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Abstract

The pathogen Pseudomonas aeruginosa is commonly treated with beta-lactam antibi-
otics. However, the bacterium’s antibiotic resistance is a severe problem in which
a morphological conversion plays an important role. The cells have the ability to
rapidly convert from rods into spherically shaped cells, which are highly tolerant
of antibiotic stress. In this thesis we set up, analyse, and compare different mathe-
matical models for these biological findings. The first model does not include any
specific biological assumptions about the conversion process. The second approach
is based on the concept of quorum sensing and presumes that the cell-cell commu-
nication regulates the bacteria’s response to antibiotics. To complete the thesis we
present several modifications of the basic models and compare them.
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Chapter 1

Introduction

In this thesis we set up, analyse, and compare different mathematical models for
the morphological conversion of the bacterium Pseudomonas aeruginosa in response
to beta-lactam antibiotics. The underlying biological findings were published by an
Australian research group in the article “Rapid Conversion of Pseudomonas aeruginosa
to a Spherical Cell Morphotype Facilitates Tolerance to Carbapenems and Penicillins but
Increases Susceptibility to Antimicrobial Peptides” by Monahan et al. [25]. Before go-
ing into a detailed description of their results, we first introduce relevant biological
terms and concepts, and start with presenting the bacterium of interest - Pseudomonas
aeruginosa.

1.1 Biological Background

1.1.1 Pseudomonas Aeruginosa

P. aeruginosa is a prevalent, rod-shaped bacterium arising in moist environments like
soil, water, or skin flora, but it can also be found in medical equipment like catheters
or prostheses. It belongs to the group of Gram-negative bacteria, which have charac-
teristic cell envelopes that consist of an inner cytoplasmic cell membrane, a cell wall,
and a bacterial outer membrane. This human pathogen is a leading cause of hospital-
acquired infections [25] with a high mortality rate [15, 17]. Typical infections show
up during already existing diseases such as cystic fibrosis and are provoked in the
airway, the urinary tract, burns, and wounds. As many other bacteria, P. aeruginosa
form a biofilm, which means that the cells accumulate and are embedded in a kind
of slime. This biofilm formation serves as protection against adverse conditions. Yet
colonising in the human body also represents a strategy to overwhelm the immune
system.
Therapies are mainly based on beta-lactams, which will be introduced in more de-
tail shortly. However, being intrinsically multidrug resistant it is a severe problem
to treat the bacterium efficiently. The resistance is acquired from the bacterium’s
metabolism, which for example allows for the just mentioned biofilm formation. But
it also comes from the property to loose or alter its outer cell membrane inhibiting
or at least limiting the entry of antimicrobials [31]. There are different suggestions
for more efficient treatments. As proposed in [25], one is to combine beta-lactam
with antimicrobial peptides. Another approach arises from the finding that envi-
ronmental stress influences cell-cell communication, the so-called quorum sensing
mechanism, which will be discussed later. This could play an important role for
bacterial resistance and thus makes it a potential target.

1.1.2 Beta-Lactam Antibiotics

Beta-lactam antibiotics are the world’s most widely used antibiotic agents acting
against numerous and diverse disease-causing bacteria [25]. The name is derived
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from their common beta-lactam ring in the molecular structure. The class of beta-
lactam antibiotics consists of different groups, which are subdivided further. Peni-
cillins represent one famous group with carbenicillin as an exemplary agent. An-
other group are carbapenems, which have among other representatives imipenem
and meropenem [31]. Their bactericidal activity works by inhibiting cell wall biosyn-
thesis of bacteria [12], which occurs during cell division. Since this metabolism does
not happen in humans, beta-lactam antibiotics are normally well tolerated, however
allergies may appear as reaction [23].
Resistance of bacteria against beta-lactam antibiotics is an increasing problem. Bac-
teria developed different mechanisms to resist adverse attacks. Besides the pre-
viously mentioned membrane alteration, another strategy of them is to synthesise
beta-lactamase, an enzyme, which attacks the beta-lactam ring of the antibiotic, see
for instance [12].

1.1.3 Antimicrobial Peptides

Antimicrobial peptides (AMPs) are organic compounds of amino acids. They can
mainly be found in organs and tissues exposed to airborne pathogens [3] and show
important and broad antimicrobial properties against different targets including bac-
teria, viruses, fungi, and parasites [18, 3]. They can target the membrane or interact
with intracellular targets of the microorganisms, inhibit synthesis of proteins, DNA,
and RNA [3], and kill in seconds after the first contact. Hence, AMPs operate as a
host’s first-line defence system, whose activity is increased in case of injury to stop
infections before any symptoms occur. In addition to this first-line defence, AMPs
also interact with the host’s repair and adaptive immune responses [18]. In combi-
nation with antibiotics they can improve the microbicidal effects [3].
The increasing problems regarding resistance against common antibiotics emphasise
the importance of AMPs as alternative control agents [3]. Several thousand AMPs
have been discovered or synthesised. Artificial peptides are produced for different
reasons; one can change targets of AMPs and their own stability can be improved [3].
However, despite the useful properties of AMPs there are some drawbacks: it is ex-
pensive to produce AMPs and the peptides are sensitive to harsh environmental
conditions as for example extreme pH values. Furthermore, possible toxic effects on
humans have to be clarified and some bacteria are already known to be resistant to
various AMPs [3].

With this introduction of the most important terms we can now address the bio-
logical findings which represent the basis of the mathematical part in this thesis.

1.2 Biological Findings

The researchers in [25] examined and discussed the question why P. aeruginosa are
tolerant to treatments with high concentrations of beta-lactam. It was already known
before that these antibiotics inhibit the bacteria’s growth, albeit their bactericidal
effect is unusually little. The main statement of the paper is that “P. aeruginosa
undergoes a rapid en masse transition from normal rod-shaped cells to viable cell
wall-defective spherical cells when treated with beta-lactams” [25]. Remarkably,
the bacterial population is able to reconvert from the spherical shape into the ini-
tial rod form, and all transformations take place rather rapidly. These findings give
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an additional insight into the bacteria’s survival strategy under antibiotic stress. Fur-
thermore, the biologists came up with an approach to make use of the fragility and
sensitivity of the bacteria in their spherical shape after treatment with carbapenem.
Spherical cells are efficiently killed when carbapenem treatment is combined with
AMPs.
To recapitulate, carbapenem treatment is used to induce a transition into a spherical
cell shape. This type of cells can be in turn targeted with AMPs, which themselves
are inactive against the normal bacillary cells of P. aeruginosa. Hence, in combination
the two components may present an efficient treatment.

1.2.1 Experiments

For a detailed description and more precise data of the experiments we refer to [25].
Shortly summarised, the biologists used different strains of P. aeruginosa and grew
them on various standard laboratory growth media but also in environments mim-
icking physiologically relevant conditions during infections occurring for example
in a cystic fibrosis lung. Beta-lactam antibiotics meropenem, imipenem, and car-
benicillin were added at 5 × MIC, where MIC stands for the “minimum inhibitory
concentration”, the lowest concentration of a chemical or an antimicrobial drug that
inhibits visible growth of a microorganism. The MIC values for the mainly used
strain PA14 are given in table 1.1.

Beta-lactam MIC value

Meropenem 1 µg mL−1

Imipenem 2 µg mL−1

Carbenicillin 128 µg mL−1

Table 1.1: MIC values for strain PA14. Adapted from [25].

For the reversion of the morphological transformation, samples were resuspended in
antibiotic-free media. In order to verify their hypothesis that beta-lactams together
with AMPs may present an efficient treatment, meropenem was used together with
different concentrations of the AMPs LL-37 and nisin.
The exact setup of the used phase-contrast, fluorescence, and transmission electron
microscopy can be found in [25].

1.2.2 Observations

Conversion

Treating a culture of P. aeruginosa PA14 with the above reported dose (5 × MIC) of
meropenem, the whole population converts quickly from normal rod-shaped into
spherical cells (figure 1.1a). The transformation starts with a small protrusion of the
membrane on the cell surface. There the cell bulges out forming a sphere, which
is enclosed in its own membrane, and leads to lysis of the rod (figure 1.1b). How-
ever, the spheres become highly fragile and lack a functional cell wall: the original
double-membrane is destroyed since the outer membrane is disrupted and the inner
one becomes exposed on the surface [25]. This is an example of how the cell wall-
targeting beta-lactam antibiotic provokes a change of the cell wall and membrane.
This rapid process is summarised in figure 1.2. After one hour more than half of the
total population (65%) started to transform its shape. After another three hours 67%
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(a) Phase-contrast images were taken before
the treatment with meropenem, after 1h, 4h,
and 24h (A-D). Scale bars, 5 µm.

(b) Conversion depicted by superresolution
3D-SIM microscopy. Images were taken 0h,
2h, and 24h (A-C) after beta-lactam addition.
Scale bars, 1 µm.

Figure 1.1: Conversion of P. aeruginosa to spherical cells in response
to presence of meropenem. Adapted from [25].

of the cells were in spherical shape, and after one day the entire population changed
its appearance.

Figure 1.2: Proportion of rods, transitioning, and spherical cells in the
meropenem-treated population over 24 h. Adapted from [25].

By fluorescence microscopy of LIVE/DEAD stained cells the viability of spherical
cells was determined. It was found that 84% of the cells were viable and only 16%
did not tolerate the applied amount of antibiotics. Moreover, dead cells were also
detectable without any staining due to their “ghostlike appearance” [25] as can be
seen in figure 1.3. Additionally, the researchers found that the number of viable cells
could be increased from 84% to 97% by providing the growth medium with 0.5 M
sucrose; here M is an abbreviation for the unit mol/litre. The addition of sucrose is
not essential for the observations themselves but it is useful to reduce the number of
lysed cells by acting as an osmoprotectant: antibiotics damage the bacterium’s cell
wall which leads to osmotic stress and finally lysis of cells. Sucrose extenuates this
osmotic stress.
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Figure 1.3: Phase contrast microscopy (F and H) and fluorescence
microscopy (G and I) visualise meropenem-treated samples after 24h
under LIVE/DEAD staining. (F and G) show cells grown in a stan-
dard growth medium, (H and I) cells grown in the same medium
supplemented with 0.5 M sucrose. Arrows show lysed cells. Scale
bars, 5 µm. Adapted from [25].

Reversion

Interestingly, the bacteria are able to revert the whole transformation as rapidly as
before when antibiotics are removed. When the spherical cells are put into a fresh
medium without any drugs, the cellular population first changes to an ellipsoid mor-
phology, before the shape is further transformed back into the normal rod form,
which is shown in figure 1.4a. Some cells changed into ellipsoid shape even after
just half an hour.
Figure 1.4b shows that more than 90% of the population completed its reversion af-
ter 6 hours. Back in the normal bacillary cell form they can develop and reproduce as
usual [25] indicating that the whole process serves as survival strategy: the cells are
temporarily robust against adverse conditions, and after rapid reversion the popu-
lation is able to grow again.

The researchers did not only use meropenem, but also carbenicillin and imipenem,
for which the observations were similar. In the case of carbenicillin some cells be-
came filamentous and tended to lyse [25]. By that, the bacterium’s response to beta-
lactams is shown for agents of two different classes. Since the observations do not
depend on a specific strain of the bacterium or on its genetic background, the pro-
tection strategy is assumed to be an intrinsic property of P. aeruginosa [25].

Treatment with a Combination of Beta-Lactams and AMPs

The spherically shaped cells have a deficient cell wall after being treated with beta-
lactam. Therefrom the researchers came up with the hypothesis that this weakness
could be exploited by AMPs, which kill the spherical cells by forming pores in their
membranes. Actually they could verify their hypothesis combining meropenem,
which itself induces conversion to viable spherical cells, with different concentra-
tions of the AMPs LL-37 and nisin. AMPs alone had very little effect on the normal
bacillary cells, but they noticeable reduced the spherical cells’ viability [25]. These
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(a) Transition from spheres back to normal rods. Scale bars, 1 µm.

(b) Proportion of rods, transitioning, and spherical cells in the population over 24h.

Figure 1.4: Reversion of P. aeruginosa from spherical cells back to rods
after removal of meropenem. Adapted from [25].

findings show that the drug combination of beta-lactam and AMPs are indeed effec-
tive and could be a novel treatment against P. aeruginosa.

One of the remaining open questions is the underlying mechanism that is respon-
sible for the conversion of the cells. A potential explanation could be the so-called
quorum sensing, a cell-cell communication. Since we will use this approach later
in the mathematical models, the concept will be introduced before starting with the
mathematical part of this thesis.

1.3 Quorum Sensing

Quorum sensing (QS) is a well-known concept of cell-cell communication within
and between different species of bacteria. Individual bacteria produce and release
so-called autoinducers, which are chemical signal molecules, whose concentration
depends on changes in the cell density. These diffusible molecules can be detected
by surrounding organisms [36]. Above a certain threshold the concentration of these
signal molecules leads to an alteration in gene expression. This regulation affects
plenty of physiological activities such as symbiosis, virulence, biofilm formation,
and motility [24], and protects the cells against environmental stresses [14]. This
mechanism enables the bacteria to “indirectly monitor changes in their own popu-
lation density” [7] and to act as a whole community in order to lead the collective
behaviour in the best way to survive and be robust against adverse conditions.
The QS network of P. aeruginosa is organised in a multi-layered hierarchy consist-
ing of at least four interconnected signalling mechanisms [22]. As for most Gram-
negative bacteria the signal molecules are acyl homoserine lactones (AHLs). The
las system was one of the first studied QS systems. It involves two components:
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the LasR transcriptional regulator and the LasI synthase protein. This protein is
necessary for the production of the AHL signal molecule N -(3-oxododecanoyl)-L-
homoserine lactone (3O-C12-HSL). LasR needs to bind to this complex to become
an active transcriptional regulator and to form multimers. These then bind to DNA
and regulate gene transcription [36]. A visualisation of this system is depicted in fig-
ure 1.5. Another QS system of P. aeruginosa regulates several genes with a complex
consisting of RhlR proteins and C4-HSL (N -butyryl-L-homoserine lactone), which is
produced by RhlI synthase [36, 24].

Figure 1.5: The QS system las of P. aeruginosa. LasI synthase uses S-
adenosyl methionine (SAM) and acyl-acyl carrier protein (acyl-ACP)
to form the AHL 3O-C12-HSL. With increasing concentration the AHL
molecule binds to the LasR regulator leading to dimerisation of LasR
molecules. These dimers bind to the DNA and hereby activate the
transcription of several genes. Adapted from [36].

Meanwhile other QS systems of P. aeruginosa were detected and their interaction is
studied in more detail. The known QS signalling mechanisms besides las and rhl are
pqs and iqs. However, for deeper insight into the topic we refer to [22] .
It is known that “functional QS systems significantly affect the severity” [36] of P.
aeruginosa infections. An approach for new treatments and strategies against the re-
sistance of bacteria is to use the QS system as target. Due to the wide interaction
of the different QS systems, it is not sufficient to attack only a single system but the
whole network has to be understood better in order to know which parts of it have
to be switched off.

We now have the necessary knowledge about the biological observations and con-
cepts and can start to formulate mathematical models for the findings.





Chapter 2

The Naive Model

In this chapter we are going to use the results of [25] and set up a first model for
the dynamics of the transition from rod to spherical shape of P. aeruginosa under
treatment with beta-lactam antibiotics. We call it the Naive Model since it does not
include any specific biological assumptions about the transition process. After in-
troducing the model, we will first fit its parameters to the observed data, before
analysing it with respect to fixed points and their stability, maintenance of positiv-
ity, and boundedness of the system. At the end of this chapter a modification of the
Naive Model and the dynamics of the reverse transformation of P. aeruginosa back
to rod shape will be presented shortly. Some ideas for the models in the following
chapters are taken from the publication “Quorum Sensing Interaction and the Effect of
Antibiotic on the Dynamics of Two Strains of the Same Bacterial Species” by Campos et
al. [7].

