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Abstract

Quantum many-body systems far from equilibrium can show a wide range of dif-
ferent phenomena. Understanding non-equilibrium many-body systems is a non-
trivial task, as one has to deal with a fully-time dependent situation and interac-
tions. Field theoretic methods can provide insight into non-equilibrium physics.
In this thesis we apply conserving approximations to study heating and dynamical
quantum phase transitions in the O(N)-model, many-body localization of spinless
lattice fermions and the dynamical full counting statistics after quenches in a Lut-
tinger liquid.
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Kurzfassung

Quantenvielteilchensysteme weit ab vom Gleichgeweicht zeigen eine große Band-
breite an verschiedenen Phänomenen. Es ist eine nichttriviale Aufgabe nichtgle-
ichgewichts Quantenvielteilchensysteme zu verstehen, da man sowohl mit einer
voll zeitabhängigen Situation als auch auch Wechselwirkungen konfrontiert ist.
Feldtheoretische Methoden können Einsichten in die Nichtgleichgewichtsphysik
liefern. In dieser Arbeit werden wir "erhaltende Näherungen" anwenden um das
Heizen und dynamische Quantephasenübergänge im O(N)-Model, Vielteilchen-
lokalisierung von spinlosen Gitterfermionen und die "Full counting Statistik" nach
Quenchen in einer Luttinger-Flüssigkeit zu untersuchen.
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Chapter 1
Introduction

Quantum many-body systems far from equilibrium show a wide range of different
phenomena and there are also many different ways to create non-equilibrium states.
Furthermore, non-equilibrium states pose questions reaching from a fundamental
to a practical level.
For the fundamental understanding of statistical mechanics and thermodynamics,
the question if and how an isolated system reaches (thermal) equilibrium is highly
relevant. Due to the unitary time evolution of isolated quantum systems entropy is
conserved and it is not obvious how a thermal ensemble can be reached.
For generic many-body systems, the eigenstate thermalization hypothesis (ETH) [1,
2, 3, 4] provides a framework for understanding, why expectation values of observ-
ables at late times can be correctly obtained from the microcanonical ensemble,
even if the system was initially in a state far from equilibrium.
However, there are also systems for which the ETH does not apply and that will
never reach (thermal) equilibrium. Examples are integrable systems [5, 6, 7] pos-
sessing an infinite number of conserved quantities as well as disordered (many-
body) localized systems [8, 9, 10, 11, 12].
Besides for statistical mechanics, an understanding of non-equilibrium quantum
many-body systems is also essential for various different fields in physics such as
optical, atomic and molecular physics, condensed matter physics and also cosmol-
ogy. Also technological applications such as electronic devices like microchips or
memory disks an understanding of (heat-) transport processes is key.
A system can be driven into a non-equilibrium state in different ways. In so called
Floquet systems, the Hamiltonian itself is time-periodic, which is usually imple-
mented with a periodic drive term. Floquet systems have become of major interest,
as one can engineer specific non-trivial Hamiltonians with certain driving proto-
cols, which host novel phases [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23] such as
time crystals [13, 16, 20, 21, 22, 23].
Another possibility is to consider quantum quenches, where the initial quantum
state is not an eigenstate of the Hamiltonian, which governs the time evolution.
Quantum quenches can be used to glean insight into highly excited states and to
study the occurence of dynamical quantum phase transitions [24, 25, 26].
One can also introduce disorder into a system [8, 9, 10, 11, 12]. For non-interacting
systems, the effects of disorder are well understood; with interactions, it is less
clear. For instance one dimensional interacting systems can be either localized
or delocalized depending on the disorder strength, while a non-interacting system
would always be insulating as long as there is finite disorder. A characterization
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Chapter 1. Introduction

of the transition between localized and ergodic behavior is still missing. These
ways of creating an equilibrium situation are of course not exclusive and can all be
combined.
Understanding non-equilibrium many-body systems is a non-trivial task, as one
needs to deal both with a time-dependent situation and interactions.
One possible way is to use quantum optical and atomic synthetic many-body sys-
tems [27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. Systems of atoms in optical lattices are
very clean, almost isolated and have a very high degree of controllability. Further-
more many probes are available in these systems. Single-site resolution for exam-
ple enables one to read out the occupation of single lattice sites, which gives access
to time-resolved single site occupations and correlation-functions [37, 38, 39, 40,
41, 42]. All in all, these advantages have made synthetic many-body systems a
highly valued tool in the "quantum simulation" of non-equilibrium systems. How-
ever, also condensed matter systems together with ultrafast spectroscopy [43, 44]
are successfully used to explore non-equilibrium physics.

On the theoretical side, quantum field theoretic methods [45, 46] can provide lots of
theoretical insight and understanding into non-equilibrium physics. In this thesis
we apply conserving approximations [47, 48, 49] to study different models and
non-equilibrium situations and build clear physical pictures on top of the results.
We will use both large-N [48, 49] as well as small coupling expansions.
As models we will study the O(N)-model of relativistic scalar fields [50], the
Tomanaga-Luttinger model [51, 52] and the Fermi-Hubbard model, which are
paradigmatic models for quantum many-body systems.
Due to the quite diverse range of considered models and situations, we prefer to
keep this introducation rather unspecific at this point and will give more focused
introductions at the beginning of the respective chapters.
This thesis is mainly based on the following publications of the author:

[1] Simon A. Weidinger, Michael Knap, "Floquet prethermalization and regimes
of heating in a periodically driven, interacting quantum system", Scientific
Reports 7, 45382 (2017)

[2] Simon A. Weidinger, Markus Heyl, Alessandro Silva, Michael Knap, "Dy-
namical Quantum Phase Transitions in Systems with Continuous Symmetry
Breaking", Phys. Rev. B 96, 134313 (2017)

[3] Simon A. Weidinger, Sarang Gopalakrishnan, Michael Knap, "A self-consistent
Hartree-Fock approach to Many-Body Localization", arXiv:1809.02137 (2018)

The author of this thesis has made significant and substantial contributions to these
publications, from contributions to the development of ideas, literature research, an-
alytical calculations, design, development and implementation of numerical code,
to the interpretation of results and writing of the papers.
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Chapter 1. Introduction

The thesis is organized as follows: Ch. 2 gives a short technical introduction to non-
equilibrium field theory and the 2PI effective action formalism, using the O(N)-
model, Sec. 2.2, and lattice fermions, Sec. 2.3, as examples.
In Ch. 3 we study heating in the periodically driven O(N)-model using the large-N
expansion to next-to-leading order. In Sec. 3.2 we lay out how the energy density
can be obtained from two-point functions. Sec. 3.3 discusses the different heating
regimes and shows that there is a intermediate regime where the system ceases to
absorb energy. In Sec. 3.4 we discuss the leading order dynamics. In Sec. 3.5 we
compare these findings to a model with time-dependent noise.
In Ch. 4 we study dynamical quantum phase transition in the quench dynamics of
the O(N)-model with a leading order large-N approximation. Sec. 4.1 discusses
two different notions of dynamical quantum phase transitions, in Sec. 4.2 we cal-
culate the time evolution of a symmetry-breaking intial state and in Sec. 4.3 we
calculate the return probability to the ground state manifold and furthermore show,
that an intimate connection between the two different notions of dynamical quan-
tum phase transitions exists in our model.
In Ch. 5 we study a model of spin-less lattice fermions with nearest-neighbor re-
pulsion subject to a disorder potential by means of a self-consistent Hartree-Fock
approach. Sec.’s 5.1 and 5.2 give a short introduction to many-body localization
and the studied model. In Sec. 5.3 we look at the decay of different initial states
and the differences between random and quasi-periodic disorder. In Sec. 5.4 we
show that the local spectral function has sharp peaks in the localized phase, while
it shows a broad spectrum in the delocalized phase. In Sec. 5.5 we analyze the
amplitude-spectrum and the auto-correlations of the Hartree-Fock self-energy and
argue, that the delocalization can be understood by noticing, that the Hartree-Fock
self-energy acts as "self-consistent noise". In Sec. 5.6 we compare Hartree-Fock to
exact diagonalization, in Sec. 5.7 we show what effects higher-order contributions
could have. In Sec. 5.8 we look at the occupation dynamics of single sites for sin-
gle disorder realizations, in order to show, that the decay of initial states is not just
an effect of dephasing at leading order and in Sec. 5.9 we look at the difference
between Hartree, Fock and Hartree-Fock simulations.
In Ch. 6 we study the full counting statistics of the particle number in a given,
connected subsystem, after a quench from a gapped state to a gapless Tomanaga-
Luttinger liquid. Sec. 6.1 we gives an overview over previous works investigating
the connection of full counting statistics and entanglement entropy. In Sec. 6.2 we
calculate the dynamics after a quench from the Mott-insulating to the superfluid
phase in the one-dimensional Bose Hubbard model, using Luttinger liquid theory
as an effective description. In Sec. 6.3 we use the results from Sec. 6.2 to calcu-
late the full counting statistics and the number fluctuations after the quench. We
show, that fluctuations grow linearly before saturating, similar to the entanglement
entropy. In Sec. 6.4 we compare our findings from Luttinger liquid theory with
numerical MPS simulations and show that predictions from Luttinger liquid theory
are indeed observable. In Sec. 6.5 we use our findings to propose an experimen-
tal measurement procedure for the Luttinger parameter and test the procedure on
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Chapter 1. Introduction

numerical data for small systems, showing that it works in principle.
Finally, we conclude in Ch. 7





Chapter 2
The 2PI - Keldysh formalism

2.1 The closed time contour

Consider a situation, where a quantum system is initially prepared in a possibly
mixed state ρ̂0 and its is evolution is governed by the possibly time dependent
Hamiltonian Ĥ(t). Trotterization of the time evolution then leads to the evolution
operator

Û(t, t′) = T̂ exp

−i
t∫

t′

dsĤ(s)

 , (2.1)

where T̂ denotes the time-ordering of the exponential. Now we are interested in
the expectation value of an observable Â at a given time t. Using the Heisenberg
picture of quantum mechanics, we obviously have

〈Â〉(t) = tr
{

Â(t)ρ̂0
}
= tr{Û†(t, 0)ÂÛ(t, 0)ρ̂0} = tr

{
Û(0, t)ÂÛ(t, 0)ρ̂0

}
.

(2.2)
Eq. (2.2) is the essential observation, which leads to the introduction of the so
called closed time or Keldysh-contour C, graphically depicted in Fig. 2.1, which
was first considered by Schwinger [45]. On the right hand side of Eq. (2.2) we see,
that the system is first propagated from zero to time t, where the observable acts
and than back from time t to time 0. Looking at Eq. (2.2), the closed time contour
is acutally the most natural way to depict the time evolution of a quantum system,
even in equilibrium.
In order to calculate correlation functions of the observable Â, for instance two-
point functions, it is beneficial to introduce a generating functional. This can be
done by adding a source term to the Hamiltonian [46],

Ĥ(t) −→ Ĥ±J (t) = Ĥ(t) + J±(t)Â, (2.3)

Figure 2.1: The Keldysh closed time contour C





Chapter 2. The 2PI - Keldysh formalism

and defining

W [J] = i log tr
{

Û[J](0, t)Û[J](t, 0)ρ̂0

}
, (2.4)

where Û[J](t, 0) is the time evolution operator corresponding to the Hamiltonian
Ĥ±J (t). In Eq. (2.3) plus sign is used on the lower branch and the minus sign on
the upper branch of the contour. This ensures that the source term does not cancel
out and the generating function, Eq. (2.4) becomes non-trivial.
From the generating functional W [J], Eq. (2.4), we can now obtain correlation
functions of the observable by calculating functional derivatives with respect to the
source field J±(t),

〈T̂C Â(t1)Â(t2) · · · Â(tn)〉 = in−1 δW [J]
δJ±(t1)δJ±(t2) · · · δJ±(tn)

, (2.5)

here T̂C indicates contour-ordering, i.e. the times t1, t2, . . . , tn are ordered accord-
ing to their appearence on the closed time contour.
In order to make formal manipulations shorter in notation, one usually interprets
functions as defined on the Keldysh contour J : C −→ R and defines the so called
contour evolution operator

ÛC [J] = Û[J](0, t)Û[J](t, 0) ≡ T̂C exp

−i
∫
C

dtĤJ(t)

 . (2.6)

With this, we can rewrite Eq. (2.5) in a simpler form:

W [J] = i log tr
{

ÛC [J]ρ̂0

}
〈T̂C Â(t1)Â(t2) · · · Â(tn)〉 = in−1 δW [J]

δJ(t1)δJ(t2) · · · δJ(tn)
. (2.7)

Here we want to note, that even though Eq. (2.7) can simplify formal manipulations
considerably, we will need to make the contour structure explicit again, when we
perform numerical simulations.
In general the quantities of physical interest are the expectation value and the cor-
relation functions of the observable Â, therefor it would be desirable to have a pa-
rameterization of the theory directly in terms of these quantities and not the source
field J. This can be be achieved by a Legendre transform in an analogous fashion
to equilibrium thermodynamics. The expectation value of Â(t) in the presence of
the source J is

A(t) ≡ 〈Â(t)〉 = δW[J]
δJ(t)

, (2.8)





Chapter 2. The 2PI - Keldysh formalism

hence we have

Γ[A] = W[J]−
∫
C

dt′A(t′)J(t′)

Γ[A]

δA(t)
= −J(t). (2.9)

One can now also introduce a source, then defined on C × C, for two-point func-
tions of Â(t) or even n-point functions.
In the following two sections, we will make the rather general discussing above
more concrete, by applying them to two different models: The linear O(N)-model
of relativistic scalar fields and spin-less fermions in a lattice. We will see, that
upon including two-points functions and setting source fields to zero, Eq. (2.9) will
yield a closed set of evolution equations directly for the expectation and two-point
functions of the observable.

2.2 Relativistic scalar fields

As first concrete example for the application of the 2PI - Keldysh formalism we
take the linear O(N)-model of a relativistic real scalar field [50]. Since we only
want to focus on the technicalities of the method, we postpone a discussion of
how the O(N)-model is physically relevant to a later chapter. Also, we will not
discuss any particular protocol of how the system is driven out of equilibrium at
the moment. The classical action S of the model is defined as

S [Φ] =
∫

x,C

[
1
2
(∂tΦa)

2 − 1
2
(∇Φa)

2 − 1
2

m2(t)ΦaΦa −
λ

4!N
(ΦaΦa)

2
]

,

(2.10)
where we already assume that time runs on the closed-time Keldysh contour C. The
real scalar field Φ has N components labeled by a = 1, 2, . . . , N and summation
over field components is assumed. We use a relativistic notation x = (t, x) and∫

x,C =
∫

ddx
∫

t,C . An important feature of Eq. 2.10 is, that the action scales lin-
early with the number of field components, S ∼ N, as it will enable an expansion
of the effective action, which is non-perturbative in the coupling λ [48, 49].
Following the general outline in the previous section, we introduce source fields
Ja(x), Rab(x, y) for the vacuum expectation value φa(x) = 〈Φa(x)〉 and the
contour-ordered Green’s function Gab(x, y), respectively. The so called Schwinger
functional, W[J, R], is then defined as

W[J, R] = −i log
∫
DΦ exp

{
iS[Φ] + i

∫
x,C

Ja(x)Φa(x)

+
i
2

∫
x,y,C

Rab(x, y)Φa(x)Φb(y)

}
. (2.11)





Chapter 2. The 2PI - Keldysh formalism

Accordingly, the vacuum expectation value (VEV) and the two-point Green’s func-
tions are obtained as the functional derivatives of the Schwinger functional with
respect to the source fields,

φa(x) =
δW[J, R]

δJa(x)

Gab(x, y) = 2
δW[J, R]

δRab(x, y)
− φa(x)φb(y). (2.12)

Next we perform a Legendre transformation of W[J, R] with respect to the source
terms and use the VEV and the Green’s function directly as variables to parametrize
the theory. As already discussed in the previous section, this yields an equivalent
description of the physics, however with the advantage that one is working directly
with the quantities of interest.

Γ [φ, G] =W[J, R]−
∫

x,C
δW[J, R]

δJa(x)
Ja(x)−

∫
x,y,C

δW[J, R]
δRab(x, y)

Rab(x, y)

=W[J, R]−
∫

x,C
φa(x)Ja(x)

− 1
2

∫
x,y,C

(
Gab(x, y) + φ(x)φb(y)

)
Rab(x, y) (2.13)

The quantum equations of motion for the field expectation φ and the Green’s func-
tion G in the presence of sources are now obtained via functional differentiation,

δΓ[φ, G]

δφa(x)
= −Ja(x)−

∫
y,C

Rab(x, y)φb(y)

δΓ[φ, G]

δGab(x, y)
= −1

2
Rab(x, y). (2.14)

In order to get the pure evolution of the system not subject to any external source
field, one just has to put Ja(x) ≡ 0, Rab(x, y) ≡ 0.
To make further progress, one is now faced with the task of finding an explicit
expression for the effective action Γ[φ, G]. Before attempting to perform an per-
turbative expansion of any kind, it is beneficial to integrate out the 1-loop part in
the Schwinger functional, Eq. 2.11, in a saddle-point fashion. This leads to the
following decomposition of the effective action [48]:

Γ[φ, G] = S[φ] +
i
2

trC log G−1 +
i
2

trC G−1
0 G + Γ2[φ, G], (2.15)

where the first three terms constitute the saddle-point result and Γ2[φ, G], called the
2PI effective action, contains all the interaction effects. The 2PI effective action is
the non equilibrium equivalent of the Luttinger-Ward functional in equilibrium [53,





Chapter 2. The 2PI - Keldysh formalism

54, 47]. G0 is the classical propagator or bare Green’s function, and is given by

iG−1
0,ab(x, y; φ) =

δ2S[φ]
δφa(x)δφb(y)

=−
(
�x + m2 +

λ

3!N
(φc(x))2

)
δabδC(x− y)

− λ

3N
φa(x)φb(x)δC(x− y). (2.16)

The important theoretical result is, that Γ2 is formally the sum of all 2-particle
irreducible (2PI) vacuum diagrams of Sint[φ, ϕ], where Sint consists of all terms in
S[φ + ϕ]− S[φ] of order three or higher in ϕ, hence the name 2PI effective action.
The vacuum diagrams have to be computed with the full propagator G as lines
and no tadpoles in ϕ. A Feynman diagram qualifies as two-particle irreducible if
remains connected upon removing two Green’s function lines. Removing a Green’s
function line from a diagram corresponds to a functional derivative with respect to
G. It turns out, that the self-energy in our approach is given by the first derivative
of Γ2 with respect to G, as we will shortly see. Therefor, the fact that Γ2 is the sum
of all two-particle irreducible diagrams ensures, that we get a proper selfenergy.
For the given model the interaction part of the action is

Sint[φ, ϕ] = −
∫

x,C

(
λ

3!N
φa(x)ϕa(x)ϕb(x)ϕb(x) +

λ

4!N
(ϕa(x)ϕa(x))2

)
.

(2.17)
If we use the representation Eq. (2.15), we can rewrite the equation of motion,
Eq. (2.14), for the Green’s function as

G−1
ab (x, y) = G−1

0,ab(x, y)− iRab(x, y)− Σab(x, y; φ, G)

Σab(x, y; φ, G) = 2i
δΓ2[φ, G]

δGab(x, y)
, (2.18)

where we have already put the source fields to zero. Eq. (3.3) just constitutes
Dyson’s equation on the closed-time Keldysh contour. It is important to note, that
Eq. (3.3) are exact and involve no approximation so far. However, one is stilled
faced with the problem of finding an explicit expression for the 2PI effective action
Γ2.

