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Abstract

This thesis is concerned with the formulation and analysis of a sparse optimization framework for
the optimal placement of measurement sensors in inverse problems. At the focus of attention are
settings in which an unknown parameter entering a partial differential equation is estimated from
finitely many observations of the corresponding state. To mitigate the influence of measurement
noise we propose to determine the optimal number of sensors and their positions based on the
solution of a mathematical optimization problem. Therefore we minimize a suitable optimality
criterion for the distribution of the sensors which is modeled as a measure on the set of possible
candidate locations. The proposed sensor placement framework is applied for two model problems.
Suitable approximation approaches based on a finite element discretization as well as efficient solu-
tion algorithms are discussed. The last part of the thesis introduces a first order solution algorithm
for composite minimization problems in a general setting. Convergence of the method is addressed
and worst case convergence rates are derived. In the case of measure-valued optimization variables
the method is augmented by additional acceleration steps leading to improved convergence results.

Zusammenfassung

Diese Arbeit befasst sich mit der Formulierung und Analysis eines "sparsen" Optimierungsansatzes
für die optimale Platzierung von Messsensoren in inversen Problemen. Im Mittelpunkt stehen
Problemformulierungen bei denen unbekannte Parameter in partiellen Differentialgleichungen aus
endlich vielen Beobachtungen des zugehörigen Zustands geschätzt werden sollen. Um den Einfluss
von Messfehlern zu verringern wird vorgeschlagen die optimale Anzahl von Sensoren und deren
Positionen basierend auf der Lösung eines mathematischen Optimierungsproblems zu bestimmen.
Dahingehend minimieren wir ein geeignets Optimalitätskriterium bezüglich der Verteilung der
Messensoren. Diese wird als Maß auf der Menge der möglichen Positionen modelliert. Wir
wenden den vorgeschlagenen Ansatz zur optimalen Sensorplatzierung auf zwei Modelbeispiele
an. Geeignete Approximationsverfahren basierend auf Finite Elemente Diskretisierungen sowie
effiziente Lösungsverfahren werden diskutiert. Im letzten Teil der Arbeit wird ein allgemeines Op-
timierungsverfahren erster Ordnung für Kompositminimierungsprobleme eingeführt. Konvergenz
des Verfahrens wird behandelt und Worst-Case Konvergenzraten werden hergeleitet. Für den Fall
maßwertiger Optimierungsvariablen wird die Methode mit zusätzlichen Beschleunigungsschritten
versehen. Dies führt zu verbesserten Konvergenzresultaten.
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1 Introduction

This thesis focusses on the description and analysis of an optimization based approach to the
placement of measurement sensors for the identification of unknown parameters in processes de-
scribed by partial differential equations (PDEs). With the advent of constantly rising computa-
tional capacities and steadily improving numerical methods, mathematical models as surrogates
for complex real-life processes have become a cornerstone and indispensable tool of modern day
science. Applications range from simulating the smallest of particles in chemistry or physics to
the characterization of global phenomena such as changes in the weather or the ocean current. In
many cases, such processes are well-described by a state variable whose dynamics are governed
by a system of partial differential equations. In most cases, a full description of such mathemati-
cal surrogates requires knowledge on the value of additional parameters entering in the equation.
These may arise in the modeling process or correspond to unknown physical quantities such as
material constants. Thus, rather than one particular partial differential equation to describe the
modeled process, we have given a parametrized family of possible ones.

A properly chosen mathematical model may enable to predict on the behavior of the underly-
ing process based on simulations. For this purpose, it is however indispensable to calibrate the
unknown parameters i.e. to select them such that the associated equation and its solution de-
scribe the modeled process most faithfully. A direct measurement of the parameters often requires
disproportional effort or is not possible at all. Inference on their value is only possible indirectly
by e.g. measuring the quantity resembled by the state variable. From a practical point of view,
this process of measuring observable quantities corresponds to conducting an experiment in which
data is collected by measurement devices or sensors. A sophisticated mathematical approach to
the problem of parameter identification is then constituted by solving a so-called inverse problem:
Here, we also describe the measurement process mathematically e.g. by an operator mapping the
state variable into the space of measurements. For each possible value of the unknown parameter
we can now solve the associated partial differential equation and plug the obtained state into the
measurement model. Subsequently, we identify a particular parameter such that the measure-
ments predicted by the associated mathematical model match those obtained in the experiment.

In practice, this task is aggravated by several factors. First, mathematical modeling usually
involves simplifying assumptions to yield equations that describe the modeled process sufficiently
good and that are still tractable with numerical methods. In particular, this implies that modeling
errors are present and there might be no parameter such that the response of the measurement
model matches the observed experimental data exactly. Moreover, the experimental data which
is used to infer on the unknown parameter is perturbed by measurement errors. These stem back
to the imperfectness of the involved measurement devices in the experiment. Last, in many cases,
the experimental data is given by a possibly small number of scalars where each one corresponds
to the measurement taken by a particular sensor. In contrast, the unknown parameter may be
a high-dimensional vector or even a distributed function. If there is such a discrepancy between
the amount of provided data and the dimension of the parameter space, the inverse problem
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1 Introduction

is underdetermined and an exact identification of the unknown parameter is impossible without
further assumptions on its structure. The consequences on the inverse problem induced by the
described defects, are summarized under the notion of ill-posedness. A characteristic feature of
most ill-posed inverse problems is the discontinuity of their solutions with respect to the collected
measurements. Thus, slight changes in the experimental data due to measurement errors may
lead to the wrong conclusions on the unknown parameter if the problem is solved directly. As a
consequence, ill-posed inverse problems call for appropriate regularization strategies which allow
to compute stable approximations of their solutions. We refer, e.g., to the famous concept of
Tikhonov regularization or the Bayesian approach to inverse problems.

After obtaining an approximate solution to the inverse problem for a given set of experimental
data, we have to assess its reliability due to the presence of measurement errors. For this purpose
at least slight assumptions on the nature of these perturbations have to be made. In practical
experiments, measurements are not reproducible i.e. taking the same measurement twice leads to
slightly different outcomes. These inaccuracies stem back to the inability of an experimenter or of
the used sensor to repeat the measurement in the exact same way. This observation suggests to
adopt a probabilistic model for the measurement error and assume prior knowledge on its distri-
bution. As a consequence, since the approximate solution to the inverse problem depends on the
measurements, it should also be interpreted as realization of a random variable taking values in the
parameter space. In particular, we should drop the notion of identifying the unknown parameter
and replace it by the more appropriate term of parameter estimation to stress the randomness in
the problem. The distribution of the random parameter estimator depends on properties of the
measurement error model. For this reason, it allows to study the influence of perturbations in
the experimental data and assess the reliability of approximate solutions to the inverse problem
in a probabilistic sense. More generally, the results of the parameter estimation process rely on
the conditions of the measurement experiment such as the placement of available measurement
sensors and the amount of provided measurements. Poorly conducted measurements may yield
uninformative experimental data i.e. no conclusions on the value of the unknown parameter can
be made based upon them. In contrast, a well-planned experiment allows for an, in some suitable
sense, optimal estimation of the unknown parameters while simultaneously minimizing the overall
cost of the measurement process. This leads to the task of optimally designing experiments before
any measurements are taken in practice.

In the context of the present thesis, our focus lies on the inverse problem of estimating an unknown
parameter q in some Hilbert space Q entering into a partial differential equation described by an
operator A(q, ·). Inference on its value is possible based on a finite number of N ∈ N scalar
measurements yid, i = 1, . . . N , taken of the quantity resembled by the state variable y ∈ Y . We
assume that the dependence between one of these measurements and the state is linear. Moreover,
each measurement yid is associated to a point xi in a compact set Ωo ⊂ Rd, d ∈ N. For example, xi
may describe the position of the applied measurement sensor. Now, we model the action of the
sensor at xi ∈ Ωo on the state variable by an element O(xi) ∈ Y ∗, i = 1, . . . , N , in the topological
dual of the state space. As an example, if the elements of Y are continuous functions on Ωo, then
we may consider a pointwise measurement taken at a point xi. The corresponding element in the
dual space Y ∗ is given by the associated Dirac delta function O(xi) = δxi . The resulting inverse
problem now reads as

find q ∈ Qad, y ∈ Y : 〈y,O(xi)〉Y,Y ∗ = yid, i = 1, . . . , N, A(q, y) = 0,

where Qad ⊂ Q denotes a set of admissible parameters and 〈·, ·〉Y,Y ∗ denotes the duality paring
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between the state space Y and its dual Y ∗. The measurement at xi is subject to additive pertur-
bation by normally distributed noise εi ∼ N (0, 1/ui), i = 1, . . . , N . The scalar quantity ui > 0
should be interpreted as diligence factor giving information on how carefully the data should be
collected at the corresponding measurement point. Measurement errors at distinct locations are
assumed to be uncorrelated. In order to mitigate the influence of perturbations in the measure-
ments on (approximate) solutions of the inverse problem, we fix a parameter q̂ ∈ Q and consider
the associated Fisher information operator X∗Σ−1X which acts on the parameter space Q as

(δq1, X
∗Σ−1Xδq2)Q =

N∑
i=1

ui〈∂S[q̂]δq1, O(xi)〉Y,Y ∗〈∂S[q̂]δq2, O(xi)〉Y,Y ∗ ∀δq1, δq2 ∈ Q. (1.1)

Here, the sensitivity ∂S[q̂] : Q→ Y describes the effect of perturbations in q̂ on the associated solu-
tion y = S[q̂] to the partial differential equation. The parameter q̂ represents e.g. an a priori guess
to the solution of the inverse problem given the noise-free measurements. For optimal inference
on the unknown parameter entering into the partial differential equation, we propose to optimize
or design the measurement experiment in which the data yd is obtained, according to the solution
of a mathematical optimization problem based on properties of the Fisher information operator.
More in detail, we parametrize X∗Σ−1X as a function of the number of measurements N ∈ N,
their positions {xi}Ni=1 in the admissible set Ωo as well as the diligence factors {ui}Ni=1 ⊂ R+ and
solve the optimal sensor placement problem

min
xi∈Ωo,ui∈R+,N∈N

[Ψ(X∗Σ−1X) +G(‖u‖l1)] where X∗Σ−1X fulfills (1.1).

Here, Ψ denotes a scalar-valued smooth and convex design criterion. To capture the overall cost of
the measurement experiment, we add an additional convex term G(‖u‖l1) to the problem which
involves the l1 norm of the measurement weight vector ‖u‖l1 =

∑N
i=1 ui. For example, we may

choose G(‖u‖l1) = β‖u‖l1 where β > 0 denotes the cost associated to a single measurement.

The optimal selection of measurement points and weights based on the Fisher information first
came up in the context of polynomial regression, [245]. Nowadays, such formulations form the
basis for the vast field of model-based optimal design of experiments which is concerned with the
optimization-aided selection of experimental conditions. If the dependence of the state variable y
on the unknown parameter is nonlinear, the obtained optimal solutions depend on the parameter q̂
leading to the notion of locally optimal designs, see e.g [217]. Approaches to cope with this depen-
dence include the consideration of robust/worst-case or averaged design criteria, [37, 171, 217] as
well as sequential design approaches, [170], where one alternates between estimating the unknown
parameter and obtaining a new measurement setup based on the Fisher information of the current
estimate. Optimal design of experiments has been frequently studied and successfully applied for
processes described by ordinary differential equations, [71, 244], and differential-algebraic equa-
tions, [20,38,169]. More recently, extensions of this concept to models given by partial differential
equations have been considered in e.g. [4, 15, 103, 138, 181]. We also point out to the thesis [57]
and the early work [157].

We emphasize that the optimal sensor placement problem has a combinatorial aspect due to the
unknown optimal number of measurements. This aggravates discussions on the well-posedness
of the problem, i.e. the existence of solutions, as well as the derivation of necessary optimality
conditions. Clearly, it also poses a serious difficulty for the practical computation of optimal mea-
surement setups. For this reason, the maximum number N of measurements is often fixed a priori
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1 Introduction

and the design criterion is only minimized with respect to the positions {xi}Ni=1 and the measure-
ment weights {ui}Ni=1. In this case, optimal sensor placement is a nonlinear finite-dimensional
optimization problem. We point out that, while the design criterion as well as the regularization
term are assumed to be convex, the possibly complicated dependence of the Fisher information
operator on the positions of the sensors renders the sensor placement problem nonconvex in gen-
eral. In particular, first-order optimality conditions, if they can be derived, are only necessary but
not sufficient. Thus, the problem may admit a large number of stationary points which are not
necessarily (local) minimizers. As a consequence, the computation of a global minimizer to the
problem is not feasible in most cases. Moreover, we also mention that, if the problem is smooth,
the application of first-order optimization methods in order to compute a stationary point requires
derivatives of the Fisher information with respect to the positions of the sensors. This can be a
challenging problem in itself, see e.g. [116]. For this reason, the admissible set Ωo is often chosen
as a finite collection of points which correspond e.g. to nodal points of a triangulation. This
additional simplification reduces optimal sensor placement to a finite-dimensional convex mini-
mization problem for the measurement weights {ui}Ni=1. For sensor placement problems with l1
regularization term in this setting we refer e.g. to [4,71,127]. It is, by now, a well-known fact that
penalizing the l1 norm of the optimization variable favors optimal measurement weight vectors
that are sparse i.e. they will only contain few nonzero entries.

In the context of this thesis we will neither prescribe an a priori upper bound on the number
of used sensors nor will we, at least for most of the derived results, impose any restrictions,
beyond compactness, on the admissible set of possible sensor positions Ωo. In particular, we
stress that Ωo is not necessarily given by a finite collection of points. The main novelty of the
present work is to bypass the aforementioned difficulties, i.e. the non-convexity and combinatorial
nature of the problem, by embedding optimal sensor placement into a more abstract framework:
Associated to a vector of sensor positions x = (x1, . . . , xN )> ∈ ΩN

o and a vector of measurement
weights u = (u1, . . . ,uN )> ∈ RN+ we define the design measure u =

∑N
i=1 uiδxi . We point out

that the total variation norm of this conic combination of Dirac delta functions equals the l1 norm
of the measurement weight vector u:

‖u‖M =

∫
Ωo

du(x) =
N∑
i=1

ui = ‖u‖l1 .

Moreover, for an arbitrary spatial point x ∈ Ωo consider the operator O(x)⊗O(x) acting on the
parameter space Q as

(δq1, [O(x)⊗O(x)]δq2)Q = 〈∂S[q̂]δq1, O(x)〉Y,Y ∗〈∂S[q̂]δq2, O(x)〉Y,Y ∗ ∀δq1, δq2 ∈ Q.

Now, we make the important observation that the Fisher information operator can be equivalently
rewritten as an integral with respect to the design measure u:

X∗Σ−1X =
N∑
i=1

ui[O(xi)⊗O(xi)] =

∫
Ωo

[O(x)⊗O(x)] du(x).

Here, integration has to be understood in the sense of Bochner. This reasoning leads to the sparse
sensor placement problem

min
u∈M+(Ωo)

[Ψ(I(u)) +G(‖u‖M)] s.t. I(u) =

∫
Ωo

[O(x)⊗O(x)] du(x),
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where we minimize with respect to the design measure u in the set of positive Borel mea-
sure M+(Ωo) on the admissible set. Loosely speaking, this reformulation can be interpreted as
minimization problem for the distribution of the measurement sensors on Ωo instead of minimizing
for the position of each sensor, the associated measurement weight as well as the overall number of
measurements separately. The crucial advantage of the new formulation is the linear dependence
of the Bochner integral on the measure u. As a consequence, in contrast to the original problem,
the resulting sparse sensor placement problem is convex. Moreover, the combinatorial nature of
the problem vanishes. This allows to treat sparse sensor placement as nonsmooth but convex
minimization problem. In particular, necessary and sufficient first-order optimality conditions for
optimal design measures can be derived.

Nevertheless, this comes at the price of having to deal with minimization problems on the space of
Borel measuresM(Ωo) which, in some sense, shifts the difficulties in the problem to the considered
function space. For example, the Banach space of Borel measures on Ωo lacks desirable properties
such as reflexivity or smoothness which complicates the design and analysis of efficient numerical
solution algorithms. Moreover, we point out that we minimize over the whole setM+(Ωo) rather
than only considering measures of the form u =

∑N
i=1 uiδxi . This is an, a priori, necessary

extension of the problem to discuss its well-posedness and to derive optimality conditions since
the cone of Dirac delta functions on Ωo is not closed with respect to a suitable topology. We will
however discuss conditions which ensure the existence of a minimizer comprising finitely many
Dirac Delta functions. In particular, this is the case if the unknown parameter is finite-dimensional.
The number of Diracs in such a solution, their positions and the associated coefficients then provide
a solution of the nonconvex and combinatorial problem. This makes both problems essentially
equivalent with the crucial difference that the sparse sensor placement problem is convex.

A rigorous analysis of sparse sensor placement problems and their efficient algorithmic solution
are at the heart of this thesis. Moreover, for the practical computation of optimal measurement
designs, we present a discretization framework based on a finite element discretization of the
partial differential equation and, if Q is infinite-dimensional, on a sophisticated discretization of
the parameter space. All arguments are backed up by accompanying a priori error estimates. For
finite-dimensional parameter spaces, in contrast to prior approaches on robust optimal design, we
cope with the dependence of optimal solutions on the linearization point by providing stability
results and sensitivities for optimal design measures with respect to perturbations in the data
of the sensor placement problem. While the presentation of these results is restricted to the
important case of pointwise measurements and norm regularization i.e. G(‖u‖M) = β‖u‖M, we
are confident that an extension to more general measurement models and different regularization
terms is possible.

Before proceeding to a more detailed outline of the presented results, we give a brief overview on
similar approaches to optimal sensor placement and the rapidly developing area of optimization
with sparsity enhancing regularizers. This allows to put the derived results in the bigger picture
and highlights their novelty. As already mentioned at an earlier point of these introductory
remarks, optimal design of experiments based on the Fisher information of the parameter estimates
first came up in the context of linear regression in statistics. Here, the interest lies in a sophisticated
choice of sampling points in a set Ωo in order to guarantee optimal inference on the unknown
regression coefficients from the obtained samples. Systematic approaches to this problem are
often based on the notion of approximate or continuous design theory stemming back to the works
of Kiefer and Wolfowitz [163, 165]. This approach models potential measurement experiments as
probability measures over the design space Ωo. The mass associated to a Dirac delta function
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1 Introduction

in such a measure describes the fraction of available measurements that should be conducted at
the corresponding point in Ωo. This idea has been further developed in numerous publications.
For further reference we point out to the monographs [9, 205, 222] and [197, 198]. An extension
of this method to nonlinear models is based on linearization, see e.g. [107, 217]. A fundamental
pillar of continuous design theory is constituted by the famous Kiefer-Wolfowitz Theorem, [164,
166], which allows to check if a given design measure is an optimal one. In general, optimal
designs cannot be given in closed form. If the design space Ωo consists of finitely many points,
the algorithmic solution of the continuous design problem is usually based on the multiplicative
algorithm due to Silvey and Titterington, [241]. For general sets Ωo, algorithms of the Fedorov-
Wynn type, [105, 271–273], are applied to compute optimal designs. These methods compute
optimal designs by the sequential selection of new sensors based on the gradient of the design
criterion and an update of the associated measurement weights. For an adaptation of continuous
designs to the estimation of finite dimensional parameters in a partial differential equation we
refer to [17, 256] and the references therein. In the context of the present thesis, the continuous
design problem can be recovered by an appropriate choice of the regularization term G(‖u‖M) if
the design criterion Ψ fulfils mild monotonicity assumptions which is the case for all prominent
examples. At this point, we emphasize that our results should not be seen as a simple adaptation of
this well-established approach. Quite the contrary, we also contribute to the theory of continuous
designs in a substantial way. First and foremost, we stress that, to our best knowledge, all previous
works in this direction were restricted to finite dimensional parameter spaces while we also deal
with the infinite-dimensional case. We provide a set of equivalent necessary and sufficient first-
order optimality conditions for the sparse sensor placement problem which reduce to the result
of the classic Kiefer-Wolfowitz Theorem if Q is finite-dimensional. We refer to Theorem 3.17
and Example 3.5. Moreover, in Section 4.4.5 we identify the Fedorov-Wynn algorithm as special
instance of a conditional gradient method. Based on the results obtained in Chapter 6, we derive
worst-case convergence rates for a general class of optimal design criteria. Most important, we
provide an accelerated version of the method reminiscent to those proposed by Wu, [269,270] and,
more recently, by Biedermann, [275], and Boyd, [44]. In contrast to these previous works, we obtain
a provable improved convergence behavior of the method if additional structural requirements are
met. To the best of our knowledge, comparable results are only available if Ωo consists of finitely
many points, [1, 2]. Last, while the monograph [256] extends the idea of continuous designs to
parameter estimation problems with partial differential equations, it does neither touch the topic
of discretizing the problem nor does it study the influence of perturbations in the problem on the
obtained designs. To sum up, while our primary interest lies in parameter identification problems
with partial differential equations, the derived results may also have a considerable impact on
continuous design theory which is, traditionally, a topic studied in statistics. These considerations
highlight the strong interdisciplinary component of the present thesis.

For a complete overview, the sparse sensor placement problem

min
u∈M+(Ωo)

[Ψ(I(u)) +G(‖u‖M)]

should also be discussed in the broader context of nonsmooth composite minimization problems.
By now, it is a well-known fact that a penalization of the total variation norm favours optimal
solutions that are sparse i.e. they are supported on sets of Lebesgue measure zero. In particular,
minimizers may be only supported on finitely many points. This observation makes measure-
valued optimization variables appealing for inverse problems. For example, we mention acoustic
and seismic inversion, [178, 209], as well as super-resolution, [55, 95]. In optimal control, sparsity
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provides a suitable framework for e.g. the optimal placement of actuators, [54,74,113]. The overall
aim of the present thesis is to showcase the applicability of sparse minimization to the problem of
optimal sensor placement. As outlined in [73], sparse minimization problems are closely related
to the well-studied subject of state-constraint optimization.

The results contained in this thesis benefit from the advanced level of research in these fields
but we also contribute to them in several ways. For example, we point out to the sensitivity
results of Section 4.5 which are based on generalizing techniques from the recent work [95]. The
finite element discretization framework in Sections 4.6 and 5.2, respectively, is inspired by the
variational approaches for sparse optimal control problems in [59, 210]. A characteristic trait of
sparse minimization problems is that sequences of perturbed optimal solutions obtained by e.g.
discretizing the problem, do not converge in the total variation norm but only with respect to
weaker topologies. Therefore, it is not obvious how to quantify the convergence of such sequences.
For finite-dimensional parameter spaces Q, we will prove that the sparse sensor placement prob-
lem admits solutions consisting of finitely many Dirac delta functions. Considering a sequence
of such sparse measures, we study and quantify the convergence of the position and coefficient
associated to each Dirac delta. This can be achieved by extending results from semi-infinite opti-
mization cf. [191]. These considerations require additional structural assumptions on the problem
which we obtain by adapting the recent concept of non-degenerate source conditions, [94], from
super-resolution theory to the problem at hand. On a more abstract level, we will observe that
these convergence results imply convergence rates for sequences of sparse measures in a modified
version of the well-known Wasserstein distance, see e.g. [259]. This new measure of convergence is
computationally accessible which also allows to verify the obtained theoretical results in practice.
While the Wasserstein distance is a common tool in the theory of optimal transport, it was, to
the best our knowledge, not yet considered in sparse optimal control problems.

The last big topic that is covered in this work is the design and analysis of efficient solution
algorithms for optimization problems with measure-valued variables. As already pointed out at
an earlier point, this is a challenging problem for several reasons. First, the objective functional
contains the typically nonsmooth term G(‖u‖M). Second, the space of Borel measures lacks reflex-
ivity, smoothness and strict convexity. Most well-known methods do not yield a direct extension
to this setting. While this difficulty can be overcome by simply discretizing the problem, such
reasoning harbors the danger of yielding mesh-dependent optimization algorithms i.e. their con-
vergence behavior critically depends on the discretization parameters. For this reason, our interest
lies in the formulation and analysis of iterative solution algorithms in the function space setting.
Concrete practical realizations of such methods can be expected to show a mesh-independent con-
vergence behavior i.e. the number of necessary steps to reach some convergence criterion will be
essentially independent of the number of degrees of freedom in the discretization. One possibility
to tackle this problem, is to consider another, closely related, approach promoting sparse solutions
given by

min
u∈L2(Ωo),u≥0

[
Ψ(I(u)) +G(‖u‖L1(Ωo)) +

ε

2
‖u‖2L2(Ωo)

]
where L1(Ωo) and L2(Ωo) denote the spaces of integrable and square integrable functions on Ωo.
By ε > 0 we denote an additional regularization parameter. Note that for u ∈ L1(Ωo) there
holds ‖u‖L1(Ωo) = ‖u‖M. Obviously, this formulation no longer allows for optimal solutions
supported on finitely many points. However, since the total variation of u is still present in the
problem, the additional regularization still enhances sparsity to some extend i.e. optimal solutions
will be zero outside of a small subset of Ωo. The uniform convexity of the squared L2(Ωo) norm
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1 Introduction

facilitates the application of efficient function space based solution algorithms such as semi-smooth
Newton methods, [248,257]. A solution to the original problem can then be obtained by applying
a continuation strategy for driving the regularization parameter ε to 0 as outlined in [208].

In this thesis we follow a different route and consider a solution algorithm for the original problem
based on the sequential addition of new Dirac delta functions. This is motivated by the method
presented in [50]. We identify the algorithm as a generalization of the well-known conditional gra-
dient method due to Frank and Wolfe, [112]. While its implementation is simple, the characteristic
slow convergence behavior of first-order optimization methods diminishes its practical utility. We
present an accelerated version of this algorithm alternating between inserting new Dirac delta
functions and optimizing the associated coefficients. This new Primal-Dual-Active-Point algo-
rithm is reminiscent of the methods presented in [44, 50]. However, we are the first to provide
improved convergence rates if additional structural requirements on the problem are met. The
derived results are not restricted to optimal sensor placement but also hold for far more general
problems involving vector-valued measures as optimization variable. We point out to Section 6.3.
Due to the tight connection between measure-valued optimization problems and state constraints,
these new results also shed some new light on classical algorithms such as the exchange method
in semi-infinite optimization, see [97,278] and Example 6.9. We also compare the new method to
the aforementioned continuation strategy and conditional gradient methods without acceleration
in order to highlight its practical efficiency.

This thesis is structured as follows. In the first chapter, Chapter 2, we provide a more profound
and mathematical introduction to inverse problems for parameter identification and the difficulties
caused by measurement errors. We sketch approaches to quantify the uncertainty induced by
random perturbations of the measurement data on approximate solutions of the inverse problem.
Finally, this reasoning leads to the formulation of sensor placement problems based on the Fisher
information operator in order to mitigate their influence and to obtain reliable estimates for the
unknown parameter.

In Chapter 3, we formulate the task of optimally planning measurement experiments as mini-
mization problem in the space of Borel measures over the set Ωo. Well-posedness of sparse sensor
placement problems as well as necessary and sufficient first-order optimality conditions are in the
focus of Section 3.2.3. Based upon these results, we derive structural properties of optimal design
measures in Section 3.2.4. Sufficient conditions for the existence of sparse solutions consisting of
finitely many Dirac delta functions are discussed. In particular, if the unknown parameter is finite
dimensional, optimal design measures with support size bounded in dependence of the dimension
of the parameter space exist.

Optimal sensor placement for the inverse problem of identifying a finite dimensional parameter
entering into a PDE is in the focus of Chapter 4. Inference on its true value is possible based on
finitely many pointwise measurements of the associated state variable. In Section 4.2 we discuss
this setting in the context of the proposed sparse minimization framework with G(‖u‖M) =
β‖u‖M. Section 4.3 draws a parallel between sparse sensor placement for finite dimensional
parameters and semi-infinite optimization problems. Section 4.4 is devoted to the formulation
and analysis of a numerical solution algorithm based on the sequential insertion of a new Dirac
delta function into the iterated design measure. Worst-case convergence results are concluded
from the discussions in Chapter 6. By augmenting the method with an additional post-processing
step, convergence of the iterated design measures towards a sparse optimal one can be shown.
Moreover, we provide an accelerated version of the algorithm for which improved convergence
results can be proven under suitable conditions. Stability and sensitivity analysis for sparse sensor
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placement problems is presented in Section 4.5. For the practical computation of optimal design
measures, the underlying PDE is discretized by linear finite elements. We derive estimates for the
discretization error in the cost functional as well as the Fisher information matrix associated to
optimal designs. Furthermore, a priori error estimates for the optimal positions of measurement
sensors and their optimal diligence factors are derived under additional structural assumptions on
the problem. Numerical examples confirm their optimality. To the best of our knowledge, we are
not aware of any comparable results. We point out that most of the results in Sections 4.1 and 4.2,
Section 4.4, with exception of Sections 4.4.3 and 4.4.5, as well as Section 4.6.1 and the numerical
examples of Sections 4.7.1 and 5.4.2 are contained in similar form in the scientific paper [200]
which is loosely based on the author’s master thesis, [262].

Chapter 5 deals with sparse optimal sensor placement in the context of infinite-dimensional
Bayesian inversion with partial differential equations. Again, it is assumed that finitely many
pointwise measurements of the state variable are available in order to infer on an unknown dis-
tributed function entering into a PDE. The prior uncertainty on a suitable value for this function
is taken into account by modeling the unknown parameter as a Gaussian random field. Since
Bayesian inversion and optimal design of experiments in this context are a (relatively) new and
currently very active area of research, the first part of Section 5.1 provides a concise introduction
to these topics. In Section 5.1.4 we embed Bayesian optimal sensor placement into the sparse
minimization framework of Chapter 3. As for finite dimensional parameter spaces, we proceed
with the presentation of a discretization framework based on a finite element surrogate for the
PDE. Furthermore, the infinite-dimensional parameter space is replaced by a finite-dimensional
subspace spanned by several eigenfunctions of the prior covariance operator. A priori estimates
for the error in the cost functionals as well as the optimal Fisher information operators due to the
finite element discretization as well as the approximation of the parameter space are presented.
An extension of the sequential point insertion algorithm from the previous chapter to the present
setting as well as its efficient numerical realization for a particular choice of the design criterion is
in the focus of Section 5.3. Numerical experiments in Section 5.4 highlight its practical efficiency.

In the last part of this thesis, Chapter 6, we take a closer look at efficient solution algorithms
for sparse minimization problems in the function space setting. For this purpose, we essentially
proceed in two steps. We recall that the space of Borel measure on Ωo can be identified as
the topological dual of the separable Banach space of continuous functions on this set. In the
first part of the chapter, we embed sparse minimization into a more general setting and consider
the more abstract task of minimizing the sum of a smooth but not necessarily convex function
and a convex regularizer over the topological dual space of a separable Banach space. Besides
sparse minimization, this composite minimization framework also encompasses e.g. bang-bang
and minimum-effort control problems as well as optimization problems in the space of functions
with bounded total variation. In Section 6.2 we propose an iterative solution algorithm for this
type of problem based on a generalization of the well-known conditional gradient method. This
procedure generates a new iterate by taking a convex combination between the current iterate and
a solution to a certain (partially) linearized problem. We discuss (subsequential) convergence of
the generated iterates towards stationary points of the problem and derive worst-case convergence
rates if the smooth part is convex and fulfills additional regularity assumptions. More in detail, we
obtain sublinear convergence of the objective function values of the generated iterates towards the
global minimum of the problem which is characteristic for first-order optimization methods. This
result is sharp. Examples point out to possible applications for the method. The second part of
the chapter, Section 6.3, is devoted to the adaption of the generalized conditional gradient method
to certain composite minimization problems in spaces of vector-valued measures. It turns out that
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1 Introduction

the linearized subproblems admit solutions supported on a single point. In particular, the method
may be realized such that all iterates are comprised of finitely many Dirac delta functions. We
discuss augmentations of the methods which e.g. guarantee sparsity of the iterates as well as of
the approximated solutions in certain cases. Most important, we propose an accelerated version
of the method, the Primal-Dual-Active-Point algorithm, which alternates between adding a new
Dirac-Delta function in each iteration and optimizing the coefficients of all Diracs in the iterate.
For this specific version of the algorithm, we are able to prove a linear rate of convergence for the
objective function values as well as linear convergence for the sequence of iterates in certain dual
norms if additional structural assumptions on the problem hold. This last chapter is based on the
paper [211] which will be soon submitted to a scientific journal. The results of Section 6.3.3 are
taken from [209].
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2 From inverse problems to optimal sensor
placement

This chapter of the thesis constitutes a brief introduction to the mathematical concept of inverse
problems. Moreover, it serves as a motivation for and a bridge to the sensor placement problems
considered in the remainder of this thesis. At first sight, the reasoning behind inverse problems
is simple: Assume that we have given a family of partial differential equations which depend on
an unknown parameter. To each equation, we can compute a solution which resembles physical
quantities, such as fluxes, concentrations or pressure. In order to select the most suitable math-
ematical model for the simulation of such phenomena, we take a finite number of measurements
on these quantities in an experiment. In the inverse problem, we now provide a mathematical
model for the measurement process. Its solution is then given by one particular partial differential
equation, or more precisely the associated parameter, whose solution minimizes the misfit between
the obtained measurements from the experiment and those predicted by the measurement model.
In practice, the solution of inverse problems is aggravated by several factors. For example, the
amount of provided measurements may not suffice to uniquely identify the unknown parameter.
Moreover, in most practical situations, measurements are subject to perturbations stemming back
to the imperfectness of the applied sensors. These defects add an additional bias to the problem
which has to be properly addressed. Clearly, these shortcomings are intimately related to the
setup of the experiment in which the measurements are collected. This observation suggests that
we can e.g. mitigate the influence of measurement errors on the solution of the inverse problem
by a sophisticated design of the experiment. In particular, this is possible by optimizing the ar-
rangement of measurement sensors and the overall number of performed measurements. In the
following chapter, we outline this reasoning mathematically and consider the task of optimal sen-
sor placement as a minimization problem based on the so-called Fisher information operator of
a suitable linearized parameter estimator. Similar formulations will then form the basis for the
abstract sensor placement framework presented in the remainder of this thesis. For a profound
introduction to the vast topic of inverse problems we refer to [16, 21, 101, 155]. Optimal sensor
placement based on the Fisher information of the estimates dates back to the works of Smith, [245]
and Kiefer, [165] for linear regression. Extensions of these methods to nonlinear models are based
on linearization cf. [217]. An overview on comparable approaches for inverse problems with partial
differential equations is given in the monograph [256].

2.1 Notation and function spaces

We briefly introduce some of the notation used throughout this thesis. By R, R+ we refer to the
real and nonnegative real numbers, respectively. The letters N, Z denote the natural and whole
numbers. The euclidean inner product on Rn, n ∈ N, is denoted by (·, ·)Rn . The euclidean norm
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2 From inverse problems to optimal sensor placement

is given by | · |Rn . Given two Banach spaces X and Y with Banach space norms ‖ · ‖X and ‖ · ‖Y
as well as a linear mapping B : X → Y , we define the operator norm of B as

‖B‖L(X,Y ) = sup
‖ϕ‖X=1

‖Bϕ‖Y .

The vector space

L(X,Y ) :=
{
B | B : X → Y linear, ‖B‖L(X,Y ) <∞

}
forms a Banach space together with the operator norm ‖ · ‖L(X,Y ). Furthermore, the topological
dual space L(X,R) of the Banach space X is denoted by X∗. The associated duality pairing is
given by 〈·, ·〉X,X∗ . The adjoint operator to B ∈ L(X,Y ) is denoted by B∗ ∈ L(Y ∗, X∗). By KerB
and ImB we further refer to the kernel and range of B, respectively. Given a Banach space X, an
extended real valued functional φ : X → R ∪ {+∞} and a convex subset M ⊂ X we define the
domain of φ in M as

domM φ = {u ∈M | φ(u) <∞} .

The convex indicator function of M is denoted by IM .

Let Ω be a nonempty set, F a σ-algebra on Ω and µ a nonnegative measure on the measurable
space (Ω,F). The triple (Ω,F , µ) is called a measure space. If µ(Ω) = 1 we speak of a probability
space. By B(Ω) we denote the Borel σ-algebra on Ω. The Lebesgue measure on Rd, d ∈ N, is
denoted by µL and the Lebesgue σ-algebra is L(Rd). Let Ω ⊂ Rd. The classical Lebesgue
spaces Lp(Ω), p ∈ [1,∞], are defined as the space of Lebesgue measurable functions (interpreted
in the almost everywhere sense) with finite norm

‖ϕ‖Lp(Ω) =

{(∫
Ω |ϕ|

p dµL
)1/p

p ∈ [1,∞)

ess supx∈Ω |ϕ(x)| p =∞.

Occasionally, we write ∫
O
ϕ dµL =

∫
O
ϕ(x) dµL(x) O ∈ L(Ω),

to stress the argument of the integrand. We proceed in the same way for integration of suitable
functions with respect to general measures. If it is clear from the context that integration is under-
stood with respect to the Lebesgue measure, we further write

∫
O f dµL =

∫
O fdx. By H1(Ω), we

refer to the usual Sobolev space of functions ϕ ∈ L2(Ω) admitting square integrable weak partial
derivatives. If we incorporate additional zero boundary conditions (in the trace sense) into the
space, we write H1

0 (Ω).

A measure µE on Rn, n ∈ N, is called a Gaussian measure if there exist x0 ∈ RN and a positive
definite matrix Σ ∈ Rn×n with

µE(O) =
1

Z

∫
O

exp

(
−1

2
(x− x0, Σ

−1(x− x0))Rn

)
dx ∀O ∈ B(Rn).

The scalar Z > 0 is a normalization constant ensuring µE(Rn) = 1. The vector x0 is called the
mean and Σ is the covariance matrix of µE . We adopt the usual convention and write µE =
N (x0, Σ).
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2.2 The inverse problem

2.2 The inverse problem

In order to formulate the inverse problem, we first have to elaborate on the underlying mathemat-
ical model and the measurement procedure. For this purpose, let Q denote a separable Hilbert
space of parameters with inner product (·, ·)Q and induced norm ‖ ·‖Q. Moreover, by Y andW we
refer to the so-called state and test space, respectively. Both are assumed to be reflexive Banach
spaces. The duality pairing between Y and its dual space Y ∗ is denoted by 〈·, ·〉Y,Y ∗ . Analogously
we proceed with W . Last, we consider a mapping A : Q × Y → W ∗ describing a parametrized
family of differential operators. For a given parameter q ∈ Q an element y ∈ Y is called an
associated state if

A(q, y) = 0 in W ∗. (2.1)

As commonly done we introduce a semi-linear form as

a : Q× Y ×W → R, (q, y, ϕ) 7→ 〈ϕ,A(q, y)〉W,W ∗

In the following, we write a(·, ·)(·) to stress the, in general, nonlinear dependence of this weak
form on its first two arguments while it depends linearly on the element in the second bracket.
Now, we reformulate the partial differential equation in (2.1) as a variational problem: Given a
parameter q ∈ Q we search for an element y ∈ Y fulfilling

a(q, y)(ϕ) = 0 ∀ϕ ∈W. (2.2)

Next, we give a mathematical description of the measurement process. To this end consider a
compact set Ωo ⊂ Rd, d ∈ N. We will refer to Ωo as the candidate set of possible sensor locations.
On this subset, we assume the existence of a strongly continuous mapping

O : Ωo → Y ∗

where O(x) ∈ Y ∗ models the action of a measurement sensor located at a spatial point x ∈ Ωo on
the state variable y. We give some examples to clarify this abstract definition.

Example 2.1. Let Ω be a convex and bounded domain in Rd, d ≤ 3, and Ωo ⊂ Ω a compact
subset. First we discuss pointwise measurements of a state variable y in the Sobolev space H2(Ω)
of functions y ∈ L2(Ω) admitting square integrable weak derivatives up to order two. For a
given x ∈ Ωo the associated point evaluation of the state y ∈ H2(Ω) is realized by the duality
pairing with the associated Dirac delta function δx. Clearly, δx defines a linear and continuous
functional on H2(Ω) since

〈y, δx〉H2(Ω),H2(Ω)∗ = y(x) ≤ ‖y‖C ≤ ‖y‖H2(Ω)

due to the continuous embedding of H2(Ω) into the space of continuous functions C(Ωo). Accord-
ingly, define the measurement mapping

O1 : Ωo → H2(Ω)∗, 〈y,O1(x)〉H2(Ω),H2(Ω)∗ = y(x)

We check that O is indeed a strongly continuous function. To this end, let a sequence {xk}k∈N ⊂ Ωo
with xk → x be given. Denoting byM(Ω) ' C(Ωo)∗ the space of Borel measures on Ωo, we readily
verify that the sequence {O1(xk)}k∈N converges with respect to the weak* topology onM(Ωo) i.e.

〈ϕ,O1(xk)〉C(Ωo),M(Ωo) = ϕ(xk)⇒ ϕ(x) = 〈ϕ,O1(x)〉C(Ωo),M(Ωo) ∀ϕ ∈ C(Ωo).
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2 From inverse problems to optimal sensor placement

Since the space H2(Ω) embeds compactly into C(Ωo) we also have M(Ωo)
c
↪→ H2(Ω)∗. Thus we

conclude δxk → δx strongly in H2(Ω)∗.

As a second example consider averaged measurements of the state variable over balls with fixed ra-
dius around a spatial point x ∈ Ωo. The state space is given by the Y = L∞(Ω). The measurement
mapping is defined as

O2 : Ωo → L∞(Ω), 〈y,O2(x)〉L∞(Ω),L∞(Ω)∗ =
1

µL(BR(x))

∫
BR(x)∩Ω

y dµL,

for some R > 0. Again, it is easy to see that O2(x) defines a linear and continuous functional
on L∞(Ω) for all x ∈ Ωo. Moreover observe that for any convergent sequence {xk}k∈N, xk → x,
there holds

‖O2(xk)−O2(x)‖L∞(Ω)∗ = sup
‖ϕ‖L∞(Ω)≤1

|〈ϕ,O2(xk)−O2(x)〉L∞(Ω),L∞(Ω)∗ |

≤ |µL(BR(x) \BR(xk)) + µL(BR(xk) \BR(x))|

where the right hand side tends to zero as k →∞. Hence, O2 is a strongly continuous function.

A priori knowledge on the structure of the unknown parameter is incorporated by restricting the
parameter space to an admissible set Qad ⊂ Q. The inverse problem is now formulated as follows:
Given a vector of measurements yd = (y1

d, . . . ,y
N
d )> ∈ RN , N ∈ N, collected at a finite number

of distinct sensor locations {xi}Ni=1, find a pair (q, y) ∈ Qad × Y fulfilling the system of equations
defined as

〈y,O(xi)〉Y,Y ∗ = yid, i = 1, . . . , N, a(q, y)(ϕ) = 0 ∀ϕ ∈W. (2.3)

Now, we lay the focus on the solution of the inverse problem and the accompanying difficulties.
For this purpose, the following assumptions on the solvability of the underlying partial differential
equation are made.

Assumption 2.1. For every q ∈ Qad there exists a unique element y ∈ Y fulfilling (2.2). Fur-
thermore, the parameter-to-state mapping S : Qad → Y given by

S : Qad → Y, q 7→ y = S[q]

is at least continuously Fréchet differentiable with respect to the norm on Q in a neighborhood of
the admissible set Qad. The Fréchet derivative of S is denoted by ∂S : Q→ L(Q,Y ).

If the constituting operator A : Q× Y →W ∗ is Fréchet differentiable, so is the induced form and
there holds

a′y(y, q)(δy, ϕ) = 〈ϕ,A′y(q, y)δy〉W,W ∗ , a′q(y, q)(δq, ϕ) = 〈ϕ,A′q(q, y)δq〉W,W ∗

for q, δq ∈ Qad, y, δy ∈ Y and ϕ ∈W , respectively. By definition of S we further observe that

a(q, S[q])(ϕ) = 0 ∀q ∈ Qad, ϕ ∈W.
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Taking the total derivative with respect to q in the above equation, we conclude that ∂S[q̂]δq ∈ Y
for q̂ ∈ Qad, δq ∈ Q, fulfills the linearized state equation

a′y(q̂, S[q̂])(∂S[q̂]δq, ϕ) = −a′q(q̂, S[q̂])(δq, ϕ) ∀ϕ ∈W.

This relation between the parameter and the state variable allows to eliminate the partial differ-
ential differential equation as an explicit constraint. We arrive at the reduced formulation

find q ∈ Qad : 〈S[q], O(xi)〉Y,Y ∗ = yid, i = 1, . . . , N.

Moreover, in the following we assume the availability of a sophisticated a priori guess q̂ ∈ Qad on
the parameter value describing the modeled process most faithfully and the parameter-to-state
operator S is well-approximated by a first order approximation around it i.e.

S[q] ≈ S[q̂] + ∂S[q̂](q − q̂) ∀q ∈ Qad.

Now, we may also drop the constraints on the admissible set of parameters and consider the
linearized inverse problem given by

find q ∈ Q : 〈S[q̂], O(xi)〉Y,Y ∗ + 〈∂S[q̂](q − q̂), O(xi)〉Y,Y ∗ = yid, i = 1, . . . , N. (2.4)

Let us introduce some additional notation to rewrite this problem in a more compact way. In
order to do so, observe that

〈∂S[q̂]q,O(xi)〉Y,Y ∗ = (∂S[q̂]∗O(xi), q)Q ∀q ∈ Q, i = 1, . . . , N,

where ∂S[q̂]∗ : Y ∗ → Q denotes the Banach space adjoint of ∂S[q̂]. Accordingly, we now introduce
the reduced measurement mapping

O : Ωo → Q, x 7→ ∂S[q̂]∗O(x),

and the (linearized) parameter-to-observations map X ∈ L(Q,RN ) as

X : Q→ RN , (Xq)i = (O(xi), q)Q, i = 1 . . . , N.

Last, define the vector S[q̂](x) ∈ RN with S[q̂](x)i = 〈S[q̂], O(xi)〉Y,Y ∗ for i = 1, . . . , N . We
assemble all N equations from (2.4) in one system to equivalently reformulate the linearized
inverse problem as

find q ∈ Q : Xq = Xq̂ + yd − S[q̂](x). (2.5)

While this is a linear equation for the unknown parameter q its solution is in no way straightforward
and has to be handled with care. To highlight this fact, recall the notion of well-posedness due
to Hadamard: A mathematical problem is well-posed in the sense of [129] if it admits a unique
solution for all admissible input data. Moreover, the obtained solution has to depend continuously
on the data. Translating this definition to the present case, a well-posed linearized inverse problem
of the form (2.5) admits a unique solution for every vector of measurements yd ∈ RN . Clearly,
these conditions are violated in most cases. On the one hand, we are often interested in identifying
high or even infinite dimensional parameters but only a small number of measurements is available.
In these underdetermined cases, i.e. if dimQ > N , the inverse problem in (2.4) may provide an
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2 From inverse problems to optimal sensor placement

infinite number of solutions since the kernel of X is nonempty. On the other hand, the problem
admits no solution if

Xq̂ + yd − S[q̂](x) 6∈ ImX.

Note that the non-existence of a continuous inverse to X causes severe problems in practical
applications. There the measurement vector yd corresponds to data obtained by performing
measurements in a real experiment. In this case, it is reasonable to assume that the true data
is perturbed by measurement noise stemming back to the imperfectness of the utilized sensor.
However, due to the ill-posed nature of the equation in (2.5), small changes in the input data can
cause the non-existence of a solution to the perturbed problem or provide solutions that are far
away from the unperturbed one.

This observation suggests that the computation of a solution to the inverse problem without ac-
counting for the aforementioned difficulties leads to a severe misinterpretation of the obtained
estimates. Ultimately, this results in wrong conclusions on the most suitable choice for the un-
known parameter. In order to allow for a stable solution of the problem, we resort to so-called
regularization techniques. One particularly famous method for this task is given by (weighted)
Tikhonov regularization, [252]. In this approach, an approximate solution to the inverse problem
is obtained by solving the regularized Least-Squares problem

min
q∈Q

J(q,yd) :=

[
1

2
|Σ−1/2(S[q̂](x) +X(q − q̂)− yd)|2RN +

1

2
‖I1/2

0 (q − q̂)‖2Q
]
.

Here we minimize the trade-off between the misfit of the measurement data and a regularization
term that quantifies the distance of the parameter to the linearization point. Note that both
terms incorporate weighted Hilbert space norms induced by a matrix Σ−1/2 ∈ RN×N and an
operator I1/2

0 : Q → Q, respectively. For example, these allow to put special emphasis on the
measurement obtained by a specific sensor or to enhance expected structural features in the
approximate solution to the inverse problem. In particular, the operator I1/2

0 can be unbounded
on Q. Its Q-domain Q ⊂ Q given by

Q =
{
q ∈ Q | ‖I1/2

0 q‖Q <∞
}

is a, possibly proper, subspace of Q. The following assumptions are made.

Assumption 2.2. The matrix Σ−1/2 ∈ RN×N is positive definite and I1/2
0 is a closed linear

operator. Moreover there holds q̂ ∈ Q.

Note that J(q,yd) = +∞ for all q ∈ Q \ Q. Thus, the search for a minimizer of J(·,yd) can be a
priori restricted to the domain of I1/2

0 . We can define a Hilbert space structure on Q with respect
to the graph norm ‖ · ‖Q induced by the inner product

(·, ·)Q = (·, ·)Q + (I1/2
0 ·, I

1/2
0 ·)Q.

This is a consequence of the closedness assumption on I1/2
0 . In general, Q will not be identified

with its topological dual space denoted by Q∗. By definition of the graph norm there holds

Q ↪→ Q ' Q∗ ↪→ Q∗.

Thus, instead of finding a solution to an ill-posed system of equations, we now compute a minimizer
to an optimization problem. Imposing additional assumptions, its unique minimizer can be given
in closed form.
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2.2 The inverse problem

Proposition 2.1. Define Σ−1 = Σ−1/2Σ−1/2 and I0 = (I1/2
0 )∗(I1/2

0 ). Moreover, assume that

Ker I1/2
0 ∩KerX = {0} and Im(X∗Σ−1X + I0) = Q∗. (2.6)

Then the linear and continuous operator

X∗Σ−1X + I0 : Q → Q∗ (2.7)

admits a linear and continuous inverse

(X∗Σ−1X + I0)−1 : Q∗ → Q.

Last, denote by yd ∈ RN an arbitrary vector of measurements. Then the unique minimizer
of J(·,yd) over Q is given by

qyd = q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(yd − S[q̂](x))). (2.8)

Proof. Let us first check that the operator from (2.7) is indeed linear and continuous with respect
to the correct norms. For this purpose, consider an arbitrary element q ∈ Q. By definition of the
dual norm we obtain

‖(X∗Σ−1X + I0)q‖Q∗ = sup
‖q̃‖Q≤1

〈q̃, (X∗Σ−1X + I0)q〉Q,Q∗

= (Σ−1/2Xq̃,Σ−1/2Xq)RN + (I1/2
0 q̃, I1/2

0 q)Q

≤ (‖Σ−1/2X‖2L(Q,RN ) + 1)‖q‖Q.

Its linearity is obvious. Furthermore, this operator is injective since

〈q, (X∗Σ−1X + I0)q〉Q,Q∗ = |Σ−1/2Xq|2RN + ‖I1/2
0 q‖2Q > 0 ∀q ∈ Q \ {0}.

This holds true due to positive definiteness of the matrix Σ1/2 and Ker I1/2
0 ∩ KerX = {0}.

Together with the surjectivity assumption from (2.6) we conclude the existence of its continuous
inverse operator from the bounded inverse theorem.

We now calculate the Fréchet derivative of J(·,yd) with respect to the parameter at a given
element q ∈ Q. Applying the chain rule, we readily obtain

J ′(q,yd) = X∗Σ−1(S[q̂](x) +X(q − q̂)− yd) + I0(q − q̂) ∈ Q∗.

Since J(·,yd) is a convex functional an element qyd is a global minimizer of J(·,yd) on Q if and
only if the Fréchet derivative J ′(qyd ,yd) vanishes. We make the ansatz

X∗Σ−1(S[q̂](x) +X(q − q̂)− yd) + I0(q − q̂) = 0 ∈ Q∗

and solve this equation for q. Rearranging we get

(X∗Σ−1X + I0)q = (X∗Σ−1X + I0)q̂ +X∗Σ−1(yd − S[q̂](x)).

Inverting the operator on the left we finally conclude

q = q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(yd − S[q̂](x))).

Thus, by construction, the element qyd from (2.8) is the unique global minimizer of J(·,yd)
over Q.

Remark 2.1. Let us briefly point out that the first condition in (2.6) implies the finite dimen-
sionality of Ker I1/2

0 and dim Ker I1/2
0 ≤ dim(ImX) ≤ N . Moreover, if dimQ < ∞, the second

condition in (2.6) is redundant since the injectivity of the operator implies its surjectivity if Q is
finite dimensional.
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2 From inverse problems to optimal sensor placement

2.3 Uncertainty quantification & optimal design

As already remarked at an earlier point of this chapter, it is, especially from a practical point
of view, necessary to discuss and quantify the influence of measurement errors on the obtained
approximate solutions to the inverse problem. This topic is in the focus of the following consider-
ations. We make the following assumption on the vector of measurements yd ∈ RN .

Assumption 2.3. There holds yd = y†d + ε, where y†d ∈ RN denotes the unperturbed measure-
ments and ε ∈ RN is a vector of measurement errors.

We emphasize that we can only observe the sum yd of both terms i.e. the vectors y†d and ε,
respectively, are unknown to us. Classical approaches to the treatment of measurement noise in
inverse problems are usually based on an a priori upper bound on the error i.e. |yd − y†d|RN ≤ δ
for some δ > 0. In practical applications, measured data is not exactly reproducible i.e. per-
forming the exact same measurement twice usually leads to slightly different outcomes. These
deviations stem back to the inability of the experimenter or the used sensor to take the mea-
surement in the exact same way. Moreover, at rare occasions, measurement devices produce
outliers i.e. the difference |yd − y†d|RN is considerably large. This observation suggests the use
of a less restrictive, stochastic model for the measurement errors. For this purpose, we consider
a probability space (D,F ,P) and interpret the noise vector ε ∈ RN as realization of a random
variable ε : D → RN . The following assumptions on its distribution are made.

Assumption 2.4. Let ε : D → RN be a N -dimensional Gaussian random variable distributed
according to µE = N (0, Σ). The components of ε are mutually independent i.e. the positive defi-
nite covariance matrix Σ ∈ RN×N is diagonal with Σij = δij/ui, where δij denotes the Kronecker
delta and ui > 0, i, j = 1, . . . , N .

In the following arguments, the weighting matrix for the measurement misfit term in the Least-
Squares estimator is always chosen as the unique positive definite square root of the inverse to the
noise covariance Σ. That is Σ−1/2

ij = δij
√
ui, i, j = 1, . . . , N . Given a vector yd = y†d + ε ∈ RN

for a particular realization ε of the measurement noise, we may now rewrite the solution to the
regularized Least-Squares problem as

qyd = q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(yd − S[q̂](x)))

= q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(y†d + ε− S[q̂](x))).

By solving the regularized Least-Squares problem the uncertainty in the measurements is also
propagated into the obtained approximate solutions. Thus, we should also adapt a probabilistic
interpretation of the Least-squares solution and view qyd as a realization of the estimator

q̄ : D → Q, ω 7→ q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(y†d + ε(ω)− S[q̂](x)))

which is a random variable taking values in the parameter space. An element E[q̄] ∈ Q is called
the mean of the estimator q̄ if∫

D
(δq, q̄(ω))Q dP(ω) = (δq,E[q̄])Q ∀δq ∈ Q.
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2.3 Uncertainty quantification & optimal design

Accordingly, C ∈ L(Q,Q) is called the covariance operator of q̄ if∫
D

(δq1, q̄(ω)− E[q̄])Q(δq2, q̄(ω)− E[q̄])Q dP(ω) = (δq1, Cδq2)Q ∀δq1, δq2 ∈ Q.

Obviously, these expressions are only meaningful if q̄ : D → Q satisfies appropriate integrability
conditions. However, due to the affine linearity of q̄ with respect to the measurement vector and
our assumptions on the random variable ε it is readily verified that

E[q̄] = q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(y†d − S[q̂](x)))

and that the covariance operator of q̄ is given by

C = (X∗Σ−1X + I0)−1X∗Σ−1X(X∗Σ−1X + I0)−1.

Moreover the expected deviation of q̄ from its mean is represented by the trace of the covariance
operator:

E[‖q̄ − E[q̄]‖2Q] :=

∫
D
‖q̄(ω)− E[q̄]‖2Q dP(ω) = TrQ(C) <∞ where TrQ(C) =

∑
i∈I

(φi, Cφi)Q

(2.9)

for an arbitrary orthonormal basis {φi}i∈I, I ⊂ N, of the parameter space Q.

In the following sections we are interested in quantifying the capability of the random variable q̄ for
estimating a particular parameter q∗ ∈ Q. Second, our interest also lies in the convergence of the
estimator in the vanishing noise limit i.e. if the measurement errors tend to zero in some suitable
sense. Therefore we first point out that we cannot make useful probabilistic statements about
the closedness of a particular realization qyd to q∗ since such events occur with zero probability.
However, we can quantify the expected deviation of q̄ from q∗ in the squared norm on Q. This
corresponds to the so-called mean squared error between q̄ and q∗.

Definition 2.1. Let a parameter q∗ ∈ Q be given. The mean squared error between q̄ and q∗ is
defined as

MSE(q̄, q∗) = E[‖q̄ − q∗‖2Q] :=

∫
D
‖q̄(ω)− q∗‖2Qd P(ω).

This term admits the following alternative representation.

Proposition 2.2. There holds

MSE(q̄, q∗) = ‖E[q̄]− q∗‖2Q + TrQ(C).

Proof. By definition we have

MSE(q̄, q∗) =

∫
D
‖q̄(ω)− q∗‖2Q dP(ω)

=

∫
D

[
‖E[q̄]− q∗‖2Q + 2(q̄(ω)− E[q̄],E[q̄]− q∗)Q + ‖q̄(ω)− E[q̄]‖2Q

]
dP(ω)
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2 From inverse problems to optimal sensor placement

Since the first term no longer depends on ω there holds∫
D
‖E[q̄]− q∗‖2Q dP(ω) = ‖E[q̄]− q∗‖2Q.

Furthermore, using the definition of the mean, the second term vanishes since∫
D

(q̄(ω)− E[q̄],E[q̄]− q∗)Q dP(ω) = (E[q̄]− E[q̄],E[q̄]− q∗)Q = 0.

The statement now follows by combining these observations with (2.9).

Let us give some interpretation to this result. We conclude that the mean squared error captures
both, the difference between the expected value of the given estimator and the parameter q∗ as
well as the variability of the parameter estimator around its mean. As a consequence, a small
mean squared error implies on the one hand that the expected value of q̄ is close to q∗. On the
other hand, we also deduce that realizations of q̄ do not scatter significantly and are close to the
mean E[q̄] (and thus also q∗) with a high probability. To sum up these arguments, the mean
squared error provides a suitable tool to assess the statistical quality of the parameter estimator q̄
for the task of estimating q∗. In particular, if q∗ corresponds to the exact value of the unknown
parameter in the partial differential equations, i.e. the parameter corresponding to the most
suitable mathematical model, the mean squared error provides a measure for the influence of the
measurement errors on the obtained parameter estimates.

2.3.1 Overdetermined problems

Quantifying uncertainty

We first consider the identification of a finite dimensional parameter in Q ' Rn from overdeter-
mined observations. That is N ≥ n and X ∈ RN×n fulfills dim(ImX) = n. Consequently, the
matrix X∗Σ−1X is invertible due to the positive definiteness of Σ−1. For simplification let us
assume that no model error is present i.e. there holds

min
q∈Rn

|S[q̂](x) +X(q∗ − q̂)− y†d|RN = 0.

Since the kernel of X is trivial, the solution q∗ to this minimization problem is unique. In this case,
we consider the maximum likelihood estimator, [110], which returns the most plausible parameter
value given the measurement vector yd. It is recovered in the presented Tikhonov regularized
setting through choosing I1/2

0 = 0. By invertibility of X∗Σ−1X we obtain

q̄ : D → RN , ω 7→ q̂ + (X∗Σ−1X)−1(X∗Σ−1(y†d + ε(ω)− S[q̂](x))).

Due to the assumption on the existence of q∗ this estimator can be equivalently rewritten as

q̄ : D → RN , ω 7→ q∗ + (X∗Σ−1X)−1X∗Σ−1ε(ω).

Its mean is given by E[q̄] = q∗ i.e. this estimator is unbiased. The associated covariance operator C
is obtained as

C = (X∗Σ−1X + I0)−1X∗Σ−1X(X∗Σ−1X + I0)−1 = (X∗Σ−1X)−1.
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2.3 Uncertainty quantification & optimal design

We recall that our primary motivation to consider weighted Least-Squares problems was given by
the ill-posedness of (2.5) and the appearance of measurement errors. These defects prevented a
stable solution of the problem. Thus, we have to address if and in which sense stability of the
maximum likelihood estimator can be expected. For this purpose, we consider the vanishing noise
case i.e. the variance 1/ui of each measurement tends to zero. This condition implies that Σ → 0
and that the measurement noise ε ∼ (0, Σ) converges to 0 in probability.

Calculating the mean squared error between q̄ and q∗ reveals

MSE(q̄, q∗) = |E[q̄]− q∗|2Rn + TrRn((X∗Σ−1X)−1) = TrRn((X∗Σ−1X)−1). (2.10)

Now we estimate

TrRn((X∗Σ−1X)−1) ≤ n‖(X∗Σ−1X)−1‖Rn×n ≤
n‖Σ‖RN×N
|Xq|2RN

for some q ∈ RN with Xq 6= 0, |q|Rn = 1, independent of Σ. As a consequence, we conclude that
the maximum likelihood estimator is stable in the mean square sense i.e.

max
i=1,...,N

1/ui → 0⇒ MSE(q̄, q∗)→ 0.

Besides the stability of q̄, these arguments also highlight that the mean squared error provides
a suitable stochastic tool to quantify the uncertainty on the true parameter q∗ caused by the
measurement errors in the estimation process. Moreover, its computation can be done without
knowledge of q∗.

Remark 2.2. It is worthwhile to note that similar stability results also hold for the case of additional
modelling errors i.e. there holds

Xq̂ + y†d − S[q̂](x) 6∈ ImX.

We briefly outline these ideas. For this purpose, consider a parametrized family of measurement
noises εσ ∼ N (0, Σσ) where Σσ = σΣ̂ for σ > 0 and some positive definite diagonal matrix Σ̂ ∈
RN×N . The associated parametrized maximum likelihood estimator is given by

q̄σ : D → RN , ω → q̂ + (X∗Σ̂−1X)−1(X∗Σ̂−1(y†d + εσ(ω)− S[q̂](x)))

Note that the mean

q† := E[q̄σ] = q̂ + (X∗Σ̂−1X)−1(X∗Σ̂−1(y†d − S[q̂](x)))

is independent of σ > 0 and corresponds to the unique solution of the Least-Squares problem

min
q∈Q
|Σ̂−1/2(S[q̂](x) +X(q − q̂)− y†d)|

2
RN .

The mean squared error between q̄σ and q† fulfills

MSE(q̄σ, q
†) = |E[q̄σ]− q†|2Rn + σTrRn((X∗Σ̂−1X)−1) = σTrRn((X∗Σ̂−1X)−1)→ 0

as σ → 0. Thus, the parametrized random variables {q̄σ}σ>0 converge in the mean square sense
towards the solution of a deterministic weighted Least-Squares problem for the unperturbed mea-
surement vector y†d.
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2 From inverse problems to optimal sensor placement

Optimal sensor placement

Summing up our previous discussions, the mean squared error of the maximum likelihood estima-
tor provides a tool to quantify the deviation of the random variable q̄ from the true parameter q∗.
Moreover, it tends to zero if the variances of the measurement errors, Σii = 1/ui > 0, are small.
In this case, realizations of q̄ will be close to q∗ with high probability. In practical applications,
a reduction of the measurement variances can be achieved by performing the same measurement
several times and average the different outcomes. Alternatively, a single measurement can be
performed with a better sensor. From a practical point of view, both of these possibilities are
only viable to some extent since taking repeated measurements and constructing or buying better
sensors is always associated with certain costs. Clearly, it is reasonable to assume that the overall
monetary budget of an experiment to obtain the measurements is limited. As a consequence, an
experimenter is usually interested in providing parameter estimates with small as possible mean
squared error while simultaneously keeping the cost of the measurement process low. Follow-
ing (2.10), the mean squared error between the estimator q̄ and the true parameter q∗ can be
given in closed form as the trace of its covariance operator

MSE(q̄, q∗) = TrRn((X∗Σ−1X)−1).

Note that this representation is independent of q∗ and solely depends on the so-called Fisher
information matrix X∗Σ−1X with matrices X ∈ RN×n and Σ−1 ∈ RN×N given by

(Xq)i = (O(xi), q)Q, Σ
−1
ij = δijui ∀q ∈ Rn, i, j = 1, . . . , N.

This crucial observation implies that the mean squared error of the estimator cannot only be
influenced by decreasing the variances of the measurements, i.e. by increasing ui > 0, i = 1, . . . , N ,
but also by a sophisticated choice of the sensor locations {xi}Ni=1 and the overall number of
measurements N . In particular, we can a priori, i.e. before any measurements are carried out,
improve the estimator by an optimal choice of the measurement setup. Mathematically, the task
of optimal sensor placement can now be formulated as an optimization problem

min
xi∈Ωo,ui∈R+,N∈N

[TrRn((X∗Σ−1X)−1) +R(u)] s.t. (Xq)i = (O(xi), q)Q, Σ
−1
ij = δijui,

for all q ∈ Rn, i, j = 1, . . . , N , where we minimize the mean squared error by parametrizing the
Fisher information as a function of the number of measurements, their positions and the reciprocal
of their variances. The regularization term R(u) captures the overall cost of the experiment based
on the vector of measurement weights u = (u1, . . . ,uN )>. For general admissible sets Ωo, we
emphasize that this minimization problem poses a serious challenge due to the unknown optimal
number of measurements and the possible severe nonlinearity or nonsmoothness of the observation
mapping O : Ωo → Rn.

A geometric interpretation of uncertainty

Another, more geometric way, of describing the influence of measurement errors on the maximum
likelihood estimator is based on the computation of its confidence region. For a confidence level α ∈
(0, 1) and a realization ε ∈ RN of the measurement noise, we set

D(q̄, α)(ε) =

{
q ∈ Rn | J(q,yd)− min

q∈Rn
J(q,yd) ≤ γ2

n(α)/2

}
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2.3 Uncertainty quantification & optimal design

where yd = y†d + ε and γ2
n(α) denotes the (1−α)-quantile of the χ2-distribution with n degrees of

freedom. Note that this set can be rewritten in several equivalent ways:

D(q̄, α)(ε) =

{
q ∈ Rn | J(q,yd)− min

q∈Rn
J(q,yd) ≤ γ2

n(α)/2

}
(2.11)

=
{
q ∈ Rn | (q − qyd)>X∗Σ−1X(q − qyd) ≤ γ2

n(α)
}

=
{
q ∈ Rn | q = qyd + (X∗Σ−1X)−1X∗Σ−1/2δε, |δε|Rn ≤ γn(α)

}
.

The mapping

D(q̄, α) : D → P(Rn), ω 7→ D(q̄, α)(ε(ω))

is called the confidence region of q̄ to the confidence level α ∈ (0, 1). It is a random variable
taking values in P(Rn), the power sets of the parameter space. Loosely speaking, confidence
regions should be interpreted as follows: If we compute several realizations q̄(ω) of the maxi-
mum likelihood estimator, then the true parameter q∗ is contained in α · 100% of the associated
realizations D(q̄, α)(ε(ω)).

Consequently, the size of these sets also provides a measure on the statistic quality of the estimator.
If the realizations of the confidence regions are small, we may conclude that realizations of q̄ are
close to q∗ with high probability. At this point, we stress that each realization D(q̄, α)(ε(ω)) is
an ellipsoid in the parameter space centered at q̄(ω), see (2.11). For every fixed α ∈ (0, 1), its
shape and size are described by the Fisher information matrix X∗Σ−1X which is independent
of ω ∈ D. As for the mean squared error, this observation suggests that the confidence domains
of the estimator can be minimized a priori by a sophisticated choice of the sensor positions and
the variances of the measurements.

Again, this task is formulated as an optimization problem based on a parametrization of the
Fisher information by the measurement setup. For example, we may minimize the sum over the
eigenvalues of (X∗Σ−1X)−1 corresponding to the combined length of the ellipsoid’s half-axes. The
associated sensor placement problem is

min
xi∈Ωo,ui∈R+,N∈N

[TrRn((X∗Σ−1X)−1) +R(u)] s.t. (Xq)i = (O(xi), q)Q, Σ
−1
ij = δijui,

Thus, minimizing the half-axes of the confidence ellipsoids corresponds to reducing the mean
squared error of the maximum likelihood estimator. Another possible criterion to assess the qual-
ity of the obtained estimates can be based on the volume of D(q̄, α)(ε(ω)) which is, up to a
measurement independent constant, given by the determinant of the covariance matrix. Formu-
lating a sensor placemennt problem for minimizing this criterion leads to

min
xi∈Ωo,ui∈R+,N∈N

[Det((X∗Σ−1X)−1) +R(u)] s.t. (Xq)i = (O(xi), q)Q, Σ
−1
ij = δijui,

Minimizing the determinant of the covariance matrix is called the D-optimal design problem,
while optimizing its trace is usually referred to as A-optimality. For a reference we point out
to [222, Chapter 6]. We stress that both of these problems fit into a more abstract framework of
sensor placement problems described by

min
xi∈Ωo,ui∈R+,N∈N

[Ψ(X∗Σ−1X) +R(u)] s.t. (Xq)i = (O(xi), q)Q, Σ
−1
ij = δij .ui.
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Here, the optimal design criterion Ψ is a convex and differentiable function on the cone of positive
definite matrices. We adopt such an abstract formulation for the case of general parameter spaces
in Chapter 3. To finish these discussions, we point out to the consideration of nondifferentiable
optimal design criteria. One particular prominent example is constituted by the largest eigenvalue
of the covariance matrix, the E-optimality criterion, resembling the length of the longest half-axis
of the confidence ellipsoids, [84]. Such optimal design criteria are beyond the scope of this thesis
but represent an interesting topic for future research.

2.3.2 Underdetermined problems

It remains to comment on the situation of underdetermined measurements. That is the number
of observations N is strictly smaller than the dimension of the parameter space Q. To make
the following discussions more transparent, we restrict them to finite dimensional parameter
spaces Q ' Rn with n > N . The case of infinite dimensional parameter spaces is briefly ad-
dressed at the end of this section. We point out that X ∈ RN×n is not injective. Thus, the
matrix X∗Σ−1X is not invertible and we have to choose a suitable nonzero regualizer I1/2

0 to en-
sure the existence of (X∗Σ−1X + I0)−1. The regularized Least-Squares estimator is then defined
as

q̄ : D → Q, ω 7→ q̂ + (X∗Σ−1X + I0)−1(X∗Σ−1(y†d + ε(ω)− S[q̂](x))).

Assume that there is no modeling error present i.e.

min
q∈Rn

|∂S[q̂](x) +X(q − q̂)− y†d|RN = 0 (2.12)

Since X is not injective, we emphasize that the solution to this minimization problem is not
unique. In the following, we simply select one particular minimizer q∗ and evaluate the capability
of q̄ to estimate q∗. Due to the lack of sufficient information from the provided measurements and
the appearance of the regularization term in the problem, the regularized estimator q̄ is in general
biased i.e. E[q̄] 6= q∗. More in detail, there holds

|E[q̄]− q∗|Rn = |((X∗Σ−1X + I0)−1X∗Σ−1X − Id)(q∗ − q̂)|Rn
= |(X∗Σ−1X + I0)−1I0(q∗ − q̂)|Rn .

Consequently, the mean squared error between q̄ and q∗ is calculated as

MSE(q̄, q∗) = |(X∗Σ−1X + I0)−1I0(q∗ − q̂)|2Rn + TrRn(C),

where the covariance matrix C is given by

C = (X∗Σ−1X + I0)−1X∗Σ−1X(X∗Σ−1X + I0)−1.

In contrast to the overdetermined case, we observe that the mean squared error depends on the
unknown parameter q∗. This prevents its numerical evaluation and a sophisticated choice of the
measurement setup based on minimizing the mean squared error of the estimator. Moreover,
we point out that q∗ was more or less chosen arbitrary from the solution set to (2.12). These
observations suggest that the mean squared error is only of limited practical utility with regard
to optimal sensor placement in the present case.
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2.3 Uncertainty quantification & optimal design

Nevertheless, it would be desirable to formulate meaningful optimal design criteria to allow for a
rigorous and systematic choice of the measurement setup before the actual experiment is carried
out. For example, we may base the choice of an optimal measurement procedure on averaging the
mean squared error over possible values of q∗, see e.g. [127]. To this end, we consider a probability
measure µ0 on the parameter space with finite second moments. That is

∫
Rn q

2 dµ0(q) < ∞.
The µ0-averaged mean squared error is defined as∫

Rn
|(X∗Σ−1X + I0)−1I0(q − q̂)|2Rn dµ0(q) + TrRn(C) <∞.

Clearly, this averaged mean squared error no longer depends on the particular choice of q∗ and
can be minimized with respect to the measurement setup. However, this comes at the cost of
evaluating an integral over the parameter space. By assumption, the linearization point q̂ can be
interpreted as sophisticated a priori guess for the true unknown parameter. Thus it is reasonable
to consider probability measures whose mass is localized around q̂. A particularly interesting
observation can be made in the Gaussian case.

Proposition 2.3. Let I1/2
0 ∈ Rn×n be invertible and set µ0 = N (q̂, I−1

0 ). Then there holds∫
Rd
|(X∗Σ−1X + I0)−1I0(q − q̂)|2Rn dµ0(q) + TrRn(C) = TrRn((X∗Σ−1X + I0)−1).

Proof. See [3, Theorem 2].

For general parameter spaces Q, a straightforward adaption of this result remains valid. In the
general case, the mean squared error between q̄ and q∗ is given by

‖((X∗Σ−1X + I0)−1X∗Σ−1X − Id)(q∗ − q̂)‖2Q + TrQ(C),

whenever the operator X∗Σ−1X + I0 admits a continuous inverse. As in the finite dimensional
case we assume that I0 admits a continuous inverse and average the mean squared error with
respect to a Gaussian probability measure µ0 = N (q̂, I−1

0 ) centered at the linearization point.
The covariance operator is again related to the regularization term in the estimator. In particular,
see Section 5.1.1, the Gaussian assumption on µ0 requires the operator I−1

0 to be of trace class
i.e. TrQ(I−1

0 ) <∞. For infinite dimensional Q, this imposes a restriction on the decay rate of its
eigenvalues and implies that I−1

0 is smoothing. Now, again following [3], we obtain∫
Q
‖((X∗Σ−1X + I0)−1X∗Σ−1X − Id)(q − q̂)‖2Q dµ0(q) + TrQ(C) = TrQ((X∗Σ−1X + I−1

0 )).

Consequently, independent of the parameter dimension, a sophisticated choice of the measurement
setup can be based on minimizing the trace of the operator (X∗Σ−1X + I0)−1 ∈ L(Q,Q). High-
dimensional parameter spacesQ further aggravate the numerical treatment of the associated sensor
placement problems. For example, evaluating the design criterion already requires the trace of an
inverse of a usually large and dense matrix whose computation is a formidable problem in itself.
These type of sensor placement problems and their efficient solution are in the focus of Chapter 5.
We point out that the averaged optimal sensor placement formulations also admit an interpretation
as a certain bilevel optimization problem. Here, we aim to improve the measurement setup such
that the resulting estimator provides, on average, good reconstruction results on a set of training
parameters, described by the probability measure µ0. Since we give a profound discussion of this
topic in Chapter 5 we do not go into greater detail at this point.
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2 From inverse problems to optimal sensor placement

Remark 2.3. For completeness we again pose the question whether the regularized Least-Squares
estimator is stable in the vanishing noise case. In the previous section, see Remark 2.2, we observed
that the maximum likelihood estimator converges in the mean square sense towards the unique
solution of a deterministic Least-Squares problem if the noise tends to zero. Intuitively, we also
expect a similar behavior in the regularized case.
Let us outline these ideas for the case of regularizing with the euclidean norm. That is we
set I1/2

0 = Id where Id denotes the identity matrix. Again, consider a parametrized family of
measurement noises εσ ∼ N (0, Σσ) where Σσ = σΣ̂ for σ > 0 and some positive definite diagonal
matrix Σ̂ ∈ RN×N . Note that the deterministic Least-Squares problem for the unperturbed
measurement vector y†d

min
q∈Rn

|Σ̂−1/2(S[q̂](x) +X(q − q̂)− y†d)|
2
RN , (2.13)

admits infinitely many solutions since the kernel of X is non-trivial. The associated estimators
are given by

q̄σ : D → RN , ω → q̂ + (X∗Σ̂−1X + σ Id)−1(X∗Σ̂−1(y†d + εσ(ω)− S[q̂](x)))

Its σ-dependent mean is

E[q̄σ] = q̂ + (X∗Σ̂−1X + σ Id)−1(X∗Σ̂−1(y†d − S[q̂](x))).

In the same way, its covariance matrix is determined as

Cσ = σ(X∗Σ̂−1X + σ Id)−1X∗Σ̂−1X(X∗Σ̂−1X + σ Id)−1.

For σ → 0 we conclude

(X∗Σ̂−1X + σ Id)−1X∗Σ̂−1/2 → (Σ−1/2X)†,

where (Σ̂−1/2X)† denotes the Moore-Penrose inverse of Σ̂−1/2X. Accordingly, there holds

Cσ → 0, E[q̄σ]→ q† := q̂ + (Σ̂−1/2X)†Σ̂−1/2(y†d − S[q̂](x)),

as σ → 0. The limiting parameter q† is the unique minimum norm solution to (2.13) with respect
to the euclidean norm shifted by q̂, see e.g. [184, Theorem 20.9]. That is

q† = arg min
q∈Rn

{
|q − q̂|Rn | q ∈ arg min

q̃∈Rn
|Σ̂−1/2(S[q̂](x) +X(q̃ − q̂)− y†d)|

2
RN

}
.

Combining all previous observations, we obtain

MSE(q̄σ, q
†) = |E[q̄σ]− q†|2Rn + TrRn(Cσ)→ 0

as σ tends to zero.
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2.3 Uncertainty quantification & optimal design

2.3.3 Interlude: The Bayesian approach

Before proceeding to the main part of the thesis, we briefly outline a different regularization
strategy for the stable solution of the ill-posed inverse problem (2.5). Here, instead of solving
an optimization problem, we encode our prior uncertainty on a suitable choice for the unknown
parameter into a probability measure. Thus, besides our already probabilistic description of the
measurement error, we now also adopt a stochastic model for the parameter. Consequently, the
regularized solution to the inverse problem is not given by a single element qydpost ∈ Q but a
probability distribution µydpost on the parameter space. We refer to this method as the Bayesian
approach, see e.g. [153, 160]. For convergence results in the vanishing noise limit we point out
to [149, 150] and Section 2.3 of [250]. As we will see, the Bayesian approach allows to asses the
statistical quality of the obtained regularized solutions based on well-known properties of proba-
bility measures. Similar to the case of Tikhonov regularization, this leads to the consideration of
scalar-valued optimal design criteria acting on the Fisher information operator X∗Σ−1X.

The following arguments are restricted to the case of Q = Rn, n ∈ N. A profound descrip-
tion of the Bayesian approach for inverse problems with infinite dimensional parameter spaces and
optimal sensor placement in this context is given in Chapter 5. We briefly recall that the mea-
surement noise is modeled by a random variable ε distributed according to a Gaussian probability
measure µE = N (0, Σ). Thus, its density function with respect to the Lebesgue measure on RN
is, up to a normalization constant, given by

πnoise(ε) ∝ exp

(
−1

2
|ε|2Σ−1

)
∀ε ∈ RN

where the weighted euclidean norm is defined as |ε|2Σ−1 = (ε,Σ−1ε)RN . In the Bayesian approach
we proceed similarly for the unknown parameter and describe our prior uncertainties by a Gaussian
distribution centered at the linearization point q̂. In more detail, we assume q ∼ µ0 = N (q̂, I−1

0 )
where I0 is a positive definite matrix. We refer to µ0 as the prior distribution of the parameter.
The associated density function with respect to the Lebesgue measure on Rn is

πprior(q) ∝ exp

(
−1

2
|I1/2

0 (q − q̂)|2Rn
)
∀q ∈ Rn.

The random variables q and ε are assumed to be independent. The regularized solution to the
inverse problem in (2.5) for a measurement vector yd ∈ RN is now given by the posterior distri-
bution µydpost which is a probability measure on the parameter space with density function

πpost(q) ∝ πnoise(S[q̂](x) +X(q − q̂)− yd)πprior(q) ∀q ∈ Rn. (2.14)

Loosely speaking, the posterior distribution combines our prior beliefs on the unknown parameter
and the information provided by the measurement data. This intuition is backed up its probability
density function which is large at parameters q ∈ Q that are close to the linearization point q̂,
with respect to the euclidean norm weighted by I0, and at which the response of the mathematical
model approximately matches the measurement vector. A rigorous justification of this definition
can be based on Bayes’ Theorem and the notion of conditional density functions. We do not go
into greater detail at this point. Note that the statement in (2.14) does neither require a Gaussian
distribution for the measurement noise or a Gaussian prior distribution for the parameter. In
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2 From inverse problems to optimal sensor placement

the present case however, it is readily verified that the posterior distribution µydpost is a Gaussian
probability measure characterized by

µydpost = N (qydpost, (X
∗Σ−1X + I0)−1) with qydpost = q̂ + (X∗Σ−1X + I0)−1X∗Σ−1(yd − S[q̂](x)).

Observe that its mean is given by the unique global minimizer of

min
q∈Rn

[
1

2
|X(q − q̂) + S[q̂]− yd|2Σ−1 +

1

2
|I1/2

0 (q − q̂)|2Rn
]
,

which is also referred to as the maximum a posteriori probability estimate. Clearly, this is closely
related to a Tikhonov regularized solution of (2.5) for the particular case of choosing the weighting
matrix in the regularization term as the square root of the inverse covariance operator.

In order to assess the statistical quality of the obtained solution we may now, e.g., quantify the
variability of the posterior distribution µydpost by computing the expected deviation of the associated
random variable from its mean qydpost. By definition of the covariance operator this corresponds
to ∫

RN
|q − qydpost|2Rn dµydpost(q) = TrRn((X∗Σ−1X + I0)−1).

Another frequently considered criterion is the negative of the expected information gain between
prior and posterior distribution, [249], which is, in the present case, given by

log
(
Det((X∗Σ−1X + I0)−1)

)
.

We take a closer look on the derivation of this term in Chapter 5. Please note the similarity of
these two criteria to those introduced for Tikhonov regularization in the previous sections.

As for the Tikhonov regularized problems, we stress that both of these exemplary design criteria
are independent of the particular measurement vector yd ∈ RN but depend on the position
of the sensors and the variances of the measurements through the Fisher information operator.
Thus, we may again, in a statistical sense, optimize the estimation process before performing any
measurements in practice by solving a minimization problem for the optimal measurement setup.
For an overview on Bayesian experimental design we point out to [68].

To close these discussions we briefly summarize the most important observations of this chapter.
First, the inverse problem of identifying an unknown parameter from finite-dimensional data is in
general ill-posed. Thus, it calls for sophisticated regularization strategies. Second, it is reasonable
to assume that the provided measurements are subject to random perturbations. Through the
estimation process, the uncertainty in the measurement data is also propagated into the parameter
space. This has to be properly addressed by e.g. modeling the unknown parameter itself as a
random quantity or by viewing the Tikhonov regularized solution as a particular realization of a
suitable random estimator. Finally, we have observed that the statistical quality of the obtained
regularized solution to the inverse problem can be quantified independent of the measurement
vector yd based on properties of the Fisher information X∗Σ−1X. Since this operator depends on
the measurement setup we can a priori, i.e. before any measurements are performed in practice,
improve the estimation process by solving a minimization problem

min
xi∈Ωo,ui∈R+,N∈N

[Ψ(X∗Σ−1X) +R(u)] s.t. (Xq)i = (O(xi), q)Q, Σ
−1
ij = δijui
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2.3 Uncertainty quantification & optimal design

for all q ∈ Q, i, j = 1, . . . , N . Here we minimize with respect to the optimal number N of
performed measurements, the positions of the sensors {xi}Ni=1 in the candidate set Ωo as well as
the nonnegative measurement weights {ui}Ni=1 describing how careful each measurement should
be taken. The functional Ψ is a usually convex and differentiable function referred to as optimal
design criterion and R(u) is a suitable regularization term representing the cost of the experiment
based on the measurement weight vector u = (u1, . . . ,uN )>. This key observation builds a bridge
between inverse problems and the sensor placement formulations discussed in the remainder of the
present thesis.
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3 A sparse control approach to optimal
sensor placement

Throughout the course of this chapter we consider a general linear inverse problem given by

find q ∈ Q : (O(xi), q)Q = yid = (O(xi), q
∗)Q + εi, i = 1, . . . , N,

Here we aim to recover an unknown true parameter q∗ in a Hilbert space Q from a finite number of
observations yid ∈ R. Each of these N ∈ N measurements is obtained by taking the inner product
on Q between the parameter and an element O(xi) ∈ Q, i = 1, . . . , N . By O : Ωo → Q we denote
a continuous function on a compact set Ωo ⊂ Rd, d ∈ N. It maps a spatial point x ∈ Ωo to O(x)
in the parameter space which models the action of a measurement device or a sensor located at
this point.

As an illustrative example the reader may always think of situations in which inference on the true
value of the parameter is only indirectly possible through pointwise measurements of a continuous
function y = Su ∈ C(Ωo). If S : Q → C(Ωo) is a compact linear and continuous operator we
define O(x) = S∗δx where δx denotes the Dirac delta function supported on x ∈ Ω. The resulting
function O : Ωo → Q is continuous and fulfills

(O(x), q)Q = (S∗δx, q)Q = 〈Su, δx〉 = y(x),

for all x ∈ Ωo and q ∈ Q. However we also stress that the following considerations are not limited
to this case.

The observation of the sensor at xi is subject to perturbation by additive noise εi drawn from a
random variable εi ∼ N (0, 1/ui). The strictly positive scalar ui ∈ R+ \ {0} may be interpreted
as a diligence factor quantifying how carefully the observation at xi is taken. For example ui
might be related to the variance of the used sensor or gives the total number of measurements
taken at the same location. The measurement errors at two distinct locations are assumed to
be independently distributed. Assembling the N equations in one system we arrive at a linear
operator equation

find q ∈ Q : Xq = Xq∗ + ε = yd, i = 1, . . . , N,

where ε is a realization of the normally distributed random variable ε ∼ N (0, Σ) and the observa-
tions are collected in the vector yd ∈ RN . The parameter-to-observation operator X ∈ L(Q,RN )
and the matrix Σ are given as

(Xq)i = (O(xi), q)Q ∀q ∈ Q, Σij = δij/ui, i, j = 1, . . . , N.

Following the discussion in Section 2.3, the statistic quality of approximate solutions to this inverse
problem obtained by e.g. Tikhonov regularization methods, can be measured by scalar-valued
criteria Ψ acting on the Fisher information operator

X∗Σ−1X ∈ L(Q,Q).
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3 A sparse control approach to optimal sensor placement

Again, we point out to the crucial observation that this operator is independent of the measure-
ments yd ∈ RN but depends on the number and positions of the measurement sensors as well as
the statistical quality of the measurements

x = (x1, . . . , xN )> ∈ ΩN
o , u = (u1, . . . ,uN )> ∈ RN+ .

In this chapter we aim to mitigate the influence of the stochastic perturbation in the data on the
estimates of the parameter. For this purpose, we optimize the data acquisition process. More
in detail we will improve the measurement setup by an optimal choice of the number N ∈ N
of measurements, their positions xi in Ωo as well as the diligence factors ui ∈ R+ a priori, i.e.
before any measurements are performed in practice. We base our discussions on an optimal control
formulation of the problem given by

min
x∈ΩNo , u∈RN+ N∈N

Ψ(X∗Σ−1X) +G(‖u‖1) s.t. (Xq)i = (O(xi), q)Q, Σ−1
ij = δijui, (3.1)

for all q ∈ Q and i, j = 1, . . . , N . Here we minimize a given convex optimal design criterion Ψ
acting on the Fisher information which is parametrized as a function of x ∈ ΩN

o , u ∈ RN+ and
N ∈ N. To account for the cost of the experiment in the sensor placement formulation we add a
second term to the problem involving the 1 norm of the measurement weight vector. This creates
a trade-off between the statistic optimality of the measurement setup and its cost. For the specific
assumptions on G and Ψ we refer to the next section. If the maximum number N of sensors was
fixed and Ωo consists of finitely many candidate locations such a regularization is known to induce
sparsity on the coefficient vector, i.e. an optimal weight vector ū will only admit few non-zero
entries. For other optimal design approaches involving sparsity promoting regularizations we refer
to [4, 71, 127]. In contrast to these prior approaches the set of candidate locations for the sensors
does not need to be finite in the context of this thesis. Quite the contrary, our special interest
lies in admissible sets Ωo containing a possibly uncountable number of points. Moreover, we also
do not prescribe an a priori upper bound on the possible number of sensors to be used in the
measurement process.

At first glance, in spite of the convexity of Ψ , problem (3.1) is non-convex due to the parameter-
ization in terms of the points xi, and has a combinatorial aspect due to the unknown number of
measurements N . The main feature of the approach considered in this thesis is to bypass these
difficulties by embedding the problem into a more general abstract formulation. Introducing the
set of positive Borel measuresM+(Ωo) on Ωo, see Section 3.1.2, we determine an optimal design
measure from

min
u∈M+(Ωo)

Ψ(I(u)) +G(‖u‖M), s.t. I(u) =

∫
Ωo

[O(x)⊗O(x)] du(x), (3.2)

where ‖u‖M is the canonical total variation norm. The operator I(u) is given as the Bochner
integral of the pointwise Fisher information

I : Ωo → SHS(Q,Q), x 7→ O(x)⊗O(x),

which assumes values in the space of self-adjoint Hilbert-Schmidt operators on Q, see Section 3.1.1.
For fixed x ∈ Ωo, the operator O(x)⊗O(x) acts on Q via

(δq1[O(x)⊗O(x)]δq2)Q = (O(x), δq1)Q(O(x), δq2)Q ∀δq1, δq2 ∈ Q.
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3.1 Notation

Since the operator I(u) depends linearly on the Borel measure, the new problem in (3.2) is convex.
We give a detailed description of the derivation of (3.2) and its connection to (3.1) in Section 3.2.
Loosely speaking, instead of minimizing for the positions and the quality of individual sensors, we
now optimize the distribution of the measurements over the candidate set Ωo.

Let us put this work into perspective. By choosing G as the convex indicator function of the
interval [0,K], we arrive at

min
u∈M+(Ωo)

Ψ(I(u)) subject to ‖u‖M ≤ K, (3.3)

where K > 0 denotes the overall maximal cost of the measurements. Under certain conditions
on Ψ it can be shown that the inequality constraint in (3.3) is attained for every optimal de-
sign. This relates (3.3) closely to the concept of approximate designs introduced by Kiefer and
Wolfowitz in [165] for general linear-regression. This approach models possible distributions of
measurement sensors by probability measures on Ωo. We refer also to [9,105,107,198,205,222] for
the analysis of this kind of optimal design formulations. For the adaptation of this approach to
parameter estimation in distributed systems we refer to [17,256]. Indeed, some key results derived
in this context, can also be concluded from our general considerations. Most importantly, we de-
rive several equivalent first order optimality conditions for (3.2), which reduce to the well-known
equivalence theorem due to Kiefer and Wolfowitz, see [165], in this special situation. Moreover,
we stress that the references above only consider the case of Q = Rn, n ∈ N. From this point of
view our sensor placement formulation can be viewed as a natural generalization of this problem.
We further comment on the similarities of our approach to this classical one in the subsequent
chapters.

Furthermore, choosing G(‖u‖M) = β‖u‖M for β > 0, we end up with a norm-regularized prob-
lem

min
u∈M+(Ωo)

Ψ(I(u)) + β‖u‖M. (3.4)

Optimization problems with total variation regularization recently received increased attention.
We refer e.g. to [50, 74, 95, 210]. In the context of optimal sensor placement a special instance
of problem (3.4) was considered in [200] for the task of optimizing the measurement setup in a
finite-dimensional, PDE-constrained, inverse problem. For a detailed discussion of sparse sensor
placement in this context we also refer to Chapter 4 of the present work.

The aim of this chapter is to provide a rigorous and unified framework to prove well-posedness
of (3.2) as well as to analyze the structure of design measures which are obtained from solving it.
While it is clear that (3.2) is a more general formulation than (3.1), it can be shown that it admits
solutions of the form u =

∑N
i=1 uiδxi under certain conditions, making both approaches essentially

equivalent. Applications of this general framework to inverse problems with PDE constraints
involving an unknown finite dimensional parameter and to infinite-dimensional Bayesian inverse
problems with PDEs can be found in the subsequent chapters.

3.1 Notation

In this section we briefly introduce the additional notation which is needed throughout this chap-
ter. Most important, we summarize the necessary theoretical background on Borel measures and
Hilbert-Schmidt operators.
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3 A sparse control approach to optimal sensor placement

3.1.1 Hilbert-Schmidt operators

Throughout this chapter we consider a real separable Hilbert space Q equipped with the scalar
product (·, ·)Q. The induced norm is denoted by ‖ · ‖Q. In general Q will not be identified with
its topological dual space Q∗. The corresponding duality pairing will be denoted by 〈·, ·〉Q,Q∗ . By
TQ : Q→ Q∗ we denote the Riesz isomorphism

〈δq1, TQδq2〉Q,Q∗ = (δq1, δq2)Q ∀δq1, δq2 ∈ Q.

The space Q∗ is a Hilbert space with respect to the canonical scalar product

(δq∗1, δq
∗
2)Q∗ = 〈T−1

Q δq∗1, δq
∗
2〉Q,Q∗ , ‖δq∗1‖Q∗ =

√
(δq∗1, δq

∗
1) ∀δq∗1, δq∗2 ∈ Q∗.

Given a linear continuous operator B between Q and Q∗ we fix the following terminology.

Definition 3.1. Let B ∈ L(Q,Q∗) be given. We define:

• B is called non-negative iff

〈δq1, Bδq1〉Q,Q∗ ≥ 0 ∀δq1 ∈ Q.

• B is called self-adjoint iff

〈δq1, Bδq2〉Q,Q∗ = 〈δq2, Bδq1〉Q,Q∗ ∀δq1, δq2 ∈ Q.

• B is called positive iff B is self-adjoint and non-negative.

In the course of the following sections we will deal with several subsets in the space of bounded
linear operators between Q and Q∗. We first fix the notion of trace class operators from Q into
itself, c.f. [243].

Definition 3.2. Let an orthonormal basis {φi}i∈I, I ⊂ N, of Q and B ∈ L(Q,Q) be given. We
formally define the trace of B as

TrQ(B) =
∑
i∈I

(φi, Bφi)Q. (3.5)

An operator B ∈ L(Q,Q) is called a trace-class operator on Q iff

TrQ(|B|) =
∑
i∈I

(φi, (B
∗B)

1
2φi)Q <∞.

Here |B| = (B∗B)
1
2 ∈ L(Q,Q) denotes the uniquely determined positive square root of the positive

operator B∗B, [33].

If Q is infinite dimensional the trace of B ∈ L(Q,Q) is not finite in general. However if its trace is
finite the value is independent of the chosen basis. Following these preparatory steps we introduce
the set of Hilbert-Schmidt operators on Q.
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Definition 3.3. Let B ∈ L(Q,Q∗) be given. We call B Hilbert-Schmidt iff

TrQ(B∗B) =
∑
i∈I

(φi, B
∗Bφi)Q =

∑
i∈I
‖Bφi‖2Q∗ <∞.

The real vector space of Hilbert-Schmidt operators from Q into Q∗ is denoted by

HS(Q,Q*) := {B ∈ L(Q,Q∗) | TrQ(B∗B) <∞} .

Analogously we define the vector space of self-adjoint Hilbert-Schmidt operators as

SHS(Q,Q∗) := {B ∈ HS(Q,Q∗) | B self-adjoint } .

On HS(Q,Q∗) we consider the Hilbert-Schmidt scalar product

〈〈B1, B2〉〉HS(Q,Q∗) = TrQ(B∗1B2) =
∑
i∈I

(B1φi, B2φi)Q∗ , B1, B2 ∈ HS(Q,Q∗). (3.6)

Again, its value is independent on the choice of the orthonormal basis {φi}i∈I, see Lemma [12,
Lemma 12.1.1.].

Proposition 3.1. The vector spaces HS(Q,Q∗) and SHS(Q,Q∗), respectively, form separable
Hilbert spaces with respect to the norm

‖ · ‖HS(Q,Q) =
√
〈〈·, ·〉〉HS(Q,Q∗) =

√∑
i∈I
‖ · φi‖2Q∗ ,

induced by the Hilbert-Schmidt scalar product (3.6).

Proof. For HS(Q,Q∗) this is stated in, e.g., [12, Theorem 12.1.1]. Since SHS(Q,Q∗) is a closed
subspace of HS(Q,Q∗) the statement follows.

Note that Hilbert-Schmidt operators are compact, [12, Proposition 12.1.3.]. The set of positive
Hilbert-Schmidt operators

Pos(Q,Q∗) := {B ∈ SHS(Q,Q∗) | B is positive } ,

is a closed subset of SHS(Q,Q∗). Given two elements q∗1, q∗2 ∈ Q∗ we define the linear continuous
operator

q∗1 ⊗ q∗2 ∈ L(Q,Q∗), [q∗1 ⊗ q∗2]q1 = q∗1〈q1, q
∗
2〉Q,Q∗ , q1 ∈ Q. (3.7)

The following corollary summarizes some properties of these rank 1 operators.

Corollary 3.2. There holds

q∗1 ⊗ q∗2 ∈ SHS(Q,Q∗), q∗1 ⊗ q∗1 ∈ Pos(Q,Q∗), q∗1, q
∗
2 ∈ Q∗,

with

‖q∗1 ⊗ q∗2‖HS(Q,Q∗) = ‖q∗1‖Q∗‖q∗2‖Q∗ .

Furthermore if we identify Q with its dual space the rank 1 operator q1 ⊗ q2 is of trace class on Q
with

TrQ([q1 ⊗ q2]) = (q1, q2)Q, q1, q2 ∈ Q.
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3 A sparse control approach to optimal sensor placement

Proof. We give a short proof of these facts. Given q∗1, q∗2 ∈ Q∗ the operator induced by (3.7) is
obviously self-adjoint and additionally non-negative if q∗1 = q∗2. We calculate

TrQ([q∗1 ⊗ q∗2][q∗1 ⊗ q∗2]) =
∑
i∈I
‖[q∗1 ⊗ q∗2]φi‖2Q∗ = ‖q∗1‖2Q∗

∑
i∈I

(T−1
Q q∗2, φi)

2
Q

= ‖q∗1‖2Q∗‖T−1
Q q∗2‖2Q = ‖q∗1‖2Q∗‖q∗2‖2Q∗,

where we used that the Riesz isomorphism is an isometry. Taking the square root yields the result.
If Q ' Q∗ we obtain

TrQ([q1 ⊗ q2]) =
∑
i∈I

(q1, φi)Q(q2, φi)Q = (q1, q2)Q,

from Parseval’s identity.

To close this section we consider two special instances of the presented abstract setting.

Example 3.1 (Hilbert-Schmidt on Rn). Let us first consider the case of Q ' Q∗ = Rn equipped
with the euclidean scalar product

(q1, q2)Q = (q1, q2)Rd = q>1 q2, q1, q2 ∈ Rn.

In this case we readily identify L(Q,Q) with the space of n×n matrices Rn×n. Since the parameter
space Q is finite dimensional every matrix B ∈ Rn×n is Hilbert-Schmidt and of trace-class on Rn.
The Hilbert-Schmidt norm corresponds to the Frobenius norm

‖B‖HS(Rn,Rn) = ‖B‖Sym =
√

TrRn(B>B) =

√√√√ n∑
i,j=1

B2
ij , B ∈ Sym(n).

The space SHS(Rn,Rn) is given by the symmetric matrices

Sym(n) =
{
B ∈ Rn×n | B> = B

}
,

and the positive Hilbert-Schmidt operators are identified with the non-negative definite matrices

NND(n) = {B ∈ Sym(n) | (δq,Bδq)Rn ≥ 0 ∀δq ∈ Rn } .

Last we obtain

q1 ⊗ q2 = q1q
>
2 for q1, q2 ∈ Rn.

Example 3.2 (Hilbert-Schmidt on L2(Ω)). As a second example we consider Q = L2(Ω) as the
space of square integrable function with respect to the Lebesgue measure on Ω ⊂ Rd open and
bounded. We identify L2(Ω) with its dual space and consider the canonical scalar product

(q1, q2)Q = (q1, q2)L2(Ω) =

∫
Ω
q1q2 dx for q1, q2 ∈ L2(Ω).

Let B ∈ HS(L2(Ω), L2(Ω)) be given. From the kernel theorem, [12, Theorem 12.6.1], B is Hilbert-
Schmidt on L2(Ω) if and only if there exists kB ∈ L2(Ω ×Ω) with

[Bq](x) =

∫
Ω
kB(x, y)q(y) dy, ‖B‖HS(L2(Ω),L2(Ω)) = ‖kB‖L2(Ω×Ω), q ∈ L2(Ω),
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3.1 Notation

and almost all x ∈ Ωo. Furthermore B is self-adjoint if and only if kB(x, y) = kB(y, x) for almost
all x, y ∈ Ωo. Given q1, q2 ∈ L2(Ω) the associated rank 1 operator is identified with k ∈ L2(Ω×Ω)
where k(x, y) = q1(x)q2(y) for almost all x, y ∈ Ω and

([q1 ⊗ q2]q)(x) =

∫
Ω
q1(x)q2(y)q(y) dy = q1(x)(q2, q)Q, ∀q ∈ Q.

3.1.2 Borel measures

In the following we consider an observation setΩo in which we allow the collection of measurements.
It is assumed to be a compact subset of Rd, d ∈ N. On Ωo we define the space of regular Borel
measuresM(Ωo) as the topological dual of C(Ωo), the space of continuous and bounded functions
(see, e.g., [100]), with associated duality pairing 〈·, ·〉 given by

〈ϕ, u〉 =

∫
Ωo

ϕ(x) du(x) ∀ϕ ∈ C(Ωo), u ∈M(Ωo).

Let us recall some properties of this space. Given u ∈ M(Ωo) we can interpret it as a countably
additive function u : B(Ωo) → R, where B(Ωo) denotes the Borel sets on Ωo. Its associated total
variation measure |u| ∈ M+(Ωo) is defined as

|u|(O) = sup

{ ∞∑
i=1

|u|(Oi) | Oi ∈ B(Ωo), disjoint partition of O

}
,

for all O ∈ B(Ωo). The space of Borel measures M(Ωo) forms a Banach space with the norm
given by

‖u‖M = |u|(Ωo) = 〈1, |u|〉 = sup
ϕ∈C(Ωo), ‖ϕ‖C≤1

〈y, u〉 = sup
ϕ∈C(Ωo), ‖ϕ‖C≤1

∫
Ωo

ϕ(x) du(x),

where ‖ · ‖C denotes the supremum norm on C(Ωo). Given K > 0 the indicator function of
the (scaled) unit ball with radius K in M(Ωo) is denoted by I‖u‖M≤K(·). By M+(Ωo) we refer
to the set of positive Borel measures on Ωo (see, e.g., [230, Def. 1.18]),

M+(Ωo) = {u ∈M(Ωo) | 〈ϕ, u〉 ≥ 0, ∀ϕ ∈ C(Ωo), ϕ ≥ 0 } ,

with convex indicator function Iu≥0(·). Given u ∈ M(Ωo) there exist unique positive measures
u+, u− ∈M+(Ωo) such that

u = u+ − u−, ‖u‖M = ‖u+‖M + ‖u−‖M,

c.f. [109]. Furthermore its support is defined as

suppu = Ωo\
(⋃
{O ∈ B(Ωo) | O open, |u|(O) = 0 }

)
.

Since every u ∈ M(Ωo) is finite, i.e. u(Ωo) < ∞, it is a Radon measure and thus its support
is a closed set. A sequence {uk}k∈N ⊂ M(Ωo) is called convergent with respect to the weak*-
topology with limit u ∈ M(Ωo) if 〈ϕ, uk〉 → 〈ϕ, u〉 for k → ∞ and for all ϕ ∈ C(Ωo). This is
indicated by uk ⇀

∗ u. Throughout the following chapters, we frequently wish to quantify the
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rate of convergence of a given weak* convergent sequence {uk}k∈N ⊂M+(Ωo). In general, weak*
convergence does not imply norm convergence

uk ⇀
∗ u 6⇒ ‖uk − u‖M → 0.

As an easy example consider a sequence {xk}k∈⊂N ⊂ Ωo with xk → x and xk 6= x for all k ∈ N.
Then it is readily verified that the corresponding Dirac delta functions fulfill δxk ⇀∗ δx but
‖δxk − δx‖M = 2 for all k ∈ N. As a consequence, the canonical norm is not suitable to quantify
weak* convergence. In the following consider a sequence {uk}k∈N ⊂ M+(Ωo) with limit u 6= 0.
Note that ‖uk‖M → ‖u‖M i.e. w.l.o.g we may assume uk 6= 0 for all k ∈ N. In order to metrize
the weak* convergence of such a sequence {uk}k∈N ⊂M+(Ωo) we observe that

uk ⇀
∗ u⇔ uk/‖uk‖M ⇀∗ u/‖u‖M, ‖uk‖M → ‖u‖M.

Hence, to quantify the weak* convergence we should account for the convergence of the norms and
the weak* convergence of the normalized measures. There are several possibilities to metrize the
weak* convergence of a sequence of normalized measures, c.f. the overview in [117]. As an example,
given two probability measures µ1, µ2, we consider their Wasserstein-1 distance, [259, Definition
6.1.], which is given (in its dual form) by

W1(µ1, µ2) = sup
{
〈ϕ, µ1 − µ2〉 | ϕ ∈ C0,1(Ωo), ‖ϕ‖Lip ≤ 1

}
,

using the Kantorovich-Rubinstein theorem, see [161]. Here, C0,1(Ωo) is the space of Lipschitz
continuous functions on Ωo with ‖ϕ‖Lip denoting the Lipschitz constant, see also Section 4.4.3.
We propose to quantify the convergence of a weak* convergent sequence {uk}k∈N ⊂M+(Ωo) with
nonzero limit through the modified Wasserstein distance

W̄1(uk, u) = W1(uk/‖uk‖M, u/‖u‖M) + |‖uk‖M − ‖u‖M|. (3.8)

We stress that the particular choice of the Wasserstein distance for the metrization of the weak*
convergence seems quite arbitrary at first. In the subsequent parts of this thesis our special
interest lies in sequences consisting of sparse measures, i.e. measures given as a finite comic
combinations of Dirac delta functions. In this situation we largely benefit from the representation
of the Wasserstein distance as supremum over Lipschitz continuous functions. This allows to
discuss convergence rates for the Wasserstein distance of such sequences based on convergence
results for their support points and the associated coefficients. We further establish some kind
of equivalence between the modified Wasserstein distance W̄1 and the norm on the dual space
of C0,1(Ωo). Additionally, for two probability measures consisting of finitely many Dirac delta
functions, the computation of W̄1 can be realized by solving a linear program, see e.g. [206, Section
2.7.], which is feasible if the number of support points is reasonably small. A closer inspection on
the choice of the metric and its impact on the convergence results derived in this thesis should be
a part of future work.

3.2 Sparse optimal sensor placement

This section is devoted to the derivation of the sparse sensor placement problem defined in (3.2)
and to clarify its connection to the formulation given in (3.1). Furthermore we state sufficient
and reasonable assumptions on the optimal design criterion Ψ as well as the regularization term
to allow for a rigorous analysis of the optimal sensor placement problem.
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3.2 Sparse optimal sensor placement

3.2.1 The Fisher operator

To start, we assume that the measurement O(x) at a given spatial point depends continuously on
the position. Furthermore the parameter space Q is identified with its dual space.

Assumption 3.1. Let Q ' Q∗ be a real, separable Hilbert space. The observation operator

O : Ωo → Q, x 7→ O(x),

is continuous.

