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Abstract

This thesis investigates the use of convex variational methods for depth reconstruc-
tion from optical imagery and fusion of multiple depth maps into combined depth
maps with higher accuracy. Dense depth reconstruction from two or more camera
views are an important subject of research in computer vision, since measurement
density is much higher than other depth sensing techniques, namely active depth
sensing via infrared pattern projection or Lidar and Radar based techniques - even
though the latter ones are more accurate and robust in depth. Other advantages of
cameras are their low costs and low power consumption due to their passive sensing
principle. Approaches are ranging from autonomous driving cars, obstacle avoid-
ance or surveying UAVs up to detailed reconstruction of remote terrains using space
borne imagery.
In particular, we propose a fast algorithm for high-accuracy large-scale outdoor dense
stereo reconstruction. To this end, we present a structure-adaptive second-order To-
tal Generalized Variation (TGV) regularization which facilitates the emergence of
planar structures by enhancing the discontinuities along building facades. Instead
of solving the arising optimization problem by a coarse-to-fine approach, we pro-
pose a quadratic relaxation approach which is solved by an augmented Lagrangian
method. This technique allows for capturing large displacements and fine structures
simultaneously.
For the application in autonomous driving, we further present an algorithm for dense
and direct large-scale visual SLAM that runs in real-time on a commodity notebook.
We developed a fast variational dense 3D reconstruction algorithm which robustly
integrates data terms from multiple images thus enhancing quality of the image
matching. An additional property of this variational reconstruction framework is
the ability to integrate sparse depth priors (e.g. from RGB-D sensors or LiDAR
data) into the early stages of the visual depth reconstruction, leading to an implicit
sensor fusion scheme for a variable number of heterogenous depth sensors. Em-
bedded into a keyframe-based SLAM framework, this results in a memory efficient
representation of the scene and therefore (in combination with loop-closure detec-
tion and pose tracking via direct image alignment) enables us to densely reconstruct
large scenes in real-time.
Finally, applied to space-borne remote sensing, we present an algorithm for robustly
fusing digital surface models (DSM) with different ground sampling distances and
confidences, using explicit surface priors to obtain locally smooth surface models.
The optimization using L1 based differences between the separate DSMs and in-
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corporating local smoothness constraints is also inherently able to include weights
for the input data, therefore allowing to easily integrate invalid areas, fuse multi-
resolution DSMs and to weigh the input data.



Zusammenfassung

Diese Arbeit untersucht die Verwendung von konvexen Variationsmethoden für die
Tiefenrekonstruktion anhand optischer Bilder und die Fusion mehrerer Tiefenkarten
in kombinierte Tiefenkarten mit höherer Genauigkeit. Eine dichte Tiefenrekonstruk-
tion aus zwei oder mehr Kameraansichten ist ein wichtiges Thema der Computer-
bildverarbeitung, da die Messdichte viel höher ist als bei anderen Tiefenmesstech-
niken, insbesondere aktiven Tiefenmessungen mittels Infrarotmusterprojektion oder
Lidar- und Radar-basierte Techniken - auch wenn diese genauer und robuster in der
Tiefenmessung sind. Weitere Vorteile von Kameras sind ihre geringen Kosten und
ihr geringer Stromverbrauch aufgrund ihres passiven Messprinzips. Die Ansätze rei-
chen von autonom fahrenden Autos über die Vermeidung von Hindernissen oder die
Vermessung durch UAVs bis hin zur detaillierten Rekonstruktionen von abgelegenen
Gebieten mit Hilfe von weltraumgestützten Bildaufnahmen.
Insbesondere schlagen wir einen schnellen Algorithmus für eine hochgenaue, dichte
Stereo-Rekonstruktion für großräume Outdoor-Szenarien vor. Zu diesem Zweck
präsentieren wir eine strukturadaptive TGV-Regularisierung (Total Generalized
Variation) zweiter Ordnung, welche die Entstehung planarer Strukturen durch
die Verbesserung der Diskontinuitäten entlang von Gebäudefassaden erleichtert.
Anstatt das entstehende Optimierungsproblem durch einen Coarse-to-Fine-Ansatz
zu lösen, schlagen wir einen quadratischen Relaxationsansatz vor, der durch eine
Augmented Lagrange Methode gelöst wird. Mit dieser Technik können große Ver-
schiebungen naher Objekte im Bildbereich wie auch feine Strukturen gleichzeitig
erfasst werden.
Für die Anwendung im autonomen Fahren stellen wir außerdem einen Algorith-
mus für dense und direct large-scale visual SLAM vor, das in Echtzeit auf einem
Standard-Notebook läuft. Wir haben einen effizienten, variationsbasierten dichten
3D-Rekonstruktionsalgorithmus entwickelt, der Daten aus mehreren Bildern robust
integriert und somit die Qualität des Bildmatchings verbessert. Eine zusätzliche
Eigenschaft dieses variationsbasierten Rekonstruktionsframeworks ist die Fähigkeit,
dünnbesetzte Tiefen a-priori Informationen (z.B. von RGB-D-Sensoren oder LiDAR-
Daten) in die frühen Stadien der Rekonstruktion der visuellen Tiefe zu integrieren,
was zu einem impliziten Sensorfusionsschema für eine variable Anzahl heterogener
Tiefensensoren führt. Eingebettet in ein Keyframe-basiertes SLAM-Framework
führt dies zu einer speichereffizienten Darstellung der Szene und ermöglicht somit
(in Kombination mit Loop-Closure-Erkennung und Pose-Tracking über direct image
alignment) die dichte Rekonstruktion von umfangreichen Szenen in Echtzeit.
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Schließlich stellen wir einen Algorithmus zur robusten Fusionierung von digitalen
Oberflächenmodellen (DSM) mit verschiedenen Bodenabtastungsabständen und
Konfidenzen vor, wobei explizite Oberflächen priors verwendet werden, um lokal
glatte Oberflächenmodelle zu erhalten. Die Optimierung unter Verwendung von auf
der L1-Norm basierenden Differenzen zwischen den einzelnen DSMs und dem Ein-
beziehen lokaler Glattheitseinschränkungen ist auch inhärent in der Lage, Gewich-
tungen für die Eingabedaten einzuschließen, wodurch es auch möglich ist, ungültige
Bereiche ohne vorliegende Messpunkte in den Optimierungsprozess zu integrieren,
DSMs mit mehreren verschiedenen Bodenabtastungsabständen zu fusionieren und
die Eingabedaten allgemein zu gewichten.
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Chapter 1
Introduction

With advancing automation, large-scale 3D reconstruction is increasingly becoming
more important in various scientific fields as well as in common life. Applications
are ranging from autonomous driving of cars or mobile robots in general, flight
planning for unmanned aerial vehicles or remote sensing based digital surface re-
construction for wide-area physical simulations like flood simulation, propagation
of radio beams, 3D change detection etc. Despite the advances of modern active
depth-sensing technologies like Lidar, Radar, Time-of-Flight and projector-camera
systems, depth estimation based on cameras only still is on par with these active
sensing technologies.
The advantages of a very high spatial resolution, dense measurements, the absence of
interferencing problems due to passive sensing, cheap costs and low power consump-
tion render cameras as a very attractive sensor for this problem. From a philosoph-
ical point of view, one could even argue, that most higher biological life uses optical
systems for navigation, thereby implying that evolution proved this a good choice
for environmental sensing. Camera-only systems of course have their own short com-
ings for 3D reconstruction (aperture problem / repetitive textures, textureless image
regions, specular reflections, semi transparent surfaces etc). This directly implies
a smart combination and fusion of different sensor modalities, thereby mitigating
their respective shortcomings, in cases where this is applicable.
So despite being an active research area for decades, the need for more accurate and
robust results as well as computationally cheap approaches still drives investigation
in the field of optical 3D reconstruction. In this work the aspect of obtaining very
fast dense depth reconstruction, while simultaneously achieving high accuracy, is
being investigated. Apart from the reconstruction process itself, fusing image- and
depth information from multiple images is examined as well. This work attempts
to meet the demands of two somewhat different applications:

• Far-range satellite based depth reconstruction.

• Close-range depth reconstruction in automotive scenarios and
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While the automotive application has very strict real-time requirements and operates
on images the size of 106 − 107 pixel, captured with 10-30 frames per second, the
remote sensing application typically consists of only 1-3 captured images of the
scene, with a size of roughly 109 pixel per image.
For the automotive scenario, this results in very short inter-frame distances, both
temporarily and spatially, making this use case applicable for fusing different depth
maps to a single depth map exhibiting higher accuracy. Due to the short baseline
between captured images, perspective changes only slightly between images, thereby
simplifying the problem of matching image areas between two frames.
For remote sensing imagery arising from satellites or aerial sensors, the baseline
between two captured images is typically very large (15 - 60◦), resulting in quite
different reflection properties of the captured surfaces.

Motivation

As a practical motivation Figure 1.1 shows an application of large scale 3D re-
construction based on close-range sensing mobile cameras, e.g. in the case of au-
tonomous driving. In these scenarios, where thousands of successive depth maps
are generated with the mobile platform dynamically moving around the scene, im-
portant aspects like drifting position estimation (compared to ground truth) and
revisiting of identical places have to be considered by applying an overall SLAM
framework. We will discuss this in detail in Chapter 4.
Different sensor technologies exist, nowadays namely Lidar sensors, which have a
higher longitudinal accuracy, but suffer from sparsity and missing texture informa-
tion. Also in Chapter 4 we propose a strategy for depth estimation from camera with
the optional help of integration existing sparse depth data early in the reconstruction
process.

Figure 1.1: Resulting large scale 3D reconstruction of a complete SLAM framework
in automotive driving scenarios - as will be described in Chapter 4.
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Figure 1.2 gives an overview of remote sensing based surface reconstruction and
some exemplary applications. While radar satellites - based on Synthetic Aperture
Radar (SAR) like TanDEM-X and TerraSAR-X do not suffer from clouds occluding
the observed surface and exhibiting high longitudinal accuracy, their lateral resolu-
tion and accuracy is very low compared to optical satellites and of course surface
texture cannot be captured as well. An obvious approach would be fusing the corre-
sponding 3D information while retaining the advantageous properties of each input
data. In Chapter 5 we will have a detailed look at how to accomplish this fusion.

(a) 3D reconstruction for autonomous flight planning

(b) Space-borne 3D reconstruction

Figure 1.2: Satellite based 3D reconstruction, serving exemplary applications like
change detection in restricted areas or unchartered, sprawling mega cities, like flood
simulations, propagation of radio beams, autonomous flight planning etc.
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Remote sensing data

As spaceborne remote sensing data is not readily available for most computer vision
researchers, we would like to give a short introduction over the nature of correspond-
ing satellite data. A detailed explanation of the image capturing process and the
camera model is given in Section 2.1.2.

(a) Worldview satellites, image credit https://www.

digitalglobe.com

(b) One of the Pleiades satellites, im-
age credit https://pleiades.cnes.

fr

Figure 1.3: Overview of some common commercial optical satellites. Each satellite
produces data of approximately 1 terabyte per day with images having a size of
around 1 gigapixel and a ground sampling distance (GSD) of 0.3-0.8m.

Even though the main use case is 2D monitoring of land surfaces, the already
captured image data can be readily used for 3D reconstruction processes. However,
due to the altitude of roughly 700km to the observed surface, it is practically not
possible to capture images with a satellite mounted stereo camera from one spe-
cific position in orbit and perform 3D reconstruction on these. Instead - to get a
convenient baseline for the underlying triangulation process - images from different
position (and therefore different time steps) are used. Since the 3D reconstruction
process typically involves a static world assumption, this leads to problems with
large moving objects as can be seen in Figure 1.4.
Geolocation accuracy (= pose estimation) of the satellites is typically in the range
of 3m, if ground control points (known reference points in the image) are given accu-
racy is in range of 1m. Pose estimation of satellites is done using a start tracker as an
optical device to identify and measure the position of given stars and inertial mea-
surement units (IMU) consisting of gyroscopes and accelerometers. Life expectancy
(based on decommissioned satellite like IKONOS and Quickbird) is typically in the
range of 7-13 years.

https://www.digitalglobe.com
https://www.digitalglobe.com
https://pleiades.cnes.fr
https://pleiades.cnes.fr


1.1. Motivation 5

launch altitude bit depth panchromatic
GSD

multispectral
channels and GSD

Cartosat-1 2005 620 km 10 2.5 m -
GeoEye-1 2008 681 km 11 0.5 m 4 (2.0m)
Worldview-2 2009 770 km 11 0.5 m 8 (2.0m)
Pleiades 2012 695 km 12 0.5 m 5 (2.0m)
Worldview-3 2014 617 km 11 0.3 m 8 (1.2m)

Table 1.1: Basic data of most common operational commercial optical satellites

(a) Satellite position at time step t (b) Satellite position at time step t+ 1

Figure 1.4: Exemplary Worldview-2 satellite imagery. Please note the strong
perspective change between consecutive images (slanted buildings) and temporal
(moving boats) change, as well as large occlusion areas between the skyscrapers.
Despite a bit depth of 11 Bit the shadows have a very low signal-to-noise ratio.
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Automotive data

For the application of depth sensing in highly-automated driving scenarios, we use
the well-known and publicly available KITTI data [34], which for our tasks consists of
two automotive stereo camera systems (RGB and gray) and a 64-layer laser scanner.
See Figure 1.5 for exemplary data.

(a) Left camera frame

(b) 3D Lidar data projected into 2D image space

(c) Dense depth reconstruction

Figure 1.5: Exemplary imagery and Lidar data for urban driving scenarios as in
[34], plus dense depth reconstruction as described in Chapter 4
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Literature Overview

Datasets

Despite earlier research, the publication of the Middlebury Stereo Benchmark [99],
[100] marked a milestone in the development of depth reconstruction algorithms,
allowing evaluation and comparison of the evolving ideas and algorithms on a stan-
dardized benchmark instead of judging the quality on non-public and withheld data.
Over the next years, with continuously improving reconstruction quality the dataset
was extended multiple times to incorporate more challenging data [48] and [98] (see
Figure 1.6). Still the acquired data covered only indoor scenarios due to the ground
truth depth acquisition system based on structured light and continued being re-
stricted to 2-view stereo imagery.
As a logical extension, and with the advent of more and more automotive scenarios
in industry, real-world outdoor datasets like the famous KITTI dataset were pub-
lished [34], [71], [54], covering challenging outdoor scenarios as well. As of now, the
corresponding ground truth is generated using a calibrated and synchronized laser
scanning system.
With the upcoming success of deep learning approaches, the need for training data
grew exponentially, thus training data generation became very expensive. This lead
to the generation of various synthetic datasets, such as [16], [68], [118], [95], [94].

Stereo depth estimation

An overview of the most commonly used datasets for evaluation of depth reconstruc-
tion is given in Table 1.2. The number of submissions indicates a vivid development
and active research in this field, making a complete overview of depth reconstruction
algorithms intractable in this chapter. We rather give a short overview of a group
of algorithms which dominated the field of depth reconstruction by their respective
time.

Dataset Number of submissions in benchmark

Middlebury 2003 [100] 167
Middlebury 2014 [98] 71
KITTI 2012 [34] 100
KITTI 2015 [71] 84

Table 1.2: Most commonly used datasets for evaluation of depth reconstruction

Finding the best-matching image patch in other images for a given pixel position
in a reference image, together with the corresponding camera positions, allows for
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(a) Input image (b) Ground truth (color coded depth)

(c) Input image (d) Ground truth (color coded depth)

Figure 1.6: Exemplary data from the Middlebury dataset [98]

triangulation and therefore estimating the depth of that particular pixel. In Section
2.1 and 2.1.2 we will go further into detail, but we will highlight the state of the art
of image matching cost functions in this section.
Due to perspective changes, illumination changes, occlusions etc, image matching
itself is not trivially leading to the optimal solution and much research was done
investigating proper image matching cost functions. Very simple cost functions with
no spatial support are for example AD (absolute difference), Birchfield-Tomasi mea-
sure [8] or Mutual Information [116].
Comparing the intensity values of two corresponding pixels alone is prone to noise
and ambiguities (see Figure 2.13) and therefore more local image information needs
to be incorporated into the image matching cost functions. The two opposing prin-
ciples which must be met are a large spatial support for generating descriptive and
discriminative features vectors on the one hand and a small spatial support on the
other hand, as spatial support implies assumptions of the depth of neighboring pix-
els, leading to local planarity assumption.
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To restrict computational complexity, fronto-parallel assumption of the neighboring
pixels (all 3D points lying on a plane parallel to the image plane) is the standard
case resulting in cost functions comparing image patches around the pixel position
using sum of absolute difference (SAD), sum of squared differences (SSD), normal-
ized cross correlation (NCC), Census transform [125] etc. For high accuracy cases,
evaluating the cost function on multiple (slanted) planes is possible as well [33], [10].
The aforementioned Census transform is a very powerful image descriptor for dense
image matching because it is robust to many forms of illumination changes (to
some degree even non-linear ones such as specularities) and at the same time com-
putationally very cheap. Naturally. different work was done trying to improve
the descriptive and discriminative strength while at the same time maintaining the
speed. Replacing the binary comparison with a ternary decision was done in [105],
increasing robustness against noise, especially at the central pixel. In [32] intensities
are not compared with the central pixel intensity directly but with the mean value
of its 3 × 3 neighborhood, also increasing robustness against noise. A scale-robust
Census matching was introduced in [88], based on a circular sampling strategy with
different radii corresponding to different scales and taking the minimum cost over
these different scales.
A common approach to further strengthen the image matching cost function is lo-
cal cost aggregation based on pixel similarities in terms of color and distance as
described in the seminal work of Adaptive support-weights [124] which will be also
described in detail in Section 2.2.
Of the advanced and more descriptive features (mainly used in image recognition)
like SIFT [67], SURF [2], BRIEF [17], BRISK [64] only the DAISY descriptor [114],
designed for speed, showed a somewhat acceptable speed for using it in dense stereo
reconstruction. Due to some invariance against rotation, scaling and simple radio-
metric changes, using the DAISY descriptors (or any other of the abovementiond
features) yields very good results for wide-baseline stereo like in satellite based 3D
reconstruction, where some simple dissimilarity measures fail because of the large
perspective differences.
For more detailed evaluations of different cost functions, we refer to the surveys of
e.g. [99], [112], [48], [49].

Regularization

Despite much work on the image matching cost functions, estimation of the depth
of a pixel is still largely independent of its neighboring pixels, leading to noisy cost
functions and wrong depth estimation due to local minima (see Figure 2.13 and 2.3).
To reduce noise in the resulting depth map a very simple approach is to run a 2D
median filtering on the depth map, replacing outliers by the median depth in a local
support window. This approach however only partly cures the symptoms on much
reduced data - instead of addressing the original problem earlier with all input data
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(information about the image matching cost functions especially) still available.
To this end, instead of estimating the depth of each pixel solely on its image match-
ing information, additional priors on the resulting 3D surfaces are enforced in the
overall reconstruction process as described in detail in Section 2.1. These priors are
typically called smoothness terms, referring to the effect of favoring locally planar
surfaces in the 3D reconstruction. To do so, they enforce pixels in a local neigh-
borhood to have similar values for depth. However, computing the optimal solution
of such a reconstruction problem becomes in general extremely hard because of the
implied computational demand and combinatorial complexity. Thus, many approxi-
mation techniques have been investigated, with the goal of having a guaranteed local
optimum close to the global one while being as fast as possible. A detailed overview
of the results of the past two decades of research spent in this field is out of scope of
this thesis. So we limit ourselves to a short overview of a group of algorithms which
dominated the field of depth reconstruction by their respective time.