2.1 Model Variables, Assumptions, and Parameters

Model Variables

The authors in [25] distinguish three different types of bacteria depending on their
shape. Hence it is natural to include this classification in our model by using three
different typesA, T , andB for bacteria of natural rod shape, transitioning shape, and
spherical shape respectively. For mathematical notation we introduce the variables
A(t), T (t), and B(t) which denote the population densities of bacteria of type A, T ,
and B at time t. Furthermore, the variable C(t) is defined as the concentration of
beta-lactam antibiotics to which the bacteria are exposed at time t.
Table 2.1 gives an overview of these variables together with units that are commonly
used in biological models, see for example [7].

Variable Meaning Unit

A(t) Population density of P. aeruginosa of type A
(natural rod shape)

cells mL−1

T (t) Population density of P. aeruginosa of type T
(transitioning shape)

cells mL−1

B(t) Population density of P. aeruginosa of type B
(spherical shape)

cells mL−1

C(t) Concentration of beta-lactam µg mL−1

Table 2.1: Variables of the Naive Model, cf. [7].
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Assumptions and Model Parameters

The concentration of beta-lactam C(t) in the system can be controlled exogenously
by a constant supply rate θ. Moreover the concentration is decreased with degrada-
tion rate λ. We assume that the population density of bacteria of type A underlies a
logistic growth raA(t) (1−A(t)/Ka) with growth rate ra and carrying capacity Ka.
This growth model is often used in similar contexts, cf. for example [7]. Ordinary
death is already incorporated in the growth term. In contrast, the addition of beta-
lactam leads to further deaths, which we highlight by introducing an extra death
rate εβ in our model. The concentration of cells of type A is also decreased by a
rapid conversion into type T with probability ω1. This conversion follows the law of
mass action but there is no particular mechanism modelled for the transition. Under
the assumption that the dynamics regarding cells of type T are fast, we disregard for
simplicity any natural death or death caused by beta-lactam for cells of type T , and
only the conversion to cells of type B is incorporated by the mass action coefficient
ω2. According to the descriptions in [25], cells of type B do not seem to reproduce.
As it is stated ibid., type B cells are resistant to beta-lactam antibiotics, and there-
fore in our model only natural death with rate δn is assumed. Figure 2.1 depicts the
model setting in a flow diagram.

A T B

beta-lactam

ω1

log. growth raA(t)
(

1− A(t)
Ka

)

εβ

ω2

δn

θ λ

Figure 2.1: Flow diagram of the Naive Model.

Remark 1 Generally for this thesis we assume that all parameters and variables are
non-negative and real-valued in order to obtain a biologically meaningful model. 3

If we suppose that all components in the system are homogeneously mixed, we can
neglect any spatial distribution of the bacteria and the above assumptions lead to
the following dynamical system of ordinary differential equations (ODEs):

dA

dt
(t) = raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)︸ ︷︷ ︸
conversion to T

(2.1)

dT

dt
(t) = ω1A(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(2.2)

dB

dt
(t) = ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(2.3)

dC

dt
(t) = θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(2.4)
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Together with some initial values A(t0), T (t0), B(t0), and C(t0) at a starting time t0
the system of equations (2.1) to (2.4) becomes an initial value problem. The parame-
ters introduced above are summarised in table 2.2 with corresponding units.

Parameter Meaning Unit

ra Intrinsic growth rate of type A h−1

Ka Carrying capacity of type A cells mL−1

εβ Death rate of type A due to beta-lactam mL h−1 µg−1

ω1 Mass action coeff. for change from type A into type T h−1

ω2 Mass action coeff. for change from type T into typeB h−1

δn Natural death rate of type B h−1

θ Supply rate of beta-lactam µg mL−1 h−1

λ Degradation rate of beta-lactam h−1

Table 2.2: Parameters of the Naive Model, cf. [7].

Certainly there are further experimental conditions like growth medium, oxygen
concentration, and pH value, that influence the dynamics and interactions of the
bacteria and beta-lactam. But it is not possible to catch all biological circumstances
precisely, and probably it is neither necessary in order to capture and understand
the behaviour observed biologically for certain parameter values.

2.2 Parameter Fitting and Evaluation

Overview

To investigate whether the dynamical system (2.1) to (2.4) can exhibit a similar be-
haviour as the researchers found in [25], we first fit the parameters of the Naive
Model to the experimental results. Unfortunately the paper only provides very
vague data in form of figure 1.2 and a few values in the description of the results.
We use these values and bar charts in figure 1.2 for parameter fitting by extracting
the proportions of the three types A, T , and B at the four shown time points. Inac-
curacy arises already here from using the naked eye for this extraction. The aim is
then to find parameter values, including initial values, of the model given by equa-
tions (2.1) to (2.4) such that the calculated theoretical proportions of these three types
at the corresponding time points fit the deduced data best. The best fit is obtained
by minimising the least squares function of the given and the computed data using a
multi-start approach, cf. listing 3. For given parameters we calculate the theoretical
proportions of the types by solving the ODE system of equations (2.1) to (2.4) and
normalise the resulting concentrations at the four time points, cf. listing 2.

Mathematical Explanations

For estimating parameters which provide us with the best fit of theoretical calcu-
lations to measurement data, we start with applying the common maximum like-
lihood approach. As its name suggests, this method maximises the likelihood of
observing the measured data with our model given a vector Θ ∈ Rk of parameters,
where k is the total number of parameters.
At first we introduce some notations that are used in the following section. Let the
extracted experimental data points be denoted by a matrix D̂ ∈ R4×3, where the
observations at the four time points are given by the rows d̂i ∈ R3, i ∈ {1, . . . , 4}.
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Analogously, the corresponding theoretical data points are denoted by a matrix D =
D(Θ) ∈ R4×3 with corresponding rows di ∈ R3, i ∈ {1, . . . , 4}, which as indicated
depends on the chosen parameters.
Under the assumption that the observations d̂i, i ∈ {1, . . . , 4}, are independent, or to
be more precise, the underlying random variables that generated those realisations,
the joint density function f is given by

f(d̂1, d̂2, d̂3, d̂4|Θ) = f1(d̂1|Θ)× f2(d̂2|Θ)× f3(d̂3|Θ)× f4(d̂4|Θ) (2.5)

with marginal density functions fi, i ∈ {1, . . . , 4}. If we further assume that the sin-
gle observations are identically distributed around the “true” data di, i ∈ {1, . . . , 4},
and in particular follow a three-dimensional normal distribution with covariance
matrix σ2I3 for some σ2 ≥ 0, we can specify the marginal density functions:

fi(d̂i|Θ) =
1√

(2π)3 det(σ2I3)
exp

(
−1

2
(d̂i − di)T

1

σ2
I3(d̂i − di)

)
=

1√
(2πσ2)3

exp

(
− 1

2σ2
||d̂i − di||22

)
.

Remark 2 If the random variables which generate the observations d̂i, with i ∈
{1, . . . , 4}, are dependent, equation (2.5) does not hold in general. Even under the
assumption that they follow a normal distribution, we do not know the joint density
function. This problem can only be circumvented to the expense of additional as-
sumptions like a joint normal distribution. Since we obtain satisfying results when
assuming independent d̂i, i ∈ {1, . . . , 4}, we use it for simplicity. 3

From those assumptions and by the latter considerations we obtain the likelihood
function

L(Θ|D̂) = L(Θ|d̂1, d̂2, d̂3, d̂4) = f(d̂1, d̂2, d̂3, d̂4|Θ)

=
4∏
i=1

fi(d̂i|Θ) =
4∏
i=1

1√
(2πσ2)3

exp

(
− 1

2σ2
||d̂i − di||22

)
.

Remember that di, i ∈ {1, . . . , 4}, are actually determined through Θ. Instead of
maximising this function we can also minimise its negative logarithm, the so-called
negative log likelihood function

J (Θ|D̂) = − logL(Θ|D̂)

= 6 log(2πσ2) +
1

2σ2

4∑
i=1

||d̂i − di||22

= 6 log(2πσ2) +
1

2σ2

4∑
i=1

3∑
j=1

(D̂ij −Dij)2,

which is more convenient and better suited for numerical computations. Hence, for
finding a minimiser under the given assumptions, we can equivalently use the least
squares function

S(Θ|D̂) =

4∑
i=1

3∑
j=1

(D̂ij −Dij)2.
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Due to the mismatch of amount of data and number of parameters in our case, it
seems reasonable to fix some parameters before the optimisation procedure and
by that reduce the number of estimated parameters in order to prevent overfit-
ting. Following the descriptions in [25] we set the initial value of beta-lactam to
5 µg mL−1, and assume a zero supply rate θ = 0 µg mL−1 h−1. The degradation
rate λ = 0.2589 h−1 is chosen such that the beta-lactam concentration is close to
zero after 24 hours. Furthermore, the parameters of the logistic growth are esti-
mated separately from general growth data of P. aeruginosa, which can be found
in appendix A. The numerical determination of the values ra = 0.2946 h−1 and
Ka = 3.1507 × 107 cells mL−1 is shown there as well. The starting values T (0) =
0 cells mL−1, B(0) = 0 cells mL−1, and as mentioned above C(0) = 5 µg mL−1 at time
t0 = 0 are taken from [25], whereas the initial cell density of type A is not chosen in
advance.
Hence we only minimise the least squares function for the parameters εβ , ω1, ω2, δn,
and A(0) by performing a multi-start optimisation, where each single optimisation
is initialised with randomly sampled values for these parameters. For the evaluation
of the least squares function we obviously need the theoretical data points, which we
obtain by solving the ODE system and computing the proportions of the theoretical
population densities at the corresponding time points. The implementation of the
described optimisation procedure can be found in appendix B.

Remark 3 For optimisation we use the MATLAB function fmincon, which finds a
minimum of a constrained non-linear multivariable function [38]. The alternative
MATLAB function fminsearch is not appropriate for our problem since this solver
returns negative parameter values. 3

Results

The parameter values for which we obtain the closest fit to the given data are pre-
sented in table 2.3, where both fixed and estimated parameters are included.

Parameter Meaning Value Unit

ra Intrinsic growth rate of type A 0.2946∗ h−1

Ka Carrying capacity of type A 3.1507× 107∗ cells mL−1

εβ Death rate of type A due to beta-
lactam

0.1214 mL h−1 µg−1

ω1 Mass action coefficient for change
from type A into type T

1.1675 h−1

ω2 Mass action coefficient for change
from type T into type B

0.3400 h−1

δn Natural death rate of type B 3.5780× 10−7 h−1

θ Supply rate of beta-lactam 0∗ µg mL−1 h−1

λ Degradation rate of beta-lactam 0.2589∗ h−1

A(0) Initial value of type A 26.7691 cells mL−1

T (0) Initial value of type T 0∗ cells mL−1

B(0) Initial value of type B 0∗ cells mL−1

C(0) Initial value of beta-lactam 5∗ µg mL−1

Table 2.3: Estimated parameter values of the Naive Model, cf. [7].
Values that were fixed before the optimisation procedure are indi-
cated by stars.
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We could not compare the estimated parameters and reason about their reliability
since it was not possible to find similar models of P. aeruginosa in literature. How-
ever, we visualise the dynamics of the system for the estimated parameter values
(figure 2.2b) and the comparison with the observed data of [25] (figure 2.2a) in order
to check if the fit is meaningful. The plots in figure 2.2 are created with MATLAB
using the code shown in listing 4.

(a) Comparison of the observed (left) and the fitted data (right).

(b) Dynamics of the Naive Model for the fitted parameter values.

Figure 2.2: Comparison and dynamics for the fitted parameter values
of the Naive Model.

The fit is already quite good. The proportion of spherically shaped cells after one
hour in the computed data is a bit greater than the measured proportion. The calcu-
lated number of rods at the third time point is very small but at least existent.
The dynamics in figure 2.2b show the rapid conversion from rods over transitional
to spherical cells. After just a few hours there are almost only spherically shaped



2.3. Mathematical Analysis 15

cells. In the long run only spherical cells are left whose density decreases since they
do not reproduce. This observation will be confirmed by the analytical investigation.
However, it is easier to judge the quality of the results when we later compare them
with those form other models.

Uncertainty of Estimates

When performing numerical calculations, one is always interested in the quality of
the results. Of course, the reliability of our numerical computations depends on the
use of appropriate solvers for both the optimisation problems and the ODE systems.
In MATLAB, generally steps and step sizes are controlled by these solvers them-
selves with preset error tolerances. One can monitor the progress of the computa-
tions and keep track of convergence, tolerances, and number of iterations among
others. To obtain better results the options structure for ODE solvers can be adjusted
individually by changing for instance the absolute and relative tolerances or max-
imum number of iterations. Moreover, there are different ODE solvers provided
for specific kinds of problems like stiff and non-stiff ODEs. By using appropriate
solvers, provided with additional information such as the Jacobian of the ODE sys-
tem, especially the computations for stiff ODE problems can be made more efficient
and reliable [33]. In appendix B we shortly discuss the solvers that were chosen for
our problems. Following the suggestions in the official MATLAB documentation by
The MathWorks, Inc. we obtained quite satisfying and meaningful results.
An additional option to assure the quality of the estimates is to visualise the objec-
tive function, in our case the least squares function, evaluated at different grid points
of our parameter space. Estimated parameter values at a clear, visually identifiable
minimum in the heatmaps in figure 2.3 and figure 2.4 indicate that they at least lo-
cally minimise the objective function, whereas the quality of fitted parameter values
that are not located at a minimum in the plots is more questionable.
Since we can visualise at most three dimensions, we vary two parameters while fix-
ing the others. The heatmaps for the mass action parameters ω1 and ω2 are depicted
in figure 2.3. Obviously there is a local minimum at the values for ω1 and ω2 obtained
from the optimisation. The code for generating the images can be found in listing 5.
Similarly we get a picture in figure 2.4 for the parameters εβ and δn. At first glance
in figure 2.4a and figure 2.4b the optimised values for εβ and δn seem to minimise the
objective function with δn close to the lower boundary at zero. However, by zooming
in further we see in figure 2.4c that the MATLAB determined values do not lie at a
local minimum. When we reduce the optimality tolerance of the solver fmincon,
the value for δn gets closer to zero. Since the estimated value of δn is already very
small, manually setting it to the visible local minimiser δn = 0 does hardly impact
the dynamics of our model.

2.3 Mathematical Analysis

Now that we got a first impression of our model and visualised the dynamics, we
are interested in concrete mathematical statements about the system like its asymp-
totic behaviour. Moreover, one has to guarantee positivity and boundedness for
non-negative initial values in a biologically relevant model. First we determine the
stationary states of the system and their stability.
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(a) (ω1, ω2) ∈ [0, 5]× [0, 5]. (b) (ω1, ω2) ∈ [0.6, 2.5]× [0.2, 0.6].

(c) (ω1, ω2) ∈ [0.9, 1.4]× [0.27, 0.38]. (d) Contour plot of the least squares function
depending on ω1 and ω2.

Figure 2.3: Evaluation of the least squares function with varying pa-
rameters ω1 and ω2. Estimated minimum is indicated as white dot.

Stationary States

At the very beginning we need to define the concept of a “stationary state”.

Definition 1 (Stationary State) A dynamical system is said to be in a stationary
state if it remains there as time elapses. In other words, it is a value of the state variables
where they do not change anymore. Equivalent terms are “stationary point”, “fixed
point”, or “equilibrium”.

