linear equations

N+1 N+1
i=1 =1

Since the number of equations is one smaller than the number of variables, such a solution exists.
Without restriction, we may assume Y ,_; y,; A > 0 (otherwise, we take the negative of \).
We define

|Adl

X
=1, N+1 [ ]| pm

T = >0

and uy and u_ as
N N+1 A
U+ =u £ — ANiv; = <1i)u'.
Z =2 (M )
Clearly, u+ # u_ # u. By construction and linearity of K we have Kuy = Ku = Kuj. Further-
more, we directly verify that

N+1 N-I—l N+1
sl = [ dfus| = > JREE (nuani %) =l £ 7 >

as well as ug € M(£2,C) since [Ai|/7 < |lugl| pm. Since 3o,y nyq Ai = 0we have [lu—||a < [lul|m,
and u_ is an optimal solution of m, ie, u— € Uj. Moreover we see that it must hold

ENH A; = 0, since the norm cannot be strlctly smaller. It follows that also uy € U;. We
conclude the proof with the observation that
1 N 1
U= -u —U_
27" 2
which contradicts the assumption that w is extremal in Uj. ]

280



6.3 The Primal-Dual-Active-Point method

As an immediate consequence of the previous theorem we conclude the existence of finitely sup-
ported minimizers to @

Proposition 6.32. Let u € M(§2,C) be given. Then there exists a measure u € M(§2,C) with
Ku = Ku, HQHM < HuH/\/h ﬂGMN(.Q,C)

In particular there exists a minimizer 4 € M(£2,C) to @ with # supp |a| < N.

Proof. Following the previous theorem the minimum norm problem (3(u)) associated to a mea-
sure u € M(£2,C) admits at least one optimal solution @ € M(£2,C) with supp|a| < N. By
construction we further have

Ku=Ku, |[[a]am < [lullm-

Since u € M(£2,C') was chosen arbitrary the same reasoning particularly applies to any minimizer

of (B™). Due to the monotonicity of G on R, the statement follows. O

Obviously the previous proposition does not only yield the existence of a sparse minimizer. More
precisely, given any measure u € M({2,C) we get at least one sparse measure u, # supp |a| <
N, yielding the same image under K without increasing the objective function value. From an
algorithmic point of view it is desirable to exploit this sparse representation property for the
iterates {uf}ren generated by the generalized conditional gradient method. This would bound
the number of support points in the iterates and thus mitigates clustering effects. By slightly
altering the proof of Theorem we arrive at a constructive sparsifying procedure to remove
excess points from a given sparse measure. The method is summarized in Algorithm

Algorithm 10 Support-point removal for vector measures

1. Let u =N, wd,, € M(2,C) u; # 0, be given.
while {K (uiéxi)}il linearly dependent do
2. Set V; = ul/HuZHH
3. Find 0 # X with 0 = SN | A K (vidy,).
4. Set p=max;{ Ai/||uill & }, tnew,s = (1= Ai/ (peflus]| ) s
5. Update u = tUnew = Z{i | newi>0} Upew,i0g,; -
end while

Proposition 6.33. Suppose that dimIm K = N < oco. Letu =), | NWoby be an arbitrary
sparse measure with N € N, w; € C, u; # 0, x; € 2 (pairwise distinct). "Furthermore assume that
the set {K(uzém)}z1 is linearly dependent and u™*" € M(£2, H) is obtained after one iteration of
Algorithm applied to w. Then there holds u™* € M(£2,C). Moreover, the new measure u™*"
satisfies

Ku" = Ku, |[u"||pm < [ullm,  supp [u"] C suppul,  # supp [u"| <N —1.
Proof. As in the previous proof, we define

u;
il

u; = ulfg,) = Widy;, and w; = K(v;d;,), where v; =
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By assumption the set {w;}N | is linearly dependent. We find a nontrivial solution of the system
of equations Ei:l,...,N Ajw; = 0 with Ei:l,...,N Ai > 0. Now, in contrast to the previous proof, we
set

\s
U= max > 0.

T
n=1,...,.N HuZHH
We set
1 N N A\,
Upew =U— — Y NiVily, = (1—Z>u'6i

"W are given as u? = [1 — X\;/(ul|w;||z)Ju; € C since

Thus the coefficients of the new measure u 4
Ai/p < Jluill g and Ku = Ku™. Moreover it holds that [|u™||pm = [lullm — Yoy N Ai/p <
|u|]|am. The proof is finished with the observation that

)

new
u;

=0 for? € argmax .
i=1,.N |[willg

O]

The remainder of this section is devoted to the analysis of an augmented generalized conditional
gradient method in which we choose the new iterate u**! by applying Algorithm [10|to the inter-
mediate iterate uFT1/2. To this end we first prove the weak* closedness of sets comprising vector
measures supported on a uniformly bounded number of support points.

Proposition 6.34. Let {2 be compact. For any N € N the set

N

My (2,0) = {Zui&m

=1

w, €C, x; €2 iZl,...,N}
1s weak™ closed.

Proof. Let an arbitrary weak™ convergent sequence {uy treny C My (£2,C) with limit u € M(£2,C)
be given. For each k € N there exist uf € C, #¥ € 2,i=1,..., N with

N
up = Zuféxf and ||uk||/\4 = Z ”uﬂ|H <gc,
i=1 i=1,....N

for some ¢ > 0. Introducing u* = (uf,...,uk)" € CV and 2% = (2, ..., 2%)T € OV there exist

a subsequence of (u*,z¥F) € CV x 2V denoted by the same symbol and (u,z) € CN x 2V with
u® — u and ¥ — x. This follows from the compactness of {2, the boundedness of u* and the
weak closedness of C'. Defining

u= > Wb, € My(2,0),
i=1,..,N

we arrive at

<901 U> = lim (uf74,0(xf))H = khm <<,0,Uk> = <(,0,7_L>
i=1,..,N e

for all ¢ € C(£2, H) since u¥ — u; and ||¢(2¥) — ¢(2;)||g — 0. Due to the uniqueness of the weak*

1

limit we get © = u € My (£2,C) yielding the weak™ closedness of My (2, C). O
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As a corollary each accumulation point of a sequence of measures with uniformly bounded support
size is also finitely supported.

Corollary 6.35. Let {2 be compact. Consider a sequence {ug}lreny C M(£2,C) which fulfils
#supp |ug| < N for some N € N and all k € N. Then every accumulation point @ of {u}ren
also satisfies # supplu| < N.

Proof. By assumption there holds #supp [uf| < N, k € N, and thus {u*}reny € My (£2,0).
Since My (£2,C) is weak™ closed, see Proposition the statement follows. O

Finally, combining the GCG method with the sparsifying procedure from Algorithm [I0] we obtain a
convergent solution algorithm for @ which additionally ensures the uniform boundedness of the
support size in each iteration. As a consequence the resulting algorithm guarantees (subsequential)
weak™ convergence towards sparse stationary points of j.

Theorem 6.36. Assume that dimIm K = N < co and #supp |u®] < N. Let F, K and G fulfill
Assumption . Let the sequence {u*}ren be generated by Algorithm @ where uFt1 s obtained
by applying Algorithm to uktY/2 in each iteration. Then the results of Theorem apply
to {uF}ren. Additionally there holds u* € My (£2,C), k € N, and consequently # supp |a| < N
for every weak* accumulation point @ of {u*}ren.

Proof. Let k € N be given. Denote by u*t1/2 the intermediate iterate obtained in step 3. of
Algorithm |§| and assume that u*t1 is obtained by application of Algorithm [10] to v*TY/2. By
construction we have

W e M(2,0), Kufth = a2 ([l <t |,

and consequently j(uFt1) < j(u*+1/2) due to the monotonicity of G on R,. Thus Theorem
applies to {u*}ren. It remains to prove the uniform bound on the number of support points. By
assumption we have # supp |u’| < N. Moreover note that the set

{ K@({z})8:) | = € supp [u 12| } € I s,

is linearly dependent if # supp ]uk"'l/ 2| > N. Inductively applying Proposition we thus
conclude # supp |u**1| < N. The sparsity statement on the weak* accumulation points of {u*} ey
now directly follows from the weak* closedness of My (£2,C). O

6.3.4 Acceleration strategy

The remainder of this thesis puts the focus on a fully corrective variant of Algorithm [9 where the
new coefficient vector u**! is chosen as a minimizer of the coefficient optimization problem

u” € argmin[F (KU, (u)) + G(||Ua, (W[ )],
ueC#Ak

on the point set Ay = supp|u*| U {#¥}. The resulting method is described in Algorithm
In comparison to Algorithm [9] we may drop the intermediate conditional gradient step since we
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have supp |uk+1/ 2| € A and all subproblems are solved up to optimality. However the compu-
tation of the solution v¥ € M(§2,C) to the linearized problem is still necessary for the exact
evaluation of the termination criterion &(u¥).

From this perspective the resulting algorithm can be also interpreted as a method acting on a
sequence of active sets Ay containing a finite number of points. Recall that the support points of
an optimal measure @ align themselves with global maximizers of the dual certificate

[1Po@)llm: 2 =Ry, x| Po(p(@))|n.