Given the total number of measurements N , a vector of sensor positions x = (x1, . . . , xN )> ⊂ ΩN
o

and measurement weights u = (u1, . . . ,uN ) ∈ RN+ , we will call the triple (x,u, N) a measure-
ment setup in the following. Moreover, we recall the definitions of the associated parameter-to-
observation X ∈ L(Q,RN ) and the inverse of the noise covariance matrix Σ−1 ∈ RN×N as

(Xq)i = (O(xi), q)Q, Σ−1 = δijui ∀q ∈ Q, i, j = 1, . . . , N.

The resulting Fisher information operator X∗Σ−1X fulfills

(δq1, X
∗Σ−1Xδq2)Q = (Xδq1, Σ

−1Xδq2)RN =
N∑
i=1

ui(O(xi), δq1)Q(O(xi), δq2)Q ∀δq1, δq2 ∈ Q.

Using the rank 1 operator definition from Section 3.1.1, we now note that the Fisher information
operator can be equivalently rewritten as

X∗Σ−1X =
N∑
i=1

ui[O(xi)⊗O(xi)] ∈ L(Q,Q),

In the following proposition we collect some properties of the pointwise Fisher information map-
ping

I : Ωo → L(Q,Q), x 7→ O(x)⊗O(x). (3.9)

Proposition 3.3. For every x ∈ Ωo the operator I(x) as defined in (3.9) satisfies:

1. Given δq1, δq2 ∈ Q there holds

(δq1, I(x)δq2)Q = (O(x), δq1)Q (O(x), δq2)Q .

2. The operator I(x) is positive, i.e. we have

(δq2, I(x)δq1)Q = (I(x)δq2, δq1)Q , (δq1, I(x)δq1)Q ≥ 0 ∀δq1, δq2 ∈ Q.

3. I(x) is Hilbert-Schmidt on Q and of trace class: Given an index set I ⊂ N and an orthonor-
mal basis {φi}i∈I of Q we have

TrQ(I(x)) = ‖I(x)‖HS(Q,Q) =
∑
i∈I

(φi, I(x)φi)Q = ‖O(x)‖2Q.

Consequently, there holds I(x) ∈ Pos(Q,Q).
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3 A sparse control approach to optimal sensor placement

The mapping I : Ωo 7→ SHS(Q,Q) is uniformly continuous.

Proof. Let δq1, δq2 ∈ Q and x ∈ Ωo be arbitrary but fixed. By definition of the rank 1 operator
we have

(δq1, I(x)δq2)Q = (δq2, [O(x)⊗O(x)]δq1)Q =
(
δq1,O(x) (O(x), δq2)Q

)
Q

= (O(x), δq1)Q (O(x), δq2)Q .

Using this characterization we directly conclude

(δq1, I(x)δq2)Q = (O(x), δq1)Q (O(x), δq2)Q = (I(x)δq1, δq2)Q ,

as well as

(δq1, I(x)δq1)Q = (O(x), δq1)2
Q ≥ 0.

Hence I(x) is self-adjoint and non-negative.
Since I(x) is a rank 1 operator, it is of trace class in Q with

TrQ(I(x)) =
∑
i∈I

(φi, I(x)φi)Q =
∑
i∈I

(O(x), φi)
2
Q = (O(x),O(x))Q = ‖O(x)‖2Q,

where we used Parseval’s identity in the penultimate equality. Consequently it is also Hilbert-
Schmidt, I(x) ∈ HS(Q,Q), with

‖I(x)‖2HS(Q,Q) = TrQ(I(x)∗I(x)) = ‖O(x)‖4Q.

Taking the square root yields the desired result. It remains to prove the uniform continuity of I.
to this end let x ∈ Ωo and xj ⊂ Ωo with limj→∞ xj = x be given. We compute

‖I(x)− I(xj)‖2HS(Q,Q) = ‖O(x)‖4Q − 2 TrQ(I(x)∗I(xj)) + ‖O(xj)‖4Q.

Again, using Parseval’s identity we have

TrQ(I(x)∗I(xj)) =
∑
i∈I

(I(x)φi, I(xj)φi)Q

=
∑
i∈I

[(O(x),O(xj))Q (O(x), φi)Q (O(xj), φi)Q]

= (O(x),O(xj))
2
Q .

Due to the continuity of the observation operator O we conclude

lim
j→∞

TrQ(I(x)∗I(xj)) = lim
j→∞

[(O(x),O(xj))
2
Q] = ‖O(x)‖4Q,

and thus limj→∞ ‖I(x)− I(xj)‖2HS(Q,Q) = 0. Together with the compactness of Ωo this implies
uniform continuity of I.
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Let an arbitrary measurement setup (x,u, N) be given. Associated to this triple we define the
sparse design measure

u =

N∑
i=1

uiδxi ∈M+(Ω).

The mapping I : Ωo → SHS(Q,Q) is uniformly continuous and thus strongly measurable with
respect to u. Furthermore we have∫

Ω
‖I(x)‖HS(Q,Q) du(x) ≤ max

x∈Ωo
‖I(x)‖HS(Q,Q) ‖u‖M <∞.

Thus the Bochner integral of I with respect to the design measure is well defined due to the
separability of SHS(Q,Q), [267, Theorem 24.8]. Calculating the integral reveals

X∗Σ−1X =
N∑
i=1

ui[O(xi)⊗O(xi)] =

∫
Ωo

[O(x)⊗O(x)] du(x) =

∫
Ωo

I(x) du(x).

Consequently, we make the crucial observation that the Fisher information X∗Σ−1X can be
represented as the Bochner integral of I with respect to the sparse design measure u =

∑N
i=1 uiδxi .

Naturally we can extend this representation to every Radon measure u ∈M(Ω).

Proposition 3.4. Let u ∈M(Ωo) and its Jordan decomposition

u = u+ − u−, ‖u‖M = ‖u+‖M + ‖u−‖M, u+, u− ∈M+(Ωo),

be given. Then the Bochner integrals of I with respect to u+ and u−, respectively, are well defined.
Set

I(u) = I(u+)− I(u−) =

∫
Ωo

[O(x)⊗O(x)] du+(x)−
∫
Ωo

[O(x)⊗O(x)] du−(x).

Then I(u) ∈ SHS(Q,Q) and the mapping

I : M(Ωo)→ SHS(Q,Q), u 7→ I(u), (3.10)

is linear and continuous. There holds

‖I‖L(M(Ωo),SHS(Q,Q)) ≤ max
x∈Ωo

‖O(x)‖2

To prove these results, we recall a basic property of the Bochner integral.

Lemma 3.5. Let H be an arbitrary Hilbert space and let T ∈ L(SHS(Q,Q), H) be given. Then
the function TI : Ωo → H is Bochner integrable with respect to u ∈M+(Ωo) and

TI(u) =

∫
Ωo

TI(x) du(x), (3.11)

i.e. applying T commutes with the integral.

Proof. See [8, Theorem 2.1].
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Let us now prove Proposition 3.4.

Proof of Proposition 3.4. Let u ∈ M(Ωo) and its Jordan decomposition u = u+ − u− be given.
Due to the uniform continuity of I its Bochner integrals with respect to u+ and u− respectively
are well-defined and thus I(u) ∈ SHS(Q,Q). We proceed to prove the linearity of I. Let two
measures u1, u2 ∈ M(Ωo), λ ∈ R be given. Note that in general (λu1 + u2)+ 6= λu+

1 + u+
2 . To

circumvent this problem let B ∈ SHS(Q,Q) be arbitrary but fixed. Using Lemma 3.5 we obtain

TrQ(B∗I(λu1 + u2)) = TrQ(B∗I((λu1 + u2)+))− TrQ(B∗I((λu1 + u2)−))

=

∫
Ωo

TrQ(B∗I(x)) d(λu1 + u2)+(x)−
∫
Ωo

TrQ(B∗I(x)) d(λu1 + u2)−(x)

= λ

∫
Ωo

TrQ(B∗I(x)) du1(x) +

∫
Ωo

TrQ(B∗I(x)) du2(x)

= λTrQ(B∗I(u1)) + TrQ(B∗I(u2)),

where we used the linearity of the Bochner integral in the second inequality, the linearity of duality
pairing between C(Ωo) and M(Ωo) in the third one as well as the continuity of the trace. Since
B was chosen arbitrary we conclude I(λu1 + u2) = λI(u1) + I(u2). This yields the linearity of I.
Finally, given u ∈M(Ωo) we obtain

‖I(u)‖HS(Q,Q) ≤
∥∥I(u+)

∥∥
HS(Q,Q)

+
∥∥I(u−)

∥∥
HS(Q,Q)

≤
∫
Ωo

‖I(x)‖HS(Q,Q) du+(x) +

∫
Ωo

‖I(x)‖HS(Q,Q) du−(x)

≤ max
x∈Ωo

‖I(x)‖HS(Q,Q) ‖u‖M,

where we used |u| = u+ + u− and

‖I(ũ)‖HS(Q,Q) ≤
∫
Ωo

‖I(x)‖HS(Q,Q) dũ(x),

for all ũ ∈M+(Ωo), c.f [8, Theorem 2.1]. Noting that

max
x∈Ωo

‖I(x)‖HS(Q,Q) = max
x∈Ωo

‖O(x)‖2Q,

see Proposition 3.3, we conclude

‖I‖L(M(Ωo),SHS(Q,Q)) ≤ max
x∈Ωo

‖O(x)‖2.

Due to the linearity of the Bochner integral, some properties of I(x), x ∈ Ωo, are carried over to
I(u) if u ∈M+(Ωo).

Corollary 3.6. Let u ∈M+(Ωo) be given. Then the Fisher information I(u) satisfies:

1. The operator I(u) is positive:

(δq2, I(u)δq1)Q = (I(u)δq2, δq1)Q , (δq1, I(u)δq1)Q ≥ 0 ∀δq1, δq2 ∈ Q.
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2. The operator I(u) is of trace class with

TrQ(I(u)) =

∫
Ωo

‖O(x)‖2Q du(x).

Proof. Since I(u) ∈ SHS(Q,Q) it is self-adjoint. Given δq1, δq2 ∈ Q we observe

(δq1, I(u)δq1)Q =

∫
Ωo

(δq1, I(x)δq1)Q du(x) ≥ 0,

since I(x) is non-negative for every x ∈ Ωo and u ∈ M+(Ωo). Let an index set I ⊂ N and an
orthonormal basis {φi}i∈I be given. If I is finite, i.e. Q is finite dimensional, then we readily
obtain

TrQ(I(u)) =
∑
i∈I

(φi, I(u)φi)Q =

∫
Ωo

TrQ(I(x)) du(x) =

∫
Ωo

‖O(x)‖2Q du(x).

Assume that I = N. For n ∈ N we define the continuous function

fn : Ωo → R, fn(x) =

n∑
i=1

(φi, I(x)φi)Q .

There holds ∫
Ωo

fn(x) du(x) =
n∑
i=1

∫
Ωo

(φi, I(x)φi)Q du(x) =
n∑
i=1

(φi, I(u)φi)Q .

Let us observe that for every n ∈ N and x ∈ Ωo we have fn+1(x) ≥ fn(x) ≥ 0 as well as
limn→∞ fn(x) = ‖O(x)‖2Q. Consequently, applying the monotone convergence theorem, see [100,
Theorem 2.7], we can apply the limit on both sides to obtain

TrQ(I(u)) = lim
n→∞

∫
Ωo

fn(x) du(x) =

∫
Ωo

‖O(x)‖2Q du(x).

This concludes the proof.

3.2.2 Sparse optimal design

Let us now return to the modeling of the sensor placement problem. While the primary goal of
an optimal measurement setup is to minimize the uncertainty in the estimation of the parameter
it should also account for the costs of the experiment and either aim to minimize them simul-
taneously or ensure that overall budget constraints are respected. Assuming that the cost of a
single measurement is independent on the position of the measurement sensor and scales linearly
with the measurement weight, the cost of the experiment can be modeled by the 1 norm of the
measurement weight vector u ∈ RN+ . To incorporate these costs in the optimal design problem we
will add a general, convex regularization term G(‖u‖1) to the design criterion Ψ . For example we
may consider

G1(‖u‖1) = β‖u‖1 , β > 0, or G2(‖u‖1) = I[0,K](‖u‖1), K > 0.
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In this fashion, the experimenter may on the one hand create a trade-off between minimizing the
optimal design criterion Ψ and the cost of the experiment or, on the other hand, the total budget
for the experiment can be fixed a priori.

For the optimal inference of the unknown parameter we now propose to choose (x,u, N) by
minimizing the sum of a convex optimal design criterion Ψ acting on the parametrized Fisher
information operator X∗Σ−1X and the cost term:

min
x∈ΩNo , u∈RN+ , N∈N

[Ψ(X∗Σ−1X) +G(‖u‖1)] s.t. (Xq)i = (O(xi), q)Q, Σ−1
ij = δijui, (3.12)

for all q ∈ Q and i, j = 1, . . . , N . For the concrete assumptions on Ψ and G, we refer to the
following section. Let N be fixed for the moment. Note that, despite of the convexity of Ψ ,
the dependence of the Fisher information operator on the pair (x,u) is in general non-convex.
Thus (3.12) may admit a large number of local extrema which are not necessarily minima. Addi-
tionally the unknown optimal number of sensors as well as the, possibly complicated, geometry of
Ωo may aggravate its algorithmic treatment. As a consequence, even if we knew that this sensor
placement problem admits a global minimizer its direct computation is in most cases infeasible.

As a remedy we consider the sparse sensor placement problem

min
u∈M+(Ωo)

[Ψ(I(u)) +G(‖u‖M)], (P)

where we minimize for the measure u ∈ M+(Ωo) instead of the measurement setup (x,u, N). In
contrast, due to the linearity of the Fisher information operator I, the mapping

Ψ ◦ I : M+(Ωo)→ R, u 7→ Ψ(I(u)),

is convex. Thus, (P) is a convex optimization problem on the space of Borel measures M(Ωo)
and each of its extrema is a global minimum.

Let us clarify the connection between these two, seemingly different, approaches. Given a mea-
surement setup (x,u, N) we obtain that the corresponding sparse design measure u =

∑N
i=1 uiδxi

fulfills

u ∈ cone{ δx | x ∈ Ωo } =

{
u =

N∑
i=1

uiδxi | N ∈ N, u ∈ RN+ , x ∈ ΩN
o

}
.

Furthermore we observe

‖u‖M = ‖u‖1 =

N∑
i=1

ui.

Consequently, instead of minimizing with respect to the number and positions of the sensors as
well as the measurement weights, we can directly minimize for the design measure:

min
u∈M(Ωo)

[Ψ(I(u)) +G(‖u‖M)] s.t. u ∈ cone{ δx | x ∈ Ωo }. (3.13)

Up to now we have not discussed whether (3.12) or, equivalently, (3.13) admit optimal solutions.
As a matter of fact, this is not clear a priori, since the set of admissible design measures is not
sequentially compact with respect to a suitable topology on M+(Ωo). To obtain an, a priori,
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3.2 Sparse optimal sensor placement

well-posed problem we therefore replace the cone of all Dirac delta functions by its closure with
respect to the weak* topology obtaining

cone{ δx | x ∈ Ωo }
∗

=M+(Ωo).

Hence, we arrive at (P). Under reasonable assumptions on Ψ and G, existence of an optimal
design measure ū ∈ M+(Ωo) can be proven in this framework, see Section 3.2.3. In this light,
the sparse sensor placement reformulation follows naturally from (3.12) by embedding it into a
rigorous analytic framework.

To close this section, we briefly comment on some features of the sparse sensor placement approach
that should be kept in mind throughout the following chapters. First, we stress that the existence
of a sparse optimal solution ū ∈ cone{ δx | x ∈ Ωo }, cannot be ensured in general. However
it is straightforward to see that (3.12) admits an optimal solution (x̄, ū, N) if and only if the
corresponding design measure ū =

∑N
i=1 ūiδx̄i minimizes in (P). From this perspective both

formulations can be seen as equal with the crucial difference that (P) is convex. In Section 3.2.4
we review conditions that guarantee the existence of an optimal design measure consisting of
finitely many Dirac delta functions, making both approaches essentially equivalent in these cases.
In particular, this is the case if Q is finite dimensional.

Furthermore, recall that all statistical arguments were made under the assumption that the number
of measurements is finite and the measurement errors are independently distributed. For sparse
senor placement problems we can construct simple examples, see Example 4.2, admitting optimal
measurement designs which are distributed functions. From a statistical viewpoint it is up to
now unclear how to interpret non-sparse optimal designs. However we stress that any such design
can be approximated, in the weak* sense, by a finite combination of Dirac deltas up to arbitrary
accuracy.

Last, in many works on optimal sensor placement with finite candidate set Ωo, additional 0-1
constraints on the measurement weights are imposed. These might result from a binary interpre-
tation of the weight where 1 corresponds to taking a measurement at the sensor location and 0
means neglecting it. Usually, these conditions are relaxed, yielding box constraints on the vector
of measurement weights. That is, we require 0 ≤ ui ≤ 1, i = 1, . . . , N . For general sets Ωo we
now outline that such additional constraints on the magnitude of the measurement weights are
not meaningful. This stems back to the fact that weight-constrained sensors tend to cluster. To
highlight this fact mathematically let us consider the observational domain Ωo as the closure of a
bounded domain in Rd. On Ωo we consider conic combinations of pairwise different Dirac delta
functions with bounded coefficients

M+
const(Ωo) =

{
u ∈M+(Ωo) | u =

N∑
i=1

uiδxi , xi 6= xj , 0 ≤ ui ≤ 1, i = 1, . . . , N, N ∈ N

}
.

Since this set is not sequentially weak* compact the sensor placement problem

min
u∈M+(Ωo)

[Ψ(I(u)) +G(‖u‖M)] s.t. u ∈M+
const(Ωo), (3.14)

is not well-posed in general. To identify the weak* closure ofM+
const(Ωo) let

u =
N∑
i=1

uiδxi ∈ cone{ δx | x ∈ Ωo }, xi 6= xj , i, j ∈ {1, . . . , N},
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3 A sparse control approach to optimal sensor placement

be given. Fix an index i = 1, . . . , N . For R > 0 the intersection Ωo ∩BR(xi) is nonempty and has
nonzero Lebesgue measure. Thus there exists a measure uRi ∈M

+
const(Ωo) with

max
x∈suppuRi

|x− xi| ≤ R, ‖uRi ‖M = ui.

Letting R tend to zero we conclude uRi ⇀
∗ uiδxi . Repeating this argument for each support point

and choosing R small enough we get suppuRi ∩ suppuRj = ∅ for all i = 1, . . . , N as well as

uR =

N∑
i=1

uRi ∈M+
const(Ωo), uR ⇀∗ u.

We deduce

M+(Ωo) = cone{ δx | x ∈ Ωo }
∗ ⊂M+

const(Ωo)
∗
⊂M+(Ωo).

Consequently, replacingM+
const(Ωo) by its weak* closure in (3.14) we again arrive at (P).

The preceding discussion specifically implies that sensor placement problems with 0−1 constraints
on the measurement weights and no further restrictions on the number and positions of sensors
are not well-posed in general. One particular reason for this shortcoming is the assumption on the
independence of the measurement errors: Since multiple measurements at the same point do not
correlate taking several measurements at a single point is favorable and thus constrained sensors
are put arbitrarily close together.

3.2.3 Existence of optimal designs and optimality conditions

In this section we state assumptions on the optimal design criterion Ψ and the regularization
term which ensure the well-posedness of the sparse sensor placement problem. Subsequently, the
existence of solutions as well as first order necessary and sufficient optimality conditions for the
sparse optimal design problem (P) are provided.

Let us first elaborate further on the Fisher information operator I. For a rigorous analysis of
the sparse sensor placement problem we will require that I maps weak* convergent sequences in
M+(Ωo) to norm convergent sequences in its image space. While this trivially holds if Q is finite
dimensional this needs additional attention in the general case. First we therefore characterize the
Banach space adjoint of the Fisher operator I defined in (3.4).

Proposition 3.7. The Fisher operator I is the Banach space adjoint of the operator

I∗ : SHS(Q,Q)→ C(Ωo), B 7→ ϕB, (3.15)

where the continuous function ϕB is given by ϕB(x) = (O(x), BO(x))Q for every x ∈ Ωo.

Proof. Let B ∈ SHS(Q,Q) and u ∈ M+(Ωo) be given. Due to the linearity of the trace operator
and B we get

〈〈I(u), B〉〉HS(Q,Q) = TrQ(BI(u)) =

∫
Ωo

TrQ(BI(x)) du(x) = 〈I∗B, u〉,
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3.2 Sparse optimal sensor placement

using the properties of the Bochner integral. Denote by {φi}i∈I, I ⊂ N, an orthonormal basis of
Q. We have BO(x) ∈ Q and consequently

BO(x) =
∑
i∈I

(BO(x), φi)Qφi(x) ∀x ∈ Ωo.

Further calculations show that

TrQ(BI(x)) =
∑
i∈I

(φi, BI(x)φi)Q =
∑
i∈I

(BO(x), φi)Q(O(x), φi)Q (3.16)

= (BO(x),O(x))Q

where we used I(x) = O(x) ⊗ O(x) for all x ∈ Ωo. Hence, we identify I∗B with the continuous
function ϕB, where ϕB(x) = TrQ(BI(x)) = (BO(x),O(x))Q. This gives the statement.

As an immediate consequence we obtain the weak*-to-strong continuity of the Fisher information
operator I.

Theorem 3.8. The Fisher-information mapping I : M(Ωo)→ SHS(Q,Q) is weak*-to-strong se-
quentially continuous, i.e. given {uk}k∈N ⊂M(Ωo) there holds

uk ⇀
∗ u⇒ I(uk)→ I(u),

in SHS(Q,Q).

Proof. Let any weak* convergent sequence {uk} ⊂ M(Ωo) with uk ⇀∗ u, u ∈ M(Ωo) be given.
We obtain

〈〈I(uk), B〉〉HS(Q,Q) = TrQ(I(uk)B) = 〈I∗B, uk〉,

for all B ∈ SHS(Q,Q). Since I∗B ∈ C(Ωo) we conclude

lim
k→∞
〈〈I(uk), B〉〉HS(Q,Q) = 〈I∗B, u〉 = 〈〈I(u), B〉〉HS(Q,Q).

Thus I is weak*-to-weak continuous. Due to the linearity of the Bochner integral we further
calculate

‖I(uk)‖2HS(Q,Q) = TrQ(I(uk)I(uk))

=

∫
Ωo

(O(x), I(uk)O(x))Q duk(x)

=

∫
Ωo

∫
Ωo

(O(x),O(y))2
Q duk(y) duk(x).

Define j ∈ C(Ωo ×Ωo) by

z : Ωo ×Ωo → R, (x, y) 7→ (O(x),O(y))2
Q.

By B(Ωo)⊗B(Ωo) we denote the tensor-product σ-algebra on the cartesian product Ωo ×Ωo and
uk × uk is given as the unique product measure of uk with itself on (Ωo × Ωo,B(Ωo) ⊗ B(Ωo)).
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3 A sparse control approach to optimal sensor placement

We show that uk × uk ⇀∗ u × u in M(Ωo × Ωo). Therefore note that the span of all functions
f ∈ C(Ωo ×Ωo) given by

f(x, y) = g(x)h(y), g, h ∈ C(Ωo), x, y ∈ Ωo,

is dense in C(Ωo ×Ωo), see [226]. Given a finite linear combination of such functions

fn(x, y) =

n∑
i=1

gi(x)hi(y), n ∈ N, gi, hi ∈ C(Ωo), x, y ∈ Ωo, i = 1, . . . , n,

we obtain

〈fn, uk × uk〉C(Ωo×Ωo),M(Ωo×Ωo) =
n∑
i=1

[〈gi, uk〉〈hi, uk〉].

Passing to the limit for k →∞ on both sides yields

lim
k→∞
〈fn, uk × uk〉C(Ωo×Ωo),M(Ωo×Ωo) =

n∑
i=1

[[〈gi, u〉〈hi, u〉] = 〈fn, u× u〉C(Ωo×Ωo),M(Ωo×Ωo)

This gives the desired statement since weak* convergence was tested against a dense subset. We
proceed by calculating the limit

lim
k→∞
〈z, uk × uk〉C(Ωo×Ωo),M(Ωo×Ωo) =

∫
Ωo

∫
Ωo

(O(x),O(y))2
Q du(y)du(x)

= TrQ(I(u)I(u)) = ‖I(u)‖2HS(Q,Q).

By expanding we derive

lim
k→∞

‖I(uk)− I(u)‖2HS(Q,Q) = lim
k→∞

[‖I(uk)‖2HS(Q,Q) − 〈〈I(uk), I(u)〉〉HS(Q,Q) + ‖I(u)‖2HS(Q,Q)] = 0,

where we used the weak convergence of I(uk) and the strong convergence of ‖I(uk)‖2HS(Q,Q). This
finishes the proof.

Concerning the design criterion and the regularization term in the optimal design problem, the
following assumptions are made.

Assumption 3.2. The functional Ψ : SHS(Q,Q)→ R ∪ {+∞} satisfies:

A3.1 Ψ is convex and lower semi-continuous on Pos(Q,Q).

A3.2 The domain of Ψ in Pos(Q,Q) is nonempty and open in Pos(Q,Q) with respect to the
topology induced by the Hilbert-Schmidt norm i.e. given a sequence {Bk}k∈N ⊂ Pos(Q,Q)
there holds

Bk → B ∈ domPos(Q,Q) Ψ ⇒ Bk ∈ domPos(Q,Q) Ψ

for all k ∈ N large enough. Furthermore Ψ is continuously differentiable on its domain. The
gradient of Ψ at B is denoted by ∇Ψ(B) ∈ SHS(Q,Q).
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3.2 Sparse optimal sensor placement

A3.3 Ψ is monotonous in the following sense:

B2 −B1 ∈ Pos(Q,Q)⇒ Ψ(B2) ≤ Ψ(B1),

for all B1, B2 ∈ Pos(Q,Q).

Assumption 3.3. The function G : R→ R∪{+∞} is proper, convex and lower semi-continuous.
Furthermore it is monotonically increasing on R+ with limt→∞G(t) = +∞. There holds domG ⊂
R+.

While (A3.1), (A3.2) and Assumption 3.3 will ensure the well-posedness of (P), the third assump-
tion, (A3.3), can be practically motivated. For example, given design measures u1, u2 ∈M+(Ωo)
and λ ≥ 1, we conclude

Ψ(I(u1 + u2)) ≤ Ψ(I(u1)), Ψ(I(λu1)) ≤ Ψ(I(u1)).

Hence, adding new measurements or increasing the measurement weights decreases the value of
the design criterion. Thus the monotonicity assumption is reasonable since acquiring more or
better data should improve the estimator. A more geometric interpretation of (A3.3) is given in
Chapter 4.

Remark 3.1. While the assumption on the openness of the domain of Ψ might seem unusual at first
sight the following example demonstrates its necessity. In the finite dimensional case, Q = Rn, we
consider the A-optimal design criterion

ΨA(B) =

{
TrRn(B−1) B ∈ PD(n)

+∞ else
,

for B ∈ Sym(n). Here PD(n) denotes the set of positive definite matrices. It is readily verified
that its domain is given by domΨA = PD(n) which is open in the set of non-negative definite
matrices.

Remark 3.2. Please note that we require the functional G to be equal to +∞ on (−∞, 0). Clearly,
this poses no restriction since for a proper, convex and lower semi-continuous function Ĝ : R→ R,
monotonically increasing on R+ with limt→∞G(t) = +∞, we may define G = Ĝ+ I[0,∞) and note
that

ψ(u) + Ĝ(‖u‖M) = ψ(u) +G(‖u‖M) ∀u ∈M+(Ωo).

The restriction of the domain of G is used to obtain compact necessary first-order necessary and
sufficient optimality conditions without distinguishing between the cases ‖ūβ‖M = 0 and ‖ūβ‖M >
0. In particular, we stress that Assumption 3.3 allows to consider norm regularization

G1(‖u‖M) = β‖u‖M = β‖u‖M + I[0,∞)(‖u‖M)

for some β > 0 as well as norm constraints

G2(‖u‖M) = I[0,K](‖u‖M), K > 0,

in a unified framework.
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3 A sparse control approach to optimal sensor placement

Now, we formulate the reduced design problem (P) as

min
u∈M+(Ωo)

F (u) = [ψ(u) +G(‖u‖M)],

where ψ(u) = Ψ(I(u)). In the following proposition we collect some properties of the reduced
functional ψ.

Proposition 3.9. Let Ψ be given and let Assumptions (A3.1)–(A3.3) be fulfilled. The functional
ψ satisfies:

1. For every u ∈M+(Ωo) there holds I(u) ∈ Pos(Q,Q).

2. There holds

domM+(Ωo) ψ =
{
u ∈M+(Ωo) | I(u) ∈ domPos(Q,Q) Ψ

}
.

Furthermore the domain is weak* sequentially open: Given {uk}k∈N ⊂M+(Ωo) we have

uk ⇀∗ ū ∈ domM+(Ωo) ψ ⇒ ∃K ∈ N : uk ∈ domM+(Ωo) ψ, k ≥ K.

3. The functional ψ is continuously Fréchet differentiable on domM+(Ωo) ψ. For a design mea-
sure u ∈ domM+(Ωo) ψ and δu ∈M(Ωo) the directional derivative ψ′(u)(δu) is given by

ψ′(u)(δu) = 〈〈I(δu),∇Ψ(I(δu))〉〉HS(Q,Q) = TrQ(I(u)∇Ψ(I(u))).

The derivative ψ′(u) ∈M(Ωo)
∗ can be identified with the continuous function

∇ψ(u)(x) = I∗∇Ψ(I(u))(x) = (O(x),∇Ψ(I(u))O(x))Q ∀x ∈ Ωo. (3.17)

Moreover the gradient ∇ψ : domM+(Ωo) ψ → C(Ωo) is weak*-to-strong continuous.

4. ψ is weak* lower semi-continuous and convex onM+(Ωo).

5. ψ is monotone in the sense that

I(u2 − u1) ∈ Pos(Q,Q)⇒ ψ(u1) ≥ ψ(u2) ∀u1, u2 ∈M+(Ωo).

Proof. The first claim can be found in Corollary 3.6. The sequential openness of domM+(Ωo) ψ
follows from the openness of the domain of Ψ in Pos(Q,Q) and the weak*-to-strong continuity
of I. For a given measure u ∈ domM+(Ωo) ψ the differentiability of ψ follows from assumption
(A3.2) by applying the chain rule. Using (3.15) we obtain

ψ′(u)(δu) = 〈〈I(δu),∇Ψ(I(u))〉〉HS(Q,Q) = TrQ(∇Ψ(I(u))I(δu)) = 〈I∗∇Ψ(I(u)), δu〉,

for every δu ∈M(Ωo). Hence we identify ψ′(u) ∈M(Ωo)
∗ with the continuous function

∇ψ(u) = I∗∇Ψ(I(u)) ∈ C(Ωo).

Additionally, we directly see that the mapping

∇ψ : domM+(Ωo) ψ → C(Ωo), u 7→ ∇ψ(u),

is weak*-to-strong continuous, using the continuity of ∇Ψ and I∗ as well as the weak*-to-strong
continuity of I. Statements 4. and 5. can be derived directly from Assumptions (A3.1) and (A3.3)
using I(uk) ∈ Pos(Q,Q) and I(uk)→ I(u) in SHS(Q,Q) for every sequence {uk}k∈N ⊂M+(Ωo)
with weak* limit u.
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3.2 Sparse optimal sensor placement

We derive the following result on the gradient ∇ψ by imposing further regularity assumptions on
the design criterion.

Lemma 3.10. Assume that Ψ is two times continuously Fréchet differentiable on its domain in
Pos(Q,Q). For every u ∈ domM+(Ωo) ψ there holds ∇ψ(u)(x) ≤ 0 for all x ∈ Ωo. We further
have

−∇ψ(u)(x) = −(O(x),∇Ψ(I(u))O(x))Q = ‖(−∇Ψ(I(u)))1/2O(x)‖2Q, (3.18)

for all x ∈ Ωo. Here, (−∇Ψ(I(u)))1/2 ∈ L(Q,Q) denotes the uniquely determined positive square
root of −∇Ψ(I(u)).

Proof. Recall that ∇ψ(u)(x) = (O(x),∇Ψ(I(u))O(x))Q for all x ∈ Ωo. Let an arbitrary but fixed
B ∈ domPos(Q,Q) Ψ and z ∈ Q be given. For all ε > 0 small enough we have

B + ε[z ⊗ z] ∈ domPos(Q,Q) Ψ,

due to the openness assumption on the domain of Ψ . Using Taylor approximation, we find

Ψ(B + ε[z ⊗ z]) = Ψ(B) + εTrQ(∇Ψ(B)[z ⊗ z]) + r(ε),

where the remainder term fulfills limε→0[r(ε)/ε] = 0. As in (3.16) we derive

TrQ(∇Ψ(B)[z ⊗ z]) = (∇Ψ(B)z, z)Q.

Since Ψ is monotone in the sense of (A3.3) and z ⊗ z ∈ Pos(Q,Q), we obtain

0 ≥ Ψ(B + ε[z ⊗ z])− Ψ(B) = εTrQ(∇Ψ(B)[z ⊗ z]) + r(ε).

Dividing both sides by ε > 0 and passing to the limit for ε→ 0 we conclude

(∇Ψ(B)z, z)Q ≤ 0 ∀z ∈ Q.

The first statement follows by setting B = I(u) and z = O(x) for every x ∈ Ωo.
Furthermore this implies −∇Ψ(I(u)) ∈ Pos(Q,Q). Consequently there exists a unique positive
operator (−Ψ(I(u)))1/2 with −Ψ(I(u)) =

(
(−Ψ(I(u)))1/2

)2, see [33]. Given an arbitrary x ∈ Ωo
we obtain

−∇ψ(u)(x) = −(O(x),∇Ψ(I(u))O(x))Q

=
(

(−∇Ψ(I(u)))1/2O(x), (−∇Ψ(I(u)))1/2O(x)
)
Q

= ‖(−∇Ψ(I(u)))1/2O(x)‖2Q,

which finishes the proof.

In the following we also assume that the sum of the reduced design criterion and the regularization
term is radially unbounded. Clearly, this assumption is fulfilled, e.g., if ψ is bounded from below
on M+(Ωo). We will comment on this additional assumption for the most popular choices of Ψ
in the subsequent chapters.
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Assumption 3.4. The functional F is radially unbounded on M+(Ωo): Given a sequence
{uk}k∈N ⊂M+(Ωo) we have

‖uk‖M →∞⇒ F (uk)→∞.

The existence of at least one global minimizer ū ∈ M+(Ω) to the reduced formulation is now
obtained by standard arguments. We give a proof for the sake of completeness.

Proposition 3.11. Assume that domM+(Ωo) F is not empty, i.e.

domM+(Ωo) ψ ∩ domM+(Ωo)G(‖ · ‖M) 6= ∅.

There exists at least one optimal solution ū to (P) and the set of minimizers to (P) is uniformly
bounded. If Ψ is strictly convex on Pos(Q,Q) then the optimal Fisher information is unique.

Proof. Since domM+(Ωo) j is not empty, there exists u ∈ M+(Ωo) and an infimizing sequence of
design measures {uk}k∈N with

F (u) <∞, F (uk)→ inf
u∈M+(Ωo)

F (u) <∞.

W.l.o.g we assume that uk ∈ domM+(Ωo) j for all k ∈ N. Since j is radially unbounded the
sequence {uk}k∈N is bounded. Applying the sequential version of Banach-Alaoglu theorem, it
admits a subsequence denoted by the same symbol with uk ⇀∗ ū ∈ M+(Ωo). Since Ψ is lower
semi-continuous on Pos(Q,Q) we conclude

Ψ(I(ū)) ≤ lim inf
k→∞

Ψ(I(uk)), ‖uk‖M = 〈1, uk〉 → 〈1, ū〉 = ‖ū‖M,

from the weak* convergence of {uk}k∈N and the weak*-to-strong continuity of I. Combining these
results yields

F (ū) ≤ lim inf
k→∞

F (uk) = inf
u∈M+(Ωo)

F (u),

and thus the optimality of ū. The uniform bound on the norm of the minimizers follows from the
radial unboundedness of F . In the case of strictly convex Ψ uniqueness of the Fisher information
follows by a standard argument.

This proposition does not give any statement on the structure of the optimal design measure ū
as well as its sparsity pattern. Indeed, from the previous discussions, it is not even clear whether
there exists an admissible, sparse, design measure. This is however addressed in the following
corollary.

Corollary 3.12. Assume that domM+(Ωo) F is not empty. Then there exists

ũ ∈ domM+(Ωo) F ∩ cone{ δx | x ∈ Ωo }.

Proof. Let u ∈ domM+(Ωo) ψ be given. Following the arguments in [50, Appendix A], there exists
a sequence of positive measures {uk}k∈N with

uk ∈ cone{ δx | x ∈ Ωo }, uk ⇀∗ u, ‖uk‖M ≤ ‖u‖M,

for all k ∈ N. Since the Fisher operator I is weak*-to-strong continuous we additionally get
I(uk) → I(u) in SHS(Q,Q) as k → ∞. Thus we have I(uk) ∈ domPos(Q,Q) Ψ for all k large
enough due to the openness assumption on the domain of Ψ in Pos(Q,Q). Since G is monotonically
increasing we conclude uk ∈ domM+(Ωo) F for all k ∈ N large enough.
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Using the differentiability and convexity assumptions on Ψ we proceed to derive necessary and
sufficient optimality conditions.

Proposition 3.13. Let ū ∈ domM+(Ωo) F be given. Then ū is an optimal solution to (P) if and
only if

〈−∇ψ(ū), u− ū〉+G(‖ū‖M) ≤ G(‖u‖M) ∀u ∈M+(Ωo). (3.19)

Proof. Recall that the Fréchet derivative of ψ at ū can be identified with the continuous function
∇ψ(ū). Hence, following Proposition 6.3, a measure ū ∈ domM+(Ωo) F is optimal if and only if

−∇ψ(ū) ∈ ∂(G(‖ · ‖M) + Iu≥0(·))(ū),

where the set on the right hand side denotes the convex subdifferential of the function

G(‖ · ‖M) + Iu≥0(·),

at ū. By definition this is equivalent to (3.19).

Equivalently minimizers of (P) are given by the roots of the non-negative primal-dual gap func-
tional Ψ : M(Ω)→ R+ ∪ {+∞} which is given by

Φ(u) =

{
maxv∈M+(Ωo)[〈∇ψ(u), u− v〉+G(‖u‖M)−G(‖v‖M)] u ∈ domM+(Ωo) F

+∞ else.
.

Proposition 3.14. Let ū ∈M+(Ωo) be given. Then ū is an optimal solution of (P) iff

ū ∈ arg min
u∈M(Ωo)

Φ(u), Φ(ū) = 0.

Proof. By construction we have Φ(u) ≥ 0 for all u ∈M(Ωo) and Φ(u) = +∞ for u 6∈ domM+(Ωo) j.
Rearranging (3.19) yields the optimality of ū if and only if

〈∇ψ(ū), ū− u〉+G(‖ū‖M)−G(‖u‖M) ≤ 0 ∀u ∈M+(Ωo).

Maximizing with respect to u ∈ M+(Ωo) on both sides, we conclude that this is equivalent
to Φ(ū) = 0 and thus also Φ(ū) ≤ Φ(u) for all u ∈M(Ωo).

3.2.4 Structure of optimal measurement designs

In this section we will provide results on the structure of optimal measurement designs. In par-
ticular we provide a generalized version of the famous equivalence theorem due to Kiefer and
Wolfowitz, see [164, 165], in Theorem 3.17 and prove the existence of optimal designs comprising
finitely many points under certain conditions.

Due to the positive homogeneity of the norm, structural properties of ū can be derived from the
variational inequality (3.19). For this purpose, given a function ϕ ∈ C(Ωo) we recall the definition
of its negative part as [ϕ]−(x) = −min{ϕ(x), 0} for all x ∈ Ωo.
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Proposition 3.15. Let an optimal design ū ∈M+(Ωo) be given. The variational inequality (3.19)
is equivalent to

‖[∇ψ(ū)]−‖C ∈ ∂G(‖ū‖M), 〈−∇ψ(ū), ū〉 = ‖[∇ψ(ū)]−‖C‖ū‖M, (3.20)

where ∂G(‖ū‖M) denotes the subdifferential of the convex functional G at ‖ū‖M i.e.

∂G(‖ū‖M) = { m̄ ∈ R | m̄(m− ‖ū‖M) +G(‖ū‖M) ≤ G(m) ∀m ∈ R } .

Proof. Assume that ū satisfies (3.20). Then for an arbitrary measure u ∈M+(Ωo) there holds

〈−∇ψ(ū), u− ū〉+G(‖ū‖M) = −‖[∇ψ(ū)]−‖C‖ū‖M − 〈∇ψ(ū), u〉+G(‖ū‖M)

≤ ‖[∇ψ(ū)]−‖C(‖u‖M − ‖ū‖M) +G(‖ū‖M)

≤ G(‖u‖M),

where we used 〈−∇ψ(ū), ū〉 = ‖[∇ψ(ū)]−‖C‖ū‖M in the first equality and

‖[∇ψ(ū)]−‖C ∈ ∂G(‖ū‖M),

in the last inequality. This implies (3.19).
Conversely, assume that ū fulfills (3.19). Due to the monotonicity of G there holds

〈−∇ψ(ū), u− ū〉 ≤ 0 ∀u ∈M+(Ωo), ‖u‖M ≤ ‖ū‖M.

Hence we conclude

−∇ψ(ū) ∈ ∂
(
I‖u‖M≤‖ū‖M(·) + Iu≥0(·)

)
(ū).

Using Proposition 6.4, this implies

ū ∈ ∂
(
I‖u‖M≤‖ū‖M(·) + Iu≥0(·)

)∗
(−∇ψ(ū)),

as well as (
I‖u‖M≤‖ū‖M(·) + Iu≥0(·)

)∗
(−∇ψ(ū))) = 〈−∇ψ(ū), ū〉.

Let us calculate the convex conjugate(
I‖u‖M≤‖ū‖M(·) + Iu≥0(·)

)∗
(−∇ψ(ū)) = sup

u∈M+(Ωo)
‖u‖M≤‖ū‖M

〈−∇ψ(ū), u〉 = sup
u∈M+(Ωo)
‖u‖M≤‖ū‖M

〈[ψ(ū)]−, u〉

= ‖[∇ψ(ū)]−‖C‖ū‖M.

This gives the second part of (3.20). Consequently there holds

〈−∇ψ(ū), u〉 − ‖[∇ψ(ū)]−‖C‖ū‖M +G(‖ū‖M) ≤ G(‖u‖M) ∀u ∈M+(Ωo). (3.21)

We distinguish the following cases. First assume that ū 6= 0. By testing (3.21) with the measure
ūm = m/‖ū‖Mū for every m ∈ R+ we arrive at

‖[∇ψ(ū)]−‖C(m− ‖ū‖M) +G(‖ū‖M) ≤ G(m) ∀m ∈ R+. (3.22)
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3.2 Sparse optimal sensor placement

Since domG ⊂ R+ this yields ‖[∇ψ(ū)]−‖C ∈ ∂G(‖ūβ‖M). If we have

‖ū‖M = ‖[∇ψ(ū)]−‖C = 0,

then there holds 0 ∈ ∂G(0) due to the monotonicity of G on R+. Last we assume that ‖ū‖M = 0
and ‖[∇ψ(ū)]−‖C 6= 0. Then there holds

‖[∇ψ(ū)]−‖C = max
x∈Ωo

−∇ψ(ū)(x).

Choose x̂ ∈ Ωo with −∇ψ(ū)(x̂) = ‖[∇ψ(ū)]−‖C . Testing (3.21) with ūm = mδx̂ for m ∈ R+ we
again arrive at (3.22). In all cases we thus conclude

‖[∇ψ(ū)]−‖C ∈ ∂G(‖ū‖M),

finishing the proof.

Going one step further, the second condition in (3.20) can be equivalently reformulated as a
condition on the support of the design measure.

Lemma 3.16. Let ϕ ∈ C(Ωo) and u ∈M+(Ωo) be given. Then there holds

〈−ϕ, u〉 = ‖[ϕ]−‖C‖u‖M ⇔ suppu ⊂
{
x ∈ Ωo | − ϕ(x) = ‖[ϕ]−‖C

}
. (3.23)

Proof. Assume that the right side of the equivalence holds. Then we have

〈−ϕ, u〉 =

∫
Ωo

−ϕ du(x) =

∫
Ωo

‖[ϕ]−‖C du(x) = ‖[ϕ]−‖C‖u‖M.

This proves the first direction. Conversely assume that 〈−ϕ, u〉 = ‖[ϕ]−‖C‖u‖M holds. Assume
that [ϕ]− 6= 0. In this case we obtain

‖[ϕ]−‖C = − min
x∈Ωo

ϕ = max
x∈Ωo

−ϕ.

Let an arbitrary x ∈ Ωo with −ϕ < −minx∈Ωo ϕ be given. Due to the continuity of ϕ and
a compactness argument there exists δ > 0 with −ϕ < −minx∈Ωo ϕ on Bδ(x) ⊂ Ωo. For an
arbitrary nonnegative y ∈ C0(Bδ(x)) there exists t > 0 such that ϕ − ty −minx∈Ωo ϕ ≥ 0. From
this we conclude

0 ≤ 〈ϕ− ty − min
x∈Ωo

ϕ, u〉 = −〈ty, u〉 ≤ 0,

due to the positivity of y and u. Therefore u|Bδ(x) = 0 and Bδ(x) ⊂ Ωo\ suppu. If [ϕ]− = 0 we
have ϕ ≥ 0. Argumenting similar as before we conclude

−ϕ(x) = 0 u− a.e. x ∈ Ωo.

By distinguishing between the two cases u = 0 and u 6= 0 we again arrive at the right hand side
of (3.23).

Collecting all the previous results the optimality of a design measure can be characterized through
the following series of equivalences.
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Theorem 3.17. Assume that Ψ is two times Fréchet differentiable on its domain in Pos(Q,Q).
Then the following statements are equivalent:

• The measure ū ∈M+(Ωo) is an optimal solution to (P).

• There holds

〈−∇ψ(ū), u− ū〉+G(‖ū‖M) ≤ G(‖u‖M) ∀u ∈M+(Ωo).

• There holds

− min
x∈Ωo

∇ψ(ū)(x) ∈ ∂G(‖ū‖M), 〈−∇ψ(ū), ū〉+ min
x∈Ωo

∇ψ(ū)(x)‖ū‖M = 0.

• There holds

− min
x∈Ωo

∇ψ(ū)(x) ∈ ∂G(‖ū‖M), supp ū ⊂
{
x̂ ∈ Ωo | ∇ψ(ū)(x̂) = min

x∈Ωo
∇ψ(ū)(x)

}
.

• There holds Φ(ū) ≤ Φ(u) for all u ∈M(Ωo) and

Φ(ū) = max
u∈M+(Ωo)

[〈∇ψ(ū), ū− u〉+G(‖ū‖M)−G(‖u‖M)] = 0.

Proof. Due to the regularity assumption on Ψ there holds ∇ψ(ū)(x) ≤ 0 for all x ∈ Ωo, see
Lemma 3.10. Thus we have [∇ψ(ū)]− = −∇ψ(ū). The equivalence now follows from Propsi-
tion 3.13, Proposition 3.14, Proposition 3.15, and Lemma 3.16.

We illustrate the abstract results of Theorem 3.17 for two important choices of G.

Example 3.3 (Optimality/cost trade-off). Consider G(‖u‖M) = β‖u‖M where

G : R→ R, m 7→ βm+ I[0,∞)(m)

for some positive cost parameter β > 0. Clearly, this functional fulfills Assumption 3.3. We first
calculate the set ∂G(‖ū‖M). If ‖ū‖M > 0 we readily obtain

∂G(‖ū‖M) = {β}.

In the second case, for ‖ū‖M = 0, we get

m ∈ ∂G(0)⇔ mc ≤ βc, ∀c ∈ R+ ⇔ m ∈ (−∞, β].

We conclude ∂G(0) = [0, β]. Applying Theorem 3.17 to both cases yields the optimality of ū ∈
M+(Ωo) if and only if

• there holds

− min
x∈Ωo

∇ψ(ū)(x)

{
= β ‖ū‖M > 0

∈ [0, β] ‖ū‖M = 0
, 〈−∇ψ(ū), ū〉 − β‖ū‖M = 0.
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• there holds

− min
x∈Ωo

∇ψ(ū)(x)

{
= β ‖ū‖M > 0

∈ [0, β] ‖ū‖M = 0
, supp ū ⊂ {x ∈ Ωo | ∇ψ(ū)(x) = −β } .

• there holds

ū ∈ arg min
u∈M+(Ωo)

Φ(u), Φ(ū) = max
u∈M+(Ωo)

[〈∇ψ(ū), ū− u〉+ β‖ū‖M − β‖u‖M] = 0,

noting that for ū = 0 the conditions

〈−∇ψ(ū), ū〉+ β‖ū‖M = 0 + 0 = 0, ∅ = supp ū ⊂ {x ∈ Ωo | ∇ψ(ū)(x) = −β } ,

are trivially fulfilled.

Example 3.4 (Fixed budget). In this example we fix the overall cost for the experiment. We
choose G(‖u‖M) = I[0,K](‖u‖M). The parameter K ∈ R+\0 denotes the budget for the experiment.
Straightforward computations yield

∂G(‖ū‖M) =


R− ‖ū‖M = 0

{0} 0 < ‖ū‖M < K

R+ ‖ū‖M = K

,

where R− denotes the non-positive part of the real axis. We calculate the primal-dual gap for a
design measure u ∈ domM+(Ωo) F in this case to obtain

Φ(u) = 〈∇ψ(u), u〉+ max
v∈M+(Ωo),‖v‖M≤K

〈−∇ψ(u), v〉 = 〈∇ψ(u), u〉 −K min
x∈Ωo

∇ψ(u)(x),

where we used ∇ψ(ū) ≤ 0. Furthermore if (P) admits optimal solutions there exists at least one
with ‖ū‖M = K due to the monotonicity of Ψ . By application of Theorem 3.17 optimality of such
design measures is characterized through the following equivalent statements.

• There holds

〈−∇ψ(ū), ū〉+K min
x∈Ωo

∇ψ(ū)(x) = 0.

• There holds

supp ū ⊂
{
x̂ ∈ Ωo | ∇ψ(ū)(x̂) = min

x∈Ωo
ψ(ū)(x)

}

• There holds

0 = 〈∇ψ(ū), ū〉 −K min
x∈Ωo

∇ψ(ū)(x) ≤ 〈∇ψ(u), u〉 −K min
x∈Ωo

∇ψ(u)(x),

for all u ∈ domM+(Ωo) F .
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Example 3.5 (Kiefer-Wolfowitz Theorem). In this last example we illustrate the results of The-
orem 3.17 in the case of Q = Rn, n ∈ N, G(‖u‖M) = I[0,1](‖u‖M) and the logarithmic D-optimal
design criterion

ΨD(B) =

{
log(det(B−1)) B ∈ PD(n)

+∞ else
.

The corresponding optimal design problem is given by

min
u∈M+(Ωo)

ΨD(I(u)) s.t. ‖u‖M ≤ 1. (3.24)

In what follows we assume that an optimal design ū exists. Observe that

ΨD(I(rū)) = ΨD(I(ū))− n log(r) ∀r ∈ R+ \ {0}.

Thus we conclude ‖ū‖M = 1. The gradient of the reduced functional ψD(u) = ΨD(I(u)) at
u ∈ domM+(Ωo) ψD is given by

∇ψD(u)(x) = −O(x)>I(u)−1O(x) ∀x ∈ Ωo.

Calculating the primal-dual gap in this case gives

Φ(u) = 〈∇ψD(u), u〉+ max
x∈Ωo

−∇ψD(u)(x) = −n+ max
x∈Ωo

−∇ψD(u)(x).

This leads to the following characterization:

• The measure ū ∈M+(Ωo) is a D-optimal design.

• There holds

max
x∈Ωo

−∇ψD(ū)(x) = n.

• There holds

supp ū ⊂ {x ∈ Ωo | − ∇ψD(ū)(x) = n } .

• There holds

n = max
x∈Ωo

−∇ψD(ū)(x) ≤ max
x∈Ωo

−∇ψD(u)(x), u ∈ domM+(Ωo) ψD, ‖u‖M ≤ 1.

This is exactly the statement of the well-known Kiefer-Wolfowitz theorem, [166] and [256, The-
orem 3.2]. From this point of view our results can be interpreted as a natural extension of this
classical result to a more general setting and the case of infinite dimensional Q.

We recall that the sparse sensor placement problem (P) was introduced to avoid the non-convexity
and combinatorial nature of (3.2). Therefore it remains to comment on conditions that ensure the
existence of optimal measurement designs given as conic combination of finitely many Dirac delta
functions. If such an optimal design exists the measurement setup is described by the number
of support points, their positions and the associated coefficients. To this end we will mainly rely
on the characterization of the support of an optimal design measure from Theorem 3.17 as well
as the compactness properties of the Fisher information operator I. We start by concluding the
sparsity of an optimal design ū if the set of global minimizers to ∇ψ(ū) is finite.

58



3.2 Sparse optimal sensor placement

Corollary 3.18. Let an optimal design ū ∈M+(Ωo) be given. Assume that

Ext(ū) =

{
x̂ ∈ Ωo | ∇ψ(ū)(x̂) = min

x∈Ωo
∇ψ(ū)(x)

}
= {x̄i}Ni=1.

Then we have:

• The optimal design measure ū ∈M+(Ωo) is sparse

ū =

N∑
i=1

ūiδx̄i , ūi ∈ R+, i = 1, . . . N

• Additionally assume that the optimal gradient is unique, i.e. ∇ψ(ū1) = ∇ψ(ū2) for arbitrary
optimal designs ū1 6= ū2. Then every minimizer ū of (P) is sparse and there holds supp ū ⊂
{x̄i}Ni=1.

Proof. From the support condition (3.23) we conclude supp ū ⊂ {x̄i}Ni=1. Hence there exists
ūi ≥ 0, i = 1, . . . , N , with ū =

∑N
i=1 ūiδx̄i . This gives the first statement. For the second claim,

we observe that the uniqueness of the optimal gradient implies

Ext(ū1) = Ext(ū2) = {x̄i}Ni=1,

for arbitrary optimal solutions ū1, ū2 ∈ M+(Ωo) to (P). The second statement now readily
follows from the first.

The uniqueness of the optimal gradient holds for example if Ψ is strictly convex on its domain.
If the set of its global minimizers consists of finitely many points, the optimal design is unique
under an additional linear assumption condition.

Corollary 3.19. Assume that (P) admits at least one optimal solution ū and that Ψ is strictly
convex on its domain in Pos(Q,Q). Then we have:

• The optimal gradient ∇ψ(ū) is unique.

• If Ext(ū) = {x̄i}Ni=1 and the set {I(δx̄i)}Ni=1 is linearly independent then the optimal mea-
surement design is unique.

Proof. Since Ψ is strictly convex on its domain in Pos(Q,Q), the optimal Fisher-information I(ū)
and thus also ∇ψ(ū) = I∗∇Ψ(I(ū)) are unique. If, in addition, the second condition holds,
every optimal design ū is given by ū =

∑N
i=1 ūiδx̄i for some ūi ∈ R+, i = 1, . . . , N following

Corollary 3.18. Obviously the corresponding weight vector ū = (ū1, . . . , ūN ) ∈ RN+ is a solution
to

min
u∈RN+

F(u) :=

[
Ψ

(
N∑
i=1

uiI(δx̄i)

)
+G (‖u‖1)

]
, (3.25)

where we fix the number and the position of the sensors and minimize only with respect to the
measurement weights. Due to the strict convexity of Ψ and the linear independence assumption,
the functional F is strictly convex. Thus it admits a unique global minimizer. This gives the
statement.
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Let us now discuss situations in which the existence of sparse minimizers can be ensured. First, we
consider cases in which the image of I is finite dimensional. Loosely speaking, in this situation, the
information obtained through an arbitrary design measure can be obtained by a sparse one with
bounded support size at a lower cost. Since a more general statement is provided in Chapter 6,
see Theorem 6.32, we omit the proof at this point.

Theorem 3.20. Assume that dim Im I = n ∈ N. Let u ∈ M+(Ωo) be given. Then there exists
ũ ∈M+(Ωo) with

I(u) = I(ũ), ‖ũ‖M ≤ ‖u‖M, # supp ũ ≤ n.

Additionally, if there exists an optimal solution to (P), then there exists an optimal solution ū
with # supp ū ≤ n.

As a special instance of the previous theorem, we conclude the existence of sparse minimizers if
Q = Rn for some n ∈ N.

Corollary 3.21. Assume that Q = Rn for some n ∈ N and (P) admits an optimal solution. Then
there exists an optimal solution ū to (P) with # supp ū ≤ n(n+ 1)/2.

Proof. The statement readily follows from the previous theorem by noting that Im I ⊂ Sym(n)
and dim Sym(n) = n(n+ 1)/2.

In contrast, the situation is certainly more involved if the image of I is not finite dimensional.
However, in certain situations the smoothness of∇ψ(ū) implies that the set of its global minimizers
is a Lebesgue zero set. A similar argument has been used in e.g. [67]. As a consequence, for one
dimensional observation domains, all optimal measurement designs are sparse in this case.

Proposition 3.22. Let Ωo be the closure of a nonempty open and bounded domain in Rd. Assume
that (P) admits at least one minimizer ū. Furthermore assume that

• the optimal gradient ∇ψ(ū) is unique.

• the optimal gradient is non-constant on Ωo and analytic in intΩo with

arg min
x∈Ωo

∇ψ(ū)(x) < arg min
x∈∂Ωo

∇ψ(ū)(x), i = 1, . . . N.

Denote by µL the Lebesgue measure on Ωo. Then there holds:

• For every ū we have µL(supp ū) = 0.

• If Ωo = [a, b] for some a < b there exists a set {xi}Ni=1 ⊂ intΩo such that every optimal
design is given by

ū =

N∑
i=1

ūiδxi , ūi ∈ R+, i = 1, . . . , N
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Proof. Define p̂ = ∇ψ(ū) − arg minx∈Ωo ∇ψ(ū). Then p̂ is non-constant and analytic on intΩo.
Let an arbitrary optimal design ū be given. We define Z(p̂) = {x ∈ Ωo | p̂ = 0 }. Obviously we
have Z(p̂) = Ext(ū) ⊂ intΩo. Since p̂ is analytic we have

µL(Z(p̂)) = µL(Ext(ū)) = 0,

see e.g. [196]. Due to the support condition (3.23), we conclude µ(supp ū)L = 0, which gives the
first part of the proof. Secondly assume that Ωo = [a, b] for some a < b. Then it is well-known
that the zeros of p̂, and thus the global minimizers of ∇ψ(ū), in intΩo are isolated. Assume now
that Ext(ū) consist of at least countably many elements. Then there exists a sequence {xi}i∈N
with p̂(xi) = 0. Due to Bolzano-Weierstrass there exists x̄ ∈ Ωo with xi → x̄ and, by continuity,
p̂(x̄) = 0. Therefore x̄ ∈ intΩo and x̄ is an accumulation point of Z(p̂). This gives a contradiction,
i.e. Ext(ū) contains only finitely many points. The statement now follows from Corollary 3.18.
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4 Sparse sensor placement for
PDE-constrained inverse problems

This chapter is devoted to the inverse problem of identifying a finite dimensional parameter q ∈
Qad ⊂ Rn entering the weak form of a partial differential equation

a(q, y)(ϕ) = 0 ∀ϕ ∈ Y.

We refer to the next section for the precise assumptions on the underlying model. As an example,
we might consider the combustion process from [28] which is modeled as

a(q, y)(ϕ) = (∇y,∇ϕ)L2 + (α∇y, ϕ)L2 + (D exp {−E/(d− y)} y(c− y), ϕ)L2 , (4.1)

where the unknown parameter q = (D,E) is given in terms of the activation energy E and the
pre-exponential factor D. On the one hand, the general setting covers problems in which the
unknown parameter q represents scalar unknown physical quantities such as material parameters
or artificial constants that arise in the modelling process. On the other hand, the parameter of
interest may also be a distributed function which is parametrized through finitely many degrees
of freedom. In both cases, to obtain an appropriate mathematical surrogate for the simulation of
the underlying physical process these parameters have to be well calibrated.

In what follows we assume that it is not possible to measure q directly and inference on its true value
can only be made through measurements of the corresponding state y = S[q]. More concretely, the
measured data yd ∈ RN will be obtained through finitely many pointwise measurements of y at a
set of points {xi }Ni ⊂ Ωo, where Ωo ⊂ Ω̄ ⊂ Rd, d ∈ N, is a closed subset of the spatial domain
covering the possible observation locations. The data yd is assumed to be additively perturbed
by normally i.i.d distributed noise ε, εi ∼ N (0, 1/ui) stemming from the sensors. Estimates for
the unknown parameter are obtained through realizations of a suitable Least-Squares estimator,
see (4.6).

To mitigate the influence of the measurement errors on the estimator we will formulate and
analyze an optimal sensor placement problem based on a linearization of the underlying PDE-
model around a sophisticated a priori guess q̂ ∈ Rn. To this purpose, we define the associated
sensitivities {∂kS[q̂]}nk=1 of S[q̂] with respect to perturbations of each parameter qk, k = 1, . . . , n
at an initial guess q̂ ∈ Qad, stemming either from prior knowledge or obtained from previous
experiments. No restrictions on the maximum number of measurements nor their positions are
made. Consequently, the optimal number of sensors N , their positions and the measurement
weights ui will be obtained through solving

min
xi∈Ωo, ui≥0, i=1,...,N,N∈N

Ψ(X>Σ−1X + I0) + β
N∑
i=1

ui, (4.2)
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where the design dependent matrix X>Σ−1X ∈ Sym(n) is given by

X>Σ−1X =

N∑
i=1

ui∂S[q̂](xi)∂S[q̂](xi)
>, ∂S[q̂](x) = (∂1S[q̂](x), . . . , ∂nS[q̂](x))>, x ∈ Ωo.

We incorporated the design independent matrix I0 ∈ NND(n) in the formulation. This can be
interpreted as a priori knowledge on the covariance matrix of the estimator stemming from pre-
viously collected data. Alternatively we may also adopt a Bayesian viewpoint and take I0 as the
inverse of the covariance operator corresponding to a Gaussian prior. Optimal design approaches
based on first-order approximations have been studied for and successfully applied to ordinary
differential equations [13], differential-algebraic equations [20], and also partial differential equa-
tions [137]. Additionally, they also arise in sequential design approaches, see e.g. [170,172]. Here,
the experimenter alternates between estimating the unknown parameter and optimizing the ex-
periment based on a linearization of the underlying system around the current estimate. The data
that has been acquired in the previous experiments can thereby be included in a straightforward
fashion by choosing I0 = I(uold). The design measure uold is chosen to represent the previous
experiments.

The first aim of this chapter is to demonstrate how we can fit this optimization problem into
the general framework presented in Chapter 3 to get rid of the combinatorial aspect as well-as
potential non-convexity arising in (4.2). This leads to a convex sensor placement problem

min
u∈M+(Ωo)

Ψ(I(u) + I0) + β‖u‖M, (Pβ)

where we optimize for a design measure u in the space of Borel measures rather than the individual
sensors. Here the matrix I(u) ∈ Rn×n is given by

I(u) =

∫
Ωo

∂S[q̂](x)∂S[q̂](x)>du(x), I(u)ij = 〈∂iS[q̂]∂jS[q̂], u〉,

where the integration has to be understood in the sense of Bochner. While (Pβ) appears to
be more general as the original problem we will show that it admits solutions given by a linear
combination of Dirac delta functions. Their support points together with the associated coefficients
of the corresponding Dirac delta then constitute an optimal solution to the original problem (4.2),
making both approaches essentially equivalent.

As an alternative to the regularization term we may instead put constraints on the total cost of
the measurement process leading to

min
u∈M+(Ωo)

Ψ(I(u) + I0) s.t. ‖u‖M ≤ K, (PK)

for some budget K > 0. Both formulations, (Pβ) and (PK), are closely linked (see Section 4.2):
On the one hand, in the case of no a priori knowledge on the prior covariance, i.e. for I0 = 0, the
solutions of both problems coincide up to a scalar factor, depending on eitherK or β. On the other
hand, incorporating a priori knowledge, both problem formulations parameterize the same solution
manifold. The parameters β and K, respectively, provide some indirect control over the number
of measurements, which is the cardinality of the support of the optimal solution, in this case.
For practically relevant design criteria Ψ the inequality constraint will be active at every optimal
solution. This links (PK) closely to the concept of approximate design introduced by Kiefer and
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Wolfowitz in the context of linear regression, see [165] and the discussion in the previous chapters.
For an extension to sensor placement problems based on first order approximations of nonlinear
models see [107,217]. In the context of partial differential equations such an approach to optimal
sensor placement was pursued in [17,256].

The results in this chapter delimit themselves from these previous approaches in several ways
by taking recent advances in the theory of measure-valued optimization problems into account.
Besides proving well-posed our main focus lies on three different aspects of problem (Pβ). First we
provide a suitable solution algorithm for (Pβ) based on alternating between adding single sensors to
the design and optimizing their measurement weights. Here we essentially generalize the algorithm
presented in [44, 50]. By a careful convergence analysis, see Chapter 6, we improve upon the
convergence results in these references and further derive convergence rates for the optimal design
measure with respect to a suitably chosen and computable metric. Since all considerations are
taken at the function space level we observe stability of this convergence behaviour with respect
to discretization of the observational domain and the underlying PDE model. In this context we
also discuss solution algorithms and improved convergence rates for (PK), such as the well-known
Fedorov-Wynn algorithm, see [105, 272]. Second we consider perturbations of the optimal design
criterion or the underlying PDE and study stability and sensitivity of the optimal design measure.
Note that these questions are of practical importance since the sensor placement problem itself is
based on a first-order approximation of the PDE model. However we are not aware of any results
in this direction. Finally, to solve (Pβ) or (PK) one has to compute the state y = S[q] as well
as the sensitivities {∂kS[q]}nk=1 of the state with respect to the parameters. In general, the state
and sensitivity PDEs cannot be solved analytically, but only numerically. We therefore analyze
a discretization scheme for (Pβ) based on a finite element discretization of the underlying PDEs
and a variational discretization approach for the design measure, see [59,148]. Sharp a priori error
estimates with respect to the discretization parameter for the optimal design functionals as well
as the optimal design measure are provided.

The outline of this chapter is as follows. In Section 4.2 we focus on the existence and the structure
of optimal design measurements obtained through (Pβ). In Section 4.3 we shed light on the
connection between (Pβ) and a class of semi-infinite optimization problems, giving a geometric
interpretation of the optimal sensor placement problem. Section 4.4 is devoted to the numerical
treatment of the sparse sensor placement problem by accelerated conditional gradient methods,
see also Chapter 6. Stability and sensitivity analysis of the optimal design measure is in the focus
of Section 4.5. In Section 4.6 discretization of (Pβ) and a priori error estimation are considered.
To underline our results we present some numerical evidence in Section 4.7. We note that parts
of this chapter have been submitted for publication, see [200].

4.1 Parameter estimation and optimal design

4.1.1 Parameter estimation

Within the scope of this chapter we consider the identification of a parameter q entering a weak
form a(·, ·)(·) : Qad × Ŷ × Y → R, which can be non-linear in its first two arguments but is
linear in the last one. Here, we denote by Qad ⊂ Rn, n ∈ N, a set of admissible parameters,
Y denotes a suitable Hilbert space of functions on a spatial domain Ω ⊂ Rd, d ∈ N, which is
assumed to be open and bounded. We consider the state space Ŷ = ŷ + Y , where the function
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4 Sparse sensor placement for PDE-constrained inverse problems

ŷ models (potentially) non-homogeneous (Dirichlet-type) boundary conditions in the model. For
every q ∈ Qad we introduce the state y = S[q] ∈ Ŷ as a solution to

y ∈ Ŷ : a(q, y)(ϕ) = 0 ∀ϕ ∈ Y. (4.3)

The operator S : Qad → Ŷ mapping a parameter q to the associated state is called the parameter-
to-state operator. We make the following general regularity assumption.

Assumption 4.1. For every q ∈ Qad there exists a unique solution y ∈ Ŷ ∩ C(Ωo) to (4.3). The
parameter-to-state mapping S with

S : Qad → C(Ωo) with q 7→ S[q] = y,

is continuously differentiable in a neighborhood of Qad in Rn. We denote the directional derivative
of S in the direction of the k-th unit vector by ∂kS[q] ∈ C(Ωo) and by ∂S[q] ∈ C(Ωo,Rn) the vector
of partial derivatives.

We emphasize that under suitable differentiability assumptions on the form a(·, ·) and Assump-
tion 4.1 the k-th partial derivative δyk = ∂kS[q] ∈ Y ∩ C(Ωo), k = 1, . . . , n, is the unique solution
of the sensitivity equation

a′y(q, y)(δyk, ϕ) = −a′qk(q, y)(ϕ), ∀ϕ ∈ Y, (4.4)

where y = S[q] and a′y and a′qk denote the partial derivatives of the form a with respect to the
state and the k-th parameter; see, e.g., [255,258].

To estimate the unknown parameter we consider measurement data yd collected at a set of N
distinct sensor locations {xj}Nj=1 ⊂ Ωo, where Ωo ⊂ Ω̄ is a closed set. In order to take mea-
surement errors into account we assume that the data yjd ≈ S[q∗](xj) is additively perturbed by
independently unit normally distributed noise; see, e.g., [19]. Here S[q∗](xj) denotes the response
of the model to an unknown parameter q∗. Taking into account that multiple measurements can
be performed at the same location, we obtain that

yjd = S[q∗](xj) + εj , εj ∼ N (0, 1/uj), Cov(εj , εi) = 0,

for all i, j = 1, . . . , N, and j 6= i, where uj ∈ N \ { 0 } denotes the number of measurements taken
at the j-th location. More generally, we assume that uj can be chosen arbitrarily in R+ \ { 0 }
in the following. In this case the measurement weights uj > 0 should be interpreted as diligence
factors giving information on how carefully the data should be collected at the corresponding
measurement point.

To emphasize that the data yd is a random variable conditional on the measurement errors we
will write yd(ε) in the following and define the least squares functional

J(q, ε) =
1

2

N∑
j=1

uj(S[q](xj)− yjd(ε))
2 (4.5)

as well as the possibly multi-valued least squares estimator

q̃ : RN → P(Rn), q̃(ε) = arg min
q∈Qad

J(q, ε), (4.6)

where P(Rn) denotes the power set of Rn. Note that this estimator is the usual Maximum-
Likelihood estimator using the assumption on the distribution measurement errors εj ∼ N (0, 1/uj).
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4.1.2 Optimal design

Since the measurement errors are modelled as random variables, the uncertainty in the data is
also propagated to the estimator. Consequently we interpret q̃ as a random vector. To quantify
the bias in the estimation and to assess the quality of computed realizations of the estimator, one
considers the non-linear confidence domain of q̃ defined as

D(q̃, α)(ε) =

{
p ∈ Qad | J(p, ε)− min

q∈Qad
J(q, ε) ≤ γ2

n(α)/2

}
, (4.7)

where γ2
n(α) denotes the (1 − α)-quantile of the χ2-distribution with n degrees of freedom; see,

e.g., [23,36]. We emphasize that the confidence domain is a function of the measurement errors and
therefore a random variable whose realizations are subsets of the parameter space. In this context,
the confidence level α ∈ (0, 1) gives the probability that a certain realization of D(q̃(ε), α)(ε)
contains the true parameter vector q∗.

Consequently, a good performance indicator for the estimator q̃ is given by the size of its associated
confidence domains. The smaller their size, the closer realizations of q̃ will be to q∗ with a high
probability. Given a realization D(q̄, α)(ε̄) of the non-linear confidence domain, its size only
depends on the position and the number of the measurements. To obtain a more reliable estimate
for the parameter vector, the experiment, e.g. the total number of measurements carried out,
their positions xj , and the measurement weights uj should be chosen a priori in such a way
that confidence domains of the resulting estimator are small. However, for general models and
parameter-to-state mappings S the estimator q̃ cannot be given in closed form. Therefore it is
generally not possible to provide an exact expression for D(q̃, α)(ε).

To circumvent this problem we follow the approach proposed in, e.g., [107, 216] and consider a
linearization of the original model around an a priori guess q̂ of q∗ which can stem from historical
data or previous experiments. In the following, ε ∈ RN denotes an arbitrary vector of measurement
errors, and x ∈ ΩN

o , x = (x1, . . . , xN ), with xj ∈ Ωo, j = 1, . . . , N, stands for the measurement
locations. For abbreviation we write S[q̂](x) ∈ RN for the vector of observations with S[q̂](x)j =
S[q̂](xj), j = 1, . . . , N . Moreover the matrices X ∈ RN×n and Σ−1 ∈ RN×N are defined as

Xjk = ∂kS[q̂](xj), Σ−1
ij = δijui, i, j = 1, . . . , N, k = 1, . . . , n,

and are assumed to have full rank. We arrive at the linearised least-squares functional

Jlin(q, ε) =
1

2

N∑
j=1

uj(S[q̂](xj) + ∂S[q̂](xj)
>(q − q̂)− yjd(ε))

2,

which can be equivalently written as

Jlin(q, ε) =
1

2
‖X(q − q̂) + S[q̂](x)− yd(ε)‖2Σ−1 ,

where ‖v‖Σ−1 = v>Σ−1v for v ∈ Rn. In contrast to the estimator q̃ from (4.6), the associated
linearised estimator

q̃lin : RN → Rn, q̃lin(ε) = arg min
q∈Rn

Jlin(q, ε), (4.8)
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is single-valued and its realizations can be calculated explicitly (see, e.g., [251]), as

q̃lin(ε) = q̂ + (X>Σ−1X)−1X>Σ−1 (yd(ε)− S[q̂](x)) . (4.9)

Due to the assumptions on the noise ε the estimator q̃lin is a Gaussian random variable with
q̃lin ∼ N (q̃lin(0), (X>Σ−1X)−1). The associated realizations of its confidence domain (see, e.g.,
[36]) are thus given by

D(q̃lin, α)(ε) =
{
q ∈ Rn | q = q̃lin + (X>Σ−1X)−1X>Σ−1/2δε, |δε|RN ≤ γn(α)

}
, (4.10)

where | · |RN denotes the Euclidean norm on RN . We point out that the linearised confidence
domains are ellipsoids in the parameter space centered around q̃lin. Their half axes are given
by the eigenvectors of the Fisher-information matrix I = X>Σ−1X with lengths proportional
to the associated eigenvalues. Their sizes depend only on the a priori guess q̂ and the setup of
the experiment, i.e. the position and total number of measurements, but not on the concrete
realization of the measurement noise. Consequently we can improve the estimator by minimizing
the linearised confidence domains as a function of the measurement setup, which leads to (4.2).

4.2 Theoretical results

Motivated through the considerations in the previous section we propose to improve the estimator
by minimizing a design criterion acting on the matrix X>Σ−1X as a function of the experimental
setup

min
xi∈Ωo,ui∈R+,i=1,...,N,N∈N

[Ψ(X>Σ−1X + I0) + β‖u‖1 ], (4.11)

where the matrix I0 ∈ NND(n) (e.g. I0 = 0) incorporates prior knowledge on the parameter, as
described in the introduction of this chapter.

Let us put this problem into the perspective of Chapter 3. We choose the parameter space as
Q = Rn. From the discussion in Section 3.1.1 we recall that SHS(Rn,Rn) can be identified with
the symmetric matrices Sym(n) together with the Frobenius scalar-product. Since there won’t be
any ambiguities in this chapter we drop the indices and write

‖A‖Sym =
√

(A,A)Sym =
√

Tr(A∗A), A ∈ Sym(n).

Given vectors v, z ∈ Rn, the tensor v⊗z ∈ Rn×n is simply given as the rank 1 matrix v⊗z = vz>.
In the same way we identify Pos(Rn,Rn) with the set of non-negative definite matrices NND(n).
On NND(n) we consider the Löwner ordering given by

B1 ≤L B2 ⇔ B2 −B1 ∈ NND(n).

Furthermore, due to ∂S[q̂] ∈ C(Ωo,Rn), the pointwise Fisher-information

I : Ωo → Sym(n), x 7→ ∂S[q̂](x)∂S[q̂](x)>,

is continuous.
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In this light, given x = (x1, . . . , xN ) ∈ ΩN
o and u = (u1, . . . ,uN ) ∈ RN+ we rewrite the Fisher-

information matrix as

X>Σ−1X =
N∑
i=1

ui∂S[q̂](xi)∂S[q̂](xi)
> =

∫
Ωo

∂S[q̂](x)⊗ ∂S[q̂](x) du(x),

where the measure u ∈ M+(Ωo) is given by u =
∑N

i=1 uiδxi . Thus (4.2) can be viewed as a
special instance of the general problem (3.12) by choosing the observation operator O : Ωo → Rn
as O(x) = ∂S[q̂](x) ∈ Rn for all x ∈ Ωo. We introduce the linear and continuous Fisher-operator
I, see (3.10), by

I : M(Ωo)→ Sym(n), I(u) =

∫
Ωo

∂S[q̂](x)∂S[q̂](x)>du(x),

where for u ∈M(Ωo) the entries of the matrix I(u) ∈ Sym(n) are given as

I(u)ij = 〈∂iS[q̂]∂jS[q̂], u〉 ∀i, j ∈ { 1, . . . , n }.

In the following, we consider the sparse sensor placement problem, c.f. also (P),

min
u∈M+(Ωo)

[Ψ(I(u) + I0) + β‖u‖M].

Concerning the function Ψ the following assumptions are made.

Assumption 4.2. The function Ψ : Sym(n)→ R ∪ {+∞} satisfies:

A4.1 There holds domΨ = PD(n).

A4.2 Ψ is two times continuously differentiable at every B ∈ PD(n).

A4.3 Ψ is lower semi-continuous and convex on NND(n).

A4.4 Ψ is monotone with respect to the Löwner ordering on NND(n), i.e. there holds

B1 ≤L B2 ⇒ Ψ(B1) ≥ Ψ(B2) ∀B1, B2 ∈ NND(n).

Accordingly, the functional Ψ̂(B) = Ψ(B + I0) fulfills Assumption 3.2 with

domNND(n) Ψ̂ = {B ∈ NND(n) | B + I0 ∈ Pos(n) } .

While Assumptions (A4.1) to (A4.3) are important for the existence of optimal designs and the
derivation of first order optimality conditions, Assumption (A4.4) admits a geometric interpreta-
tion. Given two design measures u1, u2 ∈M+(Ωo) with I(u1), I(u1) ∈ PD(n) and I(u1) ≤L I(u2)
the corresponding ellipsoids fulfill

E2 = { δq ∈ Rn | δq>I(u2)δq ≤ r } ⊂ E1 = { δq ∈ Rn | δq>I(u1)δq ≤ r }

for any r > 0. This ensures that Ψ is indeed a suitable criterion for the size of the linearised
confidence ellipsoids (4.10). For a similar set of conditions; see [256, p. 41]. The given assumptions
can be verified for a large class of classical optimality criteria, among them the A and D criterion

ΨA(B) =

{
Tr(B−1), B ∈ PD(n),

∞, else,
ΨD(B) =

{
− log(det(B)), N ∈ PD(n),

∞, else,
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corresponding to the combined length of the half axis and the volume of the confidence ellipsoids.
Additionally, one may also use weighted versions of the design criteria: for instance ΨwA (B) =
Tr(WB−1W ) allows to put special emphasis on particular parameters by virtue of the weight
matrix W ∈ NND(n). However, we emphasize that the results presented in this chapter cannot
be applied to other non-differentiable popular criteria such as the E criterion defined by

ΨE(B) =

{
maxi

{
λi(B

−1)
}
, B ∈ PD(n),

∞, else.

describing the length of the longest half axis and the length of the longest side of the small-
est box containing the confidence ellipsoid. In this case, one can for instance resort to smooth
approximations of the design criteria.

4.2.1 Existence of optimal solutions and optimality conditions

In this section we prove the existence of solutions as well as first order necessary and sufficient
optimality conditions for the optimal design problem (Pβ). Additionally, results on the sparsity
pattern of optimal designs are derived. Let us first take a closer look on the Fisher operator I. It
is readily verified that it is the Banach space adjoint of the operator

I∗ : Sym(n)→ C(Ωo), with I∗(B) = ϕB,

where ϕB ∈ C(Ωo), given B ∈ Sym(n), is the continuous function defined by

ϕB(x) = Tr
(
∂S[q̂](x)∂S[q̂](x)>B

)
= ∂S[q̂](x)>B ∂S[q̂](x) ∀x ∈ Ωo, (4.12)

see Proposition 3.7. Now, we formulate the reduced design problem (Pβ) as

min
u∈M+(Ωo)

F (u) = ψ(u) + β‖u‖M,

where ψ(u) = Ψ(I(u)+I0). In the following proposition we collect some properties of the reduced
functional.

Proposition 4.1. Let Assumptions (A4.1)–(A4.4) be fulfilled and let I0 ∈ NND(n) be given.
The operator I and the functional ψ satisfy:

1. For every u ∈M+(Ωo) there holds I(u) ∈ NND(n).

2. There holds domM+(Ωo) ψ = {u ∈M+(Ωo) | I(u) + I0 ∈ PD(n) }. The domain domM+(Ωo) ψ
is weak* sequentially open in M+(Ωo).

3. ψ is two times continuously differentiable on its domain with derivative

∇ψ(u) = I∗ (∇Ψ(I(u) + I0)) ∈ C(Ωo)

for every u ∈ domM+(Ωo) ψ. The derivative can be identified with the non-positive continuous
function

[∇ψ(u)] (x) = ∂S[q](x)>∇Ψ(I(u) + I0) ∂S[q](x) ∀x ∈ Ωo. (4.13)

Moreover the gradient ∇ψ : domM+(Ωo) ψ → C(Ωo) is weak*-to-strong continuous. Given
u ∈ domM+(Ω) ψ, the second derivative ∇2ψ(u) ∈ L(M(Ωo),M(Ωo)

∗) is characterized as

〈δu1,∇2ψ(u)δu2〉M,M∗ = Tr(I(δu1)∇2Ψ(I(u))I(δu2)), ∀δu1, δu2 ∈M(Ωo).
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4. ψ is weak* lower semi-continuous and convex onM+(Ωo).

5. ψ is monotone in the sense that

I(u1) ≤L I(u2)⇒ ψ(u1) ≥ ψ(u2) ∀u1, u2 ∈M+(Ωo).

Proof. Second order Fréchet differentiability differentiability follows from the differentiability as-
sumptions on Ψ by applying the chain rule. The rest of the claimed statements can be inferred
from Proposition 3.9.

To ensure existence of optimal designs we make the following assumption on the objective func-
tional.

Assumption 4.3. The functional F (u) = ψ(u) + β‖u‖M is radially unbounded.

Remark 4.1. This additional assumption is fulfilled for the A and D-optimal design criterion
considered before, since

β‖u‖M ≤ Tr((I(u) + I0)−1) + β‖u‖M,

as well as

β‖u‖M − c1 log(c2‖u‖M + ‖I0‖Sym) ≤ − log(det(I(u) + I0)) + β‖u‖M,

for some positive constant c1, c2 > 0.

Since the regularization term is given by Gβ(‖u‖M) = β‖u‖M and the function

Gβ : R→ R ∪+∞, m 7→ βm+ I[0,∞)(m),

fulfills Assumption 3.3 the following existence result is due to Proposition 3.11.

Proposition 4.2. Assume that domM+(Ωo) ψ 6= ∅ and β > 0. Then there exists at least one
optimal solution ūβ to (Pβ). Moreover the set of optimal solutions is bounded. If Ψ is strictly
convex on PD(n) then the optimal Fisher-information matrix I(ūβ) is unique.

Next we give conditions for the domain of ψ to be non-empty.

Proposition 4.3. Assume that β > 0 and

Rn = span (Ran I0 ∪ { ∂S[q̂](x) | x ∈ Ωo }) .

Then there exists at least one optimal solution of (Pβ). Furthermore, every design measure u ∈
domM+(Ωo) ψ consists of at least n0 = n− rank I0 support points.

Proof. According to Proposition 4.2 we have to show that there exists an admissible design mea-
sure. By assumption we can choose a set of n− rank I0 distinct points xj ∈ Ωo such that

Rn = span (Ran I0 ∪ { ∂S[q̂](xj) | j = 1, . . . , n− rank I0}) .
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Consequently, setting u =
∑n0

j=1 δxj ∈M+(Ωo), we obtain

I(u) + I0 =

n0∑
j=1

∂S[q̂](xj)∂S[q̂](xj)
> + I0 ∈ PD(n),

by straightforward arguments. For the last statement we simply observe that for a measure u
with less than n0 = n− rank I0 support points, the associated information matrix I(u) + I0 has
a non-trivial kernel.

By applying standard results from convex analysis we derive necessary and sufficient first order
optimality conditions. Most important, we link the support points of an optimal design ūβ to the
maximizers of −∇ψ(ūβ) ≥ 0.

Lemma 4.4. Let β > 0 be given. A measure ūβ ∈M+(Ωo) is a minimizer of (Pβ) if and only if
one of the following (equivalent) conditions holds

• There holds

−∇ψ(ūβ) ∈ ∂(β‖ · ‖M + Iu≥0(·))(ūβ).

• There holds

sup
v∈M+(Ωo)

[〈∇ψ(ūβ), ūβ − v〉+ β‖ūβ‖M − β‖v‖M] = 0.

• We have

− min
x∈Ωo

∇ψ(ūβ)(x)

{
= β ‖ūβ‖M > 0

≤ β ‖ūβ‖M = 0
, −〈∇ψ(ūβ), ūβ〉 = β‖ūβ‖M.

• For all x ∈ Ωo we have

− min
x∈Ωo

∇ψ(ūβ)(x)

{
= β ‖ūβ‖M > 0

≤ β ‖ūβ‖M = 0
, supp ūβ ⊂ {x ∈ Ωo | − ∇ψ(ūβ)(x) = β } .

(4.14)

Proof. Since ψ is two times differentiable and monotone we have −∇ψ(u)(x) ≥ 0 and thus also

− min
x∈Ωo

∇ψ(u)(x) ≥ 0

for all measures u ∈M+(Ωo) and x ∈ Ωo. Calculating the subdifferential of Gβ at ‖ūβ‖M gives

∂Gβ(‖ūβ‖M) = {β}+ ∂I[0,∞)(‖ūβ‖M) =

{
(−∞, β] ‖ūβ‖M = 0

{β} ‖ūβ‖M > 0
.

Furthermore we note that ūβ is optimal if and only if

−∇ψ(ūβ) ∈ ∂(β‖ · ‖M + Iu≥0(·))(ūβ) = β∂‖ūβ‖M + ∂Iu≥0(ūβ)

where the last equality holds due to the continuity of the norm. Thus we obtain the result by
applying Theorem 3.17 as in Example 3.3.
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Remark 4.2. For (PK) a similar optimality condition can be derived by the same techniques. A
measure ūK ∈ domM+(Ωo) ψ is an optimal solution of (PK) if and only if

supp ūK ⊂
{
x ∈ Ωo

∣∣∣ ∇ψ(ūK)(x) = arg min
x∈Ωo

∇ψ(ūK)(x)

}
,

where the condition on the support of ūK is equivalent to

−〈∇ψ(ūK), ūK〉+ arg min
x∈Ωo

∇ψ(ūK)(x)‖ūK‖M = 0,

yielding again the well-known Kiefer-Wolfowitz equivalence theorem; see [164,165] and [256, The-
orem 3.2].

Since the Fisher-operator I is a finite rank operator, uniqueness of the optimal solution is usually
not guaranteed. However, the existence of at least one solution with the practically desired sparsity
structure follows due to the finite dimensionality of the parameter space. This is addressed in the
following theorem. Moreover if the optimal Fisher-information matrix I(ūβ) ∈ Sym(n) is unique
and

{x ∈ Ωo | − ∇ψ(ūβ) = β } = {xi}Ni=1, (4.15)

for some xi ∈ Ωo, i = 1, . . . , N , then every optimal design is sparse and uniqueness of the design
holds under an additional linear independence assumption.

Theorem 4.5. Let u ∈M+(Ωo) be given. Then there exists ũ ∈M+(Ωo) with

I(u) = I(ũ), ‖ũ‖M ≤ ‖u‖M, # supp ũ ≤ n(n+ 1)/2.

Additionally, if there exists an optimal solution to (Pβ), then there exists an optimal solution ūβ
with # supp ūβ ≤ n(n+ 1)/2.

Proof. Since dim Sym(n) = n(n+ 1)/2 this result is due to Theorem 3.20 and Corollary 3.21.

Corollary 4.6. Let Ψ be strictly convex on its domain and assume that (4.15) holds. Then every
optimal design ūβ is of the form ūβ =

∑N
i=1 uδxi , ui ∈ R+. If {I(δxi)}Ni=1 is linear independent

then the optimal design is unique.

Proof. For a proof see Corollary 3.18 and Corollary 3.19.

The proof of Theorem 4.5 leads to an implementable sparsifying procedure which, given an ar-
bitrary finitely supported positive measure, finds a sparse measure choosing a subset of at most
n(n+1)/2 support points and yielding the same information matrix. The procedure is summarized
in Algorithm 1.

Proposition 4.7. Let u =
∑m

i=1 uiδxi be given and assume that {I(δxi)}
m
i=1 is linearly dependent.

Denote by unew =
∑
{ i | unew,i>0 } unew,iδxi the measure that is obtained after one execution of the

loop in Algorithm 1. Then there holds

F (unew) ≤ F (u), # suppunew ≤ # suppu− 1, suppunew ⊂ suppu.
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Algorithm 1 Support-point removal
1. Let u =

∑m
i=1 uiδxi be given.

while {I(δxi)}
m
i=1 linearly dependent do

2. Find 0 6= ū with 0 =
∑m

i=1 ūiI(δxi).
3. Set µ = maxi{ ūi/ui }, unew,i = ui − ūi/µ.
4. Update unew =

∑
{ i | unew,i>0 } unew,iδxi .

end while

Proof. This is a special case of Proposition 6.33.

In the last part of this section we will further discuss structural properties of solutions to (Pβ),
mainly focusing on their connection to (PK) and their behaviour for β →∞.

Proposition 4.8. The problems (PK) and (Pβ) are equivalent in the following sense: Given, for
fixed K > 0, a solution ūK to (PK), there exists a β ≥ 0, such that ūK is an optimal solution
to (Pβ) and vice versa.

Furthermore, assuming that Ψ is strictly monotone with respect to the Löwner ordering in the
sense that

B2 −B1 ∈ PD(n)⇒ Ψ(B1) > Ψ(B2), B1, B2 ∈ PD(n),

we additionally obtain the following:

1. We have ‖ūK‖M = K for each optimal solution ūK to (PK).

2. There exists a function

β : R+ \ {0} → R+ \ {0}, K 7→ β(K),

such that each optimal solution ūK to (PK) is a minimizer of (Pβ(K)).

Proof. Fix an arbitrary K > 0. By well established results from convex analysis (see, e.g., [43,
Proposition 2.153]) the norm-constrained problem (PK) is calm. Define the Lagrangian L as

L : M+(Ωo)× R+ → R+ L(u, β) = ψ(u) + β (‖ω‖M −K) .

A given measure ūK ∈M+(Ωo) is optimal for (PK) if and only if there exists a Lagrange multiplier
β ≥ 0 with

ūK ∈ arg min
u∈M+(Ωo)

L(u, β), β(‖ūK‖M −K) = 0. (4.16)

The set of Lagrange multipliers is independent of the choice of the optimizer ūK , i.e. given two
arbitrary optimal solutions ūK1 , ūK2 ∈ M+(Ωo) to (PK) and β ≥ 0 such that the pair (ūK1 , β)
fulfills (4.16), then so does (ūK2 , β). For a proof we refer to, e.g., [43, Theorem 3.4]. This proves
the first statement.

Assume that Ψ is strictly monotone. Let ūK be an arbitrary optimal solution to (PK) with
‖ūK‖M < K. Using the strict monotonicity of Ψ we deduce that ūK 6= 0. Defining ũ =
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(K/‖ūK‖M)ūK there holds ψ(ũ) < ψ(ūK) since (K/‖ūK‖M) > 1. This gives a contradiction
and ‖ūK‖M = K.

It remains to show that for a given K the associated Lagrange multiplier denoted by β(K) is
positive and unique. To prove the positivity, assume that β(K) = 0. Then we obtain

L(ūK , β(K)) = inf
u∈M+(Ωo)

L(u, β(K)) = inf
u∈M+(Ωo)

ψ(u).

Given u ∈ domM+(Ωo) ψ, we have ψ(2u) < ψ(u) and consequently the infimum in the equality
above is not attained, yielding a contradiction. Assume that β(K) is not unique, i.e. there exist
β1(K), β2(K) > 0 such that each optimal solution ūK of (PK) is also a minimizer of L(·, β1(K))
and L(·, β2(K)) overM+(Ωo). First we note again that 0 ∈ M+(Ωo) is not an optimal solution
to (PK) due to the strict monotonicity of Ψ . Additionally it holds ‖ūK‖M = K. Without loss
of generality assume that β1(K) < β2(K). From the necessary optimality conditions for (Pβ1(K))
and (Pβ2(K)), see (4.14), we then obtain

−∇ψ(ūK) ≤ β1(K) < β2(K), supp ūK ⊂
{
x ∈ Ωo | − ∇ψ(ūK)(x) = β2(K)

}
,

implying ūK = 0 which gives a contradiction.

Many commonly used optimality criteria Ψ are positively homogeneous in the sense that there
exists a convex, strictly decreasing, and positive function γ fulfilling

Ψ(rB) = γ(r)Ψ(B) ∀r > 0, B ∈ PD(n); (4.17)

cf. also [106, p. 26]. For example, both the A-optimal design criterion ΨA(B) = Tr(B−1) and the
(non-logarithmic) D-criterion ΨD(B) = det(B−1) fulfill this homogeneity with γA and γD given
by

γA(r) = r−1, γD(r) = r−n.

The following lemma illustrates the findings of the previous result, provided that I0 = 0. It turns
out that solutions to (PK) can be readily obtained by scaling optimal solutions to (Pβ).

Proposition 4.9. Assume that I0 = 0 and Ψ is positive homogeneous in the sense of (4.17). Let
ūβ be a solution to (Pβ) for some fixed β > 0. Then

K ūβ/‖ūβ‖M solves (PK). (4.18)

Proof. First we note that under the stated assumptions every optimal solution ūK to (PK) fulfills
‖ūK‖M = K. Clearly, we have

min (PK) = min
u∈M+(Ωo),
‖u‖M=K

ψ(u) = min
u′∈M+(Ωo),
‖u′‖M=1

ψ(Ku′) = γ(K) min(P 1),

by using the positive homogeneity of Ψ . Thus, the solutions of (PK) are given by Ku1, where u1

are solutions of (P 1). Now, using the fact that

min (Pβ) = min
K≥0

[
min

u′∈M+(Ωo), ‖u′‖M=1
ψ(Ku′) + βK

]
= min

K≥0

[
γ(K) min(P 1) + βK

]
the solutions ūβ of (Pβ) can be computed as ūβ = Ku1, where K minimizes the above expression
and u1 ∈ arg min(P 1). Together, this directly implies (4.18).

75



4 Sparse sensor placement for PDE-constrained inverse problems

As we have shown in the case I0 = 0, i.e. in the absence of a priori knowledge, the optimal locations
of the sensors x are independent of the cost parameter β (resp, K), which only affects the scaling
of the coefficients u. However for I0 6= 0 this is generally not the case. Loosely speaking, if the
a priori information is relatively good (i.e. I0 ∈ PD(n)) and the cost per measurement is too high,
the optimal design is given by the zero function, i.e. the experiment should not be carried out at
all.

Proposition 4.10. Let I0 ∈ PD(n). Then the zero function ū = 0 is an optimal solution to (Pβ)
if and only if β > β0 = −minx∈Ωo ∇ψ(0)(x).

Proof. We first note that 0 ∈ domψ and β0 = −minx∈Ωo ∇ψ(0)(x) < ∞. Clearly, for β ≥ β0,
the zero function fulfills the optimality conditions from Lemma 4.4. Thus, it is a solution to (Pβ).
Conversely, for β < β0, the optimality conditions are violated.

4.3 An approach by convex duality

To conclude the discussion on the structure of optimal design measurements we mention a different
approach for the functional analytic treatment of (Pβ) by convex duality. For a dual viewpoint
on sparse optimal control problems we refer to [73,74]. In the context of optimal design problems
similar arguments have been used in, e.g., [1, 102, 221]. For simplicity set I0 = 0. We rewrite the
sparse sensor placement problem (Pβ) as an unconstrained convex minimization problem

min
u∈M(Ωo)

Ψ(I(u)) + β‖u‖M + Iu≥0(u). (4.19)

By applying the Fenchel-Rockefellar duality theorem, see e.g. [229, Section 31], we can identify its
dual problem as

min
B∈Sym(n)

Ψ∗(−B) s.t. ∂S[q](x)>B∂S[q](x) ≤ β ∀x ∈ Ωo, (4.20)

where Ψ∗ : Sym(n) → R ∪ {+∞} denotes the convex conjugate of Ψ , see (6.5). Any optimal
solution ūβ to (4.19) corresponds to a Lagrange multiplier for the pointwise constraint in (4.20).
These results are formalized in the following proposition.

Proposition 4.11. The following statements are equivalent:

• The measure ū ∈M(Ωo) is optimal for (4.19) and B̄ ∈ Sym(n) is optimal for (4.20).

• There holds B̄ = −∇Ψ(I(ū)), ∂S[q](x)>B̄∂S[q](x) ≤ β for all x ∈ Ωo and

〈I∗B̄, ū〉 =

∫
Ωo

∂S[q](x)>B̄∂S[q](x)dū(x) = β‖ū‖M.

Proof. The statement readily follows from applying [98, Proposition 4.1].

Hence, the results of Lemma 4.4 can be interpreted as a complementarity condition for the point-
wise constraint on ∂S[q]>B̄∂S[q] and its associated multiplier ūβ . To illustrate this result we
consider a concrete example.
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4.3 An approach by convex duality

Example 4.1. We consider the D-optimal design criterion with no a priori knowledge

ΨD(B) =

{
− log(det(B)) B ∈ PD(n),

+∞ else
,

and the associated sensor placement problem

min
u∈M+(Ωo)

[− log(det(I(u))) + β‖u‖M]. (4.21)

Let us calculate the convex conjugate of the log-determinant

Ψ∗D : Sym(n)→ R ∪ {+∞}, B 7→ sup
B1∈PD(n)

[Tr(B>B1) + log(det(B1))].

Let B ∈ Sym(n) be given. First assume that there exists B̃ ∈ PD(n) with Tr(B>B̃) ≥ 0. For
t ∈ R+ define B̃t = tB̃. Then we obtain

Ψ∗D(B) ≥ sup
t∈R+

[Tr(B>B̃t) + log(det(B̃t))] = sup
t∈R+

[tTr(B>B̃) + log(det(B̃t))]

= sup
t∈R+

[tTr(B>B̃) + n log(t) + log(det(B̃))] = +∞.

Thus we conclude that a necessary condition for B ∈ domΨ∗D is given by Tr(B>B1) < 0 for all
B1 ∈ PD(n) or, equivalently, −B ∈ PD(n). Recall that for B1 ∈ PD(n) the gradient of the log-
determinant criterion is given by ∇ΨD(B1) = −B−1

1 . Since the set of positive definite matrices is
open in Sym(n) we conclude

B̄ ∈ arg max
B1∈PD

[Tr(B>B1)− ΨD(B1)]⇒ ∇Ψ(B̄) = −B̄−1 = B>.

Inserting this into the definition of the convex conjugate we get

Ψ∗D(B) = −n− ΨD(−B−1) = −n+ ΨD(−B) = −n− log(det(−B)).

. The dual problem (4.20) is now readily given as

min
B∈PD(n)

− log(det(B)) s.t. ∂S[q̂](x)>B∂S[q̂](x) ≤ β ∀x ∈ Ωo. (4.22)

We give some geometrical interpretation to this problem. Note that if B ∈ PD(n) is admissible
for (4.20) there holds

{ ∂S[q̂](x) | x ∈ Ωo } ⊂ E(B) =
{
q ∈ Rn | q>Bq ≤ β

}
,

where the set on the right hand side is an ellipsoid, centred at the origin. Its shape is described by
B. Furthermore we have vol(E(B)) = c(n) det(B)−1/2. Therefore, for the log-determinant crite-
rion, the dual to the sensor placement problem is given by finding the ellipsoid of minimal volume
which covers all possible observation vectors ∂S[q̂](x) ∈ Rn, x ∈ Ωo, see also [253]. Minimum
volume enclosing ellipsoid problems have been discussed in e.g. [175,219]. Due to the support con-
dition on the optimal measurement design we further conclude that the observation vector ∂S[q̂](x̄)
corresponding to an optimal measurement at x̄ lies at the boundary of the associated ellipsoid.
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4 Sparse sensor placement for PDE-constrained inverse problems

These duality results establish an important connection between sparse optimal sensor placement
and so called semi-infinite programming, see e.g. [140, 187]. Here, the space of optimization
variables is finite dimensional, but an infinite number of constraints is imposed. Optimality
conditions and existence of a sparse Lagrange multiplier for these kind of problems has been
discussed in e.g. [43]. In this chapter we have chosen a primal approach to discuss the sparse
optimal sensor problem to demonstrate the applicability of the general framework presented in the
previous chapter. Moreover, we are confident that many of the ideas presented in the following
sections can be extended to more general and non-convex sparse optimization problems in a
straightforward fashion. However, this work largely benefits from the advanced level of research on
semi-infinite problems. We mention for example the a priori error estimates for the design measure
in Section 4.6 which partly rely on techniques developed for a semi-infinite problem, c.f. [190,191].
On the other hand, semi-infinite programming might also benefit from results obtained from the
study of sparse optimization problems. For instance, recently, c.f. [97], the equivalence of an
accelerated conditional gradient method for sparse optimization problems, see Section 4.4, and an
exchange method for semi-infinite problems, see e.g. [278], has been shown. This allowed to derive
worst-case convergence rates for the latter one. In this light, numerical methods for semi-infinite
optimization might eventually also profit from the improved convergence results for accelerated
conditional gradient methods derived in the following section.

4.4 Optimization aspects

In this section we will elaborate on the algorithmic solution of (Pβ). We consider two different
approaches. First, we present an algorithm relying on finitely supported iterates and the sequen-
tial insertion of single Dirac delta functions based on results for a linear-quadratic optimization
problem in [50] and [49]. By a closer inspection, the resulting algorithm guarantees convergence
of the generated sequence of measures towards a minimizer of (Pβ) together with a sub-linear
convergence rate of the objective function values. Additionally we propose to alternate between
point insertion and point deletion steps to enhance the sparsity of the iterates and to speed up the
convergence of the algorithm. These sparsification steps are based on the approximate solution of
finite dimensional optimization problems in every iteration. As an example we give two explicit
realizations for the point removal and discuss the additional computational effort in comparison
to an algorithm solely based on point insertion steps. If the finite-dimensional sub-problems are
solved up to optimality in every iteration, we are further able to show improved convergence rates
for the objective functional as well as rates for the iterates in a suitable metric. Moreover the
resulting algorithms can be combined with Algorithm 1 in a straightforward manner, guaranteeing
a sparse structure of the computed optimal design. Finally, the algorithm is compared to variants
of the Fedorov-Wynn algorithm for the algorithmic solution of (PK).

Secondly, we adapt an approach based on a Hilbert space regularization of the original sparse
optimization problem. Here, the optimal design problem (Pβ) is replaced by a sequence of reg-
ularized optimization problems, which are amenable to proximal point or semismooth Newton
methods (which converge locally superlinearly) in function space. Algorithmic approaches for the
solution of non-smooth optimization problems based on Hilbert space regularizations have recently
increased in interest in the context of PDE-constrained optimization; see, e.g., [73,248]. Since such
an approach seems to be new in the context of sensor placement problems, we briefly describe it
for the sake of comparison at the end of this section.
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4.4.1 A generalized conditional gradient method

For the direct solution of (Pβ) on the admissible setM+(Ωo) we adapt the numerical procedure
presented in [50], which relies on finitely supported iterates. A general description of the method is
given in Algorithm 2. For convenience of the reader we give a detailed description of the individual
steps and their derivation below. Basically, the algorithm can be split into two parts. The first part

Algorithm 2 Sequential point insertion algorithm
1. Choose u1 ∈ domM+(Ωo) ψ, # suppu1 ≤ n(n+ 1)/2. Choose M0 > 0 with ‖ūβ‖M ≤M0.
while Φ(uk) ≥ TOL do
2. Compute ∇ψk = ∇ψ(uk). Determine x̂k ∈ arg minx∈Ωo ∇ψk(x).

3. Set vk = θkδx̂k with θk =

{
0, ∇ψk(x̂k) ≥ −β,
M0, else

4. Select a step size sk ∈ (0, 1] and set uk+1/2 = (1− sk)uk + skvk.
5. Find uk+1 with suppuk+1 ⊆ suppuk+1/2 and F (uk+1) ≤ F (uk+1/2), ‖uk+1‖M ≤M0.

end while

(steps 2.–4. in Algorithm 2) consists of adding a new sensor to the current measurement design.
In the second part (step 5.), we consider the minimization of the finite dimensional subproblem
that arises from restriction of the design measure to the active support of the current iterate. This
is motivated on the one hand by the desire to potentially remove non-optimal support points by
setting the corresponding coefficient to zero, and on the other hand by the desire to obtain an
accelerated convergence behavior in practice and, as we will see, also in theory.

This section is structured as follows: First, we focus only on the point insertion step and prove
its connection to a generalized conditional method as described in Chapter 6. Thus, by a suitable
choice of the stepsize sk in each step of the procedure we are able to prove a sub-linear convergence
rate for the objective functional value. In the second part, we consider two concrete examples
for the point removal step 5. and discuss the applicability of Algorithm 1 in the context of the
successive point insertion algorithm. Since most of the statements in this section are obtained
through applying the general theory in Chapter 6 we omit the majority of proofs in the following.

Let us first recall that the set of optimal solutions to (Pβ) is bounded by a constant M0 > 0. For
example, if ψ is nonnegative on its domain, we can choose an arbitrary but fixed u ∈ domM+(Ωo) ψ
to obtain

β‖ūβ‖M ≤ F (ūβ) ≤ F (u),

for every optimal design ūβ ∈ M+(Ωo). Hence we can set M0 = F (u)/β. We now consider the
slightly modified problem

min
u∈M+(Ωo),‖u‖M≤M0

[ψ(u) + β‖u‖M]. (PM0
β )

Connected to this auxiliary problem we further define the primal-dual gap

Φ : domM+(Ωo) ψ → [0,∞),

which is given by

Φ(u) = sup
v∈M+(Ωo),‖v‖M≤M0

[〈∇ψ(u), u− v〉+ β‖u‖M − β‖v‖M)] .
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4 Sparse sensor placement for PDE-constrained inverse problems

In the next proposition we collect several results to establish the connection between the optimal
design problems (Pβ) and (PM0

β ). Furthermore, the primal-dual gap gives an upper bound for the
error in the objective function value at the k-th iterate.

Proposition 4.12. Given ūβ ∈ domM+(Ωo) ψ the following three statements are equivalent:

1. The measure ūβ is a minimizer of (Pβ).

2. The measure ūβ is a minimizer of (PM0
β ).

3. The measure ūβ fulfils Φ(ūβ) = 0.

Furthermore there holds

Φ(u) ≥ F (u)− F (ūβ) =: rF (u), (4.23)

for all u ∈ domM+(Ωo) ψ with ‖u‖M ≤M0 and all minimizers ūβ of (PM0
β ).

Following relation (4.23), the primal-dual gap Φ is suitable to monitor the convergence of Algo-
rithm 2. Its numerical computation is discussed in an instance. We now connect the definition of
the new sensor vk (see step 2.–3.) to the minimization of a partial linearization of (PM0

β ).

Lemma 4.13. Let uk ∈ domM+(Ωo) ψ be given. Then the measure vk = θkδx̂k with x̂k ∈ Ωo and
θk ≥ 0 as defined in steps 2.–3. of Algorithm 2 is a minimizer of

min
v∈M+(Ωo),‖v‖M≤M0

[〈∇ψ(uk), v〉+ β‖v‖M]. (P lin
β )

Moreover, vk realizes the supremum in the definition of the primal-dual gap:

Φ(uk) = 〈∇ψ(uk), uk − vk〉+ β‖uk‖M − β‖vk‖M.