Kadanoff - Baym equations

For now let us proceed without specifying the 2PI effective action. In the current
form Dyson’s equation on the closed-time contour is not helpful for practical ap-
plications, we will now recast it in a from, which can be tackled numerically. We
will make the simplifying assumption, that the vacuum expectation value vanishes,
φa = 0, to keep the discussion simple. Physically, this corresponds to the system
being in the gapped phase, where the O(N)-symmetry is not broken, which will
be the case in the following chapter, where we make use of the method to study





Chapter 2. The 2PI - Keldysh formalism

heating in the O(N)-model. We start by bringing the Green’s function G to the
right hand side and explicitly inserting the free inverse Green’s function G−1

0 :(
�x + m2)Gab(x, y) + i

∫
z,C

Σac(x, z)Gcb(z, y) = −iδabδC(x− y) (2.19)

In dealing with a theory of real scalar fields it is favorable to decompose the Green’s
function Gab(x, y) defined on the closed-time contour C into its statistical and spec-
tral components Fab(x, y) and ρab(x, y), respectively. They are defined as

Fab(x, y) =
1
2
〈{Φa(x), Φb(y)}〉

ρab(x, y) = i〈[Φa(x), Φb(y)]〉 (2.20)

Both functions are real, with F being symmetric under an exchange x, a ←→ y, b
and ρ being anti-symmetric. The canonical commutation relations obeyed by the
scalar field and its first time-derivative imply the following two useful relations for
the spectral function:

ρab(x, y)|x0=y0 = 0

∂x0 ρab(x, y)|x0=y0 = δabδ(x− y) (2.21)

The two-point contour-ordered Green’s function can be expressed in terms of the
statistical and spectral function,

Gab(x, y) = Fab(x, y)− i
2

sgnC(x
0 − y0)æab(x, y), (2.22)

which follows from simple algebra.
Inserting the decomposition, Eq. (2.22), into Eq. (2.19) , making the contour inte-
gration explicit and splitting the resulting equation into real and imaginary parts,
we obtain the Kadanoff-Baym equations,

[
�xδac + M2

ac(x)
]

Fcb(x, y) =−
x0∫

0

dz0
∫

ddzΣρ
ac(x, z)Fcb(z, y)

+

y0∫
0

dz0
∫

ddzΣF
ac(x, z)ρcb(z, y)

[
�xδac + M2

ac(x)
]

ρcb(x, y) = −
x0∫

y0

dz0
∫

ddzΣρ
ac(x, z)ρcb(z, y), (2.23)

which govern the time evolution of the statistical function Fab and the spectral func-
tion ρab. The self-energy is decomposed in the same way as the Green’s function
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into a statistical and a spectral part, after splitting of the local part, which just gives
a renormalization of the bare mass.

Σab(x, y) = −iΣ(0)
ab (x)δC(x− y) + Σ̄ab(x, y)

Σ̄ab(x, y) = ΣF
ab(x, y)− i

2
sgnC(x0 − y0)Σρ

ab(x, y)

M2
ab(x) = m2 + Σ(0)

ab (x) (2.24)

Large-N expansion of the 2PI effective action

As already stated, we do not have a closed from of Γ2 for interacting theories
and therefor we need a sensible approximation. Due to the scaling, S ∼ N, of
the classical action, one can expand the 2PI effective action Γ2 in orders of 1/N.
This is the well established large-N expansion, which has been frequently used in
both equilibrium and nonequilibrium and is known to produce qualitatively correct
results [48]. Classifying the terms in the effective action according to their scaling
with the number N of field components. Using that trC involves also the trace over
the field component index, we can easily deduce the scaling of the one-loop terms
in Eq. (2.15):

i trC log G−1 ∼ N

i trC G−1
0 G = trC

[
−(�+ m2)G

]︸ ︷︷ ︸
∼N

+
λ

3!N
trC [φaφa] trC [G]︸ ︷︷ ︸

∼N

− λ

3N
trC [φaφbGab]︸ ︷︷ ︸
∼N0

(2.25)

Hence the leading order (LO) contributions scale ∼ N and the next-to-leading
order (NLO) contributions scale∼ N0. For the 2PI effective action we also classify
the diagrams obtained from contractions of Sint according to their scaling with N.
Each vertex is surpressed by a factor N−1 and a single loop contributes a factor
N. It is clear, that diagrams with more independent summations over field indices
scale more favorable with N, in other words products of traces of Green’s functions
have a higher scaling than traces of products of Green’s functions. In the following
two subsections, the LO and NLO contributions to Γ2 are discussed in detail.

Leading order: Γ(LO)
2 ∼ N

Part of the text in this section is taken from the following publication of the author:

• Simon A. Weidinger, Markus Heyl, Alessandro Silva, Michael Knap, "Dy-
namical Quantum Phase Transitions in Systems with Continuous Symmetry
Breaking", Phys. Rev. B 96, 134313 (2017)
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Since contractions of Sint[φ, ϕ] are not allowed to contain any ϕ-tadpoles, the cubic
vertex gives no contribution at LO, hence the 2PI effective action at leading order
depends only on the Green’s function. The leading order contribution of the quartic
vertex is given by contracting fields with the same index and thus we obtain [48]

Γ(LO)
2 [G] = =

λ

4!N

∫
x,C

Gaa(x, x)Gbb(x, x) (2.26)

The proper self-energy at LO is hence only a loop consisting of a single Green’s
function:

Σ(LO)
ab (x, y) = −iΣ(0)

ab (x)δC(x− y)

Σ(0)
ab (x) =

λ

6N
Gaa(x, x)δab (2.27)

We notice, that the self-energy is a local function in space and time and can thus
be completeley absorbed into a time-dependent and possibly position dependent
effective mass. In other words the only effect of the interaction is to renormal-
ize the mass/energy gap of excitations, but these renormalzed particles are then
non-interacting. Hence at leading order in the large-N approximation we are still
dealing with an effectively free field theory. This implies, that the system does not
thermalize at leading order.

At leading order, we can also use an equivalent approach to calculate the time evo-
lution of the system, which is based directly on Heisenberg’s equations of motion
of the field operators. This so called mode function formalism is more simple, as it
does not use the notion of the closed-time contour or generating functionals. How-
ever, this simplicity comes at the cost of not being generalizable to higher orders
in 1/N.
In the limit of an infinite number of field components, N → ∞, one can factorize
the expectation value 〈 Φ̂aΦ̂a

N Φ̂b〉 = 〈 Φ̂aΦ̂a
N 〉〈Φ̂b〉+O(1/N)[50], therefor the only

effect of the quartic term is to renormalize the mass-term of the field:

m2
eff = m2 +

λ

6N
〈Φ̂2

a〉. (2.28)

The Hamiltonian of the model thus becomes effectively quadratic. We will assume
that there is a finite vacuum expectation value φ(t) = 〈Φ̂1(x, t)〉 in the a = 1 com-
ponent. Due to the limit N → ∞, the a = 1 component can be in fact considered
as a c-number variable, i.e. Φ̂1(t) → φ(t) ∈ R, analogously to the zero mo-
mentum mode in a mean-field description of the weakly interacting Bose gas. The
remaining components, a ≥ 2, we expand in a plain-wave type fashion in creation
and annihilation operators b̂(a)†

p , b̂(a)
p , which diagonalize the initial Hamiltonian at
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t = 0:

Φ̂a(x, t) = V−1/2 ∑
p

Φ̂a(p, t)eipx

Φ̂a≥2(p, t) = fp(t)b̂
(a)
p + f ∗p (t)b̂

(a)†
−p , (2.29)

The fp(t) are the eponymous mode functions. As we’ve assumed, that the VEV
is only finite in the a = 1 component, we have a O(N − 1) symmetry in the
remaining a ≥ 2 components and hence the mode functions carry no field index.
Now using the effectively quadratic Hamiltonian and the decomposition, Eq. (4.4)
of the field operator into mode functions, we can easily obtain the Heisenberg
equations of motion at leading order in N:

f̈p(t) + [p2 + m2
eff(t)] fp(t) = 0

φ̈(t) + m2
eff(t)φ(t) = 0, (2.30)

where the time-dependent effective mass is given by

m2
eff(t) = m2 +

λ

6N

(
φ2(t) + (N − 1)

∫
p
| fp(t)|2

)
. (2.31)

Here one should note, that φ(t) ∼
√

N and thus both terms in the parenthesis in
Eq. (4.6) show a linear scaling with N.
The initial conditions can be deduced from the requirement, that b̂(a)†

p , b̂(a)
p diag-

onalize the Hamiltonian at t = 0. This gives fp(0) = 1/
√

2ωp and ḟp(0) =

−i
√

ωp/2, where the dispersion is given by ωp =
√

p2 + m2
eff(t = 0). In case

the system is initially in the symmetry broken phase and the initial effective mass
vanishes, m2

eff(0) = 0, then the initial vacuum expectation value is determined by

(φ0)
2 = −6r0

i
λ
− (N − 1)〈Φ̂2Φ̂2〉. (2.32)

Otherwise, if the system is in the symmetry broken state and the initial effective
mass is finite, we have φ0 = 0. The first time derivative is zero in any case φ̇0 = 0.
This also implies, that if one starts with a vanishing vacuum expectation, it will
remain so for all times. Physically this is due to the O(N)-symmetry of the model.

Next-to-leading order: Γ(NLO)
2 ∼ N0

The diagrams contributing at NLO fall in two classes, one without the VEV φ
and one containing the VEV. Here we note, that even though we will not consider
the NLO time evolution of the field expectation value in the following chapters, it
turns out that taking into account the VEV is helpful in the resummation of the
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next-leading-order diagrams. Both classes contain infinitely many diagrams, but
can be resummed in a closed form yielding integral equations. We can write

Γ(NLO)
2 [φ, G] = Γring,1

2 [G] + Γring,2
2 [φ, G]. (2.33)

The diagrams in Γring,1
2 , containing no VEV, are generated by the quartic term in Sint

and are a sum of polarization-bubbles, Πab(x, y) = Gab(x, y)Gba(y, x), arranged
in rings [48]:

Γring,1
2 =

1
2

+
1
3

+
1
4

+ . . . (2.34)

The series is just the Taylor-expansion of the logarithm, therefor

Γring,1
2 [G] =

i
2

trC log B(G)

Bab(x, y; G) = δC(x− y) +
iλ
6N

Gab(x, y)Gab(x, y). (2.35)

The second class of diagrams Γring,2
2 , containing also the VEV, can be summed as

Γring,2
2 [φ, G] =

iλ
6N

∫
x,y,C

φa(x)Gab(x, y)φb(y)I(x, y; G), (2.36)

where I(G) is the sum of "bubble-chains" which obeys the Bethe-Salpeter like
equation

I(x, y; G) =
λ

6N
Gab(x, y)Gab(x, y)− iλ

6N

∫
z,C

I(x, y; G)Gab(z, y)Gab(z, y).

(2.37)
One can show easily, that B(G) and I(G) obey the relation

B−1(x, y; G) = δC(x− y)− iI(x, y; G), (2.38)

which will enable us to write down an expression for the selfenergy. Now we turn
to the self-energy at NLO. Assuming that φ = 0, only Γring,1

2 is relevant and by
calculating the functional derivative with respect to G we obtain [48]

Σ(NLO)
ab (x, y) = − iλ

3N
δC(x− y)Gab(x, x)− λ

3N
I(x, y; G)Gab(x, y). (2.39)

The first term in Eq. (2.39) is local and will just give a further renormalization of
the effective mass. The second term however is nonlocal and incorporates interac-
tions of the renormalized excitations, which go beyond a simple renormalization
of coupling constants and the theory is now a truely interaction one. As we will
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see shortly this leads to memory effects in the quantum evolution equations and we
can expect new non-trivial effects at NLO.
Finally we decompose Eq.’s (2.39) and (2.37) into statistical and spectral parts,
analogously to the Green’s function in Eq. (2.22) and make the contour integrations
explicit [48]:

ΣF,NLO(x, y) = − λ

3N

(
F(x, y)IF(x, y)− 1

4
ρ(x, y)Iρ(x, y)

)
Σρ,NLO(x, y) = − λ

3N
(

F(x, y)Iρ(x, y) + ρ(x, y)IF(x, y)
)

(2.40)

ΠF(x, y) =
λ

6

(
F(x, y)F(x, y)− 1

4
ρ(x, y)ρ(x, y)

)
Πρ(x, y) =

λ

3
F(x, y)ρ(x, y) (2.41)

IF(x, y) = ΠF(x, y)−
x0∫

0

dzIρ(x, z)ΠF(z, y) +

y0∫
0

dzIF(x, z)Πρ(z, y)

Iρ(x, y) = Πρ(x, y)−
x0∫

y0

dzIρ(x, z)Πρ(z, y) (2.42)

Here we have also used the fact that for vanishing vacuum expectation value, we
have Gab(x, y) = δabG(x, y) due to the O(N)-symmetry. Eq.’s (2.40), (2.41),
(2.42) together with the Kadanoff-Baym equations, Eq. (2.23) now form a closed
set of equations, which upon specifying the initial conditions for the statistical and
spectral parts of the Green’s function enable us to calculate the time evolution of
Fab(x, y) and ρab(x, y). Of course, Eq. (2.23) cannot be solved analytically and
one has to resort to numerical methods.
For the relativistic scalar field a simple leap-frog algorithm appears to yield satis-
fying results, due to the equation being second order in time. The time-space is
discretized on an equidistant grid, (t, t′)→ (n∆t, m∆t).
The second-order time derivative is replaced by the combination of forward- and
backward difference, e.g.

∂2
t F(t, t′)→ 1

∆t2 [F(n + 1, m) + F(n− 1, m)− 2F(n, m)] , (2.43)

and time integrals are calculated with the trapezoidal rule, e.g.

t∫
0

dτ F(τ, t′)→ ∆t

[
F(0, m) + F(n, m)

2
+

n−1

∑
l=1

F(l, m)

]
. (2.44)





Chapter 2. The 2PI - Keldysh formalism

Upon using these discretization rules for Eq.’s (2.23), (2.40), (2.41), (2.42), one
obtains explicit equations for F(n+ 1, m), ρ(n+ 1, m) for m ≤ n, which, together
with the symmetry properties of F and ρ, are sufficient to propagate the initial
conditions.

2.3 Lattice Fermions

As a second example for the application of the 2PI Keldysh formalism, we look at
spin-less fermions on a d-dimensional lattice, with a nearest neighbor hopping J,
density-density interactions Uij and subject to a local onsite potential hj,

Ĥ = −J ∑
〈i,j〉

ĉ†
i ĉj + ∑

i,j
Uijn̂in̂j + ∑

j
hjn̂j. (2.45)

The Hamiltonian, Eq. 2.45, is just a generalization of the ubiquitous Hubbard
model of spin-less fermions. Later on we will restrict ourselves to nearest-neighbor
interactions, but as it does not complicate the discussion much, we will keep the
structure of the interaction unspecified for now. To simplify notation, we introduce
the one-body matrix− Ĵij = δ〈i,j〉+ hiδij, with which we can write the Hamiltonian
as

Ĥ = ∑
i,j
(− Ĵij ĉ†

i ĉj + Uijn̂in̂j). (2.46)

In order to build a field-theoretic description, we trade operators for anticommuting
Grassmann fields, originating from the standard coherent state path integral for
fermions and write down the action corresponding to Eq. (2.46),

S[c̄, c] =
∫
C

dt ∑
i,j

{
c̄i(i∂t + Ĵij)cj −Uij c̄i c̄jcjci

}
. (2.47)

As detailed in the last section for bosons, we follow the procedure of introducing
sources for the fermion fields and the Green’s function and performing a Legendre
transformation such that we have a parametrization directly in terms of the full
Green’s function. Despite the fact, that the sources are now Grassmann fields and
that the path integrals is fermionic there is no technical difference in the derivation,
hence we give directly the result for the effective action:

Γ[G] = −i tr log G−1 − i tr G−1
0 G + Γ2[G]. (2.48)

In a fermionic model, such as Eq. (2.46), the effective action Γ[G] and hence the
2PI effective action Γ2[G] only depends on the Green’s function, as fermions can-
not condense due to the Pauli principle. The 2PI effective action is given by the
sum of all two-particle irreducible diagrams of the interaction vertex

Sint[c̄, c] =
∫
C

dt ∑
i,j

Uij c̄i c̄jcjci (2.49)
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and the bare Green’s function is

G−1
0,ij(t, t′) = δC(t, t′)(iδij∂t + Ĵij). (2.50)

By requiring, that the effective action is stationary with respect to the Green’s func-
tion, we obtain the Dyson equation for fermions,

G−1
ij (t, t′) = G−1

0,ij(t, t′)− Σij(t, t′)

Σij(t, t′) = −i
Γ2[G]

δGji(t′, t)
. (2.51)

Eq. (2.51) is again defined on the closed time Keldysh contour and in the following
we will make the contour explicit.

Kadanoff-Baym equations

Rewriting the Dyson equation, Eq. (2.51) as an integral equation we get

(i∂t + Ĵ) ∗ Ĝ(t, t′) = δC(t, t′)1̂ +
∫
C

dt′′ Σ̂(t, t′′) ∗ Ĝ(t′′, t′), (2.52)

where we introduced a matrix notation in the spatial indices, (Ĝ(t, t′))ij = Gij(t, t′),
(Σ̂ ∗ Ĝ)ij = ∑l ΣilGl j, to keep notation short.
To make the contour integration explicit we first introduce greater and lesser Green’s
functions,

G>
ij (t, t′) = −i〈ĉi(t)ĉ†

j (t
′)〉

G<
ij (t, t′) = i〈ĉ†

j (t
′)ĉi(t)〉. (2.53)

In terms of G> and G< the contour ordered Green’s function G is written as

Gij(t, t′) = ΘC(t, t′)G>
ij (t, t′) + ΘC(t′, t)G<

ij (t, t′), (2.54)

where ΘC(t, t′) is the closed time contour Heaviside theta function, which is 1 if
t′ comes before t on the closed time contour and zero otherwise. Similarly we can
also express the retarded and advanced Green’s functions, GR and GA in terms of
G≶:

GR
ij (t, t′) = −iΘ(t− t′)〈{ĉi(t), ĉ†

j (t
′)}〉 = Θ(t− t′)[G>

ij (t, t′)− G<
ij (t, t′)]

GA
ij (t, t′) = iΘ(t′ − t)〈{ĉi(t), ĉ†

j (t
′)}〉 = Θ(t′ − t)[G<

ij (t, t′)− G>
ij (t, t′)]

(2.55)

The selfenergy Σ(t, t′) can be also split into greater/lesser components upon we
have subtracted a possible time local term:

Σij(t, t′) = δC(t, t′)ΣHF
ij (t) + Σ̄ij(t, t′)

Σ̄ij(t, t′) = ΘC(t, t′)Σ>
ij (t, t′) + ΘC(t′, t)Σ<

ij (t, t′) (2.56)
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The time local part of the selfenergy, ΣHF(t) will turn out to correspond to Hartree-
Fock diagrams.
Inserting the decompositions of G(t, t′) and Σ(t, t′) into greater and lesser parts,
Eq’s. (2.54) and (2.56), into the Dyson equation, Eq. (2.52), explicitly writing
out the time integral over the closed time contour using the so called Langreth
rules [55], we obtain the Kadanoff-Baym equations for the time evolution of the
greater and lesser Green’s functions in our lattice fermion model:

(i∂t + Ĵ − ΣHF(t)) ∗ Ĝ≶(t, t′) = I≶L (t, t′)

Ĝ≶(t, t′) ∗ (−i
←−
∂t′ + Ĵ − ΣHF(t′)) = I≶R (t, t′), (2.57)

where

I≶L (t, t′) =
t∫

0

dt′′ ΣR(t, t′′) ∗ G≶(t′′, t′) +
t′∫

0

dt′′ Σ≶(t, t′′) ∗ GA(t′′, t′)

I≶R (t, t′) =
t∫

0

dt′′ GR(t, t′′) ∗ Σ≶(t′′, t′) +
t′∫

0

dt′′ G≶(t, t′′) ∗ ΣA(t′′, t′). (2.58)

The equations of motion, Eq. (2.57), have to be solved numerically. In order not to
lose the unitary and conserving nature of the Kadanoff-Baym equations an integra-
tion with the trapezoidal rule in conjunction with a predictor-corrector scheme is
necessary. The time-space is discretized as in Sec. 2.2, (t, t′) → (n∆t, m∆t) and
Eq. (2.57) is integrated with the trapezoidal rule from t = T to t = T + ∆, which,
for example, gives

G≶(T + ∆t, t′) =G≶(T, t′) +
i∆t
2

[
( Ĵ − ΣHF(T + ∆t)) ∗ G≶(T + ∆t, t′)

− I≶L (T + ∆, t′) + ( Ĵ − ΣHF(T)) ∗ G≶(T, t′)− I≶L (T, t′)
]

.

(2.59)

Eq. (2.59) is an implicit equation for G≶(T + ∆t, t′), which is solved using a
predictor-corrector scheme: First, in the prediction-step, a predictor G≶p (T+∆t, t′)
is calculated by replacing all T +∆t with T on the right hand side of Eq. (2.59) and
from this then also a predictor for I≶L (T + ∆, t′) is obtained. Second, in the correc-
tion-step, we calculate a corrected G≶c (T + ∆t, t′), by using the predictor Green’s
functions and predictor memory integrals on the right hand side of Eq. (2.59). This
two-step process is then iterated until the predictor and corrector Green’s functions,
G≶p (T + ∆t, t′) and G≶c (T + ∆t, t′) respectively, agree within a certain accuracy.