A solution does not change anymore, if its derivative, that is the right hand side of
the system, equals zero. Hence, to determine the stationary points with components
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(a) (εβ , δn) ∈ [0, 5]× [0, 1]. (b) (εβ , δn) ∈ [0.09, 0.2]× [0, 0.04].

(c) (εβ , δn) ∈ [0.121, 0.122]× [0, 5× 10−7].

Figure 2.4: Evaluation of the least squares function with varying pa-
rameters εβ and δn. Estimated minimum is indicated as white dot.

A∗, T ∗, B∗, and C∗, we solve the equations (2.6) to (2.9) for these variables:

0 = raA
∗
(

1− A∗

Ka

)
− εβA∗C∗ − ω1A

∗ (2.6)

0 = ω1A
∗ − ω2T

∗ (2.7)
0 = ω2T

∗ − δnB∗ (2.8)
0 = θ − λC∗. (2.9)

Calculating by hand or solving this system by MATLAB (see listing 6) we obtain two
possible fixed points

P0 = (A∗0, T
∗
0 , B

∗
0 , C

∗
0 ) =

(
0, 0, 0,

θ

λ

)
P1 = (A∗1, T

∗
1 , B

∗
1 , C

∗
1 ) =

(
Σ,

ω1

ω2
Σ,

ω1

δn
Σ,

θ

λ

)
with

Σ :=
Ka(λra − εβθ − λω1)

λra
.
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The point P0 is always non-negative, and hence biologically meaningful since we
assume non-negative parameters. The second point P1 only has non-negative entries
if 0 ≤ Σ, which is equivalent to

0 ≤ λra − εβθ − λω1 ⇔ εβ
θ

λ
+ ω1 ≤ ra. (2.10)

In the case of equality in equation (2.10) the points P0 and P1 coincide.

Stability

We again start this section by defining the relevant term “stability” and introduce
some general results for dynamical systems, before we examine the stability of the
two stationary points concretely. In this section we follow in many ways the book
by Müller and Kuttler [26].

For general statements we consider in the following the autonomous ODE

y′(t) = f(y) (2.11)

with vector field f ∈ C1(U,Rn), where U ⊂ Rn is a domain. Together with an initial
condition y(t0) = y0, y0 ∈ U , equation (2.11) becomes an initial value problem. Let
I 6= ∅ be an interval and y : I → Rn a solution to the initial value problem indicated
by y(t, y0). We denote stationary points of f by y∗ ∈ Rn, i.e. f(y∗) = 0. The Jacobian
matrix of f at the stationary point y∗ is defined as A := f ′(y∗), where

Aij =
∂fi
∂yj

(y∗), i, j ∈ {1, . . . , n}.

Now we give a proper definition for stability, taken from [20, 26, cf. Definition 2.7
and 2.8, p. 174].

Definition 2 (Stability) A stationary point y∗ of f is called stable if for every neigh-
bourhood V of y∗ in U , there is a neighbourhood V1 ⊂ V , such that every solution
y(t, y0) with y0 ∈ V1 is defined and y(t, y0) ∈ V for all t > 0.
We call y∗ asymptotically stable, if it is stable and if there is a neighbourhood V0 of
y∗ in U such that for all solutions y(t, y0) with y0 ∈ V0, it holds y(t)→ y∗ for t→∞.

For analytical purposes it is easier to consider linear instead of non-linear systems.
Under certain assumptions, which will be specified in theorem 1, the linearisation
of a non-linear model shows the same behaviour as the original model in a small
neighbourhood of a stationary point. Therefore, we are interested in solutions y(t)
of equation (2.11) and their behaviour in a neighbourhood of y∗, i.e. y(t) = y∗ + z(t)
for small z(t), yielding

z′(t) = y′(t) = f(y∗ + z(t)) = f(y∗)︸ ︷︷ ︸
=0

+f ′(y∗)z(t) + o(||z(t)||),
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where we used Taylor expansion. Hence, by approximating with linear terms we
obtain the corresponding linearised system

z′(t) = Az(t).

Another tool to analyse stability in non-linear systems are Lyapunov functions, cf.
[26, 2]. However, we stick to the former approach and apply proposition 1 and the-
orem 1.

Proposition 1 (Stability) Let f ∈ C1(U,Rn) and let y∗ be a stationary point of f .
We denote the spectrum of A = f ′(y∗) by σ(A).
If the real parts of all eigenvalues of A are negative, i.e.

Re(σ(A)) < 0,

then y∗ is asymptotically stable.
Moreover, Re(σ(A)) ∩ (0,∞) 6= ∅ implies that y∗ is unstable [2, 26].

Remark 4 It is possible to be more precise under the assumptions of proposition 1:
y∗ is even exponentially asymptotically stable. If Re(σ(A)) < α < 0, then there are
constants δ, C > 0, such that ||y(0) − y∗|| < δ implies ||y(t) − y∗|| < Ceαt for t > 0,
cf. [2, 26]. 3

Linearisation can only be used for the analysis of local behaviour, and additional
restrictions apply when statements about non-linear models and their linearisations
correspond. This is captured by definition 3 and theorem 1, taken from [26, Defini-
tion 2.18 and Theorem 2.19, p. 208].

Definition 3 (Hyperbolic stationary point) A stationary point y∗ is called hyper-
bolic if 0 /∈ Re(σ(f ′(y∗))).

Theorem 1 (Hartman-Grobman) Let y∗ be a hyperbolic stationary point. Then there
is a neighbourhood U of y∗ and a homeomorphism H : U → Rn with H(y∗) = 0, which
maps the trajectories of y′(t) = f(y) one-to-one into trajectories of the linearised system
z′(t) = Az(t), with respect to the time course.

For further discussion and an outline of the proof of the Hartman-Grobman Theo-
rem we refer to [30, Section 2.8, p. 118ff].

We now apply the general results to our system. The right hand side of our system is
continuously differentiable, hence the Jacobian at a point P = (A(t), T (t), B(t), C(t))
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can be derived as

J(P ) =


ra − 2 ra

Ka
A(t)− εβC(t)− ω1 0 0 −εβA(t)

ω1 −ω2 0 0
0 ω2 −δn 0
0 0 0 −λ

 .

This matrix J evaluated at the stationary point P0 gives the matrix

J0 := J(P0) =


ra − εβ θλ − ω1 0 0 0

ω1 −ω2 0 0
0 ω2 −δn 0
0 0 0 −λ

 .

Since J0 is a lower triangular matrix, we directly obtain the four eigenvalues

−λ, −δn, −ω2, and ra − εβ
θ

λ
− ω1.

Theorem 1 can be applied if λ, δn, ω2 6= 0 and ra 6= εβθ/λ + ω1. Since we assume
non-negative parameter values, it follows that the stationary point P0 = (0, 0, 0, θ/λ)
is asymptotically stable if and only if ra < εβθ/λ + ω1. Biologically this means that
the population goes extinct if the intrinsic growth rate is smaller than the rates for
mass action and death caused by beta-lactam (multiplied by the ratio of antibiotic
supply). In the case of our parameter values P0 is stable, i.e. the bacteria population
dies out.
For the second stationary point P1 = (Σ, Σω1/ω2, Σω1/δn, θ/λ) we obtain the Jaco-
bian

J1 := J(P1) =


−ra + εβ

θ
λ + ω1 0 0

εβKa(−λra+εβθ+λω1)
λra

ω1 −ω2 0 0
0 ω2 −δn 0
0 0 0 −λ

 .

Using for example Laplace’s formula and expanding along the third column we get
the corresponding eigenvalues

−λ, −δn, −ω2, and − ra + εβ
θ

λ
+ ω1.

With the same argumentation theorem 1 tells us that the point is asymptotically
stable if and only if λ, δn, and ω2 are positive and εβθ/λ + ω1 < ra. Together with
the considerations at the beginning of this subsection in (2.10), we know that P1 is
stable as long as it is biologically relevant and not equal to P0.
This corresponds to a transcritical bifurcation. If ra < εβθ/λ+ω1, P0 is stable and P1

does not exist in a biologically meaningful way. In contrast, if ra > εβθ/λ + ω1, P0

looses its stability and instead P1 appears to be relevant and stable. Thus, the critical
point is at

ra = εβ
θ

λ
+ ω1, (2.12)

where P0 equals P1 and stability interchanges.
We consider this bifurcation now for our parameter values. Since θ = 0, stability
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interchanges when ra = ω1. To visualise the stability areas, we plot ra as a function
of ω1, which in our case is just the identity:

ra(ω1) = εβ
θ

λ
+ ω1 = ω1.

The stability areas are shown in figure 2.5a.
Alternatively we can solve equation (2.12) for θ and leave ra, λ, and εβ fix, which
leads to the function

θ(ω1) = (ra − ω1)
λ

εβ
.

The stability areas for the two stationary points are plotted in figure 2.5b. The plot
also reveals the critical point where ra = ω1 and θ turns negative afterwards, which is
biological not meaningful anymore. Hence, for parameter values for which ω1 > ra
holds, only P0 is stable.

(a) If ra > ω1, P1 is stable. If ra < ωa, P0 is
stable.

(b) If 0 < θ < θ(ω1), P1 is stable. If θ > θ(ω1),
P0 is stable. When ω1 reaches the value of
ra at 0.2946, θ(ω1) turns negative, which is
biologically not meaningful anymore.

Figure 2.5: Stability areas for the two stationary points depending on
different parameter values and their relations.

Additionally we check whether the behaviour of the numerical solution of the ODE
system (2.1) to (2.4) for different values of ω1 corresponds to the considerations
above. Therefore, we look where the population densities tend to in the long run
when the ODE system is solved for the estimated parameter values but with ω1

changing between zero and 0.5 h−1. The population densities of the different cell
types after 500 hours are depicted in figure 2.6a. The plot confirms the previous con-
siderations: there exists a non-trivial point as long as ω1 < ra, which corresponds
to the coexistence point P1 in that region. When ω1 reaches and exceeds ra there
are no cells left, which is compatible to the stationary point P0 for those parameter
values. Note that it is possible that the concentration of cells of type B exceeds the
carrying capacity Ka = 3.1507 × 107 cells mL−1 of rod shaped cells. We later de-
rive the bound ω1Ka/δn for cells of type B, which for our parameter values equals
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1.0281× 1014 cells mL−1.
Finally we visualise the stationary point P1 as a function of ω1 in figure 2.6b by plot-
ting the population densities of the three cell types against ω1. Also here we see that
the coexistence point with a high concentration of type B cells is meaningful when
ω1 < ra, but it becomes biologically irrelevant when the critical point is reached
since then the population density of type B cells turns negative.

(a) Population densities of the numerical solution after 500 hours with
varying values of ω1.

(b) Population densities in the stationary point P1 for different values of
ω1. The components A∗

1 and T ∗
1 of P1 are not distinguishable since B∗

1 is
very large in comparison.

Figure 2.6: Population densities for different values of ω1. The dashed
line indicates the critical point where ω1 equals ra. Listing 7 generates
the plot.

Positivity

Another important aspect for the biological relevance of our model is that the whole
system stays positive. In our case this means to show that R4

+ is positively invariant,
i.e. starting in the positive domain, y(t0) = y0 ∈ R4

+, the solution y(t, y0) stays there
for t > t0. As in the section for stability, we state a helpful, general proposition
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about the positivity of a dynamical system, which is taken from [35, Proposition B.7,
p. 267].

Proposition 2 (Positivity) Suppose that f in (2.11) has the following two properties:

• solutions y(t, y0) of initial value problems y(t0) = y0 ≥ 0 are unique, and

• whenever y(t) ≥ 0 satisfies yi(t) = 0, it holds fi(y) ≥ 0 for all i ∈ {1, . . . , n}.

Then, provided that y(t0) ≥ 0, it follows y(t) ≥ 0 for all t ≥ t0 for which it is defined.

Generally, if we write an inequality concerning a vector, e.g. y(t) ≥ 0, the relation is
meant component-by-component. The proof of this proposition can be found in [35].
For showing uniqueness of a solution one can make use of the theorem by Picard-
Lindelöf:

Theorem 2 (Picard-Lindelöf) Consider the initial value problem

y′(t) = f(y), y(t0) = y0,

as in (2.11). If f is uniformly Lipschitz-continuous in its domain of definition U and
y0 ∈ U , then there exist an ε > 0 and a unique solution y : [t0 − ε, t0 + ε]→ Rn of the
initial value problem with graph(y) ⊂ U .

We need to check the assumptions of theorem 2. Obviously the right hand side
of the system (2.1) to (2.4) is continuously differentiable and hence also Lipschitz-
continuous with respect to (A(t), T (t), B(t), C(t)). This means that there exists a
locally unique solution as required in the proposition.
It remains to show that for any y = (y1, y2, y3, y4) := (A(t), T (t), B(t), C(t)) ≥ 0
with yi = 0, it holds fi(y) ≥ 0, where fi denotes the corresponding vector field for
yi, i ∈ {1, . . . , 4}. Let A(t), T (t), B(t), C(t) be non-negative.

• If A(t) = 0, then

dA

dt
(t) = raA(t)

(
1− A(t)

Ka

)
− εβA(t)C(t)− ω1A(t) = 0 ≥ 0.

• If T (t) = 0, then

dT

dt
(t) = ω1A(t)− ω2T (t) = ω1A(t) ≥ 0.

• If B(t) = 0, then

dB

dt
(t) = ω2T (t)− δnB(t) = ω2T (t) ≥ 0.

• If C(t) = 0, then
dC

dt
(t) = θ − λC(t) = θ ≥ 0.
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Hence, we know by proposition 2 that the solution stays positive if we start in the
positive domain.

Boundedness

Since population densities are naturally bounded from above, we finally investigate
whether our model satisfies this property. To show that the solution does not tend
to infinity for positive initial values, we derive an upper bound for each variable.
Therefore, we transform the system appropriately to be able to apply proposition 2.
First we show that A(t) cannot exceed the carrying capacity Ka. To this end we
define the new variable X(t) := Ka − A(t). By replacing A(t) in the original system
by X(t), the transformed system consists of the derivative of the new variable

dX

dt
(t) = −dA

dt
(t) = −raA(t)

(
1− A(t)

Ka

)
+ εβA(t)C(t) + ω1A(t)

= − ra
Ka

X(t)(Ka −X(t)) + εβ(Ka −X(t))C(t) + ω1(Ka −X(t)),

the adapted differential equation for T (t)

dT

dt
(t) = ω1A(t)− ω2T (t) = ω1(Ka −X(t))− ω2T (t),

and the unchanged equations for B(t) and C(t). We now apply proposition 2. Since
the original system has a locally unique solution, this also exists for the transforma-
tion. For the second condition of the proposition we need a non-negative derivative
of X(t) if X(t) = 0 and T (t), B(t), and C(t) are non-negative. It holds

dX

dt
(t) = εβKaC(t) + ω1Ka ≥ 0.

Now we consider the derivative of T (t) with T (t) = 0 and non-negative B(t), C(t),
and X(t):

dT

dt
(t) = ω1(Ka −X(t))− ω2T (t) = ω1(Ka −X(t)) ≥ 0,

if we assume that Ka −X(t) is non-negative, which is equivalent to assume a non-
negative A(t). Since the differential equations of B(t) and C(t) do not depend on
A(t) in the original system, their derivatives in the transformed system still satisfy
the non-negativity condition of proposition 2. By this proposition it follows that if
0 ≤ A(0) ≤ Ka, then X(t) ≥ 0 which is equivalent to A(t) ≤ Ka. Hence Ka is an
upper bound for the variable A(t).
One can proceed in the same way for the variables T (t), B(t), and C(t) by trans-
forming them and applying proposition 2 to the new systems. It can be shown that
ω1Ka/ω2 is an upper bound for T (t), ω1Ka/δn an upper bound forB(t), and θ/λ one
for C(t).
Note that in general if the initial value lies above the indicated bound, then the
derivative of the solution surely is negative at least until the bound is reached. In
that case the bound has to be adjusted appropriately by the initial value.
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Boundedness can also be used to deduce another important mathematical prop-
erty of the solution. Therefore, we need definition 4 of a maximal solution, taken
from [20].

