
Chapter 12
BIM programming

Julian Amann, Cornelius Preidel, Eike Tauscher, André Borrmann

Abstract This chapter describes different possibilities for programming BIM appli-
cations with particular emphasis on processing data in the vendor-neutral Industry
Foundation Classes (IFC) exchange format. It describes how to access data in STEP
clear text encoding and discusses the differences between early and late binding.
Given the increasingly important role of ifcXML in the exchange of IFC data, the
chapter also examines different access variants such as SAX (Simple API for XML)
and DOM (Document Object Model), and discusses the different geometry repre-
sentations of IFC and their interpretation. Furthermore, the chapter gives a brief
overview of the development of add-ins as a means of allowing existing software to
be adapted to user-specific needs. The chapter ends with a brief overview of cloud-
based platforms and a short introduction to visual programming.

12.1 Introduction

As described in earlier chapters, a wide range of different software products have
been developed to serve specific tasks in the construction industry, with new soft-
ware tools emerging all the time. To make efficient use of these tools in the value-
added chain, data exchange at a high semantic level is paramount. Today, this is
increasingly achieved using open data formats such as the Industry Foundation
Classes (IFC) (see Chap. 6). To use information contained in an IFC instance file,

Julian Amann · Cornelius Preidel · André Borrmann
Technical University of Munich, Chair of Computational Modeling and Simulation, Arcisstraße
21, 80333 Munich, Germany
e-mail: julian.amann@tum.de, cornelius.preidel@tum.de, andre.borrmann@tum.de

Eike Tauscher
Bauhaus-Universität Weimar, Chair of Computing in Civil Engineering, Coudraystraße 7, 99421
Weimar, Germany
e-mail: eike.tauscher@uni-weimar.de

1

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3

mailto:julian.amann@tum.de
mailto:cornelius.preidel@tum.de
mailto:andre.borrmann@tum.de
meilto:eike.tauscher@uni-weimar.de


2 J. Amann et al.

it needs to be accessed using the respective programming language. This chapter
outlines the different methods and practices.

12.2 Procedures for accessing data in the STEP format

The most commonly used format for the storage of IFC instance file is STEP Clear
Text Encoding (ISO 10303-21, 2016), also known as STEP P21. Techniques for
reading and writing STEP files can be categorized into two key approaches: early
binding and late binding.

12.2.1 Early binding

With the early binding approach, the entities of the EXPRESS schema in the STEP
P21 file are mapped to the target programming language (host language) using a
suitable mapping method. Early binding make it possible to map the STEP file to
entities of the host language, i.e. to read a STEP file, and subsequently to convert the
host entities back into a STEP file, i.e. to write a STEP file. While it is theoretically
possible to implement early binding manually, it is not recommended for the IFC
data model due to the large number of entities (several hundred) and accompanying
risk of introducing programming errors through manual implementation.

As a rule, a code generator is used that takes an EXPRESS schema as input and
produces entities (e.g. classes) of the host language as output. This mapping and
the associated code generation need only be performed once for a given EXPRESS
schema, and need only be repeated if the underlying EXPRESS schema changes.
In the case of the IFC, this is comparatively rare and when changes are made, a
new version number for the corresponding EXPRESS schema is issued (e.g. IFC4,
IFC2x3 TC1, IFC2x3, IFC2x2, etc.).

From a technical viewpoint, if several different IFC schema versions need to
be supported in parallel, each version requires its own separate early binding. Fig-
ure 12.1 shows an overview of the early binding process. The code generator gener-
ates a corresponding mapping for each entity in the target programming language,
e.g. for the C++ programming language, a C++ class called IfcAddress is gener-
ated for the EXPRESS entity IfcAddress. There are no standardized rules for map-
ping EXPRESS entities to a programming language, and the developer of the code
generator therefore has a free hand. In object-oriented programming languages, EX-
PRESS entities are typically mapped to classes, inheritance is implemented with the
inheritance syntax, and references are realized with pointers, smart pointers (point-
ers that deal with memory management) or references in the target programming
language.

