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Abstract

Share mobility is starting to gain popularity since recent years. It represents a

transportation mode which contributes to reducing city traffic, congestion, and pollution

problems. The new emerging transportation mode, shared autonomous vehicles, would

help to overcome the limitations of the current vehicle sharing systems since it combines

features of on-demand and short-term rentals with self-driving capabilities.

The thesis proposed an optimization model for reservation based car sharing (RACS)

system by applying the concept of autonomous vehicle sharing chain (AVS Chain).

Firstly, the RACS system and its routing optimization procedure based on the AVS

Chain concept were defined. Then, the RACS system was formulated in terms of a mixed

integer programming (MIP) problem. Since the problem denotes as a combinatorial

optimization which is NP hardness, in order to obtain feasible solutions, meta-heuristic

method of Tabu search and in combination with K-Means or K-Medoids clustering

algorithms were applied. After that, the proposed model was validated by testing in

different networks with small to large scale of real life travel demands. Furthermore, the

performance and feasibility of the algorithms were evaluated.

The proposed AVS Chain model aims to minimize the AV travel time/cost and customer

waiting time, taking both transportation systems efficiency and passengers’ concern into

account. It can be applied to transport networks of cities with small to large travel

demands.

Keywords: Autonomous Vehicle(AV), Routing optimization, Reservation based car

sharing (RACS), Mixed integer programming(MIP), Tabu search, K-Medoids, K-Means.
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Chapter 1

Introduction

1.1 Background

Since recent years, the worldwide population growth and increasing urbanization have

led to rapid expanding of urban areas, in which the travel demand raised significantly.

The insufficient supply of transportation infrastructure and services in the urban area has

accelerated the increasing use of private vehicles. Nowadays, private vehicle mobility has

become the dominated transport mode in a vast majority of the cities around the world.

According to Viegas et al. [2016], the private car trip accounts for 40 to 83 percent of the

total trip demand in the cities.

Although private vehicles have many advantages, such as flexibility, comfort, and good

availability, they are also the primary contributor to traffic congestion and environmental

pollution. Moreover, the transport efficiency of private vehicles is considered as low, since

most vehicles have a quite low daily usage rate and require parking land at the idle time.

Litman [2017] presented an example of private vehicle usage in Austin (US) and indicated

that the private vehicles remained unused for 23 hours per day on average and increased

the parking land, which was equal to 25 percent of the total urban area. To solve this

problem, a variety of transportation management measures have been proposed by traffic

authorities. Their approaches can be categorized into the following groups: a) shifting

demand to more sustainable transportation modes; b) demand reduction measures; c)

advanced and intelligent management of traffic; d) policy and laws.

Shared mobility emerges as a sustainable transportation mode which could significantly

reduce the ownership of vehicles, average transport costs, greenhouse gas emissions, and

congestion [Shaheen et al., 2015]. Given these potential benefits, shared mobility services

1
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including car sharing, ride sharing, and bike sharing are today approved and encouraged

by traffic authorities of different countries. It is forecasted that shared mobility will keep

growing rapidly in the next few years and become an important transportation mode which

compensates for public transport and taxi services [Corwin et al., 2015]. However, the

current shared mobility services are still facing some challenges, such as limited availability

of vehicles and service levels, relatively high operation costs resulting from the relocation

and re-balancing of the shared vehicles [Le Vine et al., 2014]. These challenges are expected

to be overcome by introducing autonomous vehicles (AVs) in the shared mobility business.

Autonomous vehicles are predicted to be increasingly utilized in different fields and will

arouse a revolution in the transportation systems [Ambühl et al., 2016]. The shared

autonomous vehicles, for example, could complete the relocation and re-balancing by

self-driving and thus reduce the operation costs and cut the customer waiting time

significantly. It is expected that shared AVs could be an important part of the future

transportation systems, which offers low-cost, less-stressful, more safety services, and

integrates with other transportation modes to provide on-demand and seamless journeys

for passengers [Krueger et al., 2016].

The positive impacts of applying AVs in the current vehicle sharing systems have been

proved by large number of studies [Stocker and Shaheen, 2017, Dia and Javanshour, 2017,

Litman, 2018]. In addition, to operate the Shared AVs more properly and efficiently,

various operation strategies and optimization methods are proposed and discussed. Among

the different aspects of shard AVs operation, the AV routing problem is the most critical

since it determines not only the system capability of passenger transportation, but also

the vehicle utilization efficiency. This thesis commits to contribute to the autonomous

vehicle sharing routing optimization problems.

1.2 Research problem statement

The research problem was initiated by the chair of Transportation Systems Engineering

at the Technical University of Munich. The proposal was concerned about developing an

optimized shared autonomous vehicles model based on the sharing chain concept, taking

the diverse travel demands into account. It was expected that the new model would

contribute to the efficient operation of urban transportation systems and prepare itself to

fulfill the growing travel demands.

A closer look at the existing literature reveals that few literature studied the reservation

based operation strategies for shared AVs, which, however, could have significant potential
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benefits on improving mobility and sustainability of current transportation system [Ma

et al., 2017]. Furthermore, research on optimization problem for shared AVs from

perspectives of both systems and passengers are quite scarce. Most research only focus

on system capacity and operation level. In addition, few proposed models were solved

based on the real-life large scale of travel demands. This thesis seeks to fill this research

gap by investing reservation based autonomous car sharing (RACS) system and develop

an optimization routing model which reflects both system and passengers benefits and is

applicable for large scale of travel demands.

In this thesis, the scope of research is limited in routing within a single planning horizon,

which assumes that all traffic information and travel requests/demands are known in

advance. This period of time is regulated by the system and static plan of the routes. In

addition, this thesis focuses on car sharing system, thus ride sharing and bike sharing are

not considered.

1.3 Objective and research question

The key issue related to the successful operation of RACS system is AV routing

optimization and there are two major problems need to be focused on: a) formulation

the of the autonomous vehicle sharing chain model which indicates the optimization

process of routing and b) utilization of novel solution approaches. The main objective is to

establish an optimization model for RACS system by applying the concept of autonomous

vehicle sharing (AVS) chains. Moreover, utilize appropriate algorithms to solve different

size problems according to the real life demand, then evaluate each algorithm performance.

Main Research questions:

Given the aforementioned need the following two main research questions are formulated:

1. How to optimize the reservation based autonomous vehicle sharing system by

applying AVS Chain model concept and build the optimization model to minimize

the cost of vehicle travel time and customer waiting time?

2. How to solve the model with appropriate algorithms with different scale of demand

problems ?

The research questions to be answered introduces a wide spectrum of secondary research

questions:

1. What is autonomous vehicle sharing system and how it could classified based on

business and operation mode?
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2. What is the reservation based autonomous car sharing system and how it perform?

3. How to model a reservation based autonomous car sharing system?

4. What is the state of art in autonomous vehicle routing for reservation based

autonomous car sharing system?

5. How to define the autonomous car sharing routing problem?

6. How to define a ”AVS Chain” concept?

7. What methodologies could be applied to the modelling and what are the decision

variables, objective functions and constraints?

8. How to solve the model with appropriate algorithms with different scale of demand

problems?

9. How are the algorithms applied in the solution process?

10. What are the performance and case study results of the algorithms?

1.4 Contributions

This thesis contributions lay on both modelling and algorithm methodological and

practical level:

1. Propose autonomous vehicle sharing (AVS) chain concept to effectively represent

the reservation based car sharing (RACS) routing optimization process.

2. Consider both system and customer objectives into the problem modelling

procedure, which include minimizing the total travel cost and customer waiting time,

as well as formulate the problem as a mixed integer programming optimization.

3. Propose, Formulate and Apply clustering methods of K-Means and K-Medoids with

meta-heuristic Tabu search algorithm into the solution procedure.

4. Test the three algorithm including Tabu, K-Means-Tabu (KMN-Tabu) and

K-Medoids-Tabu (KMD-Tabu) with small and large scale cases. By comparing their

performance based on solution quality, stability and computation cost, conclude the

most suitable algorithm for each scale problems in real life.
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1.5 Research Framework

This thesis was performed following the following research framework (Figure 1.1).

Figure 1.1: Research flow
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1.6 Report Structure

This thesis is structured as follows:

• Chapter 1 introduces the background of the problem and raise the objective of

research questions, defines the research scope and research framework.

• Chapter 2 represents the most relevant subjects for this thesis, from the definition of

vehicle sharing system, autonomous vehicles sharing, to the optimization modelling

methods of RACS system and the related solution methods..

• Chapter 3 presents the definition of the routing optimization procedure of the RACS

system based on AVS chain concept. Further, the model was formulated.

• Chapter 4 outlines the solution methods and the set of algorithms which are applied

to solve the RACS model.

• Chapter 5 represents the solution procedure of the applied algorithms. Further, the

function of each algorithm was explained step by step.

• Chapter 6 presents the computation results of the model in three different networks

and demand settings, applying different solution algorithms. Further, the feasibility

and performance of algorithms are discussed.

• Chapter 7 sums up the key findings in this thesis and proposes ideas and

recommendations for further research.



Chapter 2

Literature review

In this section, related work is reviewed and analyzed in order to acquire a deeper

understanding of the problem in hand, and find the most appropriate methodologies to

identify gaps in the literature and guide towards the development of methods that answer

the research questions. In this chapter the following research secondary questions are

addressed.

1. What is autonomous vehicle sharing system and how it could classified based on

business and operation mode?

2. What is the reservation based autonomous car sharing system and how it perform?

3. How to model a reservation based autonomous car sharing system ?

4. What is the state of art in autonomous vehicle routing for reservation based autonomous

car sharing system?

2.1 Vehicle sharing system

2.1.1 Shared mobility

Shared mobility refers to the shared use of a vehicle, bicycle, or even rides that enables

users to have short-term access to transportation services on an on-demand basis [Shaheen

et al., 2015]. As the public perception of shared goods has changed considerably in the

last years, the shared mobility is now beginning to gain widespread popularity. Shared

mobility promise to reduce inner-city traffic, congestion, and pollution problems, which

are particularly interested for the cities that are struggling with population growth and

7
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increasing density [Cohen and Kietzmann, 2014]. In 2016, the global shared mobility

market was nearly 54 billion [Consumer and Boomers, 2017]. In respect of the strong

customer demand, the shared mobility market is expected to experience impressive annual

growth rates in the future [Corwin et al., 2015]. Driven by the improved automation,

information and communication technologies, numerous new shared mobility concepts are

emerging, which enable passengers to use different transportation modes in more efficient

and sustainable ways. Generally, the current existing shared mobility business models

can be classified into car sharing, ride sharing, and bike sharing [Cohen and Kietzmann,

2014]. The service providers for the shared-used vehicles are: car sharing providers, such

as car2go and DriveNow, who owe or lease a fleet of vehicles and connect the passengers

to cars; and ridesourcing providers, or called transport network companies (TNCs), such

as Lyft and Uber, who connect the drivers to passengers (taxi, ride sharing) [Consumer

and Boomers, 2017].

2.1.2 Car sharing business models

Car sharing is a model of short-term car rental, which allows customers to use the vehicle

service for shorter periods of time, usually on a per hour basis. Passengers who registered

as customers of the car sharing companies can request vehicles through hotline, website,

or mobile Apps, and get access to the shared-used vehicles and drive by themselves. The

customers of car sharing can gain benefits of shared vehicle utilization without ownership,

fuel, and parking costs, only response to the fees based on their traveling distances or

utilization time period [Shaheen et al., 2015]. Car sharing is particularly attractive to

customers, who only need to use vehicles occasionally or for shorter distance trips in urban

areas, where personal car ownership can be challenging. In recent years, car sharing has

experienced continuously double-digital growth [Consumer and Boomers, 2017]. Aiming

to fulfill the diverse range of customer experience and at differentiated price points, a

broad range of car sharing business models are emerged. These models can be classified

into round trip, point-to-point free-floating, point-to-point station-based, and peer-to-peer

(P2P) [Le Vine et al., 2014]. While round trip models require customer to return the

vehicle to the same place where it was accessed, point-to-point (also called one-way)

models enable one-way journeys within a specified geographic zone and allow customers

to leave the vehicle parked on the street near the destination. Compared with round

trip models, point-to-point models allow customers to use the vehicles spontaneously, or

reserve the vehicles only several minutes in advance [Le Vine et al., 2014]. However,

the logistics of point-to-point models, especially with free-floating systems are most

challenging to manage, since the car sharing providers have to reallocate the vehicles
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to the dedicated places in time. Some of the point-to-point car sharing are station-based.

They require customers to pick up the vehicles from one parking station and return them

to another, where fixed infrastructure such as charging points for electric vehicles can be

located. Differ from the above described Business-to-Customer (B2C) car sharing models,

peer-to-peer (P2P) models are operated by companies who typically do not own any of

the shared-used vehicles, but supervise transaction among individual owners and renters

and provide the necessary platform and resources needed for the exchange [Stocker and

Shaheen, 2017].

2.1.3 Ride sharing business models

Ride sharing is another important shared mobility model in which drivers and riders with

similar origins and/or destinations share the rides. It would provide significant societal and

environmental benefits by reducing the number of vehicles and improving the utilization of

available sear capacity. Since several riders share a vehicle, this model usually has a benefit

of lower costs compared with car sharing. Nowadays, the optimization technology which

matches drivers and riders effectively and efficiently is the key for ride sharing business

models [Masoud and Jayakrishnan, 2017]. Ride sharing can be further categorized into

carpooling, flexible carpooling, vanpooling, and P2P ride sharing [Agatz et al., 2012].

2.2 Potential autonomous vehicle sharing design

2.2.1 Autonomous vehicle and sharing definition

2.2.1.1 Autonomous vehicle

An autonomous vehicle is that one vehicle with partially or fully driver-less function and

can be maneuvered with reduced or no human intervention [Litman, 2017]. Based on

the advanced degree of the self-driving system in the vehicle, five levels of automation

for on-road vehicles have been defined in the standard J3016 composed by Society of

Automobile Engineers (SAE) International. According to this standard, the Level 4 and

Level 5 allow driver-less operation, in which the Level 5 has the highest level of automation

and could possess fully autonomous in all circumstances without any human intervention

[Litman, 2018]. Herein, none but level 5 and its related features are considered in this

thesis.
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The autonomous vehicles with Level 5 should be equipped with different advanced

technologies and systems. They are such as advanced sensors (optical, infrared,

radar, laser, etc.); automation controls system for steering, braking, and signals;

navigation GPS based on the high-quality maps system; vehicle-to-vehicle communication

system; information collection system; and testing and maintenance systems for critical

components [Litman, 2017]. Further, AVs can be classified according to the capacity of

passengers and types of power supplement, which are also essential features of AVs. There

are normal AVs with 4-6 seats, mini autonomous shuttle or vans with 8-10 sears, and

autonomous buses with 10-20 seats [Litman, 2017, Hörl, 2016, Alessandrini et al., 2015].

Besides, the type of power supplement, such as fuel or electric, should be considered in

the development and operation of AVs [Kang et al., 2016]. In order to be aware of the

public attitudes and willingness to utilize the AVs, Bansal et al. [2016] conducted a survey

which shows positive results, especially for people among the group of without driving

skills, younger generation and people with accident experiences.