In the k-th step of Algorithm [11|we greedily add a new point &* to the active set which maximizes
the violation of this constraint by the current dual certificate || Po(p”)||m

#* € argmax[||Po(p*(2)) g —  max ||[Pe(p"(%))||n] = arg max || Po(p"(z))[| -
TEL Zesupp |uk| TES?

The coefficient optimization problem $M(Az) can then be seen as a solution of the original
problem () on the reduced cone M(Ag, C'). Again we emphasize that the iterates are pruned
in each iteration by removing all Dirac delta functions with zero coefficient function.

In particular the description of Algorithm as alternation between updating a set of active
points A and solving the original problem on the reduced cone suggests a connection of the pro-
posed procedure to the well-known Primal-Dual-Active-Set method for constrained optimization
problems, [143,177|. Before proceeding to a more detailed analysis of Algorithm [11| we highlight
this similarity by a simple instructive example.

Example 6.9. Consider the sparse minimization problem

. N | 2
e, 3 (w) = 51K = yally + Bllull v (6.56)

for some positive reqularization parameter 8 > 0 and a desired state yqg € Y. For simplicity we
assume that K either maps to Y = R, n € N, or Y = L?(£2,) where £2, is a bounded domain
inRL. Obviously this problem, fits into the general framework of this section by settingC = Ry, F =

1/2|| - —yall# and G(||ul|m) = Bllullm. By applying duality theory, see (73], we identify (6.56]) as
the Fenchel dual to the state constrained problem

1 *
minj*(y) = 3lly —vally - st [K7y)@)<B Voe (6.57)

Since Slater’s condition is satisfied in (6.57) strong duality holds. Given a pair of minimizers
(4,y) € MHT(2) xY to (6.56) and (6.57), respectively, we thus conclude

y=—(Ku—ya), (6.58)
[K*y)(x) < B, z€ 2, uwe M (), (6.59)
(u, K*y— B) = 0. (6.60)

Therefore the measure-valued solution @ of (6.56) can be interpreted as the Lagrange multiplier
associated to the pointwise constraint in (6.57)). It is related to the uniquer minimizer y of (6.57)
by the extremality conditions in (6.59)) and (6.60), respectively.

In the following we discuss the algorithmic solution of (6.57). To this end it is tempting to apply
a Primal-Dual-Active-Set strategy since the objective functional in (6.57)) is quadratic and the
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admissible set is closed and convexr. Formally these methods iteratively generate a sequence of
active and inactive sets (Ak, I )ken with

D=A UL, AUL,=0 VkeN

as well as a sequence of primal-dual variables (u*, y*)ren C M(£2) X Y defined by
Y = (KM — ),

K" (2) =B, z € Ay, W1 =0 onT,.

However, as already remarked in [31], such reasoning fails for state constrained problems since
the choice of the active and inactive sets requires an equivalent pointwise reformulation of the
extremality conditions (6.59) and . In the present case this is obviously not possible since
the optimal Lagrange multipliers are only positive Radon measures. Previous approaches on the
algorithmic solution of are usually based on the introduction of a family of regqularized
problems in which the pointwise state constraint is relazed. We refer e.g. to the well-known
concepts of Lavrentiev, [195,|220], and Moreau-Yosida regularization, [144,|158], as well as barrier
methods [173,(232]. All of these methods induce a path of reqularized optimal solutions which can
be efficiently computed and approximate y for vanishing reqularization parameter.

In contrast we propose a primal-dual method relying on Algorithm to solve . Let an
arbitrary primal-dual pair (u*, y*) € M(£2) x Y be given where u* is assumed to be supported on
finitely many points. We emphasize that problem will be neither discretized nor regularized
in the following. Our considerations are based on the particular choice of the active set as

1 {supprukru{fck} maxge o K*y¥)(x) >
E = .

supp |u”| else

Here ¥ € 2 corresponds to a point that mazimizes the violation of the state constraint by K*y*,

i* € arg max[[K*y*](z) — B] = arg max[K*y*](z).
xef? Tef?

The new primal-dual variables y**' € Y and u**t1 € M*(2) are then chosen to fulfill

yP = —(Kuf T — ), (6.61)
[K*y* ) (x) < B, x € A, uFTq,€ MT(Ap), o2\ A) =0, (6.62)
(WPt Koyt — gy = 0. (6.63)

Note that this definition ensures u**t € M*(02) i.e. the dual variables {u¥}ren are feasible, as
well as

supp uF ! {33 e 2| [K*y*(z)=8 }
In contrast, the primal variables {y*}ren are in general infeasible for (6.57). In fact the iteration
terminates at a pair of minimizers (7, 4) = (y*, uF) if y* is admissible and strict complementarity

holds

[K*y|(z) < B, z € 2, suppu® = arg max[K*y](z).
xef?
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Since the active set Ay, is finite we introduce a vector uF*tt ¢ RfA’“ and consider the following
equivalent system of nonsmooth equations

Y+ T ul K, —ya=0.
:ﬂZ'G.Ak

wf ™ — max {0, w4 (K9 (@) - B) ) =0,
fori=1,...,#Ag. Again invoking Fenchel-Rockafellar duality theory we conclude that the pair
(W) e MH(2) x Y,

fulfitts (5:61)~(663) if and only if

Yl e argminj*(y) st [K'yl(z) < B Vo e A, (6.64)
Y
kbt = Z w1, uft € argmin j(Ug, (w)). (6.65)
-'Eie-Ak uERﬁAk

In particular the iteration can be started at (u°,y°) = (0,yq). Given k € N the next iter-
ate (Pt yF*1) can be computed by first eliminating the equality constraint in (6.61). Then the
vector u*t! is determined from

wit —max ¢ 0,ul = Y wf T KKS, | (2) + K yal () — B =0, i=1,... #A
:DjE.Ak

This corresponds to a solution of the finite dimensional optimization problem in which can
be efficiently realized by e.g. semi-smooth Newton algorithms. Moreover since suppu®f C Aj we
can warmstart such methods by using the values of the previous coefficient vector u* to construct a
feasible starting point. The new primal variable is then recovered as y*+t1 = — (KU 4, (u**1) —yy).
Following this construction we also conclude

i* € argmax[K*y")(z) = arg max —[K*(Ku" — y4)] () = arg max Pg, (p"(2))
xel? TS zEesf?

if maxgeo[K*y*](x) > B. As a consequence one iteration of the proposed method for the solution
of the state constrained problem (6.57)) is equivalent to one step of Algorithm on the sparse
minimization problem (6.56)) with an additional update of the primal variable yF.

Anticipating the upcoming convergence results for Algorithm we get (subsequential) weak™ con-
vergence of the dual variables {uF}ren towards minimizers of (6.56). Since K is weak*-to-strong
continuous the primal variables thus converge strongly,

Yt = —(KuF —yq) = —(Ka — yq) = 7,

towards the unique minimizer y of (6.57)). Moreover from strong duality for the subproblems and
the infeasibility of the primal variables we get

7 (") = j(Ua, (0¥)) = j(u), argergax[K*y’“Mm) —B>0.
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Since F =1/2|| - —yal|3- on Y we conclude the following convergence results
_ * C1
rj () + [ly" = gl + (arg max[K*y*|(x) — B)° < erj(u”) < vk €N, (6.66)
zef? 1+ qk

for some positive constants c1, q¢ > 0 depending on 7 (yo). This is a consequence of the interpre-
tation of Algorithm[I1] as accelerated GCG method, see Theorem[6.37, and an obvious adaption of
Lemma . In particular this implies that the primal variables y* gradually become more feasible
since the maximum constraint violation tends to zero. If the number of constraints in 18
finite, i.e. (2 consist only of finitely many points, the proposed method terminates after finitely
many steps at the global minimizer see Corollary [6.40.

In the light of the results in Section[6.5.5 improved convergence rates can be expected if additional
structural assumptions hold. To this end assume that the state constraint is only active in a finite

collection of points at ¢, the associated Lagrange multiplier 4 is unique and strict complementarity
holds,

suppii = {x € 2| [K*5)(x) = 8} = {#:}}; C int 2.

Furthermore assume that K* maps to (locally) smooth functions and the Hessian V*[K*y|(z;) at
the global maximizers is negative definite. Then the improved convergence result

ri () + y" = glly + (argergaX[K*y"’](x) — B) < ex” (6.67)

holds for some constants ca > 0, ¢ € (0,1) and all k € N large enough. We comment on these
sufficient conditions for fast convergence rates at a later point of this chapter.

To close on this instructive example we briefly discuss similar approaches from the literature. In
the context of semi-infinite problems, Y = R™, the proposed algorithm closely resembles the so-
called exchange method see e.g. [278]. While convergence of this procedure is well understood,
c.f. [140, Theorem 7.2.], quantitative convergence results similar to those in were only
provided recently in [97]. We are not aware of improved convergence results for this method com-
parable to those in . If in addition {2 contains only finitely points we recover a version of
the primal-dual Goldfarb-Idnani method, [120]. Despite their similarity to the presented algorithm
we point out that these methods are based on the solution of the primal subproblem . By
construction y* will be infeasible for in general. As a consequence, in contrast to the dual
subproblem, its direct numerical solution using the current primal variable y* as a starting point
is not possible.