A code generator needs to be able to parse the EXPRESS grammar by means
of a lexer that generates tokens from the input symbols of the STEP file, processes

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



12 BIM programming 3

Fig. 12.1 Scheme of an early binding. For each entity, a corresponding class is created for the
target programming language.

them using a parser to create a syntax tree and then validates the syntax of the
respective EXPRESS schema for correctness. The code generator should ideally
be able to produce a valid mapping for the target language in one step from the
EXPRESS schema without any manual intervention. In practice, however, not all
code generators are able to convert any valid EXPRESS schema and may need a pre-
processing step or additional manual effort up front. IfcOpenShell1 is an example
of a code generator for the target programming language C++, while the JSDAI
library2 can be used for the programming language Java.

The following listing shows the use of the TUM Open Infra Platform Early Bind-
ing EXPRESS generator3 with the IFC4 schema:

// create a model
ifc_model = shared_ptr<Ifc4Model>(new Ifc4Model());
// ...

// create a point with the coordinates (9,10)
shared_ptr<IfcCartesianPoint> pnt =

std::make_shared<IfcCartesianPoint>(id++);
ifc_model->insertEntity(pnt); // add point to model
// set coordinates of point
pnt->m_Coordinates.push_back(

std::make_shared<IfcLengthMeasure>(9.0)
);
pnt->m_Coordinates.push_back(

std::make_shared<IfcLengthMeasure>(10.0)
);
// ...

// write a STEP P21 file
shared_ptr<IfcStepWriter> step_writer =

std::make_shared<IfcStepWriter>()
std::stringstream stream;
stream.precision(20);

1 https://github.com/IfcOpenShell/IfcOpenShell/tree/master/src/ifcexpressparser
2 http://www.jsdai.net
3 https://bitbucket.org/tumcms/oipexpress

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3

https://github.com/IfcOpenShell/IfcOpenShell/tree/master/src/ifcexpressparser
http://www.jsdai.net
https://bitbucket.org/tumcms/oipexpress


4 J. Amann et al.

step_writer->writeStream(stream, ifc_model);
std::ofstream myFile("MyFile.ifc");
myFile<<stream.str().c_str();

The program creates an instance of the entity IfcCartesianPoint with the co-
ordinates (9.0, 10.0). Subsequently, an IfcStepWriter object is created, which is
used to convert the generated model (ifc_model) to a STEP P21 file.

12.2.2 Late Binding

In contrast to early binding, late binding uses a fixed interface called the standard
data access interface (SDAI). The SDAI is an application programming interface
(API) that provides a defined set of functions and methods to read and write STEP
files, and is standardized in abstract form in the ISO 10303-22 standard (ISO 10303-
22, 1998) . In addition, the STEP standard defines three different bindings for three
different programming languages: Part 23 (ISO 10303-23, 2000) defines a C++
binding, part 24 a C binding, and part 27 a Java binding. Bindings for other software
languages, such as C#, have been implemented by other software vendors which,
while not standardized, are based on the standardized bindings.

The following examples use the C binding of the SDAI, but the principles are
transferable to other bindings. In the C binding, all variable names, constants, alias
types (typedef) and function names start with the prefix sdai. SDAI operations are
always executed in the scope of an SDAI session. The data of a STEP file is stored
in a SDAI model, which is also part of a SDAI repository. The following listing
illustrates the use of the C-SDAI API:

SdaiSession session = sdaiOpenSession(); // open a new session

// open a new repository
SdaiRepo repository = sdaiOpenRepositoryBN(session,

"MyFile.ifc");

// create a model
int ifcModelId = sdaiCreateModelBN(0, "MyModelName", "IFC4.exp");

// create a point with the coordinates (9,10)
int ifcCartesianPointId =

sdaiCreateInstanceBN(ifcModelId, "IfcCartesianPoint");
int ifcCoordinatesId =

sdaiCreateAggrBN(ifcCartesianPointId, "Coordinates");
sdaiAdd(ifcCoordinatesId, sdaiREAL, 9.0);
sdaiAdd(ifcCoordinatesId, sdaiREAL, 10.0);
sdaiSaveChanges(ifcModelId);
sdaiCloseRepository(repository);
sdaiCloseSession(session);

The above program, as before, produces an IfcCartesianPoint entity, which
is stored in a STEP file.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



12 BIM programming 5

Table 12.1 Overview of common STEP/IFC libraries.