In this thesis, the author defines autonomous vehicles as fully automated vehicles with

level 5. The optimization model was thus established based on the assumption that all

autonomous vehicles in the system are fully autonomous without the need of human

drivers.

2.2.1.2 Autonomous vehicle sharing (AVS)

AVs are considered as a solution to the current transportation problems since they are

safer, environment-friendly, and efficient [Litman, 2017]. One of the critical issues related

to AV is maximizing the AVs capacity in current or future transportation systems. Among

different potential choices, sharing models are most discussed [Masoud and Jayakrishnan,

2016].

AV sharing system is expected to become an important part of the future urban

transportation system, which has positive impacts on transport convenience and safety,

environment, and economics [Litman, 2017]. The business models of an AVS system can

be described as follows: The AVS system will provide nearby or point-to-point on-demand

mobility services with a fleet of AVs for passengers [Fagnant and Kockelman, 2014].

Passengers could contact the AVS system via designate methods to request a service,

and the system will dispatch an AV to fulfill this request through a regulated operation

process. Due to the features of driver-less and low cost, AVS system will be increasingly

attractive to passengers and predicted to replace the personal vehicle travel demands

partially [Litman, 2018].
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The findings of the pertinent literature on the impacts of AVS with regards to the urban

transportation system are summarized as follows:

1. Cost Reduction. Encourage shared ownership covering the high cost of purchasing

vehicles to make AVs more affordable. Moreover, the driver-less feature of AVs will

convenient the utilization and rent of AVs whenever they are unused by the owners

[Litman, 2017].

2. Decrease the total number of vehicles needed for passengers. AVs can drive

themselves to locations where travel demands arise. Based on the research of Fagnant

and Kockelman [2013], in sharing system, AVs can provide five times capacity

compared to non-shared vehicles with same fleet size, it will decrease the number of

vehicles required for daily transport tasks.

3. Parking demand reduction. The increased utilization of AVs will generate less idle

time and reduce the space for parking needs. Additionally, self-parking features of

AVS will contribute to move the parking space outside the high-density area, and

create more public areas for other utilization to gain more benefits on land use,

especially for central business districts. The reduction of parking will also decrease

the infrastructure maintenance cost for parking facilities [Zhang et al., 2015].

4. A higher degree of safety. According to the traffic accidents data by world bank

[Peden et al., 2004], most of the accidents are caused by human error. With advanced

control system and automated driving technologies in the AV sharing system, injury

rates and fatal crashes caused by driver distraction would be tremendously reduced

[Gruel and Stanford, 2016].

5. Reduction of environmental impacts. With the decreasing number of vehicles on

roads, emissions and noise would be gradually reduced as well [Litman, 2018].

2.2.2 Autonomous vehicle sharing design

Since the AVS system is expected to be an important transportation mode in future, its

characteristics and attributes must be designed for all kinds of passenger groups and travel

purposes. In the previous studies, two major types of business models of AVS have been

defined: autonomous car sharing and autonomous ride sharing [Zhang et al., 2015], In

accordance with the expected goals of AVS system development aforementioned, various

operation strategies have been proposed based on these two models.
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2.2.2.1 Autonomous car sharing

Autonomous car sharing systems provide on-demand mobility which serves requests

sequentially. Many studies have proposed their autonomous car sharing designs based

on a door-to-door services feature. For instance, Ford [2012] investigated the autonomous

taxi service for passenger delivery. In the system, relocation of AVs to higher demand

area by self-driving are permitted. Spieser et al. [2014] proposed a system by modifying

the traditional one-way based car sharing and transit into an autonomous taxi system.

Meanwhile, Correia and van Arem [2016] proposed a public or private owned autonomous

car sharing model as low-cost taxi system to provide dial-a-ride services to single or

group passengers. By simulating the replacement of private vehicles with shared AVs

in urban transportation, they explore the impacts of AVS system on traffic delays and

parking. Similar research also has been conducted by Bischoff and Maciejewski [2016] who

developed a simulation model to analyze different penetration rate scenarios with various

size of autonomous taxi fleets to replace all private vehicles trips in the city of Berlin. By

providing a real-time dispatching method, the result successfully proved that all private

vehicles could be replaced by much less shared AVs for same demand.

2.2.2.2 Operation strategies of autonomous car sharing

Most of the previous designs assumed that autonomous car sharing would use the

similar interactive pattern between system and customers through the well developed

smart-phone APPs or ICT devices for demand ordering. Therefore, if any customers wish

to use the AVS service, they have to make requests with following steps [Kang et al.,

2016].

Process of utilize the AVS service a) Register in the system b) Make request via

internet or APPs, then wait for AV pickup, c) AV arrive and execute the delivery d) drop

off customer, AV relocate itself to next request. To encourage more passengers to use

the AVS service and maintain the competitive advantages, different operation strategies

need to be developed to satisfy the diverse trip purposes and customer preferences. For

instance, one passenger wishes to use a vehicle for shopping immediately, and another

wants to reserve a trip to the airport the next morning. Therefore, most of the strategies

are separately considered with long term and short term requests, defining a framework

that corresponds to static and dynamic optimization. The majority of studies focus on

the dynamic mode since it is very common for these services to emerge within a short

period of time [Dia and Javanshour, 2017, Hörl, 2017, Viegas et al., 2016]. On the static

optimization problem, Ma et al. [2017] has proposed a reservation based AVS system,
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in which customers can reserve trip requests ahead of time and the system operator

will optimally assign the requests to routes. Moreover, Lamotte et al. [2017] also used

the reservation based strategy for demand management and investigated the potential

benefits with the road capacity allocation measure for shared AVs.

The comparison of two operation strategies are showed in the table 2.1 [Ma et al., 2017,

Levin et al., 2016], where the difference could be find from customer and system activities.

In this thesis, reservation based car sharing system is the main focus and more content

concerning this system will be present afterwards.

Table 2.1: Autonomous car sharing system operation strategy comparison

Operation strategy Customer System
Static(reservation
based)
System operate based
on planning time
demand accepted

1.Customer makes reservation
before the indicated planning
time.
2. then arrives at the
designated location and
waits for the vehicle, when
arrived, boarding.
3. When the vehicle arrives
at its destination, leave
system

1.Accept the requests within
the system planning period.
2. System calculation and
vehicle dispatching. Find best
possible routes and assign
the most appropriate type of
vehicle to implement the task.
3.When all services have
been provided then
relocated itself to terminal
station.

Dynamic (Real time)
System operates based
on real time requests
accepted

1. Customer makes requests
just before they need service.
2. Then arrives at the
designated location and waits
for the vehicle and boarding.
3. Arrives destination and
drop off, customer leave the
system.

1.System accept the service
request.
2.Request dispatching and
routing plan.
3.Service provided and waiting
for next request or relocated
itself to higher demand
area.

2.2.2.3 Autonomous ride sharing

In contrast to autonomous car sharing, autonomous ride sharing allows the acceptance of

requests while in service based with constrained capacity. It is usually designed to serve

dynamic travel demand [Walker and Marchau, 2017, Fagnant and Kockelman, 2014]. From

the perspective of resource utilization, it could promote the utilization ratio of empty

seats in vehicles and lowers the fuel consumption and congestion, at least in comparison

to non-ride sharing mobility [Litman, 2018]. Since the ride sharing service charges are

relatively low, it is believed that average or low-income individuals would be the primary

target population [Litman, 2018].
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An efficient and effortless ride-sharing service could bring the shared AVs to its full

potential [Litman, 2018]. Many studies in the pertinent literature has focused on problems

that might arise during AVs deployment. For instance, Fagnant and Kockelman [2014]

propose a ride sharing utilization of AVs. Customers could share one vehicle by reasonable

scheduling the requested trips. Another dynamic ride sharing based new system called

’Automated taxis (ATs)’ is proposed by Walker and Marchau [2017] for passenger

transport. It provides pickup and drop off service based on the trip origin and destination

while dynamically accepting requests. During the trip, AVs travel on optimal routes

provided by the system’s management center. Moreover, Kornhauser [2013] evaluate a

simulation model of the AVS system named aTaxi system with two dynamic ride sharing

implications for all private trips operating through New Jersey’s network. In their model,

aTaxi will wait for passengers boarding within a fixed amount of time before departing

and provide ride sharing service to customers who have similar destinations. Dedicated

stations are used rather than door-to-door service in the aTaxi system where passengers

have to make a short distance walk to their destinations. Lam et al. [2015] designed

a new AVs public transportation system, which provides ride sharing services with a

fleet of AVs to accommodate requests of passengers. Similarly, Rigole [2014] applied a

dynamic (real time) autonomous ride sharing service model in Stockholm, and proposed

a simulation method to assess the benefits of this AVS system by replacing private vehicle

trips of commuting. In the model, passenger waiting time, trip times and fleet size were

considered as the key performance indicators.

2.2.2.4 Other types of autonomous vehicle sharing system

Besides the two major types of the AVS system, some researchers designed the AVS system

with both autonomous ride sharing and car sharing function. Ford [2012] designed a shared

autonomous Taxi system to operate with both business models according to temporal

traffic demand. During non-peak hours, it operates as an autonomous car sharing system

to provide higher quality service, while, in peak hours, the system switches the model

and operates as a private rapid transit system by promoting ride sharing to fulfill a large

portion of demand.

Apart from the business model difference, more advanced elements have also been

considered in the system design, such as Kang et al. [2016] accounted for the AVs

sharing system with electric vehicles and analyzed the relationships among vehicles,

charging stations (CS), electric powertrain performance, and consumer demand. They

also presented an optimization framework system design which integrated four subsystem

problems as fleet size and scheduling, locations of charging stations, vehicle power, and
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service fees.

2.3 Reservation based autonomous car sharing

(RACS) system

As aforementioned in section 2.2.2.2,reservation based autonomous car sharing system

could be seen as one of the subsystems of autonomous car sharing which applies the

static operation strategy.

This kind of system has been seldom studied until recently. Lamotte et al. [2017]

investigated the scenarios of reservation based AVS system and its impact on congestion.

Ma et al. [2017] proposed a reservation based AVS system, in which customers can reserve

trip requests ahead of time and the system operator optimally routing for each shared

AVs. They have tested the routing model with NewYork taxi data. Moreover, Pimenta

et al. [2017] designed a small autonomous electrical vehicle system which operated as

based on static Dial a Ride business.

Characteristics of the system

Based on RACS characteristics, the corresponding potential features [Ma et al., 2017] can

be assumed as follows:

1. The system is operated by a management and control center.

2. A fleet of AVs in the system provide pickup and drop off services which will be

shared by the customers sequentially based on their requests time in the network.

Different types of vehicles with various capacity or additional functions may provide

in the system.

3. Each AV can only fulfill one request at one time, without any disturbance from

other pick and delivery requests.

4. Each request can take one or more passengers at the same time based on vehicle

seats. If the passenger number exceeds the capacity, either the operator dispatches

another type of vehicle which fits the requirement or customers split into subgroups

and make several requests. The maximum number of passengers for each group will

be regulated according to the different type of vehicles. The system will select the

most appropriate vehicle automatically or plan for customers during the reservation

process.
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5. Customers need to make requests during the system regulated time period and

specify the number of passengers, OD locations and departure time.

6. Concerning the departure time, the operator needs to take the tolerance of pickup

delay into account and form a time window for each request as earliest and latest

pickup time.

7. Operators need to estimate potential travel time on the planed traverse paths of

each request and based on the predicted data to execute routing optimization.

Due to the reservation strategy of RACS system, the service may only fits certain group

of customers with certain travel patterns or preference as the target customers:

• Customers with relatively fixed travel patterns, such as daily home to work trip.

• Customers who wish to enjoy privacy environment.

• Customers who have already arranged trip plans for a relatively long time before

their preferred departure time.

2.4 RACS routing optimization modeling

In accordance with the characteristics mentioned above, RACS provide mobility services

with pairwise location pickup and drop off. Therefore, modeling of this system operation

can be generally described as a routing problem of dispatching shared AVs to requests.

Modeling this problem should efficiently reflect the routing process and its components,

constraints, and objectives.

Notwithstanding, compare to impact analysis, only a few literature refer to this problem.

To name but a few, Levin [2017] has proposed a linear program for optimally dynamic

traffic assignment and congestion awareness routing model, however without taking into

account the time window constraints. Ma et al. [2017] designed a autonomous car sharing

and reservation based system by applying a linear programming approach, and tried to

solve the optimal routing problem with minimum travel cost in a designated planning

horizon, where time window and other constraints are included. Meanwhile, Pimenta

et al. [2017] proposed an integer linear programming formulation which aims to optimize

a Dial a Ride system routing problem which involves small electric vehicles and objective

of the minimum number of loading/unloading.
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2.4.1 Model definition

To effectively reflect the system routing problem within a precise mathematical

formulation in the modeling process, firstly, it is necessary to understand the related

components, objective and constraints which give a clear definition and scale of the

problem from the optimization perspective. Nevertheless, based on the real-life large

demand situation, one of the main issues related to large size optimization problem is

the increase of dimensions when moving towards a large number of requests. This is

known as NP-hardness and related to combinatorial optimization (as the one included

here). Therefore, the routing problem could be separately analyzed with steps by step.

2.4.1.1 Components

Autonomous car sharing routing is a systematic problem which constitutes five major

components:

1. Demand model - Reserved requests matrix including variables of origin and

destination, number of passenger and departure time for each request [Pimenta

et al., 2017].

2. Network model - Road network in which the system provide services of mobility, it

contains nodes and links as a graph [Levin et al., 2016].

3. Vehicles - a fleet of AVs represents the mobiles performing the request tasks.

4. Cost model - travel time or cost of each link or paths the shared car traversed by

[Ma et al., 2017].

5. Routing optimization model - mathematical formulation which present the

optimization processes including the request assignment and vehicle routing to

achieve the system operational objectives.

2.4.1.2 Constraints

1. System capacity -all elements which related to capacity including number of AVs in

the fleet, types of AV, depots (terminals), charging stations etc [Levin, 2017].

2. Business model - Provide autonomous car sharing mobility with pickup and drop-off

service to customers in road network.

3. Operation strategy - reservation based.
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4. Management and control -including vehicle routes plan, vehicle refueling/recharging,

maintenance etc. Among them the vehicle routing is the most important issue which

directly determines the successful operation of the system [Pimenta et al., 2017].

2.4.1.3 Objectives

Optimally routing the vehicles must based on a precise objective or multiple objectives,

which will guide the optimization process to right direction. From different perspective of

problem participants, objectives can be summarized as:

1. System : minimum total travel time of the fleet, total operation cost, maintenance

cost [Ma et al., 2017], max profits etc [Ma et al., 2017].

2. Customer: minimum waiting time, max quality of service etc [Cordeau, 2006].

3. Municipal: minimum congestion time and lowest environment impacts.

During the modelling process, objectives could be separately or combined considered..

2.4.2 Vehicle Routing problem

Vehicle routing is a classic operational research question covering a wide variety of 
problems, which mainly works on logistics of transportation and management fields. The 
basic definition is routing a fleet of vehicles to provide the particular type of transport 
services for requests with passengers or goods [Toth and Vigo, 2002]. Since it represents 
a family of similar problems, the definition varies based on the problem complexity 
and additional constraints [Laporte et al., 2003]. Therefore, to clearly define our RACS 
routing model with the most appropriate type of vehicle routing problem is essential. For 
an extensive review, typical extension introduced to the basic vehicle routing problem 
definition could be seen in Table 2.2 [Correia and van Arem, 2016], and some of the 
extensions could be combined to form a new problem.