Algorithm 11 Primal-Dual-Active-Point strategy

while &(u*) > TOL do
1. Calculate p¥ = —K*VF(Ku"). Determine the new point 2% € argmax,, | Pc(p*(2))||u-

2. Set Ay = supp |[u*| U { #¥ }, compute a solution u**+! € C#4 of (PM(A;)) . Determine
the new iterate as uF+1 = Uy, (uF+1).
end while

From this perspective Algorithm can be interpreted as a Primal-Dual-Active-Point method.
Following the naming convention for the Primal-Dual-Active-Set strategy (PDAS) we shall refer
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to it as PDAP in the upcoming discussions. Due to the choice of the position & of the new
Dirac delta function the PDAP method can be interpreted as a particular instance of the gener-
alized conditional gradient method described in Algorithm [0} Therefore the following worst-case
convergence results hold.

Theorem 6.37. Let {uF}ren be generated by Algorithm . Then the results of Theorem
apply to {uF}ren with v € (0,1) and o € (0,1/2] chosen arbitrary.

Proof. Observe that the first step in Algorithm [9] and [IT] as well as the choice of the set
Ay = supp |u*| U {2"},
coincide for both algorithms. The claim follows since 1 € CV is chosen as a global minimizer

of j(Ua,(-))- O

In the following proposition first order necessary optimality conditions for solutions € C#4 to
the coefficient optimization problem are presented. To motivate the following results we
point out that the nonsmooth term G(||u||r¢) in the original problem leads to a penalization
of the vector u € C#4 in the coefficient optimization problem based on its I'(H) norm

#A
allor ey = D Il -
i=1

This type of joint or group sparse regularization is known to promote sparsity on the vector of
optimal norms (||a]g,- .., ”l_l#AHH)T-

Proposition 6.38. Let A= {xz; € 2|i=1,...,N} be given and denote by u € CN an optimal
solution to (PB(A)). Set u = Uy(a) and p = —K*VEF(Ku). Then there holds

max || Pe(p(@))|n € 0G(l[ulla), - (p,w) = max|[Pe(p(@)) | mlullm-
If maxgea ||Po(p(x))|| g # 0 this is equivalent to
max [P (o)1 € OG o)
as well as
u; Po(p(:))

u; 7é 0= ”Pc(p(xl))HH - glé%i( HPC(p(fL'))HH, ”ﬁzHH - MaxXze HPC'(p(x))HH

If F' is conver these conditions are sufficient for optimality.

Proof. These statements are obtained from the results in Theorem [6.22] and Proposition [6.23] To
this end note that

MAH) = (HP | ) = HP |- i) = C(AH),
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where the [°°(H) norm of u € H#4 is given by W [lo0 (1) = max;=1,... #4 ||0il|r. The cone M(A,C)
is readily identified with C#4. Moreover the operator K can be restricted to a linear continuous
operator

#A
Kla: M(AH) =Y, Ua(u) > K(wd,,),
i=1

whose adjoint operator is given by
(K|a)": Y = C(AH), [(K|a)W](z) = [K"y](z),

foryeY and z € A. O

Similar to PDAS the PDAP method terminates if the active sets in two subsequent iterations
coincide. This is shown in the next corollary. Additionally, this implies convergence in finitely
many steps if {2 is discrete.

Corollary 6.39. Let {uF}rcn be generated by PDAP. Assume that A, = Ajy1 for some k > 1.
Then u*+1 € M(£2,C) is a stationary point of j, i.e. $(uF) = 0.

Proof. Let k > 1 with Ay = Ai41 be given. Then there holds
P e Ay, [Pe@ @) e = (1P lle = max 1Po(p" ()|

Since uF ! = Uy, (ub+1) we conclude

1" lle € OG ([ ae), (P W) = max 1Pe(p" @)l llu** | ag = 1P (@) llellu™ | g

from Proposition Invoking Theorem it follows that «**1 fulfills the variational inequal-
ity (6.37) which implies ¢(u*) = 0. O
Corollary 6.40. Assume that 2 = {x; € RY | i = 1,...,N} for some N € N. Then there
evists k € N such that ®(u*) = 0.

Proof. Since the subproblems in step 2. of PDAP are solved up to optimality and j(u**1) < j(u*)
if ®(uk) > 0 we have

k
supp [0 € P(82) \ | J{supp [u*]}.
=1

Here P(£2) denotes the power sets of 2. Since {2 only contains finitely many points Algorithm
will thus converge after at most k = #P({2) steps. O

We further derive the following estimates for the primal-dual gap ®(u*).
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Lemma 6.41. Assume that the sequence {u*}ren is generated by Algorithm . Set pF =
K*VF(Ku*) and \F = MAX, cqupp [uk| | Pc(p*(z))||g. Then there holds

1L (1 Pe(P*)lle =A%) < @(*) < 0" am (I Pe@®)lle = A°), (6.68)

where v* is determined according to Proposition . In particular, we have

P () < Mo (|Ip"lle = A*)

Proof. By construction of v* and u* there holds

D(u*) = (—p*,u") + G([u || a) + (", 0%) = G(I[0"[| 1)
= —Nu* v+ Gl a0) + 1P @) e llo* v = GvF[|a)-

k

Since v* is a solution of the partially linearized problem and ||u*|| x4 < My we further obtain

~Pe@")lle 10l + Glv* ) < = l1Pe®@)lle l[u®lla + Gllu*[lm),

which gives the first inequality. Using A* € 9G(||u*||r), see Proposition we estimate
k k k(] k k
G([lv"lla) = G(l[ula) + A5 ([0% L = [[e" [ a0,
which provides the second inequality. The last inequality is a consequence of ||v* ||y < M. O

Remark 6.10. Similar to the Primal-Dual-Active-Set strategy it is also possible to base the ter-
mination criterion of PDAP on the conditition that the active sets coincide in two consecutive
iterations see Corollary [6.39] However this criterion only indicates whether a given iterate is a
stationary point or not. In contrast the primal-dual gap provides a natural measure on the non-
stationarity of the iterate u*. Furthermore in the convex case it constitutes a computable upper
bound on the current residual 7;(u*). Therefore we prefer to compute ®(u*) in practice.

6.3.5 Improved convergence analysis for PDAP

This part of the thesis is devoted to an improved convergence analysis for the Primal-Dual-
Active-Point method under additional structural assumptions on the sparse minimization prob-
lem . To this end we first fix some additional notation and function spaces. Associated
to the sequence {uF}ien of iterates generated by Algorithm we consider the sequences of
states {y"}reny C Y, v = Ku”, adjoint states {p*}ren C C(£2, H), p*¥ = —K*VF(Ku"*) and dual
certificates {P*}ren C C(£2), P* = ||Po(p¥)|| . Furthermore we define \¥ = MaX, cupp |uk| PF(2)
for all k € N. If @ is a weak™ accumulation point of {u*}ren we set

y=Kiu, p=-K*'VF(Ku), P=|Pc()|g, A= max P(z).

xEsupp |uk|

Moreover given an open set 2gr C {2 we denote by C?(2g, H) (C*(2r)) the spaces of H-valued
(scalar-valued) two times continuously differentiable functions on 2 whose derivatives can be
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6.3 The Primal-Dual-Active-Point method

continuously extended up to the boundary of f2g. Analogously we define the space of Lipschitz
continuous functions on its closure as

) ) p(x1) — p(T2)||H
0071(9R7H) =< pc C(QR,H) ‘ H‘p”Lip = sup H ( ) ( )H <0 b,
x1,T2€02R ’wl - $2\Rd
T1#x2

which is a Banach space with respect to the norm

lelleot (2p iy = elleqap.m + lellup Vo € C™ (2R, H).

Throughout this last part of the thesis we make the following additional assumptions on the smooth
part f = F o K of j and the set of admissible controls. We restrict the following considerations
to the special case of C' = H. A discussion of the derived results in the presence of additional
constraints on the vector measures is given in Section [6.3.8

Assumption 6.4. The functional F': Y — RU{+o00} is strictly convex and two times continuously
Fréchet differentiable on

Yoq:={Ku|uedomj}.

Moreover it is uniformly convex around the optimal state § € dom F', i.e. there exists a neigh-
bourhood N(y) C dom F of y in Y and a constant 79 > 0 with

(VE(y1) = VF(y2),y1 — y2)y > vllyr —w2l5 Vur, y2 € N(9).
Note that the smoothness assumption on F implies Lipschitz continuity of its gradient VF on the
image of the sublevel set Ej(ug), see (6.53)), for an arbitrary ug € dom j.

Proposition 6.42. Let ug € dom f be given. Then VF: dom F — Y s Lipschitz continuous
on KEj(up): there exists Ly, > 0 with

IVE(y1) = VE(y2)|ly < Luollyr — v2lly  Yy1,92 € KEj(uo).