Name Language License STEP IFC Visuali-
zation

URL of website

IfcPlusPlus C++ MIT No Yes Yes https://github.com/
ifcquery/ifcplusplus

IfcOpenShell C++/Python OSGPL No Yes Yes http://ifcopenshell.org/

JSDAI Java AGPL v3 Yes No No http://www.jsdai.net/

xBIM Toolkit C# CDDL No Yes Yes https://github.com/
xBimTeam

IFC Tools
Project

Java/C# CC BY-
NC 4.0 DE

Yes Yes Yes http://www.
ifctoolsproject.com

IFC Engine C++/C# proprietary Yes Yes Yes http://rdf.bg/ifc-engine-
dll.php

STEPcode C++/Python BSD Yes Yes No http://stepcode.org/mw/
index.php/STEPcode

ifc-dotnet C# BSD No Yes No https://code.google.
com/p/ifc-dotnet/

While with early binding an equivalent for each entity of the EXPRESS schema
is created in the host programming language, this intermediate code generation step
is not necessary when using late binding. The late binding approach can therefore re-
spond flexibly to changes in the EXPRESS schema. This is achieved using a generic
approach that allows both the instantiation and access to entities based on the un-
derlying EXPRESS schema during program runtime.

To accomplish this, however, the interface must frequently be called with strings
used as parameters, which denote, for example, which entity should be created,
which attribute should be read or which function should be executed. This requires
in-depth knowledge of the underlying EXPRESS schema, not least because the au-
tomatic code completion functionality of modern development environments cannot
help here. In addition, this is problematic from a programming perspective because,
for example, syntax errors within such a string are not recognized by the compiler
and thus only come to light when the program is run.

The handling of IFC files using the SDAI is much more difficult since the same
entities with the same attributes, inheritance hierarchies and relations in the host
language are not available as they are with early binding, and therefore cannot be
checked during compiling to reliably exclude such errors. In theory, a key advan-
tage of the SDAI is that an SDAI implementation from one vendor can be swapped
with another, as they are standardized. In practice, however, this is not always as
straightforward because some vendors integrate advanced SDAI functions into their
APIs that are not part of the standard.

Table 12.1 shows a (non-exhaustive) overview of different libraries that can be
used to read or write STEP and IFC files.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3

https://github.com/ifcquery/ifcplusplus
https://github.com/ifcquery/ifcplusplus
http://ifcopenshell.org/
http://www.jsdai.net/
https://github.com/xBimTeam
https://github.com/xBimTeam
http://www.ifctoolsproject.com
http://www.ifctoolsproject.com
http://rdf.bg/ifc-engine-dll.php
http://rdf.bg/ifc-engine-dll.php
http://stepcode.org/mw/index.php/STEPcode
http://stepcode.org/mw/index.php/STEPcode
https://code.google.com/p/ifc-dotnet/
https://code.google.com/p/ifc-dotnet/


6 J. Amann et al.

Fig. 12.2 Class diagram that shows a small part of the Qt SAX framework. The member methods
of the class QtXmlDefaultHandler are incomplete.

12.3 Accessing XML encoded IFC data

In recent years, Extensible Markup Language (XML) has established itself as a stan-
dard and cross-industry approach for describing schemas and instance data. Both
Microsoft’s .NET framework and Java Standard Edition include an XML parser for
handling XML files. There are numerous libraries for C++ for reading and writing
XML files, for example, the Qt-libraries or the Xerces C++ XML parser, which is
particularly suitable for very large XML files. In short, support for reading and cre-
ating XML documents or the availability of middleware for this task is much better
for XML than for STEP.

Starting with version 4 of the IFC standard, an XML schema is also available as
an equivalent to the EXPRESS schema. XML Schema Definition (XSD) is used as
the description language. This defines the structure of XML instance files and allows
them to be validated against the corresponding schema. Most major frameworks
include XSD validators for this purpose.