Markov Random Fields [13], [50], [12], [53] and Belief Propagation [111], [123],
[122] were the first family of such algorithms, dominating the state-of-the-art at their
time and in simple special cases even guaranteeing to result in a global optimum.
The basic idea of Markov Random Fields is posing the depth reconstruction (and
other image processing tasks) as labeling problem, assigning each pixel a label cor-
responding to its depth, while at the same time taking into account the interaction
between neighboring pixels, namely enforcing similar labels in a local neighborhood.
While this labeling from a combinatorial point of view is NP-hard, the seminal paper
of [13] framed the problem as a specialized graph for the energy function which then
can be approximately minimized via repeatedly applying efficient max-flow min-cut
algorithms. An overview of such max-flow min-cut algorithms can be found in [9].

Semi Global Matching (SGM) was developed shortly afterwards in the work
of [44], [45], [48], [46],[49], [47]. Instead of tackling the hard 2-dimensional problem,
this remarkably efficient family of algorithms is iteratively passing over the image in
1-dimensional sweeps from different directions and solving the separate 1D problems
via efficient and accurate dynamic programming. The result after each such direc-
tional scan is passed as approximate solution to the next directional pass where it is
again refined. SGM might not be the most accurate algorithm, but because of it’s
low computational complexity it is widely used for real-time depth reconstruction
on low-cost hardware.

Variational Methods were brought to interest by the seminal paper of Rudin,
Osher and Fatemi [96], who introduced total variation for image denoising. Similar
to Markov Random Fields, minimizing the total variation of a functional defined
over image space is done iteratively, with a spatially limited direct interaction of
variables. Instead of enforcing smooth discrete depth-labels to neighboring pixels,
variational methods inherently minimize on a continuous label space by solving the
differential equations arising from minimizing the first order derivative of the depth
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map (minimizing jumps in depth between neighboring pixels). With the advent of
modern general purpose graphics processing units (GPGPU or just GPU), these
highly parallelizable algorithms became computationally feasible, thereby boosting
research in this field [19],[21], [84], [83], [85] culminating in the celebrated paper
introducing the primal-dual algorithm [22].
Providing a general framework and an efficient solution including convergence guar-
antees for a large number of optimization problems, this work is also the underlying
foundation of this thesis. For a very detailed overview of applying Total Variation
for image analysis we refer to the well written report of [20]. In a follow-up work
[82] the primal-dual algorithm was further accelerated by using local step-sizes for
the gradient descent based optimization steps instead of the former global step size.
Although the primal-dual algorithm is applicable to a large number of optimization
problems, it was already used for depth reconstruction in the original paper [22],
with a large number of follow-up work like [36], [89], [90].
The original work contained a regularization term for the depth reconstruction by
directly minimizing the sum of gradients of the resulting depth map, thereby favor-
ing fronto-parallel surfaces. In [14] and [87] this constraint was lifted and extended
to higher order regularizers by the so-called Total Generalized Variation (TGV). Es-
pecially for depth reconstruction the 2nd order TGV has a major impact by favoring
slanted locally planar surfaces in the scene.
An anisotropic version of the regularizers based on the Nagel-Enkelmann operator
[74] was further introduced and used for TV [120] as well as for TGV [89]. Tackling
the problem of over-smoothing image areas with large depth changes, the smooth-
ing amount could now be steered according to additional image cues (like e.g. edge
information).
In [119] and [88] the Markov property of image pixels only interacting directly with
their direct adjacent neighbors was relaxed by allowing direct interactions over fur-
ther distances (Non-Local Total Variation). As a downside of this, memory con-
sumption increases and convergence speed drops significantly.
Aside from the depth reconstruction application, variational approaches can also
readily be applied to denoising and fusing multiple low-quality depth maps which
will be detailed in Section 5, building up or having similarity to the work of [127],
[126], [87], [30], [80].

Contributions of this Thesis

This thesis focuses and summarizes the work presented in [59], [58], [?], which is
the result of the joint work with Pablo d’Angelo, David Gaudrie, Aljaž Božič, Prof.
Peter Reinartz and Prof. Daniel Cremers. Closely related work was additionally
presented in [56], [57], [60] and a complete list of all publications published
throughout the period of this thesis is given in Table 1.3. All included papers
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are peer-reviewed publications and were published in international conferences or
journals.

In chapter 3, we propose a fast algorithm for high-accuracy large-scale out-
door dense stereo reconstruction. To this end, we present a structure-adaptive
second-order Total Generalized Variation (TGV) regularization which facilitates
the emergence of planar structures by enhancing the discontinuities along building
facades. Instead of solving the arising optimization problem by a coarse-to-fine
approach, we propose a quadratic relaxation approach which is solved by an
augmented Lagrangian method. This technique allows for capturing large displace-
ments and fine structures simultaneously.

For the application in autonomous driving, we further present an algorithm
for dense and direct large-scale visual SLAM in Chapter 4 that runs in real-time
on a commodity notebook. We developed a fast variational dense 3D recon-
struction algorithm which robustly integrates data terms from multiple images
thus enhancing quality of the image matching. An additional property of this
variational reconstruction framework is the ability to integrate sparse depth priors
(e.g. from RGB-D sensors or LiDAR data) into the early stages of the visual
depth reconstruction, leading to an implicit sensor fusion scheme for a variable
number of heterogenous depth sensors. Embedded into a keyframe-based SLAM
framework, this results in a memory efficient representation of the scene and
therefore (in combination with loop-closure detection and pose tracking via direct
image alignment) enables us to densely reconstruct large scenes in real-time.

In Chapter 5, applied to space-borne remote sensing, we present an algorithm
for robustly fusing digital surface models (DSM) with different ground sampling dis-
tances and confidences, using explicit surface priors to obtain locally smooth surface
models. The optimization using L1 based differences between the separate DSMs
and incorporating local smoothness constraints is also inherently able to include
weights for the input data, therefore allowing to easily integrate invalid areas, fuse
multi-resolution DSMs and to weight the input data.

Own Publications
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Authors Title Publication medium
[58] Kuschk et al . Real-time Variational Stereo Re-

construction with Applications to
Large-scale Dense SLAM

IEEE Intelligent Vehicles
Symposium, 2017

[61] Kuschk et al . Spatially Regularized Fusion of
Multiresolution Digital Surface
Models

IEEE Transactions on Geo-
science and Remote Sensing,
2017

[26] Davydova et al . Consistent Multi-View Texturing
of Detailed 3D Surface Models

ISPRS Annals of the Pho-
togrammetry Remote Sensing
and Spatial Information Sci-
ences, 2015

[55] Krauss et al . 3D-Information Fusion from Very
High Resolution Satellite Sensors

Proceedings of International
Symposium on Remote Sens-
ing of Environment (ISRSE),
2015

[62] Kuschk et al . DSM Accuracy Evaluation for
the ISPRS Commission I Image
Matching Benchmark

ISPRS - International
Archives of the Photogram-
metry, Remote Sensing and
Spatial Information Sciences,
2014

[25] d’Angelo et al . Evaluation of Skybox Video and
Still Image Products

ISPRS - International
Archives of the Photogram-
metry, Remote Sensing and
Spatial Information Sciences,
2014

[93] Reinartz et al . Advances in DSM Generation and
Higher Level Information Extrac-
tion from High Resolution Optical
Stereo Satellite Data

European Association of Re-
mote Sensing Laboratories
(EARSeL), 2014

[59] Kuschk et al . Fast and Accurate Large-scale
Stereo Reconstruction using Vari-
ational Methods

ICCV Workshop on Big Data
in 3D Computer Vision, 2013

[57] Kuschk et al . Model-Free Dense Stereo Recon-
struction for Creating Realistic 3D
City Models

Joint Urban Remote Sensing
Event (JURSE), 2013

[56] Kuschk et al . Large Scale Urban Reconstruction
from Remote Sensing Imagery

International Archives of the
Photogrammetry, Remote
Sensing and Spatial Infor-
mation Sciences (ISPRS),
2013

[72] Meynberg et al . Airborne Crowd Density Estima-
tion

ISPRS Annals of the Pho-
togrammetry, Remote Sens-
ing and Spatial Information
Sciences, 2013

[60] Kuschk et al . Fusion of Multi-Resolution Digital
Surface Models

ISPRS - International
Archives of the Photogram-
metry, Remote Sensing and
Spatial Information Sciences,
2013

[24] d’Angelo et al . Dense Multi-View Stereo from
Satellite Imagery

IEEE International Geo-
science and Remote Sensing
Symposium (IGARSS), 2012

Table 1.3: Peer-reviewed publications associated to this thesis
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Thesis Outline

This cumulative thesis is structured into six chapters.
In Chapter 1 we give an introduction and motivation of this thesis, providing an
overview of relevant literature, as well as giving an overview of the research papers
that were published during this thesis.
Chapter 2 presents an overview of the mathematical background in general, de-
scribes the involved camera models, stereo image matching functions and regular-
ization techniques as well as a general framework for numerical optimization of the
developed models.
In Chapter 3, 4 and 5 we present our work of [59], [58], [?] respectively in detail.
We conclude this thesis with Chapter 6, summarizing our research and giving an
outlook towards future research possibilities.



Chapter 2
Total Variation based Dense
Stereo

Mathematical Preliminaries

Notation

Let the image space of an image I be denoted as Ω ⊂ R2. The image I is a function,
mapping a 2-dimensional location to a grayscale or color value

I : Ω→ Rc (2.1)

where c = 3 usually corresponds to RGB color space and c = 1 corresponds to
grayscale values. When talking about discrete pixel positions x, the color or intensity
values of the image a this position is denoted as I(x).
Our main goal in this thesis is to compute a depth map u, mapping every pixel of
a reference input image to a scalar depth value as depicted in Figure 2.1

u : Ω→ R. (2.2)

In classical dense stereo reconstruction, for every pixel x = (x, y)T ∈ Ω of the
reference image Iref and a number of depth hypotheses di ∈ [dmin, dmax] with i ∈
{1, .., D}, a matching cost is computed by back-projecting the pixel x into 3D space
given the corresponding depth hypothesis di, projecting the resulting 3D point into
the second image I2 and obtaining the pixel coordinate x′ = (x′, y′)T . Finally image
information of the two images at their corresponding positions is compared and a
matching score computed. The result is the so called cost volume [11], containing
the raw matching costs (Figure 2.2).

The optimal 3D reconstruction given this cost volume is obtained by fitting a
3D surface through this cost volume, having minimal cost (or energy E) in total

u∗ = arg min
u

E(u) (2.3)
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(a) Second image I2 (b) Reference image I1 (c) Color coded depth map u∗

corresponding to I1

Figure 2.1: 2-view stereo problem with computed depth map

Figure 2.2: Illustration of a Cost volume. For each pixel a number of depth
hypotheses are evaluated using image matching, resulting in a 1D cost function for
each pixel.

If this energy is expressed solely by its image matching costs, the optimization
problem to solve is called Winner-takes-all and is given by

u∗ = arg min
u

Edata(u) (2.4)

= arg min
u

∫
Ω

C(x,u) dx,
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with C(x,u) being the matching cost for each pixel x of the image, given a depth
map estimation u∗. For each pixel x = (x, y) ∈ Ω we search for the minimal
matching cost computed over all considered depths ∈ [dmin, dmax] and obtain the
resulting depth u∗ as the best matching depth for this pixel.
This process is done for each pixel separately in an exhaustive search, leading to
noisy results as shown in Figure 2.3(a). To improve the quality of the depth map in
areas with weak data terms (no distinguishable texture, moving objects, reflections,
. . . ) we add additional smoothness terms to the energy functional to minimize (see
Section 2.3).

(a) Depth map based on minimizing image
matching cost only. Census 7x9 was used as
cost function - which will be detailed in Sec-
tion 2.2.

(b) Depth map based on minimizing image
matching cost (Census 7x9) plus regularizer
(TV) and additional outlier filtering using left-
right-check.

Figure 2.3: Reconstruction quality without and with regularizers enforcing local
smoothness of surfaces.

Camera models

In this work we assume that the absolute positions and orientations of the cameras
as well as their internal parameters are known and optimized w.r.t. each other by
e.g., bundle adjusting all input images and their cameras beforehand.
To restrict the search space for image matching from 2D to 1D, we need to establish
an epipolar geometry between image pairs. If the cameras can be approximated by
the pinhole camera model, the resulting epipolar geometry is mapping one image
coordinate in the first image to a corresponding line in the second image. This yields
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the usual preprocessing step for stereo reconstruction of rectifying the input images
pairwise, such that the epipolar lines are horizontally aligned to the image plane
(see e.g., [128],[129],[66],[42]).
In the case of multi-image matching, where the images can be arranged arbitrar-
ily instead of the left-right assumption, this pairwise rectification is cumbersome to
implement and introduces further numerical inaccuracies as the rectification homo-
graphies apply perspective distortion the images. In general, aligning the epipolar
lines for more than 2 (arbitrarily located) images is not feasible anymore.
Furthermore, e.g. satellite images are obtained using a push broom camera (the
CCDs are arranged one-dimensional instead of a two-dimensional array) and the
corresponding Rational Polynomial Camera (RPC) model (see e.g. [38]) is quite
different from the pinhole model. Most notably, the resulting epipolar lines of an
image pair are not straight, but curved [77], increasing the complexity of an image
rectification approximation.

Pinhole camera model

In this thesis we assume that the lens distortion effects of the input images have
already been corrected [129], resulting in the standard projective pinhole camera
model for projecting 3D points into 2D image space.

Figure 2.4: Pinhole camera model with the projection of a 3D point (X, Y, Z)T

onto the 2D image plane with coordinates (u, v)T .
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p̃2D = [K|03] ·Tcam
world · p̃3Duv
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with Tcam

world denoting the transformation of the world coordinate origin to the loca-
tion of the camera center and K being the intrinsic matrix, containing the calibration
parameters from (usually offline) calibration [129],[42]). In case the camera is al-
ready placed at the world coordinate origin, the projection of a 3D point into 2D
image space reduces to

p̃2D = [K|03] · p̃cam3Duv
w

 =

fx 0 px 0
0 fy py 0
0 0 1 0

 ·

X
Y
Z
1


x =

X · fx
Z

+ px

y =
Y · fy
Z

+ py

Push broom camera - RPC model

For an image taken with a push broom camera each image line is taken at a differ-
ent instance of time (see Figure 2.5). The exterior orientation parameters, i.e. the
rotation angles and the position of the perspective center depend on the acquisi-
tion time and therefore change from scan line to scan line. The interior orientation
parameters, which comprise the focal length, the principal point location, the lens
distortion coefficients, and other parameters directly related to the physical design
of the sensor, are in general the same for the entire image. A generic push broom
camera model can be expressed by modified collinearity equations in which all ex-
terior orientation parameters are defined as a function of time (see e.g. [1], [69], [3],
[4]). Nowadays, the RPC model is used for many satellites - only very few have to
be modeled by their exact sensor model.
The model for projecting a 3D point j to 2D image space i is given by

xi,j =
Pi1(Xj, Yj, Zj)

Pi2(Xj, Yj, Zj)
, yi,j =

Pi3(Xj, Yj, Zj)

Pi4(Xj, Yj, Zj)
. (2.5)
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Figure 2.5: Push broom camera model - image taken from [39]. The 2D image is
acquired line-wise.

with xij, yij being the normalized (offset and scaled) image coordinates andXj, Yj, Zj
the corresponding object point coordinates, which refer to normalized latitude, lon-
gitude, and altitude. The polynomials are

Pi1(X, Y, Z) =(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10,

a11, a12, a13, a14, a15, a16, a17, a18, a19, a20)·
(1, Y,X, Z, Y X, Y Z,XZ, Y 2, X2, Z2,

XY Z, Y 3, Y X2, Y Z2, Y 2X,X3, XZ2, Y 2Z,X2Z,Z3)T

Pi2(X, Y, Z) =(b1, b2, b3, b4, b5, b6, b7, b8, b9, b10,

b11, b12, b13, b14, b15, b16, b17, b18, b19, b20)·
(1, Y,X, Z, Y X, Y Z,XZ, Y 2, X2, Z2,

XY Z, Y 3, Y X2, Y Z2, Y 2X,X3, XZ2, Y 2Z,X2Z,Z3)T

Pi3(X, Y, Z) =(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,

c11, c12, c13, c14, c15, c16, c17, c18, c19, c20)·
(1, Y,X, Z, Y X, Y Z,XZ, Y 2, X2, Z2,

XY Z, Y 3, Y X2, Y Z2, Y 2X,X3, XZ2, Y 2Z,X2Z,Z3)T

Pi4(X, Y, Z) =(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,

d11, d12, d13, d14, d15, d16, d17, d18, d19, d20)·
(1, Y,X, Z, Y X, Y Z,XZ, Y 2, X2, Z2,

XY Z, Y 3, Y X2, Y Z2, Y 2X,X3, XZ2, Y 2Z,X2Z,Z3)T (2.6)
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where Pi1, Pi2, Pi3, Pi4 are cubic functions in object space coordinates, X, Y, Z are
normalized object space coordinates (latitude, longitude, altitude) and xij, yij are
normalized image space coordinates. For a more detailed description of the RPC
model, we refer to the work of [39] and [40].

Unified trilinear interpolation model

Since the camera models can differ a lot in their complexity and their projective
functions have to be evaluated numerous times, we pursue a different strategy es-
pecially for the satellite based RPC model. We establish the epipolar geometry
between two images I1 and I2 directly by evaluating the function F(1,2)(x, d), which
projects a pixel x from I1 to I2 using the depth d, for every single pixel of I1 ∈ Ω
and every possible depth d ∈ D individually.
Especially for push broom images and the RPC camera model, evaluation of
F(1,2)(x, d) for every pixel x and depth hypothesis d is computationally very ex-
pensive and cannot be used in practice. We therefore compute F(1,2)(x, d) only for
a sparse (and uniformly distributed) set of grid points in Ω×D space. For all other
points we interpolate the projected pixel coordinates by using trilinear interpolation
(Figure 2.7). The creation of this lookup-table L is done iteratively starting with
a very coarse 10× 10× 10 grid whose resolution is increased until the reprojection
error of the in-between grid points gets smaller than a specified threshold. This
allows us to use arbitrary complex camera models while the time for a coordinate
transfer (x, d)→ F(1,2)(x, d) still is the one needed for a trilinear interpolation using
the lookup table, which can be implemented efficiently.
To furthermore reduce the need for rotational invariant cost functions we apply a
plane-sweep approach [23] for computing the image matching cost functions. Given
a depth d, we sweep over the reference image I1, sample image I2 at the correspond-
ing image position (x′, y′) and copy the obtained color/intensity to an image Ĩ2 at
the same position (x, y) as in the reference image. When computing the matching
costs of a depth hypotheses d and the whole image I1, we simply evaluate the cost
function at the same position (x, y), using the same local support window in both
I1 and I2. Note that the whole process runs independently for each pixel of I1 and
therefore can be implemented very efficiently on a GPU.
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Figure 2.6: For a coordinate (x, y) in image I1 and the depth d, obtain the cor-
responding coordinate (x′, y′) in image I2 by trilinear interpolation in the sparse
lookup table L, sample the pixel color/intensity and copy it to the warped image Ĩ2

at position (x, y). In short notation: Ĩ2 = I2(x′, y′) = I2(F(1,2)((x, y), d)).

