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Abstract— We propose a procedure to formally verify the
safety of autonomous vehicles online, i.e., during operation,
that considers the uniqueness of each traffic situation. A
challenging aspect of online verification is the varying number
of surrounding traffic participants, which causes significant
variations in computational demand. To guarantee timely safe
motion plans, we propose an anytime approach that provides
rapid conservative verification results based on coarse model
abstractions, which are refined continually if computation time
is available. Reachability analysis, which over-approximates all
possible behaviors of other traffic participants, is performed
for each abstraction. We demonstrate the usefulness of the
proposed procedure using the CommonRoad benchmark suite.

I. INTRODUCTION

Predicting the movement of other traffic participants is
crucial for motion planning, threat assessment, and formal
safety verification of (partially) automated vehicles [1]. Sev-
eral techniques have been developed based on their intended
use. Rather simple surrogate measures have been proposed
to warn drivers based on predicting a single behavior of
other traffic participants, e.g., time to collision [2], [3], as
well as combinations of several surrogate measures [4]. In
addition, collision mitigation systems that typically require
short prediction horizons often rely on the prediction of a
single future behavior [5], [6]. Threat assessments mainly
employ stochastic predictions, either by performing Monte
Carlo simulations [7], [8], which consider a finite number of
future trajectories, or by predicting occupancy probability
distributions [9], [10], which account for infinitely many
possible behaviors. A comparison between Monte Carlo
simulation and probabilistic occupancy prediction is provided
in [11].

However, none of these methods can verify whether a
collision is impossible under certain assumptions about the
behavior of other traffic participants, e.g., assuming traffic
rules are obeyed. In the concept presented in [12], the im-
portance of set-based prediction of other traffic participants
is highlighted, but no prediction algorithm to formally obtain
occupancies is provided. In our previous work [13], we use
reachability analysis to compute over-approximations of the
occupancy of surrounding traffic participants. A similar con-
cept has also been applied to mobile robots [14], [15]. When
the trajectory of the ego-vehicle, i.e., the vehicle performing
the predictions, does not intersect the over-approximative
occupancies of other traffic participants at any time, we
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can formally guarantee that no collision occurs given the
considered assumptions.

An aspect of set-based prediction that has not yet received
much attention is the large dependence of computation time
on the number of surrounding traffic participants. At a busy
intersection in an urban area, this number can easily vary
from only a few to more than 100 due to many surrounding
pedestrians and cyclists. However, the computing resources
of the ego-vehicle are limited. Using conventional prediction
techniques requires, e.g., performing fewer simulations in
a Monte Carlo simulation or simply omitting some traffic
participants from the prediction. However, these measures
reduce the safety of the ego-vehicle.

The situation differs for set-based techniques, which work
with nondeterministic models to capture all possible behav-
iors; therefore, such models can be abstracted easily. The
obtained abstractions result in over-approximations and thus
more conservative behavior. To attenuate overly conservative
results, we propose an anytime algorithm [16] for set-based
safety verification of traffic participants. When computation
time is available, we refine the results and reduce over-
approximation. In this manner, we can formally guarantee
safety while making optimal use of available computational
resources.

The remainder of this paper is organized as follows.
Definitions are given in Section II. In Section III, we provide
an overview of our set-based safety verification procedure.
The proposed anytime method is described in Section IV,
and example traffic benchmarks are discussed in Section V.
Conclusions and suggestions for future work are provided in
Section VI.

II. PRELIMINARIES

In this section, we introduce some general notation and
the concepts of reachable and occupancy sets. Please note
that throughout this paper, we assume that all safety-relevant
traffic participants are detected by the sensors of the ego-
vehicle.

A. Notation
Let Rn represent the n-dimensional Euclidean space.

Given an n-dimensional vector a of any set A or a list a of
length |a| = n, ai represents its ith component or element for
i ∈ {1, . . . , n}, and P(A) denotes the power set of A, i.e.,
the set of all subsets of A. The Minkowski addition of two
sets A and B is defined by A⊕B = {a+b

∣∣ a ∈ A, b ∈ B}.
The set of Booleans B comprises two elements, i.e., true >

and false ⊥. Let ∧ and ∨ denote logical conjunction and dis-
junction, respectively. The logical equality and nonequality
are denoted respectively by ≡ and 6≡.
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The sensor measurements are updated only at discrete time
steps tk for k ∈ Z≥0. To simplify parallelization, we consider
only a fixed step size, i.e., tk+1 − tk = ∆t, as shown in
Fig. 1. Moreover, the constant receding prediction horizon
is denoted by h ∈ Z>0, which corresponds to the number
of time intervals evaluated by prediction at each initial time
step tk.

t0 t1 · · · tk

now

tk+1 · · · tk+h−1 tk+h

t

prediction horizon h∆t

Fig. 1. Fixed receding prediction horizon h at current initial time step tk ,
and constant step size ∆t.