Although from a programming standpoint, data access via XML is easier to
implement using XML for the reasons mentioned above, it is currently far less
widespread than its STEP counterpart. This can be attributed in part to the historical
development of IFC, which was based on STEP and the data modeling language
EXPRESS. A further reason is the size of ifcXML files, which are often multiple
times larger than their STEP counterparts due to the XML tag syntax (see Chap. 6).
ifcXML4 has improved on this through the definition of a more compact represen-
tation which may help the XML mapping of IFC data gain popularity in future.
However, it must be noted that the XML schema of the IFC contains none of the in-
verse attributes, rules or functions included in the original IFC EXPRESS schema.

There are three commonly used approaches to reading and writing XML files:
SAX, DOM and class generators.

SAX (Simple API for XML) was initially a Java library for sequentially reading
XML documents. The software architecture of the original SAX implementation has
become the de-facto standard and found its way into numerous other frameworks.
Figure 12.2 shows a small part of the class QtXmlDefaultHandler of the Qt-SAX
framework. Object-oriented programming languages usually offer a base classes or
interface (cf. QtXmlDefaultHandler) which can be tailored by the developer via in-
heritance to serve a custom purpose. The SAX parser reads the XML document and
invokes the appropriate method upon finding a specific XML element. For example,

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



12 BIM programming 7

parsing the root tag invokes the startDocument method, while the endDocument

method is called at the end. XML elements are treated in a similar fashion, calling
startElement or endElement at the start or end of the element respectively. The
SAX parser is, however, only capable of verifying whether an XML file is valid or
not while reading it.

Like SAX, the DOM (Document Object Model) is a common method for access-
ing XML and is likewise supported in multiple frameworks. The following listing
shows the use of DOM in Qt:
QDomDocument doc; // create a DOM document
QDomProcessingInstruction header = // create XML header

doc.createProcessingInstruction("xml",
"version=\"1.0\"");

doc.appendChild(header); // Add XML header to DOM document
QDomElement root = doc.createElement("root");
root.setAttribute("version", getApplicationVersionString());
doc.appendChild(root);

// save entity
QDomElement xmlAlignments = doc.createElement("Alignments");
root.appendChild(xmlAlignments);

QFile file(filename.c_str()); // save XML file
file.open(QIODevice::WriteOnly))
QTextStream ts(&file);
ts << doc.toString();

The last approach is the equivalent of an early binding method for XML. Here
too, multiple tools are available for generating a class hierarchy from an XML
schema and providing read/write methods for the respective XML file. This ap-
proach has the same advantages and disadvantages as STEP-based early binding.

12.4 Interpretation of IFC geometry information

Alongside semantic information, geometric information plays an important role in
IFC-based data exchange, due to the relevance of geometry in the design, construc-
tion and operation of buildings. It is essential that all software tools correctly inter-
pret this data when visualizing or processing the geometric information contained in
an IFC file. While most available geometry models support the export of geometric
information into the IFC format (see Chap. 6), the provision of import function-
alities is more complex because software systems need to support all geometric
representation methods defined by the exchange requirements (see Chap. 7).

A large part of the IFC geometry descriptions is based on definitions in the ISO
standard 10303-42 (ISO 10303-42, 2014). IFC version 4 supports the following
approaches of geometry descriptions (see Chap. 2 for more details):

• Constructive Solid Geometry (CSG): Solids formed by the result of Boolean op-
erators – union, difference or intersection – on two or more solids.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



8 J. Amann et al.

• Half-space solids: Solids which are bounded on one side by a surface.
• Extrusion bodies: Solids produced by extrusion of a surface along a vector, one

or more polylines, curves, splines or other mathematical functions.
• Boundary Representation: Solid bodies described by means of the surfaces de-

limiting them.
• Tessellated objects: Sets of triangulated surfaces.
• Geometric groups: Groups of geometric elements that do not have a topological

structure, such as 2D or 3D points, lines, curves, surfaces.
• Non-Uniform Rational B-Splines (NURBS): Representation of surfaces based on

B-splines.

In the following, two of the above models are presented in more detail to illustrate
the complexity of interpreting geometry.

