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Abstract

In medical imaging or animation control the parameters of elasticity simulations are of-
ten unknown and need to be estimated. We present a method for reconstructing the phys-
ical material parameters of elastic bodies, the Young’s Modulus, Poisson Ratio and mass,
Rayleight damping parameters, as well as ground collision configurations from observed
images.

To achieve that goal, we first introduce a new discretization scheme of the linear elastic-
ity PDE based on a regular grid with partially filled FE cells. This method was already suc-
cessfully used for fluid simulations under the name ’cutFEM’ or ’Immersed Boundaries’
and is related to ’exFEM’ as used for simulating cuts on tetrahedral meshes. We also show
how to handle corotation and collisions in this framework. Next, we present an efficient
implementation in CUDA that allows us to achieve interactive framerates on large objects.
We then embed the simulation in an adjoint framework to reconstruct the unknown pa-
rameters. Furthermore, we introduce a cost function that uses sparse points of the object
surface as observations. Therefore, feature tracking to obtain vertex displacements of the
reference configuration is avoided.

Our method allows us to use signed distance fields as obtained e.g. by 3D reconstruction
algorithms directly as the reference configuration of the soft body simulation. Therefore,
we avoid to triangulate the object into a tetrahedral mesh. The computational speed of
the grid discretization is comparable to existing methods on tetrahedral mesh. We further-
more demonstrate how the sparse point cost function can be used with observations from
(simulated) RGB-D cameras to reconstruct the physical parameters of the simulated object.

ix





Contents

Acknowledgements

.

vii

Abstract

.

ix

1. Introduction

.

1

2. Soft Body Simulation

.

3
2.1. Basic Notation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Strain and Stress

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3. PDE: Strong Form

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4. PDE: Weak Form

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.1. Boundaries: Neumann

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2. Boundaries: Hardly Enforced Dirichlet

.

. . . . . . . . . . . . . . . . . 7
2.4.3. Boundaries: Weakly Enforced Dirichlet (Nietsche)

.

. . . . . . . . . . . 7
2.5. Discretization

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.1. 2D Mesh

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2. 2D Grid

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6. Time Integration - Dynamic Elasticity

.

. . . . . . . . . . . . . . . . . . . . . . 22
2.7. Corotational Formulation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8. Collision

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.9. Conclusion

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. cuMat - Linear Algebra Library for CUDA

.

33
3.1. Related Work

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2. A (very short) review of CUDA

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3. Batched Evaluation and the Matrix class

.

. . . . . . . . . . . . . . . . . . . . . 35
3.4. Expression Templates and Kernel Merging

.

. . . . . . . . . . . . . . . . . . . 36
3.5. Benchmarks

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6. Conclusion

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4. 3D Implementation with CUDA

.

41
4.1. Related Work

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2. Basis Functions and Partial Integrals

.

. . . . . . . . . . . . . . . . . . . . . . . 41
4.3. Datastructures and Sparsity Pattern

.

. . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1. World Grid

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2. Input Data per Node and Element

.

. . . . . . . . . . . . . . . . . . . . 43

xi



Contents

4.3.3. Blocked CSR for the Stiffness Matrix

.

. . . . . . . . . . . . . . . . . . . 43
4.4. Matrix Assembly and Solving

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1. Stiffness Matrix

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2. Mass and Force Vector

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3. Newmark Time Integration

.

. . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.4. Conjugate Gradient Solver

.

. . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.5. Levelset Advection

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5. Rendering

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.1. Marching Cubes

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2. Slices

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3. Volume Raycasting

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6. Benchmarks

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5. Inverse Simulation

.

57
5.1. Related Work

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2. General Adjoint Method

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1. Problem Statement

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2. Gradient Evaluation

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.3. Computing the Adjoint of the Problem

.

. . . . . . . . . . . . . . . . . 59
5.2.4. Examples

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.5. On Testing Adjoint Code

.

. . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3. Adjoint Method for Soft Body Simulations

.

. . . . . . . . . . . . . . . . . . . . 66
5.4. Cost Function

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.1. Differences on the Displacements

.

. . . . . . . . . . . . . . . . . . . . . 67
5.4.2. Differences on the Levelset

.

. . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.3. Distance to Point Clouds

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5. Adjoint of the Individual Steps

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.1. Adjoint: Levelset Advection

.

. . . . . . . . . . . . . . . . . . . . . . . . 72
5.5.2. Adjoint: Displacement Diffusion

.

. . . . . . . . . . . . . . . . . . . . . 73
5.5.3. Adjoint: Newmark Time Integration

.

. . . . . . . . . . . . . . . . . . . 73
5.5.4. Adjoint: Stiffness Matrix

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.5. Adjoint: Collision Forces

.

. . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.6. Adjoint: Body Forces

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6. Optimization Algorithm

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7. Memory Consumption

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.8. Analysis of the Gradients

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.9. Benchmarks and Examples

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.10. Stability

.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6. Conclusion and Future Work

.

91

xii



Contents

Appendix

.

93

A. Additional Algorithms

.

93

B. Tables

.

97

C. Additional Equations

.

99

Bibliography

.

101

xiii





1. Introduction

The field of elasticity or soft body simulation tries to model how objects deform under
external and internal forces as physically accurate as possible. The physical properties of
the objects range from stiff materials, which do not bend much, to materials that behave
more like viscous fluids. This range gives rise to many algorithms tailored to specific
material properties. For completely stiff materials (e.g. idealized wood, stone or steel
in computer games), rigid body simulations are used [5

.

, 35

.

]. The other extrema, viscous
materials (e.g. honey or wax) are most often better solved with a fluid solver based on
the Navier-Stokes equations combined with a viscosity solver [12

.

]. The middle range of
elasticity deals with materials like rubber, flesh or tissue. Simulating this class of materials
is covered by this thesis.

For the soft body simulation of medium stiff materials as listed above, different algo-
rithms were developed for different targets. Simple mass-spring systems [73

.

] approximate
the model fairly well and their performance makes them applicable for real-time scenarios
like computer games. However, they are not physically accurate. For physically accurate
simulations, one typically uses the Finite Element Method (FEM). The standard approach
is to discretize the object into tetrahedra [72

.

], less frequently into cuboids [25

.

], and assume
that the boundary of the object is properly represented by the boundaries of the finite ele-
ments. This approach is used frequently in scientific simulations and the filming industry.
In recent years, methods that allow the boundary of the object to lie inside the finite ele-
ments were developed under various names: exFEM, Immersed Boundaries, cutFEM, to
name a few. In computer science, these methods are primarily used on tetrahedra meshes
to simulate cuts in the mesh. In this thesis, we introduce a new discretization scheme for
the elasticity simulation on a regular grid where the boundary is implicitly defined by
a Signed Distance Function (SDF) and is allowed to lie within a grid cell. This method
was already used successfully for fluid simulations in mechanical engineering. To our
best knowledge, this method hasn’t been applied to soft body simulations in the computer
graphic community.

Furthermore, in many applications, the exact material properties and forces are not
known. To overcome this difficulty, inverse problems try to reconstruct these properties
from given input, e.g. camera observations, CT scans in medical applications, or keyframes
for computer animation. We show how the new discretization technique on a regular grid
can be used in the inverse problem using the Adjoint Method to estimate the material
properties and external forces. We also describe a cost function that acts directly on sparse
noisy observations of the target surface, as obtained e.g. by RGB-D cameras.

1



1. Introduction

The major contributions of this thesis are:

• A new discretization scheme for soft body FEM simulations based on a regular grid
with implicit object boundaries represented by a signed distance function (SDF)

• An efficient algorithm to parallelize the matrix assembly for the soft body simulation
on the GPU with CUDA

• A demonstration on how this new discretization scheme can be used in the inverse
problem using the Adjoint Method

• A cost function for the inverse problem that directly uses the sparse observations
from RGB-D cameras as input.

The thesis is structured as follow: First, in Section 2

.

we introduce the mathematical back-
ground of soft body simulations and present the discretization into a standard tetrahedra-
mesh and the new regular grid in 2D. Section 3

.

introduces cuMat, a linear algebra library
for CUDA that is used in Section 4

.

, the efficient implementation of the soft body simu-
lation in 3D on the GPU. The inverse problem using the Adjoint Method is described in
Section 5

.

. Last, we provide results and comparisons in Section 6

.

.

2



2. Soft Body Simulation

In this part we introduce the equations for a Soft Body / Elasticity simulation using the
Finite Element Method as presented by Dick [25

.

] and describe the discretization on a tri-
angular mesh and on a regular grid. For simplicity, the discretizations are performed in
2D. The changes required in 3D and an efficient implementation on the GPU is described
in Sec. 4

.

. For a detailed introduction into the elasticity theory, we refer to the work of
Dick [25

.

].

2.1. Basic Notation

Notational conventions:

• Matrices: uppercase letters, e.g. A, F .

• Identity matrix: 1d for the d-dimension identity. The dimension is dropped if it is
clear from the context.

• Block access: A(i : j,m : n) denotes the sub-matrix of rows i to j and columns m to
n. As a special case, a single subscript Aj denotes the j-th column.

• Component-wise product: The operator � is used to indicate the component-wise
product, also called Hadamard or Schur product on matrices. If a division "/" is
used on matrix expressions, is is always the component-wise division.

• Vectors: by default always column vectors, lowercase bold letters, e.g. f , x.

• Scalars: lowercase greek or roman letters, e.g. α, β, i, j.

• Sets: uppercase greek letters, e.g. Ω, Γ.

• Functions: lowercase roman letters, e.g. u : Ω→ Rd.

2.2. Strain and Stress

Assume that the object that should be simulated is given in the reference configuration Ωr.
The reference configuration is the undeformed state of the object, i.e. no forces act on the
object. Then, u : Ωr → Ωd describes the displacement vector from the reference configuration

3



2. Soft Body Simulation

Figure 2.1.: Deformation from the reference configuration to the deformed configuration
with the deformation u. Highlighted is a single position x. [25

.

]

into the deformed configuration Ωd, see Fig. 2.1

.

. The goal of elasticity simulations is to find
this displacement vector from given external and internal forces. It holds that

Ωd = {x + u(x) : x ∈ Ωr} . (2.2.1)

We further use the deformation ϕ defined as

ϕ(x) := x + u(x). (2.2.2)

The deformation gradient is defined as

F := ∇ϕ = ∇u+ 1. (2.2.3)

Note that the gradient of a vector-valued function (the Jacobian) is the matrix:

∇ϕ :=


∂ϕ1

∂x1
· · · ∂ϕ1

∂xd
...

. . .
...

∂ϕd
∂x1

· · · ∂ϕd
∂xd

 . (2.2.4)

From the deformation gradient, we derive the strain tensor field that describes the mate-
rial’s local changes of shape

E(u) :=
1

2

(
∇u+ (∇u)T + (∇u)T∇u

)
∈ Rd×d. (2.2.5)

4



2.3. PDE: Strong Form

This strain tensor is called St. Venant-Kirchoff strain. Note that E(.) is a non-linear function.
For simplicity, one typically uses the Green strain tensor

ε(u) :=
1

2

(
∇u+ (∇u)T

)
∈ Rd×d (2.2.6)

by dropping the nonlinear terms.
The stress tensor describes the internal forces depending on the strain acting on the body.

Assuming a hyperelastic material, the Piola-Kirchoff stress tensor is given by

P (u) := 2µE(u) + λ tr(E(u))1. (2.2.7)

In order to obtain a linear version, we can use ε(u) instead of E(u). For a detailed deriva-
tions of the elastic material, see [72

.

] and [25

.

].
The two constants µ and λ are called the Lamé coefficients and are derived from the fol-

lowing two material properties:

• Young’s modulus k > 0: the higher the value, the stiffer the material.

• Poisson’s ratio ρ ∈
(
0, 1

2

)
: the higher, the more incompressible is the material. Typi-

cally, values between 0.3 and 0.45 are used.

The Lamé coefficients are defined as:

µ :=
k

2(1 + ρ)
, (2.2.8a)

λ :=
kρ

(1 + ρ)(1− 2ρ)
. (2.2.8b)

2.3. PDE: Strong Form

We can now define the strong form of the PDE describing the soft body physics.
Let fB be the body forces within the object (e.g. the gravity), ΓrD the Dirichlet bound-

aries, ΓrN the Neumann boundaries (such that ΓrD ∪ ΓrN = ∂Ω), uD : ΓrD → Rd the fixed
displacements at the Dirichlet boundaries, and fS : ΓrN → Rd boundary forces at the Neu-
mann boundaries. Then the static elasticity problem is given by: Find u : Ω̄r → Rd such
that

−divP (u) =fB in Ωr (2.3.1a)
u =uD on ΓrD (2.3.1b)

P (u) · n = fS in ΓrN . (2.3.1c)

Note that P (u) gives a matrix, hence P (u) · n is the extension of the dot product to
matrices by performing the dot product column-wise. The result is a vector in Rd.

5



2. Soft Body Simulation

This model can be simply extended to the dynamic elasticity problem: Find u : Ωr ×
R+

0 → Rd such that

mü− divP (u) =fB in Ωr × R+
0 (2.3.2a)

u =uD on ΓrD × R+
0 (2.3.2b)

P (u) · n = fS in ΓrN × R+
0 (2.3.2c)

u = u0 in Ωr × {0} (2.3.2d)

u̇ = u̇0 in Ωr × {0} , (2.3.2e)

where m : Ωr → R+ is the mass at that position, u0 and u̇0 is the initial displacements and
velocities, and ü is the second time derivative of the current displacement (the accelera-
tion).

2.4. PDE: Weak Form

We will now derive the weak form of the static elasticity problem (2.3.1

.

). The term mü
from the dynamic elasticity problem does not contain any derivatives and can therefore be
trivially added in later stages when solving the resulting linear system.

Let V := H1(Ω̄r → Rd) be the space of test functions and let U := H1(Ω̄r → Rd) be the
space of trial functions. Multiplying the test function gives: Find u ∈ U such that ∀v ∈ V∫

Ω
−divP (u) · v dx =

∫
Ω
fB · v dx in Ωr (2.4.1a)

u = u0 on ΓrD (2.4.1b)
P (u) · n = fS in ΓrN . (2.4.1c)

We now assume that the linear Green strain ε(u) := 1
2

(
∇u+ (∇u)T

)
∈ Rd×d given in

Eq. (2.2.6

.

) is used. This does not allow large rotations, but this can be corrected with the
help of the corotational formulation, see Sec. 2.7

.

.
Starting from the right hand side, we obtain (using the generalized Divergence Theorem

on matrix fields):∫
Ω
fB · v dx =

∫
Ω
−divP (u) · v dx

=

∫
Ω
P (u) : ∇v dx−

∫
∂Ω
P (u) · n · v ds

=

∫
Ω

d∑
j=1

(
µ

(
∇uj +

∂

∂xj
u

)
+ λ

d∑
i=1

∂ui
∂uj

1j

)
· ∇vj dx

−
∫
∂Ω

d∑
j=1

((
µ

(
∇uj +

∂

∂xj
u

)
+ λ

d∑
i=1

∂ui
∂uj

1j

)
· n

)
vj ds .

(2.4.2)

6



2.5. Discretization

This formulation does not include boundary conditions yet, they are handled now. In
general, the boundaries are split between Dirichlet and Neumann boundaries:∫

∂Ω
P (u) · n · v ds =

∫
ΓrD

P (u) · n · v ds +

∫
ΓrN

P (u) · n · v ds . (2.4.3)

2.4.1. Boundaries: Neumann

Neumann boundaries are defined as P (u) · n = fS in ΓrN , see (2.3.1c

.

). Hence∫
ΓrN

P (u) · n · v ds =

∫
ΓrN

fS · v ds . (2.4.4)

2.4.2. Boundaries: Hardly Enforced Dirichlet

Dirichlet boundaries are defined as u = uD on ΓrD, see (2.3.1b

.

). The simplest way is to
enforce these boundaries strongly. They are directly included into the function spaces.
The new test space is V0 := {v ∈ V : v = 0 on ΓrD} and the new trial space is U0 := {u ∈
U : u = uD on ΓrD}.

These boundaries are only applicable later in the discretization (Sec. 2.5

.

) if the nodes
coincide exactly with the Dirichlet boundaries. Then degrees of freedom of those nodes
are removed, the matrix shrinks.

If this is not possible, e.g. as in the cutFEM method, Sec. 2.5.2

.

, weak Dirichlet boundaries
have to be used.

2.4.3. Boundaries: Weakly Enforced Dirichlet (Nietsche)

Dirichlet boundaries can also be enforced weakly using Nietsche’s method [8

.

, 27

.

, 44

.

]. The
weak form is extended using productive zeros u− u0:

−
∫

ΓrN

P (u) · n · v ds−
∫

ΓrN

P (v) · n · (u− u0) ds−η
∫

ΓrN

(u− u0) · v ds . (2.4.5)

The first term makes the resulting linear system symmetric. The second term enforces the
Dirichlet boundaries. The third term acts as a regularizer and the parameter η has to be
chosen as η > ch−1 with h being the grid size later in the discretization and c a sufficient
large constant. In our experiments, we chose 105 for stable results.

2.5. Discretization

The next step is to discretize the weak form. We provide and compare two different dis-
cretizations, a triangle mesh that moves with the object and a regular fixed grid with the

7



2. Soft Body Simulation

(a) Discretization on a dynamic mesh (b) Discretization on a regular grid

Figure 2.2.: Different representations / discretizations of the same object

object represented as a levelset. For simplicity, we assume d = 2, the 3D version is pre-
sented later in Sec. 4

.

. A comparison of the two different methods, mesh and grid, can be
seen in Fig. 2.2

.

.
We are going to use the following notation:

• Nv is the number of nodes / degrees of freedom.

• Ne is the number of elements (triangles or quads).

• Nev is the number of nodes per element (3 for triangles, 4 for quads).

• Ωe ⊂ Rd is the area covered by element e.

• φei : Rd → Rd is the linear local basis of node i in element e.

• ui ∈ Rd is the value of node i; fB,i ∈ Rd is the body force at node i.

• u = (ux,1,uy,1, ...,ux,Nv ,uy,Nv) is the linearized version of u, similarly f .

• s(e, i) ∈ {1, .., Nv} is the mapping of the local index i ∈ {1, .., Nev} in element e to the
global index.

• Vh :=
{
vh ∈ V : vh|Ωe(x) =

∑Nev
i=1 vs(e,i)φ

e
i (x)

}
is the discrete function space of V .

8



2.5. Discretization

x1 =

(
x1

y1

)
x2 =

(
x2

y2

)

x3 =

(
x3

y3

)

Figure 2.3.: Local coordinates of a triangle

2.5.1. 2D Mesh

A 2D mesh is defined by the positions of Nv vertices x1, ...,xNv combined to Ne triangles
by the mapping s(e, i). The local coordinates of a triangle e are given by x1,x2,x3 as
visualized in Fig. 2.3

.

.
The local (linear) basis functions are defined using barycentric coordinates: Let

area(x1,x2,x3) =
1

2
(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1) (2.5.1)

be the signed area of the triangle x1,x2,x3. Let

φe1(x) =
area(x,x2,x3)

area(x1,x2,x3)
, (2.5.2a)

φe2(x) =
area(x1,x,x3)

area(x1,x2,x3)
, (2.5.2b)

φe3(x) =
area(x1,x2,x)

area(x1,x2,x3)
(2.5.2c)

be the local basis functions of the triangle. Note that we don’t need to use absolute values
to get the actual areas of the triangles, because the winding orders in the nominator and
denominator are consistent. These basis functions are assembled into the basis matrix Φe

Φe(x) :=

(
φe1(x) 0 φe2(x) 0 φe3(x) 0

0 φe1(x) 0 φe2(x) 0 φe3(x)

)
∈ R2×8 (2.5.3)

such that uh|Ωe(x) = Φe(x)ue with ue = {ues(e,1)
T ;ues(e,2)

T ;ues(e,3)
T } ∈ R6.

9



2. Soft Body Simulation

The derivatives are assembled in the matrix Be

Be =


∂φe1(x)
∂x1

0
∂φe2(x)
∂x1

0
∂φe3(x)
∂x1

0

0
∂φe1(x)
∂x2

0
∂φe2(x)
∂x2

0
∂φe3(x)
∂x2

∂φe1(x)
∂x2

∂φe1(x)
∂x1

∂φe2(x)
∂x2

∂φe2(x)
∂x1

∂φe3(x)
∂x2

∂φe3(x)
∂x1

 (2.5.4)

=
1

area(x1,x2,x3)

y2 − y3 0 y3 − y1 0 y1 − y2 0
0 x3 − x2 0 x1 − x3 0 x2 − x1

x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2

 .

Note that the matrix Be does not depend on x unlike Φe(x).
The integrals in the weak form (2.4.2

.

) can be decomposed into per-element integrals.
This gives rise to the following matrix representation:∫

Ωe

d∑
j=1

(
µ

(
∇uj +

∂

∂xj
u

)
+ λ

d∑
i=1

∂ui
∂uj

1j

)
· ∇vj dx

=

∫
Ωe


∂u1
∂x1
∂u2
∂x2

∂u1
∂x2

+ ∂u2
∂x1

ve ·

2µ+ λ λ λ
λ 2µ+ λ λ

µ




∂u1
∂x1
∂u2
∂x2

∂u1
∂x2

+ ∂u2
∂x1

ue dx

= (ve)T
∫

Ωe
(Be)TCBedx ue

= (ve)T
(
|area(x1,x2,x3)|(Be)TCBe

)︸ ︷︷ ︸
=:Ke∈R6×6=RdNev×dNev

ue. (2.5.5)

The matrix C is called the material matrix and contains the Lamé coefficients as introduced
in Eq. (2.2.8

.

). The matrix Ke is the stiffness matrix of element e.
The inertia term (see Eq. (2.3.2

.

)) is discretized as∫
Ωe
mü · v dx =

∫
Ωe
m(Φe(x)ve)TΦe(x)üdx

= (ve)T
∫

Ωe
m(Φe(x))TΦe(x) dx ü

= (ve)TM eü. (2.5.6)

The computation of the mass matrix M e can be simplified by assuming lumped mass, i.e.
the whole mass of the triangle is centered at the vertices. The mass matrix then becomes
diagonal:

M e :=
m

3 ∗ area(x1,x2,x3)
16 ∈ R6×6. (2.5.7)

Neumann boundaries are discretized using∫
ΓeN

v · fN dx = (ve)T
∫

ΓeN

(Φe(x))T fN dx . (2.5.8)

10



2.5. Discretization

If we assume that the Neumann forces act only on the vertices, the computation can be
simplified as ∫

ΓeN

v · fN dx = (ve)T f eN dx . (2.5.9)

with f eN = (l1fNx1, l1fNy1, l2fNx2, l2fNy2, l3fNx1, l3fNy1)T where l1, l2, l3 are the lengths of
the edges incident to vertices 1,2,3 that lie on the boundary of the object.