Proof. Due to the weak™-to-strong continuity of K the set KF;(ug) is compact in Y. Thus the
statement follows from the continuous differentiability of V F'. O

In the following we derive improved local convergence results for Algorithm[IT]provided that several
structural assumptions on the unique adjoint state p € C(§2, H) as well as the dual certificate P €
C(2) are fulfilled. For a better illustration of the intuition behind these additional requirements
we split them in two parts. First recall that the support points of the total variation measure |u
associated to a minimizer u € M(f2, H) align themselves with global maximizers of the dual
certificate P. Moreover the Radon-Nikodym derivative @' is completely characterized by the
adjoint state p, see Theorem [6.22

Assumption 6.5. The dual certificate P € C(£2) fulfills
IPlleay >0, {xe2|Plx)=XA}={z}iL, Cint L.
Moreover the set

{K(@p(#:)ds,) |i=1,...,N} C Y,
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is linearly independent and there exists a radius R > 0 with

N
Or=|JBr(#) Cint 2, Bgr(zi)NBr(Z;) =0, i #j, K*:Y —C*(2g,H)NC(2,H).
=1

Remark 6.11. In view of Remark on acceleration based on point moving steps we emphasize
that the additional regularity assumptions on K* are a purely analytical tool. In particular
given y € Y we never have to compute derivatives of K*y in the practical implementation of the
algorithm.

This assumption has two important implications. On the one hand the minimizer u to @ is
unique and given by a finite sum of Dirac delta functions

N i
_ _ _ _ P\T; N _
=Y wde, = a2 X e agl,
=1

where [|0;[|g € Ry,i=1,..., N, see Corollary|6.26, On the other hand this implies p € C?(2r, H)
and, since we have A > 0, R may be chosen small enough to ensure P € C%(2R), see Lemma
and P* € C%(Q2R) for all k € N large enough following Lemma In particular this yields

VP(z;)=0, i=1,...,N.

Secondly we now assume that the curvature of P around its global maximizers does not degener-
ate.

Assumption 6.6. There holds supp |a| = {Z;}Y,, i.e. |||z > 0 for i = 1,..., N. Furthermore
we have

=G V2P(@:))ge > OolCla VCERY,
for some 6p > 0 and all i € {1,...,N}.

Remark 6.12. In the context of super-resolution the conditions in this last assumption (for the
case of H = R) are referred to as non-degenerate source condition for the measure u, see [94}95|.
Furthermore we recall the connection of sparse minimization problems to state constrained opti-
mization, cf. Example . From this point of view the equality condition on supp |u¥| corresponds
to a strict complementarity assumption on the Lagrange multiplier associated to the state con-
straint. Moreover in this case the definiteness assumption on the Hessian of P can be interpreted
as a condition on the curvature of the optimal state around those points in which it touches the
constraint. Both of these conditions are well-established in the field of semi-infinite optimization.
We refer e.g. to [191] where similar assumptions are used to derive finite element error estimates.
In [237] the author imposes comparable conditions to derive second order optimality conditions
for semi-infinite optimization problems.

In order to make the following presentation more transparent we state the main result of this
section beforehand. The following theorem yields improved local convergence rates for the resid-
ual r;(u¥) associated to the sequence {u*}1en generated by the Primal-Dual-Active-Point method.
Moreover since both, the iterates u* as well as the minimizer @, are sparse we may quantify the
convergence of {u*}ecn through convergence rates for the support points of the iterates as well as
their coefficient functions.
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Theorem 6.43. Let the sequence {u*}ren be generated by Algom'thm started at u®. Assume

that Assumptions and hold. Then {u*}ren is a minimizing sequence for j and there
holds

uk —* g, rj(uk)< ‘

= e (6.69)

for all k € N and some constants c1, g > 0 which only depend on the initial residual r; (u®) and
problem dependent quantities but are otherwise independent of {uk}keN and u. Moreover there
exist R >0, k € N and ¢ € (0,1) with

N
supp |u®| C UBRl(:z_:i), supp [u¥| N Bg, (%) #0, i =1,...,N,

i=1
as well as
k _ _ O i
rj(u”) +  max max T — Zilod + max || — u*(Br (% < eok, 6.70
) e e Bl max = (B @) ls <’ (670)
for all k > k.

Proof. For the convergence rate in we refer to Theorem Moreover this yields subse-
quential weak* convergence of {u*}rey towards minimizers of (J8*Y)). Since the minimizer @ is
unique this implies weak™® convergence of the whole sequence. The claim on the localization of the
support points will follow from Corollary . The improved convergence results of are
found in Theorem Proposition [6.59 and Theorem [6.64] O

In the following ¢ > 0 always denotes a constant which is independent of the iteration index k.
As an immediate consequence of Assumption [6.3] we obtain the following estimates.

Lemma 6.44. Given uy, up € M($2, H) with Kuy, Kus € N(y), there holds
Jur) = j(uz) = 0l K (ur — ua)|3 — D(us).

Proof. Due to Assumption [6.4] there holds

j(ur) = F(Kuy) + G(|Jui| m)
> F(Kug) + 70l K (w1 — u2)|[5 + (VF(Kug), K (u1 — u2))y + G(|Ju] m)
= j(ug) + Y0l K (w1 — ua)|[5 — (V. f(u2),u2 — ur) — G(|luz|lpm) + G(||ur]lm)
> j(u2) + Yol K (w1 — u2)|[3- — S(us).
O
Corollary 6.45. Given v € M(£2, H) with Ku € N(y) we have
Yol K (u — w) ||y < j(u) — j(@) = r;(u) (6.71)

Proof. By optimality of u there holds @(u) = 0. The statement now follows directly from the
previous Lemma. O
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In particular the quadratic growth of j implies the following convergence rates for the states
y*¥ = KuF € Y and adjoint states p*¥ = K*VF(Ku*) € C(2, H).

Lemma 6.46. For all k € N large enough there holds
ly* = glly + 1" — plle < ey/rj(uk).

Proof. Let us first proof the claimed estimated for the iterated states y®. Due to the weak*
convergence of {u*}ey towards @ and the weak*-to-strong continuity of K there holds y* € N (%)
for all k£ € N large enough. Thus we have

wlly® =gl <) — (@) = r;(b).

Taking the square root yields the first estimate. The estimates for the adjoint states can be
concluded by the same arguments since

Ip* = Blle = | K*(VF(Ku") = VF(Ka)lle < Lol K™ | cove,myly” = dlly-
This finishes the proof. O

Since the subproblems in step 2. of Algorithm [I1] are solved up to optimality we conclude the

following characterization of the iterates u”.

Corollary 6.47. For all k large enough there holds uF # 0. Let the k-th iterate in Algorithm
kN
be supported on {x7};% . Then we have

(F uf) = A uf g, A = max k‘P’“(w) € G (|u* | ).
TESUPP |u

For all k large enough there holds \¥ > 0 and thus

Ny, Ny,
1
=Y e = >l vt el (6.72)
i=1 i=1

Proof. We only prove the statement on the positivity of A\g. The remaining claims follow from
Proposition [6.38| and supp [u*| € Ag_;. From the weak* convergence of {u*}cy, the strong
convergence of p® and the weak* lower semicontinuity of the norm we readily obtain

Nlaf = 08, ub) = (B,a) = Mala,  lu®llm > [lallag/2,
for all k € N large enough. This yields A\ > 0 for all k large enough. O

Corollary 6.48. There holds

Jim (X = [lp*le] + A = [[p*le] = 0.
—00
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Proof. Observe that

A= lp¥llel = lIplle = 17" lle| < 17 = p®lle < ey/rj(uk) =0,

for k going to infinity. Since ||@i|[p¢ > 0 there exists ¢ > 0 such that ||u¥||, > ¢ for all k large
enough. We consequently obtain

0 < c(p"lle = AF) < d(u¥),

from Lemma [6.41) The statement now directly follows due to lim infj_,q ®(u*) = 0. d

Following Lemma quadratic growth of the optimal dual certificate P in a vicinity of its global
maximizers can be concluded based on Assumption [6.6] The next perturbation result states that
a similar behaviour also holds true for the iterated dual certificates P*.

Lemma 6.49. There exists Ry > 0 such that for all k large enough and all i € {1,...,N } the
¥ on Bg,(Z;). Furthermore there holds

)

# — Zilga < eny/ri(uk), i=1,...,N. 6.73
7 R J

Additionally there exists Ry > 0 with

function P* assumes a unique local mazimum &

%

PF(x) + 3

v — &F|2, < PH(3F) Va € Bp,(a}), (6.74)

foralli=1,... N.

Proof. Following Lemma [6.68f R > 0 and § > 0 may be chosen small enough such that the
mapping

F: 0 B@) = B, (2,9) o5 Ao KV

is well-defined and continuously Fréchet differentiable. Moreover, there holds

_ 3}

Thus we can apply the implicit function theorem to get the existence of 0 < Ry < Rand 0 < 6<4
such that for all y € Y with ||y — y|]ly < ¢ and each i € {1,... N} there exists a unique
ﬁcl(y) € Bp, (i’l) with

F(zi(y),y) =0, |Ti(y) — Zilga < clly — 7lly,

for some ¢ > 0. Note that y* = Ku*F € Bj(y) for all k large enough due to uF —* 4. Setting

#¥ = 2:(y*) and applying Lemma we obtain

|27 — Zilga < clly — glly < e/rs(ub).

