
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Real-Time Remote Intrusion Detection

Valentin Zieglmeier

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Real-Time Remote Intrusion Detection

Echtzeit-Fernerkennung
von Eindringlingen

Author: Valentin Zieglmeier
Supervisor: Prof. Dr. Alexander Pretschner
Advisors: Thomas Hutzelmann

Severin Kacianka
Submission Date: 15.05.2018

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, 14.05.2018 Valentin Zieglmeier

Danksagung

Ich danke dem Lehrstuhl von Prof. Dr. Alexander Pretschner für die Möglichkeit, dort
meine Masterarbeit zu verfassen. Mein besonderer Dank gilt meinen Betreuern Thomas
Hutzelmann und Severin Kacianka.

Thomas Hutzelmann hat mir immer das Gefühl gegeben, dass wir gemeinsam an diesem
Projekt arbeiten. Unsere Diskussionen und Gespräche waren spannend und hilfreich. Ich
danke ihm, dass er sich so viel Zeit für diese Arbeit genommen hat.
Severin Kaciankas Pragmatismus und Weitblick waren ein guter Ausgleich für die

unendlichen Ideen, die Thomas und ich oft hatten. Seine langjährige Erfahrung mit
wissenschaftlichen Arbeiten war mehrfach der ausschlaggebende Punkt, ein Kapitel oder
einen Abschnitt in die richtige Richtung zu lenken. Ich danke ihm, dass er diese Erfahrung
eingebracht hat.

Ich will diese Gelegenheit auch nutzen, denen zu danken, die mich sonst bei der Arbeit
direkt oder indirekt unterstützt haben.
Großer Dank gilt Sebastian Kreisel und Angelika Stefan. Ihre Unterstützung war

inhaltlich, aber auch moralisch, sehr wichtig für mich.
Abschließend danke ich Amar Šaljić, Mikayla Webster, Frank Lu, Philipp Bock, Klaus

Ondrag, Lisa Maier, Carina Schmidt, Stefan Dittrich und meinen Eltern für ihre Tipps,
ihre Hinweise und Hilfe jeglicher Art.

Abstract

This thesis analyses security measures for connected vehicles. It is based on the real-world
use case of providing server-side security for passenger cars.
New features and services such as automatic software updates and subscriptions to

premium functions require a constant connection between vehicles and a central server.
This added connectivity raises the likelihood of exposure to attackers and risks unauthorised
access.
A possible answer to this issue are intrusion detection systems (IDS), which aim at

detecting these intrusions during or after their occurrence. The problem with IDS is the
large variety of possible systems with no sensible option for finding or comparing them.

Our contribution to this problem comprises two parts: First, a comprehensive literature
survey and a taxonomy of IDS. Second, the conceptualisation and implementation of a
testbed for the automotive real-world scenario.

The literature survey is conducted to give an overview of approaches to IDS in general.
It is aimed at discovering solutions that have been shown to work in practice. Based on
this survey, a taxonomy for differentiating IDS is presented.

The results of the literature survey indicate that no appropriate method for comparing
different IDS for the automotive real-world scenario exists. In response to this, we develop
an artificial testing environment for this use case, a so-called testbed. To verify the
validity of our approach, we evaluate the testbed from multiple perspectives, regarding its
performance and scalability with additional components, its fitness for purpose, and the
quality of the data it generates.
Our evaluation shows that the testbed makes the effective assessment of various IDS

possible. It solves multiple problems of existing approaches, including class imbalance.
Additionally, it enables reproducibility and generating data of varying detection difficulty.
Tests of a naïve IDS with testbed data confirm that detecting intrusions in the generated
datasets is a challenge.

vii

Contents
1 Introduction 1

2 Terms and definitions 3
2.1 Real-time remote intrusion detection . 3
2.2 Other terms . 4
2.3 Abbreviations . 4

3 Survey of approaches to intrusion detection 5
3.1 Method . 5
3.2 Differentiating intrusion detection systems 5

3.2.1 Detection method . 6
3.2.2 Detection technique . 6

3.3 A taxonomy of intrusion detection systems 8
3.4 Intrusion detection techniques . 10

3.4.1 Rule-based techniques . 10
3.4.2 Machine learning techniques . 11
3.4.3 Statistical techniques . 15
3.4.4 Clustering-based techniques . 16
3.4.5 State-based techniques . 18
3.4.6 Hybrid systems . 20

3.5 Gap analysis of existing research . 21

4 Creating the testbed 23
4.1 Use case: Server-side detection of compromised clients 23
4.2 Obtaining test data for evaluation . 24

4.2.1 Using existing data . 25
4.2.2 Generating test data . 26

4.3 Testbed concept . 27
4.3.1 Clients . 27
4.3.2 Intrusions . 29
4.3.3 Server . 29

4.4 Testbed implementation . 31
4.4.1 Client orchestration . 31
4.4.2 Clients . 32
4.4.3 Intrusions . 36
4.4.4 Server . 39

4.5 Assumptions . 40
4.5.1 Assumption 1: Identifying compromised clients from a server . . . 40
4.5.2 Assumption 2: Handling of data by microservices 41
4.5.3 Assumption 3: Simulating interoperating components and systems 41

ix

Contents

5 Evaluation 43
5.1 Testbed performance . 43

5.1.1 Prerequisites . 43
5.1.2 RQ 1: How fast can the testbed be started? 43
5.1.3 RQ 2: How many components can be run in parallel? 45
5.1.4 RQ 3: How well does the testbed scale with additional components? 46
5.1.5 RQ 4: How many dataset lines can be generated in a certain time? 48

5.2 Fitness for purpose . 49
5.2.1 RQ 5: Do we solve the problems of existing datasets? 49
5.2.2 RQ 6: Can we reproduce data of similar distribution? 51
5.2.3 RQ 7: Can we evaluate various types of IDS? 55

5.3 Quality of the generated data . 56
5.3.1 Prerequisites . 56
5.3.2 RQ 8: Are there significant differences in detection precision or recall

for data generator types? . 60
5.3.3 RQ 9: Can we show the effect of varying intrusion levels? 61
5.3.4 RQ 10: What false positive rate can we observe for different data

categories? . 62

6 Limitations 65
6.1 Testbed . 65

6.1.1 Data generators . 65
6.1.2 2D simulator . 65
6.1.3 Intrusions . 66
6.1.4 Server . 66

6.2 Evaluation . 66

7 Future work 67
7.1 Expanding the testbed . 67
7.2 Evaluating IDS with the testbed . 67

8 Conclusion 69

A Developed programs 85

x

1 Introduction

Connected vehicles are becoming commonplace. In 2015, 35 % of new cars sold were
already connected to the internet [2]. Accenture estimates that by 2020 that number will
rise to 98 %, reaching 100 % in 2025 [2].

Manufacturers push for higher connectivity, as it offers advantages such as the ability to
offer automated software updates which do not require customers to perform a manual
update process in a repair shop [9, p. 61]. Additionally, new features enabled by internet
connections are used as selling points. For example, vehicles may be monitored and
controlled with a smartphone [9, p. 61]. Finally, vehicle-to-vehicle communication allows
for advanced autonomous features such as cooperative collision warnings [126].
However, this connectivity also raises the likelihood of exposing vulnerabilities, which

increases the risk of attacks [81, p. 2898]. Checkoway et al. [17] identify the vehicle remote
telematic systems providing “continuous connectivity via cellular [...] networks” as “perhaps
the most important part of the long-range wireless attack surface” [17, p. 5].

For passenger cars, traditional defence measures may not always be feasible. The vehicles
are expected to subsist for long periods of time, with the average age of light vehicles in
the United States rising from 10.6 years in 2010 to 11.6 years in 2016 [45]. It is reasonable
to expect that it will rise even further in the future. Zhang et al. [129] argue that this long
lifespan makes it hard for manufacturers to predict the necessary hardware for on-board
protection [129, p. 15]. Because of strict limits in production budgets, manufacturers are
likely to minimise the cost for each vehicle and thus only include the minimum required
security hardware.

Therefore, off-board protection may be necessary for sufficient security over the lifespan
of the vehicle. An important challenge with this approach is balancing on-board processing
load and the communication of the vehicle to the manufacturer server [129, p. 15]. Ideally,
the existing vehicle communication is utilised for this purpose, as it would neither require
additional processing nor communication.

In the following, we briefly describe the application of intrusion detection in this scenario.

Intrusion detection

We define intrusions as modifications to the behaviour of a system without the manufac-
turer’s knowledge. That includes unauthorised access or fraud, but also software bugs (see
Chapter 2). It is challenging to differentiate various types of intrusions, as their effects
may be identical. For example, software bugs can result in disallowed system behaviour
without any malicious intent.

To defend against intrusions, one can employ intrusion detection systems (IDS). They
can be used as a second line of defence after preventive protection mechanisms such as
software integrity verification [78]. IDS are built to detect intrusions that have already
taken place, aiming to mitigate their consequences.

1

1 Introduction

A considerable advantage of IDS in the scenario of connected vehicles is that they can be
employed non-invasively. That means that a complete off-board protection mechanism can
be implemented with their help, solving some of the problems such as production budget
limits that we discussed before. Additionally, IDS may be combined with a manual review
of potential intrusions. The system can preselect probable threats and bring them to the
attention of security personnel, so that they can defend customers’ vehicles more effectively
against threats.

Structure of this thesis

First, we define terms and abbreviations used throughout this thesis in Chapter 2. That is
followed by a literature survey in Chapter 3, in which we describe the taxonomy of IDS
that we developed and discuss examples for individual approaches to IDS. We focus on
those types of systems that have been shown to work in practice and omit theoretical
concepts with no proven performance.
The results of the literature survey indicate that there is no appropriate solution for

comparing different IDS for the automotive real-world scenario. Hence, Chapter 4 is
discussing the concept as well as the implementation of our testbed (defined in Chapter 2),
which aims at allowing the comparison of various types of IDS. That is followed by the
evaluation of our testbed in Chapter 5. We concentrated on evaluating its performance,
fitness for purpose and the quality of the data it generates.

Chapter 6 describes the limitations of our approach. Following that, Chapter 7 presents
areas of interest for future work we have created with our work. Finally, we conclude this
thesis in Chapter 8.

2

2 Terms and definitions

We use some terms and abbreviations throughout this thesis without further explanation.
To enable the reader to understand their meaning, we briefly list and define them in the
following.

2.1 Real-time remote intrusion detection

To describe real-time remote intrusion detection, we define each individual component of
that term.

Intrusion: We define intrusions as modifications to the behaviour of a system without
the manufacturer’s knowledge. On the one hand, this comprises malware, unauthorised
access and anomalies, including software bugs, that mostly occur without the user’s
knowledge. On the other hand, it encompasses misuse and fraud that can take place
with or without the user’s knowledge. Different types of intrusions are often difficult or
impossible to differentiate from each other and do not always correspond to illegitimate
actions. This definition corresponds to that of NIST (National Institute of Standards and
Technology) publication 800-94 [92]. In this document, Scarfone et al. define intrusions
as “incidents, which are violations or imminent threats of violation of computer security
policies, acceptable use policies, or standard security practices” [92, p. 2-1]. They list
malicious actions such as unauthorised access and misuse, but also legitimate use of a
system as possible causes for detectable incidents [92, p. 2-1].

Intrusion detection: An intrusion detection system (IDS) aims at detecting intrusions
during or after their occurrence and hence mitigating their consequences. For this purpose,
they monitor events for possible violations of some defined policy or expected behaviour [92,
p. 2-1]. These systems are the second line of defence after those that actively prevent
attacks, such as firewalls. Contrary to those, IDS are designed to accommodate the fact
that not all intrusions can be prevented [92, p. 2-2].

Remote intrusion detection: Commonly, IDS are employed within the system they
intend to protect. Some architectures or system designs do not allow this type of defence
measure to be deployed. The performance impact may be too high or the deployment cost
unaffordable. Remote intrusion detection refers to an IDS deployed on a remote server
with which the system under protection communicates, for example through web requests.
The IDS tries to detect intrusions based on the communication of the protected system
with the remote server [68, p. 20].

Real-time intrusion detection: IDS can be built for off-line or real-time detection.
Off-line detection comprises working with long-term data, aggregating information about
individual clients or behaviour patterns over time. In this scenario, the IDS can perform

3

2 Terms and definitions

calculations or aggregate data before its detection process [62, p. 59]. This mechanism
can be too time-consuming for some system designs. Real-time intrusion detection aims
at detecting intrusions as they happen or soon thereafter, keeping up with the speed of
continuously incoming data [62, p. 59].

2.2 Other terms

Apart from the terms explained before, we use the following concepts.

Microservices: Instead of employing a monolithic application for handling all requests,
a server can make use of the microservice architectural style. This means splitting up
functionality to isolated services, so-called microservices, that communicate via an API
(see Section 2.3). This allows for independent deployment and increased flexibility and
scalability [65].

Testbed: A testbed is an artificial testing environment for interactive tests of complex
systems. The goal of a testbed is to simulate the environment in which the system under
test will operate, similar to the practice of system testing. Additionally, it can be used for
generating test data [10, p. 553].

2.3 Abbreviations

Finally, an alphabetical list of abbreviations used in this thesis.

API: An application programming interface enables computer programs to interact with
each other through defined functions. These allow them to access underlying functionality
of the respective program. A more detailed explanation can be found in [10, p. 21].

JSON: The “JavaScript Object Notation” is a data-interchange format with a minimal
syntax that can be quickly parsed and generated. The format is defined in RFC 8259 [7].

ROS: The “Robot Operating System” is a robotics middleware aimed at, among other
goals, being accessible, multi-lingual and thin. Additionally, it enables peer-to-peer com-
munication, which means no central master server is necessary. This enables the effortless
use of ROS in highly distributed systems [86].

XML: The “Extensible Markup Language” is a data-interchange format with high
flexibility and generalisability. The format is defined in [8].

4

3 Survey of approaches to intrusion
detection

We propose two aspects to differentiate IDS, the detection method and the detection
technique (see Section 3.2). Based on these two aspects and our literature survey we
arrive at a taxonomy of IDS in Section 3.3. Following that, Section 3.4 discusses different
approaches to IDS. Finally, we give a gap analysis of existing research in Section 3.5.

3.1 Method

Following Wohlin [125], we employed the techniques referred to as “forward” and “backward
snowballing” [125, p. 3] to search available literature. After starting off with central survey
papers, we followed citations from and to these sources to identify other surveys and
approaches. We then searched examples for each of the approaches we identified and traced
those back to survey papers discussing them.
To verify the relevance of individual sources, we took their ranking in search engines

and databases, and the number of other literature citing them as a basis. Approaches
mentioned in multiple survey papers were given more weight.

Developing the taxonomy

We started the taxonomy by considering prior work. Liao et al. [68] and Chandola et al. [13]
offer the most comprehensive taxonomies we could find. These were our starting point.

Refining the taxonomy

To find a more concise and fitting representation and complete the taxonomy, further
sources were reviewed. Firstly, other surveys and overviews were used to expand, merge or
purge categories. For the statistical category, Hodge et al. [43] offer a good overview of
different techniques. For better delimitation of the clustering category, Leung et al. [64]
offer a helpful categorisation. Additional subcategories were found in [32, 52, 62, 82].

Verifying the validity of categories

To make sure that we only discuss relevant categories, each of them was verified. We did a
literature search for techniques in the respective areas. With the results we confirmed that
these are not just theoretical solutions but can be employed in practice.

3.2 Differentiating intrusion detection systems

There are numerous criteria for differentiating IDS. Lazarevic et al. [62] propose a taxon-
omy covering the categories “Information source”, “Analysis strategy”, “Time Aspects”,
“Architecture” and “Response” (see Figure 3.1).

5

3 Survey of approaches to intrusion detection

Another more extensive taxonomy is described by Liao et al. [68]. It includes the
categories “Timeliness”, “System Deployment”, “Detection Strategy” and “Data Source”
with further subcategories (see Figure 3.2).

While both cover numerous aspects, we can see that most of those are independent
of the actual implementation of the system. Either they are fixed because of technical
restrictions (some systems cannot be used in real-time scenarios for example) or they are
interchangeable for individual solutions (like the response type).
Hence, we focus our survey on the two aspects that we consider most important when

differentiating between IDS, the detection method and the detection technique.

3.2.1 Detection method

The detection method is one of the most fundamental aspects for differentiating between
IDS. We define two possible methods, signature-based and anomaly-based detection. Other
authors often use the same terms, as seen in Axelsson [3, p. 2] and Kabiri et al. [52, p. 84], or
similar ones, like “misuse detection and anomaly detection” [62, p. 45] or “knowledge-based”
and “behavior-based” detection [22, p. 363].

These terms all refer to the same two principles: Signature-based detection uses existing
knowledge about possible intrusions to detect them, while anomaly-based detection analyses
the normal behaviour of the system and flags anomalous actions as possible intrusions.
We want to note that Liao et al. [68] argue for a third variant, namely “Specification-

based” detection. The information gain when differentiating further from signature-based
detection as to where the data stems from seems marginal to us, so we forego this category.
Hodge et al. [43] also argue for three types of systems, differentiating signature-based

detection further as “Type 2” detection, which models “both normality and abnormal-
ity” [43, p. 89] as well as “Type 3”, which models “only normality or in very few cases [...]
abnormality” [43, p. 90]. This split does not influence the actual detection process. No
matter if normality or abnormality was modelled, the system looks for certain predefined
patterns. The only difference is what behaviour it identifies as an intrusion; that which has
been modelled (when modelling abnormality) or that which has not been (when modelling
normality). Accordingly, we omit separating these subcategories.

3.2.2 Detection technique

The second aspect when differentiating IDS is the detection technique. This refers to the
actual algorithm that is being used when analysing incoming data. We define six categories
of techniques, namely rule-based, machine learning, statistical, clustering-based, state-based
and pattern-based techniques. Each of these categories groups different techniques that we
elaborate on in Section 3.4.
Chandola et al. [13] describe six techniques, differentiating “Classification Based”,

“Clustering Based”, “Nearest Neighbor Based”, “Statistical”, “Information Theoretic”
and “Spectral” [13, p. 5]. We see “Nearest Neighbor Based” techniques as a part of
our statistical category, “Spectral” techniques can be classified as machine learning and
“Information Theoretic” techniques are merely one type of clustering-based techniques.

6

3.2 Differentiating intrusion detection systems

Figure 3.1: A taxonomy of intrusion detection systems, taken from [62, p. 34].

Figure 3.2: A taxonomy of intrusion detection systems, taken from [68, p. 21].

7

3 Survey of approaches to intrusion detection

Liao et al. [68] argue for five different categories, namely “Statistics-based”, “Pattern-
based”, “Rule-based”, “State-based” and “Heuristics-based” techniques [68, p. 17]. While
the techniques they group into these categories do not always correspond to how we group
them, we agree with most of their overall categories. Still, we do consider the category
of clustering-based techniques important enough to add to this list. Additionally, their
differentiation between “Rule-based” and “Heuristics-based” techniques is not entirely clear.
We group some of those into the rule-based, others into the machine learning category.

In general, the distinction is not absolute and different ways of classifying systems may
make sense. Considering this, our categories allow a concise and coherent grouping of the
types of techniques that we found.

3.3 A taxonomy of intrusion detection systems

Figure 3.3 shows our taxonomy based on the aspects detection method and detection
technique, used to classify different IDS. On the following page, Table 3.1 gives an overview
of all subcategories and a corresponding example from literature. These approaches are
discussed in Section 3.4.

Figure 3.3: Our taxonomy of intrusion detection systems.

8

3.3 A taxonomy of intrusion detection systems

Detection technique Detection
methoda

Exam-
ple

Sec-
tion

Sig. Ano.
Rule-based Simple rule-based ✓ – [69] 3.4.1

Fuzzy logic ✓ – [23]
Pattern matching ✓ – [99]
Model-based reasoning ✓ – [33]

Machine learning Artificial Neural Networks ✓ ✓ [11] 3.4.2
Bayesian Networks ✓ ✓ [60]
Support Vector Machines ✓ ✓ [75]
Genetic Algorithms ✓ ✓ [66]
Artificial Immune Systems – ✓ [31]
Swarm Intelligence ✓ ✓ [18]h

Statistical Distribution-based ✓ ✓ [42] 3.4.3
Kernel Density Estimation ✓ ✓ [128]
Regression analysis ✓ ✓ [112]

Clustering-based Distance-based – ✓ [48]h 3.4.4
Density-based – ✓ [79]
Grid-based – ✓ [64]h
Hierarchical – ✓ [71]

State-based Automata ✓ ✓ [46] 3.4.5
Markov chains ✓ ✓ [127]
Coloured Petri nets ✓ ✓ [61]

a Detection method: Signature-based (Sig.), Anomaly-based (Ano.)
h Hybrid system, utilising multiple techniques

Table 3.1: An overview of intrusion detection systems with corresponding examples.

9

3 Survey of approaches to intrusion detection

3.4 Intrusion detection techniques

In the following sections we describe examples for each of the intrusion detection techniques
that we define in our taxonomy.

