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ABSTRACT

3
D reconstruction involves the task of capturing the shape and appearance of
objects or scenes in the form of 3D computer aided design (CAD) models, often
through multiple measurements: individual 2D images or multiview 3D data. In

this thesis, we explore both sparse and dense 3D reconstruction methods in scenarios
where 3D cues are present and rough, prior CAD models are at hand before the
operation. Thanks to the proliferation of 3D sensors and increased accessibility of
3D data, we can now remain true to the 3D nature of our physical world in such
digitization processes and utilize direct 3D input, point clouds, which can also alleviate
problems of capture modality and illumination conditions.

Both sparse and dense reconstruction problems arise frequently either in industrial
machine vision where the production processes of parts and goods are to be inspected,
or in restoration applications where crude digital models are desired to be improved.
We start by explaining our contributions to sparse yet accurate reconstruction from
non-overlapping multiview images. The experience developed here have also been
used to acquire accurate ground truth aiding the assessment of the next stage, dense
reconstruction. We tackle the latter by proposing a novel, multiview point cloud based
3D reconstruction pipeline in which it is possible to incorporate CAD proxies. This
is accomplished by first aligning all the scans not by an O(N 2) inter-scan matching
but by a linear scan-to-model registration. Such alignment is made possible by novel
object detection and pose estimation algorithms. Next, respecting the deviations of the
real data from the CAD model, we perform a CAD-free multi-scan refinement further
increasing the accuracy both qualitatively and quantitatively. We also propose novel
methods to initialize such large scale optimization problems and to infer information
about the reliability of solutions, known as the uncertainty.

As seen, the necessity to incorporate the CAD models as proxies to reconstruction
comes along with many challenges to be addressed. In this thesis, the prominent sub-
tasks include preparing CAD models towards the reconstruction task, object detection,
estimation of full six degree of freedom (DoF) rigid pose and pose graph optimization,
in which the roughly aligned scans are brought to the final alignment. We address all
of those problems with rigor. Moreover, thanks to our photogrammetric ground truth
acquisition strategies, we present thorough evaluation of all tasks, in real datasets
besides synthetic ones.

i





ZUSAMMENFASSUNG

3
D-Rekonstruktion beinhaltet die Aufgabe, Form und Erscheinungsbild von Objekten oder
Szenen in Gestalt von 3D Computer Aided Design (CAD) Modellen zu erfassen, oft durch
Mehrfachmessungen: verschiedene 2D-Bilder oder 3D Mehrfachansichten. In dieser Dis-

sertation untersuchen wir sowohl spärliche als auch dichte 3D-Rekonstruktionsmethoden in
Szenarien, in denen 3D-Hinweise vorhanden sind und grobe CAD-Modelle vor dem Einsatz zur
Verfügung stehen. Dank der Verbreitung von 3D-Sensoren und der verbesserten Zugänglichkeit
von 3D-Daten können wir nun der 3D-Natur unserer physischen Welt treu bleiben in solchen
Digitalisierungsprozessen und direkt 3D-Eingabsdaten, Punktwolken, nutzen, was auch auch
Probleme mit Aufnahmemodalität und Beleuchtungsbedingungen mindern kann.

Sowohl spärliche als auch dichte Rekonstruktions-probleme treten häufig entweder bei
der industriellen Bildverarbeitung, bei der die Produktionsprozesse von Teilen und Gütern
untersucht werden sollen, als auch bei Restaurationsanwendungen, bei denen rohe digitale
Modelle verbessert werden sollen, auf. Wir beginnen mit der Erklärung unserer Beiträge zur
spärlichen, aber genauen Rekonstruktion aus nicht-überlappenden Bildern mehrerer An-
sichten. Die hier aufgebaute Erfahrung wurde auch verwendet, um genaue Referenzdaten
zu erhalten, welche der Beurteilung der nächsten Stufe, dichter Rekonstruktion, helfen. Zu
dessen Bewältigung schlagen wir eine neuartige, auf Punktwolken aus mehreren Ansichten
basierende 3D-Rekonstruktionspipeline, in die CAD-Proxies integriert werden können, vor.
Dies wird erreicht, indem zuerst alle Scans nicht durch eine O(N 2) Scan-zu-Scan-Anpassung,
sondern durch eine lineare Scan-zu-Modell-Registrierung ausgerichtet werden. Eine solche
Ausrichtung wird durch neuartige Algorithmen zur Objekterkennung und Posen-Schätzung
ermöglicht. Als nächstes, unter Berücksichtigung der Abweichungen der realen Daten vom
CAD-Modell, führen wir eine CAD-freie Verfeinerung durch, die die Genauigkeit sowohl qual-
itativ als auch quantitativ weiter erhöht. Wir schlagen auch neue Methoden vor, um solche
groß angelegten Optimierungsprobleme zu initialisieren und Informationen über die Zuver-
lässigkeit von Lösungen abzuleiten, auch als Unsicherheit bekannt.

Die Notwendigkeit, die CAD-Modelle als Proxies in die Rekonstruktion zu integrieren, ist
mit vielen Herausforderungen verbunden. In dieser Dissertation sind die Vorbereitung von
CAD-Modellen auf die Rekonstruktionsaufgabe, die Objekt-Erkennung, die Schätzung aller
sechs Freiheitsgrade (DoF) der Pose und die Pose-Graph-Optimierung, in denen die grob
ausgerichteten Scans auf die endgültige Ausrichtung gebracht werden, die wichtigsten Teilauf-
gaben. Wir begegnen all diesen Problemen mit Strenge. Dank unserer photogrammetrischen
Strategien zur Erfassung der Grundwahrheit präsentieren wir darüber hinaus eine gründliche
Auswertung aller Teilaufgaben, sowohl in realen als auch in synthetischen Datensätzen.
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INTRODUCTION

“Then, my noble friend, geometry will draw the soul towards truth, and create the

spirit of philosophy, and raise up that which is not unhappily allowed to fall down.”

— Plato, The Republic, VII, 52

Computer vision, one of the notoriously difficult problems of engineering research,

has given rise to some of the most prominent products of the late human intellect

and of the curiosity to understand and represent our world. Its applications have

been plentiful, from aiding visually impaired members of our society to automatizing

grocery/fashion stores. It is now used in many advanced AI systems, as the enabler of

artificial sight. “If we want the machines to think, we should teach them to see”, quotes

Fei Fei Li, the widely recognized computer vision scholar. The industrial counterpart of

computer vision, machine vision, has been rather concerned with precision, enabling

machines with exceptionally high tolerances, robustness, determinism, repeatability

and stability. Such proliferation is perhaps not surprising, because cameras have al-

ready been found to provide the most reliable information and thus to be the most

prosperous among all the sensors [182]. Until recently, many of the computer vision

systems utilized 2D information, and whenever necessary inferred the 3D structure of

the world from a collection of these projections. In fact, it is now commonly accepted
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CHAPTER 1. INTRODUCTION

that computer vision has been born during the Ph.D. of Larry Roberts, who has tack-

led the task of extracting 3D geometrical information from 2D perspective views of

blocks [134].

With the advance in 3D sensing, depth sensors, laser scanners and lidars have

begun to let us directly perceive all the spatial dimensions of our environment. Yet,

for several years, these sensors have remained on the shelves due to their high price

and lack of application areas. The cost of 3D sensing has started to decrease with

the release of the depth sensor Microsoft Kinect (www.xbox.com/en-US/kinect) in

2010, from tens of thousands of dollars to a couple of hundreds, rendering 3D sensing

affordable. The next wave predicts a similar, maybe a more dramatic price drop on the

lidars and laser scanners that provide accurate 3D information in the form of sparse 3D

points 1. Furthermore, thanks to the pervasiveness of autonomous driving, processing

the information coming from these sensors is now a more demanded task than ever.

Accurate 3D capture also opens up immense potential in machine vision, particularly

Industry 4.0, the fourth industrial revolution. Quality inspection and 3D digitization

of manufactured parts are now two of the most desired idiosyncrasies of 3D machine

vision. 3D optical inspection, a sub-branch of precision engineering, can now aim

to achieve non-contact micron level accuracy in coordinate measurement [124, 239].

The reduction of the cost combined with the proliferation of application domains,

have now positioned 3D computer vision at the center of machine perception and

autonomous systems.

Reconstruction from an image collection is well studied in the 2D domain and

is often resolved via structure from motion pipelines involving a global bundle ad-

justment as a final stage [242, 291, 294]. Unfortunately, due to the lack of 3D local

geometry information, carrying out a similar task in 3D is way more challenging, and

no well accepted method exists. Moreover, due to the unstructured-ness of data and

nature of representation, the point clouds resulting from 3D capture processes carry

more geometric information and less reliable appearence information compared to

high resolution images. Hence, many of the modern deep learning techniques that

excel on images fail to perform well on such sparse, higher dimensional, unstructured

and unorganized input [308]. For instance, as shown by Hodaň et al. [130], geometric

1A startup named Luminar (www.luminartech.com) has already begun the production and distri-
bution of low cost 3D lidars www.wired.com/story/luminar-lidar-self-driving-cars/.
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c) CAD Model e) CAD-Prep

g) Detection h) Initial Alignment

a) 3D Scanner b) Input Object d) Ground Truth

j) Resultf) Point Cloud i) Reconstruction

Figure 1.1: Building blocks of reconstruction using 3D data. A laser scanner (a) or
similar 3D sensor is used to acquire 3D point clouds from the real world as shown in (b).
In many scenarios we also possess a CAD model of the object (c) to be reconstructed,
typically a crude one. We develop methods for acquiring validation data by the use of
fiducial tags and sparse coordinate triangulation (d). The entire pipeline is composed
of individual components, such as preprocessing of the CAD model (e) (and the
scenes) serving the upcoming operations; object detection and pose estimation in
3D scans (f, g); a rough initialization of the optimization procedure that governs the
global refinement (h); and a final 3D global alignment (i). The final result typically
follows a meshing operation and as shown in (j), and can be used for various purposes
such as storage, quality inspection, visualization or transmission. This thesis develops
the necessary tools for realizing this pipeline in a robust and efficient manner.

methods are still the top performers at the task of 6DoF pose estimation.

In this thesis, we develop and mature an ensemble of geometric tools for process-

ing such multi-scan point cloud data. Our algorithms unite under a novel system that

achieves low complexity 3D reconstruction from multiple 3D scenes. In brief, our

new framework fuses several low level building blocks such as object detection, pose

estimation, model downsampling and pose graph optimization into a single pipeline

that is able to utilize prior CAD data within the reconstruction process from unor-

ganized scan collections. We interpret these blocks as a geometric toolset for point

cloud processing and advance on the state of the art for all of them as summarized in

Fig. 1.1.
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1.1 Motivation

The limitations of 2D computer vision, such as lack of scale, and accurate modeling

of textureless regions, can be easily tackled by inclusion of dense 3D data, acquired

from 3D sensors. Yet, as an emerging field, robust and efficient utilization of the 3D

information to solve a bunch of computer vision tasks is by far a non-saturated area.

3D data comes with its own difficulties. Occlusions are more severe, and sensors

that capture a single viewpoint provide a sparser set of the geometry present in the

entire 3D environment. Moreover, due to noise, unstructured-ness and boundary

effects, 3D data obtained from a single view remains to be challenging for complete

3D understanding. These have led the researchers to turn to multi-scan capture

and combine the individual data to a globally coherent 3D reconstruction [208], just

like the 2D structure from motion. The resulting 3D models can then be utilized in

many applications of computer vision, such as augmented reality, quality inspection,

bin picking or autonomous navigation. Unfortunately, the process of reconstructing

scenes from multiple 3D acquisitions involves many challenges including registration,

fusion and overcoming computational and storage concerns. Some of these issues

can be addressed by assuming that the order of scans are constrained and that the

camera can be tracked through the capture sequence [74, 208, 253]. Yet, this is very

restrictive from a user perspective, and is non-applicable to certain scenarios such as

laser scanning of large objects/scenes.

The drawback of these aforementioned approaches and the lack of such a 3D

vision system in the literature motivate us to bring in new solutions to this problem.

1.2 Objectives and Contributions

The overall objective of this thesis is to develop and excel a new 3D reconstruction

pipeline that would allow a wide variety of applications from digitization in Industry

4.0 to robotic applications, commodity 3D scanning and augmented reality. The

solution requires many algorithmic building blocks to be implemented, seamlessly

glued together and improved. Each building block is bound to satisfy certain functional

requirements in order to give rise to the most effective and robust system.
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Possible applications Reconstructing objects and scenes is of interest to many do-

mains. First, many of the augmented reality applications rely on correct identification

of the object type and pose. While most AR applications use 2D data, the trend is shift-

ing towards 3D, thanks to the advances in mixed reality and virtual reality wearables.

Next, 3D printing industry craves for accurate models that are print-friendly. Naturally,

practitioners of this domain often demand certified and precise solutions. Industry

4.0 is another initiative that tries to revolutionize how we manufacture goods. There,

it is critical to have all the products quality inspected and digitized. In this context,

digitization refers to gathering all properties and attributes of factory processes and

products within a single smart body of systems that can later communicate, cooperate,

control and inform about the progress and outcomes. Having a 3D CAD reconstruction

is certainly one of the essentials of digitization.

On the technical side of the medallion, many higher-level computer vision algo-

rithms can benefit from tools and ideas developed as part of this thesis. Semantic

scene perception approaches now aim to bring a holistic perspective, where all rele-

vant information about all the meaningful parts of the scene are to be inferred - often

in the form of a scene graph. These techniques have recently turned to object-level

processing thanks to large, annotated datasets and 3D object databases [188, 262].

Because our final pipeline shares a common backend with well studied methods

like SLAM or SfM, our processing methods will in return advance the frontiers of

these widespread research fields. Especially, because global optimization and object

detection are frequently used in these core methods, 3D object priors and uncertainty-

aware global pose graph initialization can be directly plugged into some of the existing

pipelines [19, 234].

Desirable properties Due to the wide applicability and industrial constraints, our

reconstruction algorithms have to be easy to operate, accurate, repeatable and reliable.

For the reasons of usage simplicity and for the sake of generalizability, we neither

assume a scanning order nor restrict the volume we operate in. Moreover, to overcome

illumination effects, we avoid using color information. This also helps to generalize to a

wider variety of 3D sensors. Depending on the application scenario, sparse coordinate

measurement or dense capture is desired. Thus, our approaches have to address

5
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both in a similar fashion. Since it is tedious to re-acquire laser scanner data2, our

systems should be capable of providing live feedback about the coverage of objects,

quality of shots and the usability of input data. Thus, speed is a crucial aspect of the

entire design. To avoid human involvement in the loop, our detectors are supposed

to operate with almost-zero false positive rate, requiring a conservative hypotheses

verification integrated. While initialization as well as online feedback can be delivered

by approximate algorithms, we would like the final result to have as high fidelity as

possible. Therefore, a rigorous refinement stage is necessary, enjoying initializations

that are close enough and computed without harming the runtime.

In addition to the requirements above, we also have some operational constraints.

First, CAD models coming from industry, or suited for computer graphics applications,

are usually not friendly for processing methods involving computer vision. They

are rather used in design phases, games or visualization tools. It is, hence, critical

to convert these models to a standardized representation without information loss.

Secondly, to assess the quality and report correct estimates of the accuracy, we should

have good ground truth data and this thesis should certainly address such efforts.

Algorithms required to enable applications The issues of 3D reconstruction from

3D data necessitates smarter algorithms that are easier to integrate, use and at the

same time, efficient and accurate. Luckily, many applications enjoy the existence of

object priors, and one of our main objectives in this thesis is to engineer a pipeline

around this prior such that the goals and requisites are met.

We first need to preprocess CAD models to make them usable in our pipeline.

However, it is unlikely that all CAD models are presented in similar formats or prop-

erties. Therefore, special care is required handling parametric or mesh CAD forms

and converting them to representations that are usable in computer vision solutions.

Generally, this stage boils down to re-meshing of the models, removal of hidden ge-

ometry and downsampling in order to reduce the size for the sake of efficiency. The

further stages are divided into two: sparse and dense reconstruction. For a sparse

reconstruction, we would like to precisely localize a 2D camera with respect to the

CAD instance. That is to be achieved by multiview registration methods. For the dense

counterpart, only 3D data is exploited and to begin with, a false positive aware object

2Obtaining an accurate scan approximately takes 30min. with a state of the art scanner.

6



1.2. OBJECTIVES AND CONTRIBUTIONS

detection and pose estimation method is required. Naturally, hypothesized object

poses should be verified for utmost correctness. It is often desirable to have a seamless

integration between hypothesizing and verifying, avoiding any user intervention. In

a dense reconstruction setting, it is typical to operate with multiview shots / scans /

images. Hence, any pipeline addressing reconstruction should have capabilities of

linking multiple poses within a fusion framework. As the CAD models available at

hand will contain significant differences with respect to the real desired reconstruc-

tion, this fusion step should tolerate for discrepancies and misalignment in the pose

estimation. Fusion is typically implemented as a global optimization of point sets in

order to obtain a consistent reconstruction and camera localization across multiple

shots. It is obvious that such an optimization is costly and requires good methods of

initialization and we opt to devise an explicit solver for this.

Finally, it is critical to ensure that we can assess the quality of our algorithms. To

this end, we require good techniques to collect ground truth data. We will do this

by a fiducial marker based bundle adjustment procedure that is capable of handling

overlapping scans. Ideas developed here will also be applied to sparse reconstruction,

where only a set of keypoints are triangulated, but with high accuracy.

In this thesis, we first present our ground truth acquisition and sparse measure-

ment methods. We then move to dense reconstruction and propose a novel pipeline.

Next, we focus on all the individual requirements of the pipeline and propose solutions

to overcome the current drawbacks.

Main Contributions To realize the required algorithms and to fulfill the objectives

enlisted, we develop several novel methods that have the following contributions:

• A highly accurate sparse 3D point cloud reconstruction and calibration from

targeted fiducial tags.

• Several algorithms for effectively downsampling point sets and CAD models.

• Efficient and highly accurate, sparse and dense reconstruction along with quality

inspection of 3D parts using CAD models as proxies guiding the reconstruction.

• Novel object detectors that determine the pose of the objects in occluded and

cluttered 3D scenes, as well as a method to localize parametric surfaces.
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• Complimentary deep learning based approaches for rigid object and surface

detection as well as pose estimation in point clouds.

• A new Bayesian optimization framework and its applications to uncertainty

estimation for 3D pose graph optimization.

1.3 Publications

Authored

1. Tolga Birdal, Umut Şimşekli, Onur Eken & Slobodan Ilic:Bayesian Pose Graph

Optimization via Bingham Distributions and Tempered Geodesic MCMC. In
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Quebec, Canada.
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3. Tolga Birdal, Benjamin Busam, Nassir Navab, Slobodan Ilic & Peter Sturm: A

Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds.

In ©IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018,

Salt Lake City, Utah, USA.

4. Tolga Birdal: Task Oriented 3D Sampling via Genetic Algorithms, ©IEEE Signal

Processing and Communication Applications (SIU) 2018, Izmir, Turkey.

5. Tolga Birdal & Slobodan Ilic: CAD Priors for Accurate and Flexible 3D Recon-

struction. In ©IEEE International Conference on Computer Vision (ICCV) 2017,

Venice, Italy.

6. Tolga Birdal & Slobodan Ilic: A Point Sampling Algorithm for 3D Matching of

Irregular Geometries, ©IEEE Intelligent Robots (IROS) 2017, Vancouver, Canada.

7. Tolga Birdal, Ievgeniia Dobryden & Slobodan Ilic: X-Tag: A Fiducial Tag for

Flexible and Accurate Bundle Adjustment. In ©IEEE International Conference

on 3D Vision (3DV) 2016, Stanford, USA.
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8. Tolga Birdal, Emrah Bala, Tolga Eren & Slobodan Ilic: Online Inspection of 3D

Parts via a Locally Overlapping Camera Network. In ©IEEE Winter Applications

of Computer Vision (WACV) 2016, Lake Placid, USA.

9. Tolga Birdal & Slobodan Ilic: Point Pair Features Based Object Detection and

Pose Estimation Revisited. In ©IEEE International Conference on 3D Vision

(3DV) 2015, Lyon, France.

10. Tolga Birdal, Diana Mateus & Slobodan Ilic: Towards A Complete Framework

For Deformable Surface Recovery Using RGBD Cameras. In ©IEEE Intelligent

Robots (IROSW) 2012, Vilamoura, Portugal.
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1. Haowen Deng, Tolga Birdal & Slobodan Ilic: PPF-FoldNet: Unsupervised Learn-

ing of Rotation Invariant 3D Local Descriptors. In European Conference on

Computer Vision (ECCV) 2018, Munich, Germany.

2. Adrian Haarbach, Tolga Birdal & Slobodan Ilic: Survey of Higher Order Rigid

Body Motion Interpolation Methods for Keyframe Animation and Continuous-

Time Trajectory Estimation. In ©IEEE International Conference on 3D Vision

(3DV) 2018, Verona, Italy.

3. Haowen Deng, Tolga Birdal & Slobodan Ilic: PPFNet: Global Context Aware Local

Features for Robust 3D Point Matching. In ©IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) 2018, Salt Lake City, Utah, USA.

4. Benjamin Busam, Tolga Birdal & Nassir Navab: Camera Pose Filtering with

Local Regression Geodesics on the Riemannian Manifold of Dual Quaternions.

In ©IEEE International Conference on Computer Vision (ICCVW) 2017, Venice,

Italy.

5. Umut Şimşekli & Tolga Birdal: Unified Probabilistic Framework For Robust

Decoding Of Linear Barcodes. In ©IEEE International Conference on Audio,

Speech and Signal Processing (ICASSP) 2015, Brisbane, Australia.

6. Umut Şimşekli, Tolga Birdal, Emre Koc & Taylan Cemgil: A Factorization Based

Recommender System for Online Services. In ©IEEE Signal Processing and

Communication Applications (SIU) 2013, Cyprus.
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IEEE Copyright Notice Significant portion of the matter presented in this thesis is

taken from aforementioned publications either partially or sometimes verbatim. All

of the rights belonging to the publications that appeared prior to the submission of

this thesis are transferred to IEEE under the relevant copyrights. The figures, texts and

other material are author’s original published work and are used here with appropriate

permissions, ©[2012-2018] IEEE. In reference to IEEE copyrighted material used with

permission in this thesis, the IEEE does not endorse any other products or services.

Patents Parts of this thesis contain material published in the following patents:

1. Tolga Birdal: Computer-aided image processing method, WO2018137935A1.

2. Tolga Birdal, Ievgeniia Dobryden & Slobodan Ilic: Marking device, WO2018077535A1.

Awards The reconstruction-via-detection framework, proposed within this thesis and

associated publications has been granted the prestigious Young Professional Award

2016 by the European Machine Vision Association. Furthermore, the research and de-

velopment for this thesis have received the Ernst von Siemens Doctoral Scholarship,

given to a selected number of doctoral students in the body of Siemens.

1.4 Outline

We now briefly review the flow of this thesis and summarize the content of each

chapter. Because multiple parts of this thesis were previously published, we provide

both the related work and experimental evaluation per chapter. This also allows us to

utilize multiple datasets and assessment methods.

Chapter 2 We will first begin by laying out the fundamentals, in which we explain

the already established mathematical framework that is used as the basis of this thesis.

This chapter will be composed of individual seemingly unrelated subsections, yet the

methods devised thereafter will bridge the gaps. In particular, we will review point

clouds, Riemennian and Projective geometry, pose representations and quadrics. We

also touch upon point pair features, robust M-estimators and iterative closest point

algorithm that are used in a bunch of methods proposed here.
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Chapter 3 We first begin our attempts to collect good ground truth data, as well as

methods of sparse reconstruction. In this context, Chapter 3 describes a new fiducial

tag, X-tag that is amenable for applications in photogrammetry, camera calibration

and sparse coordinate recovery through bundle adjustment. We also provide extensive

qualitative and quantitative analysis on the low level vision problems X-tag can aid.

The content is based upon our 3DV 2016 publication [34].

Chapter 4 Here, in Chapter 4, we propose a robust and online sparse reconstruction

pipeline and accurate methods to generate validation data. In particular, a multi-view

system composed of static, non-overlapping 2D cameras is developed to tackle the

challenge of automated online inspection in production lines. The content is based

upon our WACV 2016 publication [31].

Chapter 5 Moving onto dense reconstruction, this chapter maps out our reconstruction-

via-detection framework, upon which the rest of the thesis will be built. Essentially,

this pipeline uses the available CAD models of the industry as shape priors to ease

and robustify the reconstruction from 3D data. Within this chapter, we will talk about

the multi-view global alignment and how object detectors can contribute to recon-

struction. The content is based upon our ICCV 2017 publication [36].

Chapter 6 We delve into the building blocks of the reconstruction pipeline, pre-

sented in Chapter 5. The first stage is the preparation of CAD models and downsam-

pling of the scene for an efficient, yet still correct reconstruction. We review the recent

re-meshing algorithms and specific to our point pair feature based object detectors,

tailor a new CAD model sampling strategy. We show that this new algorithm can im-

prove both the pose estimation accuracy and detection rate when compared to prior

mesh decimation or sampling algorithms. The content is based upon our IROS 2017

and SIU 2018 publications [30, 37].

Chapter 7 This chapter explains our contributions to 3D object detection and pose

estimation. Most of the detectors of this stage are based on point pair features [87]

that are found among the top performers for pose estimation in cluttered scenes [130].

Though, we advance the state of the art in multiple directions: First, we present an
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improved algorithm for 3D object detection that suffers less from quantization artifacts

and object size. Next, we combine geometry and deep networks to learn 3D descriptors

from point clouds. We outperform the state of the art by a large margin in these works.

Next, we relax the assumption that a full rigid model is available and instead look for

primitives/bases that are common in CAD models. We model these common bases as

quadrics and propose a very efficient algorithm to spot primitives within point clouds.

The content of this chapter is based upon a collection of papers [32, 35, 36, 80, 81].

Chapter 8 The final method chapter of this thesis is devoted to pose graph optimiza-

tion and refinement that can be an essential post-processing stage of any 3D computer

vision pipeline. We first elaborate on a scenario where the camera motion forms a

trajectory and hence we can rely on the order of acquisition. There, we parameterize

the camera pose via dual quaternions, and suggest a statistical, local camera trajectory

smoothing. Next, we get rid of the mentioned assumption concerning the camera tra-

jectory and take on the challenge of optimizing the full pose graph. Our contributions

to this domain involve a new optimization framework that bridges the gap between

Bayesian posterior sampling and optimization. This framework is capable of deliv-

ering uncertainty estimates in problems, where finding a local/global minimum is

desired. The content is based upon our NIPS 2018 and ICCV 2018 publications [33, 50].

Chapter 9 and Appendix We conclude with a summary of the thesis and potential

future research directions. In the appendix, we provide a derivation of our theoretical

results regarding the pose graph optimization of Chapter 8.

A Note on the Notation Throughout the chapters, we will commonly re-use symbols.

For instance, in quaternion-based pose estimation algorithms, q usually refers to a

quaternion. Similarly, in sections describing the fitting of parametric forms, q will

refer to a quadric. Thus, we will review the notation per chapter and define symbols

where they are used, unless specified by the nomenclature.
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FUNDAMENTALS

“There is geometry in the humming of the strings.”

— Pythagoras

2.1 Point Clouds

We define a point cloud to be a d-dimensional point set composed of N points X ∈
Rd×N . Usually the columns contain coordinates as in xi = (xi , yi , zi )T ∈ X. Though, this

could easily grow into more complex forms by introducing, for instance vertex normals:

xi = (xi , yi , zi ,nx
i ,ny

i ,nz
i )T . Color components, subject to illumination changes or

camera noise, will not be of particular interest in this thesis. Whenever possible, we

omit the sensitive higher order terms such as curvature for the sake of robustness. A

cloud composed of only 3D points is shown in 2.1(d), and its normals in 2.1(e).

2.1.1 Computing Model Normals

Given a point clouds, it always possible to compute the normal space by performing

a local plane approximation [132] and recording the collection of tangent spaces. In

other words, a surface normal of a point of interest x ∈R3 is computed by the principal
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(a) (b) (c) (d) (e) (f)

Figure 2.1: (a) The original mesh. (b) 1st order MLS smoothing. (c) 2nd order approx-
imation. (d) Poisson Disk Sampling. (e) Normals of sampled cloud. (f ) Occlusion
map.

component analysis of the covariance matrix C ∈R3×3 obtained by incorporating the

neighboring points xi ∈Ωwithin the vicinity:

(2.1) C = 1

n

n∑
i=1

(xi − x̄)(xi − x̄)T

where x̄ denotes the mean, or the center of the local patch. The equation of the plane

is then computed from the eigenvectors of C. Due to the sign ambiguity in eigenvector

analysis, the direction of the resulting normal is unknown. Thus, we use the convention

where each surface normal is made to point towards the camera by ensuring that the

dot product between the viewpoint vector and surface normal is acute:

(2.2) −x ·nx < π

2

For more accurate / less noisy acquisitions, the neighborhoods and local structures

can be better represented by higher order patches than planes. For instance, a higher

fidelity approximation is obtained using 2nd order terms, where the convexity and

concavity are also modeled. Even though computing 2nd order approximations are

costly for online phase, it is safe to use them in the offline stage, for instance when CAD

models available. Thus one seeks to find the parameters of a second order polynomial,

approximating the height field of the neighboring points, given a local reference

frame [6]. Formally, given a point x ∈ R3, MLS operates by fitting a surface of order

m in a local K -neighborhood {xk } and projecting the point on this surface. Fitting

is essentially a standard weighted least squares estimation (WLS) of the polynomial

surface parameters. The closer the neighbors are, the higher the contribution is. This
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is controlled by the weighting function w(xi ) = exp(−‖x−xk‖/2σ2
ml s). The point xi

is then projected on the second order surface. This process is repeated for all points

resulting in a smoothed point set with well defined normals. There are also works

picking σml s adaptively, but we will not summarize those, as this falls out of the scope

of this thesis. We refer the reader to [6] and show the effect of the MLS computation in

Fig. 2.1(c) against the planar approximation shown in Fig. 2.1(b) concerning the mesh

in Fig. 2.1(a).

2.2 Riemannian Geometry

Figure 2.2: An illustration of Calabi-Yau
manifolds commonly used by string
theorists. Eugenio Calabi and Shing-tung
Yau, Source: goo.gl/VpHBYA.

With every simple act of thinking, something
permanent, substantial, enters our soul. This
substantial somewhat appears to us as a unit
but (in so far as it is the expression of
something extended in space and time) it
seems to contain an inner manifoldness; I
therefore name it "mind-mass." All thinking is,
accordingly, formation of new mind masses.

C. J. Keyser, "On the Psychology of Metaphysics.
Being the Philosophical Fragments of Bernhard

Riemann." The Monist (1900)

An infinitesimally small observation of the verse would not yield a global under-

standing on the whole space. In other words, Bernhard Riemann has argued, in the

middle of the nineteenth century, that shape of the space itself invalidates the Eu-

clidean geometry, and devised, based on other form of dot products in the tangent

space, a non-Euclidean perspective that is smooth and is free of the Euclid’s assump-

tions of flat space: Near the earth, the universe looks roughly like three dimensional

Euclidean space; yet, near very heavy stars and black holes, the space is curved and

bent. In particular, Riemann’s geometry completely rejects the validity of Euclid’s fifth

postulate (through a point not on a given line there is only one line parallel to the

given line) and modifies the second postulate (a straight line of finite length can be

extended continuously without bounds). In this chapter, we will briefly introduce

15
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the basic notion on Riemannian geometry that will ease the understanding of the

following chapters.

Definition 2.2.1 (Manifold). An n-dimensional manifold M (n-manifold) is a second

countable Hausdorff space, where each point has a neighbourhood that is homeomor-

phic to the open n-dimensional Euclidean disc. While more rigorous definitions exist

in topology, we will stick to that simplistic view for brevity.

Definition 2.2.2 (Tangency). A vector v is said to be tangent to a point x ∈M if xT v = 0.

Definition 2.2.3 (Tangent Space). A tangent space is the set Tx of tangent such vec-

tors:

(2.3) Tx = {v ∈Rd : xT v = 0}.

Definition 2.2.4 (Riemannian metric). On a smooth manifold M , a Riemannian

metric G ∈ T 2
0 (M ) is a tensor G = gi j d xi ⊗ d x j , where gi j = g (∂i ,∂ j ). Therefore

g (U i∂i ,V j∂ j ) = gi jU i V j .

Definition 2.2.5 (Riemannian manifold). An m-dimensional Riemannian manifold

M , endowed with a Riemannian metric G, is defined to be a differentiable, smooth

curved space, equipped with the inner product 〈u,v〉x = uT Gv in the tangent space

TxM , embedded in an ambient higher-dimensional Euclidean space Rn .

Below we provide some examples of such manifolds in Rd :

• Euclidean geometry: E d = {x ∈Rd }, gE = δi j d xi d x j =∑n
i=1(d xi )2.

• Polar coordinates in domain y > 0: To obtain the Riemannian metric, we substi-

tute the polar representation of R2, x = r cosφ, y = r sinφ:

(2.4) d x = cosψdr − r sinψdψ, d y = sinψdr + r cosψdψ

and therefore:

(2.5) gs = (d x)2 + (d y)2 = dr 2 + r 2(dψ)2

• Sphere in R3: S2 = {x ∈ Rd : ‖x‖ = 1} ⊂ R3: Similar operation yields g = r 2dθ2 +
a2 sin2θdψ2, where x = r sinθcosψ and y = r sinθ sinψz = r cosθ.
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• Quaternions, dual quaternions, covariance matrices, in general Lie groups and

many other fundamental spaces live on Riemannian manifolds.

Definition 2.2.6 (Length). Let γ denote a C 1 continuous curve on M . The length of γ,

Ł(γ) is given by:

(2.6) L(γ) =
∫
M

√(
g (γ̇(t ), γ̇(t ))

)
d t

Definition 2.2.7 (Metric Space). Let (M ,G) be a path-connected Riemannian man-

ifold. For two points x,y ∈ M , denote the set of C 1-curves by Cx y . Let the curve

γ : [0,1] →M s.t. γ(0) = x and γ(1) = y and define d : M ×M →R+
0 :

(2.7) d(x,y) = inf{L(γ) : γ ∈Cpq }.

Then (M ,d) is said to be a metric space and therefore for all x,y we have:

• d(x,y) ≥ 0

• d(x,y) = 0 if and only if x = y

• d(x,y) = d(y,x)

• d(x,y) ≤ d(x,r)+d(r,y) for any r ∈M .

Definition 2.2.8 (Geodesic). We define the geodesic on the manifold to be a constant

speed, length minimizing curve between x,y ∈ M , γ : [0,1] → M , with γ(0) = x and

γ(1) = y:

(2.8)
d〈γ̇(t ), γ̇(t )〉

d t
= 0.

Definition 2.2.9 (Parallel Transport). Oftentimes operation on manifolds require

translating a vector v parallel to itself along a differentiable curve. This is analogous

to the notion where two vectors in Euclidean space are transformed to the common

origin by simple shifts and analyzed. For manifolds under consideration in this work,

the parallel transport along the geodesic γ maps target vector γ′
x to γ′

y s.t. ∇∇∇γ′γ′ = 0.

The notion is illustrated in Fig. 2.3.

Definition 2.2.10 (Lie Groups and Exponential Maps). A Lie group can be viewed as a

differentiable Riemannian manifold. The Lie algebra to the Lie group is the tangent

space at the identity of the group. Thus it gives a linearization of the Lie group near
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Figure 2.3: Parallel transport for the calculation of expx and logx. The exponential and
logarithm maps at the support point x are indirectly calculated via the explicit maps
at the identity.

the identity. In the generic sense, the map from the tangent space XxG at x to the Lie

group G is called a retraction. A length preserving retraction is the exponential map

expx : TxG→G, which is locally defined and maps a vector in the tangent space to a

point on the manifold following the geodesic on G through x. Its inverse is called the

logarithm map logx :G→ TxG. The mapping expx at point x ∈G can be computed by

parallel transport [100] as illustrated in Fig. 2.3. With the exponential map exp1 =: exp

at the identity 1 ∈G and the logarithm map it holds

expx (s) = xexp
(
x−1s

)
,(2.9)

logx

(
q
)= x log

(
x−1q

)
.

2.3 Rigid Transformations

Definition 2.3.1 (Pose). A pose of a rigid object is its distinguishable static state [46].

Definition 2.3.2 (Pose Space). The set of possible poses compose a pose space.

In 3D, a 6DoF pose is described by a rotational and a translational component

such that when applied to a 3D point leads to a rigid transformation. Now, we will

analyze the possible representations of poses used throughout the rest of this thesis.

2.3.1 Special Orthogonal Group SO(3)

The linear rotation matrices belong to the special orthogonal group:

(2.10) SO(3) = {R ∈R3×3 : RT R = I and det (R) = 1}
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The group acts linearly on a 3D point x and a Euclidean rotation is described by x′ = Rx.

To maximize consistency, we always use left multiplication.

2.3.2 Quaternions

In 1840s, during a walk from work to home, William Rowan Hamilton’s quaternions

were born, extending the complex numbers with three imaginary units i, j, k [119].

Definition 2.3.3 (Quaternion). A quaternion q is an element of the Hamiltonian

algebraH in the form:

H= {q = q11+q2i+q3j+q4k ∈R4 : i2 = j2 = k2 = ijk =−1}.(2.11)

We also write q := [a,v] with the scalar part a = q1 ∈ R and the vector part v =(
q2, q3, q4

)T ∈R3.

Definition 2.3.4 (Conjugate Quaternion). The conjugate q̄ of the quaternion q is given

by q̄ := q1 −q2i−q3j−q4k.

Definition 2.3.5 (Unit Quaternion). A versor or unit quaternion q ∈H1 with

1
!= ∥∥q

∥∥ := q · q̄(2.12)

gives a compact and numerically stable parametrization to represent orientation and

rotation of objects in R3 which avoids gimbal lock [163].

Definition 2.3.6 (Quaternion Inverse). The inverse of quaternion q has the form

q−1 = q̄/‖q̄‖2.

Definition 2.3.7 (Quaternion Product). The non-commutative multiplication of two

quaternions p := [p1,vp ] and r := [r1,vr ] is defined to be:

(2.13) pr = [p1r1 −vp ·vr ; p1vr + r1vp +vp ×vr ]

Quaternions are of particular interest in computer vision due to their connection

with spatial rotations [93].
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Rotations with quaternions The rotation around the unit axis v = (v1, v2, v3)T ∈R3

with angle θ is thereby given by

r = [
cos(θ/2) ,sin(θ/2)vT ]T

.(2.14)

Identifying antipodal points q and −q with the same element in SO (3), the unit quater-

nions form a double covering group of the 3D rotations and any point quaternion or

pure quaternion p = xi+ yj+ zk of the point u = (
x, y, z

)T ∈R3 is rotated by the versor

r via the sandwiching product map

p 7→ r ·p · r̄.(2.15)

Derivatives with quaternions The rotated quaternion p′ = rpr̄ needs to be differen-

tiated with respect to the rotating quaternion r, during various numerical optimization.

The derivative can be represented using the matrix calculus notation:

∂p′

∂r
=

[
∂p′

∂r1
,
∂p′

∂r2
,
∂p′

∂r3
,
∂p′

∂r4

]
(2.16)

= [pq−pq,pqi−pqi,pqj−pqj,pqk−pqk]

Relative quaternion rotation The relative orientation between two quaternions q

and p is obtained simply by non-commutative Quaternion division r = qp−1.

Manifold of quaternions Unit quaternions form a hypersphere, S3, that is an em-

bedded Riemannian submanifold of R4. It is not hard to see that S3 forms a Hausdorff

space: Let h :Rd →R,h(x1, · · · , xd ) = x2
1+·· ·+x2

d . Due to the surjectivity of the Jacobian,

h is a C∞-submersion on Sd−1 = h−1(1), valid for any d > 1. Due to the topology of the

sphere, there is no unique way find a globally covering coordinate patch.

Exponential and Logarithm map inH The identity inH1 is given by 1 = (1,0,0,0)T.

The tangent space T1H1 is thus the hyperplane to the hypersphere S3 ∈R4 and parallel

to the axes x2, x3, x4 passing through 1. Any quaternion in T1H1 is of the form

H 3 q = [
0,φv

]
(2.17)
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with v ∈R3, ‖v‖ = 1 and the series writes as

exp : T1H1 →H1(2.18)

q 7→ 1+
∞∑

k=1

qk

k !
:=

∞∑
k=0

qk

k !

= cos
(
φ

)+ sin
(
φ

)
φ

q = [
cos

(
φ

)
, sin

(
φ

)
v
]=: r.

where the second last step is done by recognizing the Taylor series for the sine and

cosine function at 0. Note, that this relationship directly aligns with the notation in

(2.14) while φ= θ/2 and the inverse function is given by

log :H1 →T1H1(2.19)

r 7→ [
0,φv

]
.

Sphere-specifically, the exponential map can be defined as:

(2.20) Exp(x,u) = xcos(θ)+usin(θ)/θ

where u denotes a tangent vector to x. This gives multiple hints: 1) A unique geodesic

can be defined by a single point and a direction vector. 2) The cut locus is only on the

equator and thus the tangent space at any point can parameterize the rotation space

and in fact this corresponds to the exponential coordinates. 3) This property decorates

quaternions with a known analytic geodesic flow, given by [54]:

(2.21)
[

x(t ) u(t )
]
=

[
x(0) u(0)

][
1 0

0 1/α

][
cos(αt ) −sin(αt )

sin(αt ) cos(αt )

][
1 0

0 α

]

where α, ‖u(0)‖. It is also useful to think about a quaternion as the normal vector

to itself, due to the unitness of the hypersphere. By this property, projection onto Tx

reads P (x) = I−xxT [54].

2.3.3 A Discussion of Rotation Representations

In general, regarding the rotation representations, it is possible to speak of a trade-off

between the number of parameters vs the capability. The naive rotation matrices of

the SO(3) group are linear, capable of interpolation, gimbal lock free and yet have no
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ambiguity [88]. The columns of a rotation matrix can be interpreted as a coordinate

frame or the images of unit vectors under the rotation. These nice properties come

at the cost of over-parameterization that one requires 9 parameters and hurts the

interpolation - interpolating preserves neither speed nor acceleration.

The physically intuitive axis-angle parameterization uses only four values, but is

unfortunately discrete around the identity and possesses infinitely many ambigui-

ties. To overcome the limitation of discontinuity, Rodrigues parameterization absorbs

the angle into the vector part, reducing four parameters to three. Unfortunately, any

three-parameterization suffers from infinitely many ambiguities as the zero degree

rotation can potentially correspond to infinitely many axes. As the norm gets poten-

tially unbounded, there also exist infinitely many redundancies [115]. It is still hard to

interpolate those vectors and tedious to define a proper metric.

Despite hardnesses, due to the minimal parameterization, many optimization

algorithms tend to favor Rodrigues vector (exponential coordinates) [203]. That is due

to R3 embedding and geodesics being straight lines [199]. This also leads to simpler

Jacobian forms. In this thesis, we argue for the unit quaternions that are more suitable

for the problems we tackle: Singularities in minimal representations make it hard to

define distributions and perform continuous statistical optimization. Contrary to the

exponential coordinates, for quaternions, the natural antipodally symmetric Bingham

distributions exists.

2.3.4 Parameterizing the Special Euclidean Group SE(3)

Probably the most intuitive way to couple the required translation with rotations in

order to perform a 6DoF transformation is by considering the SE(3) group:

(2.22) SE(3) =
{

T ∈R4×4 : T =
[

R t

0T 1

]
and R ∈ SO(3) and t ∈R3

}
.

T parameterizes the full rigid body motion and acts linearly. A point x ∈ R3 is trans-

formed via the homogeneous form Tx̂ = Rx+ t.

Augmented quaternions An alternative, yet more compact parameterization of

SE (3) arises when rotational part is formulated as a quaternion and translational part
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is treated disjointly. This leads to the following rigid body transformation equation:

(2.23) x′ = Rx+ t = qxq̄+ t

Note the slight abuse of rotation where the point x is considered to be of the pure form.

We term this new product manifoldH1 ×R3 as the augmented quaternions.

Both of the aforementioned representations split the translations and thereby

require the practitioner to take explicit care of the components. Dual quaternions of

Clifford, which couple the Riemannian and Euclidean manifolds via dual numbers

give a more compact representation for the combination. The next section will cover

this algebra.

2.3.5 Dual Quaternions

Similar to the representation of rotations by quaternions, we can use dual quaternions

of unit length to represent spatial displacements, involving rotations and translations.

To do so, we can define a dual quaternion as an ordered pair of quaternions with dual

numbers as coefficients. A dual number Z is an element of the Clifford algebra D that

can be written as [149] Z = r +εs where r, s ∈ R and ε2 = 0, where r is the real-part,

s is the dual part, and ε is called the dual operator. The dual conjugate is similar to

the complex conjugate of R+ iR. It is given by Ẑ := r −εs. Extending this concept to

quaternions, we can define dual quaternions:

Definition 2.3.8. A dual quaternion w ∈DH is an ordered set of quaternions

w = r+εs = (
q1, q2, q3, q4, q5, q6, q7, q8

)T ,(2.24)

where r,s ∈H,
(
q1, q2, q3, q4, q5, q6, q7, q8

)T ∈R8 and

ε2 = 0, εi = iε, εj = jε, εk = kε.(2.25)

The Clifford algebra of dual quaternions contains the real numbers R, the complex

numbers C, the dual numbers D, and the quaternions H as sub-algebras. With the

conjugate w := r̄+εs̄ of the dual quaternion w = r+εs we can study the constraints

given for unit unit dual quaternions w ∈DH1. If we demand unit length, it holds

1
!= ‖w‖ := w ·w = rr̄+ε (rs̄+sr̄) ,(2.26)
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which gives the two distinct constraints

rr̄ = 1 and rs̄+sr̄ = 0.(2.27)

Displacements with Dual Quaternions

The unit dual quaternions are isomorphic to the group of rigid body displacement

SE (3) [3] and the two constraints (2.27) reduce the eight parameters of the dual

quaternions to the six degrees of freedom of a rigid motion in space with its translation

and rotation. If we write the translation as a pure quaternion t and the rotation as a

unit quaternion r (2.14), we can construct the unit dual quaternion

DH1 3 w = r+ε1

2
tr.(2.28)

Analogously to the quaternions, we formulate the dual pure quaternion P for the

point p = [0,u] as P = 1+εu and the spatial displacement becomes the sandwiching

product map on dual quaternions

P 7→w ·P ·w = 1+ε (rur̄+ t) ,(2.29)

where the conjugates for the dual quaternion and the dual are calculated consecu-

tively.