From these extended definitions, although there is some difference between the system

component and constraints, RACS system problem still can be described as a capacitated

VRP, formed by pickup and delivery of passengers with time windows, which is most

relevant to the definition of Dial A Ride problem (DARP). After that, the variants and

characteristic of DARP will be further discussed.

Since the RACS routing optimization is under a static condition, it can provide an upper

bound of optimal solutions for different AVS systems, including ride sharing [Ma et al.,
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Table 2.2: Types of Vehicle Routing Problem

Type of VRP Extension (Added Constraints)
Classic VRP A fleet of vehicles transport goods or passengers

with the routes to fulfill its operation optimal
objective.

Capacitated VRP Limited capacity vehicles on goods or passengers
in each trip

VRP with time windows A mandatory or preferred time window for the
pick-up and/or delivery of a good or passenger at
a certain node

VRP with multiple trips Vehicles can perform several trips starting at the
depot.

Open VRP The vehicle does not need to end its trip at the
depot but instead it can park at the last client
node.

Pick-up and delivery problem Vehicles have to transport loads from origins to
destinations

Dial-a-ride Problem (DARP) or
demand responsive transport
(DRT) problem

The pick-up and delivery problem for passengers,
time window, maximum trip time of passenger etc.

The time dependent VRP with
time windows (TDVRPTW)

Travel times varied according to time peroid in the
network and time windows

Dynamic Vehicle Routing Real-time availability of information for generating
a change on the route or schedule of a vehicle

2017]. However, routing optimization severely depends on the data of travel time on

each paths vehicle traversed. Hence, an efficient traffic situation predictive program is

indispensable. Otherwise, the quality of solution would be seriously influenced by the

data which is not precise enough.

2.4.3 Dial A Ride problem

Dial a ride problem (DARP) is defined upon a specific demand of customers in the road

network, for which, each request comprises of a pickup at one location and drop off at

another. The goal is to schedule a fleet of vehicles with the optimal sequence to satisfied

all the requests. Standard DARP usually has one depot where the vehicles start and

end their operation. The objective is to minimize total transportation costs taking into

account the level of service provided to the passengers [Cordeau and Laporte, 2007].
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From the modelling perspective, DARP is a combination of pickup and delivery vehicle

routing problem with time window for passengers. It is different from the other Vehicle

Routing Problems since it takes into account both system performance and customers

satisfaction by minimizing the operation travel time cost and reducing a quantity related

to the inconvenience of the passenger.

2.4.3.1 Objectives and constraints

Most of the DARP studies assume that all vehicles in a fleet are homogeneous, and only

one terminal/depot is used for the whole system [Ho et al., 2018a, Karabuk, 2009, Qu

and Bard, 2013]. However, to reflect the different reality situations in practice, based on

the diverse need of customers, the fleet may be heterogeneous, such as normal and large

capacity vehicle or vans are provided in the system for group customers [Braekers et al.,

2014]. Meanwhile, in large scale networks, one depot may not be enough for the whole

fleet’s number of vehicles (for parking and maintenance). Conflicting objectives are also

present in the literature. For example, some focus on determining the minimum cost of

vehicle routes to fulfill all the demand requests [Luo and Schonfeld, 2007], nevertheless,

in other contexts, the system aims to serve the maximum the requests with a fixed fleet

size capacity with minimum violation of constraints [Cordeau and Laporte, 2007]. Herein,

the cost may composite with fleet cost, travel time/cost and maintenance cost etc. The

violation of constraints related to customers may count as the punishment cost [Cordeau

and Laporte, 2007]. Some of the widely used objectives and constraint are concluded as

following:

Objectives

• System perspective: total travel time of fleet minimum, minimum fleet size, minimum

idle time of the vehicle, the maximum utilization rate of the vehicle.

• Customers perspective: minimum violation of ride time, the minimum waiting time

for pickup.

Most of the dial a ride problems DARPs incorporate several objectives

aforementioned into the objective functions [Paquette et al., 2013, Lehuédé et al.,

2014].

Constraints [Ho et al., 2018a]:

• Round trip: each trip of vehicle departure and terminate at the depot.

• Pairwise: each request has one pair of original and destination nodes, this pair of

nodes need to be on the same route
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• Precedence: the destination node must be visited after the original node for each

request.

• Vehicle capacity: each type of vehicles has a limited capacity of seats.

• Time Window: a pick-up or drop-off time at specified time period must be given by

customers as a time windows.

• Route duration: each route length of time should not exceed a limit settled by the

system which also could see as planning horizon.

• Maximum ride time: customers’ trip time on the vehicle should not exceed a specified

maximum ride time.

2.4.3.2 Taxonomy of DARP

DARP is a set of optimization problems, which can be classified into static and dynamic,

deterministic and stochastic according to the variations of the demand, traffic information

awareness and the number of vehicle [Cordeau and Laporte, 2007].

Static and dynamic:

• Static DARP: The static Dial-a-Ride Problem (SDARP) assumes that all the travel

demand are known ahead of time, routing of the vehicles have already been planned

before the operation begun. Therefore, when it comes to operation, all routes for

vehicle are fixed, it can be performed off-line. SDARP could also be applied to

operation strategy, planning and long-term decision study. Various scenarios of

SDARP model are established and solved based on the history or predicted data.

The solution results can be used as a reference for many applications such as similar

system potential evaluation [Cordeau and Laporte, 2003].

• Dynamic DARP: Contrarily, the Dynamic Dial a Ride Problem (DDARP) with the

demand gradually revealed, and requests appear in real time after the operation

began. The routes plan need to be constantly adjusted based on the dynamic and

stochastic coming requests. Thus, a fast online algorithm is needed to calculate in

short time [Cordeau and Laporte, 2003].

Deterministic and Stochastic:

• Deterministic DARP: information including request and traffic information are

known before operation [Cordeau and Laporte, 2007].
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• Stochastic DARP: uncertain of the information including request and traffic

situation before operation [Cordeau and Laporte, 2007].

Number and Homogeneous/Heterogeneous of vehicle:

• Multiple Homogeneous vehicle DARP: a fleet of vehicles will provide mobility

services, where all vehicles have same capacity [Cordeau and Laporte, 2003].

• Multiple Heterogeneous vehicle DARP: a fleet of vehicles are used in operation,

where vehicles have different types and capacities [Cordeau and Laporte, 2003].

• Single vehicle DARP: only one vehicle is used for operation, usually apply to small

scale problem [Cordeau and Laporte, 2003].

Based on the classification, DARPs further extended as single vehicle static deterministic

DARP, single vehicle dynamic stochastic DARP, multiple Homogeneous/Heterogeneous

vehicle static deterministic DARP, and multiple Homogeneous/Heterogeneous vehicle

dynamic stochastic DARP. In this thesis, our study will focus on operating with more

vehicle and reservation based demand, which assume that all the traffic information are

known in advance, thus it has the same problem setting as the multiple vehicle static

deterministic DARP.

2.4.3.3 Multiple vehicle static deterministic DARP

In the course of modelling this problem, most of the previous studies use typical

assumption of homogeneous vehicles, one depot, and combine with constraints as time

windows of pickup and drop off, ride time, route duration [Parragh et al., 2010, Paquette

et al., 2013, Ritzinger et al., 2016]. The objectives of finding the minimum cost of travel

time are widely used in this kind of setting. To impose all the constraints, some literature

establishes their optimization models with hard constraints where no violation should be

considered [Ritzinger et al., 2016, Chassaing et al., 2016]. Nevertheless, others choose the

soft constraints rule rather than hard and allow the deviations by adding penalize costs,

which show more efficient to find feasible solutions [Cordeau, 2006, Parragh et al., 2010,

Kirchler and Wolfler Calvo, 2013, Jain and Van Hentenryck, 2011]. These settings are

mainly applied on the algorithm creating and improving.

Additionally, from the modelling perspective, some of the relevant studies consider

customers with specific requirements which should served by heterogeneous vehicles [Ilani

et al., 2014]. And others take account of the more complex situation which permits

transfer activity of passengers from one vehicle to another during their trips [Schönberger,
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2017, Blander et al., 2013]. Concerning explore the system maximum potential capacity,

Molenbruch et al. [2017] has applied cooperation framework to composites multiple DARP

service systems and evaluate the benefits. Likewise, managerial elements are considered

by Shen and Quadrifoglio [2013] where centralized and decentralized strategies of DARP

para-transit services are applied in the simulation study of Hoston city, it efficiently reduce

the total relocation travel time of vehicles and increase the trips can be delivered per hour

[Molenbruch et al., 2017]. Simulate the DARP operation and find out that level of service

quality setting has serious impacts on the cost of operation.

2.5 Solution methods

Static DARPs are typically considered as combinatorial optimization problem which is

NP hardness, and its variables are discrete [Parragh et al., 2010]. The model formulation is

based on integer and mixed linear programming with various settings [Stefan Røpke, 2005]

and it takes significant computation time to find a feasible solution [Muelas et al., 2013].

For this reason, various algorithms have been studied and proposed on the problem and

extension problems which evolved from DARPs. The comparison between the performance

of algorithms mainly evaluated upon computation time and quality of results based on

same problem setting.

In real life, thousands of requests in the specified period may need to be served by the

system. Due to the complexity and scale of the problem, the efficient algorithm needs to be

applied and find optimal solutions within a reasonable computation time. Therefore, lots

of previous studies focus on this field and try to create the most prorate algorithm to solve

the corresponding problem, such as branch and cut [Cordeau, 2006], Tabu search [Cordeau

and Laporte, 2003], Genetic algorithm [K. B. Bergvinsdottir, 2004], large neighborhood

search [Jain and Van Hentenryck, 2011], etc.

Herein, some of the most important algorithms are listed below according to the different

scale of problems.

2.5.1 Exact methods

Exact algorithms for static, deterministic DARP are mainly developed based on the

conception of the branch and bound method [Ho et al., 2018a], which can efficiently

provide highest quality solutions with small-scale problems in the planning phase. The
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most important advantage of exact methods is that the solution optimality is guaranteed

[Cordeau, 2006].

Various exact methods could be seen as below:

• Branch and cut algorithm (BC): The algorithm is based on the branch and bound

procedure with planes cuts added to the branch and bound tree during optimization.

The cuts tights Linear Program relaxations and obtain a greater possibility to find

integer solutions and provide stronger bounds for verifying optimality [Cordeau,

2006]. This method has firstly proposed by Cordeau and widely used [Parragh et al.,

2010, Braekers et al., 2014, Liu et al., 2014] in the further studies.

• Branch and price algorithm (BP): The algorithm is based on the branch and

bound procedure with column generation added to the model for Linear Program

relaxations. It requires the problem of reformation and split into a master problem

and a pricing sub problem. In the model, a set of columns are created to reduce

computational dimensions. Due to the reducing feature, it is capable of solving

relatively larger mixed-integer formula. Nonetheless, the main drawback is the

difficulty of the decomposing original problem to sub problem and ensure the

optimality [Veenstra et al., 2017]. This method firstly applied by Garaix et al. [2010],

it solved the pricing sub-problem to optimal routes with resource constraints. Feng

et al. [2014] applied the method and generated columns in constraint model and

efficiently reduce the neighborhood space search for optimal routes.

• Branch-and-price-and-cut algorithms: The algorithm is created by adding plane cuts

to branch and price method for the Linear Program relaxations. The algorithm takes

advantages of both above-mentioned algorithms by decomposing the problem size

with columns generation. It has been used to reduce the paths and solve the sub

problem reformed from original [Qu and Bard, 2013, Gschwind and Irnich, 2015].

2.5.2 Heuristics and meta-heuristics methods

Since the exact methods can only be applied to small-scale DARP, heuristic and

meta-heuristic methods are developed for larger size problems [Toth and Vigo, 2002].

Heuristics refer to methods which could solve the optimization problem faster and

obtain an approximate solution that (in many cases on a theoretical level) approaches

the exact solution [Toth and Vigo, 2002]. This kind of methods can be seen as a

shortcut which aims to enhance the computation speed by sacrificing part of the solution

optimality, completeness, and preciseness in comparison to the exact method [Häme,



CHAPTER 2. LITERATURE REVIEW 25

2013]. Inside of heuristic method, at each branching phase, there is a heuristic function

according to available information, which permutes alternatives in search algorithm and

decides the optimal branch to follow Pearl [1984]. Heuristic methods usually perform a

limited neighborhood space exploration and obtain good quality solutions within modest

computing times [Toth and Vigo, 2002]. Most of the methods could be modified to solve

the real-life problems.

Meta-heuristic is (hierarchically) a higher procedure than the basic heuristics methods,

it intends to escape the locally optimal solutions during the calculation, compare to

heuristics. This is done by enhancing the deeper exploration performance in a larger space

of neighborhood solutions. The meta heuristic methods normally constitute of three main

functions: a) sophisticated neighborhood space search rules, b) memory structure and

c) re-combinations of solutions [Toth and Vigo, 2002]. They can provide higher quality

solutions comparison heuristic methods nonetheless requires more computation time.

Heuristics and Meta-heuristics methods can be classified into many types as follow:

• Construction insertion heuristics: simple insertion heuristics is applied to the basic

DARP in order to find feasible solutions quickly. Normally it is used for construct

the initial solutions in meta-heuristic [Laporte et al., 2014].

• Tabu search: the method is a meta-heuristic method which follows the local search

procedure with the additional principle of avoiding the move return to previously

neighborhood solutions by applying a Tabu list to memory the history of recent

search. Tabu search prevents the situation from falling into a local optimal and

perform more extensive exploration of neighborhood solutions. To the best of the

author’s knowledge, the first use of Tabu search algorithm for the DARP is applied

by Cordeau and Laporte [2003] with several diversification strategies. The result of

the method application is shown to be very effective and efficient. Afterward, many

of the recent studies have used Tabu search algorithm and keep on improving this

method on DARPs [Ho et al., 2018b, Paquette et al., 2013, Kergosien et al., 2008,

Qi et al., 2008, Kirchler and Wolfler Calvo, 2013, Guemri et al., 2016], which mainly

focus on algorithm modification or application with complex real-life DARPs.

• Simulated annealing (SA): is a meta-heuristic method inspired by the physical

annealing process, which follows the stochastic local search procedure. At each

iteration, one neighborhood solution is evaluated. It also has the function of prevents

the situation from falling into a local optimal by accepting non-improving solutions

based on the probability. Only a few studies applied this algorithm to the DARPs

in recent years [Zidi et al., 2011].



CHAPTER 2. LITERATURE REVIEW 26

• Large neighborhood search(LNS): is a method that explores a large neighborhood,

which enhances the probability of finding local optimal solutions with higher quality

in a fast manner. It decomposes the original problem and provides a partial solution,

then rebuild it into a complete solution. Each iteration could be seen as the

procedure to partially destroy the solution by removing some elements, then repair

it by reinserting them. Since this method is relatively effective and fast, many kinds

of literature have applied LNS and adaptive LNS methods on DARPs [Qu and Bard,

2013, Dayarian et al., 2016, Jain and Van Hentenryck, 2011, Ghilas et al., 2016].