Figure 2.7: Trilinear interpolation

Image Matching Cost Functions

Many dense stereo reconstruction algorithms exhaustively compute a matching qual-
ity for every pixel of a reference image and its possible projections in any other image
for every depth hypothesis. Computing such dissimilarity measures of two image
positions has the challenging task of fulfilling the two competing requirements of a)
being as fast as possible and b) as descriptive / disjunctive as possible. Since we
perform an exhaustive search over all depths and each pixel, we have to compute
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the full cost volume, which for a standard example of 1024 × 768 images and 128
depths sums up to slightly more than 100 million dissimilarity computations. At
the same time, the dissimilarity measure must be descriptive enough to reduce false
matches to a minimum.
Due to the speed requirement, typical dissimilarity measures (also called cost func-
tion) in dense stereo are: Absolute Differences (AD), Normalized Cross Correlation
(NCC), Birchfield-Tomasi measure [8], Mutual Information [116] and Census trans-
form [125]. These are easy to compute, but not very descriptive and therefore prone
to false matches.
Of the advanced and more descriptive features (mainly used in image recognition)
like SIFT [67], SURF [2], BRIEF [17], BRISK [64] only the DAISY descriptor [114]
showed a somewhat acceptable speed for using it in dense stereo reconstruction.
Due to some invariance against rotation, scaling and simple radiometric changes,
using the DAISY descriptors (or any other of the abovementiond features) yields
very good results for wide-baseline stereo, where some simple dissimilarity measures
fail because of the large perspective differences. This property makes them good
candidates for matching remote sensing stereo images. Unfortunately, as a result
of a larger local support window, spatially very closely related pixels have simi-
lar (DAISY) descriptors and can’t be distinguished very clearly, which results in a
blurry reconstruction of sharp depth discontinuities, occurring for example at the
sides of high buildings. For more detailed evaluations of different cost functions, see
e.g. the surveys in [99], [112], [48], [49]. Due to the nature of our epipolar geometry
model and the plane-sweep approach (Section 2.1.2), it is not necessary for the cost
function to be rotational invariant. Also the scale invariance can be neglected for
standard dense stereo reconstruction as in our case, where all images of a scene are
taken from a similar distance.

(a) I1 with patch (green grid) cen-
tered at x1 (red pixel)

(b) I2 with patch centered at x2

Figure 2.8: Image matching cost functions with spatial support window
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Normalized Cross Correlation

The normalized cross correlation is basically the prototype for image matching based
on spatial support windows W (see Figure 2.8) around the pixel positions to compare
and is invariant to additive and multiplicative illumination changes.

CNCC(x1,x2) =

∑
[i,j]∈W (I1(x1 + [i, j])− µ1(x1))) · (I2(x2 + [i, j])− µ2(x2)))

σ1(x1) · σ2(x2)

CNCC(x, d) = CNCC(x, F(1,2)(x, d)) (2.7)

with µi being the mean intensity of the image patch located at the respective posi-
tions xi and σi the standard deviations accordingly.

Modified Census Transform

The Census transform CT as described in [125] is a non-parametric transform which
encodes the local image structure within a small patch around a given pixel. It
is defined as an ordered set of comparisons of intensity differences and therefore
invariant to monotonic transformations which preserve the local pixel intensity order:

ξ(I(x), I(x′)) =

{
1 if I(x′) < I(x)
0 otherwise

(2.8)

CT (I,x) =
⊗

[i,j]∈W

ξ(I(x), I(x + [i, j])) , (2.9)

for an ordered set of displacements W ⊂ R2 and the operator
⊗

concatenating
the binary values of ξ to a binary string. Image matching is then performed by
comparing the resulting binary vectors at different image positions. However, the
Census transform strongly depends on the center pixel and a slight variation of its
intensity can cause the descriptor to vary significantly. We address this issue by
using the following (robustified) modification of the Census transform

MCT (I,x) =
⊗

[i,j]∈W ∪ [0,0]

ξ(Ī(x), I(x + [i, j])) , (2.10)

where we replaced the intensity of the center pixel by a weighted average of the
intensities in its direct 4-neighborhood (see Figure 2.9). A similar modification is
used by [32] for face detection.

The matching cost of different Census vectors s1, s2 is then computed as their
Hamming distance dH(s1, s2) – number of differing bits – where highest matching
quality is achieved for minimal Hamming distance. To simplify further usage of the
matching costs, we scale them to the real-valued interval [0, 1] by dividing through
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Figure 2.9: Left: The displacement field D used for computing a 61-Bit census
transform of the black center pixel. The size of D was chosen deliberately, as to fit
in a 64-Bit variable. Right: The weights for computing the center pixel intensity
Ī(x).

the maximal cost maxi,j{dH(si, sj)}, which equals the number of pixels in the dis-
placement field D.

CMCT (x, d) =
dH
(
MCT (I1,x), MCT (I2, F(1,2)(x, d))

)
maxi,j{dH(si, sj)}

(2.11)

Having a large support window for the Census transform, as shown in Figure
2.9, increases the robustness of the matching function against mismatches, espe-
cially when searching through a large range of depths. The support window size of
the Census transform is typically 5 × 5, 7 × 7, 7 × 9, or circular spatial structure
like Figure 2.9, because due to efficient implementation issues, the resulting binary
vectors then fits into 32 or 64 bit variables.
On the other hand, this window-based matching faces several drawbacks: The depth
within the window is assumed to be constant and the results therefore are biased
towards fronto-parallel surfaces. For the same reason, the resulting depth map gets
blurry along discontinuities.
To limit the influence of these drawbacks, the window-based cost function of Equa-
tion 2.11 can be combined (weighted sum) with a pixel-wise second cost function
using e.g., absolute difference of the intensity values or mutual information.

Mutual Information

Mutual Information [116] has already proven to be a good choice as pixel-wise match-
ing cost function ([51], [44]) and is based on the joint entropy of the involved images.
For combination with other cost functions, we normalize the MI cost function to [0, 1]

CMI(x, d) = 1− C̃MI(x, d)−minx,d{C̃MI(x, d)}
maxx,d{C̃MI(x, d)} −minx,d{C̃MI(x, d)}

(2.12)
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with

C̃MI(x, d) = miI1,I2( I1(x), I2(F(1,2)(x, d)) ) (2.13)

and miI1,I2 being the mutual information according to [116]. As Equation 2.13
requires knowledge of the depth d a priori, a hierarchical approach is used to get a
good estimate for C̃MI (see [44]).

Adaptive Support Weights

Window-based image matching suffers from the ”foreground fattening” phenomenon
when support windows are located on depth discontinuities, such as partially cov-
ering a roof top and the adjacent street. To limit this effect, we locally aggregate
the raw image matching cost(x1,x2) of two pixel locations x1 and x2 – e.g., from
Equation 2.7, 2.11, 2.12 – using adaptive support-weights [124] for corresponding
pixels p in I1 and q in I2:

C(p,q) =

∑
p̃∈Np,q̃∈Nq

[w(p, p̃) · w(q, q̃) · cost(p̃, q̃)]∑
p̃∈Np,q̃∈Nq

[w(p, p̃) · w(q, q̃)]
(2.14)

The weights w(p,q) are based on color differences ∆col(p,q) and spatial distances
∆dist(p,q),

w(p,q) = exp

(
−∆col(p,q)

γcol
− ∆dist(p,q)

γdist

)
, (2.15)

which are open for tuning but usually reside in the range of γdist = 4 (= radius of
the support window) and γcol = 5.0 for 8-bit images (γcol = 20.0 for 11-bit images
respectively). As this local aggregation favors fronto-parallel surfaces, we keep this
radius relatively small (4 pixel), to keep a balance between increased accuracy along
discontinuities and not ”over-favoring” fronto-parallel surfaces.

Figure 2.10: Basic scheme for the adaptive support-weights as described in Equation
2.14. In a local neighborhood around the considered matching pixel positions p and
q, the matching cost of all possible matching coordinates are weighted and summed
up, according to the scheme described in this Section 2.2.4.
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(a) (b)

Figure 2.11: (a) Input image with center pixel marked by rectangle. (b) Corre-
sponding support-weights incorporating both color and spatial distance (brighter
pixel corresponding to larger support-weights). Image taken from [124].

Shortcomings

As much effort as one might put into image matching cost functions, there are
many cases where image matching is basically not possible - see Figure 2.12 for
some examples. The so-called data term is too weak, misleading or ambiguous for
reliable estimation of the true optimal solution using image matching alone (see
Figure 2.13). Two overcome this problem an additional regularization term is used
for reconstruction of piecewise smooth solutions - which will be described in the
following section.
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(a) Repetitive texture along the shingles of the roofs

(b) Textureless regions along the flat roof

(c) Sensor oversaturation and specular reflections

Figure 2.12: Examples of image regions ill-suited for image matching
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(a) Reference image with selected points:
unique (U), homogeneous (H), occluded (O).

(b) Second matching image with search space
along epipolar lines.

(c) Image matching cost functions for each of the three considered points (U,H,O): pixelwise absolute
difference (AD0), Census 5× 5 (CEN), and weighted mean of both (ADC).

Figure 2.13: Image matching cost functions for selected points and their 3D search
space along the corresponding epipolar lines. For details on improving the quality
of the data term via multiple measurements see Chapter 4.
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Total Variation Regularization

Since the raw image matching costs are still prone to mismatches and noise, it is
a bad choice to solve for the depth map pixel-wise by choosing the depth with
minimum matching cost (compare Figure 2.3(a)). Adding additional smoothness
priors is a well established technique to mitigate the effect of erroneous data terms,
forcing the depth map to be locally smooth.

u∗ = arg min
u

{∫
Ω

Edata(u(x)) + Esmooth(u(x)) dx

}
(2.16)

= arg min
u

{∫
Ω

C(u(x)) + λ · h(u(x)) dx

}
The data term C still measures the quality of the matching image patches and is
now balanced against a smoothing functional h with a controllable scalar weighting
factor λ. Compared to the pixelwise solution of Equation 2.4, this energy is non-
trivial to solve, since the smoothness constraints (implied by the smoothing function
h) are typically based on first- or second-order derivatives of the depth map and
therefore cannot be optimized pixelwise anymore. The choice of the data term and
smoothness energy functional are the most important issues, since they both affect
the property of preserving the original signal as well as being able to solve the
resulting optimization problem accurately and efficiently. Typically, the data term
is not convex in the variable u to solve for, while the regularization term implies
difficulties for an efficient optimization scheme.

Total Variation

We first give a formal definition of the total variation and its higher order counter-
part the total generalized variation and afterwards illustrate their properties in an
example of denoising 2D data.

Definition 1 Ck functions
Let k be a non-negative integer. The function f is said to be of class Ck if the
derivatives f ′, f ′′, ..., f (k) exist and are continuous. The function f is said to be of
class C∞, or smooth, if it has derivatives of all orders.

Definition 2 Lp space
The space of p-integrable functions is defined as

Lp(Ω) :=

{
f : Ω→ R |

(∫
Ω

|f |p dx

)1/p

<∞

}
(2.17)
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Definition 3 Sobolev space W k,p

The Sobolev space W k,p(Ω) is defined to be the set of all functions u ∈ Lp(Ω) such
that for every n-tuple α with |α| ≤ k, the weak partial derivative Dαu belongs to
Lp(Ω)

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k}. (2.18)

Intuitively, a Sobolev space is a space of functions with sufficiently many derivatives
for e.g., partial differential equations and is equipped with a norm that measures
both the size and regularity of a function.

Definition 4 Weak partial derivative
Given an open set Ω ⊂ Rn, a function f ∈ L1 is weakly differentiable with respect
to xi if there exists a function gi ∈ L1 such that∫

Ω

f∂iφ dx = −
∫

Ω

giφ dx, (2.19)

for all functions φ being infinitely differentiable and with compact support in Ω,
i.e. φ ∈ C∞c (Ω). The function gi is called the weak ith partial derivative of f , and
is denoted by ∂if .
Weak derivatives generalize the concept of the (strong) derivative of a function for
functions which are not differentiable, but only integrable. The main idea behind
the weak derivative is that Equation 2.19 allows to shift the differential operator
from one variable to another one which is defined to be always differentiable.

Definition 5 Total Variation
Given a function u ∈ L1(Ω) on a bounded domain Ω ⊂ Rn with n ≥ 2, the total
variation of u is defined as

TV(u) := sup

{∫
Ω

u(x) · div(φ(x)) dx : φ ∈ C1
c (Ω,Rn), ||φ||∞ ≤ 1

}
(2.20)

with

div(φ(x)) =
n∑
i=1

∂φi
∂xi

(x) (2.21)

and if u ∈ W 1,1(Ω), see e.g. [21], the total variation of u can be written as

TV(u) =

∫
Ω

|∇u|2 dx. (2.22)
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Definition 6 Total Generalized Variation
The total generalized variation of order k with weights α is defined as

TGVk
α(u) := sup

{∫
Ω

u · divkφ dx : φ ∈ Ck
c (Ω, Symk(Rn)), (2.23)

||divlφ||∞ ≤ αl, l = 0, ..., k − 1

}
with k ≥ 1 and α0, ..., αk−1 ≥ 0. Symk(Rn) denotes the space of symmetric tensors
of order k with arguments in Rn. Note that for k = 1 and α > 0 it holds that

TGV1
α(u) = sup

{∫
Ω

u · div φ dx : φ ∈ C1(Ω, Sym1(Rn)), ||φ||∞ ≤ α

}
= α · TV(u) (2.24)

implying that TGV is indeed a generalization of TV.

Depth map denoising example

Due to its simplicity we use the application of depth map denoising to illustrate the
effects of total variation regularization as well as different norms for the data term.
Given a corrupted 2D depth map f , we want to obtain denoised 2D data u.

Tikhonov model

The quadratic model (or Tikhonov model [113]) is one of the earliest and simplest
regularization methods used for ill-posed problems. It is defined as the quadratic
variational problem

min
u

{∫
Ω

(u− f)2 dx + λ

∫
Ω

|∇u|22 dx

}
, (2.25)

The quadratic model tries to find a smooth solution u which minimizes the squared
distance to the observations f . Being quadratic in u, the Tikhonov model poses
a simple optimization problem, but it leads to an oversmoothing of edges and the
quadratic data term is not robust against strong outliers in the observed data. For
this reason, we do not consider this model at all and only mention it here for sake
of completeness.

ROF model

The seminal paper of [96] introduced the Rudin-Osher-Fatemi model (ROF-model)
as an edge preserving 2D image restoration model by applying total variation as
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regularization term

min
u

{∫
Ω

(u− f)2 dx + λ

∫
Ω

|∇u|2 dx

}
. (2.26)

Note that the ROF model is convex and has a unique global minimizer.

TV-L1 model

By substituting the quadratic data term in the ROF model with it’s L1 pendant we
arrive at the TV-L1 model

min
u

{∫
Ω

|u− f | dx + λ

∫
Ω

|∇u|2 dx

}
. (2.27)

The difference to the ROF model is that discontinuities in the data are well pre-
served, since deviations in the data term are not penalized quadratically anymore,
but only linearly. This makes the TV-L1 model much more robust to outliers in the
data term. One can say that the ROF model is a good choice if the assumed noise is
of Gaussian nature and the TV-L1 model should be used if white noise (outliers) are
present in the data. The TV-L1 model unfortunately is not strictly convex anymore
and does not have a unique global minimizer.

TV-Huber model

The advantage of choosing the L1 norm for Esmooth = |∇u|1 however does not
come without cost. As shown in Figure 2.14, minimizing the Total Variation leads
to staircasing effects on otherwise smooth data in the resulting reconstruction. To
overcome this issue a slight modification of the regularization functional by replacing
the L1 norm with the Huber loss (see Figure 2.15 and Equation 2.29 below) was
used by [120] to regularize optical flow estimation.

min
u

{∫
Ω

|u− f | dx + λ

∫
Ω

|∇u|h dx

}
(2.28)

The Huber loss still preserves the main advantage of the L1 norm for penalizing
deviations in the first order derivative only linearly, however small deviations are
now penalized quadratically (see Equation 2.29) leading to smooth surfaces and
mitigating the stair casing effect.

Definition 7 Huber loss
The Huber loss is a hybrid based on the L1/L2 -norm which is robust to outliers
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Figure 2.14: Staircasing effect of Total Variation. Without any additional data
u between the positions x1 and x2, regularization via minimization Total Variation
does not have a unique solution as every dashed line has the same amount of total
variation in u. The gray line corresponds to a smooth regularization between the
data points.

(quadratic penalties as in L2-norm in a local environment and linear penalties L1

for outliers). It is defined as

|x|h =

{ |x|2
2h

if |x| ≤ h
|x| − h

2
if |x| > h

(2.29)

Furthermore, the Huber loss is fully differentiable with

Figure 2.15: Huber loss |x|h with h = 1.0

∂|x|h
∂x

=

{
2|x| x|x|

1
2h

if |x| < h
x
|x| else

=

{
x
h

if |x| < h
sgn(x) else

(2.30)
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TGV-L1 model

The Huber loss still is not a completely satisfactory solution for favoring smooth non
fronto-parallel surfaces in the minimization process as it implies the inliers of the
data to be contaminated by Gaussian noise. Instead, if we take the TV-L1 model
and replace the first order smoothness constraint with a second order smoothness
constraint, we obtain the second order Total Generalized Variation [14], favoring
any affine surface in the image

TGV α
2 (u) = min

u,v

{∫
Ω

|u− f | dx + α1

∫
Ω

|∇u− v| dx + α0

∫
Ω

|∇v|dx
}

(2.31)

Intuitively, before the variation of the image u is measured, a 2D vector field v is
subtracted from the gradient of u. An affine surface in the image u has a constant
gradient ∇u, so by coupling and minimizing |∇u − v|, the vector field v will also
be constant and it’s gradient ∇v therefore zero. Regarding our overall optimization
problem, this means that the energy term will be lower, if affine functions can
be found in the image, whereas non-affine functions get additional penalties by |∇v|.

Effects of regularization models

Having given an overview of different energy functionals for regularization, we il-
lustrate their respectively discussed effects by reconstructing a noisy depth map.
For a given depth map depicted in image 2.16, we added Gaussian and White noise
and solved the energy functionals stated above. The resulting restored surfaces
are depicted in Figure 2.17 and 2.18 together with the corresponding PSNR (peak
signal-to-noise ration) defined as

PSNR(u, f) = 10 · log10

(
max(u)2

MSE(u, f)

)
(2.32)

with MSE being the mean squared error between u and f and the maximum data
value being 1.0 as we normalize the input data to the interval [0, 1].
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(a) Original data

(b) Corrupted data (Gaussian noise and white noise)

Figure 2.16: Impact of different regularization energy functionals on the recon-
struction of a noisy 2.5D surface / depth map: Original data and noisy input.
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(a) ROF model (PSNR 23.61)

(b) TV-L1 model (PSNR 31.24)

Figure 2.17: Impact of different regularization energy functionals on the reconstruc-
tion of a noisy 2.5D surface / depth map: Resulting reconstruction for ROF-model
and TV-L1 model.
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(a) TV-Huber model (PSNR 32.40)

(b) TGV-L1 model (PSNR 34.71)

Figure 2.18: Impact of different regularization energy functionals on the reconstruc-
tion of a noisy 2.5D surface / depth map: Resulting reconstruction for TV-Huber
model and TGV-L1 model.
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Optimization

In the following we will describe the underlying numerical optimization procedure for
solving (minimizing) the energy functionals stated in this chapter so far. The primal-
dual algorithm of Chambolle and Pock [22] is the main optimization framework in
this work and will be introduced in the following. To account for better readability
we first state the motivation and derivation of the primal-dual algorithm and give
the necessary mathematical background definitions afterwards.