Weak coupling expansion of the 2PI effective action

We will now assume, that density-density interaction U is small such that it is pos-
sible to expand the 2PI effective action Γ2[G] in powers of U. Diagrammatically
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this means, that we organize diagrams according to the number of interaction ver-
tices, Uij, appearing. The expansion will be performed up to second order in U.
We can write

Γ2[G] = ΓH
2 [G] + ΓF

2 [G] + ΓSCB
2 [G] + ΓCross

2 [G] +O(U3). (2.60)

The first two terms, ΓH
2 [G] and ΓF

2 [G], comprise the Hartree-Fock approximation,
which will give rise to the time local part of the selfenergy and is of order U. The
third term, commonly referred to as self-consistent Born approximation, and the
fourth term, which we will call cross approximation, are of order U2 and are time
nonlocal, such that they give rise to memory integrals on the right hand side of the
Kadanoff-Baym equations, Eq. (2.57).
The Hartree diagram is

ΓH
2 [G] =

ii

j j

= ∑
ij

Uij

∫
C

dt Gii(t, t)Gii(t, t). (2.61)

The Fock diagram is

ΓF
2 [G] =

i

i

j

j

= −∑
ij

Uij

∫
C

dt Gij(t, t)Gji(t, t). (2.62)

The self-consistent Born diagram is

ΓSCB
2 [G] =

i

i
j

j

l

l
k

k

= 2i ∑
ijkl

UijUkl

∫
C

dt dt′ Gil(t, t′)Gli(t′, t)Gjk(t, t′)Gkj(t′, t). (2.63)

The cross diagram is

ΓCross
2 [G] =

i
i

l
l j

j

k
k

= −2i ∑
ijkl

UijUkl

∫
C

dt dt′ Gik(t, t′)Gkj(t′, t)Gjl(t, t′)Gli(t′, t). (2.64)
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Calculating the functional derivative of the Hartree and Fock terms with respect to
the Green’s function, we obtain the Hartree-Fock selfenergy

ΣHF
ij (t) = + = −2iδij ∑

l
UilGll(t, t) + 2iUijGij(t, t), (2.65)

where the first term is the Hartree self-energy and the second part the Fock self-
energy. For the SCB and Cross self-energy we get

ΣSCB
ij (t, t′) = = 8Gij(t, t′)∑

lk
UikUl jGkl(t, t′)Gkl(t′, t) (2.66)

and

ΣCross
ij (t, t′) = = −8 ∑

lk
UikUl jGil(t, t′)Glk(t′, t)Gkj(t, t′).

(2.67)
Finally, we decompose these self-energy contribution into greater and lesser parts,

ΣHF
ij (t) = −2iδij ∑

l
UilG<

ll (t, t) + 2iUijG<
ij (t, t)

ΣSCB,≶
ij (t, t′) = 8G≶ij (t, t′)∑

lk
UikUl jG

≷
kl (t, t′)G≶kl (t

′, t)

ΣCross,≶
ij (t, t′) = −8 ∑

lk
UikUl jG

≶
il (t, t′)G≷lk(t

′, t)G≶kj(t, t′). (2.68)

Here a short note on the handling of equal time Green’s functions in the diagram-
matics is in order, as the contour ordered Green’s function G(t, t′) is singular for
t = t′. In the derivation of the coherent state path integral, one starts out with a
normal ordered Hamiltonian, i.e. all creation operators standing to left of all anni-
hilation operators. This implies, that creation operators are always evaluated on a
coherent state at an infinitesimally later time, hence, to be precise, we should write
the interaction vertex as c̄i(t + 0+)c̄j(t + 0+)cj(t)ci(t). Consequently all equal
time Green’s functions in the Feynman diagrams for the 2PI effective action or the
self-energy are evaluated at (t, t + 0+) and thus we have G(t, t) = G<(t, t).
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Chapter 3
Floquet prethermalization and
regimes of heating in a periodically
driven, interacting quantum system

The text and figures in this chapter are taken from the following publication of the
author:

• Simon A. Weidinger, Michael Knap, "Floquet prethermalization and regimes
of heating in a periodically driven, interacting quantum system", Scientific
Reports 7, 45382 (2017)

In order to provide a structure better suited to this thesis, certain sections have been
merged and rearranged or renamed.

3.1 Thermalization in a periodically driven system

Periodically driving quantum many-body systems often leads to exotic phenom-
ena that are absent in their undriven counterparts. The unitary quantum evolu-
tion of a periodically driven system at times that are commensurate with the drive
period T is governed by the operator Û(T) = exp[−iĤFT], which defines the
Floquet Hamiltonian ĤF. The Floquet Hamiltonian ĤF can be designed in such
a way that it hosts novel and exotic phases of matter. Examples include, topo-
logically non-trivial band structures realized by driving topologically trivial sys-
tems [56, 57, 58, 59, 60, 61, 62], and ergodic phases created by driving non-
ergodic quantum systems [63, 64, 65, 66, 67, 68, 69]. Moreover, phases in period-
ically driven systems with no direct equilibrium analogue have been proposed [13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23], including Floquet time crystals which
exhibit persistent macroscopic oscillations at integer multiples of the driving pe-
riod [13, 16, 20, 21, 22, 23].
The eigenstate thermalization hypothesis (ETH) suggests that generic interacting
many-body systems heat up to infinite temperature [70, 71], thus inhibiting the real-
ization of such novel phases. A possible resolution is to stabilize the Floquet states
by disorder such that the system becomes many-body localized and ETH does not
apply [63, 64, 65, 68], as recently demonstrated experimentally [69]. However,
this restricts the variety of accessible phases. Another route would be to resort to
driving frequencies much higher than all other microscopic scales [72, 73, 74, 75].
But in that case ĤF becomes quasi-local and cannot possess any exotic phases. A
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more general approach, is to resort to a transient prethermal regime [76, 77, 78, 79],
which is characterized by the interaction time scale of the Floquet Hamiltonian re-
quired to realize exotic phenomena being much shorter than the heating timescale.
It is therefore eminent to study the stability of such a Floquet prethermal regime in
a general context.
In this work, we investigate the stability of the Floquet prethermal regime and the
thermalization time scales in a generic interacting many-body system subject to a
periodic drive. In particular, we focus on the quantum O(N)-model with modu-
lated mass. To this end, we employ the 2-particle irreducible (2PI) effective action
approach on the closed Keldysh contour including corrections up to next-to-leading
order (NLO) in 1/N which allow the system to thermalize. The O(N)-model is
a well established model for interacting many-body systems, both in condensed
matter and cosmology [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 78]. In particular,
the presence of nontrivial interactions at NLO as well as the bosonic nature of
excitations render the O(N)-model useful for studying heating of a driven many-
body system to infinite temperature. Based on our numerical simulations, we find
a parametrically large regime of Floquet prethermalization, even when the driving
frequency is comparable to other microscopic scales of the undriven Hamiltonian
so long as the interactions of the system are not too strong; Fig. 3.1.
We study the quantum O(N)-model of N real scalar fields Φa, a = 1, . . . , N with
the action [50]

S =
∫

x,C

[
1
2
(∂µΦa)

2 − 1
2

m2(t)Φ2
a −

λ

4!N
(ΦaΦa)

2
]

. (3.1)

We use the abbreviation
∫

x,C =
∫

ddx
∫
C dt, where the time integration runs over

the closed-time Keldysh contour C. Furthermore we assume that repeated in-
dices are summed over. In momentum space a finite cut-off Λ is applied to reg-
ularize eventual UV divergencies. Consequently, we are effectively discussing
a lattice system with a finite quasi-particle bandwidth. The bare mass m2(t) =
m2

0 − A cos(Ωt) is driven with amplitude A and frequency Ω, which, in a linear
response regime (A� Ω, m0) creates pairs of excitations.
It is convenient to rescale time t → 2t/Ω and the fields Φa → (2/Ω)1/2Φa, and
to introduce the effective coupling constants in the presence of an external drive:

g =
2A
Ω2 , u =

8λ

Ω3 . (3.2)

The driving amplitude is rescaled by Ω2, which is a consequence of the relativistic
form of the action. The model (3.1) displays an equilibrium phase transition to an
ordered, symmetry broken phase for m2

0 < 0 and small λ < λc at low temperatures.
The drive destroys the ordered phase already at leading order in 1/N [78]. Hence,
as we are interested in the long-time dynamics, we restrict ourselves to initial states
in the symmetric phase. Furthermore, in the case of symmetric initial states, we
find the same qualitative behavior in all spatial dimensions d = 1, 2, 3, and thus
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the presented results focus on d = 1. We emphasize that our results represent the
thermodynamic limit, and thus should be contrasted to the exact diagonalization of
small systems.
In order to simulate the dynamics of the driven system, we use the nonequilib-
rium Keldysh formalism [90]. The time evolution of the two-point contour ordered
Green’s function Ĝ is governed by the self-consistent Dyson equation(
�t,x + m2(t)

)
Ĝ(t, t′) + i

∫
C

dt′′Σ̂(t, t′′) ∗ Ĝ(t′′, t′) = −i1̂δC(t− t′), (3.3)

where �t,x is the d’Alembert operator and the self-energy Σ̂ is given as the func-
tional derivative of the 2PI effective action Γ2 [47], see the methods section for
details. The advantages of this approach are that it operates in the thermodynamic
limit and respects the conservation laws associated with the global symmetries of
the microscopic action, such as energy or momentum conservation. We decom-
pose the contour ordered Green’s function as Ĝ(t, t′) = F̂(t, t′) − i/2sgnC(t −
t′)ρ̂(t, t′), with the Keldysh or statistical correlation function F̂, that is symmetric
under a permutation of arguments, and the spectral function ρ̂, that is antisymmet-
ric when permuting the arguments.
We employ a 1/N fluctuation expansion to the real-time effective action Γ2 to
next-to-leading order (NLO) [48, 49]. While in the symmetric phase only a single
diagram contributes at leading-order (LO), at NLO an infinite series of diagrams
has to be summed. The self-energy up to NLO can be schematically represented
by the following diagrammatic series

Σ = a a + a b +
a b

c c

c c
+ + . . . (3.4)

where lines represent full Green’s functions G and dots vertices, each of which
comes with a factor ∼ λ/N. In this scheme, the LO (first diagram) is equivalent
to a self-consistent Hartree-Fock approximation and thus results in a time-local self-
energy that solely renormalizes the bare mass; see methods section. A LO analysis
is thus not sufficient to answer the question of whether a prethermal state can be
stabilized, as it eliminates the possibility of infinite heating from the beginning.
Only at NLO [all other diagrams in Eq. (3.4)] the self-energy contains parts which
are non-local in time and lead to scattering and memory effects that ultimately
enable thermalization.
The NLO evolution equations are integrated numerically for times up to 3.18 ·
104 driving cycles. The momentum cutoff is set to Λ = π. As initial condition
we use the LO groundstate of the O(N)-model for given interaction u and fixed
renormalized mass m2

eff = 1, i.e. the bare mass m2
0 gets adjusted accordingly.

We have chosen this convention, since the physically relevant observable quantity
is the renormalized mass m2

eff, which has to be fixed to get comparable results.
Furthermore, we set the drive amplitude to g = 1/4 and scan the interaction u and
drive frequency Ω.
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prethermal

regime

single-particle

regime

thermalizing

regime

interaction

timescale

thermalization

Figure 3.1: Time evolution of the energy density in the periodically
driven O(N) model. The energy density ε(t) exhibits three distinct dy-
namical regimes: (I) At short times t, single-particle rearrangements lead to
a fast increase of the energy density, up to times tint at which interactions
become relevant. (II) At intermediate times, tint < t < tth, a stable Floquet
prethermal regime occurs in which the interacting system ceases to absorb.
(III) At late times, beyond the thermalization time scale t > tth, interactions
between a large number of generated quasi-particle excitations cause strong
heating. In that regime, the energy density displays an algebraic growth,
ε(t) ∼ tα, with an exponent that approaches α ∼ 1/2 for strong interactions.
The data is shown for drive frequency Ω = 2.3 and for three different values
of the interaction strength u, see legend.

3.2 Dynamics of the energy density

The central observable to study heating in any driven system is the energy density
ε(t) = 〈Ĥ(t)〉/V, where V is the system volume. In our scheme the expectation
value of the Hamiltonian is directly available from the Keldysh Green’s function
F. Calculating the expectation of the quadratic part of the Hamiltonian is straight-
forward, whereas for the quartic term, we use Heisenberg’s equations of motion to
express it in terms of higher order time derivatives of the Keldysh Green’s function.
We obtain

ε(t) =
N
4

∫
p

(
2∂t∂

′
t − ∂2

t +
4
(

p2 + m2
0
)

Ω2

)
F(t, t′, p)|t=t′ . (3.5)

Typical plots of ε(t) are shown in Fig. 3.1. We can divide the heating of the sys-
tem into three regimes: (I) At short times, up to the interaction timescale tint, the
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(a) (b)

Figure 3.2: Parametric dependence of the interaction and thermalization
time scales. (a) Interaction times scale tint as a function of the interaction
strength u. In the limit of weak interactions, u . 1, the interaction time tint
scales logarithmically with u. This behavior can be analytically understood
from a calculation based on Floquet Fermi’s Golden Rule (FFGR), symbols,
which perfectly agrees with the numerically evaluated interaction time scale,
solid line. For u & 1, tint is not well defined, as interaction effects matter as
soon as the drive is switched on. The inset illustrates the definition of tint
by comparing the time evolution of the energy density using leading order
(LO) and next-to-leading order (NLO) approximations. At LO the heating
stops at tint while at NLO the system very slowly absorbs energy from the
drive and enters the Floquet prethermalization regime. (b) Thermalization
timescale tth as a function of the interaction strength u. The thermalization
time scale tth characterizes the crossover between the prethermal and the
heating regime. It depends strongly on both the interactions u and drive
frequency Ω. Inset: The driving frequencies Ω (dashed lines) lie within the
initial bandwidth of quasi-particle pairs (solid line).

dynamics is dominated by single-particle rearrangements, leading to exponentially
fast heating. In that regime, a LO approximation is sufficient to describe the dy-
namics and scattering of quasi-particles is essentially irrelevant. We define, the
interaction timescale tint as the time at which the LO and NLO results starts to
deviate, which characterizes the time at which non-local contributions to the self-
energy become important. (II) After this initial stage of heating, the system quickly
enters a prethermal plateau with low absorption. This Floquet prethermal state per-
sists up to the thermalization time tth and can span several decades in time, thus
providing a solid regime for Floquet engineering. (III) At late times t & tth heating
becomes significant and we expect the system to approach the infinite temperature
state. In that regime our data suggests a power-law growth of the energy density
ε(t) ∼ tα. In the following, we discuss these regimes and where possible provide
analytical arguments for the observed behavior.
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3.3 Three dynamical regimes on the way to thermal-
ization

Short time dynamics

At short times, NLO corrections are essentially irrelevant for the dynamics, as
confirmed explicitly by comparing LO and NLO results; inset in Fig. 3.2 (a). At
LO, the system is equivalent to a multi-dimensional anharmonic oscillator with
periodically modulated frequencies (see details in the methods section). We can
understand the dynamics in terms of a parametric resonance with the resonance
condition set by Ω = 2ω(p?), where ω(p) = (p2 + m2

eff)
1/2 is the initial disper-

sion relation of excitations. The momentum-mode p? grows exponentially and the
fastest growing observable will be F(t, t, p?) ∼ e2γp? t. Consequently, using (3.5),
the energy density will also grow exponentially in time ε(t) ∼ e2γp? t. In the
Gaussian limit, u = 0, this exponential growth would last indefinitely, but for fi-
nite u the self-consistently determined effective mass grows simultaneously with
F(t, t, p?), breaking the resonance condition at a certain time, and preventing any
further energy-absorption in a LO approximation [78]. Note that since we fix the
initial effective mass, m2

eff(t = 0) = 1, the growth rate γp is independent of
u. This is due to the fact, that the parametric resonance only depends on the fre-
quency and amplitude of the drive as well as the initial quasi-particle spectrum of
the system.
Taking into account NLO corrections quasi-particle excitations interact with each
other which will eventually lead to heating. We estimate the validity of the LO
calculation by F(t, t, p?) ∼ u−2/3, which determines the time when the first non-
trivial diagrammatic contribution [sunset diagram, i.e., third diagram in Eq. (3.4)],
becomes relevant [82]. Considering the exponential growth of F(t, t, p?), the in-
teraction timescale obeys the scaling tint ∼ (2γp?)−1 log u−2/3. The logarithmic
scaling of tint with u is confirmed in Fig. 3.2 (a). Deviations from the logarithmic
scaling exist for u & 1, as in the strong interaction regime NLO processes are im-
portant already at initial times, which renders the interaction time scale ill-defined.
In order to validate that the scattering of quasi-particle excitations is the reason for
the deviation of the LO and NLO results, we derive a Floquet Fermi’s Golden rule
(FFGR) [91], which formally considers NLO diagrams with the lowest number of
interaction vertices (sunset diagram):
The simplest diagram leading to scattering between quasi-particles is the "sunset"
diagram, see Fig. 3.3. This diagrams includes interactions of only two quasi-
particles. By contrast, higher loop diagrams would include scattering events of
more than two particles. As we discuss in the main text, these higher-order events
become relevant only at later times. We obtain the following expression for the
FFGR self-energy

Σ(FFGR)(t, t′, p) = − λ

18N

∫
k,q

G(t, t′, p + q)G(t, t′, k)G(t′, t, q + l). (3.6)
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Σ(FFGR)(t, t′, p) =

Figure 3.3: Floquet Fermi’s golden rule. The "sunset" diagram takes into
account scattering of two quasi-particles beyond a simple renormalization of
the quasi-particle mass. It is non-local in time and leads to memory effects.

Splitting Eq. (3.6) into statistical and spectral components, we obtain

ΣF,FFGR(t, t′, p) = − λ

3N

∫
q

(
F(t, t′, p + q)ΠF(t, t′, q)− 1

4
ρ(t, t′, p + q)Πρ(t, t′, q)

)

Σρ,FFGR(t, t′, p) = − λ

3N

∫
q

(
F(t, t′, p + q)Πρ(t, t′, q) + ρ(t, t′, p + q)ΠF(t, t′, q)

)
.

(3.7)

Expressing ΣFFGR in this way, we see that the Floquet Fermi’s golden rule analysis
amounts to replacing the summation function I in the expression for the NLO self-
energy, Eq. (2.40), with the polarization bubble Π.
We find perfect agreement between the interaction time tint evaluated with the full
NLO calculation and the FFGR, respectively, which demonstrates that scattering
of created excitations is responsible for the deviations between the leading and
next-to-leading order time evolution. This explains why the system can heat up
further: Once scattering is taken into account, not only pairs of quasi-particles can
be created but the energy can also be distributed over many excitations.

Floquet prethermalization

Once the parametric resonance regime is left, heating becomes extremely slow and
the prethermal plateau is entered. In that regime the number of quasi-particles
is small and hence the multi-particle scattering, which is enabling further energy
absorption, is much slower than pair creation. The number of quasi-particle excita-
tions is directly related to the equal time Keldysh Green’s function F, which due to
the self-consistent feedback continues to grow. As the thermalization timescale tth
is reached, the higher order loop diagrams [Eq. (3.4)] that allow for multi-particle
scattering start to dominate. Thus, heating becomes significant and the Floquet
prethermal state breaks down.
To quantitatively understand the thermalization time scale tth, we study it as a
function of the interaction strength u and driving frequency Ω; Fig. 3.2 (b). The
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thermalization timescale and thus the lifetime of the prethermal plateau decreases
with increasing u, however the functional dependence cannot be described by an
exponential or power-law. The dependence is quite strong, with tth changing over
one order of magnitude as u varies in the interval [0.5, 15] and Ω = 2.3. Fixing the
interaction u, we find that tth decreases with increasing Ω. This is a consequence
of all chosen frequencies lying within the initial bandwidth of quasi-particle pairs,
2 < Ω < 2

√
Λ2 + 1, as illustrated in the inset of Fig. 3.2 (b). With increasing Ω,

more momentum modes participate in the parametric resonance and consequently
the Keldysh component F already ends up being larger as tint is reached; see meth-
ods section. Based on our previous arguments on the quasi-particle density, the
system thus will be earlier driven out of the prethermal plateau.
Our results do not contradict Refs. [72, 73, 74], which predict that heating is ex-
ponentially suppressed at large drive frequencies, as our results are all for small
drive frequencies within the two-particle bandwidth. When increasing the drive
frequency Ω in our model beyond the two particle bandwidth, the energy absorp-
tion becomes very slow. In that case, the system is far away from a parametric
resonance and hardly responds to the drive at all.
Even though heating is slow within the prethermal regime tint < t < tth it remains
finite and the system does not become fully stationary. Nevertheless, in this regime
the Green’s function only depends extremely weakly on the stroboscopic center-
of-mass time Tn = (t + t′)/2 = 2πn/Ω, where n is an integer. Thus, this
extremely slow center-of-mass time dependence should not affect the much faster
microscopic processes, that are required to realize novel prethermal states.