• Genetic algorithms (GAs): are meta-heuristics methods subsumed on

population-based approaches. GAs mimic the biological processes of species

and model evolutionary pattern to solve the problem. Algorithms start with an

initial population of solutions and conduct four major steps in each iteration as

selection, crossover(reproduction), mutation and replacement, then return the best

solution. GAs are widely used as clustering method and heuristic search for Dial a

Ride routing problems [K. B. Bergvinsdottir, 2004, Masmoudi et al., 2017].

• Hybrid algorithms: are methods which meta-heuristics algorithms integrated

with other types of meta-heuristics and mathematical programming. Hybrids of

meta-heuristics usually in the form of sequentially run each meta-heuristic algorithm

or combine run meta-heuristics algorithm [Laporte et al., 2014]. Many studies

have proposed methods on combining meta-heuristics to solve complex problems

[Belhaiza, 2017, Masmoudi et al., 2017, Kim, 2011].

2.6 Summary

In this chapter related studies have been reviewed concerning the autonomous vehicle

sharing system from different perspectives, such as system definition, components,

business model, system design, modeling, operation strategy and solution methodologies.

Throughout the vehicle sharing business description and AV definition, it gives a general

picture of the concept and components in basic autonomous sharing system. Afterwards,in

accordance with the expected impacts on future transportation, the design of the vehicle

based autonomous sharing have been clustered into two major types as car sharing and

ride sharing, which adopt with various operation strategies. Among them we detailed

analyzed reservation based autonomous car sharing and clarify the system component,

features, target customers, business model and operation strategy settings, obtain the

concept of this system by reviewing previous studies.
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Since the optimally routing the shared AVs is significant for successful operation. In

order to precisely understand the modelling of vehicle routing process, similar problem

setting model of DARP is introduced. In accordance to the past research, we transferred

our problem into a general vehicle problem and found the fitting sub-type of DARP.

By combining with operation strategy of reservation based demand, multiple vehicle

static deterministic DARP shows its perfect match to the reservation based autonomous

vehicle routing problem. Moreover, many widely used algorithms are reviewed for problem

solution procedure.



Chapter 3

Problem analysis and modeling

This chapter analysis the optimization problem of RACS system and establish the model

which effectively reflects the vehicle routing optimization procedure. Four major sections

are presented in this part. First section describes the RACS system and clearly defined

the optimization problem with the systems setting, operation strategy, objective and tasks.

Furthermore, based on system settings, in the next section, an autonomous vehicle sharing

(AVS) chain concept has been proposed to represent the autonomous vehicle routing

problem, which belong to a combinatorial optimization. Within section 3, features and

modelling methodologies of this type of problem has been introduced. Afterwards, a mixed

integer programming is applied to mathematical formulation of AVS chains model, which

aiming to plan optimal routes according to operation objective and constraints. In the

chapter, some research questions have been answered:

• How to define the autonomous car sharing routing problem?

• How to define a ”AVS Chain” concept?

• What methodologies could be applied to the modelling and what are the decision

variables, objective functions and constraints?

3.1 Optimization problem analysis

The RACS system can be treated as a premier taxi or customized car sharing services.

On the former, AV fleet is owned and managed by a taxi company and usually the system

capacity (fleet size) would be fixed. On the latter, AV fleet may comprised with private

AVs through certain business regulation, which allows the private owned AVs incorporate

28



CHAPTER 3. PROBLEM ANALYSIS AND MODELING 29

into the sharing fleet. The fleet size may be constantly varying since some private AVs

may not always be available, meanwhile some may join the system when they are idle.

Regardless of the ownership, all AVs in same fleet should be managed and operated only

by one designated management center and no competition should happen between AVs in

same fleet. In such systems, since the reserved requests are known in advance with total

awareness of the demand, requests distribution and routes need to be optimally planned

and assigned to the AVs before the operation begin. During the planning, AVs will form a

group of shared trips on the basis of requests to achieve more significant operation benefits.

Particularly, apart from the trip travel, relocation would not be separately considered,

which has already count into the routing processes and represented as the sequential of

links between the former request drop off location to the next request pickup location.

Moreover, there is no need to re-balancing vehicles and heuristically find the next request

in relatively high demand areas.

According to the characteristics of the RACS system, assumptions could be made as

that an autonomous fleet provides services to a small/large amount of customers. Each

customer has made his/her reservation of request with a pair of origin - destination

locations, number of passengers, and a preferred departure time. Each customer is

supposed to have a tolerance of waiting time for pickup. If the tolerance is exceeded,

customers might complain or need compensation by reducing service fee. The operation

objective is to plan all the vehicles routes in the road network before the next planning

time with the minimum travel time and customers inconvenience.

RACS system optimization problem could be defined with a model which compose of

AVS fleet, requests of trips (demand), transport networks, operation strategy and routing

process. The detailed system settings considered in this thesis are summarized:

Demand: Given the scope of this master thesis, the complexity of the modelling and

traffic data to be considerably simplified, assume that all reservation requests and traffic

data in the planning time are know ahead of time [Rigole, 2014].

Network: Road network where system operate to provide mobility services to

passengers/customers.

Vehicles: A fleet of homogeneous AVs.

Operation strategies:

1. A fleet of homogeneous shared AVs transport passengers according to their trip

demands.

2. In RACS system, customer must reserve the future service based on planning
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horizon, such as 24 hours,6 hours, 1 hour or 15 min etc before the trip.

3. Each request may serve one or more people based on the number of accompany

passengers, and each AV has its own capacity (seats) limits of loading. In this

paper, we assume each request only permit a limited accompany passengers during

reservation process, which ensures that the load will not exceed vehicle capacity.

Extra passengers can make other requests.

4. Each service of the request include pickup passengers at original node and drop-off at

destination node. For each pickup node, a number of passengers within one request

are loaded, afterwards, the same number of passengers leave the vehicle at drop off

node.

5. Each reservation request should be specified a preferred departure time by customer.

We assume that customers all have same limited tolerance of waiting for the vehicle

arriving, which denotes as latest departure time. If the AV arriving exceeds the

tolerance, customer will get compensation. Departure time and tolerance could be

denote as earliest pickup time and latest pickup time which form a time window.

6. Autonomous vehicles are permitted to drive itself without any user inside such as

relocation activity;

7. Ride-sharing is not considered in the system.

8. The AVS system has only one depot, all autonomous vehicles are start and end here

after all the assigned service provided.

9. In case any AV arrives earlier before the request pickup time, it can always find a

temporary parking place and wait for passenger coming.

Objectives: Minimum travel cost and inconveniences cost for customers.

3.2 Autonomous vehicle sharing(AVS) chains

In order to take full advantage of a perfect information circumstances setting with known

reservation information, several trips corresponding to requests can be treat as chained to

form a route, which could assigne to AV as a period task package. Under this principle,

all the reserved trips with spatial and temporal distributions of customer requests could

be combined into many linked chains and form the routes according to the optimization

objective [Wang et al., 2014]. This concept is called ’trip chain’, which is also investigated

by Ma et al. [2017] to created optimal routing plan for AVs. For better understanding the
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AV routing process, we further split one vehicle trip chain with traversed paths which can

be represented as links and states according to the concept. Each of the chain composes

of maximum 5 types of links, and also can be expressed as vehicle states in RACS system.

3.2.1 AVS chain definition

5 Links

• Start from depot link: AV is dispatched from the deport to first request.

• Waiting user come link: Represents the condition of waiting user come, it starts

from the vehicle arrival and ends at the time point of pickup.

• Trip link: Represents the trip time length, which is the duration between pickup

(start trip) and drop-off the user(arrive at destination).

• Relocation link: Represents the relocation time length. Vehicle is assigned to one

particular request after dispatching process, relocation start from current location

and end when arrive at the next request pickup location.

• Back to depot: AV back to the deport.

5 States

• Start state: AV moving with request and no user insider, from depot to request

location.

• Waiting for user come state: Stationary of AV with request and no user.

• Relocation state: AV moving with request and no user inside.

• Trip state: AV moving with request and user inside.

• Collection state: AV moving without request and user inside, and back to depot.

The definition of states and links which constitute the trip chains of AVs during the

operation period, with the links transition between each other, it efficiently reflects the

whole routing process of RACS system operation, which is shown in Figure 3.1.

Based on the link transition process, an autonomous vehicle sharing chain concept (AVS

chain) is proposed and expected to apply into the optimization routing planning, the

definition of this concept are shown as following:

1. AVS chain: During certain period of time, a series of trip requests have been

optimally dispatched and sequentially served by an autonomous shared vehicle
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Figure 3.1: Transition process of links

according to the operation objective, the space-temporal trajectory of this AV is

a sharing chain. The trajectory consists of links and nodes of requests with spatial

sequence connections, simultaneously time sequence between requests occurrence

and ending.

2. Multi-AVS chains: During a certain period of time, trip requests have been optimally

dispatched and sequentially served by a fleet of autonomous shared vehicles

according to the operation objective. The space-temporal trajectories could be

represent as multiple AVS chains.

3.2.2 Multi-AVS chains application

As aforementioned, to simplify the problem, we assume that all traffic situation are known

in advance. With the reservation strategy, it could be treated the system operating under a

perfect information circumstances, where gives the privilege to operators to statically plan

the request dispatching and vehicle routing, which could form the optimal AVS chains

as fixed vehicle operation routes according to operation objectives. Therefore, in order

to maximum the potential of RACS system with this advantage, optimally planning the

routes of shared AVs is the most significant task for operation.

It is obviously that AVS chain formation problem is highly related to vehicle routing
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optimization problem, which has extended features of static, capacited, time constraint,

with time window and pickup and delivery. It is similar to a multiple vehicles static dial

a ride problem (MSDARP), which denotes as combinatorial optimization. Therefore, we

propose and establish the AVS chain model based on the methodology of DARP, where a

mixed integer programming could be applied to mathematically formulation procedure.

In order to precisely reflect the optimization problem with mathematics modelling, first

of all, some of the definitions need to be clarified.

Combinatorial optimization and mixed integer programming

As mentioned above, our problem could be expressed as one special type of multi-vehicle

static dial a ride problem. From a modelling perspective, it can be defined as a

combinatorial optimization problem.

Combinatorial optimization problem is the model with discrete variables and integer

values, and the set of solutions comprised with all possible combinations of value of several

discrete variables. Combinatorial optimization problem always consists in identifying the

optimal element of a large finite set, where an optimal scheduling and options selection

are required [Bierlaire, 2015].

Mixed Integer programming (MIP) is an optimization problem in which objective function

and constraints are linear functions of decision variables, and some of the variables

are restricted to take integer values and some are allowed to take non integer values.

Integer variables make optimization non-convex as NP hard problem and difficult to solve.

Memory and solution time rise exponentially with problem size. A mixed-integer linear

programming problem (MIP) usually with the form as

minxcx (3.1)

subject to

Ax ≤ b (3.2)

where

x ∈ Zn ∗ Rp (3.3)

The set S of all x ∈ Zn ∗Rp which satisfy the linear constraints Ax ≤ b S = {x ∈ Zn ∗Rp,

Ax ≤ b} is called feasible set. An element x ∈ S is feasible solution. Objective function

and all constraints are linear, some variables are integers, some variables are continuous

[Bierlaire, 2015].
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3.3 Formulation

Based on the principle of mixed integer programming and combinatorial optimization,

our AVS chain model could be formulated as follow:

Notation of parameters and variables:

N = total number of requests;

P = { 1, ...., n } , set of pickup location nodes of requests;

D = { n+ 1, ...., 2n }, set of drop off location nodes of requests;

G(V,A) - Directed network graph, with V set of nodes and A set of arcs;

V = { P ,D, {0, 2n + 1} }, set of all nodes in the network. 0, 2n + 1 are the start depot

node and terminal depot of the system;

A = arc set, {(i,j) : i = 0, j ∈ P, or i, j ∈ P ∪ D, i 6= j and i 6= n + j, or i ∈ D, j =

2n+ 1|∀i, j ∈ V };
ei- earliest pickup time of ri at node i, which is the preferred departure time of customer;

li - latest pickup time of ri at node i, where is the acceptable tolerance of customers for

waiting;

ri- user request, request ri consist of pickup node i and drop off node n + i, the pair of

nodes (i, n+ i) denoted to one request, i ∈ P, n+ i ∈ D; k- vehicle k, k ≥ 1, k|∀k ∈ K;

K- fleet size of the AVS, K ∈ N ;

TW k
i - costumer waiting time for delay arrival of vehicle k at node i, could be see as

inconvenience cost for customer;

α - coefficient of waiting time(punishment coefficient);

cij - travel time or cost of traverse on the arc of (i, j);

T dumax : maximum route duration for all vehicles;

Bk
i - When vehicle k starts visiting node i (arrival time);

T p- planning period time of AVS system;

Lki - The ride time of request i on vehicle k;

L - The maximum ride time of any request;

xkij - binary variable which indicates the vehicle k traverse the arc (i, j) or not, if traverse

value 1, otherwise 0.

The model is defined based on demand characteristics, travel time (trip time and relocation

time), routing plan, number of depots, time windows.

AVS chain Model additional assumption:

Assumption 1. Generalized transport costs include: AVs trip time and relocation time;
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waiting cost, which represents the penalties for arriving early or late to each trip

destination.

Assumption 2. Planning period time: System only provide single planning period time,

where the system is aiming to fulfill requests within a specific interval of time period.

Consequently, demand and required traffic conditions are assumed to be available ahead of

planning.

Assumption 3. Travel times cij are subject to the time period of the day. In static

planning, travel time matrix between each link are pre-calculated based on historical or

prediction data in the network and we suppose that both direction travel time are same.

For each period of time, given link travel time we can calculate the expected travel time

between OD links and relocation links of requests.

3.3.1 Inputs

In order to allow for a proper representation of the system and to apply the required

optimization process, relevant inputs need to be defined, which include network for the

examination of travel times and trips, demand, vehicles and depot.

3.3.1.1 Transportation network

An essential element of the model is a traffic network of the study area, where time

is defined for a planning period of T p. Aiming at expanding a spatial network to a

temporal-spatial network, we modify it in terms of links combination as one path which

directly represents the path from one request pick up node to drop off node. To simplify

the model, we consider a network with real paths represented by a directed graph

G = (V,A), where V= {v1, v2, ...v2∗n, v0, v2∗n+1} represents the set of all nodes in the

network. {v1, v2, ...vn } is further specified to represent the requests pickup locations P

and { vn+1, vn+2, ...v2∗n} as D that represents the requests drop off locations. {v0, v2∗n+1}
represent the depot. It should be noted that we simplify the model specification by utilizing

only one depot. Essentially, v0 and v2∗n+1 refer to the same location in the network.

Moreover, A is the set of arcs with travel time between all nodes. The arc from i ∈ V to

j ∈ V is denoted by(i, j) ∈ A.
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3.3.1.2 Demand

In the planning period T p, let N denote the number of requests from the customers. Each

of the request has an i and it is split into the pairwise representation, with a pickup

and drop off request (i, N + i), which correspond to a pickup and drop off node (vi,

vn+i) (Section 3.3.1.1). The earliest and latest pickup time of request i (time window) is

attributed to the pick-up node vi as (ei,li). The pick up location and drop off location

could also refer to zones or stations, which represent the origin and destination locations of

similar requests. There are no customer priorities, neither passengers transferred between

vehicles.