Primal-Dual Algorithm

In Equation 2.16 we introduced the general form of energy functionals we want to
minimize

u(x) = arg min
u

{∫
Ω

Edata(u(x)) + Esmooth(u(x)) dx

}
, (2.33)

which can be transformed into a general class of energy minimization problems which
are well-investigated for computer vision tasks:

min
x∈X
{F (Kx) +G(x)} (2.34)

with F and G being proper, lower semi-continuous convex functions and a linear
operator K ∈ Rn×m. Usually, F (Kx) corresponds to the regularization term of
the form ||Kx|| and G(x) to the data term. However, due to the L1 norm of the
total variation and it’s non-smoothness, it is difficult to minimize this non-linear
problem directly. To overcome this problem [22] transformed the original problem
(minimization with respect to a primal variable) into a primal-dual saddle-point
problem. Additionally, the algorithm works iteratively by computing local solutions
and distributing this information across neighboring image pixels, thus making the
primal-dual algorithm highly parallelizable and well suited for implementation on
modern GPUs.
The saddle-point formulation of Equation 2.34 is now derived by substituting F (Kx)
with it’s convex conjugate, which by definition of the Legendre-Fenchel transform
and F being a convex function is

F (Kx) = max
y∈Y
{〈Kx,y〉 − F ∗(y)} (2.35)

yielding

min
x∈X

max
y∈Y
{〈Kx,y〉 − F ∗(y) +G(x)} . (2.36)
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Because the dot product is commutative, we can write

〈Kx,y〉 =
〈
x, KTy

〉
(2.37)

which gives us the final primal-dual formulation (generic saddle-point problem), used
in the following optimization problem

min
x∈X

max
y∈Y
{
〈
x, KTy

〉
− F ∗(y) +G(x)} (2.38)

Under the weak assumptions in convex analysis, min and max can be switched in
Equation 2.38 which now describes the algorithm:
Perform an alternating gradient descent in the primal variable and a gradient ascent
in the dual variable, each step followed by a projection of the intermediate solution
onto the constrained set of allowed solutions.
The formal primal-dual algorithm proposed by [22] is then given as

yn+1 = ProxσF ∗(yn + σKxn) (2.39)

xn+1 = ProxτG(xn − τK∗yn+1) (2.40)

xn+1 = xn+1 + θ(xn+1 − xn) (2.41)

with ProxσF ∗ and ProxτG being the proximal mappings onto the constrained sets
of x and y respectively and initial solutions for x0 and y0. The third line of the
algorithm corresponds to a linear extrapolation step (typically θ = 1.0) and can
be seen as an approximate extragradient step, speeding up the convergence. For
0 ≤ θ ≤ 1 and step sizes bound to the operator norm by σ · τ · ‖K‖2 < 1, xn

converges to a minimizer of the original energy function.

Legendre-Fenchel Transformation

The main principle of the primal-dual approach is duality - the principle of looking
at a function or problem from two different perspectives (the primal and dual form).
Like the Fourier Transform, the Legendre-Fenchel transformation is one mapping
of functions f(x) to another space where these functions can be analyzed better
and more easy. It maps the (x, f(x)) space to the space of slope and conjugate
(p, f ∗(p)). The Legendre-Fenchel transformation of a continuous but not necessarily
differentiable function f : Rn → R ∪ {∞}, is defined as

f ∗(p) = sup
x∈Rn

{xTp− f(x)} . (2.42)

where p is the slope and f ∗(p) is called the convex conjugate of the function f(x).
The conjugate allows building a dual problem which may be easier to solve than
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the primal problem. Also note that the Legendre-Fenchel conjugate is always con-
vex. The definition of the Legendre-Fenchel transformation can be interpreted as
an encoding of the convex hull of the function’s epigraph in terms of its support-
ing hyperplanes (see Figure 2.19). A closed convex set is uniquely defined by it’s
supporting hyperplanes.

Definition 8 Supporting hyperplane
A supporting hyperplane of a set S in Euclidean space Rn is a hyperplane where
the set S is entirely contained in one of the two closed half-spaces bounded by the
hyperplane and S has at least one boundary-point on the hyperplane.

Figure 2.19: A closed convex set is uniquely defined by it’s supporting hyperplanes
and a convex function is uniquely defined by it’s lower supporting hyperplanes.

Example f(x) = a · ‖x‖

The Legendre-Fenchel transform of the L1 or L2 norm is given as

f ∗(p) = sup
x∈Rn

{xTp− f(x)} (2.43)

= I{‖p‖2≤a}(p) = IP (p) =

{
0 if ‖p‖2 ≤ a
∞ otherwise

(2.44)

where I{‖p‖2≤a}(p) = IP (p) is the so-called indicator function on the set P := {p ∈
Rn | ‖p‖2 ≤ a}.
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f(x) = ‖x‖δ
For the Huber loss defined as

f(x) = ‖x‖h =

{ |x|22
2h

if |x|2 ≤ h
|x|2 − h

2
if |x|2 > h

(2.45)

the corresponding Legendre-Fenchel transform computes as

f ∗(p) =


h
2
‖p‖2

2 if ‖p‖2 ≤ h
h
2

if h ≤ ‖p‖2 ≤ 1
∞ otherwise

(2.46)

= I‖p‖2≤1 +
h

2
‖p‖2

2 (2.47)

Proximal mapping

For the primal-dual algorithm to be of practical use, an efficient computation of the
proximal mapping of F and G is required. In the primal-dual algorithm, we perform
a gradient descent step in the primal variable and then need to perform the proximal
mapping, to enforce the implied constraints. For the following gradient ascent step
in the dual variable we do likewise.
The proximal mapping of a convex function f is defined as

proxσf (x) = arg min
y

{
1

2
‖x− y‖2 + σf(y)

}
, (2.48)

with σ ∈ R a scalar factor usually denoting a step-size in gradient descent/ascent
algorithms. In literature, the terms proximal mapping, proximity operator, prox
operator and resolvent operator are used synonymously.

Example f(x) = IC(x)

The proximal mapping of the indicator function of a convex set C is the projection
(shortest distance) on the set C

proxf (x) = arg min
y

{
1

2
‖x− y‖2

2 + f(y)

}
(2.49)

= arg min
y

{
1

2
‖x− y‖2

2 + IC(y)

}
(2.50)

= arg min
y∈C

{
1

2
‖x− y‖2

2

}
(2.51)

= ΠC(x) =

{
x if x ∈ C
projC(x) if x /∈ C (2.52)
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Figure 2.20: Examples for proximal mapping. In case of n-dimensional unitballs
the prox operator is a Euclidean projection (left). In general each point is projected
along the shortest line onto the convex set C.

In the derivation above we used the fact that IC(y) =∞ for all y /∈ C and IC(y) = 0
for all y ∈ C.

For example, if we have the unitball constraint

C = {y | ‖y‖ ≤ 1} (2.53)

then

proxIC (x) = ΠC(x) =
x

max(1, ‖x‖2)
(2.54)

Example f(x) = λ
2
· ‖x− g‖2

2

proxf (x) = arg min
y

{
1

2
‖x− y‖2

2 + f(y)

}
(2.55)

= arg min
y

{
1

2
‖x− y‖2

2 +
λ

2
‖y − g‖2

2

}
= arg min

y

{
‖x− y‖2

2 + λ‖y − g‖2
2

}
Setting the derivative with respect to y zero, one obtains

proxf (x) =
x + λg

1 + λ
(2.56)

Example f(x) = λ · ‖x− g‖1

This is the L1 data term version used in the TV-L1 model, used in the example of
image denoising (Section 2.3.2). Derivation of this term based on case differentiation
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of x − g [>,<,=] 0 yields the so called soft-thresholding operator or shrinkage
operator

proxf (x) =


x− λ if x− g > λ
x + λ if x− g < −λ
g if |x− g| < λ

(2.57)

Implementation details

In our case of minimizing the Total Variation across a 2D depth map, the linear
operator K expresses the first order derivatives in x and y dimension across the
image

K =

(
∇x

∇y

)
(2.58)

The depth map (or image) to solve for is represented as vector of size u ∈ RMN

with M the number of image rows and N the number of image columns. The Total
Variation operator in Equation 2.58 is then formally a sparse 2-dimensional matrix
of size R2MN×MN with

∇x =



−1 1 0 . . . 0
0 −1 1 0 . . . 0
...

. . .

0 −1 1 0
0 −1 1

0 . . . 0 0 0


(2.59)

and

∇y =


−1 0 . . . 0 1 0 . . . 0
0 −1 0 . . . 0 1 0 . . . 0
...

. . .

0 . . . 0 . . . 0

 (2.60)

In the analytical derivation of the primal-dual scheme above, we require the gra-
dient ∇ and divergence operator ∇T = −div to be negative adjoint, such that
〈∇u,p〉 = −〈u, div p〉. Therefore we use finite forward differences with Neumann
boundary conditions for the gradient operators and for the divergence operators
finite backward difference with Dirichlet boundary conditions:
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2D forward differences (with Neumann boundary conditions)

(∇xu)ij =

{
ui,j+1 − ui,j if j < N − 1
0 if j = N − 1

(∇yu)ij =

{
ui+1,j − ui,j if i < M − 1
0 if i = M − 1

(2.61)

2D backward differences (with Dirichlet boundary conditions)

(div2p)i,j =


p1
i,j − p1

i,j−1 if 0 < j < N − 1
p1
i,j if j = 0
−p1

i,j−1 if j = N − 1

+


p2
i,j − p2

i−1,j if 0 < i < M − 1
p2
i,j if i = 0
−p2

i−1,j if i = M − 1
(2.62)





Chapter 3
ADMM

Summary

This work presents a fast algorithm for high-accuracy large-scale outdoor dense
stereo reconstruction of man-made environments. To this end, we propose a
structure-adaptive second-order Total Generalized Variation (TGV) regularization
which facilitates the emergence of planar structures by enhancing the discontinu-
ities along building facades. As data term we use cost functions which are robust to
illumination changes arising in real world scenarios. Instead of solving the arising
optimization problem by a coarse-to-fine approach, we propose a quadratic relax-
ation approach which is solved by an augmented Lagrangian method. This tech-
nique allows for capturing large displacements and fine structures simultaneously.
Experiments show that the proposed augmented Lagrangian formulation leads to a
speedup by about a factor of 2. The brightness-adaptive second-order regulariza-
tion produces sub-disparity accurate and piecewise planar solutions, favoring not
only fronto-parallel, but also slanted planes aligned with brightness edges in the
resulting disparity maps. The algorithm is evaluated and shown to produce consis-
tently good results for various data sets. 1

Contributions
The main author did all the following theoretical, implementation and evaluation
work on his own, plus additional conceptual discussions with the co-authors:

• Solving second-order TGV together with non-convex data-terms into a non
coarse-to-fine framework by quadratic relaxation and optimization using aug-
mented Lagrangian

• Subdisparty accurate exhaustive search by analytical subdisparity solution

• Using adaptive regularization by edge/line image cues

1 c©2013 IEEE. Reprinted, with permission, from Georg Kuschk and Daniel Cremers, Fast and
Accurate Large-Scale Stereo Reconstruction Using Variational Methods, 2013.
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Introduction

(a) Left input image (b) Two-view 3D reconstruction

(c) Zoom-in: Reconstruction using TGV and
an anisotropic diffusion tensor based on pixel-
wise gradients

(d) Zoom-in: Improvements along discontinu-
ities by additionally using high-level edge infor-
mation

Figure 3.1: Detailed stereo reconstruction using two 1000×1000 wide-baseline aerial
images, taking 10 seconds on common GPUs.

In the past few years, Total Variation based methods for minimizing energy
functionals arising in common computer vision problems have been given a lot of
attention in the research community. These algorithms are very well-suited for par-
allelization and, together with the recent advances of GPU-based computational
power, lead to efficient algorithms, solving these optimization problems globally op-
timal. Recently published work solving e.g. the optical flow or stereo estimation
problem can be found in [120], [107], [86], [89]. Total Generalized Variation (TGV)
was originally introduced in [14] as a higher-order extension of Total Variation min-
imization (TV) and favors the solution to consist of piecewise polynomial functions
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(e.g. fronto-parallel, affine, quadratic). Like the original TV formulation, the TGV
regularizer also is convex and allows for computation of the global optimum. In
the following two years, the second-order variant of TGV has been applied to depth
map fusion in [87] and dense stereo estimation in [89], basically assuming that the
surface to reconstruct is locally planar and not implying fronto-parallel constraints
only. For being able to use robust cost functions which are usually highly non-linear,
a typical choice is to linearize the costs inside a coarse-to-fine strategy (see e.g. [89]).
The main drawback of this approach is that fine scene-details which are not cap-
tured in the lower pyramid levels are highly likely to be missing completely in the
final reconstruction. Applying TGV as regularizer for stereo estimation, the energy
functional we will use throughout the rest of the paper and need to minimize reads

E =

∫
Ω

{λs|G(∇u− v)|+ λa|∇v|+ λdC(u)} dx (3.1)

with u(x) ∈ Γ the disparity/depth map to solve for (Γ being the disparity search
space), an additional vector field v and Ω being the image space RM×N . Note that
for brevity, we just write u,v instead of u(x),v(x). So instead of just enforcing
the norm of the gradient of u to be minimal, which equals favoring fronto-parallel
surfaces, the additional vector field v gets subtracted from the gradient of u and in
turn is also forced to have low variation. Therefore, piecewise affine functions are
being favored, as these have a constant gradient whose derivative tends to zero. The
values λs, λa, λd are scalar weights and balance the impact of the smoothness term,
the affine term and the data term.
The linear operator G in Equation 3.1 serves to adapt the amount of regularization
locally, depending on some information derived from the input images. A famous
choice for G is for example the anisotropic Nagel-Enkelmann operator [74], which,
in addition to the original paper, has been widely used and modified throughout
the literature ([120], [89]). However, all these methods have in common, that they
compute an adaptive regularization weight based on the local image gradient at the
considered pixel solely. This usually improves the sharpness along discontinuities,
but does not necessarily impose straight edges along man made structures. To im-
prove the accuracy of the stereo estimation along these straight-line discontinuities,
we integrate an adaptive regularization weight based on detected high-level line seg-
ments, which is inherently easy to integrate into the proposed global optimization
framework.
Unfortunately, we cannot solve Equation 3.1 directly with e.g. a primal-dual gra-
dient based approach [86], since the data term should be a strong and reliable cost
function to fit our needs of being robust against some amount of change in perspec-
tive and illumination (and therefore in general non-convex). This problem often is
bypassed by linearizing the cost function and solving the resulting convex problem.
Since this 1st order Taylor approximation of the cost function is only valid locally,
the whole algorithm needs to be wrapped into a coarse-to-fine warping framework
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[15], which we explicitly want to avoid to not loose fine structures already in the
coarsest level. In the following section, we will explain our solution to this mini-
mization problem.

Edge-segment based adaptive regularization

The anisotropic diffusion tensor G in Equation 3.1 serves the purpose of an
anisotropic weighting of the regularizer based on the image gradient. It enforces
low regularization/smoothness along image edges, and high smoothness in homoge-
nous image regions. It is based on the Nagel-Enkelmann operator [74] and was
proposed in [120]:

G = exp(−a · |∇Iref |b) · nnT + n⊥n⊥
T

(3.2)

with the direction of the image gradient n =
(
nx

ny

)
=
∇Iref
|∇Iref |

, an perpendicular vector

n⊥ and weighting parameters a, b.
However, as this diffusion tensor is based on pixelwise gradients (incorporating
spatial context to a minor degree by a prior Gaussian convolution), it does not
provide a strong and consistent regularization direction for small low-contrast edges
as shown in Figure 3.2.
Using high-level edge segments as additional a priori information is a logical choice
for guiding the optimization framework to straight-line discontinuity reconstruc-
tions. However, the main problem with this approach is the robustness of the edge
detection, as for most edge detection algorithms (e.g. Canny [18]), textured regions
result in a high edge density and therefore many false detections. A second problem
for heterogenous image data is the need to manually tune the parameters for each
group of images separately, to obtain reasonable results.
The recently introduced Fast Line Segment Detector (LSD) [117] adresses both of
these problems and gives outstanding results while being computationally quite
efficient. The integration of the edge-segments into the optimization framework
is straight forward, as we repeat the process described in Equation 3.2 with the
Gauss-convoluted binary mask of detected edge segments as input image, resulting
in a second diffusion tensor G′. We obtain the combined diffusion tensor by updating
the values of G with the values of G′ at the position of detected lines (see Figure 3.2).
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Fast optimization by quadratic splitting and aug-

mented Lagrangian

In [107], a quadratic relaxation between the convex regularizer and the non-convex
data term was proposed for minimizing a Total Variation based optical flow energy
functional and [75] used a similar approach for image driven and TV-based stereo
estimation. We build upon these ideas and split the image driven TGV stereo
problem from Equation 3.1 into two subproblems and, using quadratic relaxation,
couple the convex regularizer R(u) and non-convex data term C(u) through an
auxiliary variable a:

E =

∫
Ω

R(u) + C(a) +
1

2θ
(u− a)2 dx . (3.3)

By iteratively decreasing θ → 0, the two variables u, a are drawn together, en-
forcing the equality constraint u = a.
As an alternative, we incorporate this equality constraint not uniformly for each
pixel, but via an additional augmented Lagrange multiplier L (see e.g. [5]) and op-
timize for it as well. The resulting energy minimization problem based on Equation
3.3 then reads as follows

u = arg min
u

{ λs|G(∇u− v)|+ λa|∇v|+ λdC(a) +

L(u− a) +
1

2θ
(u− a)2 } (3.4)

Our experiments showed that this improves the robustness of the algorithm w.r.t.
the choice of the θ-sequence and additionally speeds up the algorithm by a factor of
2 (see Figure 3.4).
While the regularization term is convex in u and can be solved efficiently using
a primal-dual approach for a fixed auxiliary variable a, the non-convex data term
can be solved point-wise by an exhaustive search over a set of discretely sampled
disparity values. This process is done alternatingly in an iterative way.

Convex solution

To solve for the disparity map u ∈ RM×N (in the following written as stacked vector
RMN×1) in the regularizer term of Equation 3.4, we need to overcome the non-
differentiable L1-norm, which complicates any gradient descent based minimization
scheme. To this end we apply the Legendre-Fenchel transform to obtain the dual
formulation / conjugate of our L1 regularizers

λ‖AGu‖1 = arg max
‖p‖≤λ

{〈AGu,p〉} (3.5)
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(a) Part of the left stereo image, overlayed with
detected edges

(b) Zoom-in area of green rectangle

(c) Zoom-in area: Vector field of the anisotropic
diffusion tensor based on pixelwise gradients

(d) Vector field additionally incorporating
high-level edge information

Figure 3.2: Influence of additional high-level edge priors on the anisotropic regular-
ization: Due to low contrast, the Nagel-Enkelmann operator in c) cannot capture
the building edge of b) very well. Using additional edge information d) improves
the regularization direction.

where the matrix multiplication Au computes the 2MN × 1 gradient vector and
G ∈ RM×N contains the element-wise weighting factors. Applied to our problem,
we obtain the conjugates

λs · ‖G(∇u− v)‖1 = max
p∈P
{〈G(∇u− v),p〉} (3.6)

λa · ‖∇v‖1 = max
q∈Q
{〈∇v,q〉}

such that the saddle-point problem in the primal variables u,v and their dual
correspondences p,q with constraints P = {p ∈ R2MN : ‖p‖∞ ≤ λs} and
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Q = {q ∈ R4MN : ‖q‖∞ ≤ λa}, coupled with the data term is maxp,q minu,v,a{E}
with

E = 〈G(∇u− v),p〉+ 〈∇v,q〉+ λdC(a)+

L(u− a) +
1

2θ
(u− a)2 (3.7)

Fixing the variables a and L, we obtain the minimum of Equation 3.7 for
∂u,v,p,qE(u,v, a,p,q) = 0 and using an iterative gradient descent in the primal
variables and gradient ascent in the dual variables.