Proof. We note that (P lin
β ) can be equivalently expressed as

min
r∈[0,M0]

min
ṽ∈M+(Ωo),
‖ṽ‖M=1

[r〈∇ψ(uk), ṽ〉+ βr] = min
r∈[0,M0]

[r min
x∈Ωo

∇ψ(uk)(x) + βr].

The concrete expression of vk follows now by a straightforward computation. Clearly, Φ(uk) agrees
to −min (P lin

β ) up to a constant value.

We make the following two observations: First, we can interpret Algorithm 2 as a generalized
conditional gradient method as described in Chapter 6. Second, as a by-product of the last result,
the convergence criterion Φ(uk) can be evaluated cheaply once the current gradient ∇ψ(uk) and
its minimum point x̂k are calculated.

Remark 4.3. At this point, replacing (Pβ) by the equivalent formulation (PM0
β ) is crucial. In fact,

the partially linearized problem corresponding to the original problem

min
v∈M+(Ωo)

[〈∇ψ(u), v〉+ β‖v‖M],

is either unbounded or has an unbounded solution set in the case that minx∈Ωo ∇ψ(u)(x) ≤ −β.
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In the following, we will determine the stepsize sk according to a Quasi-Armijo-Goldstein condition.
We set sk = γnk , where γ ∈ (0, 1), α ∈ (0, 1/2), uk

sk
= uk + sk(vk − uk) and nk is the smallest

integer fulfilling

αskΦ(uk) ≤ F (uk)− F (uksk). (4.24)

For more information on the feasibility for this choice of the stepsize see the discussions around
Lemma 6.9.

We now turn our attention to the convergence of Algorithm 2. Therefore we note that ∇ψ is
Lipschitz continuous on the sublevel sets of F .

Proposition 4.14. Let u1 ∈ domM+(Ωo) ψ be given. Define the associated sub-level set EF (u1)
as

EF (u1) =
{
u ∈M+(Ωo) | F (u) ≤ F (u1)

}
.

Then there exists Lu1 such that

sup
u1,u2∈EF (u1)

u1 6=u2

‖∇ψ(u1)−∇ψ(u2)‖C
‖u1 − u2‖M

≤ Lu1 . (4.25)

Proof. Since Ψ is two times continuously differentiable on its domain, its gradient ∇Ψ is Lipschitz
continuous on compact subsets. We observe that EF (u1) is convex, bounded, and weak* closed.
Consequently, the set of associated information matrices

I(EF (u1)) =
{
I(u) + I0 | u ∈ EF (u1)

}
⊂ domΨ,

is compact. For u1, u2 ∈ EF (u1) we obtain

‖∇ψ(u1)−∇ψ(u2)‖C = ‖I∗∇Ψ(I(u1) + I0)− I∗∇Ψ(I(u2) + I0)‖C
≤ ‖I∗‖L(Sym(n),C(Ωo))‖∇Ψ(I(u1) + I0)−∇Ψ(I(u2) + I0)‖Sym

≤ LI(EF (u1))‖I∗‖L(Sym(n),C(Ωo))‖I(u1)− I(u2)‖
≤ LI(EF (u1))‖I∗‖L(Sym(n),C(Ωo))‖I‖L(M(Ωo),Sym(n))‖u1 − u2‖M,

where LI(EF (u1)) denotes the Lipschitz constant of ∇Ψ on I(EF (u1)). This completes the proof.

Combining all the previous results we conclude the following worst-case convergence result.

Theorem 4.15. Let the sequence {uk}k∈N be generated by Algorithm 2 with sk chosen according to
the Quasi-Armijo-Goldstein condition. Then {uk}k∈N is a minimizing sequence of F and admits a
weak* accumulation point ūβ. Every such point is an optimal solution to (Pβ). Additionally there
holds

rF (uk) ≤ rF (u1)

1 + q(k − 1)
, q = αmin

{
c1

Lu1(2M0)2
, 1

}
. (4.26)

Here, Lu1 is the Lipschitz-constant of ∇ψ on EF (u1) and c1 = 2γ(1− α)rF (u1).

Proof. It is readily verified that the problem fulfills the prerequisites of Theorem 6.29. Thus, the
statement follows.
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4.4.2 Acceleration and sparsification strategies

As we have seen in the previous section, an iterative application of steps 2.–4. in Algorithm 2 is
sufficient to obtain weak* convergence of the iterates uk, as well as a sublinear convergence rate
for the objective function. However, it is obvious that the support size of the iterates uk grows
monotonically in every iteration unless the current gradient is bounded from below by −β or, more
unlikely, the step size sk is chosen as 1. Therefore, while the implementation of steps 2.–4. is fairly
easy, an algorithm only consisting of point insertion steps will likely yield iterates with undesirable
sparsity properties, e.g., a clusterization of the intermediate support points around the support
points of a minimizer to (Pβ). In the following we mitigate those effects by augmenting the point
insertion steps by point removal steps, where we incorporate ideas from [44, 50]. Without loss of
generality we can assume that M0 > 0 is chosen large enough such that

F (uk+1) ≤ F (uk+1/2) ≤ F (uk)⇒ max{‖uk‖M, ‖uk+1/2‖M} ≤M0,

due to the radial unboundedness of F . Given an ordered set of pairwise distinct points A =
{x1, . . . , xN}, we define the parameterization:

uA(u) :=
∑
xi∈A

uiδxi ∀u ∈ RN . (4.27)

Now, we set A = Ak = suppuk+1/2, mk = #A and uk+1 = uA(uk+1), where the improved
vector uk+1 ∈ Rmk is chosen as an approximate solution to the (finite dimensional) coefficient
optimization problem

min
u∈Rmk+

F (uA(u)) = [ψ(uA(u)) + β‖u‖l1 ], (4.28)

that fulfills F (uk+1) ≤ F (uk+1/2). In this section, we focus on two special instances of this removal
step, which are detailed below.

In the first strategy, the new coefficient vector uk+1 = uk+1(σk) is obtained by

uk+1(σk)i = max
{
u
k+1/2
i − σk

[
∇ψ(uk+1/2)(xi) + β

]
, 0
}
∀i ∈ {1, . . . ,mk}, (4.29)

where σk > 0 is a suitably chosen step size that avoids ascend in the objective function value. This
corresponds to performing one step of a projected gradient method on (4.28) using the previous
coefficient vector uk+1/2 as a starting point. Thus, step 5. in Algorithm 2 subtracts or adds mass
at support point xi for −∇ψ(uk+1/2)(xi) < β or −∇ψ(uk+1/2)(xi) > β, respectively. Furthermore,
the new coefficient uk+1

i of the Dirac delta function δxi is set to zero if

u
k+1/2
i − σk(∇ψ(uk+1/2)(xi) + β) ≤ 0,

removing the point measure from the iterate.

Secondly, we suppose that the finite-dimensional sub-problems (4.28) can be solved exactly and
choose

uk+1 ∈ arg min
u∈Rmk+

F (uA(u)). (4.30)

In this case, the conditions

suppuk+1 ⊂ suppuk+1/2, F (uk+1) ≤ F (uk+1/2), ‖uk+1‖M ≤M0,
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Algorithm 3 Primal-Dual-Active-Point strategy for (Pβ)
while Φ(uk) ≥ TOL do
1. Calculate ∇ψk = ∇ψ(uk). Determine x̂k ∈ arg minx∈Ωo ∇ψk(x).
2. Set Ak = suppuk ∪ { x̂k }, compute a solution to uk+1 of (4.28) for A = Ak, and set
uk+1 = uA(uk+1).

end while

are trivially fulfilled. If all finite dimensional sub-problems are solved exactly, the method can be
interpreted as a method operating on a set of active points: In each iteration, the minimizer x̂k

of the current gradient ∇ψk is added to the support set to obtain Ak = suppuk ∪ { x̂k }. Then,
the problem (4.30) is solved on the new support set to obtain the next iterate uk+1. Note that
the next active set is given by Ak+1 = suppuk+1 ∪ {x̂k+1}, which automatically removes support
points corresponding to zero coefficients in each iteration. Furthermore the method terminates
after finitely many steps if Ak = Ak+1 for some k ∈ N. Since the subproblems are solved up to
optimality we conclude

∇ψk+1(x) ≥ −β, ∀x ∈ suppuk+1/2, −〈∇ψk+1, u
k+1〉 = β‖uk+1‖M.

Especially, the primal-dual gap at a non-optimal uk coincides, up to a constant, with the constraint
violation of the associated gradient, Φ(uk) = −M0(minx∈Ωo ∇ψk(x) + β).

Finally, to be able to guarantee the a priori bound # suppuk ≤ n(n + 1)/2 for the algorithmic
solutions, we can apply Algorithm 1 to the intermediate iterate uk+1/2 in step 5. of Algorithm 2.
This ensures the convergence of the presented procedure towards a sparse minimizer of (Pβ).

Proposition 4.16. Assume that # suppu1 ≤ n(n + 1)/2 and let uk+1 be obtained by applying
Algorithm 1 to uk+1/2 in each iteration of Algorithm 2. Then the results of Theorem 4.15 hold.
Furthermore we obtain # suppuk ≤ n(n + 1)/2 for all k ∈ N and consequently # supp ūβ ≤
n(n+ 1)/2 for every weak* accumulation point ūβ of uk.

Proof. See Theorem 6.36.

We emphasize that the sparsifying procedure from Algorithm 1 can be readily combined with the
previously presented point removal steps in a straightforward fashion. In practical computations
we optimize the coefficients of the Dirac delta functions in the current support either by (4.29)
or (4.30) obtaining an intermediate iterate uk+3/4. Subsequently we apply Algorithm 1. Since in
both cases, the number of support points cannot increase, the statements of the last proposition
remain true.
Remark 4.4. Note that Algorithm 2 can be easily generalized to allow for the insertion of more than
one point in every iteration, which yields an additional practical speed up of the method. In detail,
the results of Theorem 4.15 and Proposition 4.16 hold true if the search direction vk ∈ M+(Ωo)
from Lemma 4.13 is more generally chosen as

vk =
m∑
i=1

uiδxi , {xi}
m
i=1 ⊂ arg min

x∈Ωo
∇ψk(x), ‖vk‖M = M0

if minx∈Ωo ∇ψk ≤ −β. Moreover all results remain valid for Algorithm 3 if we compute uk+1 as
the solution of the coefficient minimization problem (4.30) with with a general active set Ak which
contains suppuk ∪ { x̂k }.
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4.4.3 Improved convergence results

In this section we will improve on the convergence result of Theorem 4.15 in the special case of
Algorithm 3. Therefore we briefly recall that given a minimizer ūβ of (Pβ) fulfills

−∇ψ(ūβ)(x) ≤ β, ∀x ∈ Ωo, supp ūβ ⊂ {x ∈ Ωo | − ∇ψ(ūβ)(x) = β} .

We make the following assumptions on the optimal design criterion Ψ , the maximizers of −∇ψ(ūβ)
and the local regularity of ∂S[q̂].

Assumption 4.4. The design criterion Ψ is strictly convex on its domain and the interior of Ωo is
not empty. Define the unique optimal gradient p̄ = −∇ψ(ūβ) and assume that there exists N ∈ N
and x̄i ∈ intΩo, i = 1, . . . , N, with

supp ūβ ⊂ {x ∈ Ωo | p̄(x) = β} = {x̄i}Ni=1.

Furthermore, the set {I(δx̄i)}Ni=1 is linear independent and there exists a constant R > 0 with

ΩR :=

N⋃
i=1

BR(x̄i) ⊂ intΩo, B̄R(x̄i) ∩ B̄R(x̄j) = ∅, ∂S[q̂] ∈ C2(Ω̄R,Rn) ∩ C(Ωo,Rn).

for all i, j ∈ {1, . . . , N}.

The assumption on the global maximizers of p̄ together with the linear independence of the as-
sociated Fisher information matrices guarantee the sparsity as well as the uniqueness of the op-
timal design, see Corollaries 3.21 and 3.19. Moreover, we conclude that I∗ maps continuously
to C2(Ω̄R) ∩ C(Ωo) since

I∗B = ∂S[q̂](x)>B∂S[q̂](x) ∀B ∈ Sym(n).

In particular, since p̄(x) = −I∗∇Ψ(I(ūβ) + I0), we immediately get p̄ ∈ C2(Ω̄R) ∩ C(Ωo). To
derive improved convergence rates we demand that the following second order conditions for the
optimal Fisher information matrix I(ūβ) and the optimal sensor positions {x̄i}Ni=1 hold.

Assumption 4.5. There holds ūβ =
∑N

i=1 ūiδx̄i for some ūi > 0 and

Tr(B∇2Ψ(I(ūβ) + I0)B) ≥ γ0‖B‖2Sym, ∀B ∈ Sym(n).

Moreover the Hessian of p̄ ∈ C(Ωo) ∩ C2(Ω̄R) is negative-definite at each x̄i: there exists θ > 0
with

−(ζ,∇2p̄(x̄i)ζ)Rd ≥ θ|ζ|2Rd , ∀ζ ∈ Rd

for all i = 1, . . . , N .

For the rest of this section let Assumptions 4.4 and 4.5 hold. Obviously, the above assumptions
guarantee uniform convexity of Ψ around I(ūβ) + I0.

Corollary 4.17. There exists a neighbourhood N(I(ūβ)) of I(ūβ) in Sym(n) with

(∇Ψ(B1 + I0)−∇Ψ(B2 + I0), B1 −B2)Sym ≥
γ0

2
‖B1 −B2‖2Sym ∀B1, B2 ∈ N(I(ūβ)).
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Proof. Let B1, B2 ∈ NND(n) with Bi + I0 ∈ domΨ , i = 1, 2, be given. Using Taylor’s expansion
we get

(∇Ψ(B1 + I0)−∇Ψ(B2 + I0), B1 −B2)Sym = (B1 −B2,∇2Ψ(Bζ + I0)(B1 −B2))Sym

for some Bζ = B1 +ζ(B2−B1), ζ ∈ (0, 1). Since Ψ is two times continuously Fréchet differentiable
its Hessian is uniformly continuous on compact sets. Hence by choosing N(I(ūβ)) small enough
there holds N̄(I(ūβ)) ⊂ domΨ due to the openess of the domain and

‖∇2Ψ(Bζ + I0)−∇2Ψ(I(ūβ) + I0)‖L(Sym(n),Sym(n)) ≤
γ0

2
∀B1, B2 ∈ N(I(ūβ)), ζ ∈ (0, 1).

Combining both results and using the definiteness of ∇2Ψ at I(ūβ)+I0 we conclude the statement.

We arrive at the following improved convergence rate for the objective function values.

Theorem 4.18. Denote by {uk}k∈N the sequence obtained through Algorithm 3. Let the assump-
tions of Theorem 4.15, Assumption 4.4 as well as Assumption 4.5 hold. Assume that the algorithm
does not terminate after finitely many steps. Then there exists 0 < ζ < 1 and a constant c > 0
independent of k with

rF (uk) = F (uk)− F (ūβ) ≤ cζk,

for all k ∈ N large enough.

Proof. Due to the stated assumptions, the functionals Ψ(· + I0), G, the operator I, the unique
minimizer ūβ and p̄ fulfill Assumptions 6.3, 6.4, 6.5 and 6.6 noting that p̄ = |∇ψ(ūβ)|. Thus, we
can apply Theorem 6.70 taking Remark 6.14 into account. This yields the desired result.

The rest of this section is devoted to the establishment of convergence rates for the iterates uk

produced by Algorithm 3. Therefore let us briefly gather the facts so far. Due to the uniqueness
of the optimal design we have uk ⇀∗ ūβ for the whole sequence. Furthermore we have −∇ψk → p̄
in C(Ωo) and

−∇ψk(x) = β, ∀x ∈ suppuk,

due to the optimality of uk for (4.28) and k > 1. Combining this with the fact that by assumption
p̄(x) < β for all x 6∈ supp ūβ we conclude suppuk ⊂ ΩR for all k large enough. Hence, by denoting
with uki ∈ M+(Ωo) the restriction of uk to BR(x̄i), we also obtain uki ⇀

∗ ūiδx̄i , i = 1, . . . N , by
testing uk with suitable continuous functions.

In general, norm convergence of {uk}k∈N on M(Ωo) cannot be expected. We recall that the
iterates as well as the optimal design ūβ are given as conic combinations of finitely many Dirac
delta functions which each correspond to the setup of a measurement experiment. From a practical
point of view, the most important question concerns the convergence of the sensor positions and
the associated measurement weights. In view of the aforementioned clustering effects, a sensor
located at an optimal position x̄i is in most cases approximated by several sensors in the iterated
design uk. Consequently, the convergence of the sensors in the restricted design uki towards the
sensor represented by ūiδx̄i has to be addressed. Moreover, on a more abstract level, quantitative
convergence results for the sequence {uk}k∈N can be obtained when resorting to weaker metrics.

85



4 Sparse sensor placement for PDE-constrained inverse problems

These topics are covered by the following discussion For this purpose, let us first define the set of
Lipschitz continuous functions C0,1(Ωo) on Ωo by

C0,1(Ωo) = {ϕ ∈ C(Ωo) | ∃L > 0: |ϕ(x1)− ϕ(x2)| ≤ L|x1 − x2|Rd ∀x1, x2 ∈ Ωo } .

For ϕ ∈ C0,1(Ωo), the quotient

‖ϕ‖Lip = sup
x1,x2∈Ωo,
x1 6=x2

|ϕ(x1)− ϕ(x2)|
|x1 − x2|Rd

,

is finite and will be called its Lipschitz constant. The set C0,1(Ωo) together with the norm ‖ϕ‖C0,1 =
‖ϕ‖C + ‖ϕ‖Lip forms a Banach space. Since Lipschitz continuous functions are in particular
continuous, we have C0,1(Ωo) ↪→ C(Ωo) and thusM(Ωo) ↪→ C0,1(Ωo)

∗, where the duality pairing
is realized as

〈ϕ, u〉C0,1,C0,1∗ = 〈ϕ, u〉 =

∫
Ωo

ϕ(x)du(x),

for all u ∈ M(Ωo) and ϕ ∈ C0,1(Ωo). Moreover, if e.g. Ωo is quasi-convex, the space of Lipschitz
continuous functions on Ωo can be identified with W 1,∞(Ωo), the space of essentially bounded
functions with essentially bounded weak derivative, see [134, Theorem 4.1]. We now define the
modified Wasserstein distance of two measures as follows.

Definition 4.1. Given two probability measures µ1 and µ2 we define their Wasserstein-1 Distance
as

W1(µ1, µ2) = sup
{
〈ϕ, µ1 − µ2〉 | ϕ ∈ C0,1(Ωo), ‖ϕ‖Lip ≤ 1

}
.

Let now u1, u2 ∈ M+(Ωo), u1, u2 6= 0 be given. We define the modified Wasserstein distance
between u1 and u2 by

W̄1(u1, u2) = W1(u1/‖u1‖M, u2/‖u2‖M) + |‖u1‖M − ‖u2‖M|.

Since the Wasserstein-1 distance metrizes weak* convergence, see [117], we have

uk ⇀
∗ u⇒W1(uk/‖uk‖M, u/‖u‖M)→ 0, ‖uk‖M → ‖u‖M

for every sequence {uk}k∈N ⊂ M+(Ωo) with u 6= 0, k large enough. The following result relates
the modified Wasserstein distance to the norm on the dual space of C0,1(Ωo)

‖ϕ‖C0,1∗ = sup
{
〈ϕ, u〉C0,1,C0,1∗ | ϕ ∈ C

0,1(Ωo), ‖ϕ‖C0,1 ≤ 1
}
.

Proposition 4.19. Let u1, u2 ∈M+(Ωo) with u1, u2 6= 0 be given. Then there holds

‖u1 − u2‖C0,1∗ ≤ c‖u2‖MW̄1(u1, u2),

for some constant c‖u2‖M > 0 depending on the norm of u2.
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Proof. Let u1, u2 ∈ M+(Ωo) be given. First we note that ‖ui‖C0,1∗ ≤ ‖ui‖M, i = 1, 2. We
estimate

‖u1 − u2‖C0,1∗ ≤ |‖u1‖M − ‖u2‖M|+ ‖u2‖M‖u1/‖u1‖M − u2/‖u2‖M‖C0,1∗ .

Define ũ1 = u1/‖u1‖M and ũ2 = u2/‖u2‖M. We obtain

‖ũ1 − ũ2‖C0,1∗ = sup { 〈ϕ, ũ1 − ũ2〉 | ‖ϕ‖C0,1 ≤ 1 } ≤ sup { 〈ϕ, ũ1 − ũ2〉 | ‖ϕ‖Lip ≤ 1 } = W1(ũ1, ũ2).

The statement readily follows.

We now turn our attention to the modified Wasserstein distance between a sequence of sparse mea-
sures and its limit. Consider sequences {uki }k∈N ⊂M+(Ωo), i = 1, . . . , N , fulfilling # suppuki <∞
for all k ∈ N, i = 1, . . . , N as well as uki ⇀∗ uiδxi for some xi ∈ Ωo and ui > 0. Define
uk =

∑N
i=1 u

k
i and the limit measure u =

∑N
i=1 uiδxi . The following theorem gives an upper

bound on the modified Wasserstein distance between uk and u in terms of their support points
and coeffcients, respectively.

Theorem 4.20. Without loss of generality assume that uki 6= 0 for all k ∈ N and i = 1, . . . , N .
Then there exists a constant c‖u‖M,N > 0 depending on the number of Diracs in the limit u and
its norm such that the estimate

W̄ (uk, u) ≤ c‖u‖M,N ( max
i=1,...,N

max
x∈suppuki

|x− xi|Rd + max
i=1,...,N

|‖uki ‖M − ui|+ |‖uk‖M − ‖u‖M|),

(4.31)

is valid.

Proof. We establish an upper bound for W1(uk/‖uk‖M, u/‖u‖M). Therefore note that given an
arbitrary but fixed x0 ∈ Ωo there holds

〈ϕ, uk/‖uk‖M − u/‖u‖M〉 = 〈ϕ− ϕ(x0), uk/‖uk‖M − u/‖u‖M〉.

Hence the Wasserstein distance can be restricted to

W1(µ1, µ2) = sup
{
〈ϕ, µ1 − µ2〉 | ϕ ∈ C0,1(Ωo), ‖ϕ‖Lip ≤ 1, ϕ(x0) = 0

}
.

Each such ϕ ∈ C0,1(Ωo) is uniformly bounded due to

‖ϕ‖C = max
x∈Ωo

|ϕ(x)− ϕ(x0)| ≤ ‖ϕ‖Lip|x− x0|Rd ≤ 2M,

where M > 0 is a constant bounding the elements of Ωo. We estimate

|〈ϕ, uk/‖uk‖M − u/‖u‖M〉| ≤ c‖u‖M(|‖uk‖M − ‖u‖M|‖ϕ‖C + |〈ϕ, uk − u〉|),

for some constant c‖u‖M > 0 only depending on the norm of u if k is large enough. We partition
the second term to obtain

|〈ϕ, uk − u〉| ≤
N∑
i=1

|uiϕ(xi)− 〈ϕ, uik〉| ≤
N∑
i=1

[|ui − ‖uki ‖M|‖ϕ‖C + |‖uki ‖Mϕ(xi)− 〈ϕ, uki 〉|].
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We proceed to

N∑
i=1

[|ui − ‖uik‖M|‖ϕ‖C + |‖uki ‖Mϕ(xi)− 〈ϕ, uki 〉|].

≤ N( max
i=1,...,N

|ui − ‖uki ‖M|‖ϕ‖C + ‖uk‖M max
i=1,...,N

max
x∈suppuki

|x− xi|Rd).

Since ‖uk‖M is uniformly bounded, taking the supremum with respect to ϕ and combining the
previous estimates yields the result.

Remark 4.5. Combining the previous results we specifically conclude

‖uk − u‖C0,1∗ ≤ c‖u‖M,N max
i=1,...,N

(
max

x∈suppuki

|x− xi|Rd + max
i=1,...,N

|ui − ‖uki ‖M|

)
.

In fact, a similar estimate from below is also valid. Since the support points {xi}Ni=1 of u are distinct
there exists R > 0 such that B̄R(xi) ∩ B̄R(xj) = ∅, i 6= j. Assume that suppuki ⊂ B̄R(xi) for all
k ∈ N and i = 1, . . . , N . Let k ∈ N and i ∈ {1, . . . , N} be arbitrary but fixed. By ξi we denote a
smooth function with ξi(x) = 1 for all x ∈ B̄R(xi) and ξi(x) = 0 for all x ∈

⋃N
j=1,j 6=i B̄R(xi) and

assume that uki 6= uiδxi . Then the function

ϕki (x) = sgn(ui − ‖uki ‖M)ξi(x) + |x− xi|ξi(x),

is not equal to zero and Lipschitz-continuous with Lipschitz norm ‖ϕki ‖C0,1 bounded independently
of k ∈ N and i from above and below. Testing with u− uki we obtain

〈ϕki , u− uk〉 = 〈ϕki ,uiδxi − uki 〉

=
∑

x∈suppuki

[uki ({x})|x− xi|Rd ] + |ui − ‖uki ‖M| ≥ ‖uki ‖M min
x∈suppuki

|x− xi|Rd + |ui − ‖uki ‖M|.

Since i was chosen arbitrary we conclude

‖uk − u‖C0,1∗ ≥ max
i=1,...,N

〈ϕki /‖ϕki ‖C0,1 , uk − u〉 ≥ c max
i=1,...,N

[ min
x∈suppuki

|x− xi|Rd + |ui − ‖uki ‖M|],

for some constant c ≤ 1/‖ϕki ‖C0,1 for all k ∈ N and i = 1, . . . , N .

We apply these results to the sequence {uk}k∈N generated by Algorithm 3.

Theorem 4.21. Denote by {uk}k∈N the sequence generated by Algorithm 3 and let the assumptions
of Theorem 4.18 hold. Then there holds uk =

∑N
i=1 u

k
i with suppuki ⊂ B̄R(x̄i), uki 6= 0, for all

k ∈ N large enough and all i = 1, . . . , N . Furthermore there exists 1 > ζ > 0 and a constant
c‖ūβ‖M,N depending on the norm of ūβ and its support size N with

W̄1(uk, ūβ) + max
i=1,...,N

max
x∈suppuki

|x− x̄i|Rd + max
i=1,...,N

|ui − ‖uki ‖M| ≤ c‖ūβ‖M,Nζ
k

for all k ∈ N large enough.
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Proof. The statement on the linear convergence of the support points and the coefficients again
follows by applying Theorem 6.70 with noting that uk(B̄R(x̄i)) = ‖uki ‖M due to uk ∈ M+(Ωo).
The convergence result for the modified Wasserstein distance W̄1 then follows from the estimate
in Theorem 4.20.

Remark 4.6. Similar to the previous section, all convergence results remain valid if the intermediate
active set Ak is more generally chosen such that

suppuk ∪ {x̂k} ⊂ Ak, #Ak <∞,

i.e. more than one new sensor can be added in each iteration to further improve the convergence
behavior.

4.4.4 Computational cost of the sparsification steps

It remains to comment on the computational cost associated with the various point removal steps
presented in this section. First, we address the costs for the point removal steps based on the
approximate solution of the finite dimensional subproblems. Computing the new coefficient vector
uk from (4.29) requires the computation of the pointwise evaluation of ∇ψ(uk+1/2) at the current
support points once. In our numerical experiments a suitable step size σk is found by a simple
backtracking line search to avoid ascend. Consequently, for each trial step size, the max-operator
in (4.29) as well as the objective function is evaluated once. This can be done efficiently with cost
scaling linearly with the current support size mk.

Secondly, if uk is determined from (4.30), we have to solve a finite-dimensional convex optimization
problem in every iteration. Since the most common choices for the optimal design criterion Ψ are
twice continuously differentiable, we choose to implement a semi-smooth Newton method. To
benefit from the fast local convergence behavior for this class of methods we warm-start the
algorithm using the coefficient vector uk+1/2 of the intermediate iterate uk+1/2. This choice of the
starting point often gives a good initial guess for uk+1. However, we emphasize that essentially any
algorithm for smooth convex problems with positivity constraints on the optimization variables
can be employed instead. In particular, interior point methods provide complexity bounds for the
solution up to machine precision in terms of the support size mk; see, e.g., [46, Section 11.5]. In
light of this fact, the computational cost for the point removal steps can be regarded as a constant,
assuming that mk is uniformly bounded through the iterations, e.g., by employing Algorithm 1.
However, interior point methods cannot be warm-started in general, which is why we prefer semi-
smooth Newton methods in practice.

Finally, we consider the application of Algorithm 1, given a sparse input measure u with suppu =
{xi}Ni=1. Step 1. amounts to the computation of the symmetric rank one matrices {I(δxi)}Ni=1,
which we identify with vectors {I(δxi)}Ni=1 ⊂ Rn(n+1)/2. Additionally, in each execution of the
loop step 2. has to be executed, which requires to compute a vector ū in the kernel of the matrix
I(ω) ∈ Rn(n+1)/2×N , defined by

[I(ω)]j,i = I(δxi)j , i = 1, . . . , N, j = 1, . . . , n(n+ 1)/2.

This can be done efficiently employing either a SVD-decomposition or a rank-revealing QR-
decomposition. Furthermore, assuming that Algorithm 1 is applied to uk+1/2 for every k, this
loop will run at most once in each iteration. This can be seen in the following way: Let the
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k-th iterate uk in Algorithm 2 be given such that rank I(uk) = # suppuk. Note that this im-
plies # suppuk ≤ n(n + 1)/2. Consequently we have either rank I(uk+1/2) = # suppuk+1/2 or
rank I(uk+1/2) = # suppuk+1/2 − 1. In the first case no sparsification by the post-processing can
be achieved. In the second case uk+1/2 =

∑m
j=1 ujδxj is at least sparsified once. After the first

execution of the sparsification loop, we obtain the measure unew =
∑
{ i | unew,i>0 } unew,iδxi with

rank I(unew) = # suppunew, i.e. Algorithm 1 terminates.

4.4.5 A comparison to the Fedorov-Wynn Algorithm

To close the discussion on sequential point insertion algorithms we briefly describe an analogous
approach for the solution of design problems with equality constraints

min
u∈M+(Ωo)

Ψ(I(u) + I0) s.t. ‖u‖M = K. (4.32)

as they appear in the theory of approximate designs due to Kiefer and Wolfowitz. Due to the
monotonicity of Ψ every optimal design obtained through (4.32) is also a minimizer of the inequality
constrained problem

min
u∈M+(Ωo)

Ψ(I(u) + I0) s.t. ‖u‖M ≤ K. (4.33)

In the case of strict monotonicity the solution sets of both problems coincide, see Proposition 4.8.
Note that (4.33) can be equivalently rewritten as a composite minimization problem

min
u∈M(Ωo)

[ψ(u) + Iu≥0(u) + I‖u‖M≤K(u)].

Hence, to find a minimizer of we apply a (generalized) conditional gradient method. The procedure
is described in Algorithm 4. Again, the new sensor vk is found as a solution of the linearized
problem

min
v∈M+(Ωo)

〈∇ψk, v〉 s.t. ‖v‖M ≤ K,

and convergence is monitored by evaluation of the primal-dual gap

Φ(uk) = min
v∈M+(Ωo)

〈∇ψk, uk − v〉 = 〈∇ψk, uk − vk〉 = 〈∇ψk, uk〉 −K min
x∈Ωo

∇ψk.

By a closer inspection, in the case K = 1, the resulting algorithm resembles the, at least among

Algorithm 4 Fedorov-Wynn algorithm for (4.33)
1. Choose u1 ∈ domM+(Ωo) ψ, # suppu1 ≤ n(n+ 1)/2, ‖u1‖M = K.
while Φ(uk) ≥ TOL do
2. Compute ∇ψk = ∇ψ(uk). Determine x̂k ∈ arg minx∈Ωo ∇ψk(x).
3. Set vk = Kδx̂k .
4. Select a step size sk ∈ (0, 1] and set uk+1/2 = (1− sk)uk + skvk.
5. Find uk+1 with suppuk+1 ⊆ suppuk+1/2 and F (uk+1) ≤ F (uk+1/2), ‖uk+1‖M ≤M0.

end while

statisticians, well-known Fedorov-Wynn algorithm, see [76, 105, 272], which is one of the funda-
mental pillars of approximate design theory. Its properties are a well-studied subject, albeit in
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most cases only the D-optimal design criterion is considered. In the same fashion as for the norm-
penalized problem (Pβ) however, the general theory presented in Chapter 6 implies the following
worst-case convergence rates for Algorithm 4 and a general optimal design criterion Ψ . Again we
consider stepsizes sk = γnk , where nk ∈ N is the smallest integer fulfilling

αskΦ(uk) ≤ ψ(uk)− ψ(uksk), (4.34)

for some fixed α ∈ (0, 1/2), uk
sk

= uk − sk(vk − uk).

Proposition 4.22. Assume that the sequence {uk}k∈N is generated using Algorithm 4 with sk

chosen according to (4.34). Then there exists at least one weak* accumulation point ū of {uk}k∈N
and every such point is a minimizer of (4.33). Furthermore, defining r(u) = ψ(u) − ψ(ū) there
holds

r(uk) ≤ r(u1)

1 + q(k − 1)
, q = αmin

{
c1

Lu1(2K)2
, 1

}
.

Here, Lu1 is the Lipschitz-constant of ∇ψ on the sublevel set

Eψ,K(u1) = {u ∈M+(Ωo) | ψ(u) ≤ ψ(u1), ‖u‖M ≤ K },

and c1 = 2γ(1 − α)r(u1). Moreover, the algorithm can be implemented such that # suppuk ≤
n(n+ 1)/2 holds for all k ∈ N and all accumulation points ū.

Throughout the years, numerous modifications of Fedorov’s and Wynn’s original algorithm were
made to enhance the sparsity of the iterates and to improve its convergence behavior. We only
name a few here. For example, in [132, 216] the authors provide inequalities which have to be
fulfilled by the gradient of the optimal design criterion for an arbitrary probability measure eval-
uated at optimal support points. Thus, non suitable candidate locations can be identified in each
iteration and left out of the problem. Heuristically, sensors at old support points could be moved
to a newly added one if they are sufficiently close, see [106, 256]. More recently, Yu, see [276],
proposed to couple point insertion steps with moving mass between adjacent sensors according
to a nearest neighborhood exchange method, see [41]. However, to our best knowledge, we are
not aware of any modifications guaranteeing a uniform bound on the number of support points as
done by the method proposed in Algorithm 1. Shortly after the initial papers, Atwood, c.f. [11],
proposed to augment Fedorov’s algorithm by Wolfe’s away steps, [268]. Instead of adding a new
sensor, an away step removes measurement weights from non-optimal support points and dis-
tributes it among more promising ones, [247], similarly to the projected gradient update described
in (4.29).

Given an ordered set of distinct points A we recall the definition of the parametrization uA
from (4.27). Early on, Wu, [269, 270], followed by several authors, [44, 275, 276], proposed to
alternate between adding a new sensor at x̂k to the iterated design uk in Fedorov’s algorithm and
updating the measurement weights by (approximately) solving

min
u∈Rmk+ ,‖u‖l1≤K

ψ(uA(u)), Ak = suppuk ∪ {x̂k}, mk = #Ak, (4.35)

by e.g. a Newton-like algorithm. One realization of the proposed procedure is summarized in
Algorithm 5. Again, since the subproblems are solved up to optimality, no convex combination
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Algorithm 5 Accelerated Fedorov-Wynn for (4.33)
while Φ(uk) ≥ TOL do
1. Calculate ∇ψk = ∇ψ(uk). Determine x̂k ∈ arg minx∈Ωo ∇ψk(x).
2. Set Ak = suppuk ∪ { x̂k }, compute a solution uk+1 of (4.35) with ‖uk+1‖l1 = K, and set
uk+1 = uA(uk+1).

end while

has to be formed to ensure admissible iterates and convergence of the procedure. Due to the
monotonicity of Ψ we can furthermore guarantee ‖uk‖M = K for all k ∈ N. Thus we obtain

−〈∇ψk, uk〉 = −K min
x∈suppuk

∇ψk(x), Φ(uk) = K( min
x∈suppuk

∇ψk(x)− min
x∈Ωo

∇ψk(x)).

Since ‖uk‖M = K for all k ∈ N, this method is reminiscent of a simplicial decomposition method,
see [204,260] and [138], and of the accelerated method proposed in Algorithm 3. Indeed, imposing
similar second order conditions, a linear rate of convergence for the objective function value can
be shown in the same way as for the norm regularized problem. To our best knowledge, no
comparable results for the Fedorov-Wynn algorithm have been achieved so far in this direction.

Theorem 4.23. Let Ψ be strictly convex on its domain and uniformly convex around I(ū) + I0.
Define p̄ = −∂S[q̂]>∇Ψ(I(ū) + I0)∂S[q̂] and assume that maxx∈Ωo p̄(x) > 0 with{

x ∈ Ωo | p̄(x) = max
x∈Ωo

p̄(x)

}
= {x̄i}Ni=1 ⊂ intΩo.

Assume that the set {I(δx̄i)}Ni=1 is linearly independent and let the unique optimal design be denoted
by ū =

∑N
i=1 ūiδx̄i for some ūi > 0, i = 1, . . . , N . Let there be R > 0 with

ΩR =
N⋃
i=1

BR(x̄i), B̄R(x̄i) ∩ B̄R(x̄j) = ∅, ∂S[q̂] ∈ C2(ΩR,Rn),

for all i, j ∈ {1, . . . , N}, i 6= j. Furthermore, the Hessian of p̄ at the support points is supposed to
satisfy

−(ζ,∇2p̄(x̄i)ζ)Rd ≥ θ|ζ|2Rd , ∀ζ ∈ Rd,

for all i = 1, . . . , N and some θ > 0.

Finally, denote by {uk}k∈N ⊂ M+(Ωo) the sequence generated by Algorithm 5. Then we have
uk ⇀∗ ū and there exists 0 < ζ < 1 and a constant c > 0 with

ψ(uk)− ψ(ū) ≤ cζk,

for all k ∈ N large enough.

Proof. This result follows again from Theorem 6.70.

Analogously, convergence rates for the optimal design measure as in Theorem 4.21 can be deduced.
For brevity, we resign from stating them here again.
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4.4.6 Algorithmic solution by path-following

As an alternative to Algorithm 2, we briefly describe a path-following approach. For simplicity
assume that Ψ is nonnegative on its domain. To compute a minimizer of (Pβ) we solve a sequence
of regularized problems given by:

min
u∈L2(Ωo),u≥0

Fε(u) := [ψ(u) + β‖u‖L1(Ωo) +
ε

2
‖u‖2L2(Ωo)

]. (P εβ)

In the limiting case for ε → 0, the regularized optimal solutions approximate solutions of (Pβ).
We state first order optimality conditions for solutions of the regularized problem and investigate
the case ε→ 0. For the sake of brevity, we omit most proofs.

Proposition 4.24. Let the assumptions of Proposition 4.2 be fulfilled. Then the following state-
ments hold:

1. For every ε > 0 there exists a unique solution ūεβ ∈ L2(Ωo) to (P εβ).

2. A non-negative function ūεβ ∈ L2(Ωo) is optimal if and only if

ūεβ = max

{
−1

ε
(∇ψ(ūεβ) + β), 0

}
. (4.36)

Consequently there holds ūεβ ∈ C(Ωo) and

ūεβ(x) > 0 if and only if −∇ψ(ūεβ)(x) > β.

3. Given any sequence {εk}k∈N with εk > 0, εk → 0, the associated sequence ūεkβ admits at least
one weak* accumulation point and every such point is an optimal solution to (Pβ).

Proof. By assumption there exists u ∈ M+(Ωo) with ψ(u) < ∞, i.e. I(u) + I0 ∈ PD(n).
Following [208, Appendix A.1], there exists a sequence {uk}k∈N ⊂ L2(Ωo) with uk ≥ 0 and
uk ⇀

∗ u. Consequently there also holds

I(uk) + I0 → I(u) + I0 ∈ PD(n),

due to the weak*-to-strong continuity of I. Thus we observe I(u) + I0 ∈ PD(n) and ψ(uk) <∞
for all k large enough. The existence of at least one optimal solution ūεβ now follows by similar
arguments as in Proposition 4.2. Its uniqueness follows due to the strict convexity of Fε. The
necessary and sufficient optimality condition can be derived as in [248] and [61]. For the last result
we observe that given an arbitrary positive null sequence {εk}k∈N there holds

β‖ūεβ‖L1(Ωo) ≤ Fεk(ūεkβ ) ≤ F (u) +
1

2
‖u‖2L2(Ωo)

,

for an arbitrary but fixed u ∈ domM+(Ωo) ψ ∩ L2(Ωo) and all k large enough. Following the lines
of the proof in [208, Section 2.5] existence of at least one weak* accumulation point of ūεkβ as well
as its optimality for (Pβ) can now easily be deduced.
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Note that for fixed ε > 0 the unique minimizer ūεβ is a solution of

u−max

{
−1

ε
(∇ψ(u)(x) + β), 0

}
= 0. (4.37)

Under additional regularity assumptions on the optimal design criterion Ψ , the solution of this non-
smooth operator equation can be computed by a semi-smooth Newton method in function space;
see, e.g., [257]. To compute a solution for the original problem (Pβ) we employ a continuation
strategy for the regularization parameter ε. For an initial small value ε we compute the unique
minimizer ūεβ to (P εβ) by solving (4.37). Then, in an outer loop, we decrease ε, and use the
previous optimal solution as an initial guess for the next iteration. The procedure is summarized
in Algorithm 6. For further references on path-following we refer to, e.g., [144–146]. We briefly

Algorithm 6 Path-following
1. Choose ε1 > 0 and initial guess u1

ε ∈ domM+(Ωo) ψ ∩ L2(Ωo).
while residual (4.37) large do
2. Compute ūεlβ from (4.37) using ūεl−1

β as initial guess.
3. Get εl+1 < εl, l = l + 1.

end while

address that Algorithm 6, in contrast to the post-processed version of Algorithm 2, might fail to
approximate any sparse minimizer of (Pβ), see also [22, Theorem 26.20].

Proposition 4.25. Assume that (Pβ) admits an optimal solution ūβ ∈ L2(Ωo). Then there holds
ūεβ → ū, where ū ∈ L2(Ωo) is the unique optimal solution to

min
u∈L2(Ωo)

‖u‖2L2(Ωo)
s.t. u ∈ L2(Ωo) ∩ arg min

v∈M+(Ωo)

F (v). (4.38)

Proof. By assumption, the admissible set in (4.38) is not empty, convex and weak* compact.
Since the norm ‖ · ‖L2(Ωo) is strictly convex, (4.38) admits a unique solution ū. Let û ∈ L2(Ωo) ∩
arg minv∈M+(Ωo) F (v) be arbitrary. From the optimality of ūεβ we conclude

Fε(ū
ε
β) ≤ F (û) +

ε

2
‖û‖2L2(Ωo)

≤ F (ūεβ) +
ε

2
‖û‖2L2(Ωo)

.

We conclude ‖ūεβ‖L2(Ωo) ≤ ‖û‖L2(Ωo) for every ε > 0 small enough and all û ∈ L2(Ωo) ∩
arg minu∈M+(Ωo) F (u). Since ūεβ is bounded in L2(Ωo) we extract a subsequence denoted by the
same symbol which converges weakly to ũ ∈ L2(Ωo). This implies ūεβ ⇀

∗ ũ, i.e. ũ is an optimal
solution to (Pβ), as well as ‖ũ‖L2(Ωo) ≤ ‖û‖L2(Ωo). Consequently ũ = ū for every accumulation ũ of
ūεβ . The strong convergence follows from the weak convergence and ‖ūεβ‖L2(Ωo) → ‖ū‖L2(Ωo).

To end this section, we provide a simple example to illustrate the findings of the previous propo-
sition.

Example 4.2. We consider n = 1, I0 = 0 and ∂S[q̂]δq = δqg for some g ∈ C(Ωo), g 6= 0 and all
δq ∈ R. In this case, the A-optimal design problem is given by

min
u∈M+(Ωo)

1

〈g2, u〉
+ β‖u‖M. (4.39)
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From the necessary and sufficient first order optimality conditions it is easily deduced that a given
ūβ ∈M+(Ωo) is an optimal design if and only if

‖ūβ‖M =

√
1

‖g‖2Cβ
, supp ūβ ⊂ {x ∈ Ωo | |g(x)| = ‖g‖C } .

As a consequence, if {x ∈ Ωo | |g(x)| = ‖g‖C } has non-zero Lebesgue measure, Problem (4.39)
admits both, solutions consisting of exactly one Dirac delta function as well as solutions in L2(Ωo).
Following the previous Proposition, applying the path-following approach in this situation leads to
an optimal design ūβ ∈ L2(Ωo), while Algorithm 3 gives a minimizer consisting of a single Dirac
delta function in one iteration.

4.5 Stability and sensitivity analysis

In this section we will elaborate on the stability and sensitivity of optimal measurement design
under perturbations of the sensor placement problem. To set the stage, we consider

min
u∈M+(Ωo)

F∆(u) = Ψ(I[∆1](u) + I0[∆2]) + (β0 +∆3)‖u‖M, (P∆)

where the cost parameter, the a priori knowledge as well as the Fisher information operator are
subject to a triple of perturbations ∆ = (∆1, ∆2, ∆3). In the following we will explore and
quantify how this bias in the data of the sensor placement problem influences the positions and
measurement weights of optimally placed sensors.

These questions naturally arise in the context of optimal sensor placement. Recall for example
that all previous considerations are based on a first order approximation of the parameter-to-state
mapping S. Ideally the linearization point should be chosen as the true parameter q∗. This is
clearly impossible in practice since these quantities are unknown. For this reason one has to
resort to well-educated a priori guesses q̂ stemming e.g. from previous experiments. Since the
Fisher-operator I depends on q̂ we can interpret the difference between the true parameter q∗

and q̂ as a perturbation of the problem. Other perturbations of the Fisher information operator
may be induced by a low-rank approximation of the, possibly high-dimensional, parameter itself
or the parameter-to-state mapping S, see e.g. [6,30,137]. Moreover, in cases in which the number
of measurements should be kept small, sensitivities of the optimal design and the optimal design
criterion with respect to perturbations in the cost parameter might help to identify less important
sensors. Finally, if several perturbed sensor placement problems have to be solved sequentially,
sensitivity results on the optimal design may be used to obtain a good initial iterate for the
algorithmic procedure presented in Section 4.7.1.

Our main contributions are the following: Under mild assumptions we show that the support of
perturbed optimal designs is localized in the vicinity of the unperturbed optimal design points.
For vanishing perturbations, convergence results are presented. If, in addition, the unique optimal
design measure consists of finitely many Dirac delta functions and the curvature of the optimal
gradient does not degenerate in the vicinity of their positions we can prove additional results. In
this case the positions as well as the measurement weights of the perturbed optimal sensors de-
pend continuously differentiable on ∆, at least in the asymptotic regime. This allows for a Taylor
expansion of these quantities as well as the objective function with respect to the perturbation. In
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particular, this implies Lipschitz-stability of the optimal design measure in the modified Wasser-
stein distance introduced in Definition 4.1.

Let us discuss related work in this direction. To take perturbations of the model into account,
robust optimal design approaches based on min-max or average formulations were developed,
see [37, 218] and [217, Chapter 8]. We stress that in general no stability of the optimal design
measure with respect to the norm onM(Ωo) can be expected, c.f. also [43, Remark 5.120]. Hence,
the abstract sensitivity results presented in [70] cannot be applied directly in this situation. Again,
we recall the dual relation between the sparse sensor placement problem (Pβ) and the semi-infinite
problem (4.20). Stability analysis of semi-infinite optimization problems is a well studied subject,
see e.g. [167,238,240]. The techniques presented in this section are closest related to the so called
local reduction ansatz, see [141, 142]. By imposing a suitable second order condition, we will
show that the perturbed optimal design problem (P∆) can be reduced to a finite-dimensional
optimization problem for small perturbations ∆. Sensitivity results for the optimal positions as
well as the measurement weights are then obtained by applying perturbation theory for finite
dimensional nonlinear optimization problems. A similar route was taken in [95] in the context
of sparse deconvolution problems. While stability with respect to the canonical norm onM(Ωo)
cannot be expected, the sensitivity results obtained through the reduction ansatz imply stability
with respect to the modified Wasserstein distance, see Definition 4.1. In [239] a similar idea was
pursued, deriving stability results for the minimizer in a semi-infinite program by embedding the
space of Borel measuresM+(Ωo) into the dual space of the Lipschitz continuous functions on Ωo.
For completion, we also mention the works of [63,64] which discuss stability in the context of sparse
control of non-linear partial differential equations by embedding M(Ωo) into Sobolev spaces of
negative order. However, no stability results for the optimal control beyond weak* convergence are
given. Finally, to the best of our knowledge, we are not aware of any results concerning stability
and sensitivity analysis in the context of approximate designs.

4.5.1 The perturbed optimal design problem

We start by collecting the general assumptions on the family of perturbed optimal sensor placement
problems. We assume that the interior intΩo of the observational domain Ωo ⊂ Ω̄ is non-empty.
Furthermore let V1, V2 denote separable Banach spaces and set V = V1 × V2 × R. The norm on
V is denoted by ‖ · ‖V = ‖ · ‖V1 + ‖ · ‖V2 + | · | and the perturbations are assembled in a vector
∆ = (∆1, ∆2, ∆3). To take perturbations of the Fisher information into account we consider a
parametrization of the i−th sensitivity ∂iS[q̂] given by

∂iS[q̂] : V1 ×Ωo → R (∆1, x) 7→ ∂iS[∆1][q̂](x). (4.40)

To improve readability we will drop the dependence of the corresponding sensitivity vector on the
linearization point q̂ in the following and denote ∂iS[∆1](x) := ∂iS[∆1][q̂](x) for all i = 1, . . . , n
and x ∈ Ωo. The associated perturbation mappings for the sensitivity vector and the pointwise
Fisher information are denoted by

∂S : V1 ×Ωo → Rn, (∆1, x) 7→ ∂S[∆1](x) := (∂1S[∆1](x), . . . , ∂nS[∆1](x))>,

as well as

I : V1 ×Ωo → Sym(n), (∆1, x) 7→ ∂S[∆1](x)∂S[∆1](x)>,
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respectively. The corresponding perturbed Fisher information operator is given by

I[∆1](u) =

∫
Ωo

∂S[∆1](x)∂S[∆1](x)>du(x) for ∆1 ∈ V1, u ∈M(Ωo). (4.41)

As in Proposition 4.1 we readily verify that I[∆1](u) ∈ NND(n) for every positive measure u ∈
M+(Ωo). Similarly, we define the perturbations of the a priori information matrix and the cost
parameter as

I0 : V2 → Sym(n), ∆2 7→ I0[∆2], β : R→ Sym(n), ∆3 7→ β[∆3] := β0 +∆3,

where β0 > 0 is a given reference cost parameter. Without loss of generality, the unperturbed
sensor placement problem is recovered for ∆ = (0, 0, 0) ∈ V . Furthermore, c > 0 will denote a
generic constant which is independent of the perturbation ∆. We make the following regularity
assumptions on the perturbations and the optimal design criterion Ψ .

Assumption 4.6. Assume that there exists u ∈ M+(Ωo) with I[0](u) + I0[0] ∈ PD(n) as well
as a neighbourhood NV = NV1 ×NV2 ×NV3 of 0 ∈ V such that:

A4.5 There holds ∂S ∈ C(NV1 ×Ωo,Rn) and

‖∂iS[∆1]− ∂iS[0]‖C ≤ c‖∆1‖V1 ∀∆1 ∈ NV1 ,

for all i = 1, . . . , n.

A4.6 There holds I0 ∈ C(NV2 ,Sym(n)) with I0(∆2) ∈ NND(n) for all ∆2 ∈ NV2 as well as

‖I0[∆2]− I0[0]‖Sym ≤ c‖∆2‖V2 .

A4.7 For ∆3 ∈ NV3 there holds β[∆3] > c0 > 0 for a positive constant c0.

Remark 4.7. We are especially interested in perturbations of the sensitivity vector caused by
disturbances in the expansion point q̂ of the first order approximation in the underlying model.
Hence we consider V1 = Rn and

∂S : V1 → C(Ω,Rn), ∆1 7→ ∂S[q̂ +∆1].

In this case, the regularity assumptions on the mapping ∂S, see (A4.5), can be directly inferred
from the continuous Fréchet differentiability of the parameter-to-state mapping S : Qad → C(Ωo).
Higher order regularity of ∂S can be concluded similarly, imposing additional regularity assump-
tions on the parameter-to-state operator S.

For ∆ ∈ NV we consider the reduced form of the (perturbed) optimal sensor placement problem

min
u∈M+(Ωo)

F∆(u) = [ψ(u,∆) + ‖u‖M],

where the reduced design criterion ψ(u,∆) is given by

ψ(u,∆) =
1

β0 +∆3
Ψ(I[∆1](u) + I0[∆2]).

Note that we have incorporated the cost parameter in the smooth part of the objective function
for now. We first provide a stability result for the Fisher information.
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Lemma 4.26. For all ∆1 ∈ NV1 we have

max
x∈Ωo

‖I[∆1](x)− I[0](x)‖Sym + ‖I[∆1]− I[0]‖L(M(Ωo),Sym(n)) ≤ c‖∆1‖V .

Proof. For x ∈ Ωo we readily obtain

‖I[∆1](x)− I[0](x)‖2Sym = Tr((I[∆1](x)− I[0](x))>(I[∆1](x)− I[0](x)))

=
n∑
i=1

n∑
j=1

(∂iS[∆1](x)∂jS[∆1](x)− ∂iS[0](x)∂jS[0](x))2.

Now we estimate

|∂iS[∆1](x)∂jS[∆1](x)− ∂iS[0](x)∂jS[0](x)|
≤ ‖∂iS[∆1]‖C‖∂jS[∆1]− ∂jS[0]‖C + ‖∂jS[0]‖C‖∂iS[∆1]− ∂iS[0]‖C ,

for all i, j = 1, . . . n. From Assumption (A4.5) we now conclude

|∂iS[∆1](x)∂jS[∆1](x)− ∂iS[0](x)∂jS[0](x)| ≤ c(‖∂iS[∆1]‖C + ‖∂jS[0]‖C)‖∆1‖V1 ,

as well as

‖∂iS[∆1]‖C ≤ ‖∂iS[0]‖C + ‖∂iS[∆1]− ∂iS[0]‖C ≤ ‖∂iS[0]‖C + c‖∆1‖V1 ,

for all i = 1, . . . , n. Combining the previous results gives

‖I[∆1](x)− I[0](x)‖2Sym ≤ c‖∆1‖2V1 ,

which yields the first statement after taking the square root on both sides and maximizing for x.
Concerning the estimate for the operator norm of the Fisher information operator we observe that

‖I[∆1](u)− I[0](u)‖Sym ≤ cmax
x∈Ωo

‖I[∆1](x)− I[0](x)‖Sym‖u‖M ≤ c‖∆1‖V1‖u‖M,

for all u ∈M(Ωo). Hence the second statement readily follows.

By use of the triangle inequality we immediately derive the following perturbation result.

Corollary 4.27. For all ∆1 ∈ NV1 and all u1, u2 ∈M+(Ωo) there holds

‖I[∆1](u1)− I[0](u2)‖Sym ≤ c‖∆1‖V1‖u1‖M + ‖I[0](u1)− I[0](u2)‖Sym,

where the constant c > 0 is independent of u1, u2 ∈M+(Ωo).

Proof. Let ∆1 ∈ NV1 and u1, u2 ∈M+(Ωo) be given. We split the difference up as

‖I[∆1](u1)− I[0](u2)‖Sym ≤ ‖I[∆1]− I[0]‖L(M(Ωo),Sym(n))‖u1‖M + ‖I[0](u1)− I[0](u2)‖Sym.

Applying the estimate of the previous lemma yields the statement.
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Due to the continuity of the perturbation mappings the domain of ψ(·, ∆) will be non-empty for
small perturbations. In order to prove the existence of a perturbed optimal design we recall that
there exists M0 > 0 such that ‖ūβ‖M ≤M0. We consider the auxiliary problem

min
u∈M+(Ωo)

F∆(u) s.t. ‖u‖M ≤ 2M0. (PM0
∆ )

Proposition 4.28. For all ∆ ∈ NV small enough there exists at least one optimal solution ū∆
to (PM0

∆ ) with # supp ū∆ ≤ n(n+1)/2. If Ψ is strictly convex then the optimal Fisher-information
matrix I[∆1](ū∆) is unique.

Proof. By assumption, there exists u ∈M+(Ωo), ‖u‖M ≤M0, with I[0] + I0[0] ∈ PD(n). Hence
u ∈ domM+(Ωo) ψ(·, 0). We estimate

‖I[0](u) + I0[0]− I[∆1](u)− I0[∆2]‖Sym ≤ c(‖∆1‖V1‖u‖M + ‖∆2‖V2),

for ∆1 ∈ NV1 and ∆2 ∈ NV2 . Since PD(n) is open we conclude I[∆1](u) + I0[∆2] ∈ PD(n) for
all ∆ ∈ NV with ‖∆‖V small enough and thus u ∈ domM+(Ωo) ψ(·, ∆). Thus the admissible
set in (PM0

∆ ) is not empty. The existence of a minimizer to (PM0
∆ ) can now be concluded from

the weak* compactness of the unit ball inM(Ωo) and the weak* lower semi-continuity of F∆ on
M+(Ωo). The claim on the sparsity of the minimizer and the uniqueness of the Fisher information
matrix follow as in Proposition 4.2 and Theorem 4.5.

We proceed to prove the convergence of the design measures {ū∆}∆∈NV towards minimizers of (Pβ)
as well as the stability of the optimal objective function value in (P∆). Since the norm constraint
in (PM0

∆ ) is inactive at unperturbed optimal designs we conclude the existence of minimizers
to (P∆).

Proposition 4.29. Consider a null sequence {∆k}k∈N ⊂ NV with ∆k = (∆k
1, ∆

k
2, ∆

k
3). For each

k ∈ N let ū∆k ∈ M+(Ωo) denote a minimizer to (PM0
∆k

). Then there exists at least one weak*
convergent subsequence of {ū∆k}k∈N denoted by the same symbol with weak* limit ū0 ∈ M+(Ωo).
There holds

ψ(ū∆k , ∆k)→ ψ(ū0, 0), ‖ū∆k‖M → ‖ū0‖M, I[∆k
2](ū∆k)→ I[0](ū0)

for k → ∞. Consequently, ū∆k is a minimizer of (P∆k) for k large enough. Furthermore, every
accumulation point of {ū∆k}k∈N is a minimizer of (P0). If there holds

# supp ū∆k ≤ n(n+ 1)/2, k ∈ N,

then the same holds for every accumulation point ū0.

Proof. The sequence ū∆k is uniformly bounded. Hence, by the Banach-Alaoglu theorem we can
extract a subsequence denoted by the same symbol with ū∆k ⇀

∗ ū0 for some ū0 ∈M+(Ωo). Since
the norm of ū∆k is uniformly bounded we conclude

‖I[∆k
1](ū∆k)− I[0](ū0)‖Sym ≤ c(‖∆1‖V1 + ‖I[0](ū∆k − ū0)‖Sym),

see Lemma 4.26, and I[∆k
1](ū∆k) → I[0](ū0) in Sym(n). Moreover, due to Assumption 4.6 we

obtain

I[∆1
k](ū∆k) + I0[∆k

2]→ I[0](ū0) + I0[0] ∈ PD(n),
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4 Sparse sensor placement for PDE-constrained inverse problems

and thus ū∆k ∈ domM+(Ωo) ψ(·, 0) for k large enough. We note that

‖ū∆k‖M = 〈1, ū∆k〉 → ‖ū0‖M = 〈1, ū0〉 = ‖ū0‖M ≤M0.

As a consequence we have ‖ū∆k‖M < 2M0 for all k large enough. Since the norm constraint
in (PM0

∆k
) is inactive at ū∆k it is also a minimizer of the unconstrained problem (P∆k). Let

ū ∈ M+(Ωo) denote a solution to (P0). From the lower semi-continuity of F on NND(n) we
deduce

ψ(ū0, 0) + ‖ū0‖M ≤ lim inf
k→∞

[ψ(ū∆k , ∆k) + ‖ū∆k‖M] ≤ ψ(ū, 0) + ‖ū‖M.

Therefore ū0 is a minimizer of the unperturbed problem. It follows that

ψ(ū∆k , ∆k) =
1

β0 +∆k
3

Ψ(I[∆k
1](ū∆k) + I0[∆k

2])→ 1

β0
Ψ(I[0](ū0) + I0[0]) = ψ(ū0, 0),

Since ū0 was arbitrary, the same can be shown for every accumulation point. The result on the
number of support points follows due to Proposition 6.34.

These results especially yield the existence of at least one sparse minimizer of (P∆) for ∆ ∈
NV if the set of perturbations is chosen small enough. Analogously to the previous section, we
characterize a perturbed optimal design measure ū∆ by a condition on the gradient of the optimal
design criterion. To avoid distraction we will denote the gradient of ψ(u,∆) with respect to u by
∇uψ(u,∆) ∈ C(Ωo) in the following.

Corollary 4.30. Let ∆ ∈ NV be given and let ū∆ ∈ M+(Ωo) be an optimal solution to (P∆).
Then there holds

−∇uψ(ū∆, ∆) ≤ 1, supp ū∆ ⊂ {x ∈ Ωo | − ∇uψ(ū∆, ∆)(x) = 1} , (4.42)

where −∇uψ(ū∆, ∆) ∈ C(Ωo) is given by

−∇uψ(ū∆, ∆)(x) = − 1

β0 +∆3
I[∆1]∗∇Ψ(I[∆1](ū∆) + I0[∆2])

= − 1

β0 +∆3
Tr(I[∆1](x)∇Ψ(I[∆1](ū∆) + I0[∆2]))

= − 1

β0 +∆3
∂S[∆1](x)>∇Ψ(I[∆1](ū∆) + I0[∆2])∂S[∆1](x),

for all x ∈ Ωo.

Due to the lipschitzian dependence on the perturbations we derive the following stability result
for the design criterion.

Lemma 4.31. Let a null sequence {∆k}k∈N ⊂ NV and an associated sequence u∆k ⇀
∗ u for

some u ∈ domM+(Ωo) ψ(·, ∆k) ∩ domM+(Ωo) ψ(·, 0) and u∆k ∈ domM+(Ωo) ψ(·, ∆k) for all k ∈ N
be given. Then there holds

|ψ(u∆k , ∆k)− ψ(u∆k , 0)| ≤ cu(|ψ(u∆k , 0)||∆k
3|+ ‖∆k

1‖V1 + ‖∆k
2‖V2), (4.43)

where the constant cu > 0 may depend on the weak* limit u ∈M+(Ωo).
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Proof. Let such a sequence be given. We expand

ψ(u∆k , ∆k)− ψ(u∆k , 0) =
1

β0 +∆k
3

Ψ(I[∆k
1](u∆k) + I0[∆k

2])− 1

β0
Ψ(I[0](u∆k) + I0[0]).

We start by estimating∣∣∣∣ 1

β0 +∆k
3

∣∣∣∣ |Ψ(I[∆k
1](u∆k) + I0[∆k

2])− 1

β0
Ψ(I[0](u∆k) + I0[0])|

≤
∣∣∣∣ ∆k

3

β0(β0 +∆k
3)

∣∣∣∣ |Ψ(I[0](u∆k)+I0[0])|+ 1

β0 +∆k
3

|Ψ(I[∆1](u∆k)+I0[∆k
2])−Ψ(I[0](u∆k)+I0[0])|.

By Taylor’s expansion we obtain

Ψ(I[∆k
1](u∆k) + I0[∆k

2])− Ψ(I[0](u∆k) + I0[0]) =

Tr(∇Ψ(Iζk(u∆k) + I0,ζk)>(I[∆k
1](u∆k) + I0[∆k

2]− I[0](u∆k)− I0[0])),

where Iζk(u∆k) +I0,ζk = I[0](u∆k) +I0[0] + ζk(I[∆k
1](u∆k) +I0[∆k

2]−I[0](u∆k)−I0[0]) for some
ζk ∈ (0, 1). Since the Fisher information and I0 are stable with respect to the perturbation we
conclude

‖I[0](u)+I0[0]− Iζk(u∆k)− I0,ζk‖Sym (4.44)

≤ ‖I[0](u)− I[0](u∆k)‖Sym + ‖I[∆k
1](u∆k) + I0[∆k

2]− I[0](u∆k)− I0[0]‖Sym → 0,

due to u∆k ⇀
∗ u and the stability of the mapping I[·]. Finally, we estimate

|Ψ(I[∆k
1](u∆k) + I0[∆k

2])− Ψ(I[0](u∆k) + I0[0])|
≤ ‖∇Ψ(Iζk(u∆k) + I0,ζk)‖Sym(‖I[∆k

1](u∆k)− I[0](u∆k)‖Sym + ‖I0[∆k
2]− I0[0]‖Sym)

≤ ‖∇Ψ(Iζk(u∆k) + I0,ζk)‖Sym(‖∆k
1‖V1‖u∆k‖M + ‖∆k

2‖V2).

Since ∇Ψ : domΨ → Sym(n) is continuous, we have

‖∇Ψ(Iζk(u∆k) + I0,ζk)‖Sym ≤ cu,

for all k ∈ N and some constant cu > 0. Combining all the previous results and noting that
β0 +∆k

3 > c0 yields

|ψ(u∆k , ∆k)− ψ(u∆k , 0)| ≤ 1

β0c0
|∆k

3||ψ(u∆k , 0)|+ cu(‖∆k
1‖V1‖u∆k‖M + ‖∆k

2‖V2),

for some constant cu only depending on u. This finishes the proof since {‖u∆k‖M}k∈N and
ψ(u∆k , 0) are bounded.

To close this section, we provide a Lipschitz stability result for the objective function value.

Theorem 4.32. Let a sequence of perturbations {∆k}k∈N ⊂ NV with limk→∞∆k = 0 be given.
For k ∈ N let ū∆k denote an optimal solution to (P∆k). Assume that ū∆k ⇀

∗ ū0 ∈ M+(Ωo).
Then there holds

|F∆k(ū∆k)− F0(ū0)| ≤ c‖∆k‖V ,

for all k large enough.
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Proof. First, we mention that ū0 is an optimal solution to (P0), see Proposition 4.29. Moreover,
due to the convergence of the Fisher information matrices, there holds

ū∆k , ū0 ∈ domM+(Ωo) ψ(·, ∆k) ∩ domM+(Ωo) ψ(·, 0),

for all k large enough. By optimality of ū∆k and ū0 respectively we obtain

F∆k(ū∆k)− F0(ū∆k) ≤ F∆k(ū∆k)− F0(ū0) ≤ F∆k(ū0)− F0(ū0).

Taking the absolute value we thus conclude

|F∆k(ū∆k)− F0(ū0)| ≤ max{|F∆k(ū∆k)− F0(ū∆k)|, |F∆k(ū0)− F0(ū0)|}.

Note that F∆k(u)− F0(u) = ψ(u,∆k)− ψ(u, 0) for all u ∈ M+(Ωo) and k ∈ N. By Lemma 4.31
we obtain

max{|F∆k(ū∆k)− F0(ū∆k)|, |F∆k(ū0)− F0(ū0)|}
≤ cū0(max{|ψ(ū0, 0)|, |ψ(ū∆k , 0)|}|∆k

3|+ ‖∆k
1‖V1 + ‖∆k

2‖V2).

Due to the weak* convergence of ū∆k and the continuity of ψ(·, 0) the sequence ψ(ū∆k , 0) is
bounded. Thus, the statement follows.

4.5.2 Stability and sensitivity of the design measure

In the previous section we have proven Lipschitz stability of the optimal function values with
respect to the perturbation. Concerning the optimal design measure however, only (subsequential)
weak* convergence has been shown. The aim of this section is to close this gap by providing
qualitative and quantitative statements on the location of the support points and the convergence
of the measurement weights.
Let us fix some additional notation and collect some general observations. To focus on the ideas
behind the proofs in this section we will assume that

A4.8 The functional Ψ is strictly convex on its domain.

Again, this is for example the case for the A as well as the D optimal design criterion. This implies
the uniqueness of the optimal Fisher information matrix I[∆1](ū∆) and the optimal gradient
∇uψ(ū∆, ∆) for all ∆ ∈ NV . In the following, {∆k}k∈N ⊂ NV will always denote a sequence of
perturbations with ∆k → 0, while {ū∆k}k∈N ⊂M+(Ωo) is a sequence of associated optimal design
measures obtained from (P∆k). W.l.o.g. we assume that ū∆k ⇀

∗ ū0 for some optimal solution ū0

of (P0).
Given a perturbation ∆ ∈ NV and a solution ū∆ to (P∆), we recall that

∇uψ(ū∆, ∆)(x) ≤ 1, supp ū∆ ⊂ {x ∈ Ωo | − ∇uψ(ū∆, ∆)(x) = 1 } ,

see Corollary 4.30. Due to the strict convexity of Ψ , the set of global maximizers to −∇uψ(ū∆, ∆)
only depends on the perturbation ∆ and not on the particular optimal design measure ū∆. Hence
we will denote it by Ext(∆) in the following. Furthermore, again for abbreviation we define the
mapping

p̄· : NV → C(Ωo), ∆ 7→ p̄∆ = −∇uψ(ū∆, ∆)
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4.5 Stability and sensitivity analysis

Due to the assumptions on the perturbations and the weak*-to-strong continuity of the Fisher
information operator, p̄∆ depends continuously on ∆. For R > 0, we define the R-extensions of
the support of an optimal design ū∆ ∈M+(Ωo) by

suppR ū∆ =
⋃

x∈supp ū∆

{ x̃ ∈ Ωo | |x− x̃| < R }

and of the corresponding set of global maximizers Ext(∆) as

ExtR(∆) :=
⋃

x∈Ext(∆)

{ x̃ ∈ Ωo | |x− x̃| < R } ,

respectively. First, we address stability results for the positions of optimally placed sensors.

Lemma 4.33. Let R > 0 be given. For all ∆ ∈ NV with ‖∆‖V small enough, every optimal
solution ū∆ to (P∆) fulfills

supp ū∆ ⊂ Ext(∆) ⊂ ExtR(0).

Proof. Given R > 0 the extended set ExtR(ū0) is open in Ωo. Consequently, its complement in
Ωo, KR := Ωo \ExtR(ū0), is compact. By construction we have p̄0 ∈ C(KR) and maxx∈KR1

p̄0 < 1.
Define r = 1−maxx∈KR p̄0. Given an arbitrary x ∈ Ext(∆) we have

p̄0(x) = 1 + p̄0(x)− p̄∆(x) ≥ 1− ‖p̄∆ − p̄0‖C(Ωo) . (4.45)

Since the mapping

p̄ : NV → C(Ωo) δ 7→ p̄∆,

is continuous at zero, there exists c1 > 0 with

‖p̄∆ − p̄0‖C(Ωo) <
r

2
∀δ ∈ NV , ‖∆‖V ≤ c1.

We conclude

p̄0(x) > 1− r

2
> 1− r = max

x∈KR
p̄0,

and thus x ∈ ExtR(0). Since x ∈ Ext(∆) was chosen arbitrarily and supp ū∆ ⊂ Ext(∆) this
concludes the proof.

Remember that our special interest lies in optimal design measures consisting of finitely many
Dirac delta functions corresponding to point measurements at their respective positions. From
now on, let us assume that Ext(0) consists of finitely many distinct points:

A4.9 Ext(0) = {x ∈ Ωo | p̄0(x) = 1 } = {x̄i,0}Ni=1 ⊂ Ωo,

for some N ∈ N. In virtue of Corollary 4.30, every optimal solution ū0 ∈ M+(Ωo) to (P0) is
sparse, i.e.

ū0 =

N∑
i=1

ūi,0δx̄i,0 ūi,0 ∈ R+, i ∈ {1, . . . , N}.
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Let us discuss the results of Lemma 4.33 in this case. For this purpose, choose R1 > 0 with

B̄R1(x̄i,0) ∩ B̄R1(x̄j,0) = ∅, i 6= j, i, j ∈ {1, . . . , N} where BR1(x̄i,0) := {x ∈ Ωo | |x− x̄i,0| < R1} .
(4.46)

The statement of the previous lemma readily translates to this situation as

supp ū∆ ⊂
N⋃
i=1

BR1(x̄i,0) ⊂
N⋃
i=1

B̄R1(x̄i,0),

if the perturbation ∆ is small enough. From this we conclude that the support of an arbitrary
optimal solution ū∆ to the perturbed problem (P∆) is localized in small balls around the possible
support points of ū0.
To prove a stability result for the optimal measurement weights we combine the localization results
on the support of the optimal measurement design and the weak* convergence result for vanishing
perturbations. To this end, let us denote the restriction of ū∆k onto B̄R1(x̄i,0) by ūi∆k , i = 1, . . . , N .
Loosely speaking, if xi ∈ supp ū0, we will prove that ‖ūi∆k‖M approximates ūi in the limit while
ū∆k converges strongly to 0 on the complement of the extended support

suppR1
ū0 =

⋃
x̄i∈supp ū0

BR1(x̄i).

Our findings are summarized in the following proposition.

Proposition 4.34. Assume that ū∆k ⇀
∗ ū0 with ū0 =

∑N
i=1 ūi,0δx̄i,0. Then there holds

supp ū∆k ⊂
N⋃
i=1

B̄R1(x̄i,0), B̄R1(x̄i,0) ∩ B̄R1(x̄j,0) = ∅, i 6= j, i, j ∈ {1, . . . , Nd}, (4.47)

for all k large enough. Furthermore we have

‖ūi∆k‖M → ūi ∀i ∈ {1, . . . , Nd}. (4.48)

In particular, if ūi,0 > 0 and k is large enough, then

supp ū∆k ∩ B̄R1(x̄i) 6= ∅.

Conversely we have

‖ū∆k‖M(Ωo\suppR1
ū0) =

∫
Ωo\suppR1

ū0

dū∆k(x)→ 0,

as k →∞. Here suppR1
ū0 denotes the closure of suppR1

ū0 in Ωo.

Proof. Let j ∈ {1, . . . , N} be arbitrary but fixed. Since the sets B̄R1(x̄i), i = 1, . . . , N , are
closed and pairwise disjoint, Urysohn’s Lemma, see [266, 15.6], yields the existence of a function
ϕj ∈ C(Ωo) with

ϕj(x) = 1, ∀x ∈ B̄R1(x̄j,0) ϕj(x) = 0, ∀x ∈ B̄R1(x̄i,0), i ∈ {1, . . . , N}, i 6= j.

104



4.5 Stability and sensitivity analysis

By testing ϕj with ū∆k we obtain

〈ϕj , ū∆k〉 =

∫
Ωo

ϕjdū∆k(x) =

∫
B̄R1

(x̄j,0)
dū∆k(x).

Due to the weak* convergence of ū∆k we thus conclude∫
B̄R1

(x̄j,0)
dū∆k(x) = 〈ϕj , ūδk〉 → 〈ϕj , ū0〉 = ūj,0,

as k →∞, which gives (4.47). To prove the last statement, (4.48), we note that∫
Ωo\suppR1

ū0

dū∆k(x) =
∑

i∈{1,...,N}
ūi,0=0

∫
B̄R1

(x̄i,0)
dū∆k(x)→

∑
i∈{1,...,Nd}
ūi,0=0

ūi,0 = 0,

where we used (4.47).

Up to now we have not discussed the stability of the optimal number of sensors. In the light of
Proposition 4.28 we can readily assume that # supp ū∆k ≤ n(n+ 1)/2. By the results of Proposi-
tion 4.34, at least one perturbed optimal sensor is placed in the vicinity of each unperturbed sen-
sor. However it is possible that a single, optimally placed, Dirac delta function in the unperturbed
problem (P0) is approximated by a larger number of perturbed ones since the design measures
only converge in the weak* sense. Hence, in most situations, we expect # supp ū∆ > # supp ū0.
In the following we will focus on the question whether we can expect stability for the number of
optimally placed sensors under small perturbations in a more restrictive setting. For this purpose,
we again impose additional assumptions on Ext(0) and on the (local) regularity of ∂S[∆] for a
given ∆ ∈ NV .

Assumption 4.7. Assume that Ext(0) = {x̄i,0}Ni=1 ⊂ intΩo and there exists R > 0 with

ΩR :=
N⋃
i=1

BR(x̄i) ⊂ intΩo, B̄R(x̄i) ∩ B̄R(x̄j) = ∅, ∂S ∈ C2(NV × Ω̄R,Rn) ∩ C(NV ×Ωo,Rn),

for all i, j ∈ {1, . . . , N}, i 6= j

Throughout the following considerations we tacitly assume that ‖∆‖V is chosen small enough such
that supp ū∆ ⊂ ΩR for every optimal design measure ū∆ obtained from (P∆). We immediately
derive the following regularity result for p̄∆.

Corollary 4.35. Let ∆ ∈ NV be given. Then there holds p̄∆ ∈ C2(Ω̄R). Furthermore the mapping
p̄· : NV → C2(Ω̄R), ∆ 7→ p̄∆ is continuous at 0.

Proof. Let ∆ ∈ NV be given. By assumption, the mapping

∂S : NV1 → C2(Ω̄R,Rn), ∆1 7→ ∂S[∆1],

is continuous. Hence the same holds for the perturbation mapping of the pointwise Fisher in-
formation I ∈ C(NV1 × Ωo, Sym(n)). The claimed statements follows from the definition of p̄∆
as

p̄∆ = − 1

β0 +∆3
Tr(I[∆1](x)∇Ψ(I[∆1](ū∆) + I0[∆2])),

and I0[∆2]→ I0[0], β0 +∆3 → β0 as well as I[∆1](ū∆)→ I[0](ū0) for ∆→ 0.

105



4 Sparse sensor placement for PDE-constrained inverse problems

In the following, we need a perturbation result for the Hessian of p̄0.

Lemma 4.36. Let x̂ ∈ Ext(0) be given and assume that ∇2p̄0(x̂) is negative definite, i.e. there
exists θ > 0 with

−(ζ,∇2p̄0(x̂)ζ)Rd ≥ θ|ζ|2Rd , ∀ζ ∈ Rd. (4.49)

Then there exist R2 > 0 such that for all x ∈ BR2(x̂) ⊂ ΩR and all ∆ ∈ NV with ‖∆‖V small
enough, we have

−(ζ,∇2p̄∆(x)ζ)Rd ≥
θ

2
|ζ|2Rd , ∀ζ ∈ Rd. (4.50)

Proof. Let x ∈ ΩR and ζ ∈ Rd be given. We expand

(ζ,∇2p̄∆(x)ζ)Rd = (ζ,∇2p̄0(x̂)ζ)Rd +
(
ζ, (∇2p̄0(x)−∇2p̄0(x̂) +∇2p̄∆(x)−∇2p̄0(x))ζ

)
Rd .

Using the negative definiteness of the Hessian of p̄0, we estimate

(ζ,∇2p̄∆(x)ζ)Rd ≤
(
−θ + ‖∇2p̄0(x)−∇2p̄0(x̂)‖Rd×d + ‖p̄0 − p̄∆‖C2(ΩR)

)
|ζ|2Rd .

Since p̄0 ∈ C2(ΩR) and p̄· ∈ C(NV , C2(ΩR)) there exist constants R2 > 0 and ε > 0 with

‖∇2p̄0(x)−∇2p̄0(x̂)‖Rd×d ≤
θ

4
, ‖p̄0 − p̄∆‖C2(ΩR) ≤

θ

4
,

for all x ∈ ΩR, |x−x̂|Rd < R2 and ∆ ∈ NV , ‖∆‖V < ε. Combining these results with the previous
estimate we conclude (4.50), finishing the proof.

We are now able to strengthen the stability result on the global maximizers of p̄0 if their curvature
is not degenerate.

Proposition 4.37. Let x̂ ∈ Ext(0) be given such that (4.49) holds for some θ > 0. Then there
exists R2 > 0, with BR2(x̂) ⊂ ΩR, BR2(x̂)∩Ext(0) = {x̂}, such that for all ∆ ∈ NV , ‖∆‖V small
enough, we either have

Ext(∆) ∩BR2(x̂) = ∅ or Ext(∆) ∩BR2(x̂) = {x̂∆}, (4.51)

for some x̂∆ ∈ BR2(x̂). Furthermore, if ū∆k ⇀
∗ ū0 with x̂ ∈ supp ū0 then only the second case is

possible and there exists a sequence {x̂∆k}k∈N ⊂ BR2(x̄i) with

Ext(∆k) ∩BR2(x̂) = {x̂∆k},

for all k large enough.

Proof. Let such a x̂ ∈ Ext(0) be given. We start by proving the existence of R2 > 0 such that (4.51)
holds for small perturbations. Since Ext(ū) consists of finitely many points and ΩR is open in Ωo
we can choose R2 > 0 with

BR2(x̂) ⊂ ΩR, BR2(x̂) ∩ Ext(ū0) = {x̂}.

By choosing R2 small enough, see Lemma 4.36, we conclude from (4.50) that p̄∆ is strictly concave
and thus admits at most one of its global maximizers in BR2(x̂) for all ∆ ∈ NV small enough.
Due to p̄∆(x) ≤ 1, x ∈ Ωo, and ‖p̄∆‖C(Ωo) = 1, the statement in (4.51) readily follows.
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Roughly speaking, the previous result states that an unperturbed optimal sensor at a position x̂
is approximated by exactly one sensor in the perturbed problem if the curvature of p̄0 at x̂ does
not degenerate. Hence, non-degeneracy of the curvature of p̄0 at every optimal sensor positions
guarantees one-to-one approximation of the sensors in the unperturbed problem by the perturbed
optimal ones. We adopt this condition as a standing assumption in the following. Additionally,
we impose regularity assumptions on the perturbations.

Assumption 4.8. Assume that there exists θ > 0 with

−(ζ,∇2p̄0(x̄i,0)ζ)Rd ≥ θ|ζ|2Rd ∀ζ ∈ Rd,

for all i = 1, . . . , N . Furthermore, the mapping I0 : NV2 → Sym(n) is two times continuously
Fréchet differentiable, the set {I[0](δx̄i,0)}Ni=1 is linearly independent and there exists γ0 > 0 with

Tr(δB∇2Ψ(I[0](ū0) + I0[0])δB) ≥ γ0‖δB‖Sym, ∀δB ∈ Sym(n).

Note that as a consequence of these assumptions, the unperturbed optimal design measurement
ū0 is unique. In the following two technical lemmas we will prove that, as a consequence, the
optimal solution ū∆ to (P∆) is unique for small perturbations. In the light of Proposition 4.37 we
thus conclude

# supp ū0 ≤ # supp ū∆ ≤ # Ext(∆) ≤ # Ext(0).

Moreover, the positions of the optimal sensors and the measurement weights depend continu-
ously on the perturbation. Consequently, if supp ū0 = Ext(0), all the inequalities above become
equalities yielding

# supp ū0 = # supp ū∆ = # Ext(0).

Hence, the number of optimal sensors is stable for small perturbations in this situation.

Lemma 4.38. For all ∆ ∈ NV , ‖∆‖V small enough there exist x̄i,∆ ∈ BR2(x̄i,0), i = 1, . . . N , with
Ext(∆) ⊂ {x̄i,∆}Ni=1. Moreover there exists a small neighborhood N̂V of 0 such that the mapping

x̄· : N̂V → ΩN
R , ∆ 7→ x̄∆ = (x̄1,∆, · · · , x̄N,∆)>,

is well-defined and continuous at zero.

Proof. Due to its continuity, p̄∆ admits at least one global maximum on B̄R2(x̄i,0) for all ∆ ∈ NV

and i = 1, . . . , N . From the uniform convergence of p̄∆ towards p̄0 and Ext(0) = {x̄i,0}Ni=1 we
conclude the existence of σ > 0 such that

p̄∆(x) ≤ 1− σ, ∀x ∈ Ωo \
N⋃
i=1

BR2(x̄i,0),

for all∆ ∈ NV small enough. Let i ∈ {1, . . . , N} be arbitrary but fixed. Again using the continuity
of p̄· we conclude maxx∈B̄R2

p̄∆(x) > p̄∆(x̄i,0) > 1 − σ. As a consequence, each global maximum
of p̄∆ lies in the interior of the ball. Consequently it is unique since p̄∆ is strictly concave on
BR2(x̄i,0). We denote it by x̄i,∆. It remains to prove the continuity of x̄·. Assume that x̄· is
not continuous at 0. Then there exists ε > 0 such that for all σk = 1/k there is a perturbation
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∆k and |x̄∆k − x̄i,0| > ε. Let i ∈ {1, . . . , N} be given. By boundedness of ΩR we can extract a
subsequence of x̄i,∆k denoted by the same symbol with x̄i,∆k → x̄ ∈ B̄R2(x̄i,0). We conclude

1− p̄0(x̄i,∆k) ≤ p̄0(x̄i,0)− p̄∆(x̄i,0) + p̄∆k(x̄i,∆k)− p̄0(x̄i,∆k) ≤ c‖p̄∆k − p̄0‖C ,

and consequently p̄0(x̄) = 1. By the uniqueness of the global maximum of p̄0 on B̄R2(x̄i,0), we
have x̄ = x̄i,0. This gives a contradiction since x̄ was an arbitrary accumulation point and i was
chosen arbitrarily.

In the following we consider w.l.o.g perturbations in the smaller set N̂V ⊂ NV .

Lemma 4.39. For all ∆ ∈ N̂V , the optimal solution ū∆ =
∑N

i=1 ūi,∆δx̄i,∆ to (P∆) is unique.
Furthermore, the mapping

ū· : N̂V → RN+ , ∆ 7→ ū∆ = (ū1,∆, . . . , ūN,∆)>,

is continuous at 0.

Proof. Let us first proof the uniqueness of the perturbed optimal design ū∆. From the previous
lemma we recall that Ext(∆) ⊂ {x̄i,∆}Ni=1. Thus, every perturbed optimal design is of the form
ū∆ =

∑N
i=1 ūiδx̄i,∆ for some ui ∈ R+. For i = 1, . . . , N , we interpret I[0](x̄i,0) ∈ Sym(n) as a

vector in Rn(n+1)/2×N . We assemble these vectors in a matrix

V0 = (I[0](x̄1,0)| · · · |I[0](x̄N,0)) ∈ Rn(n+1)/2×N .

Note that rankV0 = N due to the linear independence assumption. Similarly we proceed for the
perturbed problem, defining the matrix

V∆ = (I[∆1](x̄1,∆)| · · · |I[∆1](x̄N,∆)) ∈ Rn(n+1)/2×N , ∀∆ ∈ N̂V .

From the continuity of the pointwise Fisher information and of x̄· we obtain lim∆→0 ‖V∆ −
V0‖Rd×d = 0. Since the rank of a matrix is a lower semi-continuous function we conclude

N = rankV0 ≤ lim inf
∆→0

rankV∆ ≤ N.

W.l.o.g we can thus assume that N̂V is chosen small enough such that rankV∆ = N for all
∆ ∈ N̂V . Consequently, the set {I[∆1](x̄i,∆)}Ni=1 is linearly independent and the optimal design
ū∆ is unique, see Corollary 3.19. It remains to discuss the continuity of the mapping ū·. We prove
it by contradiction. Assume that there exists ε > 0 such that for all σ > 0 there is an element
∆ with |ū∆ − ū0|RN > ε and ‖∆‖V < σ. Now choose a sequence of such perturbations ∆k ∈ N̂V

with ‖∆k‖V = 1/k and the associated coefficient vectors ū∆k . By assumption there exists ε > 0
with |ū∆k − ū0|RN > ε for all k ∈ N. This however contradicts ū∆k ⇀∗ ū0 and (4.48). Hence the
mapping is continuous.

The rest of this section focusses on properties of the mappings x̄· and ū· beyond continuity. We
make the following additional assumption.

Assumption 4.9. There holds supp ū0 = Ext(0), i.e. there exists ūi,0 > 0, i = 1, . . . N with

ū0 =
N∑
i=1

ūi,0δx̄i,0 .
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The aim of the following technical discussion is to establish Fréchet differentiability of the map-
pings x̄· and, ū·, respectively, in a neighborhood of 0. Choosing the neighborhood N̂V small
enough we start by concluding the following corollary from the continuity of ū·.

Corollary 4.40. Let Assumption 4.9 hold. For all ∆ ∈ N̂V there holds ūi,∆ > 0, i = 1, . . . , N .

Proof. The claim follows immediately from the continuity of ū· and ūi,0 > 0 for all i = 1, . . . , N .

We make an important observation. Let us define the admissible set Xad as the cartesian product
Xad = B̄R2(x̄1,0)× · · · B̄R2(x̄N,0). Due to the previous results, obtaining a solution ū∆ to (P∆) is
reduced to solving the finite dimensional, non-linear, optimization problem

min
x=(x1,...,xN )>∈Xad,

u∈RN+

F(x,u, ∆) =

[
Ψ

(
N∑
i=1

uiI[∆1](xi) + I0[∆2]

)
+ (β0 +∆3)‖u‖1

]
. (PN∆ )

While we will never solve the, potentially non-convex, problem (PN∆ ) in practice, this relation
allows to break down the measure-valued problem (P∆) to a finite dimensional optimization prob-
lem. We will use this fact in the following to infer stability properties of ū∆ by applying ideas for
parametric optimization problems in finite dimensions to (PN∆ ), see e.g. [43,88,108,168]. From the
regularity assumptions on the perturbations, I[0](ū0)+I0[0] ∈ PD(n) and ūi > 0, i = 1, . . . , N , we
conclude that the functional F is at least two-times continuously differentiable in a neighborhood
of (x̄0, ū0, 0). We denote the partial derivatives of F with respect to x, u and ∆ by ∂xF, ∂uF and
∂∆F, respectively. Second order derivatives are denoted by ∂·∂·F. Hence, (PN∆ ) is a nonlinear but
smooth optimization problem with additional constraints on the optimization variables. However,
since x̄0 ∈ intXad and ūi,0 > 0, i = 1, . . . , N , these constraints are also inactive for the perturbed
solutions (x̄∆, ū∆) due to their continuity with respect to ∆. As a consequence the tupel (x̄∆, ū∆)
fulfils the first order necessary optimality conditions for F(·, ·, ∆) given by

∂xF(x̄∆, ū∆, ∆) = 0, ∂uF(x̄∆, ū∆, ∆) = 0. (4.52)

In order to keep the notation more compact we recall the parameterized design measure and the
gradient mapping

u : Xad × RN+ →M+(Ωo), (x,u) 7→ u(x,u) =
N∑
i=1

uiδxi ,

p : M+(Ωo)× N̂V → C(Ωo) ∩ C2(ΩR), (u,∆) 7→ p(u,∆) = −∇uψ(u,∆).

Whenever p(u,∆) is well-defined, we denote its gradient and its Hessian with respect to the spatial
variable x by ∇p(u,∆) and ∇2p(u,∆). Furthermore, for i = 1, . . . , N , we (formally) define the
mappings

Gi1 : Xad × RN+ × N̂V → R, (x,u, ∆) 7→ p(u(x,u), ∆)(xi)− 1,

Gi2 : Xad × RN+ × N̂V → Rd, (x,u, ∆) 7→ ∇p(u(x,u), ∆)(xi).

As with the objective functional F we conclude that Gi1 and Gi2, respectively, are well-defined and
of class C1 in a neighbourhood of (x̄0, ū0, 0), i = 1, . . . , N . Differentiating F at (x̄∆, ū∆, ∆) it is
straightforward to verify that (4.52) is equivalent to

Gi1(x∆,u∆, ∆) = p̄∆(x̄i,∆) + 1 = 0, Gi2(x∆,u∆, ∆) = ∇p̄∆(x̄i,∆) = 0,
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for all i = 1, . . . , N . We consider the following system of non-linear equations

G : Xad × RN+ × N̂V → RN × (Rd)N , (x,u, ∆) 7→



G1
1(x∆,u∆, ∆)

·
GN1 (x∆,u∆, ∆)
G1

2(x∆,u∆, ∆)
·

GN2 (x∆,u∆, ∆)

 .

Due to its optimality for (PN∆ ), (x̄∆, ū∆) is the unique root of G(·, ·, ∆) in Xad × RN+ . We are
now ready to state the main theorem of this section. Exploiting the equivalence between (P∆)
and (PN∆ ), the optimal positions of the measurement sensors as well as the measurement weights
depend at least (locally) continuously differentiable on the perturbation of the problem.

Theorem 4.41. Let Assumption 4.6, (A4.8), (A4.9), Assumptions 4.7,4.8 as well as 4.9 hold.
The mappings x̄· and ū· from Lemma 4.38 and Lemma 4.39, respectively, are at least continuously
Fréchet differentiable with(

∇∆x̄∆̂
∇∆ū∆̂

)
= −

(
∂(x,u)G(x̄∆̂, ū∆̂, ∆̂)

)−1
∂∆G(x̄∆̂, ū∆̂, ∆̂), (4.53)

for ∆̂ ∈ N̂V . Here ∂(x,u)G and ∂∆G denote the Jacobian of G with respect to (x,u) and ∆.
Moreover, there holds

N∑
i=1

[|x̄i,∆ − x̄i,0|Rd + |ūi,∆ − ūi,0|] ≤ c‖∆‖V ,

for some c > 0.

Proof. If G is Fréchet differentiable at a given (x,u, ∆) ∈ Xad × RN+ its partial derivative are
given in terms of ∂(x,u)G(x,u, ∆) = H1(x,u, ∆) + H2(x,u, ∆). Let us characterize the ma-
trices H1(x,u, ∆), H2(x,u, ∆) ∈ Sym(dN + N). Given δx = (δx1, . . . , δxN ) ∈ (Rd)N and
δu = (δu1, . . . , δuN ) ∈ RN there holds

(
δx δu

)
H1(x,u, ∆)

(
δx
δu

)
=

N∑
i=1

[2δui(∇p(u(x,u), ∆)(xi), δxi)Rd + ui(δxi,∇2p(u(x,u), ∆)(xi)δxi)Rd ],

as well as(
δx δu

)
H2(x,u, ∆)

(
δx
δu

)
= − 1

β0 +∆3
Tr(A(x,u, δx, δu, ∆)∇2Ψ(I[∆1](u(x,u)) + I0([∆2]))A(x,u, δx, δu, ∆))

with the matrix A(x,u, δx, δu, ∆) ∈ Sym(n) given by

A(x,u, δx, δu, ∆) =

N∑
i=1

[δuiI[∆1](xi) + uiI
′[∆1](xi)δxi],
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where I ′[∆](xi) denotes the first Fréchet derivative of I ∈ C2(NV1 × ΩR,Sym(n) with respect to
the spatial variable. We show that ∂(x,u)G(x̄0, ū0, 0) is invertible. First, note that due to the
optimality of (x̄0, ū0) for (PN0 ), the matrix H1(x̄, ū0, 0) simplifies to

(
δx δu

)
H1(x̄0, ū0, 0)

(
δx
δu

)
=

N∑
i=1

[ui,0(δxi,∇2p̄0(x̄i,0)δxi)Rd ].

From Assumption 4.8 we conclude

(
δx δu

)
H1(x̄0, ū0, 0)

(
δx
δu

)
≤ −θ

N∑
i=1

ūi,0|δxi|2Rd .

Similarly we obtain

(
δx δu

)
H2(x,u, ∆)

(
δx
δu

)
≤ −γ0‖A(x̄0, ū0, δx, δu, 0)‖2Sym.

We distinguish two cases in the following.

Case 1: Assume that δx 6= 0 and δu is arbitrary. From the previous discussion we readily deduce

(
δx δu

)
∂(x,u)G(x̄0, ū0, 0)

(
δx
δu

)
≤ −θ

N∑
i=1

ūi,0|δxi|2Rd < 0.

Case 2: Assume that δx = 0 and δu 6= 0. In this situation, we have

A(x̄0, ū0, δx, δu, 0) =

N∑
i=1

[δuiI[0](x̄i,0) + ūi,0I
′[0](x̄i,0)δxi] =

N∑
i=1

δuiI[0](x̄i,0).

Since the set {I[0](x̄i,0)}Ni=1 is linear independent, A(x̄0, ū0, δx, δu, 0) = 0 if and only if δu = 0.
Hence we have(

δx δu
)
∂(x,u)G(x̄0, ū0, 0)

(
δx
δu

)
=
(
δx δu

)
H2(x̄0, ū0, 0)

(
δx
δu

)
< 0.

Combining both statements, we conclude that ∂(x,u)G(x̄0, ū0, 0) is invertible, since its kernel is
trivial. In virtue of the implicit function theorem, there exist neighborhoods N̄V , N(x̄0) and
N(ū0) of 0 ∈ N̂V , x̄0 ∈ Xad and ū ∈ RN+ respectively as well as C1 mapping

x̂· : N̄V → NXad , 7→ x̂∆ = (x̂1,∆, . . . , x̂N,∆)>,

x̂· : N̄V → NXad , 7→ û∆ = (û1,∆, . . . , ûN,∆)>,

such that ûi,∆ > 0 for all i = 1, . . . , N and x̂0 = x̄0, û0 = ū0. Furthermore (x̂∆, û∆) is the unique
element in N(x̄0)×N(ū0) fulfilling

G(x̂∆, û∆, ∆) = 0, ∀∆ ∈ N̄V . (4.54)

Recall that the mappings x̄· and ū· from Lemma 4.38 and Lemma 4.39 are continuous and

G(x̄∆, ū∆, ∆) = 0 ∀∆ ∈ N̂V .
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As a consequence, for small perturbations ∆ we obtain x̄∆ ∈ N(x̄0) and ū∆ ∈ N(ū0). Thus
x̄∆ = x̂∆ and ū∆ = û∆ for all ∆ ∈ N̄V . Thus, the restricitions of x̄· and ū· to N̄V are at least of
class C1. Without loss of generality we can assume that N̂V was chosen small enough such that
N̂V ⊂ N̄V yielding the statement. The formula for the derivative readily follows by taking the
total derivative in (4.54) and applying the chain rule.

To close this section, we discuss several results which are implications of the previous theorem.
Assume that the prerequisites of Theorem 4.41 hold. From the Lipschitz continuity of the optimal
sensor positions and the measurement weights we first infer a stability result for the optimal
measurement designs in the modified Wasserstein distance.

Proposition 4.42. There exist constants c1
‖ū0‖M,N , c

2
‖ū0‖M,N depending on the norm of ū0 and N

such that

‖ū∆ − ū0‖C0,1∗ ≤ c
1
‖ū0‖M,NW̄1(ū∆, ū0) ≤ c2

‖ū0‖M,N‖∆‖V ,

for all ∆ small enough.

Proof. The result directly follows from the Lipschitz stability of x̄· and ū·, respectively, and
applying Proposition 4.19 and Theorem 4.20.

Second, we provide a Lipschitz stability result for the optimal Fisher information matrix.

Corollary 4.43. Let ū0 and ū∆ be the unique solutions to (P0) and (P∆) for ∆ ∈ NV , ∆ small
enough. Then there holds

‖I[0](ū0)− I[∆1](ū∆)‖Sym ≤ c‖∆‖V ,

for some c > 0 independent of ∆.

Proof. Let such a ∆ be given. We start by splitting up the difference as

‖I[0](ū0)− I[∆1](ū∆)‖Sym ≤ ‖I[0](ū∆)− I[∆1](ū∆)‖Sym + ‖I[0](ū0)− I[0](ū∆)‖Sym.

The first term is estimated by

‖I[0](ū∆)− I[∆1](ū∆)‖Sym ≤ ‖∆1‖V1‖ū∆‖M.

For the second term we expand

‖I[0](ū0)− I[0](ū∆)‖Sym ≤
N∑
i=1

‖ūi,0I[0](x̄i,0)− ūi,∆I[0](x̄i,∆)‖Sym.

Since I[0] is at least two times continuously differentiable around x̄i,0, i = 1, . . . , N , it is also
locally Lipschitz continuous. Hence, for each i = 1, . . . N , we estimate

‖ūi,0I[0](x̄i,0)− ūi,∆I[0](x̄i,∆)‖Sym

≤ |ūi,0 − ūi,∆|‖I[0](x̄i,0)‖Sym + c|ūi,∆||x̄i,0 − x̄i,∆|Rd ≤ c(1 + |ūi,∆|)‖∆‖V .

Summing up yields

‖I[0](ū0)− I[0](ū∆)‖Sym ≤ c(N + ‖ū∆‖M)‖∆‖V

Since ū∆ is uniformly bounded, combining both estimates yields the statement.
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Finally we define the optimal value function v associated to (P∆) as

v : NV → R, ∆ 7→ min
u∈M+(Ωo)

F∆(u).

Following Theorem 4.32 we conclude that v is Lipschitz stable at 0. Moreover, using the differen-
tiability of x̄· and ū·, the optimal value function admits a second order Taylor approximation, c.f.
also [122,188].

Proposition 4.44. For ∆̂ ∈ V and τ small enough there holds

v(τ∆̂) = v(0) + τDv(0)(∆̂) +
τ2

2
D2v(0)(∆̂, ∆̂) + o(τ2),

where

Dv(0)(∆̂) = ∂∆F(x̄0, ū0, 0)∆̂,

and

D2v(0)(∆̂, ∆̂) = ∂∆∂∆F(x̄0, ū0, 0)(∆̂, ∆̂)

+ ∂x∂∆F(x̄0, ū0, 0)(∆̂,∇∆x̄0∆̂) + ∂u∂∆F(x̄0, ū0, 0)(∆̂,∇∆ū0∆̂).

Proof. Following the previous arguments we obtain

v(τ∆̂) = min
u∈M+(Ωo)

Fτ∆̂(u) = min
x=(x1,...,xN )>∈Xad,

u∈RN+

F(x,u, τ∆̂) = F(x̄τ∆̂, ūτ∆̂, τ∆̂)

Differentiating v(τ∆̂) with respect to τ and setting τ = 0, we obtain

Dv(0)(∆̂) = ∂xF(x̄0, ū0, 0)∇∆x̄0∆̂+ ∂uF(x̄0, ū0, 0)∇∆ū0∆̂+ ∂∆F(x̄0, ū0, 0)∆̂.

Due to the optimality of (x̄0, ū0) for (PN0 ), we have

∂xF(x̄0, ū0, 0) = 0, ∂uF(x̄0, ū0, 0) = 0,

and consequently

Dv(0)(∆̂) = ∂∆F(x̄0, ū0, 0)∆̂. (4.55)

Analogously, the formula for the second derivative D2v(0)(∆̂, ∆̂) can be established by taking the
total derivative in (4.55). The statement now follows directly from Taylor’s formula.

Most remarkably, a first order Taylor approximation of v can be obtained without an evaluation
of the sensitivities ∇∆x̄0 and ∇∆ū0. Similarly, first order Taylor approximations of the the sensor
positions and measurement weights are given through

x̄τ∆̂ = x̄0 + τ∇∆x̄0∆̂+ o(τ), ūτ∆̂ = ū0 + τ∇∆ū0∆̂+ o(τ).

Let us briefly summarize the findings of this section. A first attempt on establishing sensitivity
results for sensor placement problems with measure-valued designs was taken. Under mild assump-
tions, convergence of the perturbed measurement designs and Lipschitz stability of the optimal
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value function were established. By additional regularity assumptions on the global maximizers of
the unperturbed optimal gradient −∇ψ(ū0, 0), stability of the optimal number of measurements
can be proven. Hence the sparse optimization problem (P∆) can be broken down to a finite-
dimensional dimensional problem (PN∆ ). Exploiting the equivalence between those two problem
formulations revealed that the optimal sensor positions as well as the measurement weights de-
pend differentiable on the perturbation. Additionally, this led to Lipschitz stability result for the
optimal design measure in a modified Wasserstein distance.

As mentioned in the beginning, literature on sensitivity analysis in the context of optimal sensor
placement problems in particular, and for sparse optimization problems in general, seems to be
scarce. Hence, the results in this section should be seen as a first step in this direction, leaving room
for further investigations. A first natural question is to ask whether the regularity assumptions
on the perturbations and on the spatial regularity of the sensitivity vector ∂S[∆1] can be lowered
while maintaining the Lipschitz stability results for the optimal measurement design. Furthermore
it would be worth to investigate whether the differentiability of the positions and measurement
weights implies some kind of differentiable dependence of the optimal design on the perturbation.
Finally, from a practical point of view, the efficient numerical evaluation of the sensitivities ∂∆x̄0

and ∂∆ū0 should be the topic of further research. Following the formula in Theorem 4.41, one
needs at least matrix-vector products between a given δx and the Hessian of the continuosuly
differentiable function −∇uψ(ū0, 0). Thereby we note that the sensitivities ∂S[∆1] admit no
closed form in general, but are replaced by a discrete approximation over a grid on Ω, see also
the following section. In the context of this chapter, a discrete surrogate of the k-th sensitivity is
obtained from a piecewiese linear finite element ansatz for the corresponding sensitivity equation.
Therefore the optimal discrete gradient −∇uψh(ūh,0, 0) is given as a sum over products between
piecewise linear functions and thus it is especially not of class C2. Two possible strategies to
circumvent these difficulties could consist in either choosing higher order finite elements for the
discretization of the sensitivity equations or applying a gradient recovery type algorithm, see
e.g. [279], for the derivatives of −∇ψh(ūh,0, 0).

4.6 Discretization and error estimates

The aim of this section is twofold: First, we provide an approximation framework for the sparse
sensor placement problem based on a finite element discretization of the state as well as the sen-
sitivity equations. In contrast, the space of design measures M+(Ωo) is not discretized. This
corresponds to the variational discretization approach in optimal control, see e.g [148]. As for
the continuous sensor placement problem we prove the existence of discrete optimal designs and
provide a discrete version of the first order optimality condition. Finally we prove the conver-
gence of the discrete optimal designs for a vanishing meshsize. For an application of variational
discretization in the context of optimal control problems with measure-valued controls we refer
to [59,136,176].

Second, assuming a suitable second order condition, we derive a priori error estimates for the
discretization error between a continuous sparse optimal measurement design and its discrete
counterpart. To be more concrete, given an optimal design ūβ =

∑N
i=1 ūiδx̄i we will provide

convergence rates for the positions x̄i of the optimal sensors as well as the diligence factors ūi.
This implies a priori error estimates for the modified Wasserstein distance introduced in Definition
4.1. A priori error estimates for optimal control problems with measure-valued controls and
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elliptic PDE constraints are for example considered in [176] and [210]. In the latter one the
authors prove convergence rates for the control in the norm on the dual space of H2(Ω). From
Section 4.3 we also recall that an optimal measurement design can be interpreted as Lagrangian
multiplier associated to a pointwise imposed constraint in the dual problem, see (4.20). A priori
error analysis for the Lagrangian multiplier in this context has been, e.g., conducted in [186]
and [190,191]. In the latter ones, convergence rates for the support points of the optimal Lagrange
multiplier are provided. Last we recall that optimal control problems involving both, ‖ · ‖L1(Ωo)

and ‖ · ‖L2(Ωo), as regularization, admit optimal solutions supported on small sets, see also the
discussion in Section 4.4.6. A priori error estimates for these kind of problems are provided
in [61,62,208,261]. To our best knowledge this work constitutes the first rigorous approach to the
discretization and error analysis of sparse sensor placement problems in the context of optimal
design of experiments.

4.6.1 Finite element discretization

In the following, the sets Ω as well as Ωo are assumed to be polytopal (i.e. polygonal in two
dimensions and polyhedral in three dimensions). We discuss the approximation of (Pβ) by linear
finite elements. For this purpose we consider a family of triangulations { Th }h>0 of Ω with

Ω =
⋃
T∈Th

T̄ , Ωo =
⋃
T∈T oh

T̄ , (4.56)

where T oh ⊂ Th denotes the union of all cells making up the observational domain. To each
T ∈ Th we assign two numbers ρ(T ) and σ(T ) denoting the diameter of T and the diameter of
the largest ball inside of T , respectively. The size of the mesh is defined by h = maxT∈Th ρ(T ).
We assume that the triangulation fulfills the usual regularity conditions (cf., e.g., [62]) , i.e. there
exist constants ρ, σ > 0 such that

ρ(T )

σ(T )
≤ σ, h

ρ(T )
≤ ρ.

By Nh we denote the set of nodes of the triangulation. For each h > 0 we now define the space of
continuous piecewise linear finite elements Vh on Th and its dual space V ∗h 'Mh as

Vh = { yh ∈ C(Ω̄) | yh|T ∈ P1 ∀T ∈ Th } , Mh = {uh ∈M(Ω̄) | suppuh ⊂ Nh } .