Next we prove that #¥ is a local maximum of P*. Let an arbitrary but fixed i € {1,...,N } be
given. Note that there holds

—V2PR(a) > (= V2PF = V2P ¢y ety — [IV2P (@) = V2P(#)aca + 60 ) Idga
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Due to the continuity of V2P, the uniform convergence of P* in C?(£2g) and (6.73)) there holds

_ _ _ 0
IV2P* — V2Pl|o(apraxay + |V P(Z:) = V2P(&)||gaxa < 50

for all k large enough. Thus for every 1, :%f is a strict local maximum of P*. The growth estimate

for P* in the vicinity of its maxima can be derived analogously to Lemma . This concludes
the proof. 0

Following these preceding results the support points of u* are located in a vicinity of the optimal
positions {i‘z}f\i1 if k € N is large enough. Moreover the new support point #* determined in
step 1. of Algorithm |L1|is chosen from {#K} .

Corollary 6.50. There exists o > 0 with

Ny
P(z) <X—o Vaoe 2\ JBg, () (6.75)
i=1
and, for all k large enough, there holds
o e
PF(x) < XF — 5 Vo e U Br, (). (6.76)
i=1

Proof. By assumption the function P does not achieve its maximum outside of Uf\il Bg, (z;). The
existence of o > 0 fulfilling (6.75) follows by a continuity argument. Let an arbitrary point x €
02\ UZ]\LI Br, (z;) be given. We estimate

P(z) < P(a) + [P = pflle <X =0 + 5= p"le <N+ N =X+ (|7 = p"llc — o
Choosing k large enough such that

- 3 o
= A+ 5= e < 5

yields (6.76)) and finishes the proof. O

Corollary 6.51. For all k large enough there holds

N
supp |u*| C | ) Br, (@)  supp|u¥| N Bg, (z;) # 0
i=1

foralli=1,...,N. Furthermore the new support point ¥ determined in step 1. of Algom'thm
fulfills
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Proof. Let x € supp |u*| be arbitrary. Then there holds P¥(z) = A*. Consequently we have
T € Uf\;l Bg, (%), see (6.76). Fix now an arbitrary index i € {1,..., N} and denote by u¥ the
restriction of u* to Bg, (7;). Invoking Urysohn’s lemma there exists a cut-off function y; € C(§2)
with x; = 1 on Bg, (Z;) and x; = 0 on Bpg, (Z;) for j # i. The weak* convergence of the iterates
and the strong convergence of the adjoint states yield

Mllufllae = (ap®, u*) = (b, @) = Al > 0.

Since AF — X we conclude [[uf[|p = [|[uf]]| p(2) # O for all k large enough. The statement on the

position of the new Dirac delta function follows directly since P¥ < A\* outside of Uf\i | Br, (%)
and

argmax PF(z) C {:ka}n
€UiL, Br, (3:)

O
In the following corollary we show, loosely speaking, that the newly added support point Z* is
also contained in the support of u**1.
Corollary 6.52. Denote by &* the new support point determined in step 1. of Algorithm . Then

there holds 2% € supp [u**1| for all k € N.

Proof. Since the algorithm does not converge after finitely many steps we have j(u*+1) < j(u®)
and

supp [u*T1| € supp [uf| U {ﬁck }

for all k& € N. Assume now that #¥ ¢ supp [u*T!|. Then there holds suppu**! C suppu”
and j(u**!) = j(u*) since the subproblems in step 2. are solved up to optimality. This gives a
contradiciton. O

We obtain the following estimates for the support points of |u"|.

Lemma 6.53. Let an arbitrary indexi € {1,...,N } be given. For all k large enough there holds

max _ : |z — Zi|pa < ¢ <\/|)\k — A+ {‘/rj(uk)> . (6.77)

xzesupp [uF|NBR, (T;

Furthermore for k large enough there holds supp uF C Uivzdl Bg, (Jﬁf) and

max _ : |z — iF|ga < c\/ PR(2F) — Ak,

zesupp [uF|NBR, (T;

Proof. Given an arbitrary i € {1,...,N} we first observe that supp |u*| N Bg,(%;) # 0, see
Corollary [6.51} Let = € supp |u*| N Bg, (Z;). Using (6.82) we obtain

o~ s < eyf3— Py < e (IR PR@+yloF =l < (VIR a1+ i) )
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for some constant ¢ > 0 independent of . Here we used P¥(x) = \F for all z € supp |u¥| as well
as Lemma Taking the maximum over all x € supp |[u*| N Bg, (Z;) yields the first statement.
For the second estimate we observe that for every = € supp [u*| N Bg, (Z;) there holds

|z — &¥|ga < |& — Tylga + |Ti — iF|pe < max _ |z — Zi|ga + /75 (uF).
zesupp [uF|NBr, (T;)
Due to and M — X we get supp [u*| ¢ N X Br, (&%) for all k large enough. Consequently
we obtaln for alli € {1,..., Ny} and x € supp |u*| N Bg, (xz) that there holds

2 — #¥|ga < oy PR(E) - X

using (6.74]). Since the constant ¢ > 0 is again independent of = we finish the proof by maximizing
on both sides. O

With these auxiliary estimates at hand we now proceed to improve on the sublinear convergence
rate for the residual r; (uF). To this end fix an arbitrary index & € N large enough such that all
previous results hold and recall the definition of the intermediated iterate ©*+1/2 in the generalized
conditional gradient method, see Algorithm 9]

k+1/2 k k k k k pk(fﬁk) <k
U =uf f sk AF = — k) oF = 0F | T oz

for an appropriate choice of the stepsize s € [0, 1] and [|v*|| o chosen according to (6.49). Obviously
we have j(u**1) < j(us h+l/ 2) for all s € [0,1]. In fact this observation for the intermediate

k+1/2

iterates us remains true if we allow for more general descent directions A*:

G < G(us ), bt =k sAF supp |AF| C supp [uF|U{#*F}, s € [0, 1),
since the subproblems in the PDAP method are solved up to optimality.

In the following we will construct a descent direction A* and a stepsize s* such that the resid-
uals r; (uk,j 1 2), ukH/ 2= k4 skAk , converge linearly for all £ € N large enough. From Corol-
lary - we conclude the ex1stence of an index i € {1,..., N} with 2% = ﬁ:f € Bg, (7;). Define
the locally lumped measure uA € M(£2,H) by
k( sk

ok ok k. p"(2") R

= pg @+ 1By, @ IV 0
where Bf?ﬁ (Z:) = 2\ Bg, (%;). The following statements establish the weak* convergence of @}
towards .

Proposition 6.54. For all k € N large enough there holds

G(laf

Uz

M) = G([ullm), 8,85 —u®) = llufp, @) la(IP"lle = AF).

Proof. Since the sets Bp, (7;) are disjoint we note that

N
HukHM = Z HUFBRI(@)HM = Z Huf{:BRl(ji)HM + HU\kBRl (j;i)HM
i—1 ie{1,..N\{i}

ik k e
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6.3 The Primal-Dual-Active-Point method

and consequently G(||4%||r1) = G(||u¥||pm). Furthermore by construction there holds

k
pu; —u >_ || U Bg, ( ||M||p le = HU\BR i)HM)\

- Hu|BR1(5}5)HM(Hp e — A,
yielding the result. ]

Lemma 6.55. For k large enough there holds

1K (@ = uM)lly < ellufp, @)lamy/IIPFlle = AF.

Proof. Let an arbitrary o € supp u*NBg, (Z;) be given and denote by u € H, u # 0 the coefficient
of the associated Dirac delta function. Given ¢ € Y there holds

(e (420~ ). ), (o 80
i 52, 28),

k
Sk p"(x)
< 1l 8 = e+ 1Kol [T -2
Using the properties of K* and Lemma the first term is estimated by
~k
1K @llco (p,m) |27 — zlra < cllelly/IIP*lle = A%,
with a constant ¢ > 0 independent of . For the second term we use |[p*(%)||z = ||p"|lc to

estimate

prE*) M)

IpFlle AF

1" (&) | + k!\pk(ik)—pk(ﬂ:)HH

‘H_ IP*lle A’“

k k
Pille —A 1 .
= Ple 220 4 L) o @)l

1 .
< 57 [P e = 3) + 19 llcos 2,1 |8* = 2l

1
< 5 |VIHle =¥ o] it = o

with ¢ as before. Here we used [|[p*(2%)||g = ||p¥|lc as well as A* < [|p¥||¢ in the first equality Since
A= X >0 and [|p¥]| oy, 1) = |Bllco.1 @y ) > O there holds for sufficiently large k that

k‘ "k‘ u
(K (p (& )5 e — 5x> ; ‘P) < cy/lpklle = Melly,
ull Y

Ip*lle

and consequently

< cy/llp*lle — A

Y

(&%) u >
K Ozk Oy
H ( pFlle " Iullm
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.3 k _ _ ;
Using Hu‘BR1 (-’Ei)”M = foésuppmk\ﬂBRl(a_:i) |u;||zr, we rewrite

k(s+k
. p* (% u;
Rt = S e (e - i)
z¥ esupp [uF|NBR, (2;) ¢ il H

Applying the estimate for all ¥ € supp [u¥| N Bg, (7;) we arrive at

~k k k
1 (a7 = )y < ellufpy, @) lay/ IP7lle = AF,

completing the proof. O

Corollary 6.56. There holds

Proof. We readily obtain
0 < jag) — j(@) < [j(u") —j(@)| + |F(Kaf) — F(Ku)|.