Non-convex solution

To solve for the auxiliary variable a in the data term of Equation 3.4, we keep the
variables u,L fixed and perform a point-wise exhaustive search over all a(x) ∈ Γ

min
a(x)∈Γ

{
λdC(a) + L(u− a) +

1

2θ
(u− a)2

}
(3.8)

Note that in order to retain the TGV smoothness, it is necessary to perform the ex-
haustive search using subdisparity sampling steps. As this may look computational
expensive at first glance, it does not affect the overall performance in a measurable
way if implemented with care (see Section 3.5).

Augmented Lagrangian update

According to e.g. [5], the Lagrange multiplier L is updated by Ln+1 = Ln+ 1
2θn

(u−a),
with the augmented penalty function 1

2θn
monotonically increasing as θn → 0.

Algorithm

In this section we will describe how to solve the energy minimization problem stated
in Equation 3.4. As a first step, since the stereo estimation should work with
various scales in depth and different cost functions as well without having to adjust
the parameters for each dataset, we initially norm both u → [0, 1] and the costs
C → [0, 1]. Doing so, we can fix nearly all parameters internally and only need
to expose the weighting factors λd, λs, balancing the impact of the data term and
smoothness term, to be set by the user. After evaluating the algorithm for a variety
of scenarios (indoor, ground-based outdoor, aerial) and benchmarks (see Section
5.5), we obtained the best results for λa = 8λs and fix this value to not bother the
user with the weighted impact of the affine term additionally.
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1. Fixing an and Ln, run the primal-dual optimization for a number of inner
iterations, performing gradient ascents on the dual variables p,q and
gradient descents on the primal variables u,v:
for i = 1 : nIterSmooth do

pn+1 = ΠP (pn + τpG(∇ûn − v̂n))

qn+1 = ΠQ (qn + τq∇v̂n)

un+1 = ΠU

(
un + τudiv (Gpn+1)− τuLn + τu

θn
an

1 + τu
θn

)
vn+1 = vn + τv(p

n+1 + divqn+1)

ûn+1 = 2un+1 − un

v̂n+1 = 2vn+1 − vn

2. Fixing un+1 = ũ, perform a point-wise search

an+1 = arg min
a(x)∈Γ

{
λdC(a) + Ln(ũ− a) +

(ũ− a)2

2θn

}

3. Update Ln+1 = Ln + 1
2θn

(un+1 − an+1)

4. If n < nstop, update θn+1 = θn(1− βn), n = n+ 1, goto step (1) else stop

Algorithm 3.1: Algorithm for ADMM-based 3D reconstruction

The complete optimization of the proposed energy functional in Equation 3.4 is
done iteratively as described in Algorithm 3.1, initializing the primal variable with
the disparity value associated to the data cost minimum (winner-takes-all solution),
u0 = a0 = argmina(x)∈Γ C(x, a(x)), setting the dual variables to zero (p0 = 0,
q0 = 0), and starting with iteration n = 0 and θ0 = 1.
To ensure that ‖p‖∞ ≤ λs and ‖q‖∞ ≤ λa, the proximal mappings above are given
as ΠP (p) = p

max{1,‖p‖/λs} and ΠQ(q) = q
max{1,‖q‖/λa} and for keeping u in valid range,

we use ΠU as the truncation of un+1 onto the interval [0, 1]. Also note, that in the
analytical derivation of the primal-dual scheme above, we require the gradient and
divergence operators to be negative adjoint, such that 〈∇u,p〉 = −〈u, div p〉 and
〈∇v,q〉 = −〈v, div q〉. Therefore we use finite forward differences with Neumann
boundary conditions for the gradient operators and for the divergence operators
finite backward difference with Dirichlet boundary conditions. The step sizes of
the gradient ascents/descents are bound to the norm of the gradient/divergence
operators and are set to τu = τp = 1/

√
12 and τv = τq = 1/

√
8, as detailed in [22].
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The parameter β controls how fast the convex and non-convex solution are drawn
together (by decreasing θ) and is fixed to β = 10−3, while the whole algorithm stops,
if n > 80. For the number of primal-dual iterations, we set nIterSmooth = 150.

As already mentioned in Section 3.4, retaining the subdisparity smoothness re-
sulting from the continuous TGV solution requires subdisparity accurate results of
the exhaustive search as well. Therefore, after obtaining an integer solution for the
disparity a which minimizes the energy

arg min
a

{
λdC(a) + L(u− a) +

1

2θ
(u− a)2

}
, (3.9)

we compute the subdisparity solution as the minimum of a parabola, fitted through
the obtained integer minimum and its adjacent values at ±1 disparities (see Figure
3.3). Parametrizing the parabola as C(a + t) = at2 + bt + c, the coefficients are
computed using the abovementioned 3 datapoints and corresponding t ∈ {−1, 0, 1}.
Substituting ã = a + t , C(ã) = at2 + bt+ c and optimizing for the parameter t, we
obtain the subdisparity refinement t̃ ∈ [− 1

m
, 1
m

] as

t̃ =
u−a
θm
− λb− L

m(
2λa+ 1

θm2

) , (3.10)

with m = |Γ| being the number of disparities.

Figure 3.3: Subdisparity accurate results are required in the exhaustive search step,
to retain the continuous solution of the prior TGV step

Finally, due to its iterative and locally confined computations per iteration, the
algorithm is very well-suited for parallelization and therefore implemented on GPU.
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Figure 3.4: Evolution of the primal energy of Equation 3.3, with and without aug-
mented Lagrangian. The runtime is dominated by the primal-dual algorithm, such
that the additional Lagrange multiplier L has a neglectable influence and the run-
time per iteration is basically the same for the two algorithms.

Evaluation

Our algorithm is evaluated on three different data sets and in case RGB images are
available, only the gray image will be used. If more than two views are available, only
two of them will be used, in order to demonstrate our algorithm on two-view stereo
scenarios. For all datasets, we used the Census transform [125] with windows size
7×7 as cost function, since it is quite robust to a wide range of illumination changes.
Additionally, we locally aggregate the costs using Adaptive support-weights [124]
with radius 7 to reduce the effect of foreground fattening, but keeping the radius
quite small so as not to put too much fronto-parallel assumption into the cost win-
dow. For regularization we are using two parameter sets: {λd = 1.0, λs = 0.2} for
the low resolution Middlebury stereo benchmark [99] and {λd = 0.4, λs = 1.0} for
the KITTI stereo benchmark [34] and the aerial images. The algorithm was run on
a Nvidia GTX 680 GPU to which all given runtime performances relate to.

Middlebury benchmark: The Middlebury stereo benchmark [99] provides an
additional discontinuity mask which we will use for the evaluation of our edge-
segment based adaptive regularization. In Table 3.1 and Figure 3.5 we show the
results of our algorithm both with the adaptive edge-segment regularization switched
on and without. For all scenes except the teddy data set the results improve along
the discontinuity regions, whereas for the teddy dataset results are worsening on
the strongly slanted plane at the very bottom of the image. We are using the same
parameters and cost functions described in Section 5.5 for all data sets and only
take the gray value images of the stereo pairs as input.
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Algorithm Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

TGV 3.66 4.33 12.0 0.21 1.00 2.88 3.93 9.66 12.1 2.44 11.1 7.20
TGV+edge 3.58 4.21 11.6 0.19 1.01 2.61 4.30 9.95 13.0 2.41 11.2 7.01

Table 3.1: Results of the proposed algorithm for the Middlebury Stereo benchmark
(bad pixel ratio for errors > 1px), once without an anisotropic diffusion tensor
(TGV), once with the combined diffusion tensor of Section 3.3 (TGV+edge).

Figure 3.5: Results of the proposed algorithm for the Middlebury Stereo benchmark.
Top row: ground truth, Middle row: our results, bottom row: bad pixel areas in
black (threshold = 1px). The parameters are identical for all data sets and only the
gray value images were taken.

KITTI benchmark: In contrast to the 4 test images of the Middlebury bench-
mark above, where the disparity search range is very small, the environment highly
textured and the illumination conditions nearly constant, the KITTI stereo Bench-
mark [34] consists of 195 very challenging stereo images from ground based outdoor
scenarios, together with ground truth obtained by laser scanning. In total, we
achieve rank 11 in the benchmark, with a runtime of 20s per image. Additionally,
we compare our results against the closest related published algorithms, also based
on minimizing higher-order Total Variation (see Table 3.2). While we outperform
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the coarse-to-fine based ITGV algorithm [89] in terms of accuracy, we do not yet
quite achieve the accuracy of the functional lifting based ATGV algorithm [90]. For
some exemplary results of the proposed algorithm see Figure 3.6.

Rank Method Out-Noc Out-All Avg-Noc Avg-All Runtime
8 ATGV 5.05% 6.91% 1.0 px 1.6 px 6 min
11 Proposed 5.48% 6.60% 1.1px 1.2px 20s
17 ITGV 6.31% 7.40% 1.3px 1.5px 7s

Table 3.2: Results for the challenging KITTI stereo benchmark [34] (195 outdoor
stereo pairs). The bad pixel ratio of Out-Noc, Out-All is the common 3px threshold.
For comparison, we further added the closest related algorithms as well. For some
exemplary results see Figure 3.6.

(a) Reference image 1 (b) Disparity map 1

(c) Reference image 7 (d) Disparity map 7

(e) Reference image 15 (f) Disparity map 15

Figure 3.6: Example results for the KITTI stereo benchmark. From top to bottom:
bad, medium and good results

Aerial imagery: In a third data set, we apply our algorithm to aerial imagery.
Despite usually having numerous overlapping images, covering every point of the
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scene manifold, we concentrate on showing the potential of the proposed algorithm
on single stereo pairs, and apply no fusion of the resulting heightmaps in this paper.
In contrast to the rectified images given in the abovementioned benchmarks, in
this data set we have camera models ready for each input image, allowing us to
evaluate the cost function at constant intervals in object space (using a plane-sweep
approach) instead of sampling at constant disparity intervals. Thus our algorithm
can treat every height value equally, whereas in disparity space, small changes in
low disparities result in bigger height-differences than changes in large disparities.
In Figure 3.7, the resulting 3D reconstruction is shown together with the two stereo
images. The proposed method clearly preserves very fine structural details of the
3D scene (e.g. roof structures), while at the same time smoothing locally planar
surfaces (church roof) quite well.
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(a) Left image (b) Right image

(c) Stereo reconstruction

Figure 3.7: a), b) Two wide-baseline aerial images (≈15cm ground resolution) c)
Resulting heightmap (in camera coordinate system, not in orthogonal UTM coor-
dinate system) of two-view stereo estimation using the proposed algorithm. Please
note the fine roof structures in the 3D reconstruction, but the outliers due to moving
people as well. The computation time for a 1000× 1000 image using 100 disparity
values is about 10s (using a Nvidia GTX 680 GPU).
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Conclusion

In this paper we proposed an algorithm for large-scale high-accuracy stereo re-
construction of man-made worlds. To this end, we combine a non-convex data
term which is robust to real-world illumination changes with a regularizer which
exploits the fact that man-made worlds (buildings, cities, etc.) exhibit a large
number of planar facades. The regularizer is an adaptive second-order total gen-
eralized variation modulated by means of an edge-indicator. We propose an opti-
mization scheme consisting of a quadratic decoupling combined with an augmented
Lagrangian approach which alternatingly solves the problems of correspondence find-
ing and structure-adaptive regularization. Experiments show that the proposed
augmented Lagrangian approach is faster by about a factor of 2. Validations on
established stereo benchmarks and large-scale aerial images show that the proposed
method provides substantial improvements over the standard TGV regularization
leading to highly-accurate reconstruction of large-scale scenes.
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Dense SLAM

Summary

In this work we propose an algorithm for dense and direct large-scale visual SLAM
that runs in real-time on a notebook. A variational dense 3D reconstruction algo-
rithm was developed which robustly integrates data terms from multiple images.
This mitigates the effect of the aperture problem and is demonstrated on synthetic
and real data. An additional property of the variational reconstruction framework is
the ability to integrate sparse depth priors into the early stages of the visual depth
reconstruction, leading to an implicit sensor fusion scheme for a variable number
of heterogenous depth sensors. Embedded into a keyframe-based SLAM frame-
work, this results in a memory efficient representation of the scene and enables us to
densely reconstruct large scenes in real-time. Experimental validation on the KITTI
dataset shows that our method can recover large-scale and dense reconstructions of
entire street scenes in real-time from a driving car. 1

Contributions
The main author did all the following theoretical and implementation work regard-
ing the depth reconstruction on his own, whilst the integration into the SLAM
framework and its corresponding evaluation was done together with Aljaz Bozic,
plus conceptual discussions with the co-authors:

• Realtime implementation of dense variational 3D reconstruction

• Strengthening the data term by adding information from multiple input images
into the stereo reconstruction optimization framework and solving for them in
a robust way by minimizing the sum of their L1-norms

• Adding optional depth priors into the stereo reconstruction framework

1 c©2017 IEEE. Reprinted, with permission, from Georg Kuschk, Aljac Bozic, and Daniel
Cremers, Real-time Variational Stereo Reconstruction with Applications to Large-Scale Dense
SLAM, 2017.



64 Chapter 4. Dense SLAM

Introduction and Related Work

The reconstruction of the world from moving cameras has seen an enormous progress
over the last few years: Algorithms have become increasingly robust, fast and large-
scale capable. While active sensors such as lasers or RGB-D cameras have become
a popular means to obtain dense reconstructions of the world, in this work we focus
on the case of color cameras as these are more prevalent and cheaper than lasers
and not limited to indoor and near-range settings as current RGB-D cameras. Due
to an increasing (and redundant) amount of sensors built into nowadays moving
camera systems (e.g. cars and smartphones), we want to design our optical stereo
reconstruction in such a way that integration of sparse depth priors arising from
different depth sensors can be used to guide the stereo reconstruction in areas where
cameras usually perform bad (oversaturated and/or textureless areas). To increase
robustness against wrong matches, the reconstruction process further should be
inherently able to use multiple images (if available) instead of just two.

(a) Final map (b) Detailed zoom

Figure 4.1: Dense large-scale reconstruction for an automotive image sequence.

Related Work

The visual simultaneous localization and mapping, often called structure-and-
motion, is traditionally solved by extracting and tracking a set of keypoints in order
to facilitate real-time performance. A premier example of real-time large-scale dense
reconstructions obtained on the basis of a keypoint-based visual-inertial SLAM sys-
tem was recently proposed in [102].

With recent improvements in computing hardware and algorithms, so-called di-
rect methods for visual SLAM have been promoted. Rather than precomputing an
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invariably heuristic sparse subset of keypoints, they directly rely on all available im-
age information in order to recover structure and motion. Such direct Visual SLAM
methods include [110, 75, 36, 31, 28, 81, 52].

Another important aspect for large-scale dense reconstruction is the representa-
tion of the dense 3D geometry itself. Surfel-based methods [109, 121] are a natural
extension of pointclouds by extending each point to a typically ellipsoidal shape.
Spatial regularization of the 3D model however is non-trivial as with normal point-
clouds. While volumetric representations based on regular voxel grids [36, 52, 43]
typically yield the highest accuracy due to easy data fusion and spatial regulariza-
tion, they suffer from severe memory limitations. These limitations can be overcome
by using octrees [106, 115] or voxel hashing [76, 102]. Yet, these representations still
– as with the regular voxel grid – cannot easily handle loop-closures and the en-
tailing pose refinements. Keyframe-based approaches [70, 28] are naturally able
to optimize the camera poses when correcting for loop-closures, depth information
from nearby depthmaps can be fused into them and they provide a regular grid to
facilitate spatial regularization.

The most closely related works fall into two categories: On one hand, there are
direct visual SLAM techniques which compute dense geometry in real-time [110, 75],
albeit not at a large scale – typically only smaller desktop environments are recovered
because for larger-scale structures substantial drift in the frame-to-frame tracking
tends to create distortions. On the other hand, there are visual SLAM algorithms
like LSD-SLAM [28] which do compensate for drift by pose graph optimization.
While they can recover environments of many buildings and street scenes in real-
time, the corresponding reconstructions are not dense. As a consequence, they may
not be ideal for obstacle avoidance, path planning and a complete visualization of the
environment. In this work we combine the strengths of both of these approaches and
propose a direct visual SLAM system which recovers large-scale dense environments
in real-time on commodity notebook hardware.

As for the dense stereo reconstruction – in this work we focus on a variational
formulation, as this approach provides a general and modular framework with ad-
ditional prior knowledge/assumptions easy to integrate into the overall energy min-
imization. This prior knowledge is not restricted to smoothness assumptions like
fronto-parallel surfaces, or slanted plane [14], [35], but also allows for pixelwise
data-priors n [87].
Variational methods for semi-real-time dense stereo have been already been devel-
oped by e.g. [110], [75], [81], [35]. However, [110] achieve semi-real-time framerates
of 20 fps only when performing the corresponding optimization on the GPU inex-
actly in shared memory and thereby creating small blocking artifacts, [75] computing
a full cost volume (disparity space image) over the complete disparity search range
(which must be known and fixed in advance), [81] just running a variational denois-
ing on the computed noisy depth map and [35] achieving semi-real-time capability
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of 10fps for 640 × 480 images. All of the methods above treat the computation of
a single depth map individually and do not take the temporal correlation between
successive depth maps into account, when handling a video stream of successive
frame. Despite their convex formulation, they all start the optimization from a
blank initial guess, thereby needing more time for convergence as if an approximate
solution would already be available.

Contributions and Overview

To achieve the abovementioned goals we propose the following key contributions:

• Our main contribution is the addition of a real-time capable dense 3D recon-
struction into a SLAM framework which is based on direct image alignment for
camera tracking and loop-closure correction by pose-graph optimization on the
keyframe representation of the 3D scene. The dense reconstruction is based on
a variational approach, imposing structural smoothness priors onto the scene
geometry and capable of inpainting textureless areas where the corresponding
image matching provides no meaningful data term.

• To strengthen the data term in non-discriminative cases, we propose to directly
include the image matching information of multiple images into the reconstruc-
tion step by minimizing the sum of their absolute values. The advantage of
minimizing the sum of L1 terms is in effect a median-based solution compared
to the mean-based solution when just computing the summed average. This
results in improved robustness against erroneous matches.

• Formulating the 3D reconstruction as a variational energy functional implicitly
enables us to add additional prior depth information into our model, originat-
ing e.g. in sparse 3D feature reconstruction or laser scanner. This provides an
elegant sensor fusion model for heterogenous depth sensors.