3.3.1.3 Vehicles and depot

A homogeneous fleet of K AVs are provided, with k referring to the random vehicle.

Location of depot as well as number of available vehicles are known. Violation of vehicle

capacity is safeguarded by the properties of the reservation system, which limited the

number of passengers for each request.

3.3.2 Variables

Decision variables

Based on the above definitions and assumptions, following decision variables are defined.

xkij - Binary variable:

xkij =

{
0 V ehicle k not traverse through the arc of (i, j)

1 V ehicle k traverse through the arc of (i, j)
(3.4)

Fractional variables

Bk
i - When vehicle k starts visiting node i(arrival time).

TW k
i - Waiting time of each request

3.3.3 Objective function

Finding a set of AVS chains which are represent as routes of vehicles start and end at

the depot with minimize the total travel cost including the trip link, relocation link and
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violation value as customer waiting time TW k
i .

Min (
∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij +

∑
k∈K

∑
i∈V

TW k
i ) (3.5)

3.3.4 Constraints

Precedence Constraints

1. Every request is served exactly once:∑
k∈K

∑
j∈V

xkij = 1,∀i ∈ P (3.6)

2. Same vehicle serves a pair of pickup and drop-off nodes:∑
j∈V

xkij −
∑
j∈V

xkn+i,j = 0,∀i ∈ P, k ∈ K (3.7)

3. Every vehicle leaves the source node:∑
j∈V

xk0j = 1, ∀k ∈ K (3.8)

4. Same vehicle enters a node and leaves the node:∑
j∈V

xkji −
∑
j∈V

xkij = 0,∀i ∈ P ∪D, k ∈ K (3.9)

5. When the end of each chain/route, the vehicle go back to depot:∑
j∈V

xki,2n+1 = 1,∀k ∈ K (3.10)

Requirement / Order Specific Constraints

1. Setting and checking the visit time for Time Window:

Bk
j ≥ (Bk

i + cij)x
k
ij , ∀i ∈ V, j ∈ V, k ∈ K (3.11)
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ei ≤ Bk
i ≤ li,∀i ∈ V, k ∈ K (3.12)

2. Set and check the ride time:

Lki = Bk
n+i −Bk

i , ∀i ∈ P, k ∈ K (3.13)

Lki ≤ L , ∀i ∈ V, k ∈ K (3.14)

Since we do not have a mandatory requirement to the ride time of each request,

here we could set the L equals to T p

3. Binary variables:

xkij ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ K (3.15)

4. Waiting time of customer

TW k
i = Bk

i − li (3.16)

Equation 3.5 presents the objective function of minimum total travel time cost of all

routes and customer waiting time. According to the precedence constraints, Equation 3.6,

3.7 ensures that for each request i, both the pick-up and the drop-off nodes (vi, vn+i)

belongs to same route and only can be served once with the same autonomous vehicle k

. Meanwhile, constraints 3.8 and 3.10 indicates that each autonomous vehicle starts and

ends its route/operation at the depot. The constraint 3.9 denotes that each of the vehicle

which enters a node leaves it as spatial sequence. Moreover, the requirement constraints

3.11 and 3.12 guarantee that for every request i, pickup node vi is visited before drop off

node vn+i, and each service of the request i at node vi needs to start its pickup activity in

the interval of time window [ei, li]. Constraints 3.13 and 3.14 indicate that each ride/trip

time of the request is the difference between the pickup time and drop off time, and it

should not exceed the maximum ride duration.

Moreover, constraints 3.11 and 3.12 determine that the time window would be violated

if Bk
i ≥ li, and the violation value denotes as waiting time of customers. If the vehicle

arrive at the request pickup node vi earlier than the earliest pickup time ei, autonomous

vehicle need to temporarily parking and wait for the customer coming. Equation 3.16 is

the waiting time of customer for delayed pickup which violate the time window.

It should be noted that in this model, we consider a soft time window constraint which

allow the violation, it permits the waiting time of customer for vehicle to come after

the latest pickup time. When the waiting time of a customer is increasing and can not

be eliminated during the optimization process, this situation could be seem as system
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capacity insufficient, where the current number of vehicles could not fulfill all the requests,

and operator should consider increase the fleet size. Nevertheless, in reality, companies

will not constantly increase their system capacity based on increasing of demand, so we

assume that RACS system applies a potential service level standards which indicates that

the average request waiting time should be limited within certain range as Level of service

(LOS), such as 5-10 min. If the violation exceeding the limit, operator must add vehicles

to enhance the service quality. Therefore, a average waiting time is proposed, which could

be represent as

ATW = (
∑
k∈K

∑
i∈V

TW k
i /N) ≤ LOS,∀i ∈ V, k ∈ K (3.17)

where ATW is average waiting time, N is the total number of requests, and LOS

represents the level of service, which unit is minute.

This evaluation will be applied at the end of optimization process where the output waiting

time results will be divided by total number of requests. It will be assessed with LOS

value. If exceeding, vehicle added, the optimization process and calculation repeats until

fulfill the standard.



Chapter 4

Solution methodology

Our problems are combinatorial optimization and do not allow high dimensions calculation

since the computation cost will increasing exponentially with the dimension expanding, and

feasible solutions may not be able to obtained. Therefore, decomposing the initial problem

size into multiple smaller sub problems is an option for solution, so the clustering and

meta-heuristics methods could be combined and applied into the solution procedure.

In this chapter, we explore solution methods by proposing meta-heuristic Tabu search

in combination with clustering methods of K-Means and K-Medoids algorithms into

the RACS routing optimization model solution procedure. First of all, we explained the

meta-heuristic method advantages and applicability with the combinatorial problem as

our model. Then detailed discuss the Tabu search function and application with its

features including neighborhood structure, initial solution construct, Tabu search iteration,

neighborhood evaluation and reduction, and insertion technical. Afterwards, following the

K-Means and K-Medoids methods application steps in the solution process. In the chapter

following research questions is addressed

How to solve the model with appropriate algorithms with different scale of demand

problems?

4.1 Meta-heuristic method

Heuristic and Meta-heuristic methods have been widely used in the NP-hard combinatorial

problems similar to RACS optimization problem. In contrast to the exist exact algorithms

which only can solve small scale problems, meta-heuristic algorithm could obtain solutions

for increasingly large and complex problems. Meta-heuristic method is a higher level

40
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procedure than the heuristic method, which aims to escape the local optimal solutions

that in many cases occurs during the calculation. As with heuristics, meta-heuristic has

the advantages of decreased computation time than exact methods, nevertheless, the

drawback is that there will be no guarantee to obtain the optimal solution. In this thesis,

in order to find feasible solutions for real life problem within reasonable computation time,

we applied meta-heuristic method of Tabu search combined with K-Means and K-Medoids

clustering algorithms into the different size of real life problems.

4.1.1 Tabu search

Tabu search use local search or neighborhood search iteratively proceeding from one

feasible solution to another improved one until the max iteration reached. Each solution

has various neighborhood solutions, the search procedure of Tabu is called move, which

represents from potential solution x to its neighborhood solution x′. Tabu search allow the

moves deteriorate current objective function value in order to escape the local optimal and

avoid the pitfalls of local search stuck in poor-scoring areas. During the search progress,

larger space and new neighborhood will be explored, where memory structure as tabu

list will be applied to guide purposes and determine the new neighborhood solutions.

Usually, memory structure is a set of rules used for filter the feasibility solutions during

the exploration, which works as record the attribute move from one solution to another

[Glover, 1989].

Principle of Tabu search:

1. Begin with random solutions.

2. During iterations, the move construct and destruct solution where new solution will

be generated.

3. Perform intensification which is based on objective function and exploration phases.

4. Perform diversification, objective function value can be deteriorate.

5. Modify solutions in new area which has been explored.

As aforementioned in section 2.5.2, Tabu search is a meta-heuristic algorithm which can

be applied into combinatorial optimization problems solution procedure, such as traveling

sales man problem [Toth and Vigo, 2002] as well as the pickup and drop off problem with

time window.

Tabu search intends to progressively explore the neighborhood framework from the
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initial solution. In order to escape the local optimal, during the procedure some similar

attributes of recently visited solutions are declared forbidden, or put in tabu list for

some iterations which is regulated by the operator. During processing, a continuous

diversification procedure is running to reduce the probability of falling into local optimal.

It can be treated as a guided local search method which is efficient in exploring the search

space to find a global optimal solution for combinatorial optimization problem [Ho et al.,

2018b].

4.1.2 Tabu search in RACS routing problem

The use of Tabu search in the RACS problem requires the specification of some

mechanisms and structures. The subsections bellow provide a detailed description of the

the various components that are required to be defined in order to make Tabu search for

RACS applicable, which is based on the methodology of Cordeau and Laporte [2007].

4.1.2.1 Relaxation mechanism

Before the Tabu search, a relaxation proecss will be proposed for the objective function

which allow the violation of the time window constraints and obtain the probability to

explore infeasible solutions in the search process. The solution process goes as follows:

first generate the solutions S in which each s ∈ S is a set of k routes, it is intent to satisfy

the constraints of 3.6, 3.7, 3.8 3.9 and 3.10 that represent each route start and end the

service at depot, each request only served once with same vehicle, pairwise pickup and

drop off nodes are visited sequentially. The solution of s may have violation of the time

window constraints associated with the requests.

In the objective function
∑

k∈K
∑

i∈V
∑

j∈V cijx
k
ij denote to be the total travel time/cost

of all vehicle routes, and
∑

k∈K
∑

i∈V TW
k
i is the total waiting time for customers which

denotes violation of the time window constraints at each node. Solutions are evaluated by

applying the relaxed objective function

f(x) =
∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij + α ∗

∑
k∈K

∑
i∈V

TW k
i (4.1)

where adding α to multiply with violation time, which is a self adjustment parameter

behaving as a punishment coefficient. During the search process, the value of α will be

dynamically adjusted, following a proportional increase to the violation magnitude. This
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penalty allow the enlargment of the solution space exploration and provides a simple

modifications through intermediate infeasible solutions [Cordeau and Laporte, 2007].

4.1.2.2 Neighborhood structure

In the search process, we defined attributes as U(s) = (i, k), i represent the request and

k represents the vehicle ID or route ID, which is aiming to characterize the solutions

s ∈ S. Neighborhood solutions N(s) of s is composite with all solutions which can be

obtained from s by applying simple modification. The procedure is removing an attribute

(i, k) and replacing it with another one (i, k′), k is not equal to k′, it means that remove

the request i from route k to route k′. Correspondingly, the pairwise pickup and drop off

nodes (vi, vn+i) are deleted from k and they are moved to another route k′. By inserting

the (vi, vn+i), route k′ then is performed to minimize the total value increase in objective

function by simple insertions.

Attributes are applied to control the Tabu search and deliver a diversification strategy in

the Tabu search process. After the removal, this activity of attribute (i, k) will be in the

Tabu list and the reinsertion in that route will be forbidden for next few iterations. When

the tabu iterations has passed or when it could lead the search to get a smaller value of

the objective function than the previous best, the attribute will be removed from the list

and revoked.

4.1.2.3 Initial solution construction

The first step of the Tabu search is to create a initial solution s0, which is composed with

each request i assigned to a randomly vehicle. This process including the insertation of

each pair of pick up and drop off nodes, sequentially into each route corresponding to

a vehicle. During the insertion, constraints of 3.6, 3.7, 3.8, 3.9 and 3.10 are guaranteed,

nevertheless, other constraints may have violations.

4.1.2.4 Tabu search iteration

During iteration calculation, the algorithm will start from the initial solution s0 and

proceed selecting the best solution, which is not in Tabu list, according to the relaxed

objective function which is presented in section 4.1.2.1. At each iteration t, α value will

be adjusted by a factor of 1 + σ. If the current solution is feasible with the time window

constraint, the value of α will be divided by 1 + σ, σ ∈ [0, 1]. In contrast, if it is a
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non-feasible solution, value of α will be multiplied by 1 + σ, σ ∈ [0, 1]. The process will

be repeatedly run and the best solution that has been found during its search will be

denoted as the final solution.

4.1.2.5 Evaluation of neighborhood

The purpose of neighborhood evaluation is to reduce the violation of constraints and assess

the feasibility of solution. Based on the insertion technical, the attribute of (i, k) removed

from the route k and inserted to route k′ will have certain impact to the feasibility of time

window for all requests in those two routes. A substantial recalculation process needs

to be executed to evaluate the impact of value changes to the objective function. For

instance, within a complete route k= {v0, ...., vi, ....vt}, v0, vt denotes the depot, in order

to calculate the time window violation, the arrival time of Ai and departure time of Bi at

request node i are necessary. Thus, the value of both indicators will be changed and need

to be updated to recompute the violation value. The impact of removing the request from

route k and insert to specified position of route k′ can be evaluated by following processes

to each routes involved in the insertion and remove exchanges.

1. Set D0 = e0, D0 is the departure time from depot.

2. Calculate the Arrival time Ai, service start time of Bi, for each request node i in

the route.

3. Calculate the violation value of time window as waiting time.

4. Update the changes in violation of constraints.

It is necessary to notice that with the process execution, although the procedure yields

to optimally arrange the departure and arrival time for the objective of minimizing the

time window violation, it is still require to consider the value of the coefficient α to find

an optimal solution for evaluation (see in section 4.1.2.1).

4.1.2.6 Reduction of neighborhood

For each pair of pickup and drop off nodes (vi, vn+i) for request i, if the pickup time satisfies

the condition of ei 6= 0, or li 6= T p, where node of vi denotes a critical node (section 4.1.2.7)

which has a time window constraint. In order to reduce the size of neighborhood solutions,

we consider each iteration of Tabu search follow the rule of evaluation insertion process.

1. First determine the best insertion position for critical node
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2. Then with the pairwise principle, determine the other corresponding node in its best

position.

This will dramatically reduce the exchanges for request i form O(m2) to O(m), in which

m is the number of node in route k. Each of the exchanges only involves two routes, other

routes cost are not changed during the insertion and deletion cost process.

4.1.2.7 Insertion technique

The computation time of the problem is strongly effected by the size of neighborhood

solutions which are determined by the insertion technical. In the thesis, two step insertion

and reduction of neighborhood technique is adopted in the optimization process due to the

nature of solution transition, which could be seen in Figure 4.1. The algorithm is moving

the pairwise pickup and drop off nodes to another route. In the request, we denote the

pickup node as the critical node with a tight time window. Firstly, insert the critical

(pickup) node in the best position and get a objective function of least value, then hold

the position and insert the non critical node (drop off) to its corresponding position.

This technical could reduce the neighborhood size from O(m2) to O(m) and shorter the

computation time.

4.2 Clustering method

Tabu search algorithm is considered to be efficient in finding the solutions for relatively

small scale problem [Toth and Vigo, 2002], nevertheless, since the model is an NP hard,

when it applies to large scale problems, the computation time could be dramatically raised

with the calculation dimensions. Clustering is a method to decomposing the original

problem into several subsets. With the large size problem, clustering method has the

advantages of reducing the calculation time.