Geometry ofH1 andDH1 With constraint (2.12), the unit quaternions form the three

dimensional hypersphere S3 ∈R4. ThusH1 is isomorphic to the real projective space

RP3. Looking at the two constraints from (2.27), we can analyze the structure of the

unit dual quaternion space. The first equation ‖r‖ = 1 forces the real part r of w to be

of unit length, hence r ∈H1. This gives the 7-dimensional hypersphere S7 ∈ R8 and

the identification of antipodal points forms the seven dimensional real projective

space RP7. The second equation reads as rs̄ =−sr̄ and thus defines a quadric in RP7.

Thus DH1 is not a hypersphere. This need to be considered for any operation on the

manifold.

Exponential and Logarithm map inDH As a next step, we want to derive the expo-

nential and logarithm maps at the identity for the elements of the groups SO (3)
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and SE (3) in quaternion notation. For matrices these maps are well studied ob-

jects [203, 286]. We study the exponential maps directly in (dual) quaternion space

using its definition as a Maclaurin series.

Let DH 3 w =ωw+εψwε be a pure dual quaternion with the two pure quaternions

w,wε ∈H1. Simplification of the Maclaurin series [245] for the exponential map then

yields

exp : T1DH1 →DH1(2.30)

w 7→
∞∑

k=0

wk

k !
=1

2
(2cos(ω)+ωsin(ω))− 1

2ω
(ωcos(ω)−3sin(ω))w

+ 1

2ω
(sin(ω))w2 − 1

2ω3 (ωcos(ω)− sin(ω))w3.

Before we compute the inverse function, we make the observation that any unit

dual quaternion w = [
φ,v

]+ε[
φε,vε

]=: [Φ,ν] with the dual entitiesΦ=φ+φεε and

ν= v+vεε can be written [77] equivalently to (2.14). For this, we calculate the dual

trigonometric operators through a series expansion which brings

sin(Φ) := sin
(
φ

)+εφε cos
(
φ

)
(2.31)

cos(Φ) := cos
(
φ

)−εφε sin
(
φ

)
.

We prove the following lemma by explicit calculation of the DQ representation:

Figure 2.4: Screw linear displace-

ment of rigid body with dual

quaternion w along screw axis

l with angle θ and pitch θε in the

direction of v.

Lemma 2.3.9. Any unit dual quaternion w ∈ DH1

can be written as

w = [cos(Θ/2) ,sin(Θ/2)ν] ,(2.32)

where ν ∈DH is a pure dual quaternion.

Proof. Analogously to the quaternion rotation,

the formulation (2.32) can be understood as a

parametrization of the rigid body motion. Accord-

ing to Chasles’ Theorem [64], a displacement can be

modeled via a translation along a unique axis with a

simultaneous rotation about the same axis. This is visualized in Fig. 2.4. We construct
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the dual quaternion displacement for this motion explicitly in the form (2.32). Let

a rigid body transformation be given by a translation t ∈ R3 and a rotation R ∈ R3×3

around the axis v with ‖v‖ = 1 with angle θ. From (2.28) we know already the unit

dual quaternion for this displacement. The parameters for the screw motion are angle

θ, pitch θε, screw axis l with moment vε (i.e. vε = p×v ∀ p ∈ l) and direction v. The

angle θ is directly given. We first compute the pitch θε in the direction v of the axis as

the projection of the translation onto the axis. This is θε = tTv. In order to recover the

moment vε, we pick a point u on the axis. With this we can describe t in terms of θε, v,

R and u as

t = θεv+ (I−R)u(2.33)

and with the Rodrigues formula it holds

Ru = u+ sin(θ)v×u+ (1−cos(θ))v× (v×u) .(2.34)

Thus substituting this into (2.33) gives with uTv = 0

u = 1

2

(
t− (

tTv
)

v+cot

(
θ

2

)
v× t

)
,(2.35)

which brings for the moment vector

vε = u×v = 1

2

(
t×v+cot

(
θ

2

)
v× (t×v)

)
.(2.36)

Substituting the rotation quaternion r = [
q0,w

]
and using θε = tTv yields

sin

(
θ

2

)
vε+ θε

2
cos

(
θ

2

)
v = 1

2

(
t×w+q0t

)
,(2.37)

which is the pure quaternion of the dual part. Thus

w =
[

cos

(
θ

2

)
, sin

(
θ

2

)
vε

]
+ε

[
−θε

2
sin

(
θ

2

)
, sin

(
θ

2

)
vε+ θε

2
cos

(
θ

2

)
v
]

(2.38)

which equals (2.32) if we apply the trigonometric operators (2.31), (2.3.5) and the dual

entity represantations.

We note that this representation separates the line information of the screw axis

from the pitch and angle values in an algebraical way where the dual vector ν repre-

sents the axis of a screw motion with its direction vector and the dual angleΘ contains
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both the translation length and the angle of rotation.

Since for the exponential of a dual quaternion of the form w =νΘ2 it holds [146]

exp

(
ν
Θ

2

)
=

[
cos

(
Θ

2

)
, sin

(
Θ

2

)
ν

]
,(2.39)

the inverse function of exp, log :DH1 → T1DH1, for dual quaternions of the form (2.32)

is then given by [
cos

(
Θ

2

)
, sin

(
Θ

2

)
ν

]
7→ν

Θ

2
.(2.40)

2.3.6 Metrics on Rigid Transformations

There exists multiple ways to measure distances in pose spaces. We will briefly sum-

marize them below.

Definition 2.3.10 (Two-Valued Metric). The simplest way to treat the rotational and

translational parts of the pose is to use a two valued metric, one for rotation, one for

translation, relegating the problem of fusing the two [88].

It is though desirable to have a single value in order to ease multiple aspects of

the implementation; for instance during pose clustering, one likes to define closeness

and belonging to the same cluster - defining two thresholds separately increases the

efforts of parameter tuning. For that reason, other strategies, try to combine the two:

Definition 2.3.11 (Weighted generalized mean). Treating the rotation and transla-

tion distances individually and then fusing them via a weighted average leads to the

following, frequently used SE(3) distance:

(2.41) d(T1,T2) =
(
αdrot(R1,R2)p +βdtrans(t1,t2)p

)1/p

for any p ∈ [1,∞] and under any rotational drot and translational dtrans metric. Typi-

cally, dtrans is chosen to be Euclidean, whereas the choice for drot varies depending

on the desired way to parameterize the rotation manifold. The scale factors α and β

balance the contributions of the two metrics. When the object geometry or prior infor-

mation on scene dimensions are available, t can be normalized for a better balance.
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The need for cherry picking the scale factors often lead to suboptimal metrics.

Therefore recent works [46, 88] consider an object space alternative, that is only valid

when points of interest are at hand. For many practical applications of 3D computer

vision, this is the case.

Definition 2.3.12 (Object space distance). Brégier et al.define a frame-invariant pose

distance between corresponding 3D points of instances of the object at given poses as

(2.42) d(T1,T2) = 1

V

(∫
µ(x)‖T2(x)−T1(x)‖p d v

)1/p
.

µ(x) is a density distribution relative to the object and V a normalizing constant. This

physically inspired metric takes into account the object shape. Drost [88] suggests a

variant, that is defined over the convex hull rather than the entire object surface:

(2.43) d2(T1,T2) = max{‖T1(x)−T2(x)‖ : x ∈ O} = max{‖x−D(x)‖ : x ∈ O}

where O defines the object and D = T−1
1 T2. Equality follows from the frame invariance.

2.3.7 Distributions on Pose Spaces

Definition 2.3.13 (Bingham Distribution). Derived from a zero-mean Gaussian, the

Bingham distribution [29] is an antipodally symmetric probability distribution condi-

tioned to lie on Sd−1 with probability density function (PDF) B :Sd−1 → R:

B(x;Λ,V) = 1

F
exp(xT VΛVT x) = 1

F
exp

(∑d
i=1λi (vT

i x)2)(2.44)

where V ∈Rd×d is an orthogonal matrix (VVT = VT V = Id×d ) describing the orientation,

Λ = diag(0,λ1, · · · ,λd−1) ∈ Rd×d with 0 ≥ λ1 ≥ ·· · ≥ λd−1 is the concentration matrix,

and F is a normalization constant.

With this formulation, the mode of the distribution is obtained as the first column

of V. The antipodal symmetry of the PDF makes it amenable to explain the topology of

quaternions, i. e., B(x; ·) =B(−x; ·) holds for all x ∈Sd−1. When d = 4 and λ1 =λ2 =λ3,

it is safe to writeΛ= diag([1,0,0,0]). In this case, the logarithm of the Bingham density

reduces to the dot product of two quaternions q1, x and the mode of the distribution,
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say q̄2. For rotations, this induces a metric, dbingham = (q1 · q̄2)2 = cos(θ/2)2, that is

closely related to the true Riemannian distance:

(2.45) driemann = ‖log(R1RT
2 )‖, 2arccos(|q1q̄2|), 2arccos(

√
dbingham ).

It is easy to verify that adding a multiple of the identity matrix Id×d to V does not

change the distribution [29]. Thus, we conveniently force the first entry ofΛ to be zero.

Moreover, since it is possible to swap columns ofΛ, we can build V in a sorted fashion.

This allows us to obtain the mode very easily by taking the first column of V.

Covariance The covariance matrix C ∈ Rd×d of the Bingham distribution reads:

(2.46) C = Cov(x) =−0.5(V(Λ+ cI)VT )−1

where c ∈ R can be arbitrarily chosen as long as (Λ+ cI) is negative definite. Bing-

ham distributions have been extensively used to represent distributions on quater-

nions [107, 108, 159]; however, to the best of our knowledge, never for the problems

that are of concern in this thesis.

Mode vs Rotation Averaging Oftentimes, for instance during clustering, one needs

to fit a Bingham distribution to a set of quaternions. Indeed, it is possible to show

that the mode of such a fit lies exactly at the Markley average of the quaternions

{qi } ∈ Q [185]. To estimate the mean we form the weighted dot product matrix:

(2.47) A = 1

nq

nq∑
i=1

w q
i (qT

i ·qi )

where nq is the number of rotations. The mean quaternion qav g is given by the eigen-

vector emax corresponding to the maximum eigenvalue of A, λmax . It is usually helpful

to imagine Bingham distribution as a heatmap over the sphere centered around a

particular (mode) quaternion.
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2.4 Projective Geometry in Computer Vision

Figure 2.5: Gödel, Escher, Bach,

Douglas Hofstader.

Projective geometry studies the properties of figures

which remain unaltered (invariant) in projection.

All the propositions in projective geometry occur in

dual pairs, meaning that one proposition infers the

other. Typically, duality is achieved by interchanging

the parts played by the words "point" and "line".

Less restrictive than the Euclidean geometry, the

non-metrical projective geometry exhibits two fun-

damental invariants. First, as the third axiom of

Whitehead posits, the notion that lines remain as

lines and the existence of intersection is preserved

under projection, giving rise to the incidence struc-

ture. The second one is the cross-ratio. We will now briefly summarize how projective

geometry is used in computer vision and its invariants.

Homogeneous coordinates Introduced by August Ferdinand Möbius [196], homo-

geneous coordinates give an algebraic model for doing projective geometry analgous

to the style of Cartesian coordinates of analytic geometry. Hence, they are of particular

interest to computer vision community - they allow common vector operations e.g.

translation, rotation, scaling and perspective projection, to be represented matrix-

vector products. For a point on the image plane p = (px , py ) one system of homo-

geneous coordinates is given by p̂ 7→ (px , py ,1) with the inverse map is written as

(α,β,λ) 7→ (α/λ,β/λ).

2.4.1 Cross Ratios

In its simplest form, cross ratio (CR) is defined for a pencil of lines passing through a

center O and intersecting two lines (`1,`2) at points {p1,p2,p3,p4} and {q1,q2,q3,q4},

respectively, where pi ∈R2 and qi ∈R2. This configuration is visualized in Fig. 2.6(a).

The cross ratio of 4 such collinear points is defined as:

(2.48) cr (p1,p2,p3,p4) = cr (q1,q2,q3,q4) = |p1p3||p2p3|
|p1p4||p2p4|
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Figure 2.6: 1D line (a) and 2D triangle (b) configurations for computing a cross ratio.
(c,d) plot the analytical and approximated distribution of cross ratios, respectively.

This invariant is naturally extended to 2D space [229], when the points are non-

collinear, but co-planar. In this case, the configuration of five points defines the cross

ratio using the ratio of product of triangle areas:

(2.49) cr2D (z,p1,p2,p3,p4) = ∆(z,p1,p2)∆(z,p3,p4)

∆(z,p1,p3)∆(z,p2,p4)

This is illustrated in Fig. 2.6(b). Clearly, one could generate multiple CR, by altering the

permutations of points. Thus, a set of points define 24 CR, of which only 6 are unique.

Theorem 2.1 ([2, 136]). The probability density function of 1D cross ratios have the

following analytical form:

(2.50)

fX (x) =


f1(x)+ f3(x) if x < 0

f3(x)+ f2(x) if x < 0 < 1

f2(x)+ f1(x) if 1 < x

f1(x) = 1

3

(
(2x −1)ln(

x

x −1
)−2

)
f2(x) = 1

3

( (x +1)l n(x)+2(1−x)

(x −1)3

)
f3(x) = 1

3

( (x −2)l n(1−x)+2x

x3

)
Similarly, it is also possible to define the cumulative distribution function (cdf). To

validate whether the practice follows the analytic finding, we have collected a large

dataset of random 1D cross ratios, and found out that also in practice, distribution of

a set of CR closely approximates the analytical one. Fig.2.6(c) plots the analyitcal PDF

of cross ratios and Fig.2.6(d) the estimated one over a large synthetic point dataset.

Joint invariants Even though [12] raises a contradictory claim, it is well known

that cross ratio is very sensitive to noise [170, 190, 191]. This sensitivity and the non-

uniqueness of single cross ratios, however, can be circumvented up to a certain extent
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by relying on multiple invariants, a set of cross ratios, extracted from multiple combi-

nations of input points [12]. Such a set is termed as the joint invariants, and defines

the point set uniquely up to a projective transformation.

2.4.2 Pinhole Camera Model

Figure 2.7: Camera Obscura.
Source: PhotoIon Photography

School https://www.photoion.

co.uk/blog/camera-obscura/

Pinhole Camera Model approximates the image for-

mation by assuming that light rays directed towards

the camera pass through a tiny aperture, a pin-

hole and intersect at an infinitesimally small im-

age plane, forming camera obscura, a flipped and

inverted projection.

In the most simplistic sense, a pinhole camera

is represented by four main parameters: The dis-

tance between the camera center and the image

plan, termed focal length is represented in pixels

( fx , fy ), and the point (cx ,cy ) where the principal axis hits the image plane, termed

principal point. These quantities can be conveniently represented by the intrinsic

camera matrix:

(2.51) K =


fx 0 cx

0 fy cy

0 0 1


We will ignore the distortions caused by the skew and optic characteristics. Taking into

account the position of the camera, a 3D point x gets projected onto the image plane

using the homogeneous coordinate representation:

(2.52) p̂ = K
[

R t
]

x̂

Finally the pixel p ∈R2 is obtained from p̂ by de-homogenization.

32

https://www.photoion.co.uk/blog/camera-obscura/
https://www.photoion.co.uk/blog/camera-obscura/
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2.5 Quadrics: 3D Conic Sections

Being generalizations of conic sections, a quadric is a hypersurface (of dimension

d) embedded in a (d +1)-dimensional space. The quadrics of concern in this work

concentrate on the zero set of an irreducible polynomial of degree two and d = 2.

Definition 2.5.1 (Quadric). Formally, a quadric in 3D Euclidean space is a hypersur-

face defined by the zero set of a polynomial of degree two:

f (x, y, z) = Ax2 +B y2 +C z2 +2Dx y +2E xz +2F y z +2Gx +2H y +2I z + J = 0.

Equation (2.5.1) can be written in the vector form as the coefficient-variable dot

product vT q = 0, with:

q =
[

A B C D E F G H I J
]T

(2.53)

v =
[

x2 y2 z2 2x y 2xz 2y z 2x 2y 2z 1
]T

Using homogeneous coordinates, quadrics can be analyzed uniformly. The point

x = (x, y, z) ∈ R3 lies on the quadric, if the projective algebraic equation over RP3

with dq (x) := [xT 1]Q[xT 1]T = 0 holds true, where the matrix Q ∈ R4×4 is defined by

re-arranging the coefficients:

(2.54) Q =


A D E G

D B F H

E F C I

G H I J

, ∇Q = 2


A D E G

D B F H

E F C I

.

Figure 2.8: Possible quadrics.

dq (x) can be viewed as an algebraic distance func-

tion. Similar to the quadric equation, the gradient at

a given point can be written as ∇Q(x) :=∇Q[xT 1]T .

Quadrics are general implicit surfaces capable of

representing cylinders, ellipsoids, cones, planes, hy-

perboloids, paraboloids and potentially the shapes

interpolating any two of those, as shown in Fig. 2.8

on the right. All together there are 17 sub-types [288].
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Once Q is given, this type can be determined from an eigenvalue analysis of Q and

its subspaces. Note that quadrics have constant second order derivatives and are

practically smooth.

Definition 2.5.2 (Plane Pairs). A quadric whose matrix is of rank 2 consists of all

points on a pair of planes: Q =Π1Π
T
2 +Π2Π

T
1 , whereΠ1 andΠ2 are the homogeneous

4-vectors representing the two planes. A quadric whose matrix is of rank one consists

of a single plane: Q =ΠΠT .

Definition 2.5.3 (Polar Plane). The polar planeΠ of a point x relative to a quadric Q is

Π= Qx. Reciprocally, x is called the pole of plane Π. Note that if Qx = 0, then the polar

plane does not exist for x; also note that for a point that lies on the quadric, the polar

plane is the tangent plane in that point.

Definition 2.5.4 (Central Quadric). A quadric is called central if it possesses a finite

center point c that is the pole of the plane at infinity: Qc ∼
[

0 0 0 1
]T

e.g. ellipsoids,

hyperboloids.

Definition 2.5.5 (Dual Quadric). A dual quadric Q∗ ∼ Q−1 is the locus of all planes {Πi }

satisfyingΠT
i Q−1Πi = 0. Quadric dual space is formed by the Legendre transformation,

mapping points to tangent planes as covectors. Every dual point represents a plane

in the primal. Many operations such as fitting can be performed in either of the

spaces [71]; or in the primal space using constraints of the dual. The latter forms a

mixed primal-dual approach. Note that, knowing a point lies on the surface gives one

constraint, and if, in addition, one knows the tangent plane at that point, then one

gets two more constraints. This view will help to reduce the minimal point necessity.

2.6 3D Rigid Registration: Iterative Closest Point (ICP)

ICP [28] is an iterative algorithm, which alternates between correspondence search

and rigid registration in order to find the best aligning rotation and translation be-

tween two point clouds. The basic form of the algorithm first hypothesizes a set of

correspondence pairs and then solves for the rigid registration problem relying on

these pairs. Correspondences are selected as the nearest point pairs belonging to

source and target point sets. ICP is a well studied topic and a vast literature exists
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building upon it [42, 65, 231, 302]. Here we briefly summarize the rigid registration,

which forms the backbone of ICP.

Definition 2.6.1 (Point-to-Point Metric). Point-to-point error measures the object

space distance, between the source P = {pi ∈R3} and destination Q = {qi ∈R3} point

clouds.

(2.55) Epp =
N∑

i=1

(
Rpi + t−qi

)2

Definition 2.6.2 (Point-to-Plane Minimization). Instead of directly minimizing the

object space distance, point-plane error [178] minimizes the distance from point to

the tangent plane at the corresponding destination point:

(2.56) Epl =
N∑

i=1

(
(Rpi + t−qi )T ni

)2

2.7 Point Pair Features (PPF)

Point Pair Features are anti-symmetric 4D descriptors of a pair of oriented 3D points

x1 ∈R3 and x2 ∈R3, defined as a map f :R12 7→R4 sending two oriented points to three

angles and the pair distance [87]:

f : (xr ,xi )T 7→ (∠(nr ,d),∠(ni ,d),∠(nr ,ni ),‖d‖2)T(2.57)

where d is the difference vector d = pr −pi , n1 and n2 are the normals at x1 and x2.

‖·‖ is the Euclidean distance and we always compute the angle between two vectors

as: ∠(v1,v2) = tan−1
(‖v1 ×v2‖/v1 ·v2

)
. PPFs can also be used to identify whether a

selected point pair lies on a known primitive or not [85]. For instance, two points live

on the same plane if:

(2.58) f(x1,x2) ∈
[π

2
−δ^,

π

2
+δ^

]
×

[π
2
−δ^,

π

2
+δ^

]
× [0,2δ^]×R

where δ^ indicates a tolerance on the angular component. Similar relations can also

be derived for spheres or other types of shapes [85].
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Figure 2.9: Model preprocessing. (a) Illustration of ambient occlusion computation.
(b) The ambient occlusion map visualized on the object. (c) Original vertices of the
CAD model. (d) Vertices prunned via ambient occlusion computations.

2.8 Ambient Occlusion Maps

The occlusion Ap at point p on a surface with normal n can be obtained by computing

the integral of the visibility function V :

(2.59) Ap = 1

π

∫
Ω

Vp (n ·w)dw

where Vp is the visibility function at point p, defined to be 0 if p is occluded in the

viewing direction w and 1 otherwise, and dw is the infinitesimal solid angle step of

the integration variable Ω. In practice this integral is approximated via rendering

the model from several angles and accumulating the visibility per each vertex. The

cosine weighted average is then reported as the vertex-wise occlusion value. In order

to compute the renderings, we try to choose a projection matrix, resembling the

real setting as much as possible. Nevertheless, the correctness of such synthesized

matrix is never an issue and very crude values are sufficient. Fig. 2.9a visualizes the

computation procedure. Fig 2.1(f) maps the ambient occlusion values to vertex colors

for the bunny object. Moreover, Fig. 2.9b depicts a different, industrial 3D model

colored by its occlusion map. We then use these occlusion values to prune the vertices,

with low visibility, that are either hidden, or are highly unlikely to be captured in real

scans - see Fig. 2.9, where Fig. 2.9c shows the original scan and 2.9d shows a case with

30% of the vertices removed.
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2.9 Robust Statistics

Many real-life optimization problems are subject to outliers one way or the other.

In pure forms of least square estimations, such out-of-model points easily bias the

solutions towards undesired minima. Robust statistics provide a simple framework

for addressing issues arising from outlying data. Following [123], given a non-linear

minimization of the form E (x) =∑
s∈S d(x,s), we introduce a robustifier ρ(·) and write:

(2.60) E(x) = ∑
s∈S

ρ
(
d(x,s)

)
where s ∈ S denote a set of observations, and x the variables to optimize for. We choose

ρ to be Tukey’s Biweight M-estimator as:

(2.61) ρ(r̂i ) =
r̂i (1− ( r̂i

c )2)2 if |r̂i | ≤ c

0 other wi se

where r̂i = ri
ŝ with ri being the current residual and c = 4.685. ŝ = 1.4826mad(r) is the

estimated robust standard deviation. mad(ri ) refers to the median absolute deviations:

mad(r) = median
(|r−median(r)|). Tukey’s M-estimator is aggressive towards outliers

and tends to penalize them whenever ρ(r) = 0.
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3
FIDUCIAL TAGS: RELIABLE GROUND TRUTH ACQUISITION

Obtaining accurate ground truth is crucial for assessing any computer vision system.

In the specifics of 3D, such ground truth usually takes the form of camera poses and 3D

points. Thus, an initial step to take, before delving into the procedures and techniques,

is to establish practical ways to acquire such validation data. We now explain the X-tag

system [34], that is a new fiducial tag design for such purposes.

Figure 3.1: Our markers, can be used in very

cluttered scenes.

Identification and pose estimation

of planar fiducial markers has a long

gone history in photogrammetry, aug-

mented reality and computer vision. 2D

planar markers, one common form of

fiducials, are the primary instruments

for obtaining reference coordinates in

controlled scenes. They were success-

ful in constraining the algorithms in

many tasks such as 3D reconstruction

and camera calibration [18]. These simple artificial landmarks can be designed in a

task specific way, and can be located with high speed, high repeatability and accuracy,

contrary to the natural features. In spite of all the developments in this field (see Fig.

3.2), practitioners still face the problem of mis-detected codes, low true positive rates,
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or inaccurate localization of the markers due to various distortions. Moreover, differ-

ent applications have different demands, requiring custom code designs. Some of the

available markers are not fully perspective invariant [279], while the others which have

this property either require a good estimate of the intrinsics [24] for getting the marker

pose or the detection complexity enormously increases with the increase of their

number [25]. In this work, we propose the novel X-tag as a flexible alternative, which

enjoys true projective invariance, high accuracy localization and fast identification. In

the core of the method, we use a random-dot style marker design, which is described

by a set of extended joint projective invariants, composed of multiple cross ratios and

intersection preservation constraints. We then use a geometric-hashing framework,

as illustrated in Fig. 3.3, to index a set of pre-generated dot positions. Simply, this

forms the marker database. The decoding is cast a retrieval problem, in which the

same features, extracted from query tags, are matched across the database through an

inverted file. The correct matches are subject to further verification using Homogra-

phy constraints. In contrast to previous works, which are also based on random dot

patterns [279], our marker is truly projective invariant and thus is robust to viewpoint

changes. This lets us to find more correct tags, enabling more advanced applications

such as camera calibration, bundle adjustment and 3D object reconstruction. Due to

the adjustable size of the marker, we could design codes which are resilient against

radial distortions. Moreover, thanks to the increased number of internal dots, we

could obtain more reliable pose estimates, and thus more reliable initialization for

procedures such as bundle adjustment.

Our design advances on the good traits of both its ancestors: The square and

circular tags. It is easier to detect than circular tags, while being even more accurate

than the square counterparts. We apply X-tag to the problem of camera calibration,

bundle adjustment and 3D reconstruction, advancing the state of the art.

3.1 Prior Work

Markers enjoy a wide literature in computer vision and augmented reality. While the

history is rather unclear, the current simple targets are square markers. They typically

contain the description in the inner region of the square as a form of binary code,

or a unique image/geometry. AR-Tag [95], Aruco [101], ARToolkit [145] and AprilTag
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(a) (b) (c) (d) (e) (f)

Figure 3.2: Markers belonging to different methods. (a) AR-Tag, (b) Intersense, (c)
Pi-Tag, (d) Linearis, (e) Rune-Tag, (f ) Ours.

[213] are some examples. On the pro side, these targets are very efficient to locate and

identify either by correlation methods, or by a binary decoding schemes. However, the

use of the squares, rectangles and lines limit the accuracy when detecting subpixel

locations on the markers. This makes these markers inapplicable to certain scenarios,

requiring high accuracy, such as camera calibration. Moreover, the necessity to spot a

quad (collinearity) causes the marker to get affected from the radial distortions and

occlusions easily. Thus, some of the aforementioned studies had to explicitly address

such issues.

Motivated by the limitations of corner features of the square tags, the next genera-

tion fiducial tags made use of circular features, which are more accurate to localize and

less sensitive to noise. Intersense [205] combines data-matrix concept with concentric

circles to create bar-coded markers. Their design allows generation of 215 codes for

identification, but the pose estimation remains to be problematic [145]. Pi-Tag [25]

uses a fiducial design composed of ordered circles. The detection benefits from cross-

ratio invariants to handle perspective distortions. While, this approach is promising,

the matching of cross-ratios is an issue, and the worst-case complexity is reported

to be O(N 4), which could quickly become impractical. Inspired by [206], random

dots [279] choose to approximate the projectivitiy with affine constraints, resulting

in an easier and more stable feature. The authors also devise a geometric hashing

[292] framework to cast the code reading problem to a retrieval one. Yet, random dots

still exhibit affine features and cannot handle full projectivity. In addendum, due to

the frameless design, a large number of dots are required for reliability, increasing

the computational load. In the recent state-of-the-art work [24], authors of Pi-Tag

take a different standpoint proposing RuneTag, a non-concentric and disconnected
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Figure 3.3: Our pipeline is composed of an online and offline stage. In the former, we
index the markers using the joint invariants into a single hashtable (inverted file). In
the retrieval stage, we query each detected marker-like blob. Each query consists of
casting votes for various invariant configurations obtained by five or more points.

arrangement of circular marks around multiple rings, invariant to the projective trans-

formations. This reduces the burden imposed by the feature extraction. The result is a

very robust and occlusion tolerant fiducial marker, being reasonably fast to detect. A

common point in all three designs of [24, 25, 279] is the fact that the tags are composed

of individual circles, which link to form the whole. While this eases the processing

stage, introduction of clutter, especially in the form of false ellipses causes the runtime

to significantly increase, if not fail the detection completely. Another observation is

that, many of the codes are designed to be large and redundant, i.e. close-by placement

of individual ellipses are prone to merge under camera noise or blur, especially in

distant views. This is not desired for applications targeting camera calibration, as it is

important to distribute as many markers in 3D space as possible. The circular fiducials

are also the method of choice, when implementing photogrammetry systems. Linearis

[1], Aicon3d [5] or GOM TriTop [109] are some of those end-to-end measurement

systems. The exact algorithms used in such products are not publicly available and

hidden. Yet, we are aware, for example, that Linearis cannot handle large perspective

distortions.

42



3.2. X-TAG

1

3

0

0

X
01

03

(a)

1

3

0

0

X
01

03

(b)

Figure 3.4: (a) Cross ratio and sector information visualized on an X-tag. (b) Both
features are preserved under projective transformations.

3.2 X-tag

Design and description X-tag consists of a random arrangement of several (> 5)

black circular marks, distributed around a black central dot and on a white background.

The design includes an additional black frame, acting as a contrast agent to ease the

localization. The actual shape of the frame is irrelevant and can also be designed to be

circular. In addendum, two white circles are placed on one side of the base frame. They

are used for multiple purposes of feature extraction, verification and pose estimation.

The marker is shown in Fig. 3.4. We describe our X-tag via a new extended invariant

set (EIS). EIS is composed of two parts: The cross ratios and sector information. The

former is the set of all cross ratios that can be computed from the inner dots, taking the

central dot as the 5th point. Fixing such a point increases the stability as opposed to

complete randomness [279]. To further boost the discrimination power, we introduce

the latter descriptor, sector type, which relies on the preservation of the intersection of

lines. Formally, we partition our fudicial into 4 regions. 4 partitions are given birth by

the intersection of two lines formed by joining the outer white dots, with the center

point. These lines also separate the large inner white circle into 4 partitions. For each

CR computation, i.e. for each 4 points taken out of the randomly generated points,

our descriptor encodes the presence of the points within the sector. This can be seen

in Fig. 3.4. In particular, the sector type s = {x ∈ R : 0 ≤ x ≤ 500} is computed as the

polynomial expansion s(p1, p2, p3, p4) = s1α
3+ s2α

2+ s3α+ s4, where si is the number
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of points out of {p1, p2, p3, p4}, lying within sector i . For our configuration we setα= 5.

Note that due to the intersections being preserved, this is a true projective invariant.

Our final descriptor is the concatenation of the two distinct invariants described here,

forming the set D = {di = {si ,cr i
2D }}.

Tag localization The first step in the pipeline is the low level image processing, in

which we identify and localize the X-tag candidates. To do so, we apply a simple image

processing algorithm. As image processing is not the scope here, we give only a brief

overview: First, the dark regions are selected as marker candidates. Then, a connected

component labeling discards the blobs, which do not satisfy a relaxed set of constraints

(area and dimensions). Later, each candidate blob is tested for inclusion of a light (e.g.

white) region and sufficient circular points. We also check for the two white dots, and

the center dot, explicitly. At each step of this operation, elliptical regions are selected

via the properties of the elliptic axis. Note that, survival of false positives at this stage

are likely to be suppressed in subsequent retrieval and verification.

Indexing markers and database creation For each marker, we obtain Di , a long, ex-

tended descriptor. Indexing such a descriptor for nearest neighbor retrieval purposes

is not always trivial. Here, we explain how we benefit from the special nature of our

descriptors to use them in a geometric hashing framework.

The basic idea behind our algorithm is that we quantize the descriptor for each

marker sequentially and store the quantized codes in an inverted file, along with the

occurrence information ci and the marker id mi . ci also helps us to compress the

inverted file, as multiple occurrences of the same marker are stored as a single entry

in the hashtable. The Indexing part of Fig. 3.3 illustrates this scheme.

Because the probability distribution of cross ratios is highly non-linear, a simple

uniform quantization of the features wouldn’t work, i.e., many cross ratios would fall

in the same bin. Thus, we rely on a quantization scheme, which is aware of the joint

feature distribution (see § 2.4.1). Our essential idea is to create a binning such that the

integral of PDF in each bin is roughly equal. Formally, let f denote the PDF, F the CDF

and F−1 the inverse CDF of cross ratios. Because we now (or can) estimate both F and

F−1, we choose to map any given cross ratio cr via CDF and to perform a uniform
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quantization in this domain. Formally a b −bi t quantized value fq [cr ] is obtained by:

(3.1) fq [cr ] = b

⌊
F (cr )+Eq [cr ]

b

⌋
, Eq [cr ] ∼U

([− δ

2
,
δ

2

])
Eq [n] is uniformly distributed, due to the assumption that the errors are uniformly

spread into the bins. In our implementation, we prefer to use the approximate CDF

F∗, instead of the analytical F as F∗ is a better representative of the data-subset.

Such quantization requires a look-up over the CDF, which we perform via binary-

search. Faster implementations might benefit also from interpolation search, as the

distribution is available. By quantizing directly on F , we could avoid using F−1 to map

back to the PDF, f . However, Fig. 3.3 plots the partitions in the PDF domain.

Contrary to cross ratios, the sector type is a simple uniformly distributed integer

and is very friendly for indexing operations. Our hash index is simply hcr = {fq [cr ], scr }.

Identification of tag IDs Once the features are extracted for all combinations of

points {pi } in a candidate scene, we could resolve the tag id using the inverted file. To

avoid the distance computation overhead and to retain the robustness, we achieve this

through a procedure, similar to Hough voting. Each quantized feature hcr retrieves a

set of probable markers from corresponding bucket and casts a vote to the correspond-

ing marker id. The vote is proportional to the occurrence in the database. Ideally, after

voting for all joint invariants, the maximum vote reveals the marker ID.

Verification and pose estimation Even though the voting is very robust, it doesn’t

always guarantee the best solution. For that reason, we retain a set of surviving hy-

potheses for further verification. Moreover, the match-ability of the marker necessi-

tates the correct identification of only three points: The center and two support points.

This leaves us with one unknown to determine the projective transformation. Note

that, using conics for pose estimation might be bad in this situation because it is very

likely that a single ellipse would appear as a small dot.

To find the ID of the 4th point, we could simply enumerate over all the possible

point combinations and evaluate the reprojection error, but to save computation,

we instead apply similar voting procedure as we use for matching of marker IDs. For

each dot in marker cross-ratios with all other points are calculated and stored in

the hashtable. On the verification stage the voting for dot ID is performed similarly
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to voting for the marker ID using all cross ratios for given dot. Resolving the corre-

spondences finally becomes more efficient since we verify the best hypothesis first.

Formally, the fourth landmark is found via:

(3.2) p∗ = argmin
p

n∑
j=1

‖H(p)m j − r j‖

where H(p) is a homography found after matching reference point to point p via voting

procedure, m1..n are dots locations inside marker, r j ..n are their correspondences in

reference frame. Under occlusions or noise, a one-to-one correspondence is enforced

for robustness. H is computed from 4 points using DLT algorithm [123]. The final pose

is estimated using PnP algorithm [164] using all dot coordinates in marker. This is

superior to standard square tags in two aspects: 1. The used dots are circular and are

more accurate to localize. 2. We have always Nd > 4 dots in our marker. As we utilize

all the found dots, our estimation is expected to be more correct.

Multi-camera bundle adjustment A useful application area for X-tag is camera

calibration and bundle adjustment[272]. We propose to use X-tag as a calibration

target and compute the extrinsics and intrinsics with BA. Our idea is to make the

user entirely free from the using precise targets. We rather rely on the central ellipse

of X-tag to give us the image cue. Our approach is similar to [73], but we do not

constrain ourselves to planar targets. Given a set of images, captured either from

moving cameras, or changing scenes, we run the following optimization:

min
Π,X

m∑
i=1

n∑
j=1

ρ
(
wi j d(Πi X j ,xi j )2)+ k∑

i=1

k∑
j=1

(d(Xi ,X j )−σi j )2

where X1..Xn are 3D points,Π1..Πm are projection matrices of m cameras, xi j is image

coordinate of point j for camera i . The distance d(·) between any two points is subject

to a weighting wi j which based on the detection quality of image points. ρ(·) is a

robust Cauchy norm. We compute its scale parameter from the elliptic axis properties.

The second term is regularization that brings the reconstructed scene to metric space

by keeping distance between known 3D points (Xi ,X j ) at the value σi j . We initialize

this BA procedure from the pose of the most frequently visible marker. The pose is

estimated using the inner random dot locations, w.r.t. the canonical marker frame. In

BA, we simultaneously solve for (Π,X), using Brown distortion model [49].
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Figure 3.5: Shots from synthetic scenes for different noise, blur and radial distortion
conditions.

3.3 Experimental Evaluation

We assess the performance of our method with extensive qualitative and quantitative

evaluations. We first define the evaluation metrics, then perform ablation studies on

synthetic data and finally, apply X-tag to multiple applications utilizing real datasets.

In this section, our evaluation metric is based upon the individual errors of the distinct

pose components (rotations and translations).

3.3.1 Experiments on Synthetic Data

We first evaluate the validity and robustness of our approach on a synthetic set. This

way, we observe the performance under various degradation and capture the behavior

of parameters. For this stage, our synthetic data is composed of NM = 2000 markers.

For testing, we sample 200 of this set and combine it with 20 other markers, which are

outside of the database. The test data is subject to 50 warps per image, each having a

different augmentation. These augmentations include blur, additive noise and radial

distortion. The synthesized images are shown in Fig. 3.5.

Effect of hashtable size As the initial stage of experimentation, we would like to

tune our system to use the optimal parameters. We asses how the performance, as

well as the computation time is affected with the varying number of markers, number

of bins and number of dots. Therefore, we conduct incremental evaluations. First, we

want to find the optimal size of a hash table for the marker set. Ideally, the true marker

ID should get the most votes from the hash table. So by tuning the hash table size we
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Figure 3.6: (a) Maximum percentage of votes and deviation from next best place in
voting table for different sizes of marker databases (b) Votes for markers with different
number of dots using hashtable with 100 bins (c) Matching time for one marker using
optimal size of hash table (d) Marker detection rate on synthetic scenes

aim for the maximum percentage of votes for marker with the highest rank and largest

deviation from the second best. While the desired number of dots is a parameter for

our method, within the context of experiments, we fix it to 7. On our synthetic set, we

conduct the aforementioned performance analysis and plot this in Fig. 3.6(a). It is

visible that independent of the database size the optimal number of bins for markers

with 7 dots is 100. It is interesting to see that only the number of cross ratios for one

marker influences the optimal hash table size.

In a further experiment in Fig. 3.6(b), we fix the number of markers in our database

to 2000 and also the hashtable bin sizes to 100. By varying the number of dots we could

see that having 100 bins for markers with 7 dots will provide optimal voting results

for that configuration. It is therefore immediate that when more dots are desired, the

hashtable size should be tuned accordingly.

Next we evaluated matching time for markers with optimal hash table size. The

time of matching depends both on number of cross ratios for one marker and the
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(a) (b) (c)

Figure 3.7: (a) Images for checkerboard calibration and calibration with X-tag. (b)
Focal length estimation (c, d) Estimation of principal points (x, y), respectively.

number of markers in database. Matching one marker takes O(n log(b)+bN ) time

in worst case, where n is number of cross-ratios, b - number of bins, and N - size

of markers database. The matching time for markers with 5, 7 and 10 dots for Intel

i7 3.20 GHz processor is shown on Fig. 3.6(c). In practice matching a single marker

takes less than 3ms, given that in real life, a database of 2000 markers is more than

sufficient. Note that, thanks to the grouped inverted file structure and the quick voting,

our computational time only marginally increases even when the database size is

significantly increased. In that manner, our approach is very scalable and therefore

amenable for real life applications requiring an abundance of fudicial tags.

Robustness to image distortions We assess the robustness (as detection accuracy)

to different noise and perturbations and the computational performance in Fig. 3.6(d).

The x-axis shows the image quality, which is gradually reduced by different augmen-

tations. For real-life scenarios, quality level hardly exceeds 3. It is evident that while

X-tag is generally robust, it is least affected by the blur. Increasing noise would have

the most severe effect, while radial distortion is handled moderately.

3.3.2 Real Scenarios

Robustness to viewing angle To quantify the robustness under perspective changes,

we print 4 of each RuneTag[24], Aruco[101], ARToolkit[145] and X-tag on a common

paper as shown in Fig. 3.6(e). We image 4 different rotations of this pattern in varying

distances and from severe (8◦) to moderate (25◦) camera angles. We then run each

detector and compute the overall detection rate. The results are plotted in Fig. 3.6(f).
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It is shown that while most methods perform very well, ours is slightly above all others,

justifying the good detectability. RuneTag [24] and RandomDots [279] are not taken

into this plot because: 1. RuneTag circles quickly get invisible with the increasing

distance and tag starts to under-perform. 2. RandomDots are only robust up to affine

warps and cannot handle perspective variations. Thus, the detection rate appears to

be low for this experiment. While the square fiducials are known the best for this type

of challenge, our circular tag still outperforms the rest.

How reliable is the estimation of intrinsics? As explained in §3.2, our method is

suitable for complete bundle adjustment, where the intrinsics and extrinsics are

jointly minimized. While it has always been a challenge to assess the accuracy of

calibration (as exact principal point and focal length are not directly observable), we

argue that, it is more important to obtain repeatable estimates, rather than accurate

ones i.e. one could always use an offset to compensate for biases, once the repeatibility

is achieved. We, therefore, use a slightly unorthodox experimentation and run our

bundle adjustment multiple times for intrinsics estimation, repeatedly. We perform

the same test with a OpenCV checkerboard calibration [45], which seems to be the

de-facto standard in computer vision. The number of detected corners roughly equate

to the number of detected ellipse centers. Fig. 3.7 plots our estimations along with

the ones from checkerboard for principal point, as well as focal length. The standard

deviation overlays the curve. It is apparent that our results are more deterministic

and less prone to initialization errors, as well as errors in feature point computation.

The deviation plots indicate that even with small number of images our estimations

are more reliable than the standard techniques. Note that, an analogous experiment

shows a similarity between OpenCV’s checkerboard method and RuneTag calibration

[24]. It is also worth mentioning that while both OpenCV and RuneTag rely on the

availability of the 3D model of a calibration pattern, we are completely pattern-free

and our markers could be positioned anywhere in the observed space.

Evaluation of pose estimation Here, we evaluate the power of a single tag for esti-

mating extrinsic pose. For that, we set up a scene of 80 markers composed of 40 Aruco

and 40 ours as shown on Fig. 3.9. This scene is then viewed from 100 distinct camera

locations, including viewpoint variations. Afterwards, we run our bundle adjustment
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Figure 3.8 Figure 3.9 Table 3.1

Aruco Ours

Rot Err 0.0216 0.0145
Tra Err 0.0091 0.0067
Repr Err 0.2472 0.0694

Figure 3.10: (left) Scene setup for intrinsic calibration. (middle) A screen-shot of a
setup for extrinsic pose estimation. (right) Errors for the bundle adjustment scenario
of the image in the middle.

proposed in §3.2 on Aruco markers and our markers separately and multiple times.

We always initialize the adjustments by using the pose of one of the markers selected

as a reference. We deliberately alter the selected reference over different BA runs to

reduce the selection bias. BA procedure corrects for 3D locations as well as camera

poses. Finally, the refined pose of the selected reference tag is compared against the

initial estimation, both for Aruco and ours, disjointly. The difference in these poses

is naturally the computed update by BA. The smaller the update is, the more correct

the initialization, and therefore the better the estimation of extrinsics from a single

marker. The results, averaged over a set of runs, are shown in Tab. 3.1 for the scene in

Fig. 3.9. The findings indicate that our markers are much better at providing camera

pose than Aruco. The reason why the reprojection error enjoys a relatively higher im-

provement is because it absorbs both the errors on the pose and on the 3D structure.

An improvement of both increases the impact on the reprojection.

Object reconstruction performance At last, we evaluate our method for the prob-

lem of 3D object reconstruction using depth sensors. Our procedure is similar to

KinectFusion [208], however, we replace the ICP (iterative closest point) [28] stage

with poses coming from X-tag detection, and perform the conventional SDF-fusion

[72]. This way, the object is not needed to be tracked and we could operate with only

a handful of scans. Our setup consists of Teddy object, which is a 3D print from an

ideal CAD model. The object is positioned on a turn-table sequence. The tags are

distributed around different regions of the space. Because the state of the art fiducial

tag for object reconstruction is RuneTag [24], we evaluate only against this method.
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Figure 3.11: Assessing RuneTag and X-tag in reconstructing Teddy. Qualitatively and
quantitatively X-tag leads to a better reconstruction.