The tracking of the camera positions is performed by direct image alignment,
with an additional check for loop-closures resulting in a pose-graph optimization
using on the constraints between keyframe poses. Tracking and pose refinement are
done by using the publicly available implementation of [28] and we refer the readers
for further details to their work.
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Dense Depth Reconstruction

Multi-View Data Terms and Sparse Priors

We model our 3D reconstruction of the depthmap u(x) : Ω→ R as the minimization
of the energy functional

E =

∫
Ω

R(u) +
K∑
i

C
(d)
i (u) +

S∑
i

D(u,vi) (4.1)

where x ∈ Ω ⊂ R2 denotes the image space, C
(d)
i are the data terms of image

matching costs for multiple images I1..K : Ω→ R, D is the cost function for forcing
the solution u to be similar to various sources of prior depth information v1..S, and
R(u) is a regularizer enforcing spatial smoothness of the solution. When discretizing
the energy for numerical optimization

E = |∇u|ε +
K∑
i=1

λ
(d)
i |Ci(u)|1 +

S∑
i=1

λ
(p)
i |u− vi|1 (4.2)

we employ the L1-norm to both the K image matching data terms and the S a
priori data terms for being able to robustly cope with outliers. As regularizer we
choose to favor locally smooth structures and minimize the Total Variation, with
the Huber norm |.|ε both preserving discontinuities at sharp object transitions and
locally avoid staircasing artifacts. When having detailed estimates about the image
matching confidence or the a priori data terms vi, we can directly integrate this
knowledge into the corresponding weighting factors λ

(d)
i and λ

(d)
i .

The data fidelity functions Ci measure how well the reference image Iref (x)
matches the warped images Ii(ω(x,u(x))) and are given as simple intensity differ-
ences

Ci(x,u(x)) = Ii(ω(x,u(x)))− Iref (x) (4.3)

as this allows us to analytically computing the derivatives of the cost functions later
on, instead of numerical differentiation adding further heuristical parameters. This
brightness constancy assumption is a valid assumption for synchronized stereo im-
ages and for monocular images with a small temporal interframe distance when e.g.
taken at typical 30 fps. For matching images over wider baselines more illumination
invariant cost functions with a spatial support radius need to be chosen (e.g. the
Census transform [125] or its modified scale-robust version [88]). Minimizing over
multiple image matching cost functions is of special importance w.r.t. the aperture
problem, arising when the epipolar lines of the involved camera setup are parallel
to the image gradient, thus resulting in a flat and non-discriminative cost function.
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(a)

(b)

Figure 4.2: Reconstruction results using different number K of images: a) K = 2
b) K = 3. The data term was normalized to λ/(K − 1) to have equal balancing in
the energy functionals.

When additional images with a different camera motion are added, the com-
bination of different cost functions yields more information about the real depth.
Especially in the typical automotive stereo camera setup, the epipolar lines of the
stereo camera pair (C l

t, C
r
t ) at time step t are nearly horizontal, whereas when mov-

ing forward the epipolar lines of e.g. camera pair (C l
t, C

l
t+1) are oriented rather

vertically. DTAM [75] used a simple averaging of the different cost functions, re-
sulting in one final and averaged cost function in the reconstruction process. The
advantage of our L1-based solution is in effect a median-based solution compared to
the mean-based solution of [75], resulting in improved robustness against erroneous
matches.

Adding sparse prior depth information vi is straightforward, as we can directly
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(a) (b)

Figure 4.3: Compare to Fig. 4.2: a) The corresponding pixel of interest (red)
and two sampling intervals along the epipolar lines in two different images (blue
and purple). As can be seen in b), both the blue and purple image matching cost
function do not exhibit a clear minimum, their combination however (black) does.

add additional data constraints λ
(p)
i |u− vi|1 to our energy functional Eq. 4.5. Es-

pecially in an automotive setting where additional depth information from a laser
scanner is given, this results in a strong prior, guiding the visual stereo reconstruc-
tion to a more accurate solution (see Fig. 4.4).

(a) Left camera image (b) Depthmap visual only

(c) Sparse laser depth data (d) Depthmap sensor fusion visual+laser

Figure 4.4: Demonstrating the influence of adding sparse laser priors early in the
visual 3D reconstruction process. Only a simple coarse-to-fine warping scheme using
intensity differences was used for stereo reconstruction.
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Optimization

For making the minimization of the energy functional Eq. 4.5 tractable, we have to
ensure its convexity, which is not yet given due to the non-convex image matching
data terms Ci(u). We therefore linearize each Ci around an initial value u0 via its
first order Taylor approximation

Ci(u) ≈ C̃i(u) = Ci(u0) + (u− u0)
∂Ci(u0)

∂u
(4.4)

Because this linearization is only valid in a local range around u0 we need to embed
the complete optimization scheme into a coarse-to-fine warping framework. The
resulting energy functional

E(u) = |∇u|ε +
K∑
i=1

λ
(d)
i |C̃i(u)|1 +

S∑
i=1

λ
(p)
i |u− vi|1 (4.5)

is now convex, but due to the involved edge preserving and robust norms entirely
non-smooth. The primal-dual algorithm of [22] provides a framework to solve certain
classes of non-smooth optimization problems by transforming them to an equivalent
primal-dual formulation as saddle point problem

min
x
{F (Lx) +G(x)} ⇒

min
x

max
y
{〈Lx,y〉+G(x)− F ∗(y)}

⇔min
x

max
y

{〈
LTy,x

〉
+G(x)− F ∗(y)

}
(4.6)

with the mapping L a linear operator, G(.) and F ∗(.) convex functions, F ∗ itself the
convex conjugate of F . With the goal of transforming Eq. 4.5 to the saddle point
formulation of Eq. 4.6 we apply the Legendre-Fenchel transform to the norms of the
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individual terms of Eq. 4.5

E1(u) = sup
|p|≤1

〈∇u,p〉+
ε

2
|p|2

= sup
|p|≤1

〈
∇Tp,u

〉
+
ε

2
|p|2 (4.7)

E2(u) = sup
|qi|≤1

K∑
i=1

〈
λ

(d)
i C̃i(u),qi

〉
= sup
|qi|≤1

K∑
i=1

〈
λ

(d)
i (Ci(u0) + (u− u0)C′i(u0)) ,qi

〉
= sup
|qi|≤1

K∑
i=1

〈
λ

(d)
i uC′i,qi

〉
+

K∑
i=1

〈
λ

(d)
i (Ci − u0C

′
i) ,qi

〉
= sup
|qi|≤1

K∑
i=1

〈
λ

(d)
i C′iqi,u

〉
+

K∑
i=1

〈
λ

(d)
i Ĉi,qi

〉
(4.8)

And coupling these terms together again

E(u) = sup
|p|,|qi|≤1

{〈
∇Tp +

K∑
i=1

λ
(d)
i C′iqi,u

〉
+
ε

2
|p|2+

K∑
i=1

〈
λ

(d)
i Ĉi,qi

〉
−

S∑
i=1

λ
(p)
i |u− vi|1

}

= sup
|p|,|qi|≤1

{〈
LT · ( p qi )T ,u

〉
+
ε

2
|p|2 +

〈
λ

(d)
i Ĉi,qi

〉
−

S∑
i=1

λ
(p)
i |u− vi|1

}
(4.9)
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results in an equivalent saddle point formulation of type Eq. 4.6 with

y =


p
q1
...

qK


G(x) = G(u) = −

S∑
i=1

λ
(p)
i |u− vi|1

L =


∇x

∇y

λ
(d)
1 diag(C′1)

...

λ
(d)
K diag(C′K)


F ∗p(p) = I|p|≤1 +

ε

2
|p|2

F ∗q(qi) = I|qi|≤1 +
〈
λ

(d)
i Ĉi,qi

〉
(4.10)

The energy minimization of the transformed saddle point problem Eq. 4.9 can now
be efficiently solved by the primal-dual algorithm [22]

yn+1 = (I + σ∂F ∗)−1(yn + σLx̄n)

xn+1 = (I + τ∂G)−1(xn − τLTyn+1)

x̄n+1 = 2xn+1 − xn (4.11)

With the corresponding proximal mappings of the dual variables given by

(I + σ∂F ∗p)−1(p) = Πp(p)

(I + σ∂F ∗q)−1(qi) = Πq(qi − σλ(d)
i Ĉi) (4.12)

with Π being the elementwise projections onto the corresponding n-dimensional unit
balls Π(p) = p

max(1,|p|) . Instead of dualizing the data term and therefore adding dual
variables to the optimization framework, slowing down the convergence process,
we apply the work of [65], who proposed a closed-form solution for minimization

problems of the above type arg min
u

∑S
i λ

(p)
i |u−vi| based on the shrinkage operator

in the case of S = 1 → the so-called generalized shrinkage operator

(I + τ∂G)−1(u) = median{v1, ..,vS,h0,h1, ..,hS} (4.13)
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with

hi = u + τWi

Wi = −
i∑

j=1

λ
(p)
j +

S∑
j=i+1

λ
(p)
j , i = 0, .., S (4.14)

For S = 1 this proximal mapping equals the standard shrinkage operator

(I + τ∂G)−1(u) =


u− τλ if u > τλ
u + τλ if u < −τλ
0 if |u| < τλ

(4.15)

Instead of choosing global stepsizes based on the operator norm of L, which would
result in slow convergence due to the non-uniform structure of L, the stepsizes of
the gradient ascents/descents above are implemented via diagonal preconditioning
matrices σ ⇒ Σ, τ ⇒ T as proposed by [87]

Σj,j =
1∑M

i=1 |Li,j|
, Ti,i =

1∑N
j=1 |Li,j|

(4.16)

∀j ∈ {1, .., N}, i ∈ {1, ..,M}

Remarks: Instead of choosing TV-Huber regularization as a prior model of
our 3D scene, one can easily replace the corresponding parts in the optimization
scheme by more sophisticated regularizer like TGV [14] or Minimal Surface Regu-
larization [35] for even better capturing non-fronto parallel surfaces. However in our
application we do not find this necessary and avoid the additional computational
overhead and additional parameter dependences. Depth priors can originate in
various sensor coordinate systems (e.g. laser scanners, RGB-D sensors, sparse
3D feature reconstruction) and must be projected to the reference camera frame.
Typically a large number of pixel in these projected depth priors are unfilled
(having unknown depth) and in these cases the corresponding data term λ(p) is set
to zero. Also note that while the complete formulation looks cumbersome, broken
into the single components their computation is very easy and it is straight forward
to add additional constraints or regularizers.
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For given images Iref , I1, .., IK and corresponding cameras Cref , C1, .., CK the
complete coarse-to-fine reconstruction algorithm is listed in 4.1.

for s = start scale : num scales (from coarse to fine)
if s > 1

Upsample (x,y)(s−1) → (x,y)s

end
for w=1:nWarps

Warp all images to the reference frame: w(Isk) = warp(Isk,x
s, Cs

ref , C
s
k)

Compute image matching costs and derivatives Ck(I
s
ref , w(Isk)), C′k

Compute stepsizes σ, τ based on L and (Eq. 4.16)
for k=1:nIterPD

run primal dual step (Eq. 4.11)
end

end
end

Algorithm 4.1: Algorithm for warping based 3D reconstruction

Reconstruction of Image Sequences

Instead of computing the coarse-to-fine 3D reconstruction for every frame from
scratch, we make use of the temporal coherence of the given image sequences. When
a solution of the primal-dual algorithm Eq. 4.11 (x,y)t at time step t was computed,
we propagate it to the next time step t+ 1, using forward warping and the relative
pose between the camera poses Ct → Ct+1 obtained from the camera tracking step.
This warped primal-dual solution ω((x,y)t, Ct, Ct+1) is then resampled to a target
level l of the scaling pyramid and used as initialization of the stereo reconstruction
process at time step t+ 1, starting not from the coarsest level but from level l. Us-
ing this propagation scheme, it is sufficient to run the coarse-to-fine reconstruction
scheme only on the the finest levels. Based on experiments with camera framerates
of 10-30 fps, we only do the pre-initialized reconstruction step on the the finest scale.

Note that because at this point we only have the depth information of time step
t, we are restricted to a forward warping approach and therefore have to interpolate
invalid pixels after the propagation step. Also note that we cannot simply do an
image warping of the primal variable x but have to transform its depth parametriza-
tion from camera frame Ct to Ct+1. The drawback of this speedup is obviously the
inability to capture large pixel translations (corresponding to fast camera motion
in static scenes) by only considering the finest image scales, but for typical image
framerates of 10-30 fps and corresponding small inter-frame distances we didn’t ob-
serve any problems. For large camera displacements, the pyramid simply needs to
be traversed completely again.
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...
Figure 4.5: 3D reconstruction from a successive image sequence. First depth map is
initialized with an arbitrary depth estimate and a full coarse-to-fine warping scheme
is applied. For successive stereo frames, the primal-dual algorithm is initialized with
the warped results from the previous frame and optimization is done only on the
original image scale. Sparse depth prior can be included in the optimization as well
at any time.

Large-Scale Dense SLAM

The tracking of the camera positions is performed by direct image alignment robus-
tified to global affine illumination changes, with an additional check for loop-closures
resulting in a pose-graph optimization on the constraints between keyframe poses.
Tracking and pose refinement are implemented using the publicly available imple-
mentation of [28].

Track camera pose

current KF

create new KF?

create new KF

Multiview depth estimation Refine KFs via loop-closures

Add KF to Map

Maprefine KF

Figure 4.6: Flowchart of the SLAM system
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Results

For efficiency reasons the variational dense reconstruction algorithms have been im-
plemented on GPU, utilizing the massively parallel architecture available nowadays
on even modest hardware. All algorithms are quite robust w.r.t. their parame-
ters such that no delicate tuning is required. The main parameter to tune is λ(d)

– the weighting of the data term vs. the regularizer. In all our experiments we
set λ(d) = 2.0, λ(f) = 0.5λ(d) and for the Huber regularizer ε = 1e − 4. For the
reconstruction pyramid we set a scaling factor of 0.5, 5 warps per scale level and 50
primal-dual iterations per warp.
For the qualitative evaluation in Sec. 4.5.3 we used the sparse laser data provided
by the KITTI odometry dataset as depth priors, weighted equally as the image
matching data terms (λ(p) = λ(d)).

SLAM - KITTI Odometry Benchmark

For evaluation we used the KITTI odometry dataset [34], containing 21 automotive
sequences performing different driving scenarios with about 42,000 stereo image
pairs in total, recorded at 10 fps. As in [29] we ran the reconstruction on half-size
resolution (620 × 184) to achieve a good trade-off between accuracy and speed. In
contrast to our expectations, the resulting pose accuracy did not improve w.r.t. our
baseline algorithm of LSD-SLAM [28], mainly in scenes containing dynamic objects.
The direct image alignment then could not cope anymore with the amount of outliers
represented by the pixel values belonging to non-static scene elements. Therefore
we resorted to only use the sparse feature reconstruction for camera tracking (less
pixels with better accuracy), while the dense reconstruction is propagated to the
keyframes and the corresponding 3D point cloud. As described in section 4.3.1 we
use the sparsely reconstructed features as depth prior for our dense reconstruction.
This somewhat intuitive finding – that less but more accurately determined 3D
points are used for pose estimation instead of many less accurate 3D points – was
evaluated systematically very recently in the work of [27].

We processed the KITTI visual odometry dataset on a standard notebook con-
taining an Intel i5-5200U CPU at 2.20GHz and a NVidia GeForce 830M GPU. The
timing is dominated by the three main parts of our SLAM system – tracking, map-
ping and constraint search for the pose-graph optimization. Results are given in
table 4.1, yielding an average processing rate of 14 frames per second on a stan-
dard notebook. The bottleneck clearly is the dense stereo reconstruction. However
we would like to point out that the corresponding GPU (GeForce 830M) has an
official processing power of only 527GFlops, whereas current highend GPUs in the
consumer market reach up to 10,974 GFlops (NVidia Titan X). Running our system
on a moderate GPU in between (NVidia GTX 970; 3,494 GFlops), the dense stereo
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Average time per frame
Tracking 11ms
Dense Mapping 45ms
Pose-Graph 17ms

Table 4.1: Averaged timings per frame over the complete KITTI visual odometry
benchmark test dataset (620 × 184, 20k stereo image pairs) - using a commodity
notebook system

reconstruction has an average runtime of 12ms (≈ 80 fps). Additionally note that
the encasing SLAM framework of [28] runs solely on CPU, whereas the dense stereo
reconstruction nearly solely uses the GPU – favoring a threaded implementation.

Sparse Priors

To quantitatively show the effects of adding sparse prior depth information early
into the stereo reconstruction process, we provide an experiment in Fig. 4.7, where
we used the ground truth information provided by the Middlebury stereo dataset
[99] as additional depth prior. When using the complete ground truth, the bad pixel
ratio of the resulting disparity map is at 0% as expected and rising, if a lesser fraction
of that ground truth is taken into account (see Fig. 4.7). Real life data however
can contain outliers and noise, leading to false depth priors. As we however weight
the influence of these depth priors only linearly using the L1 norm and employing
a smoothness term additionally (see Eq. 4.5) the overall minimization is somewhat
robust to gross outliers.

(a) No priors (b) Ground truth as
priors (25%)

(c) Ground truth (d) Bad pixel ratios

Figure 4.7: Stereo reconstruction results on Middlebury data with different density
of sparse depth priors. (d): Bad pixel ratios for stereo reconstruction results using
different subsets of the ground truth (GT) as sparse priors
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Qualitative Results

In Fig. 4.8 we show some qualitative results of the estimated point clouds taken
from the same dataset as Fig. 4.1.

(a)

(b) (c)

(d) (e)

Figure 4.8: Dense large-scale reconstruction using automotive image data (KITTI
sequence 00) of 4,500 stereo image pairs.
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Conclusions

We presented a direct visual SLAM system which recovers dense large scale envi-
ronments from color videos in real-time on a commodity notebook. It combines a
direct image alignment and pose graph optimization of keyframes for globally con-
sistent camera tracking with a variational approach for dense reconstruction of the
keyframes. The latter combines an L1-integration of multiple input images and op-
tional depth priors with a spatial regularization imposing structural smoothness of
the scene geometry.

In addition, the proposed approach can easily integrate other depth measure-
ments, for example from a laser scanner. Experimental results on the KITTI dataset
demonstrate that we can robustly recover large-scale dense city maps from a stereo
video in real-time. We believe such real-time dense reconstructions will form a vi-
tal ingredient for self-driving cars and autonomous robots as they are a basis for
obstacle avoidance and path planning.