Thermalization

At times t & tth, the system is driven out of the prethermal regime and the absorp-
tion increases. Our numerical simulations suggest that the energy density grows
as a powerlaw ε(t) ∼ tα (Fig. 3.1), which can persist for several decades. We
show the exponent α as a function of the interaction strength u for different driv-
ing frequencies Ω in Fig. 3.4. With increasing interaction u and drive frequency
Ω the exponent approaches 1/2, which appears as a lower bound. In the limit of
large u and Ω, the thermalization time scale is smallest and hence, given the fixed
maximum time that we can reach in our simulations, the accessible thermalization
regime is largest for these parameters. This suggests that the powerlaw exponent
might slowly creep to the universal value 1/2 for any interaction u and drive fre-
quency Ω in the asymptotic limit, t → ∞. In contrast, we found linear heating at
late times in the O(N)-model subject to colored noise; see methods section. More-
over, our results suggest that the driven O(N)-model heats to infinite temperature
following the well defined prethermal plateau.
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Figure 3.4: Powerlaw exponent α of the absorbed energy in the thermal-
izing regime. The exponent α is extracted from the algebraic growth of the
energy density at late times ε(t) ∼ tα. With increasing interaction strength u
and driving frequency Ω (but still within the single-particle band), the expo-
nent α quickly approaches 1/2, suggesting that in the asymptotic long-time
limit, t→ ∞, the heating rate universally scales as ε(t) ∼

√
t.
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Figure 3.5: Illustration of the parametric resonance. When a part of the
initial bandwidth (red shaded region) for quasi-particle pairs lies in a para-
metric resonance (blue shaded regions), the corresponding modes grow
exponentially, which leads to an exponentially growth of the effective mass
meff(t). Accordingly the dispersion relation ωt(p) is shifted toward higher
energies (light red shaded region). Once the quasi-particle bandwidth lies
completely in between to region of parametric resonance, the system stops
absorbing energy in the leading order approximation. The parametric res-
onance at nΩ, n = 1, 2, . . . is only sharp in the limit of vanishing drive
amplitude A and smears out with increasing A. For small A, the width of
the resonance grows linearly with A.
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3.4 Heating at leading order

To leading order the self-energy is time-local and the evolution equations simplify
to [

∂2
t + p2 + m2

0 + A cos Ωt +
λ

6

∫
q

F(t, t, q)
]

F(t, t′, p) = 0[
∂2

t + p2 + m2
0 + A cos Ωt +

λ

6

∫
q

F(t, t, q)
]

ρ(t, t′, p) = 0 (3.8)

The equations (3.8) describe coupled anharmonic parametric oscillators (one oscil-
lator for each t′ and p) with initial eigenfrequencies ω0(p) =

√
p2 + meff(0)2.

Let us first discuss the entirely noninteracting case λ = 0, in which Eqs. (3.8)
are independent Mathieu equations. It is known from classical mechanics, that the
modes satisfying the resonance condition 2ω0(p) = nΩ with n = 1, 2, . . . expe-
rience a parametric resonance and will grow exponentially in time. As there is no
feedback on the spectrum of the system for λ = 0 this exponential growth in the
resonant modes continues forever.
For finite λ, the exponential growth of the statistical correlation function F(t, t′, p)
for momenta p satisfying the resonance condition leads to an exponential growth
of the effective mass m2

eff(t) = m2(t) + λ/6
∫

q F(t, t, q), which shifts the disper-
sion of quasi-particles to higher energies and reduces the effective quasiparticle
bandwidth 2[

√
Λ2 + meff(t)2 −meff(t)] [78]. Therefore, the quasi-particle band-

width will at a certain time lie entirely in between the parametric resonances and
the system cannot absorb energy anymore, Fig. 3.5.
The failure of the system to absorb further energy can be traced back to the fact,
that the LO self-energy is local in time and only leads to a renormalization of
the quasi-particle dispersion. Except for this renormalization the quasi-particles
remain sharp excitations and there is no mechanism present, that allows energy-
transfer between them. Consequently, there is only energy absorption from the
drive when the driving frequency hits the sharp resonance for the creation of quasi-
particle pairs and the heating stops as soon as the resonance condition cannot be
fulfilled anymore.

3.5 Thermalization through noise

We study the leading-order time evolution of the statistical Green’s function subject
to multiplicative noise[

∂2
t + p2 + m2

0 + A cos Ωt +
λ

6

∫
q

F(t, t, q) + ξ(t)
]

F(t, t′, p) = 0. (3.9)

Introducing noise ξ(t) is expected to mimic, at least very crudely, the effect of
scattering. Therefore, the system is expected to heat to infinite temperature even
with the leading order self-energy.
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Figure 3.6: Time evolution of the energy density obtained from leading
order equations subject to noise. With multiplicative noise the system
absorbs energy indefinitely even at leading order. The energy density grows
with a powerlaw ε(t) ∼ tα for late times for arbitrary system parameters.
Depending on whether the noise is white, i.e., completely uncorrelated in
time or colored, i.e., correlated in time, the growth is quadratic or linear,
respectively. From that we deduce that correlations in time slow down
heating in the system. The data is shown for driving frequency Ω = 2.3 and
interaction strength u = 1.0. The strength of the white noise is γ = 2.0/Ω2

whereas for colored noise we have chosen σ = 2/Ω2 and τ = 20/Ω.

We explore two cases for the random process, which are white noise and cor-
related noise, respectively. In the case of white noise, ξw(t) reduce to Gaus-
sian random variables with vanishing mean, 〈ξw(t)〉 = 0 and auto-correlation
〈ξw(t)ξw(t′)〉 = γ2δ(t − t′). By contrast, the correlated noise ξc(t) obeys the
stochastic differential equation of the Ornstein-Uhlenbeck process

dξc(t) = −
1
τ

ξc(t)dt + σdW(t), ξc(0) = 0, (3.10)

where τ is the correlation time, σ controls the strength of the noise, and W(t) is
the standard Brownian motion. The auto-correlation of ξc is given by

〈ξc(t)ξc(t′)〉 =
σ2τ

2

(
e−
|t−t′ |

τ − e−
t+t′

τ

)
(3.11)

and 〈ξc(t)〉 = 0. Note that white noise is recovered in the limit τ → 0, σ → ∞,
keeping στ = γ fixed. White noise is completely uncorrelated, while colored
noise has exponentially decaying correlations in time. Hence, one expects that





Chapter 3. Floquet prethermalization and regimes of heating in a
periodically driven, interacting quantum system

the system thermalizes faster when it is subject to white noise. This is what we
find by numerically solving Eq. (3.8). Moreover, we find that the energy-density
grows according to a power-law ε(t) ∼ tα; Fig. 3.6. We exploit the similarity
of Eq. (3.8) and an anharmonic oscillator, for which it has been shown that the
energy grows quadratically in time for white noise (α = 2), whereas colored noise
leads to a linear growth ε ∼ t (α = 1) [92, 93]. The dynamical evolution in our
system, Eq. (3.9), confirms these expectations. Therefore, the heating due to either
white (ε ∼ t2) or colored (ε ∼ t) noise is substantially faster than the asymptotic
heating we observe when solving the equations of motion self-consistently up to
NLO (ε ∼

√
t). We attribute the slow heating obtained from the full solution up

to NLO to the strong interactions between quasi-particles which cannot be simply
mimicked by multiplicative noise.

3.6 Conclusions

Our results demonstrate, that a prethermal Floquet state can be stabilized in a
periodically-driven quantum many-body system, despite strong interactions and
despite the driving frequency being comparable to microscopic energy scales of
the system. This opens the possibility of realizing exotic states in the Floquet
prethermal regime, such as time crystals or other novel symmetry protected topo-
logically phases. Furthermore, our study suggests a algebraic heating at late times
of the form ε(t) ∼

√
t, which is significantly slower than the linear Joule heating.

We attribute this peculiar form of heating to the strong interactions between the
dynamically generated quasi particles. How such a sublinear growth can be recon-
ciled with the eigenstate thermalization hypothesis is an important open question.
A future study based on a Floquet Boltzmann type approach might provide further
insights into this behavior
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Chapter 4
Dynamical quantum phase
transitions in systems with
continuous symmetry breaking

The text and figures in this chapter are taken from the following publication of the
author:

• Simon A. Weidinger, Markus Heyl, Alessandro Silva, Michael Knap, "Dy-
namical Quantum Phase Transitions in Systems with Continuous Symmetry
Breaking", Phys. Rev. B 96, 134313 (2017)

In order to provide a structure better suited to this thesis, certain sections have been
merged and rearranged or renamed.

4.1 Two concepts of dynamical quantum phase transi-
tions

In recent years, synthetic quantum matter such as ultra-cold atoms, polar molecules,
and trapped ions have demonstrated their capabilities to experimentally study nonequi-
librium quantum states far beyond the regime of linear response and thus far be-
yond a thermodynamic description. Due to the isolation from the environment and
the high level of control, experiments with synthetic quantum matter have shown
that inherently dynamical phenomena can be realized and probed, ranging from
many-body localization,[27, 28, 29, 30, 31, 32, 33], prethermalization,[94, 95] dis-
crete time crystals,[34, 35] the particle-antiparticle production in the Schwinger
model,[36] to emergent Bloch oscillations.[96] In addition, not only the dynamical
phases themselves have become accessible in experiments, but also the associated
dynamical transitions between the phases.[24, 25, 26]
Current experimental platforms for studying dynamics are often focusing on one-
and two-dimensional systems. Yet, a future prospect concerns extensions toward
the realization of non-equilibrium many-body states in three spatial dimensions,
where new physical phenomena become accessible. This includes, for example,
the possibility of spontaneously broken continuous symmetries at nonzero temper-
atures, which is excluded for lower dimensions due to the Mermin-Wagner theorem
in systems with short range interactions.
In this work, we study the quantum dynamics of an interacting many-body system
in three dimensions which exhibits such a spontaneously broken symmetry. Specif-
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bare 
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(a)

(b) (c)

Figure 4.1: Dynamical criticality in the Loschmidt echo for systems with
spontaneous symmetry breaking. (a) We study dynamical quantum phase
transitions of the O(N) model following quantum quenches from an initial
bare mass r0

i to a final bare mass r0
f . The initial state is chosen to break

the continuous symmetry of the O(N) model and hence is described by a
finite order parameter. Our system exhibits a steady-state dynamical phase
transition at rdyn

c , which separates the dynamically ordered phase in which
the long-time average of the order parameter φ̄ remains finite, from the dis-
ordered phase in which φ̄ vanishes. We analytically calculate the Loschmidt
echo and find that the associated rate function remains smooth for quenches
within the dynamically ordered phase (b) but exhibits nonanalytic kink
singularities when crossing the dynamical critical point rdyn

c (c).
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ically, we calculate the unitary real-time evolution of the O(N) vector model follow-
ing a quantum quench of the mass, with an initial state that breaks the continuous
symmetry of our system, see Fig. 4.1. We approach the problem fully analytically
via the large-N limit, where the dynamics can be solved exactly.
The O(N) model exhibits a dynamical quantum phase transition in the asymptotic
steady state, separating two dynamical phases with finite and vanishing order pa-
rameter, respectively. [97] Here, we show that in addition to the dynamical steady-
state transition of the order parameter, the O(N) model exhibits a critical dynamical
phenomenon on transient time scales. In particular, non-analyticities appear in the
Loschmidt echo periodically in time when the dynamical transition is crossed by
the quantum quench (Fig. 4.1). We show that in the O(N) model these singularities
contribute only subextensively to the rate function associated with the Loschmidt
echo. Making use of the analogy between the Loschmidt echo and the boundary
partition function, this effect is reminiscent of surface phase transitions in equilib-
rium systems, which also contribute only subextensively to the free energy.[98] Fur-
thermore, we find that the dynamical critical point obtained from the order parame-
ter coincides with the one obtained from the Loschmidt echo. These different con-
cepts of dynamical criticality are further linked by the fact that the non-analyticities
in the Loschmidt echo occur at times when the order parameter crosses zero. A sim-
ilar relation has been found in the long-range transverse-field Ising model.[99] We
argue that our results are not specific to the O(N) model or the large-N limit, and
hence apply to generic systems with a spontaneously broken continuous symmetry.

DPT-I: Order parameter dynamical quantum phase transitions

The first one, is associated with the time evolution of the order parameter.[100,
101, 102, 103, 104, 97, 105, 106, 99, 107, 108] The dynamical quantum phase
transition is then characterized by a critical point which separates regimes where
the long-time average of the order parameter φ̄ is either finite or zero. Close to
this dynamical critical point the long-time average φ̄ exhibits scaling relations with
critical exponents.[97, 106] However, the location of the dynamical critical point
can in general differ from the equilibrium one and might also depend on the initial
state, due to a dynamical renormalization of parameters.[106, 97]

DPT-II: Loschmidt echo dynamical quantum phase transitions

A second approach to study the nonequilibrium dynamical criticality is to exploit
the formal similarity between the equilibrium partition function Z = tr[e−βĤ ] and
the Loschmidt amplitude 〈ψ0|e−iĤt|ψ0〉. [109, 110] The equilibrium partition func-
tion becomes non-analytic at a conventional phase transition as a function of the
control parameter such as temperature or pressure. It turns out, that the Loschmidt
amplitude can also exhibit nonanalyticities, but as a function of time rather than
a control parameter. Indeed it has been shown that the rate function, which is ob-
tained from taking the logarithm of the Loschmidt amplitude, exhibits nonanalytici-
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ties when the system is quenched across a quantum critical point whereas it remains
smooth for quenches within the same dynamical phase.[109, 111, 110, 112, 113,
114, 115, 116, 117, 118, 99, 119, 107, 120, 108]. Recently, it became also possible
to measure Loschmidt amplitudes in various experimental settings. [121, 24]
So far the Loschmidt amplitude has mostly been studied for one dimensional sys-
tems with discrete Z2 symmetries (see, however, Refs. [114, 116, 120]). In this
work, we look at a three dimensional model with a continuous O(N) symmetry: the
O(N) vector model. This model provides a universal description for many systems
close to their critical point and is well established in the study of (non-equilibrium)
quantum phase transitions.[50, 86, 97, 106, 88, 89] For example, the equilibrium
Mott-insulator to superfluid transition in the Bose-Hubbard model falls into the
universality class of the O(2) model and the Heisenberg antiferromagnet can be
described by an O(3) model.
We propose the following generalization of the Loschmidt echo to systems with a
continuously broken symmetry

L(t) =
∫

{|χ|=φ0}

dNχ |〈χ|Ψ(t)〉|2. (4.1)

Here, |Ψ(t)〉 = Û(t)|ψ0〉 is the time evolved state after the quench and the integral
is taken over the full set of symmetry-broken ground states |χ〉, which can be
pictured as a sphere within an N-dimensional space. The radius φ0 is set by the
order parameter in the initial state. Below we will analyze the dynamics of the rate
function associated with the Loschmidt echo

R(t) = − 1
LdN

logL(t), (4.2)

which shows nonanalytic behavior for quantum quenches from the dynamically
ordered to the disordered phase.

4.2 Time evolution of a quantum state in the O(N)-
model at large N

Heisenberg equations of motion in the mode function formalism

Let us assume in the following, that the system has been prepared in the symmetry-
broken ground state |Ψ0〉 at r0

i , with the order parameter 〈Φ̂a〉 = δ1,aφ0 pointing
along the a = 1 direction. The value of φ0 is given by

(φ0)
2 = −6r0

i
λ
− (N − 1)〈Φ̂2Φ̂2〉, (4.3)

which follows directly from the initial mass being zero. Here, we also used, that
there is a remaining O(N − 1)-symmetry for the a ≥ 2 components. We then
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Figure 4.2: Dynamical phase diagram of the O(N) model in three spatial
dimensions. The system is prepared in the equilibrium symmetry broken
phase at zero temperature. For quenches to a point inside of the dynamically
symmetry-broken phase, r0

f < rdyn
c , the order parameter relaxes to a finite

value φ̄ (red line) and the effective mass rf remains zero, indicating the
presence of gapless excitations in the steady state. For quenches into the
symmetric phase, r0

f > rdyn
c , the long-time average of the order parameter is

zero φ̄ = 0 and the effective mass rf becomes finite (blue dashed line). Close
to the critical point rdyn

c the long-time average φ̄ vanishes as (rdyn
c − r0

f )
1/4

and the effective mass as rf ∼ (r0
f − rdyn

c ).[97]
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suddenly change the mass to the final value r0 = r0
f and let the system evolve

in time. If the final value r0
f is smaller than the dynamical critical value rdyn

c ,
the system reaches an ordered steady state characterized by rf = 0 and φ̄ =

limT→∞
1
T

∫ ∞
0 dtφ(t) > 0.[97] On the other hand, if r0

f > rdyn
c the order is melted.

Therefore, the effective mass rf > 0 and the order parameter φ̄ = 0, as illustrated
in the dynamical phase diagram for d = 3 in Fig. 4.2.
To obtain the equations of motion at N → ∞, we treat the a = 1 component
of the field as a classical variable, Φ̂1(t) → φ(t) ∈ R, and expand the a ≥
2 components into creation and annihilation operators that diagonalize the initial
Hamiltonian[106]

Φ̂a≥2(p, t) = fp(t)b̂
(a)
p + f ∗p (t)b̂

(a)†
−p , (4.4)

where Φ̂a(x, t) = V−1/2 ∑p Φ̂a(p, t)eipx. Note, that due to the O(N − 1) sym-
metry of the remaining a ≥ 2 components, the time dependence is identical for
all of them and hence the mode functions fp(t) in Eq. (4.4) do not carry a field
component index.
Using the Heisenberg equations of motions, we obtain

f̈p(t) + [p2 + r(t)] fp(t) = 0
φ̈(t) + r(t)φ(t) = 0, (4.5)

with the time-dependent effective mass

r(t) = r0
f +

λ

6N

(
φ2(t) + (N − 1)

∫
p
| fp(t)|2

)
. (4.6)

It is important to notice, that φ(t) ∼
√

N. Therefore, both terms in the parenthesis
in Eq. (4.6) scale linearly with N and contribute to the effective mass.
The initial conditions of Eq.’s (4.5) are fp(0) = 1/

√
2|p|, ḟp(0) = −i

√
|p|/2,

which follow from requiring that b̂p, b̂†
p diagonalize the initial Hamiltonian and

r(t = 0) = 0. Furthermore we have φ(0) = φ0 and φ̇(0) = 0, with φ0 given by
Eq. (4.3). To regularize the infrared divergence of fp(0), we introduce an cut-off
p0 = 2π/L, with L being the linear extension of the system. This amounts to
placing the field theory in a finite box with volume Ld. Eventual UV divergencies
are regularized with a finite cut-off Λ in momentum space.

Time evolved state

In order to calculate the return probability to the groundstate manifold, we need to
know the time evolved state |Ψ(t)〉 = Û(t)|Ψ0〉. In the N → ∞ limit the state
|Ψ(t)〉 factorizes in the field components due to the effectively quadratic Hamil-
tonian at leading order.[106] In the a ≥ 2 components there is a squeezed state
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|ψsq(t)〉 and in the "classical" a = 1 component a coherent state |φ(t)〉 ,

|Ψ(t)〉 = |φ(t)〉 ⊗ |ψsq(t)〉
|φ(t)〉 = e−

1
2 γ2φ2(t)eγφ(t)b̂(1)†p0 |0〉

|ψsq(t)〉 = ∏
p>0
a≥2

1√
|αp(t)|

exp

{
β∗p(t)

2α∗p(t)
(b̂(a)†

p )2

}
|0〉, (4.7)

where αp(t) = fp(t)
√
|p|
2 + i ḟp(t)√

2|p|
, βp(t) = fp(t)

√
|p|
2 − i ḟp(t)√

2|p|
and γ =

L
d−1

2

(√
dπ
2

) 1
2
. The coherent state contribution gives rise to a finite order parameter

〈Ψ(t)|Φ̂1|Ψ(t)〉 = φ(t).