Definition 4 (Maximal Solution) A solution y : I → Rn of the initial value prob-
lem (2.11) is called maximal, if there is no solution z : J → Rn with I ⊂ J and z|I = y.
The interval I is open: I = (a, b).

With the help of Zorn’s lemma one can show the existence of a maximal solution of
the initial value problem (2.11). Proposition 3 specifies a condition when the maxi-
mal solution is also a global solution, see [20, 30].

Proposition 3 We consider the initial value problem (2.11). Let U = Rn, y0 ∈ U , and
let y : (a, b) → Rn be the maximal solution. If b = ∞, then the solution exists for all
t > t0. If b <∞, it holds

||y(t)|| → ∞ for t→ b−.

By theorem 2 we obtain a unique solution on an interval [t0 − ε, t0 + ε], which can
be extended to a maximal solution on an interval [σ−, σ+]. By the boundedness of
our solution, we know that ||y(t)|| does not tend to infinity and proposition 3 tells
us that the upper bound σ+ cannot be finite. It follows the global unique existence
of the solution of the ODE system.

2.4 Modification of the Naive Model

Before setting up a different model in chapter 3, we first vary the underlying growth
model of P. aeruginosa by replacing the logistic growth by a nutrient dependent
growth. We already fitted the parameter values of the nutrient dependent growth
model in appendix A. The dynamics are described by equations (2.13) to (2.17).

dA

dt
(t) = raA(t)

(
N(t)n

Kn
N +N(t)n

)
︸ ︷︷ ︸

nutrient dep. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)︸ ︷︷ ︸
conversion to T

(2.13)

dT

dt
(t) = ω1A(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(2.14)

dB

dt
(t) = ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(2.15)

dC

dt
(t) = θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(2.16)

dN

dt
(t) = DN0︸ ︷︷ ︸

nutrient supply

−ψA(t)

(
N(t)n

Kn
N +N(t)n

)
︸ ︷︷ ︸

nutrient uptake

(2.17)
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Figure 2.7: Comparison of the observed (left) and the fitted data
(right) from the modification of the Naive Model.

The description and parameters regarding the growth term and equation (2.17) can
be found in appendix A. The bar charts in figure 2.7 look similar to the original Naive
Model. Since the system has one more equation and hence also more parameters and
degrees of freedom respectively, the value of the least squares function is slightly
smaller for the modification.

2.5 Reversion

As described in chapter 1, P. aeruginosa revert to their normal rod shape when beta-
lactam is washed out. To model this phenomenon we mostly use the previous no-
tation and variables but introduce two different parameters for the mass action of
reversion: transition from type B back to type T takes place with mass action rate
ξ1, whereas ξ2 denotes the rate for mass action from T to A.
Equations (2.18) to (2.20) represent a simple model for the reversion.

dA

dt
(t) = raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

+ ξ2T (t)︸ ︷︷ ︸
conversion to A

(2.18)

dT

dt
(t) = ξ1B(t)︸ ︷︷ ︸

conversion to T

− ξ2T (t)︸ ︷︷ ︸
conversion to A

(2.19)

dB

dt
(t) = − ξ1B(t)︸ ︷︷ ︸

conversion to T

− δnB(t)︸ ︷︷ ︸
natural death

(2.20)

For parameter fitting we proceed as before using the observed data in figure 1.4b.
The estimated parameter values are presented in table 2.4.

Parameter Meaning Value Unit

ra Intrinsic growth rate of type A 0.2946∗ h−1

Ka Carrying capacity of type A 3.1507× 107∗ cells mL−1
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Parameter Meaning Value Unit

ξ1 Mass action coefficient for change from
type B into type T

0.1256 h−1

ξ2 Mass action coefficient for change from
type T into type A

0.3265 h−1

δn Natural death rate of type B 0.9202 h−1

A(0) Initial value of type A 0∗ cells mL−1

T (0) Initial value of type T 0∗ cells mL−1

B(0) Initial value of type B 73.1962 cells mL−1

Table 2.4: Estimated parameter values of the Reversion Model, cf. [7].
Values that were fixed before the optimisation procedure are indi-
cated by stars.

The respective plots of the dynamics and the comparison to the original data in fig-
ure 1.4b for the initial population densities in table 2.4 are shown in figure 2.8.
The result is quite satisfying, even though the proportions of spherical and transi-
tioning cells after 6h are a bit different than in [25]. As expected the dynamics show
that the spheres rapidly convert back into transitioning and rod cells, which them-
selves start to reproduce new cells. This leads to the strong increase of the total
population density, which after some hours solely exists of rods.
We leave out an in-depth analytical examination of the system since this works sim-
ilarly as for the first part, but we make the note that the system stays positive and
possesses the stationary points (0, 0, 0) and (Ka, 0, 0). In our case, the latter one is
stable, whereas the first is not, meaning that the bacterial population will remain
and grow up to the natural limit.
One could also merge the models for conversion and reversion but this would not
give many new insights or a deeper understanding. Therefore, we pass over to start
introducing the second approach where we model the observations by explaining
the conversion with the help of QS.
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(a) Comparison of the observed (left) and the fitted data (right).

(b) Dynamics of the Reversion Model over 24h for the fitted parameter values.

(c) Dynamics of the Reversion Model in the first seven hours.

Figure 2.8: Comparison and dynamics for the fitted parameter values
of the Reversion Model.



Chapter 3

The QS Model

In this chapter we model the conversion of P. aeruginosa from rods to spherically
shaped cells by explaining it with QS. We extend the Naive Model by assuming that
the signal molecules produced in the QS system induce the change in shape, and
add the concentration of those as an additional variable.

3.1 Model Variables, Assumptions, and Parameters

Model Variables

The different types of bacteria stay the same as in the Naive Model: type A repre-
sents P. aeruginosa in their natural rod shape, type T denotes transitioning cells, and
type B represents cells after transformation into a spherical shape. The notations
for the corresponding population densitiesA(t), T (t), andB(t) of the different types
at time t also remain the same. Similarly, C(t) denotes again the concentration of
beta-lactam antibiotics in the system at time t. Additionally, a new variable for the
concentration of QS signal molecules at time t comes into play, which is denoted by
S(t).
Hence, table 2.1 is enlarged by the latter variable and we obtain table 3.1.

Variable Meaning Unit

A(t) Population density of P. aeruginosa of type A
(natural rod shape)

cells mL−1

T (t) Population density of P. aeruginosa of type T
(transitioning shape)

cells mL−1

B(t) Population density of P. aeruginosa of type B
(spherical shape)

cells mL−1

C(t) Concentration of beta-lactam µg mL−1

S(t) Concentration of QS signal molecules µg mL−1

Table 3.1: Variables of the QS Model, cf. [7].

Assumptions and Model Parameters

In this model we build on the assumptions in section 2.1. Since we now assume
that the conversion is induced by QS signal molecules, we need to change the term
for mass action from type A to type T depending on the concentration of signal
molecules S(t). Mass action from type T into B is supposed to take place automat-
ically assuming that transitioning cells have the intrinsic property to change their
shape. The dynamics of S(t) depend on the production and degradation of signal
molecules. Their concentration is reduced according to some degradation rate γ.
Following [7], we assume that the production takes place at a constant rate µ and
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is augmented by the so-called autoinduction, which describes the phenomenon that
the production rate of signal molecules increases with increasing bacterial cell den-
sity. Autoinduction is modelled by the term νS(t)A(t)/(K + S(t)), where ν is the
maximum rate of production of signal molecules due to autoinduction and K de-
notes the half saturation constant, i.e. the value at which half the maximum rate is
reached. We assume that signal molecules are only produced when antibiotics are
existent in the system, as response to environmental stress, i.e. the concentration
C(t) affects the production. Later we will modify this assumption by modelling per-
manent autoinduction which then is increased under presence of antibiotics.

For now, the dynamics are modelled by the following equations (3.1) to (3.5).

dA

dt
(t) = raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)S(t)︸ ︷︷ ︸
conversion to T

(3.1)

dT

dt
(t) = ω1A(t)S(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.2)

dB

dt
(t) = ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.3)

dC

dt
(t) = θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.4)

dS

dt
(t) =

(
µ+

νS(t)

K + S(t)

)
A(t)C(t)︸ ︷︷ ︸

production with autoinduction

− γS(t)︸ ︷︷ ︸
degradation

(3.5)

The model setting is visualised in figure 3.1.

A T B

beta-lactam signal-molecules

ω1

log. growth raA(t)
(

1− A(t)
Ka

)

εβ ω2

δn

θ

λ γ

production with
autoinduction(
µ+ νS(t)

K+S(t)

)
A(t)C(t)

Figure 3.1: Flow diagram of the QS Model.

Table 3.2 gives an overview of the model parameters together with their units.
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Parameter Meaning Unit

ra Intrinsic growth rate of type A h−1

Ka Carrying capacity of type A cells mL−1

εβ Death rate of type A due to beta-lactam mL h−1 µg−1

ω1 Mass action coeff. for change from type A into type T mL h−1 µg−1

ω2 Mass action coeff. for change from type T into typeB h−1

δn Natural death rate of type B h−1

θ Supply rate of beta-lactam µg mL−1 h−1

λ Degradation rate of beta-lactam h−1

µ Signal production coefficient mL cells−1 h−1

ν Maximum rate of production of signal molecules due
to autoinduction

mL cells−1 h−1

K Half saturation constant for autoinduction µg mL−1

γ Degradation rate of signal molecules h−1

Table 3.2: Parameters of the QS Model, cf. [7].

3.2 Parameter Fitting and Evaluation

Similar to chapter 2 we fit the different parameters in order to test whether the model
of equations (3.1) to (3.5) is able to explain the biological observations. The compu-
tational procedure is the same as before just that we fit more parameters this time:
besides the mass action parameters ω1 and ω2 and death rates εβ and δn, we also
need to find values for the parameters µ, ν, and K in equation (3.5). Additionally
we leave the initial values for cells of type A and for signal molecules open and
fit also these values. In contrast, the parameters we fixed for the Naive Model are
again chosen in advance and their values are kept. Concretely this means T (0) =
0 cells mL−1, B(0) = 0 cells mL−1 and C(0) = 5 µg mL−1, as well as ra = 0.2946 h−1

and Ka = 3.1507 × 107 cells mL−1. As described in chapter 2, we assume an expo-
nential decay and a zero supply rate for beta-lactam by setting λ = 0.2589 h−1 and
θ = 0 µg mL−1 h−1 as before. Additionally for this new model, we fix γ = 0.05 h−1,
which is a plausible value for the degradation of signal molecules [13]. Hence, we
obtain the parameter values in table 3.3.

Parameter Meaning Value Unit

ra Intrinsic growth rate of type A 0.2946∗ h−1

Ka Carrying capacity of type A 3.1507× 107∗ cells mL−1

εβ Death rate of type A due to beta-
lactam

0.0227 mL h−1 µg−1

ω1 Mass action coefficient for change
from type A into type T

0.3649 mL h−1 µg−1

ω2 Mass action coefficient for change
from type T into type B

0.3798 h−1

δn Natural death rate of type B 0.0018 h−1

θ Supply rate of beta-lactam 0∗ µg mL−1 h−1

λ Degradation rate of beta-lactam 0.2589∗ h−1

µ Signal production coefficient 4.7947× 10−7 mL cells−1 h−1

ν Maximum rate of production of sig-
nal molecules due to autoinduction

1.0985 mL cells−1 h−1
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Parameter Meaning Value Unit

K Half saturation constant for autoin-
duction

77.0126 µg mL−1

γ Degradation rate of signal molecules 0.05∗ h−1

A(0) Initial value of type A 216.8226 cells mL−1

T (0) Initial value of type T 0∗ cells mL−1

B(0) Initial value of type B 0∗ cells mL−1

C(0) Initial value of beta-lactam 5∗ µg mL−1

S(0) Initial value of signal molecules 3.9566× 10−6 µg mL−1

Table 3.3: Estimated parameter values of the QS Model, cf. [7]. Values
that were fixed before the optimisation procedure are indicated by
stars.

The model dynamics and the comparison to the given data for the results in table 3.3
are depicted in figure 3.2.
The congruence of observed and fitted data at the time points 0h, 1h, and 24h is quite
exact. However, the model fails to capture the small proportion of rod shaped cells
after 4h. When comparing the dynamics to the Naive Model, it seems that there the
slopes for the different morphotypes are less steep. In this model we see a small time
interval at the beginning where the cell density of rod shaped cells increases slightly
before decreasing rapidly. It might be questionable if these more extreme trends are
more realistic. The faster decay of the total bacterial density is also remarkable. In
the former model there is hardly any decrease noticeable, whereas here it is. Hence
one suspects that the system of the QS Model also tends to the trivial equilibrium
where no bacteria are left.

Uncertainty of Estimates

Again we investigate the quality and reliability of the estimates and visualise their
uncertainty by presenting some heatmaps. The evaluation of the objective function
for varying mass action parameters ω1 and ω2 is plotted in figure 3.3. Apparently
the least squares function shows a local minimum for the fitted values.
The contour plot of the function for different values of εβ and δn in figure 3.4 be-
comes somewhat more irregular. For a broader range of parameter values two local
minima are recognisable. One appears for very small values of εβ and δn, while the
other one is located in a region for larger parameter values. By zooming in we can
guess that the minimum is smaller for the smaller values of εβ and δn. This can
be confirmed by performing two different optimisations. One optimisation is con-
strained to very small parameter values and the other to the area where the second
minimum is attained. The function value for minimisers εβ = 0.0227 and δn = 0.0018
equals 0.0014, whereas the second minimum takes the value 0.0462 for minimisers
εβ = 3.5544 and δn = 0.2292. This confirms the choice of the parameter values.
For parameters µ and ν very fine contour lines are necessary to visualise the mini-
mum of the objective function. Apparently the estimated values minimise the func-
tion, however there exists a drawn-out area in figure 3.5. Hence, in this case the
minimisers might not be as accurate as others. For reduced tolerances of the solver,
the value for µ gets very close to zero.
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3.3 Mathematical Analysis

The system of equations (3.1) to (3.5) is more complex than the system of the Naive
Model due to the additional equation for the signal molecules. Therefore, we use
another approach to determine stationary points. We non-dimensionalise the sys-
tem and by that reduce the number of parameters which simplifies the analysis. The
non-dimensionalisation produces two smoothly orbitally equivalent systems, cf. [21,
Chapter 2.1], meaning that we can examine the properties of the non-dimension-
alised system instead of the original one since the characteristics are preserved.

We non-dimensionalise the variables in the following way. The time variable t is
measured in hours whereas the parameter ra is measured per hour; hence we can
define a dimensionless variable by

τ(t) := rat.

As stated in [28, p. 2], the intrinsic growth rate ra gives a measure of the dynamics
of the population growth and the above transformation explains that 1/ra “is a rep-
resentative time scale of the response of the model to any change in the population”.
We analogously non-dimensionalise the other variables:

Ã(t) := K−1a A(t), T̃ (t) := K−1a T (t), B̃(t) := K−1a B(t),

C̃(t) := θ−1λC(t), S̃(t) := K−1S(t).