The first term tends to 0 since {u*}ren is a minimizing sequence for j and the second vanishes
due to Lemma Thus ﬂf gives a minimizing sequence for j. Since % is the unique minimizer
of j the claim on the weak* convergence follows. O

Finally, we show that AF = af — u” yields a search direction that achieves a linear decrease in the
objective functional.

Theorem 6.57. There exists an index k € N, a constant ¢ > 0 and 1 € (0,1) with

ri(uh) < gt Vk > k.

Proof. For s € [0, 1] define

uf = ub + s(0fF —uk) = (1 = s)u* + sl

s 7.

Since j(¥) — j(u) we conclude u¥ € E;(u®) for all s and all k large enough. Let in the following
k be big enough. Along the lines of proof in Lemma it follows that

j(uf) = F(Kuf) + G(||uf | m)
2L
2

< () + s [ (=", i = uF) + Glafla) — Glub )| +

0 ~
=K (a5 = a5+ G(Jluf] )

$2L
2

< F(Ku®) + s(VF(Ku), K (@ — "))y +

0 ko k
K (a5 - b

where L,o denotes the Lipschitz constant of VF on K Ej(uo). Now, by Proposition and

Lemma [6.55] we derive the estimate

. . 5261
3E) < ) = sl ool (1¥le = AF) + 5 i, o2 (I95lle = AF) -

300



6.3 The Primal-Dual-Active-Point method

Minimizing for s € [0, 1], we obtain

. . L.
](ulzk) < j(uf) - 5 min {HquBRl(ji)H, 1/01} (Hpk”c - )\k) )

where ¥ = min{ 1, 1/(c; Hu‘kBRl () II) } and ¢; > 0 is the square of the constant from Lemma [6.55

Defining the constant ¢y > 0 by
cr = (1/(2Mo)) min min{ 3, oI, 1/er} <172

1=1,...

we have with Lemma [6.41] that
§d) < 3b) = 2o (I lle = M) < () — cad(ut) < j(uh) = cary ().
Subtracting j(u) from both sides, it follows
rj () < rj(ufi) < (1= ea)ry ().

Denote by k € N an arbitrary but fixed index such that all previous results hold for all k greater
than k. By induction we get

ri(uf) < (1= ep)" Py (ub).

Setting ¢; = (1 — ¢2) and ¢j, = 7’(u’z“)/dC yields the result. O

To close this section we elaborate on the geometric intuition behind the construction of the new
search direction A5 = ¥ — »* and the differences to the GCG direction A¥ = vk — uF. We
consider the special case of G(||ul|a1) = B||lu||m for B> 0. A schematic comparison between both
is given in Figure Let us recall that by Corollarythe support of u* can be divided into N
nonempty and disjoint clusters around the optimal positions {:El}f\il for k large enough. First we

consider the intermediate iterate ulsH_I/ 2 given by A]f. This yields

k4+1/2 k k k k k Pk(i%k)
US+ / = U +SA = (]_ — s)u +SU = (1 — S)U + SMOW(S:%]C'
plic
Thus the GCG search direction adds a single point source in one of the clusters but, by forming the
convex combination, the values of u* are changed globally. Additionally it is readily verified that
every weak™ accumulation point @ of {v*}ey is given by © = Mop(Z;) /Mg, for some i =1,..., N.
In particular for every sequence of stepsizes {s}ren Wwe necessarily have
ufljl = (1 - P+ sfF =~ a= s 0.

as k — oo if w consists of more than one Dirac delta function. This results in the sublinear
convergence of the residual. In contrast, choosing A’§ gives

w2 = oF 4 sAE = (1 — s)ub + sif

k k k pr(Ek) k

- u|3§1 (Z3) + u|BR1 (Z3) +s <||u|BR1 (fi)”M HpkHC Ogk — U\BRl (fi)) )

Here we still add a single Dirac delta function to one of the clusters. However, in contrast to
the GCG search direction, the norm of its coefficient is determined by moving mass from the
neighbouring Dirac delta functions in the same cluster to the new one. The values of u* on the
remaining clusters remain unchanged. Moreover note that if s = 1 the new search direction replaces
all Dirac delta functions in the cluster by the new one. Differently from the sequence {v*}cn, the
locally lumped measures ﬁf weak™® converge to the minimizer @. This allows to choose a sequence
of stepsizes {8} ren which is uniformly bounded from below and thus yields the improved linear
convergence rate for the residual.
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/

Pk

*Ck(sik *Ck(sjk

Figure 6.1: Comparison between the GCG descent direction, ¢* = My, (left) and the locally
lumped descent direction, c* = ”Uk|BR(Ak)HM, (right) for G(|| - |m) = B - [|m-

T

6.3.6 Convergence rates for the iterates

This section is devoted to quantitative convergence results for the sequence of iterates {1} en.
While norm convergence towards the minimizer cannot be expected in general the weak™ conver-
gence of the iterates implies convergence of the support points of u* towards those of @ as well as
convergence of the coefficient functions.

Rates for the support points

We first provide an estimate for the difference between the maximum value of P and \*.

Lemma 6.58. For all k large enough there exists ¢ > 0 with
A= NF| < ey /rj(uk=1).

Proof. If we choose k large enough there exists ¥ € supp |u*| and an index 7 with

ra < cy/rj(uFh),

for some ¢ > 0, see Corollary [6.52] and Lemma [6.49 Consequently we have

i* € argmax P (x), |7F — 1,
xef?

A =N = |P(z;,) = PM@E")| < |P(z;,) — PE")| + 1P~ e

< ¢ (IBllons @5, ~ s + /7))
< ey /rj(ukl),

due to the monotonicity of 7;(u¥) and Lemma m O

302



6.3 The Primal-Dual-Active-Point method

Putting everything together we obtain the following convergence results for the support points of

the iterate uF.

Proposition 6.59. There exists a constant ¢ > 0 with

,max max |z — Zilpa < cCh, (6.78)
=1,....N zesupp |[u*|NBg, (Z:)

for some 0 < (o < 1 and for all k large enough.
Proof. From Lemma [6.53] we get
., max max T — Tilga < \/)\’f—)\—l—i‘/r‘uk’).
s s ( s = A )

Due to the monotonicity of rj(uk), Lemma and there exists 0 < (1 < 1 with

VINE =X+ () < eifry b ) < e, (6.79)
By setting (3 = v/(1 we conclude ([6.78]). O

Rates for the coefficients

Let k be large enough such that all previous results hold. For i € {1,..., N} denote by u¥ the
restriction of u* to B R, (Z;). Due to the optimality conditions for « and u® respectively we get

—_

onuanpxz T D D A CaLe

z;€supp [uF|NBr, (:)

>/|

Recall that the iterates {u*}en only converge with respect to the weak* topology on M(£2, H).
Therefore a single Dirac delta function in the optimal solution @ is in general approximated by
several spikes in the iterate u¥, i.e. # supp |uf| > 1for¢=1,...,N. In particular this implies
that the optimal coefficient function u; of the Dirac delta at z; should be approximated by

_ 1
u*(Br,) = 3 > ¥ ({2i})p" ().
z;€supp |[uF|NBg, (Z:)

The aim of this section is to provide a quantitative confirmation of this intuition. In detail we will
prove

max_|[0; — u*(Bg, (%:))|lg + max_||[Gi|lg — |u"|(Br, (%:))] < o5,
i=1,...,.N i=1,...,N

with (2 € (0,1) as in the previous section. In the following the generic constant ¢ > 0 may depend
on the number of Dirac delta functions N in the minimizer w. We start by providing several
auxiliary results.

Lemma 6.60. Let x in supp [u¥| N Bg, (Z;) be given. Then there holds

Hp(m PO ot

A AR

‘ H

for some constant ¢ > 0 independent of i and x.
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Proof. We split the error into parts

Hﬁ(fi) Pr(x) p(E:)  p(E) p(@i)  plx)
) Nk Nk

<
S

A Ak

R

4

‘H ‘H

For the first term we use Lemma [6.58 to obtain
A — M|
ANF

H ﬁ(_ﬁfi) p(T;) < eck

-

< [Iplle
H

>

due to (6.79) and since A¥X is bounded away from zero. From the Lipschitz continuity of § and
the uniform convergence of p* the remaining terms are estimated by

plz) _ pH(x)
N

C (= _ k
< <5 (13— alga + 15— 2l
H

Using (6.78) and ||p — pFllc < V/r(uF~1) for all k large enough we obtain

|Z; — @|ga + [P — PFllc < el

independent of z, see again (6.79). Adding both estimates yields the proof. O
First we provide the convergence rate for the norms of the localized measures u;, ¢ = 1,...,N.