4.3 Return probability and rate function

Return probability

An arbitrary state in the groundstate manifold of (6.8) in the symmetry-broken
phase can be written as

|χ〉 = e−
1
2 γ2χ2

eγχT b̂†
p0 |0〉, (4.8)

where χ = (χ1, . . . , χN), |χ|2 = φ2
0 and b̂p = (b̂(1)p , . . . , b̂(N)

p ). The expectation
of the field-operator in this state is given by 〈χ|Φ̂a|χ〉 = χa. The overlap 〈χ|Ψ(t)〉
factorizes into a product over the field components. For a = 1 we get a scalar
product of two coherent states and for a ≥ 2 we have scalar products of a coherent
and a squeezed state, which we calculate by expanding the exponentials. For the
return probability to a specific initial state, we obtain

|〈χ|Ψ(t)〉|2 = exp

{
−LdN

∫
p

log |αp(t)|

− Ld−1

√
dπ

2
[φ2(t) + φ2(0)− 2χ1φ(t) + ∑

a≥2
χ2

a]

}
. (4.9)

In deriving this formula we also made use of the fact, that for large systems, L� 1,
i.e., small p0 = 2π/L, the ratio βp0(t)/αp0(t) approaches 1.
The overlap |〈χ|Ψ(t)〉|2 is rotational invariant around the a = 1 axis. Hence, we
use spherical coordinates (see Fig. 4.3) to calculate the integral over the groundstate
manifold as required in Eq. (4.1). Defining θ ∈ [0, π] as the angle between the
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Figure 4.3: Definition of the angle θ and surface element of the N-
dimensional sphere. The ground state manifold of the O(N) model can be
pictured as a sphere with radius φ0 in a N-dimensional space. The return
probability L(t) to the ground state manifold is obtained from the integral
of the overlap |〈χ|Ψ(t)〉|2 over this sphere. Defining θ as the angle between
the vector χ and the initial order parameter (φ0, 0, . . . , 0) and making use of
the rotational symmetry around the (a = 1)-axis, one can write the integra-
tion element dNχ δ(|χ| − φ0) as the product of the arc length φ0dθ and the
surface area of the sphere in N − 1 dimensions S(N−1)(φ0 sin θ) generated
by rotating χ around the a = 1 - axis with θ fixed. To obtain a probability
measure, we finally divide the integration element by the total available
surface area SN(φ0).
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(a) (b) (c)

Figure 4.4: Order parameter landscape for the angle θ: The return proba-
bility, Eq. (4.11), can be interpreted as a classical partition function for the
variable θ ∈ [0, π] moving in an effective free energy landscape F (θ, φ).
The landscape has the form of a double well potential, where the order
parameter φ(t) is acting as an external field, shifting the two wells against
each other. For (a) φ(t) > 0 the left minimum is energetically more favor-
able, while for (c) φ(t) < 0 the situation is reversed. As the system size L is
increased (L = 1, 5, ∞, darker lines correspond to larger L), the left (right)
potential well is shifted toward θ = 0 (θ = π), as indicated by the arrows in
panel (b). The angles θ = 0 (θ = π) correspond to the states having an order
parameter parallel (anti-parallel) to the initial state. (b) When φ(t) changes
sign the most relevant value of θ jumps from one well to the other, which
gives rise to the kinks in the Loschmidt rate functionR(t). All plots are for
N = 10.
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vector χ and the a = 1 axis, i.e., cos θ = χ1/φ0, we can write

|〈χ|Ψ(t)〉|2 = Nsq(t) exp

{
−Ld−1

√
dπ

2
φ2(0)

×
[

1 +
(

φ(t)
φ(0)

)2

+ sin2 θ − 2
(

φ(t)
φ(0)

)
cos θ

]}
. (4.10)

Here, we introduced the abbreviation Nsq(t) = exp[−LdN
∫

p log |αp(t)|]. The

integration element can be written as dNχ δ(|χ|−φ0) = SN−1(φ0 sin θ)φ0dθ/SN(φ0),
where Sn(r) = 2π

n
2 Γ(n/2)−1rn−1 is the surface of the n-sphere (see Fig. 4.3 for

a graphical interpretation). Exponentiating the sin θ - term, we obtain the return
probability to the ground state manifold

L(t) = ANsq(t)
π∫

0

dθe−Ld−1 NF (θ,φ(t)), (4.11)

with

F (θ, φ) =

√
π

2
φ2

0
N

[
1 +

(
φ

φ0

)2

− 2
(

φ

φ0

)
cos θ + sin2 θ

]

− N − 2
N

L−d+1 log sin θ (4.12)

and a constant A = π−1/2Γ(N
2 )/Γ(N−1

2 ). We will refer toL(t) also as Loschmidt
Echo. Eq. (4.11) can be interpreted as a classical partition function of the angular
variable θ moving in an order parameter landscape F (θ, φ(t)), with Ld−1N play-
ing the role of inverse temperature. The energy landscape, Eq. (4.12), has the shape
of a double well potential, where the order parameter φ is acting as an external field
tilting the two wells against each other, see Fig. 4.4. The two wells are energeti-
cally equivalent, when the external field vanishes (φ(t) = 0). For increasing L
the two minima shift toward θ = 0 and θ = π, respectively. It appears as if the
log sin θ term becomes irrelevant for L→ ∞, but it is still important as it confines
the angle θ to the interval [0, π].
In the thermodynamic limit L � 1, we can evaluate the integral in Eq. (4.11)
using a saddle point approximation. Taking this limit corresponds to very low
temperatures in the classical partition function and the variable θ will pick the
minimum energy well

L(t) '
L�1
Nsq(t) exp

[
−Ld−1N min

θ∈[0,π]
F (θ, φ(t))

]
. (4.13)

For L → ∞, the last term in Eq. (4.12) vanishes and the minimum is at θmin = 0
(θmin = π) for φ(t) > 0 (φ(t) < 0), meaning that χ is parallel (antiparallel)





Chapter 4. Dynamical quantum phase transitions in systems with
continuous symmetry breaking

to the order parameter of the initial state. Therefore, only two states from the
continuous ground state manifold contribute significantly to the Loschmidt echo:
L(t) ∼ (|〈+φ0|Ψ(t)〉|2 + |〈−φ0|Ψ(t)〉|2). This can be interpreted as follows:
the order-parameter oscillates only along a fixed axis due to the symmetry of the
Hamiltonian and cannot explore the whole ground state manifold.
Our result for the coherent state contribution to the Loschmidt rate function scales
subextensively with system size as ∼ Ld−1, see the prefactor of F (θ, φ(t)) in
Eq. (4.13). This is a consequence of the infrared divergence of the initial mode
function fp(0) due to the spontaneously broken symmetry, which leads to the scal-
ing of γ ∼ L(d−1)/2 in the coherent state, Eq. (4.7). From that, the wavefunction
overlap 〈χ|Ψ(t)〉 of the time evolved state and an arbitrary state in the ground
state manifold contains terms, that scale subextensively ∼ Ld−1. We emphasize
that the subextensive scaling shows up only in the wave function overlap but not in
expectation values of observables. Examples include the order parameter and the
work performed in a quench. The latter shows a normal extensive scaling ∼ Ld

with system size. The average work 〈Ĥ f 〉 is given by the expectation value of

the post-quench Hamiltonian in the initial state, 〈Ĥ f 〉 = Ld r0
f−r0

i
2 (N

∫
p

1
2|p| + φ2

0).
All higher cumulants of the work distribution function vanish in our leading or-
der approximation. Generally, the logarithm of the Loschmidt amplitude acts as
the generating function for cumulants of the work-distribution.[122, 123, 124] We
also find in our model that to leading order in N, the Loschmidt echo reproduces
exactly the cumulants of the work.

Rate function

Calculating the rate functionR(t) = −L−dN−1 logL(t) from Eq.(4.13), we find
that

R(t) = Rsq(t) +
1
L
Rcoh(t)

Rsq(t) =
∫

p
log |αp(t)|

Rcoh(t) =
√

π

2
N−1φ2

0

[
1 +

(
φ(t)
φ0

)2

− 2
∣∣∣∣φ(t)φ0

∣∣∣∣
]

. (4.14)

The contribution from the squeezed stateRsq is obtained fromNsq, and the coher-
ent state contribution is obtained by explicitly calculating the minimum in Eq. (4.13).
The rate function Rsq is a smooth function of time, since |αp(t)| is smooth and
bounded from below by 1. Rcoh on the other hand exhibits kinks at zero cross-
ings of φ(t) due to the absolute value in the last term of Eq. (4.14). As dis-
cussed above, the coherent state contribution is suppressed by a factor of L−1.
However, the squeezed-state part of the rate function Rsq(t) relaxes to a con-
stant value on a much shorter time-scale than the order parameter φ(t), because
of an integral over momenta. Therefore, the non-analyticities in Rcoh(t) can be
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(a) (b)

Figure 4.5: Loschmidt rate function. The Loschmidt rate function R(t)
of the return probability to the groundstate manifold contains a squeezed
state contribution Rsq(t), which scales extensively with system size, and
a coherent state contribution Rcoh(t) that scales subextensively. Whereas
Rsq(t) is a smooth function of time,Rcoh(t) shows kinks, when the system
is quenched across the dynamical quantum phase transition. Due to the
subextensive scaling of the coherent state contributionRcoh, the non-analytic
behavior is not visible in the full rate-functionR(t) of the return probability,
(a). Nevertheless the non-analytic behavior is clearly observable in the
second derivative R̈(t) as δ-peaks, since the squeezed state contribution
relaxes on a much shorter time scale than the one of the coherent state, (b).
The system parameters are L = 2.5× 104, λ = 1.0, r0

i = −1.0 and r0
f = 0.0.

identified for instance in the second derivative R̈(t) of the rate function. For the
squeezed state, R̈sq(t) ≈ 0, whereas the coherent state retains prominent δ-peaks
R̈coh(t) ∼ ∑Tkink

δ(t− Tkink), as illustrated in Fig. 4.5.
The coherent state contribution to the Loschmidt rate function Rcoh(t) exhibits
kinks at the zero crossings of the order parameter, φ(Tkink) = 0, see Fig. 4.6.
From the numerical solution of the equations of motion (4.5) we also find that
the order parameter relaxes to a non-zero value for quenches inside the dynamical
symmetry-broken phase (r0

f < rdyn
c ). In this case there are no zero crossings of φ(t)

and hence we do not find any non-analyticities in Rcoh. By contrast, for quenches
to the symmetric phase (r0

f > rdyn
c ), the order parameter oscillates around zero and

approaches φ̄ = 0 andRcoh exhibits kinks. As a consequence, there is an intimate
relation between the dynamical phase transition of the order parameter and the
kinks in the Loschmidt rate function of the return probability to the groundstate
manifold.
Following a quench to the symmetric phase, the effective mass r(t), Eq. (4.6),
attains a finite average value rf, which feeds back into the equations of motion,
Eq. (4.5), as frequency squared of φ(t). Accordingly, the kinks in Rcoh appear at
equidistantly spaced times Tkink and the time ∆Tkink between two kinks is uniquely
determined by rf. The effective mass after a quench to the symmetric phase scales
linearly with the distance of the final bare mass r0

f from the dynamical critical point
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Figure 4.6: Coherent state contribution to the rate function and order pa-
rameter dynamics. The coherent state contributionRcoh to the rate function
exhibits kinks at the zero-crossings of the order parameter φ(t). The kinks
appear periodically and the time between them ∆Tkink is determined by
final effective mass rf: ∆Tkink ∼ (r0

f − rdyn
c )−

1
2 . The data is evaluated for the

same parameters as in Fig. 4.5

rdyn
c , r f ∼ r0

f − rdyn
c , as depicted in Fig. 4.2. We therefore find

∆Tkink =
π√
rf
∼ (r0

f − rdyn
c )−

1
2 . (4.15)

Therefore, the time between the kinks diverges with the same critical exponent
upon approaching the dynamical critical point as the correlation length in equilib-
rium, which is a manifestation of the O(N) model being a relativistic field theory
in which time and space scale in the same way.

4.4 Conclusion

We have studied the rate function of the return probability to the ground state man-
ifold in the O(N) model following a quantum quench from a symmetry breaking
initial state to the symmetric phase. The rate function exhibits kinks, which are
located at the zero crossings of the order parameter φ(t) and are equally spaced
with a period ∆Tkink determined by the final effective mass. In our model, the non-
analytic contribution to the return probability scales subextensively with system
size. Such a subextensive contribution can also appear in equilibrium whenever a
system undergoes a surface or impurity phase transition.
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For quenches from the symmetric to the symmetry-broken phase kinks are absent,
since the closing of the gap leads to a divergent time scale between kinks. Also, due
to the absence of explicit symmetry-breaking terms in the Hamiltonian, no finite
order parameter can be ever generated.
Our results for the non-equilibrium dynamics are obtained fully analytically to lead-
ing order in the number of components N of the field theory. We point out that the
saddlepoint approximation, which we employ in the calculation of the return prob-
ability, only relies on the thermodynamic limit L → ∞ and not on N being large.
Furthermore the presence of kinks in the rate functionR(t) hinges on the presence
of the coherent state, i.e., a finite order parameter φ(t). Next-to-leading order cor-
rections would modify the time evolution of the order parameter and the quantum
fluctuations in the time evolved state, but would not destroy the symmetry-broken
phase, i.e. the coherent contribution to the time evolved state. Therefore, we argue,
that our results remain valid beyond a leading order approximation in 1/N. More-
over, due to the universality of the O(N) model, we expect our results to be generic
for dynamical critical points in models with continuous symmetries. In particular,
the return probability should be dominated by the states parallel and anti-parallel to
the initial state, leading to non-analytic behavior of the rate function for quenches
from the symmetry-broken to the symmetric phase. Moreover, the zero crossings
of the order parameter should determine the times at which nonanalyticities appear
in the Loschmidt echo. It would be intriguing to explore these findings in other
models with continuous symmetry breaking.
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Chapter 5
A self-consistent Hartree-Fock
approach to Many-Body
Localization

The text and figures in this chapter are taken from the following publication of the
author:

• Simon A. Weidinger, Sarang Gopalakrishnan, Michael Knap, "A self-consistent
Hartree-Fock approach to Many-Body Localization", arXiv:1809.02137 (2018)

In order to provide a structure better suited to this thesis, certain sections have been
merged, rearranged or renamed.

5.1 The problem of many-body localization

In recent years the phenomenon of many-body localization (MBL) has attracted
major interest, both experimentally [125, 126, 127, 128, 129, 130, 131, 132, 133,
134, 135] and theoretically [8, 9, 10, 11, 12]. MBL systems, unlike generic quan-
tum many-body systems, do not thermalize [136, 137, 138, 11]. In these systems,
entanglement entropy grows logarithmically, and local quantum correlations sur-
vive for long times [139, 140, 141, 142, 143, 144, 145, 146]. The transition from
the thermal to the MBL phase is an unconventional dynamical phase transition,
and its critical properties have attracted much recent attention [147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158]. Since the MBL phase does not thermalize,
it is impossible to describe the MBL phase transition and the critical phenomena
associated with it in the framework of equilibrium statistical physics. The central
obstacle is that while the regimes deep in the thermal phase and deep in the lo-
calized phase are phenomenologically well understood [159, 160, 161, 162, 163],
these phenomenologies (based respectively on equilibrium statistical physics and
on local integrals of motion) are incompatible with one another, and both break
down as the transition is approached.
In the present paper, we develop a field theoretic description of the many-body lo-
calization problem in the two-particle irreducible (2PI) Keldysh framework [164,
165, 46] by looking at the relaxation dynamics of initial states. Using a self-
consistent weak-coupling expansion, we arrive to leading order at a self-consistent
Hartree-Fock theory of the many-body dynamics, in which single particles move
in the presence of the noise due to the other particles. At the Hartree-Fock level we
are able to simulate the dynamics of systems of up to 192 sites for times up to 104/J





Chapter 5. A self-consistent Hartree-Fock approach to Many-Body
Localization

where J is the hopping. The Hartree-Fock theory captures both the slowdown of
thermalization and the onset of a delocalized, subdiffusive phase in random sys-
tems [149, 150, 151, 166, 167, 168, 169, 170, 171, 172, 173]. By contrast, this
subdiffusive phase is absent for systems with quasiperiodic potentials, consistent
with Ref. [174].
Our approach also gives us access to the non-equilibrium local spectral function,
which is expected to look qualitatively different for localized and delocalized sys-
tems [8]. Indeed we find, that the nonequilibrium local spectral function shows a
broad spectrum at weak disorder, but exhibits sharp spikes at strong disorder (or for
strong quasi-periodic potentials). The field-theoretic framework we develop can be
extended beyond leading order, although higher orders are numerically intensive.

5.2 The disordered nearest-neigbor Hubbard model

We study a model of spinless fermions with nearest-neighbor interactions (i.e., a
“spinless Fermi-Hubbard model”)

Ĥ = −J ∑
〈i,j〉

ĉ†
i ĉj + U ∑

〈i,j〉
n̂in̂j + ∑

j
hjn̂j, (5.1)

where hi are chosen to be either uncorrelated random fields drawn from a box
distribution [−W, W] or a quasi-periodically varying potential. We quote results
for the random case, except when otherwise specified. We fix the parameters
J = 1, U = 0.5 and work with periodic boundary conditions. We investigate
the model in one spatial dimension, even though our method can be readily ex-
tended to two dimensions. In one dimension and for the aforementioned set of
parameters the Hamiltonian, Eq. (5.1), maps via the Jordan-Wigner transforma-
tion onto the disordered spin-1/2 XXZ-model at Jz = 0.5J⊥ and a reduced dis-
order strength W̃ = 0.5W. The XXZ-model is a paradigmatic model in the
study of many-body localization. Numerical studies based on exact diagonaliza-
tion indicate a localization-delocalization transition at the critical disorder strength
W̃c ' 3.6 [147, 148].
To calculate the time evolution of the system, we use the nonequilibrium Keldysh
field theory formalism [164, 165, 46]. In this approach one propagates the con-
tour ordered Green’s functions Gij(t, t′) = 〈TC ĉi(t)ĉ†

j (t
′)〉 on the Schwinger-

Keldysh closed time contour (CTC) by solving a nonequilibrium Dyson equation.
To make the CTC structure explicit, we introduce lesser and greater Green’s func-
tions, G<

ij (t, t′) = i〈ĉ†
j (t
′)ĉi(t)〉 and G>

ij (t, t′) = −i〈ĉi(t)ĉ†
j (t
′)〉, in which the
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Dyson equations take the form

[
i∂t − Ĵ + Σ̂HF(t)

]
∗Ĝ≶(t, t′) =

t∫
0

dt′′ Σ̂R(t, t′′) ∗ Ĝ≶(t′′, t′)

+

t′∫
0

dt′′ Σ̂≶(t, t′′)∗ĜA(t′′, t′). (5.2)

Here ∗ denotes a matrix product over spatial indices i, j and− Ĵij = −Jδ〈i,j〉+ hiδij
is the sum of the hopping and onsite potential matrices. The lefthand side of
Eq.(5.2) contains only terms local in time, in particular the Hartree-Fock selfen-
ergy ΣHF

ij (t). The righthand side on the other hand entails integrals over the entire
past of the system, which incorporate memory effects in the dynamics. We ex-
pect that these time-nonlocal effects are necessary to capture full thermalization
at weak disorder; however, as we shall see below, relaxation of a nonequilibrium
initial state can be captured even if one neglects memory effects and takes into
account only the time-local Hartree-Fock part of the self-energy, ΣHF

ij (t). The self-
consistent Hartree-Fock theory therefore maps Slater determinants to other Slater
determinants, and in this sense does not give rise to full thermalization.
In the following, we focus on the nonequilibrium Dyson equation at the Hartree-
Fock level, [

i∂t − Ĵ + Σ̂HF(t)
]
∗ Ĝ≶(t, t′) = 0. (5.3)

The selfenergy is in general given as the functional derivative of the two particle
irreducible (2PI) effective action Γ2[G] [164] with respect to the Green’s function
and thus is a functional of the full Green’s function, in contrast to normal perturba-
tion theory, where one expands the self-energy in the bare Green’s function. The
Hartree-Fock selfenergy is obtained from an expansion of Γ2[G] to first order in
the nearest neighbor repulsion U, such that

ΣHF
mn(t) = ΣH

mn(t) + ΣF
mn(t)

= 2Uδmn ∑
〈l,n〉

nl(t) + 2iUδ〈m,n〉G
<
mn(t, t). (5.4)

From the lesser and greater Green’s functions one can obtain observables like the
occupation numbers nj(t) = 〈n̂j(t)〉 = −iG<

jj (t, t) and also the retarded Green’s
function GR

ij (t, t′) = Θ(t− t′)[G>
ij (t, t′)− G<

ij (t, t′)].
We treat disorder in an exact way by sampling realizations from the disorder distri-
bution, simulating the time evolution of the lesser/greater Green’s functions G≶ij (t, t′)
and in the end averaging the quantity of interest over the samples until convergence
is achieved. Typically a few hundred samples are necessary. Therefore, no replica
trick [175], as usually used in the equilibrium field theoretic treatment of disor-
dered systems, is required.
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Due to the absence of memory integrals in Eq. (5.3) at the Hartree-Fock level, we
are able to treat system sizes up to 192 sites and times up to 104 hopping scales,
which thus goes significantly beyond the state of the art of exact diagonalization
in system size and matrix product state based approaches in time. Moreover, we
show in App. 5.6, that our approach captures well the time evolution of small sys-
tems calculated by exact diagonalization and discuss field-theoretic results beyond
Hartree-Fock in App. 5.7. Using a related framework based on quantum master
equations that were derived from perturbation theory, Refs. [176, 177] studied the
relaxation of disordered fermions. This approach however, does not necessarily
conserve energy and the total particle number. The non-equilibrium Dyson equa-
tion (5.3) is a first order differential equation in time and one needs to fix initial
conditions G≶ij (0, 0). In this work we will look at uncorrelated product initial states,
which are uniquely defined by the occupations nj(0). These fix the lesser Green’s
functions G<

ij (0, 0) = iδijnj(0) and, using the anti-commutation relations of ĉj, ĉ†
j ,

also the greater Green’s function G>
ij (0, 0) = −iδij(1− nj(0)).