In the following assume that Yh = Vh ∩ Y is not empty. For each xi ∈ Nh we denote by ehi ∈
Vh the associated nodal basis function. Finally, we introduce the nodal interpolation operators
ih : C(Ω̄)→ Vh and Λh : M(Ω̄)→Mh as

ih(y) =
∑
xi∈Nh

y(xi)e
h
i , Λh(u) =

∑
xi∈Nh

〈ehi , u〉δxi

see, e.g., [59]. Note that Λhu ∈ M+(Ωo) ∩Mh for all u ∈ M+(Ωo) due to (4.56). We define the
discrete state space Ŷh = ŷh + Yh where ŷh denotes an approximation of the Dirichlet boundary
data ŷ. For a given q ∈ Qad the discrete state equation yh = Sh[q] is defined as

yh ∈ Ŷh such that a(q, yh)(ϕh) = 0 ∀ϕh ∈ Yh. (4.57)
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4 Sparse sensor placement for PDE-constrained inverse problems

Analogously, for all k ∈ { 1, . . . , n }, the discrete sensitivity δyh = ∂kS
h[q̂] ∈ Yh ∩ C(Ωo) at the

given a priori guess q̂ is given as the solution to

a′y(q̂, y
h)(δyh, ϕh) = −a′qk(q̂, ŷh)(ϕh) ∀ϕh ∈ Yh, (4.58)

where ŷh = Sh[q̂]. For the remainder of this section we make the following assumption.

Assumption 4.10. There exists h0 > 0 such that for all h ≤ h0 and q̂ ∈ Qad the discrete
state and sensitivity equations, (4.57) and (4.58), admit unique solutions. Moreover the discrete
sensitivities fulfill

lim
h→0

max
k
‖∂kS[q̂]− ∂kSh[q̂]‖C = 0.

Note that these assumptions can be verified for a variety of settings, in particular the ones con-
sidered in Section 4.7. In the following, c > 0 denotes a generic constant which is independent of
the meshsize h.

Discretization of (Pβ)

We define the discrete approximation to (Pβ) by

min
u∈M+(Ωo)

Fh(u) = [ψh(u) + β‖u‖M], (Pβ,h)

where ψh(u) = Ψ(Ih(u) + I0) and the operator Ih results from the discretization of the Fisher
operator I as

Ih : M(Ωo)→ Sym(n), Ih(uh)i,j = 〈∂iSh[q̂]∂jS
h[q̂], uh〉. (4.59)

As in the continuous case, given u ∈M(Ωo), the Fisher-Information Ih(u) admits an interpretation
as a Bochner integral

Ih(u) =

∫
Ωo

∂Sh[q̂](x)∂Sh[q̂](x)>dx.

Define the discrete pointwise Fisher-information as

Ih : Ωo → Sym(n), x 7→ ∂Sh[q̂](x)∂Sh[q̂](x)>.

Initially, we do not discretize the optimal design spaceM+(Ωo), which corresponds to a variational
discretization approach; cf. [61,148]. However, we will show below that this is essentially equivalent
to an additional discretization of the measure space byMh.

Turning to the study of (Pβ,h), we observe that the discrete problem admits admissible points
provided that the discrete sensitivities fulfill

Rn = span
(

Ran I0 ∪ { ∂Sh[q̂](x) | x ∈ Ωo }
)
.

Due to Assumption 4.10, this property of the discrete problem follows from the analogous property
of the continuous problem for h small enough. In the next theorem we prove existence of a discrete
optimal design. In addition we show that there exists at least one discrete optimal solution located
in the nodes of the triangulation.
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4.6 Discretization and error estimates

Theorem 4.45. Assume that ∂S[q̂] fulfills the assumptions from Proposition 4.3 and let Assump-
tion 4.10 hold. Then there exists h0 > 0 such that for every h ≤ h0 the problem (Pβ,h) admits at
least one optimal solution ūβ,h ∈M+(Ωo) fulfilling

∇ψh(ūβ,h) ≥ −β, supp ūβ,h ⊂ {x ∈ Ωo| − ∇ψh(ūβ,h)(x) = β} ,

and # supp ūβ,h ≤ n(n+1)/2. Moreover, for every optimal solution ūβ,h of (Pβ,h) the interpolated
measure Λh(ūβ,h) ∈Mh is also optimal.

Proof. Let a constant M0 > 0 bounding the norm of continuous optimal designs be given. To
show the existence of at least one discrete optimal design we proceed as in the previous section
by considering the auxiliary problem

min
u∈M+(Ωo)

Fh(u) s.t. ‖u‖M ≤ 2M0. (4.60)

We have to show that the domain of Fh onM+(Ωo) is not empty for all h small enough. Existence
of at least one minimizer ūβ,h to (4.60) for h small enough then follows immediately. Moreover
the sequence {ūβ,h}h>0 is uniformly bounded and ‖ūβ,h‖M < 2M0 for all h small enough. Conse-
quently ūβ,h is also a minimizer of the unconstrained problem (Pβ,h).

By assumption there exists u ∈ M+(Ωo), ‖u‖M ≤ M0 with I(u) + I0 ∈ PD(n). Due to the
uniform convergence of the sensitivities ∂Sh[q], we have Ih(u)→ I(u) for h→ 0. Therefore, for h
small enough there holds Ih(u) + I0 ∈ PD(n), since the set of positive definite matrices is open.
Thus u ∈ domM+(Ωo) Fh for all h small enough. The necessary and sufficient condition on the
gradient as well as the upper bound on the number of support points can be derived as in the
continuous case.

It remains to prove the existence of a solution supported in Nh. Given an arbitrary but fixed
u ∈M+(Ωo) we have

Ih(Λhu)ik =
〈
∂iS

h[q̂]∂kS
h[q̂], Λhu

〉
=
〈
ih

(
∂iS

h[q̂]∂kS
h[q̂]
)
, u
〉

for all i, k ∈ {1, . . . , n}, by using properties of Λh; see [59, Theorem 3.5]. Let z ∈ Rn be arbitrary.
Then there holds

zTIh(u)z =
〈
z>∂Sh[q̂]∂Sh[q̂]>z, u

〉
=

〈(
∂Sh[q̂]>z

)2
, u

〉

=

〈 ∑
xj∈Nh

ehj ∂S
h[q̂](xj)

>z

2

, u

〉
.

Now, we estimate

〈 ∑
xj∈Nh

ehj z
>∂Sh[q̂](xj)

2

, u

〉
≤

〈 ∑
xj∈Nh

ehj

(
z>∂Sh[q̂](xj)

)2
, u

〉
,
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4 Sparse sensor placement for PDE-constrained inverse problems

with Jensen’s inequality, using the convexity of the square function and
∑

xi∈Nh e
h
i (x) = 1 for all

x ∈ Ωo. Expanding and rearranging yields〈 ∑
xj∈Nh

ehj

(
z>∂Sh[q̂](xj)

)2
, u

〉
=

〈 ∑
xj∈Nh

ehj z
>∂Sh[q̂](xj)∂S

h[q̂](xj)
>z, u

〉

=
〈
ih

(
z>∂Sh[q̂]∂Sh[q̂]>z

)
, u
〉

=
〈
z>∂Sh[q̂]∂Sh[q̂]>z, Λhu

〉
= zTIh(Λhu)z.

Since z ∈ Rn was arbitrary, this implies Ih(u) ≤L Ih(Λhu) and therefore also

Ψ(Ih(u) + I0) ≥ Ψ(Ih(Λhu) + I0),

due to the monotonicity of Ψ with respect to the Löwner ordering. Let ūβ,h be an optimal solution
of (Pβ,h). From this and ‖Λhūβ,h‖M ≤ ‖ūβ,h‖M we deduce that Λhūβ,h is an optimal solution to
(Pβ,h).

Note that this result, together with a straightforward adaption of Theorem 4.5 and Proposition 4.7,
implies in particular that there exists an optimal solution to (Pβ,h) inMh∩M(Ωo) which is com-
prised of at most n(n+ 1)/2 distinct support points. Finally, we prove subsequential convergence
of discrete optimal solutions for h→ 0.

Proposition 4.46. For h ≤ h0 denote by ūβ,h an arbitrary optimal solution to (Pβ,h). There
exists at least one subsequence of { ūβ,h }h>0 (denoted in the same way), converging in the weak*
topology for h→ 0. Every accumulation point ūβ of { ūβ,h }h>0 is a minimizer of (Pβ) and

‖ūβ,h‖M → ‖ūβ‖M, ψh(ūβ,h)→ ψ(ūβ).

Furthermore, if there holds

# supp ūβ,h ≤ n(n+ 1)/2, ∀h > 0

then the same holds for every accumulation point.

Proof. The sequence { ūβ,h }h>0 is uniformly bounded byM0 in h. Thus, there exists a subsequence
denoted in the same way and a measure ūβ ∈ M+(Ωo) with ūβ,h ⇀∗ ūβ for h → 0. Due to the
weak* lower semi-continuity of the norm and the uniform convergence of the sensitivities there
holds

ψ(ūβ) + β‖ūβ‖M ≤ lim inf
h→0

[ψh(ūβ,h) + β‖ūβ,h‖M] ≤ ψ(ū) + β‖ū‖M.

Therefore ūβ is also an optimal solution of (Pβ) and

ψh(ūβ,h) + β‖ūβ,h‖M → ψ(ūβ) + β‖ūβ‖M.

Furthermore, due to the weak* convergence of ūβ,h, we obtain

‖ūβ,h‖M = 〈1, ūβ,h〉 → ‖ūβ‖M = 〈1, ūβ〉 = ‖ūβ,h‖M.

The convergence of ψh(ūβ,h) is a direct consequence of the convergence of the objective function
values as well as the the convergence of the norms. The result on the number of support points
follows from Proposition 6.32, again using that dim Sym(n) = n(n+ 1)/2.
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Observe that the different implementations of Algorithms 2 which are presented in Section 4.4.1
can be directly applied to (Pβ,h). Following Theorem 4.45 the position x̂k of the new Dirac delta
function can be chosen from Nh. Therefore step 2. in Algorithm 2 amounts to the computation of
the discrete gradient ∇ψh(uk) and the determination of its maximum in Nh. The latter one can
be done efficiently by O(#Nh) operations.

Post-processing of the discrete design measure

By Theorem 4.5 the support of an optimal design ūβ can be limited to n(n+ 1)/2 points. In prac-
tice, this upper bound is often rather pessimistic. However, due to discretization error, the support
of a discrete solution ūβ,h ∈ Mh of (Pβ,h) can be bigger than that of the continuous counterpart
ūβ , while still respecting the upper bound n(n + 1)/2. Usually, a sensor at a specific location
in the continuous solution appears spread out over several adjacent grid points in the numerical
solution. A similar effect has been observed and theoretically investigated in the context of sparse
deconvolution in the presence of noise; cf. [95]. As a remedy, we employ the following heuristic
post-processing of the discrete solution: First, we cluster the support of ūβ,h into Nc ≤ # supp ūβ,h
sets Si ⊂ Ωo, with diam(Si) ≤ Ch. Then, we construct a new design ūS =

∑
i=1,...,Nc

uSi δxSi
with

uSi =
∫
Si

dūβ,h summing up the coefficients of each cluster, and xSi =
∫
Si
xdūβ,h/u

S
i the locations

by the center of mass. Note that this introduces an additional error in the location of the sup-
port points of order h, which is not worse than what we can expect from ūh. Additionally, the
weak*-convergence result for h→ 0 from Proposition 4.46 is not affected by this post-processing.

Discretization of (P εβ)

We briefly comment on the discretization of the regularized sub-problems (P εβ). We adapt the
approach from [61,208] and discretize the design by piece-wise linear finite elements on the obser-
vation set, denoted by Uh. We endow this space with the lumped inner product defined for any
ϕ,ψ ∈ Uh ⊂ C(Ωo) in the usual way as

(ϕ,ψ)Ωo,h =

∫
Ωo

ih(ϕψ)(x)dx.

The approximation of (P εβ) is then defined as

min
uh∈Uh,uh≥0

[
ψh(Λhuh) + β‖uh‖L1(Ωo) +

ε

2
‖uh‖2L2(Ωo),h

]
, (P εh,β)

where ‖uh‖2L2(Ωo),h
= (uh, uh)Ωo,h is the lumped regularization term. Here, the appearance of

Λhωh turns integrals involving the finite element function uh into appropriate lumped integrals,
i.e., we obtain

Ih(Λhuh)ij = (∂iS
h[q̂]∂jS

h[q̂], uh)h.

Note also that ‖uh‖L1(Ωo) = ‖uh‖M = ‖Λhuh‖M. The existence of an optimal solution to (P εh,β),
for h small enough, can be shown by similar arguments as for the unregularized discrete problem.
Additionally uniqueness of the solution follows using the strict convexity of the regularization term.
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4 Sparse sensor placement for PDE-constrained inverse problems

The necessary and sufficient optimality conditions can be derived in a straightforward manner and
are equivalent to the point-wise projection formula

ūεβ,h(xi) = max

{
−1

ε
(∇ψl,h(ūεβ,h)(xi) + β), 0

}
∀xi ∈ Nh ∩Ωo, (4.61)

where ψl,h(ūεβ,h) = ψh(Λhū
ε
β,h). For a discussion and comparison of different discretization schemes

of the regularized problem we refer to [208, Section 4.5.3].

4.6.2 A priori error estimates

This section is devoted to the derivation of a priori error estimates for the sparse sensor placement
problem. Therefore we strengthen our assumptions on the design criterion Ψ and the convergence
of the discrete sensitivities.

Assumption 4.11. There exists a positive, strict monotonically increasing and continuous func-
tion γ : R+ → R+ with limh→+0 γ(h) = 0 and

max
k
‖∂kS[q̂]− ∂kSh[q̂]‖C ≤ γ(h),

for all h ≤ h0. Furthermore, Ψ is strictly convex on its domain and there exists γ0 > 0 with

Tr(B∇2Ψ(I(ūβ) + I0)B) ≥ γ0‖B‖2Sym, ∀B ∈ Sym(n). (4.62)

Here I(ūβ) denotes the unique Fisher-information matrix.

Note that the continuous optimal Fisher information I(ūβ) and ∇ψ(ūβ) as well as their discrete
counterparts Ih(ūβ,h) and ∇ψh(ūβ,h) are unique due to the strict convexity of Ψ . We briefly
recall that (4.62) implies uniform convexity of Ψ in a neighbourhood N(I(ūβ)) of the optimal
Fisher-information I(ūβ), i.e

(∇Ψ(B1 + I0)−∇Ψ(B2 + I0), B1 −B2)Sym ≥
γ0

2
‖B1 −B2‖2Sym ∀B1, B2 ∈ N(I(ūβ)),

see Corollary 4.17. Additionally, since Ψ is two-times continuously Fréchet differentiable on its
domain, the gradient ∇Ψ : domΨ → Sym(n) is Lipschitz continuous on compact sets, i.e. given a
compact set M ⊂ domΨ there exists a constant LM > 0 with

‖∇Ψ(B1)−∇Ψ(B2)‖Sym ≤ LM‖B1 −B2‖Sym ∀B1, B2 ∈M.

Error estimates for the objective function

Let us first collect some perturbation results for the Fisher information I and the optimal design
criterion ψ.

Lemma 4.47. There exists a constant c > 0 such that for all h small enough we have:

• maxx∈Ωo ‖I(x)− Ih(x)‖Sym + ‖I − Ih‖L(M(Ωo),Sym(n)) ≤ cγ(h).

• For all B1, B2 ∈ Sym(n) there holds

‖I∗B1 − I∗hB2‖C ≤ c(‖B1‖Symγ(h) + ‖B1 −B2‖Sym).
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4.6 Discretization and error estimates

• For all u1, u2 ∈ domM+(Ωo) ψ ∩ domM+(Ωo) ψh we have

‖∇ψ(u1)−∇ψh(u2)‖C
≤ c(‖∇Ψ(I(u1) + I0)‖Symγ(h) + ‖∇Ψ(I(u1) + I0)−∇Ψ(Ih(u2) + I0)‖Sym).

Proof. Let x ∈ Ωo be given. We calculate

‖I(x)− Ih(x)‖2Sym = Tr((I(x)− Ih(x))>(I(x)− Ih(x)))

=
n∑
i=1

n∑
j=1

(∂iS[q̂](x)∂jS[q̂](x)− ∂iSh[q̂](x)∂jS
h[q̂](x))2.

For i, j = 1, . . . , n we estimate

|∂iS[q̂](x)∂jS[q̂](x)− ∂iSh[q̂](x)∂jS
h[q̂](x)|

≤ ‖∂iS[q̂]‖C‖∂jS[q̂]− ∂jSh[q̂]‖C + ‖∂jSh[q̂]‖C‖∂iS[q̂]− ∂iSh[q̂]‖C .

Due to the uniform convergence of the sensitivities we conclude

max
x∈Ωo

‖I(x)− Ih(x)‖2Sym ≤ cγ(h)2.

Furthermore, let an arbitrary u ∈ M(Ωo) be given. Using the properties of the Bochner integral
there holds

‖I(u)− Ih(u)‖Sym ≤ max
x∈Ωo

‖I(x)− Ih(x)‖Sym‖u‖M ≤ γ(h)‖u‖M.

The first statement now follows by taking the supremum over all u ∈M(Ωo). Next, let B1, B2 ∈
Sym(n) be given. We obtain

‖I∗B1 − I∗hB2‖C ≤ ‖I∗B1 − I∗hB1‖C + ‖I∗hB1 − I∗hB2‖C .

Using ‖I∗ − I∗h‖L(Sym(n),C(Ωo)) = ‖I − Ih‖L(M(Ωo),Sym(n)) there holds

‖I∗B1 − I∗hB1‖C ≤ ‖I − Ih‖L(M(Ωo),Sym(n))‖B1‖Sym ≤ cγ(h)‖B1‖Sym.

In the same way we conclude

‖I∗hB1 − I∗hB2‖C ≤ ‖Ih‖L(M(Ωo),Sym(n))‖B1 −B2‖Sym ≤ c‖B1 −B2‖Sym,

since ‖Ih‖L(M(Ωo),Sym(n)) is uniformly bounded as h → 0. Combining both estimates yields the
second statement. The final statement follows directly, noting that

‖∇ψ(u1)−∇ψh(u2)‖C = ‖I∗∇Ψ(I(u1) + I0)− I∗h∇Ψ(Ih(u2) + I0)‖C .

Lemma 4.48. Let a sequence {uh}h>0 ⊂ M+(Ωo) with uh ⇀∗ u ∈ M+(Ωo) as h → 0. Assume
that u, uh ∈ domM+(Ωo) ψ ∩ domM+(Ωo) ψh for h small enough. For all h ≤ h0 small enough there
holds

|ψh(uh)− ψ(uh)| ≤ cuγ(h)‖uh‖M,

with some constant cu > 0 depending on u ∈M+(Ωo).
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Proof. Let such a sequence be given. By Taylor’s expansion we have

ψh(uh)− ψ(uh) = Tr(∇Ψ(Iζh(uh) + I0)>(I(uh)− Ih(u)))

where Iζh(uh) = I(uh) + ζ(Ih(uh)− I(uh)) for some ζh ∈ (0, 1). Obviously there holds

‖I(u)− Iζh(uh)‖Sym ≤ ‖I(u)− I(uh)‖Sym + cγ(h)‖uh‖M → 0,

for some constant c > 0 independent of h and ζ as h→ 0. By using Lemma 4.47 we obtain

Tr(∇Ψ(Iζh(uh) + I0)>(I(uh)− Ih(uh))) ≤ ‖∇Ψ(Iζh(uh) + I0)‖Sym‖I(uh)− Ih(uh)‖Sym

≤ ‖∇Ψ(Iζh(uh) + I0)‖Symγ(h)‖uh‖M.

Since ∇Ψ : domΨ → Sym(n) is continuous the norm ‖∇Ψ(Iζh(uh) + I0)‖Sym stays bounded. The
statement now readily follows.

Since we do not discretize the set of admissible designs we conclude the following convergence
result for the optimal objective function values.

Theorem 4.49. Let arbitrary solutions ūβ to (Pβ) and ūβ,h to (Pβ,h) ,respectively, be given. Then
there exists a constant c > 0 with

|Fh(ūβ,h)− F (ūβ)| ≤ cγ(h). (4.63)

Proof. Let a continuous optimal design ūβ as well as a discrete one ūβ,h be given. Then there holds
ūβ,h ∈ domM+(Ωo) ψ and ūβ ∈ domM+(Ωo) ψh due to the convergence of the Fisher information
matrices. Exploiting optimality we obtain

Fh(ūβ,h)− F (ūβ,h) ≤ Fh(ūβ,h)− F (ūβ) ≤ Fh(ūβ)− F (ūβ).

Consequently we conclude

|Fh(ūβ,h)− F (ū)| ≤ max{|Fh(ūβ,h)− F (ūβ,h)|, |Fh(ūβ)− F (ūβ)|}.

Note that Fh(u)− F (u) = ψh(u)− ψ(u) for all u ∈M+(Ωo). Using Lemma 4.48 we arrive at

max{|Fh(ūβ,h)− F (ūβ,h)|, |Fh(ūβ)− F (ūβ)|} ≤ cγ(h) max{‖ūβ‖M, ‖ūβ,h‖M}.

Due to the weak* convergence of the optimal designs, ‖ūβ,h‖M is uniformly bounded. The state-
ment now readily follows.

Additionally, the strict convexity of Ψ implies the following quadratic growth behavior.

Proposition 4.50. Let an optimal design ūβ be given. For every u ∈ M+(Ωo) with u ∈
domM+(Ωo) ψ we have

γ0

2
‖I(ūβ)− I(u)‖2Sym ≤ F (u)− F (ūβ).
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4.6 Discretization and error estimates

Proof. Let u ∈ M+(Ωo) with u ∈ domM+(Ωo) ψ be given. Due to the the coercivity assumptions
on the Hessian we have

F (u)− F (ūβ) ≥ (∇Ψ(I(ūβ) + I0), I(u)− I(ūβ))Sym + β‖u‖M − β‖ūβ‖M +
γ0

2
‖I(u)− I(ūβ)‖2Sym.

Due to the optimality of ūβ we further obtain

〈∇ψ(ūβ), u− ūβ〉+ β‖u‖M − β‖ūβ‖M
= (∇Ψ(I(ūβ) + I0), I(u)− I(ūβ))Sym + β‖u‖M − β‖ūβ‖M ≥ 0.

This proves the claimed result.

Combining the previous statements we arrive at the following convergence result for the Fisher
information matrix I(ūβ) and the optimal gradient ∇ψ(ūβ).

Corollary 4.51. For all h small enough there holds

‖I(ūβ)− Ih(ūβ,h)‖Sym + ‖∇Ψ(I(ūβ) + I0)−∇Ψ(Ih(ūβ,h) + I0)‖Sym ≤ c
√
γ(h),

as well as

‖∇ψ(ūβ)−∇ψh(ūβ,h)‖C ≤ c
√
γ(h),

for some constant c > 0.

Proof. Let a continuous optimal design ūβ as well as a discrete one ūβ,h be given. We split up the
error as

‖I(ūβ)− Ih(ūβ,h)‖Sym ≤ ‖I(ūβ,h)− Ih(ūβ,h)‖Sym + ‖I(ūβ)− I(ūβ,h)‖Sym.

The first term can be estimated by

‖I(ūβ,h)− Ih(ūβ,h)‖Sym ≤ ‖I − Ih‖L(M(Ωo),Sym(n))‖ūβ,h‖M ≤ cγ(h)‖ūβ,h‖M.

Furthermore, for an arbitrary discrete optimal design ūβ,h we have

‖I(ūβ)− I(ūβ,h)‖Sym ≤ ‖I(ūβ)− Ih(ūβ,h)‖Sym + cγ(h)‖ūβ,h‖M.

Therefore, we conclude I(ūβ,h) ∈ N(I(ūβ)) for all h small enough and all discrete optimal designs
ūβ,h. Thus there holds,

γ0

2
‖I(ūβ)− I(ūβ,h)‖2Sym ≤ F (ūβ,h)− F (ūβ) = F (ūβ,h)− Fh(ūβ,h) + Fh(ūβ,h)− F (ūβ).

Consequently

‖I(ūβ)− I(ūβ,h)‖2Sym ≤ c(γ(h) + γ(h)‖ūβ,h‖M), (4.64)

using Theorem 4.49 and Lemma 4.47. Combining both estimates and taking the square root yields
the first statement due to the uniform boundedness of ‖ūβ,h‖M. The remaining results are now
obtained from the Lischitz continuity of ∇Ψ on compact sets and Lemma 4.47.
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Error estimates for the optimal design measure

In the following we will derive a priori error estimates for the optimal sensors. We impose the
following assumption on the set of global maximizers to −∇ψ(ū) and on the smoothness of ∂S[q̂]
in its vicinity.

Assumption 4.12. Assume that the interior of Ωo is non-empty and there exist x̄i ∈ intΩo,
i = 1, . . . , N , such that the set {I(δx̄i)}Ni=1 is linear independent and

supp ūβ ⊂ {x ∈ Ωo | − ∇ψ(ūβ)(x) = β } = {x̄i}Ni=1.

Furthermore there exists R > 0 with

ΩR :=

N⋃
i=1

BR(x̄i) ⊂ intΩo, B̄R(x̄i) ∩ B̄R(x̄j) = ∅, ∂iS[q̂] ∈ C2(Ω̄R),

for all i, j = 1, . . . , N , i 6= j.

From this additional assumption we immediately derive that the adjoint of the Fisher information
maps continuously to (locally) smooth functions, i.e.

I∗ : Sym(n)→ C(Ωo) ∩ C2(Ω̄R) A 7→ ∂S[q̂]>A∂S[q̂],

is linear and continuous. Secondly, due to the linear independence assumption, the optimal de-
sign ūβ is unique. For abbreviation we define the continuous functions p̄ ∈ C(Ωo) ∩ C2(Ω̄R) and,
for every h ≤ h0, p̄h ∈ C(Ωo) as

p̄ : Ωo → R x 7→ −∇ψ(ūβ)(x), p̄h : Ωo → R, x 7→ −∇ψh(ūβ,h)(x),

respectively. For the rest of this section we will denote the gradient and the Hessian of p̄ by ∇p̄
and ∇2p̄ respectively. Note that due to the to the optimality of ūβ 6= 0 we have

p̄(x) ≤ β ∀x ∈ Ωo, p̄(x̄i) = β, ∇p̄(x̄i) = 0,

since x̄i ∈ intΩo, i = 1, . . . , N . To derive error estimates for the position of the sensors we
further impose assumptions on the curvature of p̄ in the support points, see also Section 4.4 and
Section 4.5. For convenience of the reader we restate them.

Assumption 4.13. Let ūβ be the unique optimal solution to (Pβ). Assume that ūβ =
∑N

i=1 ūiδx̄i
for some ūi > 0, i = 1, . . . , N and there exists θ > 0 with

−(ζ,∇2p̄(x̄i)ζ)Rd ≥ θ|ζ|Rd ∀ζ ∈ Rd,

for all i = 1, . . . , N .

Based on this assumption, we conclude the following quadratic grow condition for the optimal
gradient p̄.
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Proposition 4.52. There exists 0 < R1 ≤ R with

p̄(x) ≤ β − θ

4
|x− x̄i|2Rd ∀x ∈

N⋃
i=1

B̄R1(x̄i), (4.65)

for all i = 1, . . . , N . Moreover there exists σ > 0 with

p̄(x) ≤ β − σ ∀x ∈ Ωo \
N⋃
i=1

BR1(x̄i). (4.66)

Proof. Let us fix i ∈ {1, . . . , N}. For x ∈ BR(x̄i) we apply Taylor’s expansion to obtain

p̄(x) = p̄(x̄i) + (∇p̄(x̄i), x− x̄i)Rd +
1

2
(x− x̄i,∇2p̄(xζ)(x− x̄i))Rd

where xζ = x̄i − ζ(x − x̄i) for some 0 < ζ < 1. Since x̄i is an optimal sensor position we have
p̄(x̄i) = β and ∇p̄(x̄i) = 0 respectively. We proceed by estimating the second order term as(

x− x̄i,∇2p̄(xζ)(x− x̄i)
)
Rd

=
(
x− x̄i,∇2p̄(x̄i)(x− x̄i)

)
Rd +

(
x− x̄i,∇2p̄(xζ)−∇2p̄(x̄i)(x− x̄i)

)
Rd

≤
(
‖∇2p̄(xζ)−∇2p̄(x̄i)‖Rd×d − θ

)
|x− x̄i|2Rd .

Due to the continuity of ∇2p̄ on BR(x̄i) there exists R > Ri > 0 with

|x− x̄i|Rd ≤ Ri ⇒ ‖∇2p̄(x)−∇2p̄(x̄i)‖Rd×d ≤
θ

2
.

Noting that |xζ − x̄i|Rd ≤ |x− x̄i|Rd we conclude

p̄(x) ≤ β − θ

4
|x− x̄i|2Rd ∀x ∈ B̄Ri(x̄i).

Since p̄ admits its global maximum only in finitely many points x̄i, i = 1, . . . , N we choose R1 as
the maximum over the Ri, i = 1, . . . N . This gives (4.65). The existence of σ > 0 such that (4.66)
holds follows due to the continuity of p̄ and p̄(x̄i) = β, i = 1, . . . , N as well as p̄(x) < β for
x ∈ Ωo \

⋃N
i=1{x̄i}.

In the next corollary we localize the support of a discrete optimal design ūβ,h in the vicinity of
the continuous optimal sensor positions x̄i, i = 1, . . . , N .

Corollary 4.53. For all h small enough there holds

p̄h(x) ≤ β − σ

2
∀x ∈ Ωo \

N⋃
i=1

BR1(x̄i). (4.67)

Furthermore, given an arbitrary discrete optimal design ūβ,h we have supp ūβ,h ⊂
⋃N
i=1 B̄R1(x̄i).

Proof. Let x ∈ Ωo \
⋃N
i=1BR1(x̄i) be given. We estimate

p̄h(x) = p̄(x) + p̄h(x)− p̄(x) ≤ β − σ + ‖p̄h(x)− p̄‖C .

For all h small enough we have ‖p̄h(x)− p̄‖C ≤ σ/2, see Corollary 4.51. This gives (4.67). Let now
an arbitrary optimal solution ūβ,h to (Pβ,h) be given. If x̄h ∈ supp ūβ,h, then there holds p̄h = β, see
Theorem 4.45. Following (4.67), this is only possible if x̄h ∈ B̄R1(x̄i) for some i ∈ {1, . . . , N}.
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4 Sparse sensor placement for PDE-constrained inverse problems

In the following we will also make use of the auxiliary function p̃ ∈ C(Ωo) ∩ C2(Ω̄R) defined as

p̃ : Ω → R x 7→ −I∗∇Ψ(Ih(ūβ,h) + I0)(x)

Corollary 4.54. For all h small enough there holds

‖p̄h − p̃‖C + ‖p̃− p̄‖2C2(ΩR) ≤ cγ(h),

for some c > 0.

Proof. We directly obtain

‖p̄h − p̃‖C ≤ c‖Ih − I‖L(M(Ωo),Sym(n))‖∇Ψ(Ih(ūβ,h) + I0)‖Sym

as well as

‖p̃− p̄‖C2(ΩR) ≤ c‖I∗‖L(Sym(n),C2(ΩR))‖∇Ψ(I(ūβ) + I0)−∇Ψ(Ih(ūβ,h) + I0)‖Sym.

Following Lemma 4.47 and Corollary 4.51 we have

‖∇Ψ(I(ūβ) + I0)−∇Ψ(Ih(ūβ,h) + I0)‖2Sym + ‖Ih − I‖L(M(Ωo),Sym(n)) ≤ cγ(h).

Hence the desired estimates directly follow since ‖∇Ψ(Ih(ūβ,h)+I0)‖Sym is uniformly bounded.

As for p̄ the gradient and the Hessian of p̃ with respect to the spatial variable will be denoted by
∇p̃ and ∇2p̃ respectively. After these preliminary preparations we are now able to derive a first
intermediate estimate for the distances between continuous and discrete optimal sensor positions
respectively.

Lemma 4.55. Let h be small enough and let x̄h with p̄h(x̄h) = β be given. Then there exists an
index i ∈ {1, . . . , N} with

|x̄h − x̄i|Rd ≤ c 4
√
γ(h),

for some c > 0. Given a discrete optimal design ūβ,h we get

max
i=1,...N

max
x∈supp ūβ,h∩BR1

(x̄i)
|x− x̄i|Rd ≤ c 4

√
γ(h), (4.68)

for some constant c > 0 independent of ūβ,h.

Proof. Let such a x̄h be given. Then we have x̄h ∈ BR1(x̄i) for some index i ∈ {1, . . . , N} due to
Corollary 4.53. We estimate

β = p̄h(x̄h) = p̄(x̄h) + p̄h(x̄h)− p̄(x̄h) ≤ p̄(x̄h) + c
√
γ(h) ≤ β − θ

4
|x̄h − x̄i|2Rd +

√
γ(h).

Rearranging and taking the square root yields

|x̄h − x̄i| ≤ c 4
√
γ(h).

This implies the first assertion. The statement in (4.68) readily follows from p̄h(x) = β for all
x ∈ supp ūβ,h.
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In the following we improve the error estimate for the optimal sensor positions. To do so, we
proceed similarly to [191] and derive auxiliary results for the growth behaviour of the function p̃
in a neighbourhood of x̄i, i = 1, . . . , N . These are summarized in the following two lemmas.

Lemma 4.56. For each i = 1, . . . , N the function p̃ admits a unique local maximum x̃hi on BR1(x̄i).
Moreover there holds

|x̄i − x̃hi |Rd ≤ c
√
γ(h),

for some constant c > 0.

Proof. By Assumption 4.11 the pointwise Fisher information

I : Ωo → Sym(n) x 7→ ∂S[q̂](x)∂S[q̂](x)>,

is two times continuously differentiable on ΩR with Fréchet derivatives I ′ ∈ C1(ΩR,L(Rd,Sym(n)))
and I ′′ ∈ C(ΩR,L(Rd,L(Rd,Sym(n))). Given A ∈ Sym(n) we consider the continuous function

∇p[A] : ΩR → Rd ∇p[A](x)i = −Tr(A>(I ′(x)ei)),

for x ∈ Ωo. Here ei ∈ Rd denotes the i-th canonical basis vector of Rd, i = 1, . . . , d. Note that
p[A] is continuously differentiable on ΩR for every A ∈ Sym(n) and

∇p [∇Ψ(I(ūβ) + I0)] = ∇p̄, ∇p [∇Ψ(Ih(ūβ,h) + I0)] = ∇p̃,

for all h > 0 small enough. Define now the function P ∈ C1(ΩR × Sym(n),Rd) as

P : ΩR × Sym(n)→ Rd, (x,A) 7→ ∇p[A](x).

Fix an arbitrary index i ∈ {1, . . . , N} and denote by ∇xP (x,A) ∈ Sym(n) the partial derivative
of P at (x,A) with respect to x. Then there holds

P (x̄i,∇Ψ(I(ūβ) + I0)) = ∇p̄(x̄i) = 0, ∇xP (x̄i,∇Ψ(I(ūβ) + I0)) = ∇2p̄(x̄i).

By assumption, the Hessian of p̄ at x̄i is positive definite and thus ∇xP (x̄i,∇Ψ(I(ūβ) + I0) is
invertible. From the implicit function theorem we get Ri, ci, ρ > 0 such that for every A ∈ Sym(n)
with ‖∇Ψ(I(ūβ)−A‖Sym ≤ ρ there exists a unique x̃i(A) ∈ BRi(x̄i) with P (x̃i, A) = 0 and

|x̃i(A)− x̄i|Rd ≤ ci‖∇Ψ(I(ūβ) + I0)−A‖Sym.

We apply this result to A = ∇Ψ(Ih(ūβ,h) + I0) to obtain the existence of x̃hi := x̃i(A) with
P (x̃hi , A) = ∇p̃(x̃hi ) = 0 and

|x̃hi − x̄i|Rd ≤ c‖∇Ψ(I(ūβ) + I0)−∇Ψ(Ih(ūβ,h) + I0)‖Sym ≤ c
√
γ(h).

Hence we have x̃hi ∈ BR1(x̄i) for all h small enough. It remains to show that x̃hi is a local maximum
of p̃. For x ∈ ΩR we estimate

−
(
ζ,∇2p̃(x)ζ

)
Rd = −

(
ζ,∇2p̄(x)ζ

)
Rd −

(
ζ, (∇2p̃(x) +∇2p̄(x))ζ

)
Rd

≥ −
(
ζ,∇2p̄(x̄i)ζ

)
Rd − (‖∇2p̄(x)−∇2p̄(x̄i)‖Sym + c

√
γ(h))|ζ|2Rd

≥ (θ − ‖∇2p̄(x)−∇2p̄(x̄i)‖Sym − c
√
γ(h))|ζ|2Rd .
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for all ζ ∈ Rd. W.l.o.g the radius R1 can be chosen small enough such that for all x ∈ ΩR we have

|x− x̄i|Rd ≤ R1 ⇒ ‖∇2p̄(x)−∇2p̄(x̄i)‖Sym ≤
θ

2
,

due to the continuity of ∇2p̄. Thus we conclude

−
(
ζ,∇2p̃(x)ζ

)
Rd ≥

(
θ

2
− c
√
γ(h)

)
|ζ|2Rd ≥

θ

4
|ζ|2Rd , (4.69)

for all x ∈ BR1(x̄i), all ζ ∈ Rd and all h small enough. Therefore p̃ is strictly concave on BR1(x̄i)
and the Hessian ∇2p̃(x̃hi ) is negative definite. Consequently, p̃ admits a strict local maximum at
x̃hi which is unique on BR1(x̄i). Since i was chosen arbitrary and there are only finitely many x̄i
all constants can be considered as uniformly bounded in i. This gives the statement.

Lemma 4.57. There exist 0 < R2 ≤ R1 and a constant c > 0 such that

• p̃(x) ≤ β + cγ(h) ∀x ∈ Ωo.

• p̃(x) ≤ β − σ
2 ∀x ∈ Ωo\

⋃N
i=1BR1(x̄i).

• p̃(x) ≤ p̃(x̃hi )− θ
8 |x− x̃

h
i |2Rd ∀x ∈ BR2(x̃hi ).

for all h small enough and i = 1, . . . , N .

Proof. Let x ∈ Ωo be given. We immediately obtain

p̃(x) = p̄h(x) + p̃(x)− p̄h(x) ≤ β + ‖p̃− p̄h‖C ≤ β + cγ(h),

see Corollary 4.54. This proves the first result. The second statement readily follows due to the
uniform convergence of p̃ towards p̄. Concerning the third claim we observe that x̃hi ∈ intΩo for all
h small enough and thus ∇p̃(x̃hi ) = 0 for all i = 1, . . . , N . Fix an arbitrary index i ∈ {1, . . . , N}.
Again by applying Taylor’s expansion we deduce

p̃(x) = p̃(x̃hi ) +
1

2

(
x− x̃hi ,∇2p̃(xζ)(x− x̃hi )

)
Rd
,

where xζ = x̃hi + ζ(x− x̃hi ) for some 0 < ζ < 1. Observe that

|xζ − x̄i|Rd ≤ |x− x̃hi |Rd + |x̄i − x̃hi |Rd ≤ c
√
γ(h) + |x− x̃hi |Rd

Hence by choosing R2 = R1/2 we have xζ ∈ BR1(x̄i) for all x ∈ BR2(x̃hi ) and all h small enough.
From the concavity of p̃ on BR1(x̄i), see (4.69), we conclude

p̃(x) = p̃(x̃hi ) +
1

2

(
x− x̃hi ,∇2p̃(xζ)(x− x̃hi )

)
Rd
≤ p̃(x̃hi )− θ

8
|x− x̃hi |2Rd ∀x ∈ BR2(x̃hi ).

As before, since the index i was chosen arbitrary, all estimates can be derived with constants
uniformly bounded in i.

Using these additional results on p̃ we can now improve on the a priori estimate for the support
points x̄i derived in Lemma 4.55.
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Theorem 4.58. Let Assumptions 4.11, 4.12 and 4.13 hold. For all h small enough and every
discrete solution ūβ,h to (Pβ,h) we have

max
i=1,...,N

max
x∈supp ūβ,h∩BR1

(x̄i)
|x− x̄i|Rd ≤ c

√
γ(h) (4.70)

for some c > 0 independent of ūβ,h and h.

Proof. Let an arbitrary discrete optimal design ūβ,h be given and fix an index i ∈ {1, . . . , N}.
W.l.o.g assume that supp ūβ,h ∩BR1(x̄i) 6= ∅. For x ∈ supp ūβ,h ∩BR1(x̄i) we readily obtain

|x− x̃hi |Rd ≤ |x̃hi − x̄i|Rd + |x− x̄i|Rd ≤ c(
√
γ(h) + 4

√
γ(h)),

from Lemma 4.56 and Lemma 4.55. Consequently, if h is chosen small enough, there holds x ∈
BR2(x̃hi ). Using Corollary 4.54 we furthermore observe that there holds

β = p̄h(x) ≤ p̃(x) + cγ(h).

In virtue of Lemma 4.57 we conclude

β − cγ(h) ≤ p̃(x) ≤ p̃(x̃hi )− θ

8
|x− x̃hi |2Rd ,

and thus, by rearranging

|x− x̃hi |2Rd ≤ p̃(x̃
h
i )− β + cγ(h) ≤ ‖p̃− p̄h‖C + cγ(h) + p̄h(x̃hi )− β ≤ cγ(h).

Here, the last inequality is obtained by applying Corollary 4.54 and p̄h(x)− β ≤ 0 for all x ∈ Ωo
and all h small enough. Since all derived estimates do not depend on the chosen point x, we can
maximize both sides of the inequality with respect to x ∈ supp ūβ,h ∩BR1(x̄i) and i ∈ {1, . . . , N}.
Taking the square root concludes the proof.

Based on the improved convergence rate for the optimal positions of the measurement sensors, we
proceed to prove an a priori error estimate for the diligence factors ūi. In the following, given ūβ,h,
its restriction to B̄R1(x̄i) will be denoted by ūiβ,h, i = 1, . . . , N . First, note that, up to now, we
have not discussed whether there is a discrete optimal sensor in a neighborhood of a continuous
one. Mathematically this reduces to the question whether supp ūβ,h ∩ BR1(x̄i) 6= ∅ for a given
discrete optimal design ūβ,h and i ∈ {1, . . . , N}. This issue is discussed in the following lemma.

Lemma 4.59. Consider a sequence {ūβ,h}h>0 of optimal solutions to (Pβ,h). For all h small
enough we have

supp ūβ,h ⊂
N⋃
i=1

B̄R1(x̄i), supp ūβ,h ∩ B̄R1(x̄i) 6= ∅,

as well as ‖ūiβ,hk‖M → ūi, for all i = 1, . . . N .

Proof. The localization result on the support of ūβ,h readily follows from Corollary 4.53. Fix an
arbitrary index i ∈ {1, . . . , N}. Using Urysohn’s Lemma, there exists ϕi ∈ C(Ωo) with

ϕi(x) = 1 ∀x ∈ B̄R1(x̄i), ϕi(x) = 0 ∀x ∈
N⋃

j=1,j 6=i
B̄R1(x̄j).
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Due to the weak* convergence of ūβ,h towards ūβ we have

‖ūiβ,h‖M = 〈ϕi, ūβ,h〉 → 〈ϕi, ūβ〉 = ūi,

as h→ 0. Since ūi > 0 we thus obtain that supp ūiβ,h 6= ∅ for all h small enough. This concludes
the proof.

While the last lemma ensures the existence of a discrete optimal sensor in the neighborhood
of a continuous one it does not make a statement on the number of approximating points. In
fact, an optimal sensor at x̄i in the continuous measurement design might be approximated by
a larger number of discrete ones clustering in B̄R1(x̄i). Hence, the error between ūi and the
norm of ūiβ,h should be quantified. Furthermore, recall that for a given discrete design ūβ,h the
interpolated design measure Λhūβ,h ∈ Mh is also optimal, c.f Theorem 4.45. From now on, we
assume that ūβ,h ∈Mh for all h ≤ h0.

Let us introduce the operator Î and the vector of measurement weights ū ∈ RN+ \ {0} as

Î : RN → Sym(n), u 7→
N∑
i=1

uiI(x̄i), ū = (ū1, . . . , ūN )>,

respectively. From the improved a priori error estimate for the optimal sensor positions we conclude
the following perturbation result.

Lemma 4.60. Let a sequence {ūβ,h}h>0 ⊂ Mh of discrete optimal designs be given. For h > 0
define the weight vector ūh = (‖ū1

β,h‖M, . . . , ‖ūNβ,h‖M)>. For all h small enough there holds

‖Î(ūh)− I(ūβ,h)‖Sym ≤ cN‖ūβ,h‖M
√
γ(h),

for some cN > 0 depending on the support size of the continuous optimal design.

Proof. We decompose ūβ,h to obtain

‖Î(ūh)− I(ūβ,h)‖Sym ≤
N∑
i=1

‖ūhi I(x̄i)− I(ūiβ,h)‖Sym.

Fix an arbitrary index i ∈ {1, . . . , N}. By assumption, there exists Nh,i ∈ N \ {0} with

ūiβ,h =
Nh,i∑
j=1

ūhj,iδx̄hi,j
, x̄hi,j ∈ Nh, ūhj,i ∈ R+ \ {0},

for j = 1, . . . , Nh,i. Due to optimality and Theorem 4.58 we have

p̄(x̄hi,j) = β, |x̄hi,j − x̄i|2Rd ≤ c
√
γ(h).

From the regularity assumptions on ∂S[q̂] we conclude that the mapping

I : Ωo → Sym(n), x 7→ ∂S[q̂](x)∂S[q̂](x)>,
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is Lipschitz continuous around x̄i. Using ‖ūiβ,h‖M =
∑Nh,i

j=1 ūhj,i we estimate

‖ūhi I(x̄i)− I(ūiβ,h)‖Sym ≤
Nh,i∑
j=1

ūhj,i‖I(x̄i)− I(x̄hi,j)‖Sym ≤ c‖ūiβ,h‖M|x̄i − x̄hi,j |Rd

Since i was arbitrary and ‖ūβ,h‖M =
∑N

i=1 ‖ūiβ,h‖M we obtain

‖Î(ūh)− I(ūβ,h)‖Sym ≤ cN‖ūβ,h‖M max
i=1,...,N

max
x∈supp ūβ,h∩BR1

(x̄i)
|x− x̄i| ≤ c‖ūβ,h‖M

√
γ(h).

This finishes the proof.

We are now ready to prove an a priori estimate for the discretization error between the measure-
ment weight ūi and the sum of the discrete optimal measurement weights corresponding to sensors
in B̄R1(x̄i).

Theorem 4.61. Let Assumptions 4.11, 4.12 and 4.13 hold. Let a sequence {ūβ,h}h>0 ⊂ Mh of
discrete optimal designs be given. If h is small enough we have

N∑
i=1

|ūi − ‖ūiβ,h‖M| ≤ c
√
γ(h), (4.71)

for some c > 0.

Proof. First note that since {I(δx̄i)}Ni=1 is linear independent, the operator Î has full rank and
Î∗Î ∈ Sym(N) is invertible. We estimate

N∑
i=1

|ūi − ‖ūiβ,h‖M| ≤ c|ū− ūh|RN ≤ c‖(Î∗Î)−1‖Rd×d |Î∗Î(ū− ūh)|RN

≤ c‖(Î∗Î)−1‖Rd×d‖Î∗‖L(Sym(n),RN )‖Î(ū− ūh)‖Sym.

By construction we have Î(ū) = I(ūβ) and thus

‖Î(ū− ūh)‖Sym = ‖I(ūβ)− Î(ūh)‖Sym ≤ ‖I(ūβ)− I(ūβ,h)‖Sym + ‖Î(ūh)− I(ūβ,h)‖Sym.

From (4.64), Lemma 4.60 and the boundedness of ‖ūβ,h‖M we obtain

‖I(ūβ)− I(ūβ,h)‖Sym + ‖Î(ūh)− I(ūβ,h)‖Sym ≤ c
√
γ(h).

Due to the sparsity of ūβ and ūβ,h for all h ≤ h0 we also derive an error estimate for the optimal
measurement design in the modified Wasserstein distance as well as for the norm in C0,1(Ωo)

∗, see
Section 4.4.3.

Theorem 4.62. Let Assumptions 4.11, 4.12 and 4.13 hold. Let a sequence {ūβ,h}h>0 ⊂ Mh of
discrete optimal designs be given. For all h small enough we have

‖ūβ,h − ūβ‖C0,1∗ ≤ c
1
‖ūβ‖M,NW̄1(ūβ,h, ū) ≤ c2

‖ūβ‖M,N

√
γ(h),

where the constants c1
‖ūβ‖M,N , c

2
‖ūβ‖M,N depend on the norm of ūβ as well as its support size N .

Proof. The statement readily follows from applying Proposition 4.19, Theorem 4.20 and the a
priori error estimates in Theorem 4.58 and Theorem 4.61.
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4.7 Numerical examples

We end this chapter with a numerical study of two test examples. In the following we consider
the unit square Ω̄ = [0, 1]2 and a sequence Thk , k ∈ { 1, 2, . . . , 9 }, of uniform triangulations of
Ω̄ with hk =

√
2/2k. Our aim in this section is twofold. First, we want to numerically illustrate

the theoretical results. Secondly, we want to study the practical performance of the different
Algorithms according to various criteria including the computational time, the evolution of the
sparsity pattern throughout the iterations and the influence of the fineness of the triangulation.
Since the small number of Dirac delta functions in these examples aid the practical performance
of Algorithm 3 we postpone a comparison between sequential point insertion algorithms and the
path-following strategy to the following chapter. In all examples we consider the A-optimal design
problem, i.e. Ψ = Tr (·+ I0)−1 and the discrete state and the associated sensitivities ∂S[q̂] are
computed for a fixed q̂ once at the beginning. During the execution of the different variants of
Algorithms 2 and 6 no additional PDEs need to be solved. Moreover, the gradient of the reduced
cost functional is given by

[∇ψ(u)] (x) = −Tr((I(u) + I0)−1I(δx)(I(u) + I0)−1) = −‖(I(u) + I0)−1∂S[q̂](x)‖2Rn ∀x ∈ Ωo

which relates the pointwise value of the gradient directly to the corresponding sensitivity vector
∂S[q̂](x) ∈ Rn. A corresponding computation on the discrete level allows for an efficient imple-
mentation based on a single Cholesky-decomposition of I(u) + I0 in each iteration. Moreover, a
corresponding expression for the Hessian-vector-product

[
∇2ψ(u)(δu)

]
(x) for δu ∈ M(Ωo) can

be derived by differentiating the above expression. In both examples, the assumptions on the
continuous and discrete state equation, see Assumption 4.1 and Assumption 4.10, respectively,
can be easily verified.

4.7.1 Estimation of diffusion and convection coefficients

As a first example for the state equation (4.3), we take a convection-diffusion process where for a
given q ∈ Qad = { q ∈ R3 | 5 ≥ q1 ≥ 0.25 } the associated state y = S[q] ∈ H1

0 (Ω) ∩ C(Ωo) is the
unique solution to

a(q, y)(ϕ) =

∫
Ω

[
q1∇y · ∇ϕ+ q2ϕ

∂y

∂x1
+ q3ϕ

∂y

∂x2

]
dx =

∫
Ω
fϕ dx, (4.72)

for all ϕ ∈ H1
0 (Ω). The forcing term f is chosen as exp(3(x2

1 +x3
2)). This corresponds to the linear

elliptic equation

−q1 ∆ y +

(
q2

q3

)
· ∇y = f in Ω,

together with homogeneous Dirichlet boundary conditions on ∂Ω. Here, the parameter q contains
the scalar diffusion and convection coefficients of the elliptic operator. The observation domain
is chosen as Ωo = Ω̄ = [0, 1]2. As a priori guess for the parameter we choose q̂ = (3, 0.5, 0.25)>.
Note that while (4.72) is a linear equation, the state y ∈ H1

0 (Ω)∩C(Ωo) depends non-linearly but
differentiably on q. For each k ∈ { 1, 2, 3 } the sensitivity δyk = ∂kS[q̂] ∈ H1

0 (Ω) ∩ C(Ωo) can be
computed from (4.4). Due to the tri-linearity of the form a(·, ·)(·) it fulfills

a(q̂, δyk)(ϕ) = a(ek, ŷ)(ϕ) ∀ϕ ∈ H1
0 (Ω),

where ŷ = S[q̂] and ek ∈ R3 denotes the k-th canonical unit vector.
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First order optimality condition

In this section we numerically verify the discrete first-order necessary and sufficient optimality
conditions from Theorem 4.45. Therefore we compute an A-optimal design for Example 1 on grid
level nine Th9 for β = 1 and I0 = 0. For the computation we use Algorithm 2 (together with
Algorithm 1 and a full resolution of the arising finite-dimensional subproblems), until the residual
is below machine precision. We obtain a discrete optimal design ūh in M+(Ωo) ∩Mh with five
support points. By closer inspection we observe that two of the computed support points are
located in adjacent nodes of the triangulation. Applying the post-processing from Section 4.6.1,
we obtain the design given in Figure 4.1. Alongside we plot the isolines of −∇ψh(ūβ,h). As
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(a) Optimal design ūβ,h.
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(b) Isolines of −∇ψh(ūβ,h).

Figure 4.1: Optimal design and isolines of the gradient.

predicted by Theorem 4.45, −∇ψh(ūβ,h) is bounded from above by the cost parameter β = 1
and the support points of ūβ,h align themselves with those points in which this upper bound is
achieved.

Confidence domains of the optimal estimator

Given the optimal design ω̄h from Figure 4.1a, and K > 0 we note that the measure ūKh =
(K/‖ūβ,h‖M)ūβ,h is an optimal solution to

min
u∈M+(Ωo)

Tr(Ih(uh)−1) subject to ‖uh‖M ≤ K,

since the A-optimal design criterion is positive homogeneous; see Proposition 4.9. In this section
we compute the linearised confidence domains (4.10) of the least-squares estimator q̃ from (4.6)
corresponding to ūKh for K = 3 · 104.

Note that, given a sparse design measure u, and the associated linearised estimator q̃lin = (q̃1
lin, q̃

2
lin, q̃

3
lin)T ,

see (4.9), there holds Cov[q̃lin, q̃lin] = Ih(u)−1; see the discussion in Section 4.1. Consequently we
have

Ih(u)−1
kk = Var[q̃klin], k ∈ { 1, 2, 3 } and Tr(Ih(u)−1) =

3∑
k=1

Var[q̃klin].
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Figure 4.2: Reference measures u1 (left) and ūK,Wh (right).

As a comparison, we also consider the estimators corresponding to two reference designs of the
same norm. The first measure u1 is chosen as a linear combination of three Dirac delta functions
with equal coefficients while the second measure ūK,Wh is a solution to

min
u∈M+(Ωo)

Tr(WIh(uh)−1W ) subject to ‖uh‖M ≤ K, (4.73)

where W = diag(1, 1, 4), i.e. we place more weight on the variance for the estimation of q3. The
designs u1 and ūK,Wh are depicted in Figure 4.2.

For a better visualization we plot the 50%-linearised confidence domains of the obtained estima-
tors for the two dimensional parameter vectors (q1, q2)T , (q2, q3)T , and (q3, q1)T in Figure 4.3.
Additionally, for each design we report Tr(Ih(u)−1) as well as the diagonal entries of Ih(u)−1 in
Table 4.1. As expected, since ūβ,h is chosen by the A-optimal design criterion, we observe that

Table 4.1: Trace and diagonal entries of Ih(u)−1

u Ih(u)−1
11 Ih(u)−1

22 Ih(u)−1
33 Tr(Ih(u)−1)

ūKh 0.019 5.627 5.955 11.601
u1 0.091 7.388 20.678 28.157

ūK,Wh 0.023 14.12 3.831 17.974

Tr(Ih(ūKh )−1) ≤ Tr(Ih(ūK,Wh )−1) ≤ Tr(Ih(u1)−1). (4.74)

Moreover we note that Ih(ūKh )−1
kk < Ih(u1)−1

kk for all k, i.e. the optimal estimator estimates all
unknown parameters with a smaller variance than the estimator associated to the reference design
u1. As a consequence, the linearised confidence domains of the optimal estimator are contained
in those of the one corresponding to u1; see Figure 4.3. In contrast, considering ūK,Wh , we have
Ih(ūK,Wh )−1

33 < Ih(ūKh )−1
33 and Ih(ūKh )−1

kk < Ih(ūK,Wh )−1
kk for k = 1, 2, i.e. the third parameter is

estimated more accurately by choosing the measurement locations and weights according to ūK,Wh

while the variance for the estimation of the other parameters is larger. This is a consequence of
the different weighting of the matrix entries in (4.74). On the one hand, the obtained results show
the efficiency of an optimally chosen measurement design at least for the linearised model. On the
other hand, they also highlight that the properties of the obtained optimal estimators crucially
depend on the choice of the optimal design criterion Ψ .
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Figure 4.3: Confidence ellipsoids for the estimators associated to ūKh (blue), u1 (red) and ūK,Wh

(yellow).

Comparison of point insertion algorithms

In this section we investigate the performance of the successive point insertion algorithm presented
in Section 4.4.1. We consider the same setup as in Section 4.7.1, i.e. we solve the A-optimal design
problem for Example 1 on grid level nine with β = 1 and I0 = 0. The step size parameters α and
γ in (6.24) are both chosen as 1/2 throughout the experiments and the iteration is terminated if
either Φ(uk) ≤ 10−9 or if the iteration number k exceeds 2 · 104. The aim of this section is to
confirm the theoretical convergence results for Algorithms 2 and 3 as well as to demonstrate the
necessity of additional point removal steps.

Additionally we want to highlight the differences between the three presented choices of the new
coefficient vector uk+1 concerning the sparsity of the iterates and the practically achieved accel-
eration of the convergence. Specifically, we consider the following implementations of step 4. in
Algorithm 2:

GCG In the straightforward implementation of the GCG algorithm we set uk+1 = uk+1/2, i.e.
only steps 1. to 4. are performed.

SPINAT Here, we employ the procedure suggested in [50], termed “Sequential Point Insertion
and Thresholding”. In step 5., uk+1 is determined from a proximal gradient iteration (4.29).
The step size is chosen as σk = (1/2)nσ0,k, where σ0,k > 0 for the smallest n ∈ N giving
F (u(uk+1(σk))) ≤ F (u(uk+1/2)). In particular, given uk+1/2 =

∑
i u

k+1/2
i δxi , we choose σ0,k

as

σ0,k = max

{
100,−2 min

i

{
ui

−∇ψ(uk+1/2)(xi)− β

}}
.

Note that by this choice of σ0,k, the coefficients of all points x ∈ suppuk+1/2 with

−∇ψ(uk+1/2)(x) < β,

are set to zero in the first trial step (i.e. for n = 0).

PDAP Here, we consider Algorithm 3, i.e. the coefficient vector uk+1 is chosen as in (4.30) by
solving the finite dimensional sub-problem (4.28) up to machine precision in each iteration.
For the solution we use a semi-smooth Newton method with a globalization strategy based on
a backtracking line-search. The convergence criterion for the solution of the sub-problems
is based on the norm of the Newton-residual. As already discussed, this method can be
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interpreted as a method operating on a set of active points Ak = suppuk (see section 4.4.2),
we reference it by the name: “Primal-Dual Active Point”.

All three versions of the algorithm are also considered with an application of the sparsification step
in Algorithm 1 at the end of each iteration. In the following this will be denoted by an additional
“+PP”.

100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

102

103

104

105

106

iteration counter k

r F
(ω

k)

GCG
GCG+PP
SPINAT
SPINAT+PP
PDAP
PDAP+PP

(a) Residual rF (uk) over k.

100 101 102 103 104
100

101

102

iteration counter k
#

su
pp

ω
k

GCG
GCG+PP
SPINAT
SPINAT+PP
PDAP
PDAP+PP

(b) Support size # suppuk over k.

Figure 4.4: Residual and support size plotted over iteration number k.

In Figure 4.4a we plot the residual rF (uk) for all considered algorithms over the iteration counter
k. For GCG as well as SPINAT we observe a rapid decay of the computed residuals in the first few
iterations. However, asymptotically both admit a sub-linear convergence rate, suggesting that the
convergence result derived in Theorem 4.15 is sharp in this instance. The additional application
of Algorithm 1 has no significant impact on the convergence behavior. We additionally note that
both GCG and SPINAT terminate only since the maximum number of iterations is exceeded
while the computed residuals rF (uk) and thus also the primal-dual gap Φ(uk) remain above 10−3.
In contrast, PDAP terminates after few iterations within the tolerance backing the findings of
Theorem 4.18. Note however that this is far from being conclusive since Theorem 4.18 cannot be
applied to the discrete problem due to the piecewise linearity of −∇ψh(ūβ,h). Additionally, for
fixed h, Algorithm 3 always converges in finitely many steps since possible support points are only
chosen from Nh and the subproblems are solved up to optimality. We examine the convergence
behaviour on a sequence of meshes in a following section.

Next, we study the influence of the different point removal steps on the sparsity pattern of the
obtained iterates in Figure 4.4b. For GCG we notice that the number of support points increases
monotonically up to approximately 60. This suggests a strong clusterization of the intermediate
support points around those of ūβ,h which is possibly caused by the small curvature of −∇ψh(ūβ,h)
(see Figure 4.1b) in the vicinity of its global maxima. A similar behavior can be observed for the
iterates obtained through SPINAT. However, compared to GCG the support size grows slower due
to the additional projected gradient step in every iteration. Additionally, after reaching a threshold
at approximately k = 110, the support size decreases monotonically in the remaining iterations.
Concerning the application of Algorithm 1, we observe that the support remains bounded by
6 = 3(3 + 1)/2 as predicted by Proposition 4.16. We note that this upper bound is achieved in
almost all but the first few iterations for GCG and SPINAT. In contrast, PDAP yields iterates
comprising less than six support points independently of the additional post-processing. A closer
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inspection reveals that the loop in Algorithm 1 is not carried out in any iteration, i.e. the sparsity
of the iterates is fully provided by the exact solution of the finite-dimensional sub-problems.
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Figure 4.5: Residual rF (uk) plotted over the first second of the running time.

Last, we report on the computational time for the setup considered before, in order to account for
the numerical effort of the additional point removal steps. The evolution of the residuals in the
first second of the running time for GCG and SPINAT can be found in Figure 4.5a. We observe
that neither the additional projected gradient steps nor the additional application of Algorithm 1
lead to a significant increase of the computational time. For PDAP, the measurement times and
residuals for all iterations are shown in Figure 4.5b. We point out that PDAP converges after
12 iterations computed in approximately 0.4 seconds in this example. This is comparable to the
elapsed computation time for computing 25 iterations of the GCG method. The small average
time for a single iteration of PDAP is on the one hand a consequence of the uniformly bounded,
low dimension of the sub-problem (4.30). On the other hand, using the intermediate iterate
uk+1/2 to warm-start the semi-smooth Newton method greatly benefits its convergence behavior,
restricting the additional numerical effort in of PDAP in comparison to GCG to the solution of a
few low-dimensional Newton systems in each iteration. These results again underline the practical
efficiency of the presented acceleration strategies.

Mesh-independence

To finish our numerical studies on Example 1 we examine the influence of the mesh-size h on
the performance of Algorithm 2. We again consider the A-optimal design problem for β = 1 and
I0 = 0 on consecutively refined meshes Thl , l = 5, . . . , 9. On each refinement level l the optimal
design problem is solved using GCG and PDAP, respectively. The computed residuals are shown in
Figure 4.6. For both versions we observe that the convergence rate of the objective function value
is stable with respect to mesh-refinement. A theoretical investigation of this mesh-independence
property should be the subject of future work. Moreover the observed rate seems to be linear
which backs up the theoretical results on the improved convergence behaviour of Algorithm 3, see
Theorem 4.18. However, since the continuous sensitivities as well as an analytic solution ūβ to
the continuous optimal are not available its requirements on the curvature of the optimal gradient
can not be checked straightforward. Additionally, in Figure 4.7, we plot the support size over
the iteration counter for each refinement level. For GCG we observe a monotonic growth of the
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Figure 4.6: Evolution of residuals rF (uk) over iterations k on different refinement levels.

support size up to a certain threshold. Note that the upper bound on the support size seems to
depend on the spatial discretization: the finer the grid, the more clusterization around the true
support points can be observed. In contrast, for PDAP, the evolution of the support size admits
a mesh-independent behavior in this example.
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Figure 4.7: Evolution of the support size on different refinement levels.

4.7.2 Estimation of a parameterized source term

In this section we consider the A-optimal for a linear elliptic PDE with a linear parameter-to-
state dependence. More concretely, for a given q = (q1, q2) ∈ R2 the associated state y = S[q] ∈
H1

0 (Ω) ∩ C(Ωo) is the unique solution to

a(q, y)(ϕ) =

∫
Ω
∇y · ∇ϕ dx =

∫
Ω

(q1f1 + q2f2)ϕ dx, (4.75)

for all ϕ ∈ H1
0 (Ω). Here, the soure term is given as a linear combination between

f1(x1, x2) = sin(x1) sin((7/3)x2), f2(x1, x2) = − cos(1.777 ∗ x1) sin((7/3)x2).
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Obviously, this corresponds to a Laplacian equation with homogeneous Dirichlet boundary condi-
tions in which the right hand side is parameterized by q:

−∆ y = q1f1 + q2f2 in Ω, y = 0 on ∂Ω.

Due to the linearity of the parameter-to-state map the k − th sensitivity δyk = ∂kS, k = 1, 2
fulfills ∫

Ω
∇δyk · ∇ϕdx =

∫
Ω
fkϕdx, k = 1, 2.

We choose Ω = [0, 1]2, Ωo = [0.1, 0.9]2 and β = 1 as well as I0 = 0. The computed optimal design
ūβ,h = ūh1δx̄h1

+ ūh2δx̄h2
on Th11 comprising two optimal sensors is depicted in Figure 4.8 alongside

the isolines of −∇ψh(ūβ,h).

This example is geared towards the verification of the a priori error estimates for the objective
functional and the optimal design which were presented in Section 4.6.2. Therefore let us briefly
discuss the assumptions made for their derivation. First we note that −∇ψh(ūβ,h) admits exactly
two global maximizers which align themselves with the support points of ūβ,h. Additionally,
we verify that the Fisher information matrices {Ih(δx̄hi

)}2i=1 are linearly independent. Hence
the discrete optimal design ūβ,h is unique. Due to the weak* convergence of the discrete design
measures this may also indicate a similar behavior in the continuous problem. From the smoothness
of the source terms f1 and f2, respectively, we conclude ∂kS ∈ C2(K), see [118,124], as well as

‖∂kS − ∂hkS‖C(K̄) ≤ c| ln(h)|h2, k = 1, 2,

for every open subset K ⊂⊂ Ω and for all h ≤ h0 small enough, c.f. [225]. Furthermore the
Hessian of the A-optimal design criterion is positively definite at I(ūβ) + I0. Consequently, since
Ωo ⊂⊂ Ω, Assumption 4.11 is fulfilled with γ(h) = | ln(h)|h2. However since the continuous
optimal gradient −∇ψ(ūβ) ∈ C2(Ωo) is unknown and −∇ψh(ūβ,h) 6∈ C2(Ωo) the verification of the
assumptions on its curvature is not directly possible and is therefore left for future work.
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Figure 4.8: Optimal design and isolines of the gradient.

To verify the a priori estimates, we compute discrete optimal designs ūβ,hk ∈Mhk ∩M+(Ωo) on
a sequence of triangulations Thk , k = 2, . . . , 11. No analytic reference solution is available for this
example. Therefore we consider a sequence of uniform triangulations T̂hk , k = 1, . . . , 12, of Ω,
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where T̂h1 is obtained from Th1 by a slight perturbation of the node at (0.5, 0.5). As a reference
ūβ = ū1δx̄1 + ū2δx̄2 we compute an optimal design on the finest grid T̂h12 . We emphasize that the
support points of the reference measure are not included in the set of nodes Nh11 corresponding
to the finest grid Th11 .

We evaluate the numerical results. Note that we do not expect to see the influence of the log-
arithmic factor | ln(h)| in the computations. In Figure 4.9a we display the convergence rates of
the optimal objective function values as well as the Fisher information matrices. As predicted by
Theorem 4.49 we observe the full order of convergence for the optimal objective function values
Fh(ūβ,h) and a reduced order of h ≈ γ(h) for the error of the Fisher information matrices Ih(ūβ,h),
see Corollary 4.51.
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Figure 4.9: Convergence rates with respect to h.

The convergence rates for the modified Wasserstein distance W̄1(ūβ,h, ūβ) and the Wasserstein-1
distance W1(ūβ,h/‖ūβ,h‖M, ūβ/‖ūβ‖M) of the normalized optimal designs are displayed in Fig-
ure 4.9b. The Wasserstein distance between the sparse measures is computed by solving a linear
program following [206, p. 64]. As predicted by the theory, see Theorem 4.62 the quantities
W1(ūβ,h/‖ūβ,h‖M, ūβ/‖ūβ‖M) as well as W̄1(ūβ,h, ūβ) admit an asymptotic linear rate of conver-
gence h ≈

√
γ(h). However, for the latter one, the convergence rate on coarser grids appears to be

better. To explain this observation we recall that W̄1(ūβ,h, ūβ) = W1(ūβ,h/‖ūβ,h‖M, ūβ/‖ūβ‖M)+
|‖ūβ,h‖M−‖ūβ‖M|. For the special case of the A-optimal design problem with I0 = 0 we obtain

β‖ū‖M = −〈∇ψ(ūβ), ūβ〉 = Tr(I(ūβ)−1) = ψ(ūβ),

due to the optimality conditions. Analogously we deduce ψh(ūβ,h) = β‖ūβ,h‖M. Hence, in this
situation, we obtain

2β|‖ūβ‖M − ‖ūβ,h‖M| = |F (ūβ)− Fh(ūβ,h)| ≤ | ln(h)|h2.

This explains the apparently better behavior of W̄1(ūβ,h, ūβ) on coarser grids, while its asymptotic
convergence rate is dominated by W1(ūβ,h/‖ūβ,h‖M, ūβ/‖ūβ‖M).

Finally, we consider the convergence of the support points and the measurement weights as dis-
cussed in Theorem 4.58 and 4.61, respectively. For every k = 2, . . . , 11, the discrete optimal design
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4.7 Numerical examples
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Figure 4.10: Convergence rates for support points and measurement weights

consists of two distinct support points ūβ,hk = ūhk1 δ
x̄
hk
1

+ ūhk1 δ
x̄
hk
2

such that

max
i=1,2

max
x∈supp ūiβ,hk

|x− x̄i|Rd = max
i=1,2

|x̄hki − x̄i|Rd .

Hence we compute the errors maxi=1,2 |x̄hi − x̄i|Rd and maxi=1,2 |ūhi − ūi|. The results are shown
in Figure 4.10a. For the distance of the support points we obtain, as predicted by Theorem 4.58,
the reduced rate of h ≈

√
γ(h). Note that since supp ūβ,h ⊂ Nh and h denotes the mesh size, this

estimate is in some sense optimal. The same rate can be concluded for the error of the coefficients,
see Theorem 4.61, albeit the computed rate seems to be somewhat wiggly. Let us shortly elaborate
on this seemingly strange behavior. In Figure 4.10b we plot the convergence rate of the coefficients
and two lines indicating convergence of order h with different constants. As one can see, the error
alternates between both reference lines. This implies a linear convergence behavior of the error
with constants depending on the sequence of grids. For example the constants might depend on
the barycentric coordinates of the reference support points within the cells of the triangulation
Thk . A similar behavior, that strengthens this conjecture, has been observed and examined for the
convergence of the optimal control in a semi-infinite optimization problem, see [190].

Putting all previous observations into a nutshell, we conclude that the a priori error estimates for
the sparse sensor placement problem from Section 4.6.2 are sharp in general and thus optimal.
A next natural step is to consider meshes obtained by adaptive refinement based on a posteriori
error estimates instead of uniformly refined triangulations. As for a priori error estimation, a
starting point for such considerations may be provided by studying known concepts in state-
constrained and semi-infinite optimization. For references on adaptivity in this context we point
out [29,126,192,208].
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5 Sparse sensor placement for
infinite-dimensional Bayesian inverse
problems with PDEs

While we gave an in-depth discussion of sparse sensor placement for unknown finite dimensional
parameter vectors in the preceding chapter, many complex processes rely on mathematical models
incorporating unknown distributed functions. For example they may describe boundary and initial
conditions of the model or they directly enter the definition of the differential operator describing
the system. A study of optimal sensor placement problems in this context is in the main focus of
this chapter. We consider real-life processes, e.g. from physics or biology, which are mathematically
modeled by the weak form of a partial differential equation

a(q, y)(ϕ) = 0 ∀ϕ ∈W, (5.1)

This equation relates the state variable y ∈ Y to an unknown parameter function q ∈ L2(Ω). The
state space Y and the test space W are suitable sets of functions on a spatial domain Ω ⊂ Rd,
d ∈ N, which we assume to be open and bounded. For the precise assumptions on the underlying
PDE model we refer to Section 5.1.2. In the following, our interest lies in the inverse problem of
identifying a distributed function q∗ such that the associated partial differential equation and its
solutions provide a reasonable mathematical surrogate for the modeled process.

As in the previous chapters a standing assumption of the following discussion is that the parameter
cannot be measured directly. Inference on q∗ is only possible through a vector yd ∈ RN containing
pointwise measurements of the quantity represented by the state y. These are taken at a finite
set of sensor sites {xi}Ni=1 ⊂ Ωo in an experiment. The set Ωo ⊂ Ω̄ denotes a compact subset
of possible sensor locations. Furthermore, the data is assumed to be subject to perturbation by
random additive noise ε ∼ N (0, Σ) where Σ ∈ RN×N , Σij = δij/ui, i, j = 1, . . . , N . The positive
scalar ui > 0 models the diligence of the measurement taken at the point xi. An estimate for
the unknown parameter is then obtained by matching the expected response of the mathematical
model with the obtained measurements

find q ∈ L2(Ω), y ∈ Y : y(xi) = yid, a(q, y)(ϕ) = 0 ∀ϕ ∈W

where yid denotes the measurement obtained at xi, i = 1, . . . , N .

We point out that the measurements in this problem are found in a finite dimensional observation
space whilst the unknown parameter is given by a distributed function in the infinite dimen-
sional parameter space L2(Ω). Without further knowledge on the parameter, e.g. its structure
or smoothness, this discrepancy implies that the described inverse problem is inherently ill-posed.
Thus it may admit infinitely many solutions or no solution at all. Moreover, the presence of mea-
surement noise may lead to a severe misinterpretation of the obtained results since solutions do
not depend continuously on the measurements. In order to circumvent these pathological cases
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

one usually resorts to sophisticated regularization techniques allowing for a stable solution of the
problem. Through this estimation process, the uncertainty of the measurements is also propa-
gated into the obtained results. In particular, a full discussion of the inverse problem requires
to quantify the influence of the measurement errors on the solution and to critically evaluate its
reliability. As already discussed in the previous chapters, the quality of the solution critically
depends on the measurement process. A careful choice of the used sensors and their positioning
in the spatial domain may on the one hand yield measurements from which we can, in some sense,
optimally draw conclusions on the parameter while mitigating the stochastic variability due to
the measurement errors. On the other hand, restricting the measurements only to informative
locations also keeps the overall cost of the experiment low.

The aim of this chapter is to provide and rigorously analyse an optimization framework which
allows for a systematic choice of the measurement setup before any measurements are performed
in practice. Obviously such a sensor placement formulation should also take the applied regular-
ization strategy for the solution of the inverse problem into account. For optimal sensor placement
based on Tikhonov regularization for high-dimensional parameters and the mean-squared error of
the least-squares estimator, we refer to [127,128] and the METER method, [18]. Engineering appli-
cations of these approaches include the optimal monitoring of gravity dams, [180], and impedance
imaging, [152]. More recently, probabilistic regularization approaches for inverse problems with
infinite dimensional parameter spaces have received considerable attention. In this context, the
uncertainty on the true value of the parameter is modeled by a probability measure on the pa-
rameter space, the so-called prior distribution. Instead of trying to compute a single function
satisfying the constraints in the inverse problem we update the prior knowledge on the unknown
parameter based on the obtained measurements and our assumptions on the measurement model.
This is done by applying Bayes’ Theorem. The solution to the inverse problem is then given
by a new measure, the posterior distribution, which reflects our remaining degree of uncertainty
on the parameter after observing the provided measurements. This framework allows to assess
the statistical quality of the obtained solution in a natural way by comparing properties of the
prior and the posterior distribution. For example, if its finite, we may compute the posterior
variance which quantifies the stochastic variability of the probability measure around its mean.
For a deeper discussion on the Bayesian approach to infinite dimensional inverse problems we
refer to [80, 111, 250]. Simultaneously to the advances in the theory of Bayesian inverse problems
with PDE constraints, the interest in optimal sensor placement for this type of regularization rose.
Similar to the finite dimensional situation of the previous chapter these approaches are based on
minimizing scalar-valued optimal design criteria acting on the Fisher information operator of the
parameter estimates. This includes e.g. infinite dimensional analogues of the A and D optimal de-
sign criteria. For references on this highly active line of research we point out to [3–6,10]. In [138] a
similar reasoning is applied to optimally place temperature sensors in a thermo-mechanical system.

Throughout the course of this chapter we will adopt this probabilistic view on inverse prob-
lems and model the uncertainties on the true value of the parameter as a Gaussian probability
measure. Moreover we again resort to a linearization of the model equation around a given a priori
guess q̂ ∈ L2(Ω) and define the sensitivity operator ∂S[q̂] : L2(Ω)→ Y describing the influence of
changes in the linearization point on the associated state variable. From the Bayesian viewpoint,
this linearization leads to a Gaussian approximation to the posterior distribution. In order to
improve the estimation results we propose to optimize the measurement process by solving the
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sensor placement problem

min
x∈ΩNo , u∈RN , N∈N

[Ψ(X∗Σ−1X) + β

N∑
i=1

ui]. (5.2)

Here, Ψ denotes a convex optimal design criterion based on the Fisher information X∗Σ−1X which
is parametrized by the measurement setup as

(δq1, X
∗Σ−1Xδq2)L2(Ω) =

N∑
i=1

ui∂S[q̂]δq1 (xi)∂S[q̂]δq2 (xi) ∀δq1, δq2 ∈ L2(Ω).

The additional term involving the total amount of measurements and the cost parameter β > 0
models the total cost of the measurement process. While this formulation is clearly motivated
by the problems presented in [3–6, 10] we point out that all of the previously mentioned works
discuss the problem of selecting optimal sensor positions in an a priori given finite set of possible
candidate locations in Ωo. This reduces the sensor placement problem to a convex optimization
problem for the diligence factor u associated to the respective sensor. However, this problem is still
computationally challenging due to the infinite dimensional parameter space. A major novelty of
the present work is that sensors can be placed everywhere in a set of possible sensor locations Ωo
which may contain an infinite number of candidate locations. Furthermore the optimal number
of placed measurement sensors is also subject to optimization and is thus not a priori fixed. In
particular, the possibly complicated dependence of the Fisher information operator on the sensor
positions renders the present problem non-convex. Obviously this fact complicates the algorithmic
solution of the sensor placement problem. We refer e.g. to [116] where the authors aim to place
a fixed number of sensors with prescribed diligence factors at optimal positions. In order to do
so they first discuss the computation of derivatives of the design criterion with respect to the
sensor positions. This is a computationally challenging problem in itself but crucial for derivative-
based optimization routines. Moreover we point out that the a priori unknown optimal number of
measurements additionally introduces a combinatorial aspect to the problem in our case. Clearly,
this further aggravates the algorithmic treatment of the problem.

In order to bypass these difficulties we consider the proposed sensor placement problem in the
framework presented in Chapter 3. Instead of optimizing for the individual sensors we rewrite the
problem and minimize with respect to their distribution. Mathematically these are modeled as
positive Borel measures on the set of possible sensor locations. This leads to the sparse sensor
placement problem

min
u∈M+(Ωo)

[Ψ(I(u)) + β‖u‖M].

Here, given u ∈M+(Ωo), the generalized Fisher information operator I(u) is characterized by

(δq1, I(u)δq2)L2(Ω) = 〈∂S[q̂]δq1∂S[q̂]δq2, u〉 ∀δq1, δq2 ∈ L2(Ω).

Note that this measure-based sensor placement problem is convex due to the linear dependence
of I(u) on the optimization variable u. Thus we may study existence of solutions and sufficient
optimality conditions by resorting to results from convex analysis. Moreover its efficient numerical
solution can be based on a generalization of the Primal-Dual-Active-Point strategy presented in
the previous chapter. These methods only require the derivative of the optimal design criterion
with respect to the measure u and not with respect to the individual sensors. At last, in order
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

to numerically compute an optimal design, the PDE constraints as well as the parameter have
to be discretized. We base our discretization on a finite element surrogate for the PDE con-
straints and a variational discretization of the measurement setup. The parameter space L2(Ω)
is replaced by a finite dimensional subspace spanned by eigenfunctions of the prior covariance
operator. As already done for the finite dimensional case in the previous chapter, convergence
of these discretization schemes is proven and a priori error estimates between the discrete and
continuous optimal solutions are provided. Again, we are not aware of any comparable results in
this direction. As in the finite dimensional case we stress the similarity between our approach and
the notion of approximate design theory dating back to Kiefer and Wolfowitz, [165]. However,
to the best of our knowledge, there are no previous works on the extension of their reasoning
to infinite dimensional parameters entering in a partial differential equation. Thus the results of
this chapter should be interpreted as a first step towards optimal sensor placement accounting for
both, the infinite dimensional nature of the distributed parameter and a possibly infinite number
of candidate locations for the sensors.
To illustrate this rather abstract setting and to highlight the practical relevance of the proposed
method we give a short example. Given a suitable triple of unknown functions (q1, q2, q3) ∈ L2(Ω)3

we consider the elliptic diffusion equation

a(q, y)(ϕ) = (exp(q1)∇y,∇φ)L2(Ω) + (q2∂x1y, ϕ)L2(Ω) + (q3∂x1y, ϕ)L2(Ω) − (f, ϕ)L2(Ω) = 0, (5.3)

for all ϕ in a suitable test space W . Similar models are frequently encountered in different
research disciplines. In geophysical sciences, for example, diffusion models such as the Darcy
equation, [235], are simple surrogates for the subsurface flow of fluids. The diffusion coefficient
models the permeability of the underlying rock which is inferred from measurements of the fluid
pressure y. Knowledge of this quantity is critical to make reliable predictions on the diffusion of
nuclear waste due to a washout by groundwater or to optimize the recovery of underground oil
resources. Diffusion equations incorporating unknown distributed functions are also encountered
in oceanographie, [189, 265]. The state variable y models the concentration of a tracer substance
diffusing in the ocean. Point measurements of this quantity are then used to infer on the unknown
horizontal water velocities (q2, q3) ∈ L2(Ω)2 as well as the diffusion coefficient q1. In both of these
examples researchers are faced with the problem of identifying a distributed function based on a
limited amount of available data.

This chapter is organized as follows. We do not assume that the reader is familiar with the
concept of probability measures on separable Hilbert spaces. In the following section we therefore
briefly elaborate on the necessary theoretical background on Gaussian measures on L2(Ω) and
linear Bayesian inversion. Thereafter we apply the Bayesian methodology to inverse problems
involving linearized PDE constraints in Section 5.1.2. Before proceeding to the optimal placement
of measurement sensors we first have to define suitable design criteria quantifying the statistical
properties of the obtained solution to the inverse problem. Several suitable examples and their
mathematical properties are studied in Section 5.1.3. In Section 5.1.4 we finally formulate the
optimal sensor placement problem based on the framework presented in Chapter 3. Existence
results as well as a structural characterization of optimal measurement designs are provided.
Their efficient numerical computation is in the focus of Section 5.3. Here we propose an extension
of the Primal-Dual-Active-Point method from Section 4.4.2. We point out that these discussions
are all based on the continuous problem which is formulated on the space of Borel measures. In
order to compute an optimal measurement setup in practice, the problem has to be discretized.
To this end, Section 5.2 puts the focus on suitable discretization strategies and the associated a

146



5.1 Sparse Bayesian optimal design

priori error analysis. The presentation is complemented by numerical experiments which highlight
the practical efficiency of the proposed method.

5.1 Sparse Bayesian optimal design

5.1.1 A primer on Gaussian random fields and linear Bayesian inference

In this section we provide the necessary background on Gaussian measures on L2(Ω) and Bayesian
inference in infinite dimensional Hilbert spaces. Readers familiar with this concept may skip this
section and proceed directly to Section 5.1.2. Since the focus of this thesis lies on the analysis
and the numerical treatment of the associated sensor placement problems we tend to keep this
presentation short and concise, providing additional references where necessary. In the following
we consider a probability space (D,F ,P). Here D denotes a set of samples, F denotes a σ-algebra
over D (a set of events) and P : F → [0, 1] is a probability measure

P(D) = 1, P(∅) = 0, P

(⋃
i∈I

Oi

)
=
∑
i∈I

P(Oi), Oi ∈ F , I ⊆ N.

Furthermore we need some tools from measure theory. Let us consider two measurable spaces
(X,A) and (Y,B). For a (A,B)-measurable mapping f : X → Y we recall the definition of its
preimage as

f−1 : B → A, f−1(O) = {x ∈ X | f(x) ∈ O } , ∀O ∈ B.

Given a measure µ : A → R∗ ∪ {+∞} its push-forward under f is defined as

f#µ : B → R+ ∪ {+∞}, O 7→ µ(f−1(O)).

Let us first recall the definition of Gaussian measures on the real line, [77, Section 1.2.].

Definition 5.1. Consider the measurable spaces (D,F) and (R,B(R)). A probability measure
µ : B(R) → R+ is called Gaussian if there exists m ∈ R and σ ≥ 0 such that, if σ > 0, we have

µ(O) =
1√

2πσ2

∫
O

exp

(
−(x−m)2

2σ2

)
dx, ∀O ∈ B(R),

or, whenever σ = 0,

µ(O) =

{
0, m 6∈ O
1, m ∈ O

, ∀O ∈ B(R).

To stress the characterization of µ by m ∈ R and σ ≥ 0 we write µ = N (m,σ2) A (F ,B(R))-
measurable mapping ζ : D → R is called a Gaussian random variable if the probability measure
µ = ζ#P is Gaussian.

In the following definition, we now fix the notion of a Gaussian probability measure on L2(Ω).
We refer e.g. to [215, Definition 2.1.1.].
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Definition 5.2. Consider the measurable spaces (D,F) and (L2(Ω),B(L2(Ω))). Furthermore
given v ∈ L2(Ω) we denote the associated linear form on L2(Ω) by

v′ : L2(Ω)→ R, z 7→ (v, z)L2(Ω).

We call µ a Gaussian measure on (L2(Ω),B(L2(Ω))) if for every v ∈ L2(Ω) the probability measure
µv = (v′)#µ is a Gaussian measure on R.

Further let a (F ,B(L2(Ω)))-measurable mapping q : D → L2(Ω) be given and set µ = q#P. The
mapping q is called a Gaussian random variable distributed according to µ if µ is a Gaussian
measure on L2(Ω). In short we denote this by q ∼ µ.

In the following we will always think of q : D → L2(Ω) as a random field distributed according
to a Gaussian measure µ. Let us now consider the measure space (L2(Ω),B(L2(Ω)), µ). Given
f ∈ L1(L2(Ω),B(L2(Ω)), µ) define

Eµ[f(q)] =

∫
D
f(q(ω)) dP(ω) =

∫
L2(Ω)

f(z) dµ(z).

Here the change-of-variables formula, [40, A.3.1.], was used in the second equality. The following
proposition is due to Theorem 2.1.2. and Proposition 2.1.4 in [215].

Proposition 5.1. Let q : D → L2(Ω) be a Gaussian random variable distributed according to µ.
Then there exist a unique function qµ ∈ L2(Ω) and a unique positive trace class operator Tµ, i.e.

(δq1, Tµδq2)L2(Ω) = (Tµδq1, δq2)L2(Ω), (δq1, Tµδq1)L2(Ω) ≥ 0, TrL2(Ω)(Tµ) <∞

for all δq1 δq2 ∈ L2(Ω), with the following properties:

• Eµ[(v, q)L2(Ω)] = (v, qµ)L2(Ω) for all v ∈ L2(Ω).

• Eµ[(v, q − qµ)L2(Ω)(z, q − qµ)L2(Ω)] = (v, Tµz)L2(Ω) for all v, z ∈ L2(Ω).

• Var(q) := Eµ[‖q − qµ‖2L2(Ω)] = TrL2(Ω)(Tµ).

Furthermore a Gaussian measure is uniquely defined by these properties.

Proposition 5.2. Let two Gaussian probability measures µ1 and µ2 be given. Denote by qµi
and Tµi the associated function and positive trace class operator from Proposition 5.1, respec-
tively, i = 1, 2. Then there holds

µ1 = µ2 ⇔ Tµ1 = Tµ2 , qµ1 = qµ2 .

Definition 5.3. We call qµ the mean and Tµ the covariance operator of µ.

Remark 5.1. It is worthwhile to note that given a random variable q ∼ µ the associated covariance
operator Tµ quantifies the uncertainty of q in some appropriate sense. For simplicity assume
that qµ = 0 and let δq ∈ L2(Ω) be given. Following Definition 5.2 the mapping

mδq : D → R, ω 7→ (q(ω), δq)L2(Ω),
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is a scalar-valued random variable distributed according µδq = N (0, σ2
δq). Its variance σ2

δq ≥ 0 is
calculated from the second property in Proposition 5.1 as

σ2
δq = Eµ[(q, δq)L2(Ω)] = (δq, Tµδq)L2(Ω).

Thus the weighted scalar-product

(δq, Tµδq)L2(Ω) = ‖T 1/2
µ δq‖2L2(Ω),

provides a measure to quantify the uncertainty on q into the direction of δq ∈ L2(Ω).

Since Tµ is positive and of trace class on L2(Ω) there holds Tµ ∈ Pos(L2(Ω), L2(Ω)). Following
the discussion in Section 3.1.1 there exists a function kTµ ∈ L2(Ω ×Ω) with

[Tµv](x) =

∫
Ω
kTµ(x, y)v(y) dy, ∀v ∈ L2(Ω), kTµ(x, y) = kTµ(y, x), a.e. x, y ∈ Ω.

The function kTµ ∈ L2(Ω × Ω) is called the covariance function of µ. Recalling the Hilbert-
Schmidt theorem, see [264, Theorem VI.3.2], and Lidskii’s theorem, [213], we deduce the following
results.

Proposition 5.3. There exists a sequence of scalars {λi}i∈N, λi ≥ λi+1 ≥ 0, i ∈ N, and an
orthonormal system {φi}i∈N of L2(Ω) with

Tµφi = λiφi, v = qv +

∞∑
i=1

(v, φi)L2(Ω)φi, TrL2(Ω)(Tµ) =

∞∑
i=1

λi <∞

for some qv ∈ KerTµ and all v ∈ L2(Ω).

The following result allows for an integral representation of the trace, [53, Theorem 3.1.].

Proposition 5.4. There exists a function k̃Tµ ∈ L1(Ω) with

TrL2(Ω)(Tµ) =

∞∑
i=1

λi =

∫
Ω
k̃Tµ dx,

where {λi}i∈N denotes the sequence of nonnegative scalars from Proposition 5.3.

Remark 5.2. At first sight it might seem tempting to define the kernel function k̃Tµ as

k̃Tµ(x) = kTµ(x, x) for a.e. x ∈ Ωo

Indeed this holds true if kTµ ∈ C(Ω̄ × Ω̄). However this definition is in general not meaningful
since the set

Ωd = { (x1, x2) ∈ Ω ×Ω | x1 = x2 },

has zero Lebesgue measure. The kernel k̃Tµ ∈ L1(Ω) is obtained through a pointwise averaging
of kTµ on the diagonal set Ωd. For a deeper discussion on this subject we refer to Section 3 of [53].
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From the boundedness of Var(q) in Proposition 5.1 we conclude q ∈ L2(D,F ,P;L2(Ω)) and thus
also

q ∈ L2(D ×Ω,F ⊗ L(Ω),P× µL;R),

see [90, III.11, Theorem 17]. Here F⊗L(Ω) denotes the tensor σ-algebra on the cartesian product
D × Ω, µL denotes the Lebesgue measure and P × µL is the uniquely defined product measure.
This allows for a pointwise discussion of the random field q in an almost everywhere sense. For
a.e x ∈ Ω we have

q(·, x) ∈ L2(D,F ,P;R), q(·, x) ∼ µx = P ◦ q(·, x)−1 = N (qµ(x), k̃Tµ(x, x)),

i.e. q(·, x) is a scalar valued Gaussian random variable. In the same fashion, looking at it the
other way round, there holds q(ω, ·) ∈ L2(Ω) for ω ∈ D P-almost surely. We call q(ω, ·) ∈ L2(Ω)
a realization of q or a draw from µ.

The pointwise variance Varq of q is defined by

Varq : Ωo → R+, x 7→
∫
D
|q(ω, x)− qµ(x)|2 dP(ω). (5.4)

Since q ∈ L2(D,F ,P;L2(Ω)) there holds Varq ∈ L1(Ω) and, due to Fubini-Tonelli, its norm is
given as∫
Ω

Varq(x) dx =

∫
Ω

∫
D
|q(ω, x)− qµ(x)|2 dP(ω)dx =

∫
Ω
k̃Tµ dx =

∫
D
‖q(w, ·)− qµ‖2L2(Ω) dP(ω)

= Eµ[‖q − qµ‖2L2(Ω)] = TrL2(Ω)(Tµ). (5.5)

In the remainder of this chapter, covariance operators defined through the inverse of an unbounded
operator will play a central role.

Lemma 5.5. Let I0 : domL2(Ω) I0 → L2(Ω) be a not necessarily bounded but closed operator with
dense domain. Assume that I0 is self-adjoint and nonnegative on its domain i.e

(q1, I0q2)L2(Ω) = (I0q1, q2)L2(Ω), (q1, I0q1)L2(Ω) ≥ 0 ∀q1, q2 ∈ domL2(Ω) I0,

as well as Im I0 = L2(Ω). Then I0 is a bijection. Its inverse

I−1
0 : L2(Ω)→ L2(Ω),

is a bounded, self-adjoint and positive operator on L2(Ω). Assume that I−1
0 is compact. Then

there exists a sequence of positive scalars {λi}i∈N, λi > λi+1 > 0, i ∈ N, and an orthonormal
basis {φi}i∈N of L2(Ω) with

I−1
0 φi = λiφi, v =

∞∑
i=1

(v, φi)L2(Ω)φi, ∀v ∈ L2(Ω).

If
∑∞

i=1 λi <∞, then Tµ = I−1
0 is a covariance operator.
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5.1 Sparse Bayesian optimal design

Proof. The existence of I−1
0 and its boundedness follows from [52, Theorem 2.21]. Furthermore

we readily obtain

(I−1
0 q1, q2)L2(Ω) = (I−1

0 q1, I0I−1
0 q2)L2(Ω) = (q1, I−1

0 q2)L2(Ω,

as well as

(I−1
0 q1, q1)L2(Ω) = (I−1

0 q1, I0I−1
0 q1)L2(Ω) ≥ 0,

for all q1, q2 ∈ L2(Ω). The existence of a sequence of positive eigenvalues {λi}i∈N and associated
eigenfunctions {φi}i∈N forming an orthonormal L2(Ω) basis follows from the spectral theorem,
see [52, Theorem 6.11], and Ker I0 = {0}. If the eigenvalues of I−1

0 are summable it is a positive
trace class operator on L2(Ω). This gives the last statement.

For the rest of this chapter we make the following standing assumption.

Assumption 5.1. The compact operator I−1
0 : L2(Ω) → L2(Ω) is given by the inverse of an

operator I0 as defined in Lemma 5.5. There holds TrL2(Ω)(I−1
0 ) <∞.

Note that the operator I0 and its inverse are completely characterized through their eigenvalues
and the associated eigenfunctions since

I0q1 =

∞∑
i=1

λ−1
i (q1, φi)L2(Ω)φi, I−1

0 q2 =

∞∑
i=1

λi(q2, φi)L2(Ω)φi ∀q1 ∈ domL2(Ω) I0, q2 ∈ L2(Ω).

Throughout the rest of this chapter we adapt this spectral representation of such operators. More
general, for s ∈ [−1, 1] we define the s-th fractional powers of I0 as

Is0 : domL2(Ω) Is0 → L2(Ω) q 7→
∞∑
i=1

λ−s(q, φi)L2(Ω)φi.

The L2(Ω) domain of Is0 is given by

domL2(Ω) Is0 =

{
q ∈ L2(Ω) | ‖Is0q‖2L2(Ω) =

∞∑
i=1

λ−2s
i (q, φi)

2 <∞

}
.

Associated to a Gaussian measure µ = N (qµ, I−1
0 ) we define its Cameron-Martin space.

Definition 5.4. Let a covariance operator I−1
0 in the sense of Lemma 5.5 with eigenpairs (λi, φi)i∈N

be given. Its Cameron-Martin space is defined as

H = domL2(Ω) I
1/2
0 =

{
q ∈ L2(Ω) | ‖I1/2

0 q‖2L2(Ω) =
∞∑
i=1

λ−1
i (φi, q)

2
L2(Ω) <∞

}
.

Proposition 5.6. The bilinear form (·, ·)H : H×H → R with

(q1, q2)H = (I1/2
0 q1, I1/2

0 q2)L2(Ω) =
∞∑
i=1

λ−1
i (q1, φi)(q2, φi) ∀q1, q2 ∈ H,

defines an inner product on H. The set H together with (·, ·)H form a Hilbert space with respect
to the induced norm

‖q‖H = ‖I1/2
0 q‖L2(Ω) =

√
(q, q)H ∀q ∈ H.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Proof. Obviously (·, ·)H defines an inner product on H. Since I0 is closed so is its square root I1/2
0 .

As a consequence the domain of I1/2
0 is a Hilbert space with respect to the graph norm

‖q‖G =
√
‖q‖2

L2(Ω)
+ ‖q‖2H ∀q ∈ H,

which is induced by the inner product

(q1, q2)G = (q1, q2)L2(Ω) + (q1, q2)H ∀q1, q2 ∈ H.

Again following [52, Theorem 2.21] we conclude

‖q‖H ≤ ‖q‖G, ‖q‖2L2(Ω) ≤ c(q, I
1/2
0 q)L2(Ω) ≤ c‖q‖H‖q‖L2(Ω) ∀q ∈ H,

and some constant c > 0 independent of q. Thus the graph norm and the H norm are equivalent
on H finishing the proof.

Since I−1
0 the associated Cameron-Martin space and L2(Ω) form a rigged Hilbert space

H c
↪→ L2(Ω) ' L2(Ω)∗ ↪→ H∗,

where the first embedding (and thus the second) is compact and dense. We give a concrete example
to clarify this abstract definition.

Example 5.1. Let Ω be a bounded convex domain in Rd, d ≤ 3. Furthermore denote by A = −∆
the Dirichlet Laplacian on Ω. It is well known that A defines an isomorphism between L2(Ω) and
its L2(Ω)-domain

domL2(Ω)A = H2(Ω) ∩H1
0 (Ω),

equipped with the graph norm. Furthermore its inverse A−1 is compact and positive. Applying
the spectral theorem yields the existence of an orthonormal basis {φi}i∈N of L2(Ω) and a zero
sequence {λi}i∈N of positive scalars with 0 < λi+1 ≤ λi, i ∈ N, and

A−1q =
∞∑
i=1

λi(q, φi)L2(Ω)φi ∀q ∈ L2(Ω)

Recently covariance operators constructed from solution operators to fractional elliptic equations
have increased in interest. We consider fractional powers of the operator A−1 defined by

A−sq =
∞∑
i=1

λsi (q, φi)L2(Ω)φi ∀q ∈ L2(Ω),

for s ∈ [1, 2]. If e.g. Ω̄ = [0, 1]d and s > d/2 the eigenvalues of A−s are summable, see e.g. [250,
Theorem 2.10]. Thus A−s yields a covariance operator. Let us characterize the space

Hs =

{
q ∈ L2(Ω) |

∞∑
i=1

λ−si (q, φi)
2
L2(Ω) <∞

}
,

for a general bounded and convex domain Ω and s ∈ [1, 2]. In the extremal cases s = 1 and s = 2
we readily obtain

H1 =
{
q ∈ H1

0 (Ω) | ‖∇q‖L2(Ω) <∞
}

= H1
0 (Ω),
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5.1 Sparse Bayesian optimal design

as well as

H2 =
{
q ∈ H1

0 (Ω) | ‖ −∆ q‖L2(Ω) <∞
}

= H2(Ω) ∩H1
0 (Ω),

by partial integration. The remaining cases for s ∈ (1, 2) can be identified from the Hilbert scale
defined by (−∆)−1, [42], through real-valued interpolation

Hs = [H2(Ω) ∩H1
0 (Ω), H1

0 (Ω)]2−s = Hs(Ω) ∩H1
0 (Ω) s ∈ (1, 2).

For the last result we refer to [51, Chapter 14].

Remark 5.3. Following these considerations it is clear that I0 can be extended to an operator
from H to H∗ with

〈q1, I0q2〉H,H∗ = (q1, q2)H ∀q1, q2 ∈ H.

The existence of its bounded inverse I−1
0 : H∗ → H is a direct consequence of the Lax-Milgram

Lemma. Since there will not be ambiguities in the following we denote the resulting operator in
both cases, as operator on H and on domL2(Ω) I0, by the same letter. Moreover set s = −1/2.
Then the operator I−1/2

0 maps L2(Ω) continuously into the Cameron-Martin space H. Thus its
adjoint operator (I−1/2

0 )∗ is linear and continuous between the topological dual space H∗ of H
and L2(Ω). However we will also frequently interpret I−1/2

0 as operator from L2(Ω) onto itself. In
this situation I−1/2

0 is self-adjoint i.e. (I−1/2
0 )∗ = I−1/2

0 . To improve readability we also write I−1/2
0

for the adjoint operator in both cases.

An useful characterization of a Gaussian random field q is given in terms of its Karhunen-Loève
expansion, see [215].

Theorem 5.7. Let a covariance operator I−1
0 in the sense of Lemma 5.5 be given and denote

by (λi, φi)i∈N the associated eigenpairs. Furthermore let {ζi}i∈N denote a family of i.i.d. random
variables with ζ1 : D → R, ζ1 ∼ N (0, 1). Define the function

q : D → L2(Ω), q(ω, x) = qµ(x) +
∞∑
i=1

√
λiζi(ω)φi(x), (5.6)

for P-a.e. ω ∈ D, a.e. x ∈ Ω and some qµ ∈ domL2(Ω) I
1/2
0 . Then q is distributed according to

µ = N (qµ, I−1
0 ).

This representation allows to compute (approximate) draws from the measure µ = N (qµ, I−1
0 )

by simply truncating the orthogonal expansion in (5.6) after a fixed number of terms n. A
realization qn(ω, ·) ∈ L2(Ω) of the truncated field

qn : D → L2(Ω), qn(ω, x) = qµ(x) +

n∑
i=1

√
λiζi(ω)φi(x),

can then be obtained by drawing from the finite dimensional distribution N (0, Id), Id ∈ Rn×n,
once the eigenvalues {λi}ni=1 of I−1

0 as well as the associated eigenfunctions {φi}ni=1 are known.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

Let us now discuss the inverse problem of identifying a distributed function from scarce observa-
tions. To this end we consider operator equations of the form

find q ∈ L2(Ω) : Xq = yd. (5.7)

Here X ∈ L(L2(Ω),RN ) denotes a linear and continuous operator and yd ∈ RN is a given finite
dimensional vector containing the collected data. Moreover we assume that there is no systematic
modeling error in the equation but the measurements are subject to additive perturbation i.e.

yd = Xq∗ + ε.

By ε ∈ RN we denote the measurement noise and q∗ ∈ L2(Ω) denotes the unknown parameter
which we aim to recover. We adopt a probabilistic description of the measurement error and
assume that ε is given as realization of a Gaussian random variable ε : D → RN distributed
according to µE = N (0, Σ) where Σ is a diagonal matrix with Σii > 0, i = 1, . . . , N . Our aim
is now to identify q∗ based on the observation yd. Obviously this problem is inherently ill-posed
due to the discrepancy between the finite dimensionality of the data and the infinite dimensional
nature of the parameter. In particular we stress that the kernel of X is non-empty. Thus the
equation in (5.7) may admit infinitely many solutions or no solution at all depending on whether
yd ∈ ImX or not.

In order to obtain a, in some sense, well-defined formulation we resort to a different concept of
solutions to the inverse problem. To this end we follow a Bayesian approach and describe our prior
believes on e.g. the smoothness of q∗ through a Gaussian probability measure µ0 = N (q0, I−1

0 ).
In the following we give a brief and intuitive introduction to this regularization concept for inverse
problems. As before we tend to keep this presentation short. For a more detailed discussion we refer
to [80, 111, 250]. Denote by q : D → L2(Ω) the Gaussian random variable distributed according
to µ0. Now, instead of trying to compute a point estimator q̄yd ∈ L2(Ω) fulfilling Xq̄yd = yd we
construct a probability measure µydpost on L2(Ω) which takes into account the prior knowledge on
the unknown parameter as well as the information provided by the collected data. As a first step
we impose additional assumptions on the relation between the prior distribution of the parameter
and the distribution of the measurement noise.

Assumption 5.2. The random field q : D → L2(Ω) and the measurement errors ε : D → RN are
independent i.e. there holds

P
(
q−1(O1) ∩ ε−1(O2)

)
= µ0(O1)µE(O2) ∀O1 ∈ B(L2(Ω)), O2 ∈ B(RN ).

Let us recall that the prior distribution µ0 = N (q0, I−1
0 ) is given by the push-forward of P under q.

Thus we have

µ0(O) = P(q−1(O)) = P ({ω ∈ D | q(ω) ∈ O }) ∀O ∈ B(L2(Ω)).

Loosely speaking we should interpret µ0(O) as the probability that a particular realization of q
is contained in a Borel set O. Formally we now define the probabilistic solution to the inverse
problem (5.7) as

µydpost(O) =

∫
O

1

Z(yd)
exp

(
−1

2
|Xq − yd|2Σ−1

)
dµ0(q) ∀O ∈ B(L2(Ω)), (5.8)
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where | · |2Σ−1 = (·, Σ−1·)RN and the normalization constant Z(yd) > 0 is given by

Z(yd) =

∫
L2(Ω)

exp

(
−1

2
|Xq − yd|2Σ−1

)
dµ0(q).

Note that we have

0 ≤
∫
O

exp

(
−1

2
|Xq − yd|2Σ−1

)
dµ0(q) ≤ µ0(O) ≤ 1 ∀O ∈ B(L2(Ω)).

Thus µydpost is a well-defined probability measure on L2(Ω) if the normalization constant Z(yd) is
bounded away from zero. In this case µydpost is called the posterior measure or posterior distribu-
tion given the data yd. Let us give some interpretation to this definition. To this end we remark
that µydpost(O) is, up to a constant, given by the weighted integral of the characteristic function as-
sociated to O taken with respect to the prior distribution. The data-dependent weighting function
incorporates the discrepancy of the predicted response of the model and the observed data

π(yd, ·) : L2(Ω)→ [0, 1] where π(yd, q) =

{
1 Xq = yd

exp
(
−1

2 |Xq − yd|2Σ−1

)
else

, (5.9)

for all q ∈ L2(Ω). The function 1/Z π(yd, ·) is called the Radon-Nikodým derivative of µydpost with
respect to the prior distribution µ0. Loosely speaking the weighting of the integral and its normal-
ization lead to a probability measure whose mass is concentrated on Borel sets O with µ0(O) > 0
and on which π(yd, ·) ≈ 1. Thus the posterior distribution indeed incorporates both the prior
knowledge on the unknown parameter as well as the information provided by the data. This al-
lows to make statements on the relative probability of an event in the parameter space provided
that the particular data vector yd was observed.

A mathematically rigorous justification of the definition in (5.8) can be based on the notion of
conditional probability density functions. We sketch these ideas for the sake of completeness. To
this end recall the assumption on the additivity of the measurement noise and its independence
on the prior distribution. We define the (F ,B(RN ))-measurable function yd with

yd : D → RN , ω 7→ Xq(ω) + ε(ω). (5.10)

We interpret yd as a random variable. Its distribution is given by

µyd = P(y−1
d (·)) = N (Xq0, X

∗I−1
0 X +Σ).

Note that its distribution depends on that of the measurement noise as well as the prior distribution
of the random field q. This raises the following central question of Bayesian inference: Given a
realization yd of the data yd which conclusions can be drawn on the distribution of the random
field q? The answer to this question is given by the conditional probability distribution µq|yd
describing the relative probability of events in the parameter space if we know that yd attains the
value yd.