All the local element matrices and vectors Ke, M e, f eB , f eN are finally assembled into
global matrices K,M ∈ R2Nv×2Nv , fB, fN ∈ R2Nv (see Alg. A.1

.

in the Appendix). Because
it is sufficient to test the weak form only for all basis functions of v, this gives rise to a
linear system of 2Nv equations

Ku = fB − fN (2.5.10)

for the static case and

M ü +Ku = fB − fN (2.5.11)

for the dynamic case. Observe that this system is symmetric and positive definite. The
dynamic case needs a time integration scheme that is described in detail in Sec. 2.6

.

.
Up to now, the static case can not be solved as the matrix K is not of full rank. Each

matrix Ke has rank 3 and the global matrix K has also only rank 2Nv − 3. These three
degrees of freedom correspond exactly to the three degrees of freedom in affine transfor-
mations: translation along x, translation along y, rotation. It is therefore necessary to fix at
least two vertices to specific coordinates using Dirichlet boundaries u = uD. This is done
by plugging in the fixed value uD for every Dirichlet node into the linear system Ku = f ,
thus reducing the size of K and f by two (rows and columns in K).

In the computer graphics literature, the above matrices are typically used directly in the
simulation, without considering the underlying PDE. See e.g. [77

.

] for a work that uses
these matrices and extend them with locomotion terms.

2.5.2. 2D Grid

We now apply the ideas from the discretization on the mesh in a new setting, the dis-
cretization on a regular grid. The grid cell boundaries don’t need to coincide with the
object boundaries any longer, as it was the case with the tetrahedra mesh. The individual
steps, however, require a bit more computation.

2.5.2.1. Levelset representation

In the case of a static grid, the object in its reference configuration Ωr (and all other config-
urations) is enclosed within a larger rectangular region Ω.
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2. Soft Body Simulation

Figure 2.4.: Example of a signed distance function1

.

With a slight abuse of notation, an object X ⊂ Ω (e.g. Ωr) is implicitly described using a
signed distance function (SDF) φ : Rd → R such that

φ(x) :=


−d(x, ∂X) x ∈ X
d(x, ∂X) x /∈ X
0 x ∈ ∂X

(2.5.12)

where d(x, ∂X) is the shortest distance from x to the boundary of X in the Euclidean
norm. The signed distance function is negative inside the object, positive outside and zero
on the boundary. Note the abuse of notation: φ now denotes the level set function, no
longer the basis functions. Local basis functions are now called Ni. An example of a SDF
is visualization in Fig. 2.4

.

.
For every SDF, it holds that |∇φ| = 1 where∇φ is the outward normal along ∂X .
In the discretization, the values of φ are given at every grid point (x, y) and then bilin-

early interpolated. An example of this representation was already shown in Fig. 2.2b

.

.
Notation:

• Every discrete grid point where the SDF is stored is called a node.

• Nodes that are inside the object φ ≤ 0 are called inner nodes.

• Cells in the grid that have at least one inner node as vertex are called active cells.

• Nodes that are outside the object but incident to an active cell are called boundary
nodes.

• Nodes that are either inner nodes or boundary nodes are called active nodes.

• Nodes that are not active nodes are called outer nodes.

• Cells that are not active cells are called outer cells.
1
https://upload.wikimedia.org/wikipedia/commons/d/d4/Signed_distance2.png

.
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2.5. Discretization

2.5.2.2. Basis functions

x1 = (0, 0)T x2 = (h, 0)T

x4 = (h, h)Tx3 = (0, h)T

Figure 2.5.: Local coordinates of the standard quad

Let h be the side length of each cell in the regular grid. For the computation of the basis
functions, we can assume that the cell starts at the origin as shown in Fig. 2.5

.

.
The basis functions and their derivatives are given by

N1(x) =
(

1− x

h

)(
1− y

h

)
,

∂N1

∂x
(x) =

y − h
h2

,
∂N1

∂y
(x) =

x− h
h2

, (2.5.13a)

N2(x) =
x

h

(
1− y

h

)
,

∂N2

∂x
(x) =

h− y
h2

,
∂N1

∂y
(x) =

−x
h2
, (2.5.13b)

N3(x) =
(

1− x

h

) y
h
,

∂N3

∂x
(x) =

−y
h2
,

∂N1

∂y
(x) =

h− x
h2

, (2.5.13c)

N4(x) =
xy

h2
,

∂N4

∂x
(x) =

y

h2
,

∂N1

∂y
(x) =

x

h2
. (2.5.13d)

Analogously to the triangle basis in Eq. (2.5.3

.

) and Eq. (2.5.4

.

), these basis functions are
combined into the matrices Φe(x) ∈ R2×8 and Be(x) ∈ R3×8 that now contain 8 columns
instead of 6 because we now have four vertices per element instead of three. Further note
that the derivatives are now dependent of the position x. This was not the case for the
triangles as shown in Sec. 2.5.1

.

.

2.5.2.3. Integration over parts of a cell

Since the object does not coincide with the cell boundaries, the integrals in the elasticity
simulation (see Eq. (2.4.1

.

)) have to be evaluated over a part of each cell. This method is
called cutFEM in the math community [39

.

, 15

.

, 14

.

, 38

.

] or Immersed Boundary Methods in
the engineering community [52

.

]. To our knowledge, this method has so far being used for
Navier-Stokes fluid simulations (citations above), but has not yet been attempted for soft
body elasticity.

Table 2.1

.

summarizes the five base cases for the integration. All other cases of the in total
24 = 16 possibilities are rotations of those five base cases.
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2. Soft Body Simulation
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2.5. Discretization

The elasticity has to be evaluated only over active nodes. As one can see from Tab. 2.1

.

,
cells that have no inner nodes as vertices have a zero integral (outer cells).

Note that these quadrature schemes are not exact. Interpolation within a quad yields a
quadratic formula (the basis functions are quadratic functions), hence the boundary is a
parabola. In the numerical schemes from Table 2.1

.

we make the simplifying assumption
of a linear boundary. This leads to a relative error of 3.8% or an absolute error of 1.7% on
average. This error is small enough to don’t visually influence the simulation results and
are therefore neglected in the following.

2.5.2.4. Matrix assembly

The parts of the Weak Form can now be written in matrix form similar to the mesh dis-
cretization (compare Eq. (2.5.5

.

) to Eq. (2.5.9

.

)). The assembly of the mass matrix, stiffness
matrix and Neumann forces is almost the same as in the case of a mesh. The difference
is that the per-element matrices are now of size 8 × 8 because there are now four vertices
involved instead of three. Furthermore, the integrals have to be evaluated now with the
equations presented in Sec. 2.5.2.3

.

.

∫
Ωe
mü · v dx = (ve)T

∫
Ωe

Φe(x)TmΦe(x) dx︸ ︷︷ ︸
=:Me∈R8×8

üe (2.5.14)

∫
Ωe
µ . . .+ λ . . .dx = (ve)T

∫
Ωe
Be(x)TCBe(x) dx︸ ︷︷ ︸

=:Ke∈R8×8

ue (2.5.15)

∫
ΓeN

fS · v ds = (ve)T
∫

ΓeN

Φe(x)T dx fS︸ ︷︷ ︸
=:fe∈R8

. (2.5.16)

Now that the object boundary does not neccessarily coincide with the grid boundaries,
hard Dirichlet boundaries (see Sec. 2.4.2

.

) can’t be used any longer. Instead, the Dirichlet
boundaries have to be enforced weakly with Nietsche’s method (see Sec. 2.4.3

.

).
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2. Soft Body Simulation

∫
ΓeD

d∑
j=1

(P (u)j · n)vj ds =

∫
ΓeD

d∑
j=1

((
µ(∇u+ (∇u)T ) + λ tr(∇u)1

)
j
· n
)
vj ds =

=

∫
ΓeD

d∑
j=1

(
µ(∇uj · n +

∂u

∂xj
· n) + λnj

d∑
i=1

∂ui
∂xi

)
vj ds =

= (ve)T
∫

ΓeD

Φe(x)T
(

2µn1 + λn1 λn1 µn2

λn2 2µn2 + λn2 µn1

)
︸ ︷︷ ︸

=:De

Be(x) dsue. (2.5.17)

The matrix De can be seen as a variation of the stiffness matrix C that includes the
surface normal. Therefore, it has to be recomputed for every element. Recall that the
normal is simply given by∇φ.

By symmetry, the same derivation from above is used for the other Nietsche terms∫
ΓeD

∑d
j=1(P (v)j · n)uj ds and

∫
ΓeD

∑d
j=1(P (v)j · n)u0

j ds. Note that the latter one contains
no dependency on u and is therefore part of the force vector.

The regularizer term −η
∫

ΓeD
(u− u0) · v ds is discretized as

(ve)T
∫

ΓeD

Φe(x)T − ηΦe(x) dsue = (ve)T
∫

ΓeD

Φe(x)T ηΦe(x) dsu0e. (2.5.18)

Collecting all these 8-by-8 element matrices and 8D force vectors into large matrices and
vectors gives again rise to a linear system with 2N unknowns

Ku = fB − fN (2.5.19)

for the static case and
M ü +Ku = fB − fN (2.5.20)

for the dynamic case. This system is again symmetric and positive definite. Note that the
number of unknowns is 2N , which corresponds to the number of active nodes (inside or
boundary). On grid elements that are completely outside of the object, the matrices and
vectors are zero. This means, the system so far only provides displacement vectors u for
active nodes. This introduces problems with the levelset advection described in the next
section.

2.5.2.5. Levelset advection

The last step is to advect the levelset with the computed displacements u. The simulation,
however, only provides the displacements on the active nodes, not for the whole domain.
This is not enough for the advection. There are two approaches to handle that issue:
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2.5. Discretization

1. Explicit diffusion:
In a post-processing step, diffuse the displacements into the outer nodes using the
simple diffusion process ∆u = 0 with Dirichlet boundaries at the known vertices and
Neumann boundaries at the grid boundary. This could be approximated by a simple
flood fill algorithm but we found that that this leads to clearly visible errors.
Advantage: Fast, Soft Body simulation stays unmodified.
Disadvantage: A separate diffusion system has to be solved.

2. Implicit diffusion:
Augment the matrix K with the diffusion kernel0 1 0

1 −4 1
0 1 0


that arose from the discretization of ∆u = 0.
Again, use Neumann boundaries on the grid boundary. The values for the Dirichlet
boundaries are not known in advance because they are the result of the main simu-
lation. This diffusion kernel is added to the nodes that are not part of a grid element
that contains the object, i.e. whose matrix entries would be zero. The matrixK there-
fore has size 2wh × 2wh with w and h the width and height of the grid (number of
nodes), instead of being restricted to active nodes.
Advantage: Solves directly for the displacements on the whole grid.
Disadvantage: The matrix K is no longer symmetric and positive definite and much
larger. This makes it way harder to solve.

It turns out that the first approach, explicit diffusion, is by far superior to the second ap-
proach, implicit diffusion. Solving the two smaller symmetric systems (elasticity and diffu-
sion) after each other is way faster and more stable than solving the big, unsymmetric joint
system from the implicit diffusion. Hence, we will now always use the explicit diffusion.

Now that we have a dense displacement map u, the next step is to solve the advection
equation

∂φ

∂t
+ u · ∇φ = 0. (2.5.21)

We tried three different approaches:

1. Semi-Lagrange Advection:
This is the standard approach that is used for fluid advection. The new values of the
levelset are given by interpolating the current levelset values from the positions back
in time

φnew(x) = φold(x−∆tu(x)), (2.5.22)

where ∆t denotes the time step. Bilinear interpolation is used to access the displace-
ment at positions between grid cells.
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2. Soft Body Simulation

d

Displacement u
Inverse displacement −u−1

Search radius R
d Distance for the Shepard weight

Figure 2.6.: Inversion of a displacement field with Shepard interpolation

2. Semi-Lagrange Advection on the inverse field:
The problem with the first approach is that it takes the displacements that point
towards the target as if they would point from the source to the current position.
This subtle difference is visualized in Fig. 2.6

.

, it is the difference between the blue
arrow (normal displacement) and the yellow arrow (inverse displacement).

For fluid simulations, this error is neglebible, since the velocities are very smooth, of
smaller magnitude and the velocity field is divergence free. Here in the elasticity, the
displacements can become quite large so that these errors are noticeable.

To improve the result, we first calculate the inverse displacements u−1 using a simple
Shepard method from [22

.

] (this paper also contains some more advanced methods):

− u−1(x) =

∑
iw(|di − u(x+ di)|)u(x+ di)∑

iw(|di − u(x+ di)|)
, (2.5.23)

where

w(d) =

{
(1
d −

1
R)2 , d ≤ R

0 , otherwise
(2.5.24)

is the weighting term and R the search radius (has to be greater than the maximal
displacement). The sum runs over all cells i within radius R around x. di is the
search direction / translation from x to the cell i. This means, when we check the
contribution of the displacement u(x+ di) we weight it against the distance between
x and the target position of the displacement at cell i, x + u(x + di). A visualization
of this method can be seen in Fig. 2.6

.

.

Finally, given the inverse displacement u−1 at each node, the levelset is advected by

φnew(x) = φold(x+ ∆tu−1(x)). (2.5.25)
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2.5. Discretization

3. Direct Forward Advection:
The displacement inversion is slow to compute and difficult to invert (that is needed
for solving the inverse problems in Sec. 5.5.1

.

). Instead of pulling interpolated values
into the current cell like in the Semi-Lagrange approach, here, we take the value of
the current cell and blend it into the new levelset at the displaced position using a
truncated Gaussian blurring kernel.

The implementation of the algorithm is given in the Appendix in Alg. A.2

.

, with the
kernel size given by τ . A smaller kernel size leads to less violation of the signed
distance property of the output levelset due to the blurring, but it can happen that
some cells will not be filled. We use a kernel size of τ = 1.5 and fill the cells without
data (that only occur at the domain boundary) with a simple flood fill.

Fig. 2.7

.

shows a comparison of the three approaches. The error of approach 1 (only Semi-
Lagrange Advection) is clearly visible, the lower end of the disk is not deformed properly.
Between the second approach (Shepard-Inversion and Semi-Lagrange Advection) and the
third approach (Direct Forward advection), there is almost no visual difference to be seen.
Hence, we’ll use the Direct Forward advection for it’s computational speed and simple
adjoint code (see Sec. 5.5.1

.

).
A visualization of the whole procedure of diffusion and advection can be seen in Fig. 2.8

.

.
Here, Shepard-Inversion is still used in combination with the Semi-Lagrange advection to
visualize the inverse displacement field.

Optionally, the advection of the levelset can be followed by a reinitialization of the lev-
elset to reobtain a signed distance function [60

.

, 59

.

].

2.5.2.6. Stability

The matrix K becomes numerically ill-conditioned when the levelset function gets very
close to zero at a node, i.e. the boundary runs just past a node. Because of the integration
over parts of the cells, the magnitude of entries in K may differ extremely between neigh-
boring vertices in these cases, resulting in floating point precision errors. A simple way
to overcome this problem is to set the value of the levelset at a node to zero if the absolve
value lies beneath a certain threshold, e.g. 1e − 5. The integration can handle boundaries
exactly through vertices without problems.

Further, the Nietsche Dirichlet Boundaries can also give rise to stability issues if they
are attached to vertices that are almost outside of the object. During the advection of
the levelset in the dynamic setting, it can happen that these vertices are now outside of
the object due to numerical imprecisions. Hence the Dirichlet Boundaries are not active
any longer and the matrix K becomes degenerated. To fix this, one has to check and
modify the position of the Dirichlet Boundaries so that they are always on the current
boundary. In an extreme case, one could also revert to hard Dirichlet Boundaries by fixing
the displacements of some internal vertices to fixed values.
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2. Soft Body Simulation

(a) Reference configuration
with Dirichlet boundary
conditions

(b) only Semi-Lagrange Ad-
vection (Approach 1)

(c) Inverted displacements
+ Semi-Lagrange (Ap-
proach 2)

(d) Direct Forward advection
(Approach 3)

Figure 2.7.: Comparison of different advection methods
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2.5. Discretization

(a) Computed displacements (b) After diffusion into unknown vertices

(c) Inverse displacements (d) Advected levelset

Figure 2.8.: Full procedure of the levelset advection
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2. Soft Body Simulation

2.6. Time Integration - Dynamic Elasticity

So far, we considered only the static case Ku = f . The dynamic soft body elasticity
Mü+Du̇+Ku = f (with D being the damping matrix) contains time derivatives and
therefore needs a special time integrator. We use the standard Rayleigh damping

D = α1M + α2K, (2.6.1)

where α1, α2 ≥ 0 are non-negative constants defining the strength of the damping.
There exist several time integration schemes in the literature. In the following list, we

present a selection of the most commonly used methods. Let the time step size be denoted
by ∆t. The current time step is n and is computed based on the previous time step (n− 1).
The core of each scheme is again the solution of a linear problem Ax = b, how A and b are
computed differs from scheme to scheme:

• Newmark 1 [36

.

]

(
1

θ∆t
M +D + θ∆tK

)
u(n)

=

(
1

θ∆t
M +D + (1− θ)∆tK

)
u(n−1) +

1

θ
Mu̇(n−1) + ∆tf (2.6.2)

with 1
2 ≤ θ < 1 and

u̇(n) =
1

θ∆t
(u(n) − u(n−1))− 1− θ

θ
u̇(n−1). (2.6.3)

If f is time-dependent, it is given as

f = θf (n) + (1− θ)f (n−1). (2.6.4)

• Newmark 2 [25

.

](
4

∆t2
M +

2

∆t
D +K

)
u(n)

=f +M

(
4

∆t2
(u(n−1) + u̇(n−1)) + ü(n−1)

)
+D

(
2

∆t
u(n−1) + u̇(n−1)

)
(2.6.5)

with u̇(n) = 2
∆t(u

(n) − u(n−1))− u̇(n−1)

and ü(n) = 4
∆t2

(u(n) − u(n−1) −∆tu̇(n−1))− ü(n−1) .

• Explicit Central Differences [32

.

](
1

∆t2
M +

1

2∆t
D

)
u(n)

=

(
2

∆t2
M −K

)
u(n−1) +

(
−1

∆t2
M +

1

2∆t
D

)
u(n−2) + f. (2.6.6)
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2.6. Time Integration - Dynamic Elasticity

• Implicit Linear Acceleration [32

.

](
M +

∆t

2
D +

∆t2

6
K

)
ü(n)

=

(
−∆t

2
D − ∆t2

3
K

)
ü(n−1) −Ku(n−1) −Du̇(n−1) −∆tKu̇(n−1) + f

u̇(n) = u̇(n−1) +
∆t

2
(ü(n) + ü(n−1)

u(n) = u(n−1) + ∆tu̇(n−1) +
∆t2

6
(ü(n) + 2ü(n−1)). (2.6.7)

• Newmark 3 [32

.

] (
6

∆t2
M +

3

∆t
D +A

)
∆x

=f +

(
3M +

∆t

2
D

)
ü(n−1) +

(
6

∆t
M + 3D

)
u̇(n−1)

u(n) = u(n−1) + ∆x

u̇(n) = −2u̇(n−1) − ∆t

2
ü(n−1) +

3

∆t
∆x

ü(n) = −M−1(Du̇(n) +Ku(n) − f). (2.6.8)

• HHT-α Method [32

.

](
M + ∆t(1− α)γD + ∆t2(1− α)βK

)
ü(n)

=f −
(

∆t(1− α)(1− γ)D + ∆t2(1− α)(
1

2
− β)K

)
ü(n−1)

− (D + ∆t(1− α)K) u̇(n−1)

−Ku(n−1)

u(n) = u(n−1) + ∆tu̇(n−1) + ∆t2
(

(
1

2
− β)ü(n−1) + βü(n)

)
u̇(n) = u̇(n−1) + ∆t

(
(1− γ)ü(n−1) + γü(n)

)
(2.6.9)

with 0 ≤ α ≤ 1
3 , β = (1 + α)2/4, γ = 1

2 + α.

All these methods, except for the Explicit Central Differences, convergence for a suf-
ficiently small timestep. The Explicit Central Differences produces growing oscillations
if the damping is too small. Experiments show that Newmark 1 (Eq. (2.6.2

.

)) is the most
robust integration method that can handle small and large time steps.
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2. Soft Body Simulation

Note that the time integration only acts on the displacements of the free vertices.
This means for the grid simulation, that the time integration acts on the free vertices
with respect to the initial configuration. The advection part is independently per-
formed in every time step on the new displacements. The resulting signed distance
function does not influence the region over which the integrals of the elasticity sim-
ulation are evaluated in the next time step. The integration region stays the same
for all time steps.

2.7. Corotational Formulation

Recall that in Sec. 2.4

.

we used the linear Green Strain instead of the full nonlinear St. Venant-
Kirchoff Strain. This introduces artificial forces in situations with large rotations that blow
up the elements, see Fig. 2.9

.

.

Figure 2.9.: Strong rotation introduces a blow-up effect

In order to correct these artificial forces, a corotation formulation [25

.

, 72

.

, 40

.

] is used. The
basic idea is to first subtract the rotation from the displacements, then compute the strain
and stress, and finally add the rotation again. In the matrix formulation, the per-element
term Keue is replaced by

T eKe((Re)T (xe + ue)− xe), (2.7.1)

where the matrix Re contains the purely rotational part of the displacement of the ele-
ment e. This equation contains both xe and ue. While ue is unknown, the part with xe is
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2.7. Corotational Formulation

known and has to be added to the force term. This leads to the following decomposition
of Eq. (2.7.1

.

):

fe ← fe −ReKe((Re)Txe − xe)

Ke ← ReKe(Re)Tue (2.7.2)

with Ke and fe being the per-element stiffness matrix and force vector.
The rotational part of the displacement R̂e can be computed in the following way:
First, the Jacobian of the displacement F := ∇ϕ = ∇u + 1 (see Eq. (2.2.3

.

)) per element
F e is computed.

• 2D Mesh Discretization:
Let x1,x2,x3,u1,u2,u3 ∈ R2 be the reference position and the displacement of the
three vertices. Let di = xi + ui be the deformed position of vertex i. Then:

F e =

(
d1,x − d3,x d2,x − d3,x

d1,y − d3,y d2,y − d3,y

)(
x1,x − x3,x x2,x − x3,x

x1,y − x3,y x2,y − x3,y

)−1

. (2.7.3)

• 2D Grid Discretization:
Let i, j be the position of the current cell with the vertices (i, j) to (i+ 1, j + 1). Then
the value of F at the four vertices that are needed for the integration are given by the
outer products

Fi,j = ui,j
(
−1 −1

)
Fi+1,j = ui+1,j

(
1 −1

)
Fi,j+1 = ui,j+1

(
−1 1

)
Fi+1,j+1 = ui+1,j+1

(
1 1

)
. (2.7.4)

The final value of F is then computed as

F e =
1

2

(
Fi,j + Fi+1,j + Fi,j+1 + Fi+1,j+1 + 12

)
. (2.7.5)

Note that no integration over the partially filled cells is required, since the displace-
ment is fully defined on all four vertices.