5.3 Relaxation of initial states

The main observable we use to study the relaxation of an initial state, is the density-
density correlation function

C(t) = 2
N ∑

j
〈n̂j(t)n̂j(0)〉 − 1, (5.5)

where N is the number of fermions in the lattice. We consider half filled systems,
N = L/2, where L is the size of the lattice. The correlation function has the
property that C(t = 0) = 1. If the system is localized, i.e., the system remains in a
spatially nonuniform state, C remains finite for all times, C(t → ∞) 6= 0. Instead,
if the system becomes delocalized and there is a relaxation to a uniform state, the
correlation function becomes zero at late times, C(t→ ∞) = 0 1.
As the density-density correlation, Eq. (5.5), is a four-point function, it is in general
not possible to calculate it from two-point Green’s functions. However, for product
initial states, the four-point function reduces to a two-point function and, the lesser
Green’s function G<

jj (t, t) is sufficient to obtain C(t). For an initially staggered
state, where every other site is occupied, i.e., nj(0) = 1 for j even and nj(0) = 0
for j odd, C(t) is identical to the imbalance I(t) = (Ne − No)/(Ne + No)
between even and odd sites, which is often measured in optical lattice experi-
ments [125].

1This is only strictly valid in the thermodynamic limit, for a finite size system C(t) will
attain a residual value ∼ 1/L for late times even in the delocalized phase.
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(a) Random potentials (b) Quasi-periodic potentials

Figure 5.1: Decay of the imbalance for a staggered initial state in one
dimension for random and quasi-periodic potentials. Initially we prepare
the system in a staggered product state, where all even sites are occupied and
all odd sites are empty. The time evolution of the system is obtained from
the Kadanoff-Baym equations including Hartree-Fock effects of a nearest-
neighbor repulsion U = 0.5. (a) In the case of weak disorder, W = 2.0
(yellow, blue, red), the imbalance I = (Ne − No)/(Ne + No) decays with a
subdiffusive powerlaw, I(t) ∼ t−α, with an exponent 0 < α < 1/2. Finite
size effects are still noticeable for system sizes of 96 and 192 sites and become
relevant at t ' 5000. For strong disorder, W = 17.0, the imbalance I relaxes
to a nonzero value indicating localization of the system (black). Finite size
effects are not visible in this case (not shown). (b) For quasi-periodic disorder
rare region effects are absent, as the energy mismatches between sites are
always either small or large. Hence, in the case of weak disorder, W = 3.0,
there is no subdiffusion and the imbalance I(t) is decaying faster than a
powerlaw (yellow, blue, red). For strong disorder, W = 7.0, the system
becomes localized (black line).
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Random vs. quasi-periodic disorder

In order to study random systems, we draw the local potentials from a bounded
box-distribution,

hj ∈ [−W, W] (5.6)

and refer to that as random disorder. However, recently many experiments have
explored MBL using quasi-periodic potentials,

hj = Wcos(2πΦj + θ), (5.7)

instead of uncorrelated randomness. Here Φ is the golden ratio and observables are
averaged over several values of the phase θ. As the period of the cosine function is
incommensurate with the lattice spacing, the potential looks quasi-random. Never-
theless, there are crucial differences to a truly random potential. First of all, there
is already a localization transition in the one dimensional non-interacting system,
commonly known as the Aubry-André model [178], at Wc = 2. Secondly, the
detuning between neighboring sites is either always small or large throughout the
whole system, depending on the value of the strength W, and hence rare regions
are absent.
We first turn to the case of random disorder potentials. For weak disorder, W = 2.0,
an initially staggered state relaxes and the imbalance decays in random potentials
as a power law I(t) ∼ t−α, with an exponent α between 0 and 1/2, Fig. 5.1(a).
The powerlaw relaxation occurs due to the presence of rare region/Griffiths ef-
fects [149, 167, 171]. Griffiths effects arise due to the enclosure of non-relaxing
localized regions in the otherwise delocalized system. The probability for having
a localized inclusion in d dimensions is exponentially small in its size, ∼ qld

, and
the timescale for such a region to relax is exponentially long, ∼ el/ξ , where ξ is
the localization length in the inclusion. For uncorrelated disorder, it follows that
the density of inclusions that are dynamically frozen on a timescale t is q(ξ log t)d

.
In one dimension, these regions hence give rise to a residual contrast that scales
as a power-law with a continuously varying exponent as disorder is tuned. In two
dimensions, rare regions give rise to a faster decay of the contrast. Asymptoti-
cally, it is therefore expected that this log-normal decay should be subleading to
hydrodynamic long-time tails [167].
If disorder is strong, W = 17.0, the system becomes localized and the imbalance
I(t) saturates at a sizable finite value, indicating that the system keeps a memory of
the initially imprinted staggered particle distribution. Deep in the localized phase
there is no finite size dependence of the imbalance, because the localization length
is much smaller than system size and particles do not experience the boundaries
of the system. Consequently small size simulations are sufficient to observe the
thermodynamic limit. On the other hand, finite size effects are considerable and
still relevant even up to the order of hundreds of sites for W = 2.
The relaxation of the imbalance for various values of the disorder W and systems
of 192 sites is shown in Fig. 5.2. Within the self-consistent Hartree-Fock theory,





Chapter 5. A self-consistent Hartree-Fock approach to Many-Body
Localization

Figure 5.2: Relaxation of the imbalance for varying disorder. We gradually
increase the disorder strength from W = 2 to W = 17 for systems of 192 sites,
and monitor the relaxation dynamics of the imbalance I(t) in time. Within
the self-consistent Hartree-Fock approach we find that the system keeps its
memory of the initial state to late times for disorder strength W & 15, which
corresponds to a disorder strength of W̃ & 7.5 in the XXZ-model.

the imbalance decays for a large parameter regime to zero with a subdiffusive
power law. Only for W & 15 (corresponding to W̃ & 7.5 in the XXZ-model),
the imbalance ceases to relax on the simulated times. We argue in Sec. 5.5 for
the existence of a true localization transition within our approximations, which
would thus be at significantly larger disorder strength than the one obtained from
small scale numerics, which has been estimated to be at W̃ ∼ 3.6 for our sys-
tem [147, 140, 141, 148]. Note that previous large-system studies using the nu-
merical linked-cluster approach [179] and a recent study using matrix product
states [180] had also located the transition at much stronger disorder.
With quasi-periodic potentials we again find that including interactions at the Hartree-
Fock level leads to a relaxation of the initially imprinted density pattern for weak
disorder, W = 3.0, Fig.5.1(b). Yet, due to the strong spatial correlations of the
quasi-periodic disorder, rare region effects are absent and our numerics does not
show subdiffusive power-law decay of the imbalance. This is in contrast to a
tDMRG and renormalization group study, which is however limited to shorter time
scales [173]. Due to the fast decay one can still see the residual finite size value of
I(t) even for system sizes of 192 sites at late times.
Note, that in the absence of interactions, the localization length ξ ∼ 1.2 of the
model with quasi-periodic disorder at W = 3.0 is significantly shorter than that of
the model with random disorder at W = 2.0 (ξ ∼ 4.0). Yet the imbalance decays
much faster for quasi-periodic disorder, therefor we can expect, that the absence
of a subdiffusive powerlaw decay is a genuine effect of the type of the disorder
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(a) staggered initial state (b) random initial state (c) domain-wall initial state

Figure 5.3: Subdiffusive decay of different initial states for random dis-
order potentials. We prepare the system in three different initial states, in a
staggered initial state (a) where every other site is occupied, in a random
initial state (b) where half of the sites are occupied at random positions, and
in a domain-wall state (c) where a chain of length L/2 in the middle of the
system is occupied with fermions. The states are depicted schematically
at the top of each panel. In the case of a staggered initial state the density-
density correlation function C(t) reduces to the imbalance I(t). (a) The
staggered initial state shows the fastest relaxation and the imbalance decays
according to a subdiffusive powerlaw I(t) ∼ t−α. (For the disorder strength
shown, α = 0.351). (b) Relaxation is slower for random initial states as they
typically contain small blocks of occupied sites, which relax slowly due to
the Pauli principle. For late times however the density-density correlation
approaches the same subdiffusive powerlaw C(t) ∼ t−α as the staggered
initial state. To see this, large system sizes of several hundreds sites are
required. The inset shows the proper short time finite size scaling of the
correlation function. (c) The domain-wall initial state is slowest to relax due
to the Pauli principle blocking hopping inside the block. The timescale t∗
for melting the block, reminiscent of the Thouless time in diffusive systems,
shows the scaling t∗ ∼ L1/α with system size (inset), consistent with the
presence of subdiffusive transport in the system. All graphs are shown for
nearest neighbor repulsion U = 0.5 and disorder strength W = 2.0.
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potential, rather than a mere disorder strength effect.
Increasing the disorder strength, the system localizes at weaker potential strength
than in the case of a true random potential; it is already fully localized for W = 7.0.
This is consistent with the intuitive picture of energy mismatches between sites
becoming large everywhere without any statistical fluctuations.

Initial-state dependence

Besides the staggered state we also consider random initial states, where the ini-
tially occupied sites are chosen randomly as well as a domain-wall initial state
where a block of L/2 sites in the middle of the system is initially occupied. In
Fig. 5.3 we compare for random disorder the relaxation of the three type of initial
states (staggered, random, and domain wall). From a coarse-grained, hydrody-
namic point of view, these three types of initial states differ in that the staggered
state is dominated by high-momentum fluctuations, the domain-wall initial state
has exclusively low-momentum fluctuations, and the random state has fluctuations
at all scales. As expected on general hydrodynamic grounds, therefore, the domain-
wall state is much slower to relax than the staggered state: the timescale on which
it relaxes can be interpreted as the Thouless time for the system.
The decay time scales of random initial states, Fig. 5.3(b), is in between the stag-
gered initial state, (a) and the block initial state, (c). For random initial states,
the density-density correlation C(t) is not only averaged over disorder realizations
but also over different initial particle distributions, such that this case can be inter-
preted as the result for an infinite temperature ensemble. For large system sizes of
192 sites, the decay of C(t) approaches the same power-law decay ∼ t−α as the
imbalance in the case of a staggered initial state at late times. This behavior is not
observable for smaller systems, which in particular implies that numerics for small
system sizes is not sufficient to study the power law relaxation in that observable.
To further corroborate the observation of subdiffusive particle transport in the sys-
tem at weak disorder, we analyze the finite size scaling of the crossover timescale
t∗, at which the block initial state starts to decay, see Fig. 5.3(c) (inset). For con-
creteness we define t? as the time where C(t) has dropped to 1/(2e), though we
have checked, that the scaling is insensitive to this specific choice. In a diffusive
system the notion of t? would be equivalent to the Thouless time tTh, which scales
quadratically with system size, tTh ∼ L2. For subdiffusive transport we find a
steeper power law t∗ ∼ L1/α, where α is the exponent of the imbalance decay.
The two exponents coincide, at least within the Hartree-Fock theory, because the
timescale governing density relaxation across the system is the relaxation timescale
of the slowest bottleneck expected in a system of size L. This slowest bottleneck
should correspond to a Griffiths region with density 1/L. Given that the density
of a Griffiths region with timescale t scales as 1/tα, we thus have that t∗ ∼ L1/α

(dashed line in the inset of Fig. 5.3 (c)). Our numerics yields a very good agreement
of these two exponents, see Fig. 5.3(a) and (c)
Looking at panels (b) and (c) of Fig. 5.3, it can be seen, that finite size effects be-
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(a) (b)

Figure 5.4: Nonequilibrium local spectral function for a single disorder
realization. Averaging the nonequilibrium spectral function Ajj(T, ω) over
the center-of-mass time T extracts the non-negative, non-oscillatory part
Ājj(ω), which can be interpreted analogously to the usual equilibrium spec-
tral function. (a) For weak disorder, W = 2.0, the local spectral function
Ājj(ω) has a broad support and hence there is a finite energy window in
which fermions can tunnel into/out of the site. This leads to the delocaliza-
tion of the system. (b) In the case of strong disorder, W = 17.0, Ājj(ω) has
sharp delta spikes only for a finite set of frequencies, thus only fermions
with energies from a set of measure zero can hop into or out of the site.
Accordingly the system becomes localized. It is crucial to look at single sites
and a single disorder realization, as averaging over either lattice sites or
disorder would yield a sum of delta peaks which smears out the spectral
function.

come noticeable already at tJ ∼ 1 for a random or block initial state, while they
only become relevant at late times for a staggered initial state, Fig. 5.3(a). This
feature follows from the definition of C(t): for a staggered initial state, local relax-
ation takes place everywhere in the system at once, so the system-wide imbalance
drops at a rate of order unity; but for a domain-wall initial state, all the relaxation
takes place at the boundary, so the system-wide imbalance drops at a rate O(1/L).
The random initial state is, again, in between the two cases. Calculating the average
number of domain walls for a chain of length L and periodic boundary conditions,
as L

2

(
1+ L−4(N−L/2)2

L(L−1)

)
, we can remove the short time finite size effect, by properly

rescaling the measured correlation function C(t), see inset of Fig. 5.3(b).

5.4 Spectral information

A useful quantity in the study of many-body localization is the local spectral func-
tion, defined as the imaginary part of the retarded Green’s function, Ajj(T, ω) =

−1/π ImGR
jj(T, ω). Here, T = (t + t′)/2 is the so called center-of-mass time

and the Fourier transform to frequency space ω is calculated with respect to the
relative time trel = t− t′. In a full nonequilibrium setting, Green’s functions do
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not only depend on the time difference trel but also on the absolute center-of-mass
time T. Nonetheless, we will show in the following, that one can still extract simi-
lar information as in equilibrium.
Using the Lehmann representation assuming a nonequilibrium initial state, Ajj(T, ω)
can be decomposed as

Ajj(T, ω) = Ājj(ω) + Rjj(T, ω)

Ājj(ω) = ∑
n,m
|ψn|2{|C(j)

nm|2δ(ω− εnm) + n↔ m}, (5.8)

where ψn = 〈n|ψ〉, C(j)
nm = 〈n|ĉj|m〉, |n〉 are the exact many-body eigenstates of

the system, and εnm are the levelspacings between eigenenergies. The second term
in the decomposition,

Rjj(T, ω) = ∑
m,n 6=l

{
Re[a(j)

mnl(T)]δ
(

ω− Em +
En + El

2

)
+ Re[a(j)

mln(T)]δ
(

ω + Em −
En + El

2

)
+

1
π

Im[a(j)
mnl(T)]

1

ω− Em + En+El
2

− 1
π

Im[a(j)
mln(T)]

1

ω + Em − En+El
2

}
, (5.9)

contains all the dependence on center-of-mass time via the time-dependent co-
efficients a(j)

mnl(T) = e−iεnl Tψ∗nψlC
(j)
nmC(j)∗

lm . Due to these oscillatory contribu-
tions, Rjj(T, ω) can become negative, which invalidates the positivity sum rule
of the equilibrium spectral function. In contrast to the equilibrium spectral func-
tion, out of equilibrium Ajj(T, ω) also shows 1/ω divergences due to the con-
tribution of Rjj(T, ω), which would appear only in the real part of an equilib-
rium Green’s function. By contrast, Ājj(ω), which we will refer to as local spec-
tral function in the following, has a form similar to an equilibrium spectral func-
tion. It is independent of the center-of-mass time T, nonnegative, and a weighted
sum of δ-functions located at spectral lines En − Em of the system. One can ob-
tain Ājj(ω) from Ajj(T, ω) by averaging over center-of-mass time, Ājj(ω) =

limT→∞ T−1
∫ T

0 dS Ajj(S, ω) as the average will cancel the oscillatory terms in
Ajj(T, ω).
Physically the local spectral function Ājj(ω), is interpreted as the amplitude for a
fermion with energy ω tunneling into or out of lattice site j. If disorder is weak
and the system is delocalized, the local spectral function is finite for a continuous
set of frequencies such that fermions with many different energies are able to tun-
nel into or out of a given site, see Fig. 5.4(a). In contrast, in the localized phase
hopping into or out of a given site is only possible for fermions with a discrete set
of energies, hence the local spectral function has only discrete sharp spectral lines,
see Fig. 5.4(b).
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(a) (b)

Figure 5.5: Self-consistent noise interpretation of the Hartree selfenergy.
Delocalization in our system on the Hartree-Fock level can be understood
by interpreting the Hartree-Fock self-energy ΣHF

ij (t) as noise. Since ΣHF
ij (t) is

a functional of the Green’s function, the noise is self-consistently generated
by the system itself and hence it does not necessarily lead to relaxation. (a)
The amplitude spectrum |ΣH

jj (ω)| of the Hartree selfenergy shows mixing of
a continuous frequency range without any to prominent features for weak
disorder, W = 2.0. In the time domain, ΣH

jj (t) therefor looks like noise (inset)
and consequently the system delocalizes. On the other hand, for strong
disorder W = 17.0 (b), the amplitude spectrum only shows mixing of a
discrete number of frequencies. Thus, ΣH

jj (t) oscillates coherently in the
time domain (inset) and the system remains localized. All data is shown for
systems of size L=96.

As one is limited to a finite time evolution in numerics we average over center-of-
mass times in the range 1000 ≤ TJ ≤ 7313. Despite this already large averaging
window, there are still some artifacts, like zero-crossings and 1/ω-singularities, of
the T-dependent part Ajj(T, ω) visible in Fig. 5.4(b). This is due to the presence
of oscillations with very long period, or in other words very close energy levels,
which naturally appear in localized systems due to the absence of level repulsion.