B. Reachable Set

Typically, an exact mathematical model M exact of another
traffic participant is not known by the ego-vehicle unless
transmitted via vehicle-to-vehicle communication. Therefore,
we use nondeterministic dynamic models that capture real
physical behavior. All considered models of different com-
plexity for another traffic participant are contained in a list M
of length |M |.

The nominal behavior of model Mi for i ∈ {1, . . . , |M |}
is given by the following ordinary differential equation:

ẋ(i)(t) = f (i)
(
x(i)(t), u(i)(t)

)
, (1)

where x(i)(t) ∈ Rn(i)
x and u(i)(t) ∈ Rn(i)

u denote the state
and input, respectively. The inputs, e.g., steering rate and
acceleration, are uncertain but bounded by the set U (i) ⊂
Rn(i)

u for all times, i.e., ∀t : u(i)(t) ∈ U (i) which is denoted
by u(i)(·) ∈ U (i). Based on new sensor measurements, the
uncertain initial state set X (i)

0 (tk) ⊂ Rn(i)
x is updated at

each time step tk, and the corresponding initial state is
x
(i)
0 (tk) ∈ X (i)

0 (tk). The solution of (1) beginning from
initial time step tk is denoted by ξ(i)

(
t, x

(i)
0 (tk), u(i)(·)

)
.

The exact reachable set, i.e., the set of states x(i) that
are reachable, based on model Mi, initial time step tk, and
prediction time interval [tk+j−1, tk+j ] is

Re(Mi, tk, tk+j) =
{
ξ(i)
(
t, x

(i)
0 (tk), u(i)(·)

) ∣∣
t ∈ [tk+j−1, tk+j ],

x
(i)
0 (tk) ∈ X (i)

0 (tk),

u(i)(·) ∈ U (i)
}
,

(2)

where i ∈ {1, . . . , |M |} and j ∈ {1, . . . , h}. Typically,
(2) cannot be computed exactly [17]. Thus, we use over-
approximations R ⊇ Re and want R to enclose Re as
tightly as possible. In the following, we assume that tight
over-approximations are provided for all models.

Model Mi is called an abstraction of the unknown
model M exact of another traffic participant if the exact
reachable set of Mi over-approximates the set of M exact,
i.e., ∀j,∀k : Re(M exact, tk, tk+j) ⊆ Re(Mi, tk, tk+j). In

this paper, we assume all models Mi are abstractions, i.e.,
conformant with the real physical system. If this assumption
is invalid, more uncertainty must be added to the nondeter-
ministic model abstractions, as done in reachset conformance
[18], [19].

C. Occupancy Set

We introduce the mapping

Π
(
x(i)
)

: Rn(i)
x → P

(
R2
)
,

which projects the state x(i) of a traffic participant to its set of
occupied X-Y -positions. For a given set A, the projection
is applied element-wise, i.e., Π(A) = {Π(a) | a ∈ A}.
The predicted occupancy set of another traffic participant
based on model Mi, initial time step tk, and prediction
interval [tk+j−1, tk+j ] is denoted by

Ok
j (Mi) = Π

(
R(Mi, tk, tk+j)

)
, (3)

i.e., given by projecting the reachable set R to the two-
dimensional set of occupied X-Y -positions. The relation

Ok
j (M exact) ⊆

|M |⋂

i=1

Ok
j (Mi) (4)

allows us to predict the occupancy set of another traffic
participant efficiently by intersecting the occupancies of
|M | different abstractions [20, Prop. 5.1]. Thus, the over-
approximation becomes tighter each time a new model is
added.

Similar to (3), the occupancy set of the ego-vehicle based
on the known reference trajectory at time step tk and
prediction interval [tk+j−1, tk+j ] is denoted by Ekj . The
uncertainties due to a non-perfect tracking controller and the
dimensions of the ego-vehicle are included in the set Ekj [20].