Thus, we augment the scene with RuneTag marks. A shot from this setup can be viewed

in the first column of Fig. 3.11. Following the sequential image acquisition, we then

run our bundle adjustment both for our tags and for RuneTag. Note once again that,

X-tag BA assumes neither camera calibration nor an apriori 3D model, while RuneTag

is designed to operate best on calibrated settings (While RuneTag could also handle

uncalibrated case, this capability depends on an enumeration over all possible focal

lengths until a reasonable estimate is found. We consider this to be still calibration

dependent.). Therefore we initialize RuneTag with the correct bundle adjusted intrin-

sics and let it estimate only the camera poses. BA output provides us both refined

poses and point coordinates. In this stage, we use only the poses and discard the 3D

structure. We retrieve this structure from the depth images of the 3D scanner.

We convert the absolute poses to the relative ones and starting from an initial

volume, we run an SDF Fusion to capture the final 3D reconstruction. Thanks to the

presence of the ideal model, we compare both results to the ground truth. These

comparisons are depicted in Fig. 3.11. The colors are associated to the unsigned

error magnitudes. Because our markers are located on non-coplanar regions of the

space, they are better at binding the 3D transformation. This demonstrates that, better

geometric constraints are more favorable than the availability of prior calibration
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targets. In the end, our bundle adjusted 3D points can act as calibration rigs.

3.4 Discussion and Use in Sparse Reconstruction

X-tag is a flexible tag amenable for model-free calibration, pose estimation and 3D

reconstruction. It is truly invariant to projective changes, detectable in high clutter

with reasonable robustness to radial distortions. Moreover the matching time of a

single marker is extremely fast and the devised method is suitable to scaling large

marker sets.

All the aforementioned attributes motivate us to use X-tag like markers in collect-

ing ground truth poses and obtaining sparse surface reconstruction. These would be

valuable in 1. Calibrating non-overlapping cameras by creating marker fields. 2. Mea-

suring sparse keypoints in 3D scenes for ground truth capture in difficult scenarios. In

the next chapter, we will give an application where the problem of online, real-time

3D coordinate measurement of manufactured parts is considered.
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SPARSE 3D RECONSTRUCTION FOR ONLINE COORDINATE

MEASUREMENT

Today, every end product, present in our daily lives goes through an intense manufac-

turing process. Under the hood, significant effort is put on delivering products without

flaws, which meet the desired standards. Dimensional monitoring has become an

important part of these manufacturing processes due to the gradually advancing stan-

dards in many sectors, such as automotive (chasis), flight (wings) or energy (turbines).

The welded components found on the backbone of all these high-end products are

sensitive and require careful manufacturing and thus, careful quality control. The

de-facto solution to inspect these critical parts relies on the contact-based CMMs

(coordinate measuring machines), which are expensive, hard to maintain and slow to

operate. These machines can neither be installed on the production lines nor provide

100% statistics on the manufactured parts. Such lack of online inspection coerces

many assembly lines to revert to mechanical fixtures and apparatus to verify the qual-

ity of manufacturing. This has many drawbacks. First of all, notwithstanding the cost

of assembling mechanical control fixtures, sustaining the precision of such assembly

over the long term requires significant amount of maintenance effort. Yet, no informa-

tion on errors or statistics could be provided by the fixed control equipment and the

inspections cannot be documented. Last but not least, such inspection necessitates
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(a) (b)

Figure 4.1: (a) Sample parts of interest in this work. (b) Images captured by the setup.

an operator constantly engaging in the production process.

The bottleneck caused by the current quality control procedures is addressed by

Tuominen as the lack of reliable, accurate and generic metrology / photogrammetry

techniques, which are amenable to be installed on production lines [276]. Tuominen

further shows that the ultimate quality control performance is achieved when the parts

are either fully inspected or no inspection is carried out at all. This makes CMMs an

unviable option. While the industry suffers such drawbacks, the quality requirements

imposed by the consumer market keep demanding more and more, stimulating the

research on online 3D inspection [179].

This chapter presents a thorough methodology on the research and development

of an inspection unit, which addresses all of the aforementioned downsides. Our

system is composed of multiple static cameras, calibrated to a global coordinate

frame, being able to measure arbitrary geometrical structures. Our algorithms are

novel and carefully designed to fit the accuracy requirements. The resulting system

is accurate within acceptable error bounds and flexible, in the sense that the design

can be adopted to the inspection of different parts with minimal modifications to

the software. The entire implementation cost is lower than a CMM, while the capa-

bility of inspection is 100%, saving us from the sampling requirement. We present

quantitative comparisons with the industry-strength commercial metrology systems
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by evaluating our approach against an optical metrology unit (ATOS) and a standard

CMM (Hexagon) both for calibration and measurement. We also present our repeata-

bility values along with the actual measurements. Finally, we demonstrate that our

timings clearly outperform the state of the art, making the system applicable to online

inspection. See Fig. 4.1(a) for the parts we can inspect as well as the images of the

measured geometries.

The contributions of this chapter are three-fold: First, we propose an affordable

and effective way to calibrate a muli-camera systetm, which is composed of local and

global camera networks. We base our calibration on bundle adjustment and global

registration of fiducial tags, as explained in Chapter 3. Secondly, we develop a novel,

robust, multi-view projective CAD registration procedure along with a multiview edge

detection scheme. We show that this new approach is real-time capable, while not

compromising accuracy. We review in detail the implementation aspects and draw a

complete picture in the design and realization of such a multi-view metrology unit.

Finally, we carry out extensive experimental evaluation, in comparisons to existing,

state of the art metrology methodologies.

4.1 Prior Work

Optical metrology enjoys a history of over 30 years. The different aspects of the issue

such as calibration, triangulation, stereo reconstruction or pose estimation have been

tackled many times in computer vision literature.

Analyzing the colinearity relations, photogrammetrists were the first to use image

data to conduct measurements [177, 241]. Computer vision tried to improve the lower

level sub-problems such as calibration [275, 311], pose estimation [237, 265] or SLAM

[19]. In spite of the vast amount of literature in computer vision, the care for accuracy

and precision is not very well established in such works.

Many commercial metrology software exist with different application areas 12.

While being highly accurate, some of these software are not capable of measuring

generic CAD geometries, but rather rely either on feature points or pre-defined mark-

ers. In contrast, the tools which could recover arbitrary 3D geometries cannot operate

1http://www.photomodeler.com/
2http://www.gom.com/3d-software/atos-professional.html
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on generic prior 3D models. Even today, a well described, truly capable machine vision

technique to automate the process control remains to be intact [179].

Unlike the commercial arena, development of accurate and reliable close range

machine vision systems is rather unexplored in academia [179]. Jyrkinen et al [141] de-

signed a system to inspect sheet metal parts, but their approach cannot be generalized

to arbitrary geometries. Mostofi et al.[201] target a similar problem like ours. Their

technique is dependent on human intervention and utilize a single moving camera.

Such choice is far from realtime concerns. Yet, authors report the visibility of measure-

ment points from 6 cameras, which drastically increases the number of views and the

effort for measurement. Moreover, they report an accuracy of 0.5mm even when the

measurement points are visible in 6 views. Such accuracy is well below what is achiev-

able today [280]. Bergamasco et al.[26] developed a novel method to precisely locate

ellipses in images, but their method involves perfect overlap of views and doesn’t

generalize to measurement of arbitrary 3D shapes. Similar to our work, Malassiotis

and Strintzis developed a stereo system to measure holes defined by CAD geometries

[184]. While posing the CAD fitting problem as an optimization procedure, just like

ours, they make use of explicit primitive modeling, which restricts the measurement

capabilities. The 3D primitives are re-generated at each step of the optimization and

this comes at the expense of computational complexity, degrading the real-time (or

online) capabilities. Their approach is also not applicable to triangulate arbitrary 3D

geometries. Moreover, all of these approaches assume a perfect calibration and lack a

well established methodology to calibrate the camera networks.

Our system is uniquely positioned in the application field of non-contact multi-

view measurement, which was shown to be one of the most accurate metrology

methods. It is tuned for inspection of points of interest [180] and retrieves its power

from the developments in low level and geometric 3d computer vision e.g. [28, 123].

4.2 Proposed Approach

System setup Our system consists of 48 The Imaging Source cameras providing

1280x960 pixels at 30 fps. Depending on the installation distance, we choose either

25mm, 35mm or 50mm industrial lenses. The scene is illuminated via 10 white global

LED lights, installed on the external skeleton. The cameras are positioned such that
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Local Camera Groups

Measurement
Points

Camera Network

Figure 4.2: System setup. Figure depicts the locally overlapping camera groups forming
a global camera network. The shown CAD model belongs to the actual part.

a point of interest is visible to at least 3 cameras. We will refer to these points of

interests as the measurement points Pi ∈R3 and to such a local camera group as the

local camera network Ci = {[Ci
1,Ci

2, ...,Ci
k ] : k < N }. For the sake of accuracy, it is highly

unlikely that a single camera would capture different measurement points and thus the

local camera groups remain independent (no overlap and thus no direct calibration

exists between camera groups). The set of these K local camera groups form the global

camera network C = {C1,C2, ...,CK }, in total composed of N cameras. Eventually, our

system consists of multiple local camera networks, which are calibrated to form C, the

global camera network. In this sense, the entire network is arranged in a hierarchy, as

shown in Fig. 4.2.

Target parts For demonstration purposes, and specific to our application, we aim

to inspect 15 critical points (Pi ) on a 2m long and 80cm wide metal industrial

automotive chasis. The part is shown in Fig. 4.2. Even though our setup is capable of

inspecting arbitrary CAD models from different manufacturing areas, for the purpose

of clarity, we will stick to the automotive application. Typically, the geometries to

be measured, as well as the CAD models are known beforehand and the accuracy is

limited to 1-1.5%.
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Image acquisition We control all cameras over a GigE Network (1000Mbi t/s). The

lights are strobed to be in synch with the exposure. This prevents the multi-threaded

capturing. We initialize each local network group per each measurement, and utilize

the full Gig-E bandwidth (using 30fps/camera). This optimizes the speed and dura-

bility. Some images of the measured points, acquired by our system during a single

runtime are shown in Fig. 4.1(b).

4.2.1 Calibration

We calibrate all cameras intrinsically and extrinsically to the same global coordinate

frame. Intrinsic calibration is carried out prior to installation using the standard

methods [43, 125]. We use calibration plates made up of 3mm circular reflective dot

stains. On the other hand, considering the extremely non-overlapping nature of our

cameras, and narrow depth of fields, the task of extrinsic calibration is significantly

difficult and crucial.

Extrinsic calibration We use a pre-manufactured calibration object (reference body),

The Calibrator, to calibrate the absolute poses. Counter intuitively, this object is not

precisely manufactured and does not use expensive material or components, but only

acts as a mounting apparatus for circular dots, forming the relation over different

camera groups. It is produced at a CNC machine such that when it is imaged by the

multiview system, sufficient 3D reference points (calibration dots) would be visible

on each camera. The shape resembles the rough approximation of the part to be

measured. We then manually attach random circular markers so that enough overlap

is created. The calibrator (virtually and physically) is shown in Fig. 4.3.

The calibration grids and random dots attached on the calibrator are first recon-

structed and bundle adjusted by taking multiple (∼ 128) overlapping shots with a

high-resolution SLR camera. This is done with a system similar to the one described

in Chapter 3. The optimization is solved with Google Ceres [4].

After creating The Calibrator, we extrinsically calibrate the cameras by imaging

the calibration plates multiple times for each view. During this repetitive stage, at

each inspection, the positions of the calibration plates are computed and subsequent

measurement errors are recorded. Once enough measurements are collected and
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(a) (b)

Figure 4.3: The Calibrator (a) 3D model. (b) Manufactured. Sparse random dots (inter-
reference points) exist in the real object, whereas they are absent in the model. They
do not contribute to the extrinsic calibration, but serve as a guide for the optimization
of the global reference frame. On the target part, instead of the calibration plates, lies
the measurement points.

repeatability values become acceptable, the multiview calibration follows. This way,

we make sure that enough variance of positioning is covered. Such extrinsic calibration

is performed as a succeeding offline bundle adjustment, where the poses and 3D

structure are refined simultaneously [126, 142].

Learning systematic errors Finally, the so-far neglected non-rigidness effects, mis-

manufacturing and other systematic errors are compensated. To achieve that, we

employ an error correction (bias reduction) procedure, in principle similar to [127,

219, 236]. While these methods were designed to perform on CMMs, we generalize the

technology to optical inspection via a learning approach. Initially, we sample a set of

carefully-manufactured 3D parts. We measure each of those on various CMM devices,

repeatedly (5 times for each) to cancel out the biases. If the desired precision is verified,

the median measurement per point is taken as the ground truth. We then measure

the same parts with our system, repetitively, using the technique described in § 4.2.2.

Based on the differences (errors) of two methodologies (CMM and ours), we train a

Support Vector Machine [70] for regression. Our features are the concatenated 3D

point coordinates. The responses (outputs) are then the differences of these measured

coordinates to the collected training data i.e. coordinate-wise regressed offset from

ground truth. Thanks to the acceptable mechanical precision, we could easily cover

almost all the entire space of 3D variations.

61



CHAPTER 4. SPARSE 3D RECONSTRUCTION FOR ONLINE COORDINATE

MEASUREMENT

4.2.2 Measurement

Our measurement stage follows 4 steps: Acquisition, extraction of geometries of in-

terest, fitting 3D models and triangulation. The part is positioned with a linear axis

conveyor belt, giving us a good initial pose. This section will focus on extracting region

of interests and fitting CAD models. Note that, we are interested only in measuring the

3D center coordinates, but not the dimensions. Following the determination of 2D

spatial interest points, we obtain the real 3D coordinates by triangulation.

4.2.2.1 Geometry Extraction

As the goal is to measure both the geometric primitives and arbitrary edges, we design

a generic geometry extractor, which simultaneously determines the edges of interest

in multiple views. We will refer to every connected edge fragment, which cannot be

represented by a single geometric primitive, as an arbitrary contour. With arbitrary

contours, one cannot utilize prior information of geometry. We rather rely directly

on the edges to obtain the matching structures across multiple views. Our procedure

starts with a spatial sub-pixel accurate edge detection performed individually in all

views of a local camera network, using a 3r d order contour extraction technique [258].

The resulting edges are smooth, continuous and accurate up to 1/20th pixel. Due to

edge detection in individual frames, we do not have a representation of correspon-

dence information. In general, obtaining correspondences across multiple images

involve stereo matching algorithms, which are computationally expensive. Luckily,

our system is calibrated and we are not interested in exact correspondences but rather

in sets of consistent points across views (correspondence candidacy). In other words,

we seek to find a set of segmented edges per each view. The real correspondences are

then generated through the fitting algorithm in § 4.2.3.

Multi-view edge segmentation Given a multiview setup, the essential matrix, re-

lating view i to view j can be computed by Ei j = [ti j ]x Ri j , where Ri j is the relative

rotation and [ti j ]x is the relative translation between views i and j . Then ∀pi ,∃li−> j

pi
k

:

li−> j

pi
k

= Ei j pi
k , where li−> j

pi
k

is the epipolar line in view j , obtained by back-projecting

k th point in i th view (pi
k ). From the epipolar constraint, li−> j p j

k = 0 holds if p j
k lies on

li−> j . Next, we derive an algorithm for a correspondence search in multiview images.
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Figure 4.4: Edge pruning. The figure demonstrates a 3-view scenario: The edges in
the first image Ik−1 (e.g. red point) are transferred to view Ik . The edge points of Ik

lying on the epipolar line (red) that have consistent epipolar gradient features ∇e are
selected and transferred to the Ik+1. The intersections of this new epipolar line with
the edges of the Ik+1 are selected in a similar fashion. In parallel, the epipolar line
from Ik−1 to Ik+1 (lk−1−>k+1

1 ) is also generated. At this point, the edges lying closest to
the intersection are found to correspond in all 3 views (intersection of red and green
lines). All the other correspondence hypotheses are discarded.

The idea is to iteratively transfer the edges from the first view to the last one,

using the essential matrix. Each transfer step involves the intersection of the target

frame’s edges with the epipolar line, generated from the source edge point in the

previous image. The third view possesses a unique intersection. This is often referred

as the trinocular constraint [20]. For the rest of the views, the distance between the

edge pixels and the optimum intersection is minimized. More formally, we start by

obtaining the view with the least number of edge pixels, C0. Then, let p0 = {p0
i } be all

the subpixel edge pixels in this view. Then, given a pixel in C0, p0
i , we find a single

correspondence hypothesis in view n in the following fashion:

xn
i =


argmin

pn
j

‖(l0→n
p0

i

∩ l1→n
p1

k

)−pn
j ‖, n = 2

argmin
pn

j

n−1∑
k=2

d(pn
j , lk→n

xk
i

), n > 2
(4.1)

xn
i denotes the optimum intersection for p0

i in view n. d(·) is the point to line distance

in 2D space. This is indeed a recursive formulation, where x0
i = p0

i and ∀x0
i ,∃x1

i :
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(a) (b) (c) (d)

Figure 4.5: Edge synthesis from CAD models. a) 1st image of multi-view system with
subpixel edges overlayed. b) View synthesized by edge selection on CAD model and
shows the visible edges of the model. c) Epipolar lines in 1st image given the corre-
spondents on other two. d) Selected edges by multi-view epipolar intersection.

x1
i = p1

j ∈ (l 0−>1
p0

i
∩p1). Multiple hypotheses are pruned by retaining only the closest

intersection points. Similarly, only the intersections are transferred to the next view.

Still, computing all intersections of epipolar lines increases the search space and can

result in undesired matches. Thus, we only match and transfer the contours respecting

the consistency of intensity gradient in the direction of the epipolar line, epipolar

gradient feature [285]. Eventually, as summarized in Fig. 4.4, for each point pi
0 a tracked

trajectory is obtained if the point is visible in at least 3 cameras.

Edge selection on CAD models Typically, CAD geometry involves mesh edges, which

do not correspond to physical structure. Therefore, we also process the CAD models

to obtain image consistent edges. As in [281], synthetic views of CAD model are gener-

ated by projecting & rendering the model onto a 3-channel image, where each channel

encodes one direction of the normal information, establishing the angle-magnitude

relations. This image is then processed to select the image-visible-CAD-edges, using

standard edge extraction techniques, e.g. Canny. Finally, a noise cleaning algorithm

is conducted in the form of a connected edge segment filtering. The goal is to retain

only the longest edge segment. Steger proposed an edge linking algorithm suited

for sub-pixel contours, which we directly use in our scenario [252]. Succeeding the

sub-pixel edge linking, we filter the short edge segments and merge the collinear ones

to form the final curvilinear structures. The steps as described in this entire section

are depicted in Fig. 4.5. The output of this section is a set of 2D contours in distinct

views, that are to be measured via CAD fitting. An image consistent 3D point cloud is

also computed to be used in model fitting.

64



4.2. PROPOSED APPROACH

4.2.3 CAD Model Fitting and Triangulation

Even though the subpixel edge segmentation is reliable, the parts are almost always

subject to severe noise due to cracks, crusts, surface defects, mis-manufacturing and

calibration errors. Moreover, even if the multiview edges constitute a reasonable cue,

there is no clear method on how to reconstruct those arbitrary contours.

Hence, we seek to find a robust way to relate the 2D geometric information with

the CAD model, under the constraint that the registration respects the inspected 3D

shape. To do that, we propose a projective variant of robust ICP. For the moment, we

start by assuming that the inspected part goes through a rigid transformation, i.e. we

handle non-rigidity in error compensation, and the CAD model is available apriori.

Let Xk = {xT
k1,xT

k2, ...,xT
kMk

} denote the points sampled around the measurement point

k, on the partial 3D CAD model, xi ∈R3. Xk exists only for the cameras containing this

partial model in their FOV. Thus, Xi = {Xi
k } is a vector of edges of the measurement

points being visible per each camera view i when projected. These points are obtained

via sampling the CAD model to desired resolution. The generated model point cloud

is further subject to visible edge selection. Thus, number of CAD points differs per

each view e.g. ‖X1
k‖L 6= ‖X2

k‖L . Similarly, let pk = {pk
1 ,pk

2 , ...,pk
Nk

} be the selected image

edges in view k. We have P = {p1,p2, ...,pK }, where K refers to the number of cameras

capturing Xk . Due to the positioning on the conveyor belt, we assume that initial pose

is within reasonable error bounds, i.e. the inspected part should remain fully within

the view of the camera. We then formulate the CAD matching as the minimization of

multiview re-projection error, as follows:

(4.2) E(θ) =
K∑

k=1

Mk∑
i=1

wki‖Ω(xki ,pk )−xki‖ xki =Π(θi ,Xk
i )

where θT = { fx , fy , px , py ,qT ,tT } are the standard pinhole projection parameters (in-

trinsic and extrinsic). We parametrize the rotations by the quaternion q. Π denotes

a perspective projection function according to the pinhole camera model. For this

step we avoid self-calibration of intrinsic orientation and only update the exterior

pose parameters. Since fixing the intrinsics frees us from FOV adjustment, we could

simply back-project the image points beforehand and work purely on normalized

coordinates. This significantly decreases the computational load and speeds up the
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convergence as we only optimize over 7 parameters per camera.Ω is a closest point

function, used to find the point pk
j in view k, which has the shortest Euclidean distance

to the projection of the 3D point Xk
i . w j

k are the robust weights associated with the

residuals and ‖·‖ is the Euclidean norm. Note that the visible CAD edges, and thus

the synthesised model are unique per each rendered view. Naturally the multi-view

correspondences are not available preventing us from simply referring to the bundle

adjustment literature. For these reasons, we exploit an iteratively re-weighted least

squares optimization where at each iteration we obtain the correspondences in the

projected domain, while updating the parameters (and solve for the transformation)

in full 3D. The weighting is introduced to wane the effect of the outliers. This is al-

ready well studied in robust computer vision literature [189]. For our application, we

select the weights w j
k to be Tukey’s bi-weights. We benefit from Levenberg Mardquardt

solvers to directly minimize E(θ). A similar idea is already presented in the context of

ICP by [97] and named LM-ICP. Thus, we refer to our solver as the Robust Projective

LM-ICP. Our formulation can also be thought as an alternating minimization between

the closest point assignment step and bundle adjustment.

Malassiotis et al.[184] uses a similar method for the case of stereo. However, they

take into account the parametric nature of the CAD model and re-generate the model

points in each iteration. This requires a parametric CAD geometry, decreases the

well-posedness of the problem and increases the number of parameters to optimize.

Also, it is not apparent in their method, whether the scale or anisotropic changes

in the model points are due to the registration error or really stem from the model

manufacturing. We find such setting restrictive. In contrast, by using less parameters,

our method is efficient, could well operate on non-analytical CAD models and does

not suffer from scale ambiguities.

To improve the convergence speed, we employ a coarse-to-fine scheme, in which

the pose is refined in a hierarchy of down-samplings. We also use the idea of Picky-

ICP [319], which establishes unique correspondences at each iteration. Finally, 3D

measurement is concluded by a simple look up of the center position, of the regis-

tered and transformed CAD part. The computed 3D positions are corrected via error

compensation procedure as described in § 4.2.1.

66



4.3. EXPERIMENTS AND RESULTS

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 D

e
v
ia

ti
o

n
 (

m
m

)

Measurements

Min Dev Max Dev Mean Dev

(a)

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

X-Errors 0 1 10 17 14 11 2

Y-Errors 2 2 10 14 9 11 7

Z-Errors 0 6 7 10 15 12 5

0

2

4

6

8

10

12

14

16

18

F
re

q
u

e
n

c
y

Error Ranges (Bins)

(b)

Figure 4.6: (a) 180 feature points on the calibration plates are measured with ATOS
and with our system, 10 times. Using all the measurements, a 3D transformation is
computed between the coordinate systems and the coordinate-wise difference in the
common frame is recorded. It is shown that our system shows resemblance with ATOS
system in the measurement of reference points (εmax < 0.1mm). Note that, ATOS
is good at measuring such points, as the fiducials lie on planar surfaces. Yet, it will
later become ineffective in measuring complicated structures due to fringe projection
drawbacks. (b) Accuracy Evaluations: Histogram of registration errors to the CMM
coordinate space. Bins indicate the error amount, while frequencies correspond to
number of registrations. The data is taken over 55 measurements. Note that, the errors
are recorded after coordinate space registration between our system and common
CMM frame. In this respect, the figure plots the accuracies relative to a CMM, which is
the main measure of error in our system. Values are in milimeters.

4.3 Experiments and Results

4.3.1 Calibration Accuracy

Intrinsic calibration Intrinsic orientation is one of the least significant sources of

error in our system and is kept constant throughout all the experiments, where the

re-projection errors were below 0.125 pixels. Considering the image resolution, such

accuracy is enough for capturing as fine details as 10µ.

Extrinsic calibration Our system relies not on the accurate production of the cal-

ibrator but on the measurement of reference points, placed on it. As described in

§ 4.2.1, 3 Canon 6D cameras are assembled and the calibration plates, as well as the

overlapping inter-reference points (thanks to random dots) are measured with multi-

ple shots and bundle adjustment. Due to the presence of optical inspection points,

the manufactured calibrator cannot be measured with a CMM and we do not have
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any ground truth to compare against. Thus, we compare our measurements with

ATOS, an industrial structured light triangulation system. As ATOS relies on fringe

projection, it cannot recover the tiny details over complex structures (such as subpixel

edges) accurately. But, it is very accurate in measuring reference points found on

planar/smooth surfaces, such as the calibrator.

Fig. 4.6(a) presents a comparison between our system and ATOS in measuring the

reference field composed of 180 reference points, on the calibrator. To be compatible

with ATOS’s precision requirements and to minimize the distortion effect, we use

circular markers with a radius of 3 mm. The measurements are repeated 10 times,

resulting in a total of 1800 measurements. We register ATOS and our system to the same

coordinate frame. We accomplish this by a well known transformation estimation

proposed by [133] using all the measured points. To this end, we assume that because

both systems are sufficiently accurate, the errors in registration would have minimal

disturbance to the coordinate frame alignment. It is noticed from the results that

the registration error is small enough and the root mean squared error (RMSE) is

0.03mm. Every residual per coordinate contributes equally to RMSE. We accept this

error and conclude that the calibrator is measured accurately and precisely to achieve

the desired accuracy.

4.3.2 Measurement Analysis

CAD registration The iterations of refinement for a local camera group are visual-

ized in Figures 4.7, 4.9(a). Regarding the fitting of CAD model to arbitrary subpixel

contours, the final RMSE registration error is typically in the range of 0.25 pixels. To

quantify the numerical accuracy, we conducted a set of experiments on different types

of model parts. Fig. 4.8(a) plots the convergence of our algorithm, while Fig. 4.8(b)

shows the inliers retained after each iteration.

Accuracy (errors in comparison to CMM) Error compensation step involves re-

peated measurement and registration to CMM space in order to reduce the effect of

systematic errors. CMMs report an error of 0.01mm for the points of interest and

stand out to be the ground truth reference for our system [283]. The fact that we accept

CMM results as a baseline for our measurements, make us interested in the deviations
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from this pseudo-ground truth. For this reason, we sample 55 random measurements

of 5 different parts, which are measured both with our system and with Hexagon CMM.

We then register each part from our coordinate space to CMM and record the errors.

As this experiment is performed on the measured part but not on the calibrator, we

end up with an evaluation of the accuracy of our system, with respect to the CMM.

Fig. 4.6(b) shows a histogram over the collected data. It is shown that the maximum

registration error is well below 0.2mm. This is both within the industry standards and

within the tolerances we require.

Precision We will again refer to CMM comparisons. Fig. 4.9(b) enlists a series of

experiments conducted on 5 different measurement points. In total 25 random mea-

surements are displayed and the inter-measurement errors, which we will be referring

as the repeatability measures are tabulated. The maximum error remains significantly

under 0.15mm, while appearing below 0.05mm most of the times.

The reported accuracy in the previous section is less than the precision values due

to the undesired compensation errors. In other words, the bias learned in § 4.2.1 does

not always represent the systematic components and is, to a certain extent, subject to

random/unstructured noise. For this reason, while we are able to get measurements

with maximum ±0.15mm, we introduce certain errors in the registration to final

coordinate space. Nevertheless, this error is not more than 0.05mm and is tolerable in

our scenario.

4.3.2.1 Runtime Performance

Our system aims online operations, where the complete unit is installed on an operat-

ing production line. Therefore speed plays a key role in our design. Tab. 4.1 tabulates

the timings for different stages of the runtime on a machine with 3GhZ Intel i7 CPU

and 8GB of RAM. Note that image acquisition (30fps) step is responsible for most of

the delays due to synchronous capture and bandwidth. Respectively, each camera

captures the individual frames with a 0.5sec of strobe timing (until LEDs reach the

desired intensity level). No processing starts until all the cameras finish the acquisition.

Triangulation is only applied after every feature point is successfully extracted.

Our system is incomparably fast w.r.t. ATOS or CMM. It is, in that sense, not a

replacement for a CMM device but a much more effective online competitor of the

69



CHAPTER 4. SPARSE 3D RECONSTRUCTION FOR ONLINE COORDINATE

MEASUREMENT

Table 4.1: Average timings in measurement stage. Timings are reported as an average of
10 runs. MP refers to measurement point. Even though processing of the measurement
points differ, their contribution to final runtime is averaged.

Per MP (sec) For All MPs (sec)

Image Acquisition 5,00 75,00
Feature Extraction 0,30 4,50
CAD Registration 0,15 2,25
Bundle Adjustment 0,10 1,50

Total 83,25

existing mechanical fixtures. Inspecting a single part took 1h when measured with

ATOS and 45min on CMM. Both of these results are far from online 100% inspection.

4.4 Discussions

We presented an in depth analysis of a novel, accurate optical metrology system, de-

signed to operate on industrial settings, where realtime performance and durability

are of concern. We showed how to extrinsically calibrate such a system that is com-

posed of multiple non-overlapping camera groups via marker based photogrammetry.

We compared our system against the industry standard measurement devices, one

mechanical and one optical. Our measurement results are well within the accepted

tolerances.

While one possible feature work involves the evaluation of self calibration methods

and other error handling mechanisms to recover from severe misuses, we stop at that

stage and come back to the point where we started: 3D reconstruction. Proposed

system, together with the markers, can be either used to generate a sparse 3D re-

construction, or as a means to acquire 3D keypoints and calibration information in

the form of a ground truth. The latter will provide us the data to evaluate our dense

reconstruction methods, in the following chapters, that are specialized on dense 3D

point cloud stitching.
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For each view, the initial poses with non-ideally extracted image edges.

Unique correspondences for each view after a single iteration of projective-ICP.

Final poses in each view.

Close up view of the robust sub-pixel registration.

Figure 4.7: The entire process of projective multiview fitting. Red points indicate the
model projections, while the green points are the extracted edge pixels. Edges are
consciously sub-sampled to 60% of the true amount to simulate undesired occlusion.
Sampled points are not the view-wise correspondents. Even though such a severe
scenario does not occur in real life, it is again done intentionally to demonstrate
the performance in a rather extreme case. It is worth noting that despite the sparse
sampling of the CAD model and missing edges, the algorithm succeeds to converge
to an acceptable minimum. Image on Row 4, Column 3 visualizes the occlusion
robustness. The effects of manufacturing errors in creating surface defects are clearly
apparent on the edge image in Row 4, Column 4.
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Figure 4.8: Evaluation of registration performance: a) Each run is started with 2.5cm
translational shift and 10◦ rotational offset. The registration error between the inliers
is recorded at each iteration. Note that the convergence is super-linear in all types of
geometrical structures. b) Ratio of Inliers over iterations.

(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1Z 3Y 4Z 5X 5Z 5Z 5Z 7Z 8X 8Z 10X 10Y 11X 13X 13ZS
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

σ
)

Measurement Points

Part 1

Part 2

Part 3

Part 4

(b)

Figure 4.9: (a) The process of CAD fitting: Red points indicate the found edges, purple
points are the model projections, while the green points are the extracted edge pixels.
Each column is a view and each row shows an iteration. (b) Repeatability results for
4 different parts, manufactured from the identical CAD model. For each part, 15 out
of 26 points are measured, 5 times each (randomly taken out of 41). The standard
deviation per point is plotted.
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5
A NEW PIPELINE FOR DENSE 3D RECONSTRUCTION

“Programming is one of the most difficult branches of applied mathematics; the poorer

mathematicians had better remain pure mathematicians.”

— Edsger Dijkstra

Despite the huge demand, many marker-free approaches based solely on 3D data

either involve acquisition of ordered scans[148, 208], or follow the de-facto standard

pipeline [135] in case of unordered scans. The former suffers from the requirements

of redundant depth capture with large overlap and scenes with very little clutter or

occlusions. Due to the volumetric nature of scan fusion, such techniques also do

not scale well to large objects while retaining high precision. The latter exploits 3D

keypoint matching of all scans to one another, alleviating the order constraint. Thanks

to 3D descriptors, it could well operate in full 3D. Yet, matching of scans to each other

is an O(N 2) problem and prevents the methods from scaling to an arbitrary number of

scans. In addition, neither of those can handle scenes with extensive dynamic clutter

or occlusions. Nowadays, with the capability of collecting high quality, large scale

and big data, it is critical to offer efficient, automated solutions for providing highly

accurate reconstructions regardless of the acquisition scenarios.

In this chapter, we tackle the problem of 3D dense instance reconstruction from
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Close up: CAD Model

Close up: Reconstruction

(c) Object Detection in Laser Scans(b) Image of Object in Scene(a) CAD Model (d) 3D Reconstruction

Figure 5.1: Our 3D reconstruction method. (a) Input 3D CAD model. (b) Image of the
instance to reconstruct. (c) Detection of 3D model in point clouds. (c) Final recon-
struction we obtain, with close-up comparisons to the nominal CAD prior.

a handful of unorganized point clouds, where the object of interest is large in size,

texture-less, surrounded by significant dynamic background clutter and is viewed

under occlusions. Our method can handle scenes between which no single transforma-

tion exists, i.e. the same objects appear in different locations, such as the one in Fig. 5.2.

We also do not impose any constraints on the order of acquisition. To solve all of these

problems simultaneously, we make use of the reasonable assumption that a rough,

nominal 3D CAD model prior of the object-to-reconstruct is available beforehand and

propose a novel reconstruction pipeline. Such assumption of a nominal prior is valid

for many applications especially in industry, where the objective is to compare the

reconstruction to the designed CAD model. Even for the cases where this model does

not exist, one could always generate a rough, inaccurate mesh model with existing

methods, e.g. KinectFusion [208], to act as a prior. Note that, due to manufacturing

errors, sensor noise, damages and environmental factors, physical instances deviate

significantly from the CAD models and the end-goal is an automatic algorithm to

accurately recover the particular instance of the model. With the introduction of the

prior model, we re-factor the standard 3D reconstruction procedures via multi-fold

contributions. We replace the scan-to-scan matching with model-to-scan matching re-

sulting in absolute poses for each camera. Unlike the case in object instance detection

where false positives (FP) are tolerable, object instance reconstruction is easily jeopar-

dized by the inclusion of a single FP. Therefore, one of our goals is to suppress FP, even

at the expense of some true negatives. To achieve this, we benefit from robust and well

engineered object detection & pose estimation algorithms, that are described in detail
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Dynamic scene changes of similar objects with different poses.
Pairwise Output of FGM
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Figure 5.2: Dynamic clutter and occlusions on Mian dataset [192]: A change in relative
locations of the objects between scenes easily fools the modern global registration
algorithms [314]. We operate on the object level and circumvents this problem.

in the following chapters. The resulting match is followed by automatically segmenting

out the points belonging to the object and transforming them back onto the model

coordinate frame. Doing this for multiple views results in roughly aligned partial scans

in the CAD space. To fully recover the exact object, the CAD prior is then discarded (as

it might cause undesired bias) and a global multi-view refinement is conducted only

to optimize the camera poses. It is a by-product of our method that the registration is

directly in the space of the model and this makes further operations such as deviation

analysis easier. In global scan registration, the creation of a pose graph indicating

which scans can be registered to each other is required. The typical complexity of

obtaining this graph is O(N 2), where all scans are matched to one another. We profit

from the CAD prior and contribute by automatically computing this graph, in which

only cameras sharing significant view overlap are linked. This reduces the complexity

to O(N ), and robustifies the whole pipeline. The entire procedure is made efficient so

that large scans are handled in reasonable time. Exhaustive evaluations demonstrate

high accuracy regardless the object size, clutter and occlusions.

This chapter and thereby the pipeline forms the basis of the upcoming chapters

that are devoted to refining and advancing the individual components of the foun-

dation explained here. Fig. 5.1 shows the types of industrial objects we can handle,

while a supplementary video demonstrating the method devised in this chapter can

be found under: https://youtu.be/KPA_8BNuOvg.
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5.1 Prior Work

Arguably, the most wide-spread 3D reconstruction methods are KinectFusion[208] and

its derivatives [56, 148, 249]. These methods have been successful in reconstructing

small isolated objects, but their application is not immediate when the size increases,

or clutter and occlusions are introduced [209]. Due to extensive usage of signed-

distance fields, they are bound to depth images and a sequential acquisition.

Abundance of works exist in multi-view global alignment from multiple 3D un-

organized point clouds [17, 40, 76, 89, 89, 91, 114, 154, 259, 266, 269, 314, 315]. These

methods assume the scans to be roughly initialized and reasonably well-segmented.

They, in general, handle slight synthetic noise well enough, but they do not deal with

cluttered and occluded data. Another track of works try to overcome the those con-

straints by using keypoint detectors and matching descriptors in 3D scans. One of

the pioneering works proposing a feature agnostic, automatic and constraint-free

algorithm is the graph based in-hand scanning from D. Huber and M. Hebert [135].

The authors set a baseline for this family of methods. Novatnack and Nishino [212]

developed a scale dependent descriptor for better initialization and fused it with [135]

to assess the power of their descriptor. Yet both of these relied on range image data.

Mian et al. [192] proposed a tensor feature and a hashing framework operating on

meshes. Fantoni et al. [92] uses 3D keypoint matching as an initial stage of multiview

alignment to bring the scans to a rough alignment. Zhu et al.[315, 317] as well as Liu

and Yonghuai [172] use genetic algorithms to discover the matching scans and use

this in global alignment context. These stochastic schemes are correspondence free

but slow. Similar to [192], Zhu et al.[316] devises a local-to-global minimum spanning

tree method to align the scans. A majority of these automatic alignment procedures

suffer from increased worst case complexity of O(N 2), where N is the number of

views. Moreover, since there is no integrated segmentation, the registration procedure

cannot handle clutter and occlusions.

Use of CAD models in reconstruction is not novel by itself. Savarese et al.[305]

enrich the multiview reconstruction from 2D images with a CAD prior. Guney and

Geiger [116] use object knowledge to resolve the stereo ambiguities. Birdal et al.use

models in triangulation by registration [31]. Other works [168, 301, 318] use CAD prior

to detect categories, while we focus on proxy instance priors for initial alignment and
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CAD Model

Re-meshing &
Training

Input 3D Scenes

Rough Initialization

Detections

Pose Graph

Global Alignment

Figure 5.3: Proposed 3D reconstruction pipeline: Prior CAD model is trained to create
the model representation. Input scenes are then parsed for the model pose. Pose
estimates initialize a rough reconstruction, with segmentation and automatically
computed pose graph. This is then further refined to the full reconstruction.

then operate directly on 3D points. Salas et al.[234] propose SLAM++ using object

priors to constrain a SLAM system. Unlike that, we perform instance reconstruction

using the CAD prior, and not SLAM. In our setting, both the background and the object

are allowed co-change dynamically from scene to scene.

5.2 Method

We now formally elaborate on the details of the pipeline, illustrated in Fig. 5.3. Given

a set of unstructured and unordered 3D scenes {Pi } ∈ P, we seek to find a set of

transformations {Ti } ∈ SE(3) so as to stitch and reconstruct a global model PG :

(5.1) PG =
N⋃

i=1

(
T0

i ◦Pi
)

T◦P applies transformation T to the scene P. In this setting, both the transformations

{T0
i } ∈ SE (3) and the global model PG , as well as the initialization are unknown. Due to

the lack of a common reference frame and apriori information about {Pi }, obtaining
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the set {T0
i } typically requires O(N 2) worst case complexity, where all the scene clouds

are matched to one another to obtain the relative transformations aligning them. To

better condition the problem and reduce its complexity, we introduce the supervision

of a CAD proxy M in form of a mesh model and re-write Eq. 5.1:

(5.2) PG =
N⋃

i=1

(
TM

i ◦ (Pi |M)
)

where TM
i ∈ SE(3) is the transformation from the scene to the model space, such

that the segmented scene points (Pi |M) come to the best agreement. To estimate

{TM
i }, we follow a two stage technique. First, a rather approximate estimate {T̃M

i } is

made by matching the CAD model to a single scene. Note that this time, the set {T̃M
i }

can be computed in O(N ), since it only requires CAD to scan alignment. However,

because scene clouds suffer from partial visibility, noise and deviations w.r.t. the CAD

model, the discovery of the pose of the model in the scans provides only rough initial

transformations to the model coordinate frame. For this reason, as the final stage,

the CAD prior is disregarded and the scans are globally registered, simultaneously,

refining {T̃M
i } to {TM

i }. This lets us reconstruct configurations deviating significantly

from the CAD prior.

Multi-view refinement Our procedure of multi-view refinement is similar to [92],

where a global scheme for scan alignment is employed. Let P1, . . .PM be the set of

scans that are to be brought in alignment. To generalize and formalize the notation

for registrations of all point clouds to each other, we maintain a directed pose graph

in form of an adjacency matrix A ∈ {0,1}M×M , such that A(h,k) = 1 iff cloud Ph can be

registered to cloud Pk . Let θ = (θ1, . . . ,θM ) be the absolute camera poses of each view.

The alignment error between two clouds Ph and Pk then reads:

(5.3) E(θh ,θk ) = A(h,k)
Nh∑
i=1

ρ
(
‖d(θh ◦ph

i ,θk ◦qh
i )‖2

)
where {ph

i → qh
i } are the Nh closest point correspondences obtained from the clouds

Ph and Pk . d(·, ·) is the point-to-plane distance. The overall alignment error, which we

want to minimize at this stage, is obtained by summing up the contributions of every

pair of overlapping views:

(5.4) E(θ) =
M∑

h=1

M∑
k=1

A(h,k)
Nh∑
i=1

ρ
(
‖d(θh ◦ph

i ,θk ◦qh
i )‖2

)
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where ρ denotes Tukey’s Biweight M-estimator as defined in §2.9. The final absolute

poses are the result of the minimization (θ1, ...,θM ) = argminθ(E).

Implementation details In contrast to the pairwise registration error in Eq. (5.3),

which has closed form solution for the relative transformation θ, there are no closed

form solutions in the multiview setting. Therefore, we use a non-linear optimization

procedure, Levenberg Marquardt. The rotations are parameterized with angle-axis

representation. We constrain the frame with the highest number of points found on

the CAD model to be static and update (solve for) the rest of the poses. In practice, this

leads to faster convergence. Note that, in contrast to the methods that exploit pairwise

registration, our poses are absolute and do not suffer from drifts or tracking artifacts.

We also do not require a conversion from relative poses to absolute ones, which are

usually obtained by the computation of a minimum spanning tree or shortest paths

over the pose graph [113, 135]. This property eases the implementation and reduces

errors, that are to be encountered in usual heuristics.

Due to the accuracy requirements, unlike [92], we omit using distance transforms

at this stage. We rather use speeded up KD-Trees to achieve exact nearest neigh-

bors [202]. Since we optimize over the poses, and not over 3D points, the trees are built

only once in the beginning and all closest point computations are done in the local

coordinate frame of the view of interest. This is important for efficiency. For reasons of

accuracy, we use analytical Jacobians. As cloud sizes become large, this optimization

exhibits significant computational costs. This is why, a priori sampling plays a huge

role, where we use ≈ 20k to 30k points per scan, distributed evenly in space.

To summarize, our key contribution lies in obtaining {TM
i } in a robust, efficient and

accurate manner. In Chapter 7, we will explain the pose estimation methods used to

compute the rough alignment {T̃M
i }. The next section is devoted to obtaining the pose

graph (adjacency matrix) A in an automated fashion for such a CAD-based scenario.

5.2.1 Computing the Pose Graph and Live Feedback

Any global optimization algorithm requires an adjacency graph G = (V ,E), which

encodes the existence of overlap between camera views. The nodes of this sparse graph

contain the cameras V = {C1..CN }, whereas an edge Ei j is only created between nodes
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Figure 5.4: Pose graph computation. See text for details.

(Ci ,C j ) if they share significant overlap. An absolute pose Ti is associated to each node

and a relative pose Ti j is to each edge. Traditionally, this requires pair-wise overlap

computation between all cameras. While a naive approach would involve linking the

cameras, whose centers are found to be close, this is by no means a guarantee for

shared overlap. Therefore, we present a more accurate approach, without sacrificing

efficiency, thanks to the availability of the CAD model.

Consider the voxel grid index D of model M as in Fig. 5.4(a). Each segmented scene

point p′
i ∈ T−1

i ◦pi is mapped to a voxel Dk , which stores a set of cameras {Ci } observing

it. Whenever the point mk belonging to the voxel Dk is visible in the camera C j , this

camera is added to the list of cameras seeing that model point. Each list stores unique

camera indices. From that, we compute the histogram of pairwise overlaps (HPO) as

shown in Fig. 5.4(b).

While all the possible edges are now generated (as the bins in HPO), it is not

recommended to use all these in the multiview alignment i.e. the overlap might be

little, causing a negative impact. Instead, we adopt an iterative algorithm, similar

to hysteresis thresholding. First, HPO is sorted with decreasing overlap (Fig. 5.4(c)).

Next, two thresholds αl and αh are defined. All pairs with overlap less than αl are

discarded. All cameras with overlap larger than αh are immediately linked and edges

are constructed in the graph. If, at this stage, the graph is not connected, we start

inserting edges from the remaining bins of HPO into A until either the connectivity

or the threshold αl is reached. This is illustrated in Figures 5.4(c) and 5.4(d). If the

final graph is still not connected, we use the largest connected sub-graph, to ensure
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optimize-ability. For efficient online update, a modified union-find data structure is

used to store the graph and dynamically insert edges when new views are encountered.