Chapter 5
Depth Map Fusion

Summary

In this work we propose an algorithm for robustly fusing digital surface models
(DSM) with different ground sampling distances and confidences, using explicit sur-
face priors to obtain locally smooth surface models. Robust fusion of the DSMs
is achieved by minimizing the L1-distance of each pixel of the solution to each in-
put DSM. This approach is similar to a pixel-wise median and most outliers are
discarded. We further incorporate local planarity assumption as an additional con-
straint to the optimization problem, thus reducing the noise compared to pixel-wise
approaches. The optimization is also inherently able to include weights for the input
data, therefore allowing to easily integrate invalid areas, fuse multi-resolution DSMs
and to weight the input data. The complete optimization problem is constructed as
a variational optimization problem with a convex energy functional, such that the
solution is guaranteed to converge towards the global energy minimum. An efficient
solver is presented to solve the optimization in reasonable time, e.g. running in real-
time on standard computer vision camera images. The accuracy of the algorithms
and the quality of the resulting fused surface models is evaluated using synthetic
datasets and spaceborne datasets from different optical satellite sensors. 1

Contributions
The main author did all the following theoretical and implementation work on his
own, whilst the evaluation part was done together with David Gaudrie, plus con-
ceptual discussions with the co-authors:

• Multi-resolution fusion of large DSMs using second order smoothness-priors

• Adaptive weighting of input data of differenct accuracy and missing data

1 c©2017 IEEE. Reprinted, with permission, from Georg Kuschk, Pablo d’Angelo, David Gau-
drie, Peter Reinartz and Daniel Cremers, Spatially Regularized Fusion of Multiresolution Digital
Surface Models, 2017.
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Introduction

With an ever increasing amount of earth observation sensors, the problem of hav-
ing data at all, increasingly shifts towards the problem of how to make best use
of an abundance of data. One aspect of remote sensing data is the 3D informa-
tion contained in the observed images, resulting in digital surface models (DSM),
constituting a basic component for many applications, such as orthophoto creation,
mapping, visualization and 3D planning. As many technologies for DSM generation
exist (airborne LiDAR, SAR interferometry, automatic image matching, ..) the cor-
responding results differ in their characteristics and quality in general. Because of
the decreasing revisit time for many parts of the Earth’s landmass, multiple datasets
of DSMs are available for these regions and it is therefore interesting to fuse these
into a single DSM with higher accuracy. Depending on the underlying satellite char-
acteristics like ground sampling distance (GSD), the DSMs capture different parts of
the scene in different quality, which even can be mutually exclusive to some extent.
For example, high resolution sensors like WorldView-2 with a GSD of 0.5m perform
very well in urban areas, whereas the results in forest areas are somewhat moderate.
In contrast, Cartosat-1 with a GSD of 2.5m performs quite opposite in these areas
[108]. Even with the same sensor, a different exposure time can drastically alter the
results in shadow areas or in highly reflective areas like glaciers. Clouds are posing
an additional problem for optical image sensing, providing no valid data in these
areas, thereby requiring these gaps to be filled in by valid data from other sensors or
another timestamp. A prominent example for a large data abundance is aerial imag-
ing, which typically produces large image streams with image overlaps >80%. For
computing the corresponding 3D reconstruction, many multi-view image matching
techniques match stereo image pairs individually and later fuse the resulting DSMs
into a common height model, see e.g. [46], [56], [97].
Our work focuses on the fusion of 2.5D DSM grids, with a resolution from several
decimeters to a few meters. We use the common notation of 2.5D to explicitly distin-
guish between 3D point cloud registration / fusion and fusing their projections in a
common 2D reference frame. The latter consists of 2D images, each pixel containing
its height above ground and is commonly referred as 2.5D DSM, as it contains 3D
height information but not to full extent (e.g. no bridges can be modelled). DSM
fusion has been considered by various authors previously. The simplest method is
based on weighted averaging of two or more height maps [103], [92]. As weighted
averaging cannot deal with outliers or blunders in the DSMs, a median fusion is
often used for multi-DSM fusion, sometimes followed by weighted averaging of the
inliers [46]. Both median and weighted averaging process each pixel independently,
and thus cannot take into account the local surface shape, which is regular for many
areas. Applying additional mean or median based filtering spatially reduces the
amount of noise to some extent, at the cost of blurring potentially sharp edges. An
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example for context aware fusion algorithms is the use of sparse representations [78],
where a DSM patch is computed as a sparse linear combination of dictionary DSM
patches. Except for median fusion, pixel-wise error maps are required by weighted
averaging and sparse representations. A comparison between weighted averaging
and sparse representations [101] found that the quality of the fused DSMs is mostly
determined by the quality of these pixel based error maps.

(a) (b)

(c) (d)

Figure 5.1: (a)-(d): Four co-registered DSMs, obtained from optical stereo recon-
struction using [59] for different camera view points / satellite positions (noticeable
by the different invalid occlusion areas in black).

Another direction of work aims at formulating a global energy functional,
minimizing the distance of the fused result to all input DSMs simultaneously
and additionally incorporating the assumption of the world being locally planar
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([127, 126, 87, 80]). Due to its simple structure and theoretically well founded
minimization procedure, we build upon this work and extend it to a weighted,
multi-resolution, fusion framework.

Method

As basic fusion algorithms we are looking at the following pixel-wise fusion methods:
mean and median fusion, as well as medmean fusion. We define the latter one as
median based fusion that reduces the amount of outliers in the fused DSM by aver-
aging the median value for each pixel with all other DSM heights of this pixel being
at a distance of less than 2m from the median value. Note that this is an empirical
threshold, depending on the overall height range and noise level. In contrast to these
simple pixel-wise fusion methods, advanced methods usually enforce some kind of
spatial smoothness constraint to get closer to a physical meaningful solution, with
neighboring image pixels forced to have a similar height value. Note that this con-
straint often is in contrast to the data term (height values) of the involved images,
where neighboring pixels can differ significantly in height. This leads to the general
formulation of our DSM fusion problem as

min
u

{
R(u) + λd

K∑
k=1

‖u− gk‖1

}
(5.1)

where u ∈ RM ·N is the ‘optimal’ DSM to solve for, already written as stacked vec-
tor of pixels to simplify notation in the following. The K (noisy) input DSMs are
given as gk (see e.g. Figure 5.1), the scalar factor λd is balancing the impact of the
smoothness term and the data term and R(u) is depicting a general regularizer on
u.
In the case of DSM fusion, these smoothness constraints (or regularizers) are the
assumption of the world being locally planar, meaning that the height value of each
pixel of the DSM depends on its local context and e.g. is highly unlikely to have a
significantly different height value than its surrounding pixels.
This smoothness constraint typically is implemented by minimizing the sum of gra-
dients of the resulting DSM in both x and y-direction, resulting in large partial
differential equation systems (PDE).
In recent years, Total Variation based methods (TV) for minimizing energy func-
tionals have seen a lot of attention in the research community. One reason is that
these algorithms are very well-suited for parallelization and, together with the recent
advances of GPU-based computational power, lead to efficient algorithms, solving
these optimization problems efficiently. And as the energy functional of our image
fusion problem is written in a convex formulation, the solution is globally optimal
and independent of its initialization. Since the second term of Equation 5.1 is always
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convex in the variable u to solve for (sum of norms), the complete energy functional
is convex, if the regularizer R(u) is convex. The two regularizers used in this paper
are described in Section 5.3.1 (namely TV and TGV) and are simply linear trans-
formations of the type K · u. Therefore throughout this paper Equation 5.1 will
always be convex.

TV-L1 Fusion

Based upon the Rudin-Osher-Fatemi image denoising model (ROF-model) [96], the
extension for multiple image fusion, together with replacing the quadratic data term
by the more robust L1 norm as in [87] is written as

min
u

{
‖∇u‖1 + λd

K∑
k=1

‖u− gk‖1

}
(5.2)

Note that the choice of the L1 norm for both the gradient and the data term plays an
important role for the fusion of multiple noisy DSMs (or images in general) for the
following reasons: Applied to the regularizer (gradient) it still enables the solution
to exhibit strong edges / discontinuities (e.g. at the transition of house roof tops to
street level), as these height value jumps are only penalized linearly. Applying the L1

norm to the second term - the data term - makes the whole fusion process robust to
outliers as well, as these also are only weighted linearly in the optimization process
and their influence therefore is limited compared to e.g . a least squares minimization
approach. While this model already provides good results by smoothing flat areas
and preserving sharp discontinuities, it suffers from the so-called staircasing effect.
This effect is a direct result of the regularizer, whose assumption is a locally planar
world - where planar unfortunately refers to locally fronto-parallel. This staircasing
effect of the TV-L1 algorithm is visible in Figure 5.2(f), resulting in a slanted roof
which is not smooth. One way to overcome this issue is using the Huber norm instead
of the pure L1 norm for the regularizer, thereby penalizing small height differences
quadratically and larger difference as before using the L1 norm. This results in a
locally more smooth surface, mitigating the staircasing effect to some extent. The
authors of [87] added this Huber regularized fusion method as one baseline method
to compare their algorithms against. However, this does not solve the issue of
reconstructing large non-fronto-parallel surfaces (slanted planes). To achieve that
goal, a more advanced smoothness assumption as in the following section is required.
For further details about the results of TV-Huber-based regularization, we refer to
the work of [87].

TGV-L1 Fusion

To overcome the fronto-parallel assumption of TV-L1 minimization, [14] introduced
the mathematical model of Total Generalized Variation (TGV) has been introduced
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as a higher-order extension of Total Variation which favors the solution to consist of
piecewise polynomial functions (e.g. fronto-parallel, affine, quadratic). Especially
the 2nd order is of high interest, as it forces the solution to consist of piecewise
planar functions, which means that compared to the fronto-parallel TV-L1 model,
the regularizer now also favors slanted planes. [87] applied this model to DSM fusion,
resulting in the following optimization problem

min
u,v

{
λs‖∇uu− v‖1 + λa‖∇vv‖1 + λd

K∑
k=1

‖u− gk‖1

}
(5.3)

Now, before the variation of the image u is measured, a 2D vector field v is sub-
tracted from the gradient of u. An affine surface in the image u has a constant
gradient ∇u, so by coupling and minimizing |∇u − v|, the vector field v will also
be constant and it’s gradient ∇v therefore zero. Regarding our overall optimization
problem, this means that the energy term will be lower, if affine functions can be
found in the image, whereas non-affine functions get additional penalties by |∇v|.
The values λs, λa, λd are scalar weights and balance the impact of the smoothness
term, the affine term and the data term. Note that we now notationally need to
differ between two gradient operators, ∇u ∈ RMN×2MN and ∇v ∈ R2MN×2MN as the
corresponding vector spaces are of different dimension (see Section 5.4.1).

Weighted TGV-L1 Fusion

When fusing DSMs it is desirable to weight the input DSMs on a per pixel base, to
be able to incorporate additional prior knowledge into the fusion process. This prior
knowledge for example can be based on the different sensor characteristics used to
generate the DSM, confidence measures during the 3D reconstruction process itself,
information about occluded and therefore unknown areas in each DSM, etc. We
therefore extend Equation 5.3 with a weighting matrix Wk for each input DSM

min
u,v

{
λs‖∇u− v‖1 + λa‖∇v‖1 + λd

K∑
k=1

Wk‖u− gk‖1

}
(5.4)

Parameters

This optimization problem (and the ones in Equation 5.2 and 5.3) is very parameter
dependent, as we need to adapt the influence of the data term λd manually for
datasets with different ranges of g

(i,j)
k ∈ gk as well as for a different number K of

input images. To achieve independence of the data range of the input DSMs, we
scale all input data to the interval [0..1]

g
(i,j)
k =

g
(i,j)
k − gmin
gmax − gmin

(5.5)
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with gmin = mini,j,k g
(i,j)
k and gmax = maxi,j,k g

(i,j)
k . The independence from K is

achieved by normalizing the influence of the data term w.r.t. the two-image case
and using the adaptive

λKd =
2

K
λd (5.6)

Note that we do not need all 3 weighting factors λs, λa, λd, as we can multiply
the whole energy functional with 1

λd
. We therefore only have to deal with λs, λa

and λd = 1 implicitly. Additionally it is a good choice to set λa = 4λs, which
leaves us with only one parameter λs to choose between a large smoothing impact
(λs >>) or a more data-driven fusion (λs <<). Choosing λa too big results in
oversmoothing of discontinuities – we loose some of our edge-preserving capability.
When choosing λa very small, we obtain results closer to pure TV-L1 (together with
the staircasing effects). To avoid an additional free parameter, we coupled the value
to the smoothness weighting λs and experimented with different correlation factors.
In all our empirical tests over different artificial and natural datasets the choice
λa = 4λs produced consistently good results.

All these extensions and modifications apply to the TV-L1 method similarly.
In the next section we will go into detail about how to solve these optimization
problems numerically.

Optimization

In the following we describe the numerical optimization of our weighted TGV-L1

energy functional given in Equation 5.4. The solution for the TV-L1 energy func-
tional is similar and can be derived easily from the solution below.
To solve for the fused DSM u ∈ RM×N (in the following written as stacked vec-
tor RMN×1) in Equation 5.4, we need to overcome the non-differentiable L1-norm,
which complicates any gradient descent based minimization scheme. An efficient
algorithm which elegantly circumvents the differentiability problem of the gradient
operator is the primal-dual algorithm of [22]. By applying the Legendre-Fenchel
transform to the terms involving the derivative of the primal variables we obtain the
dual formulation / conjugate of these terms as

λs‖∇u− v‖1 = max
p∈P
{〈∇u− v,p〉} (5.7)

λa‖∇v‖1 = max
q∈Q
{〈∇v,q〉}

such that the transformed saddle-point problem of Equation 5.4 in the primal vari-
ables u,v and the dual variables p,q with constraints

P = {p ∈ R2MN : ‖p‖∞ ≤ λs} (5.8)

Q = {q ∈ R4MN : ‖q‖∞ ≤ λa}
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is

min
u,v

max
p,q

{
〈∇u− v,p〉+ 〈∇v,q〉+ λd

K∑
k=1

Wk‖u− gk‖1

}
(5.9)

A detailed explanation of the dual variables and the corresponding vector spaces is
given in Section 5.4.1. With the convex saddle-point problem above (Equation 5.9),
we can now directly apply the primal-dual algorithm of [22] to get the following
optimization scheme, which is basically iteratively performing gradient descents on
the primal variables and gradient ascents on the dual variables:

Input: u0,v0,p0,q0 = 0, ū0 = u0, v̄0 = v0, θ = 1, step sizes τi > 0
Iterations n ≥ 0:

pn+1 = ΠP (pn + τpλs(∇ūn − v̄n))
qn+1 = ΠQ (qn + τqλa(∇v̄n))
un+1 = proxf (un + τuλs∇∗pn+1)
vn+1 = vn + τv(λa∇∗qn+1 + λsp

n+1)
ūn+1 = un+1 + θ(un+1 − un)
v̄n+1 = vn+1 + θ(vn+1 − vn)

Algorithm 5.1: Primal-dual optimization algorithm for TGV-L1-based image
fusion

For details about the linear operators ∇ and their negative adoints ∇∗, as well as
the step sizes τi for the gradient descents see Section 5.4.1. To ensure the constraints
of Equation 5.8, the corresponding proximal mappings of the dual variables are given
as simple point-wise projections

ΠP (p) =
p

max{1, ‖p‖/λs}
(5.10)

ΠQ(q) =
q

max{1, ‖q‖/λa}

The proximal mapping of the primal variable u, enforcing the data constraints
min

∑
k ‖u− gk‖ is slightly more complicated. In previous work, [87] and [60] added

Lagrange multipliers for each observation (〈rk, u− gk〉) and optimized the energy
functional with an additional gradient descent scheme for these auxiliary variables.
Here we build upon the work of [65] to solve this constraint exactly and directly,
thus avoiding an additional iterative scheme. We therefore don’t need further dual
variables for every observation as in [87], resulting in less memory consumption.
As the closed-form solution of the proximal mapping is computationally simple,
it further results in a noticeable speedup compared to solving it via an iterative
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gradient-descent based primal-dual scheme. Defining

f(x) = λτ

K∑
k=1

w(x, k) · ‖x− gk‖1 (5.11)

the proximal mapping is given as

proxf (x) = arg min
y

{
1

2
‖x− y‖2

2 + λτ
K∑
k=1

w(y, k) · ‖y − gk‖1

}

whose solution is given by a generalized shrinkage formula according to [65]:

proxf (x) = median{g1, ..., gK , p0, p1, ..., pK} (5.12)

with

pi = x+ τλWi (5.13)

Wi = −
i∑

j=1

w(x, j) +
K∑

j=i+1

w(x, j) (5.14)

Implementation Details

For discretization of the gradient operators ∇u : R→ R2 and ∇v : R2 → R4, we use
forward finite differences with Neumann boundary conditions

∇u =

(
∇x

∇y

)
, ∇v =


∇x 0
∇y 0
0 ∇x

0 ∇y

 , ∇x,∇y ∈ RMN×MN (5.15)

where

(∇xu)γ(i,j) =

{
uγ(i+1,j) − uγ(i,j) if i < M

0 if i = M

(∇yu)γ(i,j) =

{
uγ(i,j+1) − uγ(i,j) if j < N

0 if j = N
(5.16)

are the forward finite differences in x and y−direction and the function γ : Z×Z→ Z
mapping the indices from 2D image space to 1D stacked vector notation

γ(i, j) = (i− 1)M + j (5.17)
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The corresponding negative adoint operators ∇∗, needed for the gradient descent
in the dual variables of Algorithm 5.1, are simply the corresponding transposed and
negated matrices ∇∗ = −∇T . Note that these are sometimes in literature also
referred to as divergence operators. When written explicitly, the above definition
naturally reads as backward finite differences with Dirichlet boundary conditions

∇∗up = −
(
∇x ∇y

)( p1

p2

)

(∇∗up)i,j =


p1
i,j − p1

i−1,j if 1 < i < N
p1
i,j if i = 1
−p1

i−1,j if i = N

+


p2
i,j − p2

i,j−1 if 1 < j < M
p2
i,j if j = 1
−p2

i,j−1 if j = M
(5.18)

The implementation is similar for the second operator ∇v and its negative adjoint.
Although the mathematical notation may imply a very large optimization problem
(e.g. ∇x ∈ RMN×MN), the corresponding matrices are very sparse: ∇u,∇v only
have two non-zero elements per matrix row. Therefore implementation can be done
efficiently either using a sparse matrix representation, or avoiding this overhead by
directly computing the gradient and divergence per pixel using Equations 5.16 and
5.18.
To ensure convergence of the primal-dual algorithm, the step sizes of the gradient
ascents/descents are bound to the operator norm of the linear operators described
in Equation 5.15 according to [22] as follows

τuτp ≤
1

||∇u||2op
and τvτq ≤

1

||∇v||2op
. (5.19)

Due to the simple structure of the forward differences the step sizes can be explicitly
computed as τu = τp = τv = τq = 1/

√
8.

The whole algorithm stops, if either a predefined maximum number of iterations
has been reached or the energy change between successive iterations drops below a
relative threshold. Due to the stacked vector notation, the input weights are de-
noted as diagonal matrices Wk and the corresponding multiplications are actually a
pixel-wise multiplication.
Since the algorithm is inherently suited for parallelization, the algorithm was imple-
mented on GPU, allowing for a processing speed of 40ms for 10 images with a size of
640×480 (using a Nvidia GTX 970). Since GPU memory cannot be easily swapped
to the harddrive and the DSMs to fuse are usually quite large (near Gigapixel range
for satellite data), we process larger data by tiling it into overlapping smaller regions,
solving these separately. The overlap is chosen as 5% of the corresponding width of
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the tiles, means that for e.g . quadratic tiles of 1000 pixel width, the overlap w.r.t.
to the neighboring tile amounts to 50 pixel. To further account for the less accurate
results at the tile borders, we employ the same strategy as used by [46]. Instead
of just computing the mean value of neighboring tiles in the overlapping area, a
weighted mean is used, such that the corresponding weights decrease linearly to-
wards the tile border. Of course, when handling such large DSMs and processing
them in tiles the overall solution is not globally optimal anymore. The tiling size is
computed as large as possible while the complete data still fits into GPU memory.
With the memory overhead of TGV-L1 based optimization and e.g . 5 input DSMs,
this amounts to tiles of roughly 8000× 8000 pixel for a current GPU having 8GB of
memory.

Evaluation

Artificial Tests

The first evaluation is done on synthetic data. A given ground truth DSM g with a
height range of [0..170] is perturbed with Gaussian noise and with salt and pepper
noise to simulate different noisy observations of the scene. Five of these noisy DSMs
are then given as input to the fusion algorithms and the accuracy of the output
DSM u is measured by the logarithmic signal-to-noise ratio:

SNR = 10 log10

(
I2

signal

I2
noise

)
= 10 log10

(
||g||2

||u− g||2

)
(5.20)

In Figure 5.2, visual and numerical results are given, showing a significantly higher
accuracy of the global optimization methods for DSM fusion over simple mean and
median based fusion. We can also remark the staircasing effects provided by TV-L1

fusion resulting in a non-smooth roof in Figure 5.2 (f), as well as the smoothness of
TGV-L1 fusion, which has both the best SNR and the best visual aspect. To obtain
a fair comparison between TV-L1 and TGV-L1 based fusion, we ran the algorithms
for varying λd values and chose the parameter which resulted in the highest SNR
value – compare Figure 5.3. Furthermore the noise was fixed for the different runs
as well.