Example 1: A very simple model M1 can be obtained
by allowing infinite acceleration and assuming maximum
velocity vmax. Under this model, it is possible to compute
the projected exact reachable set Π(Re) of a point mass as a
circular disk with radius r = (tk+j − tk)vmax corresponding
to the prediction interval [tk+j−1, tk+j ]. A simple over-
approximation Π(R) is a square with length 2r. Finally, to
obtain the occupancy set of the considered traffic partici-
pant, the vehicle dimensions must be added via Minkowski
addition. �

III. SAFETY VERIFICATION OF AUTONOMOUS VEHICLES

In this section, we provide an overview of our formal
safety verification procedure that uses set-based prediction of
other traffic participants [13], [21]. In addition, the concept
of fail-safe motion planning is presented [22].

A. Set-based Formal Verification

Our formal verification method in Algorithm 1 is executed
in parallel for each surrounding traffic participant and has
two return values. The first output of Algorithm 1 is Boolean
true > if there exists a possible collision for the ego-vehicle
with the considered traffic participant, otherwise Boolean



false ⊥. To this end, we introduce the function any, which
returns > if any element of the considered input vector c ∈
Bh is >, otherwise ⊥. At time step tk, the list of occupancies
of another traffic participant and the ego-vehicle for the
prediction horizon h are denoted byOk =

[
Ok

1 ,Ok
2 , . . . ,Ok

h

]

and Ek =
[
Ek1 , Ek2 , . . . , Ekh

]
, respectively. The list Ok is the

second output of Algorithm 1.

Algorithm 1 Standard Safety Verification

1: function standardVerification(Ek,M, k, h)
2: updateParameters( )
3: for all j ∈ {1, . . . , h} do
4: Ok

j ←
⋂|M |

i=1Ok
j (Mi)

5: cj ← checkCollision
(
Ok

j , Ekj
)

6: return any(c), Ok

Throughout this paper, we use the following three model
abstractions for other traffic participants:
• an infinite-acceleration-based model M1 (Section II-C);
• a finite-acceleration-based model M2 [13]; and
• a lane-following model M3 [13].

Although Ok
j (M2) ⊆ Ok

j (M1) holds for arbitrary k and j,
we do not require the occupancy set of a model to be the
subset of another one or vice versa, e.g.,Ok

j (M2) * Ok
j (M3)

and Ok
j (M3) * Ok

j (M2) generally hold.
The parameters of these models are primarily based on

traffic rules and physical constraints. For example, M1 and
M2 assume that another traffic participant does not exceed
maximum velocity vmax, e.g., given by an exact or relaxed
speed limit. Moreover, it is checked whether the other traffic
participant obeys traffic rules, such as staying in their own
lane. If a violation is detected by the ego-vehicle, the
corresponding parameter is adapted or removed, e.g., by
increasing the individual speed limit or disabling the assump-
tion that the other traffic participant will follow lanes in the
future. Otherwise, the abstractions become nonconformant
with the real system. The described parameter updating is
handled by the function updateParameters, which is called
first in Algorithm 1.

Second, our set-based verification procedure predicts the
occupancies of other traffic participants at time step tk for all
h consecutive prediction intervals via reachability analysis,
as shown in Fig. 2. In line 4 of Algorithm 1, the overall
occupancy set Ok

j for another traffic participant at time
step tk and prediction interval [tk+j−1, tk+j ] is computed.
Based on (4), in order to reduce the over-approximation
error, the occupancy sets Ok

j (Mi) of all |M | models are
intersected.

Third, collision checks are performed for each predic-
tion interval in line 5 of Algorithm 1. The set-based
method checkCollision

(
Ok

j , Ekj
)

returns Boolean true > if
Ok

j ∩Ekj 6≡ ∅, otherwise false ⊥. If no intersection is detected
for any of the h prediction intervals, the motion plan of
the ego-vehicle is formally verified as safe with respect to
the considered traffic participant. Otherwise, the ego-vehicle
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Fig. 2. Predicted future occupancy sets of all surrounding traffic participants
and ego-vehicle. The time step size is ∆t = 0.1 s, and the prediction horizon
is h = 17.

must modify the intended trajectory or perform a fail-safe
maneuver to ensure safety, as explained in the next section.