The goal of the following considerations is to compute a closed form expression for this distribution.
As a first step we therefore compute the probability measure µyd|q characterizing the distribution
of the random variable yd given an arbitrary but fixed function q ∈ L2(Ω) for the parameter. To
this end we exploit the additivity of the noise and consider the random variable yd|q : D → RN
given by

yd|q(ω) = Xq + ε(ω)
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

for P-almost surely all ω ∈ D. The conditional distribution of the data given knowledge on the
parameter is now obtained as µyd|q = P(yd|q−1(·)). Since the noise ε is normally distributed
according to µE = N (0, Σ) we conclude that µyd|q is also a Gaussian with µyd|q = N (Xq, Σ). In
particular this implies

µyd|q(O) =

∫
O

1

Z
exp

(
−1

2
|y −Xq|2Σ−1

)
dy =

∫
O

1

Z
π(y,q) dy ∀O ∈ B(RN ),

where Z > 0 is a normalization constant independent of q ∈ L2(Ω). The function 1/Z π(·,q)
with

π(·,q) : RN → [0, 1], π(y,q) = exp

(
−1

2
|y −Xq|2Σ−1

)
∀y ∈ RN

is called the conditional probability density function of yd given q.

For a fixed measurement vector yd ∈ RN we now define the likelihood function

π(yd, ·) : L2(Ω)→ [0, 1], π(yd, q) = exp

(
−1

2
|Xq − yd|2Σ−1

)
for all q ∈ L2(Ω). Note that this definition coincides with that of the weighting function in (5.9).
The famous Theorem of Bayes, see e.g. [80, Theorem 14] , now states that µq|yd is absolutely
continuous with respect to µ0 and the Radon-Nikodým derivative is given by the scaled likelihood
function. More in detail we obtain

µq|yd(O) =

∫
O π(yd, q) dµ0(q)∫

L2(Ω) π(yd, q) dµ0(q)
∀O ∈ B(L2(Ω)).

Substituting the definition of the likelihood we recover the posterior distribution from (5.8).

We summarize our findings in the following theorem. In particular the previous observations imply
that, in the present case, the posterior measure is Gaussian. Thus it is completely characterized
through its mean and covariance operator.

Theorem 5.8. Let yd ∈ RN be given and assume that q0 ∈ H. Then µydpost as given by (5.8) is a
well-defined Gaussian probability measure on L2(Ω) with

µydpost = N (qydpost, Cpost).

The posterior mean qydpost ∈ H and covariance operator Cpost ∈ L(H∗,H) are given by

qydpost = q0 + CpostX∗Σ−1(yd −Xq0) ∈ H, Cpost = (X∗Σ−1X + I0)−1 ∈ L(L2(Ω), L2(Ω)).

Proof. These statements can be concluded directly from Example 6.23 and Theorem 6.31 in [250]
noting that µ0(L2(Ω)) = 1.

To close this short introduction we briefly recap the Bayesian approach to inverse problems and
point out to its limitations. Recall that the starting point of our considerations was given by
the ill-posed deterministic inverse problem (5.7). In order to obtain a well-posed formulation we
resorted to a description of the prior believes on the parameter in terms of a random field. This
can be viewed as a probabilistic regularization of the problem in which we describe the uncertainty
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on the true value of the parameter by a probability measure. Applying Bayesian inference to the
problem should then be interpreted as a learning process in which we re-evaluate our current
knowledge on the distribution of the random field based on the obtained measurements and thus
reduce this uncertainty.

First we again stress that the solution to the Bayesian inverse problem is given by a probability
measure over the parameter space and not by a single function. This allows for probabilistic
statements on the unknown parameter rather than deterministic ones. For example the measure
of a ball in the parameter space with respect to the posterior describes our degree of certainty
that the observed data yd corresponds to the response of the mathematical model X for some
parameter q inside this ball. However it does not allow to draw conclusions on the plausibility of
particular realizations of the random field since

µ0({q}) = µydpost ({q}) = 0 ∀q ∈ L2(Ω).

Nevertheless, from a practical point of view, it would be desirable to define a point estimator re-
flecting our belief on the most likely value of the parameter given the obtained data. Following [79]
one possibility to do so is the consideration of minimizers to the Onsager-Machlup functional

min
q∈H

1

2
|Xq − yd|2Σ−1 +

1

2
‖q − q0‖2H. (5.11)

Note that this minimization problem resembles a Tikhonov regularization of the inverse prob-
lem (5.7) for the particular case of choosing the Cameron-Martin norm as regularization term.
Obviously, in the present case, the global minimizer to this problem is unique and coincides with
the mean qydpost of the posterior distribution. We call it the maximum a posteriori probability
estimator or, to shorten, the MAP.

These considerations clearly highlight the importance of properly choosing the prior distribution
and its tremendous influence on the obtained results. A first restriction on its choice is given by the
well-established assumption of a Gaussian prior distribution. This implies that the eigenvalues
of I−1

0 are summable. In particular the elements of the associated Cameron-Martin space will
exhibit additional smoothness beyond L2(Ω) regularity. To illustrate this fact, we pick up on
Example 5.1 and Ω = (0, 1)d. The Cameron-Martin space H associated to I−1

0 = (−∆)−s, s >
d/2, is given by the Sobolev space Hs∩H1

0 (Ω). Thus, due to the Sobolev embedding theorem, [85,
Theorem 8.2], we get Hölder regularity of the mean qydpost. Moreover, while random draws from
e.g. N (0, (−∆)−s) are almost surely not contained in H, [99, Proposition 4.22], the Kolmogorov
continuity theorem ensures (almost surely) their Hölder regularity in this case. For a reference we
point out to Theorem 6.24 and Lemma 6.25 in [250]. This makes an application of the Bayesian
approach based on Gaussian priors questionable if we expect the true parameter q∗ to be e.g.
piecewise constant. Additionally we emphasize that a prior distribution which encompasses all
structural features of the unknown parameter would render Bayesian inference obsolete. Loosely
speaking, this observation implies that the choice of the prior has to be, at least partly, arbitrary.

The main focus of this chapter lies on the development of a sensor placement framework for
Bayesian inverse problems. In particular we assume that a prior distribution µ0 = N (q0, I−1

0 )
which is suitable for the problem at hand is already provided. Thus we do not comment further
on this topic. However this critical point on the Bayesian approach should always be kept in mind
throughout the following considerations. For further discussion on the matter of choosing the prior
distribution in a sophisticated way we direct the reader to Chapters 3 and 10 in [228].
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5.1.2 Bayesian inference for PDE constrained problems

In this section we apply the presented Bayesian methodology to the inverse problems of identifying
a distributed parameter q entering a partial differential equation from observations yd of the state.
More concretely, we consider the form

a(·, ·)(·) : Qad × Y ×W → R,

which depends linearly on the elements of the second bracket but may dependent nonlinearly on
those embraced by the first one. The set of admissible parameters Qad is given as a subset of
L2(Ω), where Ω ⊂ Rd, d ∈ N, is open and bounded. The state space Y and the test space W are
assumed to be reflexive Banach-spaces. Given q ∈ Qad an element y = S[q] ∈ Y is called the state
associated to q if there holds

a(q, y)(ϕ) = 0 ∀ϕ ∈W. (5.12)

We make the following assumptions on its existence and regularity.

Assumption 5.3. The equation (5.12) admits a unique solution y = S[q] ∈ Y for every q ∈ Qad.
Furthermore the parameter-to-state operator

S : Qad → Y, q 7→ S[q],

is at least continuously Fréchet differentiable in L2(Ω) on a neighbourhood of Qad.

The observations yd will be obtained by taking pointwise measurements of the physical quantity
represented by the state y. To this end we assume Y

c
↪→ C(Ωo). Here, Ωo ⊂ Ω is a compact set

of possible sensor locations. As in the finite dimensional situation of the previous chapter given
q ∈ Qad, y = S[q] and δq ∈ L2(Ω) the associated sensitivity δy = ∂S[q]δq ∈ Y is the unique
element fulfilling

a′y(q, y)(δy, ϕ) = −a′q(q, y)(δq, ϕ) ∀ϕ ∈W, (5.13)

given sufficient regularity of the weak form a(·, ·)(·). Here a′y and a′q denote the partial derivatives
of the form a with respect to the state and the parameter respectively. The following examples
aim to illustrate this abstract setting. In all of them we consider a bounded domain Ω ⊂ Rd,
d ≤ 3 which we assume to be convex and thus with Lipschitz boundary. Furthermore the state
and test spaces are chosen as

Y = H2(Ω) ∩H1
0 (Ω)

c
↪→ C(Ωo), W = L2(Ω).

Example 5.2. We consider the identification of an unknown source term q ∈ L2(Ω) entering the
right hand side of a Poisson equation together with homogeneous Dirichlet-boundary conditions

−∆ y = q in Ω, y = 0 on ∂Ω.

The admissible set of parameters is fixed to Qad = L2(Ω) and the form a is chosen such that

a(q, y)(ϕ) =

∫
Ω

[(−∆ y − q)ϕ]dx = 0 ∀ϕ ∈ L2(Ω). (5.14)

Given q ∈ L2(Ω) it is well-known that (5.14) admits a unique solution y = S[q] ∈ H2(Ω)∩H1
0 (Ω),

see [124, Theorem 3.2.12]. The parameter-to-state operator

S : L2(Ω)→ H2(Ω) ∩H1
0 (Ω), q 7→ S[q]

is linear and continuous. As a consequence we conclude ∂S[q̂]δq = S[δq] for all q̂, δq ∈ L2(Ω).
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Example 5.3. As a second example we aim to identify an unknown diffusion coefficient. To this
end we define the admissible set of parameters

Qad =
{
q ∈ C0,1(Ω̄) | q > 0

}
⊂ L2(Ω).

The considered PDE is given in its weak form as

a(q, y)(ϕ) =

∫
Ω

[(−∇ · (q∇y)− f)ϕ] dx = 0 ∀ϕ ∈ L2(Ω).

The source term f ∈ L2(Ω) is assumed to be known. Following the arguments in [58] there
exists a unique solution y = S[q] ∈ H2(Ω) ∩ H1

0 (Ω) given q ∈ Qad. The parameter-to-state
operator S is Fréchet differentiable in a neighborhood of Qad with respect to the topology on C0,1(Ω̄).
Given a direction δq ∈ C0,1(Ω̄) and q̂ ∈ Qad the sensitivity δy = ∂S[q̂]δq is the unique element
in H2(Ω) ∩H1

0 (Ω) fulfilling∫
Ω
−∇ · (q̂∇δy)ϕ dx =

∫
Ω
∇ · (δq∇S[q̂])ϕ dx ∀ϕ ∈ L2(Ω)

At this point we note that the operator ∂S[q̂] cannot be extended to a linear continuous operator
on L2(Ω). Thus this problem cannot be fit directly into the framework considered in this chapter.
As a possible workaround we propose to consider a reparametrization of the parameter q ∈ C0,1(Ω̄)
as

q(x) = exp([Tp](x)), p ∈ L2(Ω), a.e. x ∈ Ωo, T : L2(Ω)→ C0,1(Ω̄),

where the operator T is e.g. a sufficiently smoothing convolution operator. The exponential func-
tion is applied to get rid of the positivity constraints in the parameter space. In the same moment
we stress that such discrepancies between the topology on the parameter space L2(Ω) and the topol-
ogy needed to ensure differentiability of S are characteristic for e.g. parameter-to-state mappings
corresponding to nonlinear PDEs. Thus a rigorous extension of the approach presented in this
chapter in order to cover these cases should be in the focus of future research.

Example 5.4. Last we consider an unknown parameter q in the reaction term of a linear elliptic
PDE given by

−∆ y + qy = f in Ω, y = 0 on ∂Ω.

The source term f ∈ L2(Ω) is again assumed to be known and the set of admissible parameters is
defined as

Qad =
{
q ∈ L2(Ω) | ‖q−‖L2(Ω) < cQad

}
,

where q−(x) = −min{0, q(x)}, for a.e. x ∈ Ω, denotes the negative part of q ∈ L2(Ω) . The value
of the constant cQad > 0 will be fixed in an instance. The associated weak formulation of the PDE
is now given by

a(q, y)(ϕ) =

∫
Ω

[(−∆ y + qy − f)ϕ] dx = 0 ∀ϕ ∈ L2(Ω). (5.15)

In the following we will briefly prove that (5.15) admits a unique solution in H2(Ω) ∩H1
0 (Ω). To

this end let us first consider the form

b : Qad ×H1
0 (Ω)×H1

0 (Ω)→ R, b(q)(y, ϕ) =

∫
Ω

[(∇y · ∇ϕ+ qyϕ] dx.
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For y, ϕ ∈ H1
0 (Ω) and q ∈ Qad we immediately infer

b(q)(y, y) = ‖y‖2H1
0 (Ω) +

∫
Ω
qy2 dx ≥ ‖y‖2H1

0 (Ω) − ‖q
−‖L2(Ω)‖y‖2L4(Ω) ≥ (1− cΩ‖q−‖L2(Ω))‖y‖2H1

0 (Ω),

where the constant cΩ > 0 depends on the domain. Second we obtain

b(q)(y, ϕ) ≤ ‖y‖H1
0 (Ω)‖ϕ‖H1

0 (Ω) + ‖q‖L2(Ω)‖y‖L4(Ω)‖ϕ‖L4(Ω) ≤ (1 + cΩ‖q‖L2(Ω))‖y‖H1
0 (Ω)‖ϕ‖H1

0 (Ω).

If we choose cQad ≤ 1/cΩ then an application of the Lax-Milgram lemma yields the existence of a
unique function yf ∈ H1

0 (Ω) fulfilling

b(q)(yf , ϕ) = 〈ϕ, f〉H1
0 (Ω),H−1 ∀ϕ ∈ H1

0 (Ω),

for every f ∈ H−1. By a bootstrapping argument it is now readily verified that yf ∈ H2(Ω)∩H1
0 (Ω)

whenever f ∈ L2(Ω). Furthermore it is readily verified that the operator

−∆ +q Id : H2(Ω) ∩H1
0 (Ω)→ L2(Ω),

is an isomorphism. Applying the implicit function theorem, see e.g. [86], yields the existence of
an operator

S : Qad : H2(Ω) ∩H1
0 (Ω), q 7→ S[q],

where y = S[q] is the unique solution to (5.15). The mapping S is at least of class C1 in a
neighborhood of Qad. Given a linearization point q̂ ∈ Qad and a direction δq ∈ L2(Ω) the associated
sensitivity δy = ∂S[q̂]δq is the unique element in H2(Ω) ∩H1

0 (Ω) fulfilling∫
Ω

[(−∆ δy + qδy)ϕ] dx =

∫
Ω
δqS[q̂]ϕ dx ∀ϕ ∈ L2(Ω)

Let us now return to the discussion of the general case. The true parameter, i.e. the distributed
function describing the model most faithfully, will be denoted by q∗ ∈ Qad. The point measure-
ments of the state y are taken at a finite number of sensors located at {xi}Ni=1 ⊂ Ωo, N ∈ N,
and the obtained measurements are assembled in a vector yd ∈ Rn. To take measurement errors
into account we assume that no systematic model errors are present, i.e. the "true" measurement
at a point x ∈ Ωo is given by S[q∗](x), and the measurements are perturbed by additive noise
stemming from the sensors. For abbreviation, given q ∈ Qad, we will write S[q](x) ∈ RN for the
vector of observations with S[q](x)i = S[q](xi), i = 1, . . . , N , in the following and define

yd : Qad × RN → RN , (q, ε) 7→ S[q](x) + ε. (5.16)

The obtained measurements are given by yd = yd(q
∗, ε) for some ε ∈ RN . Let (D,F ,P) be a

probability space. We adopt a probabilistic description of the measurement error and interpret
ε as a realization of an N -dimensional Gaussian random variable ε : D → RN with ε ∼ N (0, Σ)
where Σ ∈ Sym(N), Σij = δij/ui. The constant ui describes how carefully the measurement
at xi should be performed. For example, if ui is an integer, it might resemble the total number
of measurements at the same position. More general ui corresponds to the quality of the used
sensor i.e. the reciprocal of its measurement error. The unknown parameter is now determined
by matching the collected data with the predicted response of the mathematical model

find q ∈ Qad : S[q](x) = yd (5.17)
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In the following we simplify the problem by considering a first-order approximation of the under-
lying model around a sophisticated a priori guess q̂ ∈ Qad

S[q] ≈ S[q̂] + ∂S[q̂](q − q̂), q ∈ Qad.

In the same manner we linearize the mapping in (5.16) and assume

yd(q, ε) = S[q̂](x) +X(q − q̂) + ε,

where the operator X ∈ L(L2(Ωo),RN ) is defined through

X : L2(Ω)→ RN , (Xq)i = ∂S[q̂]q(xi).

Finally we drop the constraints on the admissible set of parameters and formulate the linearized
inverse problem as

find q ∈ L2(Ω) : S[q̂](x) +X(q − q̂) = yd. (5.18)

Despite its linearity the inverse problem in (5.18) is still ill-posed due to the finite dimensionality of
the collected data. To obtain a well-defined problem, we adopt the Bayesian viewpoint discussed
in the previous section to the problem. The uncertainty on the true value of the parameter is
modeled as a Gaussian random field q : D → L2(Ω) distributed according to µ0 = N (q̂, I−1

0 ).
Here, I−1

0 is a known covariance operator given by the inverse of an unbounded operator, see
Lemma 5.5 and Assumption 5.1. Its eigenvalues and the associated eigenfunctions are denoted
by {λi}i∈N and {φi}i∈N, respectively. We silently assume that the linearization point q̂ ∈ Qad is
an element of the corresponding Cameron-Martin space H given by

H =
{
q ∈ L2(Ω) | ‖I1/2

0 q‖L2(Ω) <∞
}
.

We assume that the random field distributed according to µ0 and the measurement noise ε are
independent. As an illustrative example the reader may recall the situation discussed in Exam-
ple 5.1 and consider the prior covariance operators defined through the inversion of (fractional)
differential operator, e.g. I−1

0 = (−∆)−s, s > d/2, on Ω̄ = [0, 1]2. Here −∆ denotes the Dirichlet
Laplacian. The corresponding Cameron-Martin space is given by Hs(Ω) ∩ H1

0 (Ω). However we
also stress that the following analysis is not restricted to this setting.

Subsequently, the knowledge on the parameter is updated based on the collected data yd. The
probabilistic solution of (5.18) is given by the posterior distribution

µ
yd
post(O) =

∫
O

1

Z(yd)
exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
dµ0(q) ∀O ∈ B(L2(Ω)),

Z(yd) =

∫
L2(Ω)

exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
dµ0(q).

Due to the linearity of the model it is again a Gaussian measure, cf. Theorem 5.8, with

µ
yd
post = N (qydpost, Cpost) where Cpost = (X∗Σ−1X + I0)−1 (5.19)

and the posterior mean qydpost ∈ H is the unique minimizer to

min
q∈H

1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1 +

1

2
‖I1/2

0 (q − q̂)‖2L2(Ω).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

It admits an explicit representation as

q
yd
post = q̂ + Cpost(X∗Σ−1(yd − S[q̂](x))). (5.20)

We emphasize that for a fixed a priori guess q̂ the posterior covariance operator does not rely on
the measurement vector yd ∈ RN . However its depends on the measurement points {xi}Ni=1 and
ui, i = 1, . . . , N , through the Fisher information operator

I(u(x,u)) = X∗Σ−1X ∈ L(L2(Ω), L2(Ω)).

To stress this dependence we denote the posterior covariance by Cpost(I(u(x,u))) in the following.
Note that the Fisher information is positive and Hilbert-Schmidt on L2(Ω). The latter property
follows due to the finite number of measurements.

Remark 5.4. We point out that it is also possible to consider the nonlinear inverse problem
from (5.17) in the Bayesian context. As in the linear case we formally define the posterior measure
of q given yd by

µ
yd
post(O) =

∫
O

1

Z(yd)
exp

(
−1

2
|S[q](x)− yd|2Σ−1

)
dµ0(q) ∀O ∈ B(L2(Ω)),

Z(yd) =

∫
L2(Ω)

exp

(
−1

2
|S[q](x)− yd|2Σ−1

)
dµ0(q). (5.21)

Imposing additional assumptions on S one can show that the relation in (5.21) indeed defines a
probability measure, see [250, Chapter 4]. However, since S is non-linear, this posterior measure
is in general not Gaussian. While the optimal design criteria presented in the upcoming section
still remain meaningful in this situation, see e.g. [5], they usually do not admit a closed form
representation adding an additional level of complexity to the problem. Since such formulations
are out of the scope of this thesis, we will not comment further on this topic, however we stress
their relevance for future research. In this light, the proposed approach based on a linearization of
the underlying PDE can be interpreted as a Gaussian approximation to the true posterior measure.

5.1.3 Optimal design criteria for distributed parameters

As already stressed at several points in this chapter the solution to the Bayesian inverse problem
is given by the posterior distribution. This probability measure summarizes the current knowl-
edge or, equivalently, the remaining degree of uncertainty on the unknown parameter given the
vector of measurements yd. A complete discussion of the Bayesian inverse problem requires the
quantification of both the uncertainty in the estimate and the obtained amount of information.
This section aims to illustrate this process of uncertainty quantification.

To this end, a first goal of this section is to present several scalar-valued functions which quantify
the statistic properties of the posterior distribution. Surprisingly these well-established measures
of uncertainty depend exclusively on the prior distribution and the Fisher information operator.
In particular, they do not depend on the vector of measurements but are parametrized by the
positions {xi}Ni=1 of the measurement sensors and the diligence factors {ui}Ni=1. Thus, similar to
the finite dimensional situation in the previous chapter, they can serve as design criteria to compare
the statistic quality of different sensor configurations before any measurements are carried out in
practice.
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In the following sections we then proceed to the formulation and analysis of sensor placement
problems associated to the discussed Bayesian inverse problem. In this context we improve the
estimation process a priori, i.e. before any measurements are carried out, by optimizing one of
the presented design criteria with respect to the measurement setup. To this end we identify
mathematical properties that are common to all of the considered functionals. This will enable
us to treat the corresponding sensor placement problems in a rigorous and unified way in the
following sections.

The a posteriori covariance operator

As in the finite dimensional setting of Chapter 4 the covariance operator Cpost(I(u(x,u))) will play
a major role in the following discussions. Let us first fix some notation. The topological dual space
of H will be denoted by H∗ in the following. By definition of H the Riesz-isomorphism TH : H →
H∗ is readily identified with I0 and

〈δq1, δq
∗
1〉H,H∗ = (δq1, T

−1
H δq∗1)H = (δq1, I−1

0 δq∗1)H ∀δq1 ∈ H, δq∗1 ∈ H∗.

On H∗ a Hilbert space structure is induced by the inner product

(δq∗1, δq
∗
2)H∗ = 〈I−1

0 δq∗1, δq
∗
2〉H,H∗ = (I−1

0 δq∗1, I−1
0 δq∗2)H = (I−1/2

0 δq∗1, I
−1/2
0 δq∗2)L2(Ω),

for all δq∗1, δq∗2 ∈ H∗. The space H together with its topological dual and L2(Ω) form a Gelfand-
triple

H c
↪→ L2(Ω) ' L2(Ω)∗ ↪→ H∗,

where the first embedding, and thus the second, is compact and dense. As a consequence, given
the eigenfunctions {φi}i∈N of I−1

0 , the sets

{I−1/2
0 φi}i∈N ⊂ H, {φi}i∈N ⊂ L2(Ω), {I1/2

0 φi}i∈N ⊂ H∗,

form orthonormal bases with respect to the inner product on the respective spaces. Thus the
Hilbert-Schmidt norm of B ∈ L(H,H∗) is given by

‖B‖2HS(H,H∗) =

∞∑
i=1

‖BI−1/2
0 φi‖2H∗ = ‖I−1/2

0 BI−1/2
0 ‖HS(L2(Ω),L2(Ω)).

Given a Hilbert-Schmidt operator B ∈ HS(L2(Ω), L2(Ω)) we immediately infer

‖B‖HS(H,H∗) = ‖I−1/2
0 BI−1/2

0 ‖HS(L2(Ω),L2(Ω)) ≤ ‖I−1
0 ‖L(L2(Ω),L2(Ω))‖B‖HS(L2(Ω),L2(Ω)),

i.e the spaces HS(L2(Ω), L2(Ω)) and SHS(L2(Ω), L2(Ω)) continuously embed into HS(H,H∗)
and SHS(H,H∗), respectively.

We start by taking a closer look at properties of the posterior covariance operator and study
well-posedness of the mapping

Cpost : SHS(H,H∗)→ L(H∗,H), B 7→ (B + I0)−1, (5.22)
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as well as its differentiability properties. To this end we adopt a variational description of B + I0

given B ∈ SHS(H,H∗). This operator induces a symmetric bilinear form

a[B] : H×H → R, a[B](q1, q2) = 〈q1, Bq2〉H,H∗ + (q1, q2)H ∀q1, q2 ∈ H.

Given f ∈ H∗ we consider the variational problem of finding qf ∈ H with

a[B](qf , q2) = 〈q2, f〉H,H∗ ∀q2 ∈ H. (5.23)

As a first step we establish well-posedness of this covariance equation under mild assumptions.

Proposition 5.9. Let B ∈ SHS(H,H∗) be given. Then there exists a constant cB ≥ 0 with

〈q1, Bq1〉H,H∗ ≥ −cB‖q1‖2H ∀q1 ∈ H.

If cB < 1 then equation (5.23) admits a unique solution for every f ∈ H∗. The operator

Cpost(B) : H∗ → H, f 7→ qf ,

is linear and continuous with ‖Cpost(B)‖L(H∗,H) ≤ 1/(1 − cB). If B ∈ Pos(H,H∗) we can
choose cB = 0 and there holds ‖Cpost(B)‖L(H∗,H) ≤ 1.

Furthermore, given B1, B2 ∈ SHS(H,H∗) with cB1 , cB2 < 1, there holds

‖Cpost(B1)− Cpost(B2)‖L(H∗,H) ≤
‖B1 −B2‖L(H,H∗)

(1− cB1)(1− cB2)
.

Proof. Let B ∈ SHS(H,H∗) be given. The claimed existence of cB ≥ 0 follows immediately. For
f ∈ H∗ and q1, q2 ∈ H we have

a[B](q1, q2) = 〈q1, Bq2〉H,H∗ + (q1, q2)H ≤ (‖B‖L(H,H∗) + 1)‖q1‖H‖q2‖H,

as well as

a[B](q1, q1) = 〈q1, Bq1〉H,H∗ + (q1, q1)H ≥ (1− cB)‖q1‖2H,

by the assumptions on B. Hence applying Lax-Milgram Lemma, see [52, Corollary 5.8], yields the
existence of a unique solution qf = Cpost(B)f ∈ H to equation (5.23) with

(1− cB)‖qf‖2H ≤ a[B](qf , qf ) = 〈qf , f〉H,H∗ ≤ ‖qf‖H‖f‖H∗ .

This implies the desired estimate. If B ∈ Pos(H,H∗) we can choose cB = 0 yielding the estimate
‖Cpost(B)‖L(H∗,H) ≤ 1.

Let B1, B2 ∈ SHS(H,H∗) with cB1 , cB2 < 1 and f ∈ H∗ be given. Define qB1
f = Cpost(B1)f ,

qB2
f = Cpost(B2)f and the difference δqf = qB1

f − q
B2
f , respectively. We conclude

(1− cB1)‖δqf‖2H ≤ a[B1](δqf , δqf ) = a[B2](qB2
f , δqf )− a[B1](qB2

f , δqf )

= 〈qB2
f , (B2 −B1)δqf 〉H,H∗

≤ ‖qB2
f ‖H‖δqf‖H‖B1 −B2‖L(H,H∗)

≤
‖f‖H∗‖δqf‖H

1− cB2

‖B1 −B2‖L(H,H∗).

This proves the Lipschitz-stability of the covariance mapping.
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Note that if cB < 1 the operator Cpost(B) ∈ L(H∗,H) can be decomposed as

Cpost(B) = I−1/2
0 Ĉpost(B)I−1/2

0 where Ĉpost(B) = (I−1/2
0 BI−1/2

0 + Id)−1 ∈ L(L2(Ω), L2(Ω)).

We will refer to Ĉpost(B) as the prior preconditioned covariance operator. Due to the continuous
embedding of H into L2(Ω) the covariance operator Cpost(B) can further be considered as an
element of L(L2(Ω), L2(Ω)). The following lemma characterizes its properties.

Lemma 5.10. Let B ∈ SHS(H,H∗) be given. If cB < 1 the operator Cpost(B) ∈ L(L2(Ω), L2(Ω))
is positive and Hilbert-Schmidt on L2(Ω). Furthermore it is of trace class in L2(Ω) and there
holds

B2 −B1 ∈ Pos(H,H∗)⇒ TrL2(Ω)(Cpost(B2)) ≤ TrL2(Ω)(Cpost(B1)),

for all B1, B2 ∈ Pos(H,H∗).

Proof. Positivity of Cpost(B) on L2(Ω) follows from the symmetry and coercivity of the form a[B].
We prove that Cpost(B) is of trace class. The Hilbert-Schmidt property then follows immediately.
Denote by {φi}i∈N the orthonormal basis of L2(Ω) given by the eigenfunctions of I−1

0 . By definition
we have ‖φi‖2L2(Ω) = 1. Fix an arbitrary index i ∈ N. Calculating the H∗ norm of φi reveals

‖φi‖2H∗ = 〈I−1
0 φi, φi〉H,H∗ = λi(φi, φi) = λi.

We obtain

(φi, Cpost(B)φi)L2(Ω) = 〈Cpost(B)φi, φi〉H,H∗ ≤ ‖φi‖2H∗‖Cpost(B)‖L(H∗,H) ≤
λi

1− cB
.

Summing over all indices we get

TrL2(Ω)(Cpost(B)) =
∞∑
i=1

(φi, Cpost(B)φi)L2(Ω) ≤
1

1− cB

∞∑
i=1

λi =
TrL2(Ω)(I−1

0 )

1− cB
.

Thus Cpost(B) ∈ L(L2(Ω), L2(Ω)) is of trace class.

It remains to prove the last claim. Let B1, B2 ∈ Pos(H,H∗) with B2 − B1 ∈ Pos(H,H∗) be
given and fix an arbitrary index i ∈ N. Recalling the definition of the preconditioned operator
Ĉpost(B) ∈ L(L2(Ω), L2(Ω)) we arrive at

(φi, Cpost(B2)φi)L2(Ω) = λi(φi, Ĉpost(B2)φi)L2(Ω) = λi(φi, (I−1/2
0 B2I−1/2

0 + Id)−1φi)L2(Ω).

Expanding yields

(φi, Ĉpost(B2)φi)L2(Ω)

= (Ĉpost(B1)1/2φi, (Ĉpost(B1)1/2I−1/2
0 (B2 −B1)I−1/2

0 Ĉpost(B1)1/2 + Id)−1Ĉpost(B1)1/2φi)L2(Ω)

≤ ‖Ĉpost(B1)1/2φi‖2L2(Ω) = (φi, Ĉpost(B1)φi)L2(Ω).

Here the second inequality follows since the operator

D = Ĉpost(B1)1/2I−1/2
0 (B2 −B1)I−1/2

0 Ĉpost(B1)1/2 + Id ∈ L(L2(Ω), L2(Ω)),
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is self-adjoint and coercive with constant one due to (B2 − B1) ∈ Pos(H,H∗). Thus its inverse
exists and

‖D−1‖L(L2(Ω),L2(Ω)) ≤ 1.

Since i ∈ N was chosen arbitrary we obtain

TrL2(Ω)(Cpost(B2)) =
∞∑
i=1

λi(φi, Ĉpost(B2)φi)L2(Ω)

≤
∞∑
i=1

λi(φi, Ĉpost(B1)φi)L2(Ω) = TrL2(Ω)(Cpost(B1)),

by factoring in I−1/2
0 . This proves the claimed statement.

We close this section by establishing differentiability properties of the covariance mapping.

Proposition 5.11. Let B ∈ SHS(H,H∗) with cB < 1 be given. Then the mapping

Cpost : SHS(H,H∗)→ L(H∗,H),

is at least two times continuosly Fréchet differentiable at B. Given δB1, δB2 ∈ SHS(H,H∗) its
first and second derivatives are characterized by

∇Cpost(B)δB1 = −Cpost(B) δB1 Cpost(B) ∈ L(H∗,H),

∇2Cpost(B)(δB1, δB2) = 2Cpost(B) δB1 Cpost(B) δB2 Cpost(B) ∈ L(H∗,H).

Proof. We only provide the proof for the first derivative, the formula for the second derivative can
be be established analogously. Let B, δB ∈ SHS(H,H∗) with cB < 1 be given. We have

〈q1, (B + δB)q1〉H,H∗ ≥ (−(cB + ‖δB‖HS(H,H∗))‖q1‖2H ∀q1 ∈ H.

Thus Cpost(B + δB) is well-defined if (cB + ‖δB‖HS(H,H∗)) < 1. Let f ∈ H∗ be given and set

qBf = Cpost(B)f, qB+δB
f = Cpost(B + δB)f, ∇qBf = −Cpost(B)δBCpost(B)f.

Note that ∇qBf ∈ H is the unique element fulfilling

a[B](∇qBf , q2) + a′B[δB](qBf , q2) = a[B](∇qBf , q2) + 〈qBf , δBq2〉H,H∗ = 0 ∀q2 ∈ H.

Set δqf = qB+δB
f − qBf −∇qBf . We estimate

(1− cB)‖δqf‖2H ≤ a[B](δqf , δqf )

= a[B](qB+δB
f , δqf )− a[B + δB](qB+δB

f , δqf ) + 〈qBf , δBδqf 〉H,H∗

= 〈qBf − qB+δB
f , δBδqf 〉H,H∗

≤
‖f‖H∗‖δB‖2HS(H,H∗)‖δqf‖H

(1− cB)(1− cB − ‖δB‖HS(H,H∗))
,

where we used the Lipschitz stability of Cpost and

‖δB‖L(H,H∗) ≤ ‖δB‖HS(H,H∗).

Dividing by ‖δB‖HS(H,H∗), ‖δqf‖H 6= 0 and taking the supremum over f ∈ H∗ on both sides we
deduce the Fréchet differentiability of Cpost by performing the limit ‖δB‖HS(H,H∗) → 0.
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Sparse A and D-optimal design

After these preparatory steps we are ready to formulate suitable optimal design criteria for
Bayesian inverse problems. We define the set B+(L2(Ω)) as{
B ∈ SHS(L2(Ω), L2(Ω)) | ∃cB ∈ [0, 1) : (I−1/2

0 q1, BI−1/2
0 q1)L2(Ω) ≥ −cB‖q1‖2L2(Ω), q1 ∈ L2(Ω)

}
.

Note that this set is open in SHS(L2(Ω), L2(Ω)) and Pos(L2(Ω), L2(Ω)) ⊂ B+(L2(Ω)). Moreover
if we interpret B ∈ B+(L2(Ω)) as Hilbert-Schmidt operator from H into H∗ we have

〈q1, Bq1〉H,H∗ = (q1, Bq1)L2(Ω) ≥ −cB‖q1‖2H

for all q1 ∈ H. Here we used H = domL2(Ω) I
1/2
0 and the definition of the norm on H. Thus the

covariance operator Cpost(B) ∈ L(H∗,H) in the sense of Proposition 5.1 is well-defined.

First we discuss an infinite dimensional analogue of the A-optimal design criterion which is given
by the trace of the posterior covariance operator

ΨA : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} B 7→

{
TrL2(Ω)(Cpost(B)) B ∈ B+(L2(Ω))

+∞ else.
. (5.24)

We give some interpretation to this choice of the optimal design criterion. To this end we recall
the definition of the posterior measure µydpost = N (qydpost, Cpost(I(u(x,u)))) given a vector of mea-
surement data yd ∈ RN , see (5.19). By qyd : D → L2(Ω) we denote the random field distributed
according to it. A first indicator for the quality of the obtained posterior measure is its variability
around the mean. An optimal measurement setup should lead to posterior measures whose draws
are close to qydpost, at least on average. To make these considerations rigorous we calculate the
variance of the posterior distribution as

Var(qyd) = Eµ
yd
post [‖qyd − qydpost‖2L2(Ω)] =

∫
L2(Ω)

‖q − qydpost‖2L2(Ω) dµydpost(q) =

∫
Ω

Varqyd dx

= TrL2(Ω)(Cpost(I(u(x,u)))),

where Varqyd denotes the pointwise variance of qyd , see (5.4) and (5.5). In particular, this implies
that the left hand side of this equation is independent of the data vector yd ∈ RN and corresponds
to the averaged posterior variance. Furthermore it only depends on the measurement setup through
the posterior covariance operator. Hence we can a priori, i.e. before the measurements are carried
out, improve it by minimizing the A-optimal design criterion for the Fisher information with
respect to the measurement setup.

A second motivation to consider the trace of the posterior covariance operator is given by the mean
squared error (MSE) of the posterior mean qydpost. We recall the assumptions on the data model

yd : L2(Ω)× RN → RN , (q, ε) 7→ S[q̂](x) +X(q − q̂) + ε.

The obtained measurement vector is given by yd = yd(q
∗, ε) where q∗ denotes the true value of

the unknown parameter and ε is drawn from a Gaussian distribution µE = N (0, Σ). Given a
function q ∈ L2(Ω) we define the estimator

q
yd(q,·)
post : RN → L2(Ω), ε 7→ q

yd(q,ε)
post .
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A properly chosen measurement setup for the estimation of q∗ should result in an estimator qyd(q∗,·)
post

whose realizations are close to q∗, e.g., with respect to the norm on L2(Ω). Changes in the
measurement data due to noise should only lead to small changes in the estimated parameter.

Again we give some mathematical rigor to this intuition. Given q ∈ L2(Ω) and the associated
estimator qyd(q,·)

post we consider its mean squared error

MSE(q
yd(q,·)
post , q) = EµE [‖qyd(q,·)

post − q‖2L2(Ω)] =

∫
RN
‖qyd(q,ε)

post − q‖2L2(Ω) dµE(ε).

Evaluating the integral yields

MSE(q
yd(q,·)
post , q) = EµE [‖qyd(q,·)

post − q‖2L2(Ω)] =

∫
RN
‖qyd(q,ε)

post − q‖2L2(Ω) dµE(ε) (5.25)

= ‖(Cpost(I(u(x,u)))I(u(x,u))− Id)(q − q̂)‖2L2(Ω)

+ TrL2(Ω)(Cpost(I(u(x,u)))2I(u(x,u))).

A derivation of this equality can be found in [3]. The measurement setup should be chosen
to minimize the mean squared error for the true parameter q∗. However, from the calculations
in (5.25) we infer that MSE(q

yd(q∗,·)
post , q∗) depends on the unknown parameter itself and therefore

cannot be evaluated. As a remedy we demand that an optimal estimator should provide good
estimates for draws taken from µ0 in an average sense. Averaging over the prior distribution gives
the expected mean squared error∫

L2(Ω)

∫
RN
‖qyd(q,ε)

post − q‖2L2(Ω) dµE(ε)dµ0(q) = TrL2(Ω)(Cpost(I(u(x,u))), (5.26)

which again corresponds to the trace of the posterior covariance operator. For a derivation of this
last step see again [3].

Let us take a closer look on the left hand side of the last equation. Given a vector of mea-
surements yd = yd(q, ε) for some q ∈ L2(Ω) and ε ∈ RN we recall that the associated MAP
estimator qydpost ∈ H is found as the unique solution to the linear-quadratic problem

min
q∈H

1

2
|Xq − yd|2Σ−1 + ‖q‖2H

This allows for an interpretation of the minimization of the A-optimal design criterion with respect
to the measurement setup as a learning or bilevel problem for an optimal sensor distribution. We
briefly shed some light on this connection. Given a fixed measurement setup we may consider the
associated estimator given by

q·post : RN → H, qydpost = arg min
q∈H

1

2
|Xq − yd|2Σ−1 + ‖q‖2H.

Thus for every vector yd of measurements we find qydpost by minimizing a linear quadratic functional
in the lower level problem. In order to assess the quality of this estimator we first generate a test
set of parameters (described by the prior distribution of the random field). For each test parameter
we then obtain a set of artifical measurement data based on our assumptions on the measurement
noise. Subsequently the discrepancy between the expected result and the parameter proposed by
the estimator is calculated. A solution to the sensor placement problem is then found in the upper
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level problem as one particular sensor configuration whose associated estimator yields, on average,
the best reconstruction results.

In the following proposition we elaborate on the mathematical properties of the A-optimal design
criterion.

Proposition 5.12. The mapping ΨA : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} has the following prop-
erties.

• On Pos(L2(Ω), L2(Ω)), ΨA is non-negative and strictly convex.

• On Pos(L2(Ω), L2(Ω)), ΨA is at least two times continuously Fréchet differentiable. Given
δB1, δB2 ∈ SHS(L2(Ω), L2(Ω)) the Fréchet derivatives can be identified as

〈〈∇ΨA(B), δB1〉〉HS(L2(Ω),L2(Ω)) = −TrL2(Ω)(Cpost(B)δB1Cpost(B)),

〈〈δB1,∇2ΨA(B)δB2〉〉HS(L2(Ω),L2(Ω)) = 2 TrL2(Ω)(Cpost(B)δB1Cpost(B)δB2Cpost(B)).

• The A-optimal design criterion is monotone. Given B1, B2 ∈ Pos(L2(Ω), L2(Ω)) we have

B2 −B1 ∈ Pos(L2(Ω), L2(Ω))⇒ ΨA(B2) ≤ ΨA(B1).

Proof. Following Lemma 5.10 theA-optimal design criterion is non-negative on Pos(L2(Ω), L2(Ω)) ⊂
B+(L2(Ω)). We further note that the L2(Ω) trace defines a linear continuous functional on L(H∗,H)
since

TrL2(Ω)(B̃) ≤
∞∑
i=1

‖φi‖2H∗‖B̃‖L(H∗,H) = TrL2(Ω)(I−1
0 )‖B̃‖L(H∗,H) ∀B̃ ∈ L(H∗,H).

Continuity and Fréchet-differentiability of ΨA at B ∈ Pos(L2(Ω), L2(Ω)) now follows from the
linearity of the trace and the results of Proposition 5.11. In particular we obtain

〈〈δB,∇2ΨA(B)δB〉〉HS(L2(Ω),L2(Ω)) = 2 TrL2(Ω)(Cpost(B)δBCpost(B)δBCpost(B))

= 2‖Cpost(B)1/2δBCpost(B)‖2HS(L2(Ω),L2(Ω)).

Fix an arbitrary index i ∈ N. We proceed to estimate

‖Cpost(B)1/2δBCpost(B)φi‖L2(Ω) = ‖Ĉpost(B)1/2I−1/2
0 δBI−1/2

0 Ĉpost(B)I−1/2
0 φi‖2L2(Ω)

≥ 1

‖Ĉpost(B)−1‖L(L2(Ω),L2(Ω))

‖Ĉpost(B)I−1
0 δBI−1/2

0 φi‖2L2(Ω)

≥ 1

‖Ĉpost(B)−1‖3L(L2(Ω),L2(Ω))

‖I−1
0 δBI−1/2

0 φi‖2L2(Ω),

where we used that

‖q1‖L2(Ω) = ‖Ĉpost(B)−1Ĉpost(B)q1‖L2(Ω) ≤ ‖Ĉpost(B)−1‖L(L2(Ω),L2(Ω))‖Ĉpost(B)q1‖L2(Ω),

for all q1 ∈ L2(Ω). The norm in the denominator is further bounded by

‖Ĉpost(B)−1‖L(L2(Ω),L2(Ω)) = ‖ Id +I−1/2
0 BI−1/2

0 ‖L(L2(Ω),L2(Ω)) ≤ 1 + ‖B‖HS(H,H∗)
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Finally summing over all indices i ∈ N we conclude

2 TrL2(Ω)(Cpost(B)δBCpost(B)δBCpost(B)) ≥ 2

(1 + ‖B‖HS(H,H∗))3
‖I−1

0 δBI−1/2
0 ‖2HS(L2(Ω),L2(Ω)).

(5.27)

Thus ΨA is strictly convex on Pos(L2(Ω), L2(Ω)). Monotonicity of the A-optimal design criterion
on Pos(L2(Ω), L2(Ω)) follows from Lemma 5.10.

As a second example we comment on the infinite dimensional D-optimal design criterion. Given
a trace class operator T ∈ L(L2(Ω), L2(Ω)) we define its Fredholm determinant by

Det(T + Id) =
∞∏
i=1

(1 + µi),

where {µi}∞i=1 denote the eigenvalues of |T | = (T ∗T )1/2, see [119, Chapter IV]. For a given
Hilbert-Schmidt operator B ∈ SHS(L2(Ω), L2(Ω)) the operator I−1/2

0 BI−1/2
0 is of trace class

on L2(Ω). The D-optimal design criterion is now defined as the negative logarithm of the Fred-
holm determinant of I−1/2

0 BI−1/2
0 . Recalling the definition of the prior-preconditioned covariance

operator

Ĉpost(B) = (I−1/2
0 BI−1/2

0 + Id)−1 ∈ L(L2(Ω), L2(Ω)),

this is, in a more compact way, stated as

ΨD : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} B 7→

{
− log(Det(Ĉpost(B)−1)) B ∈ B+(L2(Ω))

+∞ else.
.

(5.28)

As for the A-optimal design criterion we clarify the interpretation of this definition. To this end
let a vector of measurement data yd ∈ RN and the associated posterior measure µyd

post be given.
In Section 3.1.2 we already mentioned that there are several possibilities to compare probability
measures, cf. [117]. In the following we quantify the distance between the prior measure µ0 and
the posterior through their Kullback-Leibler divergence or relative entropy defined as

dI(µ
yd
post, µ0) =

∫
L2(Ω)

log

(
dµ

yd
post

dµ0

)
dµ

yd
post(q) =

∫
L2(Ω)

log

(
dµ

yd
post

dµ0

)
dµ

yd
post

dµ0
dµ0(q), (5.29)

see, e.g, [174]. Here, the Radon-Nikodým derivative of the posterior with respect to the prior is
given by

dµ
yd
post

dµ0
: L2(Ω)→ [0, 1], q 7→ 1

Z0(yd)
exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
,

with the constant Z0(yd) > 0 defined as

Z0(yd) =

∫
L2(Ω)

exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
dµ0(q).
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While the Kullback-Leibler divergence fulfills some intuitive notions of a distance such as non-
negativity and

µ1 = µ2 ⇔ dI(µ1, µ2) = 0,

it does not define a metric on the probability measures as it lacks symmetry and does not fulfill
the triangle inequality.

Intuitively if the measured data yd ∈ RN provides a lot of information on the unknown parameter
the prior and the posterior measures differ significantly, i.e. their relative entropy dI(µ

yd
post, µ0)

should be large. A measurement setup could now be chosen in order to maximize this distance.
However, as already pointed out for the mean squared error, this quantity depends on the concrete
realization of the data vector yd. In order to obtain a criterion that is computable before the
measurements are carried out, we average over the prior distribution of the parameter and the
measurement noise. Following [3] we therefore calculate the expected information gain∫

L2(Ω)

∫
RN

1

Z1(q)
dI(µ

yd
post, µ0) exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
dyddµ0(q),

where for fixed q ∈ L2(Ω) the normalization constant Z1(q) > 0 is given by

Z1(q) =

∫
RN

exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
dyd.

Calculating the integral leads to∫
L2(Ω)

∫
RN

1

Z1(q)
dI(µ

yd
post, µ0) exp

(
−1

2
|S[q̂](x) +X(q − q̂)− yd|2Σ−1

)
dyddµ0(q)

= log(Det(Ĉpost(I(u(x,u)))−1)).

Thus we might consider a measurement setup optimal if it maximizes the averaged Kullback-
Leibler divergence or equivalently the logarithm of the Fredholm determinant of the Fisher infor-
mation preconditioned by I−1/2

0 . Since through the course of this thesis minimization problems are
studied we take its negative to arrive at the D-optimal design criterion. The following proposition
summarizes some of its properties.

Proposition 5.13. The mapping ΨD : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} has the following prop-
erties.

• On Pos(L2(Ω), L2(Ω)), ΨD is strictly convex and weakly lower semicontinuous.

• On Pos(L2(Ω), L2(Ω)), ΨD is at least two times continuously Fréchet differentiable. Given
δB1, δB2 ∈ SHS(L2(Ω), L2(Ω)) the derivatives are characterized by

〈〈∇ΨD(B), δB1〉〉HS(L2(Ω),L2(Ω)) = −TrL2(Ω)(Cpost(B)δB1),

〈〈δB1,∇2ΨD(B)δB2〉〉HS(L2(Ω),L2(Ω)) = TrL2(Ω)(Cpost(B)δB1Cpost(B)δB2).

• The D-optimal design criterion is monotone. Given B1, B2 ∈ Pos(L2(Ω), L2(Ω)) we have

B2 −B1 ∈ Pos(L2(Ω), L2(Ω))⇒ ΨD(B2) ≤ ΨD(B1).
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Proof. Following [242], the logarithm of the Fredholm determinant as a function on trace class
operators is Gâteaux differentiable. Following this result, the Gâteaux derivative ∇δBΨD(B) of
ΨD at B ∈ Pos(L2(Ω), L2(Ω)) in the direction of δB ∈ SHS(L2(Ω), L2(Ω)) is given by

∇δBΨD(B) = TrL2(Ω)(Ĉpost(B)I−1/2
0 δBI−1/2

0 ) = TrL2(Ω)(Cpost(B)δB),

applying the chain rule. Here, the second equality follows since the trace allows for cyclic per-
mutations. Hence the Gateaux differential is linear and continuous. Invoking the results of
Lemma 5.11 we conclude its continuous dependence on B. Thus ΨD is Fréchet differentiable
on Pos(L2(Ω), L2(Ω)). The existence of the second Fréchet derivative now follows immediately
from the results for ΨA. Given a direction δB ∈ SHS(L2(Ω), L2(Ω)) we further conclude

TrL2(Ω)(Cpost(B)δBCpost(B)δB) ≥ 1

(1 + ‖B‖HS(H,H∗))2
‖I−1/2

0 δBI−1/2
0 ‖2HS(L2(Ω),L2(Ω)),

following the same steps as in the proof of Proposition 5.12. As a consequence, ΨD is strictly
convex on Pos(L2(Ω), L2(Ω)).

It remains to prove the monotonicity of ΨD. Therefore let B1, B2 ∈ Pos(L2(Ω), L2(Ω)) with
δB = B2 −B1 ∈ Pos(L2(Ω), L2(Ω)) be given. By Taylor expansion we obtain

ΨD(B1)− ΨD(B2) = TrL2(Ω)(Cpost(Bζ)δB) ≥ 0,

for some Bζ = B1 + ζ(B2 −B1) ∈ Pos(L2(Ω), L2(Ω)), ζ ∈ (0, 1). Here we used

TrL2(Ω)(Cpost(Bζ)δB) = TrL2(Ω)(Cpost(Bζ)1/2δBCpost(Bζ)1/2) ≥ 0

This finishes the proof.

Sparse goal oriented design

In many applications, the interest of an experimenter may not lie on the infinite-dimensional
parameter q itself but on a finite dimensional quantity of interest ρ depending on the random
field. Such goal oriented inverse problems are considered, e.g., in [123, 246]. In this situation,
optimal design criteria should reflect this fact and aim for uncertainty reduction in the quantity
of interest rather than the distributed parameter itself. We consider a linear dependence ρ = Mq
for M ∈ L(L2(Ω),Rm), m ∈ N. Consequently ρ is a normally distributed random variable with

ρ ∼ N (ρ0, I−1
0,M ), ρ0 = Mq0, I−1

0,M = M∗I−1
0 M.

Moreover the posterior measure of ρ given a vector of measured data yd ∈ RN is also a Gaussian
N (ρydpost, CMpost(I(u(x,u)))) where

ρydpost = Mqydpost, CMpost(I(u(x,u))) = M∗Cpost(I(u(x,u)))M = M∗(I(u(x,u)) + I0)−1M.

As in the previous section, optimal designs may now be determined as to minimize the expected
mean squared error or as to maximize the expected information gain for the quantity of interest,
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see [10,138]. This leads to the formulation of the goal-oriented A and D-optimal design criteria

ΨGA : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} B 7→

{
TrRm(M∗Cpost(B)M) B ∈ B+(L2(Ω))

+∞ else
,

(5.30)

ΨGD : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} B 7→

{
log(DetRm(M∗Cpost(B)−1M)) B ∈ B+(L2(Ω))

+∞ else
,

(5.31)

respectively. Here, to avoid ambiguities, TrRm and DetRm denote the trace and determinant of a
matrix in Rm×m. The following properties of these functionals can be inferred from well-known
results for the finite-dimensional trace and determinant as well as the differentiability of Cpost. We
omit the proof here for brevity.

Proposition 5.14. The goal oriented A and D-optimal design criteria as defined by (5.30)
and (5.31), respectively, are convex, weak*-to-strong continuous, and at least two times contin-
uously Fréchet differentiability. Moreover they are monotone in the sense that

B2 −B1 ∈ Pos(L2(Ω), L2(Ω))⇒ ΨGA (B2) ≤ ΨGA (B1), ΨGD (B2) ≤ ΨGD (B1),

for all B1, B2 ∈ Pos(L2(Ω), L2(Ω)).

5.1.4 Sparse sensor placement

We are now prepared to formulate optimal sensor placement problems for the Bayesian inverse
problem discussed in Section 5.1.2. Motivated by the discussions of the previous section we propose
to determine an optimal number of measurements N ∈ N, their positions x ∈ ΩN

o and a vector of
measurement weights u ∈ RN+ by solving an optimization problem

min
x∈ΩNo , u∈RN+ , N∈N

[Ψ(I(u(x,u))) + β‖u‖1 ], (5.32)

based on a parametrization of the Fisher information operator by the measurement setup. As
in the previous chapters, the parameter β > 0 models the cost of a single measurement and the
optimal design criterion Ψ is a convex, scalar-valued function acting on the Fisher-Information
operator I(u(x,u)) = X∗Σ−1X. The operator X ∈ L(L2(Ω),RN ) and Σ−1 ∈ RN×N are given
in terms of the measurement setup as

(Xq)i = ∂S[q̂]δq (xi) ∀δq ∈ L2(Ω), Σ−1
ij = δijui, i, j = 1, . . . , N. (5.33)

Again, we will avoid the combinatorial and non-convex aspect of the minimization problem
in (5.32) by replacing the admissible set of measurement setups with the set of positive Radon
measures M+(Ωo). To this end we first take a closer look at the Fisher-information operator.
Given x ∈ Ωo and δq ∈ L2(Ω) there holds

∂S[q̂]δq (x) = 〈∂S[q̂]δq, δx〉 = (δq, ∂S[q̂]∗δx)L2(Ω),

where ∂S[q̂]∗ denotes the adjoint of the solution operator to the sensitivity equation (5.13). For
abbreviation, we set Gx = ∂S[q̂]∗δx ∈ L2(Ω) and refer to it as the Green’s function of ∂S[q̂]∗ at
the point x ∈ Ωo. In the following lemma its continuity with respect to x is studied.
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Lemma 5.15. The mapping

G· : Ωo → L2(Ω), x 7→ Gx,

is uniformly continuous.

Proof. By assumption the operator ∂S[q̂] : L2(Ω) → C(Ωo) is linear continuous and compact.
Due to Schauder’s Theorem the same holds for its adjoint. In particular this implies weak*-to-
strong continuity of ∂S[q̂]∗. Let {xk}k∈N ⊂ Ωo with limk→∞ xk = x ∈ Ωo be given. Then the
corresponding Dirac delta functions converge in the weak* sense and thus

lim
k→∞

|xk − x|Rd = 0⇒ lim
k→∞

‖Gx −Gxk‖L2(Ω) = lim
k→∞

‖∂S[q̂]∗(δxk − δx)‖L2(Ω) = 0.

Together with the compactness of Ωo this completes the proof.

Remark 5.5. We pause for a moment to take a closer look at the Green’s function Gx ∈ L2(Ω) of
the adjoint operator ∂S[q̂]∗ at x ∈ Ωo and its computation. Assume that the partial derivatives

a′y(q̂, S[q̂])(·, ·) : Y ×W → R, a′q(q̂, S[q̂])(·, ·) : L2(Ω)×W → R

of a at (q̂, S[q̂]) give continuous bilinear forms. Furthermore for f ∈ W ∗ there exists a unique
element gf ∈ Y with

a′y(q̂, S[q̂])(gf , ϕ) = 〈ϕ, f〉W,W ∗ ∀ϕ ∈W,

and the mapping

T : W ∗ → Y, f 7→ gf ,

is linear and continuous. Since W is reflexive there holds T ∗ : Y ∗ → W . Furthermore we recall
that Y

c
↪→ C(Ωo) and consequentlyM(Ωo)

c
↪→ Y ∗. Let δq ∈ L2(Ω) be fixed for the moment. Then

fδq : W → R, ϕ 7→ −a′q(q̂, S[q̂])(ϕ, δq),

defines a linear and continuous functional on W , i.e. fδq ∈ W ∗. We have ∂S[q̂]δq = Tfδq. Now,
given x ∈ Ωo set Gx = T ∗δx ∈W . By construction, Gx fulfills the adjoint equation

a′y(q̂, S[q̂])(ϕ̃,Gx) = 〈ϕ̃, δx〉Y,Y ∗ ∀ϕ̃ ∈ ImT. (5.34)

Thus we obtain

(Gx, δq)L2(Ω) = ∂S[q̂]δq(x) = 〈Gx, fδq〉W,W ∗ = a′y(q̂, S[q̂])(∂S[q̂]δq,Gx) = −a′q(q̂, S[q̂])(δq,Gx).

From the continuity assumptions on the partial derivatives we infer that

−a′q(q̂, S[q̂])(·,Gx) : L2(Ω)→ R, δq 7→ −a′q(q̂, S[q̂])(δq,Gx),

gives a linear continuous functional on L2(Ω). Applying the Riesz representation theorem it is
identified with Gx. In particular, this implies that the evaluation of the mapping G· at a spatial
point x ∈ Ωo requires the computation of the function Gx, the Green’s function of the operator T ∗,
fulfilling the partial differential equation in (5.34).
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We proceed with the characterization of the Fisher-Information operator. For x ∈ Ωo define

kx ∈ L2(Ω ×Ω) with kx(y, z) = Gx(y)Gx(z), for a.e. y, z ∈ Ω.

From Section 3.1.1 we recall that L2(Ω × Ω) is isometrically isomorphic to the space of Hilbert-
Schmidt operators HS(L2(Ω), L2(Ω)). We recall that this space and the space of self-adjoint
Hilbert-Schmidt operators SHS(L2(Ω), L2(Ω)) are Hilbert spaces with respect to the norm induced
by the Hilbert-Schmidt inner product

〈〈B1, B2〉〉HS(L2(Ω),L2(Ω)) = TrL2(Ω)(B
∗
1B2) =

∞∑
i=1

(B1, φi)L2(Ω)(B2, φi)L2(Ω),

for all B1, B2 ∈ HS(L2(Ω), L2(Ω)). If B ∈ SHS(L2(Ω), L2(Ω)) there exists a square-integrable
function kB ∈ L2(Ω ×Ω) with

[Bδq](z) =

∫
Ω
kB(y, z)δq(y)dy, kB(y, z) = kB(z, y) a.e. y, z ∈ Ω.

The positive Hilbert-Schmidt operator corresponding to kx is given by the rank 1 operator

I(x) = Gx ⊗Gx ∈ Pos(L2(Ω), L2(Ω)),

which acts on L2(Ω) via

(δq1, I(x)δq2)L2(Ω) = (δq1, [G
x ⊗Gx]δq2)L2(Ω) = (Gx, δq1)L2(Ω)(G

x, δq2)L2(Ω)

= ∂S[q̂]δq1(x) ∂S[q̂]δq2(x),

for all δq1, δq2 ∈ L2(Ω). We make the following observations.

Proposition 5.16. The function

I : Ωo → SHS(L2(Ω), L2(Ω)), x 7→ Gx ⊗Gx,

is uniformly continuous and thus Bochner-integrable with respect to u ∈M(Ωo). There holds

I(u(x,u)) = X∗Σ−1X =

∫
Ωo

I(x) du(x) =

∫
Ωo

Gx ⊗Gx du(x),

for every measurement setup

x = (x1, . . . , xN )> ∈ ΩN
o , u = (u1, . . . ,uN )>, u =

N∑
i=1

uiδxi ∈M+(Ωo).

Proof. The uniform continuity of the mapping I(x) follows from Proposition 3.3. Thus it is
Bochner integrable with respect to u ∈ M(Ωo). Let a vector of measurement positions x ∈ ΩN

o ,
a vector of measurement weights u ∈ RN+ and δq1, δq2 ∈ L2(Ω) be given. Define u =

∑N
i=1 uiδxi .

By definition of the operator X ∈ L(L2(Ω),RN ) and Σ−1 ∈ RN×N , see (5.33), we obtain

(δq1, I(u(x,u))δq2)L2(Ω) = (Xδq1, Σ
−1Xδq2)RN =

N∑
i=1

ui∂S[q̂]δq1(xi) ∂S[q̂]δq2(xi).
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In the same manner we compute(
δq1,

[∫
Ωo

Gx ⊗Gx du(x)

]
δq2

)
L2(Ω)

=
N∑
i=1

ui(δq1, [G
xi ⊗Gxi ]δq2)L2(Ω)

=

N∑
i=1

ui∂S[q̂]δq1(xi) ∂S[q̂]δq2(xi).

Since δq1, δq2 ∈ L2(Ω) where chosen arbitrary combining both results yields the statement.

Thus the sensor placement problem (5.32) fits into the general framework of Chapter 3 by choosing
Q = L2(Ω) and

O : Ωo → L2(Ω), x 7→ Gx.

In order to determine an optimal measurement setup we now interpret the distibution of the sensors
on the spatial domain as a Radon measure and solve the sparse sensor placement problem

min
u∈M+(Ωo)

[Ψ(I(u)) + β‖u‖M]. (5.35)

Here, the Fisher operator I maps a given u ∈M(Ωo) to the associated Bochner integral:

I : M(Ωo)→ SHS(L2(Ω), L2(Ω)), u 7→
∫
Ωo

Gx ⊗Gxdu(x),

which fulfills

[I(u)δq1](y) =

∫
Ωo

Gx(y)(Gx, δq1)L2(Ω) du(x), (δq1, I(u)δq2)L2(Ω) = 〈∂S[q̂]δq1 ∂S[q̂]δq2, u〉,

for all δq1, δq2 ∈ L2(Ω) and almost every y ∈ Ω. Its definition is formalized through the following
proposition.

Proposition 5.17. The mapping

I : M(Ωo)→ SHS(L2(Ω), L2(Ω)), u 7→
∫
Ωo

Gx ⊗Gxdu(x),

is linear continuous with

‖I(u)‖HS(L2(Ω),L2(Ω)) ≤ max
x∈Ωo

‖Gx‖2L2(Ω)‖u‖M.

Furthermore it is weak*-to-strong continuous.

Proof. For a proof of this statement see Proposition 3.4 and Theorem 3.8, setting Q = L2(Ω) and
O(x) = Gx.

We make the following general assumptions on the optimal design criterion Ψ .

Assumption 5.4. The function Ψ : SHS(L2(Ω), L2(Ω))→ R ∪ {+∞} satisfies:

A5.1 There holds Pos(L2(Ω), L2(Ω)) ⊂ domΨ .
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A5.2 Ψ is two times continuously differentiable on Pos(L2(Ω), L2(Ω)).

A5.3 Ψ is convex on Pos(L2(Ω), L2(Ω)).

A5.4 Ψ is monotone in the sense that

B2 −B1 ∈ Pos(L2(Ω), L2(Ω))⇒ Ψ(B2) ≤ Ψ(B1) ∀B1, B2 ∈ Pos(L2(Ω), L2(Ω)).

We emphasize that all examples considered in Section 5.1.3 fit into these general assumptions. In
the following lemma the adjoint operator of I is characterized.

Lemma 5.18. The Banach-space adjoint of the operator I : M(Ωo) → SHS(L2(Ω), L2(Ω)) as
defined in Proposition 5.17 is given by

I∗ : SHS(L2(Ω), L2(Ω))→ C(Ωo), B 7→ ϕB.

Here, the continuous function ϕB ∈ C(Ωo) is given by ϕB(x) = (Gx, BGx)L2(Ω) for all x ∈ Ωo.

Proof. The statement is directly obtained by applying Proposition 3.7, setting Q = L2(Ω) and
O(x) = Gx.

We introduce the reduced problem formulation

min
u∈M+(Ωo)

F (u) = [ψ(u) + β‖u‖M], (Pβ)

where the functional ψ is defined as ψ = Ψ ◦ I. The following proposition summarizes some key
properties of ψ. These can be inferred from the general theory of Chapter 3, see Proposition 3.9
and Lemma 3.10.

Proposition 5.19. Let Assumptions (A5.1)–(A5.4) be fulfilled. The operator I and the func-
tional ψ satisfy:

1. For every u ∈M+(Ωo) there holds I(u) ∈ Pos(L2(Ω), L2(Ω)).

2. There holds domM+(Ωo) ψ =M+(Ωo).

3. ψ is at least two times continuously differentiable on M+(Ωo). For u ∈ M+(Ωo) its first
derivative ψ′(u) = I∗∇Ψ(I(u)) ∈ C(Ωo) can be identified with the continuous function

[∇ψ(u)] (x) = (Gx,∇Ψ(I(u))Gx)L2(Ω) = −‖(−∇Ψ(I(u)))1/2Gx‖L2(Ω) ∀x ∈ Ωo. (5.36)

Moreover the gradient ∇ψ : M+(Ωo)→ C(Ωo) is weak*-to-strong continuous.

Given u ∈M+(Ωo), the second derivative ∇2ψ(u) ∈ L(M(Ωo),M(Ωo)
∗) is characterized as

〈δu1,∇2ψ(u)δu2〉M,M∗ = TrL2(Ω)(I(δu1)∇2Ψ(I(u))I(δu2)), ∀δu1, δu2 ∈M(Ωo).

5. ψ is convex onM+(Ωo).

6. ψ is monotone in the sense that

I(u2 − u1) ∈ Pos(L2(Ω), L2(Ω))⇒ ψ(u2) ≤ ψ(u1) ∀u1, u2 ∈M+(Ωo).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

To ensure the existence of a solution to (Pβ) we impose additional assumptions on the objective
functional F .

Assumption 5.5. The objective functional F is radially unbounded on M+(Ωo), i.e. given a
sequence {uk}k∈N ⊂M+(Ωo) there holds

‖uk‖M →∞⇒ F (uk)→∞.

Observe that the regularization term in (Pβ) can be written as

Gβ(‖u‖M) = β‖u‖M where Gβ : R→ R, m 7→ βm+ I[0,∞)(m).

The functional Gβ obviously fulfills Assumption 3.3. Hence the following results on the existence
and characterization of optimal measurement designs can be derived from the theory presented
in Chapter 3. We therefore omit most of the standard proofs and give references to the general
results where necessary.

Theorem 5.20. Let β > 0 be given and let Assumption 5.5 hold. Then there exists at least one
optimal solution ūβ ∈ M+(Ωo) to (Pβ) and the set of optimal solutions is bounded. If the design
criterion Ψ is strictly convex on Pos(L2(Ω), L2(Ω)) then the optimal Fisher information I(ūβ) is
the same for every optimal solution.

Proof. Given Assumptions 5.4 and 5.5, this statement follows from Proposition 3.11.

The following example discusses Assumption 5.5 in the context of A and D-optimality.

Example 5.5. Obviously Assumption 5.5 is fulfilled if Ψ is nonnegative on Pos(L2(Ω), L2(Ω))
since then

β‖u‖M ≤ Ψ(I(u)) + β‖u‖M = F (u) ∀u ∈M+(Ωo)

This is e.g. the case for the A-optimal design criterion

ΨA(I(u)) = TrL2(Ω)(Cpost(I(u))).

For the D-optimal design criterion

ΨD(I(u)) = − log(Det(I−1/2
0 I(u)I−1/2

0 + Id)),

the situation is more involved. To prove the radial unboundedness of ΨD(I(u))+β‖u‖M we proceed
as follows. Given u ∈M+(Ωo) we conclude

− log(Det(max
x∈Ωo

‖Gx‖2L2(Ω)‖u‖MI
−1
0 + Id)) ≤ − log(Det(I−1/2

0 I(u)I−1/2
0 + Id)).

by a first-order Taylor approximation. Define the differentiable function

f : R+ → R, m 7→ − log(Det(max
x∈Ωo

‖Gx‖2L2(Ω)mI
−1
0 + Id)).

We calculate

f ′(m) = −max
x∈Ωo

‖Gx‖2L2(Ω) TrL2(Ω)((max
x∈Ωo

‖Gx‖2L2(Ω)mI
−1
0 + Id)−1I−1

0 ).
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Denoting by {λi}i∈N the eigenvalues of I−1
0 ordered by decreasing magnitude we can calculate the

trace explicitly to arrive at

f ′(m) = −max
x∈Ωo

‖Gx‖2L2(Ω)

∞∑
i=1

λi(1 + max
x∈Ωo

‖Gx‖2L2(Ω)mλi)
−1.

Let an arbitrary ε > 0 be given and fix M1 > 0. There exists an index K ∈ N with

max
x∈Ωo

‖Gx‖2L2(Ω)

∞∑
i=K+1

λi(1 + max
x∈Ωo

‖Gx‖2L2(Ω)mλi)
−1 <

ε

2
,

for all m ≥M1. Furthermore there exists M2 > 0 such that

max
x∈Ωo

‖Gx‖2L2(Ω)

K∑
i=1

λi(1 + max
x∈Ωo

‖Gx‖2L2(Ω)mλi)
−1 <

ε

2
,

for all m ≥M2. Combining both statements yields

|f ′(m)| = max
x∈Ωo

‖Gx‖2L2(Ω)

∞∑
i=1

λi(1 + max
x∈Ωo

‖Gx‖2L2(Ω)mλi)
−1 <

ε

2
+
ε

2
= ε

for all m ≥ max{M1,M2}. Since ε was chosen arbitrary we conclude limm→∞ f
′(m) = 0 and,

applying L’Hôspital’s rule,

0 = lim
‖u‖M→∞

f(‖u‖M)

‖u‖M
= lim
‖u‖M→∞

f ′(‖u‖M) ≤ lim
‖u‖M→∞

ΨD(I(u))

‖u‖M
≤ 0.

Consequently for ‖u‖M large enough we have

β

2
‖u‖M ≤ ΨD(u) + β‖u‖M,

and we deduce that F (u) = ΨD(I(u)) + β‖u‖M is radially unbounded.

The rest of this section focuses on the structure of optimal design measures and their behaviour
for large β > 0. We start by deriving necessary and sufficient first-order optimality conditions
characterizing the support of ūβ .

Theorem 5.21. Let β > 0 be given. A measure ūβ ∈ M+(Ωo) is a minimizer of (Pβ) if and
only if one of the following (equivalent) conditions holds

• There holds

−∇ψ(ūβ) ∈ β∂‖ūβ‖M + ∂Iu≥0(ūβ).

• There holds

sup
v∈M+(Ωo)

[〈∇ψ(ūβ), ūβ − v〉+ β‖ūβ‖M − β‖v‖M] = 0.
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• There holds

− min
x∈Ωo

∇ψ(ūβ)(x)

{
= β ‖ūβ‖M > 0

≤ β ‖ūβ‖M = 0
, −〈∇ψ(ūβ), ūβ〉 = β‖ūβ‖M.

• There holds

− min
x∈Ωo

∇ψ(ūβ)(x)

{
= β ‖ūβ‖M > 0

≤ β ‖ūβ‖M = 0
, supp ūβ ⊂ {x ∈ Ωo | − ∇ψ(ūβ)(x) = β } .

Proof. Since ψ is two times differentiable and monotone we have −∇ψ(u)(x) ≥ 0 and thus also

− min
x∈Ωo

∇ψ(u)(x) ≥ 0

for all measures u ∈M+(Ωo) and x ∈ Ωo. Calculating the subdifferential of Gβ at ‖ūβ‖M gives

∂Gβ(‖ūβ‖M) = {β}+ ∂I[0,∞)(‖ūβ‖M) =

{
(−∞, β] ‖ūβ‖M = 0

{β} ‖ūβ‖M > 0
.

Furthermore we note that

∂(β‖ · ‖M + Iu≥0(·))(ũ) = β∂‖ũ‖M + ∂Iu≥0(ũ)

for all ũ ∈ M(Ω) due to the continuity of the norm. Thus we obtain the result by applying
Theorem 3.17 as in Example 3.3.

Remark 5.6. As in the finite dimensional case we stress that similar equivalent optimality condi-
tions can be derived for the norm constrained problem

min
u∈M+(Ωo)

ψ(u) s.t. ‖u‖M ≤ K,

given a maximum cost K > 0 for the measurements. For the sake of brevity we resign from stating
them here and refer to the general case in Theorem 3.17 as well as Example 3.4.

In contrast to the situation discuessed in the previous chapter, existence of sparse minimizers
to (Pβ) may not be guaranteed since the parameter space is no longer finite dimensional. This
issue is addressed in the following corollaries. In general conclusions on the sparsity pattern of
minimizers to (Pβ) can be based on the support condition stated in Theorem 5.21. Additionally
the choice of the cost parameter β > 0 provides some indirect control on the support size of optimal
designs and thus the number of measurements. Last we emphasize that all optimal designs are
well-approximated by suboptimal sparse design measures up to arbitrary accuracy in a sense made
clear below.

Corollary 5.22. Denote by ūβ ∈M+(Ωo) an optimal design such that

{x ∈ Ωo | − ∇ψ(ūβ)(x) = β } = {x̄i}Ni=1

Then ūβ is given as a conic linear combination ūβ =
∑N

i=1 ūiδx̄i for some ūi ∈ R+, i = 1, . . . , N .
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Proof. Since ūβ minimizes in (Pβ) we infer

supp ūβ ⊂ {x ∈ Ωo | − ∇ψ(ūβ)(x) = β } = {x̄i}Ni=1,

from Theorem 5.21. This finishes the proof.

Corollary 5.23. There exists β0 > 0 such that for all β ≥ β0 the unique solution to (Pβ) is given
by the zero measure.

Proof. The statement can be derived along the lines of proof in Proposition 4.10.

Corollary 5.24. Let an arbitrary minimizer ūβ to (Pβ) be given. For all ε > 0 there exists
ūε ∈M+(Ωo) with

ūε ∈ cone { δx | x ∈ Ωo } , F (ūε)− F (ūβ) < ε.

Proof. Let an optimial design ūβ to (Pβ) and ε > 0 be given. Following [50, Appendix A] there
exists a sequence {uk}k∈N ⊂M+(Ωo) with

uk ∈ cone{ δx | x ∈ Ωo } ∀k ∈ N, uk ⇀
∗ ūβ.

The claimed statement now follows noting that

‖uk‖M = 〈1, uk〉 → 〈1, ūβ〉 = ‖ūβ‖M, ψ(uk)→ ψ(ūβ),

due to the weak* convergence of {uk}k∈N, weak*-to-strong continuity of I and continuity of Ψ
on Pos(L2(Ω), L2(Ω)).

5.2 Discretization and error estimates

In the following section we present a suitable approximation framework for the Bayesian sensor
placement problem (Pβ). Therefore we proceed in two steps, first starting with a discretization
of the underlying state and sensitivity equations by linear finite elements. In contrast neither
the parameter space L2(Ω) nor the space of design measures M+(Ω) is discretized. Again, this
can be interpreted as a variational discretization approach. We discuss well-posedness of the FE-
discretized sensor placement problem and derive first-order optimality conditions. Most important
a careful study of the discrete Fisher information operator reveals that the FE-discretized problem
is equivalent to an additional discretization of the parameter space and the restriction of possible
sensor locations to the grid nodes of the mesh. Finally we prove convergence of the discrete optimal
design measures towards optimal solutions of (Pβ) and present a priori error estimates.

While a finite element discretization of the sensitivity equation implicitly leads to a finite dimen-
sional optimization problem the discretized parameter space is in general high-dimensional. This
makes a direct evaluation of the design criterion and its derivatives computationally infeasible and
thus prohibits its numerical solution, see also Section 5.3.2. Furthermore it may depend on the
linearization point q̂ which may differ significantly from the true value of the parameter. There-
fore, in a second step, we consider the approximation of the parameter space L2(Ω) through the
subspace spanned by the first n eigenvectors of the a priori covariance operator. This approach
corresponds to a truncation of the Karhunen-Lòeve expansion corresponding to q after n terms,
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i.e. we only consider the directions in which the prior distribution admits the largest uncertainty.
Subsequently, sensors are placed to optimally infer the coefficients in this basis representation.

Last, to obtain a computationally feasible problem, we combine both discretization concepts and
analyse the resulting fully discrete problem. Convergence results for the discrete optimal design
measurements as well as a priori error estimates with respect to the spatial mesh-size h and the
tail sum of the eigenvalues corresponding to the neglected eigenvectors are derived. The results
are illustrated on the A and D-optimal design problem highlighting the practical relevance of the
proposed approach.

Efficient computational methods for discrete approximations of sensor placement problems asso-
ciated to infinite dimensional Bayesian inference are e.g. considered in [4, 6]. In contrast to the
present work the authors consider only finitely many candidate locations for the placement of
the sensors. The PDE constraints as well as the underlying parameter space are approximated
using a finite element ansatz and the coefficients of the unknown parameter in the correspond-
ing basis expansion are treated as random variables. This results in high-dimensional discrete
parameter spaces and large covariance matrices. Evaluating e.g. the A-optimal design criterion
in this situation requires calculating the trace of the inverse to a large and dense matrix, usually
stemming from the discretization of the fractional power of an elliptic differential operator. In
order to make the resulting discrete sensor placement problems computationally feasible, different
tools from stochastic linear algebra such as randomized trace estimation, [231], are applied and
low-rank approximations of the design-dependent posterior covariance operator are considered.
In particular the authors exploit the low-rank rank structure of the parameter-to-observable map
due to the finite number of sensors. A comprehensive comparison between several existing ap-
proaches including their computational costs is provided in [6] together with stability results for
the evaluation of the optimal design criterion and its gradient. However, we are not aware of any
pre-existing works dealing with the case of vanishing discretization parameters or a priori error
estimation.

5.2.1 Finite element discretization

We first discuss a discretization of (Pβ) based on a finite element ansatz for the underlying state
and sensitivity equations. In the following, the sets Ω and Ωo are assumed to be polytopal
(i.e. polygonal in two dimensions and polyhedral in three dimensions). We consider a family of
triangulations { Th }h>0 of Ω which resolve the spatial domain Ω as well as the observational
domain Ωo

Ω =
⋃
T∈Th

T̄ , Ωo =
⋃
T∈T oh

T̄ . (5.37)

Here T oh ⊂ Th denotes the union of all cells making up the observational domain. To each
triangulation we assign a positive scalar h > 0 denoting the maximal diameter of a cell K ∈ Th.

By Nh we denote the set of nodes of the triangulation. For each h > 0 the space of continuous
piecewise linear finite elements Vh on Th and its dual space V ∗h 'Mh are defined as before by

Vh = { yh ∈ C(Ω̄) | yh|T ∈ P1 ∀T ∈ Th } , Mh = {uh ∈M(Ω̄) | suppuh ⊂ Nh } .
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By Yh ⊂ Vh as well as Wh ⊂ Vh we denote the discretized state and solution spaces, respectively.
We recall the nodal interpolation operators ih : C(Ω̄)→ Vh and Λh : M(Ω̄)→Mh as

ih(y) =
∑
xi∈Nh

y(xi)e
h
i , Λh(u) =

∑
xi∈Nh

〈ehi , u〉δxi

where ehi , i ∈ {1, . . . ,#Nh} denotes the nodal basis function associated to a node xi ∈ Nh. The
discretized state equation is described by a continuously differentiable form

ah : Qad × Yh ×Wh → R.

For a given q ∈ Qad an element yh ∈ Yh is called an associated state if

ah(q, yh)(ϕh) = 0 ∀ϕh ∈Wh. (5.38)

In the following we assume existence and uniqueness of the state yh = Sh[q̂]. Analogously, given
δq ∈ L2(Ω), the discrete sensitivity δyh ∈ Yh at the a priori guess q̂ ∈ Qad is a solution to

a′h,y(q̂, y
h)(δyh, ϕh) = −a′h,q(q̂, ŷh)(δq, ϕh) ∀ϕh ∈Wh, (5.39)

where ŷh = Sh[q̂]. The forms a′h,y, a
′
h,q denote the partial derivatives of ah with respect to the

state and the parameter. For the remainder of this section we make the following existence and
stability assumptions for the considered discretization.

Assumption 5.6. There exists h0 > 0 such that for all h ≤ h0, q̂ ∈ Qad and δq ∈ L2(Ω) the
discrete state and sensitivity equations, (5.38) and (5.39), admit unique solutions yh = Sh[q̂]
and δyh = ∂Sh[q̂]δq. Moreover the operator ∂Sh[q̂] : L2(Ω)→ C(Ωo) is linear and continuous and
there exists a positive, strictly monotonically increasing and continuous function γ : R+ → R+

with limh→+0 γ(h) = 0 and a constant c > 0 independent of h such that

‖(∂S[q̂]− ∂Sh[q̂])δq‖C ≤ cγ(h)‖δq‖L2(Ω),

holds for every δq ∈ L2(Ω).

Discretization of (Pβ) and stability estimates

Let h ≤ h0 be given. As in the continuous case we observe

∂Sh[q̂]δq (x) = 〈∂Sh[q̂]δq, δx〉 = (∂Sh[q̂]∗δx, δq2)L2(Ω) = (Gxh, δq)L2(Ω),

for all x ∈ Ωo, δq ∈ L2(Ω) and Gxh = ∂Sh[q̂]∗δx. Due to the compactness of the operator
∂Sh[q̂] : L2(Ω)→ C(Ωo) the mapping

G·h : Ωo → L2(Ω), x 7→ Gxh,

is uniformly continuous. We now define the finite element approximation to (Pβ) by

min
uh∈M+(Ωo)

Fh(uh) = [ψh(uh) + β‖uh‖M], (Pβ,h)
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where the reduced functional is given as ψh(u) = Ψ(Ih(u)). Here, the discrete Fisher information
operator Ih stems from a straightforward discretization of I by

Ih : M(Ωo)→ SHS(L2(Ω), L2(Ω)), u 7→
∫
Ωo

[Gxh ⊗Gxh] du(x).

Accordingly we define the discrete pointwise Fisher information as

Ih : Ωo → SHS(L2(Ω), L2(Ω)), x 7→ Gxh ⊗Gxh.

Note that we neither discretize the space of design measures M+(Ωo) nor the parameter space
L2(Ω). This corresponds to a variational discretization approach.

Before proving the existence of minimizers to (Pβ,h) we present several stability results for the
Green’s function Gxh and the Fisher information operator Ih.

Lemma 5.25. For all h ≤ h0 there holds

max
x∈Ωo

‖Gx −Gxh‖L2(Ω) ≤ cγ(h), (5.40)

for some constant c > 0 independent of h.

Proof. By definition of Gx and Gxh we obtain

‖Gx −Gxh‖L2(Ω) = sup
δq∈L2(Ω),
‖δq‖L2(Ω)=1

(Gx −Gxh, δq)L2(Ω) = 〈∂S[q̂]δq − ∂Sh[q̂]δq, δx〉 ≤ cγ(h),

for all x ∈ Ωo using the estimate from Assumption 5.6.

Proposition 5.26. For all h ≤ h0 small enough we have

max
x∈Ωo

‖I(x)− Ih(x)‖HS(L2(Ω),L2(Ω)) + ‖I − Ih‖L(M(Ωo),HS(L2(Ω),L2(Ω))) ≤ cγ(h),

for some constant c > 0 independent of h.

Proof. Denote by {φi}i∈N an orthonormal basis of L2(Ω) and fix x ∈ Ωo. By definition we have

‖I(x)− Ih(x)‖2HS(L2(Ω),L2(Ω)) = TrL2(Ω)((I(x)− Ih(x))(I(x)− Ih(x)))

=
∞∑
i=1

‖(I(x)− Ih(x))φi‖2L2(Ω).

Fix an an arbitrary index i ∈ N. We estimate

‖(I(x)− Ih(x))φi‖L2(Ω) = ‖Gx(Gx, φi)L2(Ω) −Gx(Gx, φi)L2(Ω)‖L2(Ω)

≤ |(Gxh, φi)L2(Ω)|‖Gx −Gxh‖L2(Ω) + ‖Gx‖L2(Ω)|(Gx −Gxh, φi)L2(Ω)|.

Squaring both sides and applying Young’s inequality we conclude

‖(I(x)− Ih(x))φi‖2L2(Ω) ≤ 2((Gxh, φi)
2
L2(Ω)‖G

x −Gxh‖2L2(Ω) + ‖Gx‖2L2(Ω)(G
x −Gxh, φi)2

L2(Ω)).
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Recall that due to Parseval’s identity there holds ‖v‖2L2(Ω) =
∑∞

i=1(v, φi)
2
L2(Ω) for all v ∈ L2(Ω).

Summing over all i ∈ N in the above inequality we arrive at

‖(I(x)− Ih(x))‖2HS(L2(Ω),L2(Ω)) ≤ 2(‖Gx‖2L2(Ω) + ‖Gxh‖2L2(Ω))‖G
x −Gxh‖2L2(Ω).

The norms of Gx and Gxh are uniformly bounded with respect to x ∈ Ωo and h. Applying
estimate (5.40) thus yields

max
x∈Ωo

‖I(x)− Ih(x)‖2HS(L2(Ω),L2(Ω)) ≤ cγ(h)2,

for some c > 0. The first result is now obtained through taking the square root. The stability
estimate for I is deduced immediately from

‖I(u)− Ih(u)‖HS(L2(Ω),L2(Ω)) ≤ max
x∈Ωo

‖I(x)− Ih(x)‖HS(L2(Ω),L2(Ω))‖u‖M,

for all u ∈M(Ωo).

Roughly speaking, the following proposition states that given an arbitrary design measure a better
Fisher information can be obtained at a lower cost by only placing sensors in the nodes of the
triangulation.

Proposition 5.27. Let h > 0 and u ∈M+(Ωo) be given. Then there holds

Ih(Λhu)− Ih(u) ∈ Pos(L2(Ω), L2(Ω)), ‖Λhu‖M ≤ ‖u‖M. (5.41)

Proof. We proceed similarly to the proof of Theorem 4.45. Let an arbitrary but fixed u ∈M+(Ωo)
and z ∈ L2(Ω) be given. The second statement, ‖Λhu‖M ≤ ‖u‖M, follows from elementary
properties of Λh, see [59, Theorem 3.5]. Let us proof the first one. Testing with z ∈ L2(Ω) we
obtain

(z, Ih(u)z)L2(Ω) =
〈

(G·h, z)
2
L2(Ω), u

〉
=

〈(
∂Sh[q̂]z

)2
, u

〉
=

〈 ∑
xj∈Nh

ehj ∂S
h[q̂]z(xj)

2

, u

〉
.

Now, we estimate〈 ∑
xj∈Nh

ehj ∂S
h[q̂]z(xj)

2

, u

〉
≤

〈 ∑
xj∈Nh

ehj

(
∂Sh[q̂]z(xj)

)2
, u

〉
,

with Jensen’s inequality, using the convexity of the square function and
∑

xi∈Nh e
h
i (x) = 1 for all

x ∈ Ωo. From this point on we follow exactly the steps in the proof of Theorem 4.45 obtaining〈 ∑
xj∈Nh

ehj

(
∂Sh[q̂]z(xj)

)2
, u

〉
=

〈
ih

(
∂Sh[q̂]z

)2
, u

〉
=

〈(
∂Sh[q̂]z

)2
, Λhu

〉
.

Thus we conclude

(z, Ih(u)z)L2(Ω) ≤
〈(

∂Sh[q̂]z
)2
, Λhu

〉
=
〈

(G·h, z)
2
L2(Ω) , Λhu

〉
= (z, Ih(Λhu)z)L2(Ω).

Since z ∈ L2(Ω) was arbitrary, this implies Ih(Λhu) − Ih(u) ∈ Pos(L2(Ω), L2(Ω)) finishing the
proof.
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

We are now ready to prove well-posedness of (Pβ,h). In addition, using the results of the previous
proposition, there exist optimal measurement designs supported in Nh.

Theorem 5.28. Let β > 0 be given. For all h ≤ h0 small enough there exists at least one
minimizer ūβ,h ∈M+(Ωo) to (Pβ,h) fulfilling

−∇ψh(ūβ,h) ≤ β, supp ūβ,h ⊂ {x ∈ Ωo| − ∇ψh(ūβ,h)(x) = β} .

Here the discrete gradient is given by

−∇ψh(ūβ,h)(x) = −(Gxh,∇Ψ(Ih(ūβ,h)Gxh)L2(Ω) = ‖(−∇Ψ(Ih(ūβ,h))1/2Gxh‖2L2(Ω),

for all x ∈ Ωo. Moreover the set of minimizers to (Pβ,h) is bounded uniformly in h. Given a
sequence of discrete optimal designs {ūβ,h}h>0 it admits at least one weak* accumulation point
and every accumulation point ūβ is an optimal solution to (Pβ).

Proof. Let h ≤ h0. From Theorem 5.20 we recall that the set of continuous optimal designs is
bounded by a constant M0. Consider the auxiliary problem

min
u∈M+(Ωo)

[Ψ(Ih(u)) + β‖ūβ,h‖M] s.t. ‖u‖M ≤ 2M0. (5.42)

Since Fh is weak*-to-strong continuous on M+(Ωo) this problem admits at least one minimizer
ūβ,h. We proceed to show that the additional norm constraint is inactive if h > 0 is chosen
small enough. By construction the sequence {ūβ,h}h>0 is uniformly bounded. Extracting a weak*
convergent subsequence ūβ,h ⇀∗ ū ∈M+(Ωo) denoted by the same symbol, we note

Ih(ūβ,h)→ I(ū), ‖ūβ,h‖M → ‖ū‖M, ψh(ūβ,h)→ ψ(ū),

as h tends to 0. Let an arbitrary minimizer ūβ of (Pβ) be given. Since ‖ūβ‖M < 2M0 we conclude

F (ū) = lim
h→0

Fh(ūβ,h) ≤ lim
h→0

Fh(ūβ) = F (ūβ).

Thus ū is a minimizer of (Pβ). In particular this yields ‖ū‖M < 2M0. From the weak* convergence
of {ūβ,h}h>0 the same holds for ūβ,h, choosing h small enough, since

‖ūβ,h‖M = 〈1, ūβ,h〉 → 〈1, ū〉 = ‖ū‖M.

As a consequence, the norm constraint in (5.42) is inactive at ūβ,h from which we infer its opti-
mality for (Pβ,h). As the subsequence as well as the accumulation point were chosen arbitrary
the statement on the existence of discrete optimal designs, their uniform boundedness and their
convergence follows.

The necessary and sufficient condition on the discrete optimal gradient ∇ψh(ūβ) as well as its
representation are derived as in the continuous case.

Proposition 5.29. For every discrete optimal design ūβ,h the measure Λhūβ,h ∈ M+(Ωo) ∩Mh

is also optimal.

Proof. For an arbitrary discrete optimal design ūβ,h, h > 0 we have

Ψ(Ih(ūβ,h)) + β‖ūβ,h‖M ≥ Ψ(Ih(Λhūβ,h)) + β‖Λūβ,h‖M,

due to the monotonicity of Ψ and Proposition 5.27. The statement follows.
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Remark 5.7. A straightforward combination of the previous results immediately yields

Fh(u) ≥ Fh(Λhu) ∀u ∈M+(Ωo). (5.43)

At first sight it might seem strange that any optimal design measure is outperformed by a sparse
one supported in the grid nodes given that the parameter space L2(Ω) is infinite dimensional.
Therefore it is worthwhile noting that the parameter space is implicitly approximated due to the
finite dimensionality of the discrete state space Yh. More in detail defining the L2(Ω) complement
of the kernel as Qh = ker ∂Sh[q̂]> we can decompose

L2(Ω) = Qh ⊗Q>h , δq = (Id−PQh)δq + PQhδq,

for all δq in L2(Ω). Here PQh denotes the orthogonal L2(Ω) projection onto Qh. Thus we conclude

∂Sh[q̂]δq = ∂Sh[q̂]PQhδq, Gxh ∈ Qh, Ih(u) ∈ SHS(Qh, Qh),

for all δq ∈ L2(Ω), x ∈ Ωo and u ∈ M(Ωo). Especially this implies dim(Im Ih) ≤ dim(Qh). In
this light, Proposition 5.27 and (5.43) can be interpreted as a stronger version of Theorem 3.20.

We illustrate the implicit discretization of the parameter space for several examples. Here we
emphasize that some of the discretized PDEs considered in the following correspond to parameter-
to-state operators S which are not differentiable in L2(Ω) but only with respect to a stronger
topology. In particular, the corresponding linearized operator ∂S[q̂] is not continuous on L2(Ω).
However after discretizing the model the discrete operator ∂Sh[q̂] can be extended to a linear and
continuous operator between L2(Ω) and C(Ωo). We include these examples for the purpose of
highlighting the different outcomes of the implicit discretization on the parameter space and the
dependence of Qh on the underlying PDE. The spatial domain Ω ⊂ Rd, d ≤ 3, is assumed to be
a bounded convex domain.

Example 5.6. Let us first consider the finite element discretization of Example 5.4. Here, given a
direction δq ∈ L2(Ω) and q̂ ∈ L2(Ω) the discrete sensitivity δyh = ∂Sh[q̂]δq = Sh[δq] ∈ Vh∩H1

0 (Ω)
is given as the unique element in Vh ∩H1

0 (Ω) fulfilling∫
Ω
∇δyh · ∇ϕhdx =

∫
Ω
δqϕhdx, ∀ϕh ∈ Vh ∩H1

0 .

We characterize the kernel of ∂Sh[q̂] as

ker ∂Sh[q̂] =

{
δq ∈ L2(Ω) |

∫
Ω
δqϕhdx = 0, ∀ϕh ∈ Vh ∩H1

0 (Ω)

}
= (Vh ∩H1

0 (Ω))>.

Thus we conclude Qh = Vh ∩H1
0 (Ω).

Example 5.7. In the following example, the unknown parameter q enters in the transportation
term of an elliptic PDE. Given q̂ ∈ W 1,∞(Ω), ∂x1 q̂ = 0 a.e. in Ω, the associated discrete state
yh = Sh[q̂] ∈ Vh ∩H1

0 (Ω) is given by the unique solution to∫
Ω

[∇yh · ∇ϕh + q̂ϕ∂x1yh − fϕh] dx = 0 ∀ϕh ∈ Vh ∩H1
(Ω),

for some known source term f ∈ L2(Ω). The discrete sensitivity δyh = ∂Sh[q̂]δq ∈ Vh ∩H1
0 (Ω) in

a direction δq ∈ L2(Ω) fulfills∫
Ω

[∇δyh · ∇ϕh + q̂ϕh∂x1δyh]dx = −
∫
Ω
δqϕh∂x1yhdx, ∀ϕh ∈ Vh ∩H1

0 (Ω).
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

We obtain

ker ∂Sh[q̂] =

{
δq ∈ L2(Ω) |

∫
Ω
δq∂x1yhϕhdx = 0, ∀ϕh ∈ Vh ∩H1

0 (Ω)

}
=
{
q ∈ V 6ch | ∃ϕh ∈ Vh ∩H

1
0 (Ω) : q = ∂x1yhϕh

}>
= Q>h ,

where the space of piecewise linear and not necessarily continuous function on Th is given by

V 6ch =
{
ϕh ∈ L∞(Ω) | ϕh|T ∈ P1 ∀T ∈ Th

}
.

To prove this note that

δq ∈ Q>h ⇔
∫
Ω
δq∂x1yhϕhdx = 0, ∀ϕh ∈ Vh ∩H1

0 (Ω)⇔ δq ∈ ker ∂Sh[q̂].

Example 5.8. Last we deal with the identification of a distributed diffusion coefficient, see Ex-
ample 5.4. For q̂ ∈ C0,1(Ω), the discrete state yh = Sh[q̂] fulfills∫

Ω
[exp(q̂)∇yh · ∇ϕh − fϕh] dx = 0 ∀ϕh ∈ Vh ∩H1

0 (Ω).

The sensitivity equation for δyh = ∂Sh[q̂]δq, δq ∈ L2(Ω), is derived as∫
Ω

exp(q̂)∇δyh · ∇ϕhdx = −
∫
Ω

exp(q̂)δq∇yh · ∇ϕhdx, ∀ϕh ∈ Vh ∩H1
0 (Ω)

Before proceeding we note that exp(q̂) > 0 on Ω and

(δq1, δq2)L2
q̂(Ω) = (exp(q̂)δq1, δq2), ∀δq1, δq2 ∈ L2(Ω),

induces an inner product on L2(Ω). The induced norm is obviously equivalent to the canonical
norm on L2(Ω). The kernel of the discrete solution operator ∂Sh[q̂] is now given as

ker ∂Sh[q̂] =

{
δq ∈ L2(Ω) |

∫
Ω

exp(q̂)δq∇yh · ∇ϕhdx = 0, ∀ϕh ∈ Vh ∩H1
0 (Ω)

}
=
{
q ∈ V 0

h | ∃ϕh ∈ Vh ∩H1
0 (Ω) : q = ∇yh · ∇ϕh

}>q̂
= Q

>q̂
h ,

where the orthogonal complement is formed with respect to the L2
q̂(Ω) inner product. Here we

define the space of piecewisse constant finite element functions on Th as

V 0
h =

{
ϕh ∈ L∞(Ω) | ϕh|T ∈ P0 T ∈ Th

}
.

This can be proven analogously to the previous example.

In the following theorem error estimates for the objective functional values are provided.
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Theorem 5.30. Let a sequence of discrete optimal designs {ūβ,h}h>0 with ūβ,h ⇀∗ ūβ be given.
For h ≤ h0 small enough there holds

|Fh(ūβ,h)− F (ūβ)| ≤ cγ(h), (5.44)

for some c > 0 independent of h.

Proof. By optimality of ūβ and ūβ,h we have

Fh(ūβ,h)− F (ūβ,h) ≤ Fh(ūβ,h)− F (ūβ) ≤ Fh(ūβ)− F (ūβ).

Note that Fh(u)− F (u) = ψh(u)− ψ(u) for u ∈M+(Ωo). Thus we obtain

|Fh(ūβ,h)− F (ūβ)| ≤ max{|ψh(ūβ,h)− ψ(ūβ,h)|, |ψh(ūβ)− ψ(ūβ)|}. (5.45)

We proceed by Taylor expansion to obtain

|ψh(ūβ)− ψ(ūβ)| = |TrL2(Ω)(∇Ψ(Iζ1h(ūβ))(Ih(ūβ,h)− I(ūβ))|

≤ ‖∇Ψ(Iζ1h(ūβ))‖HS(L2(Ω),L2(Ω))‖Ih(ūβ)− I(ūβ)‖HS(L2(Ω),L2(Ω))

≤ ‖∇Ψ(Iζ1h(ūβ))‖HS(L2(Ω),L2(Ω))‖ūβ‖Mγ(h),

where Iζ1h(ūβ) = I(ūβ)+ζ1
h(Ih(ūβ)−I(ūβ)) for some ζ1

h ∈ (0, 1) depending on h ≤ h0. Analogously
given ūβ,h we get

|ψh(ūβ,h)− ψ(ūβ,h)| = |TrL2(Ω)(∇Ψ(Iζ2h(ūβ,h))(Ih(ūβ,h)− I(ūβ,h))|

≤ ‖∇Ψ(Iζ2h(ūβ,h))‖HS(L2(Ω),L2(Ω))‖Ih(ūβ,h)− I(ūβ,h)‖HS(L2(Ω),L2(Ω))

≤ ‖∇Ψ(Iζ2h(ūβ,h))‖HS(L2(Ω),L2(Ω))‖ūβ,h‖Mγ(h),

with Iζ2h(ūβ,h) = I(ūβ,h) + ζ2
h(Ih(ūβ,h) − I(ūβ,h)) for some ζ2

h ∈ (0, 1) again depending on h.
Observe that there holds

‖I(ūβ)− Iζ1h(ūβ)‖HS(L2(Ω),L2(Ω)) ≤ ‖Ih(ūβ)− I(ūβ)|HS(L2(Ω),L2(Ω)) ≤ cγ(h)‖ūβ‖M,

as well as

‖I(ūβ)− Iζ2h(ūβ,h)‖HS(L2(Ω),L2(Ω))

≤ ‖I(ūβ)− I(ūβ,h)‖HS(L2(Ω),L2(Ω)) + ‖I(ūβ,h)− Ih(ūβ,h)‖HS(L2(Ω),L2(Ω))

≤ ‖I(ūβ)− I(ūβ,h)‖HS(L2(Ω),L2(Ω)) + cγ(h)‖ūβ,h‖M.

From the strong convergence of {Ih}h>0, the weak* convergence of {ūβ,h}h>0 and the uniform
boundedness of {‖ūβ,h‖M}h>0 we conclude

‖∇Ψ(Iζ1h(ūβ))−∇Ψ(I(ūβ))‖HS(L2(Ω),L2(Ω)) + ‖∇Ψ(Iζ2h(ūβ,h))−∇Ψ(I(ūβ))‖HS(L2(Ω),L2(Ω)) → 0,

as h tends to 0. Thus we further estimate (5.45) yielding

|Fh(ūβ,h)− F (ūβ)| ≤ c‖∇Ψ(I(ūβ))‖HS(L2(Ω),L2(Ω))γ(h).

for some c > 0 independent of h > 0.
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A statistical interpretation of variational parameter discretization

Discretizing the underlying equation but not the parameter space can be interpreted as a vari-
ational discretization approach to the Bayesian inverse and the sensor placement problem. We
close this section by shedding some light on the statistical consequences of the finite element
discretization on the inverse problem. To this end let q0 : D → L2(Ω) denote the Gaussian
random field distributed according to the prior distribution µ0 = N (q̂, I−1

0 ). Again, we abbrevi-
ate Sh[q̂](x) = (Sh[q̂](x1), . . . , Sh[q̂](xN ))>. Consider the discrete (linearized) inverse problem

find q ∈ L2(Ω) : Sh[q̂](x) +Xh(q − q̂) = yd where (Xhq)i = ∂Sh[q̂](xi),

for all i = 1, . . . , N and a given vector of measurements yd ∈ RN . As in the continuous case
its solution is given in terms of the posterior distribution µh,ydpost . This probability measure is a
Gaussian whose mean and covariance operator are defined by

qh,ydpost = q̂ + Chpost(X∗hΣ−1(yd − Sh[q̂](x))), Chpost = (X∗hΣ
−1Xh + I0)−1.

Recall that the covariance operator of a Gaussian measure µ = N (qµ, Tµ) allows to quantify the
uncertainty of the associated random field qµ : D → L2(Ω) along given directions in the parameter
space. More precisely, we observed in Proposition 5.1 that there holds

Eµ[(δq, qµ − qµ)] =

∫
L2(Ω)

(δq, q − qµ)2
L2(Ω) dµ(q) = (δq, Tµδq)L2(Ω)

for all δq ∈ L2(Ω). As a consequence, the differences∫
L2(Ω)

(δq, q − q0)2 dµ0(q)−
∫
L2(Ω)

(δq, q − qh,ydpost )2 dµh,ydpost (q) = (δq, (I−1
0 − Chpost)δq)L2(Ω) ≥ 0,

for all δq ∈ L2(Ω), can be interpreted as a measure of directional uncertainty reduction that was
achieved through incorporating the knowledge provided by the measurements yd.

To illustrate this fact let us consider the prior-preconditioned Fisher information operator

I−1/2
0 X∗hΣ

−1XhI
−1/2
0 ∈ L(L2(Ω), L2(Ω)).

This operator represents the information provided by the mathematical model through the mea-
surement setup filtered by the prior. Obviously it is positive, self-adjoint and has at most rank N .
If it is not equal to zero, it admits a strictly positive eigenvalue % > 0 with associated eigenfunc-
tion ϑ ∈ L2(Ω). Due to the definition of the preconditioned Fisher information operator there
holds ϑ ∈ H. Furthermore, sinceH = Im I1/2

0 , there exists an element v ∈ L2(Ω) with I−1/2
0 v = ϑ.

Let us quantify the uncertainty reduction provided by the measurements in this direction. We
readily calculate

(v, Cpostv)L2(Ω) = (v, (X∗hΣ
−1Xh + I0)−1v)L2(Ω)

= (I−1/2
0 v, (I−1/2

0 X∗hΣ
−1XhI

−1/2
0 + Id)−1I−1/2

0 v)L2(Ω)

=
1

%+ 1
(v, I−1

0 v)L2(Ω).

190



5.2 Discretization and error estimates

Thus the amount of uncertainty reduction that occurs in this direction is given by

(v, I−1
0 v)L2(Ω) − (v, Cpostv)L2(Ω) =

%

1 + %
(v, I−1

0 v)L2(Ω).

In particular, if % is large, i.e. %/(%+ 1) ≈ 1, the measurements yd are highly informative in this
direction of the parameter space.

In contrast, if δq ∈ Q>h we readily obtain

(δq, Chpostδq)L2(Ω) = (δq, I−1
0 δq)L2(Ω)

and consequently∫
L2(Ω)

(δq, q − q0)2 dµ0(q)−
∫
L2(Ω)

(δq, q − qh,ydpost )2 dµh,ydpost (q) = (δq, (I−1
0 − I−1

0 )δq)L2(Ω) = 0.

Thus, in such directions, no uncertainty reduction can be achieved by solving the FE discretized
inverse problem. The variability of the posterior distribution on Q>h is completely characterized
by the prior.

Let us put this observation into the context of sparse sensor placement problems. While (Pβ,h) is
still formulated as a sensor placement for the Gaussian random field q in L2(Ω), any measurement
design u ∈ M+(Ωo) only provides information for the parameter on the finite dimensional space
Qh. For example, the A-optimal design criterion might be rewritten as

TrL2(Ω)((Ih(u) + I0)−1) = TrQh((Ih(u) + I0)−1) + TrQ>h
(I−1

0 ),

where the second term is independent of the design measure u and cannot be reduced through
optimizing the measurement setup. In particular the associated sensor placement problem is
equivalent to solving

min
u∈M+(Ωo)

[TrQh((Ih(u) + I0)−1) + β‖u‖M]. (5.46)

To give a rigorous statistical interpretation of this observation let us consider the Gaussian random
variable obtained through projecting the random parts of q onto Qh

PQhq : D → L2(Ω), ω 7→ q̂ + PQh(q(ω)− q̂).

Clearly, PQhq is an affine linear transformation of a Gaussian random field and thus again Gaussian.
Its prior distribution is given by µQh0 = N (qQh0 , PQhI

−1
0 PQh) with mean qQh0 = q̂. Arguing similarly

to our discussion on sparse goal-oriented design criteria, we obtain its posterior distribution µQh,ydpost
as

µQh,ydpost = N (qQh,ydpost , CQhpost) where qQh,ydpost = q̂ + PQh(qh,ydpost − q̂), C
Qh
post = PQhC

h
postPQh .

Now, calculating the averaged pointwise posterior variance of the projected random field yields∫
L2(Ω)

‖q − qQh,ydpost ‖2L2(Ω) dµQh,ydpost = TrL2(Ω)(PQhC
h
postPQh)

= TrQh(PQhC
h
postPQh) + TrQ>h

(PQhC
h
postPQh)

= TrQh(Chpost).
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This admits an intuitive interpretation. Due to the discretization of the PDE model we cannot
obtain any additional knowledge on the unknown parameter on the complement of the finite
dimensional subspace Qh through measurements of the (linearized) state variable and the FE
discretized model. Thus, intuitively, optimal sensors should be chosen in order to, at least, provide
as much certainty on the projection of the parameter onto Qh. This intuition is captured by the
semi-discretized problem (Pβ,h) in a mathematically rigorous way.

5.2.2 Spectral discretization

In general a straightforward algorithmic solution of (Pβ,h) is infeasible since the discrete parameter
space Qh is usually high-dimensional, see also the discussion in Section 5.3.2. To reduce the
dimension of the parameter space we propose to replace the space L2(Ω) with a subspace spanned
by finitely many eigenvectors of I−1

0 . We first discuss this approach for the continuous model i.e.
with no additional FE discretization.

Denote by {λi}i∈N the eigenvalues of I−1
0 ordered by decreasing magnitude and by {φi}i∈N the

associated eigenfunctions. Given a truncation parameter n ∈ N we define the linear subspace
Vn ⊂ L2(Ω) as

Vn = span{φ1, . . . , φn} =

{
n∑
i=1

viφi | vi ∈ R, i = 1, . . . , n

}
.