Unlike quadratic complexity of the standard pose graph creation methods, ours has

linear complexity.

Live feedback Due to the connected-ness of pose graph, our method is able to

keep track of the overlap between all the point clouds, at all times, informing the

user whenever graph disconnects or overlap is small. The complement of the already

reconstructed part reveals the unscanned region, which is also fed back to the operator.

Incoming scans directly propagate and form links in the pose graph, allowing online

response to the user’s actions.

Mesh generation While the literature enjoys a series of works for meshing (e.g.

marching cubes or Poisson reconstruction), many of them target binary volumes,

rather than arbitrary precision point clouds. They also cannot tolerate the large noise

that is inherent in data. As our purpose is to retain the sensor accuracy as much

as possible, we opt to mesh the point cloud using an octree implementation of the

SSD-method of Calakali and Taubin [55].

5.3 Experimental Evaluation

We evaluate our dense reconstruction method against a set of real datasets acquired

by laser scanners and structured light sensors. The CAD models we work with might

contain uneven distribution of vertices or inner geometry. We always eliminate the

inner structure by thresholding the ambient occlusion values [194] before the models

are re-meshed [165]. The details of the sampling procedures are to be presented in the

following chapter ( Chapter 6). At detection time, a relative model and scene sampling

distance of d = τdi am(M) is used, where 0.05 ≥ τ≥ 0.025 depending on the object.

We also adjust another threshold on the distance to consider a scene point to be on

the model based on the sensor quality. For accurate scanners we use 1.5mm, while for

less accurate ones 0.5cm. This does not affect the segmentation, but the hypothesis

verification.

81



CHAPTER 5. A NEW PIPELINE FOR DENSE 3D RECONSTRUCTION

(a) Scenes of  Mian (b) T-Rex (Gnd. Truth vs Ours)

(c) Chef  (Gnd. Truth vs Ours) (d) Parasaurolophus (Gnd. Truth vs Ours)

Figure 5.5: Results on Mian dataset. (a) Subset of scenes from the dataset. (b, c, d) The
ground truth models (left) and our reconstruction (right) for three objects.

5.3.1 Mian Dataset

We first compare the reconstruction quality on Mian dataset [192]. This dataset in-

cludes 50 laser scanned point clouds of 4 complete 3D objects, with varying occlusion

and clutter. The objects change locations from scan to scan, creating dynamic scenes.

The clutter and background also varies as the objects appear together with other

different ones in each scene. We quantify this dynamic clutter by relating it to the
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Table 5.1: Reconstruction results on Mian dataset (in mm). Each object is compared to
the model provided by [192] using [106].

Model w/o Opt. with Opt. # Scans Clutter

Chef 2.90 ± 2.40 1.07 ± 0.65 22 0.58±0.11
Chicken 1.71 ± 1.60 0.33 ± 0.24 29 0.61±0.12
Para. 2.52 ± 2.00 0.41 ± 0.30 12 0.24±0.20
T-rex 2.36 ± 2.08 0.88 ± 0.62 27 0.14±0.22

provided occlusion values:

Clutter = 1− (Model Surface Area)*(1-Occlusion)

(Scene Surface Area)
(5.5)

and provide it in Tab. 5.1 for each object. The models present in the scenes are pro-

vided by [192] to act as ground truth. We do not perform any prior operation to the

scenes such as segmentation or post-processing except meshing via SSD [264]. For

Parasaurolophus and Chicken objects, the pose graph becomes disconnected and

therefore, we optimize individually the two sub-components and record the mean.

We also report the number of scans in which the model is detected and verified. Not

every model is visible in every scan. In the end, our mean accuracy is well below a mil-

limeter, where the used sensor, Minolta Vivid 910 scanner, reports an ideal accuracy of

∼ 0.5mm. We are also not aware of any other works, reporting reconstruction results

on such datasets. Fig. 5.5 visualizes our outcome, and Tab. 5.1 shows our reconstruc-

tion accuracy both prior to and after the optimization. While our error is quantitatively

small, the qualitative comparison also yields a pleasing result, sometimes being supe-

rior even to the original model.

5.3.2 Toy Objects Dataset

Since our objective is to assess the fidelity of the reconstruction, we opt to use the

objects from the 3D printed dataset [249]: Leopard, Teddy and Bunny and Tank (See

Fig. 5.8). The diameters of objects vary in the range of 15−30cm. The print accuracy is

up to 50µ, well sufficient for consideration as ground truth. To capture the real scenes,

a home-brew, high accuracy phase-shift sensor, delivering <0.4mm point accuracy is

chosen. We sample up to 10 scans per object, taken out of a 100 frame sequence. To
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Table 5.2: Reconstruction errors on toy objects dataset (mm).

Leo Teddy Bunny Tank

KinFU 1.785±1.299 0.998±0.807 0.664±0.654 1.390 ± 1.315
Kehl 1.018±1.378 1.028±0.892 0.838±0.860 1.573±2.250
Sdf2Sdf 0.652±0.614 0.910±0.584 0.541±0.436 0.466 ± 0.416
Ours 0.481±0.519 0.517±0.572 0.415±0.501 0.451±0.322
Ours-KF. 0.536±0.411 0.519±0.582 0.502±0.529 0.468±0.474
Ours-CO. 0.651±0.628 0.544±0.601 0.698±0.506 0.475±0.433

disrupt the acquisition order, we randomly shuffle this subset and apply our algorithm.

Next, we compute the CAD-to-reconstruction distances in CloudCompare [106]. We

do not explicitly register our reconstruction to CAD model, because we already end

up on model coordinate frame (Having the result in the CAD space is a by-product

of our approach). Moreover, we use the original 100-frame, ordered sequence as an

input to standard reconstruction pipelines such as KinectFusion [233], Kehl et al.[148]

(also uses color) and Slavcheva et al.[249] all of which require a temporally ordered set

of frames, with a large inter-frame overlap. All of these algorithms take depth image as

input, whereas ours uses the unstructured 3D data and the model.

Our results on this dataset are shown in Tab. 5.2 (Ours) when original CAD is

used. We also report the results when KinectFusion (KF) prior is used (Ours-KF).

The individual error distribution of the objects are shown in Fig. 5.6(a). Because our

method does not suffer from drift and computes absolute poses, although we use 10

times less scans, we are still 2-4 times more accurate then conventional methods. This

also shows that our method could retain the good accuracy of the sensor.

Next, we augment this dataset with further scenes of the same objects, such that

clutter and occlusions are present. Some shots are shown in Fig. 5.8 (mid-row). Our

reconstruction accuracy (Ours-CO) is shown in Tab. 5.2. These results are still better

than or close to Sdf2Sdf [249]. Due to inclusion of some outliers, our results get slightly

worse than the one in no clutter, yet they are still acceptable. However, none of the

other approaches can run on this new set due to the existence of significant outliers.

In a further experiment, we gradually decimate the toy models down to a mesh of

≈500 vertices. We exclude tank as the decimation has little effect on the planarities.
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Figure 5.6: Performance on the Toy Objects dataset.

(a) Tank Object (b) Kehl et. al. (c) Slavcheva et. al. (d) Ours

Figure 5.7: Visual comparisons on Tank object. Note the ability of our method in
preserving sharp features.

As shown in Fig. 5.6(b), even when the CAD prior gets very crude, we are still able to

achieve a reasonable reconstruction. Note that, results of KF prior is plotted in dashes

as it is also a form of rough mesh approximation. Furthermore, Fig. 5.7(a) visually

compares our reconstruction to the state of the art on the tank object. Because we do

not use smoothing voxel representations (such as SDF), our method is much better at

preserving sharp features at the model edges.

5.3.3 Augmented Toy Objects Dataset

We now provide additional results by augmenting the Toy Objects dataset with 4 more

objects: bird, colorful dog, dinosaur, and a caravan. They are shown in Fig. 5.9 together

with a 3D scan acquired by our in-house phase shift scanner. Note that the objects are

not isolated for reconstruction but directly captured in dynamic clutter and occlusions.
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Figure 5.8: Qualitative results on toy objects. first row Real images of objects second
row A sample scene and detections visualized third row Our results.

Figure 5.9: Collecting dataset of 4 additional toy objects. (from left to right): RGB
images of objects given to aid perception; the actual stereo images acquired by the
scanner; triangulation of the stereo capture.

Using KinectFusion models as priors We now show how to use our method in im-

proving already reconstructed models. This is an important application as scanning an

object with traditional methods such as [148, 208, 249] is cumbersome: 1) they require

an isolated and clean environment, 2) a sequential scanning is required with careful

attention to registration errors. Our method is contradictorily easy to operate as we do

not assume scanning order and can deal with clutter, occlusions and partial visibility.
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(i) Images of Car Object (ii) Side View

(iii) Front View (iv) Back View

Figure 5.10: Improving KinFu reconstruction of Caravan object.

(i) Images of Bird Object (ii) View from Left Side

(iii) View from Top (iv) View from Top-Right

Figure 5.11: Improving KinFu reconstruction of Bird object.

Simply using a scanner providing better quality than Kinect, we could improve upon

3D models with only a handful of shots. We reconstruct the objects in our set with

Kinect Fusion from Point Cloud Library and use these reconstructions as proxy for our

algorithm. Figures 5.10,5.12,5.13,5.11 show our results versus the proxy Kinect Fusion

model. Note that for Kinect Fusion we deliberately use a large voxel size (low resolu-

tion) to emphasize the margin of recovery. Thus these models are incomplete, and

sometimes quite noisy. Our results open up application areas, where coarse models

such as the Kinect Fusion ones, are improved with ease by using another acquisition
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(i) Images of Dinosaur Object

(ii) View from Right Side

(iii) View from Left Side (iv) View from Back Side

Figure 5.12: Improving KinFu reconstruction of Dino object.

device. In our algorithm, there is no need to perform a full fusion, and in all these

examples we can operate with as low as 10 scans.

Effect of global optimization Due to discrepancies, the registration to CAD space

is never perfect. When multiple scan registrations come together, they never align

perfectly. Hence, we perform the CAD-free optimization as explained. In Fig. 5.14, we

show visual results on the abilities of this global optimization stage. In this illustration,

we show how a rough registration to the CAD model is refined to reveal the underlying

geometry. The objects used are Caravan and Bird. The point clouds colored in the

figure represent different scans automatically segmented from the scenes following

the detection. It is noticeable that, after optimization, a better alignment is obtained,

resulting in sharper and more uniform blend of the point cloud colors.

5.3.4 Dataset of Large Objects

Finally, we apply our pipeline to quality inspection of real gas turbine casings and large

objects. In this real scenario, CAD models come directly from the manufacturer. Due

to space constraints, we summarize the data modality in Tab.5.3. The manufactured
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(i) Images of Colored Dog (ii) View from Right Side

(iii) View from Left Side (iv) View from Back Side (i) w/o Optimization (ii) with Optimization

(a) Reconstruction Results on Dog. (b)The effect of optimization on DogFigure 5.13: Improving KinFu reconstruction of Dog object.

parts deviate significantly from the ideal model due to errors in the process and

we scan them in the production environment within clutter and occlusions. With

such large objects and little resemblance of the CAD prior, obtaining ground truth

becomes a challenging task. Thus, we use previously described photogrammetry (PG)

and sparse reconstruction system [31, 34] to collect a set of accurate scene points.

These points are found by attaching markers on the objects, capturing many images

(see Tab.5.3) from different angles and running bundle adjustment. We treat the

resulting structure as ground truth and run a deviation analysis. The mean errors

obtained by CloudCompare [106] are plotted in Tab. 5.3, along with the running times

of the individual stages. In Fig. 5.16 we also plot, for Ventil and Turbine objects, the

histogram of errors in the CAD registration. The performance in objects of varying

sizes indicate that our reconstruction method is applicable from small to large scale

while maintaining repeatability. Fig. 5.15 presents further qualitative results on our

reconstruction of the Turbine and Sofa objects, whereas Fig. 5.1 provides close-up

shots from the reconstruction of Ventil object.
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(a) Car w/o Optimization (b) Car with Optimization (c) Bird w/o Optimization (d) Bird with Optimization

Figure 5.14: Effect of global optimization on Caravan and Bird objects. Even though,
in this example, the initial alignment was relatively close, the quality improvement
in aligning multiple scans is still apparent. Different colors are assigned to different
point clouds, segmented from the actual scenes.

(a) Turbine Object (c) Final 3D Reconstructions of Turbine

~ 60cm

~ 5m

(b) Laser Scans

(d) CAD Model of Sofa (left), A Scan (right)

(e) Reconstructions of Sofa

Figure 5.15: The reconstruction of Turbine (a) in captured cluttered scans (b) is pre-
sented in (c). Similar results for the Sofa object are shown in (d,e).

Table 5.3: Dataset statistics of large objects, average reconstruction errors w.r.t. pho-
togrammetry (in mm) and timings.

Object Scan Res. Obj. Size #Scans #PG Images PG vs CAD Our Accuracy Detect Verify Refine

Ventil 0.3 mm 8m3 8 180 1.3cm 2.2±0.4 3.10s 0.27s 112.94s
Turbine 0.4mm 125m3 10 180 3.4cm 2.5±1.3 3.72s 0.54s 126.13s

Sofa 1mm 1.7m3 6 68 0.85cm 1.4±1.2 1.44s 0.31s 68.82s
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Figure 5.16: Evaluations against photogrammetry (PG) system. Our dense recon-
struction is registered onto the sparsely reconstructed 3D points and deviations are
recorded.

5.4 Conclusions and Moving Further

We have presented the reconstruction-via-detection framework, our transition from

sparse to efficient, robust and automated dense 3D instance reconstruction from

unconstrained point cloud scans. Our framework integrates probabilistic object detec-

tion, hypothesis verification, pose graph construction and multi-view optimization.

Such a scheme allowed us to deal with problems of dynamic clutter, occlusion and

object segmentation. Moreover, the computational cost is reduced, due to model-

to-scan alignment. To the best of our knowledge, this is the first method, capable of

reconstructing instances within clutter and occlusions, without explicit segmentation.

The rest of this thesis is devoted to explanation of the multiple components in this

pipeline and their improvements, namely: point cloud sampling, re-meshing, object

detection & pose estimation and pose graph processing. Advancements of these

technologies can, in return, advance this pipeline, leading to better reconstructions.

There are, though, still open issues such as handling rotational symmetries or next-

best view prediction that we do not touch in the scope of this thesis.
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DOWNSAMPLING 3D CAD MODELS AND POINT CLOUDS

The initial stage of a majority of real applications is the pre-processing, in which the

input data is converted to a more meaningful, or rather suitable representation. Our

input consists of large point sets arising due to the prevalence of 3D data capture, and

computerized models, which are composed of densely meshed parametric forms and

primitives and which have immense use in industry. The big-ness of the data increase

poses a natural challenge for the existing algorithms consuming 3D input. One way

to go around this problem is sampling, in which a sparser representation of the 3D

data is computed, to best achieve the goal at hand. In the context of this thesis, 3D

sampling will mostly refer to the downsampling of a CAD-model or a point cloud.

3D geometry that is of concern in this thesis is mainly composed of point clouds

and meshes (to represent CAD models). We admit noise-corrupted point clouds but

assume noise-free CAD models. Yet, not all CAD models are designed for detection

or registration, even if they are perfect for manufacturing. Many of the industry’s

man-made models include uneven distribution of triangles and their vertices are

often found only around the critical points. There are also many invisible vertices,

which are not easily accessible by the acquisition sensors. Such models cannot be used

to identify or register the object. Thus, prior to any operation, we either remove the

invisible vertices/faces, and sample the mesh geometry automatically or completely

handle the invisible faces within sampling algorithms. Preparation of these models
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for tasks such as reconstruction or object detection is of paramount importance. This

chapter is devoted to describing the typical sampling techniques we use, as well as a

new mesh to cloud sampling algorithm.

6.1 Re-meshing

In computer graphics, the state of the art to generate more suitable discrete representa-

tions is through re-meshing [9, 165], where a better mesh is obtained in terms of vertex

sampling, regularity and triangle quality. A large body of the works in this category are

variational, use Voronoi diagrams and concentrate even-ness of vertex distributions.

A reasonably fast method with very satisfactory results is proposed by Levy et al. [165].

The method is based on intersection of Restricted Voronoi Diagrams (RVD) with the

surface itself. Since the purpose of this work is not to present another re-sampling

algorithm, we adopt theirs as it is. Given n discrete seed points, X = {xi ∈RN}n
i=1, the

Voronoi diagram of X is defined as n Voronoi cells V = {Ωi }, where

(6.1) Ωi = {x ∈RN : ‖x−xi‖ ≤ ‖x−x j‖,∀ j 6= i }

Centroidal Voronoi Diagram (CVD) is a special form, where each seed xi coincides

with the center of mass µi =
∫
Ωi
ρ(x)xdσ/

∫
Ωi
ρ(x)dσ, where ρ(x) is a density function.

Centroidal RVD is then a type of CVD, which is obtained by restricting the Voronoi

cells Ωi on the surface M, Ri = Ωi ∩M. We use CRVD to extract an isotropic dual

triangle mesh. To do so, a uniformly distributed set of initial seeds X are generated

randomly. Then, CRVD is computed via an optimization procedure, using [165]. After

the optimization, the final mesh is extracted as the restricted Delaunay triangulation

(CRDT). Finally, we re-correct the face and vertex normals of the resulting mesh using

the rendering based method from Takayama et al.[257].

It is possible that remeshing algorithms create erroneous samples to satisfy the

structural penalties. It is also probable that the sharp features are not preserved

[165, 287]. On the runtime aspect, many re-meshing algorithms easily reach minutes,

making them an overkill, when only point samples are desired. Moreover, naive re-

meshing cannot distinguish invisible structures and is thus sub-optimal for vision

tasks. This encourages us to further investigate mesh sampling when the desired

output is a point cloud, as we present in §6.3.
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6.2 Sampling Point Clouds

Random sampling (RS) RS is a basic sampling technique, where each 3D point

is sampled by chance, independently. This strategy doesn’t take into account the

distribution of the points, it rather randomizes the selection itself.

Normal space sampling (NS) Normal Space Sampling [231] selects the points such

that the resulting samples are uniformly distributed in the normal space. To do that, a

set of bins V = {V1...VN } evenly distributed on a sphere S is generated by recursively

dividing an icosahedron with 12 vertices into equally spaced Ns vertices. Then each

point is assigned to a bin, resulting in a distribution of normals. Finally, we uniformly

sample from this distribution, to draw points across different normals. However, this

method is found to suffer from translational sliding by multiple scholars [103, 270].

Covariance sampling (Cov) Gelfand et al.[103] propose to sample the points that

bind the rigid transformation the most by constraining the eigen-vectors of the covari-

ance matrix of the torque and force. Let (R∗,t∗) denote the optimal transformation:

(6.2) (R∗,t∗) = argmin
R,t

Epl

If R∗ is small (due registration in close vicinity) then one could perform Taylor expan-

sion around si n(θ) ≈ θ and cos(θ) ≈ 1 to linearize the R. This results in the energy:

(6.3) Epl =
N∑

i=1

(
(pi −qi )T + rT (pi ×ni )+ tT ni

)2

where r = [rx ,ry ,rz]T . Then to solve Eq. 6.2, an overdetermined linear system Ax = b

could be assembled:

(6.4) A =


p1 ×n1 n1

p2 ×n2 n2
...

...

pk ×nk nk

 , b =


(q1 −p1)T n1

(q2 −p2)T n2
...

(qk −pk )T nk

 , x =



rx

ry

rz

tx

ty

tz
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(a) RS (b) NS (c) Cov (d) Rel

Figure 6.1: Sampling from different strategies. 1000 samples are generated per each
algorithm.

Here, the covariance matrix C = AT A, characterizes the change in error, when

the surfaces are moved away from perfect alignment. Eigenvectors of C with small

eigenvalues correspond to sliding directions. The idea is then to sample such that

these small eigenvalues are constrained. For more details, we refer the reader to

[103]. This method is designed specifically for algorithms, which solve the rigid body

transformation, in the aforementioned fashion. Covariance sampling is known to

generate clusters of point samples around the critical regions [228].

Relevance sampling (Rel) Torsello et al.[270] and Rodola et al.[228] propose to select

the points with high distinctiveness. They associate distinctiveness to the local rele-

vance, which is computed from the connectivity structure of the mesh. First, authors

define an influence area as follows:

(6.5) Yp = {m ∈ M : nT
p nm > T and p ∼ m}.

Here, ∼ shows the existence of a path from p to m. Then, the relevance measure

is defined as f (p) = |Yp |−k with |Yp | being the number of points in Yp . An inverse

transform sampling is then conducted to select points, which are uniformly distributed

over relevance. This method is shown to work well under several tasks, such as object

recognition or detection. Note that this is the only method requiring mesh input

described so far.

The results obtained by running different strategies are plotted in Fig. 6.1.
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Samples on Coordinate Renderings
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Figure 6.2: Samples generation. See text for details. CAD Model from MVTec Halcon:
http://www.mvtec.com

Learning to sample While many of the aforementioned algorithms work well in

practice, especially for the case of ICP registration, they cannot provide guarantees for

the optimality of the result. In fact, we argue that finding a universally good sampling

is difficult, if not impossible and rather propose, in [30], a task-tailored solution, where

the sampling is obtained by running a genetic algorithm that gradually refines the

estimate to a better solution. When the problem is picked to be 3D registration, a more

acceptable solution to the discrete combinatorial problem of downsampling is found.

The experimental evalution in of [30] clearly demonstrates that we are able to obtain

better results than those state-of-the-art hand crafted strategies.

6.3 Sampling for PPF Based Object Detection

State of the art object/scene perception techniques treat the input model as a well

behaving point cloud [35, 87, 246, 313]. While the research in keypoint extraction is

numerous [220, 246, 267], these methods already operate on a reasonably well dis-

tributed vertex set, covering the entire object surface. These render the unstructured

meshes or parametric forms very unfriendly for computer vision.

In this section, we address the particular problem of generating vision-compatible

3D point representations from irregular, non-conforming mesh geometries, amenable

to object detection and registration. We contribute by designing a point resampling

algorithm, aiding the Geometric Hashing framework of Drost et al.[87] and Birdal and

Ilic [35], that is to be presented in detail in Chapter 7. Outcome of our method could

certainly be used in other detection pipelines, but we particularly address this one

because it inspired a broad range of research and is very practical due to the capability
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of handling raw point clouds. The PPF matching relies on uniformly quantizing surfel

features. Quantized values act like visual words and are used in retrieval of the model

pose. This quantization step is shown to be the most critical source of error [129].

While Birdal and Ilic [36] tackle such problems via soft quantization, they do not devise

methods for keypoint selection. With our method, we address the even sampling of

both vertices and surface normals resulting in improved detection performance.

Our input is a 3D mesh. This is the modality we will refer as CAD model. Our

method starts by presenting a multi-view rendering strategy to form an oversampling

of the visible model part. Such sampling is computed by casting rays from all the pixels

of all the views and intersecting them with the surface. This can be implemented

efficiently by bounding volume hierarchies. A major challenge then stands out to

globally unify the sampled views. One of our contributions is to prune and fuse/merge

together the points in an effective way to create a bias-free, sparser output. We achieve

this by using shallow trees for representing voxel grids. While, at this stage, desired

output characteristics can be imposed by the practitioner, we specifically choose

to constrain the minimum distances between randomly distributed samples (a.k.a.

Poisson Disk Sampling) and the distribution of normals (a.k.a. Normal Space Sampling

- NSS) because of the quantization necessity of PPF based geometric hashing [87]. With

that, we are able to achieve bias-reduced blue noise (white noise with even spacing)

characteristics, which is appealing for this and also other applications [297]. Moreover,

for more regularity in the output, we employ a restricted Lloyd relaxation, in which

the average disk radius is increased iteratively. With the introduction of this relaxation,

blue noise characteristics can be traded-off to distant samples and regular structures.

See Fig. 6.2 for a brief summary. Main contributions of this work are summarized as:

• We develop a mesh resampling method applicable to any mesh, regardless of

the triangles being large, small, acute or elongated.

• We integrate view rendering to bias-reduced sample generation in order to

gracefully remove the hidden/invisible geometries.

• We introduce an efficient sparse voxel based algorithm to address the global

distribution of resulting vertices and normals using Poisson Disk Sampling and
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Normal Space Sampling. We suggest to use the restricted Lloyd relaxation to

balance the regularity and randomness.

• We present a GPU implementation for the costly parts of our algorithm.

Qualitative evaluations and spectral analysis show that we could generate visually ap-

pealing samplings with good theoretical properties. Quantitative assessments demon-

strate that our algorithm can significantly boost object detection tasks. Our supple-

mentary video can be viewed under https://youtu.be/uQo535jQ52s.

6.3.1 Method

Given an object model, we generate a set of synthetic cameras on a sphere encap-

sulating the object, as in Fig. 6.3(a) and cast rays for each view, from the camera

center towards the origin. Each ray intersects the mesh, and creates a sample point

and a normal at the intersection. We then collect all these samples and prune them

using an efficient voxel grid, with Poisson constraints. Finally, with a Llyod relaxation,

the sampling gains a balanced regularity. The entire procedure is summarized in

Alg. 1 and illustrated in Fig. 6.2. Formally, given a mesh model C = (M,T), with ver-

tices M = {m1..mNm } ∈ RNm×3 and triangles T = { t1..tNt } ∈ZNt×3, we aim to generate

the point cloud P ∈RNp×3 and normals N ∈RNp×3, s.t. sampled points obey uniform

distribution in both 3D space and normal space.

Preprocessing Man-made CAD models might not have design constraints of ori-

entation or positioning and can lie arbitrarily in space. To let the algorithm operate

regardless the model positioning, a first step is to align the model to a canonical refer-

ence frame and scale. To do this, we first compute the covariance matrix of the vertices

C and v, the normalized eigen-vectors of C: Cv =λv. We fix an intermediate reference

system as (v0,v1,v0 ×v1). The model rotation aligns this new coordinate frame to the

base frame C0. Next, the oriented bounding box (OBB) is computed as the axis aligned

bounding (ABB) box in the transformed frame. Albeit not being a volume-minimizing

BB, it is sufficiently accurate for our purposes. Finally, the mesh is rescaled to the ball

with diameter d =p
2 . From here on, with the abuse of notation, the model M will be

referring to this normalized mesh.
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Multi-view setting We generate a set of camera poses (views) V = {V1...VN }, uni-

formly distributed on a sphere S, obtained by subdividing the faces of a 12-vertex

icosahedron into equally spaced Ns vertices as in Fig. 6.3(a). A pose is composed of

a rotation matrix R and a translation vector ξ: Qi = [Ri |ξi ], while oi = −RT
i ξi is the

camera center. Moreover, for each pose, we maintain a set of intrinsic camera matrices

K= {Ki }, according to the pinhole model. Let f = ( fx , fy ) be the focal length in pixels,

and c = (cx ,cy ), the principal point. We set cx = w/2, cy = h/2, with (w,h), the desired

resolution of the camera. As we synthesize the camera poses Qi from sphere S, we are

guaranteed to view the entire projection of the model, but we are not guaranteed to

utilize the full resolution, unless f is tuned. To maximally use the viewport, we first set

f to a relaxed initial value f = ( f0, f0), and project the model. Given this projection, we

compute a tightly fitting 2D bounding box and scale f accordingly as:

(6.6) f ∗ = mi n
(
w/bw , h/bh

)
f0 c∗ = 2c−cb

where (bw ,bh) are the dimensions and cb is the center of the 2D bounding box. This

way, the area of projection is maximized, while preserving the aspect ratio. Because

the projected object silhouette is different in all views, f∗ and c∗ differ for each view,

resulting in the setK= {K i }.

Efficient ray-triangle intersection In this next stage, the samples projected on the

camera views are backprojected and intersected with the 3D mesh itself.

Let r = {o,d} denote the ray with origin o and a normalized direction vector d. Any

point on this ray is then parameterized as r(λ) = o+λd. We then write the edges of the

intersecting triangle as E = {eo ,e1,eo} and express a triangle by a point and two edges

t = (v,e0,e1). The point of intersection vi nt can be described using the 2D Barycentric

coefficients (u, v) as vi nt = p+ue0+ve1. Using the famous Möller Trumbore algorithm

[198], λ,u and v are obtained. The normal information of the sample pi nt is then

retrieved as the normal of the face: ni nt = (p1−p)×(p2−p)
‖(p1−p)×(p2−p)‖ . Note that, since we are using

the face normals, we do not have to carry out normal computation for each sample

point. Instead, we could pre-compute all the triangle normals and reduce the normal

computation to single look-up. If storage is a concern, one could always index the

normals during runtime in a hashtable, and ensure single computation per face. The

result here is a large sample pool X covering the CAD model.
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(a) Cam Views

(i) Original Model

(ii) Only Distance Constraint (iii) Distance Constraint + Bias Reduction

(b) Illustration of Sampling Bias

Figure 6.3: (a) We synthesize camera views around the object as shown. (b) Demon-
stration of Poisson characteristics. Without bias reduction, artifacts caused by view
discretization and intersection around the model edges are more visible. To exaggerate
the effect, we used 160x120 image resolution.

Weighting samples Due to the viewpoint differences and the numerical accuracy of

the ray-triangle intersection, not every selected sample has the same quality. Thanks

to the ray casting, for each point m j and intersecting triangle ti , we are able to weigh

the samples. We first flip the normals {ni } to point towards the camera, to get {nv
i }. The

weight for the sample i is inversely proportional to the angle between the normal and

the cast ray and is defined as:

w(φ) =
(
1+exp(−λ(φ−µφ))

)−1
φ= 1−|nv

i d j |(6.7)

We use λ = 10 and µφ = 0.5. The maximum weight w max ≈ 1 is achieved when the

vectors nv
i and d j are parallel (φ= 1), while the minimum w mi n → 0, is obtained when

the angle approaches 90◦ (φ= 0). Note that, due to camera projection, after ±90◦ the

face is not viewed, or viewed from the other side. Typically, we reject samples if the

weight is found to be very low wi < τw . This lets us to choose the samples which are

viewed in a fronto-parallel fashion. This procedure can handle open meshes, as the

mesh normals provide directional information.
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Algorithm 1: Proposed sampling algorithm.

1 input :Mesh ({Ti }, {Mi }), Threshold τ, Weight threshold τw and # Max Samples Nm

2 output :Sampled point cloud D with normals ND

3 Normalize and Align M to canonical frame
4 Generate camera poses : V = {V1...VN } (S,N) ← []

// sample pool generation
5 for Vi ∈ V do
6 Find best K via Eq. (2)
7 Shoot rays: ri (λ) ← o+λdi

8 {(vi
i nt ,ni

i nt )} ← {ri }∩ (T,M)
9 Compute w(φ) via Eq. (3)

10 Exclude vertices with w(φ) < τw

11 (S,N) = (S,N)∪ ({vi
i nt }, {ni

i nt })

12 Randomize(S,N)
13 Compute CDF
14 Rd ← di ameter (S)
15 (D,ND ) ← []
16 cnt ← 0

// prune and merge
17 for cnt < Nm do
18 i ← find(C DF, random(0, N ))
19 (s,n) ← (Si ,Ni )
20 dmi n = min(t∈D) |s− t| if (dmi n > τRd ) then
21 D ← D

⋃
s

22 ND ← ND
⋃

n

23 cnt ← cnt +1

24 Apply Lloyd relaxation on {D,ND ,T}

GPU implementation For the systems with graphics support, the ray-triangle inter-

section as well as the weighting can be implemented by rendering the coordinates of

intersection on a 3 channel (RGB) image. This can be computed in Shader. Further-

more, the triangle ID per pixel (sample point) can be stored in alpha channel. This

reduces the GPU-to-CPU transfer of entire information to a single RGBA texture.

Merging view based samples Given all the ray intersections, we are left with a set

of 3D points {pi } ∈ X per each view, which are to be fused into the full 3D sample

cloud {pi } ∈ P. Some of these points pi could be duplicates across views, or even if

not, they will be found very close (due to quantization errors). Moreover, a satisfactory
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(a)

(a) Dense drone reconstruction of ~200m factory with ~26M vertices

(b) Sampled Surface using τ=0.001

(b)

Figure 6.4: (a) Sparse voxel representation. (b) Very large surface mesh and its sampling
using the sparse voxels.

distribution of points over the object surface is not yet achieved. Our goal is then to

prune this large sample pool X, subject to certain constraints. Note that, at this stage,

the desired task-based 3D sampling characteristics can be also be enforced. Because

typical object detection algorithms [35] rely on equidistant/even sampling, as well as

local surface characteristics (such as normals), we adapt two strategies: We employ

Poisson disk sampling for distance based constraints, and normal-space sampling

to enforce a uniform distribution of local surface characteristics. Our approach fuses

these into a single sampling strategy, which we will devise below.

Poisson disk sampling (PDS) Recently, PDS is found to be particularly robust for

PPF matching [35], due to its generation of even distances and good spectral properties.

For our case, it will also help in reducing the bias, caused by discrete sampling on the

views. Fig. 6.3(b) illustrates this effect. PDS tries to obtain uniform random points

based on a minimum distance criterion between the samples. Formally, it tries to

satisfy the following two conditions:

(6.8) ∀pi ∈ Pi ,∀Ω ∈ Di−1,P (pi ∈Ω) = Ar ea(Ω)/Ar ea(Di−1)
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(6.9) ∀(i , j : i 6= j ),‖pi −p j‖ > 2r

where D is the domain of the sample pool and Di−1 denotes the available (not-yet-

sampled) domain. The first condition (Eq. 6.8 - Poisson Sampling) states a uniformly

distributed sample pi falls in subdomainΩwith likelihood, proportional to the area

ofΩ, provided that Di−1 ∩Ω=∅. Due to the computational complexity of calculating

the region of sampling, we relax the first constraint. We associate each sample pi to a

sphere centered at pi with radius r . r is the same for all the samples. The probability

P (pi ∈Ω) is then computed as P (pi ∈Ω) = 1−
i∑

j=1
α( j )4/3πr 3, where α( j ) influences a

poisson process bound in the interval (0,1], influencing the percentage of the feasible

sampling space for the point i . Instead of using {α( j )} as in a Poisson process, we

simply replace it with its expected value ᾱ, reducing to P (pi ∈ Ω) = 1− 4/3K ᾱπr 3.

By that, we are allowed to retrieve samples from the pool, sequentially with equal

likelihood, i.e. the drawing is uniformly distributed.

Satisfying the 2nd condition (Eq. 6.9 - Disk Sampling) is more trivial but required to

be made efficient for a large number of samples. The main idea is to draw samples from

the pool X iteratively and check against the existing samples Pi−1, for the violation

of Eq. 6.9. If Eq. 6.9 is satisfied, the sample is accepted. A naive implementation

involves a search through all the so-far sampled points or marking all the neighbors of

a sample as rejected. Both are computationally demanding. We take a different path

and construct a 3D voxel grid G over the existing samples. We then take a sample

pi from the pool sequentially and insert it into G . If the sample satisfies Eq. 6.9, it

is kept, otherwise rejected. The side length of the grid is tuned such that the search

ball remains within 9 voxels, and the query can be done in O(1) time, enabling us

to complete the entire sampling in O(N ). Even though this procedure is greedy - as

it depends on the first sampled point- it is found to generate good distribution in

practice.

Sparse voxel representation For large radii (less samples), the search in dense voxel

grids will be fast. However small radii, where closer points are sampled are problem-

atic due to the exploding memory of the grid. For that reason, we propose to use a

sparser voxel-grid similar to [204]. Our tree structure resembles the one in a B+ tree.

By construction, the tree is height-balanced, shallow and wide. This decreases the
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number of operations for traversing the tree from root to a leaf node. The structure

implemented has 1 root node, 2 internal layers and a leaf layer as shown in Fig. 6.4(a).

Point information is stored only at the leaf layer, wheres the internal layers maintain a

bitmask for encoding active children based on their spatial coordinates. To increase

traversal speed, the whole structure is restricted to powers of two: First layer has a

size of 8 units per dimension, second layer 4 and leaf nodes 4. A Cache that holds the

last visited internal and leaf nodes is also implemented. The resolution of the grid

is automatically adjusted to 2r . This way, given a point, we can answer the question

should this point be sampled? in constant time and can therefore downsample very

large point clouds such as the one in Fig. 6.4(b).

Normal space sampling Rusinkiewicz and Levoy [231] propose to sample points

such that the normals are uniformly distributed. We adapt this into our pipeline by

altering the order of the considered points. We first quantize all normals into a dense

set of bins {n̄ j } and assign each normal to the closest bin. We then take the random

ordering specified in Section IIIg, and compute the cumulative distribution function

CDF = F (n̄i ). After that, a scalar γ is drawn uniformly in the interval [0,F (n̄i )] and the

smallest index i s.t. F (n̄i ) > γ is computed, using binary search. Since this can be done

subsequent to the random sampling, it has little effect in introducing regularity, while

still satisfying the uniform distribution of normals.

Lloyd relaxation Due to the introduced randomness and greediness of the sampling

algorithm, the sampled points are not regular. To obtain a good balance between blue

noise property and regularity, we conclude our sampling by applying a few Llyod

iterations, in which the centers of the points are shifted to the centers of the Voronoi

diagram, gradually. While, it is easy to apply this on synthesized samples (samples

not on a specific surface), ensuring that the Voronoi centers remain on the surface

is difficult. For that, we exploit Restricted Centroidal Voronoi (R-CVD) iterations,

efficiently implemented by [298]. R-CVD operates by intersecting (restricting) the VD

with the surface. Lloyd scheme is formulated as a variational energy minimization

and a quasi-newton approximation is made for fast convergence. Because minimum

distance constrained is roughly satisfied in the previous section, this scheme enjoys a

good initialization and only a few iterations are enough for pleasing results.
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(a) A Synthetic Mesh (c) Sampling τ=0.06 (d) Sampling + Lloyd τ=0.06

(h) Pf of (d)(e) Pf of (b) (f) Pf of (b) + Lloyd (g) Pf of (c)

(b) Sampling τ=0.03

Figure 6.5: Spectral analysis. (a) Original Mesh. (b,c) Sampling with different radii. (d)
Sampling + Lloyd relaxation. (e) Power spectrum plot of (b). (f ) Spectral plot of (b)
after 10 Lloyd steps. (g) Spectral plot of (c). (h) Spectral plot of (d)

6.3.2 Results and Evaluation

Spectral analysis Since our sampling exhibits blue noise characteristics, we use

frequency domain analysis to evaluate the quality. Lagae and Dutre [160] standardize

this analysis as a power spectrum study. First, we generate 50 different synthetic 2D

meshes as shown in Fig. 6.5 and sample them with our method. For each sampling, the

periodogram is computed. These periodograms are averaged to estimate the power

spectrum P ( f ). We plot these 2D spectra in Fig. 6.5 with a logarithmic tone map,

removing the high-magnitude DC component. P ( f ) reveals the typical blue noise

properties: The central DC peak is surrounded by an annulus of low energy, followed

by a sharp transition region, a low-frequency cutoff and a flatter high-frequency region.

As a result, inter-sample distances follow a certain power law, with high frequencies

being more common. Note that our sampling preserves these spectral properties.

Real dataset and parameters As our method best performs with industrial CAD

models in mesh forms, we utilize the Toshiba dataset, proposed in [218]. This dataset,
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Figure 6.6: (a) Views of Toshiba dataset. Upper row: Wireframe CAD models and inter-
nal structures; Lower row: A scene point cloud and its normals. (b) Models detected by
[87] using our sampling. (c) Normals on sample points compared. Notice our sampling
(iv) can generate normals which are closest to their original CAD counterparts (i).

shown in Fig. 6.6a, consists of real life wireframe 3d models and scanned point clouds

as scenes. The models have internal structures, elongated triangles and sharp edges,

making them hard to work with. We modify this dataset to include normals for 20

scenes, each scene containing multiple objects at different occlusion levels. For all

the experiments in this part, a set of fixed parameters are used: τ= 0.03; image resolu-

tion is 640x480; the weight function/threshold are shown in Fig. 6.9(a) and we use 2

subdivisions of the sphere, resulting in 162 camera poses viewing the object.

Base methods We compare our approach against 4 other methods, which are capa-

ble of converting meshes into point sampled surfaces. Our baseline is set to be the

Monte Carlo (MC) sampling (a uniform random sampling) within the facets. A more

proper method is the stratified sampling or triangle subdivision method [7], in which

each triangle gets a sample depending on the resolution of an underlying voxel grid. A

mainstream and successful approach is Poisson disk sampling [69], also used in [35].

Finally, we compare our method against a uniform mesh resampling, which consists

of building a uniform volumetric signed distance field and applying a marching cubes

to get uniformly distributed samples. This is also very similar to the method proposed

in [193]. Note that a large family of 3d keypoint extraction methods operate directly

on vertices [117, 313] and cannot be applied to Toshiba dataset or this application.
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Figure 6.7: Visuals of our point resampling. Columns depict different samplings of
the same object, while the rows contain different objects. First two columns show the
mesh and the vertices of the original point sets.

Qualitative evaluations We assess the visual quality of our method on Piston object

from the Toshiba dataset and everyday objects of chair, glasses and a tree, as well as

on two additional industrial CAD models of a gasoline engine and a large transforma-

tor. All models have complicated triangle arrangement, hidden faces and structural

connections. The vertices are unevenly distributed and clustered on certain support

areas. Figures 6.7 and 6.8 presents the results of sampling 1000 points by our algorithm

and preceding methods. It is noticeable that our method better preserves the global

shape, has even distribution of vertices and can get rid of internal structures. Moreover,

thanks to the blue noise characteristics, the discretization artifacts due to the views

are not visible. These result in an enhanced perceptual quality of the generated point

sets. The closest result to ours is from Poisson sampling, but as it doesn’t treat hidden

faces or surface normals, our method remains visually superior. We also visualize

the normals estimated with different techniques as well as ours in Fig. 6.6c. Here,

one should look for the set of directions, which resemble the CAD model’s the most.

Because we sample directly on the faces, the normal estimation quality of ours is also

the closest to the original CAD model among the algorithms we evaluate.
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Figure 6.8: Additional visuals of our point resampling. Upper row: The original models,
lower row: corresponding sampled models.

Application to object detection We now assess the effectiveness of the method in

the challenge of 3D detection and pose estimation, the reason of its design. We use

the PPF method of [35, 87] as explained earlier, on the Toshiba dataset [218]. The

only modification is that, we replace the weighting scheme of [35] with the weights

computed in § 6.3.1. The evaluations are done by substituting the existing sampling

of [87] with a different one and comparing the pose estimation results. Our findings

for different number of samples and sampling algorithms are plotted in Fig. 6.10. We

provide distinct plots for the rotational (ER) and translational (Et) error components.

A detection is said to be correct if it can be refined to the correct ground truth pose

by a subsequent ICP (iterative closest point) alignment. Depending on the pose with

which the object lands on the scene, the tolerance of ICP could differ and we use

the same setting across all methods. We only accumulate the pose errors when the

correct detection is spotted. Fig. 6.6b illustrates these refined poses. We plot the

number of correct detection per each sampling in the left-most column of Fig. 6.10.

It is consistently visible from this figure that choosing evenly spaced points on the

visible surface with uniform distribution of normals helps our algorithm to detect

more objects and make less error in the pose when the object is detected. This means

that we manage to sample more task suited points which have higher probability
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Figure 6.9: (a) Used weighting function (see Section IIId). (b) Computational timings
of CPU implementation.

of being seen and have a better coverage of the entire surface - as for [87], the pose

depends on the point found to be on the surface.

The SDF based sampling of [193] is the closest to ours in terms of pose estima-

tion performance. However, as the number of samples decrease, the performance

gap grows. This is because our samples are always located on visible primitives and

therefore are better suited to perception/detection tasks. We have also noticed that

due to voxel-grid used in Marching Cubes, the memory requirements of [193] become

intractable as the model size increases. Our algorithm, on the other hand, doesn’t

suffer from this and can sample models of arbitrary size (see Fig. 6.4(b)).

Computational time We implemented our algorithm on an Intel i5 2.3GhZ CPU. For

ray casting, we use the freely available Intel Embree library [293], carefully optimized

for Intel platform. The average timings on our dataset are plotted in Fig. 6.9(b). The

most important parameter for runtime is the resolution of the synthetic views as we

cast a ray for each pixel of the view. The number of faces of the CAD model has a

diminished effect due to the apriori spatial indexing. Our GPU implementation, on

the average, could only run twice as fast and is dominated by the transfer overhead of

the textures. Note that the view merging is always computed on the CPU, to ease the

implementation complexity.
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(a) Quantitative Results
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(b) Detection

Figure 6.10: (a) Pose errors, for different number of samples N , computed for correct
detections only and are averaged. Our sampling could enable the same detection
method to obtain more correct results with lower pose errors, regardless the sam-
ple count. (b) Scene from Toshiba dataset. Detection results by different sampling
algorithms are visualized on this point cloud.

6.4 Further Remarks

We have presented the commonly used 3D sampling algorithms and proposed a new

holistic strategy that unites many desired properties for the utilization of CAD models

in existing state of the art computer vision pipelines. This algorithm is practical, easy

to implement and improves the PPF matching described in Chapter 7. Our algorithm

allows us to directly compute a randomized, evenly spaced point sampling of the

visible portion of the surface. The normal computation and point quality are well

integrated into the schema and are always present in the sampled result. We evaluated

our approach qualitatively and quantitatively on a real dataset, and demonstrated the

boost in the matching and pose estimation tasks.