Then the rotational part of F is extracted using the polar decomposition F = RS where
any matrix F can be decomposited into a rotation (orthonormal) matrixR and a symmetric
positive definite matrix S. Algorithms for the general case were first presented in [41

.

],
repeated and improved e.g. in [42

.

, 40

.

, 71

.

].
For 2x2 matrices, an explicit expression is available [71

.

]:

R = F e + sign(det(F ))

(
F e2,2 −F e2,1
−F e1,2 F e1,1

)
. (2.7.6)
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2. Soft Body Simulation

This rotation matrix is applied to every vertex of the cell in Eq. (2.7.1

.

). This is realized
by repeating the matrix R several times in the element matrix R̂e

Re :=

R . . .
R

 , (2.7.7)

where R is repeated three times for the 2D mesh or four times for the 2D grid.
The algorithm as pseudocode is presented in the Appendex in Alg. A.3

.

.

Important:
In the grid simulation, the rotation correction has to be applied to Ke and Fe before
the Nietsche-Dirichlet boundaries (Eq. (2.5.17

.

)) are added.

The corotational formulation only repairs the stresses when there are already some de-
formations. Otherwise, the Jacobian F is zero and R should be set to the identity matrix.
Therefore, it can directly be plugged in the dynamic simulation. Surprisingly, it can also
be applied in the static simulation by repeatedly solving the static simulation while using
the displacements of the previous solution for the corotational formulation to repair the
forces. Convergence is typically achieved within a few iterations, see Fig. 2.10

.

.

2.8. Collision

Collision is a topic in the elasticity simulation that was covered by many research articles
in the last decade. The problem is usually split into two separate tasks. First, the collision
detection: when do two objects collide, what is the collision normal. See e.g. Georgii et
al. [33

.

] for a GPU detection algorithm and Teschner et al. [79

.

] for a study on hierarchical
collision checks. Second, the collision resolution and the computation of contact forces:
the idea is to formulate the contact as an inequality condition C(x) ≤ 0 that has to be ful-
filled for a valid state (a simple case is the distance to the ground). Advanced models also
include Coulomb Friction and other effects like drag in water. These constraints can be in-
cluded into the elasticity simulation using Lagrange multiplies. For details on this method
see [43

.

, 31

.

]. For full physical accuracy using a Linear Complementary Problem (LCP) see
[76

.

, 2

.

] for rigid bodies and [4

.

, 54

.

] for soft bodies. A solver for the LCP is presented in [26

.

].
Since an implementation of the LCP is beyond the scope of this these, we will only use a

simple spring system. This is a good trade-off between physical accuracy and algorithmi-
cal complexity. The basic idea comes from rigid body collisions and mass-spring systems
[73

.

], and is used extensively in cloth simulation (see e.g. [13

.

]) and also volumetric elasticity
simulation (see e.g. [20

.

]).
Fig. 2.11

.

visualizes the idea of a spring based collision handling. Wherever the object
enters the ground, a virtual spring is attached to it that generates a repulsive force. The
latter pushes the object back out of the ground. Because we use lumped mass for both the
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2.8. Collision

(a) Reference configuration (b) Iteration 1, first solution

(c) Iteration 2, first correction (d) Iteration 3

(e) Iteration 4 (f) Iteration 5, convergence

Figure 2.10.: Iteratively solving the rotation corrected static solution
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2. Soft Body Simulation

Figure 2.11.: Collision handling with virtual springs on a simple mesh

mesh and grid simulation, these springs have to be attached only on the nodes, not contin-
uously over the whole intersecting area. Further we assume that the ground has infinite
mass and that for each position x we can compute the signed distance to the ground as
x = dist(x).

The force of a spring is described by Hooke’s Law: f = −kxn with the stiffness factor
k, the distance x from the rest position (negative for compression, positive for extension)
and n is the unit outward normal vector. In our case, the spring must not exert an attrac-
tive force towards the ground when the object is outside the ground. The spring should
only repulse the object on penetrations. Therefore, we use the following clamped force,
visualized in Fig. 2.12

.

(red plot):

fc = −kmin(0, x)n. (2.8.1)

x

fc(x)

f(x) = −min(0, x)

f(x) = −softmin(0, x)

Figure 2.12.: Collision forces on the nodes

For each penetrating node, this force is added to the Neumann boundary conditions
and integrated in the next time step. This method, however, is an explicit method and
requires very small time steps for a stable simulation. Recall from Sec. 2.6

.

that if the forces
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2.8. Collision

in the Newmark integration (see Eq. (2.6.2

.

)) are time dependent, they are computed as
b = θb(n) + (1− θ)b(n−1). So for the simple explicit formulation, we set b(n) = b(n−1) = f

(n−1)
c

for the computation of the next time step. An implicit method is achieved when f (n)
c is used

directly in the Newmark integration. For that, however, we need the positions at the next
time step, which are yet unknown. Further, f (n)

c can’t be added to the left side (integrated
in the matrix A of Newmark), because the above model is non-linear. Hence, we have to
revert to an approximation of f (n)

c :

f (n)
c ≈ f (n−1)

c + ∆t
∂f

(n−1)
c

∂t
. (2.8.2)

The above equation (2.8.1

.

) for fc is non-differentiable at x = 0. Therefore, we use a non-
physical smoothing by replacing the hard minimum with a soft minimum (blue graph in
Fig. 2.12

.

):

fc = −k softmin(0, x)n

with softminα(a, b) := − ln
(
e−xα + e−yα

)
/α. (2.8.3)

The parameter α represents the "softness". As it approaches positive infinity, this soft-
min becomes the regular (hard) minimum function. This formulation was proposed by
Cook [18

.

] and a numerical accurate implementation for ln(1 + ex) that arises in our special
case softminα(0, x) is given by Mächler [50

.

]. As a side effect, since the softmin is positive
for the whole domain, it already introduces small repulsive forces when the object is close
to entering. This reduces the amount of penetration into the ground. We can compute the
time derivative now as

∂f
(n−1)
c

∂t
=
∂ − k softminα(0,dist(x(n−1)))

∂t

=
1

1 + eαdist(x(n−1))
distt(ẋ(n−1)). (2.8.4)

By plugging Eq. (2.8.4

.

) and Eq. (2.8.2

.

) into Eq. (2.6.4

.

) we obtain the resulting force

f = ∂f
(n−1)
c + θ∆t∂f

(n−1)
c
∂t as the Neumann force. Together with Eq. (2.5.8

.

), that gives rise
to the right hand side b of the Newmark time integration.

The collision handling on the grid simulation is very similar to the one on the mesh,
see Fig. 2.13

.

. The essential difference lies in how collisions are detected and the Neumann
boundary conditions are applied. First, instead of checking every node of the grid whether
they penetrate the ground, these tests are performed on the analytic intersection of the
surface, represented by the signed distance function values on the grid nodes, with the
grid cell edges. For these at most four points on the edges per cell, the spring forces are
computed as above. Each force is then added to the two adjacent vertices weighted by the
distance to the vertex (linear interpolation).

As an example, in Fig. 2.14

.

(mesh simulation) and Fig. 2.15

.

(grid simulation), a torus
with a small Young’s Modulus collides and bounces off a sloped floor.
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2. Soft Body Simulation

Reference Position

u

Deformed Position

Figure 2.13.: Collision detection and handling for the grid simulation

2.9. Conclusion

We presented two discretization schemes for the elasticity simulation: on a tetrahedra
mesh and on a regular grid with an implicit object representation using a SDF. Previously,
the regular grid, in which the object boundary does not coincide with the cell boundaries,
was mostly attempted for Navier-Stokes fluid simulations. We have shown that it can also
be used for soft body elasticity simulations.

An extensive comparison of the mesh and grid approach is done in the 3D implementa-
tion, see Sec. 4

.

.
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2.9. Conclusion

Figure 2.14.: Torus colliding with the ground: mesh simulation

Figure 2.15.: Torus colliding with the ground: grid simulation

31





3. cuMat - Linear Algebra Library for CUDA

Before describing how to efficiently implement the soft body simulation in 3D, we intro-
duce cuMat [84

.

], a linear algebra library for CUDA [58

.

], newly developed by the author
of this thesis. cuMat has been made available as open-source under the MIT license 1

.

. The
goal of cuMat is to provide a port of Eigen [37

.

], a popular library for linear algebra com-
putation on the CPU in C++, to the massive parallel architecture of CUDA. cuMat is later
used in the 3D implementation of the soft body simulation in Sec. 4

.

.
The usage of Eigen is very simple. For example, if one wants to sum up two vectors a

and c into a a third vector c, one simply writes

1 Eigen::VectorXf a = ..., b = ...; //some initializations
2 Eigen::VectorXf c = a + b; //CPU

This so called "AXPY" operation is already provided on the GPU in the library cuBLAS by
NVIDIA [56

.

], enabling the performance improvement of the GPU. The above code imple-
mented with cuBLAS reads as follows (ignoring error checks):

1 int n = ...; //size of the vectors
2 float* a = ..., b = ...; //some initializations
3 float* c = ...; //output memory
4 cublasHandle_t handle;
5 cublasCreate(&handle);
6 float alpha = 1; //optional scaling factor of b; axpy: c += alpha * b
7 cudaMemcpy(c, a, sizeof(float)*n, cudaMemcpyDeviceToDevice); //copy a into c, GPU
8 cublasSaxpy(handle, n, &alpha, b, 1, c, 1); //add b to c, GPU
9 cublasDestroy(&handle);

This code is quite verbose and the usage of cuBLAS becomes even more complicated for
more complex operations. Hence, cuMat strives to provide an API similar to Eigen, but
everything is executed on the GPU:

1 cuMat::VectorXf a = ..., b = ...; //some initialization
2 cuMat::VectorXf c = a + b; //GPU

One of the main reasons why Eigen is so fast, is the Kernel Merging enabled by Ex-
pression Templates. Kernel Merging means that expressions like d = a + b + c are not
evaluated as individual sums into temporary vectors (v′ = a + b,d = v′ + c), but instead
are evaluated in a single loop (∀i : di = ai + bi + ci). This drastically reduced the number

1https://gitlab.com/shaman42/cuMat

.
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3. cuMat - Linear Algebra Library for CUDA

of memory accesses and thereby improves the performance. Since memory bandwidth is
most of the time the limiting factor on the GPU, cuMat also implements Kernel Merging,
see Sec. 3.4

.

.
The development of cuMat has started before this thesis, but it was greatly extended by

the author for this thesis, e.g. by sparse operations, iterative solvers and inplace compound
assignments.

3.1. Related Work

There already exist many linear algebra libraries for the GPU, most noticeable cuBlas, cu-
Solver and cuSparse (developed by NVIDIA [56

.

]), as well as MAGMA (a university col-
laboration [81

.

]). All these libraries provide their functionality through verbose BLAS-like
functions.

In the works of Wiemann et al. [85

.

] and Tillet et al. [80

.

, 68

.

] it was shown that Kernel
Merging with Expression Templates is possible on the GPU. A simple implementation of
these methods was done in VexCL [24

.

], but limited to basic operations on vectors. They
didn’t address the problems that arise with more complicated matrix-matrix operations
(see Sec. 3.4

.

). Further implementations can be found in ViennaCL [67

.

] for OpenCL.
Eigen claims that it can also be executed in CUDA 2

.

, but only for operations on small
matrices on a per-thread basis. No parallelization over the whole GPU is performed.

Tensorflow [1

.

], the de-facto standard library for machine learning applications, provides
GPU implementations for matrix operations with a simple-to-use Python frontend. Only
recently, Tensorflow started to implement Kernel Merging (XLA3

.

), but this feature is still in
development and not enabled by default.

3.2. A (very short) review of CUDA

In this section we introduce the concepts behind the parallel execution in CUDA in a sim-
plified way. For a complete introduction to CUDA, we refer to the books of Cook [19

.

] and
Kirk [46

.

].
In CUDA, a task (called a kernel) is parallelized over a three-dimensional grid. This

grid is subdivided into blocks of uniform size, called a work group. Each block is again
subdivided into threads. Each thread then processes one item in the task. On the hardware,
the work groups are executed on Streaming Multiprocessors (SM). Each SM computes one
work group at a time and processes 32 threads at the same time (called a warp) in a SIMD
fashion. The number of threads per work group is limited by the available registers per
SM. This implies the following constraints when developing parallel code:

• Synchronization between threads can only be performed within a work group

2https://eigen.tuxfamily.org/dox/TopicCUDA.html

.

3https://www.tensorflow.org/performance/xla/

.

34

https://eigen.tuxfamily.org/dox/TopicCUDA.html
https://www.tensorflow.org/performance/xla/


3.3. Batched Evaluation and the Matrix class

• The number of threads should be a multiple of 32, otherwise some threads in the SM
are unused

• The number of threads should be high enough to hide memory latency, but small
enough to fit all used variables into registers

• Branching is expensive since both branches have to be executed serially, unless the
branching condition is the same for all threads within a warp.

In cuMat, these constraints are hidden from the user, the library computes the optimal grid
and work group size automatically. They will be relevant again for the matrix assembly in
Sec. 4.4.1

.

.

3.3. Batched Evaluation and the Matrix class
In cuMat, every operation supports batched evaluation, i.e. every matrix has a third di-
mension "batches" over which every operation is parallelized. This allows the parallel
execution of the same expression over different data, stored in different batches. For ex-
ample, the batched evaluation support can be seen directly in the actual type of the matrix
class:

1 template<typename T, int Rows, int Columns, int Batches, int Flags> Matrix;

The individual paramters have the following meaning:

• T: the scalar type of the matrix, e.g. float or cdouble (complex double)

• Rows, Columns, Batches: size of the matrix on compile time. If not known, the symbol
Dynamic is used. Providing as much information as possible during compile time al-
lows cuMat to perform some optimizations. For example, loops are unrolled, explicit
formulas for matrix determinants and inverses are used for tiny (batched) matrices
and similar optimizations. Further, some operations like a component-wise inner
and outer product are only available for compile-time vectors (either Rows or Columns
is one).

• Flags: additional flags, currently contains only the storage order (column major or
row major)

The batched evaluation is combined with a broadcasting mechanism: For an operation
a ◦ b, if a has a batch size of one and b a batch size greater one or dynamic, then the entries
of a are broadcasted over the batches when applied to b.

One application of this method is a batched solve. Assume that we have a non-batched
matrixA and a batched vector b. Then cuMat allows us to use a batched conjugate gradient
solver that solves for all batches in b at once:

1 ConjugateGradient<MatrixXf> cg(A);
2 BVectorXf x = cg.solve(b); //prefix 'B': predefined batched types
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result

matrix ∗ vector

add

m1 scalar ∗matrix

3 m2

scalar ∗ vector

sqrt

dot

v1 v2

v3

Figure 3.1.: Expression tree of result = (m1+3*m2)*(v1.dot(v2).cwiseSqrt()*v3), red ar-
row tips indicate evaluations

3.4. Expression Templates and Kernel Merging

In a general-purpose linear algebra library, various operations might be combined. For
demonstration purpose, assume we want to compute the following:

1 cuMat::VectorXf v1, v2, v3;
2 cuMat::MatrixXf m1, m2;
3 cuMat::MatrixXf result = (m1+3*m2)*(v1.dot(v2).cwiseSqrt()*v3);

The concept of Expression Templates is that an operation (e.g. a + b) does not im-
mediately compute the result, but returns an object that represents this operation (e.g.
BinaryOp<VectorXf, VectorXf, Add>). These objects are then chained to a full
evaluation tree as in Fig. 3.1

.

, and are only evaluated when assigned to a matrix.
The reality, however, is not that simple. Each operation has different access requirements

on the inputs and different access properties of the output. The three possible access modes
of the inputs and outputs are:

• None: no assumption, only for the output,

• Component-wise: component-wise reading is possible,

• Direct: a raw pointer to the data is needed, only for the input, implies Component-
wise access.
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If the access mode of an output does not fulfill the requirements for the input to the next
stage, the expressions are evaluated and the results saved to temporary memory. For ex-
ample, all component-wise operations (add, subtract, scalar multiplication, component-
wise square root, ...) have "Component-wise" as input and output, allowing them to be
chained together. A reduction (dot-product in the example), on the other hand, can take
Component-wise expression as inputs, but returns the result with the access mode "None",
hence forcing an evaluation. In Fig. 3.1

.

, arrows with a thick red tip indicate evaluations.
The reason why evaluation only happens on the inputs, instead of directly on the out-

puts, is best explained in the following code snippet:

1 cuMat::MatrixXfR mat1, mat2; //row-major
2 cuMat::MatrixXfC mat3; //column-major
3 mat2 = mat1.transpose(); //explicit transpose
4 mat3 = mat1.transpose(); //no-op, contents are simply reinterpreted

This example shows that the evaluation requires knowledge of the target layout to choose,
which operation should be performed.

For further details we refer to the documentation of cuMat4

.

.

3.5. Benchmarks

For a performance evaluation, we compared cuMat to cuBlas, Eigen and numpy in four
different test cases described below. All test cases have in common that the CPU libraries
(Eigen, numpy) are often faster for small input sizes due to the overhead of GPU calls, but
are clearly outperformed by the GPU libraries (cuMat, cuBlas) for larger problem sizes. The
benchmarks were executed on a desktop computer running Windows 10 Home, with an
Intel i7-6700 CPU (3.4GHz, 4 physical cores, 8 logical cores), 16.0GB RAM and a NVIDIA
GeForce GTX 1060 6GB GPU. The reported times are averages of ten individual runs. The
exact results can be found in the Appendix in Table B.1

.

to B.4

.

.
The first two test cases are a linear combination of vectors

∑k
i αivi, vi ∈ Rn. This is a test

on how kernel merging improves the performance. In Fig. 3.2a

.

, the number of combina-
tion is fixed to two and the size of the vector varies. Here, cuBlas outperforms cuMat, but
since the source code of cuBlas is not public, we don’t know the reasons for the good per-
formance of cuBlas. Further, the CPU libraries Eigen and numpy show a linear increase in
computation time with the size of the input, while the GPU libraries almost stay constant.
This highlights the parallel computation power of the GPU.

The other example for the linear combination is shown in Fig. 3.2b

.

. Here, the size of the
vector is constant and the number of combinations varies. cuMat now outperforms cuBlas
for four or more combinations. This clearly shows the advantage of the Kernel Merging
approach with a single evaluation kernel over multiple basic operations as in cuBlas.

4https://shaman42.gitlab.io/cuMat/

.
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3. cuMat - Linear Algebra Library for CUDA

Next we evaluate the performance of our custom sparse matrix (CSR-format) - vector
multiplication routine in Fig. 3.2c

.

. Our implementation achieves the same performance
as the optimized routine provided by NVIDIA’s cuSparse library, sometimes even slightly
better.

Last, Fig. 3.2d

.

shows how the libraries perform in a practical algorithm, in this exam-
ple a Conjugate Gradient solver. This solver requires sparse matrix - vector products,
reductions and other component-wise operations, thus testing every aspect of the library.
The example problem is the 2D diffusion equation with random Dirichlet and Neumann
boundaries. The solver is run until convergence (tolerance of 10−6) and therefore the num-
ber of iterations also increases. For a grid size of 1000× 1000, the implementation in cuMat
is about 10x as fast as the implementation in Eigen.

3.6. Conclusion

We presented a library, cuMat for linear algebra computations on the GPU. This library
offers competitive performance to other GPU libraries and outperforms any tested CPU
library, given a sufficient large input.

Furthermore, the simple and intuitive API reduces the development time and avoids
errors in the verbose Blas-like calls of existing libraries.
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In Sec. 2.5.2

.

, we described the discretization of the elasticity problem on the regular grid,
mainly targeted for 2D. Now we present how to efficiently implement the elasticity simu-
lation on the regular grid in 3D with the help of cuMat (see Sec. 3

.

) on the GPU. Since we
use the novel partially filled hexahedral cells, a new parallel algorithm for computing the
stiffness matrix is presented.

4.1. Related Work

Methods on how to accelerate the elasticity simulation on the GPU have been proposed
since the early days of programmable graphics hardware. For example, Tejada and Ertl
[78

.

] have already shown in the year 2005 how to simulate mass-spring based elasticity us-
ing pixel shaders on the GPU. With the introduction of CUDA 2006, GPU solvers became
simpler to implement, e.g. shown by Liu et al. [48

.

] for tetrahedra meshes without coro-
tation. Dick [25

.

] showed 2011 how to implement FEM elasticity on hexahedral elements
(without partial integrals) with corotation and proposed a matrix-free multigrid solver.
Recent advances in the GPU implementations have made FEM based elasticity ready for
real-time applications [30

.

, 21

.

, 86

.

], mostly by improving the iterative solver for the large
linear system. Further, Lamecki et al. [47

.

] showed how to support higher-order FEM ele-
ments on the GPU.

4.2. Basis Functions and Partial Integrals

In 3D on a regular grid, the FEM elements take the form of cubes, referred to as cells here.
Each cell has eight incident vertices / nodes. The side length of each cell is denoted by
h. Then the labelling of the eight nodes and the respective basis functions are given as
follows:
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1 2

3 4

5 6

7 8

x

y

z

N1(x) :=
(

1− x

h

)(
1− y

h

)(
1− z

h

)
N2(x) :=

x

h

(
1− y

h

)(
1− z

h

)
...

N8(x) :=
x

h

y

h

z

h

Furthermore, we want to evaluate integrals over parts of the cell. Let φ1, ..., φ8 be the
values of the SDF at the eight corners of the cell. Let Ωe ⊆ [0, 1]3 be the part of the cell
that is inside the volume defined by the SDF, and Γe = ∂Ωe the boundary surface. We
assume for the evaluation of any function over Ωe that it can be represented as a linear
interpolation of its value at the eight corners

f(x) =
8∑
i=1

f(vi)Ni(x) (4.2.1)

with v1, ..., v8 being the coordinates of the eight corners. This allows us to write the inte-
grals in the following form:∫

Ωe
f(x) dx =

∫
Ωe

8∑
i=1

f(vi)Ni(x) dx =
8∑
i=1

f(vi)

∫
Ωe
Ni(x) dx︸ ︷︷ ︸

=:wv(e,i)

(4.2.2)

∫
Γe
f(s) ds =

∫
Γe

8∑
i=1

f(vi)Ni(s) ds =
8∑
i=1

f(vi)

∫
Γe
Ni(s) ds︸ ︷︷ ︸

=:wb(e,i)

. (4.2.3)

The integrals wv and wb can be solved analytically. For the details we refer to Appendix C

.

.

4.3. Datastructures and Sparsity Pattern

In this section, we will collect the data that is needed to perform all steps in the elasticity
simulation: Stiffness matrix assembly (Sec. 2.5.2.4

.

, Eq. (2.5.15

.

), Sec. 2.7

.

), external forces
(Sec. 2.8

.

) and advection (Sec. 2.5.2.5

.