Therefore define the auxiliary operator
| N
K:RY Y v =3 0, K(p(Z:)0z,)- (6.80)
AT

Due to the linear independence assumption in Assumption the operator K is injective. Thus
the matrix K*K € RV* is invertible. We arrive at the following corollary.

Corollary 6.61. For vi,vy € RN there exists ¢ > 0 with

1 — valpn < €| K (v1 — v2)||y-

Proof. There holds

o1 —v2lgy < | (KK) ™| gron | KK (01— v2)| v
S NEE)H gven K| zvmmy 1K (01 = v2)ly

O
Lemma 6.62. Let an arbitrary but fized index i € {1,..., N} be given. Then there exists ¢ > 0,

independent of © with
| (a5, - ot

- < cck
)\ —CC27

Y

for all k large enough.
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6.3 The Primal-Dual-Active-Point method

Proof. The proof follows similar steps as in Lemma Let x € supp|u*| N Bg,(%;) with
coefficient function u € H, u # 0 be given. For ¢ € Y we obtain

(1 (B - i) ), = (1 B - B3
- (el @), 22) - (. )

, _ B A €2 I A €]
< Il g 3 ol + 15l 52— 5
H
< cllelly s,
for some constant ¢ > 0 independent of x and i, see Proposition and Lemma Thus we
conclude
p(;) u > k
K — 0z, — 1) < 5.
Jre (B - ), <

By observing that |[uf||xp =

| (a2, - ot

z;j€supp |uF|NBR, (Z;) HuJHH there holds

plZ; u;
<Xl (P - )

[l

Y zjesupp [uF|NBp, (Z;) Y
< clluf | mch < eMoGs
0
The following proposition characterizes the convergence behavior of [u*|(Bg, (7;)) = |[u¥| -

Proposition 6.63. There exists a constant ¢ > 0 with

max[[[8]| g — [l < ez,

EEREE)

for all k large enough.

Proof. Define the vectors v,v% € RY with ©; = ||t;||pm and vF = [u¥|(Bg,(z;)) = ||u¥||pm. Using
Corollary we obtain
Jmax[[[all— bl <[5 -] < e|[& (- 0%)] .

We further estimate

IC| N TGRS of LY (Ze ey

Y
For the first term we get
(o), < o <.
for all k large enough, see Lemma Due to Lemma [6.62] we conclude
- S p(@:)
S ¢ (et oo~ )| =30 i (a0, — b | < e
- Rl y & X y
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Summarizing all previous estimates we arrive at the following theorem.

Theorem 6.64. There exists a constant ¢ > 0 with

max ’
i=1,...,

& — o (B, (@), < b,
for all k large enough,

Proof. Let an arbitrary but fixed index i € {1,..., N} be given. By decomposing the norm
as [[uf||pm = ijesuppwkmgm ;) |luj|| 7 and using Lemma [6.60] as well as Proposition [6.63| we get

o k
bl - p\x
| [ M auw- [ ZE i
Br, (%;) Br, (%:) H

/BRI(M) [15(?) N Zﬁ,\('cx)] dju*|(x)

i —uk(Bgl(Ei))HH - ‘

< [[al(Br, (2:)) — [u"|(Br, (2:))| +

H
= k
_ K p(@:)  pr(z))
<l =l + 3 gl |25 - 2
xj€supp [u¥|NBR, (%) H

< CMOC§7
with a constant ¢ > 0 independent of 7. Maximizing with respect to ¢ = 1,..., N on both sides of
the inequality finishes the proof. O

Convergence rates in weaker norms

As already pointed out the norm convergence of {u*},.en towards the unique minimizer @ in M (2, H)
cannot be expected in general. However norm convergence results can still be obtained by resort-
ing to weaker spaces. In particular since the space of Lipschitz continuous functions embeds
compactly into C(§2, H) weak™® convergence on M({2, H) implies strong convergence with respect
to the canonical norm on the topological dual space of C%'(£2, H). To this end we note that

ullcor(@2,my = sup (g, u),
||<PHCO,1(Q,H)§1

for all u € M(£2, H). The results of the following theorem give a quantitative description of this
observation.

Theorem 6.65. There exists a constant ¢ > 0 with
[u* = wllcon 2,y < b, (6.81)

for all k large enough.

Proof. Let ¢ € CY(2, H), l¢llco.1(o,my < 1 be given. We estimate

|<so,u’f—a>|s2/ sﬁdﬂ(x)—/ o duF(2)
Br, (Z:) Br, (%:)

N
=1
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6.3 The Primal-Dual-Active-Point method

Fix an arbitrary index i € {1,..., N} and split the error on the right hand side of the last inequality
as

[ ediw - [ pait)
Bg, (%) Br, (Z:)

= |(¢(z:), w — u*(Br, () 1| +

Br, (:)

(@), u (B (7)) 1 — / o duf(a)|

The first term is bounded by

|(p(x:), 0 — u* (Br, (@) u| < llo(@)l|allv: —u*(Br, (@)l < cllllcor,me

for some constant ¢ > 0 independent of 7 following Theorem [6.64] For the second term we use the
Lipschitz continuity of ¢ to obtain

< llellLip max [a = Filgal|uf | m < oG,
xesupp [uk|NBR, (T:)

Bp, (%;

(@), u*(Bry ()1 — / o dub(z)

from the convergence results on the support points in Proposition[6.59] Again, the constant ¢ > 0
can be chosen independent of the index 7. Combining all previous observations we conclude

[, u” — )| < ecF,

for some constant ¢ > 0 independent of ¢. Taking the supremum overall Lipschitz continuous
functions ¢ € C%Y (2, H), [ellcor(o,my < 1, on both sides of the inequality yields the claimed
statement. O

Remark 6.13. We point out that, in contrast to the picturesque convergence statements for the
support points and the coefficient functions, the results of the last theorem are of pure academic
interest since the dual norm cannot be evaluated in general. In the case of positive measures how-
ever the same convergence rate holds true for the distance between the iterates and the minimizer
with respect to a modified version of the well-known Wasserstein 1 metric see also the discussion
in Section[4.4] In particular this quantity constitutes a computable upper bound on the dual norm
in . While an extension of this concept to signed scalar-valued measures follows immediately
we are not aware of a similar concept for the case of general vector measures.

Multiple point insertion

To close on the discussions of this section we emphasize that all of the presented results remain
valid for more general choices of the active set Ay provided that

supp [u*| U {#F} € Ag,  #A, < 0,

for all K € N. To this end recall that under the stated assumptions and for all £k € N large

enough, the new Dirac delta position ¥ in Algorithm [11|is taken from a finite set {:Ef i, where
each point icf € Bg, (%;) is given by the unique local minimizer of P¥ in a vicinity of the optimal
point Z;. Points outside of these neighborhoods should be not considered as new positions since P*

is strictly smaller than \¥ on 2\ Ufil Br, (Z;).
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If k£ € N is sufficiently large these considerations suggest to update the active set as
Ay, :supp|uk|U{m€ Q|ze{ih}N,, Pr=)> )\k}.

Thus instead of only adding one global maximizer of the dual certificate to the active set we now
put in all points corresponding to sufficiently large local maxima of P*. Due to the localization of
supp |u*| around the optimal positions this can also be interpreted as adding up to one new Dirac
delta function to each cluster in the current iterate. Intuitively this new update rule should lower
the number of iterations to reduce the residual below a given threshold and improve the scalability
of the method with respect to the support size of the minimizer «. This intuition is backed up by
the following formal reasoning. Let the active set be updated by adding the global minimizer ¥
in each iteration. Assume that supp |a| N supp [u*| = ) for all k € N i.e. none of the optimal
positions is contained in any of the iterated supports. Fix an arbitrary index ¢ = 1,...,N. By
assumption there holds

min _ | —z;| >0, keN, max _ |z —Z;| — 0.
xesupp [uk|NBR, (T:) xesupp [uk|NBR, (T:)

As the movement of Dirac delta functions in u* is not possible this means that at some point a
new Dirac delta function will be inserted in the vicinity of Z;. Since the index ¢ was arbitrary
and only a single point is inserted we conclude that the PDAP method eventually visits each of
the N Dirac delta clusters in a separate iteration. The new definition of the active set now aims to
mitigate this cycling behavior of the point insertion step by inserting new points simultaneously
in all clusters. In this context we also recall that a point insertion step is always connected to one
solution of (P(Ag)). From this perspective we may also reduce the overall number of necessary
solves for the coefficient optimization problems by inserting multiple points.