Note that these transformations are only possible for strictly positive parameter val-
ues of Ka, K, and θ. The case θ = 0 has to be considered separately. For now this
leads to the new system

dÃ

dτ
(τ) = Ã(τ)

(
1− Ã(τ)

)
−
εβθ

raλ
Ã(τ)C̃(τ)− ω1K

ra
Ã(τ)S̃(τ)

dT̃

dτ
(τ) =

ω1K

ra
Ã(τ)S̃(τ)− ω2

ra
T̃ (τ)

dB̃

dτ
(τ) =

ω2

ra
T̃ (τ)− δn

ra
B̃(τ)

dC̃

dτ
(τ) =

λ

ra

(
1− C̃(τ)

)
dS̃

dτ
(τ) =

(
Kaθ

Kraλ
µ+

Kaθ
Kraλ

νS̃(τ)

1 + S̃(τ)

)
Ã(τ)C̃(τ)− γ

ra
S̃(τ).

To improve legibility we define the dimensionless parameters

ε̃β :=
εβθ

raλ
, ω̃1 :=

ω1K

ra
, ω̃2 :=

ω2

ra
, δ̃n :=

δn
ra
,

λ̃ :=
λ

ra
, µ̃ :=

Kaθ

Kraλ
µ, ν̃ :=

Kaθ

Kraλ
ν, γ̃ :=

γ

ra
.
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By these definitions the number of parameters is reduced by one third from twelve
to eight and the system simplifies to

dÃ

dτ
(τ) = Ã(τ)

(
1− Ã(τ)

)
− ε̃βÃ(τ)C̃(τ)− ω̃1Ã(τ)S̃(τ) (3.6)

dT̃

dτ
(τ) = ω̃1Ã(τ)S̃(τ)− ω̃2T̃ (τ) (3.7)

dB̃

dτ
(τ) = ω̃2T̃ (τ)− δ̃nB̃(τ) (3.8)

dC̃

dτ
(τ) = λ̃(1− C̃(τ)) (3.9)

dS̃

dτ
(τ) =

(
µ̃+

ν̃S̃(τ)

1 + S̃(τ)

)
Ã(τ)C̃(τ)− γ̃S̃(τ). (3.10)

Since equation (3.9) can be solved explicitly by

C̃(τ) = (C̃(0)− 1)e−λ̃τ + 1,

we can even reduce the system to the four equations

dÃ

dτ
(τ) = Ã(τ)

(
1− Ã(τ)

)
− ε̃βÃ(τ)[(C̃(0)− 1)e−λ̃τ + 1]− ω̃1Ã(τ)S̃(τ)

dT̃

dτ
(τ) = ω̃1Ã(τ)S̃(τ)− ω̃2T̃ (τ)

dB̃

dτ
(τ) = ω̃2T̃ (τ)− δ̃nB̃(τ)

dS̃

dτ
(τ) =

(
µ̃+

ν̃S̃(τ)

1 + S̃(τ)

)
Ã(τ)[(C̃(0)− 1)e−λ̃τ + 1]− γ̃S̃(τ).

However, we will determine the stationary points of equations (3.6) to (3.10).

Stationary Points of the Non-Dimensionalised System

We need to find values Ã∗, T̃ ∗, B̃∗, C̃∗, and S̃∗, for which all derivatives of the
variables are zero. Equation (3.9) immediately implies that C̃∗ = 1. Inserting this
into equation (3.6) we obtain

Ã∗(1− Ã∗ − ε̃β − ω̃1S̃
∗) = 0, (3.11)

and the values T̃ ∗ and B̃∗ depend on Ã∗ and S̃∗ in the following way:

T̃ ∗ =
ω̃1

ω̃2
Ã∗S̃∗ and B̃∗ =

ω̃1

δ̃n
Ã∗S̃∗.

We distinguish between the following two cases in equation (3.11):

• Ã∗ = 0: this implies S̃∗ = 0, T̃ ∗ = 0, and B̃∗ = 0. Thus, the first and trivial
stationary point is

P0 := (Ã∗0, T̃
∗
0 , B̃

∗
0 , C̃

∗
0 , S̃

∗
0) = (0, 0, 0, 1, 0).
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• Ã∗ = 1− ε̃β − ω̃1S̃
∗: by inserting this into equation (3.10) we get

−(ω̃1(µ̃+ ν̃) + γ̃)S̃∗2 + ((µ̃+ ν̃)(1− ε̃β)− µ̃ω̃1 − γ̃)S̃∗ + µ̃(1− ε̃β) = 0.

This equation is fulfilled for

S̃∗1 = −b+W

N
and S̃∗2 = −b−W

N
,

where

b := γ̃ + µ̃ω̃1 + (µ̃+ ν̃)(ε̃β − 1),

W :=
√
b2 − 4µ̃(γ̃ + ω̃1(µ̃+ ν̃))(ε̃β − 1),

N := 2γ̃ + 2ω̃1(µ̃+ ν̃).

Hence, there are two additional stationary points

P1 := (Ã∗1, T̃
∗
1 , B̃

∗
1 , C̃

∗
1 , S̃

∗
1) =

(
Ã∗1,

ω̃1

ω̃2
Ã∗1S̃

∗
1 ,
ω̃1

δ̃n
Ã∗1S̃

∗
1 , 1, S̃

∗
1

)
P2 := (Ã∗2, T̃

∗
2 , B̃

∗
2 , C̃

∗
2 , S̃

∗
2) =

(
Ã∗2,

ω̃1

ω̃2
Ã∗2S̃

∗
2 ,
ω̃1

δ̃n
Ã∗2S̃

∗
2 , 1, S̃

∗
2

)
.

We need to investigate the biological relevance of these points, since the population
densities have to be non-negative. Clearly P0 is biologically meaningful and repre-
sents the case of extinction of P. aeruginosa. For P1 and P2 the analysis becomes more
complicated. We distinguish two cases.

• Assume ε̃β > 1: here we see that Ã∗ = 1 − ε̃β − ω̃1S̃
∗ < 0 for ω1 ≥ 0 and

non-negative S̃∗. Hence the non-trivial stationary points are not meaningful in
this case.

• Assume ε̃β ≤ 1: then it holds for the square root

W =
√
b2 − 4µ̃(γ̃ + ω̃1(µ̃+ ν̃))(ε̃β − 1) ≥ b.

Note that the denominator N = 2γ̃+ 2ω̃1(µ̃+ ν̃) ≥ 0. Thus it follows for N 6= 0

S̃∗1 = −b+W

N
≤ 0 and S̃∗2 = −b−W

N
≥ 0.

Therefore only S̃∗2 can be meaningful (except for the case that S̃∗1 = 0). Taking
into account the desired non-negativity of Ã∗2 we obtain another condition for
S̃∗2 :

0 ≤ Ã∗2 = 1− ε̃β − ω̃1S̃
∗
2 ⇔ S̃∗2 ≤

1− ε̃β
ω̃1

.

Non-negative S̃∗ and Ã∗ imply non-negative T̃ ∗ and B̃∗ for non-negative parameter
values. Hence P2 is a biologically relevant stationary point under the conditions

ε̃β ≤ 1 and S̃∗2 ≤
1− ε̃β
ω̃1

. (3.12)
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All in all, P0 and P2 are the two possible biologically meaningful stationary points,
whereas for P2 the inequalities (3.12) need to be satisfied.

As mentioned above, we need a different consideration for the case θ = 0 where equa-
tion (3.4) reduces to

dC

dt
= −λC(t).

The adjusted system of ODEs can be non-dimensionalised analogously as in the
previous situation by setting C̃(t) := K−1C(t) and by defining the dimensionless
parameters correspondingly. For the determination of stationary points we can al-
ternatively simply investigate the original system of equations (3.1) to (3.5). It imme-
diately follows that C∗ = 0. Inserting this into the other equations we obtain S∗ = 0,
T ∗ = 0, B∗ = 0, and A∗ = 0 or A∗ = Ka. Hence, the two stationary points are

Q0 := (0, 0, 0, 0, 0) and Q1 := (Ka, 0, 0, 0, 0).

This means that in absence of any supply rate for beta-lactam the antibiotics in the
system obviously disappear and the bacterial population either goes extinct or the
rod shaped cells reach their carrying capacity.

Stability

In the case of a strictly positive θ the general Jacobian matrix of the non-dimension-
alised system (3.6) to (3.10) at a point P = (Ã(τ), T̃ (τ), B̃(τ), C̃(τ), S̃(τ)) is given
by

J(P ) =


1− 2Ã(τ)− ε̃βC̃(τ)− ω̃1S̃(τ) 0 0 −ε̃βÃ(τ) −ω̃1Ã(τ)

ω̃1S̃(τ) −ω̃2 0 0 ω̃1Ã(τ)

0 ω̃2 −δ̃n 0 0

0 0 0 −λ̃ 0

αC̃(τ) 0 0 αÃ(τ) ν̃Ã(τ)C̃(τ)

(1+S̃(τ))2
− γ̃


with

α = µ̃+
ν̃S̃(τ)

1 + S̃(τ)
.

It does not make sense to calculate the eigenvalues of this general matrix since they
become too complex. It is self-evident that the signs of the eigenvalues and hence
the stability depend on the parameter values.
For the second case where θ = 0, we state the Jacobian matrix of equations (3.1)
to (3.5) at a point Q = (A(t), T (t), B(t), C(t), S(t)):

J(Q) =


ra − 2 ra

Ka
A(t)− εβC(t)− ω1S(t) 0 0 −εβA(t) −ω1A(t)

ω1S(t) −ω2 0 0 ω1A(t)
0 ω2 −δn 0 0
0 0 0 −λ 0

αKC(t) 0 0 αKA(t) νKA(t)C(t)
(K+S(t))2

− γ


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with

αK = µ+
νS(τ)

K + S(τ)
.

Considering the matrix at the point Q0 = (0, 0, 0, 0, 0) we obtain

J(Q0) =


ra 0 0 0 0
0 −ω2 0 0 0
0 ω2 −δn 0 0
0 0 0 −λ 0
0 0 0 0 −γ

 .

Obviously only the eigenvalues −ω2, −δn, −λ, and −γ are negative, whereas ra is
positive, making Q0 an unstable stationary point in our case. When inserting the
point Q1 = (Ka, 0, 0, 0, 0), the Jacobian becomes

J(Q1) =


−ra 0 0 −εβKa −ω1Ka

0 −ω2 0 0 ω1Ka

0 ω2 −δn 0 0
0 0 0 −λ 0
0 0 0 µKa −γ

 .

The eigenvalues −ra,−ω2, −δn, −λ, and −γ are all negative, which implies that
Q1 is stable. Comparing this outcome with the model dynamics in figure 3.2b the
instability of Q0 is rather counter-intuitive. However, when we run the numerical
ODE solution of the original model, equations (3.1) to (3.5), for a longer time interval,
MATLAB also calculates a solution where the population density A(t) reaches the
carrying capacity, see figure 3.6.

Figure 3.6: Dynamics of the QS Model, equations (3.1) to (3.5), in the
long run.

This might suggest that the model is appropriate for the observations in the first
days, but in the long run it becomes less meaningful.



38 Chapter 3. The QS Model

Positivity

For checking the positivity of our model, we once more apply proposition 2 and the-
orem 2. Obviously the right hand side of the dimensionless model (3.6) to (3.10) is
Lipschitz-continuous with respect to (Ã(τ), T̃ (τ), B̃(τ), C̃(τ), S̃(τ)) and hence there
exists a locally unique solution by theorem 2. To use the statement about positivity
we need to check that for non-negative variables the derivative of each variable is
non-negative if the corresponding variable is set to zero.
Let (Ã(τ), T̃ (τ), B̃(τ), C̃(τ), S̃(τ)) be non-negative.

• If Ã(τ) = 0, then

dÃ

dτ
(τ) = Ã(τ)

(
1− Ã(τ)

)
− ε̃βÃ(τ)C̃(τ)− ω̃1Ã(τ)S̃(τ) = 0 ≥ 0.

• If T̃ (τ) = 0, then

dT̃

dτ
(τ) = ω̃1Ã(τ)S̃(τ)− ω̃2T̃ (τ) = ω̃1Ã(τ)S̃(τ) ≥ 0.

• If B̃(τ) = 0, then

dB̃

dτ
(τ) = ω̃2T̃ (τ)− δ̃nB̃(τ) = ω̃2T̃ (τ) ≥ 0.

• If C̃(τ) = 0, then
dC̃

dτ
(τ) = λ̃(1− C̃(τ)) = λ̃ ≥ 0.

• If S̃(τ) = 0, then

dS̃

dτ
(τ) =

(
µ̃+

ν̃S̃(τ)

1 + S̃(τ)

)
Ã(τ)C̃(τ)− γ̃S̃(τ) = µ̃Ã(τ)C̃(τ) ≥ 0.

By that proposition 2 tells us that R4
+ is a positively invariant domain for the QS

Model.

Boundedness

As for the Naive Model we state upper bounds for the five variables. This is done
analogously to section 2.3 by transforming the system of equations (3.6) to (3.10)
such that we can apply proposition 2.
We claim that the variable Ã(τ) is bounded by 1. To show this we transform the
original system by introducing the variable X(τ) := 1 − Ã(τ) and replacing Ã(τ).
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The transformed system is given by

dX

dτ
(τ) = (X(τ)− 1)X(τ) + ε̃β(1−X(τ))C̃(τ) + ω̃1(1−X(τ))S̃(τ) (3.13)

dT̃

dτ
(τ) = ω̃1(1−X(τ))S̃(τ)− ω̃2T̃ (τ) (3.14)

dB̃

dτ
(τ) = ω̃2T̃ (τ)− δ̃nB̃(τ) (3.15)

dC̃

dτ
(τ) = λ̃(1− C̃(τ)) (3.16)

dS̃

dτ
(τ) =

(
µ̃+

ν̃S̃(τ)

1 + S̃(τ)

)
(1−X(τ))C̃(τ)− γ̃S̃(τ). (3.17)

The solution remains locally unique under this transformation but we need to check
the second condition of proposition 2. Therefore we assume that X(τ), T̃ (τ), B̃(τ),
C̃(τ), and S̃(τ) are non-negative.

• Let X(τ) = 0, then

dX

dτ
(τ) = ε̃βC̃(τ) + ω̃1S̃(τ) ≥ 0.

• Let T̃ (τ) = 0, then

dT̃

dτ
(τ) = ω̃1(1−X(τ))S̃(τ) ≥ 0,

if 1−X(τ) ≥ 0 which is equivalent to Ã(τ) ≥ 0.

• Let B̃(τ) = 0, then

dB̃

dτ
(τ) = ω̃2T̃ (τ) ≥ 0.

• Let C̃(τ) = 0, then

dC̃

dτ
(τ) = λ̃ ≥ 0.

• Let S̃(τ) = 0, then

dS̃

dτ
(τ) = µ̃(1−X(τ))C̃(τ) ≥ 0,

if 1−X(τ) ≥ 0.

By proposition 2 it follows under the condition 0 ≤ Ã(0) ≤ 1, that X(τ) ≥ 0 which
implies that Ã(τ) ≤ 1.
Analogously, we can derive the following bounds for the other variables:

C̃(τ) ≤ 1, S̃(τ) ≤ µ̃+ ν̃

γ̃
, T̃ (τ) ≤ ω̃1

ω̃2

µ̃+ ν̃

γ̃
, B̃(τ) ≤ ω̃1

δ̃n

µ̃+ ν̃

γ̃
.
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Remark 5 We could also set up a model for the reversion and explain it with QS.
However, we rather assume that the cells in their abnormal spherical shape auto-
matically revert in absence of antibiotics and we therefore do not consider an extra
model in the case of QS. 3

3.4 Modifications of the QS Model

In the following we present several modifications of the QS Model (3.1) to (3.5).
However, we only give a short intuition for the changes but do not carry out the
analytical analyses.