Operating companies of RACS system may need to plan the routes with large amount

of requests in a short period of time, raising the necessity to speedup the calculation

process. Therefore, with the application of clustering methods the decomposition of the

large size into many smaller subproblems and implement the parallel calculation to reduce

computation time become possible. It is an alternative to enhance the operation efficiency.
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Figure 4.1: Insertion technique

4.2.1 K-Means clustering

K-Means method is a partitional clustering approach for decomposing the problem into

independent subsets, which follows the principle of finding clusters of data based on their

similarity. It is an unsupervised learning algorithm which have no predictable outcome

and only intents to find patterns within the dataset. In the clustering procedure, preferred

number of clusters should be specify in the algorithm before execute [Lucasius et al.,

1993]. Each observation (data points) will randomly assign to a cluster, and find a set of

centroids for each group of observations. Afterwards, iterates will be done for optimization

the clusters with following steps:

1. Reassign data points to the cluster whose centroid is closest.

2. Compute and select new centroid for each cluster.

3. The variation of cluster is calculated with euclidean distance or other metric methods

between each data points and their corresponding centroids.

4. Repeated the first two steps until the variation in cluster are not decreasing any

more.
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Based on the algorithm principle, K-Means is applied in our model to decompose the

request demands.

We have clustered the demand according to each request initial departure time and form a

pairwise feature as a request node with earliest pickup time and drop off time [ei, ei+ci,i+n],

where we assigned Pti = ei, Dti = ei + ci,i+n (ci,i+n is the travel time). Therefore, each

request could be represented as a node Ri(Pti, Dti). In dataset, it is a n*2 matrix of all

request nodes. In order to define the clustering methods, let X=x1, x2, ....xn be the total

observations with n elements, k is the number of clusters, λ is the set of centroids and

S=S1, S2, ....Sk is the total observations n partition into k groups.

With the definition of the request matrix, K-means algorithm could be implemented by

importing the dataset and setting the number of clusters k based on the subproblem size

need. During the calculation process, we applied the city-block metric, and the formulation

of objective function is D(x, λ) = argminX
∑

x∈Si |xi − λi|. The function represents the

minimum absolute differences sum between points and its cluster centroid, where each

centroid is the component’s median of the points in that cluster. The goal is to minimize

sum in cluster with the nearest mean.

4.2.2 K-Medoids clustering

Similar to K-Means, the K-Medoids algorithm is also a clustering method, created based

on K-Means and the medoid shift algorithm. It is a partitioning approach which splits the

initial dataset into k clusters and aims to minimize the distance between the data points

and the point designated as the center of same cluster group, where points are predefined

in the problem.

K-Medoids algorithm selects the centers/medoids based on data points and defines the

distances between the points by applying a distance metric, such as Manhattan Norm,

Euclidean, Seuclidean, Cityblock etc. It should be mentioned that the cluster group setting

k are known in prior to the algorithm running.

Compare to K-Means method, the K-Medoids is more robust to the noise and outliers,

since it could minimize a pairwise dissimilarities distance rather than squared distances

[Muelas et al., 2015].
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4.2.2.1 K-Medoids formulation

In oder to decompose the initial large size of requests data, K-Medoids clustering method

is proposed to be incorporated in the discussed optimization model (Section 3.3) to create

k groups of the requests. Each group contains similar sets of elements. The principle of

this method is to ensure that closer elements are assigned to the same group and improve

the final results, where the elements are requests. In short, given a set of observations

X=x1, x2, ....xn with n elements, K-medoids method will split the X into k sets (k ≤ n).

S = S1, S2, ...Sk by applying the partitioning around neighbors algorithm (PAM) under

K-medoids framework with defined distance measure. Let X=x1, x2, ....xn be the total

observations with n elements, β be the set of the medoids, Iβ be the set of indices of the

medoids elements in X, Iβ ∈ X. IX−β be the indices of elements which are non-medoids

in X, IX−β ∈ X. IX be the set of indices of all elements, where IX = Iβ + IX−β. Also let

uij be the binary variable which indicates the distance is minimum or not. d(xi, xj) is the

distance between element xi and xj. βij is the neighborhoods of β, where xj, j ∈ IX−β
replace xi, i ∈ IX .

If exists two set of medoids β and β′, both of them consist k elements, and share with

k−1 elements, β and β′ can be seen as neighbors. Set of medoids β with k elements could

have number of k ∗ (n− k) neighbors. and βij represents the neighbor of β if xj, j ∈ IX−β
replace xi, i ∈ IX . The difference between neighbor solutions can be formulated as ∇Fij =

F (βij, Uij)− F (β, U)

Variable: uij - Binary variable :

uij =

{
1 if the distance of d(xi, xj) = minq∈Iβd(xi, xq), i = 1, 2, ....n

0 otherwise
(4.2)

The objective of the model is aiming to provide a quality clustering groups with a given

set of medoids β, which could best represents the data set of X, the objective F (β, U)

should be minimum.

F (β, U) =
∑

i∈IX−β

∑
j∈Iβ

uijd(xi, xj) (4.3)
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4.2.2.2 Partitioning around medoids algorithm

A solution method for the K-Medoids clusterring is the Partitioning Around Medoids

(PAM) algorithm. It usually utilizes heuristic greedy search to find the optimal solution

with fast calculation speed. The PAM algorithm process is presented as bellow:

1. Building, selection of initial medoids: from the initial dataset n, select k points as

the medoids.

2. Assign every non-medoids data point to the closest medoid.

3. Calculate the objective function of total sum of distances, and evaluate the total

distances decrease or not.

4. If decreasing:

• for each medoid and each non-medoid data point, swapping medoid and

non-medoid point, and recalculate the sum distances of points to their medoid.

5. if increasing in previous step:

• stop the swapping.

PAM algorithm consists of two steps as a building and a swapping procedure, which are

based on different incremental stepping heuristics. During the PAM algorithm, it start

with a set β with randomly selected k medoids, among the neighbors k ∗ (n− k) to find

optimization solutions, the whole procedure can be present as follow:

1. For all neighbors βij, i ∈ Iβ, j ∈ IX−β of set the β, select βqr, q ∈ Iβ, r ∈ IX−β.

2. Calculate the ∇Fqr = F (βqr, Uqr)−F (β, U) and get the result of ∇Fqr with ∇Fqr =

minij∇Fij .

3. If ∇Fqr ≥ 0, the calculation has reached a local optimal minimum and stops. and

if ∇Fqr < 0, the set of β will be replaced by βqr then the same calculation process

repeats.

4. When the algorithm reached max iterations, each non-medoids element x ∈ X − β
will be assigned to clustering groups which are represented by the medoids.

4.2.2.3 Distance metric method

Since the PAM calculation is based on the distance metric between the elements, its

selection is an important process for successfully deliver this model. In our problem,
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distance between elements is seen as the pairwise dissimilarity, which is a distance matrix

created for each unique pair of requests. Due to the computation time, it is efficient

to perform the calculation in parallel. The matrix of request distance could be directly

applied to the K-Medoids algorithm in the central node (can be the first node) to obtain

the clustering groups. Then send to other computing nodes. Afterwards, each of the

computation node will construct its own m/k routes solutions, m represent vehicles and

k represents the number of clustering groups (computation nodes).

The distance between the requests needs to be appropriately measured since each request

is structured according to the pair of pickup and drop off locations. So as to measure the

distance between them, a proper metric should consider both locations. In this thesis we

defined our metric based on method of presented by Muelas et al. [2015], which consider

of four possible positions of requests and calculate the shortest route for traversing all

requests. This method fulfill the requirement of metric conditions such as triangular

inequality [Muelas et al., 2015]. The position relationship between two requests Ri(i, i+n)

and Rj(j, j + n) are describe in figure 4.2.

Figure 4.2: Request position relationship

Simultaneously, the minimum distance formulation between pair of requests could be

defined as equation 4.4. Let Ri describe request ID i with pair of pick up node i, and drop

off node i+ n. Rj is the request ID j with pair of pick up node j and drop off node j + n,
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and D(Ri, Rj) is distance between two requests of Ri, Rj.

D(Ri, Rj) = min(D(i, j) +D(j, i+ n) +D(i+ n, j + n),

D(i, j) +D(j, j + n) +D(j + n, i+ n),

D(j, i) +D(i, i+ n) +D(i+ n, j + n),

D(j, i) +D(i, j + n) +D(j + n, i+ n))

(4.4)



Chapter 5

Solution algorithms

This chapter presents the processes of implementing the three algorithms into a model

solution procedure, and explains the function of each algorithm step by step. In this chapter

the following research questions are addressed

How are the algorithms applied in the solution process?

5.1 Tabu algorithm

For the solution procedure three algorithms are applied including Tabu, K-Means Tabu

and K-Medoids Tabu methods. The flowchart of algorithm application could be seen in

Figure 5.1. The next subsections present practical considerations when developing the

components for the application.

5.1.1 Objectives and constraints

The RACS model consists of m vehicle routes with corresponding requests on network

G. By assigning shared autonomous vehicle trips to the network, the output of a set of

AVS chains is obtained as well as requests sequences with minimum total cost of travel

time and customer waiting time. The optimization process needs to fulfill the following

constraints:

1. Every route starts and ends at the depot.

2. For every request i, node vi and vi + n belong to the same route and node vi + n is

visited after vi.

52
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Figure 5.1: Flowchart of algorithm

3. The service at vertex vi begins in the interval [ei, li], and every vehicle leaves the

depot and returns to the depot.

4. The ride time of any user does not exceed L,in our problem we set L = T p.

5.1.2 Input dataset structure

A dataset, which consists of network coordinates, requests and distances, needs to be

imported in the derived procedure.

Structure of Request data

Original requests dataset is a n*4 matrix, which contains pickup node, drop off node,

earliest pickup and latest pickup time.



CHAPTER 5. SOLUTION ALGORITHMS 54

(pickup node— drop off node — earliest pickup time —latest pickup time)

In order to simplify data structure for programming, herein the original request matrix is

modified and convert to a 2n*3 matrix, which split the pairwise pickup and drop off nodes

of one request into two requests where each request contains one node. The structure of

new matrix formed as ID 1 to n, which represent all pickup nodes. Correspondingly, ID

n + 1 to 2n represent all the drop off nodes. Request i and request n + i belongs to one

pair.

Structure of cost matrix

Cost matrix contains the distance matrix between pairwise nodes, here we define the

distance as travel time. Based on the assumption that the system operates under perfect

information circumstances, all travel times are known in advance.

Structure of coordinates:

The coordinates dataset contains pairwise coordinates represents the nodes in network

G(V,A). (X-coordinate —Y-coordinate)

5.1.3 Algorithm application

Main algorithm:

STEP 1. Input Network G(V,A), matrix Requests, Vehicle k, Cost matrix Distances .

STEP 2. Setting parameters α, σ, tabuMax, max iterations and max duration of routes-

planning horizon.

STEP 3. Construct Initialization Solution S0 with randomly assign all the requests to

vehicles.

• Set the depot location and start all routes from the depot.

• Sequentially assign the pick up node, earliest and latest pickup time (er,lr) of each

request r to random vehicle.

• All routes end at depot.

• Generate initial route Routes and request matrix requestMat.

STEP 4. Find each request pickup time and customer waiting time.

• Use findT ime function, calculate each request pickup time, vehicle idle time based

on Routes and requestMat;

• Calculate the travel cost of all routes;
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• Calculate the total customer waiting time newWaits by applying waitCalculator

function.

STEP 5. Save all initial value and routes as holdRoutes, initialRoutes, Objective, pickuptime

STEP 6. Tabu search iteration. When the iteration is not reach maximum, repeat all

procedure from step 7 to step 17.

STEP 7. Search each car route with pairwise setting since each customer has origin and

destination locations;

STEP 8. Establish the tabu check with the tabu list when algorithm pass 300 iterations,

check each vehicle in tabu list, if the request are in the same spot of the list, tabu

become ture, end the section. Otherwise false, assign i as location prior, j1 as candidate

pickup route location, h1 as candidate pickup request ID, j2 as candidate drop off route

location, h2 as candidate pickup request ID, and k location after the current request.

STEP 9. For each other car (don’t search the same car) and save the candidate pair.

Check the previous destination and the current origin spot where can insert a new route

pair;

STEP 10. Calculate the assumption insertion move, the distance savings difference as

newSavings and tmpSavings. Create dummy routes to compare the potential moves;

STEP 11. Calculate the costs of the move by measuring the cost of the original against

the potential move by applying the Moves,findT ime and waitCalculator functions, find

pickupTemp,wait, waitDiff and newWaits;

STEP 12. Evaluate the cost bestSavings with the move by

tmpSavings, newSavings, waitDiff, α and newWaits, if costs are less with the

move, make the move, and recalculate the pickup times.

STEP 13. Establish the tabu list with the principle of 1) if 25 iterations have passed,

begin to add Tabu list, 2) after tabuMax iterations, candidates leave the tabu list.

STEP 14. Find the objective of new solution, calculate the localObjective with the

objective function of localObjective = α ∗ newWaits+ cost.

STEP 15. Check if the newWaits of violation value of constraints, if it is 0, modify the

punishment coefficient α = α/(σ + 1), otherwise, α = α ∗ (σ + 1).

STEP 16. Check the best objective value, if the objective value is larger than

localObjective, update the Route and requestMat and assign the objective with

localObjective value.

STEP 17. Increment the iteration count and repeat the tabu search procedure.

STEP 18. Calculate the objective and sumDist, display objectives, newWaits and α,

then plot routes.

STEP 19. Output objective value, cost value, newWaits value, α, Routes matrix,

requestMat matrix, figure of routes.
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Function of Move

Variables: Routes, r1∗, r2∗, p1∗, p2∗, j1∗, j2∗

Make the move:

STEP 1. Remove customer j∗ from route r1.

STEP 2. Add customer j∗ to position p2∗ in route r2.

STEP 3. Shift the end of the route by 1 position.

STEP 4. Insert j∗ into position p2∗

Function findT ime

Variables: pickupT ime, idle, distances, Routes, requestMat, V, r

Calculate the pickuptime of each request:

STEP 1. Set initial pickupT ime of request r as 0, idle of request r with 0, here r is the

ID of request.

STEP 2. Start calculation from the second node of each route (first node is depot), with

the interval of 2 ,until the second to last node (last node is depot).

STEP 3. Calculate pickupT ime by idle, pickupT ime and distances between sequential

order of pairwise nodes which vehicle traverse the route with each request, including

links of trip, relocation and idle waiting for customer.

Function waitCalculator

Variables: car,Routes, distance, requestMat, V, pickupT ime

Calculate the waitDiff:

STEP 1. Set waitDiff value 0.

STEP 2. Find the deviation between actual pickupTime and latest pickup time of

request.

STEP 3. Accumulated assign the value to waitDiff .

5.2 K-Means - Tabu search

K-Means with tabu search is proposed to split the initial problem size into smaller

subproblems and reduce the computation time with multi-threading parallel calculation.

The detailed process is described below:
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STEP 1. Reform the dataset of original request matrix into a Ri(Pti, Dti) attributes

matrix X which represents the requests as temporal feature data points.