However these considerations are far from being conclusive and we have not been able to provide
additional improved convergence results for this choice of Ag. Moreover note that these observa-
tions are of limited practical use since all arguments are only valid in the asymptotic regime i.e.
for all k& € N large enough and if the structural assumptions from the beginning of this section
hold. In the numerical implementation of multiple point insertion strategies for the Primal-Dual-
Active-Point method we resort to a heuristic procedure based on adding several local minimizers
to the active set in each iteration. For a more detailed discussion we refer to Section (£.3.2

6.3.7 Auxiliary results

In this section we summarize some technical auxiliary results that we needed in this section but
were postponed until now to avoid distraction.

Lemma 6.66. Assume that Assumption holds. Let p = K*VF(Ku) € C(£2,H) be given.
Define the function

P: Q2 =Ry e |pa)]a

Then R > 0 may be chosen small enough such that P € C%(£2g).

Proof. By Assumption We have p € CQ((_}RLH) and P(z;) = |p(&:)||lg = A >0,i=1,...,N.
In the following we denote by 0, p, Opz;p € C(£2r, H), 4, j € {1,...,d}, the first and second order
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partial derivatives of p. Note that P € C(£2) due to the continuity of p. By continuity we may
assume that R > 0 is chosen small enough such that P(z) > A/2 for all z € Y| Br(#;). Using
the chain rule we conclude that P is two times continuously differentiable in each = € Ufll Br(z;)
with

vP(); = HO-Le

25 (05,0(x),05,(2)) y + (B(2), Onia;B(2)) ;r (B(2), 0,P(2)) g (B(x), Os,0(2)) py
VPl = P) - P2

for all 7,57 € {1,. .._,d}. Obviously these derivatives can be continuously extended up to the
boundary yielding P € C?(2g). O
Lemma 6.67. There exists Ry > 0 such that for alli € {1,..., N} the quadratic growth condition

%

P(z) + 1

|$ — ji‘2 < P({fl) Vx € BR1 (CZ‘Z) (682)

is satisfied.

Proof. Let an arbitrary but fixed i € {1,...,N} be given. By Taylor expansion we obtain for
T € BR(:EZ'),
_ _ 1 _
P(x) = P(&;) + (VP(Z;), ® — Ti) ga + 3 (z — 24, V2 P(ac) (z — Zi)) g
where z¢ = (1 — {)z + (Z; € 2 for some ¢ € (0,1). Note that VP(z;) = 0 by Assumption
Using the coercivity of V2P(Z;) the second order term is estimated by
(x — 23, V2P(x¢) (@ — 7))o
< (.%' — Ty, V2P(J_Jz)(.%' — j'i))Rd + (HJ — T, VQP(:Cg) - VQP(.@)(% — .f'z))

R4
< (||V2p($c) — VQP(.fi)HRdxd — 90) |z — i‘i|2
Since V2P is uniformly continuous on 2 there exists Ry < R, independent of s € {1,..., Ny}
such that
_ _ 0
|x — Zj|lga < Ry = HVZP((E> — Vzp(jfi)HRdxd < 50

Consequently, for every z € Bg, (Z;) we obtain

_ _ 0

P(x) < P(&:) = 7 |v — Tilga,
proving (6.82)) since i was arbitrary. O

Lemma 6.68. Define the mapping
P:domF = C(£2) yw [[K*VE(KY)]()l g

Furthermore let ij = Ku. Then there exists 6 > 0 such that P € C*(Bs(y),C*(2r)). In particular
the mapping

Fi 0 x Bafi) = B, (2,9) o5 ALKV F@) @) (6.53)

1s continuously Fréchet differentiable.
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Proof. Due to the continuity of K*, VF and the norm there exists é > 0 such that
Ny
Vx € U B R(i'z)
i=1
for all y with ||y—y|ly < J. Arguing asin Lemmawe conclude P(y) € C%(2g). As for P we can
derive formulas for the gradient [V P(y)] and the Hessian [V2P(y)] which depend differentiable on y

since F' is two times continuously Fréchet differentiable and K* maps continuously into C?(£2g).
In particular we obtain

(IK"VE@))(@), Z K VE@)())
P(z,y)

Thus the partial derivatives of F with respect to « and y exist on {2r X Bs(y) and are continuous.
Continuous Fréchet differentiability of the mapping in (6.83)) now follows from Proposition 3.2.18
and Remark 3.2.19 in [89). O

VIP(y))(x); = F(z,y); = H i=1,...,d

Lemma 6.69. Let a compact set 2 C R? be given and assume that K*: Y s CO1(£2, H) is linearly

and continuous. Let ui,us € H, x1,29 € §2 be given. Then there exists ¢ > 0 only depending on
K with

1K (w1ds,) = K(w1dz,)ly < cfluiflz|zr — 2apa
1K (010z,) = K (026, [y < ¢llur — azl|a.

Proof. For ¢ € Y\{0} we obtain
(K (u16z,) — K(W102,), 0)y = (102, — 0z, ), [K7¢]) < |lul|m||[K7p](z1) — K¥p(22)| 1
< lwlla[K*¢llcor(omlz1 — 2|ga
< g | K"l zev,coro,myllelly |z — 22|ga-

Analogously we get

(K(u16z,) — K(u26z, ), 0)y < [[K*¢llellur —uzllug < K™ vieo,myllelly lur — vzl g

Dividing both sides of the inequalities by |||y and taking the supremum over all ¢ € Y\{0} we
conclude both estimates. O

6.3.8 A note on conic constraints

In this last section we comment on improved convergence results for the Primal-Dual-Active-Point
method in the case of conic constraints i.e. C' # H. Let Assumptions 6.5] hold and denote
by u = Zf\il 1;0z, the unique minimizer to @ By p, P and p*, P* we refer to the adjoint
states and dual certificates associated to @ and u*, respectively. Let us first recall the unconstrained
case, i.e. C' = H. In this situation we based our proof on the local smoothness of the adjoint states
around the optimal support points. Moreover, since p(Z;) # 0, this regularity also transfers to
the dual certificates which, together with Assumption [6.6] allowed to establish the perturbation
results of Lemma Obviously such reasoning fails in the constrained situation C # H since

Y e Cz(DR7H) 7£> PC(SO) € CQ(DRaH)7
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in general. This is for example the case if there exists an index ¢ € {1,..., N} such that Po(¢(Z;))
lies at the boundary of C'.

While this observation prevents a direct adaptation of the presented results to the general con-
strained case the aforementioned difficulty can be bypassed if the optimal adjoint state p maps
locally into the interior of C' in H. To this end let us assume that int C' # (). In particular
this encompasses the important case of positive scalar-valued measures. Furthermore assume
that p(z;) € intC for ¢ = 1,...,N. Due to the projection formula for the optimal coeffi-
cient functions p(z;)/||pllc = w;/||;|| g this is equivalent to w; € int C. Since p is continuous
the set {2z can be chosen small enough such that p(z) € intC for all # € 2. Thus we ob-
tain P(z) = ||Pc(p(x))||g = ||p(z)||zr on 2g. This yields P € C%(2g) following Lemma
Furthermore arguing as in Lemma gives ||[[K*VF(y)]()||z € C}(2g) for all y in a neighbor-
hood of  and, in particular, P* € C?(2g) for all k € N large enough.

The remaining results of Section are now obtained by repeating the presented arguments. In
particular note that the intermediate iterates u1§+1/ 2, s € [0,1] in the proof of Theorem m are

admissible since Po(p*(2%)) = p*(2*) for all k € N large enough and

b2 = oF s Al = (1 — s)uF + saf

Po(p*(@"))
_ .k k_ k_ c\p ke
= UBg, (@) T YBg, (@) T° <||“|BR1(m)||M 1P Ok = Uy, () | € MUI2C),

Po(pk(i’k))(sik S M(Q, C)

due to uF., ., uF,
|BR, ()" "|BR, (%)’
As a consequence of these considerations we conclude the following convergence result in the case
of additional conic constraints.

Theorem 6.70. Let C' C H be a closed and conver cone with nonempty interior in H. Let

Assumptions hold and denote by u € M(£2,C) the unique minimizer to (@
Further assume that p(x) € int C' for all x € supp |a|. Then Theorem applies to {u*}ren.

Remark 6.14. Please note that for the important case of scalar measures with positivity constraints,
i.e. C = Ry, the additional condition p(z;) € int Ry is redundant since we assume that strict
complementarity, supp || = {z;}¥,, holds.

Let us briefly discuss the limits of this extension. While these additional assumptions allow to
extend the improved convergence results to, e.g., the case of positivity constraints in M (£2,R™) it
obviously does not cover all interesting and practical relevant settings. For example the interior
of the cone L2 (I) C L*(I) from Example is empty. We postpone a deeper discussion of
improved convergence rates in this case to future work. Another interesting point that should be
addressed is to derive rigorous mesh-independence results, following e.g. the concepts presented
in [162], for the proposed method. Moreover, the observed practical efficiency of the Primal-Dual-
Active-Point method as well as the improved convergence results of this chapter should serve as
a motivation to study accelerated conditional gradient algorithms for different problems posed in
nonreflexive Banach spaces. For interesting and practically relevant examples, we again point out
minimization problems involving spaces of functions with bounded total variation or the time-
dependent measure-valued controls in Example
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