B. Fail-safe Motion Planning

The consideration of all possible future behaviors in-
creasingly restricts the solution space of the ego-vehicle’s
trajectory the larger the prediction horizon h is chosen. Thus,
the formal set-based verification procedure in Section III-A is
primarily used to verify maneuvers with short time horizons.
Nevertheless, there exist non-formal long-term trajectories
that are initially not safe for all parts of the maneuver while
considering all possible future behaviors of the other traffic
participants. However, such motion plans can become safe
because uncertainty about the other traffic participants’ future
maneuvers is reduced significantly as time proceeds.

Thus, we use an off-the-shelf trajectory planner to compute
a long-term reference motion plan based on the most likely
maneuvers of the other surrounding traffic participants, as
shown in Fig. 3. Our presented safety verification method is
only applied to the first part of the computed motion plan
and a consecutive fail-safe maneuver. If formally verified,
this part of the long-term plan can be executed safely; then,
the next part along the trajectory is checked for potential
collisions. However, the previously verified fail-safe maneu-
ver, e.g., realizing a sufficient distance behind another traffic
participant or a standstill, is executed if the verification fails.
Please note that the existence of fail-safe trajectories can
be proven by induction [22]. Similar to our approach, the
braking inevitable collision state concept ensures that the
ego-vehicle is always in a legally safe state when a collision
occurs, i.e., in a state where it is not causing a collision [14].



verified first part(
t ∈ [tk, tk+1]

) long-term trajectory(
t ∈ [tk, tlong-term]

)

fail-safe trajectory
(
t ∈ [tk+1, tfail-safe]

)

Fig. 3. Comparison of long-term and fail-safe trajectory planning of the
white ego-vehicle, which wants to overtake the blue traffic participant. The
predicted occupancy set of the other vehicle at tfail-safe and the most likely
position at tlong-term are shown by the transparent blue rectangle and vehicle,
respectively.

IV. ANYTIME SAFETY VERIFICATION

In Section IV-A, we propose a novel anytime safety
verification scheme that attempts to verify that the trajectory
of the ego-vehicle is collision-free as quickly as possible.
While previous works provide a formal concept, none of
these approaches are anytime capable, i.e., the algorithm can
be interrupted at any time after completing a short start-
up phase, and the quality of the results improves as more
computation time is available [16]. To design an efficient
algorithm, we
• reuse the list of predicted occupancies Ok−1 obtained

at the previous time step tk−1 (Section IV-B),
• order the list of models M based on computational com-

plexity and perform collision checks immediately after
a new occupancy set has been computed (Section IV-C),
and

• refine the predicted occupancies Ok
j for as long as

computation time is available (Section IV-D).

A. Anytime Algorithm

Our anytime safety verification procedure is presented
in Algorithm 2. It has the same inputs and outputs as
Algorithm 1 with one exception, i.e., we use the occupancy
list of the other traffic participant of the previous time
step Ok−1 for k ∈ Z>0 as an additional input.

First, we check in line 2 of Algorithm 2 if the updated
model parameters at time step tk have changed compared
to those at tk−1 based on new sensor data. If altered, the
occupancy sets obtained at the previous time step tk−1 are
based on models Mi that are possibly no longer confor-
mant with the real system. Therefore, we modify the func-
tion updateParameters compared to Algorithm 1 by adding
a return value that is Boolean false ⊥ if the model parameters
have changed or t = t0, otherwise true >. If the return value
is >, our procedure reuses the list of occupancies Ok−1

obtained at the previous time step tk−1 to quickly obtain
over-approximations of Ok

j for j ∈ {1, . . . , h − 1}, as
described in Section IV-B. Otherwise, all h occupancies are
initialized with R2 in line 7 of Algorithm 2.

In lines 8 to 14, we attempt to verify that no collision
occurs for any prediction interval as quickly as possible. This
is achieved by ordering the list of models M and performing

Algorithm 2 Anytime Safety Verification

1: function anytimeVerification(Ek,M, k, h,Ok−1)
2: if updateParameters( ) ≡ > then
3: Ok ← lazyUpdate(Ok−1)
4: Ok

h ← R2

5: else
6: for all j ∈ {1, . . . , h} do
7: Ok

j ← R2

8: for all j ∈ {1, . . . , h} do
9: mj ← 0

10: cj ← checkCollision
(
Ok

j , Ekj
)