).
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4.3.1. World Grid

The reference SDF φ is given on a regular 3D grid in space. From this grid we first derive
the active cells (cells with at least an inner vertex) and the active nodes (nodes that are a
vertex of an active cell). Then we define a mapping m : Z3 → Z that maps a position in
the 3D grid into a linear index for the matrices and vectors. Active nodes are numbered
in increasing order starting by 1 (x-coordinate is fastest) and inactive nodes in decreasing
order starting by -1. This allows us to use the same mapping grid for both the elasticity
simulation as well as the diffusion and levelset advection (Sec. 4.4.5

.

).

4.3.2. Input Data per Node and Element

For the evaluation of the per cell integrals that arise in the stiffness matrix and forces, the
following data is needed per element e:

• Values of the reference SDF at the eight incident nodes φ(e, i) (8x float),

• Precomputed integration weights for the partial cell integrals over the volume and
boundary wv(e, i), wb(e, i) (2x 8x float),

• Precomputed surface normal for the Dirichlet boundaries n(e) (3x float),

• Mapping of the eight incident nodes to the global linear index s(e, i). Because the
mapping is created in such a way that the index increases fastest in x-direction, only
4 integer values have to be stored (for vertex 1, 3, 5 and 7).

4.3.3. Blocked CSR for the Stiffness Matrix

Recapitulate that the global stiffness matrix K is assembled by the element stiffness ma-
trices Ke = BT

e CBe. This matrix has a very special form. It is a very sparse matrix of
small 3x3 blocks. Each of these 3x3 blocks encodes the relationship between the 3 degrees
of freedom (3D-simulation) of a pair of nodes. Therefore, it is advantageous to save the
stiffness matrix in a Block Compressed Sparse Row format (BSR).

In the Compressed Sparse Row (CSR) format, a matrix A ∈ Rm×n is stored using three
tables: val, the non-zero entries of A in row-major format, colInd, the column indices of the
non-zero entries, and rowPtr, an array of sizem+1 where rowPtr[i] points to the first entry
in row i [57

.

]. As an example, the matrix

A :=


1 4 0 0 0
0 2 3 0 0
5 0 0 7 8
0 0 9 0 6


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is stored in the CSR format with zero-based indexing as

val = [1, 4, 2, 3, 5, 7, 8, 9, 6]

colInd = [0, 1, 1, 2, 0, 3, 5, 2, 4]

rowPtr = [0, 2, 4, 7, 9].

In Block CSR, each entry in val is not a single scalar element, but a dense matrix of fixed
size. In our case, 3x3 blocks.

This storage format drastically reduces the amount of memory needed to store the outer
and inner indices, since they have to be stored only per 3x3 block, not per single scalar
value. Similarly, the force vectors are also blocked vectors of 3x1 vectors.

Furthermore, cuMat allows the use of custom datatypes as scalar elements for matrices
and elements. We utilize this feature by defining a custom structure for 3x3-matrices:

1 typedef float4 real3; //built-in vector type in CUDA of four 4-byte floats.
2 struct real3x3 {real3 r1,r2,r3;}; //a 3x3 matrix in row-major order
3 typedef cuMat::Matrix<real3, Dynamic, 1, 1> Vector3X;
4 typedef cuMat::SparseMatrix<real3x3, 1, CSR> SparseMatrix;

Note that we use float4 as our vector type, although we only need a three-dimensional
vector. This is because CUDA provides vector load and store operations that can access a
float4 in memory with one single instruction. This is not possible for a float3.

From the perspective of cuMat our blocked stiffness matrix is a simple CSR matrix with
a custom scalar type. The advantages of this method are the following:

• By providing appropriate overloads for the scalar operations, these blocked matrices
can directly be used in all operations of cuMat, including the Conjugate Gradient
solver.

• Simple access to the per-node data. In the assembly (Sec. 4.4.1

.

and Sec. 4.4.2

.

),
always either the whole 3x3 block (matrix) or the 3x1 block (force vector)
is needed. For example, float fy = forceNonBlocked[3*e+1] is simplified to
float fy = forceBlocked[e].y.

• Efficient memory access. We use the built-in type float4 as the underlying type, for
which CUDA provides memory access instructions that can read the whole float4

in one command instead of accessing the individual elements in three consecutive
commands.

Last, we precompute the sparsity pattern (inner and outer indices) of the stiffness matrix.
This sparsity pattern only depends on the reference configuration and does not change
over the time steps.
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4.4. Matrix Assembly and Solving

In this section we present the changes at the equations from 2D to 3D and the steps re-
quired for an efficient parallel implementation on the GPU.

4.4.1. Stiffness Matrix

The final per-element stiffness matrix takes contributions from three parts: the basic stiff-
ness matrix from the elasticity simulation (Eq. (2.5.15

.

)), the corotation correction (Eq. (2.7.2

.

))
and the Nietsche-Dirichlet boundaries (Eq. (2.5.17

.

)) in that order.

4.4.1.1. Elasticity

First, recall that the element stiffness matrix is given by (compare with Eq. (2.5.15

.

))

Ke :=

∫
Ωe
Be(x)TCBe(x) dx ∈ R24×24, (4.4.1)

where the 3D-versions of Be(x) and C is given by (compare with Eq. (2.5.4

.

))

Be(x) :=



∂N1(x)
∂x1

∂N8(x)
∂x1

∂N1(x)
∂x2

∂N8(x)
∂x2

∂N1(x)
∂x3

· · · ∂N8(x)
∂x3

∂N1(x)
∂x2

∂N1(x)
∂x1

∂N8(x)
∂x2

∂N8(x)
∂x1

∂N1(x)
∂x3

∂N1(x)
∂x1

∂N8(x)
∂x3

∂N8(x)
∂x1

∂N1(x)
∂x3

∂N1(x)
∂x2

∂N8(x)
∂x3

∂N8(x)
∂x2


∈ R6×24 (4.4.2)

and (compare Eq. (2.5.5

.

))

C :=



2µ+ λ λ λ
λ 2µ+ λ λ
λ λ 2µ+ λ

µ
µ

µ

 ∈ R6×6. (4.4.3)

Observe that the matrix Ke can be decomposed into 3x3 blocks as

Ke =

K1,1 · · · K1,8
...

. . .
...

K8,1 · · · K8,8

 . (4.4.4)
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Each block Ki,j describes the relationship between the two nodes i and j of the current
cell. They are all constructed in the same way as

Ki,j(x) =


(2µ+ λ)∂Ni(x)

∂x1

∂Nj(x)
∂x1

+ µ
(
∂Ni(x)
∂x2

∂Nj(x)
∂x2

+ ∂Ni(x)
∂x3

∂Nj(x)
∂x3

)
µ∂Ni(x)

∂x1

∂Nj(x)
∂x2

+ λ∂Ni(x)
∂x2

∂Nj(x)
∂x1

µ∂Ni(x)
∂x1

∂Nj(x)
∂x3

+ λ∂Ni(x)
∂x3

∂Nj(x)
∂x1

 ,


µ∂Ni(x)
∂x2

∂Nj(x)
∂x1

+ λ∂Ni(x)
∂x1

∂Nj(x)
∂x2

(2µ+ λ)∂Ni(x)
∂x2

∂Nj(x)
∂x2

+ µ
(
∂Ni(x)
∂x1

∂Nj(x)
∂x1

+ ∂Ni(x)
∂x3

∂Nj(x)
∂x3

)
µ∂Ni(x)

∂x2

∂Nj(x)
∂x3

+ λ∂Ni(x)
∂x3

∂Nj(x)
∂x2

 ,


µ∂Ni(x)
∂x3

∂Nj(x)
∂x1

+ λ∂Ni(x)
∂x1

∂Nj(x)
∂x3

µ∂Ni(x)
∂x3

∂Nj(x)
∂x2

+ λ∂Ni(x)
∂x2

∂Nj(x)
∂x3

(2µ+ λ)∂Ni(x)
∂x3

∂Nj(x)
∂x3

+ µ
(
∂Ni(x)
∂x1

∂Nj(x)
∂x1

+ ∂Ni(x)
∂x2

∂Nj(x)
∂x2

)
 ∈ R3×3.

(4.4.5)

(For layouting purposes, this matrix is displayed with the three columns underneath each other)

For the integration over the cells, the Ki,j ’s are evaluated at the eight corner points c and
then summed together, weighted by wv(e, c) as computed in Sec. 4.2

.

.
This splitting of the big matrix Ke into the small blocks allows the efficient paralleliza-

tion on the GPU. It is also applicable for the Nietsche Dirichlet boundaries and the corota-
tion formulation.

4.4.1.2. Corotation

Recall from the description of the corotation in Sec. 2.7

.

that the element stiffness matrixKe

and the force vector fe is changed to

fe ← fe −ReKe((Re)Txe − xe) (4.4.6)

Ke ← ReKe(Re)Tue. (4.4.7)

in order to compensate for the rotation.
To compute the element rotation Re, first the average deformation gradient is computed

as shown in Dick [25

.

]:

F e = 13 +
1

4h

8∑
i=1

us(e,i)

 (−1)i

(−1)di/2e

(−1)1di/4e

T

. (4.4.8)

The rotational component Re is then given by the polar decomposition F e = ReSe. It can
be computed using the following iterative scheme:

R(0) = F e,

R(i) =
1

2

(
R(i−1) + (R(i−1))−T

)
for i > 0. (4.4.9)
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Dick [25

.

] reports that 5 iterations are usually enough for a good estimate of the rotation.
The application of this rotation matrix to the element stiffness matrix and the force vector

can again be formulated using the 3x3 blocking

fi ← fi −
8∑
j=1

ReKi,j

(
(Re)Tvj − vj

)
,

Ki,j ← ReKi,j(R
e)T , (4.4.10)

where vj is the position of the jth corner of the cell as before.

4.4.1.3. Nietsche Dirichlet Boundaries

The Nietsche Dirichlet Boundaries in the weak form are given by

−
∫

ΓrN

P (u) · n · v ds−
∫

ΓrN

P (v) · n · (u− u0) ds−η
∫

ΓrN

(u− u0) · v ds, (4.4.11)

see Eq. (2.4.5

.

). These terms are added to the left side of the weak form of the PDE.
For simplicity we only support boundary conditions with u0 = 0. Furthermore, we

assume that if a cell has Dirichlet boundaries, the whole surface boundary inside this cell
are Dirichlet boundaries. Plugging in the definition of P (u) and simplifying the above
equation leads to the following terms that are added to the weak form:

−
∫

ΓeD

3∑
j=1

(
µ

(
∇uj · n+

∂u

∂xj
· n
)

+ λnj

3∑
i=1

∂ui
∂xi

)
vj ds︸ ︷︷ ︸

(I)

−
∫

ΓeD

3∑
j=1

(
µ

(
∇vj · n+

∂v

∂xj
· n
)

+ λnj

3∑
i=1

∂vi
∂xi

)
uj ds︸ ︷︷ ︸

(I’)

− η
∫

ΓeD

u · v ds︸ ︷︷ ︸
(II)

(4.4.12)

Expressing u and v using the basis functions and their derivatives, combined in Φe and
Be, we obtain

Ke −=

∫
ΓeD

Φe(x)TDeBe(x) ds (4.4.13)

for (4.4.12

.

.I) with De given by

De :=

2µn1 + λn1 λn1 λn1

λn2 2µn2 + λn2 λn2

λn3 λn3 2µn3 + λn3

 . (4.4.14)
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The equation for (4.4.12

.

.I’) is the above equation, just transposed. Again, this integral is
evaluated by computing the values at the eight corners and summing them up weighted
by wb(e, c) similar to how the stiffness matrix was computed in Sec. 4.4.1.1

.

. The value
of Φi evaluated at vertex c has the special property that Φi = 13 1i=c. This allows us to
derive the following simplification and solution of Eq. (4.4.13

.

), combining both (4.4.12

.

.I)
and (4.4.12

.

.I’):

KDj,c :=

B1(λn1 + 2µn1) +B2µn2 +B3µn3

B2µn1 +B1λn2

B3µn1 +B1λn3

 ,
 B2λn1 +B1µn2

B1µn1 +B2(λn2 + 2µn2) +B3µn3

B3µn2 +B1λn3

 ,
 B3λn1 +B1µn3

B3λn2 +B2µn3

B1µn1 +B2µn2 +B3(λn3 + 2µn3)

 ∈ R3×3 (4.4.15)

with Bi :=
∂Nj(vc)

∂xi

Ki,j −=wb(e, i)KDj,i + wb(e, j)KDT
i,j . (4.4.16)

Part (4.4.12

.

.II) even simplifies to the following expression:

Ki,j −= 1i=jηwb(e, i)13. (4.4.17)

For the Nietsche constant η, a rather large value is required for a stable simulation. We
used η = 108 in our experiments.

4.4.1.4. Final Algorithm

The computation of the full matrix Ke in one CUDA thread is too expensive, but each
single Ki,j can be computed as described in the previous sections without running into
hardware limits. Furthermore, we can arrange the computation of these 8 ∗ 8 = 64 blocks
in a work group of size 64 (which is a multiple of 32, hence all threads of a SM are uti-
lized), and utilize shared memory and synchronization between the threads to avoid du-
plicate computations. In an algorithmic view, this looks as in Alg. 4.1

.

. For the evaluation
of the Ki,j ’s and the Dirichlet boundaries, the values of the derivatives of the basis func-
tions N1, ...N8 with respect to x, y, z are needed at the eight corner points. Since these
values only depend on the grid size h, they are precomputed and stored in a constant
array __constant__ float derivatives[8][8][3].

4.4.2. Mass and Force Vector
The computation of the mass matrix and force vector (gravity) differ only slightly from
the 2D version in Eq. (2.5.14

.

) and Eq. (2.5.16

.

), therefore we don’t repeat the computation
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4.4. Matrix Assembly and Solving

Algorithm 4.1 Sketched kernel code for the computation of the block Ki,j

1 //Launched with a work size of 64
2 __global__ void GridComputeStiffnessMatrixKernel(...) {
3 int elementIdx = blockIdx.x; //element index e
4 int i = threadIdx.x % 8; // threadIdx.x goes from 0 to 63
5 int j = threadIdx.x / 8;
6 float wv[8] = ...; // Fetch the volume integration weights wv(e, i) from memory
7 float mapping[8] = ...; // Fetch the mapping indices s(e, i) from memory
8
9 //each thread computes Ki,j, integrated over the volume

10 real3x3 KePart = {0}
11 for (int c=0; c<8; ++c) {
12 KePart += wv[c] * real3x3(...); // Ki,j evaluated at vc
13 }
14
15 //Corotation
16 __shared__ __device__ real3x3 rot; //shared memory over all threads
17 __shared__ __device__ real3 subforces[8][8];
18 if (j==0) {
19 real3 displacement = lastDisplacements[mapping[i]]; // fetch us(e,i)
20 real3x3 FPart = real3x3::OuterProduct(displacement,
21 make_real3(i&1?1:-1, i&2?1:-1, i&4?1:-1)/h);
22 real3x3 F = ...; // warp reduce with __shfl_down to assemble F e, see Eq. (4.4.8

.

)
23 if (i==0) { // only one thread computes the polar decomposition
24 rot = polarDecomposition(F); // see Eq. (4.4.9

.

), written into shared memory
25 }
26 }
27 __syncthreads(); // now every thread can read 'rot'
28 real3 pos = h * make_real3(j&1?1:0, j&2?1:0, j&4?1:0); // vj
29 subforces[i][j] = rot*KePart*(rot.transpose()*pos-pos); // see Eq. (4.4.6

.

)
30 __syncthreads();
31 KePart = rotation*KePart*rotation.transpose(); // see Eq. (4.4.7

.

)
32 if (j==0) {
33 real3 fi = ...; // reduction of subforces[i][j] over j, final value of fi
34 atomicSub(outputForce + mapping[i], fi); // update force vector
35 }
36
37 //Dirichlet boundaries
38 if (isDirichlet(elementIdx)) {
39 float wb[8] = ...; // Fetch the boundary integration weights wb(e, i) from memory
40 float3 n = ...; // Fetch the surface normal from memory
41 KePart -= ...; // Nietsche condition, see Eq. (4.4.16

.

)
42 KePart -= ...; // Nietsche regularizer, see Eq. (4.4.17

.

)
43 }
44
45 //Find the position of Ki,j in the large sparse matrix K
46 // Fetch the range of inner indices from the outer index table JA
47 for (int k = JA[mapping[i]]; k < mapping[mapping[i]+1]; ++k) {
48 if (IA[k] == mapping[j]) { // inner index matches
49 atomicAdd(KData + k, KePart); // atomically add Ki,j to K
50 }
51 }
52 }
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4. 3D Implementation with CUDA

here. Note that, since we use lumped mass, the mass matrix is diagonal. Hence, every
of the diagonal entries for the 3x3 block per node is the same, so we only store one float
per node, instead of e.g. three floats for each coordinate as in the body forces. Since these
vector’s don’t change, they are precomputed into the vectors

1 cuMat::Matrix<real, cuMat::Dynamic, 1, 1, ColumnMajor> lumpedMass;
2 cuMat::Matrix<real3, cuMat::Dynamic, 1, 1, ColumnMajor> bodyForces;

Collision forces are computed exactly as in the 2D case (Sec. 2.8

.

) with the difference that
all 12 edges of the cell have to be tested for intersections with the ground. The details
are presented when the adjoint version are handled in Alg. 5.5

.

. The collision forces are
computed per time step and added to the force vector.

All the three operations described above are implemented on the GPU. Each thread com-
putes the contribution of a single cell, the work group size is chosen to optimize occupancy.

4.4.3. Newmark Time Integration

We use the Newmark 1 integration scheme as presented in Eq. (2.6.2

.

), together with Rayleigh
damping (Eq. (2.6.1

.

)). For the time integration, a linear system Au(n) = b has to be solved
where A and b are given by:

1 SparseMatrix A; Vector3X b; //preallocated
2 A = ((1/(θ∆t) + α1) * lumpedMass).cast<real3>().asDiagonal()
3 + real3x3((α2 + θ∆t)) * stiffnessMatrix;
4 b = (((1/(θ∆t) + α1) * lumpedMass).cast<real3>().asDiagonal()
5 + (α2 + (1− θ)∆t) * stiffnessMatrix)
6 .sparseView<CSR>(stiffnessMatrix.getSparsityPattern()) * prevDisplacement
7 + (1/Θ * lumpedMass).cast<real3>().cwiseMul(prevVelocity)
8 + real3(∆t) * bodyForces;

In the above code, the Rayleigh damping is directly plugged in to the Newmark scheme,
so that the damping matrix D is never explicitly computed. Here, the Kernel Merging of
cuMat is used to its extremes. No intermediate storage is used at all, the only evaluation
(i.e. kernel call) is done at the two assignments. Further, one can see the following design
decisions of cuMat in action:

• No implicit type conversion between matrices of different types, the explicit casting
expression .cast<NewType>() has to be used. This decision was made to prevent
obscure errors introduced by implicit type casts.

• Scalar-Matrix multiplication requires the same data types, hence the castings to real3
or real3x3. This is again a safety measure required by cuMat.

• .asDiagonal() converts a vector into a virtual diagonal matrix.
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4.5. Rendering

• Line 6, .sparseView(...): This is called on an addition-expression of two matrices.
Without .sparseView(...), the following matrix-vector multiplication would trigger
a dense evaluation since cuMat can’t infer the sparsity pattern of the addition. With
this token, the sparsity pattern of the stiffness matrix (that contains the diagonal,
hence the lumped mass entries are included) is enforced and a sparse matrix-vector
multiplication is triggered, that is evaluated component-wise.

4.4.4. Conjugate Gradient Solver

Next, a standard Conjugate Gradient Solver with a diagonal preconditioner is used to
solve the above linear system. We use

uinit = u(n) + ∆tu̇(n) (4.4.18)

as initialization for the solution to the next timestep u(n+1). With this choice, the CG typi-
cally converges within a few (10-30) iterations.

4.4.5. Levelset Advection

Lastly, for the levelset advection, the same ideas as presented for the 2D case in Sec. 2.5.2.5

.

are applied.
First, the displacements are diffused into the empty nodes by solving a 3D Poisson dif-

fusion equation for each of the three coordinates of the displacements. This is done with
a batched CG solve on a precomputed diffusion matrix. Solving a linear system with a
batched right hand side is twice as fast as solving a separate system for each coordinate. As
an optimization, we only compute the nodes within a distance of five nodes (in l1-norm)
to the surface (the active nodes). The nodes farther away do not influence the surface lo-
cation during the advection step. This allows us to drastically reduce the number of nodes
to diffuse if the object has large empty areas within the grid.

Second, the levelset is advected with the Direct Forward method with the following
improvement: Since the object can travel arbitrary long distances over the course of the
simulation, it is very ineffective to include everything in a gigantic grid. Instead we first
compute a bounding box that encloses the active nodes translated by their current dis-
placement. This bounding box then specifies the grid (plus some extra cells as border) in
which the Direct Forward method writes the advected SDF into.

4.5. Rendering

We provide three rendering methods to visualize the results of the elasticity simulation. A
comparison of the three methods can be found in Fig. 4.1

.

.
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4. 3D Implementation with CUDA

(a) Marching Cubes (b) Raycasting of the surface (c) Slice Rendering with a
transfer function

Figure 4.1.: Comparison of the three rendering methods to visualize the results of the elas-
ticity simulation. Blue box: dirichlet boundaries, red box: bounding box from
the advection

4.5.1. Marching Cubes

The first appoach is the rasterization of the surface with the Marching Cubes (MC) method
[49

.

, 11

.

], see Fig. 4.1a

.

. Surprisingly, one does not need to compute the advected SDF, the
MC can work directly on the displacements of the active nodes: The MC triangulation is
precomputed from the reference configuration into a static index and a static vertex buffer.
But instead of storing the actual position of each vertex, that always lies on an edge of the
cells, the indices of the two incident grid nodes plus the interpolation weight is stored in
the vertex buffer. During the rendering, the vertex shader reads the current displacements
of the two grid nodes from a Shader Storage Buffer and interpolates them to compute the
actual position of the vertex in the current timestep. Because no diffusion and advection is
needed, this is the fastest rendering method.

4.5.2. Slices

Next, the advected SDF can also be visualized as a slice through the volume. The slice
can be orientated towards one of the three axis or always facing the camera (see Fig. 4.1c

.

),
and the position of the slice can be changed. The mapping from the SDF value to a color
is determined by a transfer function. This visualization method is inferior to the other
two rendering method in terms of visual perception, and mainly included for debugging
purposes.
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4.5.3. Volume Raycasting

Last, the surface of the advected SDF can be visualized with a ray caster implemented in
the Fragment Shader (see Fig. 4.1c

.

). The surface normal is directly given by the gradient
of the SDF and a simple Phong shading is used to determine the color. Since the visual-
ized volume is a SDF, the values are the shortest distance to the surface, hence they are
used for an adaptive step size, thus greatly decreasing the required number of steps. This
visualization method is the slowest, but gives the best results.