STEP 2. Input the dataset of X K-Means instructions, apply an iterative refinement

technique and assign each x to the cluster whose mean has the least city block distance,

and intuitively get the nearest mean.

STEP 3. Multi-threading parallel calculation of the absolute differences sum and each

centroid is the component-wise median of the points in that cluster and aims to minimize

sum in cluster with the nearest mean according to objective function of D(x, λ) =

argminX
∑

x∈Si |xi − λi|.
STEP 4. Calculate the new means to be the set of centroids k, and assign the observations

in the new clusters.

STEP 5. Repeat step 3, 4 and get the optimal solution of k cluster groups with

corresponding centroids.

STEP 6. Assign the k groups requests clustering results to each corresponding computing

node.

STEP 7. Each computing node execute the Tabu search algorithm independently with

the corresponding assigned requests group.

STEP 8. Recieve the routes from all computing nodes, join all the routes to obtain a

final solution.

5.3 K-Medoids - Tabu search

K-Medoids algorithm with tabu search is also applied to decompose the problem size and

increase the calculation efficiency by utilizing parallel computing methods. The detailed

process is described below:

STEP 1. Input dataset of original request matrix and distance matrix of travel time

between nodes.

STEP 2. Parallel compute the distance matrix according to the pairwise requests distance

objective function D(Ri, Rj) mentioned before.

STEP 3. Apply the distance matrix requestdistanceMat to K-Medoids algorithm

package in R, get the result of k request groups and a set of medoids (Centers).

STEP 4. Assign the k request groups results to each corresponding computing node.

STEP 5. Each computing node execute the Tabu search algorithm independently

with the corresponding assigned requests group (same procedure as Tabu algorithm

aforementioned).
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STEP 6. Receive the routes from all computing nodes, join together and obtain the final

solution.



Chapter 6

Computational experiments

This chapter consists of four major sections. First section start with the introduction

of the experiment goals, applied algorithms, computation environments and the cases of

RACS routing problems to be studied. Section 2 utilize a preliminary test to prove the

effectiveness of the algorithms. In section 3 empirical study, execute the algorithms with

one case of each small scale and large scale problems. For each problem 3 tests has been

implemented, with all the results, stability of each algorithm is evaluated. Then analysis

the optimization results and compare the performance of algorithms according to solution

quality and computation time. Last section shows the discussion based on the analysis of

results. In the chapter following research questions are addressed

What are the performance and case study results of the algorithms?

6.1 Experiments setting

In order to efficiently find the optimal feasible solutions for the optimization problem

of RACS routing, we proposed three algorithms into the solution procedure and try to

prove their feasibility and optimization effectiveness with real life case studies. Since our

problem is new, there are no benchmark instances could be compare to. Therefore, in order

to illustrate the efficiency of each algorithm, we apply them to all cases with diverse size

of demand and then, by comparing the performance of algorithms, determine the most

appropriate algorithm fit for each corresponding size of problem. Tabu search, K-Means

Tabu search (KMN-Tabu) and K-Medoids Tabu search (KMD-Tabu) are applied into the

empirical optimization problems include one preliminary test problem and two real life

problems with small and large scale.

59
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The computation environment for all cases are implemented under R and Matlab with

Intel core i5-7400CPU 3.00 GHZ computer, which can execute multi-threads parallel

computation with maximum 4 cores. For the empirical study, our instances including

two networks with different size problems, which comprise of a small size of Siouxfall

network and a large size of NewYork Taxi network. The request dataset of each problem

is either randomly created or extracted from historical instances of demand. All the cases

settings would be showed in the parameter table. During the implementation, vehicle

routing and request dispatching matrix will be obtained according to the objective which

denotes minimum travel cost and waiting time. Moreover, computation time and result

comparison are analysis afterwards.

6.2 Algorithm effectiveness analysis

Aiming at providing evidences concerning the optimization effectiveness and the

optimality of solutions with the algorithms applied in the problem, we proposed a simple

network (referred to as Testnetwork), which is randomly created with 11 nodes. It should

be noted here, that the mixed integer problem is not presented for any case, mainly based

on the objective of this thesis which is the exploration of an optimization algorithm for

large scale networks.

First of all, we initial the network based on the requests pickup and drop off nodes,

coordinates which could be seen as zones or area centers. Then we create travel time/cost

matrix based on the assumption that travel time on each arc during the planning time are

known under the perfect information. A fleet of 8 homogeneous AVs and one depot which

is denoted as node 11 are provided in the system. Since the RACS is a reservation based

system, requests are randomly created with a small set of data comprised 20 instances

according to the planning time period within 300 min (5 hours) time units.

Problem settings and input parameters are presented in Table 6.1.

Table 6.1: Test network problem size and parameter setting

Problem size and parameters

Network Requests Vehicles Travel Cost alpha sigma Max Iterations

11 20 8 Distances matrix 1 0.5 10000
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6.2.1 Tabu search algorithm

We first applied the Tabu algorithm directly to the test problem. For each test a high

number of iterations is explored with results for each test to logged every 100 iterations,

and each experiment involved a different number of iterations. This analysis was performed

in three tests. After maximum 10000 iterations execution of the program, solutions are

plotted composing of three tests, which could be seen in Figure 6.1.
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Figure 6.1: Testnetwork Tabu search solution

Optimization stability analysis

The results that are presented in Figure 6.1 and those from Table 6.2 are used to derive

conclusions concerning the performance and sensitivity of the Tabu Algorithm. It is clear

that there is a obvious decreasing of objective value, cost value and waiting time value.

This indicates the optimization effects that the Tabu algorithm has. As it is clearly

presented, the Tabu search manages to get away from a local optimum after a large

number of iterations and conclude to a lower objective function. The variation between

the three test results and mean value is relatively small as well as standard deviations.

For the objective value and cost, the biggest interval is 22 mins, which is 3%, and waiting
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time violation is zero. Therefore, the best results based on maximum iteration 10000, 
which could be found by Tabu search algorithm is stable. It has to be noticed that Tabu

search could not guarantee the global optimum solution, the obtained best results only

based on the iterations time, which may still be a local optimum.

Table 6.2: Tabu search algorithm solutions of Testnetwork with three tests

Best Result Mean Standard dev. Test 1 Test 2 Test 3

Objective value 645 15.64 623 654 658
Cost 645 15.64 623 654 658

Waiting time violation 0 0 0 0 0

Another interesting result presented in Figure 6.1, refers to the interval between 800 -1000

and 7000 - 7200 iterations, where each value has fluctuation because of the diversification

strategy which explores more neighborhood solution space and exchange of the requests

between routes, it leads to a lower travel cost, but cause more waiting time violation.

6.2.2 K-Means-Tabu search algorithm (KMN-Tabu)

K-Means-Tabu search is also applied to the Testnetwork with maximum iteration of 10000, 
which decompose the initial problem size into smaller sub-problems, and parallel execute 
the Tabu search algorithm. Here we give a presetting of 4 clusters which indicates that 
all the requests will be divided into 4 groups and each of them will be served by 2 AVs. 
Parts of the three tests solutions are plotted in Figure 6.2.

Optimization stability analysis

Table 6.3: KMN-Tabu algorithm solutions of Testnetwork with three tests

Best Result Mean Standard dev. Test 1 Test 2 Test 3

Objective value 787.3 5.18 791.0 791.0 780.0
Cost 754.7 4.7 758.0 758.0 748.0

Waiting time violation 32.7 0.47 33.0 33.0 32.0

From the sensitivity curves of objective value, cost and waiting time in Figure 6.2, the

solution optimization progress could be found based on the value decreasing of each

indicator, which also proves the algorithm effectiveness. Meanwhile, in table 6.3, the

maximum deviation of objective value between mean and three tests is about 0.4%, and
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Figure 6.2: Testnetwork K-means - Tabu search solution

standard deviation is 5.18, therefore the algorithm could be denotes as stable.

Nevertheless, some value fluctuations also could be seen from iterations 520 to 580 in

both cost value and waiting time value curves. During the interval of iterations, cost

value is reducing by inserting requests between routes, however, incurs violation of time

window which raises the waiting time value. Conversely, same pattern happened during

the iteration 350 to 400 as well. It has to be noticed that if a local optimal is reached in

Tabu search, the algorithm will start receiving less optimal solutions to escape the local

optimal and attempt to find better solution to the problem by exploring larger search

space. Therefore, the curve behave increasing. In the end of maximum iterations, the

solution with the lowest objective function value is kept.

6.2.3 K-Medoids-Tabu search algorithm (KMD-Tabu)

Similar to KMN-Tabu, KMD-Tabu is also explored on a set 4 clusters of all request 
and divided them into 4 groups with each 2 AVs. Parts of the three tests solutions with 
maximum 10000 iterations are plotted in Figure 6.3.

Optimization stability analysis
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Figure 6.3: Testnetwork K-Medoids-Tabu solution

Table 6.4: KMD-Tabu algorithm solutions of Testnetwork with three tests

Best Result Mean Standard dev. Test 1 Test 2 Test 3

Objective value 750.0 0.0 750.0 750.0 750.0
Cost 750.0 0.0 750.0 750.0 750.0

Waiting time violation 0.0 0.0 0.0 0.0 0.0

According to value of objective, cost and waiting time in figure 6.3, the algorithm found

minimum solution in 9th iteration, then start to escape the local optimal, the sensitivity

curves also show that the algorithm is effective for optimization. Furthermore, from table

6.4, there is no deviation between three tests and mean value, standard deviation is zero,

where stability of the solution is proved.

6.2.4 Algorithm performance analysis

Based on the solution from table 6.2, 6.3 and 6.4 and computation cost comparison of

the three algorithms in figure 6.5, we could find some features of their performance as

following:

1. The results of all algorithms showed a optimization process, which proved the
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effectiveness for RACS routing optimization. However, it has to be notice that global

optimal solution could not be guaranteed with all three algorithms which are based

on Tabu search.

2. Tabu search phase aims to find the better optimal solution within a number of

iterations, when come to the local optimal, it will start to allow the moves deteriorate

current solutions to avoid stuck in poor-scoring area. Therefore, we could find the

fluctuations in the curves. Since cost and waiting time value are related to each other,

when the cost optimization executed during the Tabu search phase, the reinsertion

of requests will exchange links within routes, which may cause new violation of

time window, thus, the waiting time will increase, and vice versa. For example,

from iteration 520 to 580 in KMN-Tabu algorithm (see in figure 6.2), when cost

optimization start to diversify and explore more search space, incurs violation of

time window which cause the waiting time cost raising.

3. The results of three algorithm are all stable, nevertheless, from three algorithm

mean value comparison (see in figure 6.4), it could be found that Tabu algorithm

obtains higher quality than K-Means-Tabu and K-Medoids-Tabu. The main reason

of inferior quality of solutions is that after split the requests with 4 groups,

whole optimization problem is decomposed into 4 sub-problems with smaller size,

correspondingly, each sub-problem optimization would have relatively smaller search

space for exploration and the neighborhood are limited, with iterations increasing,

it is hard to find better feasible solutions.

4. From the computation time/cost perspective, Tabu spend much more time than

other two algorithm(see in figure 6.5). However, if the problem is relatively small

and the actual value of the cost is low, then Tabu algorithm could be acceptable.

5. KMD-Tabu solutions shows its stability advantage, which generate a solution that

is considered to be more robust than KMN-Tabu algorithm.
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Figure 6.4: Testnetwork three algorithms mean value comparison

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations

0

100

200

300

400

500

600

C
o
m

p
u
ta

ti
o
n
-t

im
e

Tabu

KMN-Tabu

KMD-Tabu

Figure 6.5: Testnetwork compuation cost comparison
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6.3 Empirical Study

6.3.1 Small scale case: Siouxfalls Network

6.3.1.1 Case background

The small scale problem of Siouxfalls composes of 24 nodes in the network. We set the

system with node 11 as depot, 40 AVs will provide services to 100 requests within planning

time of 300 min (5 hours). Travel time/Cost matrix are created based on the information

from the network [Bbstabler, 2018]. The requests are randomly created using a 15min

interval time window. Parameters chosen for this experiment could be seen in table 6.5.

Table 6.5: Siouxfalls network problem size and parameter setting

Problem size and parameters

Network Requests Vehicles Travel Cost alpha sigma Iterations Time-window
interval

24 100 40 Dist-Matrix 1 0.0005 max 5700 15 min

6.3.1.2 Tabu search algorithm

Firstly, Tabu algorithm is applied to the problem and performs a sensitivity analysis. For

each test, 76 results will be logged following an exponential growth on the number of

iterations.

Based on the three test results, we use the mean value to evaluate each test performance.

After maximum 5700 iterations execution of the program, solutions are plot composing

of three tests and their mean value, which could be seen in Figure 6.6 ,6.7 and 6.8.

Optimization stability analysis

Table 6.6: Tabu search algorithm solutions of Siouxfalls network with three tests

Best Result Mean Standard dev. Test 1 Test 2 Test 3

Objective value 4113.7 12.28 4118 4093 4091
Cost 3961.3 31.56 3960 4022 4031

Waiting time violation 96 43.83 158 71 60
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Figure 6.6: Siouxfalls Network Tabu search objective value solution

Table 6.6 and sensitivity curves in figure 6.6, 6.7 and 6.8 provide an overview of the best

results of Tabu algorithm solution. Specifically:

1. For Objective value the biggest interval is 22.7 mins, which is only 0.5% and standard

deviation is 12.28.

2. Largest deviation in the cost is 1% and standard deviation is 31.56.

3. Waiting time value has obvious fluctuation with 64% and standard deviation is

43.83.

Since our objective is to minimize the total value of cost and waiting time, based on this

priciple objective value can be our main factor to judge the stability. Therefore, solutions

of Tabu search algorithm can be determined to be stable.