Geometric models are divided into two primary categories: evaluated (or explicit)
and non-evaluated (or implicit) models. Evaluated models are relatively easy to in-
terpret since all geometric information relevant to the representation or further pro-
cessing is explicitly available within the IFC data model. The Brep representation
used in IFC can be taken as an example for such a model. All vertices of a body
are already present with the correct coordinates and need no further calculation.
The limiting surfaces (faces) result from the topological relationship between the
vertices and edges.

Non-evaluated geometry models require the execution of sometimes complex
geometric operations, because the implicit geometric information for representing
an object must first be processed. An example of this is CSG modeling.

The basis of a CSG model, as described in detail in Chap. 2, is its so-called
construction tree. It describes the construction history of the arising object, with
the result of all Boolean operations at the root of the tree. The primitive bodies are
located at the leaves of the tree, and are combined by the inner nodes of the tree
using regularized Boolean set operations.

The calculations required to produce the final geometric bodies can be very com-
plex. Different calculation models exist for different methods: for example, if the
operands are provided as triangulated surface bodies, the calculation can be per-
formed according to (Laidlaw et al., 1986) and (Hubbard, 1990). This method ef-
fectively checks all triangles of each operand against each other for intersection.
If two triangles intersect, new triangles are formed by the cutting edge. The trian-
gles of both operands are then classified depending on whether they are within the
other body, outside the other body, on the surface of the other body with the same
surface normal, or on the surface of the other body with opposing surface normal.
After classification, the triangles are merged using the respective Boolean operator
as shown in Table 12.2.

In this case, not only geometric primitives (spheres, cones, cylinders, etc.) can be
found on the leaves, but also arbitrary complex solids. The only prerequisite is that
it be a valid body, i.e. that two surfaces adjoin on each body edge. This procedure is
often used in IFC models, for example to “cut” openings in walls or ceilings.

Table 12.3 shows a brief selection of different libraries that can convert differ-
ent geometric representations into a triangle representation. In many cases, these

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



12 BIM programming 9

Table 12.2 Classification of triangles for area selection for the resulting body as a function of the
Boolean operation (* = triangles with inverted orientation)

Triangles from A Triangles from B

Operation within B outside
of B

same
normal

reverse
normal

within A outside
of B

same
normal

reverse
normal

A∪B No Yes Yes No No Yes No No

A∩B Yes No Yes No Yes No No No

A\B No Yes No Yes Yes* No No No

Table 12.3 A selection of libraries which can convert different geometrical representations into a
triangle representation.

Name Language License URL of website

OpenCASCADE C++ LGPL http://opencascade.org

Carve C++ MIT https://github.com/Vertexwahn/carve

csg.js JavaScript BSD http://evanw.github.io/csg.js/

GTS C++/Python LGPL http://gts.sourceforge.net

libraries are not limited to a certain programming language, because bindings are
available that permit the use of other programming languages, such as Java or C#.

12.5 Add-in development for commercial BIM applications

Numerous software applications used for or in conjunction with Building Informa-
tion Modeling provide a means of implementing add-ins and plugins to extend their
functionality. Add-ins can typically be written in various programming languages
such as C++ or languages within Microsoft’s .Net framework (C#, VisualBasic.Net,
J# etc.).

This section briefly outlines the development of a simple C# add-in for Autodesk
Revit. Full documentation and details for programmers on developing a Revit add-in
is available on the Autodesk website 4.

Microsoft Visual Studio can be used to program a C#-based Revit extension.
Usually, the first step is to create a class library as a new project. If access to the
Revit API is required, the class has to reference the corresponding Revit libraries
(RevitAPI.dll and RevitAPIUI.dll). It is also important to use the correct target
framework: the .Net version used in Visual Studio – e.g. 2.0, 3.0, 3.5, 3.5 Client
Profile or 4 – must match that used by Revit (a common pitfall). The following is a
minimal add-in for Revit:

4 https://www.autodesk.com/

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3

http://opencascade.org
https://github.com/Vertexwahn/carve
http://evanw.github.io/csg.js/
http://gts.sourceforge.net
https://www.autodesk.com/


10 J. Amann et al.

using System;
using System.Collections.Generic;
using System.Linq;

using Autodesk.Revit.DB;
using Autodesk.Revit.DB.Architecture;
using Autodesk.Revit.UI;
using Autodesk.Revit.UI.Selection;
using Autodesk.Revit.ApplicationServices;
using Autodesk.Revit.Attributes;