4.6. Benchmarks

For a comparison of the new grid approach with existing simulations on tetrahedron
meshes, we also implemented the above GPU-Matrix Assembly for tetrahedra and com-
pared their performances. All benchmarks were executed on a desktop computer running
Windows 10 Home, with an Intel i7-6700 CPU (3.4GHz), 16.0GB RAM and a NVIDIA
GeForce GTX 1060 6GB GPU. During the execution of the benchmarks, we measured a
constant GPU load of 96% and a memory controller load of 18%. This indicates that the
limiting factor are the actual computations and that the memory access patterns are opti-
mized enough to not restrict the performance.

In the first two benchmarks, a cuboid is placed into the world, centering at (0, 1, 0) with
size (1.29, 0.4, 0.8) and then discretized into grid cells or tetrahedra with a local resolution
of 1/resolution. The resolution is varied over the different test cases. In the first benchmark
(Fig. 4.2a

.

,4.2b

.

), the cuboid is fixed with Dirichlet boundaries and then deformed; in the
second benchmark (Fig. 4.2c

.

,4.2d

.

), no Dirichlet boundaries are used, instead the object
collides with the ground. In all cases, corotation is enabled and 30 timesteps are performed.

(a) Case 1, dirichlet
boundaries - tetra-
hedron

(b) Case 1, dirichlet
boundaries - regu-
lar grid

(c) Case 2, ground
collision - tetrahe-
dron

(d) Case 2, ground
collision - regular
grid

Figure 4.2.: Comparison of the tetrahedron and regular grid simulation on a simple bar

The results of the discretization into tetrahedra and the regular hexahedral grid can be
found in Table 4.1

.

. Note how the number of nodes differ from the tetrahedral simulation
to the new hexahedral grid simulation. This is due to the partial cells: The grid simulation

53



4. 3D Implementation with CUDA

Resolution 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Tet: # free nodes 605 1014 1554 2044 2736 3951 5290 6776 8008 9744 12415 15162 18180 20340 23584 28373

Tet: # fixed nodes 25 42 42 112 144 180 220 264 462 468 585 714 720 810 1216 1360
Grid: # free nodes 675 1309 1729 3105 3825 4131 6479 7623 10465 12025 13325 17415 19575 25823 28611 29733

Grid: # empty nodes 5443 6491 8479 9016 11475 13365 14269 16977 18179 22097 24405 25641 29673 29752 35349 39583
Tet: # elements 2496 4500 7128 9828 13524 19968 27216 35340 42840 52272 67392 83148 99792 112056 132300 159744

Grid: # elements 448 960 1296 2464 3072 3328 5400 6400 8976 10368 11520 15288 17248 23040 25600 26624

Table 4.1.: Number of nodes and elements in the different discretizations
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(a) 1. Dirichlet Boundaries
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(b) 2. Ground Collision

Figure 4.3.: Timings of the individual steps in the cuboid benchmark

resolves the cuboid with partly filled cells and thus also includes nodes that are located
outside of the object (nodes of active cells). For the second benchmark without Dirichlet
boundaries, the fixed nodes in the tet-simulation become free nodes. For the grid simula-
tion, the number of empty nodes are the nodes that are filled by the diffusion, before the
advection step. Furthermore, note that the number of elements in the tet-simulation is five
to six times as high as the number of elements in the grid-simulation, respectively. This is
because each cube cell is split into six tetrahedra.

Next, Fig. 4.3

.

shows the timings for the individual steps in the simulation: collision
forces (if enabled), matrix assembly and CG solver. For the exact numbers, see Appendix
B.5

.

and B.6

.

. The matrix assembly of the grid simulation is two to three times faster as of
the tet simulation. This shows that it is way more advantageous to evaluate fewer but
more complicated FEM elements as in the grid simulation, than more but much simpler
elements as in the tet simulation. The computation of the collision forces is so fast that the
differences in the timings may be influenced by launch overheads in the CUDA calls.
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(a) 1. Dirichlet Boundaries

5 10 15 20

10−4

10−3

10−2

Resolution
Ti

m
e

in
se

co
nd

s
(b) 2. Ground Collision

Figure 4.4.: Additional cost introduced by the levelset advection

The performance of the conjugate gradient solver, however, is slower by about 15% on
average in the grid simulation than in the tet simulation, even though it requires around
5% fewer iterations until convergence (error below 10−6) . This may be due to the denser
stiffness matrix. The grid simulation has about 25 entries per row on average, while the
tet simulation has only around 14 entries on average. This linear solve is the dominating
factor in the execution of the simulation. The stiffness matrix assembly as described in
Sec. 4.4.1

.

only takes 1 to 5% of the time to solve the linear system.
Furthermore, if the grid simulation should be rendered with the raytracing method, the

SDF defining the object has to be advected. The three required steps (diffusion of the dis-
placements over the whole grid, the computation of the new bounding box, the advection
using the Direct Forward method) were presented in detail in Sec. 4.4.5

.

. The timings are
plotted in Fig. 4.4

.

. One can see that the dominating factor is again the linear solve that is
needed in the diffusion step. This solver, however, scales better with a higher resolution
since only a boundary around the object of constant size is needed. The degrees of free-
dom in this linear system scales only quadratically with the voxel size whereas the degrees
of freedom in the elasticity solve scales cubically. Therefore, for high resolutions, the full
levelset advection only takes around 20% of the total time of the elasticity simulation.
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5. Inverse Simulation

In the previous part, we described how to perform the elasticity simulation given all initial
parameters. But what if not all of those parameters are known? In this part we describe
how these unknown parameters can be reconstructed from observations (known outputs)
and known parameters (parameters that are not reconstructed like boundary conditions
and the global gravity).

5.1. Related Work

Solving the inverse problem of a physical simulation arises in many fields. In medical
imaging, for example, one is interested in reconstructing the stiffness of organs or tissue
from scanned data to detect diseases [23

.

, 87

.

, 70

.

, 3

.

, 34

.

, 66

.

, 65

.

, 10

.

]. Some of these works use
probabilistic methods like a Monte-Carlo Markov-Chain simulation in Risholm et al. [65

.

]
instead of the Adjoint Method presented here. This allows them to avoid the computation
of a full gradient and gives a probability distribution over the parameter space, but are
computationally very expensive.

In the Computer Graphic community inverse simulations are mostly used to a simple
artistic control of animations. The artists wants to specify only a few selected keyframes.
The inverse simulation then figures out the external forces and boundary conditions to
match the desired keyframes. The corresponding literature is split into works that recon-
struct the initial reference position [20

.

, 17

.

], and works that reconstruct external forces like
simulated muscles [69

.

] or general forces [6

.

, 7

.

]. The works mentioned above have in com-
mon that they take the deformations as input. But in some cases, only observed images
are given. This is e.g. handled by Wang et al. [83

.

]. Some methods are specialized only
on simulations on humans [45

.

], however, they focus more on reconstructing the skeletal
motion than on the soft body simulation of the outer tissue. Other methods specialize on
thin shell deformation instead of volumetric deformation [9

.

].
Similar methods are also used in controlling fluid animations [82

.

, 51

.

, 75

.

, 53

.

, 61

.

, 62

.

]. We
will draw upon these works if they solve problems that also arise in our case.

5.2. General Adjoint Method

Before diving into the soft body simulation, we present the adjoint method for a general
problem based on the works of Stam [75

.

] and McNamara [51

.

] for controlling fluid anima-
tions.
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5. Inverse Simulation

5.2.1. Problem Statement

Let u ∈ RU be the U ∈ N states of the system, the intermediate and output variables.
Let p ∈ RP be the P control parameters of the system, the input variables. The general
problem is then defined by the equation

E(u, p) = 0 , E : RU × RP → RU (5.2.1)

that relates the control parameters to the state variables with a problem-specific function E.
The goal is to optimize the control parameters with respect to a given cost function

J(u, p) , J : RU × RP → R. (5.2.2)

5.2.2. Gradient Evaluation

We now want to find the total derivative of the cost with respect to the parameters dJ
dp . The

total derivative can be decomposed as

dJ

dp
=

(
∂J

∂u

)T du
dp

+
∂J

∂p
. (5.2.3)

A remark on the dimensions: If an operation has degrees of freedom in both state and
parameters, the states are always indexed by row and the parameters by column. As an
example, the above expressions have the following dimensions:

• dJ
dp ∈ R1,P : row vector, scalar property derived over the parameters,

• ∂J
∂u ∈ RU,1: column vector, scalar property derived over the states,

• du
dp ∈ RU,P : vector property over states derived over the parameters,

• ∂J
∂p ∈ R1,P : row vector, scalar property derived over the parameters.

The above expression contains the total derivative of the states with respect to the pa-
rameters du

dp . We can find an expression for this term by taking the total derivative of the
problem E with respect to the parameters

dE

dp
=
∂E

∂u

du

dp
+
∂E

∂p
= 0. (5.2.4)
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5.2. General Adjoint Method

In order to solve the equation above, we introduce some notation:

A :=
∂E

∂u
∈ RU,U (5.2.5)

X :=
du

dp
∈ RU,P (5.2.6)

fi := − ∂E
∂pi
∈ RU,1, i = 1, ..., P (5.2.7)

F := (f1, ..., fP ) = −∂E
∂p
∈ RU,P (5.2.8)

rT :=
∂J

∂p
∈ R1,P (5.2.9)

g :=
∂J

∂u
∈ RU,1. (5.2.10)

Then we can rewrite Eq. (5.2.4

.

) as AX = F . Hence, these are P linear systems with U
unknowns each. While this might be feasible for a small number of control parameters, it
does not scale well with an increasing number of parameters.

In the end, we are only interested in the result of the product
(
∂J
∂u

)T du
dp = gTX . The

Adjoint Method provides a different way to evaluate that term. Instead of solvingAX = F
we solve for the adjoint problem

AT y = g (5.2.11)

with the solution y ∈ RU,1. This is only one linear system of equations.
This allows us to write the product gTX as

gTX = (AT y)TX = yTAX = yTF = (yT f1, ..., y
T fP ). (5.2.12)

Hence, in total we only have to solve one linear system for y and then for each parameter
i compute the vector-vector multiplication yT fi to obtain the final product yTF .

Therefore, the Adjoint Method can be summarized in the following two steps:

• Solve AT y = g for y

• Sum over all parameters and priors dJ
dp = yTF + rT .

5.2.3. Computing the Adjoint of the Problem

For ◦ being an operation or a variable in the forward pass (contained in E), let ◦̂ denote the
associated adjoint operation or variable.

Luckily, the adjoint AT y = g can be computed mechanically. Assume that the operation
E is indeed composed out of a sequence of instructions

E1, E2, E3, ..., En
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5. Inverse Simulation

that generate the sequence of states u1, u2, ...un (combined in u above), then the adjoint of
the whole process (called backward pass) can be built out of the adjoints of the individual
instructions in reversed order

Ên, Ên−1, ..., Ê2, Ê1.

5.2.3.1. Matrix view

Given a decomposition of the operation E into a sequence of instructions as described
above, the matrices involved in solving the adjoint problem take the special form of block-
triangular matrices:

E =


E1(u1, {p})

E2(u2, {u1, p})
...

En(un, {u1, ..., un−1, p})

 (5.2.13)

û = y =


û1

û2
...
ûn

 ,
∂J

∂u
= g =


∂J
∂u1
∂J
∂u2

...
∂J
∂un

 (5.2.14)

A =
∂E

∂u
=


∂E1
∂u1

0 · · · 0

∂E2
∂u1

∂E2
∂u2

0
...

...
...

. . . 0
∂En
∂u1

∂En
∂u2

· · · ∂En
∂un

 (5.2.15)

AT =



(
∂E1
∂u1

)T (
∂E2
∂u1

)T
· · ·

(
∂En
∂u1

)T
0

(
∂E2
∂u2

)T
· · ·

(
∂En
∂u2

)T
... 0

. . .
...

0 · · · 0
(
∂En
∂un

)T


. (5.2.16)
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Hence, AT y = g can be solved by backward substitution(
∂En
∂un

)T
ûn =

∂J

∂un(
∂En−1

∂un−1

)T
ûn−1 =

∂J

∂un−1
−
(
∂En
∂un−1

)T
ûn

...(
∂Ej
∂uj

)T
ûj =

∂J

∂uj
−

n∑
i=j+1

(
∂Ei
∂uj

)T
ûi

...(
∂E1

∂u1

)T
û1 =

∂J

∂u1
−

n∑
i=2

(
∂Ei
∂u1

)T
ûi. (5.2.17)

A more algorithmic view is shown in Fig. 5.1

.

:

u1 s.t. E1(u1, p) = 0

u2 s.t. E2(u2, {u1, p}) = 0

· · ·

un−1 s.t. En−1(un−1, {u1, ..., un−2, p}) = 0

un s.t. En(un, {u1, ..., un−1, p}) = 0 ûn s.t.
(
∂En
∂un

)T
ûn = ∂J

∂un

ûn−1 s.t.
(
∂En−1

∂un−1

)T
ûn−1 = ∂J

∂un−1
−
(

∂En
∂un−1

)T
ûn

· · ·

û2 s.t.
(
∂E2
∂u2

)T
û2 = ∂J

∂u2
−
∑n

i=3

(
∂Ei
∂u2

)T
ûi

û1 s.t.
(
∂E1
∂u1

)T
û1 = ∂J

∂u1
−
∑n

i=2

(
∂Ei
∂u2

)T
ûi

J({u1, ..., un}, p)

Figure 5.1.: Execution of the forward and adjoint pass

5.2.3.2. Instruction view

Instead of using matrix expressions for computing the adjoint of the operation E, one can
also view it as a sequence of primitive instructions u← f(u, p) and compute the adjoint for
them. This view on the Adjoint Method has the advantage of being closer to the actual code
and allows to mechanically translate also loops and if-statements. We will now present
the adjoint code of the most common primitive instructions that allow us to mechanically
compute the adjoint code of any forward code, see [75

.

]. A comparison of the Matrix View
and the Instruction View together with examples is presented in the next Section 5.2.4

.

.
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5. Inverse Simulation

• Arbitrary function E : x← f(x, y1, ..., ym), possibly vector valued
The adjoint code Ê then takes the form

ŷm ←ŷm +

(
∂f(x, y1, ..., ym)

∂ym

)T
x̂

...

ŷ1 ←ŷ1 +

(
∂f(x, y1, ..., ym)

∂y1

)T
x̂

x̂←
(
∂f(x, y1, ..., ym)

∂x

)T
x̂. (5.2.18)

In particular, note that if the function f does not take x as input, the adjoint x̂ has
to be set to zero in order to avoid that it participates in later adjoint instructions,
because previous forward instructions modifying x were overwritten by the current
instruction.
The adjoint variables ŷi, x̂ are initialized with the negative derivative of the cost func-
tion: ŷi = − ∂J

∂yu
, x̂ = −∂J

∂x .

• Loops:

E :
for i = 1, ..., n do
Ei

end for
⇒ Ê :

for i = n, ..., 1 do
Êi

end for
The loops are processed in reverse order.

• If-Statements:

E :

if C then
E1

else
E2

end if

⇒ Ê :

if C then
Ê1

else
Ê2

end if
No change to the order of execution, the value of the condition C has to be stored
from the forward pass or reevaluated.

5.2.4. Examples

In the previous section we presented two views on computing the adjoint problem. Here,
we will show by some examples how they are used and in which points they show differ-
ences.

• Simple function

u2 = f(u1, {p1, p2}) := u3
1 + sin(p2

1)p2

m
E2(u2, {u1, p1, p2}) := u2 − f(u1, {p1, p2}) = 0
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5.2. General Adjoint Method

The external input to the adjoint code is the gradient with respect to the output u2,
g = ∂J

∂u2
.

– Matrix view:
A = ∂E2

∂u2
= 1, F = − ∂E2

∂p1,p2
=
(
2p1 cos(p2

1)p2, sin(p2
2)
)

Solve AT û2 = g → û2 = g.
Return

(
∂J
∂u

)T du
dp = û2

TF = gT
(
2p1 cos(p2

1)p2, sin(p2
2)
)
∈ R1,2.

– Instruction view:
Initialize û2 = g.
If û1, p̂1, p̂2 have not been used before, initialize them with zero.
Back-propagate
û1 += 3u2

1û2,
p̂1 += 2p1 cos(p2

1)p2û2,
p̂2 += sin(p2

2)û2

Then the gradient is directly given as:(
∂J
∂u

)T du
dp = (p̂1

T , p̂2
T ) = gT

(
2p1 cos(p2

1)p2, sin(p2
2)
)
∈ R1,2.

• Linear system

u = f(p) := M−1Bp

m
E(u, p) = Mu−Bp = 0

with u ∈ Rn, p ∈ Rm,M ∈ Rn,n, B ∈ Rn,m. The external input to the adjoint code is
the gradient with respect to the output u2, g = ∂J

∂u2
∈ Rn,1.

– Matrix view:
A = ∂E

∂u = M , F = −∂E
∂p = B

Solve AT û = g → û = M−T g

Return
(
∂J
∂u

)T du
dp = ûTF =

(
M−T g

)T
B ∈ R1,m.

– Instruction view:
Initialize û = g.
If p̂ has not been used before, initialize it with zero.
Back-propagate p̂ += ∂f

∂p

T
û =

(
M−1B

)T
û = BTM−T û

Return
(
∂J
∂u

)T du
dp = p̂T =

(
BTM−T g

)T
=
(
M−T g

)T
B ∈ R1,m.

Both approaches lead to the same result, as expected, but their usage of the "adjoint vari-
ables" is different. The Matrix view computes the adjoint variables (y) and the derivative
with respect to the controls (F ) separately, while the Instruction view directly evaluates
the product (yTF ) into the adjoint variables of the control parameters. They are equal if
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5. Inverse Simulation

the operation Ei has the form of a function ui = fi(ui−1) that only takes the previous state
as input and has no dependency to parameters that are optimized for.

The advantage of the Instruction view is a simplified model because the matrix F does
not have to be computed separately. Moreover, the memory footprint might be lower be-
cause y and F don’t need to be stored explicitly, only their product in the adjoint variables
of the controls. The disadvantage is that it is harder to add more control variables later on.

We will switch between the matrix view and instruction view in the adjoint code based
on which gives the simpler expression. Generally, we’ll use the matrix view for the "big
picture" to allow a simple plug-in of different derivatives of control parameters and for
expressions that involve the solution of system of linear equations, while we use the in-
struction view for helper functions. Table 5.1

.

contains a reference of commonly used ex-
pressions and their adjoint version that are used later on.

5.2.5. On Testing Adjoint Code

The meaning of the adjoint variables is not always obvious, so we’ll present a simple ran-
domized method to validate the adjoint code. Suppose we have a forward function

y = f(x) , x ∈ Rn, y ∈ Rm

and have written the adjoint function (that might need the input and output of the forward
function again)

x̂ = f̂(ŷ, x, y) =

(
∂f

∂x

)T
ŷ , ŷ ∈ Rm, x̂ ∈ Rx.

Then for sufficiently many trials, generate a random input xrnd and a random adjoint out-
put ŷrnd and compare the adjoint code with a numerical derivative using the following
equality:

∀i ∈ {1, .., n} :

eTi f̂ (ŷrnd) = eTi

(
∂f

∂x

)T
ŷrnd

!
=

(
∂f

∂x
ei

)T
ŷrnd =

(
lim
ε→0

f(xrnd + εei)− f(xrnd)

ε

)T
ŷrnd.
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5.2. General Adjoint Method

Table 5.1.: Reference of basic operations and their adjoint [63

.

, 75

.

].
All assignments in the adjoint are to be treated additively, e.g. Â += X̂ in the
first entry

Constraints Forward Code Adjoint Code
a) A,B,X ∈ Rn×m X = A+B Â, B̂ = X̂

b) A,X ∈ Rn×m, α ∈ R X = αA

Â = αX̂

α̂ =
∑
i,j

AijX̂ij = vec(A) • vec(X̂)

c) x, y ∈ Rn, α ∈ R α = xT y = x • y
x̂ = α̂y

ŷ = α̂x

d) A ∈ Rn×k, B ∈ Rk×m, X ∈ Rn×m X = AB
Â = X̂BT

B̂ = AT X̂

e) x, b ∈ Rn, A ∈ Rn×n Solve Ax = b for x

Input: x̂

Solve AT b̂ = x̂ for b̂

Â = b̂xT

f) A ∈ Rn×m, B ∈ Rm×m, X ∈ Rn×n X = ABAT
Â = X̂TABT + X̂AB

B̂ = AT X̂A

g) A,B ∈ Rn×n, x, y ∈ Rn y = AB
(
ATx− x

) Â = xŷTAB + ŷxTABT − ŷxTB

B̂ = AT ŷ
(
ATx− x

)T
x̂ = ŷAB

(
AT − 1

)
h) A,B,X ∈ Rn×n X = AB−1

Â = X̂B−T

B̂ = −B−TAT X̂B−T

i) A,X ∈ Rn×n X = A−T Â = −XX̂TX

j) n ∈ N operations Ei

for i = 1, ..., n do
Ei

end for

for i = n, ..., 1 do
Êi

end for

k) operations E1, E2

if C
E1

else
E2

end if

if C
Ê1

else
Ê2

end if
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5. Inverse Simulation

5.3. Adjoint Method for Soft Body Simulations

In this section we present the adjoint version of the elasticity simulation on the grid simu-
lation. First, as a recapitulation, the full forward simulation is given in Alg. 5.1

.

.

Algorithm 5.1 Full forward simulation for the regular grid discretization

Input: Reference configuration φ(0), elasticity parameters (λ, µ,m, ...)
1: Precompute the lumped mass matrix M . See Sec. 4.4.2

.

and Eq. (2.5.14

.

)
2: Precompute the body forces fbody . See Sec. 4.4.2

.

and Eq. (2.5.16

.

)
3: Initialize the states u(0), u̇(0)

4: for t=1,...,T do
5: Compute collision forces f (t)

collision . See Sec. 2.8

.

6: Compute stiffness matrix K(t) and corotation forces f (t)
rot . See Sec. 4.4.1

.

7: Final force vector f (t) = fbody + f
(t)
collision + f

(t)
rot

8: Compute Newmark matrices A(t), b(t) . See Sec. 4.4.3

.

9: Solve for the next displacements A(t)u(t) = b(t) . See Sec. 4.4.4

.

10: Compute the new velocity u̇(t) . See Eq. (2.6.3

.

)
11: Diffuse the displacements over the whole grid u(t)

grid . See Sec. 4.4.5

.

12: Compute the advected levelset φ(t) . See Sec. 4.4.5

.

13: end for

In the next sections we’ll present the possible choices for a cost function, followed by the
adjoint versions of the individual steps of Alg. 5.1

.

.

5.4. Cost Function

In inverse problems, the cost function J(u) → R measures the difference between the
current solution and the target solution.

Furthermore, the cost function can also be used to penalize violations in the physical
model as a prior. These weak physical constraints are used e.g. in Pan and Manocha [62

.

].
In our case, the physical constraints are enforced strongly by the forward and adjoint sim-
ulation. Hence the cost function consists sorely of the difference of the current solution to
the target solution, plus optional priors on the model parameters.