11: while
(
cj ≡ >

)
∧
(
mj < |M |

)
do

12: mj ← mj + 1
13: Ok

j ← Ok
j ∩ Ok

j (Mmj )
14: cj ← checkCollision

(
Ok

j , Ekj
)

15: for all j ∈ {1, . . . , h} do
16: for all i ∈ {mj + 1, . . . , |M |} do
17: Ok

j ← Ok
j ∩ Ok

j (Mi)

18: return any(c), Ok

collision checks (line 14) immediately after obtaining new
sets Ok

j (Mmj ), as described in Section IV-C. Similar to
Algorithm 1, the Boolean collision vector c ∈ Bh stores
the formal verification result for all h prediction intervals.
Furthermore, the variable mj ∈ Z≥0 for j ∈ {1, . . . , h}
corresponds to the number of models required to verify safety
for the prediction interval [tk+j−1, tk+j ].

If more computation time is available, the remaining ab-
stractions are used additionally to refine the occupancies Ok

j

in lines 15 to 17, as described in Section IV-D. Finally, our
anytime method returns the safety verification result any(c)
in addition to the list Ok in line 18 of Algorithm 2.

B. Reuse of Occupancy Lists

We can quickly predict future occupancies of another
traffic participant at time step tk for k ∈ Z>0 by reusing
the list Ok−1 obtained at the previous time step tk−1. As
a result, we only need to compute the occupancy set Ok

h

corresponding to the last prediction interval [tk+h−1, tk+h]
while using elements of Ok−1 as over-approximations cor-
responding to the other intervals, as described subsequently.

Proposition 1: At time step tk for k ∈ Z>0, the relation
Ok

j−1(Mi) ⊆ Ok−1
j (Mi) holds for all models Mi and j ∈

{2, . . . , h}. �
Proof: This relation is valid because the considered

time intervals are the same, i.e., [tk+(j−1)−1, tk+(j−1)] ≡
[t(k−1)+j−1, t(k−1)+j ]. In addition, the prediction uncer-
tainty for the identical interval is reduced after each time step
because more information about the other traffic participant
has been gathered.

As mentioned previously, the list of occupancies of an-
other traffic participant at time step tk is given by Ok =[
Ok

1 ,Ok
2 ,Ok

3 , . . . ,Ok
h−1,Ok

h

]
. Then, the lazy update func-



tion, which is called in line 3 of Algorithm 2 with Ok−1 as
input, is defined by

lazyUpdate(Ok) =
[
Ok

2 ,Ok
3 , . . . ,Ok

h−1,Ok
h,Ok

1

]
,

i.e., the method performs a circular shift.
Based on Proposition 1, by executing lazyUpdate(Ok−1),

we quickly obtain an over-approximative result for all pre-
diction time intervals [tk+j−1, tk+j ] with j ∈ {1, . . . , h−1}
at initial time step tk. Therefore, only the element Ok

h must
be computed based on new sensor measurements at tk to
obtain a valid over-approximative list Ok.

Example 2: In the upper plot of Fig. 4, all occupancy sets
at time step t0 for h = 3 and the rightward moving vehicle
are illustrated. Based on Proposition 1, we exploit the fact
that O1

1 ⊆ O0
2 and O1

2 ⊆ O0
3 hold to quickly obtain an over-

approximative result for the first two prediction intervals at
the subsequent time step t1, as shown in the lower plot of
Fig. 4. Thus, only the occupancy set O1

3 must be computed
at time step t1. �

O0
1
O0

2
O0

3

O0
2
O0

3 O1
3

Fig. 4. Occupancy sets O0
2 and O0

3 computed at time step t0 (upper plot)
are reused at t1 (lower plot) to over-approximate O1

1 and O1
2 , respectively.

Only the set O1
3 is computed at time step t1.

C. Fast Safety Verification

In lines 8 to 14 of Algorithm 2, we attempt to verify
that the motion plan of the ego-vehicle is safe for t ∈
[tk, tk+h] as quickly as possible. First, the set Ok

j for
j ∈ {1, . . . , h− 1}, which is possibly over-approximated by
a reused set as explained in Section IV-B, is checked for
collision with the ego-vehicle using Ekj . If the trajectory of
the ego-vehicle is unchanged, i.e., Ekj ⊆ Ek−1j+1 , and we can
reuse Ok−1

j+1 , the collision check in line 10 always returns ⊥
and can thus be omitted. However, if a collision is detected
in line 10 for a reused set and a changed motion plan, it is
unclear whether this is a true or spurious collision due to the
reuse of over-approximations. In this case, we verify safety
for the first h − 1 prediction intervals exactly as done for
[tk+h−1, tk+h], which is described in the following.