[TransactionAttribute(TransactionMode.Manual)]
[RegenerationAttribute(RegenerationOption.Manual)]
public class Lab1PlaceGroup : IexternalCommand
{

public Result Execute(
ExternalCommandData commandData,
ref string message,
ElementSet elements)

{
UIApplication uiApp = commandData.Application;
Document doc = uiApp.ActiveUIDocument.Document;

// here you can use the revit API

return Result.Succeeded;
}

}

In addition to this library, an add-in XML manifest file must be created to define
the global settings of the add-in and saved under Autodesk\Revit\Addins\2014\.
Revit will then automatically load the add-in on start-up and it can be used via the
toolbar. Further information can be found in the documentation.

12.6 Cloud-based platforms

Several companies offer so-called cloud-based platforms that enable developers to
develop cloud-based applications based on these platforms. Table 12.4 gives some
examples of such cloud-based platforms.

Table 12.4 Some examples of cloud-based platforms.

Provider Name URL of website

Autodesk Autodesk Forge https://forge.autodesk.com/

Nemetschek BIM+ https://bimplus.net/

Trimple Tekla BIMsight http://www.teklabimsight.com/

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3

https://forge.autodesk.com/
https://bimplus.net/
http://www.teklabimsight.com/


12 BIM programming 11

These cloud-based platforms build on RESTful web services. REST has the ad-
vantage that it can be used from almost every programming language since it needs
only to send HTTP requests encoded with JSON or XML messages. This means it
is straightforward to use these services within an application that is programmed in
C++, C#, Java, Ruby, Java Script or any other similar powerful programming lan-
guage. Besides this, sometimes high-level APIs are provided for different program-
ming languages to make programming more comfortable for software developers.

The previously mentioned platforms allow to store data like IFC files, pho-
tographs, any files such as for example Word Documents, Excel Sheets or scanned
PDFs. Besides data management, also view capabilities are provided. There is a 3D
viewer available on all the above-named platform that is also running directly in a
web browser that allows inspecting your data in real time.

Besides this, each platform offers different APIs. For instance, Autodesk Forge
offers a Reality Capture API that makes it possible to convert photographs to a
textured 3D model. For more details consider the corresponding documentation of
the platforms.

12.7 Visual programming

In recent years, Visual Programming Languages (VPL) have made inroads into the
field of digital construction. Users can employ these languages as a tool to make
repetitive work or the creation of variants and their evaluation a lot easier without
the need for detailed programming knowledge (Chao, 2016; Cooper et al., 2000).

A visual language is defined as a formal language with visual syntax and seman-
tics. It describes a system of signs and rules on the syntactic and semantic level
with the help of visual elements, which are more readily understandable for non-
professional programmers. Visual programming languages are often referred to as
flow-based, since they represent complex structures as a flow of information (Hils,
1993).

Typically, the user interface of visual language applications comprises a canvas
that serves as a basic workspace, and a library of individual components (nodes).
Nodes are placed on the campus and arranged and linked to one another by so-
called edges or wires (see Fig. 12.3). The resulting system can be stored as a graph
system and passed on to other project participants or documented accordingly.

An essential distinguishing characteristic between different visual programming
languages is the level of granularity. This granularity describes how finely the in-
dividual functionalities are resolved, i.e. whether functions within a node are en-
tirely encapsulated or whether each sub-step is available and visible as a separate
node. Encapsulation (low granularity) reduces the number of elements present on
the workspace and contributes to the clarity, handling and comprehensibility of the
overall system. At the other end of the scale (fine granularity), the resulting canvas
is a more detailed representation of the information process in which the user can
access and adapt each individual step as required.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



12 J. Amann et al.

[1] Library [2] Canvas

Fig. 12.3 Typical environment of a visual programming language: [1] Library containing the us-
able node elements, and [2] the workspace canvas. As an example, the interface of Autodesk Dy-
namo is shown.