For the grid simulation, there are several different ways to define a cost function, as
presented in the following sections.
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5.4. Cost Function

5.4.1. Differences on the Displacements

The simplest cost function penalizes only the differences in the displacements and veloci-
ties on the active cells:

J(u) :=
T∑
t=1

1

2
wt

∥∥∥u(t) − uref(t)

∥∥∥2
+

1

2
vt

∥∥∥u̇(t) − u̇ref(t)

∥∥∥2

gu(t) =
∂J

∂u(t)
:= wt

(
u(t) − u(t)

ref

)
gu̇(t) =

∂J

∂u̇(t)
:= wt

(
u̇(t) − u̇(t)

ref

)
. (5.4.1)

This cost function is often used in the inverse elasticity problems on tetrahedral meshes
where the target configuration is defined by the positions of the mesh vertices. It is used
in slightly modified versions e.g. in Pan and Manocha [62

.

] or Coros et al. [20

.

].
For the grid simulation, we observe the following:

Advantage: No advection and diffusion steps are needed, only the displacement from the
elasticity simulation is needed.
Disadvantage: This cost function requires that the displacements are directly observed,
which is e.g. not the case if the target is based on 3D reconstructions.

5.4.2. Differences on the Levelset

Next, we can define the cost function as the squared differences on the whole levelset:

J(φ) :=
T∑
t=1

1

2
wt

∥∥∥Wt �
(
φ(t) − φ(t)

ref

)∥∥∥2

gφ(t) =
∂J

∂φ(t)
:= wtWt �

(
φ(t) − φ(t)

ref

)
.

It penalizes differences between the current level set φ(t) and the reference level set φ(t)
ref

at every timestep. The scalar weighting factors per frame wt are as in the cost function for
the mesh. In addition, we introduce the weighting matrix W that additionally weights the
contribution of the individual nodes in the grid to the cost. For simple scenarios, it can be
set to one everywhere, but it might be used to ignore areas with missing data as well.

This choice of the cost function, however, is in general not optimal. It penalizes differ-
ences in the values of the signed distance function, while a better approach should penalize
differences in the volume represented by the SDF. As an example, suppose we have a re-
gion of the SDF with values of around 10 in the current simulation while the reference SDF
has values of around 15. This would introduce a high cost, while the shape of the object
represented by the SDF is completely unaffected by that change. A value of 10 is outside
and far away from the border.
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5. Inverse Simulation

Figure 5.2.: Simulated observations (small colored dots) of a deformed object

A better approach was proposed by McNamara et al. [51

.

]. They use a smooth differen-
tiable function γ defined as

γ(x) :=
2

π
tan−1(x), (5.4.2)

that is applied to the SDFs before the comparison:

J(φ) :=

T∑
t=1

1

2
wt

∥∥∥Wt �
(
γ(φ(t))− γ(φ

(t)
ref)
)∥∥∥2

. (5.4.3)

The function γ smoothly truncates positive values to +1 and negative values to −1 and
thus penalizes only differences near to the zero level.

For the grid simulation, we observe the following:
Advantage: Direct comparison with the observed level set.
Disadvantage: Adjoint code of the advection and the optional SDF reinitialization is nu-
merically very unstable, see Sec. 5.5.1

.

.

5.4.3. Distance to Point Clouds

The third alternative for the cost function uses sparse point clouds of the object surface
as observation. When RGB-D cameras like the Kinect camera are used to observe the
reference object, they don’t provide directly a dense level set of the whole scene, but rather
sparse points on the boundary. These sparse points can be directly used in this new cost
function. An example of these sparse observations in 2D can be seen in Fig. 5.2

.

.
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5.4. Cost Function

Let N (t) be the number of observations in timestep t and let xt,i be the positions of these
observations in space. Since the camera observes points on the surface of the object, the
value of the SDF should be zero at these observations, hence

J(φ) :=
T∑
t=1

N(t)∑
i=0

wt,i
1

2

(
φ(t)(xt,i)

)2
. (5.4.4)

We found a way to express φ(t)(xt,i) analytically with φ(0) (the SDF of the reference config-
uration) and u(t) (the current displacements) without advecting the whole SDF, see below.
This allows us to use observed depth images as reference in a computationally cheap way.

Advantage: Uses directly the camera observations, no global levelset advection needed.
Disadvantage: Quality of the gradient depends on how well the observations cover the
surface of the object.

For an efficient computation of φ(t)(xt,i), we require two assumptions. First we assume
that the displacements u(t) from the elasticity simulation do not destroy the signed dis-
tance property of φ, then we can represent φ(t) as

φ(t)(x) ≈ φ(0)
(
x + u(t)(x)−1

)
. (5.4.5)

This approximation is best (up to equality) near the boundary of the object but grows
worse with increasing distance. The full advection solves this issue with a reinitialization
step.

The difficulty now arises from the fact that we need the inverse displacement and can’t
just use the negative displacement, see Sec. 2.5.2.5

.

for a detailed analysis of this problem.

Assume that we know the point x′ with x = x′+ u(t)(x′) (and hence x′ = x+ u(t)(x)−1).
This point is located in some cell i, j, k. Let x′i,j to x′i+1,j+1,k+1 be the reference location of
the eight corners of the cell (located on a regular grid) and let xi,j,k to xi+1,j+1,k+1 be the
displaced location of these eight corners. Then the location of point x′ is computed by a
trilinear interpolation of the eight reference corner locations with the interpolation weights
α, β, γ.

The second assumption is that these interpolation weights within the cell don’t change
during the advection. In other words, x′ is interpolated between x′i,j,k to x′i+1,j+1,k+1 with
the same weights as x is interpolated between xi,j to xi+1,j+1,k+1 (see Fig. 5.3

.

). Hence we
can use the interpolation weights from the interpolation of the position also to interpolate
the SDF values. This allows us to formulate the following algorithm in order to compute
φ(t)(x) (Alg. 5.2

.

):
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x′i,j+1 x′i+1,j+1

x′i,j x′i+1,j

x′

α

β
u

xi,j+1

xi+1,j+1

xi,j

xi+1,j

x

α

β

Figure 5.3.: Interpolation on the reference and deformed configuration

Algorithm 5.2 Compute φ(t)(x) based on φ(0) and u(t)

Input: The observed point x
1: for each cell i, j, k do
2: Solve x = interpolate(xi,j , ..., xi+1,j+1,k+1;α, β, γ) for α, β, γ
3: if (α, β, γ) /∈ (0, 1)3 then continue . x is not in the current cell
4: return φ(t)(x) = interpolate(φ

(0)
i,j , ..., φ

(0)
i+1,j+1,k+1;α, β, γ)

5: end for

For an efficient implementation of Alg. 5.2

.

with observations from camera images,
it is better to flip the loops: Loop over the cells in parallel, project the deformed cell
into camera space and check only the pixels that are covered by this projection.

The key step in Alg. 5.2

.

is solving for the interpolation weights of the trilinear interpo-
lation. Recall that the standard trilinear interpolation is given as

x = (1− α)(1− β)(1− γ)x1 + α(1− β)(1− γ)x2 + · · ·+ αβγx8

= z1 + αz2 + βz3 + γz4 + αβz5 + αγz6 + βγz7 + αβγz8. (5.4.6)

If x1 to x8 (and hence the derived z1 to z8) are 3D vectors, as it is the case for the corner
positions, this is a system of three equations of first order polynomials in three variables
α, β, γ.

This system of equations can have multiple solutions but at most one solution that lies
within the cell (α, β, γ ∈ (0, 1)). In the 2D case, an explicit solution can be found. This
is, however, in general not possible in 3D. Luckily, a simple Newton iteration converges
within just a few iterations to the solution inside the cell with the start values α = β = γ =
0.5, if such a solution exists. If not, the Newton iteration might not find a solution outside
of the cell, but it will produce a value that lies outside the cell.

The adjoint of Alg. 5.2

.

is simpler than the forward problem: From the forward problem,
the index of the cell that contains x is known, so there is no need to search that cell again.
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Next, the adjoint of the trilinear interpolation with respect to the interpolation weights is
trivial to derive and omitted here. The adjoint of the inverse of the interpolation (solving
for the weights) is more challenging. We could mechanically compute the adjoint of the
Newton iteration, but it is much simpler if we look at that problem as a whole and apply
the Matrix View (see Sec. 5.2.3.1

.

). In 3D we obtain:

E(u = {α, β, γ}, p = {z1, ..., z8})
:= z1 + αz2 + βz3 + γz4 + αβz5 + αγz6 + βγz7 + αβγz8 − x = 0,

A =
∂E

∂u
=

 | | |
z2 + βz5 + γz6 + βγz8 z3 + αz5 + γz7 + αγz8 z4 + αz6 + βz7 + αβz8

| | |

 ,

solve AT

α′β′
γ′

 =

α̂γ̂
γ̂

 , α̂, β̂, γ̂ comes from the adjoint of the interpolation of φ,

F =
∂E

∂p
= −

 | | | | | | | |
1 α β γ αβ αγ βγ αβγ
| | | | | | | |

 ∈ R3,8,

⇒ (ẑ1, ..., ẑ8) =
(
α′, β′, γ′

)
F.

Observe that the matrixA above is exactly the same matrix that appears also in the Newton
iteration.

Last, the adjoint values ẑ1, ..., ẑ8 have to be added to the adjoint values of the displace-
ments on the grid ûi,j,k, ..., ûi+1,j+1,k+1. Therefore, where the previous two cost functions
provided gradients of the displacements on the active nodes, this cost function gives gra-
dients on the whole grid. These are then mapped back to the active nodes with the adjoint
of the displacement diffusion, see Sec. 5.5.2

.

.

5.5. Adjoint of the Individual Steps

For the main adjoint problem, we trace the derivatives back in time. For that, every step of
algorithm Alg. 5.1

.

is replaced by its adjoint version and the order of the steps is inverted.
This is outlined in Alg. 5.3

.

. The details of every step are presented in the next sections.
For the computation of the adjoint simulation, the precomputed massM and body force

fbody, as well as u(t), u̇(t),K(t), A(t) are needed for every timestep.
In the adjoint simulation, we could save all adjoint variables and later compute the gra-

dients of the parameters separately. This is the computation of yTF in the classic adjoint
method in Matrix View. This approach, however, is very memory intensive. Therefore,
we update the adjoint/gradient of the parameters on the fly in an Instruction View fash-
ion, whenever they appear in the equations. This allows us to reuse the same memory for
the adjoint variables of the states (like displacement and intermediate matrices) in every
timestep.
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5. Inverse Simulation

Algorithm 5.3 Full adjoint/backward simulation for the regular grid discretization

Input: All necessary intermediate results from the forward simulation
1: The adjoint variables û(t), ˆ̇u(t) and û(t)

grid are initialized with the gradients from the cost
functions

2: All other adjoint variables are initialized with zero
3: for t=T,...,1 do
4: Adjoint of the advection φ̂(t) → û

(t)
grid . See Sec. 5.5.1

.

5: Adjoint of the displacement diffusion û(t)
grid → û(t) . See Sec. 5.5.2

.

6: Adjoint of the new velocity computation ˆ̇u(t) → û(t), ˆ̇u(t−1), û(t) . See Sec. 5.5.3

.

7: Adjoint of the displacement solve û(t) → Â(t), b̂(t) . See Sec. 5.5.3

.

8: Adjoint of the Newmark matrices Â(t), b̂(t) → m, f̂ (t), K̂(t), ˆ̇u(t−1), û(t) . See Sec. 5.5.3

.

9: Adjoint of the stiffnes matrix f̂ (t), K̂(t) → û(t−1), λ̂, µ̂ . See Sec. 5.5.4

.

10: Adjoint of the collision forces f̂ (t) → û(t−1), ˆ̇u(t−1), p̂plane . See Sec. 5.5.5

.

11: Adjoint of the body forces f̂ → f̂gravity . See Sec. 5.5.6

.

12: end for

The parameters for which we compute the gradients are the following:

• the Lamé coefficients λ̂, µ̂, which are then converted to the gradients of the Young’s
Modulus k and Poisson Ratio ρ,

• the mass of the object m̂,

• the global gravity force f̂gravity,

• the ground plane position and angle p̂plane,

• the Rayleight damping parameters α̂1, α̂2.

5.5.1. Adjoint: Levelset Advection

For the cost function that compares the values of the SDF on the whole grid (Sec. 5.4.1

.

), an
advection step to compute the implicit representation of the current state is needed.

The adjoint code for the advection can be mechanically implemented using the rules
from the Instruction View Method (see Sec. 5.2.3.2

.

). As a proof of concept, we implemented
and successfully applied the adjoint code for the Direct Forward Advection (compare to
Alg. A.2

.

for the forward code) in 2D. The adjoint code can be found in Alg. A.4

.

in the
Appendix. We also tried to compute the adjoint of the Semi-Lagrange advection with the
Shepard-Inversion, but found that the adjoint code of the Shepard-Inversion is numerically
very unstable.

In 3D, only the cost function on the active nodes (see Sec. 5.4.1

.

) or point clouds (see
Sec. 5.4.3

.

) are used, hence we didn’t implement the adjoint of the advection in 3D.
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5.5. Adjoint of the Individual Steps

5.5.2. Adjoint: Displacement Diffusion

The displacement diffusion (compare to Sec. 4.4.5

.

for the forward version) requires a linear
system to be solved for every dimension. From 5.1.e)

.

we know that in the adjoint simula-
tion, we solve for the adjoint variables based on the transposed matrix. Since the diffusion
matrix is symmetric, the same matrix as in the forward step can be used.

The mapping from û
(t)
grid to the vector for the linear solve, and the mapping from the

solution to û(t) is a direct translation of the forward code and omitted here.

5.5.3. Adjoint: Newmark Time Integration

The newmark time integration consists of three parts: the assembly of the matrix A and
right hand side b, solving the linear system for u(t), computing the new velocity u̇(t).

First, the adjoint of the velocity computation Eq. (2.6.3

.

), applying the results from Tab.5.1

.

,
is given by

û(t) +=
1

θ∆t
ˆ̇u(t) (5.5.1a)

ˆ̇u(t−1) +=

(
1− 1

θ

)
ˆ̇u(t) (5.5.1b)

û(t−1) +=
−1

θ∆t
ˆ̇u(t). (5.5.1c)

Next, the adjoint of the linear system of equations A(t)u(t) = b(t) was already presented
in Tab. 5.1.e)

.

. Since A(t) is symmetric, we can use the same conjugate gradient solver as in
the forward step:

Solve A(t)xtmp = û(t) for xtmp (5.5.2a)

b̂(t) += xtmp (5.5.2b)

Â(t) += xtmp

(
u(t)
)T

. (5.5.2c)

Note that in the last step, the sparsity pattern of A(t) is preserved in Â(t). Therefore, the
outer product xtmp

(
u(t)
)T

is only evaluated at the non-zero entries of Â(t).
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5. Inverse Simulation

Finally, the adjoint of the matrix computation Eq. (2.6.2

.

), again applying the results from
Tab.5.1

.

, is given by

f̂ (t) += ∆tb̂(t) (5.5.3a)

ˆ̇u(t−1) +=
1

θ
Mb̂(t) (5.5.3b)

û(t−1) +=

((
1

θ∆t
+ α1

)
M + (α2 − (1− θ)∆t)K(t)

)
b̂(t) (5.5.3c)

m̂ +=
1

θ
b̂(t)
(
u̇(t−1)

)T
+

(
1

θ∆t
+ α1

)
b̂(t)
(
u(t−1)

)T
+

(
1

θ∆t
+ α1

)
tr
(
Â(t)

)
(5.5.3d)

K̂(t) += (α2 − (1− θ)∆t) b̂(t)
(
u(t−1)

)T
+ (α2 + θ∆t)Â(t) (5.5.3e)

α̂1 += vec(M) •
(
Â(t) + b̂(t)

(
u(t−1)

)T)
(5.5.3f)

α̂2 += K(t) •
(
Â(t) + b̂(t)

(
u(t−1)

)T)
. (5.5.3g)

The transposition of the matrices are omitted here since M,K,D are all symmetric. For
the mass matrix we assumed a uniform mass, hence M = mM0 with M0 being the mass
distribution, see Eq. (2.5.14

.

).

5.5.4. Adjoint: Stiffness Matrix

For the stiffness matrix K(t), we have to compute the adjoint of Alg. 4.1

.

, while collecting
the adjoint variables of û(t−1) and the Lamé coefficients λ̂ and µ̂.

For the corotational correction, the polar decomposition F = RS has to be computed.
An analytic derivative of the polar decomposition was proposed by Feppon [28

.

, Proposi-
tion 2.23, p. 74]. It requires the eigenvalue decomposition of S, which can be computed
with the algorithm given by Smith [74

.

]. It is, however, computational cheaper to compute
the adjoint of the iterative procedure in Eq. (4.4.9

.

) in our case. Applying the results from
5.1.i)

.

and 5.1.j)

.

gives rise to the following adjoint algorithm:

F̂ = R̂

F̂ =
1

2

(
F̂ −

(
R(t)

)−T
F̂ T
(
R(t)

)−T)
for t = T, ..., 1. (5.5.4)

The Lamé coefficients λ and µ are used linearly in the blocked element stiffness matrices
Ki,j (Eq. (4.4.5

.

)) and in the Nietsche Dirichlet blocked matrices KDj,c (Eq. (4.4.16

.

)). The
per-element derivatives with respect to λ and µ are easy to derive and denoted by ∂λKi,j ,
∂µKi,j , ∂λKDj,c and ∂µKDj,c.

The final adjoint version of Alg. 4.1

.

is sketched in Alg. 5.4

.

.
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5.5. Adjoint of the Individual Steps

Algorithm 5.4 Sketched kernel code for the computation of the block Ki,j

1 //Launched with a work size of 64
2 __global__ void GridComputeStiffnessMatrixKernelAdjoint(...) {
3 int elementIdx = blockIdx.x; //element index e
4 int i = threadIdx.x % 8; // threadIdx.x goes from 0 to 63
5 int j = threadIdx.x / 8;
6 float wv[8] = ...; // Fetch the volume integration weights wv(e, i) from memory
7 float mapping[8] = ...; // Fetch the mapping indices s(e, i) from memory
8
9 real adjLambdaPart, adjMuPart = 0;

10
11 //ADJOINT: Find the position of Ki,j in the large sparse matrix K
12 real adjKePart;
13 for (int k = JA[mapping[i]]; k < mapping[mapping[i]+1]; ++k) {
14 if (IA[k] == mapping[j]) { // inner index matches
15 adjKePart = adjKData[k];
16 }
17 }
18
19 //ADJOINT: Dirichlet boundaries
20 if (isDirichlet(elementIdx)) {
21 adjLambdaPart += wb[i]*vec(adjKePart).dot(vec(∂λKDj,i))
22 + wb[j]*vec(adjKePart).dot(vec(∂λKDT

i,j));
23 adjMuPart += wb[i]*vec(adjKePart).dot(vec(∂µKDj,i))
24 + wb[j]*vec(adjKePart).dot(vec(∂µKDT

i,j));
25 }
26
27 //ADJOINT: Corotation
28 real3 adjFi = adjForce[mapping[i]];
29 //KePart before the correction, FPart, F and rot are recomputed
30 real3x3 adjRot = 0;
31 //Adjoint of Ke ← ReKe(Re)Tue (Eq. (4.4.7

.

)), see Tab. 5.1.f)

.

32 adjRot += adjKePartT*rot*KePart
T+adjKePart*rot*KePart;

33 adjKePart = rotT*adjKePart*rot;
34 //Adjoint of fe ← fe −ReKe((Re)Txe − xe) (Eq. (4.4.6

.

)), see Tab. 5.1.g)

.

35 adjRot -= pos*adjFi
T
*rot*KePart + adjFi*pos

T
*rot*KePart

T - adjFi*pos
T
*KePart;

36 adjKePart -= rotT*adjFi*(rot
T
*pos-pos)

T;
37 //reduce adjRot into thread 1 over all 64 threads with __shfl_down and shared memory
38 adjRot = ...;
39 //Adjoint of the polar decomposition
40 __shared__ real3x3 adjFPart = 0;
41 if (j==0 && i==0) {
42 real3x3 adjF = polarDecompositionAdjoint(adjRot); //See Eq. (5.5.4

.

)
43 adjFPart = 0.25 * adjF;
44 }
45 if (j==0) {
46 //adjoint of FPart, see Eq. (4.4.8

.

)
47 real3 adjDispPart = adjFPart*(make_real3(i&1?1:-1, i&2?1:-1, i&4?1:-1)/h);
48 atomicAdd(adjLastDisplacements + mapping[i], adjDispPart);
49 }
50
51 //ADJOINT: computation of Ki,j

52 for (int c=0; c<8; ++c) {
53 adjLambdaPart += wv[c]*vec(adjKePart).dot(vec(∂λKi,j));
54 adjMuPart += wv[c]*vec(adjKePart).dot(vec(∂µKi,j));
55 }
56 atomicAdd(adjLambda, adjLambdaPart); //Reduction into global memory with atomics
57 atomicAdd(adjMu, adjMuPart);
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5. Inverse Simulation

The adjoint variables λ̂ and µ̂ are converted into the adjoint variables of the Young’s
Modulus k̂ and the Poisson’s Ratio ρ̂ via

k̂ +=
1

2(1 + ρ)
µ̂+

ρ

(1− 2ρ)(1 + ρ)
λ̂ (5.5.5a)

ρ̂ +=
−k

2(1 + ρ)2
µ̂+

(
−kρ

(1− 2ρ)(1 + ρ)2
+

k

(1− 2ρ)(1 + ρ)
+

2kρ

(1− 2ρ)2(1 + ρ)

)
λ̂. (5.5.5b)

5.5.5. Adjoint: Collision Forces

Collision Forces are generated by virtual springs as described in Sec. 2.8

.

. The input to the
forward simulation are the current displacement u(t), velocity u̇(t) and the ground plane
in Hessian normal form (direction nplane, distance dplane, combined in pplane). The outputs

are the collision forces f (t)
collision that are added to the body forces.

Before the adjoint code of the collision resolution is presented, several helper functions
have to be defined. Recall that the softmin-function is defined as r = softminα(x, 0) :=
− ln(1 + e−xα)/α (see Eq. (2.8.3

.

)) and the time derivative as ṙ = ∂
∂tsoftminα(ẋ, 0) = 1

1+eẋα

(see Eq. (2.8.4

.