To speed up the safety verification, we order the list of
models M such that Mi has lower computational complexity
than Mi+1 for all i ∈ {1, . . . , |M | − 1}. As a complexity

measure, we use the number of floating point operations
required to obtain the corresponding occupancy set. Then,
we compute Ok

h(M1) corresponding to the simplest abstrac-
tion M1 and intersect this set with the overall occupancy Ok

h

in line 13 of Algorithm 2. Subsequently, a collision check is
performed in line 14. If a collision is detected for model M1,
as illustrated in Fig. 5a, we compute Ok

h(M2) for the second
abstraction M2, intersect it with the overall set Ok

h to reduce
the over-approximation based on (4), and perform a collision
check. This procedure is repeated until safety, i.e., ch ≡ ⊥, is
eventually verified for model Mmh

with mh ∈ {1, . . . , |M |},
as illustrated in Fig. 5b. Therefore, we formally verify the
motion plan of the ego-vehicle as safe using as few model
abstractions as possible, beginning with the coarsest ones.

⋃h−1
j=1 Ok−1

j

⋃h
j=1 Ekj

Ok
h

E

(a) Results: ch ≡ > and Ok
h ≡ O

k
h(M1).

⋃h−1
j=1 Ok−1

j

⋃h
j=1 Ekj

Ok
h

(b) Results: ch ≡ ⊥ and Ok
h ≡

⋂mh
i=1O

k
h(Mi).

Fig. 5. Use of mh models to verify safety for the last prediction interval
[tk+h−1, tk+h], i.e., to show thatOk

h∩E
k
h ≡ ∅. The first h−1 occupancies

are over-approximated by the collision-free reused sets obtained at time
step tk−1.

The procedure above produces different verification re-
sults, i.e., different collision vectors c ∈ Bh, for the same
input data depending on the amount of available computa-
tion time. Nevertheless, our interruptible Algorithm 2 can
formally verify the safety of the ego-vehicle’s trajectory for
t ∈ [tk, tk+h] much faster than Algorithm 1, as shown
in Section V. In case we cannot verify an intended motion
plan in time, we execute the verified fail-safe maneuver, as
explained in Section III-B.

D. Occupancy Set Refinements

In lines 15 to 17 of Algorithm 2, our anytime procedure
continues computing the occupancy sets Ok

j (Mi) based on
the more complex models Mi for i ∈ {mj + 1, . . . , |M |}
and the sensor data obtained at tk, even though the collision
vector c no longer changes. This is done to reduce the over-
approximation of the occupancy sets for future reuse of these
sets, i.e., at initial time steps tk+k̃ for k̃ ∈ {1, . . . , h}. Thus,
if more computation time is available, the other abstractions
are additionally used to refine the overall occupancies Ok

j

for all j ∈ {1, . . . , h}. Finally, after all occupancy sets
are refined, as illustrated in Fig. 6, Algorithm 2 returns the
formal verification result any(c) and the list of computed
occupancies Ok, which are identical to the two outputs of
Algorithm 1.



⋃h−1
j=1 Ok

j

⋃h
j=1 Ekj

Ok
h

Fig. 6. Refined occupancy sets.

V. EXAMPLES

In this section, we compare the performance of the formal
safety verification Algorithms 1 and 2 on two benchmarks.
Our proposed anytime procedure has been integrated into the
open-source MATLAB R© tool SPOT [21], which represents
occupancies by polygons and implements Algorithm 1. Since
collision detection involving polygons is relatively slow, we
plan to speed it up using bounding volume hierarchies [23],
[24] and pre-computed collision checks [25]. To generate a
long-term trajectory, as described in Section III-B, we use
the sampling-based approach in [26]. All computations are
run on a single thread of an Intel R© CoreTM i7-7820HQ with
32 GB RAM.

To determine the computational speed-up potential, we
terminate Algorithm 2 as soon as the motion plan is verified.
To easily reproduce our results, we use the freely available
motion planning benchmark suite CommonRoad1 [27], since
performance comparisons are highly dependent on the spe-
cific traffic scenario. Each benchmark is specified by a unique
identifier and contains detailed information about the ego-
vehicle, road network, and other traffic participants.