The orthogonal L2(Ω) projection onto Vn will be denoted by

Pn : L2(Ω)→ Vn, v 7→
n∑
i=1

(v, φi)L2(Ω)φi.

Discretization of (Pβ)

The spectral discretized sensor placement problem is now defined by

min
u∈M+(Ωo)

Fn(u) = [ψn(u) + β‖u‖M], (Pnβ )

where ψn(u) = Ψ(PnI(u)Pn). We make the following additional regularity assumption on the
optimal design criterion Ψ .

Assumption 5.7. For every n ∈ N large enough there holds

A.4.5 Given M0 > 0 and B ∈ Pos(L2(Ω), L2(Ω)), ‖B‖HS(L2(Ω),L2(Ω)) ≤M0, we have

0 ≤ Ψ(PnBPn)− Ψ(B) ≤ cM0

∞∑
i=n+1

λi, ,

for some constant cM0 > 0 which may dependent on M0 but not on B.

We verify this assumption for A and D optimality.
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Example 5.9. For the A-optimal design criterion ΨA(B) = TrL2(Ω)(Cpost(B)) we have

ΨA(PnBPn) = TrL2(Ω)(Cpost(PnBPn)) =
n∑
i=1

[(φi, Cpost(PnBPn)φi)L2(Ω)] +
∞∑

i=n+1

λi,

for n ∈ N and B ∈ Pos(L2(Ω), L2(Ω)). Let us verify Assumption 5.7 in this case. Let an operator
B ∈ Pos(L2(Ω), L2(Ω)) with ‖B‖HS(L2(Ω),L2(Ω)) ≤ M0 be given. Applying Taylor’s expansion we
obtain

0 ≤ ΨA(PnBPn)− ΨA(B) = TrL2(Ω)(Cpost(Bζ)2(B − PnBPn))

= TrL2(Ω)((Cpost(Bζ)2 − PnCpost(Bζ)2Pn)B),

where Bζ = B+ ζ(PnBPn−B) ∈ Pos(L2(Ω), L2(Ω)) for some ζ ∈ (0, 1). Further estimates reveal

TrL2(Ω)((Cpost(Bζ)2 − PnCpost(Bζ)2Pn)B)

≤ ‖B‖L(L2(Ω),L2(Ω)) TrL2(Ω)(Cpost(Bζ)2 − PnCpost(Bζ)2Pn)

= ‖B‖L(L2(Ω),L2(Ω))

∞∑
i=n+1

‖Cpost(Bζ)φi‖2L2(Ω).

Recalling that ‖Cpost(Bζ)‖L(H∗,H) ≤ 1, see (5.9), ‖φi‖2H∗ = λi, and that SHS(L2(Ω), L2(Ω)) embeds
continuously into L(L2(Ω), L2(Ω)) we conclude

ΨA(PnBPn)− ΨA(B) ≤M0

∞∑
n+1

λi.

Example 5.10. Concerning the D-optimal design criterion we have

ΨD(PnBPn) = − log(Det(I−1/2
0 PnBPnI−1/2

0 + Id)),

for all B ∈ Pos(L2(Ω), L2(Ω)) and n ∈ N.

Let B with ‖B‖HS(L2(Ω),L2(Ω)) ≤M0 be given. Proceeding as for the A-optimal design criterion we
obtain

0 ≤ ΨD(PnBPn)− ΨD(B) = TrL2(Ω)(Cpost(Bζ)(B − PnBPn)),

with Bζ = B + ζ(PnBPn −B) ∈ Pos(L2(Ω), L2(Ω)). We further estimate

TrL2(Ω)(Cpost(Bζ)(B − PnBPn)) ≤ TrL2(Ω)(Cpost(Bζ)− PnCpost(Bζ)Pn)‖B‖L(L2(Ω),L2(Ω)).

After calculating the trace we end up with

ΨD(PnBPn)− ΨD(B) ≤ TrL2(Ω)(Cpost(Bζ)− PnCpost(Bζ)Pn)‖B‖L(L2(Ω),L2(Ω))

= ‖B‖HS(L2(Ω),L2(Ω))

∞∑
i=n+1

(φiCpost(Bζ)φi)L2(Ω)

≤M0

∞∑
i=n+1

λi.
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Existence of a minimizer to (Pnβ ) can be concluded from the monotonicity of the design criterion.
Due to the discretization of the parameter space the number of optimal sensors can additionally
be bounded in dependence of the truncation parameter.

Theorem 5.31. Let n ∈ N large enough be given. Then there exists at least one minimizer
ūnβ ∈ M+(Ωo) to (Pnβ ) with # supp ūnβ ≤ n(n + 1)/2. Furthermore a measure ūnβ ∈ M+(Ωo) is
optimal for (Pnβ ) if and only if

−ψn(ūnβ) ≤ β, supp ūnβ ⊂
{
x ∈ Ωo | − ψn(ūnβ)(x) = β

}
,

where the continuous function −ψn(ūnβ) is given by

−∇ψn(ūnβ)(x) = −(PnG
x,∇Ψ(PnIh(ūnβ)Pn), PnG

x)L2(Ω)

= ‖(−∇Ψ(PnI(ūnβ)Pn)1/2PnG
x‖2L2(Ω).

Proof. Let n ∈ N large enough be given. Since Ψ is monotone in the sense of Assumption 5.4 we
conclude

F (u) = Ψ(I(u)) + β‖u‖M ≤ Ψ(PnI(u)Pn) + β‖u‖M = Fn(u) ∀u ∈M+(Ωo).

In particular, this implies radial unboundedness of Fn. Existence of a minimizer and the conditions
on the gradient can now be concluded as in the continuous case. The result on the existence of a
minimizer ūnβ with # supp ūnβ ≤ n(n+ 1)/2 follows by a straightforward adaption of Theorem 3.20
noting that dim(ImPnIPn) ≤ n(n+ 1)/2.

The following proposition addresses convergence of minimizers to the spectral discretized prob-
lem (Pnβ ) as n→∞.

Proposition 5.32. For n ∈ N large enough let ūnβ ∈M+(Ωo) denote a minimizer of (Pnβ ). Then
the sequence {ūnβ}n∈N admits at least one weak* accumulation point ūβ as n→∞ and every such
point is a minimizer of (Pβ).

Proof. Let such a sequence be given. Exploiting the monotonicity of Ψ we conclude

F (ūnβ) ≤ Fn(ūnβ) ≤ Fn(u) ≤ F (u)− cu
∞∑
n+1

λi,

for some arbitrary but fixed u ∈ M+(Ωo), a constant cu > 0 only depending on u, and all n ∈ N
large enough. As a consequence {F (ūnβ))}n∈N and thus {‖ūnβ‖M}n∈N is bounded. We extract a
weak* convergent subsequence {ūnβ}n∈N , denoted by the same symbol, with limit ūβ ∈M+(Ωo).
Denote by ū a minimizer of (Pβ). Then there holds

F (ūβ) = lim
n→∞

F (ūnβ) ≤ lim
n→∞

Fn(ūnβ) ≤ lim
n→∞

Fn(ū) = F (ū).

This implies optimality of ūβ for (Pβ). Since the weak* accumulation point was chosen arbitrary
the statement follows.

As a straightforward consequence of Assumption 5.7 the approximation error in the optimal objec-
tive function values is bounded by the tail sum of the eigenvalues corresponding to the neglected
orthonormal basis functions.
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Theorem 5.33. For n ∈ N large enough denote by ūnβ ∈ M+(Ωo) an arbitrary optimal solution
to (Pnβ ). Given a sequence {ūnβ}n∈N with ūnβ ⇀

∗ ūβ as n→∞ there holds

|Fn(ūnβ)− F (ūβ)| ≤ c
∞∑

i=n+1

λi,

for all n ∈ N large enough and some constant c > 0 independent of n ∈ N.

Proof. Let such a sequence be given. From its weak* convergence we get the existence of a constant
M0 > 0 with ‖I(ūnβ)‖HS(L2(Ω),L2(Ω)) ≤ M0 for all n ∈ N. By comparing objective function values
we conclude

|Fn(ūnβ)− F (ūβ)| ≤ max{ψn(ūnβ)− ψ(ūnβ), ψn(ūβ)− ψ(ūβ)} ≤ cM0

∞∑
n+1

λi,

using Assumption 5.7. This yields the statement.

A statistical interpretation of spectral discretization

As for the finite element discretized problem (Pβ,h) we give a statistical interpretation of the
spectral discretization approach. To this end we denote denote by q : D → L2(Ω) the Gaussian
random field distributed according to the prior distribution µ0 = N (q̂, I−1

0 ). As a first step we
recall the definition of the space Vn as the span of n eigenfunctions {φi}ni=1 corresponding to the
largest eigenvalues of the prior covariance operator. Moreover, if φi is an eigenfunction to λi > 0,
we calculate

Eµ0 [(φi, q − q̂)2
L2(Ω)] = (φi, I−1

0 φi)L2(Ω) = λi,

Thus the magnitude of the eigenvalue quantifies the amount of prior uncertainty in the direction
of the associated eigenfunctions. In order to measure the amount of information that we obtain
on the unknown parameter by solving the inverse problem we compute these directional variances
also for the posterior distribution.

To this end, denote by qyd : D → L2(Ω) the Gaussian random field distributed according to the
posterior distribution µydpost = N (qydpost, Cpost). Furthermore we recall the definition of the posterior
covariance operator as Cpost = (X∗Σ−1X + I0)−1. In the following we compute the difference
between directional prior and posterior variances

Eµ0 [(φ, q − q̂)2
L2(Ω)]− Eµ

yd
post [(φ, qyd − qydpost)

2
L2(Ω)] = (φ, (I−1

0 − Cpost)φ)L2(Ω) (5.47)

for each eigenfunction φ of I−1
0 with associated eigenvalue λ > 0. Note that this difference is

always non-negative and (φ, I−1
0 φ)L2(Ω) = λ. Thus if this quantity is approximately λ then the

posterior uncertainty of the random field in this direction is small. This means that a significant
amount of information on the unknown parameter along this direction is obtained by solving the
inverse problem. We readily calculate

(φ, Cpostφ)L2(Ω) = λ(φ, (I−1/2
0 X∗nΣ

−1XnI−1/2
0 + Id)−1φ)L2(Ω)

= λ− λ2 |(Σ +XI−1
0 X∗)−1/2Xφ|2RN .
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Here we used the Sherman-Morrison-Woodbury formula for the inverse and I−1/2
0 φ = λ1/2φ. As

a consequence, we obtain

Eµ0 [(φ, q − q̂)2
L2(Ω)]− Eµ

yd
post [(φ, qyd − qydpost)

2
L2(Ω)] = λ2|(Σ +XI−1

0 X∗)−1/2Xφ|2RN . (5.48)

Let us interpret this statement. In order to do so we introduce the random variable yd modeling
our prior believes on the distribution of the measurements as

yd : D → RN , ω 7→ S[q̂](x) +X(q(ω)− q̂) + ε(ω).

Due to the statistical independence of the measurement noise and the prior distribution of the
parameter we conclude that yd is a Gaussian random vector distributed according to

µyd = N (S[q̂](x), XI−1
0 X∗ +Σ).

In particular, there holds

µyd(O) =

∫
RN

exp

(
−1

2
|(Σ +XI−1

0 X∗)−1/2(y − S[q̂](x))|2RN
)

dy ∀O ∈ B(RN ).

Given a concrete vector of measurements yd ∈ RN , the weighted euclidean inner product

|(Σ +XI−1
0 X∗)−1/2(yd − S[q̂](x))|2RN = ((yd − S[q̂](x)), (Σ +XI−1

0 X∗)−1(yd − S[q̂](x)))RN
(5.49)

is often referred to as the information on the distribution of the measurements provided by the
vector yd. Intuitively, this terminology can be justified as follows: Suppose that the vector yd ∈ RN
corresponds to real -life measurements taken in an experiment. Now, based on these observations,
we re-evaluate our prior believes on the distribution of the measurements yd. If the misfit term
in (5.49) is small, i.e. yd is close to the mean of yd, the obtained measurements back up our
prior believes but no significant new information is obtained. However, if this term is large, the
vector yd is far away from S[q̂](x). This either implies that the observed measurements are an
outlier or that the prior distribution of the measurements is incorrect and needs to be adjusted.
In this case the vector yd can be seen as highly informative.

Second, we recall the Karhunen-Loève expansion of the Gaussian random field q as

q(ω, x) = q̂(x) +
∞∑
i=1

√
λiζi(ω)φi(x),

for P-a.e. ω ∈ D and almost every x ∈ Ω. Here the coefficient functions are given by a family of
i.i.d scalar-valued random variables {ζi}i∈N with ζ1 : D → R, ζ1 ∼ N (0, 1).

Now we split up the right hand side of (5.48) as

λ2|(Σ +XI−1
0 X∗)−1/2Xφ|2RN = λ · λ|(Σ +XI−1

0 X∗)−1/2Xφ|2RN . (5.50)

The first factor, λ > 0, describes our prior knowledge on the random field. Obviously, significant
uncertainty reduction can only be achieved if there is substantial prior uncertainty for the random
field along the direction of φ. Additionally, reducing uncertainty is only possible if the obtained
measurements are sensitive with respect to changes in the random field along this direction. This
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is captured by the second factor in (5.50). To make these arguments rigorous we consider random
perturbations of the measurement mean in the direction of φ. More precisely, we define

δyd : D → RN , δy(ω) = S[q̂](x) +XPφ(q(ω)− q̂) = S[q̂](x) + (φ, q(ω)− q̂)Xφ,

where Pφ denotes the L2(Ω) orthogonal projection on the one-dimensional subspace spanned by φ.
Now, we compute the information, in the sense of (5.49), for every realization of δyd and average
over its distribution. This yields∫

D
|(Σ +XI−1

0 X∗)−1/2(δyd(ω)− S[q̂](x))|2RN dP(ω)

=

∫
L2(Ω)

(φ, q − q̂)2
RN |(Σ +XI−1

0 X∗)−1/2Xφ|2RN dµ0(q)

= λ|(Σ +XI−1
0 X∗)−1/2Xφ|2RN

using the formula for the expectation of a quadratic form. In particular, if φ ∈ KerX there holds

λ|(Σ +XI−1
0 X∗)−1/2Xφ|2RN = 0,

i.e. no uncertainty reduction can be achieved in this direction by solving the inverse problem.

Similar to the FE discretized case, we now interpret the spectral discretization approach as a
variational discretization of the inverse problem. To clarify this connection let us recall that the
set of eigenfunctions {φi}i∈N to I−1

0 forms an orthonormal basis of L2(Ω). Now, consider the
spectral discretized inverse problem

find q ∈ L2(Ω) : S[q̂](x) +Xn(q − q̂) = yd, (5.51)

where the linearized parameter-to-observation operator X is replaced by the reduced model Xn =
XPn. This corresponds to a low-rank approximation of the sensitivity operator ∂S[q̂] in the
reduced basis {φi}ni=1. Again note that, from this perspective, we only discretize the underlying
equation but not the parameter space. The solution to this inverse problem in the Bayesian
approach is given by the posterior distribution µn,ydpost which is characterized by its mean and
covariance operator

qn,ydpost = q̂ + Cnpost(X∗nΣ−1(yd − Sh[q̂](x))), Cnpost = (X∗nΣ
−1Xn + I0)−1.

As for the original problem, let us quantify the amount of uncertainty reduction that we achieve
through incorporating the information provided by the measurements in this case. To this end
denote by qn,yd : D → L2(Ω) the Gaussian random field distributed according to µn,yd and let φ
be an eigenfunction of I−1

0 . The corresponding eigenvalue will be denoted by λ. Evaluating the
difference between prior and posterior uncertainty now yields

Eµ0 [(φ, q − q̂)2
L2(Ω)]− Eµ

n,yd
post [(φ, qn,yd − qn,ydpost )2

L2(Ω)] = λ2|(Σ +XnI−1
0 X∗n)−1/2Xnφ|2RN .

If φ corresponds to a neglected eigenvalue, i.e. φ 6∈ Vn, we readily obtain

Eµ
n,yd
post [(φ, qn,yd − qn,ydpost )2

L2(Ω)] = (φ, Cnpostφ)L2(Ω) = (φ, I−1
0 φ)L2(Ω) = λ.
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Thus in such directions no uncertainty reduction can be achieved by solving the spectral discretized
inverse problem (5.51). However aggregating the directional pointwise variances in these directions
we observe that

TrV >n (Cnpost) = TrV >n (I−1
0 ) =

∞∑
i=n+1

λi <∞, TrV >n (Cnpost)→ 0

as n → ∞. From this perspective we may interpret the presented spectral discretization as a
restriction of the inverse problem to the subspace Vn spanned by the directions of largest prior
uncertainty. On its complement, if n ∈ N is large enough, the variability of the random field is
already small due to the provided prior knowledge. This reduces the infinite-dimensional inverse
problem to a finite dimensional one.

In the remaining directions, uncertainty reduction can still be achieved by solving the inverse
problem but only to a smaller extend than in the full model. More precisely, for φ ∈ Vn we
obtain

0 ≤ Eµ
n,yd
post [(φ, qn,yd − qn,ydpost )2

L2(Ω)]− Eµ
yd
post [(φ, qyd − qn,ydpost )2

L2(Ω)]

= (φ, (Cnpost − Cpost)φ) ≤ λi‖Cnpost − Cpost‖HS(H∗,H)

≤ λ‖PnX∗Σ−1XPn −X∗Σ−1X‖L(H,H∗)

≤ λTrL2(Ω)(I
−1/2
0 (X∗Σ−1X − PnX∗Σ−1XPn)I−1/2

0 )

≤ cλ
∞∑

i=n+1

λi|Σ−1/2Xφi|2RN ≤ cλ
∞∑

i=n+1

λi

for some constant c > 0 independent of φ. Here we used the Lipschitz continuity of the posterior
covariance mapping, see Proposition 5.19, the continuous embedding of SHS(H,H∗) into L(H,H∗)
and the definition of the norm on SHS(H,H∗).

In particular these observations suggest that if the sequence of eigenvalues {λi}i∈N converges fast
enough to zero we can restrict the parameter space and thus the inverse problem to a small number
of uncertain directions. On this subspace we can achieve uncertainty reduction comparable to that
provided by the full model through solving the spectral discretized inverse problem. In contrast,
on the complement of this low dimensional space we are already certain about the behavior of
the random field due to the small directional prior variances. Thus they can be left out of the
problem.

Clearly, these observations also yield implications for the corresponding sensor placement prob-
lem (Pnβ ). For example, computing the spectral discretized A-optimal design criterion reveals

ΨA(PnI(u)Pn) = TrVn((PnI(u)Pn + I0)−1) + TrV >n ((PnI(u)Pn + I0)−1)

= TrVn((PnI(u)Pn + I0)−1) +
∞∑

i=n+1

λi.

As a consequence, finding a measurement setup that minimizes the averaged variance of the
posterior distribution obtained by the spectral discretized problem boils down to solving

min
u∈M+(Ωo)

[TrVn((PnI(u)Pn + I0)−1) + β‖u‖M]. (5.52)
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It is straightforward to see that this is equivalent to minimizing the trace of a n× n matrix:

min
u∈M+(Ωo)

[TrRn((In(u) + In0 )−1) + β‖u‖M], (5.53)

Here In0 ∈ Sym(n) is a diagonal matrix with (In0 )ii = 1/λi for i = 1, . . . , n, and the matrix
In(u) ∈ Sym(n) is given by

In(u) =

∫
Ωo

∂Sn[q̂](x)∂Sn[q̂](x)>du(x), ∂Sn[q̂](x) = (∂S[q̂]φ1 (x), . . . , ∂S[q̂]φn (x))>,

for x ∈ Ωo and u ∈ M+(Ωo). This problem fits into the general framework presented in the
previous chapter. Note that ∂S[q̂]φi (x) = (Gx, φi)L2(Ω) for all i = 1, . . . , n. To clarify the
connection between these two problems we introduce the mapping

Pn : L2(Ω)→ Rn, q 7→ ((q, φ1)L2(Ω), . . . , (q, φn)L2(Ω))
>.

Now we readily obtain

TrVn((PnI(u)Pn + I0)−1) =

n∑
i=1

(ei,Pn(PnI(u)Pn + I0)−1P∗nei)Rn

= TrRn((PnI(u)P∗n + PnI0P
∗
n)−1)

= TrRn((In(u) + In0 )−1).

As for the finite element discretization these two equivalent problems can be interpreted as sensor
placement problems to optimally infer on suitable projections of q. Let us first consider the
projection of the random parts of q onto the subspace Vn

PVnq : D → L2(Ω), ω → q̂ + Pn(q(ω)− q̂).

Due to the linearity of the projection, PVnq is a Gaussian random field distributed according
to µVn0 (q̂, PnI−1

0 Pn). Computing its posterior distribution given the measurements and the spectral
discretized inverse problem gives

µVn,ydpost = N (qVn,ydpost , CVnpost) where qVn,ydpost = q̂ + PVn(qn,ydpost − q̂), C
Vn
post = PVnCnpostPVn .

Its averaged posterior is readily calculated as∫
L2(Ω)

‖q − qVn,ydpost ‖2L2(Ω) dµVn,ydpost = TrL2(Ω)(PnChpostPn)

= TrVn(PnCnpostPn) + TrV >n (PnCnpostPn)

= TrVn(Cnpost).

Moreover we observe that

PVnq(ω) = q̂ + Pn(q(ω)− q̂) = q̂ +

n∑
i=1

√
λiζi(ω)φi for P− a.e. ω ∈ D.

From this perspective, the minimization problem in (5.52) corresponds to finding a measurement
setup in order to optimally infer on the first n terms in the Karhunen-Loève expansion of the
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Gaussian random field q by solving(Pnβ ). In the same way, we can motivate the problem in (5.53)
by considering the vector-valued random variable assembling the random scalar coefficients of the
first n terms appearing in the KL-expansion of q.

To close this section we point out that all of the preceding discussions concerning the spectral
discretization inherently rely on an appropriate choice of the prior distribution for the estimation
problem at hand. In particular, we base the construction of the subspace Vn on our belief on the
directional prior variances of the random field. However the measurements and the mathematical
model may provide significant information in the neglected directions. Following (5.50) the ex-
pected uncertainty reduction in such directions is dampened by our already strong prior beliefs ,
i.e. the small variance of the random field, in these directions. Vice versa, the measurements might
not be sensitive with respect to an element φ ∈ Vn i.e. perturbations of the unknown parameter
along such directions only slightly affect the obtained measurements. Consequently no significant
uncertainty reduction can be achieved in these directions by solving the inverse problem. This
again stresses the dependence of the Bayesian approach in the presented setting on a sophisticated
choice of the prior distribution.

5.2.3 Fully-discrete problem

We proceed by combining the two presented discretization approaches to obtain a sensor placement
problem which is amenable to the solution by sequential point insertion algorithms. Therefore we
replace the parameter space L2(Ω) by Vn, n ∈ N , and the continuous solution operator to the
sensitivity equation ∂S[q̂] by its discrete counterpart ∂Sh[q̂] for h ≤ h0. We end up with the fully
discrete problem

min
u∈M+(Ω)

Fnh (u) = [ψnh(u) + β‖u‖M], (Pnβ,h)

where the reduced functional is given by ψnh(u) = Ψ(PnIh(u)Pn). The following theorem addresses
existence of fully discrete optimal designs as well as their convergence behaviour for vanishing
mesh-size and n→∞.

Theorem 5.34. Let β > 0, h ≤ h0 small enough and n ∈ N large enough be given. Then there
exists at least one optimal solution ūnβ,h to (Pnβ,h). Every optimal design ūnβ,h fulfills

−∇ψnh(ūnβ,h) ≤ β, supp ūnβ,h ⊂
{
x ∈ Ωo| − ∇ψnh(ūnβ,h)(x) = β

}
.

Here the discrete gradient is given by

−∇ψnh(ūβ,h)(x) = −(PnG
x
h,∇Ψ(PnIh(ūnβ,h)Pn), PnG

x
h)L2(Ω)

= ‖(−∇Ψ(PnIh(ūβ,h)Pn)1/2PnG
x
h‖2L2(Ω),

Given a sequence {ūnβ,h}h>0,n∈N of optimal designs there exists at least one subsequence denoted by
the same symbol which converges in the weak* sense as h → 0 and n → ∞. Every accumulation
point ūβ of {ūnβ,h}h>0,n∈N is an optimal solution to (Pβ).

Proof. First let us consider an arbitrary weak* convergent sequence {uh,n}h>0,n∈N ⊂ M+(Ωo),
uh,n ⇀

∗ ū, for some ū ∈M+(Ωo), as h→ 0, n→∞. Then there holds

lim
h→0,n→∞

[‖Ih(uh,n)− I(ū)‖HS(L2(Ω),L2(Ω)) + |‖uh,n‖M − ‖ū‖M|] = 0,
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as well as

|ψnh(uh,n)− ψ(ū)| ≤ |Ψ(Ih(uh,n))− Ψ(I(ū))|+M
∞∑

i=n+1

λi,

for some constantM with ‖uh,n‖M ≤M . Hence we conclude Fnh (uh,n)→ F (ū) for h→ 0, n→∞.
We show the existence of at least one discrete optimal design ūnβ,h ∈ M+(Ωo). Therefore we
proceed along the lines of proof in Theorem 5.28 and consider the auxiliary problem

min
u∈M+(Ωo)

Fnh (u) s.t. ‖u‖M ≤ 2M0, (5.54)

for some constant M0 > 0 bounding the set of optimal solutions to (Pβ). Given h > 0 and n ∈ N
there exists a minimizer to (5.54) and the sequence {ūnβ,h}h>0,n∈N admits a weak* convergent
subsequence with limit point ūβ . Denote by ū ∈ M+(Ωo) an arbitrary optimal solution to (Pβ).
From the previous discussions we conclude

F (ūβ) = lim
h→0,n→∞

Fnh (ūnβ,h) ≤ lim
h→0,n→∞

Fnh (ū) = F (ū).

Thus ūβ is an optimal solution to (Pβ) and ‖ūβ‖M < M0. Due to the weak* convergence we
also have ‖ūβ,h‖M < 2M0 yielding the optimality of ūnβ,h for (Pnβ,h). Since the weak* convergent
subsequence as well as ūβ were chosen arbitrary the same holds for every accumulation point.

The necessary (and sufficient) optimality condition on the gradient are derived as in the previous
sections.

Due to the finite element discretization of the sensitivities the existence of an optimal design
supported in the grid nodes is concluded. Combining this observation with the finite dimensionality
of the parameter space Vn its support size can be further bounded in dependence on n.

Proposition 5.35. Assume that there exists an optimal solution to (Pnβ,h). Then there exists an
optimal design ūnβ,h ∈M+(Ω) ∩Mh with # supp ūnβ,h ≤ n(n+ 1)/2.

Proof. Let an arbitrary δq ∈ L2(Ω) be given and define Inh (u) = PnIh(u)Pn for u ∈ M+(Ωo).
First we follow Proposition 5.27 to obtain

(δq, Inh (u)δq)L2(Ω) = (Pnδq, Ih(u)Pnδq)L2(Ω) ≤ (Pnδq, Ih(Λhu)Pnδq)L2(Ω)

= (δq, Inh (Λhu)δq)L2(Ω)

and ‖Λhu‖M ≤ ‖u‖M. Consequently we have Fnh (u) ≥ Fnh (uh) for uh = Λhu ∈ M+(Ωo) ∩Mh.
Furthermore, due to the discretization of the parameter space, we readily infer

dim(Im Inh ) ≤ n(n+ 1)/2.

By combining the statements of Theorem 3.20 and Proposition 4.7 this yields the existence of a
measure ũnh ∈M+(Ωo) ∩Mh with

Inh (ũnh) = Inh (uh), ‖ũnh‖M ≤ ‖uh‖M, # supp ũnh ≤
n(n+ 1)

2
.

Since the design measure u ∈M+(Ωo) was chosen arbitrary all considerations especially apply to
optimal designs obtained from (Pnβ,h). Therefore we conclude the existence of an optimal design
ūnβ,h ∈M+(Ωo) ∩Mh fulfilling supp ūnβ,h ≤ n(n+ 1)/2.
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Error estimates for the objective functional

The rest of this section is devoted to a priori error estimates between the fully discrete prob-
lem (Pnβ,h) and the continuous one. Based on the stability results for Ih and Assumption 5.7 we
conclude the following estimate for the optimal objective function values.

Theorem 5.36. For h ≤ h0 small enough and n ∈ N large enough denote by ūnβ,h an optimal
solution to (Pnβ,h). Given a sequence {ūnβ,h}h>0,n∈N with ūnβ,h ⇀

∗ ūβ as h→ 0, n→∞ there holds

|Fnh (ūnβ,h)− F (ūβ)| ≤ c

( ∞∑
i=n+1

λi + γ(h)

)
, (5.55)

for h > 0 small enough, n ∈ N large enough and some c > 0 independent of h and n.

Proof. Let such a sequence be given and denote by M0 > 0 a constant bounding the norm of its
elements. Again, comparing objective function values yields

|Fnh (ūnβ,h)− F (ūβ)| ≤ max{|ψnh(ūnβ,h)− ψ(ūnβ,h)|, |ψnh(ūβ)− ψ(ūβ)|}.

Noting that {Ih(ūnβ,h)}h>0,n∈N is uniformly bounded in SHS(L2(Ω), L2(Ω)) we proceed to

max{|ψnh(ūnβ,h)− ψ(ūnβ,h)|,|ψnh(ūβ)− ψ(ūβ)|}

≤ c
∞∑

i=n+1

λi + max{|ψh(ūnβ,h)− ψ(ūnβ,h)|, |ψh(ūβ)− ψ(ūβ)|}.

The remaining term on the right-hand side can be estimated along the lines of proof in Theo-
rem 5.30 yielding

max{|ψh(ūnβ,h)− ψ(ūnβ,h)|, |ψh(ūβ)− ψ(ūβ)|} ≤ cγ(h).

for some constant c > 0 independent of n ∈ N and h > 0. Combining all previous results yields
the statement.

Error estimates for the Fisher information operator

Finally we provide a priori error estimates for the convergence of the optimal Fisher information
in the case of Ψ = ΨA and Ψ = ΨD respectively. Recalling the results of Proposition 5.12 we derive
the following quadratic growth condition.

Lemma 5.37. Let Ψ = ΨA. Then the optimal Fisher information I(ūβ) is the same for every
optimal solution ūβ to (Pβ). There exist a neighborhood N(I(ūβ)) of I(ūβ) in SHS(L2(Ω), L2(Ω))
as well as a constant γ0 > with

γ0

4
‖I−1

0 (I(u)− I(ūβ))I−1/2
0 ‖2HS(L2(Ω),L2(Ω)) ≤ F (u)− F (ūβ),

for all u ∈M+(Ωo) with I(u) ∈ N(I(ūβ)).
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Proof. Uniqueness of the Fisher information I(ūβ) follows from the strict convexity of ΨA on
Pos(L2(Ω), L2(Ω)). Given a direction δB ∈ SHS(L2(Ω), L2(Ω)) we calculate

〈〈δB,∇2ΨA(I(ūβ))δB〉〉HS(L2(Ω),L2(Ω))

= 2 TrL2(Ω)(Cpost(I(ūβ))δBCpost(I(ūβ))δBCpost(I(ūβ))) (5.56)

≥ γ0‖I−1
0 δBI−1/2

0 ‖2HS(L2(Ω),L2(Ω)),

for some γ0 > 0, see also the proof of Proposition 5.12. We apply Taylor’s formula to obtain

Ψ(I(u)) = Ψ(I(ūβ)) + 〈〈∇Ψ(I(ūβ)), I(u)− I(ūβ)〉〉HS(L2(Ω),L2(Ω))

+
1

2
〈〈I(u)− I(ūβ),∇2Ψ(I(uζ))(I(u)− I(ūβ))〉〉HS(L2(Ω),L2(Ω)),

with uζ = ūβ + ζ(u− ūβ) for some ζ ∈ (0, 1). Note that we have

‖I(uζ)− I(ūβ)‖HS(L2(Ω),L2(Ω)) ≤ ‖I(u)− I(ūβ)‖HS(L2(Ω),L2(Ω)),

for all u ∈M+(Ω), ζ ∈ (0, 1). From the continuity of ∇2Ψ at I(ūβ) as well as

‖I−1
0 δBI−1/2

0 ‖HS(L2(Ω),L2(Ω)) ≤ c‖δB‖HS(L2(Ω),L2(Ω)) ∀δB ∈ SHS(L2(Ω), L2(Ω)),

we thus conclude the existence of a neighborhood N(I(ūβ)) of I(ūβ) in SHS(L2(Ω), L2(Ω)) with

〈〈δB,∇2ΨA(I(uζ))δB〉〉HS(L2(Ω),L2(Ω))

= 〈〈δB,∇2ΨA(I(ūβ))δB〉〉HS(L2(Ω),L2(Ω))

+ 〈〈δB, (∇2ΨA(I(uζ))−∇2ΨA(I(ūβ)))δB〉〉HS(L2(Ω),L2(Ω))

≥ γ0

2
‖I−1

0 δBI−1/2
0 ‖2HS(L2(Ω),L2(Ω)),

for all uζ = ūβ + ζ(u − ūβ), where ζ ∈ [0, 1) and u ∈ M+(Ωo), I(u) ∈ N(I(ūβ)). By optimality
of ūβ we further have

〈〈∇Ψ(I(ūβ)), I(u)− I(ūβ)〉〉HS(L2(Ω),L2(Ω)) + β‖u‖M − β‖ūβ‖M ≥ 0,

for all u ∈M+(Ωo). Combining the previous statements we arrive at

F (u)− F (ūβ) ≥ γ0

4
‖I−1

0 (I(u)− I(ūβ))I−1/2
0 ‖2HS(L2(Ω),L2(Ω)),

for all u ∈M+(Ωo) with I(u) ∈ N(I(ūβ)). Thus the statement follows.

A similar result holds for the D-optimal design criterion.

Lemma 5.38. Let Ψ = ΨD and consider an optimal solution ūβ. Then the optimal Fisher in-
formation I(ūβ) is the same for every optimal solution ūβ to (Pβ). There exist a neighborhood
N(I(ūβ)) of I(ūβ) in SHS(L2(Ω), L2(Ω)) as well as a constant γ0 > with

γ0

4
‖I−1/2

0 (I(u)− I(ūβ))I−1/2
0 ‖2HS(L2(Ω),L2(Ω)) ≤ F (u)− F (ūβ),

for all u ∈M+(Ωo) with I(u) ∈ N(I(ūβ)).

203
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Proof. The proof follows along the lines of the previous lemma with the sole difference of noting
that

〈〈δB,∇2ΨD(I(ūβ))δB〉〉HS(L2(Ω),L2(Ω)) = TrL2(Ω)(Cpost(I(ūβ))δBCpost(I(ūβ))δB)

≥ γ0‖I−1/2
0 δBI−1/2

0 ‖2HS(L2(Ω),L2(Ω)),

for some γ0 > 0 and all δB ∈ SHS(L2(Ω), L2(Ω)), see also the discussion in the proof of Proposi-
tion 5.13.

The following proposition provides an a priori error estimate for the optimal Fisher information
associated to the A-optimal design problem.

Proposition 5.39. Let Ψ = ΨA and denote by {ūnβ,h}h>0,n∈N a sequence of optimal solutions
to (Pnβ,h) with ūnβ,h ⇀∗ ūβ as h→ 0, n→∞. Then there holds

‖I−1
0 (PnIh(ūnβ,h)Pn − I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω)) ≤ c

√√√√ ∞∑
i=n+1

λi + γ(h),

for all h > 0 small, n ∈ N large enough and some constant c > 0 independent of h and n.

Proof. Let such a sequence be given. We first split the error as

‖I−1
0 (PnIh(ūnβ,h)Pn − I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

≤ ‖I−1
0 (PnIh(ūnβ,h)Pn − Ih(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

+ ‖I−1
0 (Ih(ūnβ,h)− I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω)). (5.57)

The first term on the right hand side of the inequality above is further divided into

‖I−1
0 (PnIh(ūnβ,h)Pn − Ih(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

≤ ‖I−1
0 (PnIh(ūnβ,h)Pn − PnIh(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

+ ‖I−1
0 (PnIh(ūnβ,h)− Ih(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

We estimate

‖I−1
0 (PnIh(ūnβ,h)Pn − PnIh(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

≤ ‖I−3/2
0 PnIh(ūnβ,h)(Pn − Id)‖HS(L2(Ω),L2(Ω))

≤ ‖PnIh(ūnβ,h)‖HS(L2(Ω),L2(Ω))‖I
−3/2
0 (Pn − Id)‖HS(L2(Ω),L2(Ω))

as well as

‖I−1
0 (PnIh(ūnβ,h)− Ih(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

≤ ‖Ih(ūnβ,h)‖HS(L2(Ω),L2(Ω))‖I
−3/2
0 (Pn − Id)‖HS(L2(Ω),L2(Ω)).

Moreover, we conclude

‖PnIh(ūnβ,h)‖HS(L2(Ω),L2(Ω)) ≤ ‖Ih(ūnβ,h)‖HS(L2(Ω),L2(Ω)) ≤ ‖Ih‖L(M(Ωo),HS(L2(Ω),L2(Ω)))‖ūnβ,h‖M.
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Thus, the sequence {PnIh(ūnβ,h)}h>0,n∈N is uniformly bounded in HS(L2(Ω), L2(Ω)) due to the
strong convergence of {Ih}h>0 and the weak* convergence of {ūnβ,h}h>0,n∈N. Last, we estimate

‖I−3/2
0 (Pn − Id)‖HS(L2(Ω),L2(Ω)) =

√√√√ ∞∑
i=n+1

λ3
i ≤

∞∑
i=n+1

λ
3/2
i ,

using Jensen inequality for concave functions. Putting these results together we obtain

‖I−1
0 (PnIh(ūnβ,h)Pn − PnIh(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω)) ≤ c
∞∑

i=n+1

λ
3/2
i

for some constant c > 0 independent of h > 0 and n ∈ N.

We split up the second term on the right hand side in (5.57) as

‖I−1
0 (Ih(ūnβ,h)− I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω)) (5.58)

≤ ‖I−1
0 (Ih(ūnβ,h)− I(ūnβ,h))I−1/2

0 ‖HS(L2(Ω),L2(Ω)) + ‖I−1
0 (I(ūnβ,h)− I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω))

≤ c‖(Ih(ūnβ,h)− I(ūnβ,h))‖HS(L2(Ω),L2(Ω)) + ‖I−1
0 (I(ūnβ,h)− I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω)).

Following Proposition 5.26 the first term is estimated by

‖(Ih(ūnβ,h)− I(ūnβ,h))‖HS(L2(Ω),L2(Ω)) ≤ ‖Ih − I‖L(M(Ωo),HS(L2(Ω),L2(Ω)))‖ūβ,h‖M
≤ cγ(h)‖ūnβ,h‖M.

From the weak* convergence of {ūnβ,h}h>0,n∈N we further deduce I(ūnβ,h) → I(ūβ) strongly in
SHS(L2(Ω), L2(Ω)) and thus I(ūnβ,h) ∈ N(I(ūβ)) for all h > 0 small and n ∈ N large enough.
Hence we obtain

‖I−1
0 (Ih(ūnβ,h)− I(ūβ))I−1/2

0 ‖2HS(L2(Ω),L2(Ω)) ≤ F (ūnβ,h)− F (ūβ),

from Lemma 5.37. We proceed by estimating

F (ūnβ,h)− F (ūβ) ≤ F (ūnβ,h)− Fnh (ūnβ,h) + Fnh (ūnβ,h)− F (ūβ)

≤ |F (ūnβ,h)− Fh(ūnβ,h)|+ |F hn (ūnβ,h)− F (ūβ)|.

Here the second inequality follows due to the monotonicity of Ψ . Using the estimates obtained in
Theorem 5.36 and its proof we conclude

F (ūnβ,h)− F (ūβ) ≤ c1γ(h) + c2

∞∑
i=n+1

λi,

for some constants c1, c2 > 0 independent of h > 0 and n ∈ N. Plugging all previous estimates
into (5.58) we obtain

‖I−1
0 (Ih(ūnβ,h)− I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω)) ≤ c

γ(h) +

√√√√γ(h) +

∞∑
i=n+1

λi

 ,

for some constant c > 0 independent of h > 0 and n ∈ N due to the uniform boundedness of
{ūnβ,h}h>0,n∈N. Combining all previous results yields the desired statement.
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For the D-optimal design problem a similar statement can be proven by the same arguments albeit
with respect to a stronger norm. We omit the proof for the sake of brevity.

Proposition 5.40. Let Ψ = ΨD and denote by {ūnβ,h}h>0,n∈N a sequence of optimal solutions
to (Pnβ,h) with ūnβ,h ⇀∗ ūβ as h→ 0, n→∞. Then there holds

‖I−1/2
0 (PnIh(ūnβ,h)Pn − I(ūβ))I−1/2

0 ‖HS(L2(Ω),L2(Ω)) ≤ c

√√√√ ∞∑
i=n+1

λi + γ(h),

for all h > 0 small, n ∈ N large enough and some constant c > 0 independent of h and n.

Conceptually the proof of Propositions 5.39 and 5.40 follows the same steps as the corresponding
one for the Fisher information matrices derived in Section 4.6.2. However the obtained results
highlight a significant difference between sensor placement problems for finite and infinite dimen-
sional parameters. To make this clear observe that we have I(ūβ) ∈ SHS(L2(Ω), L2(Ω)), but,
surprisingly, the derived a priori estimates only hold in weighted Hilbert-Schmidt norms involving
fractional powers of the compact operator I−1

0 . For the D-optimal design criterion, e.g., we obtain
convergence rates in the norm on the weaker space SHS(H,H∗) since

‖I−1/2
0 δBI−1/2

0 ‖2HS(L2(Ω),L2(Ω)) =
∞∑
i=1

‖δBI−1/2
0 φi‖2H∗ = ‖δB‖2HS(H,H∗).

This stems back to the fact that while Ψ is two times continuously differentiable with respect to
to the norm on SHS(L2(Ω), L2(Ω)), coercivity of its second derivative at I(ūβ) is only given in a
weaker norm. In sensor placement problems for a finite dimensional parameter this phenomenon
does not occur since all norms on the symmetric matrices are equivalent. This can be interpreted as
an instance of the well-known two norm discrepancy which arises frequently in infinite dimensional
optimization problems, see e.g. [65]. Moreover we emphasize that the choice of the weaker norm
depends on the optimal design criterion.

We close this part of the thesis by elaborating on the limitations of the results derived above.
One of the standing assumptions throughout this section is the availability of the eigenvalues
and associated eigenfunctions corresponding to the a priori covariance operator. While for some
choices of I−1

0 and Ω analytic expressions are available, this is in general not the case. In these
situations we have to resort to discrete approximations of its first n eigenpairs.

Obviously, this introduces an additional approximation error to the problem. Additionally, e.g. if
the discrete sensitivities and eigenpairs are obtained on the same spatial mesh, this leads to a cou-
pling between the finite element and the spectral discretization error. This is due to the fact that
while we might expect optimal convergence rates for the eigenfunctions in L2(Ω), the constants
in the necessary stability estimates usually depend on the associated, continuous, eigenvalue, see
e.g. [39,156]. However, if the discrete eigenpairs are determined on a sufficiently fine grid, different
from the one used to approximate the PDE, we might assume that the overall error is dominated
by the FE and spectral approximation error.

Finally we have to make a critical remark on the proposed full discretization scheme. To this
end, for better illustration, we consider again the A-optimal design problem. In order to arrive
at the fully discrete problem (Pnβ,h) we can proceed along two paths. We may first replace the
parameter space L2(Ω) by the truncated space Vn. Proceeding in this direction we obtain (Pnβ )
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which fits into the framework discussed in Chapter 4. Subsequently we discretize the state and
sensitivity equations according to Section 4.6. Changing this order we first arrive at the semi-
discrete problem (Pβ,h). Following the discussions in Section 5.2.1 this reduces the A-optimal
design problem to minimizing the trace of the posterior covariance operator on the implicitly
discretized spaceQh. The additional spectral discretization now amounts to replacing the spaceQh
by Vn. From this perspective this step can be interpreted as a non-conforming approximation of Qh
since Vn 6⊂ Qh in general. Obviously this introduces an additional error depending on how well
elements in Qh are approximated through the truncated space Vn. This also indicates that it may
be appropriate to consider a full discretizations of (Pβ,h) based, e.g. on further approximations of
Qh and ∂Sh[q̂]. We leave this for future research.

Nevertheless the proposed discretization scheme seems reasonable in many situations. If the state y
depends nonlinearly on the parameter q we may adopt a sequential viewpoint on optimal sensor
placement. That is to say we alternate between the estimation of the unknown parameter and
the determination of a new measurement setup based on a linearization of the model around the
current point estimate. Especially in the first iterations of this process the linearization points may
be far from the true value of the parameter and the linearized models are only of limited utility.
In this case it seems appropriate to place sensors in order to reduce the uncertainty that stems
from the prior believes. From the concluding remarks of Section 5.2.2 we recall that the directions
of highest uncertainty with respect to the prior span the space Vn. It is also worthwhile to note
that the FE discretized parameter space Qh may depend on q̂. Thus, in general, it needs to be
determined or approximated in every iteration of the sequential procedure. In contrast the prior
knowledge I−1

0 and thus the vectors spanning up Vn are independent of the linearized model. As
a consequence they may be pre-computed once at the beginning and, if possible, stored for further
usage. Altogether, we point out that the discussions in this section do not claim any completeness
and should merely be seen as a first attempt to a rigorous discretization concept of sparse sensor
placement problems respecting both the infinite dimensional nature of the parameter as well as
the possible continuity of the observational set Ωo.

5.3 Optimization aspects

In this section we briefly cover the algorithmic treatment of (Pβ) and extend the Primal-Dual-
Active-Point method presented in Section 4.4 to optimal sensor placement problems for infinite
dimensional parameters. Furthermore we comment on their practical realization for the A-optimal
design criterion.

5.3.1 Algorithmic treatment

For an efficient numerical solution of (Pβ) we again exploit the, at least expected, sparse structure
of optimal measurement designs and consider algorithms based on the sequential placement of
single measurement sensors. To this end, given a sparse initial design measure u1 ∈ M+(Ωo), we
recall the definition of the associated sublevel set of F as

Eu1 =
{
u ∈M+(Ωo) | F (u) ≤ F (u1)

}
.
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Since F is radially unbounded there exists a constant M0 > 0 bounding the norm of elements
in Eu1 . For convenience of the reader the Primal-Dual-Active-Point strategy is now again sum-
marized in Algorithm 7. To monitor its convergence we define the primal-dual gap of the k-th
iterate uk as

Φ(uk) = sup
v∈M+(Ωo),‖v‖M≤M0

[〈∇ψ(u), u− v〉+ β‖u‖M − β‖v‖M)] = M0(β + min
x∈Ωo

∇ψ(uk)).

As in the previous chapter this quantity provides an upper bound on the error in the objective
functional

Φ(uk) ≥ F (uk)− F (ūβ) ≥ 0 ∀uk ∈ Eu1 .

Furthermore there holds Φ(ūβ) = 0 if and only if ūβ ∈ M+(Ωo) is a minimizer of (Pβ). Given

Algorithm 7 Primal-Dual-Active-Point strategy for (Pβ)
while Φ(uk) ≥ TOL do
1. Calculate ∇ψk = ∇ψ(uk). Determine x̂k ∈ arg minx∈Ωo ∇ψk(x).
2. Set Ak = supp(uk) ∪ { x̂k }, compute a solution to uk+1 of (5.59) for A = Ak, and set
uk+1 = uA(uk+1).

end while

an ordered set of finitely many distinct points A = {x1, . . . , xN} ⊂ Ωo, N = #A, we define the
parametrization by

uA : R#A →M(Ω), u 7→
∑
xi∈A

uiδxi .

As in the finite dimensional setting of the previous chapter we compute a global minimizer of (Pβ)
by alternating between choosing a new sensor location x̂k fulfilling

x̂k ∈ arg min
x∈Ωo

∇ψ(uk)(x)

and solving the coefficient optimization problem

uk+1 ∈ arg min
u∈R#A

+

F (uA(u)), (5.59)

for the choice of A = suppuk ∪ {x̂k}. The new iterate uk+1 is then obtained as uk+1 = u(uk+1).
Note that this definition also ensures that the iterates are pruned after each iteration i.e. all Dirac
delta functions with zero coefficient are removed from the iterate.

We can interpret Algorithm 7 as a special instance of an accelerated generalized conditional gradi-
ent method. Consequently we derive worst case convergence rates for the objective function values
of the generated iterates following Theorems 6.29 and 6.37 applied to the special case of positive
measures.

Proposition 5.41. Let u1 ∈M+(Ωo) be given. Then ∇ψ is Lipschitz continuous on the associated
sublevel set Eu1, i.e. there exists a constant Lu1 > 0 with

sup
u1, u2∈Eu1
u1 6=u2

‖∇ψ(u1)−∇ψ(u2)‖C
‖u1 − u2‖M

≤ Lu1 .
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Proof. The proof follows the one for Proposition 4.14 noting that the set

I(Eu1) = { I(u) | u ∈ Eu1 } ⊂ Pos(L2(Ω), L2(Ω)),

is a compact subset of SHS(L2(Ω), L2(Ω)) due to the weak* sequential compactness of Eu1 and
the weak*-to-strong continuity of I.

Theorem 5.42. Assume that the sequence {uk}k∈N is generated using Algorithm 7. Then {uk}k∈N
is a minimizing sequence for F . Furthermore it admits a weak* convergent subsequence denoted by
the same symbol. Every weak* accumulation point ūβ of {uk}k∈N is an optimal solution to (Pβ).
There holds

rF (uk) ≤ rF (u1)

1 + q(k − 1)
, q = αmin

{
c1

Lu1(2M0)2
, 1

}
. (5.60)

Here, Lu1 is the Lipschitz-constant of ∇ψ on Eu1 and c1 = 2γ(1 − α)rF (u1) for some arbitrary
but fixed γ ∈ (0, 1), α ∈ (1/2, 1).

Remark 5.8. We emphasize that Algorithm 7 can be readily applied for the solution of (Pβ,h), (Pnβ )
and (Pnβ,h). Since the design criterion Ψ is not discretized in any of these problems the results of
Theorem 5.42 remain valid with an appropriate adaption of the appearing constants. Moreover,
applied to (Pnβ ) or (Pnβ,h), the method can be modified to ensure # suppuk ≤ n(n + 1)/2 for
all k ∈ N, see Proposition 4.16. For (Pβ,h) and (Pnβ,h) the search for the minimizer x̂k ∈ Ωo in
step 2. can be restricted to Nh ∩Ωo, see Proposition 5.43 .

We stress that, up to now, we have not been able to improve on the sublinear convergence rate
for the Primal-Dual-Active-Point method applied to the continuous problem (Pβ). One particular
reason for this shortcoming lies in the aforementioned two norm discrepancy. In particular, the
standard examples of A- and D-optimality already show that we cannot expect quadratic growth
conditions of the form

‖I(u)− I(ūβ)‖2HS(L2(Ω),L2(Ω)) ≤ F (u)− F (ūβ) ∀u ∈M+(Ωo), I(u) ∈ N(I(ūβ)),

to hold in a neighborhood N(I(ūβ)) of the optimal Fisher information since the Hessian of Ψ
is in general not coercive with respect to the L2(Ω) Hilbert-Schmidt norm. However, following
Lemma 5.37 and Lemma 5.38, similar results can be obtained by replacing the Hilbert-Schmidt
norm with a weaker norm depending on the concrete choice of the optimal design criterion. This
situation is not yet covered by the convergence results derived in Chapter 6 but poses an inter-
esting question for future research. In particular, improved convergence results for the continuous
problem (Pβ) would suggest the uniform boundedness of the constants appearing in the upcoming
improved convergence results for the spectral discretized problem with respect to the truncation
parameter.

The remainder of this section is concerned with improved convergence results for the adaptation
of Algorithm 7 to the semi-discretized problems and the fully discrete one, respectively.

We start by proving the finite termination of Algorithm 7 when applied to the finite element
discretized problems (Pβ,h) and (Pnβ,h). To improve readability we provide the statement for the
first one. All arguments carry over to (Pnβ,h) in a straightforward way. For the rest of this chapter
we define N o

h = Nh ∩Ωo.

209



5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

In order to apply the Primal-Dual-Active-Point strategy to (Pβ,h) we first have to discuss the
computation of the new sensor location x̂k ∈ Ωo fulfilling

x̂k ∈ arg min
x∈Ωo

∇ψh(uk). (5.61)

At first sight, this is a challenging problem in itself since the discretized gradient is neither an
element of Vh nor differentiable and convex. In Proposition 5.29 we have already proven that (Pβ,h)
admits at least one optimal solution ūβ,h supported in the nodes of the finite element triangulation.
In view of this result it is tempting to circumvent the global minimization of∇ψh(uk) by restricting
the search for the new Dirac delta position to the grid nodes. However, it is unclear whether the
resulting sequential point insertion method still corresponds to a Primal-Dual-Active-Point method
on the discretized problem. In the following proposition we give a positive answer to this question
by proving

arg min
x∈N oh

∇ψh(uk) ⊂ arg min
x∈Ωo

∇ψh(uk).

This implies that (5.61) boils down to sorting the values of the discretized gradient in the grid
nodes. As an immediate consequence we further conclude the (grid-dependent) finite termination
of the Primal-Dual-Active-Point strategy when applied to the FE discretized sensor placement
problems.

Proposition 5.43. Consider Algorithm 7 applied to (Pβ,h) and assume that u1 ∈M+(Ωo)∩Mh.
Then the new sensor location x̂k ∈ Ωo can be chosen from N o

h for all k ∈ N. Denote by {uk}k∈N
the sequence generated by Algorithm 7 with x̂k ∈ N o

h for all k ∈ N. Then there exists k ∈ N with
uk+1 = uk, i.e. the algorithm terminates after finitely many steps.

Proof. Let us first prove that there holds

min
x∈N oh

∇ψh(u)(x) = min
x∈Ωo

∇ψh(u)(x) ∀u ∈M+(Ωo).

Given u ∈M+(Ωo) we observe that ∇ψh(u) ≤ 0 on Ωo and

min
x∈Ωo

∇ψh(u)(x) = ∇ψh(u)(x̂) = −‖(−∇Ψ(Ih(u)))1/2Gx̂h‖2L2(Ω) = −
∞∑
i=1

(∂S[q̂]δqi (x̂))2,

for some x̂ ∈ Ωo and δqi = (−∇Ψ(Ih(u)))1/2φi ∈ L2(Ω), i ∈ N. Recalling the properties of the
interpolation operator Λh and the measure-theoretic form of Jensen’s inequality we estimate

(∂S[q̂]δqi (x̂))2 = (〈∂S[q̂]δqi, Λhδx̂〉)2 ≤ 〈(∂S[q̂]δqi)
2, Λhδx̂〉.

for every i ∈ N since ∂S[q̂]δqi ∈ Vh. Combining both results yields

min
x∈Ωo

∇ψh(u)(x) ≥ −
∞∑
i=1

〈(∂S[q̂]δqi)
2, Λhδx̂〉 = 〈∇ψh(u), Λhδx̂〉.

Using Λhδx̂ ∈M+(Ωo) ∩Mh and ‖Λhδx̂‖M ≤ 1 we finally arrive at

min
x∈N oh

∇ψh(u)(x) ≥ min
x∈Ωo

∇ψh(u)(x) ≥ 〈∇ψh(u), Λhδx̂〉 ≥ min
x∈N oh

∇ψh(u)(x).
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Setting u = uk we now conclude that x̂k can be chosen from N o
h .

We proceed to prove the finite termination property. By assumption we know u1 ∈M+(Ωo)∩Mh.
Thus, by induction, we get uk+1 ∈M+(Ωo) ∩Mh from

suppuk+1 ⊂ suppuk ∪ {x̂k} ⊂ N o
h ,

for all k ∈ N. Since the finite dimensional suproblems in Algorithm 7 are solved up to optimality
we have j(uk+1) < j(uk) if uk is not optimal. Thus we conclude

suppuk+1 ∈ P(N o
h ) \

k⋃
i=1

{suppui}, k ∈ N,

where P(N o
h ) denotes the power sets of N o

h . Consequently Algorithm 7 converges after at most
#P(N o

h ) <∞ iterations. This completes the proof.

The remainder of this section focuses on improved convergence results for the sequence of iter-
ates {uk}k∈N generated by applying the Primal-Dual-Active-Point method to the spectral dis-
cretized problem (Pnβ ). To this end we first recall some additional notation. We consider the
continuous operators

Pn : L2(Ω)→ Rn, q 7→ ((q, φ1)L2(Ω), . . . , (q, φn)L2(Ω))
>.

as well as In : M(Ωo)→ Sym(n) given by

In(u) =

∫
Ωo

∂Sn[q̂](x)∂Sn[q̂](x)>du(x), ∂Sn[q̂](x) = (∂S[q̂]φ1 (x), . . . , ∂S[q̂]φn (x))>,

for all u ∈ M(Ωo) and x ∈ Ωo. For abbreviation we set ∂iS[q̂] = ∂S[q̂]φi ∈ C(Ωo), i = 1, . . . , n.
Last, we introduce the optimal design criterion

Ψn : Sym(n)→ R ∪ {+∞}, B 7→ Ψ(P∗nBPn)

on the space of symmetric matrices. We make the following observations.

Lemma 5.44. Let n ∈ N large enough be given. Then the functional Ψn has the following prop-
erties:

• There holds NND(n) ⊂ domΨn.

• The functional Ψn is two times continuously differentiable and convex on NND(n).

• The functional Ψn is monotone with respect to the Loewner ordering on NND(n).

• There holds

Ψ(PnI(u)Pn) = Ψn(In(u)) ∀u ∈M(Ω).
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Proof. We only prove the last statement, the remaining claims follow from the assumptions on Ψ
and the linearity of Pn. Given two arbitrary functions q1, q2 ∈ L2(Ω) we readily calculate

(q1, PnI(u)Pnq2)L2(Ω) =

n∑
i=1

n∑
j=1

(q1, φi)L2(Ω)(q2, φj)L2(Ω)〈∂iSn[q̂]∂jS
n[q̂], u〉

= (Pnq1, In(u)Pnq2)Rd

= (q1,P
∗
nIn(u)Pnq2)L2(Ω),

From this observation we conclude

PnI(u)Pn = P∗nIn(u)Pn ∀u ∈M(Ωo).

Thus the desired statement follows.

In order to improve on the sublinear convergence of the Primal-Dual-Active-Point method we
interpret the spectral discretized optimal design criterion ψn = Ψ(Pn · Pn) ◦ I as the composition
of Ψn and the operator In. Thus we rewrite problem (Pnβ ) as

min
u∈M+(Ωo)

Fn(u) = [Ψn(In(u)) + β‖u‖M].

Note that Fn is radially unbounded on M+(Ωo) since F (u) ≤ Fn(u) for all u ∈ M+(Ω) due
to the monotonicity of Ψ . Since In maps continuously into the space of symmetric matrices this
rewritten problem resembles the sensor placement problems discussed in the previous chapter. As a
consequence, improved convergence results can be concluded by arguing similarly to Section 4.4.3.
To this end, we first comment on the coercivity of the Hessian ∇2Ψn.

Lemma 5.45. If Ψ is strictly convex on Pos(L2(Ω), L2(Ω)) then Ψn is strictly convex on NND(n).
In this case, the projected optimal Fisher information In(ūnβ) and thus PnI(ūnβ)Pn are the same
for every optimal solution ūnβ to (Pnβ ). In addition, if there exist a constant γ0 > 0 and a norm ‖·‖
on SHS(L2(Ω), L2(Ω)) with

〈〈δB,∇2Ψ(PnI(ūnβ)Pn)δB〉〉HS(L2(Ω),L2(Ω)) ≥ γ0‖δB‖2 ∀δB ∈ SHS(L2(Ω), L2(Ω)), (5.62)

then there exists a constant γn0 > 0, possibly depending on n ∈ N, with

TrRn(δB̂∇2Ψn(In(u))δB̂) ≥ γn0 ‖δB̂‖2Sym ∀δB̂ ∈ Sym(n).

Proof. LetB1, B2 ∈ NND(n) withB1 6= B2 be given. It its readily verified that there holdsP∗nBiPn ∈
Pos(L2(Ω), L2(Ω)), i = 1, 2. For s ∈ (0, 1) we conclude

Ψn(B1 + s(B2 −B1)) = Ψ(P∗n(B1 + s(B2 −B1))Pn)

≤ Ψ(P∗nB1Pn) + s(Ψ(P∗nB2Pn)− Ψ(P∗nB1Pn))

= Ψn(B1) + s(Ψn(B2)− Ψn(B1))

and strict inequality holds if and only if P∗nB1Pn 6= P∗nB2Pn. Assume that P∗n(B1 −B2)Pn = 0.
Testing with φi, φj , i, j = 1, . . . , n, from left and right, respectively, we then get

0 = (φi,P
∗
n(B1 −B2)Pnφj)L2(Ω) = (B1 −B2)ij .
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This contradicts B1 6= B2. Thus strict inequality holds and Ψn is strictly convex on NND(n). In
particular, this implies that the projected Fisher information matrix In(ūnβ) is the same for every
optimal solution ūnβ to (Pnβ ). By definition, the uniqueness of PnI(ūnβ)Pn also follows.

Now assume that (5.62) holds. For δB̂ ∈ Sym(n) we calculate

TrRn(δB̂,∇2Ψn(In(u))δB̂) = TrL2(Ω)(∇2Ψ(PnI(ūnβ)Pn)B̂) ≥ γ0‖P∗nδB̂Pn‖2.

Recalling that

P∗nδB̂Pn = 0 ∈ SHS(L2(Ω), L2(Ω))⇔ δB̂ = 0 ∈ Sym(n).

it is straightforward to verify that ‖P∗n·Pn‖ defines a norm on the symmetric matrices. Since Sym(n)
is finite dimensional this new norm is equivalent to the Frobenius norm i.e. there exists a con-
stant θn0 > 0, possibly depending on n ∈ N with

γ0‖P∗nδB̂Pn‖2 ≥ γn0 ‖δB‖2Sym ∀δB̂ ∈ Sym(n).

This finishes the proof.

We adopt the assumption on the strict convexity of Ψ and its curvature around the optimal
projected Fisher information operator for the rest of this section.

Assumption 5.8. Let Ψ be strictly convex on Pos(L2(Ω), L2(Ω)). Moreover there exists a con-
stant γ0 > 0 with

〈〈δB,∇2Ψ(PnI(ūnβ)Pn)δB〉〉HS(L2(Ω),L2(Ω)) ≥ γ0‖δB‖2 ∀δB ∈ SHS(L2(Ω), L2(Ω)),

This assumption together with Lemma 5.45 imply the uniform convexity of Ψn in a neighbor-
hood N(In(ūβ)) ⊂ NND(n) of the unique optimal projected Fisher information matrix In(ūnβ)
depending on the truncation parameter n ∈ N. There holds

(∇Ψn(B1)−∇Ψn(B2), B1 −B2)Sym ≥
γn0
2
‖B1 −B2‖2Sym ∀B1, B2 ∈ N(In(ūnβ))

for some γn0 > 0. We further assume additional regularity of the sensitivities ∂iS[q̂], i = 1, . . . , N ,
and define p̄n = −(In)∗∇Ψn(In(ūnβ)).

Assumption 5.9. Assume that there holds

{x ∈ Ωo | p̄n(x) = β } = {x̄i}Ni=1 ⊂ intΩo.

Moreover the set {In(δx̄i)}Ni=1 is linearly independent and there exists R > 0 with

ΩR :=

N⋃
i=1

BR(x̄i) ⊂ intΩo, B̄R(x̄i) ∩ B̄R(x̄j) = ∅, i 6= j, ∂Sn[q̂] ∈ C2(Ω̄R,Rn) ∩ C(Ωo).

Along the lines of Corollary 4.6, we conclude that this assumption guarantees the uniqueness and
sparsity of the optimal solution ūnβ =

∑N
i=1 ūiδx̄i to (Pnβ ). Moreover it is readily verified that the

Banach space adjoint of In maps continuously to C2(Ω̄R) ∩ C(Ωo) since

[(In)∗B](x) = ∂Sn[q̂](x)>B∂Sn[q̂](x) ∀B ∈ Sym(n), x ∈ Ωo.

In particular there holds p̄n ∈ C2(Ω̄R) ∩ C(Ω). As a last ingredient we impose additional assump-
tions on the curvature of p̄n and the coefficients of ūnβ .
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Assumption 5.10. There holds supp ūnβ = {x̄i}Ni=1, i.e. ūi > 0, i = 1, . . . , N , and there exists a
constant θn0 > 0 with

−(ζ,∇2p̄n(x̄i)ζ)Rd ≥ θn0 |ζ|2Rd ∀ζ ∈ Rd

and all i = 1, . . . , N .

Interpreting the spectral discretized optimal design criterion as ψn = Ψn ◦ In it is now readily
verified that (Pnβ ) and the associate optimal solution ūβ fulfill the prerequisites of Theorem 6.70.
We conclude the following improved convergence result for the residual in the spectral discretized
problem.

Theorem 5.46. Let the sequence {uk}k∈N ⊂ M+(Ωo) be generated by applying Algorithm 7
to (Pnβ ) and let Assumptions 5.8, 5.9 and 5.10 hold. Then there exist constants cn, Rn > 0
and ζn ∈ (0, 1) with

suppuk ⊂
N⋃
i=1

B̄Rn(x̄i), suppuk ∩ B̄Rn(x̄i) 6= ∅, i = 1, . . . , N,

as well as

rF (uk) + max
i=1,...,N

max
x∈suppuk∩B̄Rn (x̄i)

|x− x̄i|Rd + max
i=1,...,N

|ūi − ‖uk|B̄Rn (x̄i)
‖M| ≤ cnζkn,

for all k ≥ kn ∈ N. All appearing constants may depend on the truncation parameter n ∈ N.

We point out that under the same assumptions convergence rates for the modified Wasserstein
distances of the iterates can be obtained along the lines of Theorem 4.21.

5.3.2 Implementation details

To close this section we discuss the practical realization of Algorithm 7 applied to the fully discrete
problem (Pnβ,h). In view of the numerical experiments presented in the following section we focus
on the A-optimal design criterion

ψA(u) = ΨA(I(u)) = TrL2(Ω)(Cpost(I(u))), Cpost(I(u)) = (I(u) + I0)−1, u ∈M+(Ωo),

and consider its evaluation as well as the efficient computation of its gradient. Given a design
measure u ∈M+(Ωo) we recall that the evaluation of the gradient at a given spatial point x ∈ Ωo
can be related to the Green’s function Gx by

∇ψ(u)(x) = −(Gx, Cpost(I(u))2Gx)L2(Ω) = −‖Cpost(I(u))Gx‖2L2(Ω).

Let us now consider the fully discretized problem (Pnβ,h) for given n ∈ N and h ≤ h0 small
enough. Throughout the following discussions we assume that the first n eigenpairs {(λi, φi)}ni=1,
of I−1

0 are either analytically available or good approximations can be obtained numerically by
e.g applying several steps of an Arnoldi iteration to a discretization of I−1

0 . Furthermore the
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truncation parameter n ∈ N is reasonably small in the sense that the discrete sensitivities ∂Shn[q̂] ∈
C(Ωo, V n

h ) defined by

∂Shn[q̂] : Ωo → Rn, x 7→ (∂Sh[q̂]φ1 (x), . . . , ∂Sh[q̂]φn (x))>,

can be pre-computed and stored for further use. The k−th component of ∂Shn[q̂] is denoted
by ∂kS

h
n[q̂] ∈ C(Ωo), k = 1, . . . , n. We emphasize that besides one solve of the discrete state

equation (5.38) and n solutions of the sensitivity equation (5.39) to obtain ∂kShn[q̂] = ∂Sh[q̂]φk,
k = 1, . . . n, no additional PDE solves will be required in the following. This allows for an efficient
and fast solution of (Pnβ,h).

Arguing similarly as in Section 5.2.2 a fully discrete A-optimal design can now be obtained by
solving the sensor placement problem

min
u∈M+(Ωo)

[TrRn((Inh (u) + In0 )−1) + β‖u‖M]. (5.63)

Here, given a design measure u ∈ M+(Ωo), the matrices In0 ∈ PD(n) and Inh (u) ∈ NND(n) are
characterized through

(In0 )ij = δijλi, Inh (u)ij = 〈∂iShn[q̂] ∂jS
h
n[q̂], u〉, i, j ∈ {1, . . . , n}.

With a slight abuse of notation we abbreviate ψnh(u) = TrRn((Inh (u) + In0 )−1) for u ∈M+(Ωo).

Efficient evaluation of the covariance operator

In all steps of Algorithm 7 matrix-vector products between the covariance matrix (Inh (u) + In0 )−1

corresponding to a sparse design measure u ∈ M+(Ωo) and a potentially large set of vectors
{δqi}i∈I, I ⊂ N need to be computed. Since the dimension of the discretized parameter space
is assumed to be reasonably small we comment on an efficient realization of this task based on
Cholesky decompositions. Here we exploit the structure of the covariance matrix and the sparsity
of the design measure. Set N = # suppu <∞. We distinguish between two cases.

Case 1: Assume that N ≥ n. In this case we compute the Cholesky decomposition of the matrix
Inh (u) + In0 = GG> in O(n3) operations and solve (Inh (u) + In0 )z = δqi by forward-backward
substitution for all i ∈ I. This can be realized in O(#I · n2) operations.

Case 2: Second considerN < n and let u =
∑N

i=1 uiδxi . The associated Fisher-information matrix
can be decomposed as Inh (u) = XTΣ−1X where the matrices X ∈ RN×n and Σ−1 ∈ RN×N are
defined as

Xjk = ∂kS
h[q̂](xj), Σ−1

ij = δijui, i, j = 1, . . . , N, k = 1, . . . , n.

Applying the Sherman-Morrison-Woodbury formula, [130], we obtain

(Inh (u) + In0 )−1 = (XTΣ−1X + In0 )−1

= (In0 )−1 − (In0 )−1X>Σ−1/2(Id +Σ−1/2X(In0 )−1X>Σ−1/2)−1Σ−1/2X(In0 )−1,

where Id ∈ RN×N is the identity matrix and Σ
−1/2
ij = δij

√
λi, i, j ∈ {1, . . . , N}. Since In0 is a

diagonal matrix calculating its inverse is straightforward and can be done in O(n) operations.
Furthermore a Cholesky decomposition of

Id +Σ−1/2X(In0 )−1X>Σ−1/2 = ĜĜ>,

can be obtained in O(N3) operations. Solving the systems (Inh (u) + In0 )z = δqi, i ∈ I, then
requires a combined effort of O(#I · (n+N2 + n ·N)).
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Evaluation of the optimal design criterion

Based on the previous arguments we now discuss the efficient evaluation of the A-optimal design
criterion for a given sparse design measure u =

∑N
i=1 uiδxi . As before we distinguish two cases.

Case 1: Let N ≥ n. In this situation we compute a Cholesky decomposition of Inh (u)+In0 = GG>

and observe

TrRn((Inh (u) + In0 )−1) =
n∑
i=1

(ei, (Inh (u) + In0 )−1ei)Rn =
n∑
i=1

|G−1ei|2Rn .

Hence the optimal design criterion is evaluated in O(n3) operations.

Case 2: If N < n we compute a Cholesky decomposition of

Id +Σ−1/2X(In0 )−1X>Σ−1/2 = ĜĜ>.

Similar calculations as before show

TrRn((Inh (u) + In0 )−1) =
n∑
i=1

[λi − λ2
i |Ĝ−1Σ−1/2X·,i|2RN ],

where X·,i ∈ RN denotes the i-th column of X. Consequently the objective functional can be
evaluated in O(n ·N2) operations.

Evaluation of the gradient in step 1.

The new sensor location x̂k ∈ Ωo in step 1. of Algorithm 7 is found as a global minimizer of
∇ψnh(uk). Due to Proposition 5.43 the search for the new point can be restricted to N o

h . Thus
given a sparse design measure u =

∑N
i=1 uiδxi we have to efficiently evaluate the gradient ∇ψnh(u)

for every x ∈ N o
h . A similar computation as on the continuous level gives

∇ψnh(u)(x) = −(∂Shn[q̂](x), (Inh (u) + In0 )−2∂Shn[q̂](x))Rn = −‖(Inh (u) + In0 )−1∂Shn[q̂](x)‖2Rn .

Similar to the continuous case this relates the gradient to the sensitivity vector ∂Shn[q̂] ∈ C(Ωo,Rn).
This allows for its efficient evaluation in O(n3 + #N o

h · n2) operations, if N ≥ n, and

O(N3 + #N o
h (n+N2 + n ·N))

operations if N < n. Moreover the representation of the gradient also facilitates a parallelization
of its computation.

Simultaneous insertion of multiple points

While the insertion of a single point in every iteration of Algorithm 7 guarantees the convergence
of the procedure, the number of Dirac deltas in the approximated optimal design will affect the
practical performance of the algorithm. In order to accelerate the convergence of the method
in practice we consider the following heuristic multi-point insertion strategy. First the gradient
∇ψnh(uk) is evaluated in the grid nodes contained in Ωo. If uk is not an optimal solution we have
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∇ψnh(uk)(x) < −β for x ∈ N o
h . In order to obtain a set of new candidate locations we first build

the connectivity graph of the nodes Nh and compute the subset

N−h = {x ∈ Ωo | x ∈ N o
h , ∇ψnh(uk) < −β } ⊂ N o

h

Subsequently, we compare the value of the gradient in each node x ∈ N−h with those of the
neighbouring ones. We call x ∈ N−h a local minimum of the current gradient ∇ψhn(uk) if x
minimizes ∇ψnh(uk) over its adjacent grid nodes. All local minima of the gradient in this sense
are assembled in a set of promising new sensor locations N k

h . Then the elements of this set are
ordered and we add the M points x̂ki , i = 1, . . .M , corresponding to the smallest local minima to
the active set

Ak = suppuk ∪ {x̂ki }Mi=1.

Here M is an a priori chosen maximal number of new Dirac delta functions. The new iterate uk+1

is now found by solving the finite dimensional subproblem on Ak. Since the global minimizer
x̂k ∈ N o

h of the gradient is an element of N k
h the convergence guarantees derived in the previous

section remain valid.

Sequential point insertion for (Pβ,h)

We briefly discuss the numerical realization of Algorithm 7 for the FE-discretized sensor placement
problem (Pβ,h) and highlight the differences to the fully discrete case. For simplification we assume
that the implicitly discretized parameter space Qh is given by Vh. Adapting the arguments in
Example 5.6 this is e.g. the case for the identification of the right hand side of the Neumann
Laplacian with zero order term. Under these assumptions the semi-discrete problem A-optimal
design problem is equivalent to solving

min
u∈M+(Ωo)

[TrVh((Ih(u) + I0)−1) + β‖u‖M]. (5.64)

Setting ψh(u) = TrVh((Ih(u) + I0)−1) our special interest lies in the numerical realization of the
point insertion step (step 1. in Algorithm 7). As before we have to compute the discrete gradient
on the grid points contained in Ωo. We assume that the discrete set N o

h is large and, in particular,
it is not possible to pre-compute the discretized Green’s function Gxh for every possible sensor
location. Given x ∈ N o

h we derive

∇ψh(u)(x) = −(Gxh, (Ih(u) + I0)−2Gxh)L2(Ω) = −‖(Ih(u) + I0)−1Gxh‖2L2(Ω),

for a sparse design measure u ∈ M+(Ωo). To obtain the evaluated gradient we proceed in two
steps. First we determine Gxh. As on the continuous level we compute a function Gxh ∈Wh fulfilling
the discrete PDE

a′h,y(q̂, S
h[q̂])(ϕh,Gxh) = 〈ϕh, δx〉 ∀ϕh ∈ Yh.

The function Gxh ∈ Vh is then identified with

−a′h,q(q̂, S[q̂])(Gxh , ·) ∈ V ∗h ' Vh.

Second, we need to compute the application of (Ih(u) + I0)−1 to Gxh. To this end, we recall
that I0 is often modeled as a differential operator. In particular, it is infeasible to pre-compute
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its (discretized) inverse and we can only compute the action of (Ih(u) + I0)−1 on a given function
by numerically solving the associated covariance PDE. In order to find the new sensor location
this procedure has to be repeated for every x ∈ N o

h leading to a total of 2#N o
h PDE solves for

one evaluation of the gradient. While this seems reasonable if N o
h is small we recall that sensor

placement problems with a possibly infinite number of candidate sensor locations in the continuous
problem are at the heart of this thesis. In this light the proposed evaluation strategy is numerically
prohibitive. To illustrate this fact we again consider the identification of the right hand side of
a Laplacian equation and Ω̄ = Ωo, i.e. N o

h = Nh. In this case, computing Gxh ∈ Vh for every
x ∈ Nh is equivalent to computing the sensitivity operator ∂Sh[q̂]. This corresponds to inverting
the associated stiffness matrix which is infeasible.

We draw several conclusions from the discussions in this section. On the one hand they justify, at
least to some extend, the proposed full discretization of the problem by a low-rank approximation
of the parameter. This leads to sensor placement problems which are amenable for efficient and
practically fast solution algorithms. On the other hand they highlight again that the results of this
chapter should be understood as a first step on sensor placement problems with both, an infinite
dimensional parameter and infinitely many possible sensor locations. For example they open up
new questions on the efficient numerical solution of (Pβ,h). As described, a first computational
bottleneck in Algorithm 7 applied to (Pβ,h) is given by the search for a global minimizer of ∇ψ(uk)
in a subset of the grid nodes. To mitigate the computational complexity of this step we may e.g.
resort to randomized methods for the compuation of the minimum. Furthermore sophisticated
low-rank approximations of ∂Sh[q̂] could be considered. Finally these results suggest the use of
adaptive methods to keep both, the number of sensor locations as well as the number of parameters,
as small as possible. Altogether this leaves space and need for future research.

As a last remark we point out that we did not discuss the efficient numerical solution of the finite
dimensional subproblems in step 2 of Algorithm 7. One particular reason for this approach is that
the overall convergence rate of the algorithm is independent of the method used for their solution.
In particular, any algorithmic procedure for smooth and convex optimization problems with box
constraints can be used. However we stress that the previous considerations on the efficient
evaluation of the design criterion and its gradient also apply to the subproblems. Moreover we are
confident that these arguments can be extended to the computation of higher order derivatives as
used in Newton-like methods or interior point procedures.

5.4 Numerical examples

We close this chapter with the study of two numerical examples. First we consider the task of
inferring on the distributed source term entering in a Laplacian equation. The main focus of
this example lies on the influence of the cost parameter β, the truncation parameter N and the
a priori covariance operator I−1

0 on the sparsity pattern of the optimal design. In a second,
more practically motivated, example, we again consider optimal sensor placement problems for
the estimation of a diffusion coefficient, which is modeled as a log-normal distributed random
field. The primary goal in this example is to study the scalability of the primal-dual-active-point
method as well as to compare it to the continuation strategy discussed in Section 4.4.6. In what
follows, we consider the unit square Ω̄ = Ωo = [0, 1]2 and a sequence Thk , k ∈ { 1, 2, . . . , 8 }, of
uniform triangulations of Ωo with hk =

√
2/2k. The parameter q is modeled as a Gaussian random
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field distributed according to µ0 = N (0, I−1
0 ). The prior covariance operator I−1

0 is given as the
inverse of

I0 = c1(−∆ +c2 Id)s.

Here ∆ denotes the Dirichlet Laplacian on Ω and the values of s > 1 and c1, c2 > 0 control
the smoothing properties of I−1

0 . We will be specify these constants for each example sepa-
rately. Due to the tensor structure of the spatial domain, analytic expressions for the eigen-
pairs (λ(i,j), φ(i,j))i,j∈N of I−1

0 can be obtained. In detail, we get

λ(i,j) = (π2(i2 + j2) + c2)−s/c1, φ(i,j)(x1, x2) = 2 sin(πix1) sin(πjx2) ∀i, j ∈ N. (5.65)

Consequently the random field q admits a Karhunen-Loève expansion in terms of φ(i,j) as

q =
∞∑
i=1

∞∑
j=1

√
λ(i,j)ζ(i,j)φ(i,j) =

∞∑
i=1

∞∑
j=1

q(i,j)φ(i,j), where q(i,j) ∼ N (0, λ(i,j)) ∀i, j ∈ N.

After truncating both series after N ∈ N terms we obtain the discretized random field

qN =

N∑
i=1

N∑
j=1

q(i,j)φ(i,j) q(i,j) ∼ N (0, λ(i,j)) ∀i, j ∈ N.

In the following examples, the truncated random field describes our prior uncertainty on the true
value of an unknown parameter entering into a partial differential equation. For optimal inference
on the parameter we take pointwise measurements of the state variable according to a solution
of the A-optimal design problem (5.63). The a priori matrix IN0 is chosen as a diagonal matrix
with [

IN0
]
kk

= 1/λ(i,j), k = N(i− 1) + j, i, j ∈ { 1, . . . N }. (5.66)

To visualize the obtained optimal design measures we stick to the post-processing procedure
discussed in Section 4.6.1 and replace clusters of optimal sensors by a single Dirac delta function
located at their center of mass. Its coefficient is given by the added measurement weights of all
sensors in the cluster.

5.4.1 Estimation of a distributed source term

As a first example we consider the identification of the distributed source term in a diffusion
process described by the Laplacian with mixed Dirichlet and Neumann boundary conditions. We
define the Dirichlet part of the boundary as ΓD = {0, 1}×(0, 1) corresponding to the left and right
boundaries of the unit square. Given q ∈ L2(Ω) the associated state y = S[q] ∈ H1(Ω) ∩ C(Ωo)
fulfills

a(q, y) =

∫
Ω

[
∇y · ∇ϕ− 1

4
qϕ

]
dx = 0 ∀ϕ ∈ H1(Ω), ϕ = 0 on ΓD,

as well as y = 0 on ΓD. Due to the linear dependence between state and parameter, the sensitiv-
ity δy(i,j) of the state with respect to q(i,j), i, j = 1, . . . , N , fulfills

a(q, δ(i,j)y)(ϕ) =

∫
Ω

[
∇δ(i,j)y · ∇ϕ−

1

4
φ(i,j)ϕ

]
dx = 0 ∀ϕ ∈ H1(Ω), ϕ = 0 on ΓD

and δ(i,j)y = 0 on ΓD.
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Estimation for different β

We fix the smoothing parameters to c1 = 10−5, c2 = 10 and s = 2. In this section we tend to
illustrate the influence of the cost parameter β > 0 on the optimal design measure and thus also on
the estimates for the unknown parameters. For this purpose, we consider a reference parameter q∗

which is obtained as a realization of the random field qN/4 for N = 20 and h = h8. It is depicted
in Figure 5.1 alongside the associated state and two additional realizations of qN/4. we especially
point out to the different scales of the obtained realizations which indicates high variability in the
prior distribution. Now, we set the truncation index to N = 12 and compute A-optimal designs
for β = 1, 10−3, 10−5. According to each obtained measurement setup ūNβ,h =

∑Nh
i=1 uiδxi , we

generate a vector of measurement data yd ∈ RNh with yid = y∗(xi) + εi where εi is a realization
of εi ∼ N (0, 1/ui). Subsequently, we compute the posterior distribution µydpost of qN/4 given the
data yd. The computed optimal designs are displayed in Figures 5.2, 5.3 and 5.4. Alongside each
measurement design, we plot the mean of µydpost given by the MAP estimate qydpost as well as two
realizations of qN/4 given yd ∈ RN .

(a) Reference parameter q∗. (b) Associated state y∗.

(c) Realizations of qN/4.

Figure 5.1: Reference parameter q∗, associated state y and realizations of random field.

Let us first interpret the structure of the obtained optimal designs. We observe that the number
of placed sensors grows as the cost parameter β decreases. This verifies the interpretation of β as
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(a) Optimal design ūNβ,h, # supp ūNβ,h = 4. (b) MAP estimate qyd
post.

(c) Random draws from µ
yd
post.

Figure 5.2: Optimal design, MAP estimate and draws from posterior for β = 1.

tool to provide indirect control on the sparsity optimal solutions to the sensor placement problem.
Moreover, we note that all obtained designs are symmetric with respect to the x1 and x2 axis.
For large β, sensors are exclusively placed in the center of Ωo while for smaller values of the
cost parameter we also get optimally positioned sensors towards the boundary. We recall that
A-optimal designs are chosen to minimize the pointwise posterior variance of the random field. In
order to explain their structure, we should therefore take a look at the pointwise prior variance
field of the unknown parameter. Furthermore, the uncertainty in the parameter is also propagated
into the solution of the partial differential equation. Therefore, it is also necessary to interpret the
(truncated) state δy =

∑N
i=1

∑N
i=1 q(i,j)δ(i,j)y as random field. The pointwise variance of the state

variable describes our prior uncertainty on the true value of the measurement at a point x ∈ Ωo if
no additional measurement errors are present. Intuitively, if measurement resources are limited,
i.e. β is large, it is reasonable to only take measurements at points in which the prior uncertainty
of the state variable is large. We plot the pointwise prior variances of the parameter as well as
the state in Figure 5.5. Note that both functions are symmetric. Furthermore their maximum is
assumed in the center of Ωo and they become smaller towards the boundary. In particular, we
point out that the pointwise variance of the parameter is equal to zero on the whole boundary
which is a consequence of the predescribed homogeneous Dirichlet boundary conditions in the
prior covariance operator. Thus, if β is large, i.e. the cost of a single measurement is high, the
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(a) Optimal design ūNβ,h, # supp ūNβ,h = 124. (b) MAP estimate qyd
post.

(c) Random draws from µ
yd
post.

Figure 5.3: Optimal design, MAP estimate and draws from posterior for β = 10−3.

optimal design proposes to only place measurements at points of highest prior uncertainty. As β
gets smaller, additional measurements may also be performed at points corresponding to smaller
prior uncertainty in order to further decrease the posterior variance. We also point out that the
A-optimal design criterion measures the variability of the posterior measure µydpost around its mean
as well as the expected mean squared error of the MAP estimator. Consequently, as β decreases,
we may, on the one hand, expect that random draws from the posterior distribution are close
to qydpost. On the other hand, qydpost should be close to the reference parameter q∗. This intuition
is, at least visually, confirmed by our numerical results. Additionally, they again highlight the
dependence of the Bayesian approach on the provided prior distribution.

Optimal designs for different truncation and smoothing parameters

Second, we study the dependence of the optimal design on the number of unknown parameters
in the KL expansion of the random field as well as the exponent s > 1. For this purpose we
choose the smoothing parameters c1, c2 as in the previous examples and set the cost parame-
ter to β = 0.01. Subsequently, A-optimal designs for N ∈ {5, 10, 15, 20} and s ∈ {1.6, 2} are
computed. The resulting design measures ūNβ,h can be found in Figures 5.6 and 5.7, respectively.
We draw several conclusions based on these results. First, we note that the number of unknown
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(a) Optimal design ūNβ,h, # supp ūNβ,h = 124. (b) MAP estimate qyd
post.

(c) Random draws from µ
yd
post.

Figure 5.4: Optimal design, MAP estimate and draws from posterior for β = 10−5.

parameters q(i,j), i, j = 1, . . . , N , in the truncated KL-expansion qN grows quadratic with N .
However, the support size of the computed A-optimal designs does not. Quite the contrary, the
number of Dirac delta functions remains constant for N large enough. This stems back to the
smoothing properties of the prior covariance operator I−1

0 i.e. the convergence of its eigenval-
ues λ(i,j) towards zero. Clearly, the rate of convergence at which this sequence approaches zero
and thus the exponent s critically impact the obtained results. In fact, we point out that there is
almost no visual difference between the optimal designs associated to N = 5 and N = 20 for s = 2.
This indicates, at least for the present example, that we may obtain a good approximation to an
optimal design for the original problem by solving the spectral discretized sensor placement prob-
lem for only a small number of modes. However, we again stress that these observations inherently
depend on the choice of the prior distribution. We also recall Theorem 5.31 and Proposition 5.35
which give an upper bound of n(n + 1)/2 for n = N ·N on the number of Dirac delta functions
in a fully discrete optimal design. The present results show that this upper bound is overly pes-
simistic in general. Moreover, we point out that the support sizes of the designs corresponding
to N = 20, # supp ūNβ,h = 15 and # supp ūNβ,h = 93, respectively, are small in comparison to
the number of possible sensor locations Nh8 = 66049. In particular, the computed results may
hint at the existence of a sparse solution to the continuous optimal sensor placement problem.
However, this is far from being conclusive. Last, the computed results provide, to some extend,
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Figure 5.5: Pointwise prior variances for unknown parameter (left) and associated state (right).

a visual confirmation of the weak* convergence result on the spectral discretized optimal designs,
see Proposition 5.32.

5.4.2 Estimation of a distributed diffusion coefficient

The setting in this second example is motivated by the task of estimating spatially varying diffusion
parameters, which is a common problem in, e.g., geophysical applications. Therefore we consider a
stationary diffusion process, where the unknown parameter is the distributed diffusion coefficient.
We again set Ω̄ = [0, 1]2 to be the unit square and define the Dirichlet boundary as ΓD =
{0, 1} × (0, 1). For q ∈ Rn ' RN×N for some N ∈ N we define the parametrization

qN (x) =
1

2

N∑
i=1

N∑
j=1

q(i,j)φ(i,j), where φ(i,j)(x1, x2) = 2 sin(πix1) sin(πjx2).

Given q ∈ RN×N the associated state y = S[q] is the unique element of H1(Ω)∩C(Ωo) satisfying

a(q, y)(ϕ) =

∫
Ω

[exp(qN )∇y · ∇ϕ− fϕ]dx = 0 ∀ϕ ∈ H1(Ω), ϕ = 0 on ΓD. (5.67)

for some known source term f ∈ L2(Ω) and y = x1 on ΓD. It can be easily seen that (5.67)
corresponds to the linear equation

−∇ ·
(
exp(qN )∇y

)
= f in Ω,

y = x1 on ΓD,

exp(qN )∂ny = 0 on ∂Ω \ ΓD.
(5.68)

Note that due to the linearity of the equation, the sensitivity δ(i,j)y = ∂(i,j)S[q] ∈ H1(Ω) ∩ C(Ωo)
of the state with respect to the (i, j)-th entry of q for i, j ∈ {1, . . . , N} satisfies

a(q, δ(i,j)y)(ϕ) = −
∫
Ωo

1

2
φ(i,j) exp(qN )∇y · ∇ϕdx ∀ϕ ∈ H1(Ω), ϕ = 0 on ΓD

and δ(i,j)y = 0 on ΓD.
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(a) N = 5, # supp ūNβ,h = 45, Fnh (ūNβ,h) ≈ 300.
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(b) N = 10, # supp ūNβ,h = 80 Fnh (ūNβ,h) ≈ 482.
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(c) N = 15, # supp ūNβ,h = 93, Fnh (ūNβ,h) ≈ 543.
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(d) N = 20, # supp ūNβ,h = 93, Fnh (ūNβ,h) ≈ 573.

Figure 5.6: Optimal designs ūNβ,h for different N and s = 1.6.

Optimal designs for different right hand sides

In contrast to the previous example the dependence of the state on the unknown parameter is
nonlinear for this one. Thus, the sensitivity operator ∂S[q̂] depends on the linearization point q̂
as well as the associated state y = S[q̂]. Therefore, this example is suitable to study the influence
of changes in the state equation on the obtained optimal designs. For this purpose, we consider
the diffusion equation in (5.68) for two different right hand sides f given by

f1(x1, x2) = 0, f2(x1, x2) =
5√

2πσ2
exp

(
−(x1 − 0.75)2 + (x2 − 0.5)2

2σ2

)
, (x1, x2) ∈ Ωo.

We consider a total of n = N ·N = 400 terms in the parametrization of qN and set β = 1, c1 =
10−5 and c2 = 10. The linearization point is chosen as q̂ = 0. We interpret the expansion
coefficients qi,j , i, j = 1, . . . N , as random variables with q(i,j) ∼ N (0, λ(i,j)), see (5.65), for s = 2.
Let us briefly give some interpretation to the considered setup. As described at the beginning
of this chapter equation (5.68) models the diffusion of a fluid in a porous medium Ω whose
permeability is described by the unknown diffusion coefficient. The state variable y is given by
the fluid pressure. A priori we do not have information on the true permeability and thus it is
assumed to be constant on Ω, i.e q̂ = 0. Furthermore, choosing f = f1 = 0, corresponds to the
assumption that the net fluid flow into and out of Ω is zero. In a different scenario, water is
continuously pumped into the ground through a pipeline or a well located at (0.5, 2.5). This is
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(a) N = 5, # supp ūNβ,h = 19, Fnh (ūNβ,h) ≈ 86.1.
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(b) N = 10, # supp ūNβ,h = 15 Fnh (ūNβ,h) ≈ 99.6.
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(c) N = 15, # supp ūNβ,h = 15, Fnh (ūNβ,h) ≈ 103.
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(d) N = 20, # supp ūNβ,h = 15, Fnh (ūNβ,h) ≈ 104.

Figure 5.7: Optimal designs ūNβ,h for different N and s = 2.

modeled by the smoothed Dirac delta function f2. We set σ = 0.01 in the following. For both
choices of f a Bayesian A-optimal measurement design with IN0 chosen according to (5.66) for s = 2
is computed using the Primal-Dual-Active-Point method. The resulting measures are displayed in
Figures 5.8 and 5.9. In order to interpret the obtained results we plot the pointwise variance of the
random field δy =

∑N
i=1

∑N
j=1 q(i,j)δ(i,j)y alongside. Note that the variance depends on the state

variable y = S[q̂] and thus on the right hand side f . By construction, the pointwise prior variance
of the random field qN is (up to scaling) the same as in Figure 5.5. For f = f1 = 0 we make similar
observations as in the first example. The pointwise prior variances of the state and the parameter
are symmetric. This symmetry is also recovered in the A-optimal design. Moreover, note that
some of the optimal sensors are again placed at locations in the center of Ωo corresponding to
points of highest prior uncertainty. In contrast, the optimal design corresponding to f2 is still
symmetric with respect to the x1 axis but optimal sensors cluster towards the center of the well
at (0.75, 0.5) while none of them are placed close to the left part of the boundary. An, at least
partial, explanation is provided by the pointwise prior variance of the (linearized) state which peaks
at this point and is considerably smaller outside of a small neighborhood. Nevertheless, we point
out that optimal sensors are also placed at locations in which the prior variance of the parameter
is large but the uncertainty on the true value of the measurement is small. This stresses that
optimization based Bayesian optimal sensor placement entangles information provided by both,
the mathematical model and the prior distribution.
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Figure 5.8: Optimal design (left) and pointwise prior variance of δy (right) for f1.
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Figure 5.9: Optimal design (left) and pointwise prior variance of δy (right) for f2.

Comparison of point-insertion and path-following: No a priori knowledge

In this section we compare the performance of the Primal-Dual-Active-Point method (Algorithm 7)
and the algorithmic solution approach based on the Hilbert-space regularization (Algorithm 6) on
the computation of Bayesian A-optimal designs for the diffusion coefficient example. Such a
comparison was postponed until now, since the small number of parameters in the numerical
examples contained in Chapter 4 aid the performance of the PDAP method. Let us briefly recap
the path-following approach. For ε > 0 we determine the unique solution ūN,εβ,h to the regularized
discrete problem

min
uh∈Vh,uh≥0

[
ψnh(Λhuh) + β‖uh‖L1(Ωo) +

ε

2
‖uh‖2L2(Ωo),h

]
, (Pn,εβ,h)

where ‖uh‖2L2(Ωo),h
= (ih(u2

h), 1)Ωo,h denotes the lumped regularization term and ψnh , for n =
N×N , denotes the discretized Bayesian A-optimal design criterion. For a more detailed discussion
of this problem we refer to Section 4.6. To compute a solution of the unregularized problem, which
is recovered for ε = 0, we employ a continuation strategy for the regularization parameter ε as
described in Section 4.4.6. Since both algorithms are fundamentally different and partly rely on
different computational routines, a comparison in terms of number of steps is difficult. For this
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5 Sparse sensor placement for infinite-dimensional Bayesian inverse problems with PDEs

reason, we focus on the computation times in the following. We place special emphasis on the
qualitative influence of the mesh width and the support size of the optimal design.

Therefore we consider the A-optimal design problem for the diffusion coefficient example with
different N ∈ N and on different refinement levels of the spatial discretization. The cost parameter
is chosen as β = 1. In order to provide some control over the minimum number of Dirac deltas in
the optimal design measure ūNβ,h we formally assume that no a priori knowledge is present, i.e. we
first set IN0 = 0. The parameter-to-state mapping is linearized at q̂ = 0 ∈ RN×N . Given a fixed
N ∈ N and h small enough such that the discrete design problem (5.63) admits an optimal solution
ūNβ,h we note that # supp ūNβ,h ≥ n = N2; cf. Proposition 4.3. Consequently, by increasing N we
also raise the number of optimal Dirac delta functions that both algorithms have to identify.

Let us briefly comment on the implementation of the two different algorithms. For PDAP we stick
to the description in Algorithm 7 without an additional application of the post-processing strategy
in Algorithm. The iteration is stopped at step k if the primal-dual gap fulfills Φ(uk) ≤ 10−9. For
Algorithm 6 we set ε1 = 10−3 and εl = εl−1/

√
10 for l > 1. For each l the regularized sub-

problem (Pn,εβ,h) is solved by using the semi-smooth Newton method presented in [208]. We include
a globalization strategy based on a damping of the Newton steps to ensure a decrease of the
regularized objective function value in every iteration. The arising linear systems are solved by
a cg-method up to machine precision. If the norm of the right-hand side in the Newton system
is smaller than some tolerance, εl is decreased as described above. For a relevant comparison, we
compute the residual at the end of each iteration in PDAP and at the end of each step in the
semi-smooth Newton method for (Pn,εβ,h). Note that, as for the previous example, we only take the
computational time for the iterations of each Algorithms into account; the state and sensitivity
equations are solved beforehand.

In the following we choose N ∈ { 5, 15 } and consider the discretized design problems (Pn,εβ,h)
and (5.63) on the grid Thk for levels k ∈ { 5, 8 }. Since IN0 = 0 there holds 0 6∈ suppψnh . As a
consequence, we have to construct an initial iterate different from zero. To account for the different
regularities of the solutions to the corresponding continuous problems, we choose the initial iterate
u1 for the solution of (5.63) as a linear combination of (N + 1)2 Dirac delta functions (located in
nodes of the coarse grid) while the starting point ū1

ε ∈ Vh ⊂ L2(Ωo) for the solution of (PN,ε1β,h ) is
chosen as ū1

ε ≡ 1. Observe that rF (ū1
ε) 6= rF (u1). However, we stress that we are interested in a

qualitative comparison of both algorithms rather than a quantitative one. The results can be found
in Figure 5.10. First, we note that the runtime for both algorithms is affected by the increased
number of support points for larger N . In fact, on grid level eight, we obtain # supp ūNβ,h = 58

for N = 5 and # supp ūNβ,h = 630 for N = 15, respectively. Clustering adjacent support points
as described in Section 4.6.1, we obtain 30 and 240 clusters, respectively, and the post-processed
solutions (as described in section 4.6.1) are given in Figure 5.11. On both grid levels we observe
that the computation time for PDAP is affected more than the one for Algorithm 6 by the increased
support size of the optimal design. This is a consequence of the different update strategies for the
iterates in both algorithms. In each semi-smooth Newton step in Algorithm 6 the current iterate
is updated globally on Ωo. In contrast, at most one new support point is added in each iteration
of PDAP. Hence, if the support of the optimal solution is increased, so is the number of necessary
iterations in PDAP, explaining the increase of the computation time.

Let us now consider the influence of the number of grid points of the spatial discretization. Here,
we observe that the path-following algorithm is affected more, which can be explained as follows:
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(a) Residual for N = 5 on grid level five.
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(b) Residual for N = 5 on grid level eight.
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(c) Residual for N = 15 on grid level five.
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(d) Residual for N = 15 on grid level eight.

Figure 5.10: Residuals rF (·) for various number of parameters and discretizations plotted over
computation time t in seconds for IN0 = 0.

For each ε > 0 the unique optimal solution to (Pn,εβ,h) is given by the component-wise projection
formula

ūN,εβ,h (xi) = max

{
−1

ε
(∇ψnl,h(ūN,εβ,h )(xi) + β), 0

}
∀xi ∈ Nhk ,

where ψnl,h(ūN,εβ,h ) = ψnl,h(Λhū
N,ε
β,h ). This indicates that the set of nodes in the support of the

solution depends on the fineness of the discretization. As a consequence, the path-following method
can only exploit the increased sparsity in later iterations (for smaller ε), which leads to larger
computational times on finer grids. In contrast, in PDAP we only need to calculate the gradient
∇ψnh(uk) as well as its maximum on the whole domain, while the dimension of the occurring
sub-problems and thus also the size of the linear systems in the semi-smooth Newton method
can be bounded independent of the discretization in every iteration. Together with the mesh-
independence observations for the residual and the support size from Section 4.7.1 this explains
the better scaling of the successive point insertion algorithm with respect to the number of nodes
in the triangulation.
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Figure 5.11: Optimal designs for IN0 = 0 and N = 5 (left) and N = 15 (right) on grid level eight.

Comparison of point-insertion and path-following: A priori knowledge

To conclude this section, we again consider the previous setup in the Bayesian setting. Concretely,
we choose IN0 ∈ PD(N2) according to (5.66) with c1 = 10−5, c2 = 10 and s = 2.

Since I0 is positive definite we can choose the starting point for both algorithms as u1 = 0. In
Figure 5.12 the computed residuals for the path-following algorithm and PDAP are shown. For
the path-following algorithm we again observe an increased computation time with respect to the
spatial discretization in comparison to PDAP. Due to the positive definiteness of I0, the support
of the solution is not bounded from below by n = N2. Concretely, on grid level eight there
holds # supp ūNβ,h = 26 for N = 5 and # supp ūNβ,h = 38 for N = 15, i.e. the number of optimal
Dirac delta functions does not increase as significantly as in the case of IN0 = 0 for larger N .
Consequently, we also observe a better behavior of the computation time for PDAP with respect
to N . The corresponding optimal designs can be found in Figure 5.13. As in the first example, the
displayed designs are obtained by the post-processing procedure described in Section 4.6.1, which
leads to 10 and 18 connected clusters of the support for N = 5 and N = 10, respectively.

Accelerating Primal-Dual-Active-Point methods

In the previous sections we observed that PDAP scales well with respect to the spatial discretiza-
tion while it does not scale well with respect to the support size of the optimal design. As discussed
earlier, this is mainly caused by inserting only one point in every iteration. To remedy this defect,
we implement the heuristic multiple point insertion strategy discussed in Section 5.3.2. More in
detail, instead of only adding a global minimizer x̂k of ∇ψnh(uk) in each iteration, we update the
active set by adding the grid points corresponding to the M ≤ n(n + 1)/2 smallest local min-
imizers of the gradient. The upper bound on the number of inserted Dirac deltas ensures that
the dimension of the sub-problems in PDAP stays uniformly bounded throughout the iterations.
However, we note that in our numerical experiments this upper bound was never attained. The
resulting algorithm will be referenced as Multi-PDAP in the following.

To compare the three algorithms we again consider the A-optimal design problem for the diffusion
coefficient example on Th8 with N ∈ { 5, 15 }. The cost parameter and a priori knowledge are
chosen as β = 1 and IN0 = 0, respectively. The computed residuals over the computation time
are plotted in Figure 5.14. We observe that the insertion of multiple points in each iteration
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(a) Residual for N = 5 on grid level five.
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(b) Residual for N = 15 on grid level five.
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(c) Residual for N = 5 on grid level eight.
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(d) Residual for N = 15 on grid level eight.

Figure 5.12: Residual rF (·) for different N and discretizations plotted over computation time t in
seconds for IN0 given by the prior (5.66).

significantly improves the speed of convergence of the successive point insertion algorithm, which
shows the practical efficiency of the proposed heuristic strategy. Finally, we again stress that all
comparisons between the two implementations of PDAP and Algorithm 6 should not be understood
quantitatively; the path-following algorithm may possibly be accelerated by, e.g., the inexact
solution of the regularized sub-problems.
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Figure 5.13: Optimal designs for IN0 given by the prior (5.66) and N = 5 (left) and N = 15 (right)

on grid level eight.
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(a) Residual for N = 5 on level eight.
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(b) Residual for N = 15 on level eight.

Figure 5.14: Evolution of the residual rF (·) over the computation time t in seconds on grid level
eight for different numbers of parameters.

232



6 Algorithmic framework

In the last part of this thesis we elaborate in greater detail on the numerical solution algorithm for
the optimal sensor placement problems considered in Chapter 4 and Chapter 5. To this end we
recall that the major challenges in this context are given by the non-smoothness of the objective
functional and the non-reflexivity of the measure space. A first naive approach on its solution
would be to consider numerical solution methods for the discretized problems i.e. we replace
the space of Radon measures M(Ω) by the space Mh of measures supported in the nodes of a
grid. This reduces the problem to a finite dimensional one. While the resulting problems still
remain non-smooth their efficient numerical solution can be realized by applying a large variety
of well-studied algorithms. For examples we point out to semi-smooth Newton methods, [194],
the fast iterative shrinkage-thresholding algorithm (FISTA), [26], and the alternating direction of
multipliers method, [45]. However such reasoning harbours the danger of yielding mesh dependent
solution methods. That is to say that while a particular algorithm may be efficient for the solution
of the discrete problem associated to a fixed discretization parameter its convergence behaviour
can critically depend on h.

To some extend the mesh dependent behaviour of a particular algorithm can stem back to the
fact that its description may not remain meaningful on the spaceM(Ω). For this reason we are
interested in the derivation of iterative solution methods for the continuous problem on the space
of Radon measures. Obviously function space based solution approaches are at first glance only
of limited utility since the computation of a minimizer usually still requires a discretization of
the problem. However adapting such methods to the discretized problems often yields algorithms
with a mesh independent convergence behavior, [147, 162]. Thus while each step of the method
may suffer from increasing computational complexity for decreasing h the number of iterations to
fulfill a suitable convergence criterion is stable with respect to the discretization parameter.

The main goal of this chapter lies in the analysis of an efficient iterative numerical solution algo-
rithm on the function space level. To this end the presentation is divided into two parts. Since the
aforementioned difficulties are not restricted to the particular case of Radon measures we embed
the considered sensor placement problems into the larger framework of composite minimization
problems

min
u∈M

[f(u) + g(u)].

Here we minimize the sum of a differentiable function f and a convex but not necessarily smooth
regularizer g over a possibly non-reflexive Banach space M. Similar problems have received
tremendous attention in the context of optimal control and inverse problems over the last decades.
This is owed to the fact that the right choice of the space and the nonsmooth regularizer enhances
desirable structural features in its minimizers. Given a spatial domain Ω we refer e.g. to the
broadly discussed topic of sparse regularization forM =M(Ω), [50], the bang-bang structure of
minimizers in the case of M = L∞(Ω), [72], and the staircaising effect for functions of bounded
total variation M = BV(Ω), [227]. However this comes at the price of having to deal with
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6 Algorithmic framework

spaces M lacking many desirable properties for the analysis of the problem. For example we
stress that all of the previously stated spaces are non-reflexive, not strictly convex and non-
smooth. In particular this makes their function space based solution highly challenging since
many well-known algorithms do not yield extensions to such problems. Moreover we highlight
that the unit ball in those spaces is neither compact with respect to the strong nor the weak
topology. For iterative solution approaches to the problem this raises the question if and in which
sense convergence of the generated iterates can be expected. As a remedy we point out that all of
the mentioned spaces admit an interpretation as the topological dual space of a separable Banach
space C. This allows to tackle these problems by resorting to weaker topological concepts. Thus
we may restrict ourselves to this type of spaces without loosing much of the desired generality.
Note that these considerations once again underline the additional care that has to be taken when
discussing algorithms on infinite dimensional spaces.

In the first part of this chapter we demonstrate that the described class of composite minimization
problems can be solved by an adapted version of the conditional gradient method, [112]. In more
detail the method is based on the iterative solution of partially linearized subproblems

uk+1 = uk + sk(vk − uk), vk ∈ arg min
v∈M

[〈∇f(uk), v〉+ g(v)], sk ∈ [0, 1],

where 〈·, ·〉 denotes the duality pairing between M and its predual space C. We show that this
generalized conditional gradient iteration is indeed suitable for the solution of composite mini-
mization problems and yields provable qualitative and quantitative convergence guarantees under
mild assumptions. Several instructive examples highlight the simplicity of the method and point
out to possible applications.