3.4.1 Rule-based techniques

The most basic approach to intrusion detection are rule-based techniques. They employ
signature-based detection, as static rules need to be defined in advance based on domain
knowledge.

Simple rule-based

These systems are based on simple “if-then-else” rules that are written to detect intrusions
based on existing knowledge.

P-BEST [69] is a tool set that can be used for this scenario. To create rules for it, they
must be written in the “P-BEST production rule specification language” and are then
translated and compiled [69, p. 3]. Such rules can trigger actions or activate other rules to
be checked.

Fuzzy logic

Fuzzy logic systems are based on the premise that not all decisions are a simple “yes” or
“no”, instead the answer may only be partially right or wrong.

FIRE [23] is one such system that is based on a “fuzzy analysis engine”. Fuzzy rules are
used to “determine the likelihood of specific or general network attacks” [23, p. 301]. The
process consists of data collection, data processing and fuzzy threat analysis. Different
data sources can be combined and given individual weights, depending on the relevance of
the data they collect. Additionally, some historical data is preserved to allow for statistical
comparisons.
Generating rules for rule-based IDS is well suited for a hybrid approach, as shown by

Gomez et al. [34]. Their work describes the use of genetic algorithms (see page 13) for rule
generation for a fuzzy logic system. Starting with a random population, the chromosomes
are iteratively selected, crossed over, and mutated to arrive at an end condition. When
that is satisfied, the best solution is returned and used to create a rule [34, pp. 3 sq.].

Pattern matching

Detecting attacks or legitimate behaviour is also possible with pattern matching systems.
These are used to model more complex patterns that can be matched against the actual
user behaviour.
A possible application of this principle is file system checking. Kim et al. [55] describe

Tripwire, a tool designed for verifying the file system integrity. Its goal is to ensure that file
changes are detected and alerts are raised for administrators. To efficiently detect changes,
they propose storing fixed-size hashes for each file [55, p. 20]. The program regularly
computes these signatures again and compares them to the stored ones. This can happen

10

3.4 Intrusion detection techniques

hourly or daily, depending on the use case [55, p. 26]. The tool can then either report its
findings directly or write the reports to a file [55, pp. 24–25].

Another interesting application is described by Joyce et al. [51]. They propose keystroke
monitoring for user identity authentication. Users must type in a specific string multiple
times during registration. The latency signature for their typing is saved and mean and
standard deviation are calculated. Outliers are discarded based on their latency. Finally,
curves corresponding to the latency values for each letter are computed [51, p. 171]. To
verify the user’s identity, their typing pattern is compared to the stored signature. If more
than 60 % of the tests are similar enough, the process completes [51, p. 172].

Model-based reasoning

A different approach is taken by systems utilizing model-based reasoning [1]. Models of
attacks are built in advance and the system assumes that any of these may be happening
at any moment. The likelihood for each is monitored based on the user behaviour and an
alarm is raised in case an attack becomes highly likely.

Garvey et al. [33] describe the concept of a model-based reasoning system for the real-time
intrusion detection expert system IDES [72]. Sequences of user behaviour exemplifying
intrusion models are stored in a database, represented by the user actions. A separate
store of currently possible attacks is used by the “anticipator” component to guess the
next possible steps, which are then translated to actual audit data by the “planner”, and
finally handed over to the “interpreter” that compares them to the actual audit data from
the monitored system [33, p. 4]. The limiting factor is that the specific behaviour needs to
be recognisable and clearly distinguishable from normal, legitimate behaviour [33, p. 5].

3.4.2 Machine learning techniques

Machine learning techniques are widely researched in the context of intrusion detection.
They can make use of signature-based detection (with supervised learning [38]) as well as the
more traditional anomaly-based detection (with unsupervised learning [39]), depending on
the availability of labelled data. In some scenarios, such as when analysing real-world usage,
labelled data in sufficient quantities may not be available nor feasible to produce. This
makes either automatic labelling measures or the use of unsupervised or semi-supervised
learning necessary.

Artificial Neural Networks

The approach of Artificial Neural Networks (ANN) is to train a network of nodes for
problem-solving. By supplying an ANN with training data, it slowly “learns” either based
on provided labels or by adapting to the “normal” characteristics of the data. Instead of
offering a binary answer, the network outputs probabilities for certain classifications.
Cannady [11] describes the application of an ANN to signature-based detection for

supplanting a simple rule-based system. For training the network they used simulated
attacks based on specific attack patterns. The generated data was heavily pre-processed in

11

3 Survey of approaches to intrusion detection

a multi-step process to ensure its suitability for training [11, pp. 449–450]. Then, the ANN
was trained using this data, which took a total of 26 hours to complete. In their evaluation
they achieve a test data correlation of 97.55 % [11, p. 451].

Debar et al. [20] developed a different approach. They use the ANN to learn time series
data, utilising anomaly-based detection to try to predict legitimate user behaviour and
raise alarms if the assumptions did not hold [20, p. 243]. In their model, it is necessary
to set a fixed parameter N denoting the number of past events used by the ANN for
learning. This parameter cannot be changed without retraining the model [20, pp. 243–244].
Additionally, they formulate three hypotheses that need to hold for their approach to
work well. Their first hypothesis is that user behaviour follows certain patterns with fixed
start and end points that repeat regularly. Secondly, they assume that the user follows a
certain logic when interacting with the system, which can be understood by an algorithm.
Their last hypothesis is that there are correlations between audit data dimensions, allowing
the neural network to take advantage of them when learning [20, pp. 241–242]. In their
experiments, the ANN achieves prediction accuracies of 78.33 %–92.25 % for the first
command submitted by a user, which rapidly decrease with following commands, reaching
as low as 0.98 % for the third command [20, pp. 247–248].

Bayesian Networks

A simpler approach to network learning are Bayesian Networks (BN). Contrary to ANN,
which train a set of nodes with no specific meaning on their own in a black-box way, a BN
consists of nodes with defined meaning. We use the term hypotheses nodes for nodes that
represent a hypothesis, like a specific intrusion into the system. With the term observables
nodes, we refer to nodes representing observable behaviour of the system. The nodes of a
BN are connected in a directed acyclic graph (DAG). Additionally, the probability of each
node is saved. Each node is dependent on its own probability as well as that of its parents.
With such a network, one can model certain states and their relationship to each other in
a human-understandable way.
Kruegel et al. [60] describe the use of a BN for intrusion detection. They define one

root hypothesis node that represents “anomalous” or “not anomalous”. Additionally, each
possible dimension of the observed data is modelled as an observable node. The root node
is connected to each of those child nodes. Edges between the child nodes represent the
possible causal dependencies between them. Finally, additional variables are introduced
as observables nodes with relationships to other observables nodes they may influence [60,
pp. 17–18]. To increase the accuracy of the classification, different models are built for
features of the observed events. An additional confidence node in each model is used to
weigh the results of the models against each other. This relationship is modelled in a
higher-level BN that connects the inputs and the different models, as well as their respective
confidence level. In their evaluation, they observe an improvement of 20 percentage points
in accuracy when comparing their BN to simple rule-based detection. They do note,
however, that legitimate behaviour deviating from the training data was falsely flagged by
the network [60, p. 22].

12

3.4 Intrusion detection techniques

Support Vector Machines

Support Vector Machines (SVM) can be used for binary classification of data. They are
based on the principle of mapping the training data to a feature space of higher dimension.
In that space a hyperplane is created that is supposed to separate the instances with as
much margin as possible. All future instances that need to be classified are then mapped
to the same feature space and classified based on their position [40, pp. 19–20].

Mukkamala et al. [75] compare the performance of an ANN with SVM. They work with
the KDD Cup 1999 dataset [53] which consists of labelled training data as well as test
data. This data is pre-processed into machine-readable form, used to train the SVM, which
is then tested [75, p. 1704]. The SVM show a comparable performance when detecting
attacks, while requiring 1

50 of the training time compared to ANN [75, p. 1706]. An
important drawback they note is that SVM can only be used for binary classifications
(attack or no attack), meaning there is no option to differentiate between attack categories
or severities [75, p. 1707].

SVM work most efficiently when the training data is small, diverse and of high quality [44,
p. 310]. To achieve this goal, Horng et al. [44] use the hierarchical clustering algorithm
BIRCH [130]. With it they reduce the number of instances used for training the SVM [44,
p. 307]. To be able to differentiate between different types of attacks, they train SVM
classifiers for each type of attack separately. The finished IDS consists of a combination
of all classifiers. In their evaluation, they found that for normal behaviour and attacks
that had a sufficient number of training instances, detection rates were very high, ranging
from 97.55 % to 99.29 %. For data with only few training instances, detection rates were
significantly lower, resulting in a detection rate of only 19.73 % for U2R (unauthorized
access to root privileges) attacks [44, p. 311].

Genetic Algorithms

The principle of Genetic Algorithms (GA) is based on evolution. First, a random group
of so called chromosomes is created that encode possible solutions to the problem. Each
of these is evaluated to determine its fitness based on the quality of its solution. Then,
selection (duplication), recombination (crossover) and mutation operations are performed
to arrive at a new generation. Chromosomes with higher fitness have a higher chance of
reproducing, resulting in a more and more refined population [123, pp. 67–68].
Li [66] describes a classical application of a GA in the context of IDS. They encode

rules classifying a certain network traffic pattern as anomalous or normal in chromosomes,
evolve them, and evaluate them based on historical data [66, p. 4]. The goal of this process
is to automatically create the best rules for detection based on known intrusions. This
requires manual classification of the training data by experts before running the algorithm,
meaning they employ signature-based detection.
A different application of GA is discussed by Sindhu et al. [101]. They try to solve the

problem of data redundancy by employing a GA. Their approach is more indirect, utilising
an ANN resembling a tree structure, referred to as a “neurotree”, that is trained with
instances selected by the GA. To allow for easy evaluation, they encode the features of the
KDD Cup 1999 dataset [53] to a simple binary form, encoding “feature is included” or “not

13

3 Survey of approaches to intrusion detection

included”. Each chromosome represents a data instance that may be used for training the
“neurotree”. The fitness of the chromosomes is then evaluated by training the “neurotree”
with the new population and calculating the precision and recall when classifying new
instances. Additionally, data instances with fewer features are given favourable fitness [101,
p. 131].

Artificial Immune Systems

Artificial Immune Systems (AIS) are based on the concept of how biological immune
systems know to differentiate the “self” from the “other”, thus utilising anomaly-based
detection [19].

Forrest et al. [31] were among the first to describe the use of negative selection algorithms
inspired by immune systems for anomaly detection. They discuss a basic concept of defining
“self” for Unix processes. This definition is based on short sequences of system calls which
are learned and stored over a period. These are system-specific and not generalisable, as
every system has unique characteristics [31, p. 121]. After a database of normal behaviour
has been built up, it can then be used for detecting anomalous behaviour. New incoming
traces are matched against patterns in the database. Finally, the degree of mismatch is
calculated and used as a basis for an abnormality score [31, p. 122].

This approach is utilised in a supervised learning IDS described by Hang et al. [37]. They
detail a hybrid system based on a GA to learn data patterns and on an AIS for selecting new
synthetically generated samples. This process is aimed at solving the problem of imbalanced
data sets used for training a machine learning algorithm. It can be combined with various
supervised learning techniques. The GA is based on co-evolution of non-interbreeding
sub-populations that each evolve to a specific pattern of the normal data [37, p. 348].
Unlabelled examples are then assigned to the anomaly class by an AIS algorithm if they
do not fit any of the normal class patterns. This process is repeated until the data sets are
balanced [37, p. 349].

Swarm Intelligence

Another biologically-inspired class of algorithms are Swarm Intelligence (SI) systems. They
take inspiration from the concept of self-organised, social insects such as ants. These do not
follow a centralised authority, instead they work independently while collectively handling
complex tasks.

Chung et al. [18] detail a hybrid system making use of different SI concepts. Additionally,
to prepare the training data, they use k-means clustering (see page 16) to convert continuous
variables to discrete ones. The cluster centroids are used as discrete values for the variables.
Their feature selection algorithm uses these to try to find optimal training instances with
the smallest number of features [18, p. 3017]. After the features have been selected, a variant
of particle swarm optimisation with a local search strategy is employed to find an optimal
solution. This extra step is added to prevent the algorithm from prematurely terminating
with only a suboptimal solution [18, pp. 3017–3018]. After evaluating the developed rules
according to their specificity and sensitivity in solving the problem, they are pruned, making
them easier to understand and less likely to be overfitted [18, p. 3018]. In their evaluation,

14

3.4 Intrusion detection techniques

they show that their algorithm performs better than simplified swarm optimisation and
particle swarm optimisation algorithms, with accuracies of 85.6 %–93.6 % [18, p. 3020].

3.4.3 Statistical techniques

Statistical intrusion detection assumes that the observable events can be mapped to a
statistical model, with intrusions either occurring in low-probability areas of the model or
being matched by a different model. Statistical models can be based on previous knowledge
about the data, employing signature-based detection, or on learnings from historical data,
employing anomaly-based detection.

Distribution-based

A basic statistical approach to intrusion detection is distribution-based detection. For this,
a certain distribution of the data is assumed, either by applying assumed distributions or
by evaluating historical data.
One of the most basic distributions is the Gaussian distribution (normal distribution).

If the data can be assumed to be normally distributed, there are several methods to find
outliers that may represent an intrusion. Grubbs [35] describes the Grubb’s test for finding
outliers in normally distributed data. They use the test criterion T n that is defined as
T n = (xn − x̄)/s, where x̄ is the average of all n values and s is the estimated standard
deviation [35, pp. 4–5].
To account for more complex distributions of the data, a combination of distributions

can be assumed. Eskin [27] train such a mixture model with a machine learning algorithm.
This hybrid approach assumes two distributions, the “majority” and the “anomalous”
distribution [27, p. 256]. To detect intrusions, they calculate the likelihood of an element
belonging to the respective distribution. For this, they compare the “change in log
likelihood of the distribution if the element is removed from the majority distribution
M t-1 and included with the anomalous distribution At-1” [27, p. 257]. Their approach
is limited by the need to retrain the machine learning model after every step. This is
necessary because the sets of points used for calculating the distribution are changed by
the system [27, p. 257].
Helman et al. [42] describe a basic form of random process-based detection. They

formulate two processes, a process N for normal behaviour and a process M for intrusions.
For each data instance, the probability of it being generated by each process is calculated
and taken as a basis for classifying the instance as legitimate or not [42, p. 888]. The
authors note that prior knowledge about the distribution of the input data is necessary
for optimal detectors [42, p. 890]. Additionally, optimising the algorithm may not be
computationally feasible for most scenarios [42, p. 894].

Kernel Density Estimation

Kernel Density Estimation (KDE), also known as parzen-window estimation, assumes that
a probability density function exists that can explain the data. KDE is the process of
trying to estimate that function [96].

15

3 Survey of approaches to intrusion detection

Yeung et al. [128] use this approach in their IDS. They assume that functions such as
the Gaussian distribution are too limited to explain real data. To overcome this limitation,
they employ a KDE based on Gaussian kernel functions. They choose a non-parametric
approach that allows them to model arbitrary distributions [128, p. 386]. To test if an
instance is anomalous, they assume that it was generated from the model of normal data.
In case that this probability is not greater than a threshold ψ, the instance is assumed to
be anomalous [128, p. 386].

Regression analysis

Regression analysis studies the influence of one or more independent variables on a dependent
variable. It can be used to estimate the expected value of a dependent variable for given
independent variables [84].
One approach that is well suited for the problem of intrusion detection is multinomial

logistic regression. It allows the dependent variable to have more than two possible categories
compared to binary logistic regression. Instead of just classifying an instance as attack or
no attack, this allows for differentiation between different attack types. Wang [112] use five
categories, one for legitimate behaviour and four for various attack types. Additionally, they
model the features of the input data as independent variables. All of them are converted
to binary variables [112, p. 664]. Potential risk factors are preselected with thousands
of simulations drawing random observations and calculating the significance level for the
variables. After this, the final multinomial model is developed. To allow for a classification
as legitimate or attack, thresholds for the outcomes are calculated for each possible attack
based on the predicted means for each type [112, pp. 664–665].

3.4.4 Clustering-based techniques

While many algorithms focus on classifying individual instances based on their properties or
relationships to all other instances, clustering-based techniques analyse them regarding the
cluster they belong to. Some clustering algorithms exist that do not cluster all instances,
allowing the selection of unclustered items as outliers. Most algorithms cluster all instances,
with outliers instead being defined by their cluster (small or large, dense or sparse) or their
relationship to their cluster (close to or far from the centroid) [13, pp. 27–28].

Distance-based

The most common form of clustering are distance-based algorithms. These are based on
some distance metric for individual instances and cluster each element based on the cluster
that fits it best.
A simple and well-known distance-based clustering algorithm is the k-means clustering.

A set of k points is chosen as centroids for k clusters and data instances are assigned to
the cluster whose centroid is closest to them, based on some distance metric. Jiang et al.
extend this algorithm. Their adaptation allows instances that are far enough away from the
nearest cluster centroid to form a new cluster. This enables the use of k-means clustering
in large datasets. If the number of clusters exceeds a threshold, the two closest clusters

16

3.4 Intrusion detection techniques

are merged (single linkage merging) [48, pp. 694–694]. Then, a minimum spanning tree
is constructed with the before-calculated cluster centroids. Its longest edge is removed,
resulting in two subtrees. The members of the tree with less nodes are then regarded
outliers [48, p. 696].
Selecting arbitrary cluster centres can result in suboptimal solutions [43, p. 100]. To

overcome this, k-medoids clustering chooses instances from the data set as cluster centroids.
Bolton et al. [6] describe an application of k-medoids clustering for fraud detection. First,
each instance is assigned to a cluster, which they refer to as a “peer group”. All members
of the group are tracked over time and their behaviour is analysed. In case one instance
behaves different from the rest of the peer group, it is selected for review [6, p. 9].

Density-based

Density-based algorithms assume that clusters of elements lie in dense regions. These
algorithms do not assign every element to a cluster, instead they expand the cluster regions
until a density threshold is reached [90].

One application of density-based clustering for anomaly-based detection is described by
Oh et al. [79]. First, the audit data is clustered using DBSCAN [29]. The instance data
as well as inter-transactional and intra-transactional properties are used as a basis for
the algorithm. Instead of clustering whole instances, each group of features that forms
a well-defined cluster is clustered separately. This results in one instance belonging to
multiple clusters [79, pp. 599–601]. The result of the clustering is stored in a profile for
each data dimension of the instances. Existing profiles can then be compared with new
transactions of the user. Both the internal distance of the new instance compared to its
cluster, as well as the ratio difference compared to other clusters are used to calculate the
anomaly probability. The thresholds for each measure can be decided individually based
on historical data [79, pp. 602–605].

Grid-based

Instead of starting with individual instances, grid-based clustering starts with dividing the
input data into a grid of cells of even size. Cells that contain most entries relative to the
rest are split. Those that lie under a minimum threshold of entries are discarded. Groups
of adjacent and dense cells are then defined as clusters. This clustering process is faster
than traditional clustering approaches [80].

Leung et al. [64] developed a hybrid clustering method for anomaly-based detection. First,
they cluster the training instances with their algorithm. This happens by first forming a
grid and finding frequent item sets within it [64, pp. 335–337]. Then, in a separate step,
the individual records are assigned several frequent item sets, depending on their attributes.
This data is then mined to cluster the elements [64, p. 337]. To prevent overfitting, a count
back method is used that prunes all sets that do not receive enough support [64, p. 338].
Finally, duplicate clusters are removed [64, p. 339]. The remaining clusters are assumed to
represent normal behaviour. For incoming instances, their membership in these clusters is
tested. Those instances that lie outside all clusters are defined as anomalies [64, p. 340].

17

3 Survey of approaches to intrusion detection

Hierarchical

In general, clustering algorithms find a set of clusters that are all assumed to be equal.
Hierarchical clustering expands this with a hierarchy of clusterings, from a 1-cluster
encompassing all elements up to the single element level.

Loureiro et al. [71] describe the use of hierarchical clustering for outlier detection. After
the dataset has been clustered with a hierarchical clustering algorithm, the resulting
hierarchy is split at a specific level. This results in a predefined number of clusters. Outliers
are assumed to be those instances that belong to the smallest clusters [71, pp. 4–5]. In
their work, they also compare different distance metrics and clustering algorithms. When
comparing the Euclidean and Canberra distance functions, they find that using the Canberra
function significantly improves results [71, p. 8].

3.4.5 State-based techniques

State-based techniques are based on the idea of modelling and tracking either the state of
the observed system, or of the intrusion detection. These IDS can either utilise anomaly-
based detection, by converting historical data into models, or signature-based detection, by
modelling attacks or legitimate behaviour directly.