Modification 1

In the QS Model the conversion from type A into type T cells is incorporated by the
term ω1A(t)S(t), which is not bounded, i.e. the more signal molecules there are, the
more rod cells convert without limitation. Therefore, we introduce the saturation
term ω1A(t)S(t) (1− S(t)/KS). The impact of the signal molecule concentration on
conversion becomes less with increasing concentration and if it rises above the max-
imal value KS there is no additional effect. By this modification only the first two
equations of the dynamical system (3.1) to (3.5) are changed.

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

−ω1A(t)S(t)

(
1− S(t)

KS

)
︸ ︷︷ ︸

conversion to T

(3.18)

dT

dt
= ω1A(t)S(t)

(
1− S(t)

KS

)
︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.19)

dB

dt
= ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.20)

dC

dt
= θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.21)

dS

dt
=

(
µ+

νS(t)

K + S(t)

)
A(t)C(t)︸ ︷︷ ︸

production with autoinduction

− γS(t)︸ ︷︷ ︸
degradation

(3.22)

To maintain positivity of the system, it is necessary that S(t) ≤ KS since otherwise
the derivative of T (t) could become negative if T (t) = 0 and A(t), S(t) ≥ 0 (cf.
the second condition in proposition 2). By choosing KS not smaller than the upper
bound for S(t), one can circumvent this issue.
Alternatively one can use a similar term as for autoinduction. The dynamics for rod
shaped cells in this case become

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

−ω1A(t)
S(t)

KS + S(t)︸ ︷︷ ︸
conversion to T

.

The saturation effect of an increasing concentration of signal molecules on the con-
version from type A to type T cells also shows up here.
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Modification 2

In this modification we change the term for signal molecule production. As men-
tioned before, signal molecules regulate further functions like biofilm formation or
motility, which are not automatically connected to presence of beta-lactam. Hence,
it is reasonable to assume a permanent production of signal molecules indepen-
dent of any antibiotics. We assume that the “background” production is determined
through the same production and autoinduction term but only depends on A(t):

dS

dt
=

(
µ+

νS(t)

K + S(t)

)
A(t)C(t)︸ ︷︷ ︸

production/autoinduction

+

(
µ+

νS(t)

K + S(t)

)
A(t)︸ ︷︷ ︸

permanent production/autoinduction

− γS(t)︸ ︷︷ ︸
degradation

.

The whole system is then given by

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)S(t)︸ ︷︷ ︸
conversion to T

(3.23)

dT

dt
= ω1A(t)S(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.24)

dB

dt
= ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.25)

dC

dt
= θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.26)

dS

dt
=

(
µ+

νS(t)

K + S(t)

)
A(t)(1 + C(t))︸ ︷︷ ︸

production with autoinduction

− γS(t)︸ ︷︷ ︸
degradation

(3.27)

Modification 3

We can also combine the two latter modifications, i.e. we combine the bounded con-
version with the changed signal molecule production.

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

−ω1A(t)S(t)

(
1− S(t)

Ks

)
︸ ︷︷ ︸

conversion to T

(3.28)

dT

dt
= ω1A(t)S(t)

(
1− S(t)

Ks

)
︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.29)

dB

dt
= ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.30)

dC

dt
= θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.31)

dS

dt
=

(
µ+

νS(t)

K + S(t)

)
A(t)(1 + C(t))︸ ︷︷ ︸

production with autoinduction

− γS(t)︸ ︷︷ ︸
degradation

(3.32)
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Modification 4

Campos et al. showed in [7] that the effect of autoinduction on the bacterial pop-
ulation can be little. For that reason we introduce a model without autoinduction,
where the signal molecule production occurs only at a constant background rate µ.
It depends on the concentration of rod shaped cells A(t) and is augmented by beta-
lactam.

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)S(t)︸ ︷︷ ︸
conversion to T

(3.33)

dT

dt
= ω1A(t)S(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.34)

dB

dt
= ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.35)

dC

dt
= θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.36)

dS

dt
= µA(t)(1 + C(t))︸ ︷︷ ︸

production

− γS(t)︸ ︷︷ ︸
degradation

(3.37)

Modification 5

Following the ideas in [7] further, we completely leave out the dependency on C(t)
in the signal molecule production and assume that onlyA(t) and S(t) induce it. This
is actually the original approach for modelling QS [27, 9].

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)S(t)︸ ︷︷ ︸
conversion to T

(3.38)

dT

dt
= ω1A(t)S(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.39)

dB

dt
= ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.40)

dC

dt
= θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.41)

dS

dt
=

(
µ+

νS(t)

K + S(t)

)
A(t)︸ ︷︷ ︸

production with autoinduction

− γS(t)︸ ︷︷ ︸
degradation

(3.42)
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Modification 6

At last we modify the term for autoinduction by replacing the linear behaviour by a
quadratic term:

dA

dt
= raA(t)

(
1− A(t)

Ka

)
︸ ︷︷ ︸

log. growth

− εβA(t)C(t)︸ ︷︷ ︸
death by beta-lactam

− ω1A(t)S(t)︸ ︷︷ ︸
conversion to T

(3.43)

dT

dt
= ω1A(t)S(t)︸ ︷︷ ︸

conversion to T

− ω2T (t)︸ ︷︷ ︸
conversion to B

(3.44)

dB

dt
= ω2T (t)︸ ︷︷ ︸

conversion to B

− δnB(t)︸ ︷︷ ︸
natural death

(3.45)

dC

dt
= θ︸︷︷︸

supply

− λC(t)︸ ︷︷ ︸
degradation

(3.46)

dS

dt
=

(
µ+

νS(t)2

K2 + S(t)2

)
A(t)(1 + C(t))︸ ︷︷ ︸

production with autoinduction

− γS(t)︸ ︷︷ ︸
degradation

(3.47)

In chapter 4 we compare all presented models and modifications of both the naive
and the QS approach.
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(a) Comparison of the observed (left) and the fitted data (right).

(b) Dynamics of the QS Model for the fitted parameter values.

Figure 3.2: Comparison and dynamics for the fitted parameter values
of the QS Model.
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(a) (ω1, ω2) ∈ [0, 2.5]× [0, 2.5]. (b) (ω1, ω2) ∈ [0.3, 0.45]× [0.3, 0.45].

(c) (ω1, ω2) ∈ [0.33, 0.39]× [0.36, 0.4]. (d) Contour plot of the least squares function
depending on ω1 and ω2.

Figure 3.3: Evaluation of the least squares function with varying pa-
rameters ω1 and ω2. Estimated minimum is indicated as white dot.
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(a) (εβ , δn) ∈ [0, 5]× [0, 1]. (b) (εβ , δn) ∈ [3.4, 3.65]× [0.1, 0.3].

(c) (εβ , δn) ∈ [0.022, 0.0235]× [0, 0.003]. (d) (εβ , δn) ∈ [0.0225, 0.0229]× [0, 0.0035].

Figure 3.4: Evaluation of the least squares function with varying pa-
rameters εβ and δn. Estimated minimum is indicated as white dot.

(a) (µ, ν) ∈ [0, 10−6]× [1, 1.3]. (b) Contour plot of the least squares function
depending on µ and ν.

Figure 3.5: Evaluation of the least squares function with varying pa-
rameters µ and ν. Estimated minimum is indicated as white dot.



Chapter 4

Discussion

4.1 Model Selection

A considerable issue in this thesis is the mismatch of amount of available data and
number of parameters in the models. Technically there are insufficient, i.e. too few
and poor, data points to use them for parameter fitting. However, we only aimed
to develop general models for the biological behaviour. Since we did not know in
which range reasonable parameters of the models lie, the data was helpful to obtain
a rough idea of the values. We do not want to read too much into the parameter
values but rather concentrate on the general behaviour and conclusions from the
models.
We still want to compare the models statistically and hence we will use the data
nevertheless to determine which model captures the biological observations best.
Therefore, we rate the models by a selection criterion, which takes into account both
a measure for the goodness of the model’s fit to the data and a measure for its com-
plexity. Goodness of fit is measured by the maximum log likelihood log(L(θ̂|D)) of
a model, whereas complexity takes into account the number of parameters used in a
model [32]. Clearly, complexity should be penalised since otherwise more elaborate
models would be preferred, which are not necessarily more explanatory and tend
to overfitting. Functionals of these measures are so-called information criteria. The
historically oldest one is “a new estimate minimum information theoretical criterion
(AIC)” [1] announced by Akaike in 1971 and formally published a few years later [1,
6, 32]. Given a set of models it ranks the adaption of each model to the data relatively
to the others by the measure

AIC = 2k − 2 log(L(θ̂|D)), (4.1)

where the maximum log likelihood log(L(θ̂|D)) is subtracted from the number of
estimable parameters k (including σ2) in the model. According to this criterion,
the preferred model is the one with minimum AIC value. There are different for-
mulations of the criterion of which one directly uses the results from least squares
estimation. If the models in the collection assume normally distributed errors with
a constant variance σ2, then the AIC can be computed as

AIC = n log
(
σ̂2
)

+ 2k, (4.2)

where n is the number of data points, k the number of parameters and

σ̂2 =
1

n

4∑
i=1

3∑
j=1

(D̂ij −Dij)2



48 Chapter 4. Discussion

is the maximum likelihood estimator of σ2 with estimated residuals

D̂ij −Dij , i, j ∈ {1, . . . , 4}.

For further reading we refer to [6].
An issue in our situation is the very small sample size n = 12 (four time points
a three types) compared to the number of estimated parameters k. Therefore, it
is recommended to use the so-called AICc, which is a second-order, bias adjusted
variant of AIC studied by Sugiura, Hurvich, and Tsai [6]. The measure is given by

AICc = AIC +
2k(k + 1)

n− k − 1
. (4.3)

If n is large with respect to k the second term goes to zero and AICc tends to the orig-
inal AIC. Table 4.1 indicates the corresponding number of parameters k estimated
in each model. Note that for linear models k is the total number of estimated pa-
rameters, including the intercept and σ2 [6]. Since our models are non-linear, we do
not have an intercept, but we have to include σ2 even though we do not estimate it
explicitly.

Model least squares value k AIC AICc

Naive Model 0.0184422 6 -65.7362 -0.4894
Modification 0.0182852 6 -65.8388 -0.4904
QS Model 0.0013519 10 -89.0937 1.3091
Modification 1 0.0013639 11 -86.9881
Modification 2 0.0013546 10 -89.0695 1.3093
Modification 3 0.0013570 11 -87.0489
Modification 4 0.0091717 8 -70.1184 -0.2212
Modification 5 0.0013525 10 -89.0882 1.3091
Modification 6 0.0013505 10 -89.1065 1.3089

Table 4.1: Least squares value, number of estimated parameters, AIC,
and AICc for different models. Computations are shown in listing 8.

Note that one cannot deduce anything from the absolute values of AIC and AICc
but only from the relation of these numbers. AIC prefers the QS Models, with Mod-
ification 6 showing the best measure. This means that in comparison to the other
models the observations are captured best by the model which explains the conver-
sion of rod cells with the help of QS and which contains a non-linear autoinduction
term. However, AICc rates the naive approach best, since this criterion penalises
the number of parameters much more than AIC. Especially the nutrient dependent
growth seems to provide a better balance between number of parameters and fit to
the data than the other models. AICc of Modification 1 and 3 is not defined since
the number of parameters is eleven leading to a zero denominator in equation (4.3).
Nevertheless, the information criteria only compare the models in the set at hand
but do not tell how good they actually depict the observations in an absolute sense.
Another criterion is the Bayesian information criterion (BIC) or Schwarz criterion.
It is very similar to the AIC but it penalises the number of parameters to a larger
extend. It is given by

BIC = log(n)k − 2 log(L(θ̂|D)), (4.4)
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where k is again the number of parameters, log(L(θ̂|D)) the maximum log likeli-
hood, and n the number of data points. Also for BIC the model with the lowest
value is selected. It has been noted that “BIC does well at getting the correct order
in large samples, whereas AICc tends to be superior in smaller samples where the
relative number of parameters is large” [34]. Hence, in our case it seems reasonable
to use the AICc.
Moreover, it should be pointed out that there are studies on more sophisticated
model selection for non-linear models. However, the introduced information cri-
teria are widely used also for non-linear models. Since it is not a main aspect of this
work, we stick to the common criteria.

4.2 Additional Remarks

The initial values for transitioning and spherical cells are set equal to zero before
the optimisation procedure since this is a reasonable value and rather intuitive. The
initial concentration of beta-lactam is given in the paper [25]. In contrast, the starting
values A(0) of the bacterial population and S(0) of signal molecules are unknown.
The paper does not provide any information about the absolute concentration of
rods and obviously not about signal molecules. Hence we estimate them together
with the other parameters, which possibly allows for a better fit of the parameters
than using arbitrarily chosen initial values.
Another issue to point out is that we are given proportions of the different cell types
but no absolute values. At every time point these proportions add up to one and
hence the proportion of one morphologic type can be computed from the others.
This special type of non-negative multivariate data whose sum is constant is called
compositional data [41]. In the implementation of the least squares function it is left
as an option whether all three cell types should be compared or only two of them,
see listing 2. According to some authors compositional data has to be treated in a
totally different way than data in absolute numbers. There are different approaches
known of how to deal this special data and recent results can be found in [41]. How-
ever, it is also common to handle compositional data without any special treatments,
as we did here. Since we obtain reasonable results there is no real need for more de-
manding methods.
As mentioned in the introduction to the concept of QS, the concentration of signal
molecules depends on changes in the bacterial cell density and presumably on en-
vironmental stress. A certain threshold of the concentration in turn is important for
alteration in gene expression. Therefore, it is substantial that the signal molecules are
produced quite fast in response to environmental stress because this is essential to
induce any change in gene expression. If the whole process would be too slow and
the dose of antibiotics high, one rather expects that the critical threshold of signal
molecule concentration is not reached fast enough.

4.3 Model Extensions

We present some ideas for further modifications of the introduced models but with-
out any detailed formulation or analysis.
Obviously one can combine the modifications introduced so far. One possibility is to
model the growth term in the QS Model also nutrient dependent as in the modifica-
tion of the Naive Model. A drawback of this approach is the increase of the system
to six equations.
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In addition, the exponential decay of the beta-lactam can be modified. One can
change the fixed zero supply rate to a non-zero value. Alternatively one can simply
use another underlying model, different from exponential decay.
Furthermore, one can incorporate the threshold for the signal molecule concentra-
tion in the QS system above which gene expression is altered. However, this param-
eter also has to be estimated by parameter fitting or a plausible value has to be found
by literature study. Since the QS approach is only a hypothesis, it suffices to model
the presented simplified version as initial attempt.
Moreover, we supposed that only rods - but no transitioning or spherical cells - pro-
duce signal molecules. This assumption can be changed by supposing that also cells
of other types or different subpopulations of the whole population produce signal
molecules.
Additionally one can include a delay in the model: one can assume that cells have
to stay in the transitioning state for a while before they convert into spherical cells.
However, this complicates the model considerably.
It also might be reasonable to include an extra beta-lactam induced death rate for
transitioning cells. From the description of the biological observations we do not
know the effect of antibiotics on this cell type.
Finally, we get back to an observation explained at the very beginning but which
we did not consider so far: the spherically shaped cells are highly fragile after treat-
ment with beta-lactam and this weakness can be exploited by AMPs, which kill the
spherical cells quite efficiently. For setting up a model including AMP treatment,
an additional equation similar to the one for beta-lactam is necessary. Furthermore,
the equation for spherically shaped cells has to be adjusted by a term that expresses
death due to AMPs.