In the second part of the chapter the presented algorithm is applied to sparse minimization prob-
lems

min
u∈Mad

[F (Ku) +G(‖u‖M)]. (6.1)

The optimization variable is searched for in a subsetMad ofM(Ω,H), the space of Borel measures
which assume values in a Hilbert space H on a set Ω. HereK denotes a linear continuous operator.
For example it may be given as the solution mapping associated to a linear equation or, as in the
previous chapters, we identify it with the Fisher operator I. The functional F is a scalar-valued,
smooth and not necessarily convex function, while G is a, in general, nonsmooth but convex
function acting on the total variation of u. Regularization terms of this particular form are
known to favor optimal solutions which are sparse i.e they are zero outside of a Lebesgue null
set. This observation makes measure-valued optimization variables appealing for a wide range of
applications. Besides the sensor placement framework developed in this thesis we point out to
actuator placement problems, [74], acoustic inversion, [32,209], and super-resolution, [55,95].

Function space based solution methods for this type of problems can be founded on path-following
strategies in order to circumvent the non-reflexivity of the space M(Ω,H). Here the original
problem is replaced by a sequence of regularized ones

min
u∈Mad

[F (Ku) +G(‖u‖L1(Ω,H)) +
ε

2
‖u‖2L2(Ω,H)], (6.2)

over the Hilbert space L2(Ω,H). Note that the appearance of the L1(Ω,H) norm in the objective
functional still promotes optimal solutions which are nonzero only on small subsets of Ω. Further-
more in the limiting case for ε→ 0 the regularized solutions approximate solutions to the original
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one. We point out, e.g., to [208] for a reference. For fixed ε > 0 those problems are amenable
for efficient function space based solution methods such as semi-smooth Newton, [139, 248], or
proximal-type methods, [233,234]. However the convergence behavior of these algorithms may de-
teriorate for small values of ε. In the practical realization it is therefore necessary to start at a large
value of ε. A solution to the original problem is then obtained by alternating between decreas-
ing the regularization parameter and a possibly inexact solution of the corresponding regularized
problem using the previous iterate as a warmstart. Thus a complete analysis of path-following
methods requires a rigorous convergence analysis of the method used for the solution of the reg-
ularized problem in dependence of ε , a quantification of the additional regularization error and
sophisticated update strategies for the parameter.

In contrast we base the algorithmic solution of sparse minimization problems on the presented
generalized conditional gradient method. Its application does not require an additional regular-
ization of the problem. It turns out that this method computes a minimizer by sequentially adding
new Dirac delta functions, i.e. measures supported on a single point, to the current iterate. Thus
it yields measure-valued iterates supported on finitely many points. While its implementation
is fairly easy it generally suffers from the characteristic slow convergence behavior of first-order
optimization methods. This also prohibits a solution of the problem to high precision.

We emphasize that the idea of using sequential point insertion algorithms for sparse minimization
is not new. For an overview of previous works in this direction we point out to Section 6.3. In this
context we also refer to optimization problems with regularizers promoting sparsity of solutions in
a given basis see e.g. [47,81]. A standard tool for the algorithmic solution of this type of problems
are iterative shrinkage algorithms [48]. In [49] the authors identify this procedure as a special case
of the generalized conditional gradient method on the problem.

The main novelty of the present work is the analysis of an accelerated version of the conditional
gradient method based on alternating between point insertion and coefficient optimization steps.
We show that under additional structural assumptions on the problem, cf. also the notion of
non-degeneracy in [95], this improved version yields a linear rate of convergence for the objective
function values as well as the iterates in a suitable dual norm. To the best of our knowledge we
are not aware of any comparable results.

6.1 Problem setting

Throughout the course of this chapter we consider the following composite minimization problem

min
u∈M

j(u) := [f(u) + g(u)]. (P)

Here the function f will in general be non-convex but smooth in a sense made clear below while g
is convex but typically non-differentiable. The optimization variable u is searched for in a Banach
spaceM. It is given by the topological dual space of a separable Banach space C. We will refer
to C as the predual space ofM. The norm on C is denoted by ‖ · ‖C . In general the space C will
be non-reflexive i.e. C $ M∗. The corresponding duality pairing between ϕ ∈ C and u ∈ M is
denoted by 〈ϕ, u〉 = 〈ϕ, u〉C,M. Furthermore we recall the concept of weak*-convergence onM.

Definition 6.1. A sequence {uk}k∈N ⊂M is called weak* convergent with limit ū ∈M if

〈ϕ, uk〉 → 〈ϕ, ū〉 ∀ϕ ∈ C.

235



6 Algorithmic framework

Whenever {uk}k∈N converges weak* to ū ∈M it is denoted by uk ⇀∗ ū.

The spaceM is equipped with the topology induced by the corresponding dual norm

‖u‖M = sup
ϕ∈C,‖ϕ‖C≤1

〈u, ϕ〉 ∀u ∈M.

In particular it is a Banach space with respect to the induced norm. Given an extended real valued
functional φ : M→ R ∪ {+∞} and a convex weak* closed subset M ⊂M we define the domain
of φ in M as

domM φ = {u ∈M | φ(u) <∞} .

If M =M the index will be dropped.

6.1.1 Existence of minimizers

The proof for the existence of at least one minimizer to (P) will be based on Tonelli’s direct
method, see e.g. [78, Chap. 1]. Thus we require the relative sequential compactness of bounded
sets inM with respect to a suitable topology. For the case of a general non-reflexive space this is
neither true for the strong topology, i.e. the topology induced by the norm onM, nor the weak
topology. As a remedy we recall the following sequential version of the Banach-Alaoglu theorem,
cf. [52, Corollary 3.30] which holds due to the separability of the predual space.

Proposition 6.1 (Banach-Alaoglu). Let {uk }k∈N ⊂M denote a bounded sequence inM. Then
there exists a subsequence {ukj }j∈N and an element u ∈M with ukj ⇀

∗ u.

Thus norm bounded sets inM are relative sequentially compact with respect to the weak* topol-
ogy. Throughout the course of this chapter we impose the following general assumptions on the
objective functional under consideration.

Assumption 6.1. The functions f and g fulfill:

A6.1 The extended real-valued functional g : M → R ∪ {+∞} is proper, i.e. not equal to +∞,
convex and (sequentially) weak* lower semi-continuous onM.

A6.2 The extended real-valued function f : M 7→ R ∪ {+∞} is proper and (sequentially) weak*
lower semi-continuous on dom g. There holds

dom j = dom f ∩ dom g 6= ∅,

and for every sequence {uk }k∈N ⊂ dom g we have

uk ⇀
∗ u⇒ f(u) ≤ lim inf

k→∞
f(uk).

Furthermore, restricted to its domain, f is (sequentially) weak* continuous. Given a sequence
{uk }k∈N ⊂ dom f there holds

uk ⇀
∗ u ∈ dom f ⇒ f(uk)→ f(u).
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A6.3 The domain of j is (sequentially) weak* open in dom g in the following sense: Given
{uk }k∈N ⊂ dom g there holds

uk ⇀
∗ u ∈ dom j ⇒ ∃k̄ ∈ K : uk ∈ dom j ∀k ≥ k̄.

A6.4 On dom j the function f is assumed to be Gâteaux-differentiable. For every u ∈ dom j the
Gâteaux derivative f ′(u)(·) of f can be identified with ∇f(u) ∈ C, i.e. there holds

f ′(u)(δu) = 〈∇f(u), δu〉 ∀δu ∈M.

Furthermore the mapping

∇f : M→ C u 7→ ∇f(u)

is (sequentially) weak*-to-strong continuous.

A6.5 The functional j : M → R ∪ {+∞} is radially unbounded. For every sequence {uk}k∈N ⊂
dom g there holds

‖uk‖M →∞⇒ j(uk)→ +∞.

The existence of a global minimizer to (P) follows by standard arguments.

Proposition 6.2. There exists at least one optimal solution to (P). Moreover the set of optimal
solutions is bounded.

Proof. Since j is proper we have

̂ = inf
u∈M

j(u) < +∞.

Denote by uk ⊂ dom j, k ∈ N, an arbitrary infimizing sequence for j. For all k large enough we
have

̂ = inf
u∈M

j(u) ≤ j(uk) ≤ ̂+ 1.

Due to the radial unboundedness of j there exists a constant c > 0 with ‖uk‖M ≤ c for all k ∈ N.
By Proposition 6.1 there exists a subsequence of uk (denoted with the same index) and an element
ū ∈ dom g with uk ⇀∗ ū. By assumption g is weak* lower semi-continuous onM and f is weak*
lower semi-continuous on dom g. Since {uk}k∈N ⊂ dom g we arrive at

j(ū) ≤ lim inf
k→∞

j(uk) = ̂,

from which we conclude ̂ ∈ R and the optimality of ū ∈ dom j. It remains to show the boundedness
of the set of minimizers. To do so assume the contrary i.e. there exists a sequence {uk}k∈N with

j(uk) = ̂ ∀k ∈ N, ‖uk‖M →∞.

This however contradicts the radial unboundedness of j. Thus the set of minimizers to (P) is
bounded.
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6.1.2 Optimality conditions

The aim of this section is to establish first-order necessary optimality conditions for (P). Since
f is assumed to be smooth in the sense of A6.4 and g is convex we can therefore mainly rely
on well-known results from convex analysis and non-linear functional analysis. Associated to the
convex functional g we introduce its subdifferential at a point u ∈M by

∂g(u) = {ϕ ∈ C | 〈ϕ, ũ− u〉+ g(u) ≤ g(ũ) ∀ũ ∈M} , (6.3)

At this point we briefly pause to point out that the convex subdifferential of g is defined as subset
of the predual space C. This is in contrast to its usual definition as a subset of the dual spaceM∗
(formed with respect to the norm topology on M). In particular the set ∂g(u) may be empty
for an arbitrary u ∈ M. The following proposition however states that the subdifferential at a
minimizer of (P) necessarily contains the negative gradient of f .

Proposition 6.3. Let ū be a minimizer to (P). Then there holds

〈−∇f(ū), u− ū〉+ g(ū) ≤ g(u) ∀u ∈M. (6.4)

Equivalently, this can be expressed by −∇f(ū) ∈ ∂g(ū). Vice versa, if f is convex, every ū ∈ dom j
which fulfils (6.4) is a global minimizer of (P).

Proof. We give the proof for the sake of completeness. Let ū ∈M be an optimal solution to (P).
First we note that (6.4) holds trivially if u 6∈ dom g. Now, given an arbitrary u ∈ dom g we have
ū + t(u − ū) ∈ dom j for all positive t small enough due to A6.3. Using the optimality of ū and
the convexity of g we obtain

0 ≤ j (ū+ t(u− ū))− j(ū) ≤ f (ū+ t(u− ū))− f(ū) + t (g(u)− g(ū)) .

Dividing both sides of the inequality by t and letting t→ 0 yields

0 ≤ f ′(ū)(u− ū) + g(u)− g(ū).

By rearranging and f ′(ū)(ū−u) = 〈∇f(ū), ū− u〉, seeA6.4, we conclude (6.4) since u ∈ dom g was
chosen arbitrary. Due to the definition of the subdifferential this is equivalent to −∇f(ū) ∈ ∂g(ū).

Assume now that (6.4) holds at ū and f is convex. Then we have

0 ≤ 〈∇f(ū), u− ū〉+ g(u)− g(ū) ≤ f(u)− f(ū) + g(u)− g(ū) = j(u)− j(ū) ∀u ∈M,

which yields the optimality of ū.

While (6.4) provides a simple necessary condition for the optimality of ū it is only of limited
practical use without any further characterization of the set ∂g(ū). In particular it does not allow
to infer on the structural properties of minimizers to (P). In the following proposition we provide
an important result from convex analysis which allows to characterize the subdifferential of g by
properties of the convex conjugate function

g∗ : C → R ∪ {+∞}, ϕ 7→ sup
u∈M

[〈ϕ, u〉 − g(u)]. (6.5)
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Proposition 6.4. Let ϕ ∈ C and u ∈M be given. Then there holds

ϕ ∈ ∂g(u)⇔ g(u) + g∗(ϕ) = 〈p, u〉 ⇔ u ∈ ∂g∗(ϕ), (6.6)

where the subdifferential of g∗ at ϕ is given by

∂g∗(ϕ) = {u ∈M | 〈u, ϕ̃− ϕ〉+ g∗(ϕ) ≤ g(ϕ̃) ∀ϕ̃ ∈ C } .

Proof. The statement is obtained from Proposition 5.1 and Corollary 5.2 in [98, Chapter 1] noting
that g is weak* lower semi-continuous.

Corollary 6.5. Let ū ∈M be an optimal solution to (P). Then there holds

−∇f(ū) ∈ ∂g(ū)⇔ g(ū) + g∗(−∇f(ū)) = 〈−∇f(ū), ū〉 ⇔ ū ∈ ∂g∗(−∇f(ū))

Proof. The statement readily follows by combining Proposition 6.3 and Proposition 6.4.

In the following example, we illustrate how these results allow to derive equivalent first-order
optimality conditions.

Example 6.1. Let G : R → R ∪ {+∞} be proper, convex, lower semi-continuous and monoton-
ically increasing on R+ with limt→∞G(t) = +∞. Further assume that domG ⊂ R+. We set
g(u) = G(‖u‖M). This setting includes the case of norm regularization g1(u) = G1(‖u‖M) =
α‖u‖M where we choose G1(m) = αm + I[0,∞)(m) for α > 0. The, at first sight unnecessary,
indicator function of the nonnegative real axis, will allow for a simpler statement of first order
optimality conditions. We stress however that its appearance does not change the optimization
problem. Additionally, norm constraints can be considered by setting

g2(u) = I‖·‖M≤M0
(u) = I[0,M0](‖u‖M).

Here I‖·‖M≤M0
denotes the indicator function of the ball B̄M0(0) with radius M0 > 0 inM, i.e.

I‖·‖M≤M0
(u) =

{
0 ‖u‖M ≤M0

+∞ ‖u‖M > M0

.

It is straightforward to verify that g is proper, convex and sequentially weak* lower semi-continuous
onM. If ū ∈M is an optimal solution to (P) then Proposition 6.3 yields

〈−∇f(ū), u− ū〉+G(‖ū‖M) ≤ G(‖u‖M) ∀u ∈M. (6.7)

Let us first assume that ū 6= 0. Due to the monotonicity of G we immediately derive

〈−∇f(ū), u− ū〉 ≤ 0 ∀u ∈M, ‖u‖M ≤ ‖ū‖M,

or, equivalently −∇f(ū) ∈ ∂
(
I‖·‖M≤‖ū‖M

)
(ū). Let us calculate the convex conjugate of the indi-

cator function as (
I‖·‖M≤‖ū‖M

)∗
(ϕ) = sup

‖u‖M≤‖ū‖M
〈ϕ, u〉 = ‖ū‖M‖ϕ‖C ∀ϕ ∈ C.
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We conclude ‖ū‖M‖∇f(ū)‖C = 〈−∇f(ū), ū〉. Consequently, testing (6.7) with um = (m/‖ū‖M)ū
for m ∈ R+ yields

‖∇f(ū)‖C (m− ‖ū‖M) +G(‖ū‖M) ≤ G(m) ∀m ∈ R+.

Collecting all the previous results we get that every non-zero minimizer ū to (P) fulfills

〈−∇f(ū), ū〉 = ‖∇f(ū)‖C‖ū‖M, ‖∇f(ū)‖C ∈ ∂G(‖ū‖M),

where ∂G(‖ū‖M) denotes the convex subdifferential of G at ‖ū‖M. If ū = 0 the inequality in (6.7)
simplifies to

〈−∇f(0), u〉+G(0) ≤ G(‖u‖M) ∀u ∈M. (6.8)

Consider an arbitrary but fixed u ∈M, ‖u‖M = 1, and m ∈ R+. Testing (6.8) with mu yields

m〈−∇f(0), u〉+G(0) ≤ G(m) ∀m ∈ R+.

Since u was chosen arbitrary we can take the supremum over u ∈M, ‖u‖M = 1, on both sides of
the inequality to arrive at

m‖∇f(0)‖C +G(0) ≤ G(m) ∀m ∈ R+,

where we recall the dual representation of the norm on C.

‖ϕ‖C = sup
‖u‖M=1

〈ϕ, u〉 ∀ϕ ∈ C.

Thus we conclude

0 = 〈−∇f(ū), ū〉 = ‖∇f(ū)‖C‖ū‖M, ‖∇f(ū)‖C ∈ ∂G(‖ū‖M).

6.2 Generalized conditional gradient methods

In this section we elaborate on the algorithmic solution of (P) on the function space level by
generalized conditional gradient methods. To this end we first review the results on the original
conditional gradient method for constrained minimization problems. Subsequently the method is
adapted to general composite minimization problems. We discuss the convergence of this general-
ized algorithm and show that its worst-case convergence guarantees are on par with those of the
original method.

6.2.1 Conditional gradient methods for smooth functions

To motivate our course of action in the following sections let us first consider the minimization
of a smooth and convex function f : Rn → R, n ∈ N, with Lipschitz continuous gradient over a
convex and compact subset M ⊂ Rn. Obviously this problem can be fit into the general setting
considered in the previous section by choosing the spaces as M ' C = Rn together with the
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euclidean norm and the nonsmooth function g as the indicator function IM of the compact set.
Thus we arrive at

min
u∈M

f(u) = min
u∈Rn

j(u) = [f(u) + IM (u)]. (6.9)

In this case existence of a minimizer ū ∈M follows due to the Weierstrass theorem. The necessary
and sufficient optimality condition is given by

(∇f(ū), u− ū)Rn ≥ 0 ∀u ∈M.

For the sake of simplicity we assume the uniqueness of ū throughout this introductory remarks.
The algorithmic solution of constrained optimization problems with smooth objective functional is
a well-studied subject. We refer e.g. to the monographs [35, 203]. In particular the minimization
problem in (6.9) can be solved by applying a projected gradient iteration defined by

u0 ∈M, uk+1 = PM

(
uk − 1

L
∇f(uk)

)
where PM (u) = min

v∈M

1

2
|u− v|2Rn . (6.10)

Here L denotes the Lipschitz constant of ∇f . Note that the sequence of iterates is feasible,
i.e. {uk}k∈N ⊂ M , by definition of the projection. It is well known that the iterates {uk}k∈N
define a minimizing sequence for f on M and the objective function values converge at a sublinear
rate

j(uk)− j(ū) ≤ c

1 + qk
∀k ∈ N,

for some constants c, q > 0 independent of the iteration number. If f is strongly convex on M
the convergence is linear i.e.

j(uk)− j(ū) ≤ cζk ∀k ∈ N,

for some ζ ∈ (0, 1). Even for non-strongly convex f a convergence rate of 1/k2 can be recovered
by adding additional improvement steps such as Nesterov acceleration [201, Chapter 2]. For a
discussion of projected gradient methods in the broader context of general Hilbert spaces we refer
to [34,121].

As an alternative to projected gradient methods we consider a conditional gradient iteration
defined by

u0 ∈M, uk+1 = uk + sk(vk − uk), vk ∈ arg min
v∈M

(∇f(uk), v)Rd , sk ∈ [0, 1]. (6.11)

This method was originally proposed in a paper by Frank and Wolfe, [112], for the minimization of
a quadratic function over a polytope. The term conditional gradient method was coined in [185].
Feasibility of the iterates is ensured by taking uk+1 as a convex combination between the previous
iterate uk and an auxiliary variable vk given by a minimizer to a linear program over M . A
sublinear rate for the convergence of the sequence {f(uk)}k∈N towards the global minimum of f
on M can be proven for various choices of the step size sk. We mention for example the closed
loop step sizes rule of [91]

sk =


0 (∇f(uk), uk − vk)Rn = 0
(∇f(uk),uk−vk)Rn

L‖uk−vk‖2 0 < (∇f(uk),uk−vk)Rn
L‖uk−vk‖2 < 1

1 1 ≤ (∇f(uk),uk−vk)Rn
L‖uk−vk‖2

, (6.12)
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and implicit step sizes based on line minimization

sk ∈ arg min
s∈[0,1]

f(uks) s.t. uks = uk + s(vk − uk), (6.13)

or an Armijo-Goldstein backtracking on the objective functional, [92]. The method is also known
to converge for open loop step size sequences, [93,159,274], fulfilling

sk → 0,

∞∑
i=1

sk = +∞, (6.14)

whose determination may neither require evaluations of the objective functional f nor the Lipschitz
constant of its gradient ∇f on M . In particular this covers the choice of sk = 2/(k + 2).

However in contrast to projected gradient methods the sublinear rate is tight even for strongly
convex f . For a reference we point out to the example in [56]. Stronger convergence results can
only be expected under more restrictive assumptions on the geometry of the admissible set, the
function f and/or the location of the minimizer. We give a brief overview in the following. In [125]
the authors establish linear convergence if f is strongly convex and ū lies in the interior of M .
A similar result is derived in [25] for a conditional gradient method applied to convex feasibility
problems over a general convex and compact set M . Moreover a linear rate of convergence is
provided in [83, 185] for convex f on strongly convex sets if the norm of ∇f(u) is uniformly
bounded away from zero for u ∈ M . Here M is called strongly convex with respect to | · |Rn if
there exists θ > 0 with

u1, u2 ∈M, u3 ∈ Rn, |u3|Rn = 1, s ∈ [0, 1]⇒ su1 + (1− s)u2 + s(1− s) +
θ

2
|u1 − u2|2Rnu3 ∈M.

For example the unit ball with respect to the euclidean norm is strongly convex. In several
papers, [91, 92], the assumptions on f and the admissible set are replaced by a growth condition
on the linear functional induced by the optimal gradient

arg min
v∈M

(∇f(ū), v)Rn = {ū}, (∇f(ū), u− ū)Rn ≥ θ|u− ū|2Rn . (6.15)

Note that these works do neither require strong convexity of the function f nor of the setM . IfM
is a polytope the first condition together with the fundamental theorem of linear programming
implies that ū is a vertex. One interesting and relevant application of those results is illustrated in
Example 6.2. More recently a 1/k2 rate independent of the location of the minimizer was obtained
in [115] for strongly convex f and M . We emphasize that all of these improved results are either
based on closed loop step size choices, (6.12), or implicit step sizes, (6.13), which take into account
information on the current iterate. For the general open loop step size rule (6.14) no improved
results can be expected even in the outlined restrictive settings.

A second line of work puts the focus on acceleration schemes in order to improve the convergence
behavior of conditional gradient methods. We also give a brief sketch of these approaches. To
give some geometric interpretation for the following discussion let us assume that the admissible
set is a polytope and 0 ∈ M . Then M can be represented as the convex hull of the finite set A
containing its vertices. Thus we can restate the minimization problem as

min
u∈Rn

f(u) s.t. u ∈ conv(A) =

{∑
v∈A

λvv |
∑
v∈A

λv = 1, λv ≥ 0

}
.
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From linear programming theory it is well-known that a linear functional attains its minimum on
a compact and convex polytope at a vertex. As a consequence we can choose

vk ∈ arg min
v∈Rn

(∇f(uk), v)Rn ∩ A.

In particular if we set u0 = 0 there exists a set of vertices Ak with

Ak ⊂ {vi}ki=1 ⊂ A, uk+1 ∈ conv{Ak}.

From this perspective the conditional gradient method can be interpreted as follows. In each
iteration we select one vertex vk of the polytope M . The new iterate is then found by moving
from uk towards vk along the connecting line. By construction uk+1 lies in the simplex spanned by
a subset Ak of the previously determined vertices {vi}ki=1. Acceleration schemes can now be based
on the vertex representation of uk. In [268] Wolfe proposed to add the possibility of performing
an alternative step

vk ∈ arg max
v∈Ak−1

(∇f(uk), v), uk+1 = uk + sk(uk − vk), sk ≥ 0,

instead of the conditional gradient update which allows the iterate to move away from previously
considered vertices. Linear convergence of conditional gradient methods based on Wolfe’s away
step is discussed in [2,114,179]. Obviously the new iterate can also be determined by minimizing f
over the smaller simplex

uk+1 ∈ arg min
u∈M

f(u) s.t. u ∈ conv{Ak}.

This version of the algorithm is known as fully corrective conditional gradient, [151], or simplicial
decomposition, [260]. Since the number of vertices is bounded the method converges in finitely
many steps if vk ∈ Ak for all k ∈ N is ensured. In the context of machine learning similar methods
are known by the name of boosting or forward greedy selection. Linear convergence of such a
method on a finite dimensional predictor problem with sparsity constraints is proven in [236].
Note that both accelerated versions can be also applied for general convex and compact M by
identifying them with the closure of the convex hull of their extremal points. This is a consequence
of the Krein-Milman theorem. However we are not aware of any improved convergence results in
the case that the number of extremal points is infinite as for e.g. the euclidean unit ball.

Certainly these results raise the question in which situations a conditional gradient method should
be given preference over the apparently better behaving projected gradient iteration. A first ar-
gument in favour of the conditional gradient algorithm lies in the complexity of the occurring
subproblems. Computing the projection in (6.10) corresponds to minimizing a quadratic approx-
imation of f at the current iterate over M :

uk+1 ∈ arg min
v∈M

1

2
|v − uk +

1

L
∇f(uk)|2Rd = arg min

v∈M
[f(uk) + (∇f(uk), v − uk)Rn +

L

2
|v − uk|2Rn ].

In contrast the conditional gradient step only requires the minimization of a linear model:

vk ∈ arg min
v∈M

(∇f(uk), v)Rn = arg min
v∈M

[f(uk) + (∇f(uk), v − uk)Rn ].

While computing projections can be cheaply realized for many sets there are certainly relevant
problems in which this step represents a computational bottleneck. As an example we point out
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to minimization problems over subsets of the positive semi-definite matrices. Calculating the
projection of a given u with respect to the Frobenius norm onto such admissible sets requires its
full singular value decomposition, [46, Section 8.1]. On the contrary to solve the linear subproblems
in (6.11) only one leading eigenpair of ∇f(uk) needs to be computed, [133].

Secondly conditional gradient iterates often exhibit certain desired structural properties depending
on the geometry of the feasible set. For example if f is minimized over the l1 unit ball the element
vk can be chosen as a multiple of a canonic basis vector in Rn. Thus, assuming that u0 = 0, the
iterate uk is a sparse vector containing at most k non-zero entries. Similarly if M is a bounded
subset of the positive semi-definite matrices the method can be realized to yield iterates uk which
are low-rank.

Most importantly however we point out that a straightforward extension of the projected gradient
method to infinite dimensional spaces requires reflexivity and strict convexity of M. We point
out to [207] for a reference. In contrast the conditional gradient method generalizes naturally to
minimization problems in non-reflexive Banach spaces. As a matter of fact the aforementioned
improved convergence results in [83, 91, 92, 185] all hold in this general setting when we replace
the euclidean norm in the previous considerations by the corresponding Banach space norm. The
following two examples highlight this advantage of the conditional gradient method and the as-
sociated flexibility. In the first one we consider a bang-bang control problem on L2(Ω). Here
the objective functional is not strongly convex and a projected gradient iteration only yields a
provable sublinear rate of convergence which is however also observed in practice. In comparison,
linear convergence of the conditional gradient method can be obtained by interpreting the admis-
sible set as a subset of the space of Radon measures. The second example deals with constrained
minimization problems in spaces of measures. One of the main results of this thesis establishes a
linear rate of convergence for an accelerated conditional gradient method for this type of problems.
For more details we direct the reader to Section 6.3.

Example 6.2. Consider a bounded domain Ω ⊂ Rd, d ∈ N, a desired state yd ∈ L2(Ω) and a
linear operator K : L1(Ω)→ L2(Ω) which we assume to be injective and compact. In the following
we aim to compute the unique minimizer ū of

min
u∈Uad

f(u) :=
1

2
‖Ku− yd‖2L2(Ω) where Uad =

{
u ∈ L2(Ω) | |u(x)| ≤ 1 a.e. x ∈ Ω

}
.

It is well-known that ū is characterized by the bang-bang condition

ū(x) ∈


{1} [K∗(Kū− yd)](x) < 0

[−1, 1] [K∗(Kū− yd)](x) = 0

{−1} [K∗(Kū− yd)](x) > 0.

for a.e. x ∈ Ω. (6.16)

Interpreting Uad as a subset of L2(Ω) a realization of the projected gradient method for its com-
putation is given by

u0 = 0, uk+1(x) = min
{

1, max{uk(x)− sk[K∗(Kuk − yd)](x),−1 }
}

for a.e. x ∈ Ω,

where sk ≥ 0 is a suitably chosen step size see e.g. [214]. Note that the Hessian of the objective
functional ∇2f(u) = K∗K is compact for every u ∈ Uad. In particular this implies that f is not
strongly convex on the admissible set and the projected gradient method only guarantees a sublinear
rate of convergence on this problem.
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Alternatively we consider Uad ⊂ L1(Ω) ⊂ M(Ω) and compute ū by applying the following condi-
tional gradient iteration

u0 = 0, uk+1 = uk + sk(vk − uk), vk(x) =

{
1 [K∗(Kuk − yd)](x) ≤ 0

−1 [K∗(Kuk − yd)](x) > 0
for a.e. x ∈ Ω.

Choosing the step size sk ∈ [0, 1] according to the line minimization rule (6.13) leads to

sk = min
{

1, max{(K∗(Kuk − yd), uk − vk)L2(Ω)/‖K(uk − vk)‖2L2(Ω), 0}
}
,

where division by zero results in +∞. While this method also only guarantees a sublinear rate in
general a better convergence behavior can be expected if additional structural assumptions on the
adjoint state K∗(Kū − yd) in the vicinity of its roots are imposed. More in detail we require the
existence of a constant c > 0 such that for all ε > 0 there holds

µL ({x ∈ Ω | [K∗(Kū− yd)](x) = 0 }) = 0, µL ({x ∈ Ω | − ε ≤ [K∗(Kū− yd)](x) ≤ ε }) ≤ cε.
(6.17)

Note that the first condition together with (6.16) imply that ū is strictly bang-bang i.e. it achieves
the upper or the lower bound almost everywhere in Ω. We point out that the assumptions in (6.17)
are well-established in the context of bang-bang optimal control problems see e.g. [66,82]. From the
bang-bang condition (6.16) and [66, Proposition 2.7] we now infer

arg min
v∈Uad

(K∗(Kū− yd), v)L2(Ω) = {ū}, (K∗(Kū− yd), u− ū)L2(Ω) ≥ θ‖u− ū‖2L1(Ω)

for all u ∈ Uad and some positive constant θ > 0. Thus Theorem 3.1 in [92] yields the existence
of ζ ∈ (0, 1) such that the conditional gradient sequence {uk}k∈N satisfies

f(uk)− f(ū) + ‖uk − ū‖L1(Ω) ≤ cζk,

for some c > 0 independent of the iteration number k. To the best of our knowledge there are no
comparable results for the projected gradient method under the additional assumptions of (6.17).

Example 6.3. Let Ω ⊂ Rd, d ∈ N, be a compact set and denote by M(Ω) the space of Radon
measures on Ω. In this example we consider minimization problems of the form

min
u∈M+(Ω)

f(u) := F (Ku) s.t. ‖u‖M ≤M0, (6.18)

where K : M(Ω)→ Y is a linear and continuous operator taking values in a Hilbert space Y and
the functional F : Y → R is convex and continuously differentiable. The optimization variable u
is searched for in the set of positive Radon measuresM+(Ω). An additional upper bound M0 > 0
on the total variation of the measure is enforced. Moreover we assume that the adjoint operator
of K satisfies K∗ : Y → C(Ω). Following the discussions in Section 6.3.2 a given admissiblie
measure ū ∈M+(Ω) is a minimizer of (6.18) if and only if

‖(K∗∇F (Kū))−‖C ∈

{
{0} ‖ū‖M ∈ [0,M0)

[0,+∞) ‖ū‖M = M0

,

and ū fulfills the sparsity condition

supp ū ⊂
{
x ∈ Ω | [(K∗∇F (Kū))−](x) = ‖(K∗∇F (Kū))−‖C

}
, 〈(K∗∇F (Kū))+, ū〉 = 0.
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Here (ϕ)− = −min{0, ϕ} and (ϕ)+ = max{0, ϕ} denote the negative and positive part of a func-
tion ϕ ∈ C(Ω) respectively.

To compute such a minimizer we apply a conditional gradient iteration which is defined as

u0 = 0, uk+1 = uk + sk(vk − uk),

where vk ∈M+(Ω) is given by

vk =

{
M0δx̂k minx∈Ω[K∗∇F (Kuk)](x) ≤ 0

0 minx∈Ω[K∗∇F (Kuk)](x) > 0
, x̂k ∈ arg min

x∈Ω
[K∗∇F (Kuk)](x).

While sublinear rates of convergence for conditional gradient methods on similar problems have
been established in several recent works, [44, 50, 97, 200, 209], we are not aware of any results on
conditions or acceleration schemes that guarantee an improved convergence behaviour. In particular
there holds

u1, u2 ∈M+(Ω), ‖u1‖M = ‖u2‖M = M0 ⇒ ‖u1 + s(u2 − u1)‖M = M0 ∀s ∈ [0, 1].

Thus the admissible set in (6.18) is not strongly convex and the arguments of Levitin, [185], and
Demyanov, [83], cannot be applied to obtain improved convergence rates. Furthermore, denoting
by 〈·, ·〉 the duality pairing between C(Ω) andM(Ω), we readily obtain

arg min
v∈M+(Ω)
‖v‖M≤M0

〈K∗∇F (Kū), v〉 =

{
v ∈M+(Ω) | supp v ⊂ arg min

x∈Ω
[K∗∇F (Kū)](x), ‖v‖M = M0

}
,

if minx∈Ω[K∗∇F (Kū)] < 0. As a consequence, assuming the extremality condition

arg min
v∈M+(Ω)
‖v‖M≤M0

〈K∗∇F (Kū), v〉 = {ū}

from Dunn’s papers, [91, 92], implies that the optimal solution to (6.18) is unique and given by
a single Dirac delta function ū = M0δx̄ for some x̄ ∈ Ω. Moreover, even in this case, quadratic
growth conditions of the form

〈K∗∇F (Kū), u− ū〉 ≥ θ‖u− ū‖2M ∀u ∈M+(Ω), ‖u‖M ≤M0,

cannot be fulfilled for any θ > 0. To see this take a sequence of points {xk}k∈N ⊂ Ω, with xk 6=
x̄, xk → x̄. Then it is readily verified that the sequence of Dirac delta functions {uk}k∈N defined
by uk = M0δxk , fulfills

〈K∗∇F (Kū), uk − ū〉 → 0 but ‖uk − ū‖M = 2M0 ∀k ∈ N.

In Section 6.3.5 we close this gap by providing an accelerated version of the conditional gradi-
ent method which achieves a linear rate of convergence on problem (6.18) if certain structural
requirements are met. Amongst other things we assume uniqueness and sparsity of the minimizer
to (6.18) i.e. ū consists of finitely many Dirac delta functions. In summary we obtain

f(uk)− f(ū) + ‖uk − ū‖C0,1(Ω)∗ ≤ cζk,
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for some constants c > 0, ζ ∈ (0, 1) and all k ∈ N large enough. Here ‖ · ‖C0,1(Ω)∗ denotes the
canonical norm on the dual space of the Lipschitz continuous functions. Note that we have

M(Ω) ↪→ C0,1(Ω)∗

i.e. we obtain quantitative convergence statements for the iterates in a weaker norm. We point out
the similarity of this result to the improved convergence statement for the bang-bang optimization
problem in the previous example. There the admissible set Uad is given by the unit ball in L∞(Ω).
However the convergence of the iterates {uk}k∈N is quantified with respect to the norm on the
weaker space L1(Ω).

6.2.2 Conditional gradient methods for composite minimization

In the following we present a generalization of the conditional gradient method for the solution of
the composite minimization problem (P). To this end we first provide some preparatory results.
Recall that the set of minimizers to (P) is bounded by someM0 > 0, see Theorem 6.2. Associated
to this constant define the auxiliary problem

min
‖u‖M≤M0

[f(u) + g(u)]. (PM0)

The following proposition states the equivalence of (PM0) and the original problem (P).

Proposition 6.6. The set of minimizers to (P) and (PM0) coincide. If ū ∈ M is a minimizer
of (P) then there holds

〈−∇f(ū), u− ū〉+ g(ū) ≤ g(u) ∀u ∈M, ‖u‖M ≤M0. (6.19)

If f is convex, this condition is sufficient for optimality.

Proof. The equivalence of the set of minimizers to both problems follows immediately by comparing
objective function values. The variational inquality in (6.19) can be deduced from Proposition 6.3.

As a consequence we may consider a minimization algorithm for the constrained problem (PM0) in
order to compute a minimzer of (P). We stress however that j is in general non-convex and thus
the variational inquality in the last proposition is only necessary and not sufficient for optimality.
Elements ū ∈ dom j fulfilling (6.19) will be called stationary points. In the following proposition
these points are related to the roots of the non-negative primal-dual gap Φ : M → R+ ∪ {+∞}
given by

Φ(u) =

{
max‖v‖M≤M0

[〈∇f(u), u− v〉+ g(u)− g(v)], u ∈ dom j

+∞, else (6.20)

Proposition 6.7. Let ū ∈ dom j be given. Then ū fulfills (6.19) if and only if Φ(ū) = 0.

Proof. Assume that ū fulfills (6.19). Reordering yields

〈∇f(ū), ū− v〉+ g(ū)− g(v) ≤ 0 ∀v ∈M, ‖v‖M ≤M0.
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Maximizing with respect to v, ‖v‖M ≤ M0, on both sides we conclude Φ(ū) ≤ 0. Since Φ only
assumes non-negative values the statement follows. Conversely if ū fulfills Φ(ū) = 0 we readily
obtain

〈∇f(ū), ū〉+ g(ū) ≤ 〈∇f(ū), v〉+ g(v) ∀v ∈M, ‖v‖M ≤M0.

By rearranging both sides we arrive at (6.19).

Remark 6.1. Let {ϕi}i∈N denote a countable dense subset of C. Since C is separable the weak*
topology on every closed ball B ⊂M is metrizable. A suitable metric is given by

d : B ×B → R, (u1, u2) 7→
∞∑
i=1

1

2i
|〈ϕi, u1 − u2〉|.

For a reference we point out to [52, Theorem 3.28]. In metric spaces sequential openness and
opennes with respect to the corresponding metric are equivalent. We draw several conclusion
from this discussion. Due to Assumption A6.3 given an arbitrary ū ∈ dom j, ‖ū‖M ≤ M0 there
exists ε > 0 with

Bd,ε(ū) = {u ∈ dom g | d(u, ū) < ε, ‖u‖M ≤M0} ⊂ dom j.

Moreover, since the mapping

d(·, ū) : M→ R, u 7→ d(u, ū)

is convex, the set Bd,ε(ū) is convex as well. In particular, given sequences {uk1}k∈N, {uk2}k∈N ⊂
dom g we have

uk1 ⇀
∗ ū, uk2 ⇀

∗ ū, max{‖uk1‖M, ‖uk2‖M} ≤M0 ∀k ∈ N⇒ uk1 + s(uk2 − uk1) ∈ Bd,ε(ū),

for all s ∈ [0, 1] and all k ∈ N large enough.

Clearly every measure ū fulfilling the variational inequality in (6.4) and in particular every mini-
mizer of (P) fulfills Φ(ū) = 0. As a last preliminary step we consider well-posedness results and
first-order optimality conditions for partial linearizations of (PM0). For brevity we define the
convex function

gM0 : M→ R ∪ {+∞}, u 7→ g(u) + I‖u‖M≤M0
(u).

Lemma 6.8. Given an arbitrary u ∈ dom j there exists at least one minimizer v̄ ∈ M of the
partially linearized problem

min
‖v‖M≤M0

[〈∇f(u), v〉+ g(v)] . (Plin)

Furthermore v̄ ∈M, ‖v̄‖M ≤M0, is a minimizer to (Plin) if and only if

v̄ ∈ g∗M0
(−∇f(u)). (6.21)

Proof. The linearized objective functional

jlin : M→ R ∪ {+∞}, v 7→ 〈∇f(u), v〉+ g(v) + I‖v‖M≤M0
(v),

is proper, convex and weak* lower semi-continuous onM. Furthermore the norm of every infimiz-
ing sequences for jlin is bounded by M0. Existence of a minimizer to (Plin) can now be concluded
as in Proposition 6.2. The necessary and sufficient optimality condition in (6.21) are obtained by
applying Proposition 6.3 and Proposition 6.4.
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Algorithm 8 Generalized conditional gradient method (GCG) for (P)
1. Let u0 ∈ dom j, ‖u0‖M ≤M0.
while Φ(uk) ≥ TOL do
2. Determine vk ∈M such that

vk ∈ arg min
‖v‖M≤M0

[〈∇f(uk), v〉+ g(v)].

3. Choose sk ∈ [0, 1]. Set uk+1/2 = uk + sk(vk − uk).
4. Choose uk+1 ∈M with j(uk+1) ≤ j(uk+1/2) and ‖uk+1‖M ≤M0.

end while

The generalized conditional gradient method (GCG) for the solution of (P) is summarized in
Algorithm 8. In the k-th step of the method an intermediate iterate is obtained as convex combi-
nation uk+1/2 = uk + sk(vk − uk) for some sk ∈ [0, 1] between the current iterate uk ∈ dom j and
a minimizer vk ∈ dom g of the partially linearized problem

min
‖v‖M≤M0

[〈∇f(uk), v〉+ g(v)]. (6.22)

Clearly if M ⊂ Rn is a compact and convex set we recover the conditional gradient iteration
described in (6.11) by setting g = IM . Note that the auxiliary problem in (6.22) corresponds to
the minimization of a composite functional comprising a linear approximation of f at the current
iterate uk and the non-smooth term g. The new iterate uk+1 is now chosen from the sublevel set
associated to uk+1/2

uk+1 ∈
{
u ∈M | j(u) ≤ j(uk+1/2), ‖u‖M ≤M0

}
.

In particular the choice of uk+1 = uk+1/2 is possible. From this point of view step 4. in Algorithm 8
should be interpreted as a black box improvement step which allows e.g. to accelerate the algorithm
or to exploit structural properties of the iterates. However it is not necessary to ensure convergence
of the method in the following. Possible realizations of this step for a concrete problem are
discussed in Sections 6.3.3 and 6.3.4.

Remark 6.2. We point out that the additional norm constraint in (Plin) is crucial in order to
ensure the well-posedness of the conditional gradient step. In fact the partially linearized problem
without additional norm constraints

min
v∈M

[〈∇f(uk), v〉+ g(v)]

may be unbounded if e.g. g is positive homogeneous.

Let us briefly summarize previous approaches in this direction. Generalized conditional gradient
methods for minimization problems on finite dimensional spaces are considered in [14,131,195,224].
The general Hilbert space case is covered in [49]. In particular this last work provides convergence
results for the sequence of iterates for general f . Additionally a sublinear rate of convergence for
the objective function values is shown assuming convexity of f and Lipschitz continuity of the
gradient ∇f . We stress however that composite minimization problems in Hilbert spaces can be
solved by proximal gradient methods if the computation of the prox-operator, [199], associated
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to g is inexpensive. These methods rely on a fix-point reformulation of the subdifferential in-
clusion −∇f(ū) ∈ ∂g(ū) and generalize the projected gradient iteration from (6.10). Proximal
gradient methods yield linear convergence of the objective functional values for strongly convex
objective functionals. For general convex j a 1/k2 rate can be ensured by adding suitable ac-
celeration steps. As a reference we point out to [27, 202] for a discussion of these methods on
finite dimensional spaces and to [48, 75, 233] for the general Hilbert space case. Moreover if f
and g admit additional regularity the fix-point formulation of the optimality condition may be
amenable for efficient solution methods such as generalized Newton-type algorithms, [223,257]. In
contrast improved convergence results for GCG methods on problems incorporating nonsmooth g
other than convex indicator functions are scarce. We are only aware of [24]. There the authors
consider the important case of norm-regularized problems, i.e. g = β‖ · ‖M for some β > 0, in
finite dimensions. Linear convergence of an accelerated conditional gradient scheme based on a
smooth reformulation of the problem is proven if the associated norm balls are polytopes. The
constants appearing in the convergence estimate heavily depend on the geometry of the norm ball
and, possibly, the number of its vertices. This makes a straightforward extension of this result to
infinite dimensional spaces impossible.

The main motivation for the application of generalized conditional gradient methods in the context
of this thesis are minimization problems where the spaceM is given by the dual space of an infinite
dimensional separable Banach space. Important examples include the space of essentially bounded
functionsM = L∞(Ω), the space of Radon measuresM =M(Ω) and the space of functions with
bounded total variation M = BV(Ω) on a subset Ω ⊂ Rd, d ∈ N. The algorithmic solution of
these type of problems on the function space level is challenging sinceM generally lacks desirable
properties such as reflexivity, strict convexity and smoothness. The aim of this section is to show
that the generalized conditional gradient method from Algorithm 8 is able to cope with both,
the composite structure of the objective functional as well as complicated spacesM. The simple
structure of the resulting algorithm is highlighted on several instructive examples.

To the best of our knowledge generalized conditional methods on general Banach spaces have only
been considered recently in [274, 277]. There the authors assume that M is a complete normed
space. The analysis in the present work distinguishes itself from those two papers in several
points. First the authors limit their discussion to the case of convex functions f and only consider
quantitative convergence results. Qualitative results on the convergence of the iterates are only
provided in the case of reflexive M. Note that this is in part a consequence of the assumed
generality in these papers. In particular since no further assumptions beyond completeness of
the space M are made it is unclear in which topology the unit ball is compact. In contrast we
exploit the duality relationM = C∗ and the implied weak* compactness of the unit ball to provide
qualitative convergence guarantees for the objective function values as well as the iterates even
if f is nonconvex. In the convex case these results are strengthened and quantitative statements
are derived. In this context additional effort has to be paid due to the potential openness of the
domain of the smooth part which is a topic that is also not covered by these prior works. While
this may seem as a minor technical difference we recall that this additional assumption on the
domain is indeed crucial to deal with the sensor placement problems of the previous chapters. A
second key difference lies in the choice of the step size. We comment on the details at a later point
of this section. Last we point out that there has been considerable work on GCG methods on the
space of Radon measures. For a discussion on known results in this case we refer to Section 6.3.

Let us now return to the analysis of the generalized conditional gradient method in Algorithm 8.
Since j is nonconvex in the general case only (subsequential) convergence of the iterates {uk}k∈N
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towards stationary points can be expected. To monitor the convergence of the GCG method we
thus consider the primal-dual gap Φ of the iterates as termination criterion. By construction there
holds

Φ(uk) = 〈∇f(uk), uk〉+ g(uk)− 〈∇f(uk), vk〉 − g(vk). (6.23)

As a consequence the termination criterion can be evaluated cheaply once a solution of the partially
linearized problem is obtained.

Remark 6.3. Obviously the presented algorithm implicitly assumes that the linearized subproblems
in step 2. can be solved efficiently and their computational cost is neglectable in comparison to a
solution of the original problem (PM0) by a different method.

Remark 6.4. At this point let us justify the term primal-dual gap for the functional Φ in (6.20). To
avoid unnecessary additional notation we restrict the following discussion to convex functions f .
However similar arguments are also valid in the nonconvex case. Define the constrained dual
objective functional

dM0 : M→ R ∪ {+∞}, u 7→ f(u) + gM0(u)

as well as its predual or primal counterpart

pM0 : C → R ∪ {+∞}, ϕ 7→ −f∗(ϕ)− g∗M0
(−ϕ).

Let ū ∈M denote an optimal solution of (PM0). This implies

ū ∈ ∂g∗M0
(−∇f(ū)).

Moreover we get ū ∈ ∂f∗(∇f(ū)) from the differentiability of f at ū. We conclude that ∇f(ū) ∈ C
is a maximizer of pM0 since

0 = ū− ū ∈ ∂f∗(∇f(ū))− ∂g∗M0
(−∇f(ū)) ⊂ ∂(f∗(·) + g∗(−·))(∇f(ū)) = −∂pM0(∇f(ū)),

where we used the inclusion rule for the subdifferential of a sum. Furthermore due to the continuity
of f on its domain strong duality holds

j(ū) = min
u∈M

dM0(u) = max
ϕ∈C

pM0(ϕ) = −min
ϕ∈C
−pM0(ϕ) = pM0(∇f(ū)).

Now denote by {uk}k∈N the sequence generated by Algorithm 8. We obtain

dM0(uk)− pM0(∇f(uk)) = f(uk) + f∗(∇f(uk)) + gM0(uk) + g∗M0
(−∇f(uk))

= 〈∇f(uk), uk〉+ gM0(uk) + g∗M0
(−∇f(uk))

= 〈∇f(uk), uk〉+ gM0(uk)− 〈∇f(uk), vk〉 − gM0(vk)

= Φ(uk).

Here we used vk ∈ ∂g∗M0
(−∇f(uk)), {∇f(uk)} = ∂f(uk) and Proposition 6.4. From this perspec-

tive the functional Φ gives the gap between primal and dual objective function values associated
to (∇f(uk), uk) in each iteration.
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Naturally the convergence of the proposed method will depend on the choice of the step size sk. As
already mentioned in the preliminary discussions convergence of the classical conditional gradient
scheme is provable for a large variety of step sizes. For abbreviation we set

uks = uk + s(vk − uk) ∀s ∈ [0, 1].

In [274, 277] the authors establish convergence of a generalized conditional gradient scheme in
Banach spaces for two particular choices of the step size. More concretely open loop and mini-
mization step sizes similar to those in (6.14) and (6.13) are studied. Here we point out that the
first choice does not yield a descent method while the second choice amounts to the solution of a
one dimensional minimization problem in every iteration.

In the present work we base our algorithm on a generalization of the well known Armijo-Goldstein
condition cf. [49]. This particular choice of the step size guarantees descend in every iteration and
its determination only requires a backtracking line search on the objective functional.

Definition 6.2. Let γ ∈ (0, 1), α ∈ (0, 1/2]. The step size sk is chosen according to the Quasi-
Armijo-Goldstein condition if sk = γnk where nk ∈ N is the smallest integer with

αγnkΦ(uk) ≤ j(uk)− j(ukγnk ). (6.24)

The following lemma illustrates that this choice of the step size is always possible if uk is not a
stationary point.

Lemma 6.9. Let an arbitrary measure u ∈ dom j be given. Assume that Φ(u) > 0 and denote by
v ∈ dom g the solution of the associated partially linearized problem (Plin). Define us = u+s(v−u)
and the extended real-valued function

W : [0, 1]→ R ∪ {−∞} W (s) =
j(u)− j(us)

sΦ(u)
.

The function W is upper semi-continuous on (0, 1] and there holds lim infs→0W (s) = 1.

Proof. Since the domain of j is sequentially weak* open in dom g there holds us ∈ dom j for all s
small enough. Due to the definition of v we have

W (s) =
j(u)− j(us)

sΦ(u)
=

j(u)− j(us)
s (〈∇f(u), u− v〉+ g(u)− g(v))

.

From the mean value theorem we get the existence of ζs ∈ [0, 1] and ũs = u+ ζs(us − u) ∈ dom j
with

W (s) =
s〈∇f(ũs), u− v〉+ g(u)− g(us)

s (〈∇f(u), u− v〉+ g(u)− g(v))

Using the convexity of g, we estimate

s〈∇f(ũs), u− v〉+ g(u)− g(us)

s (〈∇f(u), u− v〉+ g(u)− g(v))
≥ s (〈∇f(ũs), u− v〉+ g(u)− g(v))

s (〈∇f(u), u− v〉+ g(u)− g(v))
.

Since ζs is bounded independently of s, there holds ũs ⇀∗ u for s→ 0. Due to the weak*-to-strong
continuity of ∇f , the right-hand side of the inequality tends to 1 yielding lim infs→0W (s) ≥ 1.
The upper semi-continuity of W on (0, 1) follows directly from us ∈ dom g for all s ∈ (0, 1] and
from the lower weak* semi-continuity of j on dom g.
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Before proceeding to the proof of convergence results for Algorithm 8 we discuss the abstract
generalized conditional gradient method for the special case of norm regularization

min
‖u‖M≤M0

f(u) + β‖u‖M,

where β > 0 denotes a given regularization parameter. In this case it is readily verified that a
solution to the linearized problem (Plin) in the k-th iteration is given by any vk ∈M fulfilling

〈∇f(uk), vk〉 = −‖∇f(uk)‖C‖vk‖M, ‖vk‖M =

{
M0 ‖∇f(uk)‖C ≥ β
0 ‖∇f(uk)‖C < β

.

In particular if ‖∇f(uk)‖C ≥ β the algorithmic solution of the linearized subproblem requires the
computation of an element ṽk ∈ ∂‖ −∇f(uk)‖C . The following examples describe the generalized
conditional gradient iterations for the norm regularized problem and two choices of M. While
the space of optimization variables is non-reflexive and not strictly convex in both cases the
computation of an element in the subdifferential can be done analytically. This underlines the
simple structure of the presented method.

Example 6.4. Let Ω ⊂ Rd, d ∈ N, be a bounded domain. Set C = L1(Ω) and M = L∞(Ω) with
the usual norms

‖ϕ‖L1(Ω) =

∫
Ω
|v| dx, ‖u‖L∞ = ess sup

x∈Ω
|u(x)|,

for ϕ ∈ L1(Ω) and u ∈ L∞(Ω). In this case the optimization problem (P) can be related to so
called minimum effort control problems, [72]. Denote by uk the k-th iterate generated by the GCG
method and set pk = −∇f(uk). A solution vk to the partially linearized problem is obtained by
scaling the sign of pk:

vk =

{
M0 sgn(pk) ‖pk‖L1(Ω) ≥ β
0 ‖pk‖L1(Ω) < β

, sgn(pk)(x) =

{
1 pk(x) ≥ 0

−1 pk(x) < 0
for a.e. x ∈ Ω.

In particular this implies that vk admits a strict bang-bang structure i.e. its image only contains
two values.

Example 6.5. As a second example consider a bounded domain Ω ⊂ Rd, d ∈ N and a time
interval I = [0, T ], T > 0. By C0(Ω) we denote the space of continous functions on Ω̄ which
are zero at the boundary. Its dual space is given by the space of Radon measures on Ω which we
identify by restricting elements ofM(Ω̄) to the interior

M(Ω) ' {u|Ω | u ∈M(Ω̄) }.

We consider C = L2(I, C0(Ω)), the space of all strongly measurable functions ϕ : I → C0(Ω) for
which the associated norm

‖ϕ‖C =

√∫
I
‖ϕ(t)‖2C(Ω) dt

is finite. This space is a separable Banach space due to the separability of C0(Ω) see e.g. [263,
Theorem I.5.18]. Its topological dual space is given by M = L2

w∗(I,M(Ω)), the space of weak*
measurable functions u : I →M(Ω) with finite dual norm

‖u‖M =

√∫
I
‖u(t)‖2M(Ω)dt.
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The associated duality pairing between C andM is given by

〈ϕ, u〉 =

∫
I
〈ϕ(t), u(t)〉C0(Ω),M(Ω) dt, ϕ ∈ C, u ∈M.

For a reference on this dual identification we point out to [96, 8.20.3]. Optimal control problems
on the space L2

w∗(I,M(Ω)) are analyzed in [60,254].

Let uk denote the GCG iterate in the k-th iteration and set pk = −∇f(uk) ∈ C. Then pk in-
terpreted as a scalar-valued function on I × Ω̄ is carathéodory. Thus there exists a measurable
selection x̂kt : I → Ω̄ with |pk(x̂kt , t)| = ‖pk(·, t)‖C(Ω) for a.e. t ∈ I. If pk 6= 0 we define the
function ṽk(t) = (pk(xt, t)/‖pk‖C)δx̂kt for a.e. t ∈ I. As in [60, Theorem 3.3] we now argue that

ṽk ∈ L2
w∗(I,M(Ω)) with 〈pk, ṽk〉 =

1

‖pk‖C

∫
I
pk(x̂kt )〈pk(t), δx̂kt 〉C0(Ω),M(Ω) dt = ‖pk‖C .

As a consequence a solution vk to the linearized subproblem is given by a time-dependent Dirac
delta function moving along a measurable trajectory:

vk =

{
pk(x̂kt )

‖pk‖C
δx̂kt

‖pk‖C ≥ β
0 ‖pk‖C < β

, x̂kt ∈ arg max
x∈Ω

|pk(x, t)| for a.e. t ∈ I.

6.2.3 Convergence analysis

This section is devoted to the derivation of convergence results for the generalized conditional gra-
dient method. The following presentation is divided into two parts. First we prove subsequential
weak* convergence of {uk}k∈N towards stationary points of j under no additional assumptions
on f . Second, convexity of f and additional smoothness of ∇f is assumed. In this case {uk}k∈N
defines a minimizing sequence for j and the objective function values converge sublinearly. Since
the general problem (P) encompasses minimization of smooth functions over convex and compact
sets in Rn this result is sharp, [56]. Furthermore every weak* accumulation point of {uk}k∈N is a
global minimizer of j.

Convergence in the general case

As a preparational step we establish semi-continuity properties of the primal-dual gap Φ.

Lemma 6.10. Given a sequence {uk}k∈N ⊂ dom j with weak* limit ū ∈ dom j there holds
lim infk→∞ Φ(uk) ≥ Φ(ū).

Proof. For an arbitrary v ∈M, ‖v‖M ≤M0, we obtain

Φ(uk) ≥ 〈∇f(uk), uk − v〉+ g(uk)− g(v).

Taking the limes inferior for k →∞ on both sides of the inequality yields

lim inf
k→∞

Φ(uk) ≥ 〈∇f(ū), ū− v〉+ g(ū)− g(v),

due to the weak* convergence of {uk}k∈N and the continuity properties of ∇f and g. Since v
was chosen arbitrary, we can maximize over all v ∈ M, ‖v‖M ≤ M0 from which we conclude
lim infk→∞ Φ(uk) ≥ Φ(ū).
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By construction the norms of the GCG iterates {uk}k∈N are uniformly bounded by M0. Applying
the Banach-Alaoglu Theorem we can thus extract at least one weak* convergent subsequence. The
following theorem characterizes the weak* accumulation points of {uk}k∈N.

Theorem 6.11. Assume that the sequences {uk}k∈N, {uk+1/2}k∈N and {vk}k∈N are generated by
Algorithm 8 and let f and g fulfil the requirements of Assumption 6.1. Then there exists at least
one subsequence of {uk}k∈N converging in the weak* sense. Every weak* accumulation point ū of
{uk}k∈N fulfills Φ(ū) = 0.

Proof. Without loss of generality assume that Φ(uk) > 0 for all k. By construction we have
max

{
‖uk‖M, ‖vk‖M

}
≤ M0 for all k ∈ N. Consequently we can extract subsequences (denoted

by the same index in the following) such that uk ⇀∗ ū and vk ⇀∗ v̄ for some ū, v̄ ∈ dom g. Due
to the choice of the step size sk there holds {uk}k∈N ⊂ dom j and

j(ū) ≤ lim inf
k→∞

j(uk) ≤ j(u0) <∞

Thus we get ū ∈ dom j. From

∞∑
k=0

[
j(uk)− j(uk+1)

]
≤ j(u0)− j(ū), <∞,

we additionally conclude limk→∞[j(uk) − j(uk+1)] = 0. We will prove the claimed result by
contradiction. For this purpose, assume that 0 < Φ(ū) ≤ lim infk→∞ Φ(uk). From the definition
of the Quasi-Armijo rule, see (6.24), we obtain

0 ≤ αsk ≤ j(uk)− j(uk+1/2)

Φ(uk)
≤ j(uk)− j(uk+1)

Φ(uk)
.

Taking the limit superior yields

0 ≤ α lim sup
k→∞

sk ≤
limk→∞

[
j(uk)− j(uk+1)

]
lim infk→∞ Φ(uk)

,

from which we conclude that sk → 0 as k →∞, since lim infk→∞ Φ(uk) > 0 by assumption. From
the convergence of the step sizes we get sk/γ < 1 for all k large enough as well as

uk+1/2 ⇀∗ ū, uk +
sk

γ
(vk − uk) ⇀∗ ū.

Again using (6.24) we obtain for k large enough that:

αskΦ(uk)

γ
> j(uk)− j

(
(uk + (sk/γ)(vk − uk))

)
.

Moreover, see Remark 6.1, for every s ∈ [0, sk/γ] we have uk + s(vk − uk) ∈ dom j if k is
chosen large enough. Again, by possibly passing to a subsequence, there exists ŝk ∈ [0, sk/γ] and
ûk = uk + ŝk(vk − uk) ∈ dom j with ûk ⇀∗ ū and

〈∇f(ûk), uk − vk〉+ g(uk)− g(vk) ≤
j(uk)− j

(
(uk + (sk/γ)(vk − uk))

)
sk/γ

< αΦ(uk).
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due to the mean value theorem and the convexity of g. Considering the term on the left-hand
side, there holds

〈∇f(ûk), uk − vk〉+ g(uk)− g(vk) = 〈∇f(ûk)−∇f(uk), uk − vk〉+ Φ(uk).

Combining the previous arguments and rearranging we obtain

〈∇f(ûk)−∇f(uk), uk − vk〉 ≤ (α− 1)Φ(uk),

and consequently

0 = lim
k→∞

[〈∇f(ûk)−∇f(uk), uk − vk〉] ≤ (α− 1) lim inf
k→∞

Φ(uk),

where we used the weak* convergence of ûk, uk as well as the continuity properties of∇f . Dividing
both sides by α−1 < 0, we conclude Φ(ū) ≤ lim infk→∞ Φ(uk) ≤ 0, which gives a contradiction.

Rates of convergence for convex f

Throughout this section we make the following additional assumptions on the smooth part f .

Assumption 6.2. For an arbitrary u0 ∈ dom j define the sublevel set

Ej(u0) = {u ∈M | j(u) ≤ j(u0) } .

Let the following additional assumptions hold

A6.6 Let f be convex on Ej(u0) for every u0 ∈ dom j.

A6.7 The gradient ∇f is Lipschitz-continuous on sublevel sets, i.e. for u0 ∈ dom j there exists a
constant Lu0 > 0 only depending on j(u0) with

‖∇f(u1)−∇f(u2)‖C ≤ Lu0‖u1 − u2‖M ∀u1, u2 ∈ Ej(u0).

Since j is now convex every of its stationary points ū ∈ M is a global minimizer. We define the
residual of j as

rj : M→ R ∪ {+∞}, u 7→ j(u)− min
ũ∈M

j(ũ).

By convexity of f the residual can be bounded by the primal-dual gap Φ. Furthermore, the
following growth estimate for j at uk in the search direction is obtained.

Lemma 6.12. For every u ∈ dom j there holds

rj(u) ≤ Φ(u). (6.25)

Fix an index k ∈ N. Let uk, vk be generated by Algorithm 8. Further let a step size s ∈ [0, 1]
with uks = uk + s(vk − uk) ∈ Ej(u0) be given. Then there holds

j(uks)− j(uk) ≤ −sΦ(uk) +
Lu0

2

(
s‖uk − vk‖M

)2
. (6.26)
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6.2 Generalized conditional gradient methods

Proof. We first proof (6.25). This clearly holds for u 6∈ dom j. Let u ∈ dom j be given. From the
convexity of f on sublevel sets we readily obtain

j(u)− j(ū) ≤ 〈∇f(u), u− ū〉+ g(u)− g(ū).

The right hand side is estimated by

〈∇f(u), u− ū〉+ g(u)− g(ū) ≤ max
‖v‖M≤M0

〈∇f(u), u− ū〉+ g(u)− g(ū)] = Φ(u),

using ‖ū‖M ≤ M0. This yields the claimed result. We proceed to the second claim. Due to the
convexity of the sublevel set Ej(u0) we obtain

j(uks)− j(uk) =− s〈∇f(uk), uk − vk〉+ g(uks)− g(uk) +

∫ s

0
〈∇f(uσ)−∇f(uk), vk − uk〉dσ,

with uσ = uk + σ(vk − uk) ∈ Ej(u0) for σ ∈ [0, s]. Using the convexity of g, ‖ū‖M ≤M0 and the
definition of vk we obtain

−s〈∇f(uk), uk − vk〉+ g(uks)− g(uk) ≤ −s
(
〈∇f(uk), uk − vk〉+ g(uk)− g(vk)

)
,

where the right-hand side simplifies to −sΦ(uk). Due to the Lipschitz continuity of ∇f(uk) on
Ej(u

0) we get∫ s

0
〈∇f(uσ)−∇f(uk), vk − uk〉dσ ≤ ‖vk − uk‖M

∫ s

0
‖∇f(uσ)−∇f(uk)‖Cdσ

≤ Lu0‖vk − uk‖2M
∫ s

0
σdσ

=
Lu0

2
(s‖vk − uk‖M)2.

Combining both estimates yields the proof.

Due to the possibly open domain of f inM we also need the following technical lemma concerning
the continuity properties of the function W which was introduced in Lemma 6.9.

Lemma 6.13. Let u ∈ dom j with Φ(u) > 0 be given and denote by v ∈ dom g the solution to the
associated linearized problem (Plin). If v ∈ dom j we have W ∈ C ((0, 1)). Otherwise there exists
ŝ ∈ (0, 1] with W ∈ C((0, ŝ)) and lims→−ŝW (s) = −∞.

Proof. Since u is not optimal the function W is proper. Set us = u + s(v − u) and define the
convex auxiliary function

̂ : [0, 1]→ R s 7→ j(us),

Since Φ(u) > 0 there exists s ∈ (0, 1] with ̂(s) ∈ R. We further conclude

(0, ŝ) ⊂ dom(0,1] ̂, ŝ = sup dom[0,1] ̂ ∈ (0, 1].

Note that ̂ is continuous on (0, ŝ), see [98, Proposition 2.5]. Let us distinguish two cases. If v ∈
dom j there holds ŝ = 1. From its definition we thus get W ∈ C((0, 1)). In the second case
if v 6∈ dom j there holds

ŝ 6∈ dom[0,1] ̂, lim
s→−ŝ

j(us) = +∞,
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due to the openness assumption on the domain of f . Hence we conclude

W ∈ C((0, ŝ)), lim
s→−ŝ

W (s) = −∞,

which finishes the proof.

Collecting all the previous results we can prove a sublinear rate of convergence for the residuals
of the iterates generated by Algorithm 8.

Theorem 6.14. Assume that the sequences {uk}, {uk+1/2} and {vk}, k ∈ N, are generated by
Algorithm 8 with {sk}k∈N chosen according to the Quasi-Armijo-Goldstein condition with param-
eters α ∈ (0, 1/2], γ ∈ (0, 1). Let Assumption 6.1 and Assumption 6.2 hold. Furthermore let
Φ(uk) > 0 for all k ∈ N. Then {uk}k∈N is a minimizing sequence for j and there holds

rj(u
k) ≤ rj(u

0)

1 + qk
, q = αmin

{
c

4Lu0M
2
0

, 1

}
(6.27)

where c = 2γ(1 − α)rj(u
0). Moreover there exists a weak* accumulation point ū of {uk}k∈N and

every such point is a global minimum of j.

Proof. By the definition of the step size sk as well as (6.25) there holds

αskrj(u
k) ≤ αskΦ(uk) ≤ rj(uk)− rj(uk+1/2),

which yields

rj(u
k+1/2) ≤ (1− αsk)rj(uk). (6.28)

Since Φ(uk) > 0 we obtain sk 6= 0 for all k. Two cases have to be distinguished. If sk is equal to
one we immediately arrive at

rj(u
k+1) ≤ rj(uk+1/2) ≤ (1− α)rj(u

k) ≤ rj(uk)− α
rj(u

k)2

rj(u0)
.

In the second case, if sk < 1, there exists ŝk ∈ [sk, sk/γ] with

α =
j(uk)− j(uk + ŝk(vk − uk))

ŝkΦ(uk)
,

using Lemma 6.13 and applying the intermediate value theorem to W . Consequently, uk + s(vk −
uk) ∈ Ej(u0) for all 0 ≤ s ≤ ŝk due to the convexity of j. Because of the Lipschitz-continuity of
∇f on Ej(u0), Lemma 6.12 can be applied and, defining δuk = vk − uk, there holds

α =
j(uk)− j(uk + ŝkδuk)

ŝkΦ(uk)
≥ 1− Lu0 ŝ

k

2

‖δuk‖2M
Φ(uk)

≥ 1− Lu0s
k

2γ

‖δuk‖2M
Φ(uk)

.

The last estimate is true because of ŝk ≤ sk/γ. Note that δuk 6= 0 since Φ(uk) > 0. Reordering
and using (6.25) yields

1 ≥ sk ≥ 2γ(1− α)
Φ(uk)

Lu0‖vk − uk‖2M
≥ 2γ(1− α)

rj(u
k)

Lu0‖vk − uk‖2M
.
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Combining the estimates in both cases and using rj(uk+1) ≤ rj(uk+1/2), the inequality

0 ≤ rj(u
k+1)

rj(u0)
≤ rj(u

k+1/2)

rj(u0)
≤ rj(u

k)

rj(u0)
− qk

(
rj(u

k)

rj(u0)

)2

∀k ∈ N (6.29)

holds, where the constant qk is given by

qk = rj(u
0)αmin

{
2γ(1− α)

Lu0‖vk − uk‖2M
,

1

rj(uk)

}
≥ αmin

{
2γ(1− α)rj(u

0)

4Lu0(M0)2
, 1

}
:= q,

if sk < 1 and qk = α otherwise. The claimed convergence rate (6.27) now follows directly from the
recursion formula (6.29), see [92, Lemma 3.1]. Following Theorem 6.11, there exists at least one
subsequence (denoted by the same index) of uk with weak* limit ū and Φ(ū) = 0. Since j is convex
every stationary point is an optimal solution of (PM0) and thus a global minimizer of j.

To close on the discussion of generalized conditional gradient methods for the solution of (P) we
point out to quantitative convergence statements if the smoothness assumptions on the gradient
are relaxed. In particular the assumption on the Lipschitz continuity of ∇f can be replaced by

A6.7 The gradient ∇f is Hölder-continuous of order κ ∈ (0, 1] on sublevel sets i.e. for u0 ∈ dom j
there exists a constant Lu0 > 0 only depending on j(u0) with

‖∇f(u1)−∇f(u2)‖C ≤ Lu0‖u1 − u2‖κM ∀u1, u2 ∈ Ej(u0),

which yields a reduced rate of convergence

rj(u
k) ≤ rj(u

0)

(1 + κqk)κ
, q = αmin

{
κ

√
(1 + κ)γ(1− α)rj(u0)

Lu0(2M0)1+κ
, 1

}
. (6.30)

This result can be established along the same lines as in the Lipschitz-continuous case. We outline
the necessary steps for the sake of completeness. If ∇f is Hölder-continuous of order κ ∈ (0, 1] on
the sublevel sets of j the estimate in (6.26) generalizes to

j(uks)− j(uk) ≤ −sΦ(uk) +
Lu0

1 + κ
(s‖uk − vk‖M)1+κ.

If the step size sk in the k-th iteration of the GCG method is equal to one we immediately get

rj(u
k+1)

rj(u0)
≤ rj(u

k+1/2)

rj(u0)
≤ rj(u

k)

rj(u0)
− α

(
rj(u

k)

rj(u0)

)1+1/κ

.

For sk < 1 we conclude

sk ≥ κ

√
(1 + κ)γ(1− α)

Lu0‖vk − uk‖1+κ
M

rj(u
k)1/κ.

Combining these observations we obtain

rj(u
k+1)

rj(u0)
≤ rj(u

k+1/2)

rj(u0)
≤ rj(u

k)

rj(u0)
− qk

(
rj(u

k)

rj(u0)

)1+1/κ

259



6 Algorithmic framework

where the constant qk is equal to α if sk = 1 and

qk = αrj(u
0)1/κ min

{
κ

√
(1 + κ)γ(1− α)

Lu0‖vk − uk‖1+κ
M

,
1

rj(uk)1/κ

}
≥ αmin

{
κ

√
(1 + κ)γ(1− α)rj(u0)

Lu0(2M0)1+κ
, 1

}

if sk < 1. The convergence rate in (6.30) now follows from [212, Lemma 6]. To our knowledge the
only paper providing similar results for conditional gradient methods on functions with Hölder
continuous gradient is the recent preprint [274].

Remark 6.5. Consider the minimization of a differentiable function on a ball of radius M0 > 0 i.e.

min
‖u‖M≤M0

f(u).

Recently, see e.g [159], sublinear convergence rates for the classical conditional gradient method
based on the assumption of bounded curvature

Cf = sup
‖u‖M,‖v‖M≤M0

s∈(0,1]
us=u+s(v−u)

[
2

s2
(f(us)− f(u)− s〈∇f(u), v − u〉)] <∞,

were established. This assumption is weaker than requiring Lipschitz continuity of the gradient
in the sense that the Lipschitz constant of ∇f on the ball gives an upper bound for the curvature
constant. In particular there holds

f(us)− f(u) ≤ s〈∇f(u), vk − uk〉+
s2

2
Cf ,

which is an analogue of the estimate in (6.26). For an extension of this approach to the Hölder-
continuous case and composite minimization problems we refer to [274]. We emphasize that a
straightforward adaption of this concept to the setting considered in this chapter is not possible
since dom f will be a proper subset of the admissible set in general. Thus the definition of the
curvature constant is not meaningful in the present setting. In our previous considerations we
circumvented such problems by assuming the Lipschitz continuity of ∇f only on the sublevel sets
of f rather than the whole ball. Second we point out that the major difficulties in the problems
considered in this thesis lie in the non-reflexivity of the spaceM and not in a lack of regularity for
the function f . Therefore further discussions on the topic of curvature constants are postponed
to future work.

6.3 The Primal-Dual-Active-Point method

This section is devoted to the discussion of generalized conditional gradient methods for mini-
mization problems with measure valued optimization variables. To this end we consider sparse
minimization problems of the form

min
u∈Mad

[F (Ku) +G(‖u‖M)],

whereMad is a subset of the space of vector measuresM(Ω,H) on the spatial domain Ω which
take values in a Hilbert space H. The operator K is assumed to be linear and continuous and F
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is a differentiable function. In contrast the second term G(‖u‖M) is in general non-smooth. For
the precise assumptions on the appearing functionals and operators we refer to Section 6.3.2.

The rest of this section is structured as follows. In Section 6.3.1 a brief introduction to the necessary
theory on Hilbert space valued vector measures is given. Section 6.3.2 focuses on the application
of Algorithm 8 to sparse minimization problems. It turns out that the method can be based on
a sequence of finitely supported measures. In each step of the algorithm a single new Dirac delta
function is added to the current iterate based on the solution of a partially linearized problem.
Worst case convergence results for these kind of methods are derived. The remainder of the chapter
is devoted to a discussion and rigorous analysis of additional improvement steps to augment the
procedure. If the operator K has finite rank we prove existence of a minimizer comprising only
a finite number of Dirac delta functions in Section 6.3.3. In this case the method is implemented
with a sparsification step which ensures a uniform bound on the number of support points in the
iterates. This guarantees convergence to a finitely supported stationary point. Second we propose
an accelerated variant of the GCG method which is based on alternating between adding new Dirac
delta functions and optimizing their coefficients in Section 6.3.4. Imposing additional structural
assumptions on the problem this new Primal-Dual-Active-Point method yields linear convergence
of the objective function values see Section 6.3.5. Moreover we also quantify the convergence of
the iterates through several criteria such as the distance of their support points to the optimal
ones.

To close this introductory part we briefly reflect on comparable results from the literature and
the major novelties of the present work. Generalized conditional gradient methods for concrete
realizations of the presented setting have recently received considerable attention. We refer e.g.
to [44, 50, 97, 200, 209]. In all of these papers a sublinear convergence rate for the objective func-
tion values is proven. We also mention the early work of Fedorov and Wynn, [105, 272] and
subsequent papers, e.g. [197, 269, 270, 276], on comparable algorithms in the context of approxi-
mate design theory in statistics. Most of these prior works consider scalar valued measures and
convex objective functionals. This section aims to extend conditional gradient methods to the case
of general vector-valued measures and provide convergence results for convex and nonconvex ob-
jective functionals. In this context the main contributions of the present work lie in the improved
convergence statements contained in Sections 6.3.3 and 6.3.4. In particular we emphasize that
acceleration steps for the GCG method similar to those in Section 6.3.4 were already proposed
in [44, 50, 97, 209, 270]. However to the best of our knowledge this work is the first to improve
on the usual sublinear worst-case convergence rate of the objective function values for conditional
gradient methods in this case. Additionally we are not aware of any approaches to quantify the
convergence of the iterates or to guarantee the uniform boundedness of their support size.

6.3.1 Vector measures

For the rest of this chapter let Ω ⊂ Rd, d ∈ N, be compact and denote by H a separable Hilbert
space with respect to the norm ‖ · ‖H induced by the scalar product (·, ·)H . In the following H is
identified with its topological dual space. A countably additive mapping u : B(Ω) → H is called
a vector measure. Associated to u we define its total variation measure as

|u| : B(Ω)→ R+, |u|(O) = sup

{ ∞∑
i=1

‖u(Oi)‖H | Oi ∈ B(Ω), disjoint partition of O

}
.
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The space of vector measures with finite total variation is now denoted by

M(Ω,H) = {u : B(Ω)→ H | u countably additive, |u| <∞} .

For each vector measure u ∈ M(Ω,H) we thus clearly have |u| ∈ M+(Ω). The support of u is
defined as the support of the corresponding total variation measure, see Section 3.1.2,

suppu = supp |u|.

The spaceM(Ω,H) is a Banach space with respect to the norm

‖u‖M := |u|(Ω) = ‖|u|‖M(Ω) =

∫
Ω

d|u|.

For a reference see the discussion in [183, Chapter 12.3]. Furthermore for u ∈M(Ω,H) it is easy
to see that

‖u(O)‖H ≤ |u|(O) ∀O ∈ B(Ω).

In particular this implies that u is absolutely continuous with respect to |u|, i.e. there holds

|u|(O) = 0⇒ ‖u(O)‖H = 0 ∀O ∈ B(O).

Moreover there exists a unique function

u′ ∈ L∞(Ω, |u|;H) with ‖u(x)‖H = 1 |u| − a.e. x ∈ Ω,

such that u can be decomposed as

u(O) =

∫
O

du =

∫
O
u′ d|u| ∀O ∈ B(Ω).

We point out to [182, Chapter 12.4] for a reference. The function u′ is called the Radon-Nikodým
derivative of u with respect to |u|, see [87]. We refer to this splitting of u in terms of its Radon-
Nikodým derivative u′ and its total variation measure |u| as its polar decomposition. For abbre-
viation we write du = u′d|u| in the following.

By C(Ω,H) we further denote the space of bounded and continuous functions on Ω which assume
values in H. It is a separable Banach space when endowed with the usual supremum norm

‖ϕ‖C = max
x∈Ω
‖ϕ(x)‖H ∀ϕ ∈ C(Ω,H),

see e.g. [7, Lemma 3.85]. Following Singer’s representation theorem, [135], its topological dual
space is identified withM(Ω,H) where the associated duality paring is given by

〈ϕ, u〉 =

∫
Ω

(ϕ(x), u′(x))H d|u|(x) ∀ϕ ∈ C(Ω,H), u ∈M(Ω,H).

As a consequence we conclude

‖u‖M = sup
ϕ∈C(Ω,H)
‖ϕ‖C≤1

〈ϕ, u〉 = sup
ϕ∈C(Ω,H)
‖ϕ‖C≤1

∫
Ω

(ϕ(x), u′(x))H d|u|(x).
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The duality relation between the space of vector measures and the space of H-valued continuous
functions allows to consider minimization problems overM(Ω,H) in the general framework pre-
sented in the previous sections. In this context we emphasize that from an application point of
view, see Example 6.6 and the presentations in the previous chapters, it is also necessary to treat
situations in which the objective functional is minimized over a proper subset Mad ⊂ M(Ω,H)
instead of the whole space. The remainder of this section is therefore devoted to the study of
admissible sets given by

Mad =M(Ω,C) = {u ∈M(Ω,H) | u(O) ∈ C ∀O ∈ B(Ω) } . (6.31)

Here C denotes a closed and convex cone, see Definition 6.3, in the Hilbert space H. While we
already discussed the special case of positive scalar-valued measures, i.e. H = R and C = R+, in
the previous chapters the following motivational example justifies a discussion of this matter in
the presented generality.

Example 6.6. Set I = [0, T ], T > 0, and H = L2(I). In this situation our special interest lies
on vector measures u given by a finite sum of Dirac delta functions on fixed points of the spatial
domain with time dependent coefficients:

u =
N∑
i=1

uiδxi , N ∈ N, ui ∈ L2(I), xi ∈ Ω, i = 1, . . . , N.

For example we might think of u as an ensemble of heat sources located at the positions {xi}Ni=1.
The functions {ui}Ni=1 represent the intensities of the individual sources. From a modeling point
of view it is reasonable to choose the coefficient functions from the cone of almost everywhere
non-negative functions

L2
+(I) =

{
u ∈ L2(I) | u(t) ≥ 0 a.e. t ∈ I

}
.

It is straightforward to see that the set of finitely supported vector measures with nonnegative
coefficient functions

MN(Ω,L2
+(I)) =

{
u ∈M(Ω,L2

+(I)) | u =
N∑
i=1

uiδxi , N ∈ N, ui ∈ L2
+(I), xi ∈ Ω, i = 1, . . . , N

}

is embedded in the larger set{
u ∈M(Ω,L2(I)) | u′(x) ∈ L2

+(I) |u| − a.e. x ∈ Ω
}
. (6.32)

The results in this section answer some important questions regarding these sets. First we establish
the equivalence between the set in (6.32) and M(Ω,L2

+(I)) defined according to (6.31). Second
we characterize it as the polar cone of a closed cone in C(Ω,L2(I)). In particular this implies its
weak* closedness. Last, the embedding ofMN(Ω,L2

+(I)) intoM(Ω,L2
+(Ω)) turns out to be weak*

dense i.e. every vector measure u ∈ M(Ω,L2
+(I)) can be weak*-approximated by a sequence of

finitely supported ones with nonnegative coefficient functions.

Let us first fix the notion of a convex cone in a general Banach space.

Definition 6.3. Let X be a Banach space with topological dual space X∗ and duality pair-
ing 〈·, ·〉∗.
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• A nonempty set C ⊂ X is called a convex cone if

0 ∈ C, λu1 + u2 ∈ C, λ ∈ R+ \ {0}, u1, u2 ∈ C.

• The polar cone Co ⊂ X∗ of C is defined as

Co = {x∗ ∈ X∗ | 〈x,x∗〉∗ ≤ 0 ∀x ∈ X } .

We emphasize that the polar cone of a convex cone C is closed with respect to the weak* topology
on X∗. In the following C ⊂ H will always denote a nonempty closed and convex cone. The
associated H-projection onto C is defined as

PC : H → C, u 7→ arg min
v∈C

1

2
‖v − u‖2H .

The next proposition summarizes some key properties of the projection PC .

Proposition 6.15. Let C ⊂ H be a convex and closed cone. Then there holds (Co)o = C and

u = PC(u) + PCo(u), (PCo(u), PC(u))H = 0 ∀u ∈ H,

as well as

‖PC(u1)− PC(u2)‖H ≤ ‖u1 − u2‖H ∀u1, u2 ∈ H. (6.33)

Proof. The first statement can be found on [46, p. 53]. The remaining claims follow from the
discussions in [154, Section II].

In particular the non-expansiveness of the projection, (6.33), implies the continuity of the func-
tion

PC(ϕ) : Ω → C, x 7→ PC(ϕ(x)), ‖PC(ϕ)‖C ≤ ‖ϕ‖C ∀ϕ ∈ C(Ω,H).

The set of continuous C- valued functions on Ω is denoted by

C(Ω,C) = {ϕ ∈ C(Ω,H) | ϕ(x) ∈ C ∀x ∈ Ω }

Obviously C(Ω,C) is a convex cone which is closed with respect to the norm on C(Ω,H).

We now turn to the study of the set M(Ω,C) as defined in (6.31). Again it is straightforward
to verify that M(Ω,C) is a convex cone. In the following we aim at a characterization of its
elements u ∈ M(Ω,C) in terms of the Radon-Nikodým derivative u′ with respect to |u|. To this
end consider an arbitrary u ∈ M(Ω,H) with du = u′ d|u|. Given ε > 0 define the averaged
integral of u′ by

D(u′, x, ε) =
1

|u|(Bε(x))
u(Bε(x)) =

1

|u|(Bε(x))

∫
Bε(x)

u′ d|u|(x) |u| − a.e. x ∈ Ω. (6.34)

Remark 6.6. We briefly point out that the integral in (6.34) is indeed well-defined in a |u| almost
everywhere sense since

|u| ({x ∈ Ω | ∃ε > 0: |u|(Bε(x)) = 0 }) = 0.

This statement is implicitly contained in the proof of Theorem 1.29 in [104].
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We arrive at the following vector-valued version of the Lebesgue differentiation theorem.

Proposition 6.16. Let u ∈M(Ω,H) with polar decomposition du = u′ d|u| be given. Then there
holds

lim
ε→+0

‖u′(x)−D(u′, x, ε)‖H = 0, |u| − a.e. x ∈ Ω (6.35)

Proof. Let {hk}k∈N denote a dense subset of H. For every k ∈ N there exists a set Ok ∈ B(Ω)
with |u|(Ok) = 0 as well as

lim
ε→+0

1

|u|(Bε(x))

∫
Bε(x)

‖u′(y)− hk‖H d|u|(y) = ‖u′(x)− hk‖H ∀x ∈ Ω \Ok,

following the scalar version of the Lebesgue differentiation theorem c.f. [104, Theorem 1.33]. Define
the set O =

⋃
i∈NOn and let δ > 0 as well as x ∈ Ω \O be given. Choose k ∈ N such that ‖u′(x)−

hk‖H < δ/2. Then |u|(O) = 0 and there holds

lim
ε→+0

‖u′(x)−D(u′, x, ε)‖H ≤ lim
ε→+0

1

|u|(Bε(x))

∫
Bε(x)

‖u′(y)− u′(x)‖H d|u|(y)

≤ lim
ε→+0

1

|u|(Bε(x))

∫
Bε(x)

[‖u′(y)− hk‖H + ‖u′(x)− hk‖H ] d|u|(y)

= 2‖u′(x)− hk‖H < δ.

Since O is a |u| null set and δ > 0 was chosen arbitrary the statement follows.

The following theorem is a direct consequence.

Theorem 6.17. Let u ∈ M(Ω,C) with polar decomposition du = u′ d|u| be given. Then there
holds

u′(x) ∈ C |u| − a.e. x ∈ Ω.

Vice versa if we have u ∈M(Ω,H) with u′(x) ∈ C for |u|-a.e x ∈ Ω then u ∈M(Ω,C).

Proof. Let u ∈M(Ω,C) and ε > 0 be given. Then there holds

D(u′, x, ε) =
1

|u|(Bε(x))
u(Bε(x)) ∈ C |u| − a.e. x ∈ Ω

since u(O) ∈ C for all O ∈ B(Ω) and |u|(Bε(x)) > 0 for |u|-a.e x ∈ Ω. In perspective of the results
in the previous proposition we thus conclude

u′(x) = lim
ε→+0

D(u′, x, ε) ∈ C, |u| − a.e. x ∈ Ω,

since C is closed.

Conversely assume that u ∈ M(Ω,H) with u′(x) ∈ C for |u|-a.e x ∈ Ω. Let an arbitrary u ∈ Co
be given. By definition of the Bochner integral we obtain

(u, u(O))H =

∫
O

(u, u′(x))H︸ ︷︷ ︸
≤0

d|u|(x) ≤ 0

for O ∈ B(Ω). Since u ∈ Co was chosen arbitrary we conclude u(O) ∈ (Co)o = C for every
set O ∈ B(Ω). This yields u ∈M(Ω,C).
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Combining both statements we arrive at

M(Ω,C) =
{
u ∈M(Ω,C) | u′(x) ∈ C |u| − a.e. x ∈ Ω

}
.

The following theorem establishes the weak* closedness ofM(Ω,C).

Theorem 6.18. Let C ⊂ H be a nonempty closed and convex cone. Then there holds

C(Ω,Co)o =M(Ω,C). (6.36)

In particularM(Ω,C) is weak* closed.

Proof. As already discussed before C(Ω,Co)o is a closed and convex cone in C(Ω,H). Thus we
obtain the second statement directly by proving the first one. Given an arbitrary u ∈ M(Ω,C)
and ϕ ∈ C(Ω,Co) expanding the duality pairing yields

〈ϕ, u〉 =

∫
Ω

(ϕ(x), u′(x))H d|u|(x) ≤ 0,

since the integrand is nonpositive for |u|-a.e x ∈ Ω. Therefore there holdsM(Ω,C) ⊂ C(Ω,Co)o.
Now let an arbitrary u ∈ C(Ω,Co)o and a compact set O ∈ B(Ω) be given. If u(O) 6∈ C there
exists u ∈ Co with

α := (u, u(O))H > 0.

Since |u| is regular there are an open set O2 ∈ B(Ω) and a bump function χ ∈ C(Ω) with

O ⊂ O2, |u|(O2 \O) ≤ α

2
, χ(x)


= 1 x ∈ O
= 0 x ∈ Ω \O2

∈ [0, 1] else
.

By construction the function ϕu = uχ is an element of C(Ω,Co) and

〈ϕu, u〉 ≥ α− |u|(O2 \O) ≥ α

2
> 0.

Thus we conclude

u(O) ∈ C, ∀O ∈ B(Ω), O compact.

If O ∈ B(Ω) is an arbitrary Borel set the regularity of |u| yields the existence of a compact set Oε1
and an open set Oε2 with

Oε1 ⊂ O ⊂ Oε2 ⊂ Ω, |u|(Oε2 \Oε1) < ε,

for every ε > 0. This implies

‖u(O)− u(Oε1)‖H = ‖u(O \Oε1)‖H ≤ |u|(O \Oε1) ≤ |u|(Oε2 \Oε1) < ε.

Since u(Oε1) ∈ C, ε > 0, and C is closed this implies u(O) ∈ C. Therefore u ∈ M(Ω,C) has to
hold finishing the proof.
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As a consequence the coneM(Ω,C) can be identified with the weak* closure of the cone of finitely
supported C-valued vector measures.

Proposition 6.19. Define the set

MN(Ω,C) =

{
u ∈M(Ω,C) | u =

N∑
i=1

uiδxi , N ∈ N, ui ∈ C, xi ∈ Ω, i = 1, . . . , N

}
.

Let u ∈ M(Ω,C) be given. Then there exists {uk}k∈N ⊂ MN(Ω,C) fulfilling ‖uk‖M ≤ ‖u‖M
and uk ⇀∗ u. In particular we have

MN(Ω,C)
∗

=M(Ω,C).

Proof. The proof is a slight adaptation of the corresponding one for the case of C = Rm, m ∈ N,
presented in [50, Appendix A]. Let u ∈M(Ω,C), u 6= 0, be given. Fix an arbitrary index k ∈ N.
For x ∈ Ω we define Qkx = 2−k]− 1/2, 1/2]d and set

uk =
∑

x∈2−kZd
u(Qkx ∩Ω)δx ∈MN(Ω,C).

It is straightforward to see that⋃
x∈2−kZd

(Qkx ∩Ω) = Ω, (Qkx1 ∩Ω) ∩ (Qkx2 ∩Ω) = ∅ ∀x1, x2 ∈ 2−kZd,

and thus

‖uk‖M =
∑

x∈2−kZ

‖u(Qkx ∩Ω)‖H ≤ |u|(Ω) = ‖u‖M.

Consider an arbitrary ϕ ∈ C(Ω,H) and ε > 0. Since Ω is compact there holds

|ϕ(y)− ϕ(x)| ≤ ε

‖u‖M
∀x ∈ 2−kZd, y ∈ Qkx ∩Ω,

and all k ∈ N large enough. We estimate

|〈ϕ, u− uk〉| ≤
∑

x∈2−kZd

∫
Qkx∩Ω

|(ϕ(y)− ϕ(x), u′(y))H |d|u|(y) ≤ ε.

Since ε > 0 and ϕ ∈ C(Ω,H) were chosen arbitrary we conclude the first claimed statement. From
the weak* closedness ofM(Ω,C) we further obtain

M(Ω,C) ⊂MN(Ω,C)
∗ ⊂M(Ω,C).

This finishes the proof.
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6.3.2 Generalized conditional gradient methods for vector measures

We now turn to the study of the sparse minimization problem

min
u∈M(Ω,H)

j(u) := [F (Ku) +G(‖u‖M) + IM(Ω,C)(u)] (PM)

Here IM(Ω,C) denotes the indicator function of the setM(Ω,C). In order to ensure well-posedness
of this problem the following standing assumptions are made.

Assumption 6.3. Let the following assumptions hold.

A6.8 Let Y be a Hilbert space and let K : M(Ω,H) → Y be a linear and weak*-to-strong con-
tinuous operator with adjoint K∗ : Y → C(Ω,H).

A6.9 The function G : R → R is proper, convex, lower semi-continuous, and monotonically in-
creasing on R+ with G(t)→∞ for t→∞. There holds domG ⊂ R+.

A6.10 The set C ⊂ H is a nonempty, closed and convex cone. Furthermore the domain of the
functional j is nonempty and j is radially unbounded.

A6.11 The function F : Y → R ∪ {+∞} is lower semi-continuous on

Yad := {Ku | u ∈ domG(‖ · ‖M) ∩M(Ω,C) } .

Moreover, F is continuously Fréchet differentiable on

Ŷad := {Ku | u ∈ dom j }.

The set Ŷad is open in Yad. The Fréchet derivative of F at y ∈ Ŷad will be denoted by ∇F (y).

Remark 6.7. Note that these general assumptions on the convex function G in particular allow for
a unified treatment of norm penalized problems G1(‖u‖M) = β‖u‖M + I[0,∞)(‖u‖M) for β > 0
and norm constraint problems G2(‖u‖M) = I[0,M0](‖u‖M), M0 > 0.

Corollary 6.20. The functions f = F ◦K and g = G ◦ ‖ · ‖M + IM(Ω,C) fulfill Assumption 6.1.

Proof. The claimed statement follows immediately noting that the weak* closedness and convexity
ofM(Ω,C) imply the weak* lower semi-continuity of IM(Ω,C) onM(Ω,H) and applying the chain
rule yields

f ′(u)(δu) = 〈K∗∇F (Ku), δu〉 ∀δu ∈M(Ω,H),

for u ∈ dom j.

As a consequence existence of minimizers as well as first order necessary optimality conditions can
be obtained from the general results in Propositions 6.2 and 6.3.

Proposition 6.21. Let Assumption 6.3 hold. There exists at least one optimal solution ū ∈
M(Ω,C) to (PM). Set p̄ = −K∗∇F (Kū) ∈ C(Ω,H). Then there holds

〈p̄, u− ū〉+G(‖ū‖M) ≤ G(‖u‖M) ∀u ∈M(Ω,C). (6.37)
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Throughout the rest of this chapter we will refer to ȳ = Kū as the optimal state and, with a slight
abuse of notation, to the continuous function p̄ = −K∗∇F (Kū) as the adjoint state associated
to ū. Let us turn to a structural characterization of minimizers obtained from (PM).

Theorem 6.22. Let ū ∈ dom j ⊂M(Ω,C) be given. Then (6.37) holds if and only if

〈p̄, ū〉 = ‖PC(p̄)‖C‖ū‖M, ‖PC(p̄)‖C ∈ ∂G(‖ū‖M) (6.38)

Proof. First assume that (6.38) holds for ū ∈ dom j. Let an arbitrary u ∈M(Ω,C) be given. We
estimate

〈p̄, u〉 =

∫
Ω

(p̄(x), u′(x))H d|u|(x) ≤
∫
Ω

(PC(p̄(x)), u′(x))H d|u|(x) ≤ ‖PC(p̄)‖C‖u‖M.

Putting everything together yields

〈p̄, u− ū〉+G(‖ū‖M) = −‖PC(p̄)‖C‖ū‖M + 〈p̄, u〉+G(‖ū‖M)

≤ ‖PC(p̄)‖C(‖u‖M − ‖ū‖M) +G(‖ū‖M)

≤ G(‖u‖M).

Since u ∈M(Ω,C) was chosen arbitrary the variational inequality (6.37) follows.

Conversely assume that (6.37) holds. First let ū 6= 0 hold. From the monotonicity of G we infer

〈p̄, u− ū〉 ≤ 0 ∀u ∈M(Ω,C), ‖u‖M ≤ ‖ū‖M

or, equivalently,

p̄ ∈ ∂(IM(Ω,C)(·) + I‖·‖M≤‖ū‖M(·))(ū).

Applying Proposition 6.4 yields

(IM(Ω,C) + I‖·‖M≤‖ū‖M)∗(p̄) = sup
u∈M(Ω,C)
‖u‖M≤‖ū‖M

〈p̄, u〉 = 〈p̄, ū〉.

For an arbitrary measure u ∈M(Ω,C), ‖u‖M ≤ ‖ū‖M, we readily obtain

〈p̄, u〉 ≤
∫
Ω

(PC(p̄(x)), u′(x))H d|u|(x) ≤ ‖PC(p̄(x))‖C‖ū‖M. (6.39)

Let x̂ ∈ Ω with ‖PC(p̄(x̂))‖H = ‖PC(p̄)‖C be given and define

ũ = ‖ū‖M

{
0 PC(p̄) = 0
PC(p̄(x̂))
‖PC(p̄)‖C δx̂ PC(ū) 6= 0

∈M(Ω,C).

We claim that ũ achieves equality in (6.39). If PC(p̄) = 0 this trivially holds. In the second case
we compute

〈p̄, ũ〉 = ‖ū‖M
(PC(p̄(x̂)) + PCo(p̄(x̂)), PC(p̄(x̂)))H

‖PC(p̄)‖C
= ‖ū‖M‖PC(p̄)‖C ,
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where we used (PCo(p̄(x)), PC(p̄(x)))H = 0, x ∈ Ω. Consequently we conclude

〈p̄, ū〉 = ‖ū‖M‖PC(p̄)‖C .

In a similar way we get

sup
u∈M(Ω,C)
‖u‖M≤m

〈p̄, u〉 = m‖PC(p̄)‖C ∀m ∈ R+.

Combining these results the variational inequality (6.37) can be reformulated as

‖PC(p̄)‖C(m− ‖ū‖M) +G(‖ū‖M) ≤ G(m) ∀m ∈ R+

By definition of the subdifferential and domG ⊂ R+ this yields the second condition in (6.38).
The case ū = 0 follows by similar arguments finishing the proof.

Example 6.7. For the the examples of norm regularization G1(‖u‖M) = β‖u‖M and norm con-
straints G2(‖u‖M) = I[0,M0](‖u‖M) the subdifferential inclusions in (6.38) are given by

‖PC(p̄)‖C ∈ ∂G1(‖ū‖M) =

{
{β} ‖ū‖M 6= 0

[0, β] ‖ū‖M = 0
,

‖PC(p̄)‖C ∈ ∂G2(‖ū‖M) =

{
{0} ‖ū‖M ∈ [0,M0)

[0,+∞) ‖ū‖M = M0

.

The first condition in (6.38) can be equivalently expressed through a sparsity condition on the
total variation measure |ū| and a projection formula for the Radon-Nikodým derivative ū′.

Proposition 6.23. Let ϕ ∈ C(Ω,H) and u ∈ M(Ω,C) with polar decomposition du = u′d|u| be
given. Then the following two statements are equivalent:

• There holds

〈ϕ, u〉 = ‖PC(ϕ)‖C‖u‖M. (6.40)

• There holds

supp |u| ⊂ {x ∈ Ω | ‖PC(ϕ(x))‖H = ‖PC(ϕ)‖C } , (6.41)

as well as

u′(x) = 1
‖PC(ϕ)‖CPC(ϕ(x)) if ‖PC(ϕ)‖C 6= 0

(PCo(ϕ(x)), u′(x))H = 0 if ‖PC(ϕ)‖C = 0

}
|u| − a.e. x ∈ Ω. (6.42)

Proof. Assume that (6.40) holds. If ‖PC(ϕ)‖C = 0 the support condition in (6.41) becomes trivial
and

〈ϕ, u〉 = 〈PCo(ϕ), u〉 =

∫
Ω

(PCo(ϕ(x)), u′(x))Hd|u|(x) = 0
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Since the integrand is non-positive it vanishes |u|-almost everywhere. This yields (6.42) in this
case. Let ‖Pc(ϕ)‖C 6= 0. We readily observe that

‖PC(ϕ)‖C‖u‖M = 〈ϕ, u〉 ≤ 〈PC(ϕ), u〉 ≤ ‖PC(ϕ)‖C‖u‖M.

Therefore there holds

〈PC(ϕ), u〉 = ‖PC(ϕ)‖C‖u‖M.

Rearranging this equality and writing out the duality paring yields∫
Ω

[(PC(ϕ(x)), u′(x))H − ‖PC(ϕ)‖C ] d|u|(x) = 0. (6.43)

By estimating

(PC(ϕ(x)), u′(x))H ≤ ‖PC(ϕ(x))‖H‖u′(x)‖H ≤ ‖PC(ϕ)‖C , (6.44)

it follows that the integrand in (6.43) is non-positive and thus vanishes for |u|-a.e. x ∈ Ω. Accord-
ingly there holds

(PC(ϕ)(x), u′(x))H = ‖PC(ϕ)‖C |u| − a.e. x ∈ Ω.

In perspective of (6.44) this can only be valid if

‖PC(ϕ)(x)‖H = ‖PC(ϕ)‖C , u′(x) =
1

‖PC(ϕ)‖C
PC(ϕ)(x),

for |u|-almost all x ∈ Ω. Therefore (6.42) holds. It remains to show the inclusion for supp |u|
in (6.41). W.l.o.g assume u 6= 0. To this end we note that the function

h : Ω → R−, h(x) = ‖PC(ϕ(x))‖H − ‖PC(ϕ)‖C ,

is continuous, non-negative and its integral with respect to |u| vanishes. Let an arbitrary point x̂ ∈
Ω with h(x̂) < 0 be given. Since h is continuous this holds in a whole neighborhood Bδ(x̂). Let
an arbitrary nonnegative function y ∈ C0(Bδ(x̂)) be given. Then there exists t > 0 small enough
such that h+ ty ≤ 0 on Ω. We conclude

0 ≥ 〈h+ ty, u〉 = t〈y, u〉 ≥ 0.

Due to the arbitrary choice of y this implies |u||Bδ(x̂) = 0 and Bδ(x̂) ⊂ Ω \ supp |u|.

Conversely let (6.41) and (6.42) hold. If ‖PC(ϕ)‖C = 0 we immediately get

〈ϕ, u〉 =

∫
Ω

(PCo(ϕ(x)), u′(x))H d|u|(x) = 0 = ‖PC(ϕ)‖C‖u‖M.

In the second case, for ‖PC(ϕ)‖C 6= 0, we split the integral to obtain

〈ϕ, u〉 =

∫
Ω

(PC(ϕ(x)), u′(x))H d|u|(x) +

∫
Ω

(PCo(ϕ(x)), u′(x))H d|u|(x)

=
1

‖PC(ϕ)‖C

∫
Ω

(PC(ϕ(x)), PC(ϕ(x)))H d|u|(x)

= ‖PC(ϕ)‖C‖u‖M.

Here we again used that (PCo(ϕ(x)), PC(ϕ(x)))H = 0 for |u|-almost every x ∈ Ω. This finishes
the proof.
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Throughout the following discussions we will restrict ourselves to optimal vector measures ū 6=
0 with non-degenerate adjoint state p̄, i.e ‖PC(p̄)‖C 6= 0. As a consequence of the previous
proposition the optimality of ū ∈ M(Ω,C) is characterized by necessary conditions on its polar
decomposition.

Theorem 6.24. Let ū be an optimal solution to (PM) with polar decomposition dū = ū′d|ū|
and PC(ū) 6= 0. Then we have

‖PC(p̄)‖C ∈ ∂G(‖ū‖M),

as well as

supp |ū| ⊂ {x ∈ Ω | ‖PC(p̄(x))‖H = ‖PC(p̄)‖C } , ū′(x) =
1

‖PC(p̄)‖C
PC(p̄(x)) |ū| − a.e. x ∈ Ω.

These conditions are sufficient for optimality if F is convex on its domain.

Proof. The statement follows immediately by combining Propositions 6.21 and 6.23.

The following two corollaries highlight how these necessary first order optimality conditions allow
to draw further conclusions on structural properties of minimizers to (PM).

Corollary 6.25. Let a minimizer ū to (PM) be given and assume that ‖PC(p̄(x))‖H achieves its
maximum in a finite collection of points:

{x ∈ Ω | ‖PC(p̄(x))‖H = ‖PC(p̄)‖C } = {x̄i}Ni=1. (6.45)

Then ū is given as a sum of Dirac delta functions, i.e. there holds

ū =
1

‖PC(p̄)‖C

N∑
i=1

c̄iPC(p̄(x̄i))δx̄i ,

for some c̄i ∈ R+, i = 1, . . . , N .

Proof. From the inclusion condition on supp |ū| we infer |ū| =
∑N

i=1 c̄iδx̄i for some c̄i ∈ R+,
i = 1, . . . , N . The claim now directly follows from the characterization of the Radon-Nikodým
derivative yielding

ū =

N∑
i=1

c̄iū
′
i(x̄i)δx̄i , ū′(x̄i) =

1

‖PC(p̄)‖C
PC(p̄(x̄i)).

Corollary 6.26. Assume that F is strictly convex on its domain. Then the optimal state ȳ and
adjoint state p̄ are the same for every minimizer to (PM). Furthermore assume that (6.45) holds
and that the set

{K(PC(p̄(x̄i))δx̄i) | i = 1, . . . , N } ⊂ Y, (6.46)

is linearly independent. Then (PM) admits a unique minimizer ū ∈M(Ω,C).
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Proof. The prove for the uniqueness of the optimal state is standard: assume that there are two
optimal solutions ū1, ū2 to (PM) with Kū1 6= Kū2. Set us = u1 + s(u2 + u1) for s ∈ (0, 1).
Then us is also a minimizer of (PM). Since F is strictly convex we conclude

min
u∈M(Ω,H)

j(u) = j(us) < (1− s)j(u1) + sj(u2) = j(us).

This gives a contradiction. The uniqueness of the adjoint state follows now due to p̄ = −K∗∇F (ȳ).
Assume that (6.45) holds and that the set in (6.46) is linear independent. Moreover define the
operator

K̂ : RN → Y, v 7→ 1

‖PC(p̄)‖C

N∑
i=1

viK(PC(p̄(x̄i))δx̄i).

Following Corollary 6.25 every minimizer ū to (PM) is of the form

ū =
1

‖PC(p̄)‖C

N∑
i=1

‖ūi‖H p̄(x̄i)δx̄i , ‖ūi‖M ∈ R+.

Obviously the vector (‖ū1‖H , . . . , ‖ūN‖H)> is given by an optimal solution to

min
v∈RN+

F (K̂v) +G(‖v‖1). (6.47)

Since the set in (6.46) is linearly independent we conclude that the operator K̂ is injective. Thus
the composite functional F ◦ K̂ is stricly convex on its domain in RN+ and (6.47) admits a unique
solution. Combining all previous considerations yields the uniqueness of the minimizer to (PM).

The remainder of this section is devoted to the algorithmic solution of (PM) by applying the
generalized conditional gradient method described in Algorithm 8. To this end we make the
following observation.

Lemma 6.27. There exists u ∈ dom j ∩MN(Ω,C).

Proof. Let an arbitrary u ∈ dom j be given. Following Proposition 6.19 there exists a se-
quence {uk}k∈N ⊂ MN(Ω,C) with uk ⇀∗ u, ‖uk‖M ≤ ‖u‖M. Since the domain of F in Yad
is open and G is monotonically increasing on R+ we conclude uk ∈ dom j for all k large enough.
This completes the proof.

As a consequence Algorithm 8 can be started from a finitely supported iterate u0 ∈ MN(Ω,C)
in the domain of j. Furthermore let the constant M0 > 0 be chosen to bound the norms of the
elements in the sublevel set

Ej(u
0) =

{
u ∈M(Ω,C) | j(u) ≤ j(u0)

}
.

This choice is possible due to the radial unboundedness of j. Denote by uk the iterate in the
k-th step of Algorithm 8 and by pk = −K∗∇F (Kuk) the associated adjoint state. The new
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intermediate iterate is determined as convex combination between uk and a solution vk to the
partially linearized problem

min
v∈M(Ω,C)
‖v‖M≤M0

〈−pk, v〉+G(‖v‖M) (6.48)

The following proposition states that this problem admits at least one solution supported on a
single point in Ω.