Automata

Techniques based on automata allow for basic modelling of the system state or tracking of
multi-step attacks.
One well researched automata-based system is STAT [46, 109, 110], short for “state

transition analysis tool”. It is based on two assumptions. First, that attackers have some
form of access to the system, and second, that they gain new capabilities through their
attack [46, p. 184]. Intrusions are transitions from an initial state to a compromised state.
The differentiating steps required to complete the attack, referred to as signature actions,
are identified and modelled [46, pp. 184–185]. This limits their approach to intrusions
that can be identified by the system state [46, p. 187]. STAT follows a simple procedure.
After collecting the audit data, it is pre-processed, analysed by the intrusion detection
components and presented to the security officer [46, p. 188].
Sekar et al. [97] describe a hybrid system that combines the advantages of automata

with a statistical, anomaly-based detection. Their approach focuses on network intrusions.
First, automata are manually built from specifications such as the internet protocol (IP).
For every received packet, a new automaton instance is created based on the respective
protocol. All existing machines may transition based on the packet [97, p. 266]. The
statistical component is used in parallel to track transition frequencies, common values
for certain states, as well as variable state distributions. This can be done either for all
instances, or for a subset [97, p. 266].

To generalize the automata-based approach to systems where specifications do not exist
or are incomplete, Wagner et al. [111] propose a system that automatically derives models
with static analysis of software. They focus on interactions of the program with the system,
observable in its system call trace. This simplifies monitoring the program. Based on the

18

3.4 Intrusion detection techniques

application source code, they build a static model and reduce it to its most important
parts [111, pp. 157–158]. To model the program behaviour, they discuss multiple possible
models. Their trivial model checks whether a system call could have been made by the
program or not. Their other approaches range from the basic “callgraph model” that
consists of a control-flow graph, to the “abstract stack model” that additionally monitors
the call stack to prevent impossible steps [111, pp. 158–161].

Markov chains

Like automata, Markov chains model states and transitions. But instead of input symbols
being consumed when transitioning states, the transitions correspond to probabilities for
neighbouring states based only on the current state [76].

Ye et al. [127] use Markov chains to model the system behaviour, similar to automaton-
based systems. While those can only allow or disallow certain patterns of inputs to appear
in sequence, this system can differentiate further. First, possible events are modelled as
states for the Markov chain model. Observing normal system behaviour, the transitions and
their probabilities are learned [127, pp. 117–118]. This model is then used while monitoring
the system to detect intrusions. Sequences of states are tracked, and their probability
of occurrence is calculated as log(P (Xt-N+1, . . . ,XN)) [127, p. 119]. The resulting score
corresponds to the probability that the sequence was legitimate. Ye et al. note that
previously unseen patterns result in probabilities of zero. While this can be problematic
for intrusion detection, they expect legitimate behaviour to follow previously seen patterns,
and attacks to be more likely to be previously unseen [127, p. 119].

Coloured Petri nets

An extension of Petri nets, Coloured Petri nets (CP-nets) allow for a more powerful
description of concurrent systems. Instead of requiring duplicates of entire subnets to
differentiate processes, explicit node information can be encoded by functions attached to
the arcs of the nets [47, p. 249].

Kumar et al. [61] expand on the state transition analysis approach [46] (see Section 3.4.5
on page 18). In their model, guards represent the signature context and vertices the system
states. Like in the state transition analysis approach, the graph models transitions from
an initial to a compromised state [61, p. 2]. Instead of just looking at directly subsequent
events, their approach can handle more complex, parallel interactions with the system, like
multiple simultaneous logins by the same user [61, p. 6]. Additionally, they can model
partial orders as well as token duplication and merging without losing any information [61,
p. 8]. While their approach can cover advanced, long-term, multi-step attacks, this leads to
a big computation time and space overhead in normal use. That is because partial matches
of signatures can happen in numerous scenarios and are tracked until the possibility of an
intrusion has been refuted [61, p. 10].

19

3 Survey of approaches to intrusion detection

3.4.6 Hybrid systems

Most systems cannot be clearly defined as one specific type of IDS. Ideas from multiple
areas are often combined to create better solutions.

We define hybrid systems as conscious combinations of multiple techniques. Theoretically,
almost all discussed forms may be combined in some form. But this may not always result
in a better IDS. The most interesting hybrid systems combine those techniques that could
ideally mitigate the shortcomings of the respective other technique to improve results or
speed up the computation.

We have already discussed some examples of hybrid systems before. They were grouped
in those categories that represent their core capability, with additional functionality added
to it in form of a different technique. In the following sections, we examine what we see as
some of the most interesting uses of hybrid systems.

Rule generation

Manual rule creation for rule-based systems (see Section 3.4.1 on page 10) can be time
intensive and may not lead to adequate results. The rule generation process for these
systems can be automated with algorithms.
Gomez et al. [34] describe the use of a GA for rule generation. This allows immediate

verification of the quality of the rule and automates the explorative testing that is necessary
for manually finding new rules.

Data labelling for supervised learning

In many scenarios, labelled training data for machine learning algorithms is not available.
As unsupervised learning may not be sufficient, some form of automatic labelling can be
used to allow for semi-supervised or supervised learning.

Portnoy et al. [85] describe the use of hierarchical single-linkage clustering for automated
labelling of training data. To allow for this, they base their work on two assumptions.
First, they assume that an overwhelming number of instances in the data is normal
(> 98 %) [85, p. 6]. Second, they assume that similar instances are clustered together. If
these assumptions hold, their approach may offer a promising solution to training with
unlabelled data.

Imbalanced data sets for machine learning

Most supervised machine learning techniques require a data set that is balanced between
data points of different classes. Real-world datasets are naturally imbalanced though,
resulting in difficulties when trying to train a ML algorithm on them.

Hang et al. [37] describe how GA and AIS can be combined to generate more anomalous
samples (see Section 3.4.2). The GA learns patterns in the data and new instances are
selected by the AIS until the dataset is balanced.

20

3.5 Gap analysis of existing research

3.5 Gap analysis of existing research

When analysing prior work on intrusion detection, we found that the field is widely
researched. Interestingly, we could not find a comprehensive overview work and up-to-date
taxonomy of IDS. Additionally, we noticed that existing research often follows an isolated
approach. To the best of our knowledge, there exists no satisfactory option for comparing
IDS in terms of effectiveness or detection accuracy.

We identified these issues as important to work on. Accordingly, we define the develop-
ment of a practical solution for evaluating various IDS as our goal.

21

4 Creating the testbed

Our objective is to assess the adequacy of various types of IDS for the automotive real-world
use case provided by our industry partner. As we cannot use actual data from our industry
partner due to privacy concerns, we require an artificial dataset that fits our use case.
First, we describe the use case in Section 4.1. Following that, we discuss options for

obtaining test data in Section 4.2 and conclude that a testbed is required. In Section 4.3,
we elaborate on the concept of that testbed and Section 4.4 gives an overview of the
implementation of our testbed.

We make three assumptions in this chapter, prefixed by Assumption. In Section 4.5, we
give an overview and discuss them.

4.1 Use case: Server-side detection of compromised clients

Our use case is based on a client-server architecture utilising microservices [65] as used
by our industry partner in the automotive industry. Multiple clients in the hands of
customers communicate with a central, manufacturer-controlled server, consisting of
multiple microservices and a logging component. Each client request is handled by the
responsible microservice, which in turn communicates to a logging component that stores
information about the request in a log store (see Figure 4.1).

Figure 4.1: Our use case: The clients a, b and c communicate with the server and its
microservices. Those in turn log the requests in a logging component. Arrows represent

communication. Components are dashed.

Clients

The server is our frame of reference, and we view the clients from an outside perspective
as data generators that regularly send requests to different server microservices.
Assumption 1. Normal and compromised clients can be differentiated based on differences
in their communication with the server.
This assumption is discussed in Section 4.5.1 on page 40.

23

4 Creating the testbed

Microservices

This thesis focuses on detecting intrusions from log data generated by the logging component.
Much like the clients, we view the microservices as black boxes. They receive request data,
process it and send data based on those requests to the logging component.
Assumption 2. The microservices in our use case do not alter the data they receive, for
example by condensing or extending it.
This assumption is discussed in Section 4.5.2 on page 41.

Logging component

The data that is available for intrusion detection is recorded by the logging component. In
our industry partner’s implementation, it is server- and implementation-centric. Hence,
the information stored consists of details only known to the server and specific to the
implementation of each microservice. We cannot discuss the actual log format used by
our partner, so we have reduced it to features contained in most log entries that we deem
sensible for the use case. These are as follows:

Attribute Range of values Description

Request time 1−Int Max∗ UNIX Epoch time†

Client identifier [A−Z1− 9]{7} Alphanumeric
Microservice name [A−Z]{1, 10} Alphabetical
Client position [0− 9]+ .[0− 9]+, [0− 9]+ .[0− 9]+ Coordinates
Data sent or received No constraints Microservice dependent
∗ See Trybulec [107]
† Seconds since 00:00:00 UTC, 1 January 1970

Table 4.1: Log features similar to our industry partner’s implementation, defined using regular
expressions.

There are numerous other features that we consciously left out. Most of these were
omitted because they appear very seldom in the log data and often contain only unstructured
or undefined data. These application-specific features go beyond the scope of our work.
Some features were skipped because they redundantly mirror others in content or because
their values are constants. Additionally, we left out a small number of features because
we consider them non-essential. Those include microservice exceptions, various version
numbers and data regarding the logging component.

4.2 Obtaining test data for evaluation

We want to evaluate different IDS for our use case, for which we need realistic test data.
Due to the privacy-sensitive nature of the data being collected, it is impossible to use
actual data from our industry partner. We therefore evaluate possible alternatives. Either
we can use existing and freely available datasets, or we have to artificially generate data.

24

4.2 Obtaining test data for evaluation

4.2.1 Using existing data

Intuitively, the easier option would be to use an existing dataset. The requirements for
such a dataset are as follows:

1. Fitting to our use case

a) Containing intrusions: Intrusion detection, contrary to simple anomaly detection,
implies some form of intrusion that can be detected.

b) No pre-processed or aggregate features: Real-time detection entails the inability
to pre-process or aggregate data with information from future connections before
detection.

2. Up-to-date (after 2014): Outdated data is harder to map to the microservice archi-
tecture we are working with. We consider 2014 the year that microservices started
gaining traction [65].

3. Well-formed (machine-readable, labelled): To allow for sensible evaluation, the data
needs to be labelled.

In the following, we discuss possible datasets that we found during our literature survey.

The KDD Cup 1999 dataset

An often-used dataset for the evaluation of IDS is the KDD Cup 1999 dataset [53]. It is
based on the DARPA 1999 dataset [70] and there exist updated versions of the same data,
like the NSL-KDD dataset [77]. Among the papers that we surveyed, the following make
use of this data: [18, 27, 28, 34, 44, 59, 60, 64, 66, 67, 69, 75, 79, 85, 97, 98, 101, 108, 110,
112, 127, 128]

These datasets do not fulfil multiple of our requirements, making them unusable in our
case. The most obvious is that the data is severely outdated (req. 2), being over 18 years
old as of now. Also, while the original set consists of multiple gigabytes of data, prior
analyses have found that most of the data is redundant [105]. The NSL-KDD set resolves
this, but that means it only consists of less than 22 % of the entries of the original set [77].
Finally, most features in these datasets are pre-processed or aggregated (req. 1b). In the
group of features “suggested by domain knowledge” [54], many aggregate data from all
connections by the client. Additionally, all features that have been “computed using a
two-second time window” [54] are, as the name suggests, pre-processed and aggregated.
Such features hide raw information that would be available for real-time detection.
These factors make any dataset based on the DARPA 1999 dataset unsuitable for our

evaluation.

Other datasets used in related work

All authors discussing intrusion detection specifically did not make their data available.
Either they skipped evaluation, meaning they needed no data, or they used data that they
could not publish.

25

4 Creating the testbed

In research discussing anomaly-based detection, a field which allows more general-purpose
data to be used for evaluation, we found some researchers using publicly available datasets.
Those are the Iris flower set [24] and a sugar-cane breeding database [49] (both used
in [48]), NHL player statistics (used in [56, 57]), NBA player statistics (used in [88]) or
INTRASTAT trade data (used in [71, 102]).

These datasets do not fit our use case, making them unsuitable for our purpose. Addition-
ally, as our work focuses not just on anomaly-based detection but includes signature-based
detection, we require the dataset to include some form of well-defined intrusion that can
be detected (req. 1a).

Freely available data

In addition to these academic datasets, we also evaluated freely available data from online
sources.

Among the datasets we considered are the Wikimedia data dumps [124]. Their contents
are unrelated to our use case and the data does not conform to our requirement of being
well-formed (req. 3). For each language, it consists of a single-file XML dump of all pages
in the corresponding wiki. Using this data would require extensive pre-processing and not
guarantee sensible results, as labels are missing.

We also considered the Tor Metrics data [106]. These datasets consist of pre-aggregated
data that hides raw information, which makes them unfit for the intended real-time use of
our system (req. 1b).

4.2.2 Generating test data

As we found no appropriate dataset for our use case, we conclude that it is necessary to
generate test data ourselves.

Naïve approach

The easiest way to generate data is to randomly generate it based on certain parameters.
Those may include the type of data being generated, or content patterns. Our system aims
for real-time detection, but that could be emulated by feeding single entries one by one
into the IDS.

We aim for emulating a realistic, complex system. Within clients, multiple components
interact and depend on each other for their computations. Additionally, the clients’
communication with the server can, to a certain extent, be unpredictable in content and
sequence. It depends on implementation, connection speed, server priority and system
performance.

Assumption 3. The unpredictability of the interoperation of components, clients and a
server cannot be adequately emulated with basic data generation.

This assumption is discussed in Section 4.5.3 on page 41. With Assumption 3 we can
conclude that naïve generation of random data is not sufficient in our case.

26

4.3 Testbed concept

Testbed approach

A complete testbed is used to generate realistic historical data and for live testing of the IDS.
Such a testbed is based on sophisticated simulations of clients from our use case that we try
to model. It is built to comply to our requirements of generating up-to-date, well-formed
and sufficiently large datasets. We conclude that this approach is most promising for our
scenario.
Accordingly, we have created a testbed that simulates the real-world use case. In the

following sections, we describe its concept and implementation.

4.3 Testbed concept

For comprehensive evaluation of IDS for the real-world use case (described in Section 4.1),
we design a testbed. It is aimed at modelling that use case as closely as possible. Hence, it is
simulating a client-server architecture with individual clients made up of a unique layout of
different components. Each client makes use of inter-component communication and sends
requests to the server. The server stub only consists of a simulated logging component that
generates the log data used for intrusion detection based on incoming requests from the
clients. Additionally, the server allows adding on the IDS for live detection (see Figure 4.2).
Because the microservices in our use case are assumed to not alter the data they receive
(see Assumption 2 on page 24), they are omitted.

Figure 4.2: The testbed concept: The simulated clients a, b and c communicate with a server stub
that only consists of a simulated logging component. Denoted in grey is the potential for adding an

IDS. Arrows represent communication. Components are dashed.

4.3.1 Clients

As described before, each client consists of multiple components. These produce and
consume data and are linked to a central communication unit that handles sending requests
to the server (see Figure 4.3).

There are two types of components we can derive from real-world clients.

27

4 Creating the testbed

Figure 4.3: The basic architecture of each client. Multiple simple and complex components are
combined and send data to one central communication unit. That in turn sends request to the

server. Arrows represent communication. Components are dashed.

Simple components

Simple components generate various types of data periodically. One example is a tempera-
ture sensor. This data is then used as a basis for requests to the server.

In our model, we represent each such component with a random number generator based
on a probability distribution, such as the normal distribution. Periodically, it generates
new data and sends that to the central communication unit. We refer to this component
type as “Data generator”.

Complex components

More complex components in our scenario use information about the state of the client,
like its position, sensor data or information about its surroundings, to allow the central
communication unit to make more sophisticated requests to the server. One such example
may be a request about the nearest point of interest (POI) based on the current position.
Our solution to modelling such a component is what we refer to as “2D simulator”

(see Figure 4.4). It consists of a simulated environment in which an independent unit
representing the client can move around (denoted in the Figure as a black circle with a white
“C” on it). This environment can have any defined size and different background colours.
The colours represent the interpretation of certain positions by the unit moving around
in the environment. A movement generator creates random movement commands for the
unit. Periodically, the unit publishes information about its environment and position. This
data is used both by the movement generator to adapt its movement commands to the
environment as well as by the central communication unit to send requests to the server.

Central communication unit

Finally, the central unit responsible for collecting all generated data as well as sending
requests to the server can be thought of as a simple pipe [74]. It does only basic data
transformations and then sends the result as a request to the server.

28

4.3 Testbed concept

Figure 4.4: A 2D simulator component. The movement generator sends random movement
commands to the simulated environment and its contained simulated unit, represented by a black

circle with a white “C” on it. The simulation sends feedback to both the generator and the
communication unit. Arrows represent communication.

All these are linked together as seen in Figure 4.3, with data generating components
sending data to the communication unit, which in turn sends that data off to the server as
requests.

4.3.2 Intrusions

We define intrusions as modifications to the behaviour of a system without the manufac-
turer’s knowledge. That includes unauthorised access or fraud, but also software bugs (see
Chapter 2 on page 3).
In our testbed, we conceptualise intrusions as modifications to individual components

that lead to differences in their communication. That can mean erroneous values being
generated by data generator components, or intentional bugs in the colour readings of the
2D simulator.

These intrusions can be combined in various ways to form intrusion scenarios. One
possible scenario is a client consisting of mostly normal components, except for one
compromised data generator and a 2D simulator with modified reaction patterns. This
leads to the unchanged communication unit to send off different requests to the server
compared to a normal client (see Figure 4.5).

4.3.3 Server

The server we model consists of multiple microservices that are being called by clients and
can respond individually. Each of the requests is stored in a log for later inspection. As
the server functionality is not part of our work, it is omitted. That means the testbed
server consists only of the logging component (see also Figure 4.2 on page 27).

29

4 Creating the testbed

Figure 4.5: A compromised client. Denoted in orange (shaded) is a compromised component. Its
communication differs from normal components, denoted in orange (dash-dotted). Arrows represent

communication. Components are dashed.

Logging component

This unit adds some information such as the current time and an identifier to the request
data, transforms it to fit our expected format and stores the result in a log, as seen
exemplary in Figure 4.6. Denoted in grey is data that may be transformed, for example by
renaming fields. Denoted in blue (italics) is data that may be added, like a “time” field for
storing when the request reached the server.

Figure 4.6: An exemplary conversion of a client request to a stored log entry by the simulated
logging component. Denoted in grey is transformed data, in blue (italics) added data.

Server modes

We aim for evaluating real-time IDS. Still, our testbed also allows off-line IDS to be
evaluated. The server can be started in different modes, depending on what kind of
detection is executed.

The server can run in store mode, meaning it stores all data that has been processed by
the logging component on disk. Additionally or exclusively, it can run in detection mode,
feeding an IDS every incoming request directly, after it has been processed, for real-time
detection.

30

4.4 Testbed implementation

4.4 Testbed implementation

The testbed described before was implemented in form of multiple programs, scripts and
tools. In following, we describe how they are built and how to use them.

4.4.1 Client orchestration

We want to orchestrate an arbitrary number of clients dynamically. That requires the
following steps:

1. Definition of clients
2. Dynamically starting clients
3. Relaying of communication

This is achieved using the “Robot Operating System” (ROS) [86] (see Chapter 2 on page 3).
In the following, we describe how ROS allows us to complete these steps.

Definition of clients

Each client should have an individual identifier, behaviour and layout, which refers to the
components it contains (see Section 4.3.1).
We use a ROS launch file to define the layout of our clients. This is a special XML

file containing elements expected by ROS (see Listing 4.1). A client in our use case is
represented by a group in the launch file, with its namespace representing the identifier of
the client. Each of its components is an individual Python program, represented by a node.
We package those programs in a client by subordinating them to its group.

1 <launch >
2 <group ns=" CLIENT1 ">
3 <node name="gauss" ... type=" data_generator .py"
4 args=" generate gaussian " />
5 ...
6 </group >
7 ...
8 </ launch >

Listing 4.1: An exemplary ROS launch file.

In our example (see Listing 4.1), we find all elements of the group of a client. Its
namespace (“ns”), which serves as its identifier, is “CLIENT1”. The group contains a node,
which references the Python program data_generator.py. This program is given the
arguments (“args”) “generate gaussian”.

This enables all our requirements: We can define an individual layout of components by
simply combining nodes in the group. Their behaviour can be individually defined through
arguments and the client has a unique identifier.

31

4 Creating the testbed

Automatic launch file creation: We have built a command line tool to aid in the
creation of large, randomized launch files. This tool automatically creates a file in XML and
launch file syntax. It allows the user to specify multiple command line options, including:
The number of clients to create, if and how many clients should be intruded, and the
difficulty level.

Dynamically starting clients

We make use of the ROS tool roslaunch to start all programs described in the launch
file. This tool takes care of all required steps to set up the ROS infrastructure and passes
command line arguments to the respective programs.

Relaying of communication

Finally, relaying communication is also made easy with ROS. It makes use of a publish-
subscribe architecture and handles connecting publishers to subscribers through the ROS
master.