A. PM1:MW1:DEU Muc-3 1 T-1 Benchmark

To visualize the computed occupancy sets for two consec-
utive time steps, we compare the two verification algorithms
using the CommonRoad benchmark PM1:MW1:DEU Muc-
3 1 T-1. The considered traffic scenario comprises an un-
controlled intersection with three other traffic participants
and specifies that the ego-vehicle makes the left turn. The
initial configuration and the occupancies computed at time
step t0 are shown in Fig. 2. The step size is ∆t = 0.1 s,
and the prediction horizon is h = 17, i.e., we predict the
occupancies for all surrounding vehicles for the next 1.7 s.

The predicted occupancy sets computed by our interrupt-
ible Algorithm 2 at time step t1 are shown in Fig. 7. As
described in Section III-A, we use models M1, M2, and M3,
which are ordered by computational complexity. In addition
to reusing the occupancies obtained at t0, it is sufficient to
consider only the simplest model M1 for the first and second
vehicles in order to guarantee safety. However, for the third
traffic participant, we have to use all three models to formally
verify the motion plan.

By averaging the results over 10 simulation runs, we
obtain computational speed-ups of Algorithm 2 compared
to Algorithm 1 of 33.6, 28.4, and 3.4 for the first, second,
and third traffic participants, respectively. This results in an
overall speed-up of 7.9 and takes 12 ms in total.

1commonroad.in.tum.de
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Fig. 7. Occupancy sets of all surrounding traffic participants and ego-
vehicle computed by interrupted Algorithm 2 for CommonRoad benchmark
PM1:MW1:DEU Muc-3 1 T-1 at time step t1.

There are multiple reasons why our proposed anytime
method is not even faster. For example, the collision check,
which is currently computationally expensive due to the
intersection of polygons, is performed each time after a new
set Ok

h(Mi) is intersected with the overall Ok
h in line 13

of Algorithm 2. In contrast, Algorithm 1 performs a single
collision check for only the final occupancy set Ok

h. Thus, if
computing the occupancy set for Mi+1 has lower complexity
than performing the collision detection for Mi, it may be
beneficial to skip this check to optimize, e.g., the expected
overall computation time. More importantly, some computa-
tions, e.g., obtaining the reachable lanes for model M3, must
be performed regardless of whether the result is only used
for the last prediction time interval [tk+h−1, tk+h] or for all
h intervals. However, the complexity of these computations
will be reduced in future implementations.

B. PM1:MW1:DEU A9-2 1 T-1 Benchmark

The second vehicular traffic example is given by the
CommonRoad benchmark PM1:MW1:DEU A9-2 1 T-1. It
features a three-lane highway, where the ego-vehicle is
initially located in the middle lane and must perform a lane
change to the right one, as shown in Fig. 8. Furthermore,
this scenario includes two other traffic participants.

Similar to the previous benchmark in Section V-A, the step
size is ∆t = 0.1 s, and the prediction horizon is h = 17. By
averaging the results over 10 simulation runs for the whole
lane change maneuver, we obtain computational speed-ups
of Algorithm 2 compared to Algorithm 1 of 43.8 and 50.4
for the first and second traffic participants, respectively. This
results in an overall speed-up of 47.4 and takes 3 ms in
total. In contrast to the previous benchmark, it is unnecessary
to consider the most complex model M3 for either of the

https://commonroad.in.tum.de


−20 0 20 40 60 80 100
−20
−10

0

10

20
1st traffic participant

2nd traffic participantego-vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]

Fig. 8. Initial occupancies of all traffic participants and ego-vehicle for
CommonRoad benchmark PM1:MW1:DEU A9-2 1 T-1.

two other traffic participants in order to guarantee safety,
which is the primary reason why a higher overall speed-up
is obtained.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an anytime safety verification approach
that attempts to verify that the planned trajectory of the ego-
vehicle is collision-free as quickly as possible. The quality
of the verification results is continuously improved as long
as computation time is available. However, our set-based
anytime method would not be possible using simulation-
based techniques, such as Monte Carlo simulations, be-
cause the concept of abstraction is only applicable when all
possible maneuvers can be obtained. Since the benefits of
our proposed approach are most apparent in complex traf-
fic scenarios when computational resources are particularly
scarce, in future, we plan to use urban traffic data for further
evaluation.
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