5.5 A self-consistent noise interpretation

It is often assumed, that treating interactions at Hartree-Fock level is not sufficient
to witness the breakdown of localization in a disordered system [8]. While this is
true in thermal equilibrium, as we show in Sec. 5.3 this assumption does not hold in
the case of quench dynamics that is considered here. The essential mechanism by
which Hartree-Fock terms cause delocalization is as follows: the time-dependent
Hartree-Fock potentials act as effective temporal noise, and a noninteracting sys-
tem subject to noise will thermalize (though potentially with transient subdiffusive
dynamics [181]). Intuitively, this can be understood as the noise process, with its
continuous frequency spectrum, providing the missing energy for a fermion to hop
between two energy-detuned sites. We also show in App. 5.8, that relaxation at
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weak randomness is not due to dephasing effects between different disorder sam-
ples or due to averaging over different lattice sites, by computing the relaxation of
the local density at single sites and for single disorder configurations.
In our Hartree-Fock theory the selfenergy ΣHF

ij (t) is a deterministic function for
a given disorder sample and a given initial state. However, its frequency spec-
trum can still potentially be broad, allowing for transitions between energy-detuned
single-particle orbitals. To analyze this we compute the amplitude spectrum of
the Hartree-Fock selfenergy |ΣHF

ij (ω)| for a single realization of the disorder. As
the results are very similar for both the Hartree and the Fock contribution (see
App. 5.9), we will focus on the amplitude spectrum of the Hartree selfenergy
|ΣH

jj (ω)| only. If the amplitude spectrum is broad and mostly featureless as for dis-
order strength W = 2.0 in Fig. 5.5(a), the self-energy will look like noise in time
domain, leading to delocalization (inset). When the amplitude spectrum consists
only of a discrete set of sharp peaks, as is the case for strong disorder W = 17.0,
Fig. 5.5 (b), the Hartree selfenergy is just a coherent oscillation in time (inset),
leaving localization intact.
These numerical findings are consistent with what one might expect perturbatively,
at weak interactions. A single lattice site overlaps with∼ ξ single-particle orbitals,
each at a different energy, and therefore the on-site potential fluctuates at ∼ ξ
separate oscillation frequencies. At the same time, the energy detuning between a
particular orbital and the others it overlaps with goes as δξ ∼ 1/ξ2 (or, more gener-
ally, polynomially in 1/ξ). Thus, when ξ � 1, a particle in a given orbital is driven
at enough different frequencies that it is likely to find a “noise”-induced resonant
transition to another orbital. These transitions lead to yet more frequencies in the
self-energy spectrum, inducing yet more transitions, and so forth, and eventually
all particles delocalize. In the opposite limit, ξ � 1, the same logic indicates that
localization is stable. In that limit, the amplitude of the Hartree self-energy at a typ-
ical site falls off as exp(−1/ξ) (from orbitals centered at nearest-neighbor sites;
further orbitals are exponentially suppressed as exp(−L/ξ) [182]). For the same
reason, a typical orbital has exponentially weak matrix elements to couple to any
other orbitals. Thus, asymptotically, in this limit each orbital is subject to a weak,
essentially time-periodic potential, which does not induce resonances, leading to a
stable localized regime within this approximation.
We now calculate the autocorrelation function ΣH

jj (t)Σ
H
jj (0) via averaging over dis-

order realizations, Fig. 5.6. We find that the autocorrelations show a decay which
is consistent with a slow powerlaw ΣH

jj (t)Σ
H
jj (0) ∼ t−β in the delocalized phase,

W = 2.0. These noise correlations are much longer lived than in Ref. [181], where
exponential correlations have been studied. However, when one repeats the argu-
ments therein with power-law correlated noise, it turns out that the distribution of
tunneling times is still fat tailed and hence subdiffusive transport is recovered in the
system, which is consistent with our numerical observations. In contrast, for strong
disorder, W = 17.0, the self-energy autocorrelations remain constant in time.
Despite the similarities between our Hartree-Fock treatment and Ref. [181], there
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Figure 5.6: Autocorrelation of the Hartree selfenergy. We compute the au-
tocorrelation ΣH

jj (t)Σ
H
jj (0) of the Hartree selfenergy averaged over disorder

realizations for systems of size L=96. The autocorrelation of ΣH
jj (t) shows a

decay in time, consistent with a slow powerlaw, when the disorder is weak,
W = 2.0 (blue). One can therefore think of ΣH

jj (t) as powerlaw correlated
noise in a zeroth order approximation. In the localized phase, W = 17.0, the
Hartree selfenergy shows non-decaying autocorrelations for all times (red).

are still some differences. Most importantly, the noise is generated self-consistently,
so its strength is in general not constant in time. The distribution of ΣHF

ij (t), ob-
tained from disorder sampling is furthermore non-Gaussian. We expect that these
differences lead to quantitative changes in the dynamics, which need to be ad-
dressed in more detailed, future investigations.

5.6 Comparison of Hartree-Fock with exact diagonal-
ization

For small systems of 12 sites we compare the imbalance time-traces obtained from
our Hartree-Fock approach to exact-diagonalization calculations in order to get a
quantitative benchmark for our method. In the weak-disorder regime, Hartree-Fock
tends to be more delocalizing, see Fig. 5.7. In the strong disorder limit, however,
our method is in good quantitative agreement with exact diagonalization. The de-
viations at weak disorder stem on the one hand from neglecting higher order con-
tributions to the self-energy and on the other hand from the fact that field theories
have the tendency to mimic larger systems and hence provide results that are more
delocalized compared to exact diagonalization.
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Figure 5.7: Comparison between Hartree-Fock and exact diagonalization.
We compare the Hartree-Fock (HF) theory with exact diagonalization (ED)
for small systems of 12 sites at weak disorder, W = 2.0, where HF delocalizes
faster than ED, and at strong disorder, W = 17.0, where both are practically
lying on top of each other. The faster decay of the HF time trace compared
to ED for weak disorder can be first attributed to the fact that interactions
are treated only perturbatively and second because field theories are not
very sensitive to finite size effects.
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5.7 Self-consistent Born approximation

The next-to-leading order contribution to the self-energy in our weak coupling ex-
pansion is often referred to as self-consistent Born approximation (SCBA), which
is of second order in the interaction U. We calculate the SCBA contribution to the
selfenergy and obtain

ΣSCB
ij (t, t′) = 8Gij(t, t′)∑

lk
UikUl jGkl(t, t′)Gkl(t′, t). (5.10)

We evaluate the Dyson equation taking self-energy contribution up to the SCBA
and compute the time averaged correlation function for a staggered initial state
and a domain wall initial state, see Fig. 5.8. Within the SCBA it is numerically
expensive to reach late times, because the memory integrals on the right hand side
of the Dyson equation (5.2) have to be computed. Therefore, our data is limited to
times tJ ∼ 20.
Hartree-Fock is overall consistent with SCBA, but the latter potentially delocal-
izes the system slightly less, at least on the accessible time scales. On the one
hand, SCBA adds new decay channels to the dynamics which on the first sight
should enhance delocalization, but on the other hand it might also decrease the
self-consistent noise because the memory integral in the Dyson equation damps
oscillations.
One possible scenario could be, that the second effect (weaker noise due to damp-
ing of oscillations) dominates at short times, before the first effect (larger number
of decay channels) takes over at later times, as the SCBA contributions in Eq. (5.2)
may build up slowly over time. Similar behavior has been found in the NLO dy-
namics of the O(N) [183, 184, 185, 186].

5.8 Single samples and single sites

It is well established, that the nonequilibrium Keldysh 2PI approach is able to de-
scribe thermalization in a closed system. This is, however, only true, when the
memory integrals on the right hand side of Eq. (5.2), i.e., the time non-local parts
of the selfenergy, are included. The Hartree-Fock selfenergy on its own does not
lead to thermalization. Nevertheless we have shown in our present work, that a pure
Hartree-Fock time-evolution is already able to describe relaxation due to interac-
tion effects in a disordered system. Just by looking at the decay of the imbalance
or the density-density correlation of an initial state in Sec. 5.3, it is unclear whether
this decay is only due to dephasing effects between different disorder samples and
different lattice sites or true delocalization. In principle, this scenario can already
be discarded by our results for the local spectral function in Sec. 5.4, which we com-
puted for a single disorder realization. To further substantiate that the decay of the
correlation functions is due to particle transport, we look at the occupation number
nj(t) of a single site and a single disorder realization. In a delocalizing system, the
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(a) staggered initial state

(b) domain-wall initial state

Figure 5.8: Comparison of Hartree-Fock and SCBA at short times. We
compare the leading order Hartree-Fock dynamics with the nex-to-leading
order self-consistent Born approximation, both for the (a) staggered and
the (b) domain-wall initial state. The data shown is for a single disorder
realization and a system size of L = 48
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Figure 5.9: Relaxation of an initially occupied site for a single disorder
realization. To verify that the decay of the density-density correlation is
not due to dephasing or averaging effects, we compute the time averaged
occupation on a single site and for a single disorder realization. For weak
disorder, W = 2.0, (lower curves) this quantity decays to the average density
of a half-filled lattice. By contrast, for strong disorder, W = 17.0, Without
time averaging, nj(t) would be persistently oscillating about 1/2 at late
times. Therefor the decay of the imbalance I(t) or in general the correlation
function C(t) is due to particle transport. For strong disorder, W = 17.0,
the particle number does not decay on an initially occupied site, indicating
localization of particles on the given site.





Chapter 5. A self-consistent Hartree-Fock approach to Many-Body
Localization

Figure 5.10: Comparison between Hartree, Fock, and Hartree-Fock time
evolution. The time evolution of only Hartree (red), only Fock (yellow), and
both Hartree and Fock (blue) is qualitatively similar. The time evolution is
shown for random potentials of strength W = 2.0 in the subdiffusive phase
and are compared to the localized, non-interacting system with the same
disorder (black).

single-site occupation number will approach 1/2 for late times, nj(t→ ∞) = 1/2.
On the Hartree-Fock level nj(t) contains oscillations which will persist forever and
delocalization corresponds to these oscillations being centered around 1/2. Decay
of oscillations can only be obtained in higher order in the interaction and is a true
many-particle effect. In order to remove the oscillations, we compute the time av-
eraged occupations, limt→∞

1
t

∫ t
0 ds nj(s) = 1/2, which smoothly approach 1/2

at late times when the system delocalizes. That can be observed in Fig. 5.9, where
we show that the time-averaged occupation number on a single site approaches
1/2 for a few different disorder samples at weak disorder. For strong disorder the
occupation remains close to its initial value, Fig. 5.9 as expected for a many-body
localized system.

5.9 Analysis of the Hartree and Fock contributions

In Sec. 5.5, we have focused on analyzing the Hartree self-energy. In Fig. 5.10 we
show, that the time evolution, when taking into account only Hartree, only Fock,
or both Hartree and Fock contributions, are qualitatively similar. This is why it is
sufficient to focus on the Hartree selfenergy, ΣH

jj (t), when we analyzing the self-
consistent noise.
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5.10 Conclusions

In this work, we developed a self-consistent Hartree-Fock approach in the frame-
work of the nonequilibrium Keldysh field theory to study interacting and disordered
fermions, initialized in a far-from-equilibrium state. Our results show that this ap-
proach can capture a lot of the phenomenology of many-body localization. Using
this technique, we study the time-evolution of systems of up to 192 lattice sites to
times 104/J. With that we can treat systems that are much larger than the ones
accessible in exact diagonalization and study dynamics to times much longer than
the ones accessible with matrix product states. Moreover, our results also indicate
that near the many-body localization transition finite size effects are strong, and for
certain observables systems of several hundreds of sites are required to obtain the
asymptotic behavior.
The self-consistent Hartree-Fock approach is sensitive to rare-regions and therefore
captures subdiffusive transport for weak random disorder. We showed that in cor-
related quasi-periodic potentials such subdiffusive transport does not exist, as can
be understood from the absence of rare regions. The delocalization of our system
on the Hartree-Fock level for weak disorder results from the dynamical nature of
the self-energy, which we interpret as noise. For strong disorder, only a couple of
frequencies contribute to the self-energy, and hence localization persists.
From a certain perspective it is surprising that Hartree-Fock theory is able to cap-
ture so much of the MBL phenomenology. This appears to have to do with our
far-from-equilibrium initial state, which (together with the randomness) builds in
fluctuations at many frequencies into the initial conditions for the Hartree-Fock
dynamics. If we had instead started with an eigenstate of the noninteracting prob-
lem [8, 176] the Hartree-Fock theory would not give rise to thermalization, at least
for weak interactions. The fact that the performance of mean-field approaches is
sensitive to the fluctuations encoded in the initial state—as we see here—was re-
cently pointed out in Ref. [187].
For future work, it will be interesting to study many-body localization in higher
dimension and the effects of long-range interactions on the many-body localiza-
tion transition with this approach and with that explore many-body localization in
trapped ions [127], polar molecules [188], or condensed matter systems with dipo-
lar interactions [134]. Moreover, many-body localized systems that are subjected
to periodic driving fields [130] can be explored as well with this technique for large
system sizes. From a more fundamental point of view, it would intriguing to inves-
tigate how one can use measures of the “spikiness” of the local spectral function
to quantify the many-body localization transition, how they can be measured in
ARPES type experiments for ultracold atoms [189], and whether these measures
are consistent with the long-time evolution of the system.
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Using bipartite fluctuations to
dynamically characterize a
Luttinger Liquid

6.1 Connection between bipartite fluctuations and en-
tanglement entropy in equilibrium

Entanglement has become of central interest in the study of quantum many-body
systems [190, 191, 192, 193]. It is one of the hallmark features of quantum mechan-
ics and especially relevant at low energies. For instance it can be used to distinguish
phases of matter, for which no classification in terms of symmetry and local order
parameter can be given, such as topologically ordered states [194, 195, 196].
The typical measures to quantify entanglement, are the von Neumann entanglement
entropy or the n-Rényi entropies. In order to define these measures, one splits a
system into two disjunct parts A and B and looks at the reduced density matrix
ρ̂A = trB |Ψ〉〈Ψ|, for a given quantum state |Ψ〉. Then

SvN = − trA{ρ̂A log ρ̂A}

Hn =
1

1− n
log trA ρ̂n

A. (6.1)

Eq. (6.1) already shows, that obtaining the entanglement entropy is exponentially
hard in general, as it requires knowledge of the whole density matrix of subsystem
A. This holds true both in theory, where one usually has to rely on extensive
numerics, and especially in experiment, where it has been only recently achieved
to measure the second Rényi entropy in a small system of bosonic atoms in an
optical lattice [197, 198, 135].
Due to these practical difficulties there have been studies, whether one can find
alternative ways to quantify entanglement, without the need of having access to
the reduced density matrix ρ̂A [199, 200]. The basic idea is, that at least in sys-
tems with short-range interactions and well defined quasi-particle excitations, en-
tanglement is mainly created by particles or, more generally, conserved charges
crossing the boundary between subsystems A and B. Thus information about the
entanglement entropy could be extracted from the full counting statistics of the
charge/particle number in subsystem A.
For free fermions it has been indeed shown, that the von Neumann and Rényi
entropies can be expressed in terms of an asymptotic series of the cumulants of the
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particle number statistics in subsystem A [201, 202, 199, 200].
Another example, where entanglement entropy and particle number statistics are
closely related, are conformal field theories (CFTs) and in particular Luttinger liq-
uids. This is very interesting, as the low-energy properties of many one dimen-
sional systems are captured by Luttinger liquid theory [51, 52, 203].
In a Luttinger liquid the entanglement entropy grows logarithmically in the subsys-
tem size l [190, 192, 204, 205]

SvN(l) =
1
3

log l + const.. (6.2)

The particle number fluctuations F (l) = 〈N̂2
A〉 − 〈N̂A〉2 in the subsystem behave

in the same way [200],

F (l) = K
π2 log l + const., (6.3)

the only difference being the factor in front of the logarithm, which is essentially
given by the so called Luttinger parameter K. The number fluctuations F are
exactly the second and in fact the only non-vanishing cumulant in a Luttinger liquid.
Therefor, in equilibrium, the entanglement in a Luttinger liquid can be quantified
by particle number fluctuations, a quantity, which can be accessed significantly
easier both in theory [206, 207] and experiment [208, 209, 210, 37, 211].
We study, whether the close relation between entanglement and particle number
fluctuations in a Luttinger liquid also persists in a non-equilibrium setting. Con-
cretely, we will look at the quantum dynamics after a quench from a gapped state
into a Luttinger liquid and calculate the full counting statistics of the particle num-
ber in a subsystem in terms of the cumulant generating function.
We will show that, also in nonequilibrium, the fluctuations behave very similar to
the entanglement entropy: After a quench, fluctuations grow linearly in time before
saturating to a value that is extensive in subsystem size, after a time that is extensive
in subsystem size. The only difference being the rate of the linear growth, which is
universal for the entanglement entropy, while it depends linearly on the Luttinger
parameter K for fluctuations.
As a quantum quench creates a highly excited state, we will use matrix product
state simulations of the Bose-Hubbard model at unit filling to check whether our
Luttinger liquid calculation can be expected to hold in a real system.
In addition, we will use these result, to propose a novel measurement procedure for
the Luttinger parameter K, which thus far has proven to be very difficult to extract
from experiments.

6.2 Quench from the Mott-insulator to a superfluid in
the one dimensional Bose-Hubbard model

We want to study quenches from the Mott insulating to the superfluid phase in the
one dimensional Bose-Hubbard model
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H = −J ∑
i
(b†

i bi+1 + b†
i+1bi) +

U
2 ∑ ni(ni − 1) (6.4)

at half filling. The 1D Bose-Hubbard model at unit density, Eq. (6.4), displays a
quantum phase transition from a Mott-insulator to a superfluid at the critical value
(J/U)c ≈ 0.3 [212, 213, 214, 215].
Using the language of Bosonization the 1D Bose-Hubbard model can be mapped
to a sine - Gordon-Model [52]

HSG =
v
2

∫
x

[
KπΠ2(x) +

1
Kπ

(∂xφ(x))2 − 4
∆̃
v

cos(
√

2φ(x))
]

. (6.5)

Here v is the velocity of sound waves, K the Luttinger parameter and ∆̃ is a param-
eter stemming from the lattice depth of the optical lattice. The density operator for
original bosons can be expressed in terms of the scalar field φ

ρ(x) = ρ0 +
1
π

∂xφ(x), (6.6)

where ρ0 is the average density and the second term describes density fluctuations.
Using a renormalisation group analysis, one can show that the cosine term in
Eq. (6.5) is irrelevant for K > 2 and relevant for K < 2, hence Kc = 2 marks
the critical point between the gapped phase at K < 2 and the superfluid phase
for K > 2. The full relation between K and J/U is not known, analytically
only the following three reference points are known: K = 1 ↔ J/U = 0,
K = ∞↔ J/U = ∞ and K = 2↔ (J/U)c ≈ 0.3.
In the superfluid phase (K > 2) we can safely neglect the cosine term and see, that
the low-energy properties of Eq. (6.4) are captured by a Luttinger-liquid. Deep in
the Mott-insulating phase (K < 2) we can assume, that the field amplitude φ is
small, φ � 1, such that we can expand the cosine term to order O(φ2), which
leaves us with the theory of a massive scalar field. This reasoning justifies the
choice of pre- and post-quench Hamiltonians in the following.
As we want to consider a quantum quench from a gapped phase into a Luttinger
liquid (LL), the system is initially assumed to be in the ground state of the Hamil-
tonian

H0 =
ṽ
2

∫
x

[
K̃πΠ2(x) +

1
K̃π

(∂xφ)2 + m2φ2
]

. (6.7)

At time t = 0 the system is quenched into the gapless phase, described by a Lut-
tinger liquid Hamiltonian with Luttinger parameter K and sound velocity v; thus
for t > 0,

H =
v
2

∫
x

[
KπΠ2(x) +

1
Kπ

(∂xφ)2
]

. (6.8)
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In both H0 and H, φ is a real scalar field and Π = ∂tφ is the conjugate momentum.
They obey the canonical commutation relation [φ(x), Π(x′)] = iδ(x− x′).
For late convenience, we rescale time and fields

t→ t/v, φ→
√

Kπφ, Π→ 1√
Kπ

Π, (6.9)

which makes all parameters disappear from the post-quench Hamiltonian H and
shifts them to the pre-quench Hamilonian H0,

H0 =
ν

2

∫
x

[
1
κ

πΠ2(x) + κ(∂xφ)2 + K̃πm2φ2
]

(6.10)

H =
1
2

∫
x

[
Π2(x) + (∂xφ)2] , (6.11)

where we use the abbreviations κ = K/K̃ and ν = ṽ/v.
We introduce creation and annihilation operators b†

p, bp and a†
p, ap in order to

diagonalise H0 and H, respectively. In terms of bp, b†
p the field operator and the

conjugate momentum become

φp =
1

(2ν
√

p2 + (m∗)2)1/2
(bp + b†

−p)

Πp = −i

(
ν
√

p2 + (m∗)2t
2

)1/2

(bp − b†
−p) (6.12)

and the pre-quench Hamiltonian takes the diagonal form H =
∫

p ν
√

p2 + (m∗)2b†
pbb.

m∗ =
√

K̃πm2 is the energy gap of the initial Hamiltonian
In terms of ap and a†

p we have

φp =
1√
2|p|

(ap + a†
−p)

Πp = −i

√
|p|
2
(ap − a†

−p), (6.13)

which diagonalises the post-quench Hamiltonian H =
∫

p |p|a†
pap.