Further applications and experiments presented in this thesis utilize the proposed

sampling method whenever the CAD models are available. For point sets, we only use

the prune and merge stage (after line 17 of Alg. 1), that is fast and, albeit a heuristic,

still guarantees uniform spatial point distribution.
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7
DETECTION OF CAD MODELS AND THEIR COMPONENTS IN

3D POINT CLOUDS

Many computer vision applications require finding the object of interest in either 2D

or 3D scenes. The objects are usually represented with the CAD model or object’s 3D

reconstruction and the typical task consists of the detection of the particular object

instance in the scenes captured with RGB/RGBD/depth cameras. Detection considers

determining the location of the object in the input image, usually denoted by the

bounding box. However, in many scenarios, this information is not sufficient and a

complimentary 6DOF pose (3 degrees of rotation and 3 degrees of translation) is also

required. This is typical in robotics and machine vision applications. Consequently,

the joint problem of localization and pose estimation is much more challenging due

to the high dimensionality of the search space. In addition, objects are often sought in

cluttered scenes, under occlusion and illumination changes. In addendum, close to

real-time performance is usually required. An alternative to estimating the 6DoF object

pose holistically considering the entire object as a rigid body, is to assume that the

models are composed of certain basis functions, often referred as 3D primitives. If such

primitives are to be detected then they could be assembled together to reconstruct

the 3D shape, and if the canonical model is available, a pose can be computed.

In this thesis, we focus on general scenarios where the scenes are described by 3D
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point clouds, without color or additional attributes. We assume that one or multiple

(not necessarily pinhole) cameras are used in acquisition, and individually, those

cameras can output point cloud scenes in their own coordinate frame. Under these

non-restrictive assumptions, this chapter covers detecting either instances or bases of

CAD models in such scenes. Not incorporating color allows us to alleviate the problem

of illumination changes and lets us use a wider range of sensors, such as Lidar only.

3D matching started naturally by applying the know how in the field of 2D com-

puter vision directly to 3D [244]. Later, hand-designed features crafted particularly for

3D, has emerged [63, 247, 267, 307, 313]. These methods operate by extracting a set of

3D keypoints and descriptors from range images or point clouds and matching them

to the ones obtained from scenes. For matching either RANSAC-like scenarios, or KD-

trees are employed. Unfortunately, while many such local features exist, repeatability

is by no means comparable to the one achieved in 2D and thus, the work in this field

is far from being complete [151, 268]. This gap has motivated us to design detectors

accustomed to our problems, such as reconstruction. Therefore, we first explain our

efforts in 6D pose estimation. We approach this problem both through geometric

methods and via learning. In the final stage, we will also describe how primitives of

these CAD models can be found in cluttered and occluded captures.

7.1 Building upon Point Pair Features and Geometric

Hashing

One of the most promising algorithms for matching 3D models to 3D scenes was

proposed by Drost et al. [87]. In that paper, authors couple the existing idea of point

pair features, with an efficient voting scheme to solve for the object pose and location

simultaneously. Given the object’s 3D model, the method begins by extracting 3D

features relating pairs of 3D points and their normals. These features are then quan-

tized and stored in a hash table and used for representing the 3D model for detection.

During run-time stage, the same features are extracted from a down-sampled version

of a given scene. The hash-table is then queried per extracted/quantized feature and

a Hough-like voting is performed to accumulate the estimated pose and location,

jointly. In order to overcome complexity of the full 6DOF parametrization, assumption
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is made that at least one reference point in the scene belongs to the object. In that

case if the correspondence is established between that reference point in the scene

and one model point there, and if their normals are aligned, then there is only one

degree of freedom, rotation around the normal, to be computed in order to determine

the object’s pose. Based on this fact, a very efficient voting scheme has been proposed.

The great advantage of this technique lies in its robustness in presence of clutter and

occlusion. Moreover, it is possible to find multiple instances of the same object, simply

by selecting multiple peaks in the Hough space. While operating purely on 3D point

clouds, this approach is fast and easy to implement.

Due to its pros on the performance aspect, aforementioned geometric matching

method immediately attracted attention of scholars and was plugged into many exist-

ing frameworks, often surpassing the learning based counterparts [130]. Moreno et

al.used it to constrain a SLAM system by detecting multiple repetitive object models

[234]. They also devise a strategy towards an efficient GPU implementation. Another

immediate industrial application is bin picking, where multiple instances of the CAD

model is sought in a pile of objects [131]. Besides, there is a vast number of robotic

applications [23, 210] where this method has been applied. The original method also

enjoyed a series of add-ons developed. A majority of these works concentrated on

augmenting the feature description to incorporate color [66] or visibility context [152].

Choi et al.proposed using points or boundaries to exploit the same framework in order

to match planar industrial objects [67]. Drost et al.modified the pair description to

include image gradient information [84]. There are also attempts to boost the accu-

racy and performance of the matching, without touching the features. Figueiredo et

al.made use of the special symmetric object properties to speed up the detection by

reducing the hash-table size [78]. Tuzel et al.proposed a scene specific weighted voting

method by learning the distinctiveness of the features as well as the model points

using a structured SVM [277].

Unfortunately, despite being well-studied, method of Drost et al. [87] is often

criticized by high dimensionality of the search space [44], being sensitive to 3D cor-

respondences [171], having performance drops in presence of many outliers, and

low density surfaces [197]. Furthermore, the succeeding works report to significantly

outperform the technique in many datasets [44, 128]. Yet, these methods work with

RGB-D data, cannot handle occlusions and heavily depend on the post-processing

115



CHAPTER 7. DETECTION OF CAD MODELS AND THEIR COMPONENTS IN 3D

POINT CLOUDS

and pose refinement.

In defense of the point pair features, we propose a revised pipeline along with a

new perspective on quantization and retrieval. We will first explain our pipeline, where

we address the crucial components of the framework. Instead of targeting the specific

part of the original method as others, we revise the whole algorithm and draw a more

elaborate picture of an improved object detection and pose estimation method. In the

next section, we will devise our probabilistic view on the pose retrieval.

7.1.1 PPF Matching Pipeline Revisited

Our approach starts by generating more accurate model representation relaying on

PPFs. Since the normals are integral part of the PPFs, we compute them accurately

by a second order approximation of the local surface patches. Giving different impor-

tance to the PPF is also important in building more reliable model representation.

Unlike [277] where scene dependent PPF weighting has been performed, we rely on

ambient occlusion maps [194] and associate weights to each model point, obtained

via visibility queries over a set of rendered views. This is scene independent and causes

a cleaner Hough space, eventually increasing the pose accuracy. During the online

operation, the scene (depth map) is first segmented into multiple clusters, in a hier-

archical fashion. In our context, coarse-to-fine/hierarchical segmentation refers to a

set of partitioning varying from under- to over-segmentation. We detect objects in all

segments, separately. Note that, while a variety of methods also segment the 3D model

and use the parts [161], we deliberately avoid this, because the proposed matching is

already robust to clutter and occlusion, which would be present in distinct clusters. By

introducing a hierarchy of depth segment clusters with varying sizes, we deal with the

segmentation errors. Processing disjoint segments inherently reduces the clutter and

thus, the voting space gets much cleaner. We can then have a better detection rate,

with a more accurate pose. Thanks to the same reason, we can detect small objects

as well as large ones. This also improves the ability to find multiple objects without

cluttering the Hough space. These benefits come with no additional computational

cost. In fact, choosing reasonable segment sizes often reduce the run-time.

Our voting scheme makes effective use of the computed model weights and an

enhanced Hough voting to achieve further accuracy of poses with more correct detec-
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Cluster Rejection &
Weighted Matching on Depth

Weighted Representation
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&

Verification

Input 3D Model

3D Matching Without 
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Generated Hypothesis

Figure 7.1: Illustration of the proposed pipeline. First input CAD models are trained
using ambient occlusion maps as weighting. Each captured scene is first segmented
into smaller regions and each region is matched to trained model. Per each segment,
we retain many hypothesis and verify using the rendered CAD model. We rank the
hypothesis according to the scores and reject the ones with low confidence.

tions. Finally, all the estimated hypotheses in all segments are gathered and checked

through an occlusion and clutter aware hypothesis verification. Moreover, thanks to

entire procedure, the necessity of ICP pose refinement is minimized, further speeding

up the real life applications. To accomplish all this, neither the feature representation

nor the matching scheme is altered. This way, all the other methods, benefiting the

similar framework can enjoy the contributions.

We evaluate our approach quantitatively and qualitatively on both synthetic and

real datasets. We demonstrate the boosted pose accuracy along with the improve-

ments in detection results and compare it to the state of the art. We show that the

proposed pipeline yields more accurate poses, an increased detection rate and re-

duced complexity. The following sections are devoted to the related work, description

of the proposed method and experiments.

Weighting model points The original technique of Drost et al [87] treats all sampled

points equally. Similar to [277], we argue that not all points carry the equal importance

for matching. However, while authors in [277] are performing a scene dependent

weighting and learning for a given task, we emphasize the necessity of a scene in-

dependent one. Unlike [277] however, our goal is not only to improve the detection

rate, but to get better pose accuracy as well. For that, we are trying to focus on the

visible surfaces of the object, where the normals are accurate and repeatability is bet-
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ter. Consequently, we base our weighting strategy on ambient occlusion maps [194]

as explained in §2.8. Based on Ap, we propose to weigh the entries of the hashtable.

Thus, given the hashtable bins, our weights are nothing but a normalized, geometric

mean of Amr and Ami . This way, the likelihood of using a potentially hidden point is

reduced. In the experiments section, we show that even though this weighting doesn’t

necessarily increase the detection rate, it improves the accuracy of the resulting pose.

Global model description Given the extracted PPF, the global description is imple-

mented as a hashtable mapping the feature space to the space of point pairs. To do

this, the distances and the angles are sampled in steps of ddi st and dang l e = 2π/nang l e

respectively. These quantized features are then used as keys to the hashtable. The pair

features, which map to the same bucket are grouped together in the same bin, along

with the weights. To reduce the computational complexity, a careful downsampling is

required at this stage, which would respect the quantization properties. This requires

all the points to have at least ddi st distances. We found out that using a Poisson Disk

Sampling algorithm [69], this is ensured to an acceptable extent. This algorithm con-

sists of generating samples from a uniform random distribution where the minimum

distance between each sample is 2r . This suggests that, a disk of radius r centered on

each sample does not overlap any other disk, satisfying our quantization constraint.

Online matching Our input in runtime is only a depth image, typically acquired by

a range sensor. First, the required normals are computed using SRI method proposed

by Badino et al.[21]. This choice is motivated by the grid structure of the range image

and the availability of the camera matrix. While not being identical to model normals,

they are both accurate and computed quickly. The scene is then downsampled in a

similar fashion to model creation. The triangulated depth points are then subject to a

voting procedure, over the local coordinates. This section is devoted to the description

of a coupled segmentation and voting approach, together with pose clustering and a

hypothesis verification.

Having a fixed scene point pair (sr,si), we seek the optimal model correspondence

(mr,mi) to compute the matching and 6DOF pose. Unfortunately, due to quantization,

ambiguities and the noise in data, such assignment cannot be found by a simple scan.

Instead, a voting mechanism, resembling Generalized Hough Transform is conducted.
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While votes can be cast directly on 6DOF pose space, Drost et al.[87] proposed an

efficient scheme, reducing the voting space to 2D, using local coordinates. Whenever a

model pair, corresponding to a scene pair is found, an intermediate coordinate system

is established, where mi and si are aligned by rotating the object around the normal.

The planar rotation angle αm for the model is precomputed, while the analogous for

the scene point αs is computed online. The resulting planar rotation angle around

x-axis is found by a simple subtraction, α=αm −αs .

An accumulator Acc is 2D voting space composed of mr (the model index) and α.

It collects votes for each scene reference point. mr is already a discrete entity, while α

is a continuous one, subject to discretization over the voting space. Unlike original

method, we also maintain another accumulator Accα retaining the weighted averages

of the corresponding α values, for each bin in Acc. This is done for the sake of not

sacrificing further accuracy.

Notice that, because the pose parameters and the model correspondence are

recovered simultaneously, an incorrect estimation of one, directly corrupts the other.

This makes the algorithm sensitive to noisy correspondences. To compensate for

these artifacts, we propose to vote with the computed weights in §2.8. Moreover, in

presence of significant noise, correct correspondences can fall into neighboring bins,

decreasing the evidence. Thus, when voting, the value of each bin is added also to the

closest bins. Subsequently, we perform a subpixel maximization over the continuous

variable α by fitting a second order polynomial to the k-nn of the discrete maximum

and use αk , obtained from the weighted averaging of the corresponding bins.

Matching disjoint segments Our method employs a pre-segmentation to partition

the scene into different meaningful clusters. Each cluster is then processed separately,

having distinct Hough domains. This is different than previous works like [161], in

which the model is also segmented.

We treat the depth image as an undirected graph G = {V ,E }, with vertices vi ∈V

and edges (vi ,v j ) ∈ E . As a dissimilarity measure, each edge has a non-negative weight

w(vi ,v j ). We then seek to find a set of components C ∈ S, where S is the segmentation.

The component-wise similarity is achieved via the weights of the graph. Felzenszwalb

and Huttenlocher propose a graph theoretic segmentation algorithm, addressing a

similar problem [94]. Their approach is designed for RGB images, whereas we adapt it
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to depth images. The algorithm uses a pair-wise comparison predicate (P ), which is

defined as:

(7.1) P (C1,C2) =
1, if d(C1,C2) > Mi nt (C1,C2) ≤ 0

0, otherwise

Here, d(C1,C2) is the difference between components and defined as the minimum

weight edge:

(7.2) d(C1,C2) = min
vi∈C1,v j∈C2,(vi ,v j )∈E

w(vi ,v j )

where the minimum internal difference Mi nt equals:

Mi nt (C1,C2) = min(Int(C1)+τ(C1), Int(C2)+τ(C2))(7.3)

with Int(C) = maxe∈MST (C,E) w(e) and MST being the minimum spanning tree of the

graph. The threshold function τ(C) = k/|C| exists to compensate for small components

with k being a constant and |C|, the cardinality of C. Note that, smaller components are

allowed when there is a sufficiently large difference between neighboring components.

The segmentation S = {C1 . . .Cs} can be efficiently found by union-find algorithm.

The adaptation to depth images is done by designing the weights. We use the local

smoothness of the surface normals along with the proximity of the neighboring points.

Segmentation weights are defined as:

(7.4) w(vi ,v j ) = ‖vn
i −vn

j ‖∠(ni ,n j )

where (vn
i ,vn

j ) is the edge in the normalized coordinates.

While this approach generates a descent segmentation, we do not need to process

every segment. In fact, many of these segments might lack sufficient geometry, or can

be very small / large, or be coplanar. For that, we apply a filtering. We first remove

segments which have a lot of undefined depth values. Then, the segments not obeying

the size constraints are filtered out. Finally, we evaluate the linearity of the segments.

Because, we have the set of normals {Ni
j } defined for each point n j of cluster i , this

procedure is simply applying a threshold τc over the deviation from the mean normal,

computed as:

(7.5) σ(Ni ) = 1

|Ni |
|Ni |∑
j=1

(∠(ni j n̄i ))2
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Figure 7.2: Local implicit voting: Given multiple scene point pairs, tied to a common reference
sr , we generate features fr i , activating different codebook buckets (middle). Each bucket casts
votes for multiple (m,α) pairs in the local voting space of sr .

where {n̄i } is the set of mean cluster normals (see Chapter 2). The clusters which satisfy

the condition σ(Ni ) < τc are early-rejected. In our experiments, we use a coarse-to-

fine (under to over) set of segmentations. Worst case resorts to using the whole scene,

while difficult cases, such as small objects are found in coarser levels. Each segment

is processed disjointly. We then verify the detected poses as in §7.2. This reduces the

clutter and decreases the number of scene points sought. Because less clutter implies

more relevant votes, it demystifies the Hough space and eases the maximization. Then,

the accuracy of the resulting pose, as well as the detection rate increases. Besides,

reduction in computational cost comes as a by-product. We will discuss this more

in § 7.3.1.

7.1.2 Probabilistic Point Pair Retrieval

A codebook view of model training In the first stage, we generate a pose invariant

codebook encoding all possible semi-global structures that could be found on the CAD

model. A semi-global information in this regard, is obtained by a point pair feature

f. We use our codebook to relate a feature (key) to a set of oriented references points

{(mi ,m j )} (stored in buckets) and build the global model description as an inverted

file i.e. a hashtable H. Thus, each bucket in the codebook contains self-similar point

pairs extracted from the CAD model. We now cast the detection and pose estimation

problem as retrieving/matching the correspondence of an oriented scene point pair

{sr ,si } to the one on the model {mr ,mi }. Whenever a pair from the scene is matched
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to one in the model, their normals at the reference points are aligned. Then, the full

pose of the object can be obtained once the rotation angle α around the normal is

known. This can be done by aligning Local Coordinate Frames (LCF) constructed

from matched pairs. Thus, instead of storing the full PPF, we store only this local

parameterization {mr ,α} composed of the model reference point mr and rotation

angle α. A pair correspondence resolves the full 6DOF pose and what is left is to

retrieve the matching pairs {sr ,si } and {mr ,mi }. We now give a novel way to do this.

Probabilistic formulation During detection, a new point cloud scene S is encoun-

tered and downsampled to a set of points SD = {sr }, some of which are assumed to

lie on the object. The sampling also enforces spatial uniformity (see our suppl. mate-

rial). We fix a reference point sr and pair it with all the other samples {si }. Each pair

makes up a PPF fr i . The original method [87] associates fr i to a unique key and can

not account for the quantization errors that inevitably happen due to the noise. To

circumvent these quantization artifacts, resulting from the hard assignment in [87],

we quantize fr i to K different bins (K > 1), activating different codebook entries as

in ISM. This soft quantization results in possibly matching buckets F̄r i = {f̄1..f̄K }. F̄r i

indexes the buckets of H, with weights p(f̄k |fr i ). For each matching bucket, we collect

the valid interpretations p(m,α|f̄), inversely proportional to the size of the bucket

Nb , denoting the probabilities of particular pose configuration, given the quantized

feature. Formally:

p(m,α|sr ,si ) = p(m,α|f) =∑
k

p(m,α|f̄k )p(f̄k |f)(7.6)

with p(f̄k |f) = 1
K and p(m,α|f̄) = 1

Nb
being uniformly distributed. This probability is

actually the prior on the PPF of the particular object and can be computed differently

accounting for the nature of the object geometry using a suited distribution. At this

point, the gathered pair representations for a particular scene reference point are

sufficient to recover for the object pose. However, due to outliers, some of these

matches will be erroneous. Therefore, a 2D voting scheme is employed, locally for

each scene reference point sr . The voting space is composed of the alignment of the

LCF α as well as the model point correspondence m:

(7.7) V (m,α) =∑
i

p(m,α|sr ,si )

122



7.2. HYPOTHESIS VERIFICATION

For each sr , there is a voting space Vr (m,α), from which the best alignment is extracted

as:

(7.8) (m∗
r ,α∗

r ) = argmax
m,α

Vr (m,α)

Each such (m∗
r ,α∗

r ) corresponds to a pose hypothesis. This is similar to performing

Generalized Hough Transform (GHT) on reference point level locally and is the reason

why we attribute the name Local ISM to our method. After all pose hypotheses are

extracted, as the maxima in the local spaces, the poses are clustered together to

assemble the final consensus, further boosting the final confidence.

7.2 Hypothesis Verification

Hypotheses verification for depth images Our method generates a set of hypothe-

ses per each object, with reasonable pose accuracy. Yet, such a huge set of hypotheses

demands an efficient verification scheme. Typical strategies, such as Hinterstoister et

al.[128], either put ICP in the loop, whereas, for our method, the pose accuracy is

sufficient for ICP-less evaluations.

Whenever a depth image is available as a dense projection of the 3D content,

in order to verify and rank the collected hypothesis, we categorize the visible space

into 3: Clutter (outlier) Sc , occluders So and points on the model Sm according to the

following projection error function:

(7.9) Eh(p,m) = Dp −Φ(p|M,Θh ,K)

Φ selects the projection of the model points M corresponding to pixel p, given a

camera matrix K and the pose parametersΘh for hypothesis h. The classification for a

given valid point p is then conducted as:

(7.10) p ∈


Sm , if |Eh(p,m)| ≤ τm

So , if −Eh(p,m) ≥ τo

Sc , otherwise

subsequently, the score for a given hypothesis is:

(7.11) Sh =
(
1− |p ∈ So |

Nm

)
· |p ∈ Sm |

Nm −|So |
123



CHAPTER 7. DETECTION OF CAD MODELS AND THEIR COMPONENTS IN 3D

POINT CLOUDS

where Nm is the number of model points on valid region of the projectionΦ(p|M,Θh ,K).

The thresholds τm and τo depend on the sensor and are relaxed, due to the missing

points not acquired by the sensor. Similarly, we include the check for coinciding nor-

mals. Luckily, these scores can be computed very efficiently using vertex buffers and

Z-buffering on the GPU. Instead of transforming the model with the given pose, we use

theΘ−1 to update the current camera view. Thanks to the accuracy in pose estimation,

the ICP is not a strict requirement of this stage. In fact, frequently, the verification is

ICP-free. Retrieving the top Nbest poses finalizes our object detection pipeline.

This metric favors less occluded and less cluttered matches, having more model

points with consistent normals. Yet, in our experiments, we found that use of filtered

clusters increases the chances of hypothesizing a descent pose, which is only at seldom

missed by the verification.

Hypotheses verification and rejection for 3D data Devised matching theoretically

generates a pose hypothesis for each scene reference point, which is assumed to be

found on the model. There are typically ∼ 400−1000 such points, reducing to 50 poses

after the clustering, where the close-by poses are grouped together and averaged. Still,

as many hypotheses as the number of clusters remain to be verified and the best pose

is expected to be refined. In our problem of instance reconstruction it is critical that

no false positive pose hypotheses survives. For this reason we introduce a rigorous

hypothesis verification scheme. The effective verification requires fine registration,

while efficient registration requires as few poses as possible. This creates a chicken

and egg problem. We address this issue via a multi-level registration approach. In the

first stage, sparsely sampled scan points are finely registered to the model using the

efficient LM-ICP [97] variant of Iterative Closest Point (ICP) registration [28]. We also

build a 3D distance transform for fast nearest neighbor access. Our sparse LM-ICP

requires only 1ms per hypothesis, allowing us to verify all the hypotheses. We define

the hypothesis score to be:

(7.12) Ξ(θi ) = 1

NM

NM∑
j

1, ‖θ−1
i ◦m j −sk ( j ))‖ < τθ

0, other wi se

where θi is the pose hypothesis and sk ( j ) the closest sampled scene point to trans-

formed model point θ−1
i ◦m j . Intuitively, this score reflects the percentage of visible
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model points. The surviving poses are then sorted, taken to the next level and densely

refined. This coarse to fine scheme is repeated for 3 levels of the pyramid. Finally, a

dense registration is performed to accurately obtain the final pose.

Until this stage the surface normals are excluded from the fine registration process.

We do this intentionally, to use them as a verification tool. Following registration, we

check the surface consistency between the scene and the model. To do so for each

scene point, the surface normal of the closest model point is retrieved. A scan is only

accepted if a majority of the normals agree with the model. While this procedure can

result in potentially good detections being removed (due to scene deviations), it does

not allow false positives to survive as shown in §5.3.

7.3 Evaluating Object Detection and Pose Estimation

7.3.1 Evaluating Improved Pipeline

Race Car Duck Car Cow Driller Ape Pumba

Figure 7.4: 3D models of some of the ob-

jects used in our experiments.

The detection performance of a basic vari-

ant of our method has already been proven

to be robust on this dataset [87]. We now

evaluate our method quantitatively and

qualitatively on synthetic and real datasets.

For real sets, we use the common LineMOD

dataset [128] and the Mian dataset [193]. LineMOD dataset [128] is now a standard in

object detection and many early works evaluated their methods on it. The package

includes 15 non-symmetric objects appearing in ∼ 1100 scenes per object. Each scene

of an object is cluttered with the other objects. In none of the scenes, the objects are

subject to heavy occlusion. We use only a subset of the models in our experiments

as shown in 7.4. Specifically, our objects are phone, ape, duck, iron, driller, car and

benchwise. The chosen models cover a variety of geometrical structures. We select

a subset due to either lack of accurate CAD models or large performance drops for

LineMod [128] (which would be unfair to show). For all experiments, the points are

downsampled with a distance of 3% times the diameter. Normal orientation is sampled

for nang l e = 45.
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Figure 7.3: Outputs from our approach. Our segmentation aided matching has im-
proved detection rates along with accurate poses.

Synthetic experiments First, we synthetically evaluate the accuracy of our pose

estimation. To do that, we virtually render multiple CAD models in 3D scenes along

with artificial clutter, also generated by other CAD models. To match the reality, our

models are the reconstructions of real objects taken from LineMOD dataset [128]. We

synthesize 162 camera poses over the full sphere for each object. This corresponds to

1134 point cloud scenes, all of which had apriori additive Gaussian noise. Because at

this point we are concerned for the pose accuracy, no segmentation is applied and

we record the rotational and translational errors for correct detections. At this stage,
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Figure 7.5: Comparison of the voting strategies (Ours-W is the weighted variant). a)
Rotational errors. b) Translational errors.

an object is marked detected if the resulting pose is close to the ground truth pose.

We set the threshold to 10% of the object diameter for detection and 10◦ for rotation.

Fig. 7.5(a) and 7.5(b) depict the results obtained from pose estimation. It is seen that,

for many of the objects, our rotational component is twice as more accurate as Drost

et al [87]. Since the translation is also computed from rotations and the matching

model component, there is also similar refinement in translational accuracy.

Evaluations on real data We compare our method against LineMod [128], and

Drost et al.[87], that are the baselines for our dataset and method respectively. Yet, it is

worth paying attention to the following: LineMod [128] is designed for multi-modal

features and incorporates color information. Yet, we favor a fair comparison to our

method by only using depth cues. Naturally, this has a negative impact on LineMod’s

performance, as it relies significantly on the color information. We, nevertheless, in-

clude LineMod as a baseline. Unlike the experiments in [128], we do not tune the

parameters for each object or scene when using our method. While carefully tuning

parameters sacrifices computational time for detection accuracy, it is cumbersome

and unfair. LineMod without ICP has very low detection rates, as ICP is an integral

part of LineMOD pipeline. Thus, we use ICP in the detection stage for LineMOD.

Yet, the reported poses are solely obtained by template matching and not ICP. In the
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Table 7.1: Detection results on ACCV3D for different objects.

LineMod Drost et al. Ours

ape 42.88% 65.54% 81.95%
cam 68.78% 84.92% 91.00%
cat 35.62% 87.30% 95.76%
driller 51.52% 81.06% 81.22%
iron 35.22% 87.06% 93.92%

Average 46.80% 81.18% 88.77%
Avg. Runtime 119ms 6.3s 2.9s

experiments, original implementation of LineMod was used, but only with depth

information and without post-processing. Unlike LineMod [128], Drost et al.[87] do

not necessarily require the refinement. For this reason, neither our poses nor the poses

for Drost et al.are refined and re-scored. We find this strategy inevitable to reason

about our pose results and not the results of ICP. For all these reasons, our results will

differ from the original ones, but will be consistent along the experimentation.

The detection rates are shown in Tab. 7.1. For our datasets, only 2-3 segmentation

levels per scene were sufficient. In harder cases, one might use more maps to cover

for larger variation. It is clearly seen that our method outperforms both methods. Our

detection rates never fall below Drost et al.[87], as the worst case converges to full

matching. Thanks to meaningful segments, using all the points as a single cluster

is highly unlikely. On the average, we get 7% more, although this dataset is not cut

for our method. It is noteworthy that our improvements in the detection are more

significant for small objects (which are hard to spot in clutter and occlusion), while the

pose accuracy is more significant in large objects with varying surface characteristics.

Nevertheless, we realize increased accuracy in both pose and detection rate regardless

of the object size. Also note that, LineMod [128] uses only a hemisphere, whereas we

recover the full pose (see Fig. 7.3).

Next, we evaluate the pose accuracy, on the same dataset. To do that, we use

the two-metric as explained in § 2.3.6. Our new error function, which is free of the

point correspondences but rather depends directly on the pose parameters is defined

as:erri = dθ(M0
mar ker (Mi

mar ker )−1Mi
ob j ,M0

ob j ). dθ is a function returning an error vec-

tor err with angular and translational components. Mi
ob j is the object pose at frame
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(a)

Detection Result: Drost et. al. Detection Result: OursDepth Image Segmentation

(b)

Detection Result: Linemod Detection Result: Drost et. al. Detection Result: OursDepth Image & Segments

(a)

Depth Image Segmentation Detection Result: Drost et. al. Detection Result: Ours

(b)

Depth Image & Segments Detection Result: Linemod Detection Result: Drost et. al. Detection Result: Ours

(a)

Detection Result: Drost et. al. Detection Result: OursDepth Image Segmentation

(b)

Detection Result: Linemod Detection Result: Drost et. al. Detection Result: OursDepth Image & Segments

(a)

Depth Image Segmentation Detection Result: Drost et. al. Detection Result: Ours

(b)

Depth Image & Segments Detection Result: Linemod Detection Result: Drost et. al. Detection Result: Ours

Figure 7.6: Qualitative results. a) Detection results in our data, with presence of small
objects in long-range Kinect scans. b) Pose estimation results on ACCV3D dataset
[128]. The accuracy in our poses is even visually distinguishable.

i , where as Mi
mar ker is the pose of the marker board for the same frame. The overall

error per object is simply reported as the average pose error in all test frames, i.e

average of the set {erri } . This metric transfers each estimated pose to the first frame

and computes a pose error between detected object pose transformed to the first

frame and ground truth pose in the first frame. We evaluate the error on CAT, DUCK

and CAM objects. After transferring each to the initial frame, we perform an ICP and

report in Fig. 7.7 {erri } convergence from our detected pose. After the same number of

ICP iterations we have lower rotation/translation error and also because of the better

detected pose we need less iterations to converge. Finally, Fig. 7.6 visualizes the results

of our method both on a self built setup (Fig. 7.6(a)) and on ACCV3D dataset using

CAT object (Fig. 7.6(b)). We show that both the detections and the pose accuracy is

visually better than the antecedents.

Complexity analysis and performance One drawback of PPF matching is the com-

binatorial pairing approach. One way to overcome this problem is by pairing the scene

points very sparsely, which is suboptimal. Let M be the number of scene reference

points Sr, and N denote all the paired points in the scene. The pairing (Sr,Si) then

creates a complexity of O(M N ) =O(N 2
x N 2

y ), where (Nx , Ny ) denotes the dimensions

(invisible points and hash-table search are excluded).
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Figure 7.7: Pose errors on ACCV3D dataset as ICP iterates. Rotations are in degrees,
while for translation, y-axes are normalized with model diameter.

If we are to segment the image into K clusters, the average number of Sr per cluster

as well as the number of paired points are reduced to M
K and N

K , respectively, resulting

in an overall complexity of O( M N
K 2 ) per cluster. The overall average time complexity is

reduced to O( M N
K ). If we agree to keep the same complexity, we can now vote for more

points. Instead, we prefer to use a set of segmentation with different segment sizes,

resulting in more clusters.

We first report the runtime of our algorithm on ACCV3D dataset in Tab. 7.1. Even

though we get 2× speed-up over Drost et al.[87], this is less than the theoretical

possibility. In fact, this is due to the trade-off of obtaining superior detection rate and

accuracy by using a sequence of segmentation and more scene points w.r.t. [87].
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Figure 7.8: Effects of number of

segments on runtime.

As explained, the performance is largely affected

by the size and the number of the segments. Next

experiment targets this effect. We take 3 arbitrary

models present in 1000 images, where the objects

of interest were car, ape and duck. We sample ∼
900 model points. In each scene, we seek for the

minimal number of scene points to pair for a correct

match and use that to record the timings. This is in

order to make sure that every trial actually results

in a correct pose. We plot the segment size vs speed
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relation in Fig. 7.8. These timings exclude the data acquisition. Note that there is an

optimum point (correct segmentation), which generally depends on the scene. For

this experiment, we could reduce the matching time to 170 ms by just using 1
50th of the

scene points. However, typically, suboptimal choices already allow a descent reduction

of computational time, as we do not rely on the precision of the segmentation. This

means that, being able to use more clusters, decreases the demand on the sampling

and one could use much less scene points to obtain a successful match. Naturally,

increasing the segment sizes, reduces the number of clusters and thus the performance

converges to that of the original algorithm.

7.3.2 Local Implicit Shape Models (Probabilistic PPF Voting)

Figures 7.9(a) and 7.9(b) provide PR-curves for LISM and the hypothesis verification.

Note that although LISM already performs well, our verification clearly improves the

distinction between a match vs false positive. Using a simple threshold, we could

obtain 100% precision without sacrificing the recall. Thus, our score threshold, com-

bined with the normal consistency check manages to reject all false hypotheses, at the

expense of rejecting a small amount of TP.
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Figure 7.9: Performance of LISM and verification on Mian dataset.
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7.3.3 Limitations

Due to the nature of PPF matching, our approach requires objects with rich geometry.

Symmetric objects are also problematic due to ambiguity in pose estimation. Last

but not least, currently, there is no mechanism to handle mis-detections. Yet, mis-

detections are hardly a problem when the score threshold is reasonably high. This way,

we detect in less scenes but avoid mistakes.

7.4 Deeply Learned Features for Object Detection

A natural successor of the geometric approaches presented in the previous sections

would be the learned features, that can describe the local 3D structure. With the ad-

vent of deep learning, many areas in computer vision shifted from hand crafted labor

towards a problem specific end-to-end learning. Local features are of course no ex-

ception. Already in 2D, learned descriptors significantly outperform their engineered

counterparts [211, 304]. Thus, it was only natural for the scholars to tackle the task of

3D local feature extraction employing similar approaches [150, 308]. However, due

to the inherent ambiguities and less informative nature of sole geometry, extracting

3D descriptors on point sets still poses an unsolved problem, even for learning-based

methods.

In this part of the thesis, we enrich our object detectors with learned features. We

propose one supervised (PPFNet) and one unsupervised (PPF-FoldNet) algorithm

to test the capabilities of deep learning in the task of correspondence estimation

and object detection. Both PPFNet and PPF-FoldNet outperform the state of the art

across the standard benchmarks in which severe rotations are avoided. When arbitrary

rotations are introduced into the input, PPF-FoldNet continues to outperform related

approaches by a large margin.

7.4.1 PPFNet [81]

We initiate our efforts in learning descriptors by a supervised approach that is robust,

yet not fully 6DoF invariant.

PPFNet [81] is a state of the art, deeply learned, fast and discriminative 3D local

point cloud descriptor with increased invariance. To satisfy its desirable properties, we
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Figure 7.10: PPFNet

first represent the local geometry with an augmented set of simple geometric relation-

ships: points, normals and point pair features (PPF) [87, 232]. We then design a novel

loss function, which we term as N-tuple loss, to simultaneously embed the matching

and non-matching pairs into a Euclidean domain. Our loss resembles the contrastive

loss [118], but instead of pairs, we consider an N-combination of the input points

within two scene fragments to boost the separability. Thanks to this many-to-many

loss function, we are able to also inject the global context into the learning, i.e. PPFNet

is aware of the other local features when establishing correspondence for a single one.

Also because of such parallel processing, PPFNet is very fast in inference. Finally, we

combine all these contributions in a new pipeline, which trains our network from

correspondences in 3D fragment pairs. PPFNet extends PointNet [221] and thereby

is natural for point clouds and neutral to permutations. The overall architecture is

illustrated in Fig. 7.10.

Network architecture The first module of PPFNet is a group of mini-PointNets,

extracting features from local patches. Weights and gradients are shared across all

PointNets during training. A max pooling layer then aggregates all the local features

into a global one, summarizing the distinct local information to the global context of

the whole fragment. This global feature is then concatenated to every local feature.

A group of MLPs are used to further fuse the global and local features into the final

global-context aware local descriptor.
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N-tuple loss Our goal is to use PPFNet to extract features for local patches, a process

of mapping from a high dimensional non-linear data space into a low dimensional

linear feature space. Distinctiveness of the resulting features are closely related to the

separability in the embedded space. Ideally, the proximity of neighboring patches in

the data space should be preserved in the feature space.

We propose N-tuple loss, an N -to-N contrastive loss, to correctly learn to solve this

combinatorial problem by catering for the many-to-many relations. Given the ground

truth transformation T, N-tuple loss operates by constructing a correspondence matrix

M ∈RN×N on the points of the aligned fragments. M = (mi j ) where:

(7.13) mi j =1(‖xi −Ty j‖2 < τ)

1 is an indicator function. Likewise, we compute a feature-space distance matrix

D ∈RN×N and D = (di j ) where

di j = ‖ f (xi )− f (y j )‖2(7.14)

The N-tuple loss then functions on the two distance matrices solving the corre-

spondence problem. For simplicity of expression, we define an operation
∑∗(·) to sum

up all the elements in a matrix. N-tuple loss can be written as:

(7.15) L =∑∗
(

M◦D

‖M‖2
2

+αmax(θ− (1−M)◦D,0)

N 2 −‖M‖2
2

)

Here ◦ stands for Hadamard Product - element-wise multiplication. α is a hyper-

parameter balancing the weight between matching and non-matching pairs and θ is

the lower-bound on the expected distance between non-correspondent pairs. We train

PPFNet via N-tuple loss, as shown in Fig. 7.10, by drawing random pairs of fragments

instead of patches. This also eases the preparation of training data.

7.4.2 Unsupervised Learning with PPF-FoldNet [80]

PPFNet suffers from two unsolved problems: First, full rotation invariance is not

achieved, but the network is only tolerant to previously seen rotations. Second, distant

patches are defined as non-pairs, an assumption that might not hold for certain local

patches lying further away but are still similar. To deal with those, and alleviate the
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Figure 7.11: PPF-FoldNet

supervision, PPF-FoldNet [80] is proposed, in which, the invariance is achieved by

using pure PPF-encoding of the local 3D geometry. As summarized in Fig. 7.11, the

collection of the 4D PPFs are sent into a FoldingNet-like end to end auto-encoder

(AE) [303], trained to auto-reconstruct the PPFs, using a set distance. This is different

to training the network with many possible rotations of the same input and forcing

the output to be a canonical reconstruction, which would both be approximate and

much harder to learn. Our encoder is simpler than in FoldingNet and for decoding, we

propose a similar folding scheme, where a low dimensional 2D grid lattice is folded

onto a 4D PPF space. This also allows monitoring the network evolution thanks to

our lossless visualization of the PPF space. The latent low dimensional vector of the

auto-encoder, codeword, is used as the local descriptor attributed to the point around

which the patch is extracted. Training of PPF-FoldNet is far easier than training, for

example, 3DMatch [308], because it eliminates the necessity of pair information and

benefits from linear time complexity in the number of patches.

Encoder The input to our network, and thus to the encoder, is FΩ, a local PPF

representation, as in §2.7. A three-layer, point-wise MLP (Multi Layer Perceptron)

follows the input layer and subsequently a max-pooling is performed to aggregate

the individual features into a global one, similar to PointNet. The low level features
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are then concatenated with this global feature using skip-links. This results in a more

powerful representation. Another two-layer MLP finally redirects these features to a

final encoding, the codeword, which is of dimension 512.

Decoder Our decoder tries to reconstruct the whole set of point PPFs using a single

codeword, which in return, also forces the codeword to be informative and distill

the most distinctive information from the high-dimensional input space. However,

inspired by FoldingNet, instead of trying to upsample or interpolate point sets, the

decoder will try to deform a low-dimensional grid structure guided by the codeword.

Each grid point is concatenated to a replica of the codeword, resulting in an M ×514

vector as input to what is referred as folding operation [303]. Folding can be a highly

non-linear operation and is thus performed by two consecutive MLPs: the first folding

results in a deformed grid, which is appended once again to the codewords and

propagates through the second MLP, reconstructing the input PPFs. Moreover, in

contrast to FoldingNet, we try to reconstruct a higher dimensional set, 4D vs 3D (2D

manifold); we are better off using a deeper MLP - 5-layer as opposed to the 3-layer.

Chamfer loss Note that as size of the grid M , is not necessarily the same as the size

of the input N , and the correspondences in 4D PPF space are lost when it comes

to evaluating the loss. This requires a distance computation between two unequal

cardinality point pair feature sets, which we measure via the well known Chamfer

metric:

(7.16) d(F, F̂) = max

{
1

|F|
∑
f∈F

min
f̂∈F̂

‖f− f̂‖2,
1

|F̂|
∑
f∈F̂

min
f∈F

‖f− f̂‖2

}

where ˆ operator refers to the reconstructed (estimated) set.

7.4.3 Results and Evaluation

We compare our methods against 3 hand-crafted features (Spin Image [140], SHOT [235],

FPFH [232]) and 2 deep-learned features (3DMatch [308], CGF [150]) on 3DMatch

Benchmark, identical as the one used in [308]. 3DMatch uses a TSDF input repre-

sentation and CGF benefits from a hand-crafted histogram and only uses learning
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Table 7.2: Our results on the standard 3DMatch benchmark. Red Kitchen data is from
7-scenes [248] and the rest imported from SUN3D [296].

Spin Image SHOT FPFH 3DMatch CGF PPFNet PPF-FoldNet

Kitchen 0.1937 0.1779 0.3063 0.5751 0.4605 0.8972 0.7352
Home 1 0.3974 0.3718 0.5833 0.7372 0.6154 0.5577 0.7564
Home 2 0.3654 0.3365 0.4663 0.7067 0.5625 0.5913 0.625
Hotel 1 0.1814 0.208 0.2611 0.5708 0.4469 0.5796 0.6593
Hotel 2 0.2019 0.2212 0.3269 0.4423 0.3846 0.5769 0.6058
Hotel 3 0.3148 0.3889 0.5000 0.6296 0.5926 0.6111 0.8889
Study 0.0548 0.0719 0.1541 0.5616 0.4075 0.5342 0.5753
MIT Lab 0.1039 0.1299 0.2727 0.5455 0.3506 0.6364 0.5974

Average 0.2267 0.2382 0.3589 0.5961 0.4776 0.6231 0.6804

to reduce the dimensionality. The metric R is used to evaluate the qualities of the

returned matching results by using different features, the higher the better:

(7.17) R = 1

M

M∑
s=1

1

([ 1

|Ω|
∑

(i , j∈Ω)
1
(
(xi −Ty j ) < τ1

)]> τ2

)

M is the number of ground truth matching fragment pairs, having at least 30% overlap

with each other under ground-truth transformation T and τ1 = 10cm. (i , j ) denotes

an element of the found correspondence set Ω. x and y respectively come from the

first and second fragment under matching. The inlier ratio is set as τ2 = 0.05.

Table 7.3: Our results on the rotated 3DMatch benchmark. Red Kitchen data is from
7-scenes [248] and the rest imported from SUN3D [296].

Spin Image SHOT FPFH 3DMatch CGF PPFNet PPF-FoldNet

Kitchen 0.1779 0.1779 0.2905 0.004 0.4466 0.002 0.7352
Home 1 0.4487 0.3526 0.5897 0.0128 0.6667 0.0000 0.7692
Home 2 0.3413 0.3365 0.4712 0.0337 0.5288 0.0144 0.6202
Hotel 1 0.1814 0.2168 0.3009 0.0044 0.4425 0.0044 0.6637
Hotel 2 0.1731 0.2404 0.2981 0.0000 0.4423 0.0000 0.6058
Hotel 3 0.3148 0.3333 0.5185 0.0096 0.6296 0.0000 0.9259
Study 0.0582 0.0822 0.1575 0.0000 0.4178 0.0000 0.5616
MIT Lab 0.1169 0.1299 0.2857 0.026 0.4156 0.0000 0.6104

Average 0.2265 0.2337 0.364 0.0113 0.4987 0.0026 0.6865
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Tab. 7.2 records the matching results of different methods. Both PPFNet and PPF-

FoldNet outperforms all the other counterparts in average recall, achieving 62.31% and

68.04% respectively. Superior results attained by our methods validate the strength

of our features learned from sparse point-wise input against to volumetric or hand

crafted representations. Noteworthy is that, even without supervision signals and

using only PPFs as input, PPF-FoldNet obtains a higher recall than PPFNet, as it is free

from those wrong pair/non-pair labels which could mislead PPFNet.

To further illustrate the power of PPF-FoldNet under severe rigid transformations,

we shuffled the standard 3DMatch benchmark with random rotations and created a

rotated benchmark, re-applied all the methods on this rotated benchmark. Results

are collected in Tab. 7.3. Due to the coordinates and normals existing in PPFNet,

the its performance is harmed drastically. Same degradation could also be seen on

3DMatch. On the contrary, CGF and PPF-FoldNet are not impacted, but our PPF-

FoldNet achieves much better recalls against CGF on all the scene sequences.
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Figure 7.12: Evaluating ro-

bustness again point density.

Sparsity evaluation Thanks to the sparse represen-

tation of our input, PPFNet and PPF-FoldNet are also

robust in respect of the changes in point cloud density.

Fig.7.12 shows the performance of different methods

when we gradually decrease the number of points in

the fragment from 100% to only 6.25%. PPF-FoldNet is

least affected by the reduction in density, while PPFNet

is reasonably robust. In particular, when only 6.25%

points are left in the fragments, the recall for PPF-

FoldNet is still greater than 50% while the other meth-

ods almost fail. The results of PPFNet and PPF-FoldNet

together demonstrate that PPF representation offers more robustness to input sparsity,

which is a common problem for many other encoding.

Runtime We run our algorithms on a machine loaded with NVIDIA TitanX Pascal

GPU and an Intel Core i7 3.2GHz CPU. We report the runtime of different methods in

Tab. 7.4, where input preparation (on CPU) is assessed separately from the total run-
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time. Clearly, PPF-FoldNet is also the method of choice regarding the computational

costs, while PPFNet is reasonably close in terms of speed.

Table 7.4: Runtime comparisons (reported in seconds) for 2048 local patches.

FPFH 3DMatch PPFNet PPF-FoldNet
Total Prep. Inference Total Prep. Inference Total Prep. Inference Total

31.678 0.634 5.939 6.574 4.587 0.112 4.608 2.616 1.353 3.969

7.5 Relaxing the Rigidity and A Bottom-Up Approach:

Quadrics

August 9, 2018Computer Aided Medical Procedures Slide 6

Quadrics in the news
Figure 7.13: Maurtis Cornelis Escher,
Heaven & Hell

The disc is divided into six sections in which,
turn and turn about, the angels on a black
background and then the devils on a white
one, gain the upper hand. In this way, heaven
and hell change place six times. In the
intermediate, “earthly” stages, they are
equivalent.