4.4 Conclusion and Outlook

The biological findings by Monahan et al. in [25] were taken up by other researchers.
Dörr et al. report in [10, 11] a similar conversion in Vibrio cholerae as for P. aeruginosa.
Under treatment with cell wall synthesis inhibitors, the rod shaped cells transform
into viable but non-dividing spherical cells. Viducic et al. studied the tolerance of P.
aeruginosa to antibiotic stress and how this is associated to the process of QS. They
found that RpoN, a protein needed to initiate RNA synthesis, plays an important
role in both the regulation of QS and the bacterium’s survival strategy in the pres-
ence of carbapenems [42]. Their findings support our hypothesis that QS might be
relevant for the bacteria’s tolerance to beta-lactam antibiotics.

In this thesis we set up different models for the conversion of P. aeruginosa from rods
to spherical shape under treatment with beta-lactam antibiotics. The Naive Model
without any specific biological assumptions about the transition process as well as
the QS Model both seem to depict the biological behaviour. We examined and anal-
ysed the models with respect to stationary points, stability, and biological relevance,
and we were especially interested in whether the observations could be explained
by the QS approach. Even though the bacterial population does not go extinct in the
long run, the model can match the biological observations. Hence, from a mathe-
matical point of view QS could be linked to the conversion of P. aeruginosa.



Appendix A

Parameter Estimation for Different
Growth Models

Table A.1 shows growth data of P. aeruginosa in a batch culture. The time scale is
given in hours and the bacteria are measured in number of cells per micro litre.

Time (h) Cells (µL−1)

0 230
3 250
6 350
9 300
12 1420
15 1760
18 2120
21 3680
24 6600
27 8700
30 10500
33 24000
36 27800
39 30800
42 31200
45 31600
48 28000

Table A.1: Growth data of P. aeruginosa. Received from Prof. Dr. C.
Kuttler (personal communication, 04/04/2017).

We will use this data for our parameter estimation. There are different growth mod-
els for P. aeruginosa. One example is a nutrient or substrate dependent growth with
a corresponding nutrient uptake function, see for example [5, 8]. Another possible
model is logistic growth, which we consider first.

A.1 Logistic Growth

We aim to model the population density A(t) of rod shaped bacteria. We use the
familiar Verhulst equation with growth rate ra and carrying capacity Ka:

dA

dt
(t) = raA(t)

(
1− A(t)

Ka

)
.
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The explicit solution in the case of constant parameters ra and Ka is well known, see
e.g. [26, 28], and is given by

A(t) =
A0Ka

e−rat(Ka −A0) +A0
,

where A0 is the initial value of the population.
We estimate the parameters A0, ra, and Ka using likelihood estimation (cf. sec-
tion 2.2). Let ŷ(ti) denote the measured data points in table A.1 at the time points ti,
i ∈ {1, . . . , 17}, and let

y(ti, A0, ra,Ka) :=
A0Ka

e−rati(Ka −A0) +A0

represent the “true” values from the model at the corresponding time points. We
assume that ŷ(ti) are independent and normally distributed around y(ti, A0, ra,Ka)
with some variance σ2 ≥ 0. The likelihood function is given by

L(A0, ra,Ka|ŷ) =
N∏
i=1

P (ŷ(ti) = y(ti, A0, ra,Ka)|A0, ra,Ka)

=

N∏
i=1

1√
2πσ2

exp

(
−(ŷ(ti)− y(ti, A0, ra,Ka))

2

2σ2

)
,

where N = 17 is the number of data points. For computational performances it is
better to use the negative log likelihood function

J (A0, ra,Ka|ŷ) = − logL(A0, ra,Ka|ŷ)

=
N

2
log(2πσ2) +

N∑
i=1

(ŷ(ti)− y(ti, A0, ra,Ka))
2

2σ2
.

Since we are interested only in the minimisers of this function, it suffices to optimise
the least squares function

S(A0, ra,Ka|ŷ) =
N∑
i=1

(ŷ(ti)− y(ti, A0, ra,Ka))
2

with y(ti, A0, ra,Ka) = A0Ka/(e
−rati(Ka −A0) +A0).

In order to find the minimum, we perform a multi-start optimisation using 50 ran-
domly sampled parameter values and apply the MATLAB function fmincon (cf. sec-
tion 2.2). We obtain the least squares estimatorsA0

ra
Ka

 =

4.2329
0.2946
31507

 ,

in which A0 and Ka are measured in cells µL−1 and ra in h−1. The fitted curve in fig-
ure A.1 shows the result.
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Figure A.1: Parameter estimation for logistic growth of P. aeruginosa.

A.2 Nutrient Dependent Growth

As mentioned before, alternatively to the logistic model one can also include a de-
pendency on available nutrients in the system and use a nutrient uptake function.
Besides the population density A(t) of rod shaped bacteria we consider the variable
N(t) for the concentration of nutrients in the system at time t. Following [5], the
dynamics of the nutrients N(t) are expressed by

dN

dt
(t) = DN(0)− ψA(t)

N(t)n

Kn
N +N(t)n

, (A.1)

where D denotes the inflow of nutrients, ψ the nutrient consumption rate, KN the
nutrient concentration at which half maximum consumption rate is reached, and n
expresses non-linearity in the process. The dynamics of the bacterial population can
be described by

dA

dt
(t) = RaA(t)

N(t)n

Kn
N +N(t)n

(A.2)

with growth rate Ra. Note that in equation (A.1) we neglect any abiotic degrada-
tion of nutrients by other physical or chemical processes. This is justifiable since the
degradation has a much smaller effect on the dynamics than the nutrient uptake.
There is no explicit solution available and we need to solve the system of equa-
tions (A.1) to (A.2) numerically. As described above, we perform a multi-start opti-
misation with randomly sampled parameter values for Ra,KN , ψ, and A(0). The re-
maining parameter values are taken from [5]: n = 1.3,N(0) = 1 U, andD = 0.05 h−1.
Here, U stands for some unit that does not have to or cannot be specified. The MAT-
LAB function fmincon is used to minimise the least squares function of the mea-
sured data and the computed data of the ODE system, cf. section 2.2. Table A.2
summarises the parameters together with their (estimated) values and units.
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Parameter Meaning Value Unit

A(0) Initial population density of P.
aeruginosa of type A (natural rod
shape)

92.9731 cells µL−1

N(0) Initial concentration of nutrients N0 = 1∗ U
Ra Growth rate of type A 0.1663 h−1

KN Half saturation constant for con-
sumption

0.0022 U

n Non-linearity in consumption pro-
cess

1.3∗ dimensionless

D Inflow of nutrients 0.05∗ h−1

ψ Nutrient consumption rate 1.7374× 10−5 U µL cells−1 h−1

Table A.2: Parameter values for the nutrient dependent growth,
cf. [5]. Values that were fixed before the optimisation procedure are
indicated by stars.

The resulting fit is visualised in figure A.2.

Figure A.2: Parameter estimation for nutrient dependent growth of
P. aeruginosa.

The shape of the curve at time point 34h stands out because it looks like a kink. But
when zooming in, one can see that the course is actually smooth. The ODE solver
might have a bad computational performance. However, other solvers give similar
results. Nevertheless we use the estimated parameter values since the overall fit
looks acceptable.
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MATLAB Codes

B.1 Numerical Model Evaluations

In general, the computational analyses and calculations are performed in the same
way for the different models. Therefore we only show the codes for the Naive Model
but make annotations in case the implementations differ.

Parameter Estimation

For solving the ODE system of the Naive Model, equations (2.1) to (2.4) are encoded
in listing 1. The function odesystem_model1 uses as input the different param-
eters of the system, including the initial point y0, and the time interval tspan on
which a solution is required. The function returns the numerical solution sol of the
ODE system together with the corresponding time points in a vector t. The different
variables A(t), B(t), T (t), and C(t) are redefined as y(1), y(2), y(3), and y(4).
The default solver for ODE problems is ode45, but there are many more possibil-
ities: stiff ODEs for instance should be solved by special solvers such as ode15s.
According to [33], non-stiff ODEs can be solved by any solver but to the costs of
longer computing times of stiff solvers. Since our problems are not too difficult in
comparison to others, ode15s still computes a solution in an acceptable time and we
are on the safe side in case of stiff ODEs. Furthermore, we follow the advice given
in the documentation by The MathWorks, Inc. that one “can improve reliability and
efficiency by supplying the Jacobian matrix or its sparsity pattern” [37] when using
a stiff solver. Additionally we constrain the solution to be non-negative by setting
the option ’NonNegative’ in opts to true. Due to bad computational accuracy
there appear small negative values if the option is not chosen.

1 function [t,sol] = odesystem_model1(r_a, K_a, omega_1, omega_2, e_beta,
delta_n, theta, lambda, tspan, y0)↪→

2 % ODE system for the Naive Model
3

4 % define the system of ODEs; y=(A,T,B,C)
5 odefun = @(t,y)[
6 % population density of P. aeruginosa of type A
7 r_a*y(1)*(1-y(1)/K_a) - e_beta*y(1)*y(4) - omega_1*y(1);...
8 % population density of P. aeruginosa of type T
9 omega_1*y(1) - omega_2*y(2);...

10 % population density of P. aeruginosa of type B
11 omega_2*y(2) - delta_n*y(3);...
12 % concentration of beta-lactam C
13 theta - lambda*y(4)];
14

15 % provide the Jacobian
16 J = @(t,y)[
17 r_a*(1-2*y(1)/K_a) - e_beta*y(4) - omega_1, 0, 0, -e_beta*y(1);...
18 omega_1, -omega_2, 0, 0;...
19 0, omega_2, -delta_n, 0;...
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20 0, 0, 0, -lambda];
21

22 % apply the ODE-solver ode15s
23 opts = odeset('Stats','off','Jacobian',J,'NonNegative',1);
24 [t,sol] = ode15s(odefun,tspan,y0,opts);
25 end

Listing 1: ODE system of the Naive Model.

The comparison of the calculated data points with the given data set in form of
the least squares value is computed in the function lsq. The function uses the
input tspan - the vector of time points for which the solution y of the ODE sys-
tem is available. Since the cell types are measured in percentages it is possible
to disregard one of the types in the comparison and recompute it from the oth-
ers. The argument option indicates which of the cell types, that are written in
the three columns of the matrices D̂ and D respectively, shall be compared. The
default is struct(’columns’,1:3), which means that all types are used for com-
parison. It is further possible to set option equal to struct(’columns’,1:2),
struct(’columns’,2:3), or struct(’columns’,[1,3]). First the function
computes the proportions of the cell types of the calculated solution at the four time
points of interest (given by the vector t). The result is returned as output data_new.
The function value of the least squares function is returned as fval.

1 function [t,fval,data_new,data] = lsq(tspan, y, option)
2 % Function for the computation of the least squares value, which has to

be minimised.↪→

3

4 % check option / set default
5 if nargin < 3
6 option = struct('columns',1:3);
7 end
8

9 % data from bar charts in paper
10 data = 0.01*[100 0 0; 32 65 3; 3 30 67; 0 0 100];
11 t = [0 1 4 24];
12

13 % construct the matrix with rows for the different time points and
columns for different types↪→

14 A = y(ismember(tspan, t),1:3);
15 data_new = diag(1./(sum(A,2)))*A;
16

17 % least squares value
18 fval = sum(sum((data(:,option.columns) -

data_new(:,option.columns)).^2));↪→

19 end

Listing 2: Least squares function.

For least squares estimation, the latter function lsq has to be minimised in
order to get the best parameter fit. Fix parameters are stored in the file
variables_fix_model1.mat, which is loaded at the beginning. For the Naive
Model we estimate the mass action parameters ω1 and ω2 as well as the parameters
εβ , δn and the initial population of rod shaped bacteria A(0). Therefore, we perform
a multi-start optimisation using n randomly sampled values for every parameter.
The MATLAB function fmincon starts each optimisation with the sampled points
and then calculates a minimum of the objective function. For fmincon one can
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choose the algorithm that is used to find the minimum, however we stick to the de-
fault option ’interior-point’. Other possibilities are ’active-set’, ’sqp’,
’sqp-legacy’, or ’trust-region-reflective’. Explanations and details can
be found online in the documentation of The MathWorks, Inc. [38]. In order to ob-
tain more accurate results, the option OptimalityTolerance is reduced from the
default to 10−10.

1 %% Optimisation
2 clear variables; close all; clc;
3 cd /home/rebekka/Dokumente/Studium/Masterarbeit/Matlab/model1
4

5 % load all parameters and initial values
6 load('variables_fix_model1.mat');
7 tspan = 0:0.1:24;
8 n = 50;
9

10 % generate n randomly sampled parameter values
11 omega_1 = 2*rand(n,1);
12 omega_2 = 2*rand(n,1);
13 e_beta = 2*rand(n,1);
14 delta_n = rand(n,1);
15 A0 = 200+rand(n,1)*1000;
16

17 % predefine matrices and options
18 MLE = NaN(5,n); % matrix for MLEs
19 fval = NaN(1,n); % vector for function values
20 options = optimoptions('fmincon', 'Display', 'off', 'Algorithm',

'interior-point', 'OptimalityTolerance', 1e-10);↪→

21

22 % perform the minimisation for all n starts
23 tic
24 fun = @(x) solver(r_a, K_a, x(1), x(2), x(3), x(4), theta, lambda, tspan,

[x(5), y0(2:4)]);↪→

25

26 for i=1:n
27 [MLE(:,i),fval(i),exitflag,output] = fmincon(fun,[omega_1(i),

omega_2(i),e_beta(i),delta_n(i),A0(i)],[],[],[],[],[0 0 0 0 0],
[5 5 5 5 5000],[],options);

↪→

↪→

28 end
29 toc
30

31 % find the minimum of all computations
32 [fval_sol,j] = min(fval);
33 % save the fitted parameters of final MLE(:,j)
34 omega_1 = MLE(1,j);
35 omega_2 = MLE(2,j);
36 e_beta = MLE(3,j);
37 delta_n = MLE(4,j);
38 A0 = MLE(5,j);
39

40 save('variables_MLE_model1.mat','omega_1','omega_2','e_beta','delta_n',
'A0','fval_sol');↪→

41

42 %% Appendix
43 function fval = solver(r_a, K_a, omega_1, omega_2, e_beta, delta_n,

theta, lambda, tspan, y0)↪→

44

45 % calculate ODE solution
46 [~,y] = odesystem_model1(r_a, K_a, omega_1, omega_2, e_beta, delta_n,

theta, lambda, tspan, y0);↪→

47 % calculate least squares value
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48 [~,fval,~,~] = lsq(tspan,y);
49 end

Listing 3: Multi-start optimisation of the least squares function.

The model dynamics and the comparison to the given data are visualised by the fol-
lowing code. It uses the fix parameters in variables_fix_model1.mat and the
newly estimated parameter values in variables_MLE_model1.mat for calculat-
ing a solution of the ODE system for the fitted parameters. Then the dynamics are
plotted over time and a bar chart for the comparison of the given and the calculated
data points at the four time points 0, 1, 4, and 24 is created.