One can also express the two sets of creation and annihilation operators in terms of
each other, what will help us to calculate expectation values after the quench:

ap =
1

2
√

γ(p)

[
(1 + γ(p))bp + (1− γ(p))b†

−p

]
a†

p =
1

2
√

γ(p)

[
(1 + γ(p))b†

p + (1− γ(p))b−p

]
, (6.14)
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where we have introduced γ(p) = ν/|p|
√

p2 + (m∗)2. The time evolution of the
operators ap, a†

p in the Heisenberg picture is trivial, as H ∼ a†a: ap(t) = e−i|p|tap,
a†

p(t) = ei|p|ta†
p.

The initial state of the system |Ψ(t = 0)〉 is chosen to be the groundstate |0〉b of
the pre-quench Hamiltonian H0, which is the vacuum of b, bp|0〉b = 0. In terms
of the a, a†-basis, |Ψ(0)〉 is a squeezed state.
Using Eq. (6.14), it is easy to calculate expectation values of ap(t) and a†

p(t) in
|0〉b. The following correlations are helpful to calculate number fluctuations:

〈ap(t)ap′(t)〉 =
e−i2|p|t

4γ(p)
(1− γ2(p))δp,−p′

〈ap(t)a†
p′(t)〉 =

1
4γ(p)

(1 + γ(p))2δp,p′

〈a†
p(t)ap′(t)〉 =

1
4γ(p)

(1− γ(p))2δp,p′

〈a†
p(t)a†

p′(t)〉 =
ei2|p|t

4γ(p)
(1− γ2(p))δp,−p′ (6.15)

6.3 Full counting statistics of the particle number after
the quench

6.3.1 Cumulant generating function

We now want to calculate the full counting statistics of the particle number, N̂l(t)
in a subsystem of linear size l, which is completely determined by the generating
function χ(λ, t) = 〈ψ(t)|eiλN̂l |ψ(t)〉 = 〈ψ(0)|eiλN̂l(t)|ψ(0)〉. From the generat-
ing function χ(λ, t) we can get all moments of N̂l(t) differentiating with respect
to λ,

〈N̂n
l (t)〉 = (−i)n∂n

λχ(λ, t)|λ=0

Cn(l, t) = (−i)n∂n
λ log χ(λ, t)|λ=0. (6.16)

Here the Cn(l, t) are the cumulants of N̂l(t). The set of all moments or cumulants
completely determines the statistics of the subsystem particle number and one can
reconstruct its probability distribution from them. The particle number fluctuations
in a subsystem, F (l, t) = 〈(N̂l(t)− 〈N̂l(t)〉)2〉, are identical to the second cumu-
lant C2(l, t).
From Eq. (6.6) we get

N̂l(t) =
l∫

0

dx ρ̂(x) = ρ0l +

√
K
π
(φ̂(l, t)− φ̂(0, t)). (6.17)
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(a) (b)

Figure 6.1: Number fluctuations in a Luttinger liquid. After a small time
window of quadratic growth, the particle number fluctuations in a subsys-
tem of size l grow linearly in time after a quantum quench from a gapped
state. The growth saturates after time l/2 (in dimensionless units) and the
growth rate is independent of the subsystem size l, panel (a). The slope of
F (t)/K depends only on the ratio ν, panel (b), in the form of the function
I(ν). I(ν) shows a linear dependenc on ν, panel (b) inset.

Inserting the decomposition of field operators into creation and annihilation opera-
tors b̂†

p, b̂p we find

N̂l(t) = ρ0l +

√
K
π

∫
p

e−α|p|

2
√

2|p|γ(p)
(eipl − 1)

[
fp(t)bp + f ∗p (t)b

†
−p

]
, (6.18)

where fp(t) = e−i|p|t(1+ γ(p)) + ei|p|t(1− γ(p)). Note that we have introduced
the exponential factor e−α|p| as smooth momentum cutoff. In order to evaluate the
initial state expectation value of eiλN̂l(t), we make use of the Zassenhaus formula
eX+Y = eXeYe−

1
2 [X,Y]e

1
6 (2[Y,[X,Y]]+[X,[X,Y]])) . . . and the fact, that b̂p|ψ(0)〉 = 0.

We obtain

log χ(λ, t) = iλρ0l−λ2 K
π

∞∫
0

dp
e−2αp

pγ(p)
sin2

(
pl
2

) [
1 + (γ2(p)− 1) sin2(pt)

]
,

(6.19)
is one of main results of this section. Eq. 6.19 shows, that all cumulants of order
three and higher vanish, Cn≥3(l, t) = 0. Hence the distribution of the particle
number N̂l(t) in the subsystem is gaussian, and even though the higher moments
of N̂l(t) are nonzero, they can all be expressed in terms of C1(l, t) and C2(l, t),
i.e., the mean particle number in a subsystem, ρ0l, and the fluctuations F (l, t).

6.3.2 Particle number fluctuations

Expressing everything in terms of dimensionless variables and parameters, intro-
ducing p̃ = p/m∗, l̃ = l/m∗, p̃ = p/m∗ and γ( p̃) = ν/ p̃

√
p̃2 + 1,we finally

obtain the fluctuations of the subsystem particle number
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F (l̃, t) =
2K
π2

∞∫
0

dp̃
e−2α̃ p̃

p̃γ( p̃)
sin2

(
p̃l̃
2

) [
1 + (γ2( p̃)− 1) sin2( p̃m∗t)

]
. (6.20)

The integral in Eq. (6.20) has to be evaluated numerically.
Plots of Eq. (6.20) for different values of l̃ and ν is shown in Fig. 6.1. One can
see, that the fluctuations grow linearly in time for m∗t < l̃/2 and then saturate at
a constant value. The subsystem size has no effect on the slope, which - in dimen-
sionless units - depends only on the ratio ν = ṽ/v. In the linear growth regime,
m∗t < l̃/2, we can write F (l̃, t) = 2K/π2 I(ν)m∗t. Plotting I(ν) as a function of
ν, Fig. 6.1 (b) inset, shows that I(ν) = const× ν, where the proportionality factor
is determined from a linear fit to be 0.72169. For the fluctuations, this implies, that
F (l̃, t) = 2K/π2 × 0.72169νm∗t in the linear regime.
Let us now recall, that we have rescaled time with the sound velocity v, Eq. (6.9),
switching back to the original time, i.e. we replace t with vt, we get that F (l̃, t) =
2K/π2 × 0.72169vm∗t, where vm∗ is exactly the energy gap in the spectrum of
the pre-quench Hamiltonian. Putting everything together, we can conclude, that

F (l, t) = const. +

{
0.72169 2Kt

π2τ0
t < l/2v

0.72169 Kl
π2vτ0

t > l/2v
, (6.21)

where τ0 = 1/(vm∗) is the inverse energy gap of the initial Hamiltonian.
This results shows, that the close connection between particle number fluctuations
and entanglement entropy extends from equilibrium to the dynamics after a quan-
tum quench, as Ref.’s [216, 217] show, that

Sl(t) '
1
3

log τ0 +

{
πt
6τ0

t < l/2v
πl

12vτ0
t > l/2v

. (6.22)

The only difference between entanglement entropy and fluctuations is the growth
rate, which is universal for the entanglement entropy and depends on the Luttinger
parameter K for the fluctuations.

6.4 Numerical MPS results

In this section we benchmark our analytic results obtained from Luttinger liquid
theory to matrix-product-state (MPS) simulations. In the numerical simulations,
we calculate the time-evolution after the quench in the full Bose-Hubbard model
at unit filling. The initial state is chosen as the ground state of the Bose-Hubbard
Hamiltonian at onsite repulsion Ui, where Ui & 15, such that the initial state is
deep in the Mott-insulating phase and is approximately a product state. The post
quench onsite repulsion U f is chosen, such that the final Hamiltonian is in the
superfluid phase.
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Figure 6.2: Bipartite fluctuations after a quench from the Mott insulating
to the superfluid phase in the 1D Bose-Hubbard model. Matrix product
state simulations of the 1D Bose-Hubbard model confirm the results obtain
from Luttinger liquid theory. Bipartite fluctuations first grow quadratically
and then linearly, yet the linear growth is cut of at a certain point due
to heating effects. The linear dependence of the saturatuin timescale on
subsystem size is clearly visible. Panel (a): At weak final onsite repulsion,
U f = 0.5, heating effects are weak and the linear growth regime extends
from tJ = 0.6 up to tJ = 2. Panel (b): For stronger final onsite repulsion
U f = 1.6, the linear growth window 0.6 . tJ . 1.1 becomes small. All
curves are shown for Ui = 100.

Fig. 6.2 shows the growth of bipartite fluctuations obtained from MPS simulations
for four different system sizes and two different values of the post-quench onsite
repulsion, U f = 0.5 panel (a) and U f = 1.6 panel (b). The fluctuations show
the characteristics predicted by Luttinger liquid calculation, first there is a small
regime of quadratic growth, this is followed by the expected linear growth. The
linear growth is however only visible in a short time-window before heating effects
become relevant.
Luttinger liquid theory is strictly only applicable at low energies, where the system
is close to the ground state. However, after the quench the system is in an highly
excited state where nonlinear effects are visible. The size of the linear growth
window depends on the value of final onsite repulsion U f and decreases with in-
creasing U f . The system size has no effect on the size of the linear growth window.
Fig. 6.2 shows a clear linear dependence of the onset of saturation on system size,
which appears not to be affected by heating effects.
In Fig. 6.3 we show the growth of the entanglement entropy after the quench. As
for the fluctuations, the curves show the characteristics expected from conformal
field theory, first a quadratic growth regime, then the linear growth regime.
The linear dependence of the onset of saturation is clearly discernible also for the
entanglement entropy.
CFT predicts, that the slope of the entanglement growth should be universal and
independent of the interaction strength after the quench, as the parameter τ0 is only
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Figure 6.3: Bipartite entanglement entropy after a quench from the Mott
insulating to the superfluid phase in the 1D Bose-Hubbard model. Matrix
product state simulations of the 1D Bose-Hubbard model confirm the results
obtained from conformal field theory [216, 217]. Bipartite entanglement
entropy first grows quadratically and then linearly. The linear dependence
of the saturation timescale on subsystem size is also clearly visible. All
curves are shown for Ui = 100 and U f = 1.6.
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Figure 6.4: Dependence of the timescale τ0 on the final onsite repulsion
U f . Conformal field theory and Luttinger liquid theory predict, that the
timescale τ0 only depends on the initial state and is independent of the final
interaction parameter U f . Extracting τ0 from MPS-data on the entanglement
entropy, one can see, that there is indeed a very weak dependence of τ0 on
U f for U & 1.0. For all curves the system size is L = 12.

dependent on the system before the quantum quench [216, 217]. To check this, we
extract the timescale τ0 from the entanglement entropy MPS-data and show the U f
dependence in Fig. 6.4 for different initial onsite repulsions Ui. As one can see,
the dependence on U f is weak. For U f & 1.0, τ0 is almost independent of the final
onsite repulsion, while for U f . 1.0, it decreases noticeable with U f . The reason
for this decrease at small U f is not clear, it could be a cut-off effect due to system
size or high occupations of single sites, which are truncated in MPS-simulations,
but become more relevant at weak onsite repulsion.
The dependence on the initial onsite repulsion Ui is also very weak over the whole
range of U f , which is consistent with the fact, that the system starts out very close
to a perfect Mott-state for Ui & 15.

6.5 Determining the Luttinger parameter from bipar-
tite fluctuation measurements after a quench

Our result, that the slope of the bipartite fluctuations growth depends linearly on the
Luttinger parameter K, in combination with the result from Ref’s. [216, 217], that
the entanglement grows with a universal slope, represents a possibility to measure
K in optical lattice experiments. The procedure we propose will require access
to time resolved data for the bipartite fluctuations for different values of the post-





Chapter 6. Using bipartite fluctuations to dynamically characterize a
Luttinger Liquid

Figure 6.5: Performance of the proposed measurement procedure for the
Luttinger parameter. Extracting the growth rate of bipartite fluctuations in
the optimal fite window (red) and using we get almost perfect agreement
with the finite size Luttinger parameter from equilibrium simulations (black).
When using a large fit window (blue), there is still reasonable agreement for
U f . 1.6. For larger values of U f deviations become sizable. All fluctuation
data used is for a system size of L = 12. The entanglement entropy growth
rate is extraced from a system size L = 6 and U f = 1.6.

quench onsite repulsion U f and a single time-trace of the second Rényi entropy
H2.
Measuring the bipartite fluctuations after a quantum quench is relatively simple in
a Bose-Hubbard model, implemented as an optical lattice system, by employing
single site resolution [40, 41, 42]. One lets the system evolve a certain time after
the quench and counts the number of atoms in the subsystem one is interested in.
This is done repeatedly in order to generate sufficient statistics for the subsystem
occupation. The process is then repeated for different evolution times in order to
get the time evolution of the bipartite fluctuations.
Getting access to time-resolved data for the second Rényi entropy H2 after the
quench is considerably more difficult and a highly non-trivial task. However, it has
been recently achieved [198, 135].
According to Ref.’s [216, 217] the second Rényi entropy H2 in the Luttinger liq-
uid grows with the slope ∆H2 = π/(8τ0) after the quench. Therefor we get in
combination with Eq. (6.21)

K =
π3

11.2
∆F
∆H2

, (6.23)

where ∆F is the slope of the linear bipartite fluctuations growth after the quench.





Chapter 6. Using bipartite fluctuations to dynamically characterize a
Luttinger Liquid

Eq. (6.23) is the central equation for extracting the Luttinger parameter K from
fluctuations and entropy time-traces.
As Luttinger theory and CFT predict, that τ0 and hence ∆H2 is independent of the
post-quench onsite repulsion U f , which is, apart from small deviations, also seen
in our MPS simulations, it is actually sufficient to measure the slope of the second
Rényi entropy at a single U∗f .
In Fig. 6.5 we compare the Luttinger parameter extracted from MPS data with the
procedure described above to the Luttinger parameter extracted from the finite size
equilibrium density-density correlation function according to the method described
in [212]. We use bipartite fluctuation data for a 12 site system and second Rényi
entropy data for a 6 site system at U∗f = 1.6J, which would also be feasible in
current experiments. As can be seen in Fig. 6.5, the finite size Luttinger parameter
extracted with our proposed method is slightly smaller, than the equilibrium K. It
turns out, that this deviation is solely due to the Rényi entropy slope ∆H2 being
slightly larger than the CFT prediction, using the CFT result for ∆H2 would make
the curves overlap almost perfectly. This might very well be due to finite size or
heating effects in the entanglement growth, which is very hard to decide based on
our numerics.
In order to be able to discern the time window, where the bipartite fluctuations grow
linearly, one needs a high resolution in time and small errorbars, which requires a
lot of data. In order to check how robust our proposed procedure is against not
being able to fit in the correct time window, we also fitted the bipartite fluctuations
in the window 0.5 < tJ < 2.5. The resulting values of the Luttinger parameter
show a larger deviation, as can be expected, see Fig. 6.5(blue squares). However,
for small final onsite repulsion U f . 1.4, the agreement with the optimal curve is
still reasonable.

6.6 Conclusion

We analytically calculate the full counting statistics of the particle number in a
subsystem of size l in terms of the cumulant generating function χ(λ, t) after a
quench from a gapped state to a Luttinger liquid. The obtained cumulant generating
function contains only terms up to second order in the variable λ, such that all
but the first and second cumulant vanish. This implies that the particle number
statistics after the quench is gaussian.
From the cumulant generating function we show, that after a quench from a gapped
state to a Luttinger liquid, particle number fluctuations in a subsystem grow linearly
in time, with a rate, which depends linearly on the Luttinger parameter. The linear
growth saturates after a time l/(2v), where l is the size of the subsystem and v
the Luttinger velocity. This behavior is similar to the von Neumann and Rényi
entanglement entropies. Additional MPS simulations of quenches from the Mott-
insulating to the superfluid phase in the one dimensional Bose-Hubbard model
at half-filling show, that even though heating effects have to be expected in real
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systems, the main characteristics are still visible within a transient time window.
These heating effects tend to be stronger in the particle number fluctuations than in
the entanglement entropy.
Based on our findings, we have further proposed a measurement procedure for the
Luttinger parameter, which does not rely on the extraction of a power-law expo-
nent from the decay of density-density correlation functions and should thus be
applicable also for systems with moderate size. Our numerical analysis of this
measurement procedure shows, that due to heating effects an experimental imple-
mentation would need a high time resolution and will thus be demanding, however
it should then yield reasonably accurate results for the Luttinger parameter K.
In the future it would be interesting to see, whether one can develop a more detailed
understanding of the heating effects present in the Bose-Hubbard model.
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Conclusion

In this thesis we studied the phenomenology of quantum many-body systems far
from equilibrium, by using the tools of non-equilibrium quantum field theory, in
particular conserving approximations. We studied four main problems: Heating
and prethermalization in the periodically driven O(N)-model, dynamical quantum
phase transition in quenches of the O(N)-model, many-body localization of spin-
less lattice fermions and the full counting statistics of the particle number in a
subsystem after quenches from a gapped state into a Luttinger liquid.
Our results for the driven O(N)-model show, that thermalization to infinite tem-
perature is highly likely and that a prethermal Floquet state can be stabilized, even
though interactions are strong and the driving frequency is almost resonant with the
microscopic energy scales of the system. At late times we find algebraic heating,
ε(t) ∼

√
t, which is much slower than linear Joule heating.

In our study of dynamical quantum phase transitions of the O(N)-model we de-
rived the rate-function of the return probability to the ground state manifold after
a quench from a symmetry breaking initial state to the gapped phase. Kinks do
appear in the rate function, located at the zero crossings of the order parameter
and the time between kinks as a function of the distance to the dynamical quantum
critical point shows critical scaling. Based on the close relation between the appear-
ance of kinks and the order parameter dynamics we were able to draw a connection
between the notions of order parameter dynamical quantum phase transitions and
dynamical quantum phase transitions in the return probability. Eventhough our
results were obtained with a leading order large-N expansion, we argue, that our
results remain valid, when higher order corrections are taken into account.
For spin-less lattice fermions subject to a local disorder potential, we built a self-
consistent Hartree-Fock approach. Remarkably much of the phenomenology of
many-body localization is captured by our approach. Particularly useful is the
possibility to simulate large systems to very late times, which was lacking in cur-
rent exact numerical approaches. Our method shows, that close to the transition
finite size effects are significant and several hundred sites are necessary to obtain
asymptotic behavior. We also studied the difference between random disorder and
quasi-periodic potentials; while in case of random disorder self-consistent Hartree-
Fock captures rare region effects and we are able to see subdiffusive transport for
weak disorder, these effects are absent for quasi-periodic disorder. Furthermore we
argued that the delocalization of the system at Hartree-Fock is due to the "noisy"
time-dependence of the Hartree-Fock self-energy.
For Luttinger liquids we showed, that the close relation between entanglement en-
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tropy and particle number fluctuations, which was found in equilibrium also exists
in non-equilibrium after quenches from a gapped state to the Luttinger liquid. This
was done by calculating the full counting statistics, which furthermore showed,
that the statistics of the particle number in a subsystem is gaussian. After validat-
ing our results from Luttinger liquid theory with matrix product state simulations
of quenches from the Mott-insulating to the superfluid phase in the one dimen-
sional Bose-Hubbard model, we used our results to propose a new measurement
procedure for the Luttinger parameter.
Alltogether the results in this thesis reinforce, that non-equilibrium quantum field
theory together with conserving approximations is a powerful tool to study non-
equilibrium many-body systems, as it enables the investigation of large systems
and helps building comprehensable pictures of the physics.
There are several possibilities for future extensions of the work in this thesis. Be-
sides applying the field-theoretic methods to different models, let us focus on the
ones discussed here. For the driven O(N)-model it would be interesting to de-
rive a Floquet Boltzmann equation in order to study the late time heating after the
prethermal plateau more in detail.
In the disordered Fermi-Hubbard model, it would be intriguing to explore the effect
of periodic driving fields or how one can use the local spectral function to quantify
the many-body localization transition. Periodic driving fields can be implemented
into our self-consistent Hartree-Fock approach right away. For using the local
spectral function to quantify the many-body localization transition on the other
hand, one would need to find a good measure for the "spikeness" of the spectrum.
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