From figure 6.7 and 6.8, we could find out that the fluctuation of cost and waiting time

value are related, from sections of iterations 200 to 400 and 650 to 800, waiting time value

decreasing with the increase of cost value, this situation happens when exchange links

between routes, limited the time window, however increases the travel cost.
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Figure 6.7: Siouxfalls Network Tabu search cost solution
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Figure 6.8: Siouxfalls Network Tabu search waiting time solution

6.3.1.3 K-Means-Tabu search algorithm (KMN-Tabu)

With KMN-Tabu algorithm, the initial problem has been decomposed into 4 clusters, the

requests of each cluster will be served by 10 AVs. All the three tests solutions are plot in
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Figure 6.9, 6.10 and 6.11.
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Figure 6.9: Siouxfalls Network K-Means-Tabu search objective value solution

Optimization stability analysis

Table 6.7: KMN-Tabu algorithm solutions of Siouxfalls network with three tests

Best Result Mean Standard dev. Test 1 Test 2 Test 3

Objective value 5068 156.46 5186 5167 4845
Cost 4398.7 239.73 4252 4206 4736

Waiting time violation 669.3 395.42 934 961 109

Figures 6.9, 6.10 and 6.11 and table 6.7 give an overview of the maximum deviation

between mean value and three tests. Specifically:

1. Objective value varies from 2% - 4%, standard deviation is 156.46.

2. Cost value varies from 4% - 7.7%, standard deviation is 239.73.

3. Waiting time value varies from 39% - 83% , standard deviation is 395.42.

From the objective value variation between three tests, since the standard deviation is too

large, we could conclude that the solution of KMN-Tabu algorithm is not stable. However

this should be further evaluated by more tests.
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Figure 6.10: Siouxfalls Network K-Means-Tabu search cost solution
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Figure 6.11: Siouxfalls Network K-Means-Tabu search waiting time solution

6.3.1.4 K-Medoids-Tabu search algorithm (KMD-Tabu)

The same settings were used also for the KMN-Tabu. All request are divided into 4 groups

with each 10 AVs provides the services. All three tests solutions are plot in Figure 6.12,
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6.13 and 6.14.
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Figure 6.12: Siouxfalls Network K-Medoids-Tabu search objective value solution

Optimization stability analysis

Table 6.8: KMD-Tabu algorithm solutions of Siouxfalls network with three tests

Best Result Mean Standard dev. Test 1 Test 2 Test 3

Objective value 4970.6 28.28 4975 4915 4975
Cost 4866.3 48.08 4869 4767 4869

Waiting time violation 104.3 19.79 106 148 106

From figures 6.12, 6.13 and 6.14 and table 6.8, the standard deviation and mean value

among three tests are concluded. Specifically:

1. Objective value varies from 0.08% to 1%, standard deviation is 28.28 min.

2. Cost value varies from from 0.05% to 2%, standard deviation is 48.08 min.

3. Waiting time value varies from 2% to 41%, standard deviation is 19.79 min.

Based on the variation range of objective value, solutions of KMD-Tabu search algorithm

can be determined to be stable. The fluctuation between iterations 120 to 600 represents

the process of exchange links between routes, where time window violation decreasing

with cost increasing.



CHAPTER 6. COMPUTATIONAL EXPERIMENTS 73

0 200 400 600 800 1000 1200

Iterations

4600

4700

4800

4900

5000

5100

5200

5300

C
o
s
t

Test 1

Test 2

Test 3

Figure 6.13: Siouxfalls Network K-Medoids-Tabu search cost solution

0 200 400 600 800 1000 1200

Iterations

0

50

100

150

200

250

300

W
a
it
in

g
-t

im
e

Test 1

Test 2

Test 3

Figure 6.14: Siouxfalls Network K-Medoids-Tabu search waiting time solution

6.3.1.5 Performance Comparison

Solution quality analysis

By comparing with the best value of each test in table 6.9 and mean values of three
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algorithms in figure 6.15, we could find out that Tabu search obtains the highest quality

solution among the algorithms.

Table 6.9: Best solutions of three algorithm for small scale problem

Best Result Objective value Cost Waiting time Iteration Computation
time (s)

Tabu 4091.0 4031.0 60.0 400.0 545.8
KMN-tabu 4845.0 4736.0 109.0 441.0 77.1
KMD-Tabu 4915.0 4767.0 148.0 324.0 86.3
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Figure 6.15: Siouxfalls Network three algorithms mean value

Since the clustering method has divided the initial problem into 4 group, the search space

is relatively limited, therefore solution quality of KMN-Tabu and KMD-Tabu is lower

than Tabu algorithm. However, the computation time for Tabu search is up to 5 times

higher than the other two algorithm.

Computation cost analysis

By comparing the best results iteration computation time and sensitively analysis the

behavior in figure 6.16, it can be concluded that Tabu search spend higher computation

cost than KMN-Tabu and KMD-Tabu, however, since the problem size is small, the

computation time of Tabu algorithm is still acceptable.
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Figure 6.16: Siouxfalls Network computation cost comparison

6.3.1.6 Result discussion

Based on the above analysis of solution quality and computation time comparison,

presented in Figure 6.17, the following conclusion could be made for Siouxfall network

problem:

Figure 6.17: Small scale problem of Siouxfall results conclusion
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1. The results of Tabu and KMD-Tabu algorithms are stable, nevertheless, Tabu search

obtains higher quality than KMD-Tabu.

2. From the computation time/cost perspective, Tabu search spend much more cost

than other two algorithm. However, since the size of the problem is small and the

time value still can be accepted.

3. K-medoids-Tabu solutions is more robust than K-means algorithm.

According to the algorithm performance analysis, Tabu search seems to be more

appropriate for small scale RACS problems as it results to better quality results with

an acceptable computation cost.

6.3.2 Large Scale problems: NewYork taxi Network

6.3.2.1 Case background

In order to test our model effectiveness and efficiency with real life problem which contain

large size of requests, we used the green taxi data from TLC Trip Record Data of NewYork

city [NYCTLC, 2018] in January 2017, and particularly 3 hours demand data of 9:00 -

12:00 on February 1st with 3968 requests. Since year 2015, NewYork TLC authority no

longer provides the coordinates for each trip instead with the zone locations, here we apply

the cited dataset with network of 263 zones nodes which represent the taxi zones for the

green taxi operation (see in figure 6.18) and designate node 11 as depot. From the shape

file provided by the TLC, within each zone we settled one centroid location coordinates

to represent the pickup and drop-off stations for each trip origin and destination.

For the demand model, the initial cited dataset only including pickup, drop off locations

and departure time of each request. In order to accompany with our model, we modified

the dataset matrix by adding the customer tolerance waiting time as 15 minutes. We take

both time variables to obtain the time window of earliest pickup and latest pickup time

represented by departure and plus tolerance time.

Furthermore, we use the coordinates and city block distance metric method to get the

cost model. To simplify the cost model, we assume that during the planning time, vehicles

speed are the same on each path with 40 km/h.

The parameters used are presented in Table 6.10:
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Figure 6.18: NewYork taxi zones and network

Table 6.10: NewYork taxi network problem size and parameter setting

Problem size and parameters

Network Requests Vehicles Travel Cost alpha sigma Iterations Time-window
interval

263 3986 800 Dist-Matrix 1 0.0005 max 3000 15 min

6.3.2.2 Performance Comparison

Before the formal test, we have preformed several pre-runs for the Tabu algorithm where

we found that the computation costs of this method is extremely high, and it is not

applicable to adopt in large scale of problems solution. Hence, we only applied KMN-Tabu

and KMD-Tabu algorithm into the solution process. We test KMN-Tabu algorithm once

with maximum 3000 iterations, KMD-Tabu with maximum 700 iterations due to the

time limit. Hence, we will plot the sensitivity curves of their performance based on 700

iterations with 7 results of each. With KMN-Tabu and KMD-Tabu algorithms, the initial

problem has been decomposed into 100 clusters, where the requests of each cluster will
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be served by 8 AVs. Both algorithm solutions are plot in Figure 6.19, 6.20 and 6.21.
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Figure 6.19: NewYork taxi Network KMN-Tabu and KMD-Tabu search objective value solution

Solution quality analysis

From figure 6.19, 6.20 and 6.21, we could see obviously optimization processes of both

algorithms. By comparing with the best value of each method in table 6.11, we could find

out that KMD-Tabu obtains the higher quality solution than KMN-Tabu algorithm with

less iterations.

Table 6.11: Best solutions of three algorithm for small scale problem

Best Result Objective value Cost Waiting time Iteration Computation
time (s)

KMN-Tabu 27042 25815 1227 3000 1281.5
KMD-Tabu 21923 21896 27 700 2643.25

Computation cost analysis

By comparing the best results iteration computation time and sensitively analysis the

behavior in figure 6.22, it could be concluded that KMD-Tabu requires longer computation

time with same iteration setting.
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Figure 6.20: NewYork taxi Network KMN-Tabu and KMD-Tabu search cost solution
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Figure 6.21: NewYork taxi Network KMN-Tabu and KMD-Tabu search waiting time solution

6.3.2.3 Result discussion

Based on the above analysis with solution quality and computation time comparison, the

following conclusion could be made for NewYork taxi network problem.
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Figure 6.22: NewYork taxi Network computation cost comparison

1. KMD-Tabu obtains higher quality solutions than KMN-Tabu algorithm with less

iterations calculation.

2. Compare to K-Means method, K-Medoids algorithm is more effective on clustering

with requests.

3. KMD-Tabu spend much higher computation cost than KMN-Tabu with same

iterations. However, since the problem size is relatively large, corresponding, the

computation cost of KMD-Tabu could be acceptable.

According to the algorithm performance analysis, KMD-Tabu algorithm is more suitable

for the large scale of RACS routing problem which gives higher quality solutions.

6.4 Summary and discussion

Based on the computation experiment results of three networks problems including

preliminary, small scale and large scale with Tabu, KMN-Tabu and KMD-Tabu algorithms

we reach the following conclusions:

1. All three problem has proved the consistency of Tabu algorithm optimization
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effectiveness. However, the global optimal solution is not guaranteed.

2. The solution optimality of Tabu search before the clustering is better than after,

since K-Means and K-Medoids algorithm decompose the problem size where reduce

the searching and exploration space for each sub problems, which scarifies the

optimality for reducing computation time. Therefore, among all three methods,

Tabu algorithm provides the upper level of system optimal results and other two

provide less optimal solutions. Meanwhile, it has to be noticed that the solution

with K-Means and K-Medoids Tabu algorithms do not necessarily to find a global

optimum. The search technique might or might not find a good combination for all

cases.

3. Due to the high computation cost, Tabu algorithm is more suitable to solve small

scale problems rather than larger scale.

4. The process of decomposing problem size with K-Medoids and K-Means are based

on different clustering principles. According to the performance of both algorithms,

KMD-Tabu is more suitable for both case studies.

5. During the optimization process, cost value and waiting time value are related.

When cost value is reducing by inserting requests, it may cause the violation of

time window which increases the value of waiting time, contrarily, lower down the

waiting time may increase travel cost.



Chapter 7

Conclusion and future work

This chapter provides a summary of the work and the conclusions that we have reached.

Then, recommendations for the future work including aspects omitted in the case of study

of the thesis.

7.1 Conclusion

This thesis contributes to the RACS routing problem by formulating the much necessary

modelling aspect and by deriving algorithms into the solution procedure. First of all,

we clarified the reservation based car sharing (RACS) system by analyzing in detail its

components, operation strategies and operation objective, representing it as a multi-AVs

provide pickup and delivery services with time window under a static circumstance, and its

routing process denotes as a combinatorial optimization problem. In this system, demand,

predicted travel time and range of service are known ahead of time. Based on the perfect

information obtained, operator optimally plans the requests dispatching and routing based

on the planning horizon periods.

In order to efficiently represent the routing optimization process, a AVS chain concept

was proposed, which maximum includes 5 states of AVs and 5 links of vehicle route. With

this concept, the whole routing processes has been decompose into sections, in which trip

and relocation links are directly involved in the routing optimization. According to the

objectives of minimizing the system travel cost and inconvenience for customers, AVS

chain model was presented and applied into the problem modelling procedure. Moreover,

mixed integer programming was applied for mathematically formulating this model with

decision variables, objective functions and constraints.

82
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Since our problem is a combinatorial optimization the property of NP hardness

accompanies it. Consequently and in order to efficiently solve the problem and test the

model effectiveness, meta-heuristic method of Tabu search has been utilized in the solution

procedure. And with consideration of real life applications for large size demand, K-Means

and K-Medoids partitioning clustering methodologies are combined with Tabu search to

decompose the initial problem into smaller sub problems. And each of the sub problem

could conduct a parallel calculation in order to reduce the computation cost, afterwards

all results would be collected and generate the whole routing plan for the operation.

At last, the formulation and solution algorithms were explored in a series of test problem

that showcased the effectiveness of Tabu, K-Mean Tabu and K-Medoids Tabu algorithms

for the RACS routing problem. Then based on their performance of testing small scale

and large scale demand problems including Siouxfall network and NewYork taxi network,

the conclusion were found as:

1. Due to the nature of meta-heuristics method, the global optimal solution is not

guaranteed.

2. For small scale problem, Tabu algorithm is more suitable with higher quality of

solutions and acceptable computation cost;

3. For large scale problems, Tabu is no long applicable because of high computation

cost, and between K-Means Tabu algorithm (KMN-Tabu) and K-Medoids Tabu

(KMD-Tabu) algorithm, the latter can generate the best solution.

4. Tabu algorithm provides upper level of solution optimality. However, due to the high

computation cost, its application is limited. The reason for lower quality solution of

other two algorithm is due to the decomposition which limited the search space for

optimization.

5. From the solution stability perspective, K-Medoids Tabu(KMD-Tabu) performs

more robust than K-Means Tabu (KMN-Tabu) algorithm.

6. During the optimization process, cost value and waiting time value are related, when

the diversification strategy starts to execute, cost value decreases with the insertion

moves, nevertheless, may cause additional violation of time window, which increase

the waiting time. Contrarily, same pattern happens.
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7.2 Limitations

In the thesis, an autonomous car sharing routing model is established based on AVS

chain concept with the objective to combined both system and customer concerns, and

successfully proved its optimization effectiveness with real life problems. By applying three

algorithms into the solution procedure, conclude the most appropriate solution method to

each scale of problem. This model could be applied to single horizon planning or generate

the initial routes plan for the RACS system operation. Nevertheless, the thesis poses many

questions for which have not answer yet. On the modelling side, our model has certain

limitations due to the assumption of perfect information circumstances, cost model(travel

time) could be a critical issue since the traffic situation dynamic changes in real life,

prediction of traffic flow is difficult. Meanwhile, system may need to plan with multiple

horizons to form a longer operation plan. Moreover, some of the operation elements are

not considered in the model, such as maintenance of vehicles, refueling and charging and

accidents. On the solution side, the computation cost is still high and could not ensure the

operation efficiency, more fast algorithms need to be created and utilized. Additionally, we

have formulated the function of automatic adding extra vehicles when the system capacity

is insufficient, however, due to the time limitation the test of this part is not include in

this thesis.

7.3 Future work

There are many areas of this thesis can be improved in the future. Firstly, from

the modelling perspective of RACS system routing optimization, multiple planning

horizon and more complex problem setting should be examined in the future, such as

other vehicle operating factors, cost of vehicle temporary parking, charging or refueling

which could be more precisely reflect reality of operation processes. Secondly, since our

model assumes perfect traffic information circumstances, future work could consider the

stochastic optimization of real time traffic situations and congestion effects for travel time

cost which more fits the reality, here efficient prediction methods need to be developed and

apply to the model that makes it more robust. Nevertheless, our RACS system is operated

without rejection of requests, which needs to increase the system capacity according to

the demand, it may not be able to achieved in reality, therefore, rejection strategy could

be developed based on system performance with fixed fleet size, where the selection of

rejected requests process need to consider in optimization model.
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Moreover, from the solution perspective, more algorithms can be applied and tested,

compare them with different size of problems and find out the most appropriate ones

according to computation time efficiency and solution quality.

Another important future work is extending the proposed model which accounts for more

complex operation strategies and business model, since the RACS system is one of the

subsystems in autonomous vehicle sharing, diverse business models can be developed

based on this thesis by adding more complex operation strategies, such as combine ride

sharing with RACS during the operation period, which could be utilized as temporal

based. The system can separately apply both of them to peak hour and non-peak hour

demand. So a switching model between the transition of two different types operation

model need to be developed. Additionally, RACS static planning could only use for the

pre-reserved requests before operation, afterwards, dynamically accept other requests and

constantly adjusting routes with both static and dynamic optimization.
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