Benedict Taschen, "The Graphic Work by M C
Escher (introduced and explained by the

artist)", 1990

The aforementioned approaches that try to solve six-DoF pose estimation problem

are quite successful. However, as the only parameters to discover are rotations and

translations, they require a huge number of CAD models to generically represent the

real scenarios. To overcome this limitation, inspired by the fact that all CAD models

are designed using a similar set of tools, a different line of research attempts to find

common bases explaining a broad set of 3D objects, and tries to detect these bases

instead of individual models. Such bases that are the common building blocks of our

world, and typically termed geometric primitives. While the approaches using bases,

significantly reduce the database size, usually, the bases undergo higher dimensional

transformations compared to, for instance, rigid ones. Examples of the geometric

primitives are splines and nurbs surfaces defined by several control points, or quadrics,
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Some geometric quadric surfaces 
should appear here.

(a) Quadric surfaces in real life. (b) Some quadric surfaces we can handleFigure 7.14: Quadric surfaces in real life. A collection retrieved from Google images.

the three dimensional, nine-DoF, quadratic forms.

Thanks to their power to embody the most typical geometric primitives, such

as planes, spheres, cylinders, cones or ellipsoids, quadrics themselves were of huge

interest to vision community since 80s [195]. In fact, Arthur Cayley acknowledges

quadrics to be absolute and adds: "There are three absolutes in the real projective

line, seven in the real projective plane, and 18 in real projective space. All classical

non-euclidean projective spaces as hyperbolic, elliptic, Galilean and Minkowskian

and their duals can be defined this way." Fig. 7.14 portrays the common quadrics

present in our every day lives. Some exemplary studies involve recovering 3D quadrics

from image projections [71], fitting them to 3D point sets [263], or detecting special

cases of the quadratic forms [11]. A majority of those works either put emphasis on

fitting to a noisy, but isolated point set [39, 260, 263], or restrict the types of shapes

under consideration (thereby reduce the DoF) to devise detectors robust to clutter

and occlusions [8, 10, 105].

In this part, our aim is to unite the fitting and detection worlds and present an algo-

rithm that can simultaneously estimate all parameters of a generic nine DoF quadric,

which, as shown in Fig. 7.15, resides in a 3D cluttered environment and is viewed

potentially from a single 3D sensor, introducing occlusions and partial visibility. We

craft this algorithm in three stages: (1) First, we devise a new quadric fit. Unlike its

ancestors, this one uses the extra information about the tangent space to increase

the number of constraints instead of regularizing the solution. This fit requires only
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Clutter

Occlusions

RGB Depth 3D Scene
Partial
Visibility

Quadrics

Figure 7.15: Our algorithm quickly detects quadric shapes in point clouds under
occlusions, partial visibility and clutter. Note that, the algorithm has no clue whether
a sphere exists or not and is able to detect the plausible primitive using only 3D
geometry.

four oriented points. We show that such construction also has a regularization ef-

fect as a by-product. (2) We then thoroughly analyze its rank properties and devise

a novel null-space Hough voting mechanism to reduce the four point case to three.

Three points stands out to be the minimalist case developed so far. (3) We propose a

variant of RANSAC that operates on our local bases, which are randomly posited. Per

each local basis, we show how to make use of the fit and the voting to hypothesize a

likely quadric. Finally, we use simple clustering heuristics to group and strengthen

the candidate solutions. Our algorithm works purely on 3D point cloud data and does

not depend upon any acquisition modality. Moreover, it makes assumptions neither

about the type of the quadric that is present in the scene nor how many are visible.

Our experimental evaluation demonstrates that we could satisfy all these premises

and indeed in certain applications, type-specific detectors can lead to different types,

therefore wrong parameters. In those cases resorting to the quadric becomes advan-

tages. Moreover, it is trivial to convert our algorithm to a type specific detector. We

show that in those cases, for example for a sphere-fit, we can achieve very robust

results with real-time performance. This is thanks to the reduction in basis cardinality.

Our presentation here involves our CVPR publication [32], as well as the following

additions:

1. qualitative and quantitative experiments to better grasp the behavior of the

proposed fit,

2. algebraic and geometric theoretical analysis of the quadric fit,

3. extensive descriptions of the method as well as accompanying pseudocode.
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7.5.1 Related Work

The majority of works related to quadrics can be classified into Primitive Detection,

Quadric Fitting and Quadric Detection, where we only review the seminal ones.

Quadrics Quadrics appear in various domains of vision, graphics and robotics. They

are found to be one of the best local surface approximators in estimating differential

properties [217]. Thus, point cloud normals and curvatures are oftentimes estimated

with local quadrics [35, 312]. Yan et al.propose an iterative method for mesh seg-

mentation by fitting local quadratic surfaces [299]. Yu presented a quadric-region

based method for consistent point cloud segmentation [173]. Kukelova uses quadric

intersections to solve minimal problems in computer vision [156]. Uto et al. [282] as

well as Pas and Platt [216] use quadrics to localize grasp poses and in grasp planning.

Quadrics have also been a significant center of attention in projective geometry and

reconstruction [71, 102] to estimate algebraic properties of apparent contours. Finally,

You and Zhang [306] used them in feature extraction from face data.

Primitive detection Finding primitives in point clouds has kept the vision researchers

busy for a lengthy period of time. Works belonging to this category treat the primi-

tive shapes independently [105], giving rise to specific fitting algorithms for planes,

spheres, cones, cylinders, etc. Planes, as the simplest forms, are the primary targets of

the Hough-family [41]. Yet, detection of more general set of primitives made RANSAC

the method of choice as shown by the prosperous Globfit [166]: a relational local to

global RANSAC algorithm. Schnabel et al. [240] and Tran et al. [271] also focused on

reliable estimation using RANSAC. An interesting application of primitives is given by

Qui et al.who extract pipe runs using cylinder fitting [224]. The local Hough transform

of Drost and Ilic [85] showed how the detection of primitives can be made efficient by

considering the local voting spaces. Authors give sphere, cylinder and plane specific

formulations. Lopez et al. [175] devise a robust ellipsoid fitting based on iterative non-

linear optimization. Sveier et al. [256] suggest a conformal geometric algebra to spot

planes, cylinders and spheres. Andrews’ approach [11] deals with paraboloids and hy-

perboloids in CAD models. Even though this is slightly more generalized, paraboloids

or hyperboloids are not the only geometric shapes described by quadrics.
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Methods in this category are successful in shape detection, yet they handle the primi-

tives separately. This prevents automatic type detection, or generalized modeling.

Quadric fitting Since the 1990s generic quadric fitting is cast as a constrained op-

timization problem, where the solution is obtained from a Generalized Eigenvalue

decomposition of a scatter matrix. Pioneering work has been done by Gabriel Taubin

[263] in which a Taylor approximation to the geometric distance is made. This work

has then been enhanced by 3L [39], fitting a local, explicit ribbon surface composed

of three-level-sets of constant Euclidean distance to the object boundary. This fit

implicitly used the local surface information. Later, Tasdizen [260] improved the local

surface properties by incorporating the surface normals as regularizers. This allows

for a good and stable fit. Recently, Beale et al. [22] introduced the use of a Bayesian

prior to regularize the fit. All of these methods use at least nine or twelve [22] points.

Moreover, they only use surface normals as regularizers - not as additional constraints

and are also unable to deal with outliers in data. There are a few other studies [8, 143],

improving these standard methods, but they involve either non-linear optimization

[300] or share the common drawback of requiring nine independent constraints and

no outlier treatment.

Quadric detection Recovering general quadratic forms from cluttered and occluded

scenes is a rather unexplored area. A promising direction was to represent quadrics

with spline surfaces [200], but such approaches must tackle the increased number

of control points, i.e. 8 for spheres, 12 for general quadrics [222, 223]. Segmentation

is one way to overcome such difficulties [183, 200]. In fact, Vaskevicius et al. [284]

developed a noise-model aware quadric fitting and region-growing algorithm for

segmented noisy scenes. However, segmentation, due to its nature, decouples the

detection problem in two parts and introduces undesired errors especially under oc-

clusions. Other works exploit genetic algorithms [110] but have the obvious drawback

of inefficiency. QDEGSAC [98] proposed a six-point hierarchical RANSAC, but the

paper misses out an evaluation or method description for a quadric fit. Petitjean [217]

stressed the necessity of outlier aware quadric fitting however only ends up suggesting

M-estimators for future research.
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# Pri. # Dual

PD-0 9 0
PD-1 7 1
PD-2 5 2
PD-3 4 3

(a)

# Pri. # Dual VS

Plane 1 1 0
2-Planes 2 2 0
Sphere 2 2 1
Spheroid 2 2 3

(b)

Figure 7.16: (a) Number of constraints for a minimal fit in Primal(P) or Dual(D) spaces.
PD-i refers to ith combination. (b) Number of minimal constraints and voting space
size for various quadrics.

7.5.2 A New Perspective to Quadric Fitting to 3D Data

State of the art direct solvers for quadric fitting rely either solely on point sets [263], or

use surface normals as regularizers [260]. Both approaches require at least nine points,

posing a strict requirement for practical considerations, i.e. using nine points bounds

the possibility for RANSAC-like fitting algorithms as the space of potential samples

is N 9
x where Nx is the number of points. Here, we observe that typical real life point

clouds make it easy to compute the surface normals (tangent space) and thus provide

an additional cue. With this orientation information, we will now explain a closed form

fitting requiring only four oriented points. Similar to gradient-one fitting [260, 261],

our idea is to align the gradient vector of the quadric ∇Q(xi ) with the normal of the

point cloud ni ∈ R3. However, unlike ∇1 [261], we opt to use a linear constraint to

increase the rank rather than regularizing the solution. This is seemingly non-trivial

as the vector-vector alignment brings a non-linear constraint either of the form:

∇Q(xi )

‖∇Q(xi )‖ −ni = 0 or
∇Q(xi )

‖∇Q(xi )‖ · ni = 1.(7.18)

The non-linearity is caused by the normalization as it is hard to know the magnitude

and thus the homogeneous scale in advance. We solve this issue by introducing a per

normal homogeneous scale αi among the unknowns and write:

∇Q(xi ) =∇vT
i q =αi ni(7.19)
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Algorithm 2: Quadric fitting, full version.

1 input :Unit normalized point set {x,y,z}, Corresponding surface normals {nx ,ny ,nz },
A weight coefficient ω

2 output :Quadric q = [A,B ,C ,2D,2E ,2F,2G ,2H ,2I , J ]T , Scale factorsα
3 n = numel(x)
4 1 = ones(n,1);
5 0 = zeros(n,1);
6 0nxn = zeros(n,n);
7 X = [x2,y2,z2,x∗y,x∗z,y∗z,x,y,z,1,0nxn];
8 N = [diag(nx );diag(ny );diag(nz )];
9 dX = [2x,0,0,y,z,0,1,0,0,0; ...

10 0,2y,0,x,0,z,0,1,0,0; ...
11 0,0,2z,0,x,y,0,0,1,0];
12 A = [X;ω · [dX,−N]];
13 [∼,∼,V] = svd(A);
14 q = V(1 : 10,n +10);
15 α= V(11 : (n +10),n +10);

Stacking this up for all N points xi and normals ni leads to:

(7.20) A′



M


N





vT
1 0 0 · · · 0

vT
2 0 0 · · · 0
...

...
...

. . .
...

vT
n 0 0 · · · 0

∇vT
1 −n1 03 · · · 03

∇vT
2 03 −n2 · · · 03

...
...

...
. . .

...

∇vT
n 03 03 · · · −nn





A

B
...

I

J

α1

α2
...

αn



= 0

where∇vT
i =∇v(xi )T , 03 is a 3×1 column vector of zeros, A′ is 4N×(N+10) andα= {αi }

are the unknown homogeneous scales. The solution containing quadric coefficients

and individual scale factors lies in the null-space of A′, and can be obtained accurately

via Singular Value Decomposition. Alg. 2 provides a MATLAB implementation of such

fit. For a non-degenerate quadric, the following rank (rk) relations hold:

N = 1 ⇒ rk(A) = 4, N = 2 ⇒ rk(A) = 7(7.21)

N = 3 ⇒ rk(A) = 9, and N > 3 ⇒ rk(A) = 10.
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We will now further investigate on this interesting behavior.

Existence of a trivial solution for three-point case The problem of estimating a

quadric from three points and associated normals seems initially to be well-posed:

when counting constraints and degrees of freedom, one obtains nine on each side

(each point gives one constraint, each normal two, whereas a quadric has nine degrees

of freedom). Yet, it turns out that our linear equation system always has a trivial

solution besides the true one. This is summarized in Eq. 15 by providing the ranks

for different cardinalities of bases. We now give further intuition and proof for this

behavior:

Theorem 7.1. Three-oriented point quadric fitting, as formulated, possesses a trivial

solution besides the true solution.

Proof. In the following, let us call data-plane, the plane spanned by the three data

points (coordinates only, i.e. not considering the associated normals). We illustrate this

in Fig. 7.17 (left). As mentioned in § 7.5.2 above, any rank-1 quadric consists of a single

plane Π and can be written as Q =ΠΠT . Hence, for any point U on the plane and

thus on the quadric, we have QU = 0. In our formulation of the fitting problem, this

amounts to Nq = 0 . N refers to all the gradient-normal correspondence equations,

stacked together (lower part of Eq. 7.20). We also have Mq = 0. due to the point lying

on the quadric. This means that the following vector is a solution of the equation

system: coefficients A to J are those of the rank-1 quadric and the three scalars αi are

zero. In other words, the trivial solution is identified as the rank-1 quadric consisting

of the data-plane. Hence, the estimation problem admits at least a one-dimensional

linear family of solutions, spanned by the true quadric and the rank-1 quadric of the

data-plane. In some cases, the dimension of the family of solutions may be higher

(such as when the true quadric is a plane). �

A geometric explanation of the fact that the three-oriented-point problem is al-

ways under-constrained Despite the analytical proof, it is puzzling that nine con-

straints on nine unknowns are never sufficient in our problem. Moreover, we may

wonder if the existence of a trivial solution is due to our linear problem formulation

or if it is generic. It turns out that this is generic and can be explained geometrically.

146



7.5. RELAXING THE RIGIDITY AND A BOTTOM-UP APPROACH: QUADRICS

Figure 7.17: Illustration of the geometric intuition. (left) Visualizations on a sample
quadric: the selected basis (three-oriented points); the data-plane; the conic of in-
tersection between data-plane and the quadric; the lines on the data-plane that are
tangent to the quadric. (right) Exemplary drawing that shows that the tangent planes
to the basis points meet at the pole (see text).

To make it easier to imagine, our description will closely follow the Figures 7.17(a)

and 7.17(b). Let us decompose the estimation of the quadric in two parts, the first

part being the determination of the quadric’s intersection with the data-plane. The

intersection of any quadric with any plane is in general always a conic (shown as black

curve), be it real or imaginary (the only exception is when the quadric itself contains

the data-plane entirely, in which case the “intersection” is the entire plane).

Let us examine which constraints we have at our disposal to estimate the intersec-

tion conic. First, the three data points lie on the conic. Second, we know the tangent

planes at the data points, to the true quadric. Let us intersect the three tangent planes

with the data plane – the resulting three lines (shown in purple) must be tangent to

our conic (the only exception occurs when one or more of these tangent planes are

identical to the data plane).

Hence, we know three points on the conic and three tangent lines – the problem of

estimating the conic is thus in general overdetermined by one DoF. In other words, six

of the nine constraints at our disposal are dedicated to estimating the five degrees of

freedom of its intersection with the data plane. Hence, the remaining three constraints

are not sufficient to complete the estimation of the quadric.
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What are these three remaining constraints? They refer to the orientation of the

tangent planes: for each tangent plane, an angle expressing the rotation about its

intersection line with the data plane. This angle gives one piece of information on the

quadric; for three oriented points we thus have our three remaining constraints.

Note that the three tangent planes to the quadric intersect in the quadric’s pole to

the data plane (see Fig. 7.17(b)). Hence, we can determine this pole which, as shown in

appendix, lies on the line joining the centers of the possible solutions for the quadric.

Let us also note that the fact that six pieces of information (three data points and

three tangent lines to a conic in the data plane) only constrain five degrees of freedom

means that these six pieces of information are not independent from one another: in

the absence of noise or other errors, they must satisfy a consistency constraint (the

fact that they define a conic). In the presence of noise, the input information will not

satisfy this constraint, meaning that a perfect fit will not exist. This is different in most

so-called minimal estimation problems in geometric computer vision (such as three-

point pose estimation - P3P), where the computed solution is perfectly consistent

with the input data. In our case, we can expect that the computed quadric will not

satisfy all constraints exactly, i.e. will not necessarily be incident with all data points

or be exactly tangent to the given tangent planes.

This gives room to different formulations for the problem, depending on how

one quantifies the quality of fit. For instance, one possibility would be to impose

that the quadric goes exactly through the data points, but that the tangency is only

approximately fulfilled by computing the intersection conic in the data plane and

minimizing some cost functions over the tangent lines.

Collinearity of solution centers In the following we show that the centers of the

quadrics that are solutions to the 3-oriented-points fitting problem (when the center

exists), lie on a straight line, spanned by the center of the true quadric, and the pole of

the data-plane to the true quadric. Suppose that the true quadric Q is central, that is :

Qc = r e∞ for some scalar r ∈R and e∞,
[

0 0 0 1
]T

. c ∈RP3 is the center. LetΠ be

the data-plane. As seen, the trivial solution to our problem is the rank-1 quadric given

byΠΠT . Let P be the pole of the planeΠwith respect to the true quadric Q. Without

loss of generality, assume that the homogeneous coordinates of P are scaled such that

the following pole-polar relation holds exactly and not only up to scale:QP =Π. We
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now formulate the theorem:

Theorem 7.2. Consider the family of quadrics which are solutions to our problem, i.e.

the quadrics Q′(λ) = Q+λΠΠT (for a free parameter λ). The centers of these quadrics

lie on the line spanned by the center c of the true quadric Q, and the pole P of planeΠ

with respect to Q.

Proof. The theorem is true if, for every λ, there exists a µ such that c+µP is the center

of Q′(λ). More formally, if:

Q′(λ)
(
c+µP

)∼ [
0 0 0 1

]T
.

Let us develop the left-hand side:

Q′(λ)
(
c+µP

)= Qc+µQP+λΠΠT c+λµΠΠT P(7.22)

= r e∞+µΠ+Π(
λΠT c

)+Π(
λµΠT P

)
= r e∞+Π(

µ+λΠT c+λµΠT P
)

.

This is equal (up to scale) to e∞ , [0 0 0 1]T exactly if Π ∼
[

0 0 0 1
]T

or if

µ+λΠT c+λµΠT P = 0. The former means that the plane spanned by the three data

points, is the plane at infinity, i.e. all three data points are at infinity. We safely exclude

this case in our application. As for the second case, it can be achieved by setting

(7.23) µ=− λΠT c

1+λΠT P
.

Hence, the point c+µP is indeed the center of Q′(λ). By construction, it is collinear

with c and P, which proves the theorem. A special case occurs when the denominator

in the definition of µ is zero, i.e. where 1+λΠT P = 0, in which case µ “equals” infinity.

This effectively means that P is the center of Q′(λ), hence the theorem still holds. �

A special case is when ΠT c = 0, i.e. the data-plane contains the center c of the true

quadric Q. Then, µ is always zero, which means that all Q′(λ) have the same center c.

.
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Regularizing with gradient norm Quadric fitting problem, like many others (e.g.

calibration, projective reconstruction) is intrinsically of non-linear nature, meaning

that a “true” MLE or MAP solution, cannot be achieved by a linear fit.1 However, our

main objective in this stage is a sufficiently close and computationally efficient fit,

using as few points as possible and upon which we can build our voting scheme.

Despite its sparsity, for such purpose, formulation in § 7.5.2 still remains suboptimal

since the unknowns in Eq. 7.20 scale linearly with N , leaving a large system to solve.

In practice, analogous to gradient-one fitting [261], we could prefer unit-norm poly-

nomial gradients, and thus, can write αi = 1 or equivalently αi ← ᾱ, one common

factor. This soft constraint will try to force zero set of the polynomial respect the local

continuity of the data. Doing so also saves us from solving the sensitive homogeneous

system [306], and lets us re-write the system in a more compact form Aq = n:

A =



x2
1 y2

1 z2
1 2x1 y1 2x1z1 2y1z1 2x1 2y1 2z1 1

x2
2 y2

2 z2
2 2x2 y2 2x2z2 2y2z2 2x2 2y2 2z2 1

...

2x1 0 0 2y1 2z1 0 2 0 0 0

0 2y1 0 2x1 0 2z1 0 2 0 0

0 0 2z1 0 2x1 2y1 0 0 2 0

2x2 0 0 2y2 2z2 0 2 0 0 0

0 2y2 0 2x2 0 2z2 0 2 0 0

0 0 2z2 0 2x2 2y2 0 0 2 0
...



n =



0

0

. . .

n1
x

n1
y

n1
z

n2
x

n2
y

n2
z

. . .



q =



A

B

C

D

E

F

G

H

I

J



(7.24)

A, only 4N ×10, is similar to the A′ in § 7.5.2 and gets full rank for four or more

oriented points. In fact, it is not hard to show that the equations in rows are linearly

dependent, which is why we get diminishing returns when we add further constraints.

Note that by removing the scale factors from the solution, we also solve the sign

ambiguity problem, i.e. the solution to Eq. 7.20 can result in negated gradient vectors.

To balance the contribution of normal induced constraints we introduce a scalar

weight w , leading to the ten-liner MATLAB implementation as provided in Alg. 3.

1By “true” we mean a fit minimizing a geometric distance.
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Algorithm 3: Approximate quadric fitting in 10 lines of MATLAB code.

1 input :Unit normalized point set {x,y,z}, Corresponding surface normals {nx ,ny ,nz },
A weight coefficient ω

2 output :Quadric q = [A,B ,C ,2D,2E ,2F,2G ,2H ,2I , J ]T

3 1 = ones(numel(x),1);
4 0 = zeros(numel(x),1);
5 X = [x2,y2,z2,x∗y,x∗z,y∗z,x,y,z,1];
6 dX = [2x,0,0,y,z,0,1,0,0,0; ...
7 0,2y,0,x,0,z,0,1,0,0; ...
8 0,0,2z,0,x,y,0,0,1,0];
9 A = [X;ω ·dX];

10 N = [nx ;ny ;nz ];
11 b = [0;ω ·N];
12 q = A/b;

In certain cases, to obtain a type-specific fit, a minor redesign of A tailored to the

desired primitive suffices (see §. 7.5.5.3). If outliers corrupt the point set, a four-point

RANSAC could be used. However, below, we present a more efficient way to calculate

a solution to Eq. 7.24 rather than using a naive RANSAC on four-tuples by analyzing

its solution space. The next section can also be used as a generic method to solve any

fitting problem formulated as a linear system, more efficiently.

7.5.3 Quadric Detection in Point Clouds

We now explain our method to detect a generic quadric from point cloud data. We are

now ready to use the explained and analyzed fitting procedure, within a new pipeline

to detect and localize the quadrics from 3D data, within clutter and occlusions.

Definition 7.5.1. A basis b is a subset composed of a fixed number of scene points (b)

and hypothesized to lie on the sought surface.

Our algorithm operates by iteratively selecting bases from an input scene. Once

a basis is fixed, an under-determined quadric fit parameterizes the solution and at-

tached to this basis, a local accumulator space is formed. All other points in the scene

are then paired with this basis to vote for the potential primitive. To discover the

optimal basis, we perform RANSAC, iteratively hypothesizing different basis candi-

dates and voting locally for probable shapes. Subsequent to such joint RANSAC and
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voting, we verify resulting hypotheses with efficient two-stage clustering and score

functions such that multiple quadrics can be detected without repeated executions

of the algorithm. We will now describe, in detail, the voting and the bases selection,

respectively.

7.5.3.1 Parameterizing the Solution Space

System 7.24 describes an outlier-free closed form fit. To treat the clutter in the scene,

a direct RANSAC on nine-DoF quadric appears to be trivial. Yet, it has two drawbacks:

1) evaluating the error function many times is challenging, as it involves a scene-to-

quadric overlap calculation in a geometric meaningful way. 2) even with the proposed

fitting, selecting random four-tuples from the scene might be slow in practice.

An alternative to RANSAC is Hough voting. However, q has nine DoFs and is not

discretization friendly. The complexity and size of this parameter space makes it hard

to construct a voting space. Instead, we will now devise a local search. For this, let q

be a solution to the linear system in (7.24) and p be a particular solution. q can be

expressed by a linear combination of homogeneous solutions µi as:

q = p+
D∑
i
λiµi = p+

[
µ1 µ2 · · ·

][
λ1 λ2 · · ·

]T = p+NAλ.(7.25)

The dimensionality D of the null space NA depends on the rank of A, which is di-

rectly influenced by the number of points used: D = 10− r k(A). The exact solution

could always be computed by including more points from the scene and validating

them, i.e. by a local search. For that reason, the fitting can be split into distinct parts:

first a parametric solution is computed, such as in Eq. 7.25, using a subset of points

b = {x1, ...,xm} which lie on a quadric. We refer to subset b as the basis. Next, the co-

efficients λ, and thus the solution, can be obtained by searching for other point(s)

(xm+1, ...,xm+k ) which lie on the same surface as b.

Proposition 7.5.2. If two point sets b = (x1, ...,xm) and X = (xm+1, ...,xm+k ) lie on the

same quadric with parameters q, then the coefficientsλ=
[
λ1 λ2 · · ·

]T
of the solution

space (Eq. 7.25) are given by the solution of the system:

(7.26) (Ak NA)λ= nk −Ak p
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where Ak , nk are the linear constraints of the latter set b′ in form of (7.24), p is a

particular solution and NA is a stacked null-space basis as in Eq. 7.25, obtained from b.

Proof. Let q be a quadric solution for the point set (x1, ...,xm) and let (Ak ,nk ) represent

the 4k quadric constraints for the k points X = (xm+1, ...,xm+k ) in form of (7.20) with

the same parameters q. As xi ∈ X by definition lies on the same quadric q, it also

satisfies Ak q = nk . Inserting Eq. 7.25 into this, we get:

Ak (p+NAλ) = nk(7.27)

(Ak NA)λ= nk −Ak p

�

Solving Eq. 1 for λ requires a multiplication of a 4k ×10 matrix with a 10×m one

and ultimately solving a system of 4k equations in m unknowns. Once NA and p are

precomputed, it is much more efficient to evaluate Eq. 7.26 for k < m rather than

re-solving the system (7.24). This resembles updating the solution online for a stream

of points. For our case, the amount of streamed points will depend on the size of the

basis, as explained below.

7.5.4 Local Voting for Quadric Detection

Given a fixed basis composed of b points (b > 0) as in Fig. 7.18, a parametric solution

can be described. The actual solution can then be found quickly by using Prop. 7.5.2

by incorporating new points lying on the same quadric as the basis. Thus, the problem

of quadric detection is de-coupled into 1) finding a proper basis and 2) searching for

compatible scene points. In this section, we assume the basis is correctly found and

explain the search by voting. For a fixed basis bi on a quadric, we form the null-space

decomposition of the under-determined system Ai q = ni . We then sample further

points from the scene and compute the required coefficientsλ. Thanks to Prop. 7.5.2,

this can be done efficiently. Sample points lying on the same quadric as the basis

(inliers) generate the sameλwhereas outliers will produce different values. Therefore

we propose to construct a voting space on λ attached to basis bi and cast votes to

maximize the consensus, only up to the locality of the basis. Fig. 7.18 illustrates this
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configuration. The size of the voting space is a design choice and depends on the size

of the basis bi vs. the DoFs desired to be recovered (see Tab. 7.16(b)).

While many choices for the basis cardinality are possible (and the formulation

in § 7.5.3.1 allows for all), we find from Tab. 7.16(a) that using a three-point basis is

advantageous for a generic quadric fit due to 1D search space as opposed to two-point

vs 3D search.

Efficient computation of voting parameters for a 1D voting space Adding a fourth

sample point x4 completes r k(A) = 10 and a unique solution can be computed, as

described above. Yet, as we will select multiple x4 candidates per basis, hypothesized

in a RANSAC loop, an efficient scheme is required, i.e. once again, it is undesirable to

re-solve the system in Eq. 7.24 for each incoming x4 tied to the basis. It turns out that

the solution can be obtained directly from Eq. 7.25:

Proposition 7.5.3. If the null-space is one dimensional (with only 1 unknown) it holds

λNA =λ1µ1 and the computation in Prop. 7.5.2 reduces to the explicit form:

λ1 = A1NA

‖A1NA‖2
· (n1 −A1p)(7.28)

Proof. Let us re-write Eq. 1 in terms of the null space vectors: λ1(A1µ1) = n1 −A1p. A

solution λ1 can be obtained via Moore-Penrose pseudoinverse as λ1 = (A1µ1)+(n1 −
A1p). Because for one-dimensional null spaces, A1µ1 is a vector (v), for which the +

operator is defined as: v+ = v/(v T v ). Substituting this in Eq. 7.26 gives Eq. 7.28. �

Prop. 7.5.3 enables a very quick computation of the parameter hypothesis in the case

of an additional single oriented point. A MATLAB implementation takes ca. 30µs per

λ. Besides, for a three-point method, inclusion of only a single primal equation is

sufficient, letting the normal of the fourth point remain unused and amenable for

verification of fit. Thus, we only accept to vote a candidate if the gradient of the fit

quadric agrees with the normal at fourth point:

(7.29)
∇Q(x4)

‖∇Q(x4)‖ ·n(x4) > τn .

We typically set τn to a constant value, τn ≈ 0.85.
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Figure 7.18: Once a basis is randomly hypothesized, we look for the points on the agree-
ing surface by casting votes on the null-space. The sought pilates ball (likely quadric)
is marked on the image and below that lies the corresponding filled accumulator.

Quantizing λ for voting Unfortunately, λ is not quantization-friendly, as it is un-

bounded and has a non-linear effect on the quadric shape (Fig. 7.19). Thus, we seek

to find a geometrically meaningful transformation to a bounded and well behaving

space so that quantization would lead to little bias and artifacts. From a geometric

perspective, each column of NA in Eq. 7.25 is multiplied by the same coefficient λ,

corresponding to the slope of a high dimensional line in the solution space. Thus, it

could as well be viewed as a rotation. For 1D null-space, we set:

(7.30) θ = atan2
(

(y2 − y1)/(x2 −x1)
)

where [x1, y1, · · · ]T = p and [x2, y2 · · · ]T is obtained by moving in the direction NA from

the particular solution p by an offset λ. Note that simple t an−1(λ) could work but

would be more limited in the range. This new angle θ is bounded and thus easy to

vote for. As the null-space dimension grows, λ starts to represent hyperplanes, still

preserving the geometric meaning, i.e. for d > 1, different θ = {θi } can be found.

7.5.4.1 Hypotheses Aggregation

Up until now, we have described how to find plausible quadrics given local triplet

bases.To discover the basis lying on the surface, we employed RANSAC [96], where
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3-point basis

min max

= - 75.00 = - 27.50 = - 10.00

= 12.50= 0.00 = 27.50 = 75.00

Figure 7.19: Effect of λ on the surface geometry. We compute the null-space for a fixed
basis and vary λ from -75 to 75 to generate different solutions q along the line in the
solution space. The plot presents the transition of the surface controlled by λ.

each triplet might generate a hypothesis to be verified, many of which will be similar

as well as dissimilar. Thus, the final stage of our algorithm aggregates the potential

detections to reduce the number of candidate surfaces and to increase the per quadric

confidence. Not to sacrifice further speed, we run an agglomerative clustering similar

to [35] in a coarse to fine manner: First a fine (close) but fast metric helps to cluster the

obvious hypotheses. Second, a coarse (far) one is executed on these cluster centers.

Definition 7.5.4. Our distance computation is two-fold: Whenever two quadrics are

close, we approximate their distances as in Eq. 7.5.4 (dclose ), where I ∈ R4×4 is the

identity matrix and 1 : R→ {0,1} the indicator function. We use the pseudoinverse

just to handle singular configurations. If the shapes are far, such manifold-distance

becomes erroneous and we use a globally consistent metric. To do so, we define a

more geometric-meaningful distance using the points on the scene itself (d f ar ):

dclose (Q1,Q2) :=1(‖q1 −q2‖1 < τ) · ‖Q1Q+
2 − I‖F(7.31)

d f ar (Q1,Q2) :=

1− 1

K

K∑
i=1

1
(|xT

i Q1xi | < τ
) ·1(|xT

i Q2xi | < τ
) ·

1 (1−ni ·∇Q1(xi ) < τn) ·1 (1−ni ·∇Q2(xi ) < τn) .

{xi } denote the K scene samples.
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Algorithm 4: Combined RANSAC & Local Voting.

1 input :Unit normalized point set P, Corresponding surface normals N, A weight
coefficient ω, Minimum vote threshold smi n

2 output :Quadrics Q = {qi }
3 (S,N) ← Sample scene (P,N).

// seek the best global candidates
4 while !satisfied do
5 bi ← Pick a random 3 point-basis from (S,N).
6 (A,n) ← Form under-determined system using bi

7 (p,µ) ← Perform null space decomposition
8 V ← Initial voting space of length # bins
9 Λ← {}

// local voting
10 for all pi in P do
11 Compute λi by including pi

12 if
(
1− ∇Q(pi )

‖∇Q(pi )‖ ·ni < τ
)

then

13 Quantize: θ← t an−1(λi ) (using atan2).
14 V[θ]++ // accumulate
15 Λ[θ] ←Λ[θ]∪λi // best candidate in quantized space

16 θ∗ ← argmax j V j // best local coefficient
17 if |Λ[θ∗]| > smi n then
18 λbest ←

∑
kΛ[θ∗][k]/ |Λ[θ∗] |

19 q ← p+λbestµ // best local solution
20 Q ← {Q,q}

21 Q ← mean of the clusters in Q using first distance dclose then distance dfar

22 Q ← sort(score(Q))

Note that, algebraic but efficient dclose lacks geometric meaning, while slower d f ar

can, to a certain extent, explain the geometry. Finally, the quadrics are sorted w.r.t. their

scores, evaluated pseudo-geometrically by point and normal-gradient compatibility

according to definition 7.5.5:

Definition 7.5.5. The score of a quadric is defined to be:

SQ,X = 1

K

K∑
i=1

1
(|xT

i Qxi | < τ
)
1 (1−ni ·∇Q(xi ) < τn)(7.32)

Alg. 4 summarizes the entire content of this section.
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Figure 7.20: Synthetic evaluations. The plot depicts mean geometric errors on points
(a) and mean angular errors (b) for different quadric fitting methods. The per point
error is measured as the average point-to-mesh distance from every ground truth
vertex to the fitted quadric. The angular error (dashed) is computed as the negated dot
product between quadric gradient and the ground truth normal. Moreover, (c) shows
the average error of the gradient norm compared to the ground truth and (d) gives
speed and detection rate on synthetic data.

7.5.5 Experimental Evaluation and Discussions

7.5.5.1 Implementation details

Prior to operation, we normalize the point coordinates to lie in a unit ball to increase

the numerical stability [122]. Next, we downsample the scene using a spatial voxel-grid

enforcing a minimum distance of τs ·di am(X) between the samples (τs = 0.03) [37].

The required surface normals are computed by the local plane fitting [132]. As planes

are singular quadrics and occupy large spaces of 3D scenes, we remove them. To do

so, we convert our algorithm to a type specific plane detector, which happens to be

a similar algorithm to [85]. Next, influenced by the smoothness of quadrics, we use

Difference of Normals (DoN) [138] to prune the points not located on smooth regions.

What follows is an iterative selection of triplets to conduct the three-point RANSAC:

We first randomly draw the initial point of the basis x1. Once x1 is fixed, we query the

points in a large enough vicinity, whose normals differ enough to form the three-point

basis b. The rest of the points are then randomly selected respecting these criteria.

To avoid degenerate configurations, we skip the basis if it does not result in a rank-9

matrix A. In addition, we hash the seen triplets to avoid duplicate processing. This is

important in reducing the bias towards such bases.
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Ground Truth Taubin Tasdizen Andrews Beale Ours full Ours

0.1%
Std

6%
Std

10%
Std

Figure 7.21: Synthetic tests at various noise levels for different fitting methods. Gaus-
sian noise is added to the point coordinates as well as the estimated normal. The
standard deviation varies from 0.11% of the visible quadric size to 10%.

7.5.5.2 Synthetic tests of fitting

To asses the accuracy of the proposed fitting, we generate a synthetic test set of

multitudes of random quadrics and compare our method with the fitting procedures

of Taubin [263], Tasdizen [260], Andrews [11], and Beale [22]. We propose two variants:

Ours full will refer to Alg. 2, whereas Ours is the regularized one in Alg. 3.

Quantitative assessments Prior to run, we add Gaussian noise to the ground-truth

vertices with σ = [0%−5%] relative to the size s of the quadric. At each noise level,

ten random quadrics are tested. We perform not single but twenty fits per set. For the

constrained fitting method [11] we pre-specified the type, which might not be possible

in a real application. We then record and report the average point-to-mesh distance

and the angle deviation as well as the runtime performances in Fig. 7.20. Although,

our fit is designed to use a minimal number of points, it also proves robust when more

points are added and is among the top fitters for the distance and angle errors. In

addition, Fig. 7.20c shows that the errors on the gradient magnitudes obtained by our

quadrics. We achieve the least errors, showing that gradient norms align well with the

ground truth, favoring the validity of our approximation/regularization. Next, looking

at the noise assessments, we see that our full method performs the best on low noise
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Figure 7.22: a (left). Effect of extended point neighborhood to the fitting. b (right).
Statistical distribution of the solution-space coefficient and our quantization func-
tion: PDF (red curve) and inverse CDF (dashed blue-curve) of λ over collected data,
and t an−1 function (green-line). Note that our quantization function is capable of
explaining the empirical data.

levels but quickly destabilizes. This is because the system might be biased to compute

correct norms rather than the solution and it has increased parameters. We believe the

reason for our compact fit to work well is the soft constraint where the common scale

factor acts as a weighted regularizer towards special quadrics. When this constraint

cannot be satisfied, the solution settles for a very acceptable shape.

Next, we include the six neighbors of each of seven query points to perform a

standard Taubin-fit. We call this Taubin-42. Fig. 7.22a shows that while the error of our

method is on par with Taubin-42, we are more robust at higher noise and more efficient

with a runtime advantage of ca. 22%. We also found that for a visually appealing fit,

the normal alignment is crucial. Hence, we performed a visual evaluation of the fits

regarding both noise robustness and fidelity of the recovered gradients.

Qualitative assessments We synthetically generated a random saddle quadric and

performed a random point sampling over its surface. Next, we added Gaussian noise

on the sample points and computed the normals. To resolve the sign ambiguity, each

normal is flipped in the direction of ground truth gradient. We plot the results of the

fitting in Fig. 7.21.
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Gradient Magnitude Surface Normal Direction

Ground Truth Taubin Ours-Full Ours Ground Truth Taubin Ours-Full Ours

Figure 7.23: Qualitative evaluation of surface normals. Randomly generated quadrics
are used as ground truth and fitting is performed. The estimates of gradient magnitude
and angle is color coded on the surface. For color selection, we use a jet-like tempera-
ture map for the gradient magnitude, where blue denotes the lowest and red denotes
the highest magnitudes. For the phase, an angular map as show in the color-bar is
used. The ideal case is given in ground-truth against which the methods compete.

It can be seen that even in presence of little noise only some methods fail to

estimate the correct geometry either because of the bias towards ellipsoids [22], or the

type specific nature [11]. Our approach is able to recover the correct surface even in

presence of a severe noise level. Also the effect of our regularization is visible on the

last column, which possesses the best visual robustness.

It is of interest to see whether our regularized fit can estimate correct surface

normals as well as direction. Thus, a second test was performed to qualitatively ob-

serve the gradient properties in more detail. For this, a series of randomly generated

quadrics is fitted by Taubin’s and our method and the surface gradients are analyzed

both in terms of magnitude and phase, as shown in Fig. 7.23.

Due to the explicit integration of the gradients within the formulation of our frame-

work, it can be clearly seen that the gradient direction is recovered better. Moreover,
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the right side of Fig. 7.23 also shows that our approximate approach yields the ex-

pected results, while the full method could sometimes generate inconsistent gradient

signs, as the scale factors are estimated individually. Finally, it is qualitatively visible in

Fig. 7.23 that the magnitudes recovered by our method are compatible to the ground

truth. Such improvement without sacrificing gradient quality validates the regularizing

nature of our approach.

Is atan2 a valid transformation for λ? To assess the practical validity of the quanti-

zation, we collect a set of 2.5 million oriented point triplets from several scenes and

use them as bases to form the underdetermined system A. We then sample the fourth

point from those scenes, compute λ and establish the probability distribution p(λ)

for the whole collection to calculate the quantiles, mapping λ to bins via the inverse

CDF. A similar procedure has been applied to cross ratios in [34]. We plot the findings

together with the atan2 function in Fig. 7.22b and show that the empirical distribution

and atan2 follow similar trends, justifying that our quantizer is well suited to the data.

7.5.5.3 Real experiments on quadric detection

Datasets Besides synthetic tests where self evaluation was possible, we assess the

quality of generic primitive detection, on 3 real datasets:

1. Our Dataset First, because there are no broadly accepted datasets on quadric

detection, we opt to collect our own. To do so, we use an accurate phase-shift

stereo structured light scanner and capture 35 3D scenes of 5 different objects

within clutter and occlusions. Our objects are three bending papers, helmet,

paper towel and cylindrical spray bottle. Other objects are included to create

clutter. To obtain the ground truth, for each scene, we generated a visually ac-

ceptable set of quadrics using 1) [240] when shapes represent known primitives

2) by segmenting the cloud manually and performing a fit, when the quadric

type is not available. Each scene then contains 1-3 ground truth quadrics. This

dataset has low noise, but a high amount of clutter and partial visibility due to

the FOV limitations of the sensor.

2. Large Objects Kinect sensor is widely accepted in computer vision community.

Thus, it is desirable to see the performance of our generic and type-specific fit

162



7.5. RELAXING THE RIGIDITY AND A BOTTOM-UP APPROACH: QUADRICS

(i)

(ii)

(iii)

(iv)

q = {−0.475, 0.252, −0.406, 0.076, −0.184, 0.099, 0.127, −0.068, 0.249, −0.132} q = {0.458, 0.035, 0.294, 0.141, 0.085, −0.204, −0.069, 0.154, −0.257, 0.221}

(i)

(ii)

(iii)

(iv)

(i)

(ii)

(iii)

(iv)

𝐪 = {0.552, 0.281 0.407,−0.074, 0.011,−0.048, 0.006, 0.0203,−0.303, 0.221}

(i)

(ii)

(iii)

(iv)

𝐪 = {0.745,−0.002 0.316, 0.0072, 0.110 0.007,−0.050,−0.004,−0.249, 0.194}

(i)

(ii)

(iii)

(iv)

𝐪 = {0.229, 0.4145 0.291, 0.156,−0.150, 0.120, 0.139,−0.095,−0.263, 0.234}

𝐪 = {0.363, 0.132, 0.166, 0.0156 0.008,−0.148,−0.022, 0.241,−0.280 0.432}

(i)

(ii)

(iii)

(iv)

Figure 7.24: (i) Images captured by an industrial structured light sensor and Kinect
(last image). (ii) 3D scene. (iii) Detected quadric, shown without clipping. (iv) Quadric
in (iii) clipped to the points it lies on.

approaches on the Kinect depth images. To this end, we adapt the large objects

RGB-D scan dataset of [68]. From this dataset, we sample only the scenes con-

taining objects, that could roughly be explained by geometric primitives. These

scenes include apples, globes, footballs, or other small balls. Tab. 7.5 summa-

rizes the objects used. Example detections are also shown in Fig. 7.27. We also
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Figure 7.25: Experiments on real datasets. Our three-point variant clearly outperforms
the four-point algorithm in terms of speed, while not sacrificing quality. For three-
point method, the mean errors indicate that the localization accuracy is on the levels
of the sampling rate τ≈ 0.05, agreeing to the success of our algorithm.

augment this dataset with a Pilates Ball sequence that we collect. This sequence

involves a lot of partial visibility, clutter and fast motions (see appendix).

3. Cylinders Finally, we use a subset of the ITODD dataset [86], designed to evalu-

ate object pose estimators. Our subset, Cylidners, includes 14 scenes of varying

number of cylinders, from one to ten, as shown in Fig. 7.28a. Again, we use RGB

images only to ease the visual perception.

How accurate is the detector? To assess the detection accuracy, we manually count

the number of detected quadrics aligning with the ground truth in Our Dataset. We

compared the four-point and three-point algorithms, both of which we propose.

We also tried the naive nine-point RANSAC algorithm (with [263]), but found it to

be infeasible when the initial hypotheses of the inlier set is not available. Fig. 7.24

visualizes the detected quadrics on various scenes. Fig. 7.25(a) presents our accuracy

over different sampling rates and the runtime performance. Our three-point method

is on par with the four-point variant in terms of detection accuracy, while being

significantly faster. Next, we also evaluate our detector on the large objects dataset

of [68] without further tuning. Tab. 7.5 shows 100% accuracy in locating a frontally

appearing ellipsoidal rugby ball over a 1337 frame sequence without type prior. While
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Dataset # Objects Type Occlusion Accuracy

Pilates Ball 1 Ours 580 Generic Yes 94.40%
Rugby Ball [68] 1337 Generic No 100.00%
Pilates Ball 2 [68] 1412 Sphere Yes 100.00%
Big Globe [68] 2612 Sphere Yes 90.70%
Small Globe [68] 379 Sphere Yes 56.90%
Apple [68] 577 Sphere Yes 99.60%
Football [68] 1145 Sphere Yes 100.00%
Orange Ball [68] 270 Sphere Yes 93.30%

Table 7.5: Detection accuracy on real datasets.

such scenes are not particularly difficult, it is noteworthy that we manage to generate

the similar quadric repeatedly at each frame within 5% of the quadric diameter.