Proposition 6.28. Let uk ∈ dom j be given and set pk = −K∗∇F (Kuk) ∈ C(Ω,H). Choose a
point x̂k ∈ Ω with ‖PC(pk(x̂k))‖H = ‖PC(pk)‖C and

‖vk‖M ≤M0, ‖vk‖M ∈


{0} ‖PC(pk)‖C < inf ∂G(0)

∂G∗(‖PC(pk)‖C) ‖PC(pk)‖C ∈
⋃
m∈[0,M0] ∂G(m)

{M0} ‖PC(pk)‖C > sup ∂G(M0).

. (6.49)

Then the measure

vk = ‖vk‖M

{
0 PC(pk) = 0
PC(pk(x̂k))
‖PC(pk)‖C

δx̂k PC(pk) 6= 0
. (6.50)

is a minimizer of (6.48).

Proof. We note that with the substitution v = mṽ for m ∈ [0,M0] and ṽ ∈M(Ω,H), ‖ṽ‖M ≤ 1,
the problem (6.48) can be decomposed into

min
m∈[0,M0]

min
ṽ∈M(Ω,C)
‖ṽ‖M≤1

[−m〈pk, ṽ〉+G(m)].

Due to the non-negativity of m we estimate

m〈−pk, ṽ〉 = −m
∫
Ω

(pk(x), ṽ′(x))H d|ṽ|(x) ≥ −m
∫
Ω

(PC(pk(x)), ṽ′(x))H d|ṽ|(x) ≥ −m‖PC(pk)‖C .

for every ṽ ∈M(Ω,C), ‖ṽ‖M ≤ 1. Accordingly a solution to the inner problem is given by

v̂ =

{
0 PC(pk) = 0
PC(pk(x̂))
‖PC(pk)‖C

δx̂ PC(pk) 6= 0
, x̂ ∈ arg max

x∈Ω
‖PC(pk(x))‖H .

To solve the outer problem it thus suffices to consider

min
m∈[0,M0]

[−m‖PC(pk)‖C +G(m)].

By standard arguments, m̄ ∈ [0,M0] is optimal if and only if

‖PC(pk)‖C ∈ ∂(G(·) + I[0,M0](·))(m̄).

Since I[0,M0] is continuous on the interior of its domain we can split the subdifferential to obtain

‖PC(pk)‖C ∈ ∂G(m̄) + ∂I[0,M0](m̄).

Distinguishing between the three different cases in (6.49) completes the proof.
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Example 6.8. For a better illustration of the previous proposition we derive the condition in (6.49)
for the case of norm regularization G1(‖u‖M) = β‖u‖M+I[0,∞)(‖u‖M) and norm constraints G2(‖u‖M) =
I[0,M1](‖u‖M). In the second case we can clearly assume that M1 = M0. For G1 we obtain

‖vk‖M ∈


{0} ‖PC(pk)‖C ∈ [0, β)

[0,M0] ‖PC(pk)‖C = β

{M0} ‖PC(pk)‖C > β

.

In the norm constrained case we analogously conclude

‖vk‖M ∈

{
[0,M0] ‖PC(pk)‖C = 0

{M0} ‖PC(pk)‖C > 0
.

We summarize the resulting generalized conditional gradient method in Algorithm 9. As a conse-

Algorithm 9 Generalized conditional gradient method for vector measures
while φ(uk) ≥ TOL do
1. Compute pk = −K∗∇F (Kuk). Determine x̂k ∈ arg maxx∈Ω ‖PC(pk(x))‖C and ‖vk‖M
according to (6.49).

2. Set vk = ‖vk‖M

{
0 PC(pk) = 0
PC(pk(x̂k))
‖PC(pk)‖C

δx̂k PC(pk) 6= 0

3. Select stepsize sk ∈ [0, 1] and set uk+1/2 = uk + sk(vk − uk).
4. Set Ak = supp |uk| ∪ {x̂k} and find uk+1 ∈ C#Ak such that uk+1 = UAk(uk+1) with
j(uk+1) ≤ j(uk+1/2).

end while

quence of the previous proposition we may compute a minimizer to (PM) based on the sequential
insertion of a single Dirac delta function into the current iterated vector measure uk. Thus,
since u0 ∈ MN(Ω,C), there holds uk ∈ MN(Ω,C) for all k ∈ N. It is however important to note
that the GCG step only allows for a removal of points in the unlikely case of sk = 1, i.e. uk is re-
placed by the solution vk to the linearized problem. In particular if (PM) admits a unique sparse
minimizer ū each of its Dirac delta functions may be approximated by an ever growing number
of point measures in the iterate uk. This leads to undesired clustering of Dirac delta functions
around the optimal positions. To mitigate these effects we include a black box point removal step
into the method, see step 4. In order to discuss these additional optimization steps we consider
an ordered set of distinct points A and the associated parametrization UA defined by

A = {xi ∈ Ω | i = 1, . . . , N} , UA : HN →M(Ω,C), u 7→
N∑
i=1

uiδxi . (6.51)

The point removal procedure in step 4. of Algorithm 9 is now based on the approximate solution
of an auxiliary problem on the Hilbert space H#A

min
u∈C#A

j(UA(u)) = F (KUA(u)) +G(‖UA(u)‖M), with ‖UA(u)‖M =

#A∑
i=1

‖ui‖H , (PM(A))

where the set A is chosen as A = supp |uk| ∪ {x̂k}. Thus, loosely speaking, we fix the positions
of the Dirac delta functions in the current iterate uk and approximately optimize their coefficient
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functions while ensuring j(uk+1) ≤ j(uk+1/2). In particular this choice implies ‖uk‖M ≤ M0 for
all k ∈ N and all Dirac delta functions whose coefficient functions are zero get removed from the
iterate due to the choice of the set Ak. Similar approaches were already considered for the sparse
minimization problems in [44] and [50]. The present work delimits itself from these previous
instances by deriving improved convergence statements for the GCG method when augmented
with two particular realizations of this additional step, see Section 6.3.3 and 6.3.4. As in the
general case we emphasize that the improvement step is not necessary to ensure convergence
of the algorithm, i.e. we can choose uk+1 = uk+1/2. However, as we will see in the following
considerations, a sophisticated choice of the point removal step greatly benefits the sparsity of the
iterates as well as the overall convergence of the method.

Remark 6.8. For completeness we also mention the possibility to include improvement steps based
on a parametrization of the vector measure by its support points. Therefore given N ∈ N, and a
coefficient vector u ∈ CN let us define

U(x,u) : ΩN →M(Ω,C), x 7→
N∑
i=1

uiδxi .

In contrast to (PM(A)) we now fix the coefficients of the measure and approximately minimize
for the optimal positions

min
x∈ΩN

j(U(x,u)) = F (KU(x,u)) +G(‖U(x,u)‖M). (6.52)

For example the authors in [50] propose to move the Dirac delta functions according to the gradient
flow of the smooth part F (KU(x,u)) with respect to the positions. This bears similarity to the
particle gradient flow method discussed in [69]. The authors in [44] advocate a solution of (6.52)
by first order methods. Note that these suggestions presuppose that the adjoint operator K∗ maps
continuously to C1(Ω,H) and, given y ∈ Y , the gradient ∇[K∗y] is readily available. In the prac-
tical parts of this thesis however we apply the presented optimization algorithm to problems that
stem from a finite element discretization Kh of the operator K with Khy 6∈ C1(Ω,H). Moreover,
even if F is convex, the position problem (6.52) is in general nonconvex. Thus it may admit a
large number of stationary points and the computation of a global minimizer may be infeasible.
In contrast, if F is convex so is the coefficient problem (PM(A)). For these reasons improvement
steps based on point moving are out of the scope of this thesis and will not be discussed in more
detail.

As in the general case the termination criterion for Algorithm 9 is based on the primal-dual-gap of
the iterates Φ(uk). From the definition of vk and (6.23) the primal-dual-gap is readily calculated
as

Φ(uk) = 〈−pk, uk〉+G(‖uk‖M) + ‖PC(pk)‖C‖vk‖M −G(‖vk‖M).

The following worst-case convergence results are a direct consequence of Theorem 6.11 and 6.14,

Theorem 6.29. Let F, K and G fulfill Assumption 6.3. Let the sequence {uk}k∈N be generated by
Algorithm 9 where the stepsize is chosen according to the Quasi-Armijo-Goldstein condition with
parameters γ ∈ (0, 1), α ∈ (0, 1/2]. Then the following convergence results hold true:

• There exists at least one weak* convergent subsequence of {uk}k∈N. Every weak* accumula-
tion point ū of {uk}k∈N is a stationary point, i.e. Φ(ū) = 0.
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• If F is convex on its domain and ∇F is Lipschitz continuous on

KEj(u
0) =

{
Ku | j(u) ≤ j(u0)

}
, (6.53)

with Lipschitz constant LKu0 then F ◦K is Lipschitz continuous on Ej(u0) and {uk}k∈N is
a minimizing sequence for j. Each of its weak* accumulation points is a global minimizer
of j and there holds

rj(u
k) ≤ rj(u

0)

1 + qk
, q = αmin

{
c

4Lu0M
2
0

, 1

}
,

with c = 2γ(1− α)r(u0) and Lu0 = LKu0‖K∗‖2L(Y,C(Ω,H)).

Proof. The first result is readily obtained from Theorem 6.11. Second assume that F is convex
and its gradient ∇F is Lipschitz on KEj(u0) with Lipschitz constant LKu0 . Define the reduced
functional f = F ◦K. Obviously f is convex on its domain and we have

sup
u1,u2∈Ej(u0)

‖∇f(u1)−∇f(u2)‖C ≤ sup
u1,u2∈Ej(u0)

‖K∗‖L(Y,C(Ω,H))‖∇F (Ku1)−∇F (Ku2)‖Y

≤ sup
u1,u2∈Ej(u0)

LKu0‖K∗‖2L(Y,C(Ω,H))‖u1 − u2‖M.

Thus ∇f is Lipschitz continuous on Ej(u
0) with constant Lu0 = LKu0‖K∗‖2L(Y,C(Ω,H)). The

remaining statements now follow by applying Theorem 6.14.

Remark 6.9. Let us briefly summarize some previous convergence results for generalized conditional
gradient methods in spaces of vector measures:

[50]: Here the authors provide a sublinear rate of convergence for the special case of

C = Rn, G(‖u‖M) = β‖u‖M + I[0,∞)(‖u‖M), F = 1/2‖ · −yd‖2Y .

The step size sk ∈ [0, 1] is chosen to maximize a lower bound on the expected descend in
the k-th iteration

sk ∈ arg min
s∈[0,1]

[−sΦ(uk) +
s2

2
‖K(uk − vk)‖2Y ].

[44]: This work considers a general smooth and convex function F and

Y = Rn, C = R+, G(‖u‖M) = I[0,M0](‖u‖M).

A fixed step size sk = 2/(k + 2) is used in the proof of the sublinear convergence rate.
We point out that the authors do not assume Lipschitz continuity of the gradient ∇F but
suppose that the curvature constant of F , see e.g. [159], on {Ku |‖u‖M ≤M0 } is bounded.

While both of these works focus on different problems it is worthwhile to discuss the differences in
the proofs of these results. Similar to our approach the authors in [50] describe and analyze the
conditional gradient method directly on the non-reflexive spaceM(Ω,Rn). In contrast the second
paper relies on an equivalent reformulation of the problem as minimization problem for a smooth
function over a finite dimensional compact set. As a matter of fact we might proceed along the
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same path for the discussion of Algorithm 9. Let us outline these ideas for the nonsmooth norm
regularized problem

min
u∈M(Ω,C)
‖u‖M≤M0

j(u) = [F (Ku) + β‖u‖M], (6.54)

where we assume domF = Y and Lipschitz continuity of ∇F on the whole domain for simplicity.
To this end define the compact and convex admissible set

Wad := { (y,m) | m ∈ [0,M0], ∃u ∈M(Ω,C), ‖u‖M ≤ m : y = Ku } ⊂ Y × R+.

It is straightforward to see that ū ∈M(Ω,C) minimizes in (6.54) iff m̄ = ‖ū‖M and ȳ = Kū give
a minimizing pair for

min
(y,m)∈Wad

h(y,m) := [F (y) + βm]. (6.55)

Since the function h is smooth and Wad is convex and compact a classical conditional gradient
method can be applied to compute a minimizing pair (ȳ, m̄). We claim that such a method is
(almost) equivalent to the application of Algorithm 9 to (6.54) with uk+1 = uk+1/2. More precisely,
the algorithms may be realized to ensure Kuk = yk and ‖uk‖M ≤ mk for k ∈ N. Set the initial
iterate to (y0,m0) = (Ku0, ‖u0‖M). The proof is done by induction. Given an iterate (yk,mk)
with Kuk = yk and ‖uk‖M ≤ mk the new descent direction (δyk, δmk) in the conditional gradient
method for (6.55) is found by solving the linearized problem

min
(δy,δm)∈Wad

[(∂yh(yk,mk), δy) + ∂mh(yk,mk)δm] = min
(δy,δm)∈Wad

[(∇F (yk), δy)Y + βδm].

Obviously one minimizer to this problem is given by (δyk, δmk) = (Kvk, ‖vk‖M) where vk is
chosen according to Algorithm 9. Choosing the same stepsize sk in both algorithms we get

yk+1 = K(uk + sk(vk − uk)) = Kuk+1, ‖uk+1‖M ≤ mk + sk‖vk‖M = mk+1.

In particular this implies j(uk) ≤ h(yk,mk) for all k ∈ N. Since ∇h = (∂yh, ∂mh) is Lipschitz
continuous the classical convergence results for the conditional gradient, see e.g. [92], can be
applied to conclude the sublinear convergence of h(yk,mk) towards its minimum value on Wad

min
(y,m)∈Wad

h(y,m) = min
u∈M(Ω,C)

j(u) = j(ū).

As a consequence the sublinear convergence of j(uk) towards j(ū) also follows.

There are several reasons why we decided to stick to a discussion of generalized conditional gradient
methods on the measure space i.e. without reformulating the problem. First such a reformulation
clearly requires the linearity of the operator K. Thus conditional gradient methods for sparse
optimal control problems with nonlinear state equation, see e.g. [63, 64], cannot be discussed in
this way. In contrast we based our convergence analysis on the general results of Section 6.2
which obviously allow to consider far more general problems. In particular the discussions on the
structure of solutions to the partially linearized problems and the subsequential weak* convergence
of the sequence {uk}k∈N extend naturally to the case of smooth but nonlinear control-to-state
mappings K.

Second we aim to improve on the convergence results of Theorem 6.29 in the following two sections.
More precisely we prove linear convergence of the residual rj(uk) under additional assumptions on
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the minimizers of (PM) for a particular choice of the point removal step in Algorithm 9. As already
mentioned in the introductory part of Section 6.2 there are several works on improved convergence
rates for the classical conditional gradient method with and without additional acceleration steps.
However these results usually require uniform convexity of the objective functional or uniform
lower bounds on its gradient. Moreover additional geometric properties of the admissible set
such as polyhedricity or strong convexity are needed. In this context note that h(·, ·) is not
uniformly convex due to the linear dependence on m and the structure of the set Wad can be
fairly complicated. As a consequence, to the best of our knowledge, none of these pre-existing
works allow to obtain the improved convergence results for the solution of (6.54) based on the
reformulated problem (6.55). Moreover we also provide convergence rates for the measure valued
iterates {uk}k∈N which requires to exploit certain structural properties. These considerations make
a direct analysis of Algorithm 9 onM(Ω,H) indispensable.

6.3.3 Sparsification for finite rank operators

This section is devoted to generalized conditional gradient methods in the important special case
of K being a finite rank operator i.e. dim ImK < ∞. For better illustration we may pick up
on Example 6.6. In this case K : M(Ω,L2(I)) → RN gives, for example, averaged values of the
temperature field induced by the heat source u on a finite number N of observational patches. The
main result of this section comes in two parts. First we give a constructive proof for the existence of
a finitely supported optimal solution to (PM) provided that K has finite rank. In a second step we
augment Algorithm 9 by an additional sparsification step which ensures subsequential convergence
towards sparse stationary points of j. To this end let an arbitrary measure u1 ∈M(Ω,C) be given.
Associated to it we consider the minimum norm problem

min
u∈M(Ω,C)

‖u‖M s.t. Ku = Ku1 (P(u1))

Since the operator K is weak*-to-strong continuous the solution set

U1 = {u ∈M(Ω,C) | u solves (P(u1)) } ,

is nonempty, convex and weak* closed. We recall the notion of an extremal point of the solution
set as well as the Krein-Milman theorem c.f. [43, Theorem 2.19].

Definition 6.4. An element u ∈ U1 is called an extremal point of U1 if for all v1, v2 ∈ U1

and s ∈ [0, 1] there holds

u = (1− s)v1 + sv2 ⇒ v1 = v2 = u.

Theorem 6.30 (Krein-Milman). The set U1 is the weak* closure of the convex hull of its extremal
points:

U1 = conv {u ∈ U1 | u extremal }∗.

Proof. Since U1 is convex, nonempty and weak* closed the set of its extremal points is nonempty.
Taking the weak* closure of their convex hull we obtain U1 following the Krein-Milman Theo-
rem, [43, Theorem 2.19].
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In the following theorem we show that every extremal point of U1 is supported on at most N
points.

Theorem 6.31. Suppose that dim ImK = N < ∞. The extremal points of U1 can be written as
a linear combinations of no more than N Dirac delta functions:

{u ∈ U1 | u extremal } ⊂

{
N∑
i=1

uiδxi

∣∣∣ ui ∈ C, xi ∈ Ω, i = 1, . . . , N

}

Proof. Let u ∈ U1 be extremal. The proof will be done by contradiction. Assume, therefore, that
supp |u| consists of more than N points. Then, there exists a disjoint partition {Ωi }i=1,...,N of
the set Ω with

|u|(Ωi) > 0 for all i = 1, . . . , N + 1.

Define for i = 1, . . . , N + 1 the restrictions

ui = u|Ωi ∈M(Ω,C).

It is clear that ‖ui‖M = |u|(Ωi) > 0 and ‖u‖M =
∑N+1

i=1 ‖ui‖M. Now, we consider the renormal-
ized measures and their image under K, i.e.

vi =
ui
‖ui‖M

, wi = Kvi ∈ ImK ⊂ Y,

and look for a nontrivial solution λ ∈ RN+1 \ {0} of the system of linear equations

N+1∑
i=1

λiKvi =

N+1∑
i=1

λiwi = 0 ∈ ImK.

Since the number of equations is one smaller than the number of variables, such a solution exists.
Without restriction, we may assume

∑
i=1,...,N+1 λi ≥ 0 (otherwise, we take the negative of λ).

We define
τ = max

i=1,...,N+1

|λi|
‖ui‖M

> 0

and u+ and u− as

u± = u± 1

τ

N+1∑
i=1

λivi =

N+1∑
i=1

(
1± λi

τ ‖ui‖M

)
ui.

Clearly, u+ 6= u− 6= u. By construction and linearity of K we have Ku± = Ku = Ku1. Further-
more, we directly verify that

‖u±‖M =

∫
Ω

d|u±| =
N+1∑
i=1

∫
Ωi

d|u±| =
N+1∑
i=1

(
‖ui‖M ±

λi
τ

)
= ‖u‖M ±

1

τ

N+1∑
i=1

λi

as well as u± ∈M(Ω,C) since |λi|/τ ≤ ‖ui‖M. Since
∑

i=1,...,N+1 λi ≥ 0 we have ‖u−‖M ≤ ‖u‖M,
and u− is an optimal solution of (P(u1)), i.e., u− ∈ U1. Moreover, we see that it must hold∑N+1

i=1 λi = 0, since the norm cannot be strictly smaller. It follows that also u+ ∈ U1. We
conclude the proof with the observation that

u =
1

2
u+ +

1

2
u−,

which contradicts the assumption that u is extremal in U1.
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As an immediate consequence of the previous theorem we conclude the existence of finitely sup-
ported minimizers to (PM).

Proposition 6.32. Let u ∈M(Ω,C) be given. Then there exists a measure ũ ∈M(Ω,C) with

Ku = Kũ, ‖ũ‖M ≤ ‖u‖M, ũ ∈MN (Ω,C)

In particular there exists a minimizer ū ∈M(Ω,C) to (PM) with # supp |ū| ≤ N .

Proof. Following the previous theorem the minimum norm problem (P(u)) associated to a mea-
sure u ∈ M(Ω,C) admits at least one optimal solution ũ ∈ M(Ω,C) with supp |ũ| ≤ N . By
construction we further have

Ku = Kũ, ‖ũ‖M ≤ ‖u‖M.

Since u ∈M(Ω,C) was chosen arbitrary the same reasoning particularly applies to any minimizer
of (PM). Due to the monotonicity of G on R+ the statement follows.

Obviously the previous proposition does not only yield the existence of a sparse minimizer. More
precisely, given any measure u ∈ M(Ω,C) we get at least one sparse measure ũ, # supp |ũ| ≤
N , yielding the same image under K without increasing the objective function value. From an
algorithmic point of view it is desirable to exploit this sparse representation property for the
iterates {uk}k∈N generated by the generalized conditional gradient method. This would bound
the number of support points in the iterates and thus mitigates clustering effects. By slightly
altering the proof of Theorem 6.31 we arrive at a constructive sparsifying procedure to remove
excess points from a given sparse measure. The method is summarized in Algorithm 10.

Algorithm 10 Support-point removal for vector measures

1. Let u =
∑N

i=1 uiδxi ∈M(Ω,C) ui 6= 0, be given.
while {K(uiδxi)}

N
i=1 linearly dependent do

2. Set vi = ui/‖ui‖H
3. Find 0 6= λ with 0 =

∑N
i=1 λiK(viδxi).

4. Set µ = maxi{λi/‖ui‖H }, unew,i = (1− λi/(µ‖ui‖H))ui.
5. Update u = unew =

∑
{ i | unew,i>0 } unew,iδxi .

end while

Proposition 6.33. Suppose that dim ImK = N < ∞. Let u =
∑

i=1,...,N uiδxi be an arbitrary
sparse measure with N ∈ N, ui ∈ C, ui 6= 0, xi ∈ Ω (pairwise distinct). Furthermore assume that
the set {K(uiδxi)}

N
i=1 is linearly dependent and unew ∈M(Ω,H) is obtained after one iteration of

Algorithm 10 applied to u. Then there holds unew ∈ M(Ω,C). Moreover, the new measure unew

satisfies

Kunew = Ku, ‖unew‖M ≤ ‖u‖M, supp |unew| ⊂ supp |u|, # supp |unew| ≤ N− 1.

Proof. As in the previous proof, we define

ui = u|{xi} = uiδxi , and wi = K(viδxi), where vi =
ui
‖ui‖H

.
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By assumption the set {wi}Ni=1 is linearly dependent. We find a nontrivial solution of the system
of equations

∑
i=1,...,N λiwi = 0 with

∑
i=1,...,N λi ≥ 0. Now, in contrast to the previous proof, we

set
µ = max

n=1,...,N

λi
‖ui‖H

> 0.

We set

unew = u− 1

µ

N∑
i=1

λiviδxi =

N∑
i=1

(
1− λi

µ‖ui‖H

)
uiδxi

Thus the coefficients of the new measure unew are given as unewi = [1− λi/(µ‖ui‖H)]ui ∈ C since
λi/µ ≤ ‖ui‖H and Ku = Kunew. Moreover it holds that ‖unew‖M = ‖u‖M −

∑
i=1,...,N λi/µ ≤

‖u‖M. The proof is finished with the observation that

unewı̂ = 0 for ı̂ ∈ arg max
i=1,...,N

λi
‖ui‖H

.

The remainder of this section is devoted to the analysis of an augmented generalized conditional
gradient method in which we choose the new iterate uk+1 by applying Algorithm 10 to the inter-
mediate iterate uk+1/2. To this end we first prove the weak* closedness of sets comprising vector
measures supported on a uniformly bounded number of support points.

Proposition 6.34. Let Ω be compact. For any N ∈ N the set

MN (Ω,C) =

{
N∑
i=1

uiδxi

∣∣∣ ui ∈ C, xi ∈ Ω, i = 1, . . . , N

}

is weak* closed.

Proof. Let an arbitrary weak* convergent sequence {uk}k∈N ⊂MN (Ω,C) with limit ū ∈M(Ω,C)
be given. For each k ∈ N there exist uki ∈ C, xki ∈ Ω, i = 1, . . . , N with

uk =
N∑
i=1

uki δxki
and ‖uk‖M =

∑
i=1,...,N

‖uki ‖H ≤ c,

for some c > 0. Introducing uk = (uk1, . . . ,u
k
N )> ∈ CN and xk = (xk1, . . . , x

k
N )> ∈ ΩN there exist

a subsequence of (uk, xk) ∈ CN × ΩN denoted by the same symbol and (u, x) ∈ CN × ΩN with
uk ⇀ u and xk → x. This follows from the compactness of Ω, the boundedness of uk and the
weak closedness of C. Defining

u =
∑

i=1,...,N

uiδxi ∈MN (Ω,C),

we arrive at

〈ϕ, u〉 = lim
k→∞

∑
i=1,...,N

(uki , ϕ(xki ))H = lim
k→∞
〈ϕ, uk〉 = 〈ϕ, ū〉

for all ϕ ∈ C(Ω,H) since uki ⇀ uj and ‖ϕ(xki )−ϕ(xi)‖H → 0. Due to the uniqueness of the weak*
limit we get ū = u ∈MN (Ω,C) yielding the weak* closedness ofMN (Ω,C).
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As a corollary each accumulation point of a sequence of measures with uniformly bounded support
size is also finitely supported.

Corollary 6.35. Let Ω be compact. Consider a sequence {uk}k∈N ⊂ M(Ω,C) which fulfils
# supp |uk| ≤ N for some N ∈ N and all k ∈ N. Then every accumulation point ū of {uk}k∈N
also satisfies # supp|ū| ≤ N .

Proof. By assumption there holds # supp |uk| ≤ N , k ∈ N, and thus {uk}k∈N ⊂ MN (Ω,C).
SinceMN (Ω,C) is weak* closed, see Proposition 6.34, the statement follows.

Finally, combining the GCG method with the sparsifying procedure from Algorithm 10 we obtain a
convergent solution algorithm for (PM) which additionally ensures the uniform boundedness of the
support size in each iteration. As a consequence the resulting algorithm guarantees (subsequential)
weak* convergence towards sparse stationary points of j.

Theorem 6.36. Assume that dim ImK = N < ∞ and # supp |u0| ≤ N . Let F, K and G fulfill
Assumption 6.3. Let the sequence {uk}k∈N be generated by Algorithm 9 where uk+1 is obtained
by applying Algorithm 10 to uk+1/2 in each iteration. Then the results of Theorem 6.29 apply
to {uk}k∈N. Additionally there holds uk ∈ MN (Ω,C), k ∈ N , and consequently # supp |ū| ≤ N
for every weak* accumulation point ū of {uk}k∈N.

Proof. Let k ∈ N be given. Denote by uk+1/2 the intermediate iterate obtained in step 3. of
Algorithm 9 and assume that uk+1 is obtained by application of Algorithm 10 to uk+1/2. By
construction we have

uk+1 ∈M(Ω,C), Kuk+1 = Kuk+1/2, ‖uk+1‖M ≤ ‖uk+1‖M,

and consequently j(uk+1) ≤ j(uk+1/2) due to the monotonicity of G on R+. Thus Theorem 6.29
applies to {uk}k∈N. It remains to prove the uniform bound on the number of support points. By
assumption we have # supp |u0| ≤ N . Moreover note that the set{

K(u({x})δx) | x ∈ supp |uk+1/2|
}
⊂ ImK,

is linearly dependent if # supp |uk+1/2| > N . Inductively applying Proposition 6.33 we thus
conclude # supp |uk+1| ≤ N . The sparsity statement on the weak* accumulation points of {uk}k∈N
now directly follows from the weak* closedness ofMN (Ω,C).

6.3.4 Acceleration strategy

The remainder of this thesis puts the focus on a fully corrective variant of Algorithm 9 where the
new coefficient vector uk+1 is chosen as a minimizer of the coefficient optimization problem

uk ∈ arg min
u∈C#Ak

[F (KUAk(u)) +G(‖UAk(u)‖M)],

on the point set Ak = supp |uk| ∪ {x̂k}. The resulting method is described in Algorithm 11.
In comparison to Algorithm 9 we may drop the intermediate conditional gradient step since we
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have supp |uk+1/2| ⊂ Ak and all subproblems are solved up to optimality. However the compu-
tation of the solution vk ∈ M(Ω,C) to the linearized problem is still necessary for the exact
evaluation of the termination criterion Φ(uk).

From this perspective the resulting algorithm can be also interpreted as a method acting on a
sequence of active sets Ak containing a finite number of points. Recall that the support points of
an optimal measure ū align themselves with global maximizers of the dual certificate

‖PC(p̄)‖H : Ω → R+, x 7→ ‖PC(p̄(x))‖H .

In the k-th step of Algorithm 11 we greedily add a new point x̂k to the active set which maximizes
the violation of this constraint by the current dual certificate ‖PC(pk)‖H

x̂k ∈ arg max
x∈Ω

[‖PC(pk(x))‖H − max
x̃∈supp |uk|

‖PC(pk(x̃))‖H ] = arg max
x∈Ω

‖PC(pk(x))‖H .

The coefficient optimization problem PM(Ak) can then be seen as a solution of the original
problem (PM) on the reduced coneM(Ak, C). Again we emphasize that the iterates are pruned
in each iteration by removing all Dirac delta functions with zero coefficient function.

In particular the description of Algorithm 11 as alternation between updating a set of active
points Ak and solving the original problem on the reduced cone suggests a connection of the pro-
posed procedure to the well-known Primal-Dual-Active-Set method for constrained optimization
problems, [143,177]. Before proceeding to a more detailed analysis of Algorithm 11 we highlight
this similarity by a simple instructive example.

Example 6.9. Consider the sparse minimization problem

min
u∈M+(Ω)

j(u) := [
1

2
‖Ku− yd‖2Y + β‖u‖M] (6.56)

for some positive regularization parameter β > 0 and a desired state yd ∈ Y . For simplicity we
assume that K either maps to Y = Rn, n ∈ N, or Y = L2(Ωo) where Ωo is a bounded domain
in Rd. Obviously this problem fits into the general framework of this section by setting C = R+, F =
1/2‖ · −yd‖2Y and G(‖u‖M) = β‖u‖M. By applying duality theory, see [73], we identify (6.56) as
the Fenchel dual to the state constrained problem

min
y∈Y

j∗(y) :=
1

2
‖y − yd‖2Y s.t. [K∗y](x) ≤ β ∀x ∈ Ω. (6.57)

Since Slater’s condition is satisfied in (6.57) strong duality holds. Given a pair of minimizers
(ū, ȳ) ∈M+(Ω)× Y to (6.56) and (6.57), respectively, we thus conclude

ȳ = −(Kū− yd), (6.58)
[K∗ȳ](x) ≤ β, x ∈ Ω, ū ∈M+(Ω), (6.59)

〈ū,K∗ȳ − β〉 = 0. (6.60)

Therefore the measure-valued solution ū of (6.56) can be interpreted as the Lagrange multiplier
associated to the pointwise constraint in (6.57). It is related to the uniquer minimizer ȳ of (6.57)
by the extremality conditions in (6.59) and (6.60), respectively.

In the following we discuss the algorithmic solution of (6.57). To this end it is tempting to apply
a Primal-Dual-Active-Set strategy since the objective functional in (6.57) is quadratic and the
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admissible set is closed and convex. Formally these methods iteratively generate a sequence of
active and inactive sets (Ak, Ik)k∈N with

Ω = Ak ∪ Ik, Ak ∪ Ik = ∅ ∀k ∈ N

as well as a sequence of primal-dual variables (uk, yk)k∈N ⊂M(Ω)× Y defined by

yk+1 = −(Kuk+1 − yd),
[K∗yk+1](x) = β, x ∈ Ak, uk+1 = 0 on Ik.

However, as already remarked in [31], such reasoning fails for state constrained problems since
the choice of the active and inactive sets requires an equivalent pointwise reformulation of the
extremality conditions (6.59) and (6.60). In the present case this is obviously not possible since
the optimal Lagrange multipliers are only positive Radon measures. Previous approaches on the
algorithmic solution of (6.57) are usually based on the introduction of a family of regularized
problems in which the pointwise state constraint is relaxed. We refer e.g. to the well-known
concepts of Lavrentiev, [193,220], and Moreau-Yosida regularization, [144,158], as well as barrier
methods [173, 232]. All of these methods induce a path of regularized optimal solutions which can
be efficiently computed and approximate ȳ for vanishing regularization parameter.

In contrast we propose a primal-dual method relying on Algorithm 11 to solve (6.57). Let an
arbitrary primal-dual pair (uk, yk) ∈ M(Ω)× Y be given where uk is assumed to be supported on
finitely many points. We emphasize that problem (6.57) will be neither discretized nor regularized
in the following. Our considerations are based on the particular choice of the active set as

Ak =

{
supp |uk| ∪ {x̂k} maxx∈Ω[K∗yk](x) ≥ β
supp |uk| else

.

Here x̂k ∈ Ω corresponds to a point that maximizes the violation of the state constraint by K∗yk,

x̂k ∈ arg max
x∈Ω

[[K∗yk](x)− β] = arg max
x∈Ω

[K∗yk](x).

The new primal-dual variables yk+1 ∈ Y and uk+1 ∈M+(Ω) are then chosen to fulfill

yk+1 = −(Kuk+1 − yd), (6.61)

[K∗yk+1](x) ≤ β, x ∈ Ak, uk+1|Ak∈M
+(Ak), uk+1(Ω \ Ak) = 0, (6.62)

〈uk+1,K∗yk+1 − β〉 = 0. (6.63)

Note that this definition ensures uk+1 ∈ M+(Ω) i.e. the dual variables {uk}k∈N are feasible, as
well as

suppuk+1 ⊂
{
x ∈ Ω | [K∗yk+1](x) = β

}
.

In contrast, the primal variables {yk}k∈N are in general infeasible for (6.57). In fact the iteration
terminates at a pair of minimizers (ȳ, ū) = (yk, uk) if yk is admissible and strict complementarity
holds

[K∗y](x) ≤ β, x ∈ Ω, suppuk = arg max
x∈Ω

[K∗y](x).
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Since the active set Ak is finite we introduce a vector uk+1 ∈ R#Ak
+ and consider the following

equivalent system of nonsmooth equations

yk+1 +
∑
xi∈Ak

uk+1
i Kδxi − yd = 0.

uk+1
i −max

{
0,uk+1

i + ([K∗yk+1](xi)− β)
}

= 0,

for i = 1, . . . ,#Ak. Again invoking Fenchel-Rockafellar duality theory we conclude that the pair

(uk+1, yk+1) ∈M+(Ω)× Y,

fulfills (6.61)–(6.63) if and only if

yk+1 ∈ arg min
y

j∗(y) s.t. [K∗y](x) ≤ β ∀x ∈ Ak (6.64)

uk+1 =
∑
xi∈Ak

uk+1
i δxi , uk+1 ∈ arg min

u∈R#Ak
+

j(UAk(u)). (6.65)

In particular the iteration can be started at (u0, y0) = (0, yd). Given k ∈ N the next iter-
ate (uk+1, yk+1) can be computed by first eliminating the equality constraint in (6.61). Then the
vector uk+1 is determined from

uk+1
i −max

0,uk+1
i −

∑
xj∈Ak

uk+1
i [K∗Kδxj ](xi) + [K∗yd](xi)− β

 = 0, i = 1, . . . ,#Ak

This corresponds to a solution of the finite dimensional optimization problem in (6.65) which can
be efficiently realized by e.g. semi-smooth Newton algorithms. Moreover since suppuk ⊂ Ak we
can warmstart such methods by using the values of the previous coefficient vector uk to construct a
feasible starting point. The new primal variable is then recovered as yk+1 = −(KUAk(uk+1)− yd).
Following this construction we also conclude

x̂k ∈ arg max
x∈Ω

[K∗yk](x) = arg max
x∈Ω

−[K∗(Kuk − yd)](x) = arg max
x∈Ω

PR+(pk(x))

if maxx∈Ω[K∗yk](x) ≥ β. As a consequence one iteration of the proposed method for the solution
of the state constrained problem (6.57) is equivalent to one step of Algorithm 11 on the sparse
minimization problem (6.56) with an additional update of the primal variable yk.

Anticipating the upcoming convergence results for Algorithm 11 we get (subsequential) weak* con-
vergence of the dual variables {uk}k∈N towards minimizers of (6.56). Since K is weak*-to-strong
continuous the primal variables thus converge strongly,

yk = −(Kuk − yd)→ −(Kū− yd) = ȳ,

towards the unique minimizer ȳ of (6.57). Moreover from strong duality for the subproblems and
the infeasibility of the primal variables we get

j∗(yk) = j(UAk(uk)) = j(uk), arg max
x∈Ω

[K∗yk](x)− β ≥ 0.
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Since F = 1/2‖ · −yd‖2Y on Y we conclude the following convergence results

rj∗(y
k) + ‖yk − ȳ‖2Y + (arg max

x∈Ω
[K∗yk](x)− β)2 ≤ crj(uk) ≤

c1

1 + qk
∀k ∈ N, (6.66)

for some positive constants c1, q > 0 depending on rj∗(y0). This is a consequence of the interpre-
tation of Algorithm 11 as accelerated GCG method, see Theorem 6.37, and an obvious adaption of
Lemma 6.46. In particular this implies that the primal variables yk gradually become more feasible
since the maximum constraint violation tends to zero. If the number of constraints in (6.57) is
finite, i.e. Ω consist only of finitely many points, the proposed method terminates after finitely
many steps at the global minimizer see Corollary 6.40.

In the light of the results in Section 6.3.5 improved convergence rates can be expected if additional
structural assumptions hold. To this end assume that the state constraint is only active in a finite
collection of points at ȳ, the associated Lagrange multiplier ū is unique and strict complementarity
holds,

supp ū = {x ∈ Ω | [K∗ȳ](x) = β } = {x̄i}Ni=1 ⊂ intΩ.

Furthermore assume that K∗ maps to (locally) smooth functions and the Hessian ∇2[K∗ȳ](x̄i) at
the global maximizers is negative definite. Then the improved convergence result

rj∗(y
k) + ‖yk − ȳ‖Y + (arg max

x∈Ω
[K∗yk](x)− β) ≤ c2ζ

k (6.67)

holds for some constants c2 > 0, ζ ∈ (0, 1) and all k ∈ N large enough. We comment on these
sufficient conditions for fast convergence rates at a later point of this chapter.

To close on this instructive example we briefly discuss similar approaches from the literature. In
the context of semi-infinite problems, Y = Rn, the proposed algorithm closely resembles the so-
called exchange method see e.g. [278]. While convergence of this procedure is well understood,
c.f. [140, Theorem 7.2.], quantitative convergence results similar to those in (6.66) were only
provided recently in [97]. We are not aware of improved convergence results for this method com-
parable to those in (6.67). If in addition Ω contains only finitely points we recover a version of
the primal-dual Goldfarb-Idnani method, [120]. Despite their similarity to the presented algorithm
we point out that these methods are based on the solution of the primal subproblem (6.64). By
construction yk will be infeasible for (6.64) in general. As a consequence, in contrast to the dual
subproblem, its direct numerical solution using the current primal variable yk as a starting point
is not possible.

Algorithm 11 Primal-Dual-Active-Point strategy
while Φ(uk) ≥ TOL do
1. Calculate pk = −K∗∇F (Kuk). Determine the new point x̂k ∈ arg maxx∈Ω ‖PC(pk(x))‖H .

2. Set Ak = supp |uk| ∪ { x̂k }, compute a solution uk+1 ∈ C#Ak of (PM(Ak)) . Determine
the new iterate as uk+1 = UAk(uk+1).

end while

From this perspective Algorithm 11 can be interpreted as a Primal-Dual-Active-Point method.
Following the naming convention for the Primal-Dual-Active-Set strategy (PDAS) we shall refer
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to it as PDAP in the upcoming discussions. Due to the choice of the position x̂k of the new
Dirac delta function the PDAP method can be interpreted as a particular instance of the gener-
alized conditional gradient method described in Algorithm 9. Therefore the following worst-case
convergence results hold.

Theorem 6.37. Let {uk}k∈N be generated by Algorithm 11. Then the results of Theorem 6.29
apply to {uk}k∈N with γ ∈ (0, 1) and α ∈ (0, 1/2] chosen arbitrary.

Proof. Observe that the first step in Algorithm 9 and 11 as well as the choice of the set

Ak = supp |uk| ∪ {x̂k},

coincide for both algorithms. The claim follows since ū ∈ CN is chosen as a global minimizer
of j(UAk(·)).

In the following proposition first order necessary optimality conditions for solutions ū ∈ C#A to
the coefficient optimization problem (PM(A)) are presented. To motivate the following results we
point out that the nonsmooth term G(‖u‖M) in the original problem (PM) leads to a penalization
of the vector u ∈ C#A in the coefficient optimization problem based on its l1(H) norm

‖u‖l1(H) =

#A∑
i=1

‖ui‖H .

This type of joint or group sparse regularization is known to promote sparsity on the vector of
optimal norms (‖ū1‖H , . . . , ‖ū#A‖H)>.

Proposition 6.38. Let A = {xi ∈ Ω | i = 1, . . . , N } be given and denote by ū ∈ CN an optimal
solution to (PM(A)). Set u = UA(ū) and p = −K∗∇F (Ku). Then there holds

max
x∈A
‖PC(p(x))‖H ∈ ∂G(‖u‖M), 〈p, u〉 = max

x∈A
‖PC(p(x))‖H‖u‖M.

If maxx∈A ‖PC(p(x))‖H 6= 0 this is equivalent to

max
x∈A
‖PC(p(x))‖H ∈ ∂G(‖u‖M),

as well as

ūi 6= 0⇒ ‖PC(p(xi))‖H = max
x∈A
‖PC(p(x))‖H ,

ūi
‖ūi‖H

=
PC(p(xi))

maxx∈A ‖PC(p(x))‖H
.

If F is convex these conditions are sufficient for optimality.

Proof. These statements are obtained from the results in Theorem 6.22 and Proposition 6.23. To
this end note that

M(A, H) ' (H#A, ‖ · ‖l1(H)) ' (H#A, ‖ · ‖l∞(H))
∗ ' C(A, H)∗,
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where the l∞(H) norm of u ∈ H#A is given by ‖ui‖l∞(H) = maxi=1,...,#A ‖ui‖H . The coneM(A, C)

is readily identified with C#A. Moreover the operator K can be restricted to a linear continuous
operator

K|A : M(A, H)→ Y, UA(u) 7→
#A∑
i=1

K(uiδxi),

whose adjoint operator is given by

(K|A)∗ : Y → C(A, H), [(K|A)∗y](x) = [K∗y](x),

for y ∈ Y and x ∈ A.

Similar to PDAS the PDAP method terminates if the active sets in two subsequent iterations
coincide. This is shown in the next corollary. Additionally, this implies convergence in finitely
many steps if Ω is discrete.

Corollary 6.39. Let {uk}k∈N be generated by PDAP. Assume that Ak = Ak+1 for some k > 1.
Then uk+1 ∈M(Ω,C) is a stationary point of j, i.e. Φ(uk) = 0.

Proof. Let k > 1 with Ak = Ak+1 be given. Then there holds

x̂k+1 ∈ Ak, ‖PC(pk+1(x̂k))‖H = ‖PC(pk+1)‖C = max
x∈Ak

‖PC(pk(x))‖H .

Since uk+1 = UAk(uk+1) we conclude

‖pk+1‖C ∈ ∂G(‖uk+1‖M), 〈pk+1, uk+1〉 = max
x∈Ak

‖PC(pk(x))‖H‖uk+1‖M = ‖PC(pk+1)‖C‖uk+1‖M.

from Proposition 6.38. Invoking Theorem 6.22 it follows that uk+1 fulfills the variational inequal-
ity (6.37) which implies Φ(uk) = 0.

Corollary 6.40. Assume that Ω = {xi ∈ Rd | i = 1, . . . , N } for some N ∈ N. Then there
exists k ∈ N such that Φ(uk) = 0.

Proof. Since the subproblems in step 2. of PDAP are solved up to optimality and j(uk+1) < j(uk)
if Φ(uk) > 0 we have

supp |uk+1| ∈ P(Ω) \
k⋃
i=1

{supp |uk|}.

Here P(Ω) denotes the power sets of Ω. Since Ω only contains finitely many points Algorithm 11
will thus converge after at most k = #P(Ω) steps.

We further derive the following estimates for the primal-dual gap Φ(uk).
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Lemma 6.41. Assume that the sequence {uk}k∈N is generated by Algorithm 11. Set pk =
K∗∇F (Kuk) and λk = maxx∈supp |uk| ‖PC(pk(x))‖H . Then there holds

‖uk‖M(‖PC(pk)‖C − λk) ≤ Φ(uk) ≤ ‖vk‖M(‖PC(pk)‖C − λk), (6.68)

where vk is determined according to Proposition 6.28. In particular, we have

Φ(uk) ≤M0

(
‖pk‖C − λk

)
.

Proof. By construction of vk and uk there holds

Φ(uk) = 〈−pk, uk〉+G(‖uk‖M) + 〈pk, vk〉 −G(‖vk‖M)

= −λk‖uk‖M +G(‖uk‖M) + ‖PC(pk)‖C‖vk‖M −G(‖vk‖M).

Since vk is a solution of the partially linearized problem and ‖uk‖M ≤M0 we further obtain

−‖PC(pk)‖C ‖vk‖M +G(‖vk‖M) ≤ −‖PC(pk)‖C ‖uk‖M +G(‖uk‖M),

which gives the first inequality. Using λk ∈ ∂G(‖uk‖M), see Proposition 6.38, we estimate

G(‖vk‖M) ≥ G(‖uk‖M) + λk(‖vk‖M − ‖uk‖M),

which provides the second inequality. The last inequality is a consequence of ‖vk‖M ≤M0.

Remark 6.10. Similar to the Primal-Dual-Active-Set strategy it is also possible to base the ter-
mination criterion of PDAP on the conditition that the active sets coincide in two consecutive
iterations see Corollary 6.39. However this criterion only indicates whether a given iterate is a
stationary point or not. In contrast the primal-dual gap provides a natural measure on the non-
stationarity of the iterate uk. Furthermore in the convex case it constitutes a computable upper
bound on the current residual rj(uk). Therefore we prefer to compute Φ(uk) in practice.

6.3.5 Improved convergence analysis for PDAP

This part of the thesis is devoted to an improved convergence analysis for the Primal-Dual-
Active-Point method under additional structural assumptions on the sparse minimization prob-
lem (PM). To this end we first fix some additional notation and function spaces. Associated
to the sequence {uk}k∈N of iterates generated by Algorithm 11 we consider the sequences of
states {yk}k∈N ⊂ Y , yk = Kuk, adjoint states {pk}k∈N ⊂ C(Ω,H), pk = −K∗∇F (Kuk) and dual
certificates {P k}k∈N ⊂ C(Ω), P k = ‖PC(pk)‖H . Furthermore we define λk = maxx∈supp |uk| P

k(x)

for all k ∈ N. If ū is a weak* accumulation point of {uk}k∈N we set

ȳ = Kū, p̄ = −K∗∇F (Kū), P̄ = ‖PC(p̄)‖H , λ̄ = max
x∈supp |uk|

P̄ (x).

Moreover given an open set ΩR ⊂ Ω we denote by C2(Ω̄R, H) (C2(Ω̄R)) the spaces of H-valued
(scalar-valued) two times continuously differentiable functions on ΩR whose derivatives can be
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continuously extended up to the boundary of ΩR. Analogously we define the space of Lipschitz
continuous functions on its closure as

C0,1(Ω̄R, H) =

ϕ ∈ C(Ω̄R, H) | ‖ϕ‖Lip = sup
x1,x2∈Ω̄R
x1 6=x2

‖ϕ(x1)− ϕ(x2)‖H
|x1 − x2|Rd

<∞

 ,

which is a Banach space with respect to the norm

‖ϕ‖C0,1(Ω̄R,H) = ‖ϕ‖C(Ω̄R,H) + ‖ϕ‖Lip ∀ϕ ∈ C0,1(Ω̄R, H).

Throughout this last part of the thesis we make the following additional assumptions on the smooth
part f = F ◦K of j and the set of admissible controls. We restrict the following considerations
to the special case of C = H. A discussion of the derived results in the presence of additional
constraints on the vector measures is given in Section 6.3.8.

Assumption 6.4. The functional F : Y → R∪{+∞} is strictly convex and two times continuously
Fréchet differentiable on

Ŷad := {Ku | u ∈ dom j }.

Moreover it is uniformly convex around the optimal state ȳ ∈ domF , i.e. there exists a neigh-
bourhood N(ȳ) ⊂ domF of ȳ in Y and a constant γ0 > 0 with

(∇F (y1)−∇F (y2), y1 − y2)Y ≥ γ0‖y1 − y2‖2Y ∀y1, y2 ∈ N(ȳ).

Note that the smoothness assumption on F implies Lipschitz continuity of its gradient ∇F on the
image of the sublevel set Ej(u0), see (6.53), for an arbitrary u0 ∈ dom j.

Proposition 6.42. Let u0 ∈ dom f be given. Then ∇F : domF → Y is Lipschitz continuous
on KEj(u0): there exists Lu0 > 0 with

‖∇F (y1)−∇F (y2)‖Y ≤ Lu0‖y1 − y2‖Y ∀y1, y2 ∈ KEj(u0).

Proof. Due to the weak*-to-strong continuity of K the set KEj(u0) is compact in Y . Thus the
statement follows from the continuous differentiability of ∇F .

In the following we derive improved local convergence results for Algorithm 11 provided that several
structural assumptions on the unique adjoint state p̄ ∈ C(Ω,H) as well as the dual certificate P̄ ∈
C(Ω) are fulfilled. For a better illustration of the intuition behind these additional requirements
we split them in two parts. First recall that the support points of the total variation measure |ū|
associated to a minimizer ū ∈ M(Ω,H) align themselves with global maximizers of the dual
certificate P̄ . Moreover the Radon-Nikodým derivative ū′ is completely characterized by the
adjoint state p̄, see Theorem 6.22.

Assumption 6.5. The dual certificate P̄ ∈ C(Ω) fulfills

‖P̄‖C(Ω) > 0,
{
x ∈ Ω | P̄ (x) = λ̄

}
= {x̄i}Ni=1 ⊂ intΩ.

Moreover the set

{K(p̄(x̄i)δx̄i) | i = 1, . . . , N } ⊂ Y,
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is linearly independent and there exists a radius R > 0 with

ΩR :=

N⋃
i=1

BR(x̄i) ⊂ intΩ, B̄R(x̄i) ∩ B̄R(x̄j) = ∅, i 6= j, K∗ : Y → C2(Ω̄R, H) ∩ C(Ω,H).

Remark 6.11. In view of Remark 6.8 on acceleration based on point moving steps we emphasize
that the additional regularity assumptions on K∗ are a purely analytical tool. In particular
given y ∈ Y we never have to compute derivatives of K∗y in the practical implementation of the
algorithm.

This assumption has two important implications. On the one hand the minimizer ū to (PM) is
unique and given by a finite sum of Dirac delta functions

ū =

N∑
i=1

ūiδx̄i , ūi = ‖ūi‖H
p̄(x̄i)

λ̄
, λ̄ ∈ G(‖ū‖M),

where ‖ūi‖H ∈ R+, i = 1, . . . , N , see Corollary 6.26. On the other hand this implies p̄ ∈ C2(Ω̄R, H)
and, since we have λ̄ > 0, R may be chosen small enough to ensure P̄ ∈ C2(Ω̄R), see Lemma 6.66,
and P k ∈ C2(Ω̄R) for all k ∈ N large enough following Lemma 6.68. In particular this yields

∇P̄ (x̄i) = 0, i = 1, . . . , N.

Secondly we now assume that the curvature of P̄ around its global maximizers does not degener-
ate.

Assumption 6.6. There holds supp |ū| = {x̄i}Ni=1, i.e. ‖ūi‖H > 0 for i = 1, . . . , N . Furthermore
we have

−(ζ,∇2P̄ (x̄i)ζ)Rd ≥ θ0|ζ|2Rd ∀ζ ∈ Rd,

for some θ0 > 0 and all i ∈ {1, . . . , N}.

Remark 6.12. In the context of super-resolution the conditions in this last assumption (for the
case of H = R) are referred to as non-degenerate source condition for the measure ū, see [94, 95].
Furthermore we recall the connection of sparse minimization problems to state constrained opti-
mization, cf. Example 6.9. From this point of view the equality condition on supp |uk| corresponds
to a strict complementarity assumption on the Lagrange multiplier associated to the state con-
straint. Moreover in this case the definiteness assumption on the Hessian of P̄ can be interpreted
as a condition on the curvature of the optimal state around those points in which it touches the
constraint. Both of these conditions are well-established in the field of semi-infinite optimization.
We refer e.g. to [191] where similar assumptions are used to derive finite element error estimates.
In [237] the author imposes comparable conditions to derive second order optimality conditions
for semi-infinite optimization problems.

In order to make the following presentation more transparent we state the main result of this
section beforehand. The following theorem yields improved local convergence rates for the resid-
ual rj(uk) associated to the sequence {uk}k∈N generated by the Primal-Dual-Active-Point method.
Moreover since both, the iterates uk as well as the minimizer ū, are sparse we may quantify the
convergence of {uk}k∈N through convergence rates for the support points of the iterates as well as
their coefficient functions.
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Theorem 6.43. Let the sequence {uk}k∈N be generated by Algorithm 11 started at u0. Assume
that Assumptions 6.4, 6.5 and 6.6 hold. Then {uk}k∈N is a minimizing sequence for j and there
holds

uk ⇀∗ ū, rj(u
k) ≤ c1

1 + qk
, (6.69)

for all k ∈ N and some constants c1, q > 0 which only depend on the initial residual rj(u0) and
problem dependent quantities but are otherwise independent of {uk}k∈N and ū. Moreover there
exist R1 > 0, k̄ ∈ N and ζ ∈ (0, 1) with

supp |uk| ⊂
N⋃
i=1

B̄R1(x̄i), supp |uk| ∩ B̄R1(x̄i) 6= ∅, i = 1, . . . , N,

as well as

rj(u
k) + max

i=1,...,N
max

x∈supp |uk|∩B̄R1
(x̄i)
|x− x̄i|Rd + max

i=1,...,N
‖ūi − uk(B̄R1(x̄i))‖H ≤ c2ζ

k, (6.70)

for all k ≥ k̄.

Proof. For the convergence rate in (6.69) we refer to Theorem 6.29. Moreover this yields subse-
quential weak* convergence of {uk}k∈N towards minimizers of (PM). Since the minimizer ū is
unique this implies weak* convergence of the whole sequence. The claim on the localization of the
support points will follow from Corollary 6.51. The improved convergence results of (6.70) are
found in Theorem 6.57, Proposition 6.59 and Theorem 6.64.

In the following c > 0 always denotes a constant which is independent of the iteration index k.
As an immediate consequence of Assumption 6.3 we obtain the following estimates.

Lemma 6.44. Given u1, u2 ∈M(Ω,H) with Ku1, Ku2 ∈ N(ȳ), there holds

j(u1)− j(u2) ≥ γ0‖K(u1 − u2)‖2Y − Φ(u2).

Proof. Due to Assumption 6.4 there holds

j(u1) = F (Ku1) +G(‖u1‖M)

≥ F (Ku2) + γ0‖K(u1 − u2)‖2Y + (∇F (Ku2),K(u1 − u2))Y +G(‖u1‖M)

= j(u2) + γ0‖K(u1 − u2)‖2Y − 〈∇f(u2), u2 − u1〉 −G(‖u2‖M) +G(‖u1‖M)

≥ j(u2) + γ0‖K(u1 − u2)‖2Y − Φ(u2).

Corollary 6.45. Given u ∈M(Ω,H) with Ku ∈ N(ȳ) we have

γ0‖K(u− ū)‖2Y ≤ j(u)− j(ū) = rj(u) (6.71)

Proof. By optimality of ū there holds Φ(ū) = 0. The statement now follows directly from the
previous Lemma.
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In particular the quadratic growth of j implies the following convergence rates for the states
yk = Kuk ∈ Y and adjoint states pk = K∗∇F (Kuk) ∈ C(Ω,H).

Lemma 6.46. For all k ∈ N large enough there holds

‖yk − ȳ‖Y + ‖pk − p̄‖C ≤ c
√
rj(uk).

Proof. Let us first proof the claimed estimated for the iterated states yk. Due to the weak*
convergence of {uk}k∈N towards ū and the weak*-to-strong continuity of K there holds yk ∈ N(ȳ)
for all k ∈ N large enough. Thus we have

γ0‖yk − ȳ‖2Y ≤ j(uk)− j(ū) = rj(u
k).

Taking the square root yields the first estimate. The estimates for the adjoint states can be
concluded by the same arguments since

‖pk − p̄‖C = ‖K∗(∇F (Kuk)−∇F (Kū))‖C ≤ Lu0‖K∗‖L(Y,C(Ω,H))‖yk − ȳ‖Y .

This finishes the proof.

Since the subproblems in step 2. of Algorithm 11 are solved up to optimality we conclude the
following characterization of the iterates uk.

Corollary 6.47. For all k large enough there holds uk 6= 0. Let the k-th iterate in Algorithm 11
be supported on {xki }

Nk
i=1. Then we have

〈pk, uk〉 = λk‖uk‖M, λk = max
x∈supp |uk|

P k(x) ∈ ∂G(‖uk‖M).

For all k large enough there holds λk > 0 and thus

uk =

Nk∑
i=1

uki δxki
=

1

λk

Nk∑
i=1

‖uki ‖Hpk(xki )δxki . (6.72)

Proof. We only prove the statement on the positivity of λk. The remaining claims follow from
Proposition 6.38 and supp |uk| ⊂ Ak−1. From the weak* convergence of {uk}k∈N, the strong
convergence of pk and the weak* lower semicontinuity of the norm we readily obtain

λk‖uk‖M = 〈pk, uk〉 → 〈p̄, ū〉 = λ̄‖ū‖M, ‖uk‖M ≥ ‖ū‖M/2,

for all k ∈ N large enough. This yields λk > 0 for all k large enough.

Corollary 6.48. There holds

lim
k→∞

|λ̄− ‖pk‖C |+ |λk − ‖pk‖C | = 0.
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Proof. Observe that

|λ̄− ‖pk‖C | = |‖p̄‖C − ‖pk‖C | ≤ ‖p̄− pk‖C ≤ c
√
rj(uk)→ 0,

for k going to infinity. Since ‖ū‖M > 0 there exists c > 0 such that ‖uk‖M > c for all k large
enough. We consequently obtain

0 ≤ c(‖pk‖C − λk) ≤ Φ(uk),

from Lemma 6.41. The statement now directly follows due to lim infk→0 Φ(uk) = 0.

Following Lemma 6.67 quadratic growth of the optimal dual certificate P̄ in a vicinity of its global
maximizers can be concluded based on Assumption 6.6. The next perturbation result states that
a similar behaviour also holds true for the iterated dual certificates P k.

Lemma 6.49. There exists R1 > 0 such that for all k large enough and all i ∈ { 1, . . . , N } the
function P k assumes a unique local maximum x̂ki on BR1(x̄i). Furthermore there holds

|x̂ki − x̄i|Rd ≤ c
√
rj(uk), i = 1, . . . , N. (6.73)

Additionally there exists R2 > 0 with

P k(x) +
θ0

8
|x− x̂ki |2Rd ≤ P

k(x̂ki ) ∀x ∈ B̄R2(x̂ki ), (6.74)

for all i = 1, . . . , N .

Proof. Following Lemma 6.68, R > 0 and δ > 0 may be chosen small enough such that the
mapping

F : ΩR ×Bδ(ȳ)→ Rd, (x, y) 7→ ∂

∂x
‖[K∗∇F (y)](x)‖H .

is well-defined and continuously Fréchet differentiable. Moreover, there holds

F(x̄i, ȳ) = ∇P̄ (x̄i) = 0,
∂

∂x
F(x̄i, ȳ) = ∇2P̄ (x̄i) ≥ θ0 Id, i = 1, . . . , N.

Thus we can apply the implicit function theorem to get the existence of 0 < R1 < R and 0 < δ̃ ≤ δ
such that for all y ∈ Y with ‖y − ȳ‖Y < δ̃ and each i ∈ { 1, . . . N } there exists a unique
x̂i(y) ∈ BR1(x̄i) with

F(x̂i(y), y) = 0, |x̂i(y)− x̄i|Rd ≤ c‖y − ȳ‖Y ,

for some c > 0. Note that yk = Kuk ∈ Bδ̃(ȳ) for all k large enough due to uk ⇀∗ ū. Setting
x̂ki = x̂i(y

k) and applying Lemma 6.46 we obtain

|x̂ki − x̄i|Rd ≤ c‖y − ȳ‖Y ≤ c
√
rj(uk).

Next we prove that x̂ki is a local maximum of P k. Let an arbitrary but fixed i ∈ { 1, . . . , N } be
given. Note that there holds

−∇2P k(x̂ki ) ≥
(
−‖∇2P k −∇2P̄‖C(Ω̄R,Rd×d) − ‖∇2P̄ (x̄i)−∇2P̄ (x̂ki )‖Rd×d + θ0

)
IdRd
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Due to the continuity of ∇2P̄ , the uniform convergence of P k in C2(ΩR) and (6.73) there holds

‖∇2P k −∇2P̄‖C(Ω̄R,Rd×d) + ‖∇2P̄ (x̄i)−∇2P̄ (x̂ki )‖Rd×d ≤
θ0

2
,

for all k large enough. Thus for every i, x̂ki is a strict local maximum of P k. The growth estimate
for P k in the vicinity of its maxima can be derived analogously to Lemma 6.67. This concludes
the proof.

Following these preceding results the support points of uk are located in a vicinity of the optimal
positions {x̄i}Ni=1 if k ∈ N is large enough. Moreover the new support point x̂k determined in
step 1. of Algorithm 11 is chosen from {x̂ki }Ni=1.

Corollary 6.50. There exists σ > 0 with

P̄ (x) ≤ λ̄− σ ∀x ∈ Ω\
Nd⋃
i=1

BR1(x̄i) (6.75)

and, for all k large enough, there holds

P k(x) ≤ λk − σ

2
∀x ∈ Ω\

Nd⋃
i=1

BR1(x̄i). (6.76)

Proof. By assumption the function P̄ does not achieve its maximum outside of
⋃N
i=1BR1(x̄i). The

existence of σ > 0 fulfilling (6.75) follows by a continuity argument. Let an arbitrary point x ∈
Ω\
⋃N
i=1BR1(x̄i) be given. We estimate

P k(x) ≤ P̄ (x) + ‖p̄− pk‖C ≤ λ̄− σ + ‖p̄− pk‖C ≤ λk + |λk − λ̄|+ ‖p̄− pk‖C − σ.

Choosing k large enough such that

|λk − λ̄|+ ‖p̄− pk‖C ≤
σ

2

yields (6.76) and finishes the proof.

Corollary 6.51. For all k large enough there holds

supp |uk| ⊂
N⋃
i=1

B̄R1(x̄i) supp |uk| ∩ B̄R1(x̄i) 6= ∅

for all i = 1, . . . , N . Furthermore the new support point x̂k determined in step 1. of Algorithm 11
fulfills

x̂k ∈
{
x̂ki

}N
i=1
⊂

N⋃
i=1

B̄R1(x̄i).
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Proof. Let x ∈ supp |uk| be arbitrary. Then there holds P k(x) = λk. Consequently we have
x ∈

⋃N
i=1BR1(x̄i), see (6.76). Fix now an arbitrary index i ∈ {1, . . . , N} and denote by uki the

restriction of uk to B̄R1(x̄i). Invoking Urysohn’s lemma there exists a cut-off function χi ∈ C(Ω)
with χi = 1 on B̄R1(x̄i) and χi = 0 on B̄R1(x̄j) for j 6= i. The weak* convergence of the iterates
and the strong convergence of the adjoint states yield

λk‖uki ‖M = 〈χipk, uk〉 → 〈χip̄, ū〉 = λ̄‖ui‖H > 0.

Since λk → λ̄ we conclude ‖uki ‖M = ‖|uki |‖M(Ω) 6= 0 for all k large enough. The statement on the
position of the new Dirac delta function follows directly since P k < λk outside of

⋃N
i=1 B̄R1(x̄i)

and

arg max
x∈

⋃N
i=1 B̄R1

(x̄i)

P k(x) ⊂
{
x̂ki

}n
i=1

.

In the following corollary we show, loosely speaking, that the newly added support point x̂k is
also contained in the support of uk+1.

Corollary 6.52. Denote by x̂k the new support point determined in step 1. of Algorithm 11. Then
there holds x̂k ∈ supp |uk+1| for all k ∈ N.

Proof. Since the algorithm does not converge after finitely many steps we have j(uk+1) < j(uk)
and

supp |uk+1| ⊂ supp |uk| ∪
{
x̂k
}

for all k ∈ N. Assume now that x̂k 6∈ supp |uk+1|. Then there holds suppuk+1 ⊂ suppuk

and j(uk+1) = j(uk) since the subproblems in step 2. are solved up to optimality. This gives a
contradiciton.

We obtain the following estimates for the support points of |uk|.

Lemma 6.53. Let an arbitrary index i ∈ { 1, . . . , N } be given. For all k large enough there holds

max
x∈supp |uk|∩B̄R1

(x̄i)
|x− x̄i|Rd ≤ c

(√
|λk − λ̄|+ 4

√
rj(uk)

)
. (6.77)

Furthermore for k large enough there holds suppuk ⊂
⋃Nd
i=1 B̄R2(x̂ki ) and

max
x∈supp |uk|∩B̄R1

(x̄i)
|x− x̂ki |Rd ≤ c

√
P k(x̂ki )− λk.

Proof. Given an arbitrary i ∈ {1, . . . , N} we first observe that supp |uk| ∩ B̄R1(x̄i) 6= ∅, see
Corollary 6.51. Let x ∈ supp |uk| ∩ B̄R1(x̄i). Using (6.82) we obtain

|x− x̄i|Rd ≤ c
√
λ̄− P̄ (x) ≤ c

(√
|λ̄− P k(x)|+

√
‖pk − p̄‖C

)
≤ c

(√
|λ̄− λk|+ 4

√
rj(uk)

)
,
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for some constant c > 0 independent of x. Here we used P k(x) = λk for all x ∈ supp |uk| as well
as Lemma 6.46. Taking the maximum over all x ∈ supp |uk| ∩ B̄R1(x̄i) yields the first statement.
For the second estimate we observe that for every x ∈ supp |uk| ∩ B̄R1(x̄i) there holds

|x− x̂ki |Rd ≤ |x− x̄i|Rd + |x̄i − x̂ki |Rd ≤ max
x∈supp |uk|∩B̄R2

(x̄i)
|x− x̄i|Rd +

√
rj(uk).

Due to (6.77) and λk → λ̄ we get supp |uk| ⊂
⋃N
i=1 B̄R2(x̂ki ) for all k large enough. Consequently

we obtain for all i ∈ { 1, . . . , Nd } and x ∈ supp |uk| ∩ B̄R1(x̄i) that there holds

|x− x̂ki |Rd ≤ c
√
P k(x̂ki )− λk

using (6.74). Since the constant c > 0 is again independent of x we finish the proof by maximizing
on both sides.

With these auxiliary estimates at hand we now proceed to improve on the sublinear convergence
rate for the residual rj(uk). To this end fix an arbitrary index k ∈ N large enough such that all
previous results hold and recall the definition of the intermediated iterate uk+1/2 in the generalized
conditional gradient method, see Algorithm 9,

uk+1/2
s = uk + s∆k

1, ∆k
1 = vk − uk, vk = ‖vk‖M

pk(x̂k)

‖pk‖C
δx̂k

for an appropriate choice of the stepsize s ∈ [0, 1] and ‖vk‖M chosen according to (6.49). Obviously
we have j(uk+1) ≤ j(u

k+1/2
s ) for all s ∈ [0, 1]. In fact this observation for the intermediate

iterates uk+1/2
s remains true if we allow for more general descent directions ∆k:

j(uk+1) ≤ j(uk+1/2
s ), uk+1/2

s = uk + s∆k, supp |∆k| ⊂ supp |uk| ∪ {x̂k}, s ∈ [0, 1],

since the subproblems in the PDAP method are solved up to optimality.

In the following we will construct a descent direction ∆k and a stepsize sk such that the resid-
uals rj(u

k+1/2

sk
), uk+1/2

sk
= uk + sk∆k, converge linearly for all k ∈ N large enough. From Corol-

lary 6.51 we conclude the existence of an index ı̂ ∈ {1, . . . , N} with x̂k = x̂kı̂ ∈ B̄R1(x̄ı̂). Define
the locally lumped measure ûkı̂ ∈M(Ω,H) by

ûkı̂ = uk|B̄cR1
(x̄ı̂)

+ ‖uk|B̄R1
(x̄ı̂)
‖M

pk(x̂k)

‖pk‖C
δx̂k ,

where B̄c
R1

(x̄ı̂) = Ω \ B̄R1(x̄ı̂). The following statements establish the weak* convergence of ûkı̂
towards ū.

Proposition 6.54. For all k ∈ N large enough there holds

G(‖ûkı̂ ‖M) = G(‖uk‖M), 〈pk, ûkı̂ − uk〉 = ‖uk|BR1
(x̄ı̂)
‖M(‖pk‖C − λk).

Proof. Since the sets B̄R1(x̄i) are disjoint we note that

‖uk‖M =
N∑
i=1

‖uk|B̄R1
(x̄i)
‖M =

∑
i∈{ 1,...,N }\{ ı̂ }

‖uk|B̄R1
(x̄i)
‖M + ‖uk|B̄R1

(x̄ı̂)
‖M

= ‖uk|B̄cR1
(x̄ı̂)
‖M + ‖uk|B̄R1

(x̄ı̂)
‖M = ‖ûkı̂ ‖M,
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and consequently G(‖ûkı̂ ‖M) = G(‖uk‖M). Furthermore by construction there holds

〈pk, ûkı̂ − uk〉 = ‖uk|B̄R1
(x̄ı̂)
‖M‖pk‖C − ‖uk|B̄R1

(x̄ı̂)
‖Mλk

= ‖uk|B̄R1
(x̄ı̂)
‖M(‖pk‖C − λk),

yielding the result.

Lemma 6.55. For k large enough there holds

‖K(ûkı̂ − uk)‖Y ≤ c‖uk|BR1
(x̄ı̂)
‖M
√
‖pk‖C − λk.

Proof. Let an arbitrary x ∈ suppuk∩B̄R1(x̄ı̂) be given and denote by u ∈ H, u 6= 0 the coefficient
of the associated Dirac delta function. Given ϕ ∈ Y there holds(
K

(
pk(x̂k)

‖pk‖C
δx̂k −

u

‖u‖H
δx

)
, ϕ

)
Y

=

〈
K∗ϕ,

pk(x̂k)

‖pk‖C
δx̂k −

pk(x)

λk
δx

〉
=

(
[K∗ϕ] (x̂k),

pk(x̂k)

‖pk‖C

)
H

−
(

[K∗ϕ] (x),
pk(x)

λk

)
H

≤ ‖K∗ϕ‖C0,1(Ω̄R,H)|x̂k − x|Rd + ‖K∗ϕ‖C
∥∥∥∥pk(x̂k)‖pk‖C

− pk(x)

λk

∥∥∥∥
H

.

Using the properties of K∗ and Lemma 6.53 the first term is estimated by

‖K∗ϕ‖C0,1(Ω̄R,H)|x̂k − x|Rd ≤ c‖ϕ‖Y
√
‖pk‖C − λk,

with a constant c > 0 independent of x. For the second term we use ‖pk(x̂k)‖H = ‖pk‖C to
estimate ∥∥∥∥pk(x̂k)‖pk‖C

− pk(x)

λk

∥∥∥∥
H

≤
∣∣∣∣ 1

‖pk‖C
− 1

λk

∣∣∣∣ ‖pk(x̂k)‖H +
1

λk
‖pk(x̂k)− pk(x)‖H

=
‖pk‖C − λk

λk
+

1

λk
‖pk(x̂k)− pk(x)‖H

≤ 1

λk

[
(‖pk‖C − λk) + ‖pk‖C0,1(Ω̄R,H)|x̂k − x|Rd

]
≤ 1

λk

[√
‖pk‖C − λk + c

]√
‖pk‖C − λk,

with c as before. Here we used ‖pk(x̂k)‖H = ‖pk‖C as well as λk ≤ ‖pk‖C in the first equality Since
λk → λ̄ > 0 and ‖pk‖C0,1(Ω̄R,H) → ‖p̄‖C0,1(Ω̄R,H) > 0 there holds for sufficiently large k that(

K

(
pk(x̂k)

‖pk‖C
δx̂k −

u

‖u‖H
δx

)
, ϕ

)
Y

≤ c
√
‖pk‖C − λk‖ϕ‖Y ,

and consequently ∥∥∥∥K (pk(x̂k)‖pk‖C
δx̂k −

u

‖u‖H
δx

)∥∥∥∥
Y

≤ c
√
‖pk‖C − λk.
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Using ‖uk|B̄R1
(x̄ı̂)
‖M =

∑
xki ∈supp |uk|∩B̄R1

(x̄ı̂)
‖ui‖H , we rewrite

K(ûkı̂ − uk) =
∑

xki ∈supp |uk|∩B̄R1
(x̄ı̂)

‖ui‖HK
(
pk(x̂k)

‖pk‖C
δx̂k −

ui
‖ui‖H

δxki

)
.

Applying the estimate for all xki ∈ supp |uk| ∩ B̄R1(x̄ı̂) we arrive at

‖K(ûkı̂ − uk)‖Y ≤ c‖uk|BR1
(x̄ı̂)
‖M
√
‖pk‖C − λk,

completing the proof.

Corollary 6.56. There holds

ûkı̂ ⇀
∗ ū, j(ûkı̂ )→ j(ū).

Proof. We readily obtain

0 ≤ j(ûkı̂ )− j(ū) ≤ |j(uk)− j(ū)|+ |F (Kûkı̂ )− F (Kuk)|.

The first term tends to 0 since {uk}k∈N is a minimizing sequence for j and the second vanishes
due to Lemma 6.55. Thus ûkı̂ gives a minimizing sequence for j. Since ū is the unique minimizer
of j the claim on the weak* convergence follows.

Finally, we show that ∆k = ûkı̂ −uk yields a search direction that achieves a linear decrease in the
objective functional.

Theorem 6.57. There exists an index k̄ ∈ N, a constant ck̄ > 0 and ζ1 ∈ (0, 1) with

rj(u
k) ≤ ck̄ζk1 ∀k ≥ k̄.

Proof. For s ∈ [0, 1] define

uks = uk + s(ûkı̂ − uk) = (1− s)uk + sûkı̂ .

Since j(ûkı̂ )→ j(ū) we conclude uks ∈ Ej(u0) for all s and all k large enough. Let in the following
k be big enough. Along the lines of proof in Lemma 6.12 it follows that

j(uks) = F (Kuks) +G(‖uks‖M)

≤ F (Kuk) + s(∇F (Kuk),K(ûkı̂ − uk))Y +
s2Lu0

2
‖K(ûkı̂ − uk)‖2Y +G(‖uks‖M)

≤ j(uk) + s
[
〈−pk, ûkı̂ − uk〉+G(‖ûkı̂ ‖M)−G(‖uk‖M)

]
+
s2Lu0

2
‖K(ûkı̂ − uk)‖2Y ,

where Lu0 denotes the Lipschitz constant of ∇F on KEj(u
0). Now, by Proposition 6.54 and

Lemma 6.55, we derive the estimate

j(uks) ≤ j(uk)− s‖uk|B̄R1
(x̄ı̂)
‖
(
‖pk‖C − λk

)
+
s2c1

2
‖uk|B̄R1

(x̄ı̂)
‖2
(
‖pk‖C − λk

)
.
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Minimizing for s ∈ [0, 1], we obtain

j(ukŝk) ≤ j(uk)− 1

2
min

{
‖uk|B̄R1

(x̄ı̂)
‖, 1/c1

}(
‖pk‖C − λk

)
,

where ŝk = min{ 1, 1/(c1‖uk|B̄R1
(x̄ı̂)
‖) } and c1 > 0 is the square of the constant from Lemma 6.55.

Defining the constant c2 > 0 by

c2 = (1/(2M0)) min
i=1,...,N

min{ ‖ū|B̄R1
(x̄i)
‖, 1/c1 } < 1/2,

we have with Lemma 6.41 that

j(ukŝ) ≤ j(uk)− c2M0

(
‖pk‖C − λk

)
≤ j(uk)− c2Φ(uk) ≤ j(uk)− c2rj(u

k).

Subtracting j(ū) from both sides, it follows

rj(u
k+1) ≤ rj(ukŝk) ≤ (1− c2)rj(u

k).

Denote by k̄ ∈ N an arbitrary but fixed index such that all previous results hold for all k greater
than k̄. By induction we get

rj(u
k) ≤ (1− c2)k−k̄rj(u

k̄).

Setting ζ1 = (1− c2) and ck̄ = r(uk̄)/ζ k̄1 yields the result.

To close this section we elaborate on the geometric intuition behind the construction of the new
search direction ∆k

2 = ûkı̂ − uk and the differences to the GCG direction ∆k
1 = vk − uk. We

consider the special case of G(‖u‖M) = β‖u‖M for β > 0. A schematic comparison between both
is given in Figure 6.1. Let us recall that by Corollary 6.51 the support of uk can be divided into N
nonempty and disjoint clusters around the optimal positions {x̄i}Ni=1 for k large enough. First we
consider the intermediate iterate uk+1/2

s given by ∆k
1. This yields

uk+1/2
s = uk + s∆k

1 = (1− s)uk + svk = (1− s)uk + sM0
pk(x̂k)

‖pk‖C
δx̂k .

Thus the GCG search direction adds a single point source in one of the clusters but, by forming the
convex combination, the values of uk are changed globally. Additionally it is readily verified that
every weak* accumulation point v̄ of {vk}k∈N is given by v̄ = M0p̄(x̄i)/λ̄δx̄i for some i = 1, . . . , N .
In particular for every sequence of stepsizes {sk}k∈N we necessarily have

uk+1
sk

= (1− sk)uk + skvk ⇀∗ ū⇒ sk → 0.

as k → ∞ if ū consists of more than one Dirac delta function. This results in the sublinear
convergence of the residual. In contrast, choosing ∆k

2 gives

uk+1/2
s = uk + s∆k

2 = (1− s)uk + sûkı̂

= uk|B̄cR1
(x̄ı̂)

+ uk|B̄R1
(x̄ı̂)

+ s

(
‖uk|B̄R1

(x̄ı̂)
‖M

pk(x̂k)

‖pk‖C
δx̂k − uk|B̄R1

(x̄ı̂)

)
.

Here we still add a single Dirac delta function to one of the clusters. However, in contrast to
the GCG search direction, the norm of its coefficient is determined by moving mass from the
neighbouring Dirac delta functions in the same cluster to the new one. The values of uk on the
remaining clusters remain unchanged. Moreover note that if s = 1 the new search direction replaces
all Dirac delta functions in the cluster by the new one. Differently from the sequence {vk}k∈N, the
locally lumped measures ûkı̂ weak* converge to the minimizer ū. This allows to choose a sequence
of stepsizes {ŝk}k∈N which is uniformly bounded from below and thus yields the improved linear
convergence rate for the residual.
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uk

P k

x̂k

−ckδx̂k

uk|BR(x̂k)

P k

x̂k

−ckδx̂k

Figure 6.1: Comparison between the GCG descent direction, ck = M0, (left) and the locally
lumped descent direction, ck = ‖uk|BR(x̂k)‖M, (right) for G(‖ · ‖M) = β‖ · ‖M.

6.3.6 Convergence rates for the iterates

This section is devoted to quantitative convergence results for the sequence of iterates {uk}k∈N.
While norm convergence towards the minimizer cannot be expected in general the weak* conver-
gence of the iterates implies convergence of the support points of uk towards those of ū as well as
convergence of the coefficient functions.

Rates for the support points

We first provide an estimate for the difference between the maximum value of P̄ and λk.

Lemma 6.58. For all k large enough there exists c > 0 with

|λ̄− λk| ≤ c
√
rj(uk−1).

Proof. If we choose k large enough there exists x̃k ∈ supp |uk| and an index ı̂k with

x̃k ∈ arg max
x∈Ω

P k−1(x), |x̃k − x̄ı̂k |Rd ≤ c
√
rj(uk−1),

for some c > 0, see Corollary 6.52 and Lemma 6.49. Consequently we have

|λ̄− λk| = |P̄ (x̄ı̂k)− P k(x̃k)| ≤ |P̄ (x̄ı̂k)− P̄ (x̃k)|+ ‖p̄− pk‖C

≤ c
(
‖p̄‖C0,1(ΩR,H)|x̄ı̂k − x̃

k|Rd +
√
rj(uk)

)
≤ c
√
rj(uk−1),

due to the monotonicity of rj(uk) and Lemma 6.46.
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Putting everything together we obtain the following convergence results for the support points of
the iterate uk.

Proposition 6.59. There exists a constant c > 0 with

max
i=1,...,N

max
x∈supp |uk|∩B̄R1

(x̄i)
|x− x̄i|Rd ≤ cζk2 , (6.78)

for some 0 < ζ2 < 1 and for all k large enough.

Proof. From Lemma 6.53 we get

max
i=1,...,N

max
x∈supp |uk|∩B̄R1

(x̄i)
|x− x̄i|Rd ≤ c

(√
|λk − λ̄|+ 4

√
rj(uk)

)
.

Due to the monotonicity of rj(uk), Lemma 6.57 and 6.58 there exists 0 < ζ1 < 1 with√
|λk − λ̄|+ 4

√
rj(uk) ≤ c 4

√
rj(uk−1) ≤ cζ

k
4
1 . (6.79)

By setting ζ2 = 4
√
ζ1 we conclude (6.78).

Rates for the coefficients

Let k be large enough such that all previous results hold. For i ∈ {1, . . . , N} denote by uki the
restriction of uk to B̄R1(x̄i). Due to the optimality conditions for ū and uk respectively we get

ū =
1

λ̄

N∑
i=1

‖ūi‖H p̄(x̄i)δx̄i , uki =
1

λk

∑
xi∈supp |uk|∩B̄R1

(x̄i)

|uk|({xi})pk(xi)δxi .

Recall that the iterates {uk}k∈N only converge with respect to the weak* topology onM(Ω,H).
Therefore a single Dirac delta function in the optimal solution ū is in general approximated by
several spikes in the iterate uk, i.e. # supp |uki | > 1 for i = 1, . . . , N . In particular this implies
that the optimal coefficient function ūi of the Dirac delta at x̄i should be approximated by

uk(B̄R1) =
1

λk

∑
xi∈supp |uk|∩B̄R1

(x̄i)

|uk|({xi})pk(xi).

The aim of this section is to provide a quantitative confirmation of this intuition. In detail we will
prove

max
i=1,...,N

‖ūi − uk(B̄R1(x̄i))‖H + max
i=1,...,N

|‖ūi‖H − |uk|(B̄R1(x̄i))| ≤ cζk2 ,

with ζ2 ∈ (0, 1) as in the previous section. In the following the generic constant c > 0 may depend
on the number of Dirac delta functions N in the minimizer ū. We start by providing several
auxiliary results.

Lemma 6.60. Let x in supp |uk| ∩ B̄R1(x̄i) be given. Then there holds∥∥∥∥ p̄(x̄i)λ̄
− pk(x)

λk

∥∥∥∥
H

≤ cζk2 ,

for some constant c > 0 independent of i and x.
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Proof. We split the error into parts∥∥∥∥ p̄(x̄i)λ̄
− pk(x)

λk

∥∥∥∥
H

≤
∥∥∥∥ p̄(x̄i)λ̄

− p̄(x̄i)

λk

∥∥∥∥
H

+

∥∥∥∥ p̄(x̄i)λk
− p̄(x)

λk

∥∥∥∥
H

+

∥∥∥∥ p̄(x)

λk
− pk(x)

λk

∥∥∥∥
H

.

For the first term we use Lemma 6.58 to obtain∥∥∥∥ p̄(x̄i)λ̄
− p̄(x̄i)

λk

∥∥∥∥
H

≤ ‖p̄‖C
|λ̄− λk|
λ̄λk

≤ cζk2 ,

due to (6.79) and since λkλ̄ is bounded away from zero. From the Lipschitz continuity of p̄ and
the uniform convergence of pk the remaining terms are estimated by∥∥∥∥ p̄(x̄i)λk

− p̄(x)

λk

∥∥∥∥
H

+

∥∥∥∥ p̄(x)

λk
− pk(x)

λk

∥∥∥∥
H

≤ c

λk

(
|x̄i − x|Rd + ‖p̄− pk‖C

)
.

Using (6.78) and ‖p̄− pk‖C ≤ 4
√
r(uk−1) for all k large enough we obtain

|x̄i − x|Rd + ‖p̄− pk‖C ≤ cζk2 ,

independent of x, see again (6.79). Adding both estimates yields the proof.

First we provide the convergence rate for the norms of the localized measures uki , i = 1, . . . , N .
Therefore define the auxiliary operator

K̂ : RN → Y v 7→ 1

λ̄

N∑
i=1

viK(p̄(x̄i)δx̄i). (6.80)

Due to the linear independence assumption in Assumption 6.4 the operator K̂ is injective. Thus
the matrix K̂∗K̂ ∈ RN×N is invertible. We arrive at the following corollary.

Corollary 6.61. For v1, v2 ∈ RN there exists c > 0 with

|v1 − v2|RN ≤ c‖K̂(v1 − v2)‖Y .

Proof. There holds

|v1 − v2|RN ≤ ‖(K̂∗K̂)−1‖RN×N ‖K̂∗K̂(v1 − v2)‖RN
≤ ‖(K̂∗K̂)−1‖RN×N ‖K̂∗‖L(Y,RN )‖K̂(v1 − v2)‖Y .

Lemma 6.62. Let an arbitrary but fixed index i ∈ {1, . . . , N} be given. Then there exists c > 0,
independent of i with ∥∥∥∥K (‖uki ‖M p̄(x̄i)

λ̄
δx̄i − uki

)∥∥∥∥
Y

≤ cζk2 ,

for all k large enough.
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Proof. The proof follows similar steps as in Lemma 6.55. Let x ∈ supp |uk| ∩ B̄R1(x̄i) with
coefficient function u ∈ H, u 6= 0 be given. For ϕ ∈ Y we obtain(

K

(
p̄(x̄i)

λ̄
δx̄i −

u

‖u‖H
δx

)
, ϕ

)
Y

=

〈
K∗ϕ,

p̄(x̄i)

λ̄
δx̄i −

pk(x)

λk
δx

〉
=

(
[K∗ϕ] (x̄i),

p̄(x̄i)

λ̄

)
−
(

[K∗ϕ] (x),
pk(x)

λk

)
H

≤ ‖K∗ϕ‖C0,1(Ω̄R,H)|x̄i − x|Rd + ‖K∗ϕ‖C
∥∥∥∥pk(x̄i)λ̄

− pk(x)

λk

∥∥∥∥
H

≤ c‖ϕ‖Y ζk2 ,

for some constant c > 0 independent of x and i, see Proposition 6.59 and Lemma 6.62. Thus we
conclude ∥∥∥∥K ( p̄(x̄i)λ̄

δx̄i −
u

‖u‖H
δx

)∥∥∥∥
Y

≤ cζk2 .

By observing that ‖uki ‖M =
∑

xj∈supp |uk|∩B̄R1
(x̄j)
‖uj‖H there holds∥∥∥∥K (‖uki ‖M p̄(x̄i)

λ̄
δx̄i − uki

)∥∥∥∥
Y

≤
∑

xj∈supp |uk|∩B̄R1
(x̄i)

‖uj‖H
∥∥∥∥K ( p̄(x̄i)λ̄

δx̄i −
uj
‖uj‖H

δxj

)∥∥∥∥
Y

≤ c‖uki ‖Mζk2 ≤ cM0ζ
k
2

The following proposition characterizes the convergence behavior of |uk|(B̄R1(x̄i)) = ‖uki ‖M.

Proposition 6.63. There exists a constant c > 0 with

max
i=1,...,N

|‖ūi‖H − ‖uki ‖M| ≤ cζk2 ,

for all k large enough.

Proof. Define the vectors v̄, vk ∈ RN with v̄i = ‖ūi‖M and vki = |uk|(B̄R1(x̄i)) = ‖uki ‖M. Using
Corollary 6.61 we obtain

max
i=1,...,N

|‖ūi‖H − ‖uki ‖M| ≤ |v̄ − vk| ≤ c
∥∥∥K̂ (v̄ − vk)∥∥∥

Y
.

We further estimate∥∥∥K̂ (v̄ − vk)∥∥∥
Y
≤
∥∥∥K (ū− uk)∥∥∥

Y
+

N∑
i=1

∥∥∥∥K (‖uki ‖M ūi
‖ūi‖H

δx̄i − uki
)∥∥∥∥

Y

.

For the first term we get ∥∥∥K (ū− uk)∥∥∥
Y
≤
√
r(uk) ≤ cζk2 ,

for all k large enough, see Lemma 6.46. Due to Lemma 6.62 we conclude
N∑
i=1

∥∥∥∥K (‖uki ‖M ūi
‖ūi‖H

δx̄i − uk
)∥∥∥∥

Y

=
N∑
i=1

∥∥∥∥K (‖uki ‖M p̄(x̄i)

λ̄
δx̄i − uki

)∥∥∥∥
Y

≤ cNζk2 .
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Summarizing all previous estimates we arrive at the following theorem.

Theorem 6.64. There exists a constant c > 0 with

max
i=1,...,N

∥∥∥ūi − uk(B̄R1(x̄i))
∥∥∥
H
≤ cζk2 ,

for all k large enough,

Proof. Let an arbitrary but fixed index i ∈ {1, . . . , N} be given. By decomposing the norm
as ‖uki ‖M =

∑
xj∈supp |uk|∩B̄R1

(x̄j)
‖uj‖H and using Lemma 6.60 as well as Proposition 6.63 we get

∥∥∥ūi − uk(B̄R1(x̄i))
∥∥∥
H

=

∥∥∥∥∥
∫
B̄R1

(x̄i)

p̄(x̄i)

λ̄
d|ū|(x)−

∫
B̄R1

(x̄i)

pk(x)

λk
d|uk|(x)

∥∥∥∥∥
H

≤ ||ū|(B̄R1(x̄i))− |uk|(B̄R1(x̄i))|+

∥∥∥∥∥
∫
B̄R1

(x̄i)

[
p̄(x̄i)

λ̄
− pk(x)

λk

]
d|uk|(x)

∥∥∥∥∥
H

≤ |‖ūi‖H − ‖uki ‖M|+
∑

xj∈supp |uk|∩B̄R1
(x̄i)

‖uj‖H
∥∥∥∥ p̄(x̄i)λ̄

− pk(xj)

λk

∥∥∥∥
H

≤ cM0ζ
k
2 ,

with a constant c > 0 independent of i. Maximizing with respect to i = 1, . . . , N on both sides of
the inequality finishes the proof.

Convergence rates in weaker norms

As already pointed out the norm convergence of {uk}k∈N towards the unique minimizer ū inM(Ω,H)
cannot be expected in general. However norm convergence results can still be obtained by resort-
ing to weaker spaces. In particular since the space of Lipschitz continuous functions embeds
compactly into C(Ω,H) weak* convergence onM(Ω,H) implies strong convergence with respect
to the canonical norm on the topological dual space of C0,1(Ω,H). To this end we note that

‖u‖C0,1(Ω,H)∗ = sup
‖ϕ‖C0,1(Ω,H)≤1

〈ϕ, u〉,

for all u ∈ M(Ω,H). The results of the following theorem give a quantitative description of this
observation.

Theorem 6.65. There exists a constant c > 0 with

‖uk − ū‖C0,1(Ω,H)∗ ≤ cζk2 , (6.81)

for all k large enough.

Proof. Let ϕ ∈ C0,1(Ω,H), ‖ϕ‖C0,1(Ω,H) ≤ 1 be given. We estimate

|〈ϕ, uk − ū〉| ≤
N∑
i=1

∣∣∣∣∣
∫
B̄R1

(x̄i)
ϕ dū(x)−

∫
B̄R1

(x̄i)
ϕ duk(x)

∣∣∣∣∣ .
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Fix an arbitrary index i ∈ {1, . . . , N} and split the error on the right hand side of the last inequality
as∣∣∣∣∣
∫
B̄R1

(x̄i)
ϕ dū(x) −

∫
B̄R1

(x̄i)
ϕ duk(x)

∣∣∣∣∣
= |(ϕ(x̄i), ūi − uk(B̄R1(x̄i)))H |+

∣∣∣∣∣(ϕ(x̄i), u
k(B̄R1(x̄i)))H −

∫
B̄R1

(x̄i)
ϕ duk(x)

∣∣∣∣∣ .
The first term is bounded by

|(ϕ(x̄i), ūi − uk(B̄R1(x̄i)))H | ≤ ‖ϕ(x̄i)‖H‖ūi − uk(B̄R1(x̄i))‖H ≤ c‖ϕ‖C0,1(Ω,H)ζ
k
2

for some constant c > 0 independent of i following Theorem 6.64. For the second term we use the
Lipschitz continuity of ϕ to obtain∣∣∣∣∣(ϕ(x̄i), u

k(B̄R1(x̄i)))H −
∫
B̄R1

(x̄i)
ϕ duk(x)

∣∣∣∣∣ ≤ ‖ϕ‖Lip max
x∈supp |uk|∩B̄R1

(x̄i)
|x− x̄i|Rd‖uki ‖M ≤ cζk2 ,

from the convergence results on the support points in Proposition 6.59. Again, the constant c > 0
can be chosen independent of the index i. Combining all previous observations we conclude

|〈ϕ, uk − ū〉| ≤ cζk2 ,

for some constant c > 0 independent of ϕ. Taking the supremum overall Lipschitz continuous
functions ϕ ∈ C0,1(Ω,H), ‖ϕ‖C0,1(Ω,H) ≤ 1, on both sides of the inequality yields the claimed
statement.

Remark 6.13. We point out that, in contrast to the picturesque convergence statements for the
support points and the coefficient functions, the results of the last theorem are of pure academic
interest since the dual norm cannot be evaluated in general. In the case of positive measures how-
ever the same convergence rate holds true for the distance between the iterates and the minimizer
with respect to a modified version of the well-known Wasserstein 1 metric see also the discussion
in Section 4.4. In particular this quantity constitutes a computable upper bound on the dual norm
in (6.81). While an extension of this concept to signed scalar-valued measures follows immediately
we are not aware of a similar concept for the case of general vector measures.

Multiple point insertion

To close on the discussions of this section we emphasize that all of the presented results remain
valid for more general choices of the active set Ak provided that

supp |uk| ∪ {x̂k} ⊂ Ak, #Ak <∞,

for all k ∈ N. To this end recall that under the stated assumptions and for all k ∈ N large
enough, the new Dirac delta position x̂k in Algorithm 11 is taken from a finite set {x̂ki }Ni=1 where
each point x̂ki ∈ BR1(x̄i) is given by the unique local minimizer of P k in a vicinity of the optimal
point x̄i. Points outside of these neighborhoods should be not considered as new positions since P k

is strictly smaller than λk on Ω \
⋃N
i=1BR1(x̄i).
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If k ∈ N is sufficiently large these considerations suggest to update the active set as

Ak = supp |uk| ∪
{
x ∈ Ω | x ∈ {x̂ki }Ni=1, P k(x) ≥ λk

}
.

Thus instead of only adding one global maximizer of the dual certificate to the active set we now
put in all points corresponding to sufficiently large local maxima of P k. Due to the localization of
supp |uk| around the optimal positions this can also be interpreted as adding up to one new Dirac
delta function to each cluster in the current iterate. Intuitively this new update rule should lower
the number of iterations to reduce the residual below a given threshold and improve the scalability
of the method with respect to the support size of the minimizer ū. This intuition is backed up by
the following formal reasoning. Let the active set be updated by adding the global minimizer x̂k

in each iteration. Assume that supp |ū| ∩ supp |uk| = ∅ for all k ∈ N i.e. none of the optimal
positions is contained in any of the iterated supports. Fix an arbitrary index i = 1, . . . , N . By
assumption there holds

min
x∈supp |uk|∩B̄R1

(x̄i)
|x− x̄i| > 0, k ∈ N, max

x∈supp |uk|∩B̄R1
(x̄i)
|x− x̄i| → 0.

As the movement of Dirac delta functions in uk is not possible this means that at some point a
new Dirac delta function will be inserted in the vicinity of x̄i. Since the index i was arbitrary
and only a single point is inserted we conclude that the PDAP method eventually visits each of
the N Dirac delta clusters in a separate iteration. The new definition of the active set now aims to
mitigate this cycling behavior of the point insertion step by inserting new points simultaneously
in all clusters. In this context we also recall that a point insertion step is always connected to one
solution of (P(Ak)). From this perspective we may also reduce the overall number of necessary
solves for the coefficient optimization problems by inserting multiple points.

However these considerations are far from being conclusive and we have not been able to provide
additional improved convergence results for this choice of Ak. Moreover note that these observa-
tions are of limited practical use since all arguments are only valid in the asymptotic regime i.e.
for all k ∈ N large enough and if the structural assumptions from the beginning of this section
hold. In the numerical implementation of multiple point insertion strategies for the Primal-Dual-
Active-Point method we resort to a heuristic procedure based on adding several local minimizers
to the active set in each iteration. For a more detailed discussion we refer to Section 5.3.2.

6.3.7 Auxiliary results

In this section we summarize some technical auxiliary results that we needed in this section but
were postponed until now to avoid distraction.

Lemma 6.66. Assume that Assumption 6.5 holds. Let p̄ = K∗∇F (Kū) ∈ C(Ω,H) be given.
Define the function

P̄ : Ω → R+ x 7→ ‖p̄(x)‖H .

Then R > 0 may be chosen small enough such that P̄ ∈ C2(Ω̄R).

Proof. By Assumption 6.5 we have p̄ ∈ C2(Ω̄R, H) and P̄ (x̄i) = ‖p̄(x̄i)‖H = λ̄ > 0, i = 1, . . . , N .
In the following we denote by ∂xi p̄, ∂xixj p̄ ∈ C(Ω̄R, H), i, j ∈ {1, . . . , d}, the first and second order

308



6.3 The Primal-Dual-Active-Point method

partial derivatives of p̄. Note that P̄ ∈ C(Ω) due to the continuity of p̄. By continuity we may
assume that R > 0 is chosen small enough such that P̄ (x) > λ̄/2 for all x ∈

⋃N
i=1 B̄R(x̄i). Using

the chain rule we conclude that P̄ is two times continuously differentiable in each x ∈
⋃N
i=1BR(x̄i)

with

∇P̄ (x)i =
(p̄(x), ∂xi p̄(x))H

P̄ (x)

∇2P̄ (x)ij =

(
∂xj p̄(x), ∂xi p̄(x)

)
H

+
(
p̄(x), ∂xixj p̄(x)

)
H

P̄ (x)
−

(p̄(x), ∂xi p̄(x))H
(
p̄(x), ∂xj p̄(x)

)
H

P̄ (x)2

for all i, j ∈ {1, . . . , d}. Obviously these derivatives can be continuously extended up to the
boundary yielding P̄ ∈ C2(Ω̄R).

Lemma 6.67. There exists R1 > 0 such that for all i ∈ {1, . . . , N} the quadratic growth condition

P̄ (x) +
θ0

4
|x− x̄i|2 ≤ P̄ (x̄i) ∀x ∈ B̄R1(x̄i) (6.82)

is satisfied.

Proof. Let an arbitrary but fixed i ∈ {1, . . . , N} be given. By Taylor expansion we obtain for
x ∈ B̄R(x̄i),

P̄ (x) = P̄ (x̄i) +
(
∇P̄ (x̄i), x− x̄i

)
Rd +

1

2

(
x− x̄i,∇2P̄ (xζ)(x− x̄i)

)
Rd

where xζ = (1 − ζ)x + ζx̄i ∈ ΩR for some ζ ∈ (0, 1). Note that ∇P̄ (x̄i) = 0 by Assumption 6.6.
Using the coercivity of ∇2P̄ (x̄i) the second order term is estimated by

(x− x̄i,∇2P̄ (xζ)(x− x̄i))Rd
≤
(
x− x̄i,∇2P̄ (x̄i)(x− x̄i)

)
Rd +

(
x− x̄i,∇2P̄ (xζ)−∇2P̄ (x̄i)(x− x̄i)

)
Rd

≤
(
‖∇2P̄ (xζ)−∇2P̄ (x̄i)‖Rd×d − θ0

)
|x− x̄i|2

Since ∇2P̄ is uniformly continuous on Ω̄R there exists R1 ≤ R, independent of i ∈ { 1, . . . , Nd }
such that

|x− x̄i|Rd ≤ R1 ⇒ ‖∇2P̄ (x)−∇2P̄ (x̄i)‖Rd×d ≤
θ0

2
.

Consequently, for every x ∈ B̄R1(x̄i) we obtain

P̄ (x) ≤ P̄ (x̄i)−
θ0

4
|x− x̄i|2Rd ,

proving (6.82) since i was arbitrary.

Lemma 6.68. Define the mapping

P : domF → C(Ω) y 7→ ‖[K∗∇F (Ky)](·)‖H
Furthermore let ȳ = Kū. Then there exists δ > 0 such that P ∈ C1(Bδ(ȳ), C2(Ω̄R)). In particular
the mapping

F : ΩR ×Bδ(ȳ)→ Rd, (x, y) 7→ ∂

∂x
‖[K∗∇F (y)](x)‖H , (6.83)

is continuously Fréchet differentiable.

309



6 Algorithmic framework

Proof. Due to the continuity of K∗, ∇F and the norm there exists δ > 0 such that

[P (y)](x) >
λ̄

4
∀x ∈

Nd⋃
i=1

B̄R(x̄i)

for all y with ‖y−ȳ‖Y ≤ δ. Arguing as in Lemma 6.66 we conclude P (y) ∈ C2(ΩR). As for P̄ we can
derive formulas for the gradient [∇P (y)] and the Hessian [∇2P (y)] which depend differentiable on y
since F is two times continuously Fréchet differentiable and K∗ maps continuously into C2(Ω̄R).
In particular we obtain

∇[P (y)](x)i = F(x, y)i =

(
[K∗∇F (y)](x), ∂

∂xi
[K∗∇F (y)](x)

)
H

P (x, y)
i = 1, . . . , d.

Thus the partial derivatives of F with respect to x and y exist on ΩR×Bδ(ȳ) and are continuous.
Continuous Fréchet differentiability of the mapping in (6.83) now follows from Proposition 3.2.18
and Remark 3.2.19 in [89].

Lemma 6.69. Let a compact set Ω ⊂ Rd be given and assume that K∗ : Y 7→ C0,1(Ω,H) is linearly
and continuous. Let u1,u2 ∈ H, x1, x2 ∈ Ω be given. Then there exists c > 0 only depending on
K with

‖K(u1δx1)−K(u1δx2)‖Y ≤ c‖u1‖H |x1 − x2|Rd
‖K(u1δx1)−K(u2δx1)‖Y ≤ c‖u1 − u2‖H .

Proof. For ϕ ∈ Y \{0} we obtain

(K(u1δx1)−K(u1δx2), ϕ)Y = 〈u1(δx1 − δx2), [K∗ϕ]〉 ≤ ‖u1‖H‖[K∗ϕ](x1)−K∗ϕ(x2)‖H
≤ ‖u1‖H‖K∗ϕ‖C0,1(Ω,H)|x1 − x2|Rd
≤ ‖u1‖H‖K∗‖L(Y,C0,1(Ω,H))‖ϕ‖Y |x1 − x2|Rd .

Analogously we get

(K(u1δx1)−K(u2δx1), ϕ)Y ≤ ‖K
∗ϕ‖C‖u1 − u2‖H ≤ ‖K∗‖L(Y,C(Ω,H))‖ϕ‖Y ‖u1 − u2‖H

Dividing both sides of the inequalities by ‖ϕ‖Y and taking the supremum over all ϕ ∈ Y \{0} we
conclude both estimates.

6.3.8 A note on conic constraints

In this last section we comment on improved convergence results for the Primal-Dual-Active-Point
method in the case of conic constraints i.e. C 6= H. Let Assumptions 6.4, 6.5, 6.6 hold and denote
by ū =

∑N
i=1 ūiδx̄i the unique minimizer to (PM). By p̄, P̄ and pk, P k we refer to the adjoint

states and dual certificates associated to ū and uk, respectively. Let us first recall the unconstrained
case, i.e. C = H. In this situation we based our proof on the local smoothness of the adjoint states
around the optimal support points. Moreover, since p̄(x̄i) 6= 0, this regularity also transfers to
the dual certificates which, together with Assumption 6.6, allowed to establish the perturbation
results of Lemma 6.49. Obviously such reasoning fails in the constrained situation C 6= H since

ϕ ∈ C2(Ω̄R, H) 6⇒ PC(ϕ) ∈ C2(Ω̄R, H),
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in general. This is for example the case if there exists an index i ∈ {1, . . . , N} such that PC(ϕ(x̄i))
lies at the boundary of C.

While this observation prevents a direct adaptation of the presented results to the general con-
strained case the aforementioned difficulty can be bypassed if the optimal adjoint state p̄ maps
locally into the interior of C in H. To this end let us assume that intC 6= ∅. In particular
this encompasses the important case of positive scalar-valued measures. Furthermore assume
that p̄(x̄i) ∈ intC for i = 1, . . . , N . Due to the projection formula for the optimal coeffi-
cient functions p̄(x̄i)/‖p̄‖C = ūi/‖ūi‖H this is equivalent to ūi ∈ intC. Since p̄ is continuous
the set ΩR can be chosen small enough such that p̄(x) ∈ intC for all x ∈ Ω̄R. Thus we ob-
tain P̄ (x) = ‖PC(p̄(x))‖H = ‖p̄(x)‖H on Ω̄R. This yields P̄ ∈ C2(Ω̄R) following Lemma 6.66.
Furthermore arguing as in Lemma 6.68 gives ‖[K∗∇F (y)](·)‖H ∈ C2(Ω̄R) for all y in a neighbor-
hood of ȳ and, in particular, P k ∈ C2(Ω̄R) for all k ∈ N large enough.

The remaining results of Section 6.3.5 are now obtained by repeating the presented arguments. In
particular note that the intermediate iterates uk+1/2

s , s ∈ [0, 1] in the proof of Theorem 6.57 are
admissible since PC(pk(x̂k)) = pk(x̂k) for all k ∈ N large enough and

uk+1/2
s = uk + s∆k

2 = (1− s)uk + sûkı̂

= uk|B̄cR1
(x̄ı̂)

+ uk|B̄R1
(x̄ı̂)

+ s

(
‖uk|B̄R1

(x̄ı̂)
‖M

PC(pk(x̂k))

‖PC(pk)‖C
δx̂k − uk|B̄R1

(x̄ı̂)

)
∈M(Ω,C),

due to uk|B̄cR1
(x̄ı̂)

, uk|B̄R1
(x̄ı̂)

, PC(pk(x̂k))δx̂k ∈M(Ω,C).

As a consequence of these considerations we conclude the following convergence result in the case
of additional conic constraints.

Theorem 6.70. Let C ⊂ H be a closed and convex cone with nonempty interior in H. Let
Assumptions 6.4, 6.5, 6.6 hold and denote by ū ∈ M(Ω,C) the unique minimizer to (PM).
Further assume that p̄(x) ∈ intC for all x ∈ supp |ū|. Then Theorem 6.43 applies to {uk}k∈N.

Remark 6.14. Please note that for the important case of scalar measures with positivity constraints,
i.e. C = R+, the additional condition p̄(x̄i) ∈ intR+ is redundant since we assume that strict
complementarity, supp |ū| = {x̄i}Ni=1, holds.

Let us briefly discuss the limits of this extension. While these additional assumptions allow to
extend the improved convergence results to, e.g., the case of positivity constraints inM(Ω,Rn) it
obviously does not cover all interesting and practical relevant settings. For example the interior
of the cone L2

+(I) ⊂ L2(I) from Example 6.6 is empty. We postpone a deeper discussion of
improved convergence rates in this case to future work. Another interesting point that should be
addressed is to derive rigorous mesh-independence results, following e.g. the concepts presented
in [162], for the proposed method. Moreover, the observed practical efficiency of the Primal-Dual-
Active-Point method as well as the improved convergence results of this chapter should serve as
a motivation to study accelerated conditional gradient algorithms for different problems posed in
nonreflexive Banach spaces. For interesting and practically relevant examples, we again point out
minimization problems involving spaces of functions with bounded total variation or the time-
dependent measure-valued controls in Example 6.5.
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