Visual programming languages are controversial, particularly among program-
mers. The most commonly stated disadvantage is that programs created with a VPL
rarely meet the high requirements of a professional programming environment. Fur-
thermore, more complex situations, such as recursion, can often not be implemented
or are hard to understand. A common argument is that users who design processes
using a visual language should also be able to describe the information process with
a conventional textual programming language (Chao, 2016).

On the other hand, VPLs are more user-friendly and make it easier for inexpe-
rienced users to get started with programming. Due to its abstract representation, it
is easier for people without programming knowledge to understand and therefore
to achieve results more quickly. Images can communicate ideas more simply and
more clearly, and aid visual comprehension and remembering, not least also be-
cause there are no language barriers (Shu, 1988). A study by Cataraci and Santucci
(1995) attests to the user-friendliness of visual languages using an example based
on the common query language SQL.

In digital construction, VPLs are mainly used in two application areas: for gener-
ative purposes to generate geometric as well as semantic information, or for check-
ing or querying information on existing models. In some VPL-based applications
and environments the boundaries between the two are fluid and clear classification
is not always possible. Most of the visual programming environments provide the
ability for developers to extend libraries with their own functions to extend a pro-
gram’s functionality or field of application (Kurihara et al., 2015). Table 12.5 shows
an overview of common visual programming languages.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



12 BIM programming 13

Table 12.5 Selected VPL environments and libraries

Name Application Manufacturer Programming
Interface

URL

Dynamo Standalone;
Autodesk
Revit add-in

Autodesk C#,
Iron Python

http://dynamobim.org/

Google Blocky Web-Based Google JavaScript https://developers.google.
com/blockly/

Grasshopper3D Rhinoceros3D
plug-in

Open-Source C++, C#,
Python

http:
//www.grasshopper3d.com/

Grasshopper3D
ArchiCAD

ArchiCAD
plug-in

Graphisoft C++, C# https://www.graphisoft.com/
archicad/rhino-grasshopper/

Marionette Vectorworks
plug-in

Vectorworks Python http://www.vectorworks.net/
training/marionette

Scratch Web-based MIT JavaScript https://scratch.mit.edu/

TUM.CMS.
VplControl

Standalone CMS Chair C# https://github.com/tumcms/
TUM.CMS.VPLControl

12.8 Summary

This chapter provided a brief overview of ways to read and write IFC files. Presently,
the most common format for exchanging IFC data uses STEP clear text encoding,
which is standardized in Part 21 (ISO 10303-21, 2016) of the STEP standard.

The difference between the early binding approach, in which the entities of the
EXPRESS schema are mapped to entities of a high-level language, and the late
binding approach, in which a generic, data-model-independent interface is used to
access instance data, is explained and their respective advantages and disadvantages
discussed. A key advantage of the early binding approach is that the majority of
programming errors can be detected at compile time. A key disadvantage is that
the class structure has to be generated in the host language using a code generator,
and that this process must be repeated every time a schema changes. An alternative
to using STEP-Part 21 to communicate IFC data is to use the XML-based format
ifcXML. The SAX and DOM methods provide a means for the programmatic im-
plementation of accessing IFC data as XML. The popularity and widespread support
of the XML format means that it is likely that ifcXML will become an increasingly
important means of communicating IFC data in future.

An important aspect of processing IFC data is the interpretation of geometric in-
formation. IFC data models present a challenge because they support very different
means of geometric representations, including implicit representations. These must
normally be processed and converted into a triangle network to render the geometry
and make it available for further processing.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3

http://dynamobim.org/
https://developers.google.com/blockly/
https://developers.google.com/blockly/
http://www.grasshopper3d.com/
http://www.grasshopper3d.com/
https://www.graphisoft.com/archicad/rhino-grasshopper/
https://www.graphisoft.com/archicad/rhino-grasshopper/
http://www.vectorworks.net/training/marionette
http://www.vectorworks.net/training/marionette
https://scratch.mit.edu/
https://github.com/tumcms/TUM.CMS.VPLControl
https://github.com/tumcms/TUM.CMS.VPLControl


14 J. Amann et al.

Where the existing possibilities offered by the vendor-neutral IFC and corre-
sponding BIM tools are not sufficient, it is possible to extend commercially available
software applications by developing add-ins or use cloud-based platforms providing
additional functionality.