)). The adjoint versions are given by

x̂ = adjSoftminα(r̂, x) =
r̂

1 + exα
(5.5.6a)

ˆ̇x = adjSoftminDtα(ˆ̇r, ẋ) =
−ˆ̇rαeẋα

(1 + eẋα)2
. (5.5.6b)

Further, we have to define the distance of a point to the ground. Given the ground plane
in Hessian normal form with unit normal vector nplane and distance from the origin dplane,
the distance of a point to the plane is given by

d = dist(x) := nplane • x+ dplane (5.5.7)

and the respective time derivative ∂
∂tdist(ẋ) is given by

ḋ = distDt(ẋ) = nplane • ẋ . (5.5.8)

Further, the direction of the repulsive forces are simply n := nplane. The adjoint of the
ground distance is then given by

adjDist(d̂, n̂;x) : n̂plane += n̂+ d̂ x; d̂plane −= d̂; x̂ += d̂ dplane (5.5.9)

and the respective adjoint of the time derivative is given by

adjDistDt( ˆ̇
d; ẋ) : n̂plane += d̂ ẋ; ˆ̇x +=

ˆ̇
d dplane . (5.5.10)

The final adjoint algorithm is sketched in Alg. 5.5

.

, it is threaded over each active cell in
parallel. The softmin constant α and the ground stiffness k are treated as meta parameters.

Because dplane is assumed to be normalized, the orientation of the ground plane has
actually only two degrees of freedom. Therefore, we convert the direction vector into
spherical coordinates φ, θ and optimize over them.
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5.5. Adjoint of the Individual Steps

Algorithm 5.5 Sketched kernel code for the computation of the block Ki,j

1 __global__ void GridApplyCollisionForcesKernelAdjoint(...) {
2 int idx = ...; //current index of the processes cell
3 //fetch the reference position, displacement, velocity, SDF, adjoint forces at corners
4 real3 refPosX[8], dispX[8], velX[8], sdfX[8], adjForceX[8] = ...;
5 real3 posX[8]; for (int i=0; i<8; ++i) posX[i]=refPosX[i]+dispX[i];
6 //initialize adjoint variables
7 real3 adjDispX[8], adjVelX[8] = {};
8 real3 adjPlaneNormal = 0; real adjPlaneDistance = 0;
9 //the constant table EDGES contains the corner indices of each of the 12 edges

10 static const int2 EDGES[12] = ...;
11 for (int e=0; e<12; ++e) { //now loop over all edges of the cell
12 //find intersection of the surface with the current edge (if it exists)
13 real i = sdfX[EDGES[e].x] / (sdfX[EDGES[e].x-sdfX[edges[e].y);
14 if (i<0 i>1) continue;
15 //get interpolated collision point on the edge
16 real3 pos = posX[EDGES[e].x]*(1-i) + posX[EDGES[e].y]*i;
17 real3 vel = velX[EDGES[e].x]*(1-i) + velX[EDGES[e].y]*i;
18 //forward simulation: collision force
19 real d = dist(pos); //see Eq. (5.5.7

.

)
20 real dDt = distDt(vel); //see Eq. (5.5.8

.

)
21 real smin = softmin(d); //see Eq. (2.8.3

.

)
22 real sminDt = softminDt(d); //see Eq. (2.8.4

.

)
23 real fCurrent = -k*smin;
24 real fDt = -k*sminDt*dDt;
25 real fNext = fCurrent + timestep*fDt; //see Eq. (2.8.2

.

)
26 real f = theta*fNext + (1-theta)*fCurrent; //final force strength, see Eq. (2.6.4

.

)
27 real3 fVec = normal * f;
28 //in the forward code, this force is blended into the output forces at the corners
29 //forceX[EDGES[e].x]+=(1-i)*fVec; forceX[EDGES[e].y]+=i*fVec;
30 //ADJOINT: blend forces
31 real3 adjFVec = (1-i)*adjForceX[EDGES[e].x]+i*adjForceX[EDGES[e].y];
32 //ADJOINT: collision force (line by line)
33 real3 adjNormal, adjVel, adjPos = 0; real adjF, adjFNext, adjFDt, ... = 0;
34 adjNormal += f*adjFVec; adjF += dot(adjFVec, normal);
35 adjFNext += theta*adjF; adjFCurrent += (1-theta)*adjF;
36 adjFCurrent += fNext; adjFDt += timestep*adjFNext;
37 adjSminDt += -k*dDt*adjFDt; adjDDt+=-k*sminDt*adjFDt;
38 adjSmin += -k*adjFCurrent;
39 adjD += adjSoftminDt(adjSminDt);
40 adjD += adjSoftmin(adjSmin);
41 adjVel, adjPlaneDistance += adjDistDt(adjDDt);
42 adjPos, adjPlaneDistance, adjPlaneNormal += adjDist(adjD);
43 //ADJOINT: interpolated collision point
44 adjVelX[EDGES[e].x]+=(1-i)*adjVel; adjVelX[EDGES[e].y]+=i*adjVel;
45 adjDispX[EDGES[e].x]+=(1-i)*adjPos; adjDispX[EDGES[e].y]+=i*adjPos;
46 }
47 //add-reduce the adjoint displacements and velocities into the global vector,
48 //as well as the adjoint ground plane adjPlaneDistance, adjPlaneNormal.
49 //...
50 }
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5. Inverse Simulation

5.5.6. Adjoint: Body Forces

In the forward problem, two values are precomputed: the body forces fbody based on the
global gravity fgravity ∈ R3, and the lumped mass matrixM = mM0. The mass was already
handled in the adjoint of the Newmark matrices, see Sec. 5.5.3

.

.
The adjoint of fgravity is computed as

f̂gravity = f̂ (t) • f0, (5.5.11)

where f̂ (t) is the adjoint of the current force as computed in Eq. (5.5.3a

.

). f0 is the force
density and computed exactly as fbody by replacing fgravity with (1, 1, 1).

5.6. Optimization Algorithm

Now, all steps in the adjoint simulation are described. Taken together, we have a function
g : RP → R that performs the elasticity simulation given the current parameters p ∈ RP
and computes the value of the cost. Furthermore, we have a way to evaluate the gradient
given by the adjoint variables p̂ = ∇g(p). This function can now be plugged into optimiza-
tion routines.

As a first option, we use a simple gradient descent: Starting from an initial guess p0, the
next step is obtained by pt+1 = pt − γt∇g(pt). The step size γt is thereby computed with
the Barzilai-Borwein method [29

.

].
As a second option, we use the L-BFGS method [16

.

] as implemented in Eigen by Qiu [64

.

].
The L-BFGS method as a Quasi-Newton method results in an adaptive step size for each
of the optimized parameters. This is a big advantage over the simple gradient descent be-
cause the different parameters differ strongly in scale and importance for the cost function.
This leads to a faster convergence of the L-BFGS over the gradient descent.

One might argue that a Gauss-Newton method could be used as an optimizer since all
terms in the cost functions (see Sec. 5.4

.

) are sums of squared functions
∑N

i fi(p)
2. Gauss-

Newton, however, is not applicable in our case: First, in the case of sparse point clouds
as cost function, N = T · Nt is quite large with T being the number of timesteps and Nt

the average number of observed points per timestep. Second, Gauss-Newton requires the
gradient of each function in the sum∇fi(p). This is not possible in the adjoint framework:
The adjoint simulation immediately reduces the gradient of the squared differences of ob-
served points to the adjoint of the displacements. These are then traced back through time
resulting in the final adjoint values of the paramters. The recovery of the gradients per fi
is not possible.

5.7. Memory Consumption

Until now, the memory required to evaluate a single optimization step is quite high, espe-
cially with many timesteps in the simulation. LetNv be the number of active nodes and let
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5.8. Analysis of the Gradients

Ng be the number of nodes in the whole grid. For an estimate of the memory requirements,
we collect the variables that are stored in every timestep:

• Displacement and velocity u(t), u̇(t), require 2 ∗Nv ∗ sizeof(real3) = 32Nv bytes.

• Adjoint of the displacement and velocity û(t), ˆ̇u(t), requires 32Nv bytes.

• Displacement on the whole grid u(t)
grid, require 2 ∗Ng ∗ sizeof(real3) = 16Ng bytes.

• Adjoint of the displacement on the whole grid u(t)
grid, requires 16Ng bytes.

• Stiffness matrixK(t) and force f (t). From Sec. 4.6

.

we know that the matrix has around
25 entries per row, hence 25Nv entries in total. Therefore, K(t) and f (t) require Nv ∗
(sizeof(real3) + 25 ∗ sizeof(real3x3)) = 1216Nv bytes.

• Newmark matrix A(t) and right-hand-side b(t) require also 1216Nv bytes.

In the dragon benchmark (see Sec. 5.9

.

), we have Nv = 13, 575 and Ng = 84, 672. If we
simulate for 300 timesteps, this would require approximately 11 GB. This is way to much
to fit into memory.

From the list above, we see that the most expensive entries are the matrices. Further-
more, from the timings in Sec. 4.6

.

we know that the computation of the stiffness matrix
and collision forces only take a very small amount of time compared to solving the lin-
ear system. Therefore, we only store the solutions of the elasticity and diffusion solve
(u(t), u̇(t), u

(t)
grid) and recompute the stiffness matrix, collision force and Newmark matrix in

the adjoint step. Moreover, we don’t need to evaluate the cost function for every timestep
before the adjoint step. The adjoint step requires only the adjoint variables of the current
timestep and the previous timestep. Therefore, we interleave the evaluation of the cost
function and its gradients with the computation of the adjoint. Thus, we don’t need to
store the adjoint versions of the displacements.

With these optimizations, the memory requirement drops to around 540 MB or less than
5% of the memory requirement before the optimization. An increase in the time to eval-
uate a single adjoint step could not be measured. This is because the evaluation time is
dominated by the linear system solvers so that the additional evaluation of the stiffness
matrix falls within the uncertainty of the time measurements.

5.8. Analysis of the Gradients

To test the adjoint simulation and get insights into how the individual parameters behave
and contribute to the cost function, we analyze the gradient of the cost function with re-
spect to individual parameters.

For all parameters except the ground position for the collision, the test case in Fig. 5.4

.

is
used. For the ground position, the test case in Fig. 5.5

.

is used instead. As a cost function,
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5. Inverse Simulation

Figure 5.4.: First test case for all examples except collision, 40 timesteps

Figure 5.5.: Second test case for the collision gradients, 30 timesteps
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5.8. Analysis of the Gradients

the squared differences on the displacements (Sec. 5.4.1

.

) are used. The new sparse point
cloud cost function is evaluated separately, see below. Fig. 5.6

.

plots the cost function value
and the gradients when one parameter is changed and the others are fixed. Only for the
ground plane orientation, the two angles θ and φ are displayed together because they
are intertwined. The arrows indicate the direction of the optimization, i.e. the negative
gradient, scaled in length by a constant factor for each plot for better visual perception. It
is not surprising that each of these plots is convex and hence easy to optimize for.

It becomes more interesting if multiple parameters are optimized jointly. For example,
in Fig. 5.7a

.

, the cost function value and the gradients are plotted for both the Young’s Mod-
ulus and Poisson’s Ratio jointly. One can see that there exists a flat valley with several local
minima. This is a challenge for the optimization since, depending on the initialization, the
optimization will get stuck in such a local minimum. The same problem occurs, for ex-
ample, when jointly optimizing the two Rayleight damping factors, the damping on mass
and on stiffness, in Fig. 5.7b

.

. Again, a long valley can be seen in which the optimization
gets stuck.

Furthermore, the two plots described above (Fig. 5.7a

.

and Fig. 5.7b

.

) also show the steps
taken during the optimization. As initial values, k = 2500, ρ = 0.35, α1 = 0.15, α2 = 0.015
with an initial cost of 464 were chosen. The ground truth values are k = 2000, ρ = 0.3, α1 =
0.1, α2 = 0.01 (the setting that are used in the first test case 5.4

.

). After 8 gradient descent
steps, the final values are k = 1997, ρ = 0.287, α1 = 0.113, α2 = 0.0115 with a cost of 0.2132.
The algorithm converged to a local minimum of quite low cost and relatively close to the
ground truth values. Fig. 5.7c

.

plots the value of the cost function over the course of the
optimization. The first step is very small because of a conservative initial step size. After
that first step, the Barzilai-Borwein method provides adaptive step sizes that lead to a fast
convergence.

As a last test, we’ll evaluate the performance of the sparse point cost function (see
Sec. 5.4.3

.

) under increasing noise. Fig. 5.8a

.

shows the setting that is used: nine simu-
lated cameras with each a resolution of 100x100 pixels. First, Fig. 5.8b

.

shows the gradients
with respect to the Young’s Modulus and Poisson’s Ratio with no additional noise, i.e. a
perfect observation. Besides a different scaling of the cost function values, the result is
indistinguishable from Fig. 5.7a

.

where the cost function on the active displacements was
used. When we add a little bit of Gaussian noise with a variance of 0.1 world units (=0.5
voxels) in Fig. 5.8c

.

the value of the cost functions gets more uniform (depicted by a more
uniform color), but the gradients don’t change. Even with as much as a Gaussian noise
with variance of 5 world units (= 25 voxels), the gradient can still be computed, while
the absolute value of the cost function is almost uniform (Fig. 5.8e

.

). Only the gradient
points to a bit stiffer material. This shows that the sparse point cost function is very robust
against noise with zero mean. The measurement errors seem to completely cancel each
other when being reduced to the gradients of the parameters.
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Figure 5.6.: Gradients for the input parameters
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5.9. Benchmarks and Examples

(a) Joint optimization of Young’s Mod-
ulus and Poisson’s Ratio

(b) Joint optimization of the two
Rayleight damping parameters

(c) Value of the cost function over time

Figure 5.7.: Joint optimization. The black arrows: negated gradient, normalized in length.
The red arrows: steps taken by the optimization

5.9. Benchmarks and Examples

For an analysis of the performance of the presented adjoint framework, we evaluate it at
three larger examples. The number of nodes and cells, as well as the timings for the three
examples can be found in Tab. 5.2

.

. The timings are all per timestep and per optimization
step. Hence, for the time to perform one single optimization step, the timings of the for-
ward step, cost function evaluation and backward step have to be summed and multiplied
with the number of timesteps.

The first test case is a torus that is attached in the top (blue box) and is otherwise allowed
to swing freely, see Fig. 5.9

.

. In this example, the Young’s Modulus and Poisson Ratio
are the unknown parameters. As initial values k = 2200, ρ = 0.32 were chosen (initial
cost is 1.088). The ground truth values are k = 2000, ρ = 0.30. As a cost function, the
sparse point cloud cost function with ten cameras was used, the optimization algorithm
was L-BFGS. Fig. 5.10

.

shows how the optimization behaves over time. The cost function
decreases constantly except for one step. After 19 steps, the optimization settles in a local
minimum with k = 1882 and ρ = 0.2568, with a final cost of 0.2495.

A second test case can be seen in Fig. 5.11

.

. Here, the Standford Bunny is simulated
how it collides with the ground plane, 65 timesteps long. The ground truth values are
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5. Inverse Simulation

(a) Placement of the simulated cameras

(b) No additional noise (c) Additional noise of 0.1 world units

(d) Additional noise of one world unit = five
voxels

(e) Additional noise of five world units

Figure 5.8.: Behavior of the sparse point cost function under different noise settings
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Test Case Swinging Torus Bunny Dragon
# active nodes 9220 3495 13575
# empty nodes 34300 14919 71097

# active cells 7180 2560 9968
# timesteps 30 65 30

forward time per timestep
avg, min, max in seconds

0.211, 0.168, 0.343 0.039, 0.027, 0.095 0.450, 0.188, 0.712

cost evaluation per timestep
avg, min, max in seconds

0.021, 0.186, 0.026 0.0088, 0.0053, 0.065 0.027, 0.012, 0.044

backward time per timestep
avg, min, max in seconds

0.392, 0.211, 0.519 0.077, 0.0039, 0.110 0.900, 0.368, 1.216

Table 5.2.: Timings of the benchmarks

nplane = (−0.011, 0.996,−0.091) (θ = 1.662, φ = 1.582) and dplane = 0.0. As initial values,
nplane = (0.151, 0.957, 0.245) (θ = 1.541, φ = 1.414) and dplane = 0.03 are chosen. This looks
like a small change, but it is quite a difficult problem: The bunny bounces off the ground
in a completely different direction, as seen in Fig. 5.11a

.

and Fig. 5.11b

.

. This is also diffi-
cult for the sparse point cost function because in late timesteps, the initial simulation is so
far away from the observations, that no point-cell correspondence can be found. There-
fore, only the first timesteps after the collision give gradients in the beginning. After a
couple of iterations when the solution approaches the ground truth, also later timesteps
contribute to the cost function. As it can be seen in the plots of the cost function value
and the parameters, the optimizer reaches a local minimum after only a few iterations and
does not move far afterward. The reconstructed values are nplane = (−0.075, 0.994,−0.075)
(θ = 1.646, φ = 1.646) and dplane = −0.042. The simulation when run with these parame-
ters is depicted in Fig. 5.11c

.

, which is perceptually quite close to the ground truth. During
the optimization, a divergence in the CG solver occurred, leading to a greatly increased
cost. This issue is analyzed in detail in Sec. 5.10

.

. Therefore, the optimization was stopped
after 14 iterations, the 15th timestep with the divergence was discarded. If we would con-
tinue, the current parameters would spike to some extreme values, but then slowly recover
to a good solution.

As a third example, we test how good the optimization scales with the degrees of free-
dom in the FE discretization. The dragon in Fig. 5.12

.

consists of almost 10.000 cells. The
head of the dragon is fixed as a Dirichlet boundary while the rest of the body can swing
freely. The simulation is performed for 300 timesteps, but only the first 30 are used in the
optimization. With 30 timesteps, a single step in the optimization takes around 40 seconds.
Because we optimize only for the Young’s Modulus in this case, we use the Gradient De-
scent method as optimizer. The cost function is the sparse point cost with 12 cameras and a
Gaussian Noise with variance of 1 voxel. The ground truth value for the Young’s Modulus
is k = 5000, the initial value for the optimizer is k = 10000 (cost of 5.55) and the recon-
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5. Inverse Simulation

Figure 5.9.: Selected timesteps from the torus benchmark
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Figure 5.10.: Swinging Torus: Optimization of the unknown parameters. Ground truth
values are in red.
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5.9. Benchmarks and Examples
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5. Inverse Simulation

structed value after 18 steps (12 minutes) is k = 4348 (cost of 3.79). We also tried to run the
optimization using the full 300 timesteps but the gradient got too noisy for the Gradient
Descent or L-BFGS to converge. This might be due to numerical errors in the Gradient
Descent solver that accumulate over time and start to influence the gradient negatively.

In all examples, however, the optimizer could never reconstruct the actual ground truth
values. Except for trivial examples with a single parameter, the optimizer will most likely
get stuck in local minima. Possible solutions are discussed in the future work section 6

.

.

5.10. Stability

In rare cases, the conjugate gradient solver in the forward and adjoint step diverges. This
problem occurs more often the larger the system becomes. In the dragon benchmark
above, this was the case for around every thousandth timestep in the forward simulation,
in the bunny benchmark only once for all simulation runs, and never occurred in the torus
test case. Our experiments have shown that this seems to be a purely numerical issue. For
testing purposes, in the case of divergence in the CG, we copied the Newmark matrices
into another math toolkit and could solve the linear system there without any difficulties.
Furthermore, this instability is non-deterministic. Running the simulation again with the
same settings does not reproduce the same errors. The cause for this numerical issue might
be manifold. For example, the CG solver uses atomics at some places for reductions. Since
they don’t define a fixed ordering of operations, non-deterministic numerical cancellation
might be a problem.

If a divergence in the CG occurs in the forward pass during the optimization, the value
of the cost function grows strongly. This happened in the bunny test case above, but the
optimization would recover after a steps. Because recovery of the optimization can’t be
guaranteed, we stop the optimization if such a divergent case is detected.

The same numerical instabilities also occur in the adjoint pass. The use of the sparse
point cost function increases the number of divergent cases. Recall that in the dragon
benchmark only the first 30 timesteps were used in the optimization. With 60 or more
timesteps, the adjoint pass already faces these divergent cases so that a proper computation
of the gradients becomes impossible. In the simpler active displacement cost function, the
numerical issues only start after 200 iterations.

In future work we analyize the described numerical issue in greater detail. A numeri-
cally more accurate solver might already prevent the problem. Since the numerical insta-
bilities only arise in large test cases, they don’t hamper real-time applications with fewer
degrees of freedom than the dragon benchmark.
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6. Conclusion and Future Work

In this thesis we presented a new discretization method for the elasticity simulation on
a regular grid with partially filled cells. In contrast to previous methods, this method
does not require a tetrahedral mesh, but instead works on an implicit representation of the
object via a signed distance function stored on a regular hexahedral grid. The advantage
is that it allows the use of 3D scans as inputs, which are often available directly as a SDF
(e.g. with Kinect Fusion [55

.

]). As a disadvantage, the implementation becomes more
complicated because the integrals have to be evaluated over parts of the cell. Therefore,
the evaluation of a single partially filled hexahedral element takes about 5-6 times longer
than the evaluation of a single completely filled tetrahedral element. This is compensated
by the fact that much more tetrahedral elements are required as hexahedral elements to
achieve the same resolution of the discretization.

Furthermore, we described how to efficiently compute the element matrices and load
vector including the corotation correction on the GPU. Our method makes heavy use of
warp exchange operations to facilitate the best parallelization of the tasks and an optimal
occupancy. The stiffness matrix assembly only requires 1-5% of the time to solve the lin-
ear system. Together with a fast conjugate gradient solver on the GPU, this allows the
simulation to be executed with up to 10,000 elements at interactive frame rates.

Next, we embedded the regular grid discretization in an adjoint framework that allows
us to compute the gradients of some cost functions with respect to the simulation param-
eters. These parameters include the Young’s Modulus, Poisson ratio, gravity as the main
body force, Rayleight damping parameters and the ground plane position for collisions.
The gradients are plugged into a black-box gradient descent or LBFGS-algorithm, which
enables us to recover these parameters from observations. This optimization, however, is
prone to get stuck in local minima. We further showed how to reduce the memory re-
quired for the adjoint simulation by recomputing the stiffness matrix and collision forces
in the adjoint step. Because the execution time is dominated by the conjugate gradient
solver, this method allows to reduce the memory by 95% without a measurable increase of
the computation time.

Lastly, we presented a new cost function that allows us to use sparse point cloud ob-
servations directly in the optimization. These point clouds can e.g. be obtained from 3D
scans. This method allows us to avoid the explicit reconstruction of a signed distance field
or even an optical flow tracing to get the actual displacements on the nodes. We further
showed that this cost function is very robust against noise.

The proposed adjoint simulation, however, still faces several shortcomings that are ad-
dressed in future work. First, the optimization is prone to get stuck in local minima. A
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6. Conclusion and Future Work

proper choice of priors on the simulation parameters might help to avoid these local min-
ima and guides the optimization towards the global optimum. The choice of priors was
not covered in this thesis.

Furthermore, numerical instabilities can occur in the CG solver that lead to divergences
and wrong results in about one in every hundred to one in every thousand timesteps,
depending on the problem size. This seems to be a purely numerical issue in the linear
solver and not a limitation of the method. The linear system can still be solved by an
accurate offline solver on the CPU. In future work we address this problem with a more
accurate solver.