How fast is it? The speed of our algorithm is influenced by closed form fitting,

RANSAC and local voting. Thus, we evaluate the fit and detection separately. Fig. 7.20d

shows the runtime of fitting. Our method scales linearly due to the solution of a 4N×10

system, but it is the fastest approach when < 300 points are used. Thus, it is more

preferred for a minimal fit. Fig. 7.25(a) then presents the order of magnitude speed

gain, when our four-point C++ version is replaced by three-points without accuracy

loss. The final runtime is in the range of 1-2 seconds, the fastest known method in

segmentation free detection of quadrics.

How accurate is the fit? To evaluate the pose accuracy on real objects, we use closed

geometric objects of known size from the aforementioned datasets and report the

distribution of the errors. We choose football and pilates ball 1 as it is easy to know

their geometric properties (center and radius). We compare the radius to the true

value while the center is compared to the one estimated from a non-linear sphere

refinement. Our results are depicted in Fig. 7.25(b), where the errors successfully

remain about the used sampling rates (τ ≈ 0.05). This is as best as we could get. In

order to provide an intuition into our dataset, as well as qualitatively assessing our

method, we now visualize the detection results on the Pilates Ball sequence, in Fig. 7.26.

Type-specific detection It is remarkably easy to convert our algorithm to a type

specific one by re-designing matrix A. Here, we propose a sphere-specific detector. Let
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Figure 7.26: Quadric detection in real depth sequence. (upper row). An RGB-D cam-
era viewing a pilates ball is moved around the object. RGB image is shown only for
perceptual reasons; our method only uses the depth (in fact 3D) information. (middle
rows). Detection results in different frames of the sequence. The detected shape is
segmented by pruning away the points that are not incident with the quadric (due to
the distance metrics provided in § 7.5.3). Inlier 3D points are then rendered in red, in
real-time. Note that, we do not perform any refinement, and even then, occlusions
and clutter are handled gracefully and segmentation mask appears to be decent across
the sequence. bottom row. Three offline renderings of the detections, shown in pure
3D space. Here, before rendering, the quadric is converted to a mesh representation,
by Marching Cubes algorithm [176], and plotted as a meshed surface.

us write any sphere in the following matrix form:

(7.33) Qs =
[

I3 −c

−cT ‖c‖− r 2

]
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Clutter

Occlusions

RGB Depth 3D Scene
Partial
Visibility

Quadrics

Figure 7.27: Qualitative visualizations of sphere detection in the wild: Our algorithm
successfully detects primitives in difficult scenarios including clutter, occlusions and
large distances. Note that the sphere is detected in 3D only using the point clouds of
depth images and we draw the apparent contour of the quadric. The RGB pictures are
also included in the top row to ease the visual perception.

where c and r are the geometric parameters (center and radius) of the sphere. Rotation

does not affect spheres and our Aq = b formulation in § 7.5.2 then simplifies to:

A =



‖x1‖2 2x1 2y1 2z1 1

‖x2‖2 2x2 2y2 2z2 1
...

2x1 I3 03

2x2 I3 03
...


,b =



0

0
...

n1

n2
...


,q =



A

B

C

D

E

(7.34)

Due to the geometric interpretability, at the scoring phases, we can use the point-to-

sphere distance as:

(7.35) dpoint→sphere(p,q) = |(‖p−c‖2 − r )|
where p is the point to compute the distance. A sphere to sphere distance (used in

clustering) can be obtained by:

(7.36) dsphere→sphere(q1,q2) = 1

2
(|r1 − r2|+‖c1 −c2‖2)
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ConeCone

(a) An ITODD scene composed of many cylinders

(c) 6DoF PPF pose estimation using Cylinder as model [5,11] (d) Our model-free, unsupervised result
Only the surface parts overlapping the point set are shown.

(b) Schnabel et. al. can mis-classify or -segment 
certain types, thereby fitting the wrong primitives.

Figure 7.28: Multiple cylinder detection in clutter and occlusions: Our approach is
type agnostic and uninformed about cylinders.

(c,r ) can always be obtained from the quadric form Qs as described in Eq. 7.33.

Note that r k(A) = 4 if one point is available, leaving only one free parameter which

forms a single dimensional null-space. Geometrically, this means that the radius

cannot be resolved from a single point. Yet, by fixing another point, one can vote

locally as explained in § 7.5.4. While at this stage Drost and Ilic [85] prefer to vote

for radius explicitly, we vote for the null-space coefficient. The difference is that

[85] involves trigonometric computations before the voting stage, but vote linearly

for the geometric parameter, whereas we keep linearity until the voting stage but

vote for the non-linear angle θ corresponding to λ. Our approach evaluates far less

trig functions (only one atan2). We plug this specific fit into our detector without

changing other parts and evaluate it on scenes from [68] which contains spherical

everyday objects. Tab. 7.5 summarizes the dataset and reports our accuracy while

Fig. 7.27 qualitatively shows that our sphere-specific detector can indeed operate in

challenging real scenarios. Our algorithm is able to detect a sphere on many difficult
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PPF3D PPF3D-E PPF3D-E-2D S2D [281] RANSAC [214] Ours

72% 73% 74% 24% 86% 41.9%

Table 7.6: Results on ITODD [86] cylinders: Even without looking for a cylinder, we
outperfom the model based [281].

cases, as long as the sphere is partially visible. We also do not have to specify the radius

as unlike many Hough transform based methods. Note that, due to reduced basis size

(b = |b| = 1) this type specific fit can meet real-time criteria.

Comparison to model based detectors The literature is overwhelmed by the num-

ber of 3d model based pose estimation methods. Hence, we decide to compare our

model-free approach to the model based ones. For that, we take the cylinders subset of

the recent ITODD dataset [86] and run our generic quadric detector without training

or specifying the type. Visuals of different methods are presented in Fig. 7.28 whereas

detection performance are reported in Tab. 7.6. Our task is not to explicitly estimate

the pose. Thus, we manually accept a hypothesis if ICP [97] converges to a visually

pleasing outcome. Note, multiple models are an important source of confusion for us,

as we vote on generic quadrics. However, our algorithm outperforms certain detectors,

even when we are solving a more generic problem as our shapes are allowed to deform

into geometries other than cylinders.

Figure 7.29: When planes gather a majority of the votes, our method approximates
them by a close non-degenerate quadric surface. This is similar to representing a large
planar football field using Earth’s surface.

Limitations Unless made specific, our method is surpassed by type-specific fits in

detection rate since solving the generic problem is more difficult. It remains an open
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issue to bring the performance to the levels of type-specific fits. Nevertheless, if the

design matrix A targets a specific type, we perform even better. Degenerate cases

are also difficult for us as shown in Fig. 7.29, but we always find a non-degenerate

configuration good-enough to approximate the primitive.

7.6 Discussion

We have proposed several object detectors for finding the orientation and location of

3D objects in noisy and cluttered point clouds. The first stage began with improving

the geometric hashing framework of point pair features by multitudes of contributions,

including weighted voting, segment-level processing, object and scene dependent

database weighting and probabilistic modeling. We have then moved onto learning

based modern techniques, that can still operate on the geometric PPF representation.

Even though the use of the learned descriptors advances the state of the art in RANSAC-

like 3D matching, because of the requirement of real training data or the necessity to

fine tune, their appliance to CAD-based computer vision is not yet immediate.

We have then moved onto a different approach, where instead of estimating the

pose of a rigid body, we estimate the parameters of bases components that are com-

mon to a variety of man-made objects. There, we have given a novel, linear formulation

of quadric fitting for oriented point quadruplets. We thoroughly analyzed this fit and

devised an efficient null-space voting which uses three pieces of point primitives

plus a simple local search instead of a full four oriented point fit. Together, the fitting

and voting establish the minimalist cases known up to now - three oriented points,

potentially paving the way towards real-time operation. While this detector targets a

generic surface, we can, optionally, convert to a type-specific fit to boost speed and

accuracy.
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POSE GRAPH PROCESSING

“The real voyage of discovery consists not in seeking new landscapes but in having

new eyes.”

— Marcel Proust, In Search of Lost Time, 1923

The final stage of our pipeline involves 3D pose graph optimization. It is note-

worthy that PGO is not specific to our problem and finds a variety of use cases in

3D and 2D computer vision. For instance, the ability to reduce drift while navigat-

ing autonomously comes with PGO and is now a key technology not only for 3D

reconstruction and digitization but also used in self driving cars, unmanned aerial

vehicles (UAV), robot guidance, augmented reality, sensory network localization and

more. This ubiquitous appliance is due to the fact that vision sensors can provide cues

to directly solve 6DoF pose estimation problem and does not necessitate external

tracking input, such as imprecise GPS, to ego-localize. The drawbacks of non-vision

based solutions coerces many algorithms to operate directly on pose data, that is

inherently noisy. Typically, as mentioned in Chapter 5, there are two kinds of scenarios:

1. sequential estimation of rotations and translations resulting in ordered pose data, 2.

capturing with random order, where the user or the robot is free to determine the lo-

cation of the shot. The former creates a temporally related data with edges structured

as a chain. This should be treated differently from the latter, where the pose graph can
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have arbitrary connections due to the freedom in camera positioning.

In this chapter of this thesis, we develop two tools for processing ordered and

unordered pose graphs, respectively. We will first explain our pose graph denoising

strategy considering the temporal arrangement of poses. Later on, we will present

a generalized statistical pose graph optimization algorithm that can be applied to

arbitrary pose graphs, and initialize complex algorithms, such as bundle adjustment.

Both of these tools are designed to operate on pose graph directly and avoid 3D

structure. Thereby, they are better used as initializers, or smoothers, accompanying a

final structure-guided optimization stage.

8.1 Local Geodesic Regression for Filtering Pose Chains

A time-varying, sequential motion can be interpreted on the pose space DH1 as a

high dimensional trajectory. Generally, due to lack of constraints on physical motion

or tracking errors, this trajectory is highly non-linear, non-Gaussian and includes

outliers. Moreover, it is non-uniformly sampled because of velocity changes or sudden

jumps. We take this non-ideal setting into account and propose a non-parametric path

smoothing algorithm which is robust, flexible, intuitive and could naturally benefit

from the availability of the uncertainties in the pose estimation [50].

Weighted local linear regression Locally, we treat the trajectory as a linear one, and

seek to find the linear association of the data points X (poses) to the responses Y:

(8.1) Y = Xβ+ε

A common way to discover this local relationship is using the Generalized Least Squares

minimization

(8.2) β∗ = argmin
β

(Y−Xβ)T W(Y−Xβ).

with diagonal weight matrix W. We will later show how these weights can be adjusted.

The solution to Eq. 8.2 is given by weighted least squares regression

(8.3) β∗ = (XT WX)−1XT WY.
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Equivalently, when the data is rather unevenly distributed, one likes to prevent distin-

guishing the predictor and response, rather looking for meaningful linear projections

(e.g. maximum variance) instead. As a first step, a hyper-line can be obtained from

the first principal component of the data points X. Let X = USVT denote the singular

value decomposition (SVD) of X, with right singular vectors V. V∆VT gives the spec-

tral decomposition of the covariance matrix XXT with the non-negative eigenvalues

∆= di ag (λ1..λp ). Weights are then transferred directly to the covariance matrix by

(8.4) C = 1

2‖di ag (W)‖ (X−µ)W(X−µ)T .

The columns of V give the orthonormal set of eigenvectors and Xv j , the j th principal

component. On a subsequent step, the local input data can be projected onto the first

principal subspace resulting in the principal covariates XVk := {Xv1..Xvk }. To smooth

the trajectory, the central point c is projected onto the PC-line. Note that, this fit

assumes a local Gaussian distribution, while the global distribution can be arbitrary.

Figure 8.1: Robust PC-regression on tangent

space (the concept illustrated in 3D, rather than

8D).

Extension to pose chains Our

method uses dual quaternions as

explained in § 2.3.5 to parame-

terize camera poses. While PCA

schemes hold for the typical Eu-

clidean spaces, they donot gener-

alize to manifold valued functions,

such as dual quaternions, because

these spaces are not necessarily

Euclidean. Buss and Fillmore [53]

show that even regressing a great

arc on the quaternion hypersphere

has ambiguities. Luckily, for the

case of local regression, the central

point of fitting is known and this enables us to map the immediate neighborhood onto

the tangent space of dual quaternions TxG, thereby circumventing the non-Euclidean

nature. Thanks to the manifold structure, locally, the tangent space behaves Euclidean

and we can perform the fit. To smooth the curve, the central point is projected onto
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Algorithm 5: irls_wpca : IRLS for Weighted PCA.

1 input :Local set of dual quaternions X = {Xi }, # Iterations N , Prior weights w0 = {wi }
2 output :PCA line l with projections X f i t

3 w ← w0

4 for i = 1 : N do
5 {Xpr o j , l} ← weighted_pca(X,w)
6 Update w using (8.6)
7 w ← w ·w0/‖w ·w0‖ // dampen the estimates

Algorithm 6: Manifold PC-Local Regression.

1 input :Set of dual quaternions X = {Xi }, Kernel size K , Prior weights w0 = {wi } for
local window

2 output :Filtered poses X f = {X f
i }

3 X f ← []
4 for xi ∈ X do
5 XΩ← {xk } ∈Ωi

6 Xt
Ω← log(XΩ)

7 Xpr o j
Ω ← irls_wpca(Xt

Ω,w0)

8 x f
i ← exp(Xpr o j

Ω (i ))

9 X f ← X f ∪x f
i

the regressed 8D-line and mapped back onto the manifold using the exponential

map. Naturally, the 8D data points, which are closer to the center of the local model c

are more relevant for the fit, as the linearity decreases with the extent. Therefore we

multiply each data point by a Gaussian prior function to downweight the points based

on their relative position:

(8.5) w 0
i = exp

(
− 1

2
(xi −c)T D(xi −c)

)
,

where D is a positive semi-definite distance metric explaining the region of influence,

a.k.a. locality. Moreover, oftentimes the pose space could contain outliers, which a

naive fit cannot deal with. Therefore, we introduce to use a re-weighted procedure,

in which the residuals of the current fit is used to update the weights for the next

iteration. This is commonly referred as iteratively reweighted least squares (IRLS). We

use a simple distance based weight update:

(8.6) wi+1 = 1/max
(
δ,

1

K

K∑
k=1

|rk
i |

)
,
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where δ is a small number, preventing division by zero and {rk
i } are the residuals

at iteration i . Alg. 6 summarizes our final implementation which is illustrated in

Fig. 8.1. It is once again worth reminding that such a denoising algorithm restricts the

acquisition order. In the following, we will be moving onto a more generic scenario,

where no particular trajectory is assumed.

8.2 TG-MCMC: Bayesian Initialization for Pose Graph

Optimization via Bingham Distributions

Many of the problems in the domains of 3D vision can now be addressed by tailor-

made pipelines such as SLAM (Simultaneous Localization and Mapping), SfM (Struc-

ture From Motion) or multi robot localization (MRL) [57, 153]. Nowadays, thanks to the

resulting reliable estimates of rotations and translations, many of these pipelines rely

on some form of an optimization, such as bundle adjustment (BA) [272] or 3D global

registration [36, 135], that can globally consider the acquired measurements. Holis-

tically, these methods belong to the family of pose graph optimization (PGO) [158].

Unfortunately, many of PGO post-processing stages, which take in to account both

camera poses and 3D structure, are too costly for online or even soft-realtime opera-

tion. This bottleneck demands good solutions for PGO initialization, that can relieve

the burden of the joint optimization.

We now address the particular problem of initializing PGO, in which multiple local

measurements are fused into a globally consistent estimate, without resorting to the

costly bundle adjustment or optimization that uses structure. In specifics, let us con-

sider a finite simple directed graph G = (V ,E ), where vertices correspond to reference

frames and edges to the available relative measurements as shown in Figures 8.2(a),

8.2(b). Both vertices and edges are labeled with rigid motions representing absolute

and relative poses, respectively. Each absolute pose is described by a homogeneous

transformation matrix {Mi ∈ SE (3)}n
i=1. Similarly, each relative pose is expressed as the

transformation between frames i and j , Mi j , where (i , j ) ∈ E ⊂ [n]×[n]. The labeling of

the edges is such that if (i , j ) ∈ E , then ( j , i ) ∈ E and Mi j = M−1
j i . Hence, we consider G

to be undirected. With a convention as shown in Fig. 8.2(c), the link between absolute

175



CHAPTER 8. POSE GRAPH PROCESSING
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𝐕1𝐪𝑖𝑗
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(a) Initial pose graph of 
relative orientations.

(c) Convention used to describe 
the pairwise relationships.

(d) A sample Bingham distribution
and the rotational components.

𝐂𝒊 𝐂𝒋

𝑬𝒊𝒋

𝐖𝐨𝐫𝐥𝐝
𝐅𝐫𝐚𝐦𝐞

…
𝐀𝐛𝐬𝐨𝐥𝐮𝐭𝐞
𝐩𝐨𝐬𝐞𝐬

(b) Resulting poses 
w.r.t. a common frame.Figure 8.2: From left to right: (a) Initial pose graph of relative poses. (b) Absolute poses

w.r.t. common frame. (c) Convention used to describe the pairwise relationships. (d)
A sample Bingham distribution and the rotational components.

and relative transformations is encoded by the compatibility constraint:

(8.7) Mi j ≈ M j M−1
i , ∀i 6= j

Primarily motivated by Govindu et al. [111], rigid-motion synchronization initial-

izes PGO by computing an estimate of the vertex labels Mi (absolute poses) given

enough measurements of the ratios Mi j . In other words, it tries to find the absolute

poses that best fit the relative pairwise measurements. Typically, in order to remove the

gauge freedom, one of the poses is set to identity M0 = I and the problem reduces to

recovering n−1 absolute poses. The solution is the state of the art method to initialize,

say SfM [58, 153, 274] thanks to the good quality of the estimates.

The pose graph optimization problem is often formed as non-convex optimiza-

tion problems, opening up room for different formulations and approaches. Direct

methods try to compute a good initial solution [13, 14, 58, 99], which are then refined

by iterative techniques [112, 269]. Robustness to outlier relative pose estimates is also

crucial for a better solution [57, 59, 60, 120, 274]. The structure of our peculiar problem

allows for global optimization, when isotropic noise is assumed and under reasonable

noise levels as well as well connected graph structures [47, 48, 90, 99, 230, 290]. It is

also noteworthy that, even though the problem has been previously handled with

statistical approaches [273], up until now, to the best of our knowledge, estimation of

uncertainties in PGO initialization are never truly considered.

In this part of our work, we look at the graph optimization problem from a proba-

bilistic point of view. We begin by representing the problem on the Cartesian product

of the true Riemannian manifold of quaternions and Euclidean manifold of trans-

lations. We model rotations with Bingham distributions [29] and translation with
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Gaussians. The probabilistic framework provides two important features: (i) we can

align the modes of the data (relative motions) with the posterior parameters, (ii) we

can quantify the uncertainty of our estimates by using the posterior predictive distri-

butions. In order to achieve these goals, we come up with efficient algorithms both for

maximum a-posteriori (MAP) estimation and posterior sampling: ‘tempered’ geodesic

Markov Chain Monte Carlo (TG-MCMC). Controlled by a single parameter, TG-MCMC

can either work as a standard MCMC algorithm that can generate samples from a

Bayesian posterior, whose entropy, or covariance, as well as the samples themselves,

provide necessary cues for uncertainty estimation - both on camera poses and pos-

sibly on the 3D structure, or it can work as an optimization algorithm that is able to

generate samples around the global optimum of the MAP estimation problem. In this

perspective, TG-MCMC bridges the gap between Bayesian geodesic Markov Chain

Monte Carlo (gMCMC) and non-convex optimization, as we will theoretically present.

In a nutshell, our contributions are as follows:

• Novel probabilistic model using Bingham distributions in pose averaging for

the first time,

• Tempered gMCMC: Novel tempered MCMC algorithm for global optimization

and sampling on the manifolds using the known geodesic flow,

• Theoretical understanding and convergence guarantees for the devised algo-

rithm,

• Strong experimental results justifying the validity of the approach.

8.2.1 The Proposed Model

In this section, we will describe our proposed model for PGO initialization. We con-

sider the situation where we observe a set of noisy pairwise pose estimations Mi j ,

represented by augmented quaternions as {qi j ∈S3 ⊂R4,ti j ∈R3}. The indices (i , j ) ∈ E

run over the edges the graph. We assume that the observations {qi j ,ti j }(i , j )∈E are gen-

erated by a probabilistic model that has the following hierarchical structure:

qi ∼ p(qi ), ti ∼ p(ti ), qi j |· ∼ p(qi j |qi ,q j ), ti j |· ∼ p(ti j |qi ,q j ,ti ,t j ),(8.8)
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where the latent variables {qi ∈S3}n
i=1 and {ti ∈ R3}n

i=1 denote the true values of the

absolute poses and translations with respect to a common origin, corresponding to Mi

of Eq. 8.7. Here, p(qi ) and p(ti ) denote the prior distributions of the latent variables,

and the product of the densities p(qi j |·) and p(ti j |·) forms the likelihood function.

By respecting the natural manifolds of the latent variables, we choose the following

prior model:qi ∼B(Λp , Vp ), ti ∼N (0, σ2
p I) where Λp , Vp , and σ2

p are the prior model

parameters, which are assumed to be known. We then choose the following model for

the observed variables:

qi j |qi ,q j ∼B(Λ,V(q j q̄i )), ti j |qi ,q j ,ti ,t j ∼N (µi j ,σ2I),(8.9)

where Λ is a fixed, V is a matrix-valued function that will be defined in the sequel;

µi j denotes the expected value of ti j provided that the values of the relevant latent

variables qi q j , ti , t j are known, and has the form:

(8.10) µi j , t j − (q j q̄i )ti (qi q̄ j ).

With this modeling strategy, we are expecting that ti j would be close to the true

translation µi j that is a deterministic function of the absolute poses. Our strategy also

lets ti j differ from µi j and the level of this flexibility is determined by σ2.

Constructing Bingham distribution on any given mode q ∈S3 requires finding a

frame bundleS3 →FS3 composed of the unit vector (the mode) and its orthonormals.

Being parallelizable (d = 1,2,4 or 8), manifold of unit quaternions enjoys an injective

homomorphism to the orthonormal matrix ring composed of the orthonormal basis

[251]. Thus, we define V :S3 7→R4×4 as follows:

(8.11) V(q),


q1 −q2 −q3 q4

q2 q1 q4 q3

q3 −q4 q1 −q2

q4 q3 −q2 −q1

.

It is easy to verify that V(q) is orthonormal for every q ∈ S3. V(q) further gives a

convenient notation for representing quaternions as matrices paving the way to

linear operations, such as quaternion multiplication or orthonormalization without

pesky Gram-Schmidt processes. By using the definition of V(q) and assuming that the
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diagonal entries ofΛ are sorted in decreasing order, we have the following property:

(8.12) argmax
qi j

{
p(qi j |qi ,q j ) =B(Λ,V(q j q̄i ))

}= q j q̄i .

Similar to the proposed observation model for the relative translations, given the true

poses qi ,q j , this modeling strategy sets the most likely value of the relative pose to

the deterministic value q j q̄i , and also lets qi j differ from this value up to the extent

determined byΛ. This configuration is illustrated in Fig 8.2(d).

Representing SE(3) in the form of a quaternion-translation parameterization, we

can now formulate the motion-synchronization problem as a probabilistic inference

problem. In particular we are interested in the following two quantities:

1. The maximum a-posteriori (MAP) estimate: (Q?,T?) = argmaxQ,T p(Q,T|D) =

argmax
Q,T

( ∑
(i , j )∈E

{
log p(qi j |Q,T)+ log p(ti j |Q,T)

}+∑
i

log p(qi )+∑
i

log p(ti )
)
,

(8.13)

where D ≡ {qi j ,ti j }(i , j )∈E denotes the observations, Q ≡ {qi }n
i=1 and T ≡ {ti }n

i=1.

2. The full posterior distribution: p(Q,T|D) ∝ p(D|Q,T)×p(Q)×p(T).

Both of these problems are very challenging and cannot be directly addressed by

standard methods such as gradient descent (problem 1) or standard MCMC methods

(problem 2). The difficulty in these problems is mainly originated by the fact that the

posterior density is non-log-concave (i.e. the negative log-posterior is non-convex)

and any algorithm that aims at solving one of these problems should be able to operate

in the particular manifold of this problem, that is (S3)n ×R3n ⊂R7n .

8.2.2 Tempered Geodesic Monte Carlo for PGO

8.2.2.1 Connection between sampling and optimization

In a recent study [169], Liu et al.proposed the stochastic gradient geodesic Monte

Carlo (SG-GMC) as an extension to [54] and provided a practical posterior sampling

algorithm for the problems that are defined on manifolds whose geodesic flows are

analytically available. Since our augmented quaternions form such a manifold1, we
1The manifold (S3)n ×R3n can be expressed as a product of the manifolds S3 (n times) and R3n .

Therefore, its geodesic flow is the combination of the geodesic flows of individual manifolds. Since the
geodesic flows in Sd−1 and Rd are analytically available, so is the flow of the product manifold [54].
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can use this algorithm for generating (approximate) samples from the posterior distri-

bution, which would address the second problem defined in § 8.2.1.

Recent studies have shown that SG-MCMC techniques are closely related to opti-

mization and they indeed have a strong potential in non-convex problems due to their

randomized nature. In particular, it has been recently shown that, a simple variant of

SG-MCMC is guaranteed to converge to a point near a local optimum in polynomial

time [278, 310] and eventually converge to a point near the global optimum [226], even

in non-convex settings. Even though these recent results illustrated the advantages

of SG-MCMC in optimization, it is not clear how to develop an SG-MCMC-based

optimization algorithm that can operate on manifolds. In this section, we will extend

the SG-GMC algorithm in this vein to obtain a parametric algorithm, which is able to

both sample from the posterior distribution and perform optimization for obtaining

the MAP estimates depending on the choice of the practitioner. In other words, the

algorithm should be able to address both problems that we defined in § 8.2.1 with

theoretical guarantees.

We start by defining a more compact notation that will facilitate the presentation

of the algorithm. We define the variable x ∈ X , such that x, [q>
1 , . . . ,q>

n ,t>1 , . . . ,t>n ]>

and X , (S3)n ×R3n . The posterior density of interest then has the form πH (x),

p(x|D) ∝ exp(−U (x)) with respect to the Hausdorff measure, where U is called the

potential energy. We define a smooth embedding ξ :R6n 7→X such that ξ(x̃) = x. If we

consider the embedded posterior density πλ(x̃), p(x̃|D) with respect to the Lebesgue

measure, then by the area formula (cf. Theorem 1 in [82]), we have the following key

property: πH (x) =πλ(x̃)/
p|G(x̃)| , where |G| denotes the determinant of the Riemann

metric tensor:

(8.14) [G(x̃)]i , j ,
7n∑

l=1

∂xl

∂x̃i

∂xl

∂x̃ j
for all i , j ∈ {1, . . . ,6n}.

The main idea in our approach is to introduce an inverse temperature variable β ∈
R+ and consider the tempered posterior distributions whose density is proportional to

exp(−βU (x)). When β= 1, this density coincides with the original posterior; however,

as β goes to infinity, the tempered density concentrates near the global minimum of

the potential U [104, 137]. This important property implies that, for large enough β,

a random sample that is drawn from the tempered posterior would be close to the

global optimum and can therefore be used as a MAP estimate.
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8.2.2.2 Construction of the algorithm

We will now construct the proposed algorithm. In particular, we will first extend the

continuous-time Markov process proposed in [169] and develop a process whose

marginal stationary distribution has a density proportional to exp(−βU (x)) for any

given β> 0. Then we will develop practical algorithms for generating samples from

this tempered posterior.

We propose the following stochastic differential equation (SDE) in the Euclidean

space by making use of the embedding ξ:

d x̃t = G(x̃t )−1pt d t

(8.15)

dpt =−
(
∇x̃Uλ(x̃t )+ 1

2
∇x̃ log |G|+ cpt + 1

2
∇x̃(p>

t G−1pt )d t +
√

(2c/β)M>M dWt ,

where ∇x̃Uλ,−∇x̃ logπλ, G and M are short-hand notations for G(x̃t ) and [M(x̃t )]i j ,

∂xi /∂x̃ j , respectively, pt ∈ R6n is called the momentum variable, c > 0 is called the

friction, and Wt denotes the standard Brownian motion in R6n .

We will first analyze the invariant measure of the SDE (8.2.2.2).

Proposition 8.2.1. Letϕt = [x̃t ,p>
t ]> ∈R12n and (ϕt )t≥0 be a Markov process that is a

solution of the SDE (8.2.2.2). Then (ϕt )t≥0 has an invariant measure µϕ, whose density

with respect to the Lebesgue measure is proportional to exp(−Eλ(ϕ)) , where Eλ is is

defined as follows:

Eλ(ϕ),βUλ(x̃)+ β

2
log |G(x̃)|+ β

2
p>G(x̃)−1p.(8.16)

All the proofs are given in the supplementary document. By using the area formula

and the definitions of G and M, one can show that the density of µϕ can also be

written with respect to the Hausdorff measure, as follows: (see § 3.2 in [54] for details)

EH (x,v), βUH + β
2 v>v, where v = M(M>M)−1p. This result shows that, if we could

exactly simulate the SDE (8.2.2.2), then the marginal distribution of the sample paths

would converge to a measure πx on X whose density is proportional to exp(−βU (x)).

Therefore, for β= 1 we would be sampling from πH (i.e. we recover SG-GMC), and for

large β, we would be sampling near the global optimum of U .
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Numerical integration We will now develop an algorithm for simulating (8.2.2.2) in

discrete-time. We follow the approach given in [54, 169], where we split (8.2.2.2) into

three disjoint parts and solve those parts analytically in an iterative fashion. The split

SDE is given as follows:

A:

d x̃t = G−1pt d t

dpt = 1
2∇(p>

t G−1pt )d t
B:

d x̃t = 0

dpt =−cpt d t
O:


d x̃t = 0

dpt =−(∇Uλ(x̃t )+ 1
2∇ log |G|)d t

+
√

2c
β

M>M dWt .

The nice property of these (stochastic) differential equations is that, each of them can

be analytically simulated directly on the manifold X , by using the identity x = ξ(x̃)

and the definitions of G, M, and v. In practice, one first needs to determine a sequence

for the A, B, O steps, set a step-size h for integration along the time-axis t , and solve

those steps one by one in an iterative fashion [62, 162]. In our applications, we have

emprically observed that the sequence BOA provides better results among several

other combinations, including the ABOBA scheme that was used in [169].

Once the gradients with respect to the latent variables are computed, i.e.:

∇xU (x) ≡ {∇q1U (x), . . .∇qnU (x),∇t1U (x), . . .∇tnU (x)},(8.17)

we can update each of the variables q1, . . . ,qn ,t1, . . . ,tn independently from each other,

meaning that, the split integration steps, A, B, O can be applied to each of these

variables independently. The operations A, B, O will differ depending on the manifold

of the particular variable, therefore we will define these operations both on S3 and R3

for the two sets of variables {qi }n
i=1 and {ti }n

i=1, respectively. As we split x into {qi }n
i=1

and {ti }n
i=1, we similarly split the variable v into {vq

i }n
i=1 and {vt

i }n
i=1 in order to facilitate

the presentation. Below we provide the necessary update equations.

Update equations for the rotation components Set a step-size h. For each {qi ,vq
i }

pairs, the operations A, B, O have the following analytical form:

Step A: Set α= ‖vq
i ‖, q′ ← qi and v′ ← vq

i .

qi ← q′ cos(αh)+ (v′/α)sin(αh)(8.18)

vq
i ←−αq′ sin(αh)+v′ cos(αh)
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Step B: vq
i ← exp(−ch)vq

i

Step O: Set v′ ← vq
i and g ←∇qi U (x)

vq
i ← v′+P (qi )

(−hg+
√

2c/βzq
i

)
,(8.19)

where P (q) = (I−qq>) denotes the projector and zq
i denotes a standard Gaussian

random variable on R4.

Update equations for the translation components Set a step-size h. For each {ti ,vt
i }

pairs, the operations A, B, O have the following analytical form:

Step A: ti ← ti +hvt
i

Step B: vt
i ← exp(−ch)vt

i

Step O: Set v′ ← vt
i and g ←∇ti U (x)

vt
i ← v′+ (−hg+

√
2c/βzt

i

)
,(8.20)

where zt
i denotes a standard Gaussian random variable on R3. We illustrate the overall

algorithm in Algorithm 7

Algorithm 7: TG-MCMC

1 input :x0 = {q1, . . . ,qn ,t1, . . . ,tn}, v = {vq
1 , . . . ,vq

n ,vt
1, . . . ,vt

n}, β, c , h
2 for i = 1, . . . , N do
3 Compute the gradient ∇xU (xi )

// Update the rotation components
4 for j = 1, . . . ,n do
5 Run the B, O, A steps (in this order) on q j ,vq

j

// Update the translation components
6 for j = 1, . . . ,n do
7 Run the B, O, A steps (in this order) on t j ,vt

j

8.2.2.3 Theoretical analysis

We will now provide non-asymptotic results for the proposed algorithm. Let us denote

the output of the algorithm {xk }N
k=1, where k denotes the iterations and N denotes the

number of iterations. In the MAP estimation problem, we are interested in finding x?,
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argminx U (x), whereas for full Bayesian inference, we are interested in approximating

posterior expectations with finite sample averages, i.e. φ̄,
∫
X φ(x)πH (x) dx ≈ φ̂,

(1/N )
∑N

k=1φ(xk ), where φ is a test function.

As briefly discussed in [169], the convergence behavior of the SG-GMC algorithm

can be directly analyzed within the theoretical framework presented in [62]. In a

nutshell, the theory in [62] suggests that, with the BOA integration scheme, the bias

|Eφ̂−φ| is of order O (N−1/2).

In this study, we focus on the MAP estimation problem and analyze the ergodic

error E[ÛN −U?], where ÛN , (1/N )
∑N

k=1U (xk ) and U?,U (x?). This error resembles

the bias where the test function φ is chosen as the potential U ; however, on the

contrary, it directly relates the sample average to the global optimum. Similar ergodic

error notions have already been considered in non-convex optimization [61, 167].

We present our main result in the Thm. 8.1, but before, we lay down our assump-

tions that allow us to formulate the theorem:

H1. The gradient of the potential is Lipschitz continuous, i.e. there exists L < ∞,

such that ‖∇xU (x)−∇xU (x′)‖ ≤ LdX (x,x′), ∀x,x′ ∈X , where dX denotes the geodesic

distance on X .

H2. The second-order moments of πx are bounded and satisfies the following inequal-

ity:
∫
Rd ‖x‖2πx(dx) ≤ C

β
, for some C > 0.

H3. Let ψ be a functional that is the unique solution of a Poisson equation that is

defined as follows:

Lnψ(ϕn) =U (xn)−Ūβ,(8.21)

where ϕn = [x̃>
n ,p>

n ]>, Ln is the generator of (8.2.2.2) at t = nh (see [62] for the defi-

nition). The functional ψ and its up to third-order derivatives Dkψ are bounded by

a function V (ϕ), such that ‖Dkψ‖ ≤ CkV rk for k = 0,1,2,3 and Ck ,rk > 0. Further-

more, supn EV r (xn) < ∞ and V is smooth such that sups∈(0,1) V r (sϕ+ (1− s)ϕ′) ≤
C (V r (ϕ)+V r (ϕ′)) for allϕ,ϕ′ ∈R12n , r ≤ max2rk , and C > 0.

Theorem 8.1. Assume that the conditions given in 1 hold. If the iterates are obtained

by using the BOA the scheme, then the following bound holds:∣∣EÛN −U?
∣∣=O

(
β/(N h)+h/β+1/β

)
,(8.22)
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for the domain X = (S3)n ×R3n .

Sketch of the proof. The proof is based on decomposing the error into two terms:

E[ÛN −U?] = A1 +A2, where A1 , E[ÛN −Ūβ] and A2 , [Ūβ−U?] ≥ 0, and Ūβ ,∫
X U (x)πx(dx). The term A1 is the bias term, which we can bounded by using existing

results. The rest of the proof deals with bounding A2, where we incorporate ideas from

[226]. The full proof resides in the supplementary. �

Theorem 8.1 shows that the proposed algorithm will eventually provide samples that

are close to the global optimizer x? even when U is non-convex. In other words, the

tempered posterior will concentrate around the global optimum as we increase β.

Hence, for large enough β, the multi-modal structure of the posterior disappears and

there will be a single mode of the distribution. This will imply that if U (x) is close

to U?, then x should be close to x? under the large β regime. Fig. 8.3 illustrates this

phenomenon on a simple 2-component Gaussian mixture: when β= 1 both modes

are visible, but when β = 20 the mode on the right vanishes and the distribution

concentrates around the global mode. Our result is stronger than the guarantees for

the existing convex optimization algorithms on manifolds [174, 309], and is mainly

due to the stochasticity of the algorithm that is introduced by the Brownian motion.

However, despite this nice theoretical property, in practice our algorithm will still

be affected by the meta-stability phenomenon, where it will converge near a local

minimum and stay there for an exponential amount of time.

Figure 8.3: Effect of β on the cost

function.

We also note that the case β → ∞ renders

the SDE degenerate and hence, cannot be ana-

lyzed by using standard MCMC tools. Thus, our

bound, as well as the argumentation of the nu-

merous recent MCMC-based optimization algo-

rithms [32,33,34], ceases to hold. However, this

does not limit the applicability of our theoretical

results due to the following: 1) Primarily, as long

as β is set to a large yet finite value, the algorithm will indeed perform optimization

(see also [32,33,34]) and converge near a MAP solution. β need not be infinite for this.

2) The upper-bound on β depends on a constant C that appears on Assumption H2,

which states that the second-order moments of the (tempered) posterior obey the
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inequality
∫
Rd ‖x‖2πx(dx) ≤ C

β
. Here, the constant C can be arbitrarily large. In fact,

we expect C to be very large in our applications, since the second-order posterior

moments would be very large in the high-dimensional scheme we consider. This also

allows us to set β to a large value as confirmed by our experiments. 3) Due to the

meta-stability phenomenon (mentioned in line 251), the algorithm already performs

similarly either for largeβ or forβ→∞. For all those reasons, in § 8.3.2, we had chosen

to phrase that β→∞ to increase clarity.

We note that our proof covers only the case where X = (S3)n ×R3n ; however, we

believe that it can be easily extended to more general setting. We also note that the gra-

dient computations in our algorithm can be replaced with stochastic gradients in the

case of large-scale applications where the number of data points can be prohibitively

large, so that computing the gradients at each iteration becomes practically infeasible.

The same theoretical results hold as long as the stochastic gradients are unbiased.

8.3 Experiments

8.3.1 Pose Filtering

In the following, the pose filtering methods presented in § 8.1 are evaluated and

compared to other approaches in two different scenarios. A first synthetic experiment

analyzes the ability of the smoothing algorithms to recover a noisy pose series with

outliers while the second evaluation is performed on a real dataset of natural hand

movement in a collaborative medical robotic environment where tracking accuracy

and robustness to pose outliers is crucial.

Synthetic tests Our first test evaluates the robustness and accuracy of the tangent

space regressors. In order to evaluate these properties we generate a synthetic dataset

from a ground truth rigid body movement.

A set of five points vi ∈ R3 together with five values θi ∈ [0,2π] are chosen as query

points representing the rotation axis and angle of the rotations Ri . Five points ti ∈
[0,1]3 represent the translational component of the poses. A cubic spline interpolates

both the axes and angles and with (2.14) and (2.28) we get our pose representations in

H1 ×R3 and DH1. As the space R3 is already Euclidean we can perform a pose filtering
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Figure 8.4: Dual IRLS applied to synthetic rigid body movement (black). (a) Rotational
effect: the intersections of the rotation axis with §2 are illustrated for both the noisy
input (black) and the filtered pose (turqoise), along with the angular and axis errors of
the rotation. (b) Translational effect: on the left, the smooth trajectory is visualized,
while the rightmost figure shows the RMS error on the translation component.

for the 6-DoF pose both in DH1 and H1 ×R3. For the latter, all methods are applied

twice on both spaces independently.

To evaluate the performance of the local regression, we sample the ground truth pose

series densely and apply additional uniform noise in range [−0.02,0.02] to the angle

and the axis of rotation as well as to the translation. On top, random outliers for 5 % of

the data points are generated with an additional noise of σ= 0.2.

Then we run PCA, wPCA, IRLS, Dual PCA, Dual wPCA, Dual IRLS as well as a Linear

Kalman Filter. We use a window size of 19 and the Kalman implementation [289] of

MATLAB [187] with a covariance tuple of [0.5,2] for the rotation and [0.2,1] for the

translation process noise and measurement noise covariance. The resulting pose set

is illustrated together with the results for the Dual IRLS method in Fig. 8.4.

An error quantification for the different methods is given in Fig. 8.5(a). For the

Kalman filter, tradeoff values have been chosen which are still able to recover the pose

without over-smoothing. However, the method only evaluates the past points and thus

information of half the window size for future poses is not included which explains

the performance difference. The direct local PCA methods perform equally well in

the same error range while the weighting gain in the separate treatment is slightly

better with 0.010±0.020 in translation and 0.37±0.55◦ rotation. The outlier aware

IRLS method performs best for the angle while the improvement for the translation

is with 2.1 ·10−3 only minimal for the non-dual quaternions. It can be clearly seen

that the treatment of outliers in the dual space DH1 helps to increase the accuracy
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Figure 8.5: (a) Performance tests of different pose filtering methods on synthetic data
with the given noise shown in Data Noise. The illustrated Angle Error is the angular
difference of the rotation axis to the ground truth. (b) Tracking stream refinements
for natural hand movement.

to 4.3 ·10−3 and 0.26◦ in the median. This can be intuitively understood through the

fact that the local neighborhood of the linear regression line in DH1 is much more

restrictive than the joint neighborhoods inH1 ×R3 where the effect of an outlier in the

separate parameter spaces is higher.

It is also worth mentioning that the only parameter of the presented methods is the

window size which directly reflects the movement speed of the displacements while

the parameter adjustments for a filter method such as Kalman are more elaborate.

For a visual comparison of the different methods on a synthetic pose stream with

noise, please be referred to the supplementary video.

Real data: Tracking stream refinement We compare our methods on the dataset of

Busam et al. [52] where a robotic arm runs in gravity compensation mode with zero

stiffness and a human operator performs a natural hand movement manipulating its

end effector. The robot is tracked via a marker based stereo vision system running the

tracking algorithm [51] and calibrated such that the forward kinematics of the indus-

trial robotic manipulator provide ground truth poses with a precision of 0.05 mm.

The 30 Hz pose stream is fed into our filter pipelines and compared to the absolute

poses of the dataset. Fig. 8.5(b) illustrates the results where we use the same naming

and parameters as above. It is noteworthy that in this scenario, the wPCA methods
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perform best with 11.2±3.9µm (median 11.4µm) and 0.7±1.4◦ (median 0.5◦) for the

non-dual one while the IRLS methods give only mediocre results between PCA and

wPCA both for quaternions (13.0µm, 0.6◦ median) and dual quaternions (14.1µm,

0.6◦) median. The Kalman filter again gives acceptable results for which heuristical

parameter fine-tuning did not show any significant improvements.

The advantage of the dual space robustification - which can yield a significant im-

provement in the case of outliers (see above) - is not applicable as there are only few

outliers in the already quite accurate optical tracking data. The IRLS methods suffer

from this problem as the weights for equally important data points are reduced. This

results in case of reliable pose data in the fact that the separate treatment of translation

and rotation is preferable to the non-dual regressors perform better.

8.3.2 Evaluating Pose Graph Optimization

We run a series of synthetic and real experiments to empirically show the charac-

teristics of our algorithm. In a sequel of evaluations, we will be benchmarking our

TG-MCMC against the state of the art methods including subsets of: convex pro-

gramming of Ozyesil et al. [320], Lie algebraic method of Govindu [112], dual quater-

nions linearization of Torsello et al. [269], direct EIG-SE3 method of Arrigoni [13]

and R-GODEC [15]. We also include two baseline methods: 1. propagating the pose

information along one possible minimum spanning tree (minspan), 2. the chordal

averaging [121] (chordal). We used the provided codes whenever possible.

1 10 100 300 900

0.01

0.02

0.03

A
b

s
 Q

 E
rr

.

0.08

0.1

0.12

0.14

A
b

s
 T

 E
rr

Figure 8.6: Effect of λ on rotational (Q)

and translational (T) errors.

Hyper-parameter selection Throughout all

the experiments we set c ← 1000 and dur-

ing optimization β←∞. The variance of the

Bingham distribution is adjusted in range

λ ∈ [350,900]. Likewise, variance of the Gaus-

sian lies in σ2 ∈ [0.01,0.1]. Typically, the exact

value is picked emprically. Note that certain

level of noise can also be compensated by the

step size, as variance and step size are multiplicative factors. To show that the choice

is not critical, in Fig. 8.6, we plot λ, our most sensitive parameter, against the error
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Figure 8.7: Synthetic Evaluations. (a) Mean Riemannian (rotational) error vs noise
variance. (b) Mean Euclidean (translational) error vs noise variance. (c) Riemannian
error vs E% for N = 50. (d) Euclidean error vs E% for N = 50. E% refers to graph
completeness and N to the node count.

attained at convergence for different datasets, including synthetic and real. It is seen

that, for a variety of choices where λ> 100, the solution can safely be found. The step

size h varies between 0.001−0.008 depending on (λ,σ2) and TG-MCMC runs until con-

vergence. Thus, the number of integration steps varies, typically in range [350,800]. We

initialize our algorithm randomly and Govindu [112, 114] from a minimum spanning

tree (minspan).