Artificial Tests - Weights

In this experiment, we compare the basic fusion of Equation 5.2 and 5.3 against the
formulation using an explicit weighting scheme as proposed in Equation 5.4. To this
end, we add a wrong systematic bias to 3 of our 5 input images (compare Figure
5.4 (c) and set corresponding weights w = 0.2 for these areas, whereas the rest is
set to w = 1.0. Note that we deliberately did not set the weights for the wrong
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(a) Groundtruth data (b) 1 of 5 noisy input images

(c) Fusion using pixel based
mean filtering, SNR = 22.55

(d) Fusion using pixel based
median filtering, SNR =
28.39

(e) Fusion using combined
medmean filtering, SNR =
29.35

(f) TV-L1 fusion, SNR = 42.72 (g) TGV-L1 fusion, SNR = 43.30

Figure 5.2: Comparison of local fusion method versus global optimization methods.
Both numerical results and visual appearance show the benefit of the latter ones.

areas to zero, to simulate some uncertainty about our knowledge of these areas. As
can be seen in Figure 5.4 (e) and (h), the absence of an explicit weighting results
in fused DSMs with a remaining systematic error in the two modified areas, as 3
out of 5 images exhibit the same systematic offset, although with different noise.
When incorporating additional prior information (here: down-weighting the image
areas with the wrong offset), the optimization process is able to reconstruct the
intended surface, compare Figure 5.4 (f) and (i). To obtain a fair comparison of the
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(a) Groundtruth data (b) 1 of 5 noisy input images

Figure 5.3: SNR values with varying λd to obtain best parameter.

4 different energy functionals, we ran the algorithm for varying λd values and chose
the parameter which resulted in the highest SNR value – compare Figure 5.4 (g)
and (j). Furthermore the noise was fixed for the different runs as well.

Artificial Tests - Varying DSM resolution / Sparse DSM

In this experiment, we compare the fusion results of the following two cases

• One noisy input DSM is given. This reduces the algorithm to a pure denoising
algorithm.

• Additionally to the noisy DSM given before, an additional accurate DSM is
given, exhibiting strong sparsity. This can be the result of either projecting
a coarse-resolution DSM to the coordinate frame of a fine-resolution DSM or
general depth priors resulting from completely different sensors as for example
radar satellites.

In Figure 5.5 the two abovementioned synthetic input DSMs are depicted, together
with the corresponding fusion results of either using only one input DSM or adding
the second sparse DSM to the optimization process as well. The latter case improves
the accuracy, if not by very much. But please note that the sparsity of the second
DSM is only 1/16 = 6.25% compared to the first input DSM. For this experiment,
both DSMs (or their valid depth pixels respectively) are weighted equally.

Unimodal DSM fusion

In our second evaluation, we created 14 different DSMs of the same 4.5km2 area
of the inner city of Las Vegas using a stereo reconstruction framework as proposed
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(a) Groundtruth
data

(b) 2 of 5 input im-
ages with added noise

(c) 3 of 5 input
images with added
noise and having
wrong systematic
errors

(d) Corresponding
weights used in the op-
timization scheme: The
areas with systematic
error are given a weight
w = 0.2 (dark gray),
for the rest w = 1.0
(light gray).

(e) TV-L1 fusion, SNR = 22.91 (f) Weighted TV-L1 fusion,
SNR = 41.80

(g) Plotting SNR with
varying λd

(h) TGV-L1 fusion, SNR = 21.31 (i) Weighted TGV-L1 fusion,
SNR = 43.50

(j) Plotting SNR with vary-
ing λd

Figure 5.4: Evaluation of using explicit weights for simulated systematic errors in
some of the input data (c). Standard TV-L1 or TGV-L1 fusion is not able to remove
this systematic error, since it is consistent in 3 of 5 input images. When explicitly
down-weighting these areas, (f) and (i), the surface is reconstructed as intended.

in [56]. For this we have a collection of 60 Skybox images, taken from different
positions. The ground sampling distance (GSD) of these images are 1.5m and for
evaluation purposes, we obtained a LiDAR measurement of the same area by aerial
laser scanning having a point density of 0.375 points per m2. As the Skybox im-
ages were taken from with a high off-nadir angle, areas behind high buildings are
occluded, and cannot be reconstructed. Points in the occluded areas were not con-
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(a) Noisy input DSM #1 (b) Accurate but sparse input DSM
#2. For illustration purpose the sam-
pling points where thickened - the real
input DSM has a sparsity of 1/16 =
6.25%.

(c) TV-L1 denoising (1 DSM),
SNR = 37.75

(d) TV-L1 fusion (2 DSMs of dif-
ferent resolution), SNR = 38.59

(e) Plotting SNR with
varying λd

(f) TGV-L1 denoising (1 DSM),
SNR = 38.41

(g) TGV-L1 fusion (2 DSMs of
different resolution), SNR =
39.51

(h) Plotting SNR with
varying λd

Figure 5.5: Evaluation of fusing DSMs with different ground sampling distance
(simulated by a sparsity of 1/16 = 6.25% of the second DSM.

sidered during the statistical evaluation.

We also created 20 different DSMs of two different areas of London, using 5 in-track
WorldView-2 images with a GSD of 0.5 m. First, we focused on a 1km × 1km area
of the inner city of London, and second on a 1.5km × 1km park area. A LiDAR
dataset, with a GSD of 1.0 m is used as reference. A satellite image of each area is
shown in Figure 5.6. Figure 5.7 shows the computed fused DSMs of the inner city
of London using medmean, TGV-L1 and TV-L1 fusion.
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The accuracy of the fused DSMs with respect to the LiDAR ground truth for the
Las Vegas and London data set is given in Tables 5.1, 5.2 and 5.3 in the common
error metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Normalized Median Absolute Deviation (NMAD). Here the improvements are hardly
detectable at all, with all algorithms exhibiting similar numerical results. As of yet
we do not have further explanation for these results, but strongly suspect the quality
of the input DSMs, and of the LiDAR ground truth. Indeed, we noticed and removed
some strong outliers in the LiDAR points, but we imagine some less strong outliers
were still used during the evaluation.

MAE [m] RMSE [m] NMAD [m]

Medmean 1.82 4.06 1.16
TV-L1 1.93 4.23 1.21
TGV-L1 1.95 4.22 1.22

Table 5.1: Las Vegas dataset: Accuracy of the fused DSM w.r.t. ground truth
obtained by aerial laserscanning (LiDAR)

MAE [m] RMSE [m] NMAD [m]

Medmean 1.36 2.20 1.01
TV-L1 1.62 2.72 1.16
TGV-L1 1.63 2.72 1.15

Table 5.2: London dataset (Inner City): Accuracy of the fused DSM w.r.t. ground
truth obtained by aerial laserscanning (LiDAR)

MAE [m] RMSE [m] NMAD [m]

Medmean 1.05 1.85 0.65
TV-L1 1.13 1.99 0.67
TGV-L1 1.17 2.06 0.68

Table 5.3: London dataset (Park): Accuracy of the fused DSM w.r.t. ground truth
obtained by aerial laserscanning (LiDAR)

In fact, the statistics appear to be a little better for medmean fusion than for TGV
and TV fusion. However, visual inspection of TGV and TV results show less noise
and better definition of building boundaries and small streets. This may be due to
the fact that for each LiDAR point, we do not calculate the z-axis distance between
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this point and the DSM, but the Euclidian distance between LiDAR point and DSM
surface. This leads to not taking big outliers into account in the evaluation. For
example, huge outliers located between two buildings will lead to reasonably small
errors.
Furthermore, we also noticed that medmean fusion leads to a few visually erroneous
results in areas for which the LiDAR data are not defined, and thus are not taken
into account in the statistics. We can see those phenomena in Figure 5.8 : First,
on the right side of the building (Zone A), we remark that medmean fusion yields
artifacts which are not taken into account in the statistics as no LiDAR points were
available for this region.
Second, on the upper edge of the building (Zone B), medmean fusion yields slowly
decreasing artifacts, which are approximately 30m high, the building being 255m
high, the neighbouring building 85m, and the artifacts having a height of 115m.
But as we are taking the Euclidian distance into account for the evaluation, the
calculated error in this place is only about 2m which is even a little smaller than for
the correct TV-L1 result.
Last, upper the building (Zone C) we notice an artifact which is a 50m high crane,
and which was removed using TV-L1. Despite this, we observe an error of about
3m for TV-L1 fusion, and about 50cm for medmean fusion there. Moreover, we can
also observe visual differences between TGV-L1 and medmean fusion in Figure 5.9.
Indeed, the edges seem to be sharper and the surfaces more regular using TGV-L1

fusion than using medmean fusion. Finally, we also notice two points visualizing
the height profiles in Figure 5.9: First, medmean fusion is indeed less smooth and
contains more noise than TV-L1 and TGV-L1 fusion. Second, the LiDAR ground
truth also contains some outlier points inside and below the buildings, which might
additionally compromise the evaluation results.

Multimodal DSM fusion

Our third evaluation is investigating the results of fusing DSMs derived from different
sensors and different spatial resolutions. The test data is taken from the ISPRS
benchmark [91] and consists of 3 different scenes (hilly forest = Vacarisses, city =
Terrassa) near Barcelona, Spain. For each scene, we compute DSMs from the a
Pleiades triplet and a Worldview-1 stereo pair with a GSD of 1 m. As reference
we use a LiDAR point cloud a density of 0.3 points per square meter. DSMs for
all 3 possible image pairs of the Pleiades were computed and merged. To evaluate
the filtering effect of TV-L1 and TGV-L1 the WorldView-1 DSM was additionally
processed with the TV and TGV algorithms. The numerical results of local median
fusion, global TV-L1, and TGV-L1 fusion are given in Table 5.4.

While the filtering of the WorldView-1 DSM does not significantly change the
statistics for the Terrassa dataset, which to a larger extend consists of manmade
structures and fields, the filter has a stronger smoothing effect on the mainly forested
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(a) London inner city (1) (b) London inner city (2)

(c) London park (d) Las Vegas

Figure 5.6: Exemplary optical images for evaluation of real-world satellite data. The
red lines depict the line for the height profiles shown in Figure 5.9.

and hilly landscape of the Vacarisses area. A larger RMSE value is observed for the
TGV-L1 solution. In this special case, the TGV solution propagated outliers in the
textureless shadow areas, and at steep slopes, leading to worse results. As in the
London areas, objects such as building contours and bridges appear sharper, but
this effect cannot be mesured properly by the relatively sparse LiDAR reference
data.
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(a) Medmean fusion (b) TV-L1 fusion (c) TGV-L1 fusion

Figure 5.7: London dataset: medmean, TV-L1 and TGV-L1 fusion for inner city (1)

(a) Medmean fusion (b) Medmean fusion distance map

(c) TV-L1 fusion (d) TV-L1 fusion distance map

Figure 5.8: London dataset: medmean and TV-L1 fusion together with distance to
LiDAR ground truth
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(a) Result of medmean fusion (b) Result of TGV fusion
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(c) Height profile, see Figure 5.6(a)
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(d) Height profile, see Figure 5.6(b)

Figure 5.9: London dataset inner city: Fusion results
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(a) WorldView-1, Terrassa (b) fused DSM, Terrassa

(c) WorldView-1, Vacarisses (d) fused DSM, Vacarisses

Figure 5.10: ISPRS dataset: Exemplary WorldView-1 images of the scenes used in
the evaluation



102 Chapter 5. Depth Map Fusion

Algorithm Terrassa Vacarisses
MAE[m] RMSE[m] NMAD[m] MAE[m] RMSE[m] NMAD[m]

WV-1 1.05 2.23 0.59 1.62 2.88 1.09
WV-1 TV-L1 1.04 2.20 0.59 1.81 3.48 1.11

WV-1 TGV-L1 1.06 2.24 0.59 2.45 6.41 1.12
PL medmean 0.97 1.73 0.68 1.43 2.28 1.30

PL TV-L1 1.03 1.84 0.67 1.58 2.54 1.38
PL TGV-L1 1.03 1.85 0.67 1.64 2.76 1.39

PL & WV-1 medmean 0.88 1.62 0.61 1.22 1.98 1.12
PL & WV-1 TV-L1 1.03 1.84 0.67 1.58 2.54 1.38

PL & WV-1 TGV-L1 0.98 1.80 0.64 1.41 2.26 1.26

Table 5.4: Results of local median fusion and global TGV-L1 fusion for heterogenous
sensor data (Pleiades and WorldView-1 satellite images). The first row shows the
unfused result for WorldView-1 stereo pair, the next 2 lines a “smoothing” with TV
and TGV. Results for merging the individual stereo pairs of the Pleiades triplet are
shown in line 3 to 6, and a fusion of Pleiades and WorldView-1 DSMs is shown in
the last 3 lines.
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Conclusion

In this paper we proposed a global optimization algorithms for fusing multi-
resolution DSMs obtained by heterogenous sensors. These global optimization algo-
rithms are based on adaptively weighted TV-L1 and TGV-L1 optimization problems,
allowing for fusion of multiple DSMs enforcing additional spatial regularization. As
a result, single pixels are not fused independently but a local consensus about the
optimal height is achieved by taking all valid measurements in a local neighborhood
into account and additionally enforcing a local planarity assumption.

In all different evaluations, both synthetic and real world data sets, a significant
improvement of the visual accuracy was shown. However, the numerical accuracy is
only superior for the synthetic data sets, as the ground truth for the real world data
sets is too sparse and unevenly distributed - we again refer strongly to Figure 5.9
illustrating this problem. As a result, our future work will especially focus on obtain-
ing detailed 3D ground truth within ground sampling distance of the corresponding
sensors to evaluate.
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Summary

In this thesis we applied convex variational methods for depth reconstruction and
fusion of depth maps, primarily using the primal-dual algorithm of [22] to solve
the underlying system of differential equations. Because of its iterative and local
nature the primal-dual algorithm can be parallelized to a high extent and can be
solved efficiently on nowadays GPUs.

In Chapter 1 we have motivated the topic of depth reconstruction for satellite-
based remote sensing applications as well as autonomous driving application.
We additionally presented a review of relevant literature in the field of stereo
matching cost functions, regularization techniques as well as large-scale represen-
tation of reconstructed 3D scenes. Additionally we discussed the contributions
of this thesis and gave an overview of the publications within the scope of this thesis.

In Chapter 2 we highlighted the differences of the camera models between
standard pinhole cameras and pushbroom cameras, gave an overview of concrete
stereo matching data terms and mathematically motivated different regularization
terms, resulting in energy functionals which then get numerically solved by the
primal-dual algorithm.

In Chapter 3 we presented a peer-reviewed publication describing a fast
algorithm for high-accuracy large-scale outdoor dense stereo reconstruction. To this
end, we proposed a structure-adaptive second-order Total Generalized Variation
(TGV) regularization which facilitates the emergence of planar structures by
enhancing the discontinuities along building facades. As data term we used cost
functions which are robust to illumination changes arising in real world scenarios.
Instead of solving the arising optimization problem by a coarse-to-fine approach,
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we proposed a quadratic relaxation approach which is solved by an augmented
Lagrangian method. This technique allows for capturing large displacements and
fine structures simultaneously. Experiments showed that the proposed augmented
Lagrangian formulation leads to a speedup by about a factor of 2. The brightness-
adaptive second-order regularization produces sub-disparity accurate and piecewise
planar solutions, favoring not only fronto-parallel, but also slanted planes aligned
with brightness edges in the resulting disparity maps. The algorithm was evaluated
and shown to produce consistently good results for various data sets (close range
indoor, ground based outdoor, aerial imagery).

In Chapter 4 we presented a peer-reviewed publication proposing an algorithm
for dense and direct large-scale visual SLAM that runs in real-time on a commodity
notebook. A fast variational dense 3D reconstruction algorithm was developed
which robustly integrates data terms from multiple images. This mitigates the
effect of the aperture problem and is demonstrated on synthetic and real data. An
additional property of the variational reconstruction framework is the ability to
integrate sparse depth priors (e.g. from RGB-D sensors or LiDAR data) into the
early stages of the visual depth reconstruction, leading to an implicit sensor fusion
scheme for a variable number of heterogenous depth sensors. Embedded into a
keyframe-based SLAM framework, this results in a memory efficient representation
of the scene and therefore (in combination with loop-closure detection and pose
tracking via direct image alignment) enables us to densely reconstruct large scenes
in real-time. Experimental validation on the KITTI dataset shows that our method
can recover large-scale and dense reconstructions of entire street scenes in real-time
from a driving car.

In Chapter 5 we presented a peer-reviewed publication proposing an algorithm
for robustly fusing digital surface models (DSM) with different ground sampling
distances and confidences, using explicit surface priors to obtain locally smooth
surface models. Robust fusion of the DSMs is achieved by minimizing the L1-
distance of each pixel of the solution to each input DSM. This approach is similar to
a pixel-wise median and most outliers are discarded. We further incorporate local
planarity assumption as an additional constraint to the optimization problem, thus
reducing the noise compared to pixel-wise approaches. The optimization is also
inherently able to include weights for the input data, therefore allowing to easily
integrate invalid areas, fuse multi-resolution DSMs and to weight the input data.
The complete optimization problem is constructed as a variational optimization
problem with a convex energy functional, such that the solution is guaranteed to
converge towards the global energy minimum. An efficient solver is presented to solve
the optimization in reasonable time, e.g. running in real-time on standard computer
vision camera images. The accuracy of the algorithms and the quality of the resulting
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fused surface models is evaluated using synthetic datasets and spaceborne datasets
from different optical satellite sensors.

Future Work

Despite actively being researched for decades, open issues in the field of depth
reconstruction from optical cameras are manifold:

The most trivial task is of course improving the efficiency of existing methods,
making them applicable to run on low-cost hardware and therefore enabling high
accuracy depth reconstruction on-board of lightweight UAV’s or self driving cars.
Even if computational power in cars is increasing, only a small amount can be
reserved for every one of the multiple tasks the car needs to take care of.

Another big topic is the estimation of uncertainty for depth reconstruction.
Compared to depth reconstruction with active sensing via e.g. LiDAR, modelling
uncertainty of the resulting depth map via optical stereo reconstruction is not
straightforward and cannot be simply expressed in correlation to the distance.
Although being worked on, current work such as [41], [79], [104] still relies on
learning a weighted combination of heuristically chosen and manually designed
uncertainty measures.

Strongly related to uncertainty is the question of auto-adaptive regularization,
meaning regulating the trade-off between data term and smoothness term com-
pletely automatic and adaptively for each image area separately. Good work in this
area was done by [37].

When working on image based depth reconstruction, nearly all regularizers are
trying to minimize the surface based on the respective projection onto the image
plane. Directly regularizing the 3D surface is physically much more correct and was
being investigated by e.g. [115] and [35]. Especially the elegant latter approach un-
fortunately still comes with a price that regularization under perspective projection
under this formulation is highly depending on the camera intrinsics and the pixel’s
location towards the image center.

Solving the variational problems as in this thesis still leaves a lot of room for
improvement. One interesting topic would be a fast coarse-to-fine based stereo
reconstruction as in chapter 4, but putting more focus on accuracy. One way of
doing this would be not evaluating the image matching cost function at the current
solution only (and convexifying it there), but to sample the cost function locally
based on smart criteria and using a tight convex underestimator to guarantee a
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good optimal solution. Work in this direction was done by [7], [6] and recently by
[73], [63].
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