In the following, we describe the individual components of the clients and give an
overview of how they publish and subscribe to ROS topics.

4.4.2 Clients

The clients consist of multiple components, as we described before. Each of those is
implemented as a separate program.

Data generators

The data generators representing simple components are, at their most basic, two classes
and one program, written in Python (see Figure 4.7).

Figure 4.7: The basic implementation of a data generator. The DataGenerator generates values
when prompted by the DataPublisher. Arrows represent communication. Components are dashed.

The DataGenerator class is a container for a NumPy [50] random number generator. We
are using ten generators based on continuous probability distributions from that library.
That includes more common choices like the normal and the uniform distribution, and less
common options that offered the same API in NumPy, such as the Rayleigh distribution
(see Table 4.2).

For the Beta Prime, von Mises, Wald and Weibull distributions, no default parameters
are provided by NumPy. We chose their parameters to be similar to those of the other
chosen distributions, aiming for comparable means and distribution interval spans.

32

4.4 Testbed implementation

Distribution NumPy Parameters Distribution Mean
function∗ interval†

Normal [118] normal µ = 0,σ = 1‡ [−3.09, 3.09] 0
Gumbel [114] gumbel α = 0,β = 1‡ [−6.91, 1.93] −0.58
Laplace [116] laplace µ = 0,β = 1‡ [−6.21, 6.21] 0
Logistic [117] logistic µ = 0,β = 1‡ [−6.91, 6.91] 0
Beta Prime [113] pareto p = 1, q = 2 [0.00, 30.62] 1
Rayleigh [119] rayleigh σ = 1‡ [0.04, 3.72] 1.25
Uniform [120] uniform min = 0,max = 1‡ [0, 1) 0.5
von Mises [121] vonmises µ = 0,κ = 1 [−3.12, 3.12] 0.00
Wald [115] wald µ = 1,λ = 1 [0.08, 8.35] 1
Weibull [122] weibull α = 5,β = 1 [0.25, 1.47] 0.92
∗ Function in the numpy.random module.
† Interval containing approximately 99.8 % of samples.
‡ Default parameters.

Table 4.2: The random number generators we use with the DataGenerator. Values are rounded to
two decimal places.

The DataPublisher class handles publishing new values to ROS. It polls the generate()
method of the DataGenerator every 0.1 seconds per default to retrieve a new value, utilising
a rospy.Rate object for rate limiting. Finally, it publishes the generated value to a unique
ROS topic subordinated to the namespace of its client.

1 <node name="gauss" pkg=" client "
2 type=" data_generator .py" args=" generate gaussian " />

Listing 4.2: A full node for a data generator.

2D simulator

The 2D simulator representing complex components is based on the ROS turtlesim [30]. We
reimplemented it in Python without a graphical user interface. We refer to its components
as Simulator, Frame and Unit (see Figure 4.8).

Figure 4.8: The basic implementation of the 2D simulator. The RandomMoveStrategy generates
random movement commands for the Unit, which publishes its current position and colour reading

to ROS. Arrows represent communication. Components are dashed.

33

4 Creating the testbed

The main class, Simulator, is started from the launch file. It initialises a Frame, which
represents the simulated environment (see Figure 4.4 on page 29). The Frame initialises a
Unit and spawns it in the environment.

A RandomMoveStrategy is launched from the launch file in the same group as the
Simulator. It publishes movement commands to ROS which are read by the Unit. That
moves according to the commands and publishes its position, speed and the current colour
reading (see Figure 4.9) to ROS every 16 milliseconds. The colour reading consists of an
RGB (red, green and blue) colour, with each value r, g, b ∈ [0, 255].

Figure 4.9: An exemplary colour reading by the unit. The label contains the message that the unit
sends at that location.

The colours represent the interpretation of certain positions by the unit moving around
in the environment. For simplicity, we have only defined four arbitrary colour options for
the simulator background (see Table 4.3).

Colour RGB
Purple 150, 140, 200
Yellow 170, 250, 140
Green 120, 180, 130
Blue 120, 180, 200

Table 4.3: The colour options for the simulator background.

Secondly, requests are also regularly sent based on the position of the unit. They are
inspired by the real-world use case of our industry partner and resemble some of the requests
that clients in their scenario make. There are three request types currently implemented
(see Table 4.4).

Request type Data sent
Country code (x, y) ∶ The current position of the unit
Point of interest (x, y, t) with t ∈ T ∶ T is the set of all point of interest types
Route (x, y,xt, yt) ∶ xt ≠ x∧ yt ≠ y ∶ (xt, yt) is the target position

Table 4.4: The positional requests sent from the 2D simulator.

34

4.4 Testbed implementation

A “Country code” request is a simple inquiry for the associated country code for the
current position. Similarly, a “Point of interest” (POI) request is an inquiry for a specific
POI type at the current position. Finally, the “Route” request is an inquiry for routing to
a specified target position (xt, yt).
Finally, the unit has basic movement intelligence. Certain zones can be marked as

“illegal” and the unit will try to avoid those.
To allow for reproducibility, the RandomMoveStrategy can be seeded, and its seed as

well as its movement intelligence are specified in the launch file (see Listing 4.3).

1 <group ns="sim">
2 <node name=" simulator " type="sim.py" pkg=" client "/>
3 <node name="mover" type=" random_mover .py"
4 args="--seed 210 --intelligence return " pkg=" client "/>
5 </group >

Listing 4.3: A full group for a 2D simulator.

Central communication unit

The central communication unit is responsible for collecting all data generated by a client
and sending requests to the server accordingly (see Figure 4.3 on page 28). In practice
that means subscribing to all topics of its client through ROS to ensure it receives the data
that the components send (see Figure 4.10).

Figure 4.10: The basic implementation of the communication unit. It subscribes to all topics of
its client and receives the corresponding messages from ROS. Those are then converted to requests

for the server. Arrows represent communication.

To ensure the unit knows about all components its client contains, the corresponding
ROS topics are passed as arguments (see Listing 4.4). Additionally, it receives the identifier
of its client (here “CLIENT1”).

1 <node name="com" type=" communication_unit .py" pkg=" client "
2 args=" CLIENT1 --topics generator_1 generator_2 " />

Listing 4.4: A full node for a communication unit. It receives the client identifier
(“CLIENT1”) as well as the ROS topics it subscribes to (e.g. “generator_1”) as arguments.

Labelling: Each communication unit is informed by the components of its client about
the nature of the data they send. That means it knows which requests are intruded and
the type of intrusion that applies to the data.
To enable sensible evaluation, the communication unit can add this information to the

requests it sends to the server, which in turn can then label the request data.

35

4 Creating the testbed

4.4.3 Intrusions

The reason why we simulate this environment is that we intend to evaluate a real-time
remote IDS. We try to model intrusions for this purpose.

Intrusions into components can have varying difficulty levels. The rationale for these is
that we aim for increasing the identifiability and with it the information entropy of the
generated data compared to the expected data for easier intrusion levels. With this, we
aim for adjusting the difficulty of detecting a compromised client. We describe this in more
detail in the following.

Data generators

We currently model two types of intrusions for data generators in our system. The first is
the off-value generation.
Given the distribution interval R ∶= [rmin, rmax] containing 99.8 % of samples of the

underlying distribution function (see Table 4.2 on page 33), the mean m of the distribution,
and its spans sleft ∶=m− rmin, sright ∶= rmax −m (see Figure 4.11). Further given a factor
f that we define (see Table 4.5).

sleft sright

Distribution interval R

M
ea
n
m

Figure 4.11: Explanation of the distribution interval R and the spans sleft and sright.

Instead of the normal value v ∈ R, a value vc is broadcast:

vc ∈ {m− sleft ⋅ f ,m+ sright ⋅ f}

Depending on the intrusion level, the factor f differs (see Table 4.5). The smaller
this factor, the higher the probability that the value could have been generated by the
distribution function.

Intrusion level Factor f
Easy 5
Medium 1.5
Hard 1.001

Table 4.5: Factor f per intrusion level.

The second intrusion type, the significant error generation, is based on a generated value
from the underlying number generator.

36

4.4 Testbed implementation

Given m, sleft, sright, v (see above) and a factor f (see Table 4.5), an erroneous value ve
is broadcast:

ve =
⎧⎪⎪⎨⎪⎪⎩

m+ sright ⋅ f + v2 v ≥m
m− (sleft ⋅ f + v2) otherwise

2D simulator

The simulator allows for multiple types of intrusions. Firstly, the environment background
has different colours. This can be changed to represent erroneous readings (see Figure 4.12).
In both situations the unit sends information about its position. Because the environment
is modified, the colour it reads differs, representing an intrusion.

Figure 4.12: A normal and a modified environment. The labels contain the message
corresponding to the colour that the unit sends at the location both labels point to.

Depending on the intrusion level, this area can be increased in size (see Table 4.6) and
its colour can be modified (see Table 4.7). For different intrusion levels, we aim for varying
the detectability of the erroneous colour compared to the legal colours. Hence, we need a
similarity measure to derive a similarity relationship between different colours.
We define our colours in code as RGB (red, green, blue) with r, g, b ∈ [0, 255]. The

background has four different legal colour options. We chose purple (150, 140, 200), yellow
(170, 250, 140), green (120, 180, 130) and blue (120, 180, 200). The reasoning for our
choices is following.
If we imagine the colours as points in a three-dimensional space, we can calculate the

distance between two points p and q using the Euclidean distance:

dEuclid(p, q) =
√

(pr − qr)2 + (pg − qg)2 + (pb − qb)2

For our following calculations, we scale the values of the colour dimensions down to
rs, gs, bs ∈ [0, 1]. With the distance formula, we can derive the minimum and maximum
distance of two points in our space: dEuclid ∈ [0,

√
3].

The goal when choosing our legal colours was to have moderately similar colours that can
still be differentiated from each other. We define that as having a distance of d ∈ [0.15, 0.5].

37

4 Creating the testbed

This holds true for our four legal colours. Their distances all lie between dmin ≈ 0.196 and
dmax ≈ 0.498. We also calculate their average distance and arrive at davg ≈ 0.256.

We aim for increasing the distance of the erroneous colour to all legal colours for easier
intrusion levels compared to the average distance davg. Simultaneously, it should never fall
below the maximum distance dmax to ensure that the values are anomalous. With this
requirement, we have defined a colour for each intrusion level (see Table 4.7).

Intrusion Area
level size
Easy 40 %
Medium 20 %
Hard 5 %

Table 4.6: Size of erroneous
area per level, relative to the total

environment size.

Intrusion Erroneous Average
level colour (RGB) distance
Easy 255, 0, 0 1.103
Medium 200, 50, 50 0.774
Hard 170, 80, 80 0.590

Table 4.7: Erroneous colour per level. The “average
distance” column lists the average Euclidean distance of

the colour to all legal colours (rounded).

Secondly, the unit employs basic movement intelligence. It reacts to its surroundings
and can alter its movement based on it. Certain zones can be marked as “illegal” and the
unit can react to reaching those. This reaction can be modified: Instead of trying to avoid
the illegal zone, the unit stays in it and continuously sends its colour (see also Figure 4.12
on page 37). The intrusion levels for the simulated environment apply here as well. The
erroneous colour marks the illegal zone, and, depending on the intrusion level, its colour is
closer or further from the legal colours.
Lastly, we have defined possible intrusions for each of the three types of requests that

are sent based on the position of the unit (see Table 4.8).

Request type Intrusion Request sent
Country code Wrong position Normal: x, y ∶ current position

Compromised: xc, yc ∶ nx,ny ≥ 10∧ xc =
x±nx ∧ yc = y ±ny

Point of interest Illegal type Normal: t ∈ T ∶ One of the legal
types in T

Compromised: tc ∉ T

Route Route to self Normal: xt, yt ∶ xt ≠ x ∧ yt ≠ y ∧
x, y ∶ current position

Compromised: xtc, ytc ∶ xtc = x∧ ytc = y

Table 4.8: Intrusions for positional requests.

These types of intrusions may be detectable with domain knowledge-based rules. Because
of their nature, we have implemented a different type of intrusion levels for these requests.
Depending on the level, a compromised unit sends one of these compromised requests with
varying probability (see Table 4.9), making such a unit easier or harder to detect.

38

4.4 Testbed implementation

Intrusion level Likelihood
Easy 40 %
Medium 20 %
Hard 5 %

Table 4.9: Intrusion likelihood per intrusion level.

Summary

We have discussed different intrusion types and how we try to represent them with the
components of the testbed. For each intrusion type, we have defined the intrusions and
described different intrusion levels.
Finally, Table 4.10 gives an overview over the components and the effects that the

intrusions defined before have.

Component Expected behaviour Intrusion effect
Data generator Generates values based on one Values deviate from distribution

of our distributions
2D simulator Reads the colour background Erroneous colour reading

Avoids illegal zone Stays in zone
Sends legal positional request Invalid or illegal request

Table 4.10: Overview of possible intrusions for each component.

4.4.4 Server

The testbed server is implemented in Bottle [41], a lightweight Python web framework. For
its networking component, we make use of the gevent [5] library.
The server can run in detection mode, feeding the IDS component incoming requests

directly, and, additionally or exclusively, in store mode, saving incoming requests to disk.

Architecture

The API endpoints are mapped to Python routines in the logging component. It transforms
the request data to a logging format (see Figure 4.6 on page 30) and, depending on the
selected server mode, stores the result utilising a data access object (DAO), or sends it to
the IDS component directly (see Figure 4.13).

Stored data

When in store mode, the server sends one log line for each incoming request to the
DAO to store. If the requests contain information about possible intrusions (see Central
communication unit on page 35), this data is used to label the stored log entry. The labels
can then be used for evaluation.

39

4 Creating the testbed

Figure 4.13: The testbed server. Incoming data is forwarded to routines in the logging component.
These in turn send the transformed log data to a DAO or to the IDS. Arrows represent

communication. Components are dashed.

Each request is stored by the DAO as one JSON string per line. The label is added after
the log line, separated by a comma (see Listing 4.5).

1 {" client_id ": " S953564 ", " microservice ": " GAUSSIAN_1 ",
2 "level ": "DEBUG", " data_received ": "3.1875026226" ,
3 " time_unix ": 1523043651 , " position ": "150 ,210" ,
4 " log_id ": "b7def0bd -a097 -4615 - a09e -73 bd894c751f " },
5 normal

Listing 4.5: An exemplary log line.

The Listing shows all log features that we discussed before (see Table 4.1 on page 24).
The identifier of the client (“client_id”), the microservice name (“microservice”), the
position of the client (“position”), the request time (“time_unix”) and the received data
(“data_received”). Additionally, the logging component adds a log level (“level”) and a
unique log identifier (“log_id”).

4.5 Assumptions

We base the concept and implementation of our testbed on three assumptions. Each of
those, when unfounded, may have an impact on the validity of our solution.

4.5.1 Assumption 1: Compromised clients can be identified from their
communication with the server

Our first assumption is most significant, as it is the prerequisite for our approach. We
assume that normal and compromised clients can be differentiated based on differences in
their communication with the server. If this does not hold true, remote intrusion detection
as we envision it would be impossible.

40

4.5 Assumptions

Before making this assumption, we considered existing research on cloud-based security
systems for vehicles. Zhang et al. [129] describe a cloud-based malware scanner that is
based on offloading malware detection to the security cloud when necessary [129, p. 17].
We also found research on remote anti-theft systems. Ramadan et al. [87] describe a
SMS-based anti-theft system that is based on interaction with the vehicle owner. When
their car is started, they are alerted and can activate a tracking service [87, p. 89]. Finally,
Eiza et al. [25] discuss multiple cloud-based security solutions, including the Ericsson
Connected Vehicle Cloud [26]. They find the biggest risk for these systems to be high cost
of connections and regions with missing connectivity [25, p. 5].

Accepting this premise as given, we find a second threat to our approach. If an intruder
knows or can suspect that the system they intrude into is being remotely protected, they
can try to prevent the communication of the system with the server completely, either
through the software or by physically blocking the signals sent. To prevent this, the system
itself could monitor its connection to the server and increase the protection level in case
that connection is lost.
Considering the existing research on cloud-based security systems for vehicles and the

mitigation for connection loss that we suggest, we argue that our assumption is suitable.

4.5.2 Assumption 2: Microservices in our use case do not alter data

We assume that the microservices in our use case do not alter the data they receive, for
example by condensing or extending it. We need to make this assumption for our system
design to cohere. This is hard to verify, as each microservice may be designed by a different
author. A software bug in a microservice or carelessness on the side of the developer can
be a risk for the detection of intrusions. Still, this is an issue for any IDS, independently of
which data it uses for detection.

4.5.3 Assumption 3: Unpredictable interoperation of components and
systems cannot be emulated with basic data generation

Our final assumption is that the unpredictability of the interoperation of components,
clients and a server cannot be adequately emulated with basic data generation. This
is the premise for our work on the testbed. Considering the large variety of existing
testbed approaches to intrusion detection evaluation [21, 73, 89, 100], we conclude that
this assumption is fair to make. Some effort has been made to alleviate the need for a
complex test environment by generating more realistic test data [36], but we consider this
an open problem.

41

5 Evaluation

Our evaluation comprises multiple steps. We intend to assess different aspects of our
implemented testbed to show that it fulfils its purpose, formulated as research questions
(RQ). First, we focus on basic performance metrics such as parallelisability and scalability
in Section 5.1. Then, we discuss the fitness for purpose of the testbed in Section 5.2.
Finally, Section 5.3 evaluates the quality of the data generated by the testbed.

5.1 Testbed performance

We want to evaluate how well the testbed runs when the number of components is scaled
up. This is aimed at assessing the suitability of the testbed for various scenarios.

5.1.1 Prerequisites

First, we introduce prerequisites for the following research questions.

Utilised machine

For our experiments, we used a machine with a 12-core 2.5 GHz QEMU [4] virtual CPU
and 32 GB of main memory. The operating system used was Ubuntu 16.04.4 LTS [12].
The machine was provided by the Leibniz Supercomputing Centre [63].

Metrics

In the following, we will use the mean squared error MSE and coefficient of determination
R2, two metrics often used to assess the quality of estimations. They are defined as follows.
Given a set of n values y = [y1, . . . , yn] with mean ȳ, and a set of estimations ŷ = [ŷ1, . . . , ŷn].
The MSE is defined as:

MSE = 1
n

n

∑
i=1

(yi − ŷi)2

For better estimations, the MSE tends towards 0, worse estimations increase it. R2 is
defined as:

R2 = 1− ∑i=1(yi − ŷi)
2

∑i=1(yi − ȳ)2

For better estimations, it tends towards 1, worse estimations lower it.

5.1.2 RQ 1: How fast can the testbed be started?

ROS is based on a peer-to-peer architecture. That means individual components only need
to register with the ROS master once, then they are directly linked with their respective
peers.

43

5 Evaluation

We can derive a basic performance metric for the testbed from that, namely the start-up
time based on the number of components. That refers to the time it takes the ROS master
to link up all the components in the testbed and start them.

Experimental set-up

This experiment was split up in cycles and rounds. Each cycle is identified by the number
of components that are started. Each round represents one measurement.

For each round, we started the server and let it initialise. Then we launched an adapted
ROS start-up script, which is configured to store the system time just before the ROS
launch command is triggered. On the server side, we adapted the log routine to stop the
server directly after the first request comes in. Just before that, the system time is stored
again. Both components run on the same machine, resulting in their time measurements
to be identical.

There is always a minimum of two components in our testbed, namely a data generating
component and a central communication unit that sends the generated data to the server
(see Figure 4.3 on page 28). Accordingly, we chose these two components as our baseline.
All experimental launch files contain one communication unit as well as various numbers
of data generators (see Listing 5.1).

1 <launch >
2 <group ns=" CLIENT1 ">
3 <node name=" gauss_1 " type=" data_generator .py" ... />
4 <node name="com" type=" communication_unit .py" ... />
5 </group >
6 </ launch >

Listing 5.1: The simplified ROS launch file for the cycle with two components (nodes).

For each cycle, we ran ten rounds of the same experiment. The results below are averages
from those rounds. The maximum standard deviation of all measurements in one cycle
was 0.26 seconds, or 1.3 %, for the cycle with 400 components, which took 20.4 seconds
total. On average, the standard deviation of measurements in all cycles was 0.07 seconds.
Hence, we consider the results sufficiently reproducible.

Results

Our results in Figure 5.1 are plotted in two dimensions. Denoted as ta is the absolute
start-up time in seconds. The relative start-up time per component is denoted as tr.

We can see two properties of the data in our plot. The absolute start-up time increases
linearly, as expected. Contrary to that, the relative start-up time per component shows
exponential decay, converging towards 50 milliseconds.
This effect is most likely related to the cold-start time of the system which seems to

be constant, independent of the number of components. Based on our results, we can
approximate it as less than 1.5 seconds.