Graph consistency As an intuitive measure of quantifying how well the estimated

parameters agree to the input data, we propose graph consistency and define it as:

(8.23) gc = 1− 1

π|E |
∑

(i , j )∈E
2arccos(qi j (qi q̄ j ))

In other words, gc measures how well the relative poses computed from absolute

estimates align with the ones given in the data. gc = 1 for the perfect ground truth and

gc → 0 when all estimates are off by π. This measure is easier to interpret than, say,

average rotational distance, that is always unit bound.

8.3.2.1 Synthetic Evaluations

We first synthesize random problems with ground truth (GT) to perform controlled

evaluations. To do so, we first generate a fully connected graph, and randomly drop e%

of the edges, ensuring that the graph is connected. For non-connected graphs, we take
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Figure 8.8: Robustness to outliers. With respect to the outlier percentage, we plot: (a)
deviations of rotations from ground truth (mean error) (b) deviations of translation
from ground truth (mean error) (c) graph consistency (for definition, see Eq. 8.23).

the largest connected component. Then, we sample n rotations from the Bingham and

n translations from the Gaussian distribution as determined by the prior model. This

forms the GT absolute poses, from which we further sample the noisy relative poses,

i.e., another Bingham and Gaussian distribution pair. On these problems, we run a

series of tests including monitoring the gradient steps, noise robustness, tolerance to

graph completeness (sparsity) and fidelity w.r.t. ground truth. For each test, we distort

the graph for the entity we test, i.e. add noise on nodes if we test the noise resilience.

Robustness to noise The rotational errors are evaluated by the true Riemannian

distance, ‖log(RT R̂)‖, the translations by Euclidean ‖t− t̂‖. Fig. 8.7 plots our findings.

It is noticeable that our accuracy is always on par with or better than the state of the

art for moderate problems. In presence of significant degradation in the data, such as

increased noise (Figures 8.7(a), 8.7(b)) or sparsified graph structure leading to missing

data (Figures 8.7(c), 8.7(d)), our method shows clear advantage in both rotational and

translational components of the error. This is thanks to our probabilistic formulation

and theoretically grounded inference scheme.

Outlier resilience Even though TG-MCMC has no explicit treatment of outliers, it

is still of interest to observe the robustness to outliers. We do that synthetically, by

following a similar experimentation setup. This time, we increase the outlier ratio in

the pose graph by excessively corrupting some of the relative transformation matrices
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Figure 8.9: Synthetic evaluations against projected gradient descent (PGD). (a) Neg-
ative log likelihood vs iterations. (b) Absolute rotation error of the estimates w.r.t.
ground truth vs iterations. (c) Consistency (for definition, see Eq. 8.23) vs iterations.

by composing it with random rotations in the range [60◦,80◦] around random axes,

and random translations between [0,1]. We then run TG-MCMC, as well as the other

algorithms under consideration. Our results are depicted in Fig. 8.8. Many state-of-the-

art methods that lack outlier handling are similar in performance. However, advantage

of TG-MCMC is more apparent as the outlier percentage increases.

Projected gradient descent Next, we compare our method against projected gra-

dient descent (PGD) algorithm, that is heavily used when one avoids the manifold

operations of quaternions. This amounts to solving our MAP estimation using a stan-

dard first order method and projecting the intermediary solutions back onto the

manifold. Using compatible step sizes, Fig. 8.9 plots multiple quantities as iterates

progress. It is clearly visible that walking on the manifold is advantageous both in

finding quicker solutions (a,b) and in reducing the energy of the cost (c).

8.3.2.2 Results in Real Data

We now evaluate our framework by running SFM on the EPFL Benchmark [254], that

provide 8 to 30 images per dataset, along with ground-truth camera transformations.

Moreover we utilize the standard SFM datasets [294]. To have a better idea of the

nature of these datasets, it is worthwhile to visualize the camera locations as well as

the 3D reconstruction following a full bundle adjustment, that optimizes both 3D

points (structure) and 3D poses (motion). In Fig. 8.10, we report 6 such visualizations
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(a) Dante

(d) Dinasour

(b)Madrid Metropolis

(e)Angel

(c) Notre Dame

(f) Temple

Figure 8.10: Results of the full bundle adjustment (structure + camera poses) on several
datasets.

on 3 outdoor, large scenes, as well as 3 object-scanning scenarios. These plots are not

the outcome of our approach, but meant as a reference for the datasets we deal with.

To quantify the accuracy, we match the ambiguous scale of the estimated transla-

tions to that of the ground truth, similar to [13]. The mean rotation and translation

errors (MRE, MTE) are depicted in Tab. 8.1. Notice that when rotations and translations

are combined, our optimization results in superior minimum both for translations and

orientations, not to mention the uncertainty information computed as a by-product.

Table 8.1: Evaluations on EPFL Benchmark [254].

Ozyesil et al R-GODEC Govindu Torsello EIG-SE(3) TG-MCMC
MRE MTE MRE MTE MRE MTE MRE MTE MRE MTE MRE MTE

HJ-P8 0.060 0.007 0.040 0.009 0.106 0.015 0.106 0.015 0.040 0.004 0.106 0.015
HJ-P25 0.140 0.065 0.130 0.038 0.081 0.020 0.081 0.020 0.070 0.010 0.081 0.020
Fountain 0.030 0.004 0.030 0.006 0.071 0.004 0.071 0.004 0.030 0.004 0.071 0.004
Entry-P10 0.560 0.203 0.440 0.433 0.101 0.035 0.101 0.035 0.040 0.009 0.090 0.035
Castle-P19 3.690 1.769 1.570 1.493 0.393 0.147 0.393 0.147 1.480 0.709 0.393 0.148
Castle-P30 1.970 1.393 0.780 1.123 0.631 0.323 0.629 0.321 0.530 0.212 0.622 0.285

Average 1.075 0.574 0.498 0.517 0.230 0.091 0.230 0.090 0.365 0.158 0.227 0.085

193



CHAPTER 8. POSE GRAPH PROCESSING

Figure 8.11: Uncertainty estimation in the Dante Square. From left to right: the colored
reconstruction (bundle adjustment used in 3D structure only), a sample image from
the dataset, reconstructed points colored w.r.t. uncertainty value, a close-up to the
center of the square, Dante statue.

(a) Madrid Metropolis (b) 3D Reconstruction (c) Uncertainty Map

Figure 8.12: Reconstruction of Madrid Metropolis. Our uncertainty map can reveal the
distant structures because the 3D triangulation quality decreases with the distance.
Samples produced by TG-MCMC can successfully explain these variations.

While many methods can perform similarly on easy sets, a clear advantage is visible

on Castle sequences where severe noise and missing connections are present. There,

for instance, EIG-SE(3) also fails to find a good closed form solution.
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Uncertainty estimation in real data Estimating uncer-

tainties within the same framework is a differentiating as-

pect of our method. Hence, we now qualitatively demon-

strate the uncertainty estimation capabilities arising on

various SFM problems and datasets [254, 291] including

3D Flow showcase - https://www.3dflow.net. To do so,

as shown in the figure on the right, we first run our opti-
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South Building Reconstructions Uncertainty Map

Figure 8.13: Reconstruction of South Building of UNC. Notice that hard-to-reconstruct
structure such as vegetation is also marked to be uncertain by our algorithm, whereas
rigid structures such as building façades enjoy high certainty.

Figure 8.14: Visualization of uncertainty in Notre Dame, Angel, Dinosaur and Fountain
datasets.

mizer setting β←∞ for > 400 iterations. After that point, depending on the dataset,

we set β to a finite value (∼ 1000), allowing the sampling of posterior for 40 times. For

each sample, that is a solution of the problem in Eq. 8.7, we perform a 3D reconstruc-

tion, similar to [59]: We first estimate 2D keypoints and relative rotations by running

1) VSFM [294] 2) two-frame bundle adjustment [4] (BA) on image pairs, resulting in

pairwise poses, as well as a rough two-view 3D structure. We run our method on

these relative poses, computing the absolute estimates. Fixing the estimated poses, a

second BA then optimizes for the optimal 3D structure. At the end, we obtain 40 3D

scenes per dataset. For each point, we record the mean and variance across different

reconstructions, transferring the uncertainty estimation to the 3D cloud of points.
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T=1 T=31 T=111 T=201 T=501

T=901 T=1101 T=1251 Final Poses

Figure 8.15: Evolution of the graph structure on the Angel object. T denotes iterations.
TG-MCMC is initialized by random poses drawn from a Bingham distribution.

In figures 8.11, 8.12, 8.13 and 8.14, we colorize each point by mapping the uncer-

tainty value to RGB space using a jet-colormap (blue lower, red higher), with a scale

proportional to the diameter of reconstruction. Fig. 8.12 illustrates the uncertainty

mapping on the Madrid Metropolis reconstruction and Fig. 8.13 on the South Building

dataset [242, 243]. In the former, distant content, that is intrinsically less accurate to

triangulate, appears less certain than the structure nearby. This overlaps well with the

findings of stereo vision where baseline-to-distance ratio determines the triangulation

accuracy. In the latter, though, we see that hard to match content such as vegetation

has more uncertainty. This is also natural, because such image regions render the

feature matching difficult. Finally, in Fig. 8.14, we provide four more maps on Notre

Dame, Angel, Dinosaur, and Fountain objects. In those, due to the noise and small

size, variation is less apparent. Nevertheless, on Angel dataset, our algorithm overall

manages to spot the noisy points and mark them with higher uncertainty. On the

Fountain, the structure close to the borders of the scene are photographed from a

fewer number of cameras, which is what TG-MCMC has discovered and on Notre

Dame, and Dinosaur, outliers are picked to be uncertain.

Graph evolution To shade light upon the inner workings of TG-MCMC, we now vi-

sualize the evolution of the pose graph as iterations/time proceed(s) on the exemplary
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(i) Ground truth pose graph (ii) Computed pose graph

(a)Angel (b) Dinasour

(i) Ground truth pose graph (ii) Computed pose graph

Figure 8.16: Comparing the resulting pose graph with the ground truth for Angel and
Dino objects.

Angel object - see Fig. 8.15. Notice, our algorithm can start from a random initializa-

tion and achieve results that are very close to the ground truth. In fact, we also show

comparisons of the obtained pose graph against the ground truth poses in Fig. 8.16.

Our low numbers in quantitative error well transfers to qualitative evaluations.

Computational cost We now provide, on the real setting of EPFL benchmark, a

runtime analysis, evaluating the overhead of our algorithm. Our results are shown

in Tab. 8.2. It is common to all PGO initialization algorithms to outperform bundle

adjustment (BA) in terms of speed. While we are not the fastest, our runtimes are

comparable to those of the state of the art. In addition, we have the component of

uncertainty estimation, which cannot be provided by the competing algorithms. It

is clearly visible that BA benefits from the TG-MCMC initialization by an order of

magnitude (shown in Gains column).

Table 8.2: Runtimes (seconds) of different algorithms. BA-X refers to BA with initializa-
tion X. Points, Poses refers to optimizing only points or only poses, respectively.

PGO BA-MinSpan BA-Ours

Dataset Arrigoni Torsello Govindu Ours Points Poses Points Poses Gains

Madrid 0.137 2.255 3.033 5.794 53.82 139.6 33.30 14.54 9.60x
South Build. 0.060 0.784 1.213 1.986 46.18 108.0 6.087 4.969 21.74x
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8.4 Discussion and Summary

We proposed two techniques to process pose chains and graph respectively. The

former filter is suitable to filter and denoise camera trajectories while the latter ad-

dresses a more general scenario that is order free and allowed to have higher order

edges/connections. In particular, we have proposed a new optimizer for this problem,

called TG-MCMC, a manifold-aware, tempered rigid motion synchronization algo-

rithm with a novel probabilistic formulation. TG-MCMC enjoys unique properties of

trading-off approximately globally optimal solutions with non-asymptotic guarantees,

to drawing samples from the posterior distribution, providing uncertainty estimates

for the PGO-initialization problem.

TG-MCMC paves the way to a diverse potential future research: First, stochas-

tic gradients can be employed to handle large problems, scaling up to hundreds of

thousands of nodes. Next, the uncertainty estimates can be plugged into existing

pipelines such as BA or PGO to further improve their quality. We also leave it as a

future work to investigate different simulation schemes by altering the order of and

combining differently the A, B and O steps. Finally, TG-MCMC can be extended to

different problems, still maintaining its nice theoretical properties.

198



C
H

A
P

T
E

R

9
CONCLUSION & FUTURE DIRECTIONS

“He must be very ignorant for he answers every question he is asked.”

— François-Marie Arouet, Voltaire

While overcoming the drawbacks of 2D image representations, such as light selec-

tion, illumination design, perspective projection, and lack of metric scale, 3D vision

introduces other challenges such as occlusions, point density variations, lack of ap-

pearance information and noise. These open up a whole new set of challenges for

automated 3D scene understanding.

Out of all these challenges, this thesis offered new geometric perspectives to 3D

reconstruction. First, we have proposed a new pipeline that can make benefit from the

available CAD models, instead of relegating their usage to the final stage of deviation

analysis. This pipeline has required many building blocks: point cloud and CAD

preprocessing, object detection and pose estimation in 3D point clouds and pose

graph optimization. We have delved deeply into details of these sub-components

and presented our contributions for each of them. We have further presented two

works that are suited to ground truth acquisition and sparse reconstruction of 3D

coordinates: our specialized fiducials, X-tag and an online measurement system that

is capable of calibrating non-overlapping cameras.

Once again, we have mainly contributed to the challenging problems of the litera-
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ture with the following:

1. X-tag markers for robust 3D keypoint and camera pose localization under severe

perspective distortions.

2. A new pipeline for online quality inspection of industrial parts. By using sparse

point triangulations, this system is capable of calibrating non-overlapping static

cameras and use them later in a real-time measurement stage.

3. A new, industry-grade dense 3D reconstruction pipeline that can consume

available CAD models as priors to advance upon the reconstruction literature.

4. Algorithms for sampling CAD models and point clouds for better conditioning

of the design models for use in computer vision applications.

5. A variety of geometric and learning based 3D object detection methods for 6DoF

rigid pose and for parametric quadrics.

6. Pose graph optimization methods for ordered and unordered input. The former

is a smoothing filter, whereas the latter optimizes the loop closure constraint

with guarantees and can unveil the uncertainty of the poses.

We have validated all of these contributions qualitatively and quantitatively on

multitudes of synthetic and real data.

9.1 Limitations

What gives our methods their power is also what curses them: Geometry. We require

extensive 3D geometric structure to operate. Even though we have addressed the

detection and use of textureless objects, our approaches do not extend to the case of

symmetric objects or objects that are geometrically uninteresting. We also skipped

touching upon many valuable problems of 3D vision, such as semantic segmentation

or tracking. While segmentation would not be a direct necessity for our methods, it is

certainly a nice-to-have by-product. Tracking on the other hand, would allow us to

better use the ordered camera chains, that are common, for instance, in autonomous

driving. We sacrificed tracking for the sake of generality and focused on detection.
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9.2 Future Work

Our dense reconstruction framework is based on several building blocks. In this regard,

it paves the way for further research in many directions: the distinct components can

be improved or replaced completely. In this section, we will give a pinch of future

directions we plan to follow. With the basis formed in this thesis, we plan to address

the following future problems:

9.2.1 Deep Learning Based 3D Object Detectors

As the trend follows the paradigm shift towards learning based methods, a natural

way is to transition our building blocks into learned ones. Because, pose estimation

in cluttered data is arguably the most crucial and error-prone block, we think that it

can be improved through the use of deep networks. Of course, such approach should

respect the data modality. Luckily, recent years have given rise to many sparse, 3D net-

work architectures including but not limited to Multiview CNNs [255], PointNet [221],

OctNet [227], Graph CNNs [79] and et cetera., some of which are amenable for pose

estimation. A straightforward idea would then be porting the 2D detectors such as

SSD6D [147], BB8 [225], iPose [139], PoseCNN [295] and PoseAgent [155] to 3D.

9.2.2 Use of TG-MCMC in More Challenging Problems

TG-MCMC provides a novel framework combining Bayesian reasoning with optimiza-

tion. Its unique properties are: 1. capability to estimate uncertainty, 2. sampling on

the Riemannian manifolds and 3. optimization on the manifolds. For any optimiza-

tion problem that can be formulated on the manifold, with a known distribution and

geodesic flow, TG-MCMC is applicable. Below we provide one such application, where

consistency constraint of permutation matrices is optimized.

9.2.2.1 Synchronizing Permutations for Better Correspondence Estimation

A permutation matrix is defined as a sparse, square binary matrix, where each column

and each row is allowed to have only a single true (1) value:

(9.1) P := {X ∈ {0,1}n×n : X1n = 1n , 1T
n X = 1T

n }.
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where 1n denotes a n-dimensional ones vector. P ∈Pn is a total permutation matrix

and P(i , j ) = 1 implies that element i is mapped to element j .

Manifold of permutations Taking a geometric standpoint, the Birkhoff-von Neu-

mann theorem states that the convex hull of the set of permutation matrices is the

set of doubly-stochastic matrices: non-negative, square matrices whose rows and

columns sum to 1. Usually, the convex hull is treated as a continuous relaxation of

the original discrete space. The doubly-stochastic matrices live on the Birkhoff Poly-

tope [38], an (n −1)2 dimensional convex submanifold of the ambient Rn×n , defined

as:

DP n = { X :Xi j > 0, ∀i , j ∈ 1 · · ·n ∧
n∑

i=1
Xi j = 1 ∧

n∑
j=1

Xi j = 1 }(9.2)

This is also referred as the doubly stochastic multinomial manifold [83]. In fact, P

can be considered as an orthogonal subset of DP n : P = {X ∈DP n : XXT = I}, i.e. the

discrete set of permutation matrices is the intersection of the convex set of doubly

stochastic matrices and the manifold of orthogonal matrices. Douik et al. [83] endow

DP n by the Fisher information metric, resulting in the Riemannian manifold of DP n ,

with tangent space:

(9.3) TX DP n := {X ∈Rp×p : X1p = 0p , 1T
p X = 0T

p }.

Authors also provide operators for projection and retraction map.

Partial permutations We define a partial permutation matrix, that allows for zero

rows in order to explain the missing data / non-matching elements:

(9.4) P̂ := {X ∈ {0,1}m×n : X1n ≤ 1m , 1T
mX ≤ 1T

n }.

This is similar to the total counterpart, but allows for different number of correspon-

dences. Partial permutations belong to the so-called Symmetric Inverse Semigroup.

Permutation synchronization problem Given n images, with mi feature points at

each image i , let P̂hk
i j = 1 when feature k in image j is matched with feature h in image

i and P̂hk
i j = 0 everywhere else. The partial-ness of the permutation allows for zero
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rows and columns, incorporating points (a.k.a. features, which in this context, refer to

the different attributes of the same entity) that are not matched in other images.

Now let us assume a universe, that contains all the features in all the images.

An absolute permutation Pi encodes the correspondences between image i and the

universe. Under ideal circumstances, the partial permutation group is closed under

multiplications and thus, the relative correspondences between images i and j , Pi j ,

can be equivalently obtained by first computing the matches between image i and the

universe, and then between universe and image j , giving rise to the cycle consistency

constraint: Pi j = Pi PT
j . The problem of recovering the absolute permutations given a

set of relative ones is the goal of permutation synchronization [16, 27, 186, 215, 238].

9.2.3 Full Pose Graph Optimization

While we have presented TG-MCMC as a global initialization of pose graph optimiza-

tion, it is still an open question how to best solve the refinement of multiple scans

(actual pose graph optimization conditioned on the point cloud data). While the lit-

erature is pretty rich, the studies have not been united under a common framework

and cannot easily handle the amount of data coming from the modern laser scanners.

Moreover, the uncertainty in such a registration scheme is hard to compute, giving

rise to future research questions.

Finally, we leave it also as a future work to plug individual building blocks proposed

in this work back into the pipeline, with an improved and advanced processing stack.
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APPENDIX A. POSE GRAPH OPTIMIZATION

A.1 Proof of Proposition 8.2.1

Proof. We start by rewriting the SDE given in (8.2.2.2) as follows:

dϕt =


−


[

0 0

0 cM>M
β

I

]
︸ ︷︷ ︸

D

+
[

0 − I
β

I
β 0

]
︸ ︷︷ ︸

Q


[
A (x̃t ,pt ,β)

βG−1pt

]
︸ ︷︷ ︸

∇ϕEλ(ϕt )


d t +

p
2D dWt .(A.1)

where A (x̃t ,pt ,β), β∇x̃Uλ(x̃t )+ β
2∇x̃ log |G|+ β

2∇x̃(p>
t G−1pt ). Here, we observe that

D is positive semi-definite, Q is anti-symmetric. Then, the desired result is a direct

consequence of Theorem 1 of [181]. �

A.2 Proof of Theorem 8.1

Before proving Theorem 8.1, we first prove the following intermediate results, whose

proofs are given later in this document.
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Corollary A.2.1. Assume that H1 and H3 hold. Let {xn ,vn} be the output our algorithm

with β> 0. Define ÛN , 1
N

∑N
n=1U (xn). Then the following bound holds for the bias:

∣∣EÛN −Ūβ

∣∣=O (
β

N h
+ h

β
).(A.2)

Lemma A.2.2. Assume that the conditions H1 and H2 hold. Then, the following bound

holds for β≤ 6
Lπ2 log C Lπ3e

3Γ(3/2)2/3n
:

Ūβ−U? =O
( 1

β

)
,(A.3)

where C is defined in H2.

A.2.1 Proof of Theorem 8.1

Proof. The proof is a direct application of Corollary A.2.1 and Lemma A.2.2. �

A.3 Proof of Corollary A.2.1

Proof. From [62][Theorem 2], the bias of a standard SG-MCMC algorithm (i.e. β= 1)

is bounded by

O (
1

N h′ +
∑N

n=1 ‖E∆Vn‖
N

+h′).(A.4)

where h′ denotes the step-size and ∆Vn is an operator and it is related to bias of the

stochastic gradient computations if there is any. If the iterates are obtained via full gra-

dient computations ∇U or unbiased stochastic gradients computations (i.e. the case

we consider here), then we have ‖E∆Vn‖ = 0. Then by using a time-scaling argument

similar to [226, 310], we define h = h′
β . This corresponds to running a standard SG-

MCMC algorithm directly on the energy function EH (x,v). The result is then obtained

by replacing h′ by h
β

in (A.4). �

A.4 Proof of Lemma A.2.2

In order to prove Lemma A.2.2, we first need some rather elementary technical results,

which we provide in appendix A.5 for clarity.
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Proof. We use a similar proof technique to the one given in [226][Proposition 11]. We

assume that πx admits a density, denoted as ρ(x), 1
Zβ

exp(−βU (x)), where Zβ is the

normalization constant:

Zβ,
∫
X

exp(−βU (x))dx.(A.5)

We start by using the definition of Ūβ, as follows:

Ūβ =
∫
X

U (x)πx(dx) = 1

β
(H(ρ)− log Zβ),(A.6)

where H(ρ) is the differential entropy, defined as follows:

H(ρ),−
∫
X
ρ(x) logρ(x)dx.(A.7)

We now aim at upper-bounding H(ρ) and lower-bounding log Zβ.

By Assumption H2, the distributionπx has a finite second-order moment, therefore

all the marginal distributions will also have bounded second order moments. By

abusing the notation and denoting x ≡ {q1, . . . ,qn ,t1, . . . ,tn}, and by using the fact that

the joint differential entropy is smaller than the sum of the differential entropies of

the individual random variables, we can upper-bound H(ρ) as follows:

H(ρ) ≤
n∑

i=1
H(ρqi )+H(ρt1,...,tn ),(A.8)

where ρqi denotes the marginal density of qi and ρt1,...,tn denotes the joint marginal

density of (t1, . . . ,tn). Since ρt1,...,tn is defined on R3n , we know that H (ρt1,...,tn ) is upper-

bounded by the differential entropy of a Gaussian distribution on R3n that has the

same second order moment. By denoting the covariance matrix of the Gaussian

distribution with Σ, we obtain:

H (ρt1,...,tn ) ≤ 1

2
log[(2πe)3n det(Σ)](A.9)

≤ 1

2
log[(2πe)3n

( tr(Σ)

3n

)3n
]

≤ 3n

2
log

(
2πe

C

3βn

)
,

The equations (1) and (1) follows by the relation between the arithmetic and geometric

means, and Assumption H2.
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By using a similar argument, since ρqi lives on the unit sphere, its differential

entropy is upper-bounded by the differential entropy of the uniform distribution on

the unit sphere. Accordingly, we obtain:

H(ρqi ) ≤ log
( (2π)3/2

Γ(3/2)

)
,(A.10)

where Γ(·) denotes the gamma function. By using (1) and (A.10) in (A.8), we obtain

H(ρ) ≤n log
( (2π)3/2

Γ(3/2)

)
+ 3n

2
log

(
2πe

C

3βn

)
(A.11)

=3n

2
log

( 2π

Γ(3/2)2/3

)
+ 3n

2
log

(
2πe

C

3βn

)
=3n

2
log

( 4π2eC

3Γ(3/2)2/3

1

βn

)
.

We now lower-bound log Zβ. By definition, we have

log Zβ = log
∫
X

exp(−βU (x))dx(A.12)

=−βU?+ log
∫
X

exp(β(U?−U (x)))dx

≥−βU?+ log
∫
X

exp(−βLπ2‖x−x?‖2

8
)dx

Here, in (1) we used Assumption H1 and Corollary A.5.2 (presented below). By us-

ing x ≡ [q>
1 , . . . ,q>

n ,t>]> and x? ≡ [(q?1 )>, . . . , (q?n )>, (t?)>]>, and t ≡ [t>1 , . . . ,t>n ]>, t? ≡
[(t?1 )>, . . . , (t?n )>]> we obtain:

log Zβ ≥−βU?+ log

( n∏
i=1

∫
S3

exp(−βLπ2‖qi −q?i ‖2

8
)dqi

)
(A.13)

+ log

(∫
R3n

exp(−βLπ2‖t− t?‖2

8
)dt

)
=−βU?+ log

( n∏
i=1

∫
S3

exp(−βLπ2‖qi −q?i ‖2

8
)dqi

)
+ 3n

2
log(

4

βLπ
).

Let us focus on the integral with respect to qi . By definition, we have:∫
S3

exp(−βLπ2‖qi −q?i ‖2

8
)dqi =

∫
S3

exp
(
−βLπ2

8
(2−2q>

i q?i )
)
dqi(A.14)

=exp
(
−βLπ2

4

)∫
S3

exp
(βLπ2

4
q>

i q?i )
)
dqi .
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By using the connection between the integral on the right hand side of the above

equation and multivariate Watson’s distribution (see Equations 2.1 and 2.2 in [250]),

we obtain: ∫
S3

exp(−βLπ2‖qi −q?i ‖2

8
)dqi = exp

(
−βLπ2

4

)
2π2M(

1

2
,2,

βLπ2

4
),(A.15)

where M denotes the Kummer confluent hypergeometric function that is defined as

follows:

M(a,b,c),
∞∑

j=0

a j̄

b j̄

c j

j !
,(A.16)

where a0̄, 1 and a j̄ , a(a +1) . . . (a + j −1) for j ≥ 1. By Theorem 3 of [144], we know

that

M(
1

2
,2,

βLπ2

4
) ≥ 1

1+ βLπ2

16

= 16

16+βLπ2
.(A.17)

By using this inequality in (A.15), we obtain:∫
S3

exp(−βLπ2‖qi −q?i ‖2

8
)dqi ≥ exp

(
−βLπ2

4

) 32π2

16+βLπ2
.(A.18)

We can insert (A.18) in (1), as follows:

log Zβ ≥−βU?+ 3n

2
log(

4

βLπ
)+

n∑
i=1

log
∫
S3

exp(−βLπ2‖qi −q?i ‖2

8
)dqi(A.19)

≥−βU?+ 3n

2
log(

4

βLπ
)−n

βLπ2

4
+n log

32π2

16+βLπ2

≥−βU?+ 3n

2
log(

4

βLπ
)−n

βLπ2

4

Finally, by combining (A.6), (1), and (1), we obtain:

Ūβ−U? = 1

β
(H (ρ)− log Zβ)−U?(A.20)

≤ 3n

2β
log

( 4π2eC

3Γ(3/2)2/3

1

βn

)
− 3n

2β
log(

4

βLπ
)+n

Lπ2

4

= 3n

2β
log

( C Lπ3e

3Γ(3/2)2/3n

)
+n

Lπ2

4

≤ 3n

β
log

( C Lπ3e

3Γ(3/2)2/3n

)
.

The last line follows from the hypothesis. This finalizes the proof. �
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A.5 Technical Results

In the following lemma, we generalize [207][Lemma 1.2.3] to manifolds. Similar argu-

ments can be found in [174, 309].

Lemma A.5.1. Let X ⊂Rn be a Rimannian manifold with metric dX , and letγ : [0,1] 7→
X be a constant-speed geodesic curve between two points x,y ∈X , such that γ(0) = x

and γ(1) = y. Let f : X 7→ R be a continuously differentiable function with Lipschitz

continuous gradients. Then the following bound holds for every x,y ∈X :∣∣∣ f (y)− f (x)−
∫ 1

0
〈∇ f (x),γ′(t )〉d t

∣∣∣≤ L

2
dX (x,y)2,(A.21)

where 〈x,y〉, x>y and L denotes the Lipschitz constant.

Proof. Let us define a function ϕ : [0,1] 7→R, such that ϕ(t), f (γ(t)). By definition,

we have ϕ(0) = f (x) and ϕ(1) = f (y). By using the second fundamental theorem of

calculus, we can write:

ϕ(1)−ϕ(0) =
∫ 1

0
ϕ′(t )d t ,(A.22)

where ϕ′(t ) denotes the derivative of ϕ(t ) with respect to t . By the theorem of deriva-

tion of composite functions, we have

ϕ′(t ) = 〈∇ f (γ(t )),γ′(t )〉.(A.23)

By combining (A.22) and (A.23), we obtain the following identity for all x,y ∈X :

f (y) = f (x)+
∫ 1

0
〈∇ f (γ(t )),γ′(t )〉d t(A.24)

= f (x)+
∫ 1

0
〈∇ f (x),γ′(t )〉d t +

∫ 1

0
〈∇ f (γ(t ))− f (x),γ′(t )〉d t .

Therefore, we obtain∣∣∣ f (y)− f (x)−
∫ 1

0
〈∇ f (x),γ′(t )〉d t

∣∣∣= ∣∣∣∫ 1

0
〈∇ f (γ(t ))− f (x),γ′(t )〉d t

∣∣∣(A.25)

≤
∫ 1

0

∣∣∣〈∇ f (γ(t ))− f (x),γ′(t )〉
∣∣∣d t

≤
∫ 1

0
‖∇ f (γ(t ))− f (x)‖‖γ′(t )‖d t

≤ L
∫ 1

0
dX (γ(t ),x)‖γ′(t )‖d t .
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We can now use the fact that the geodesic curve has a constant velocity, such that

‖γ′(t )‖ = dX (x,y) for all t ∈ [0,1], which also implies dX (γ(t1),γ(t2)) = |t1−t2|dX (γ(1),γ(0)).

Then, using x = γ(0), y = γ(1), we obtain:∣∣∣ f (y)− f (x)−
∫ 1

0
〈∇ f (x),γ′(t )〉d t

∣∣∣≤ L
∫ 1

0
tdX (x,y)2d t(A.26)

= L

2
dX (x,y)2.

This concludes the proof. �

Corollary A.5.2. Under the assumptions of Lemma A.5.1, the following bound holds

for all x ∈X

f (x)− f ? ≤ Lπ2

8
‖x−x?‖2,(A.27)

where X , (S3)n ×R3n , f ? = minx′∈X f (x′) and x? = argminx′∈X f (x′).

Proof. By using Lemma A.5.1 and the obvious facts that ∇ f (x?) = 0 and f (x) > f ? for

all x ∈X , we have:

f (x)− f ? ≤ L

2
dX (x,x?)2.(A.28)

The inequality given in Equation A.1.1 in [75] states that the geodesic distance on the

sphere is bounded by the 2-norm, more precisely, for all q,q′ ∈Sd−1 we have:

dSd−1 (q,q′) ≤ π

2
‖q−q′‖.(A.29)

Using x ≡ [q>
1 , . . . ,q>

n ,t>1 , . . . ,t>n ]> and x? ≡ [(q?1 )>, . . . , (q?n )>, (t?1 )>, . . . , (t?n )>]> yields:

f (x)− f ? ≤L

2

( n∑
i=1

dS3 (qi ,q?i )2 +
n∑

i=1
‖ti − t?i ‖2

)
(A.30)

≤L

2

(π2

4

n∑
i=1

‖qi −q?i ‖2 +
n∑

i=1
‖ti − t?i ‖2

)
≤Lπ2

8

( n∑
i=1

‖qi −q?i ‖2 +
n∑

i=1
‖ti − t?i ‖2

)
=Lπ2

8
‖x−x?‖2.

This concludes the proof. �
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A.6 Gradients of Likelihood and Prior Terms

In this section we provide derivations of the gradients for data and prior terms. For

completeness, we find it worthy to once again repeat our MLE formulation:

argmax
Q,T

( ∑
(i , j )∈E

{
log p(qi j |Q,T)+ log p(ti j |Q,T)

}+∑
i

log p(qi )+∑
i

log p(ti )
)
.(A.31)

We begin by deriving the gradients of the rotational components first, and trans-

lations second. To ease implementation and increase efficiency, we drop the first

column of V as it is given by the mode. So, with the abuse of notation: V ∈R4×3 In the

setting where V is constant w.r.t. q the gradient of log Bingham distribution w.r.t. the

random variable q reads:

(A.32) ∇x logB(x;Λ,V) =∇x log
1

F
+∇x(xT VΛVT x) = (VΛVT +VΛT VT )x = 2VΛVT x.

Normalizing constant drops as it depends onΛ only [157]. We also have cases where V

is a function of the mode q, V → V(q). Then:

∇q logB(x;Λ,V(q)) =∇q(xT V(q)ΛVT (q)x) =∇k(kTΛk)∇q(k) = 2kTΛ∇q(k),(A.33)

where k = VT (q)x ∈ R3 is used to ease the computations. Note that in our particular

application it is the case that x ← qi j , i.e. the data is specified by the relative poses

attached to the edges of the graph. We then speak of the gradient of log(p(qi j |qi , q j ))

with V → V(q j q̄i ) w.r.t. qi . We shorten r ← q j q̄i and write V as a function of r, V(r),

V(q j q̄i ). Then:

∇qi logB(x;Λ,V(r)) =∇r logB(x;Λ,V(r))∇qi (r) = 2kTΛ∇r(k)∇qi (r),(A.34)

this time with k = VT (r)x ∈R3. Note that ∇r logB(x;Λ,V(r)) is expanded as in Eq. A.33.

Using the definition of V in Eq. 8.11, the terms simplify to:

k =


q1x2 −q2x1 +q3x4 −q4x3

q1x3 −q3x1 −q2x4 +q4x2

q1x4 +q2x3 −q3x2 −q4x1

 ∇q(k) =


x2 −x1 x4 −x3

x3 −x4 −x1 x2

x4 x3 −x2 −x1

 .(A.35)

The last term in Eq. A.34 expands as:

(A.36) ∇qi (q j q̄i ) =


q j ,1 q j ,2 q j ,3 q j ,4

q j ,2 −q j ,1 q j ,4 −q j ,3

q j ,3 −q j ,4 −q j ,1 q j ,2

q j ,4 q j ,3 −q j ,2 −q j ,1

 .

212



A.6. GRADIENTS OF LIKELIHOOD AND PRIOR TERMS

We will now derive the gradients for translational components. Similarly, we start

by the gradient of the log likelihood w.r.t. the data. While a shorter derivation through

matrix calculus is also possible, we deliberately provide a longer version, as it might

be more intuitive:

∇t logN
(
t;µ,σ2I

)
=∇t log

1

G
+∇t(−1

2
(t−µ)TΣ−1(t−µ)

)
(A.37)

=∇t

(
− 1

2

(
tTΣ−1t− tTΣ−1µ−µTΣ−1t+µTΣ−1µ

))
=−1

2

(
tT (Σ−1 +Σ−T )− (Σ−1µ)T − (µTΣ−1)+0

)
=−1

2

(
2tTΣ−1 −2µTΣ−1)= (µT − tT )Σ−1

The normalizing constant drops similarly as it does not depend on t.

Similar to rotational counterpart, our algorithm centers the data on the mean

of the distribution, also requiring to compute the gradients w.r.t. the mean of the

distribution. With a derivation similar to but simpler from Eq. A.6, it follows:

∇µ logN
(
x;µ,σ2I

)
=−1

2

(
2µTΣ−1 −2xTΣ−1)= (xT −µT )Σ−1(A.38)

When we center the distribution on the data, substitutingµ← t j −rti r̄ , where r ← q j q̄i ,

x ← ti j , we arrive at:

∇ti logN
(
x;µ,σ2I

)
=∇µ logN

(
x;µ,σ2I

)
Jti (µ)(A.39)

∇qi logN
(
x;µ,σ2I

)
=∇µ logN

(
x;µ,σ2I

)
Jqi (µ)

Note that the first term of the right hand side is given in Eq. A.38. The second one can

be computed from the derivative of the sandwich action on the 1-blade ti and qi . Here,

we describe ti and qi can be obtained in a similar fashion. With slight abuse of notation,

in the following we assume that translation-quaternion is purified: ti ← [0;ti ].
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Jti (µ) = Jti (t j − rti r̄) =−Jti

(
Q(r̄)Q(ti )rT

)

=−Jti

((
qi j ⊗Q(r̄)

)
vec

(
Q(ti )

))=−Jti

(
Kvec

(
Q(ti )

))=−K∇ti vec
(
Q(ti )

)=−KJti

=


0 0 0

−q2
1 −q2

2 +q2
3 +q2

4 2q1q4 −2q2q3 −2q1q3 −2q2q4

−2q1q4 −2q2q3 −q2
1 +q2

2 −q2
3 +q2

4 2q1q2 −2q3q4

2q1q3 −2q2q4 −2q1q2 −2q3q4 −q2
1 +q2

2 +q2
3 −q2

4


where K ∈ R4×16 refers to the Kronecker product matrix K = r⊗Q(q̄i j ), Jti =∇ti vec

(
Q(ti )

)
is the 16×3 Jacobian matrix and vec(·) denotes the linearization operator. Individual

components qi belong to r = [q1, q2, q3, q4]. The map Q(·) : H1 → R4x4 constructs a

Quaternion matrix form:

(A.40) Q(q) =


q1 −q2 −q3 −q4

q2 q1 q4 −q3

q3 −q4 q1 q2

q4 q3 −q2 q1


leading to a more compact notation of the quaternion product. In fact this is not

very different from the definition of V(q), as one is free to pick any of the 48 distinct

representations out of the matrix ring M(4,R). Note that Eq. A.6 has zeros in the

initial row. This is due to the property that all the operations respect the purity of

the blade. The final Jacobian matrix can be extracted from the remaining three rows

corresponding to the vector part.

214



BIBLIOGRAPHY

[1] L. 3D, Photogrammetry by linearis 3d.

http://www.linearis3d.com/, 2016.

[2] K. AASTROM AND L. MORIN, Random cross ratios, Technical Report IMAG-RT -

92-088 ; LIFIA - 92-014, INRIA, 1992.

[3] R. ABLAMOWICZ AND G. SOBCZYK, Lectures on Clifford (geometric) algebras and

applications, Springer Science & Business Media, 2004.

[4] S. AGARWAL, K. MIERLE, AND OTHERS, Ceres solver.

http://ceres-solver.org, 2018.

Accessed: 2018-05-15.

[5] AICON3D, Aicon 3d systems - move inspect technology - dpa, 2016.

[6] M. ALEXA, J. BEHR, D. COHEN-OR, S. FLEISHMAN, D. LEVIN, AND C. T. SILVA,

Computing and rendering point set surfaces, Visualization and Computer

Graphics, IEEE Transactions on, 9 (2003), pp. 3–15.

[7] M. ALEXA, S. RUSINKIEWICZ, D. NEHAB, AND P. SHILANE, Stratified point sam-

pling of 3d models, in Eurographics, 2004.

[8] S. ALLAIRE, J.-J. JACQ, V. BURDIN, C. ROUX, AND C. COUTURE, Type-constrained

robust fitting of quadrics with application to the 3d morphological character-

ization of saddle-shaped articular surfaces, in International Conference on

Computer Vision, IEEE, 2007.

[9] P. ALLIEZ, G. UCELLI, C. GOTSMAN, AND M. ATTENE, Recent advances in remesh-

ing of surfaces, in Shape Analysis and Structuring, Springer, 2008.

215

http://ceres-solver.org


BIBLIOGRAPHY

[10] J. ANDREWS, User-guided inverse 3d modeling, tech. rep., EECS Department.

University of California, Berkeley, May 2013.

[11] J. ANDREWS AND C. H. SÉQUIN, Type-constrained direct fitting of quadric sur-

faces, Computer-Aided Design and Applications, (2014).

[12] R. ARORA, Y. H. HU, AND C. DYER, Estimating correspondence between multiple

cameras using joint invariants, in 2009 IEEE International Conference on

Acoustics, Speech and Signal Processing, IEEE, 2009, pp. 805–808.

[13] F. ARRIGONI, A. FUSIELLO, AND B. ROSSI, Spectral motion synchronization in se

(3), arXiv preprint arXiv:1506.08765, (2015).

[14] , Camera motion from group synchronization, in 3D Vision (3DV), 2016

Fourth International Conference on, IEEE, 2016, pp. 546–555.

[15] F. ARRIGONI, L. MAGRI, B. ROSSI, P. FRAGNETO, AND A. FUSIELLO, Robust abso-

lute rotation estimation via low-rank and sparse matrix decomposition, in

3D Vision (3DV), 2014 2nd International Conference on, vol. 1, IEEE, 2014,

pp. 491–498.

[16] F. ARRIGONI, E. MASET, AND A. FUSIELLO, Synchronization in the symmetric

inverse semigroup, in International Conference on Image Analysis and Pro-

cessing, Springer, 2017, pp. 70–81.

[17] F. ARRIGONI, B. ROSSI, AND A. FUSIELLO, Global registration of 3d point sets via

lrs decomposition, in European Conference on Computer Vision, Springer,

2016, pp. 489–504.

[18] B. ATCHESON, F. HEIDE, AND W. HEIDRICH, Caltag: High precision fiducial

markers for camera calibration, VMV, (2010).

[19] J. AULINAS, Y. PETILLOT, J. SALVI, AND X. LLADÓ, The slam problem: A survey,

in Proceedings of the 2008 Conference on Artificial Intelligence Research

and Development: Proceedings of the 11th International Conference of the

Catalan Association for Artificial Intelligence, Amsterdam, The Netherlands,

The Netherlands, 2008, IOS Press, pp. 363–371.

216



BIBLIOGRAPHY

[20] N. AYACHE AND F. LUSTMAN, Trinocular stereo vision for robotics, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 13 (1991), pp. 73–85.

[21] H. BADINO, D. HUBER, Y. PARK, AND T. KANADE, Fast and accurate computation

of surface normals from range images, in Robotics and Automation (ICRA),

2011 IEEE International Conference on, IEEE, 2011, pp. 3084–3091.

[22] D. BEALE, Y.-L. YANG, N. CAMPBELL, D. COSKER, AND P. HALL, Fitting quadrics

with a bayesian prior, Computational Visual Media, (2016).

[23] M. BEETZ, U. KLANK, I. KRESSE, A. MALDONADO, L. MOSENLECHNER,

D. PANGERCIC, T. RUHR, AND M. TENORTH, Robotic roommates making

pancakes, in Humanoid Robots (Humanoids), 2011 11th IEEE-RAS Interna-

tional Conference on, IEEE, 2011, pp. 529–536.

[24] F. BERGAMASCO, A. ALBARELLI, L. COSMO, E. RODOLA, AND A. TORSELLO, An

accurate and robust artificial marker based on cyclic codes, IEEE Transactions

on Pattern Analysis and Machine Intelligence, PP (2016), pp. 1–1.

[25] F. BERGAMASCO, A. ALBARELLI, AND A. TORSELLO, Pi-tag: a fast image-space

marker design based on projective invariants, Machine vision and applica-

tions, 24 (2013), pp. 1295–1310.

[26] F. BERGAMASCO, L. COSMO, A. ALBARELLI, AND A. TORSELLO, A robust multi-

camera 3d ellipse fitting for contactless measurements, in 3D Imaging, Mod-

eling, Processing, Visualization and Transmission (3DIMPVT), 2012 Second

International Conference on, IEEE, 2012, pp. 168–175.

[27] F. BERNARD, J. THUNBERG, J. GONCALVES, AND C. THEOBALT, Synchroni-

sation of partial multi-matchings via non-negative factorisations, CoRR,

abs/1803.06320 (2018).

[28] P. J. BESL AND N. D. MCKAY, Method for registration of 3-d shapes, in Robotics-

DL tentative, International Society for Optics and Photonics, 1992, pp. 586–

606.

[29] C. BINGHAM, An antipodally symmetric distribution on the sphere, The Annals

of Statistics, (1974), pp. 1201–1225.

217



BIBLIOGRAPHY

[30] T. BIRDAL, Task oriented 3d sampling via genetic algorithms, in 2018 26th Signal

Processing and Communications Applications Conference (SIU), IEEE, 2018,

pp. 1–4.

[31] T. BIRDAL, E. BALA, T. EREN, AND S. ILIC, Online inspection of 3d parts via a

locally overlapping camera network, in WACV 2016: IEEE Winter Conference

on Applications of Computer Vision, IEEE, 2016.

[32] T. BIRDAL, B. BUSAM, N. NAVAB, S. ILIC, AND P. STURM, A minimalist approach

to type-agnostic detection of quadrics in point clouds, in Computer Vision

and Pattern Recognition (CVPR), IEEE, 2018.
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