1 %% Visualisation
2 cd /home/rebekka/Dokumente/Studium/Masterarbeit/Matlab/model1
3

4 % load fix variables
5 load('variables_fix_model1.mat');
6 % load fitted variables
7 load('variables_MLE_model1.mat');
8 tspan = 0:0.1:24;
9

10 % calculate the ODE solution for the given parameters
11 tic
12 [~,y] = odesystem_model1(r_a, K_a, omega_1, omega_2, e_beta, delta_n,

theta, lambda, tspan, [A0, y0(2:4)]);↪→

13 toc
14

15 % plot the resulting dynamics
16 figure
17 plot(tspan,y(:,1),'r',tspan,y(:,2),'b',tspan,y(:,3),'g',

tspan,y(:,1)+y(:,2)+y(:,3),'y','LineWidth',2);↪→

18 set(gca,'FontSize',20);
19 xlabel('Time (h)');
20 ylabel('Population density (cells/mL)');
21 legend('type A (cells/mL)','type T (cells/mL)','type B (cells/mL)','total

(A+T+B)','Location', 'east');↪→

22

23 % determine proportions at time points in t, get observed data
24 [t,~,data_new,data] = lsq(tspan,y);
25

26 % plot bar charts
27 figure
28 subplot(1,2,1)
29 Bar1 = bar(data,'stacked');
30 set(Bar1,{'FaceColor'},{'r';'b';'g'});
31 set(gca,'FontSize',15);
32 title('Observed distribution');
33 xlabel('Time after antibiotic addition (h)');
34 ylabel('Percentage of cells');
35 legend('rods','transitioning cells','spherical

cells','location','northoutside');↪→

36 set(gca,'XTickLabel', t);
37 ylim([0 1]);
38 subplot(1,2,2)
39 Bar2 = bar(data_new,'stacked');
40 set(Bar2,{'FaceColor'},{'r';'b';'g'});
41 set(gca,'FontSize',15);
42 title('Fitted distribution');
43 xlabel('Time after antibiotic addition (h)');
44 ylabel('Percentage of cells');
45 legend('rods','transitioning cells','spherical

cells','location','northoutside');↪→
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46 set(gca,'XTickLabel', t);
47 ylim([0 1]);
48

49 save('results_model1.mat','omega_1','omega_2','e_beta',
'delta_n','A0','fval_sol','data_new');↪→

Listing 4: Visualisation of the Naive Model.

Uncertainty of Estimates

For visualising the uncertainty of the estimates ω1 and ω2, we evaluate the least
squares function for varying combinations of these two parameters and depict it as
heatmap. The different parameter values for ω1 and ω2 are generated by the MAT-
LAB function linspace(a,b,n), which returns a row vector of n evenly spaced
points between a and b [39]. One example for a filled contour plot and a contour
plot under the three-dimensional shaded surface is given below.

1 clear variables; close all; clc;
2 cd /home/rebekka/Dokumente/Studium/Masterarbeit/Matlab/model1
3

4 % load all parameters and initial values
5 load('variables_fix_model1.mat');
6 load('variables_MLE_model1.mat');
7 omega_1_optim = omega_1;
8 omega_2_optim = omega_2;
9 tspan = 0:0.1:24;

10

11 % vary omega_1 and omega_2
12 n = 50;
13 omega_1 = linspace(0.9,1.4,n);
14 omega_2 = linspace(0.27,0.38,n);
15 C = NaN(n);
16

17 % calculate function values of least squares function
18 tic
19 for i=1:n
20 for j=1:n
21 C(j,i) =

solver(r_a,K_a,omega_1(i),omega_2(j),e_beta,delta_n,theta,
lambda,tspan,[A0,y0(2:4)]);

↪→

↪→

22 end
23 end
24 toc
25

26 % plot filled contour plot
27 figure
28 contourf(omega_1,omega_2,C,30);
29 hold on
30 scatter(omega_1_optim,omega_2_optim,'ow','filled')
31 set(gca,'FontSize',15);
32 axis square
33 xlabel('\omega_1');
34 ylabel('\omega_2');
35 colorbar
36

37 % plot contour plot under the three-dimensional shaded surface
38 figure
39 surfc(omega_1,omega_2,C)
40 hold on
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41 scatter(omega_1_optim,omega_2_optim,'ow','filled')
42 xlabel('\omega_1');
43 ylabel('\omega_2');
44 colorbar
45

46 %% Appendix
47 function fval = solver(r_a, K_a, omega_1, omega_2, e_beta, delta_n,

theta, lambda, tspan, y0)↪→

48

49 % calculate ODE solution
50 [~,y] = odesystem_model1(r_a, K_a, omega_1, omega_2, e_beta, delta_n,

theta, lambda, tspan, y0);↪→

51 % calculate least squares value
52 [~,fval,~,~] = lsq(tspan,y);
53 end

Listing 5: Generation of heatmaps for ω1 and ω2 in the Naive Model.

Possibly one has to determine the contour levels (last argument of contourf) man-
ually as for example in the case of µ and ν by setting

v = logspace(-5,log10(0.05),40);
contourf(mu,nu,C,v);

The function logspace(a,b,n) generates n logarithmically spaced points be-
tween decades 10a and 10b [40].

Model Analysis

To determine stationary points of the system, we solve the right hand side of the
model with the help of MATLAB. In principal this can be done nicely using the
MATLAB live script, but here we show the standard code for calculating stationary
points, the Jacobian, and the eigenvalues of the Jacobian evaluated at the stationary
points.

1 % definition of variables and parameters
2 syms A T B C
3 syms r_a K_a e_beta omega_1 omega_2 delta_n theta lambda
4

5 % definition of RHS of ODE system
6 ode1 = r_a*A*(1-A/K_a) - e_beta*A*C - omega_1*A;
7 ode2 = omega_1*A - omega_2*T;
8 ode3 = omega_2*T - delta_n*B;
9 ode4 = theta - lambda*C;

10

11 % determine equilibria
12 eqns = [ode1 == 0, ode2 == 0, ode3 == 0, ode4 == 0];
13 equi = solve(eqns, [A T B C]);
14 simplify(equi.A)
15 simplify(equi.T)
16 simplify(equi.B)
17 simplify(equi.C)
18

19 % determine general Jacobian
20 odes = [ode1, ode2, ode3, ode4];
21 J = jacobian(odes, [A T B C])
22

23 % J_1
24 J_1 = simplify(subs(J, [A,T,B,C], [equi.A(1), equi.T(1), equi.B(1),

equi.C(1)]))↪→
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25 eig(J_1)
26

27 % J_0
28 J_0 = subs(J, [A,T,B,C], [equi.A(2), equi.T(2), equi.B(2), equi.C(2)])
29 eig(J_0)

Listing 6: Stationary points of the Naive Model and their stability.

Dependency of the Stationary Point P1 on ω1 in the Naive Model

For the Naive Model we want to know where the solution of the ODE system tends
to in the long run if we change one of the parameters - in our case ω1. Therefore,
we calculate the ODE solutions for ω1 varying between zero and 0.5 h−1, extract the
population densities after 500 hours, and plot them against ω1. Additionally, we
visualise the population densities of the stationary point P1 for different values of
ω1.

1 clear variables; close all; clc;
2 cd /home/rebekka/Dokumente/Studium/Masterarbeit/Matlab/model1
3

4 % load fix variables
5 load('variables_fix_model1.mat');
6 % load fitted variables
7 load('variables_MLE_model1.mat');
8 tspan = 0:0.1:500;
9 omega_1 = 0:0.01:0.5;

10 Y=NaN(length(tspan),4,length(omega_1));
11

12 % calculate the ODE solution for the given parameters and varying omega_1
13 for i=1:length(omega_1)
14 [~,Y(:,:,i)] = odesystem_model1(r_a, K_a, omega_1(i), omega_2,

e_beta, delta_n, theta, lambda, tspan, [A0, y0(2:4)]);↪→

15 end
16

17 % extract the population densities after 500h
18 Y = squeeze(Y(end,:,:));
19

20 % plot the result
21 figure
22 plot(omega_1,Y(1,:),'r',omega_1,Y(2,:),'b',omega_1,Y(3,:),'g',

'LineWidth',2);↪→

23 y1=get(gca,'ylim');
24 hold on
25 plot([r_a r_a],y1,'--');
26 set(gca,'FontSize',20);
27 xlabel('\omega_1 (1/h)');
28 ylabel('Population density (cells/mL)');
29 legend('type A (cells/mL)','type T (cells/mL)','type B

(cells/mL)','Location', 'northeast');↪→

30

31 %% stationary point P1
32 % calculate the population densities in the stationary point
33 Sigma = K_a.*(lambda.*r_a-e_beta.*theta-lambda.*omega_1)./(lambda.*r_a);
34 A1 = Sigma;
35 T1 = NaN(length(omega_1),1);
36 B1 = NaN(length(omega_1),1);
37

38 for i=1:length(omega_1)
39 T1(i) = omega_1(i)./omega_2.*Sigma(i);
40 B1(i) = omega_1(i)./delta_n.*Sigma(i);
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41 end
42

43 % plot the population densities in P1
44 figure
45 plot(omega_1,A1,'r',omega_1,T1,'b',omega_1,B1,'g','LineWidth',2);
46 y1=get(gca,'ylim');
47 hold on
48 plot([r_a r_a],y1,'--');
49 set(gca,'FontSize',20);
50 xlabel('\omega_1 (1/h)');
51 ylabel('Population density (cells/mL)');
52 legend('type A (cells/mL)','type T (cells/mL)','type B

(cells/mL)','Location', 'southwest');↪→

Listing 7: Behaviour of the solution of the Naive Model in the long
run for different values of ω1.

B.2 Model Selection

We show the computation of the information criteria exemplary for the Naive
Model. First the function value of the least squares function for the solution is
loaded, which then is used in the function IC(n,k,fval). It calculates for the
number of data points n, the number of fitted parameters k, and the function value
fval the corresponding AIC and AICc.

1 n = 12; % number of sample points
2 % predefine vectors
3 AIC = NaN(10,1);
4 AICc = NaN(10,1);
5 fval = NaN(10,1);
6

7 %% Naive Model (v1):
8 cd /home/rebekka/Dokumente/Studium/Masterarbeit/Matlab/model1
9

10 % load the function value of the solution
11 load('results_model1.mat');
12

13 % determine the AIC/AICc
14 k = 6;
15 [AIC(1), AICc(1)] = IC(n,k,fval_sol);
16 fval(1) = fval_sol;
17

18 %% IC function
19 function [AIC, AICc] = IC(n,k,fval)
20 AIC = 2*k + n*log(fval/n);
21 AICc = AIC + 2*k*(k+1)/(n-k-1);
22 end

Listing 8: Computation of AIC and AICc for model selection.

B.3 Growth Models

Logistic Growth

Since we know the explicit solution of the Verhulst equation, we do not need to solve
an ODE system. For parameter fitting we only perform a multi-start optimisation of
the likelihood function, which equals the least squares function in our case.
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1 clear variables; close all; clc;
2

3 % given data points
4 t = 0:3:48;
5 data = [230, 250, 350, 300, 1420, 1760, 2120, 3680, 6600, 8700, 10500,

24000, 27800, 30800, 31200, 31600, 28000];↪→

6

7 % generate 50 randomly sampled parameter values
8 r = 0.5+0.5*rand(50,1);
9 K = 25000+(35000-25000)*rand(50,1);

10

11 MLE = NaN(3,50); % matrix for MLEs
12 fval = NaN(1,50); % vector for function values of the MLEs
13 options = optimoptions('fmincon', 'Display', 'off');
14

15 % optimisation
16 tic
17 fun = @(x) lsq_growth(x(1),x(2),x(3),t,data);
18

19 for i=1:50
20 [MLE(:,i),fval(i)] = fmincon(fun,[data(1),r(i),K(i)],[],[],[],[], [1

0.005 20000],[10000 300 50000],[],options);↪→

21 end
22 toc
23

24 % find the minimum of all computations
25 [fval_sol,j] = min(fval);
26 % save the fitted parameters of final MLE(:,j)
27 A0_sol = MLE(1,j);
28 r_sol = MLE(2,j);
29 K_sol = MLE(3,j);
30

31 % plot the result
32 figure
33 plot(t,data,'*r','LineWidth',2);
34 hold on
35 s = 0:0.01:48;
36 plot(s,(A0_sol.*K_sol) ./

(exp(-r_sol.*s).*(K_sol-A0_sol)+A0_sol),'b','LineWidth',2);↪→

37 set(gca,'FontSize',20);
38 xlabel('Time (h)');
39 ylabel('Number of cells per \muL');
40 legend('measured data','fitted data','Location','northwest');
41

42 %% Appendix
43 function fval = lsq_growth(A0,r,K,t,data)
44

45 % calculate the solution
46 y_true = (A0*K) ./ (exp(-r*t)*(K-A0)+A0);
47 % calculate least squares value
48 fval = sum((data-y_true).^2);
49 end

Listing 9: Parameter fitting for the logistic growth model.

Nutrient Dependent Growth

The computations for the nutrient dependent growth run in the same way as the
parameter fitting for the models in chapter 2 and chapter 3. We set up a function for
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solving the ODE system for the concentration of rod shaped cells A(t) and nutrients
N(t).

1 function [t,sol] = odesystem(r_a, K_N, n, D, psi, tspan, y0)
2 % ODE system for nutrient dependent growth
3

4 N0 = y0(2);
5 % define the system of ODEs; y=(A,N)
6 odefun = @(t,y)[% growth of P. aeruginosa of type A
7 r_a*y(1)*y(2).^n/(K_N.^n+y(2).^n);...
8 % concentration of nutrients in the system
9 D*N0-psi*y(1)*y(2).^n/(K_N.^n+y(2).^n)];

10

11 % apply the ODE-solver ode15s
12 opts = odeset('Stats','off','NonNegative',1);
13 [t,sol] = ode15s(odefun,tspan,y0,opts);
14 end

Listing 10: ODE system of the nutrient dependent growth model.

The calculation of the least squares value between the given growth data and the
numerical solution is similar as before and we plot the measured points in one plot
with the computed solution.

1 clear variables; close all; clc;
2

3 % given data points
4 data = [230, 250, 350, 300, 1420, 1760, 2120, 3680, 6600, 8700, 10500,

24000, 27800, 30800, 31200, 31600, 28000];↪→

5

6 % define fix parameters
7 n = 1.3;
8 N0 = 1;
9 D = 0.05;

10 tspan = 0:3:48;
11 k = 5;
12

13 % generate k randomly sampled parameter values
14 r_a = rand(k,1);
15 K_N = rand(k,1);
16 psi = rand(k,1);
17

18 MLE = NaN(4,k); % matrix for MLEs
19 fval = NaN(1,k); % vector for function values of the MLEs
20 options = optimoptions('fmincon', 'Display', 'off');
21

22 % perform the minimisation for all k starts
23 tic
24 fun = @(x) solver(x(1), x(2), n, D, x(3), tspan, [x(4), N0], data);
25

26 for i=1:k
27 [MLE(:,i),fval(i)] = fmincon(fun,[r_a(i), K_N(i), psi(i), data(1)],

[],[],[],[],[0 0 0 1],[10 100 5 10000],[],options);↪→

28 end
29 toc
30

31 % find the minimum of all computations
32 [fval_sol,j] = min(fval)
33 % save the fitted parameters of final MLE(:,j)
34 r_a = MLE(1,j);
35 K_N = MLE(2,j);
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36 psi = MLE(3,j);
37 A0 = MLE(4,j);
38

39 save('variables_MLE_growth.mat','r_a','K_N','psi','A0','fval_sol');
40

41 % calculate ODE solution
42 [~,y_true] = odesystem(r_a, K_N, n, D, psi, 0:0.01:48, [A0,N0]);
43

44 % plot the result
45 figure
46 plot(tspan,data,'*r','LineWidth',2);
47 hold on
48 plot(0:0.01:48,y_true(:,1),'b','LineWidth',2);
49 set(gca,'FontSize',20);
50 xlabel('Time (h)');
51 ylabel('Number of cells per \muL');
52 legend('measured data','fitted data','Location','northwest');
53

54 %% Appendix
55 function fval = solver(r_a, K_N, n, D, psi, tspan, y0, data)
56

57 % calculate ODE solution
58 [~,y] = odesystem(r_a, K_N, n, D, psi, tspan, y0);
59 % extract the data points of type A cells from solution
60 data_new = y(:,1);
61 % least squares value
62 fval = sum((data - data_new').^2);
63 end

Listing 11: Parameter fitting for the nutrient dependent growth
model.
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