44

5.1 Testbed performance

0 50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

Number of components

t r
in

m
ill

is
ec

on
ds

0

10

20

30

t a
in

se
co

nd
s

tr ta

Figure 5.1: The start-up time of the testbed relative to the number of components started. ta
denotes the absolute time in seconds. tr denotes the relative time per component in milliseconds.

5.1.3 RQ 2: How many components can be run in parallel?

An important quality of the testbed is its performance impact on the host machine. It
determines the necessary hardware and estimated cost of conducting scenarios that depend
on a large number of components running in parallel.

Experimental set-up

Evaluating the number of components running in parallel is delicate. The results highly
depend on various parameters that we can modify. To ensure that our experiments are
meaningful, we list these parameters first.
Based on our architecture, we have a minimum of two components in our testbed (see

also Listing 5.1 on page 44). For data generation, we used our simple data generator
components. They were configured with a publish rate of 2 Hz. This corresponds to
sending a new data point every 0.5 seconds.
To evaluate the performance impact of the testbed, we started profiling the system

60 seconds before launching the testbed. The start-up procedure (see Section 5.1.2) was
ignored. Following that, we continued profiling for an additional 60 seconds.

We collected five performance profiles for each cycle. The results below are averages from
these rounds. The maximum standard deviation of main memory usage measurements in
one cycle was 0.59 percentage points, or 1.58 %, for the cycle with 250 components, which
had a total usage of 37.6 %. For all cycles, the average standard deviation was 0.08 points.
For the CPU load, we calculated a maximum standard deviation of 0.18 points, or 1.2 %,
for the cycle with 500 components, which had a total load of 16.0 %. For all cycles, the
average standard deviation was 0.4 points.

Results

In Figure 5.2, we plot our results with the CPU usage denoted as cpu and the main memory
usage denoted as mem. The values are given in percent and were calculated by subtracting
the average idle load before starting the testbed from the average full load while it was
running.

45

5 Evaluation

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Number of components

U
sa

ge
in

%
mem cpu

Figure 5.2: The resource usage of the testbed relative to the number of components running. cpu
denotes the CPU usage. mem denotes the main memory usage.

On our system, the main memory is filled when running more than 650 components. As
we can see in our result, the CPU usage is moderate, even for 500 components, and would
allow for significantly more to be run.

Interestingly, the CPU usage rises rather sharply when increasing the number of compo-
nents from 2 to 50 and 100, but then shows only slight increase for higher values. This
behaviour was reproducible. We assume that there is an overhead connected to running
these components that stays constant for higher component counts. As expected, the
memory usage rises linearly.

5.1.4 RQ 3: How well does the testbed scale with additional
components?

We are interested in the scalability of our testbed. Ideally, it scales almost linearly, as this
allows arbitrarily increasing the number of components if necessary.
To evaluate this research question, we can make use of our existing evaluation results.

We regard the following metrics:

• Start-up time
• CPU load
• Main memory usage

We perform a regression analysis to approximate the time complexity based on our
measurements. For each analysis, we give the MSE and R2 to assess the quality of the
estimation compared to the measurements.
Because we could only measure reliably for component counts of up to 500, we do not

generalise further than for n→ 5000. For component counts larger than 5000, we would
need more measurements to be able to sufficiently predict the limiting behaviour.
For an elaboration on our measurement process and precision, consult the respective

research question (see Section 5.1.2 on page 43 and Section 5.1.3 on page 45).

46

5.1 Testbed performance

Start-up time

The start-up time grows linearly (see Figure 5.1 on page 45), so we estimate it with linear
regression. After multiple iterations with subsets of our measurements, we obtain: gs(n) ≈
0.0476n+ 1.141 with MSE < 0.143 and R2 > 0.998 for the complete set of measurements
(see Figure 5.3). We assume that the constant 1.141 represents the cold-start time.

0 100 200 300 400 500
0

10

20

30

Number of components

St
ar

t-
up

tim
e

in
se

co
nd

s

ts gs(n)

Figure 5.3: Measurements of the start-up time ts for different numbers of components and the
approximation gs(n). Each dot is the mean of our measurements for that cycle. The bars above

and below each dot indicate the maximum and minimum measurement, respectively.

From our approximation, we can derive the limiting behaviour:

fs(n) = O(0.0476n+ 1.141)
= O(n),n→ 5000

CPU load

If we only regard the CPU load for component counts of 100 or more, it grows linearly
(see Figure 5.2 on page 46). We estimate it utilising linear regression and obtain: gc(n) ≈
0.0127n+ 9.756 with MSE < 0.031 and R2 > 0.988 (see Figure 5.4).

100 150 200 250 300 350 400 450 500
10

12

14

16

18

Number of components

C
P

U
lo

ad
in

%

cpu gc(n)

Figure 5.4: Measurements of the CPU load for different numbers of components, denoted as cpu,
and the approximation gc(n). Each dot is the mean of our measurements for that cycle. The bars

above and below each dot indicate the maximum and minimum measurement, respectively.

47

5 Evaluation

With this approximation, we conclude:

fc(n) = O(0.0127n+ 9.756)
= O(n),n→ 5000

Main memory usage

The main memory usage grows linearly (see Figure 5.2 on page 46). Accordingly, we try to
estimate it utilising linear regression and obtain: gm(n) ≈ 0.1491n+ 0.447 with MSE < 1.262
and R2 > 0.997 (see Figure 5.5).

0 100 200 300 400 500
0

20

40

60

80

Number of components

M
em

or
y

us
ag

e
in

%

mem gm(n)

Figure 5.5: Measurements of the main memory usage for different numbers of components,
denoted as mem, and the approximation gm(n). Each dot is the mean of our measurements for
that cycle. The bars above and below each dot indicate the maximum and minimum measurement,

respectively.

We conclude:

fm(n) = O(0.1491n+ 0.447)
= O(n),n→ 5000

Conclusion

We can show for all our measures that a linear approximation can sufficiently explain our
measurements. We derive a limiting behaviour of O(n) for component counts of up to
5000, meaning our testbed scales linearly. For a valid estimation for higher n, we would
need additional measurements.

5.1.5 RQ 4: How many dataset lines can be generated in a certain time?

When generating test data, an important performance metric is the time it takes to generate
a new dataset. When parameters are changed, large quantities of data need to be quickly
generated, a process which may have to be repeated often.
Accordingly, we tuned our testbed with the available resources to optimise the data

generation speed.

48

5.2 Fitness for purpose

Experimental set-up

The web server was configured to count its internal list of log entries every thirty seconds.
From the number of newly added entries, it calculated a velocity of new entries per second.
This velocity was stored.

We aggregated the peak performance metrics over two hours to ensure meaningful results.

Results

With our measurements over two hours and a total of 1, 587, 607 entries generated, we
arrived at the data shown in Figure 5.6. The box plot shows the minimum, maximum and
average number of entries generated per second, as well as the 2nd and 98th percentile of
the collected data.

434 436.5 441 446.5 451

Figure 5.6: The average number of entries generated by the testbed per second under maximum
load in our set-up. The whiskers are set to the 2nd and the 98th percentile.

The speed of data generation was limited by the testbed server. This was expected,
as the other components can publish data independently, but the server needs to collect
all incoming data in one place. Hence, the data generation can be accelerated further by
improving the performance of the server.

5.2 Fitness for purpose

We created the testbed to serve the purpose of evaluating various IDS for the real-world use
case of our industry partner. We saw the need for this complex solution due to limitations
of existing options. In the following, we evaluate if our testbed succeeds in overcoming
these.

5.2.1 RQ 5: Do we solve the problems of existing datasets?

In our research of IDS (see Chapter 3), we identified three problems in the datasets used
for evaluation.

Too few entries: Many IDS techniques require a significant amount of data for sufficient
evaluation [11, 57]. Knorr et al. [57] used a dataset with only 855 entries. To obtain a
sensible amount of data, they artificially created data of similar distribution [57, p. 245].
Cannady [11] makes use of Artificial Neural Networks (ANN). They note that these require
large amounts of data that are difficult to obtain [11, p. 5].
Due to our testbed being able to arbitrarily generate new entries when needed, we

consider this problem solved.

49

5 Evaluation

Class imbalance: Training data showing class imbalance is an important problem if it
is used for machine learning systems, as it leads to worse classifier performance [16]. A
common scenario for IDS, especially those making use of anomaly-based detection, is to
have data that consists of mostly normal instances. Efforts are made to alleviate this issue,
for example by over-sampling the minority classes [15].

We can tune the testbed to generate balanced data, but we cannot precisely predict the
resulting class imbalance in the data, so we have to evaluate it in the following.

Redundancy: Data redundancy leads to a bias in machine-learning systems [67, 101].
This is a problem of the original KDD Cup 1999 dataset [53] identified by [67, 101, 105].
Mitigating this by deleting the redundant records leads to fewer entries in the dataset, an
issue in itself.
The redundancy in our generated data can also not be predicted for every scenario, so

we evaluate it in the following.

From these problems, we can derive quality metrics. As we consider the problem of
too few entries solved with the testbed, we evaluate the class imbalance and redundancy of
the generated data.

Measuring class imbalance

As a quality measure for the number of elements per class in a dataset we use the dispersion
index, defined as follows: Given the variance σ2 and the mean µ of the data, the dispersion
index is calculated as σ2

µ . Ideally, this measure is 0 for an exactly balanced dataset.

Measuring redundancy

We count the duplicates in our datasets as follows: Consider a log line li in line i of a log
file. We define this log line as a duplicate if the following holds: i > 1∧ ∃ li−1 where the
client_id, level, position, data_received and label in li and li−1 are identical, then li is a
duplicate.

Experimental set-up

We used an adapted launch file, tuned to generate balanced data. With it, we generated a
dataset containing 10 million data points. Then, we ran our analysis over the file.
The dataset contains data points for all 14 categories. Each data category has approx-

imately 715, 000 data points. Regarding the aspect of class imbalance, we consider two
classes, the normal and the intrusion class. For each data category, we calculate the relative
class imbalance. We consider relative deviations of less than 1 % (7, 150 data points) as
ideal, and of less than 5 % (35, 750 data points) as good. That corresponds to a dispersion
index of 18 or less for ideal, and of 450 or less for good results.
Regarding duplicates in the data, we consider 0 % to be ideal and anything less than

1 % to be good.

50

5.2 Fitness for purpose

Results

We split up the results based on the underlying component. All data generators behave
identically regarding intrusions, so their results are grouped as Generators. The same is
true for positional requests, grouped as Positional. The results for colour requests are
listed separately (see Table 5.1).

Measure Generators Positional Colour
Number of elements 7, 021, 192 2, 160, 908 817, 900
Class dispersion index 250.8 7.8 32.1
Duplicates 0 % 0.016 % 0.009 %

Table 5.1: The results for different categories of data, grouped. The complete dataset contains 10
million data points. Values are rounded.

All data categories succeed in meeting our strict duplicate targets. The class balance
is not perfect, but for colour requests we observe good and for positional requests ideal
results. The Generators show an acceptable dispersion index below our threshold of 450.

5.2.2 RQ 6: Can we reproduce data of similar distribution?

Data generated by a testbed is often not considered static but needs to be reproduced
multiple times. For comparable behaviour over multiple runs of the same set-up, it is
essential that the generated data is similarly distributed.

To derive sensible quality metrics, we consider synthetic over-sampling techniques. When
creating synthetic data, the objective often is to recreate data of similar distribution, for
example by regarding the distribution of attributes [57, p. 245]. Alternatively, SMOTE [15]
defines samples in a “feature space” [15, p. 328]. It uses neighbouring samples from the
minority class and creates synthetic samples that lie between them in this space [15, p. 328].

For our data generators, we consider this research question to be fulfilled. The underlying
number generators are based on the principle of generating data based on a statistical
distribution, resulting in equally distributed data over multiple runs. Exemplary, we show
this for our normal distribution-based generator.

The more interesting component is the 2D simulator. For each of the request types, we
want to assess if the distribution of their possible forms stays similar over multiple runs.

All components generating random data are seeded, so that multiple runs ideally result in
identical behaviour. Timing differences and other influences can still lead to discrepancies
in the results, so we calculate the actual divergence.
For evaluation, we generate three datasets. To avert sampling errors influencing the

result, each set is generated with 250, 000 data points. We consider the first set the baseline,
and the following sets are compared to it. We give the coefficient of determination R2

(see Section 5.1.1 on page 43) for both sets compared to the baseline. If the baseline
distribution is perfectly reproduced by the following set, this measure is 1. We use the R2

as it is commonly used to show how well data points correspond to a given baseline.

51

5 Evaluation

Data generators

First, we want to show the relative distribution of data generated by a normal distribution
generator, exemplary for our data generators. We generate three datasets with 250, 000
data points each, containing only data generated by that component. The intrusion level
is set to hard (see Section 4.4.3 on page 36). In accordance with our implementation of
intrusion levels, changing the level only scales the possible values with a constant. Hence,
it does not influence the reproducibility of the data. We select level hard because the
generated values are closer to zero and as such easier to visualise.

−4 −2 0 2 4
0

2

4

P
ro

ba
bi

lit
y

de
ns

ity

Baseline set Set 2 Set 3

Figure 5.7: Relative frequency of values of the normal class generated with normal distribution
data generator components. Each set contains approximately 178, 000 data points.

−20 −15 −10 −5 0 5 10 15 20
0

10

20

30

P
ro

ba
bi

lit
y

de
ns

ity

Baseline set Set 2 Set 3

Figure 5.8: Relative frequency of values of the intrusion class generated with normal distribution
data generator components. Each set contains approximately 71, 000 data points.

For visualisation, we split the generated data up in members of the normal and the
intrusion class. In Figure 5.7, the distribution of normal data points of all three sets is
compared. As expected, it follows a normal distribution. To arrive at this plot, we split
the data up in bins of size 0.1. Then, we calculated the relative frequency of data points in
each bin compared to the total number of data points generated. The R2 value of Set 2
compared to the baseline set is approximately 0.9995, for Set 3 it is approximately 0.9996.
In Figure 5.8, the distribution of data points of the intrusion class of all three sets is

compared. Following our definition, no values are generated within the distribution interval
[−3.09, 3.09] (see Table 4.2 on page 33). Again, we calculated the relative frequency of
data points in each bin of size 0.1 compared to the total number of data points generated.
The R2 value of Set 2 compared to the baseline set is approximately 0.9998, for Set 3 it is
approximately 0.9997.
As expected, this component generates sufficiently reproducible data.

52

5.2 Fitness for purpose

2D simulator requests

Next, we consider the requests made by the 2D simulator component, which consist of
categorical data. For each request type, we generate three datasets with 250, 000 data points
each, containing only those data points corresponding to the request that is investigated.

Colour values: We have defined four legal and one illegal colour option: purple, yellow,
green, blue and red (intrusion; see Section 4.4.3 on page 36). In Figure 5.9, the relative
frequency of each colour type is compared for the three sets. They may seem identical,
and they almost are, but there is a slight deviation in relative frequency between the sets.
The R2 value of Set 2 compared to the baseline set is approximately 0.9999, for Set 3 it is
approximately 0.9997.

Purple Yellow Green Blue Red
0

10

20

P
ro

ba
bi

lit
y

de
ns

ity

Baseline set Set 2 Set 3

Figure 5.9: Relative frequency of colour values generated with 2D simulator components. Each set
contains 250, 000 data points.

Country codes: We have defined five country codes that correspond to different areas
of the simulated environment, namely “AT”, “CH”, “DE”, “FR” and “IT”. In Figure 5.10,
their relative frequency in the three sets is compared. Again, we find an almost identical
distribution with only slight deviations in relative frequency. The R2 value of both Set 2
and Set 3 compared to the baseline set is approximately 0.9999.

AT CH DE FR IT
0

20

40

60

80

P
ro

ba
bi

lit
y

de
ns

ity

Baseline set Set 2 Set 3

Figure 5.10: Relative frequency of country codes generated based on 2D simulator request data.
Each set contains 250, 000 data points.

53

5 Evaluation

Routes: Route requests consist of two positions, the start and the target position, and
are accordingly not categorical. Instead, we consider the relative frequency of normal to
intruded requests based on our intrusion definition. Accordingly, we compare the relative
frequency of the two classes “normal” and “intruded” in Figure 5.11. As expected, the
distributions are almost identical. The R2 value of both Set 2 and Set 3 compared to the
baseline set is approximately 0.9999.

Normal Intruded
0

20

40

60

80

P
ro

ba
bi

lit
y

de
ns

ity

Baseline set Set 2 Set 3

Figure 5.11: Relative frequency of the classes of route requests generated based on 2D simulator
request data. Each set contains 250, 000 data points.

POI pairs: Point of interest (POI) pairs consist of a POI type and a POI result. Clients
request a POI of a specific type for their location. The server retrieves the POI result and
stores the requested type and the result as a log entry.

There are two legal POI types with three possible results each, and two illegal types that
both map to the same result, namely “Invalid”. Each allowed combination of a POI type
and result is one possible form of a POI request. In Figure 5.12 we compare the relative
frequency of possible forms of POI pairs in the three sets. This data category also shows
almost identical distributions for different sets. The R2 value of Set 2 compared to the
baseline set is approximately 0.9995, for Set 3 it is approximately 0.9998.

1-a 1-b 1-c 2-a 2-b 2-c i-1 i-2
0

10

20

P
ro

ba
bi

lit
y

de
ns

ity

Baseline set Set 2 Set 3

Figure 5.12: Relative frequency of POI pairs generated based on 2D simulator request data. Each
set contains 250, 000 data points.

54

5.2 Fitness for purpose

2D simulator positions

Finally, we evaluate the relative frequency of the simulated unit being located at various
positions of the simulation. This is trickier to visualise, as we have significantly more
points to compare. We approach this problem with heat maps. For easier visualisation, we
divide the coordinate space into bins of 20× 20 pixels in size. The relative frequency of
each bin is signified by the shade of the cell that represents it (see Figure 5.13). For higher
frequencies, the box shifts to a darker shade. The highest frequency is visualised in black.

Baseline set Set 2 Set 3

Figure 5.13: Relative frequency of a coordinate in the respective bin. The highest frequency is
denoted in black, lighter shades represent lower frequencies. Each set contains 250, 000 data points.

The heat maps all show a similar pattern. Most noticeable is the dark cell in the top left
corner. The simulated unit seems to disproportionally often remain in that area. Along
the edges and around the centre we see more areas of higher relative frequency, all of which
are mirrored in the other sets.
This intuition is confirmed when calculating the R2 value. For Set 2 compared to the

baseline set it is approximately 0.9965, for Set 3 it is 0.9962.

Conclusion

When generating data multiple times, the resulting distributions of values are ideally the
same or very similar. This objective is fulfilled for all testbed components, including the
more complex movement patterns of the 2D simulator.

5.2.3 RQ 7: Can we evaluate various types of IDS?

In our literature survey of existing approaches to IDS we found various, heterogeneous
systems. Existing evaluation options were often limited to specific types of systems. For
example, authors utilising anomaly-based detection can use general-purpose datasets such
as the Iris flower set [24] for evaluation. For signature-based systems, such datasets offer
no sensible evaluation option as they are missing intrusions that could be detected.
For this research question, we want to show that our testbed theoretically allows the

evaluation of various types of IDS.

55

5 Evaluation

Anomaly-based detection

IDS utilising anomaly-based detection require data with some form of anomalous behaviour
that they can detect. This use case is covered by our data generators (see Section 5.2.2 on
page 52). They are based on probability distributions, which allow us to define normal
behaviour as that which is most likely to happen based on the underlying distribution.
Accordingly, we introduced intrusions that aim at being discernible from normal data (see
Section 4.4.3 on page 36).

Signature-based detection

To evaluate signature-based detection systems, our data requires well-defined signatures
that can be coded into these systems. Our 2D simulator component aims at providing these.
The data it generates is used to create requests aimed at emulating domain knowledge-based
patterns. Similarly, we introduced intrusions that are based on breaking some defined rule.
Currently, they are built to also be detectable by anomaly-based systems.

Advanced detection systems

Advanced systems such as Artificial Neural Networks (ANN) or model-based reasoning
approaches are currently impossible to evaluate with our testbed. We have not defined
long-term behavioural patterns or specific user profiles that would allow for that. These
systems may best be evaluated with real-world data.

Conclusion

We consider the testbed to be sufficient for evaluating anomaly-based as well as signature-
based systems on a theoretical basis. Due to the automatic labelling of testbed data, the
detection accuracy can be measured effectively. For more advanced detection systems, our
testbed does not offer adequate options for evaluation.
In Section 5.3, we evaluate the effectiveness of our solution.

5.3 Quality of the generated data

We introduced features to the testbed aiming at certain effects. For example, the intrusion
levels are presumed to lead to differences in the detection accuracy of an IDS. Similarly,
using various types of components ideally leads to differences not just in the distribution
of their generated data, but also in the effectiveness of an IDS at detecting intrusions. The
following research questions intend to assess these effects.

5.3.1 Prerequisites

First, we introduce prerequisites for the following research questions.