Finally, Visual Programming Languages (VPL) represent a new genre of pro-
gramming tools that make it possible for AEC professionals to develop customized
BIM solutions, without in-depth programming skills being required.

References

Cataraci, T., & Santucci, G. (1995). Are Visual Query Languages Easier to Use than traditional
Ones? An Experimental Proof. In: People and computers X: Proceedings of HCI ’95, Hudders-
field, edited by Kirby, M.A.R, Dix, A., Finlay, J.E., Cambridge programme on human-computer
interaction. Cambridge University Press.

Chao, P.-Y. (2016). “Exploring students’ computational practice, design and performance of
problem-solving through a visual programming environment”, Computers & Education, Vol.
95, pp. 202–215.

Cooper, S., Dann, W., & Pausch, R. (2000). “Alice. A 3-D tool for introductory programming
concepts”, Journal of Computing Sciences in Colleges, 15(5), pp. 107–116.

Hils, D.D. (1993). A visual programming language for visualization of scientific data. University
of Illinois at Urbana-Champaign.

Hubbard, M. (1990). Constructive Solid Geometry for Triangulated Polyhedra. Department of
Computer Science, Brown University, Providence, Rhode Island 02912, CS-90-07.

ISO 10303-21:2016-03 (2016). Industrial automation systems and integration - Product data rep-
resentation and exchange - Part 21: Implementation methods: Clear text encoding of the ex-
change structure. Standard, International Organization for Standardization, Geneva, CH.

ISO 10303-22:1998 (1998). Industrial automation systems and integration - Product data repre-
sentation and exchange - Part 22: Implementation methods: Standard data access interface.
Standard, International Organization for Standardization, Geneva, CH.

ISO 10303-23:2000 (2000). Industrial automation systems and integration - Product data repre-
sentation and exchange - Part 23: Implementation methods: C++ language binding to the stan-
dard data access interface. Standard, International Organization for Standardization, Geneva,
CH.

ISO 10303-42:2014 (2014). Industrial automation systems and integration - Product data rep-
resentation and exchange - Part 42: Integrated generic resource: Geometric and topological
representation. Standard, International Organization for Standardization, Geneva, CH.

Kurihara, A., Sasaki, A., Wakita, K., & Hosobe, H. (2015). “A Programming Environment for
Visual Block-Based Domain-Specific Languages”, Procedia Computer Science, 62, pp. 287–
296.

Laidlaw, D., Trumbore, B., & Hughes, J. (1986). Constructive Solid Geometry for Polyhedral
Objects. Proceedings of SIGGRAPH ’86, Computer Graphics, 2, ACM, New York, USA.

Shu, N. C. (1988). Visual programming. New York: Van Nostrand Reinhold.

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3



Index

Boundary Representation, 8

Code generator, 2
Constructive Solid Geometry, 7

Early binding approach, 2
Explicit geometric information, 8
EXPRESS, 2
Extensible Markup Language, 6
Extrusion, 8

Implicit geometric information, 8

Industry Foundation Classes, 2
Instance data, 2, 6

Late binding approach, 2, 4

Mapping method, 2

Standard Data Access Interface, 4
STEP P21, 2

Tesselated objects, 8

15

In: Borrmann, A.; König, M.; Koch, C.; Beetz, J. (Eds): Building Information Modeling - Technology Foundations 
and Industry Practice, Springer, 2018, DOI: 10.1007/978-3-319-92862-3


	BIM programming
	Introduction
	Procedures for accessing data in the STEP format
	Early binding
	Late Binding

	Accessing XML encoded IFC data
	Interpretation of IFC geometry information
	Add-in development for commercial BIM applications
	Cloud-based platforms
	Visual programming
	Summary
	References

	Index
	1
	Part I Technological Foundations
	2
	3
	1
	2
	3
	1
	2


	4

	Part II Interoperability in AEC
	5
	6
	7
	8
	9
	10
	11
	12
	13

	Part III BIM-based Collaboration
	14
	15
	16
	17
	18

	Part IV BIM use cases
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

	Part V Industrial Practice
	31
	32
	33
	34
	35

	Part VI Summary and Outlook
	36