Connected to the above problem, the whole simulation could be accelerated by replacing
the conjugate gradient solver with a multigrid solver. Especially in a multigrid hierarchy,
the partially filled grid cells might be of further advantage since the downscaled SDF can
again be represented by coarser partially filled cells. In addition to a multigrid hierarchy to
solve the elasticity problem per timestep, a multigrid approach over space and time might
also be used. In this approach, the simulation is first solved on a coarse grid in space and
a larger step in time and then refined in a multigrid fashion until the full resolution in
space and time is reached. This might also help to reduce numerical instabilities because
a smaller system in the degrees of freedom and the number of timesteps is used in early
stages when the current guess is still far away from the final solution.

Moreover, we would like to embed this method in a full 3d reconstruction procedure.
This includes the reconstruction of the reference configuration from 3D scans and apply the
sparse point cloud cost function on real-world observations. Another possible application
is in data compression for 3D reconstruction. Instead of storing a full 3D scan for every
timestep, only the first timestep has to be stored as reference configuration and all other
timesteps are predicted by the elasticity simulation.

Furthermore, it might be possible to improve the initial reconstruction with observa-
tions from later timestep. This would be helpful if the initial scan is also affected by some
uncertainty. Moreover, the adjoint simulation could be used in a texture superresolution
framework, in which color observations in later timesteps are mapped back to the refer-
ence configuration with the adjoint of the elasticity simulation and then adds color details
to the reference configuration.
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Appendix

A. Additional Algorithms

Algorithm A.1 Forward code for PLACEINTOMATRIX, see Sec. 2.5.1

.

1: function PLACEINTOMATRIX(K, f,Ke, fe, e)
2: for i ∈ {1, 2, 3} do
3: i′ = s(e, i) . Global index of local node i of element e
4: for j ∈ {1, 2, 3} do
5: j′ = s(e, j)
6: if isDirichlet(i) then
7: pass . vi is zero by definition of V0

8: else if isDirichlet(j) then
9: F (2i′ : 2i′ + 1) += Ke(2i : 2i+ 1, 2j : 2j + 1)uD . Add Dirichlet boundary to

the force
10: else
11: K(2i′ : 2i′ + 1, 2j′ : 2j′ + 1) += Ke(2i : 2i+ 1, 2j : 2j + 1) . regular free node
12: end if
13: end for
14: if !isDirichlet(i) then
15: F (2i′ : 2i′ + 1) += Fe(2i : 2i+ 1)
16: end if
17: end for
18: return K, f
19: end function
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A. Additional Algorithms

Algorithm A.2 Implementation of the Direct Forward Advection method (see Sec. 2.5.2.5

.

)

1: function DIRECTFORWARDADVECTION(φold, u, τ )
2: φnew = 0
3: w = 0 . Accumulated blurring weights
4: for x = 1, ...,width; y = 1, ...,height do
5: v = φold(x, y) . The current value of the levelset
6: p = ( xy ) + ∆tu(x, y) . The target position
7: for x′ = max{1, bpx − τc}, ...,min{width, dpx + τe} do
8: for y′ = max{1, bpy − τc}, ...,min{height, dpy + τe} do

Loop over all cells around the target position that are affected by the blurring kernel
9: d = ||

(
x′

y′

)
− p||2 . Distance to the target

10: if d ≤ τ2 then . Cell is affected by the blurring kernel
11: w′ = exp( d

2(τ/3)2 )

Gaussian kernel, variance is τ
3 so that ≈ 98% of the mass are inside the kernel radius.

Note that no normalization is needed, this is done afterwards.
12: φnew(x′, y′) += w′v
13: w(x′, y′) += w′

14: end if
15: end for
16: end for
17: end for
18: φnew = φnew/w . Normalize
19: Optionally: fill cells with w = 0
20: end function
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Algorithm A.3 Forward code for the rotation correction / Corotational formulation on a
2D mesh (see Sec. 2.7

.

)

1: function CORRECTROTATION(Ke,stiffness,ue)
. Ke,stiffness is the stiffness matrix, ue the dis-

placement of this triangle from the previ-
ous time step

2: di = xi + ue,i, i ∈ {1, 2, 3} . x is the reference position of the vertices

3: Ddef =

(
d1,x − d3,x d2,x − d3,x

d1,y − d3,y d2,y − d3,y

)
4: Dref =

(
x1,x − x3,x x2,x − x3,x

x1,y − x3,y x2,y − x3,y

)
5: J = DdefD

−1
ref . The Jacobi of the deformation

6: if det(J) > ε then . To avoid numerical problems in the case of
very small or no rotations

7: R′ = J + sign(det(J))

(
J2,2 −J2,1

−J1,2 J1,1

)
. Polar decomposition

8: s = 1/
√
R2

1,1 +R2
2,1

9: R = sR′ . Needed to ensure that R is normalized
10: else
11: R = 12

12: end if

13: Re =

R R
R


14: xe = (x1,x2,x3)
15: Ke = ReKe,stiffnessR

T
e

16: Fe = −ReKe,stiffness
(
RTe xe − xe

)
17: return Ke, Fe
18: end function
Note that Ke,stiffness and Dref stays constant for all time steps, are precomputed and treated
as external parameter.
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Algorithm A.4 Adjoint of the Direct Forward Advection method (compare to Alg. A.2

.

, see
Sec. 5.5.1

.

1: function ADJOINTDIRECTFORWARDADVECTION(φ̂new, φold, φnew, u, τ, w)
The input, output and normalization weights from the forward version are needed

2: ŵ = −(φ̂new � φold)/(w � w) . Adjoint of the normalization step
3: φ̂new = φ̂new/w
4: for x = width, ..., 1; y = height, ..., 1 do
5: v = φold(x, y) . The current value of the levelset
6: p = ( xy ) + ∆tu(x, y) . The target position
7: v̂ = 0, p̂ = 0 . Assemble the adjoint values here
8: for x′ = min{width, dpx + τe}, ...,max{1, bpx − τc} do
9: for y′ = min{height, dpy + τe}, ...,max{1, bpy − τc} do

Loop over all cells around the target position that are affected by the blurring kernel
in reversed order

10: d = ||
(
x′

y′

)
− p||2 . Distance to the target

11: if d ≤ τ2 then . Cell is affected by the blurring kernel
12: w′ = exp( d

2(τ/3)2 )

13: ŵ′ = ŵ(x′, y′) . Adjoint of w(x′, y′) += w′

14: v̂ += wφ̂new(x′, y′) ; ŵ′ += vφ̂new(x′, y′) . Adjoint of φnew(x′, y′) += w′v
15: d̂ = −exp( d

2(τ/3)2 ) ŵ′

2(τ/3)2 . Adjoint of w′ = exp( d
2(τ/3)2 )

16: p̂ += 2(p− ( xy ))d̂ . Adjoint of d = ||
(
x′

y′

)
− p||2

17: end if
18: end for
19: end for
20: û(x, y) = ∆tp̂ . Adjoint of p = ( xy ) + ∆tu(x, y)
21: φ̂new(x, y) = v̂ . Adjoint of v = φold(x, y)
22: end for
23: end function

96



B. Tables

Size cuBlas cuMat Eigen Numpy
100 0.0001488 0.0037088 0.0003004 0.00495774
1000 0.0001456 0.00369664 0.0004506 0.00573897
10000 0.0001504 0.00368832 0.0055286 0.0202516
100000 0.00015808 0.0037232 0.0484356 0.160451
1000000 0.00020032 0.00370272 1.614 6.66087
10000000 0.00022208 0.00377824 18.236 73.0739
50000000 0.00022336 0.00571136 93.9108 370.887

Table B.1.: cuMat benchmark: Linear combination with 2 combinations

Combinations cuBlas cuMat Eigen Numpy
1 0.00014336 0.00361568 1.38066 2.96753
2 0.00021216 0.00368544 1.58203 6.78211
3 0.00194784 0.00397888 1.97174 10.4266
4 0.166469 0.00422528 2.0635 14.199
5 0.167558 0.00430688 2.40177 19.0094
6 0.325902 0.00459712 2.65564 21.729
7 0.330418 0.0045984 2.95554 25.8566
8 0.488936 0.00764864 3.31724 29.1512
9 0.48627 0.00508224 3.63084 33.2603
10 0.643359 0.00545568 4.14723 36.7435

Table B.2.: cuMat benchmark: Linear combination with a constant vector size of n = 106
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B. Tables

Size cuBlas cuMat Eigen
10 0.010252 0.00955791 0.0013821
100 0.0121149 0.012815 0.0651417
1000 0.491989 0.405348 2.85587
10000 49.2694 37.1613 302.804

Table B.3.: cuMat benchmark: Sparse matrix - vector multiplication, 2D Poisson matrix

Size cuMat Eigen
10 0.350014 0.0264716
100 3.79062 17.7015
1000 1160.36 15700.8

Table B.4.: cuMat benchmark: Conjugate Gradient benchmark on a 2D diffusion problem
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Te
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Grid
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tio
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5 605 675 25 2175 2496 448 11.733884 20.703704 0.000176 0.000123 0.000060 0.000057 67 42 0.015278 0.009479 0.000128 0.016226 0.000417
6 1014 1309 42 2563 4500 960 12.191321 22.048128 0.000280 0.000180 0.000056 0.000057 83 50 0.016990 0.012588 0.000130 0.015342 0.000441
7 1554 1729 42 3671 7128 1296 12.619048 22.362637 0.000405 0.000225 0.000044 0.000058 99 58 0.019589 0.015888 0.000121 0.016232 0.000437
8 2044 3105 112 3564 9828 2464 12.712329 23.196457 0.000549 0.000384 0.000049 0.000056 102 64 0.022255 0.019141 0.000126 0.014513 0.000466
9 2736 3825 144 4995 13524 3072 12.925439 23.379085 0.000729 0.000454 0.000047 0.000064 113 74 0.027875 0.023716 0.000132 0.016496 0.000617
10 3951 4131 180 6173 19968 3328 13.164515 23.426531 0.001054 0.000449 0.000051 0.000054 136 84 0.034792 0.029373 0.000122 0.017357 0.000581
11 5290 6479 220 6121 27216 5400 13.337996 23.947368 0.001226 0.000663 0.000047 0.000060 144 90 0.043321 0.039636 0.000124 0.015511 0.000605
12 6776 7623 264 7769 35340 6400 13.466942 24.062311 0.001585 0.000783 0.000054 0.000050 140 101 0.046389 0.048389 0.000127 0.016038 0.000620
13 8008 10465 462 7895 42840 8976 13.506993 24.399140 0.001898 0.001039 0.000046 0.000051 154 111 0.056206 0.074547 0.000127 0.016720 0.000848
14 9744 12025 468 10421 52272 10368 13.625205 24.483077 0.002338 0.001207 0.000047 0.000050 166 123 0.075248 0.092076 0.000123 0.021438 0.000829
15 12415 13325 585 11785 67392 11520 13.724124 24.526904 0.003004 0.001333 0.000050 0.000060 170 126 0.088268 0.105245 0.000122 0.026270 0.000944
16 15162 17415 714 11769 83148 15288 13.801741 24.772840 0.003730 0.001747 0.000049 0.000054 174 132 0.108872 0.146607 0.000121 0.034200 0.001178
17 18180 19575 720 14425 99792 17248 13.886029 24.833461 0.004515 0.001944 0.000051 0.000053 169 150 0.123963 0.175925 0.000133 0.027644 0.001411
18 20340 25823 810 13132 112056 23040 13.913471 25.037951 0.005085 0.002580 0.000056 0.000061 171 148 0.130449 0.219857 0.000134 0.038842 0.001591
19 23584 28611 1216 16973 132300 25600 13.958446 25.084862 0.005981 0.002880 0.000053 0.000054 170 162 0.144307 0.267637 0.000144 0.045499 0.001773
20 28373 29733 1360 20031 159744 26624 14.022310 25.097400 0.007200 0.002984 0.000053 0.000063 176 167 0.176455 0.288962 0.000132 0.051075 0.001936

Table B.5.: Benchmark of the Cuboid testcase with Dirichlet boundary conditions
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5 630 675 0 2175 2496 448 12.114286 20.703704 0.000152 0.000110 0.000052 0.000093 51 40 0.010400 0.008629 0.000126 0.016145 0.000327
6 1056 1309 0 2563 4500 960 12.562500 22.048128 0.000245 0.000162 0.000059 0.000088 62 46 0.013219 0.011398 0.000125 0.015510 0.000331
7 1596 1729 0 3671 7128 1296 12.863409 22.362637 0.000371 0.000221 0.000058 0.000098 72 54 0.014821 0.014650 0.000124 0.016845 0.000389
8 2156 3105 0 3564 9828 2464 13.000928 23.196457 0.000564 0.000372 0.000058 0.000103 75 58 0.017998 0.017957 0.000124 0.014743 0.000414
9 2880 3825 0 4995 13524 3072 13.197917 23.379085 0.000761 0.000434 0.000062 0.000100 80 66 0.019676 0.020876 0.000123 0.017118 0.000539
10 4131 4131 0 6173 19968 3328 13.395062 23.426531 0.001065 0.000449 0.000061 0.000097 84 61 0.024543 0.021316 0.000122 0.022711 0.000338
11 5510 6479 0 6121 27216 5400 13.544828 23.947368 0.001277 0.000635 0.000056 0.000110 87 81 0.027262 0.035425 0.000125 0.016463 0.000548
12 7040 7623 0 7769 35340 6400 13.658239 24.062311 0.001635 0.000743 0.000062 0.000112 89 85 0.030039 0.041485 0.000122 0.016788 0.000590
13 8470 10465 0 7895 42840 8976 13.712397 24.399140 0.001986 0.001040 0.000060 0.000123 90 89 0.037797 0.060018 0.000143 0.017039 0.000733
14 10212 12025 0 10421 52272 10368 13.797297 24.483077 0.002416 0.001178 0.000062 0.000134 91 92 0.042818 0.070319 0.000137 0.023863 0.000816
15 13000 13325 0 11785 67392 11520 13.888462 24.526904 0.003135 0.001289 0.000071 0.000145 93 86 0.052413 0.072414 0.000139 0.027782 0.000875
16 15876 17415 0 11769 83148 15288 13.962585 24.772840 0.003872 0.001714 0.000065 0.000159 95 94 0.063794 0.105669 0.000145 0.034047 0.000997
17 18900 19575 0 14425 99792 17248 14.021693 24.833461 0.004671 0.001899 0.000071 0.000167 96 94 0.072698 0.111150 0.000136 0.028838 0.001150
18 21150 25823 0 13132 112056 23040 14.047092 25.037951 0.005255 0.002549 0.000070 0.000205 96 95 0.076682 0.142527 0.000141 0.027264 0.001351
19 24800 28611 0 16973 132300 25600 14.097500 25.084862 0.006179 0.002808 0.000079 0.000212 97 97 0.088623 0.160768 0.000151 0.033257 0.001601
20 29733 29733 0 20031 159744 26624 14.149834 25.097400 0.007484 0.002937 0.000076 0.000213 99 82 0.106839 0.143439 0.000145 0.051823 0.001756

Table B.6.: Benchmark of the Cuboid testcase with ground collision
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C. Additional Equations

Analytic solutions to the 3D partial integrals
Let vi be the value to integrate and φi be the SDF value at node i. Ωe is the part of the cell
that is within the object described by the SDF. It given by

Ωe :=
{
x ∈ [0, 1]3 : trilinear-interpolation(x, φ1, ..., φ8) ≤ 0

}
.

The surface integrals are evaluated by discretizing the current cell using the Marching
Cubes algorithm and evaluating the integral over the triangles.

For the volume integrals, we are interested in the value of
∫

Ωe f(x) dx with f being
N1, ...N8. The object surface is defined by the zero isosurface of the trilinear interpola-
tion, which is a polynomial of degree one in three variables. We couldn’t find an analytic
solution for the exact surface. Therefore, we approximate the integral by a sum of piece-
wise integrals with planar surfaces. The basic subdivisions are described in Tab. C.1

.

. The
integrals are then analytically solved by a symbolic programming toolbox (Mathematica),
with f replaced by N1 to N8 respectively. All other cases are rotations or inversion of the
described subdivisions. If the object surface intersect edge i and j, then cij denotes the
position along the edge where the intersection occurs.

There are some few, rare cases that are not handled by the analytic integrals. These are
then solved with numerical sampling. Not all cases are solved numerically for perfor-
mance reasons. A few thousand samples are required per cell to accurately approximate
the integrals if the cell is only filled to a small amount.

The approximation error introduced by these piecewise planar integrals was measured
to be a relative error of 5.26% or an absolute error of 1.02% on average.
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C. Additional Equations

I
∫

Ωe
f(x) dx =

∫ 1

0

∫ 1

0

∫ 1

0
f(x, y, z) dz dy dx

II
∫

Ωe
f(x) dx =

∫ c12

0

∫ c13(1−x,c12
)

0

∫ c15(1− x
c12

)(1− y
c13

)

0
f(x, y, z) dz dy dx

III
∫

Ωe
f(x) dx =

∫ 1

0

∫ (1−x)c13+xc24

0

∫ ((1−x)c15+xc26)(1− y
(1−x)c13+xc24

)

0
f(x, y, z) dz dy dx

IV
∫

Ωe
f(x) dx =

∫ 1

0

∫ 1

0

∫ (1−x)(1−y)c15+x(1−y)c26+(1−x)yc37+xyc47

0
f(x, y, z) dz dy dx

V

∫
Ωe
f(x) dx =

∫ c34

0

∫ 1

0

∫ (1−x)(1−y)c15+x(1−y)c26+(1− x
c14

)yc37+y

0

f(x, y, z) dz dy dx

+

∫ 1

c34

∫ x∗

0

∫ (1− x−c34
1−c34

)((1−y)((1−c34)c15+c34c26))+
x−c34
1−c34

(1− y
x∗ )c26

0

f(x, y, z) dz dy dx

with x∗ = 1− x− c34

1− c34
+
x− c34

1− c34
c24

VI

∫
Ωe
f(x) dx =

∫ c56

0

∫ (1− x
c56

)c57

0

∫ 1

0

f(x, y, z) dz dy dx

+

∫ c56

0

∫ (1− x
c56

)

(1− x
c56

)c57

∫ (1− x
c56

)
(

(1− y−c57
1−c57

)+
y−c57
1−c57

c37

)
+ x
c56

0

f(x, y, z) dz dy dx

+

∫ 1

0

∫ (1−y)c56+yc34

(1−y)c56

∫ (1−y)+y(1− x
c34 )c37

0

f(x, y, z) dz dy dx

+

∫ 1

0

∫ (1−y)+yc34

(1−y)c56+yc34

∫ (1−y)
(

(1− x−c56
1−c56

)+
x−c56
1−c56

c26

)
0

f(x, y, z) dz dy dx

+

∫ 1

c34

∫ (1− x−c34
1−c34

)+
x−c34
1−c34

c24

1− x−c34
1−c34

∫ x−c34
1−c34

(
1− y

x24

)
c26

0

f(x, y, z) dz dy dx

VIIa
∫

Ωe
f(x) dx = II + II

VIIb
∫

Ωe
f(x) dx = II + II

VIII
∫

Ωe
f(x) dx = II + III

IX
∫

Ωe
f(x) dx = II + V

Table C.1.: Base cases for the partial integrals
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[82] Treuille, A., McNamara, A., Popović, Z., & Stam, J. Keyframe control of smoke sim-
ulations. In Alyn P. Rockwood, editor, ACM SIGGRAPH 2003 Papers on - SIGGRAPH
’03, page 716, New York, New York, USA, 2003. ACM Press.

108

http://cg.skeelogy.com/?download=SoftBodyPhysicsTutorial
http://cg.skeelogy.com/?download=SoftBodyPhysicsTutorial


Bibliography

[83] Wang, B., Wu, L., Yin, K., Ascher, U., Liu, L., & Huang, H. Deformation capture and
modeling of soft objects. ACM Transactions on Graphics, 34(4):94:1–94:12, 2015.

[84] Weiss, S. cuMat. https://gitlab.com/shaman42/cuMat

.

, 2018.

[85] Wiemann, P., Wenger, S., & Magnor, M. Cuda expression templates. WSCG ’2011:
Communication Papers Proceedings, pages 185–192, 2011.

[86] Yadav, P., Suresh, K. Large Scale Finite Element Analysis Via Assembly-Free Deflated
Conjugate Gradient. JOURNAL OF COMPUTING AND INFORMATION SCIENCE
IN ENGINEERING, 14(4), DEC 2014.

[87] Zhao, Q., Pizer, S., Alterovitz, R., Niethammer, M., & Rosenman, J. Orthotropic
thin shell elasticity estimation for surface registration. In Marc Niethammer, Martin
Styner, Stephen Aylward, Hongtu Zhu, Ipek Oguz, Pew-Thian Yap, and Dinggang
Shen, editors, Information Processing in Medical Imaging, volume 10265 of Lecture Notes
in Computer Science, pages 493–504. Springer International Publishing, Cham, 2017.

109

https://gitlab.com/shaman42/cuMat

	Acknowledgements
	Abstract
	Introduction
	Soft Body Simulation
	Basic Notation
	Strain and Stress
	PDE: Strong Form
	PDE: Weak Form
	Boundaries: Neumann
	Boundaries: Hardly Enforced Dirichlet
	Boundaries: Weakly Enforced Dirichlet (Nietsche)

	Discretization
	2D Mesh
	2D Grid

	Time Integration - Dynamic Elasticity
	Corotational Formulation
	Collision
	Conclusion

	cuMat - Linear Algebra Library for CUDA
	Related Work
	A (very short) review of CUDA
	Batched Evaluation and the Matrix class
	Expression Templates and Kernel Merging
	Benchmarks
	Conclusion

	3D Implementation with CUDA
	Related Work
	Basis Functions and Partial Integrals
	Datastructures and Sparsity Pattern
	World Grid
	Input Data per Node and Element
	Blocked CSR for the Stiffness Matrix

	Matrix Assembly and Solving
	Stiffness Matrix
	Mass and Force Vector
	Newmark Time Integration
	Conjugate Gradient Solver
	Levelset Advection

	Rendering
	Marching Cubes
	Slices
	Volume Raycasting

	Benchmarks

	Inverse Simulation
	Related Work
	General Adjoint Method
	Problem Statement
	Gradient Evaluation
	Computing the Adjoint of the Problem
	Examples
	On Testing Adjoint Code

	Adjoint Method for Soft Body Simulations
	Cost Function
	Differences on the Displacements
	Differences on the Levelset
	Distance to Point Clouds

	Adjoint of the Individual Steps
	Adjoint: Levelset Advection
	Adjoint: Displacement Diffusion
	Adjoint: Newmark Time Integration
	Adjoint: Stiffness Matrix
	Adjoint: Collision Forces
	Adjoint: Body Forces

	Optimization Algorithm
	Memory Consumption
	Analysis of the Gradients
	Benchmarks and Examples
	Stability

	Conclusion and Future Work
	Appendix
	Additional Algorithms
	Tables
	Additional Equations
	Bibliography