56

5.3 Quality of the generated data

Handling heterogeneous data

As we have described in the previous chapter (see Table 4.1 on page 24), the data that
is produced by different routines in the logging component varies. Each of these routines
represents a microservice, and in our real-world use case these microservices require or
produce different data.
We regard each type of data produced by different log routines as separate datasets.

Table 5.2 lists the names we use for those datasets. We refer to these names in our
experiments. For a definition of the generated data, see Section 4.4 on page 31.

Name Type of data
GAUS Normal distribution
GUMB Gumbel distribution
LAPL Laplace distribution
LOGI Logistic distribution
PARE Beta Prime distribution
RAYL Rayleigh distribution
UNIF Uniform distribution

Name Type of data
VONM von Mises distribution
WALD Wald distribution
WEIB Weibull distribution
COLR Colour background
CCOD Country code request
POIR POI request
ROUT Routing request

Table 5.2: Names we use to refer to different categories of data.

We want to use the variability in the data generated by the testbed to show distinct
effects. Hence, we score systems individually for each type of data in our experiments. The
names used for the results match those of the respective dataset.

Libraries used

We make use of Python and machine learning, with our library of choice being scikit-
learn [83]. Apart from classification, we utilise included pre-processing and metrics modules.
From this library, we employ the OneClassSVM classifier, which is based on the libsvm [14]
library for computations.

Standardisation of numerical features

The machine learning estimators we use require standardised data, ideally with a mean of
zero [95]. Hence, we standardised numerical features as follows:

Unit position: The original position dimensions x, y ∈ [0, 499] are scaled down and
shifted to xs, ys ∈ [−1, 1].

Colour values: The colour reading is sent as the red, green and blue (RGB) components
of the colour, with the original values r, g, b ∈ [0, 255]. They are scaled down to rs, gs, bs ∈
[0, 1] to preserve the increase in colour intensity for higher values.

57

5 Evaluation

Encoding of categorical features

It is possible to encode categorical features as indices, mapping them to a list of n natural
numbers for n possible forms. This is not sensible for the scikit-learn estimators, as they
would interpret these values as being ordered [93]. Hence, we make use of the suggested
method of one-hot encoding [93]. A field with n possible forms is encoded in a vector of n
binary features. Each corresponds to one form of the field. All features are set to 0, with
only one set to 1 for the respective form. An exemplary one-hot encoding for a field level
with the possible forms “normal”, “debug” and “error” could be:

level e d n
normal ↦ 0 0 1
debug ↦ 0 1 0
error ↦ 1 0 0

In our tests, we identified another advantage of utilising one-hot encoding. We evaluated
the training time for a scikit-learn classifier trained with categorical data that was either
converted by mapping it or by utilising one-hot encoding. Our results (see Figure 5.14)
show that one-hot encoding leads to significantly faster training. For 350, 000 entries, it
finished five times faster than when using a simple mapping.

50 100 150 200 250 300 350
0

50

100

150

Number of training entries, in thousands

Tr
ai

ni
ng

tim
e

in
m

in
ut

es Mapping One-hot encoding

Figure 5.14: Training time for a scikit-learn classifier, using mapping or one-hot encoding.

Disregarded features

Fields that we know to be arbitrary, namely the log_id and the time_unix, are removed
from the data. As we have not implemented sensible client-specific intrusions, the client_id
is also left out. Finally, we already use the microservice field to differentiate between
different data categories. Hence, it is the same for the data points of each respective
classifier, which makes it obsolete.

Data generation

Our testbed allows multiple modes of operation (see Section 4.4.4 on page 39), the detection
mode, in which an IDS is fed a single request at a time, and the store mode, that collects

58

5.3 Quality of the generated data

the request data on disk. For data generation, we use the store mode. We prepare multiple
ROS launch files (see Section 4.4.1 on page 31) that are tuned to ensure that data for each
component and each class is generated.
All components generating random data are seeded, so that multiple runs of the same

launch file result in comparable behaviour and our experiments are reproducible.

Data selection process

Due to limitations in main memory and computation power, we cannot work with an
arbitrary number of data points at a time. For the machine learning algorithm we use, all
data points for training need to be processed at the same time. This means we have to
sample those datasets that exceed our maximum data point limit.
Loading such a dataset entirely is not always possible, as we just discussed. The same

problem applies to sampling. To still achieve a fair selection, we use an adapted Reservoir
sampling algorithm originally devised by Knuth [58].

Finally, the data is split up into separate training and scoring sets. The training set
contains only normal data points, with normal and intrusion data points being used for
scoring (see Figure 5.15).

Figure 5.15: The data selection process. The original set is sampled using Reservoir sampling,
then it is split into separate training and scoring sets. Data points in these sets can be members of

the normal class, denoted in white, or the intrusion class, denoted in black.

Assessment measures

To assess the results of classifications, we employ the commonly used metrics precision
and recall. Given the number of true positives tp, the number of false positives fp and the
number of false negatives fn, they are defined as:

Precision = tp

tp+ fp
Recall = tp

tp+ fn

59

5 Evaluation

Definition of positives

In intrusion detection, we can define either the normal class or the intrusion class as positive.
We regard those data points as positives that are intrusions, contrary to the scikit-learn
interpretation [94]. Accordingly, true positives are intrusions that were predicted as such.
This interpretation is common in intrusion detection research [112].

We consider two aspects as important in intrusion detection when assessing classifier
performance. The first aspect is how many intruded samples are correctly identified. This
does not change with our definition of positives. The second important aspect is the
percentage of correct predictions compared to all samples predicted as intrusions.
Consider an extreme example with a system classifying 90 % of instances correctly,

regardless of class, with 100 normal instances and 10 intrusions being analysed. 90 of 100
normal instances are classified as normal, and 9 of 10 intruded instances as intruded. With
the scikit-learn interpretation the IDS achieves a precision of 90

90+1 ≈ 98.90 %, with our
interpretation it is only 9

9+10 ≈ 47.37 %. The recall percentage in both scenarios is identical,
namely 90

90+10 = 9
9+1 = 90 %.

5.3.2 RQ 8: Are there significant differences in detection precision or
recall for data generator types?

We utilise different distributions for our data generators, aiming at modelling the varying
behaviour of different components. Ideally, this leads to differences in detection precision
or recall of a classifier.
Our threshold for this is 5 percentage points. If we find the difference between the

precision or recall of any two classifiers to be over 5 points, we assume the generated data
leads to significant differences in detection.

Experimental set-up

We generated 1 million data points in total and randomly sampled three sets of 100,000
data points each (see Table 5.3). Each set contained data points of all data generator types.
OneClassSVM classifiers with default parameters were trained for each data generator type
and sample. The data for each classifier was split up into separate training and scoring
sets (see Data selection process on page 59).

Measure Set 1 Set 2 Set 3
Number of elements 100, 000 100, 000 100, 000
Normal samples 71.41 % 71.41 % 71.48 %
Duplicates 0.55 % 0.52 % 0.50 %

Table 5.3: The three dataset samples and their quality measures. Percentages are rounded to two
decimal places.

In total, we trained and scored classifiers for 10 data categories and repeated this for
each dataset sample, resulting in 30 rounds.

60

5.3 Quality of the generated data

Results

After three iterations with three different datasets, we arrived at an average precision and
recall percentage of the classifiers for each data generator type (see Figure 5.16).

GA
US

GU
MB

LA
PL

LO
GI

PA
RE

RA
YL

UN
IF

VO
NM

WA
LD

W
EI
B

0

20

40

60

80

100

80
.8

1

80
.3

5 91
.9

8

89
.5

92
.2

4

87
.1

4 99
.8

6

86
.2

8

87
.9

3 10
0

10
0

10
0

10
0

10
0

40
.6

2

66
.2

2

39
.2

6

10
0

44
.6

9

26
.8

2

Precision (%) Recall (%)

Figure 5.16: Average precision and recall of a OneClassSVM classifier on three different datasets
of the respective data categories.

The difference between the lowest and highest precision is 19.65 points, for the recall it
is 73.18 points. For most data categories our requirement is sufficiently met. We conclude
that there are significant differences in detection precision and recall for different data
generator types.

5.3.3 RQ 9: Can we show the effect of varying intrusion levels?

We implemented intrusion levels aiming at subjecting IDS to different difficulty levels.
Data generated with intrusion level hard is supposed to lead to reduced detection accuracy
compared to level easy, as the intruded samples for level hard lie much closer to the normal
data.

Based on our current implementation, we do not expect the intrusion levels for categorical
data in form of the positional requests to lead to any differences. The intrusions levels for
these requests only influence the frequency of intrusion samples for each client. As our IDS
prototype does not consider client-specific profiles, it is not influenced by this difference.
Contrary to that, intrusion levels implemented for the data generators and colour values,
which focus more on anomaly-based detection, are expected to have an effect on the outlier
detection algorithm that we apply here.
Our threshold for this is again 5 percentage points. If we find the difference between

the precision or recall of any classifier between the intrusion levels to be over 5 points, we
assume changing the level leads to significant differences in detection accuracy.

61

5 Evaluation

Experimental set-up

We generated 1 million data points for intrusion levels easy and hard respectively, and
randomly sampled three sets of 100, 000 data points for both levels (see Table 5.4). Each
set contained data points of all data categories. OneClassSVM classifiers with default
parameters were trained for each level, data category and sample. The data for each
classifier was split up into separate training and scoring sets (see Data selection process on
page 59).

Measure Intrusion level easy Intrusion level hard
Set 1 Set 2 Set 3 Set 1 Set 2 Set 3

Number of elements 100, 000 100, 000 100, 000 100, 000 100, 000 100, 000
Normal samples 73.08 % 73.27 % 73.34 % 72.97 % 73.00 % 72.90 %
Duplicates 0.38 % 0.41 % 0.37 % 0.38 % 0.38 % 0.38 %

Table 5.4: The six dataset samples and their quality measures. Percentages are rounded to two
decimal places.

In total, we trained and scored classifiers for 14 data categories and both levels respectively,
and repeated this for each dataset sample, resulting in 84 rounds.

Results

After three iterations with three different datasets, we arrived at an average precision and
recall percentage of the classifiers for each data category and both intrusion levels (see
Figure 5.17 and Figure 5.18).

As expected, precision and recall do not change significantly for the positional requests
POIR and ROUT. We cannot explain the difference observed for CCOD data. For five
data generators, we successfully showed the effect of increasing the intrusion level. GAUS,
GUMB, LAPL, LOGI and VONM data do not show significant differences in precision and
recall between intrusion levels. Finally, COLR data shows a visible effect of increasing the
intrusion level.

In conclusion, additional and more specific experiments are necessary to judge the quality
of individual intrusion levels for different data categories. The currently implemented
broad intrusions seem to have different effects for different data categories, not showing
the intended effect for all types of requests.

5.3.4 RQ 10: What false positive rate can we observe for different data
categories?

We want to evaluate how precisely a classifier with no tuning and default parameters can
detect intrusions in data generated by the testbed. For evaluation, we use the false positive
rate FPR, defined as: FPR = number of false positives

total number of negative samples
A lower false positive rate means that our data is easy to predict, and less tuning is

required to achieve sensible results. The best FPR is 0. We consider an FPR of over 0.5 to

62

5.3 Quality of the generated data

CO
LR

CC
OD

GA
US

GU
MB

LA
PL

LO
GI

PA
RE

PO
IR

RA
YL

RO
UT

UN
IF

VO
NM

WA
LD

W
EI
B

0

20

40

60

80

100

45
.4 59

.2
579

.9
9

81
.0

5 92
.2

9

90
.0

4

96
.1

8

72
.8

90
.2

5

74
.4

2

99
.9

7

86
.9

7

95
.1 10
0

8.
26 14

.1
8

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

Precision (%) Recall (%)

Figure 5.17: Average precision and recall of a OneClassSVM classifier on three different datasets
of the respective data categories with intrusion level easy.

CO
LR

CC
OD

GA
US

GU
MB

LA
PL

LO
GI

PA
RE

PO
IR

RA
YL

RO
UT

UN
IF

VO
NM

WA
LD

W
EI
B

0

20

40

60

80

100

1.
99

73
.6

4

80
.8

1

80
.3

5 91
.9

8

89
.5

92
.2

4

74

87
.1

4

73
.6

6

99
.8

6

86
.2

8

87
.9

3 10
0

0.
19

30
.1

2

10
0

10
0

10
0

10
0

40
.6

2

10
0

66
.2

2

10
0

39
.2

6

10
0

44
.6

9

26
.8

2

Precision (%) Recall (%)

Figure 5.18: Average precision and recall of a OneClassSVM classifier on three different datasets
of the respective data categories with intrusion level hard.

63

5 Evaluation

be an indicator that the data is too hard to predict, as with two possible classes a classifier
could simply guess to achieve this FPR.

Based on experimental results by other authors [44, 101], we define an FPR of less than
0.05 to be achievable, one of less than 0.15 as normal. Accordingly, if we observe FPRs in
[0.15, 0.5] for our experiment, we consider it successful.

Experimental set-up

We generated 1 million data points for intrusion level hard, and randomly sampled three
sets of 100, 000 data points each (see Table 5.5). Each set contained data points of all data
categories. OneClassSVM classifiers with default parameters were trained for each data
category and sample. The data for each classifier was split up into separate training and
scoring sets (see Data selection process on page 59).

Measure Set 1 Set 2 Set 3
Number of elements 100, 000 100, 000 100, 000
Normal samples 73.12 % 73.07 % 73.10 %
Duplicates 0.40 % 0.36 % 0.39 %

Table 5.5: The three dataset samples and their quality measures. Percentages are rounded to two
decimal places.

In total, we trained and scored classifiers for 14 data categories and repeated this for
each dataset sample, resulting in 42 rounds.

Results

We calculated the average FPR for each data category over three rounds (see Figure 5.19).
The classifiers for all data categories show a higher FPR than our threshold of 0.15. It is
important to stress that the classifiers have not been tuned to improve their performance.
For COLR, CCOD, POIR and ROUT data, we observe FPRs of approximately 0.5,
indicating that these data categories are hard to predict and might require fine tuning.
Still, our target condition is fulfilled so we consider the results a positive indicator for the
difficulty level of detecting intrusions in our testbed.

CO
LR

CC
OD

GA
US

GU
MB

LA
PL

LO
GI

PA
RE

PO
IR

RA
YL

RO
UT

UN
IF

VO
NM

WA
LD

W
EI
B

0.1
0.3
0.5

0.
51

0.
49

0.
42 0.
46

0.
43

0.
43

0.
38 0.

48

0.
36 0.

47

0.
3 0.

41

0.
37

0.
3

FP
R

Figure 5.19: Average false positive rate of a OneClassSVM classifier on three different datasets of
the respective data categories.

64

6 Limitations

In the following, we want to discuss those extensions of our testbed approach and evaluation
which were not carried out as they were beyond the scope of our work.

6.1 Testbed

Our testbed concept and implementation were created from the ground up. Accordingly,
they were limited in scope. That is most evident in the small number of components
and variation of those. Additionally, each part of the testbed had to be narrowed down,
discussed in the following.

6.1.1 Data generators

The data generated by the data generator components is restricted and lacks strong
differentiation. Their distribution intervals can be enhanced with component-specific
profiles to increase the challenge in learning their behaviour.

6.1.2 2D simulator

With the 2D simulator component, we try to emulate complex components in a client. As
such, it sends requests mirroring domain knowledge-based patterns. Still, we only modelled
this type of data with basic domain knowledge, omitting more intricate requests.

Simulated environment

Due to computational limits, the simulated environment is small, measuring only 500× 500
pixels. This could and should be increased, given the appropriate computing power.

Equally, the simulated background colours are limited to seven discrete options. A more
advanced scenario with continuous colour values was left out, which could potentially
increase the difficulty level.
The simulated environment also lacks obstacles, routes, and other environment factors

influencing the simulated units, which could more realistically depict the scenarios that we
model.

Finally, there is currently only one unit being simulated in one separate environment for
each client. A more realistic scenario would be to simulate all units in the same environment
and let them interact with each other. This significantly more complex simulation was
beyond the scope of our work.

Simulated unit

The simulated unit is, in its current form, rather simple. It can move according to a vector
v⃗ = (vx, vy), which defines a velocity for the x and y direction, respectively. We did not
implement functionality allowing acceleration, deacceleration, and steering patterns to be

65

6 Limitations

sent. Additionally, the movement generator is currently limited to one default behaviour
profile. A possible extension to this would be individual “user profiles”.
The unit intelligence is also simple, lacking more sophisticated logic like path finding,

lane keeping, or collision avoidance algorithms.
Finally, the data sent from the unit is currently restricted to its position and the colour

it sees, to enable basic use cases. This data can be expanded to include the speed of the
unit, its acceleration, distance covered since the last request, highest speed achieved, and
many more. All these simply need to be calculated and sent.

6.1.3 Intrusions

Clearly, the number of intrusions we have modelled is limited and could be increased.
More interesting is the prospect of introducing advanced intrusion types. We discuss some
possibilities for expanding on the intrusions in Chapter 7.

6.1.4 Server

The testbed server aims for high performance and lightweight processing of incoming
requests by various components. We tried to ensure a high throughput and to mitigate
performance bottlenecks.

The current implementation is limited by storing all log data in the external memory. We
did not make use of a high-performance database for storage that can increase throughput
and durability, such as redis [91].

Additionally, the server is implemented in Python, utilising the gevent [5] library to sup-
port some form of multitasking with coroutines. This does improve performance compared
to a single-threaded implementation. Still, a real parallel or distributed implementation
would allow for performance gains.

Finally, the server functionality is currently restricted to storing or forwarding incoming
requests. More complex interaction with clients including actual responses is missing.

6.2 Evaluation

We built the testbed to allow for the comparison of various IDS. To show its applicability in
this scenario, we devised and evaluated multiple research questions. Still, our limited scope
only allowed us to assess basic aspects. More complex and advanced IDS may perform
differently and show unintended side effects or weaknesses of the testbed that we did not
find with our simple tests.
Finally, we could not evaluate the data generated by the testbed with more advanced

techniques for assessing the quality of test data. One example for such an assessment is
“fuzzy qualitative modelling” proposed by Haider et al. [36]. They include multiple data
points such as the “maximum number of possible attacks” and if “ground truth information
[is] included to assist [the] labelling process” [36, p. 186] in their input to derive a quality
measure. Without such validation, we cannot make an informed judgement about the
quality and efficacy of the generated data.

66

7 Future work

This chapter is aimed at presenting areas of interest for future work that we have created
with our thesis. Based on those, we discuss scenarios that we deem interesting to pursue.

7.1 Expanding the testbed

In its current form, our testbed is a first step towards a comprehensive solution for comparing
IDS. The data generator components and 2D simulator can be expanded on, especially
by implementing more advanced behaviour patterns. Additionally, the performance of all
parts, including the server, could be increased.
For the 2D simulator component, having multiple units interact in a single, shared

environment would allow for a multitude of new possibilities for intrusions, expected
behaviours, and detection algorithms. One example is a peer group analysis algorithm that
could try to match different units’ behaviour and check for deviations, as shown by Bolton
et al. [6].
Finally, the currently defined and implemented intrusions can be extended. Based on

domain knowledge, more fine-grained intrusions may be implemented. Known attack
patterns can be encoded in the testbed definition or be diversified to develop robust metrics
for the evaluation of IDS. A complex but compelling idea is to model advanced persistent
threats [104]. In short, these attacks aim not for fast and blunt access to a system, but
for “long-term control and data collection” [104, p. 16]. That leads to the behaviour
of the compromised system to be almost indistinguishable from a normal system. The
implementation of these types of intrusions would allow the evaluation of more advanced
detection systems, such as Artificial Neural Networks (ANN) [20] or model-based reasoning
approaches [33].

7.2 Evaluating IDS with the testbed

Our testbed is a complex suite of tools and components, each well-defined and controllable.
It allows for modelling custom scenarios for the evaluation of IDS, which may otherwise
not be easy to create. We want to show the range of options that our testbed opens for
evaluating various IDS.

Comparing different types of IDS

An essential feature of our testbed is that it allows for the comparison of different types
of IDS. Many researchers choose the KDD Cup 1999 dataset [53] because it is widely
used and as such allows for comparing their solution to others. As we have discussed (see
Section 4.2.1 on page 25), this dataset is unfit for evaluating state-of-the-art IDS.

With the help of our testbed, a more up-to-date and flexible evaluation of IDS is possible.
Hence, it allows for comparing the various systems that we have found in our literature

67

7 Future work

survey. Such a comparison could offer interesting insights as to which system fares best
under different conditions.
Additionally, the modular nature of the testbed server allows for quickly adding or

swapping different IDS modules. This may be used for a more direct comparison of the
performance of different IDS, especially facilitating the evaluation of real-time systems.

Varying intrusion scenarios

Once set up, the testbed can be configured for multiple intrusion scenarios that can be
activated at will. Many more complex scenarios would be interesting to evaluate with
advanced IDS.

An exemplary scenario is to introduce new intrusion patterns and evaluate how quickly
different systems can adapt to those. Additionally, it would be interesting to develop
edge cases for evaluation. For example, we envision implementing slightly anomalous, but
legitimate behaviour patterns or, contrary to that, intrusions that are hard to differentiate
from normal behaviour. With these scenarios, one can vary the parameters for different
IDS and develop sensible thresholds to optimise the number of false positives and false
negatives, depending on their requirements and the available resources.

Correlating intrusion traces in the training data to the false positive rate

A relevant topic of research for anomaly-based detection systems is the detection over noisy
training data. Eskin [27] describes an advanced algorithm that can handle noisy training
data when trying to detect anomalies. Naïve algorithms are shown to perform worse when
intrusion traces are present in the training data [27, p. 6].
With our testbed, this research can be expanded on. A compelling experiment would

be to correlate the number, type, or level of intrusions in the training data to the false
positive rate of the system when used for detecting intrusions.

Generating data to evaluate specific use cases

When implementing the testbed, we modelled the automotive real-world scenario of our
industry partner. With its current structure, the testbed can be adapted to various use
cases that only loosely resemble the current configuration.
This adaptability enables generating data for several scenarios, which allows for faster

and easier evaluation of various aspects. For example, we have shown that one-hot encoding
can have significant performance benefits compared to a simple mapping of categorical data
to integer labels. With the testbed, we were able to set up this experiment quickly and
scale it arbitrarily, thereby allowing us to show the improved performance more reliably.
This quality can be used for many other scenarios we would have liked to evaluate. One
example would be to vary the distribution of different data categories in the test set and
possibly reveal weaknesses in common practices of implementing IDS. Another interesting
experiment would be to correlate the number of entries used for training to the detection
accuracy of the trained classifier. Using less data for training can significantly shorten the
training time, but arguably at the risk of worse classifier performance.

68

8 Conclusion

This thesis contributes two main aspects to the field of IDS: First, our extensive literature
survey and comprehensive taxonomy of existing approaches to IDS gives an overview over
the large variety of possible implementations. The results of our survey and the taxonomy
are suitable as a basis for targeted discussion and research of IDS and improve on previous
overviews. As we focussed on approaches that have been shown to work in practice, our
work can be used as a starting point for the implementation of IDS in different scenarios.

Second, the testbed that we conceptualised and implemented enables the comparison
of various IDS in a real-world scenario. It is adapted to our automotive use case but
can be adjusted to numerous other scenarios with only minor edits. Its architecture and
modularity allow for various configurations and seamless addition of new components.
In the evaluation, we find that the testbed fulfils its objectives. Its performance is

consistent and with additional components the testbed scales linearly. This allows for
complex simulations to be carried out. To assess the fitness for purpose of the testbed,
we evaluate multiple quality metrics derived from our literature survey. We find that
limitations of existing datasets used in research are solved by our implementation. When
generating data repeatedly, the testbed exhibits high performance and reliable behaviour.
This allows the reproduction of equally distributed data, which is beneficial for repeated
evaluation and cross-validation. Additionally, we find that the testbed can be used to
evaluate the various types of IDS we have identified in our survey. To conclude our
evaluation, we assess the quality of the data generated by the testbed. Most of the data
categories of the testbed fulfil our expectation of being of varying detection difficulty. The
intrusion levels we have introduced lead to measurable differences in detection accuracy,
allowing for varied evaluation of IDS. Lastly, we find that a naïve detection algorithm
exhibits high false positive rates for all types of data generated. We argue that this confirms
the challenge of detecting intrusions in the data generated by our testbed.
There are some limitations to our solution. This mainly regards our assumption that

compromised clients can be identified based on their communication with a remote server.
We consider this assumption fair, as existing vehicle defence systems have been proposed
based on remote detection.
In conclusion, our testbed allows the flexible and reliable evaluation of IDS of various

types and in multiple scenarios. Common problems of existing evaluation approaches are
solved, which allows a more up-to-date and effective comparison of different IDS. Because
of the reproducibility of the generated data, the same system can be tested multiple times
to rule out possible side effects. Additionally, the generation of arbitrary amounts of new
test data allows for effective cross-validation. Finally, other researchers can create custom
evaluation scenarios with the testbed, without having to rely on outdated or fixed datasets.
The source code of our testbed is available for inspection, modification and use (see

Appendix A). We hope that this work will advance the research of IDS.

69

List of Figures
3.1 A taxonomy of intrusion detection systems, taken from [62, p. 34]. 7
3.2 A taxonomy of intrusion detection systems, taken from [68, p. 21]. 7
3.3 Our taxonomy of intrusion detection systems. 8

4.1 Our use case: The clients a, b and c communicate with the server and its
microservices. Those in turn log the requests in a logging component. . . . 23

4.2 The testbed concept: The simulated clients a, b and c communicate with a
server stub that only consists of a simulated logging component. Denoted
in grey is the potential for adding an IDS. 27

4.3 The basic architecture of each client. Multiple simple and complex com-
ponents are combined and send data to one central communication unit.
That in turn sends request to the server. 28

4.4 A 2D simulator component. The movement generator sends random move-
ment commands to the simulated environment and its contained simulated
unit. The simulation sends feedback to both the generator and the commu-
nication unit. 29

4.5 A compromised client. The communication of the compromised component
differs from normal components. 30

4.6 An exemplary conversion of a client request to a stored log entry by the
simulated logging component. 30

4.7 The basic implementation of a data generator. The DataGenerator generates
values when prompted by the DataPublisher. 32

4.8 The basic implementation of the 2D simulator. The RandomMoveStrategy
generates random movement commands for the Unit, which publishes its
current position and colour reading to ROS. 33

4.9 An exemplary colour reading by the simulated unit. 34
4.10 The basic implementation of the communication unit. It subscribes to all

topics of its client and receives the corresponding messages from ROS. Those
are then converted to requests for the server. 35

4.11 Explanation of the distribution interval R and the spans sleft and sright. . 36
4.12 A normal and a modified environment. 37
4.13 The testbed server. Incoming data is forwarded to routines in the logging

component. These in turn send the transformed log data to a DAO or to
the IDS. 40

5.1 The start-up time of the testbed relative to the number of components started. 45
5.2 The resource usage of the testbed relative to the number of components

running. 46
5.3 Measurements of the start-up time for different numbers of components and

the approximation. 47

71

5.4 Measurements of the CPU load for different numbers of components and
the approximation. 47

5.5 Measurements of the main memory usage for different numbers of compo-
nents and the approximation. 48

5.6 The average number of entries generated by the testbed per second under
maximum load in our set-up. 49

5.7 Relative frequency of values of the normal class generated with normal
distribution data generator components. 52

5.8 Relative frequency of values of the intrusion class generated with normal
distribution data generator components. 52

5.9 Relative frequency of colour values generated with 2D simulator components. 53
5.10 Relative frequency of country codes generated based on 2D simulator request

data. 53
5.11 Relative frequency of the classes of route requests generated based on 2D

simulator request data. 54
5.12 Relative frequency of POI pairs generated based on 2D simulator request

data. 54
5.13 Relative frequency of a coordinate in the respective bin. The highest

frequency is denoted in black, lighter shades represent lower frequencies. . 55
5.14 Training time for a scikit-learn classifier, using mapping or one-hot encoding. 58
5.15 The data selection process. The original set is sampled using Reservoir

sampling, then it is split into separate training and scoring sets. 59
5.16 Average precision and recall of a OneClassSVM classifier on three different

datasets of the respective data categories. 61
5.17 Average precision and recall of a OneClassSVM classifier on three different

datasets of the respective data categories with intrusion level easy. 63
5.18 Average precision and recall of a OneClassSVM classifier on three different

datasets of the respective data categories with intrusion level hard. 63
5.19 Average false positive rate of a OneClassSVM classifier on three different

datasets of the respective data categories. 64

List of Listings
4.1 An exemplary ROS launch file. 31
4.2 A full node for a data generator. 33
4.3 A full group for a 2D simulator. 35
4.4 A full node for a communication unit. It receives the client identifier

(“CLIENT1”) as well as the ROS topics it subscribes to (e.g. “generator_1”)
as arguments. 35

4.5 An exemplary log line. 40

5.1 The simplified ROS launch file for the cycle with two components (nodes). 44

72

List of Tables
3.1 An overview of intrusion detection systems with corresponding examples. . 9

4.1 Log features similar to our industry partner’s implementation. 24
4.2 The random number generators we use with the DataGenerator. 33
4.3 The colour options for the simulator background. 34
4.4 The positional requests sent from the 2D simulator. 34
4.5 Factor f per intrusion level. 36
4.6 Size of erroneous area per level, relative to the total environment size. . . . 38
4.7 Erroneous colour per level. 38
4.8 Intrusions for positional requests. 38
4.9 Intrusion likelihood per intrusion level. 39
4.10 Overview of possible intrusions for each component. 39

5.1 The results for different categories of data, grouped. The complete dataset
contains 10 million data points. 51

5.2 Names we use to refer to different categories of data. 57
5.3 The three dataset samples and their quality measures. 60
5.4 The six dataset samples and their quality measures. 62
5.5 The three dataset samples and their quality measures. 64

A.1 The aliases used in this thesis and the respective class, module or program. 85
A.2 The programs and tools we have developed for this thesis. 87

73

Bibliography

[1] Agnar Aamodt and Enric Plaza. “Case-based reasoning: Foundational issues, method-
ological variations, and system approaches”. In: AI Communications 7.1 (1994),
pp. 39–59.

[2] Accenture. “Share of new cars sold that are connected to the internet worldwide from
2015 to 2025”. In: Connected vehicle – Succeeding with a disruptive technology. 2015,
p. 3. url: https://www.accenture.com/_acnmedia/Accenture/Conversion-
Assets / DotCom / Documents / Global / PDF / Dualpub _ 21 / Accenture - digital -
Connected-Vehicle.pdf (visited on 2018-04-24).

[3] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy. Tech. rep.
Chalmers University of Technology, 2000.

[4] Fabrice Bellard. QEMU processor emulator. url: https://www.qemu.org/ (visited
on 2018-04-27).

[5] Denis Bilenko. gevent. url: http://www.gevent.org/ (visited on 2018-04-07).
[6] Richard J Bolton, David J Hand, et al. “Unsupervised profiling methods for fraud

detection”. In: Proceedings of Credit Scoring and Credit Control VII. 2001, pp. 5–7.
[7] Tim Bray. “The JavaScript object notation (JSON) data interchange format”. In:

8259 (2017). url: http://www.rfc-editor.org/rfc/rfc8259.txt (visited on
2018-04-21).

[8] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible Markup Language (XML). Tech. rep. World Wide Web Consor-
tium, 1997.

[9] Richard R Brooks, Sam Sander, Juan Deng, and Joachim Taiber. “Automobile
security concerns”. In: IEEE Vehicular Technology Magazine 4.2 (2009), pp. 52–64.

[10] Andrew Butterfield, Gerard E Ngondi, and Anne Kerr. A Dictionary of Computer
Science. Oxford University Press, 2016.

[11] James Cannady. “Artificial neural networks for misuse detection”. In: Proceedings
of the 21st National Information Systems Security Conference. NIST. 1998, pp. 443–
456.

[12] Canonical. Ubuntu 16.04.4 LTS release notes. url: https://wiki.ubuntu.com/
XenialXerus/ReleaseNotes (visited on 2018-04-27).

[13] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A
survey”. In: ACM Computing Surveys 41.3 (2009), pp. 1–58.

[14] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector
machines”. In: ACM Transactions on Intelligent Systems and Technology 2.3 (2011).

[15] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and William P Kegelmeyer.
“SMOTE: Synthetic minority over-sampling technique”. In: Journal of Artificial
Intelligence Research 16 (2002), pp. 321–357.

75

https://www.accenture.com/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_21/Accenture-digital-Connected-Vehicle.pdf
https://www.accenture.com/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_21/Accenture-digital-Connected-Vehicle.pdf
https://www.accenture.com/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_21/Accenture-digital-Connected-Vehicle.pdf
https://www.qemu.org/
http://www.gevent.org/
http://www.rfc-editor.org/rfc/rfc8259.txt
https://wiki.ubuntu.com/XenialXerus/ReleaseNotes
https://wiki.ubuntu.com/XenialXerus/ReleaseNotes

BIBLIOGRAPHY

[16] Nitesh V Chawla, Nathalie Japkowicz, and Aleksander Kotcz. “Special issue on
learning from imbalanced data sets”. In: ACM SIGKDD Explorations Newsletter
6.1 (2004), pp. 1–6.

[17] Stephen Checkoway et al. “Comprehensive experimental analyses of automotive
attack surfaces”. In: Proceedings of the 20th USENIX Conference on Security.
USENIX. San Francisco, CA, 2011.

[18] Yuk Y Chung and Noorhaniza Wahid. “A hybrid network intrusion detection system
using simplified swarm optimization (SSO)”. In: Applied Soft Computing 12.9 (2012),
pp. 3014–3022.

[19] Dipankar Dasgupta. “Advances in artificial immune systems”. In: IEEE Computa-
tional Intelligence Magazine 1.4 (2006), pp. 40–43.

[20] Hervé Debar, Monique Becker, and Didier Siboni. “A neural network component for
an intrusion detection system”. In: Proceedings of the 1992 IEEE Computer Society
Symposium on Research in Security and Privacy. IEEE. 1992, pp. 240–250.

[21] Hervé Debar and Marc Dacier. An experimentation workbench for intrusion detection
systems. Research Report. IBM Research Division, Zurich Research Laboratory,
1998.

[22] Hervé Debar, Marc Dacier, and Andreas Wespi. “A revised taxonomy for intrusion-
detection systems”. In: Annals of Telecommunications 55.7 (2000), pp. 361–378.

[23] John E Dickerson and Julie A Dickerson. “Fuzzy network profiling for intrusion de-
tection”. In: Proceedings of the 19th International Conference of the North American
Fuzzy Information Processing Society. IEEE. 2000, pp. 301–306.

[24] Richard O Duda and Peter E Hart. Pattern Classification and Scene Analysis. Vol. 1.
Wiley, 1973.

[25] Mahmoud H Eiza and Qiang Ni. “Driving with sharks: Rethinking connected vehicles
with vehicle cybersecurity”. In: IEEE Vehicular Technology Magazine 12.2 (2017),
pp. 45–51.

[26] Ericsson. Connected vehicle cloud: Under the hood. 2015. url: https://archive.
ericsson.net/service/internet/picov/get?DocNo=28701-FGD101192 (visited
on 2018-05-09).

[27] Eleazar Eskin. “Anomaly detection over noisy data using learned probability distri-
butions”. In: Proceedings of the 17th International Conference on Machine Learning.
Morgan Kaufmann Publishers, 2000, pp. 255–262.

[28] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo. “A
geometric framework for unsupervised anomaly detection: Detecting intrusions in
unlabeled data”. In: Applications of Data Mining in Computer Security. Springer
US, 2002, pp. 77–101.

76

https://archive.ericsson.net/service/internet/picov/get?DocNo=28701-FGD101192
https://archive.ericsson.net/service/internet/picov/get?DocNo=28701-FGD101192

BIBLIOGRAPHY

[29] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. “A density-
based algorithm for discovering clusters in large spatial databases with noise”. In:
Proceedings of the 2nd International Conference on Knowledge Discovery and Data
Mining. Vol. 96. 34. ACM. 1996, pp. 226–231.

[30] Josh Faust. ROS turtlesim. url: http://wiki.ros.org/turtlesim (visited on
2018-04-03).

[31] Stephanie Forrest, Steven A Hofmeyr, Anil Somayaji, and Thomas A Longstaff. “A
sense of self for Unix processes”. In: Proceedings of the 1996 IEEE Symposium on
Security and Privacy. IEEE. 1996, pp. 120–128.

[32] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. “Anomaly-based network intrusion detection: Techniques, systems and
challenges”. In: Computers & Security 28.1 (2009), pp. 18–28.

[33] Thomas D Garvey and Teresa F Lunt. “Model-based intrusion detection”. In:
Proceedings of the 14th National Computer Security Conference. Vol. 17. NIST.
1991.

[34] Jonatan Gomez and Dipankar Dasgupta. “Evolving fuzzy classifiers for intrusion
detection”. In: Proceedings of the 2002 IEEE Workshop on Information Assurance.
Vol. 6. 3. IEEE. 2002, pp. 321–323.

[35] Frank E Grubbs. “Procedures for detecting outlying observations in samples”. In:
Technometrics 11.1 (1969), pp. 1–21.

[36] Waqas Haider, Jiankun Hu, Jill Slay, Benjamin P Turnbull, and Yi Xie. “Generating
realistic intrusion detection system dataset based on fuzzy qualitative modeling”.
In: Journal of Network and Computer Applications 87 (2017), pp. 185–192.

[37] Xiaoshu Hang and Honghua Dai. “Applying both positive and negative selection to
supervised learning for anomaly detection”. In: Proceedings of the 7th Conference
on Genetic and Evolutionary Computation. ACM. 2005, pp. 345–352.

[38] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Supervised learning”.
In: The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2009. Chap. 2, pp. 9 sq.

[39] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Unsupervised learning”.
In: The Elements of Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2009. Chap. 14, pp. 485 sq.

[40] Marti A Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf.
“Support vector machines”. In: IEEE Intelligent Systems and their Applications
13.4 (1998), pp. 18–28.

[41] Marcel Hellkamp. Bottle. url: http://bottlepy.org/ (visited on 2018-04-07).
[42] Paul Helman and Gunar Liepins. “Statistical foundations of audit trail analysis for

the detection of computer misuse”. In: IEEE Transactions on Software Engineering
19.9 (1993), pp. 886–901.

77

http://wiki.ros.org/turtlesim
http://bottlepy.org/

BIBLIOGRAPHY

[43] Victoria Hodge and Jim Austin. “A survey of outlier detection methodologies”. In:
Artificial Intelligence Review 22.2 (2004), pp. 85–126.

[44] Shi-Jinn Horng et al. “A novel intrusion detection system based on hierarchical
clustering and support vector machines”. In: Expert Systems with Applications 38.1
(2011), pp. 306–313.

[45] IHS. Average age of light vehicles in the U.S. from 2003 to 2016 (in years). Statista.
2016. url: https://www.statista.com/statistics/261881/average-age-of-
light-vehicles-in-the-united-states/ (visited on 2018-04-24).

[46] Koral Ilgun, Richard A Kemmerer, and Phillip A Porras. “State transition analysis:
A rule-based intrusion detection approach”. In: IEEE Transactions on Software
Engineering 21.3 (1995), pp. 181–199.

[47] Kurt Jensen. “Coloured Petri nets”. In: Petri nets: Central models and their proper-
ties. Springer Berlin Heidelberg, 1987, pp. 248–299.

[48] Mon-Fong Jiang, Shian-Shyong Tseng, and Chih-Ming Su. “Two-phase clustering
process for outliers detection”. In: Pattern Recognition Letters 22.6 (2001), pp. 691–
700.

[49] Mon-Fong Jiang, Ching-Hung Wang, and Shian-Shyong Tseng. “Developing a sugar-
cane breeding assistant system by a hybrid adaptive learning technique”. In: Proceed-
ings of the 1996 IEEE International Conference on Systems, Man, and Cybernetics.
Vol. 2. IEEE. 1996, pp. 1196–1201.

[50] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. 2001. url: http://www.scipy.org/ (visited on 2018-03-30).

[51] Rick Joyce and Gopal Gupta. “Identity authentication based on keystroke latencies”.
In: Communications of the ACM 33.2 (1990), pp. 168–176.

[52] Peyman Kabiri and Ali A Ghorbani. “Research on intrusion detection and response:
A survey”. In: International Journal of Network Security 1.2 (2005), pp. 84–102.

[53] KDD cup 1999 dataset description. url: http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html (visited on 2017-11-16).

[54] KDD cup 1999 task description. url: http://kdd.ics.uci.edu/databases/
kddcup99/task.html (visited on 2018-03-26).

[55] Gene H Kim and Eugene H Spafford. “The design and implementation of Tripwire:
A file system integrity checker”. In: Proceedings of the 2nd ACM Conference on
Computer and Communications Security. ACM. 1994, pp. 18–29.

[56] Edwin M Knorr and Raymond T Ng. “Algorithms for mining distance-based outliers
in large datasets”. In: Proceedings of the 24th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers, 1998, pp. 392–403.

[57] Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. “Distance-based outliers:
algorithms and applications”. In: The VLDB Journal 8.3-4 (2000), pp. 237–253.

78

https://www.statista.com/statistics/261881/average-age-of-light-vehicles-in-the-united-states/
https://www.statista.com/statistics/261881/average-age-of-light-vehicles-in-the-united-states/
http://www.scipy.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html
http://kdd.ics.uci.edu/databases/kddcup99/task.html

BIBLIOGRAPHY

[58] Donald E Knuth. “Algorithm R - Reservoir sampling”. In: The Art of Computer
Programming, Volume 2: Seminumeral Algorithms. Addison-Wesley Professional,
1981. Chap. Random Sampling and Shuffling, p. 138.

[59] Levent Koc, Thomas A Mazzuchi, and Shahram Sarkani. “A network intrusion
detection system based on a hidden naïve Bayes multiclass classifier”. In: Expert
Systems with Applications 39.18 (2012), pp. 13492–13500.

[60] Christopher Kruegel, Darren Mutz, William Robertson, and Fredrik Valeur.
“Bayesian event classification for intrusion detection”. In: Proceedings of the 19th

Annual Computer Security Applications Conference. IEEE. 2003, pp. 14–23.
[61] Sandeep Kumar and Eugene H Spafford. “A pattern matching model for misuse intru-

sion detection”. In: Proceedings of the 17th National Computer Security Conference.
NIST. 1994, pp. 11–21.

[62] Aleksandar Lazarevic, Vipin Kumar, and Jaideep Srivastava. “Intrusion detection: A
survey”. In: Managing Cyber Threats: Issues, Approaches, and Challenges. Springer
US, 2005, pp. 19–78.

[63] Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities.
About the Leibniz Supercomputing Centre. url: https://www.lrz.de/wir/lrz-
flyer/lrz-flyer.pdf (visited on 2018-05-08).

[64] Kingsly Leung and Christopher Leckie. “Unsupervised anomaly detection in network
intrusion detection using clusters”. In: Proceedings of the 28th Australasian Confer-
ence on Computer Science. Vol. 38. Australian Computer Society. 2005, pp. 333–
342.

[65] James Lewis and Martin Fowler. Microservices: a definition of this new architectural
term. 2014. url: https://martinfowler.com/articles/microservices.html
(visited on 2018-03-23).

[66] Wei Li. “Using genetic algorithm for network intrusion detection”. In: Proceedings
of the United States Department of Energy Cyber Security Group 2004 Training
Conference 1 (2004), pp. 1–8.

[67] Yinhui Li et al. “An efficient intrusion detection system based on support vector ma-
chines and gradually feature removal method”. In: Expert Systems with Applications
39.1 (2012), pp. 424–430.

[68] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan Tung.
“Intrusion detection system: A comprehensive review”. In: Journal of Network and
Computer Applications 36.1 (2013), pp. 16–24.

[69] Ulf Lindqvist and Phillip A Porras. “Detecting computer and network misuse
through the production-based expert system toolset (P-BEST)”. In: Proceedings of
the 1999 IEEE Symposium on Security and Privacy. IEEE. 1999, pp. 146–161.

[70] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Korba, and Kumar
Das. “The 1999 DARPA off-line intrusion detection evaluation”. In: Computer
Networks 34.4 (2000), pp. 579–595.

79

https://www.lrz.de/wir/lrz-flyer/lrz-flyer.pdf
https://www.lrz.de/wir/lrz-flyer/lrz-flyer.pdf
https://martinfowler.com/articles/microservices.html

BIBLIOGRAPHY

[71] Antonio Loureiro, Luis Torgo, and Carlos Soares. “Outlier detection using clustering
methods: A data cleaning application”. In: Proceedings of KDNet Symposium on
Knowledge-Based Systems for the Public Sector. 2004.

[72] Teresa F Lunt. “IDES: An intelligent system for detecting intruders”. In: Proceedings
of the Symposium on Computer Security, Threat and Countermeasures. 1990, pp. 30–
45.

[73] Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, and Marc Zissman.
“An overview of issues in testing intrusion detection systems”. In: NIST Special
Publication. NISTIR 7007 (2003). url: https://csrc.nist.gov/publications/
detail/nistir/7007/final (visited on 2018-04-21).

[74] Regine Meunier. “The pipes and filters architecture”. In: Pattern Languages of
Program Design. Addison-Wesley. 1995, pp. 427–440.

[75] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. “Intrusion detection
using neural networks and support vector machines”. In: Proceedings of the 2002
International Joint Conference on Neural Networks. Vol. 2. IEEE. 2002, pp. 1702–
1707.

[76] James R Norris. Markov Chains. 2. Cambridge University Press, 1998.
[77] NSL-KDD dataset description. url: http://www.unb.ca/cic/datasets/nsl.html

(visited on 2018-02-04).
[78] Hisashi Oguma et al. “New attestation-based security architecture for in-vehicle

communication”. In: Proceedings of the 2008 IEEE Global Telecommunications
Conference. IEEE. 2008, pp. 1–6.

[79] Sang H Oh and Won S Lee. “An anomaly intrusion detection method by clustering
normal user behavior”. In: Computers & Security 22.7 (2003), pp. 596–612.

[80] Nam H Park and Won S Lee. “Statistical grid-based clustering over data streams”.
In: ACM SIGMOD Record 33.1 (2004), pp. 32–37.

[81] Simon Parkinson, Paul Ward, Kyle Wilson, and Jonathan Miller. “Cyber threats fac-
ing autonomous and connected vehicles: Future challenges”. In: IEEE Transactions
on Intelligent Transportation Systems 18.11 (2017), pp. 2898–2915.

[82] Animesh Patcha and Jung-Min Park. “An overview of anomaly detection techniques:
Existing solutions and latest technological trends”. In: Computer Networks 51.12
(2007), pp. 3448–3470.

[83] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[84] Chao-Ying J Peng, Kuk L Lee, and Gary M Ingersoll. “An introduction to logistic
regression analysis and reporting”. In: The Journal of Educational Research 96.1
(2002), pp. 3–14.

[85] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. “Intrusion detection with unlabeled
data using clustering”. In: Proceedings of the 2001 ACM CSS Workshop on Data
Mining Applied to Security. ACM. 2001.

80

https://csrc.nist.gov/publications/detail/nistir/7007/final
https://csrc.nist.gov/publications/detail/nistir/7007/final
http://www.unb.ca/cic/datasets/nsl.html

BIBLIOGRAPHY

[86] Morgan Quigley et al. “ROS: An open-source robot operating system”. In: Pro-
ceedings of the 2009 IEEE International Conference on Robotics and Automation
Workshop on Open Source Robotics. Vol. 3. 3.2. 2009, p. 5.

[87] Montaser N Ramadan, Mohammad A Al-Khedher, and Sharaf A Al-Kheder. “Intel-
ligent anti-theft and tracking system for automobiles”. In: International Journal of
Machine Learning and Computing 2.1 (2012), p. 83.

[88] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. “Efficient algorithms for
mining outliers from large data sets”. In: ACM SIGMOD Record. Vol. 29. 2. ACM.
2000, pp. 427–438.

[89] Lee M Rossey et al. “LARIAT: Lincoln adaptable real-time information assurance
testbed”. In: Proceedings of the 2002 IEEE Aerospace Conference. Vol. 6. IEEE.
2002, pp. 6–6.

[90] Joerg Sander. “Density-based clustering”. In: Encyclopedia of Machine Learning.
Ed. by Claude Sammut and Geoffrey I. Webb. Springer US, 2010, pp. 270–273.

[91] Salvatore Sanfilippo. redis. url: https://redis.io/ (visited on 2018-04-20).
[92] Karen Scarfone and Peter Mell. “Guide to intrusion detection and prevention systems

(IDPS)”. In: NIST Special Publication 800-94 (2007). url: https://csrc.nist.
gov/publications/detail/sp/800-94/final (visited on 2018-04-21).

[93] scikit-learn developers. Encoding categorical features. url: http://scikit-learn.
org/stable/modules/preprocessing.html#encoding-categorical-features
(visited on 2018-04-24).

[94] scikit-learn developers. Precision, recall and F-measures. url: http://scikit-
learn.org/stable/modules/model_evaluation.html#precision-recall-f-
measure-metrics (visited on 2018-04-25).

[95] scikit-learn developers. Standardization, or mean removal and variance scaling.
url: http : / / scikit - learn . org / stable / modules / preprocessing . html #
standardization-or-mean-removal-and-variance-scaling (visited on 2018-
04-24).

[96] David W Scott, Richard A Tapia, and James R Thompson. “Kernel density estima-
tion revisited”. In: Nonlinear Analysis 1.4 (1977), pp. 339–372.

[97] Ramasubramanian Sekar et al. “Specification-based anomaly detection: A new ap-
proach for detecting network intrusions”. In: Proceedings of the 9th ACM Conference
on Computer and Communications Security. ACM. 2002, pp. 265–274.

[98] R Shanmugavadivu and N Nagarajan. “Network intrusion detection system using
fuzzy logic”. In: Indian Journal of Computer Science and Engineering 2.1 (2011),
pp. 101–111.

[99] Shiuhpyng W Shieh and Virgil D Gligor. “A pattern-oriented intrusion-detection
model and its applications”. In: Proceedings of the 1991 IEEE Computer Society
Symposium on Research in Security and Privacy. IEEE. 1991, pp. 327–342.

81

https://redis.io/
https://csrc.nist.gov/publications/detail/sp/800-94/final
https://csrc.nist.gov/publications/detail/sp/800-94/final
http://scikit-learn.org/stable/modules/preprocessing.html#encoding-categorical-features
http://scikit-learn.org/stable/modules/preprocessing.html#encoding-categorical-features
http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
http://scikit-learn.org/stable/modules/model_evaluation.html#precision-recall-f-measure-metrics
http://scikit-learn.org/stable/modules/preprocessing.html#standardization-or-mean-removal-and-variance-scaling
http://scikit-learn.org/stable/modules/preprocessing.html#standardization-or-mean-removal-and-variance-scaling

BIBLIOGRAPHY

[100] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. “Toward develop-
ing a systematic approach to generate benchmark datasets for intrusion detection”.
In: Computers & Security 31.3 (2012), pp. 357–374.

[101] Siva S S Sindhu, Suryakumar Geetha, and Arputharaj Kannan. “Decision tree based
light weight intrusion detection using a wrapper approach”. In: Expert Systems with
Applications 39.1 (2012), pp. 129–141.

[102] Carlos Soares, Pavel Brazdil, Joaquim Costa, V Cortez, and André Carvalho. “Error
detection in foreign trade data using statistical and machine learning methods”.
In: Proceedings of the 3rd International Conference on the Practical Applications of
Knowledge Discovery and Data Mining. 1999, pp. 183–188.

[103] Ole Tange. “GNU Parallel – The command-line power tool”. In: ;login: The USENIX
Magazine 36.1 (2011), pp. 42–47. url: http://www.gnu.org/s/parallel (visited
on 2018-04-03).

[104] Colin Tankard. “Advanced persistent threats and how to monitor and deter them”.
In: Network Security 2011.8 (2011), pp. 16–19.

[105] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. “A detailed
analysis of the KDD CUP 99 data set”. In: Proceedings of the 2009 IEEE Symposium
on Computational Intelligence for Security and Defense Applications. IEEE. 2009,
pp. 1–6.

[106] Tor metrics. url: https://metrics.torproject.org/ (visited on 2018-03-17).
[107] Michał J Trybulec. “Integers”. In: Journal of Formalized Mathematics 2 (1990),

pp. 1–5.
[108] Alfonso Valdes and Keith Skinner. “Adaptive, model-based monitoring for cyber

attack detection”. In: Proceedings of the 2000 International Workshop on Recent
Advances in Intrusion Detection. Springer Berlin Heidelberg. 2000, pp. 80–93.

[109] Giovanni Vigna, William Robertson, Vishal Kher, and Richard A Kemmerer. “A
stateful intrusion detection system for world-wide web servers”. In: Proceedings of
the 19th Annual Computer Security Applications Conference. IEEE. 2003, pp. 34–43.

[110] Giovanni Vigna, Fredrik Valeur, and Richard A Kemmerer. “Designing and im-
plementing a family of intrusion detection systems”. In: ACM SIGSOFT Software
Engineering Notes. Vol. 28. 5. ACM. 2003, pp. 88–97.

[111] David Wagner and Drew Dean. “Intrusion detection via static analysis”. In: Proceed-
ings of the 2001 IEEE Symposium on Security and Privacy. IEEE. 2001, pp. 156–
168.

[112] Yun Wang. “A multinomial logistic regression modeling approach for anomaly
intrusion detection”. In: Computers & Security 24.8 (2005), pp. 662–674.

[113] Eric W Weisstein. Beta prime distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/BetaPrimeDistribution.html (visited on
2018-04-10).

82

http://www.gnu.org/s/parallel
https://metrics.torproject.org/
http://mathworld.wolfram.com/BetaPrimeDistribution.html

BIBLIOGRAPHY

[114] Eric W Weisstein. Gumbel distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/GumbelDistribution.html (visited on
2018-03-30).

[115] Eric W Weisstein. Inverse Gaussian distribution. MathWorld – A Wolfram Web Re-
source. url: http://mathworld.wolfram.com/InverseGaussianDistribution.
html (visited on 2018-03-30).

[116] Eric W Weisstein. Laplace distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/LaplaceDistribution.html (visited on
2018-03-30).

[117] Eric W Weisstein. Logistic distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/LogisticDistribution.html (visited on
2018-03-30).

[118] Eric W Weisstein. Normal distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/NormalDistribution.html (visited on
2018-03-30).

[119] Eric W Weisstein. Rayleigh distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/RayleighDistribution.html (visited on
2018-03-30).

[120] Eric W Weisstein. Uniform distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/UniformDistribution.html (visited on
2018-03-30).

[121] Eric W Weisstein. von Mises distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/vonMisesDistribution.html (visited on
2018-03-30).

[122] Eric W Weisstein. Weibull distribution. MathWorld – A Wolfram Web Resource.
url: http://mathworld.wolfram.com/WeibullDistribution.html (visited on
2018-03-30).

[123] Darrell Whitley. “A genetic algorithm tutorial”. In: Statistics and Computing 4.2
(1994), pp. 65–85.

[124] Wikimedia downloads. url: https://dumps.wikimedia.org/ (visited on 2018-03-
17).

[125] Claes Wohlin. “Guidelines for snowballing in systematic literature studies and
a replication in software engineering”. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering. ACM. 2014,
p. 38.

[126] Xue Yang, Leibo Liu, Nitin H Vaidya, and Feng Zhao. “A vehicle-to-vehicle com-
munication protocol for cooperative collision warning”. In: Proceedings of the 1st

Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services. IEEE. 2004, pp. 114–123.

83

http://mathworld.wolfram.com/GumbelDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/InverseGaussianDistribution.html
http://mathworld.wolfram.com/LaplaceDistribution.html
http://mathworld.wolfram.com/LogisticDistribution.html
http://mathworld.wolfram.com/NormalDistribution.html
http://mathworld.wolfram.com/RayleighDistribution.html
http://mathworld.wolfram.com/UniformDistribution.html
http://mathworld.wolfram.com/vonMisesDistribution.html
http://mathworld.wolfram.com/WeibullDistribution.html
https://dumps.wikimedia.org/

BIBLIOGRAPHY

[127] Nong Ye, Yebin Zhang, and Connie M Borror. “Robustness of the Markov-chain
model for cyber-attack detection”. In: IEEE Transactions on Reliability 53.1 (2004),
pp. 116–123.

[128] Dit-Yan Yeung and Calvin Chow. “Parzen-window network intrusion detectors”.
In: Proceedings of the 16th International Conference on Pattern Recognition. Vol. 4.
IEEE. 2002, pp. 385–388.

[129] Tao Zhang, Helder Antunes, and Siddhartha Aggarwal. “Defending connected
vehicles against malware: Challenges and a solution framework”. In: IEEE Internet
of Things Journal 1.1 (2014), pp. 10–21.

[130] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. “BIRCH: An efficient data
clustering method for very large databases”. In: ACM SIGMOD Record. Vol. 25. 2.
ACM. 1996, pp. 103–114.

84

A Developed programs

Following is a quick overview of the programs we have developed for this thesis, as well as
additional information that might be helpful when using them.

A.1 Aliases used in text

We sometimes use aliases in this thesis to refer to programs whose names are counterintuitive
or might warrant further explanation. For completeness, we will list those aliases and their
respective meaning (see Table A.1).

Alias Refers to

DataGenerator DistributionGenerator
DataPublisher DistributionPublisher
data_generator.py distribution_generator.py
Simulator Turtlesim
Frame TurtleFrame
Unit Turtle
sim.py py_turtlesim.py
communication_unit.py logger.py

Table A.1: The aliases used in this thesis and the respective class, module or program.

A.2 Overview over programs and tools

Following is a list of programs and tools developed for this thesis (see Table A.2). Not
included in the list are test modules.

Category File Function

Turtlesim.py py_turtlesim.py Host for the 2D simulator
turtle_frame.py Simulated environment
turtle.py Simulated unit

↪util point.py 2D point
point_f.py 2D point (float)
rgb.py RGB colour

ROS programs logger.py Client communication unit
ros_tools.py Interact with our ROS nodes
GenValue.msg Data generator ROS message
launch_file_version_che. . . Ensure launch file consistency

continued the next page. . .

85

A Developed programs

Category File Function

path_verify.py Check global paths

↪generator argument_constraint.py Define generator arguments
distribution_generator.py Data generator
distribution_publisher.py Publishes data to ROS
generators.py Data generator definitions

↪mover move_strategy.py Interface for all movers
basic_mover.py File-based movement
random_mover.py Random movement
turtle_control.py Publishes movement to ROS
numbers_to_velocity.py Create movement from numbers
move_helper.py Movement utilities
turtle_state.py Container for turtle state

↪pipes pose_processor.py Transform poses to requests
pose_pipe.py Randomly pipe poses through pose

processors

Web server web_api.py Endpoints and basic web server
state_dao.py Server data access object
idse_dao.py Data access object for the intermedi-

ate IDSE file format
log_entry.py Log entry for one request
log_file_processor.py Update and modify log files
log_file_analysis.py Log file and entry analysis
log_file_tools.py Split, sample, analyse
server_tools.py Interaction with the server

↪functionality mapper_base.py Base class for mappers
country_code_mapper.py Map poses to country codes
poi_mapper.py Map poses to POIs
routing_mapper.py Deprecated

↪ids live_ids.py IDS component of the server
intrusion_classifier.py Underlying classifier
ids_converter.py Encode log entries
ids_data.py Shared data
ids_tools.py Process, prepare, bootstrap
dir_utils.py Safe interaction with files
ids_entry.py Container for converted log entries
ids_classification.py Container for a classification

↪util fmtr.py Format numbers and text
outp.py Output functions

continued the next page. . .

86

A.3 Source code repository

Category File Function

prtr.py Pretty printing
seqr.py Convenient sequence handling
stat.py Statistics

Launch files launch_file_orchestrator.py Create randomised ROS launch files
launch_file_switcher.py Update and modify launch files

↪lfo_compo. . . intrusion_definition.py Process the user-defined intrusion
vin_generator.py Generate VIN tails

Experiments experiment.py Experiment runner
experiment_modules.py Single experiments

Table A.2: The programs and tools we have developed for this thesis.

A.3 Source code repository

Our source code is uploaded to GitHub and can be accessed at the following URL:

RRITbed . https://github.com/tum-i22/rritbed

The commit that marks the end of the work documented in this thesis can be identi-
fied by the following commit hash: e7ace1eec12c7f0dfac337adabbdfa105516bffc

A.4 Library versions

Following is an alphabetical list of the main libraries that we used and their respective
versions.

NumPy . 1.11.0
scikit-learn . 0.19.1

87

	Introduction
	Terms and definitions
	Real-time remote intrusion detection
	Other terms
	Abbreviations

	Survey of approaches to intrusion detection
	Method
	Differentiating intrusion detection systems
	Detection method
	Detection technique

	A taxonomy of intrusion detection systems
	Intrusion detection techniques
	Rule-based techniques
	Machine learning techniques
	Statistical techniques
	Clustering-based techniques
	State-based techniques
	Hybrid systems

	Gap analysis of existing research

	Creating the testbed
	Use case: Server-side detection of compromised clients
	Obtaining test data for evaluation
	Using existing data
	Generating test data

	Testbed concept
	Clients
	Intrusions
	Server

	Testbed implementation
	Client orchestration
	Clients
	Intrusions
	Server

	Assumptions
	Assumption 1: Identifying compromised clients from a server
	Assumption 2: Handling of data by microservices
	Assumption 3: Simulating interoperating components and systems

	Evaluation
	Testbed performance
	Prerequisites
	RQ 1: How fast can the testbed be started?
	RQ 2: How many components can be run in parallel?
	RQ 3: How well does the testbed scale with additional components?
	RQ 4: How many dataset lines can be generated in a certain time?

	Fitness for purpose
	RQ 5: Do we solve the problems of existing datasets?
	RQ 6: Can we reproduce data of similar distribution?
	RQ 7: Can we evaluate various types of IDS?

	Quality of the generated data
	Prerequisites
	RQ 8: Are there significant differences in detection precision or recall for data generator types?
	RQ 9: Can we show the effect of varying intrusion levels?
	RQ 10: What false positive rate can we observe for different data categories?

	Limitations
	Testbed
	Data generators
	2D simulator
	Intrusions
	Server

	Evaluation

	Future work
	Expanding the testbed
	Evaluating IDS with the testbed

	Conclusion
	
	Developed programs
	Aliases used in text
	Overview over programs and tools
	Source code repository
	Library versions

