
1 INTRODUCTION 

The planning and restoration of railway tracks includ-
ing technical equipment is of high importance for 
maintaining this important backbone of the Europe’s 
infrastructure. While Building Information Modeling 
(BIM) is widely established in the building domain, it 
is less often used for the planning and construction of 
infrastructure facilities. So far, it has not been applied 
as a general concept for railway infrastructure equip-
ment engineering yet. 

At the moment, the development of various pro-
posals for extending BIM concepts and standards for 
the infrastructure domain is underway. build-
ingSMART International (bSI) is working on extend-
ing the Industry Foundation Classes (IFC) for repre-
senting infrastructure facilities. Currently, IFC is 
primarily focused on the building domain and com-
prises a wide range of classes, which enable the ex-
change of detailed BIM models. Although first infra-
structure concepts (such as alignment and linear 
referencing), have been published as part of the latest 
version IFC4.1, more specific elements are still miss-
ing. To fill this gap, the Rail Room was established in 
2017 as a subsection of bSI dedicated to the develop-
ment of rail-specific extensions. In the past, several 
proposals had been published that provided the foun-
dation for the respective standardization effort, Ex-
amples include IFC Tunnel (Vilgertshofer et al., 
2016), IFC Rail (bSI SPEC) and IFC Road (bSI 
SPEC) (buildingSMART, 2016). Contributing to 
these efforts, is one of the main objectives of the 
RIMcomb project. 

On a general level, the RIMcomb research project 
aims at introducing BIM methods into the sector of 
railway equipment engineering by analyzing current 
conventional workflows in order to identify benefi-
cial BIM use cases. The main goal is the avoidance of 
data loss or inconsistent data during different plan-
ning stages as well as to identify labor-intensive tasks, 
which could benefit from automation. Especially, in-
consistencies across the different disciplines involved 
in railway design is a severe problem that can be over-
come by using BIM methods instead of conventional 
2D drawings. 

In this regard, we are looking into possibilities of 
using the existing version of the IFC data format to 
represent railway equipment. 

Additionally, we analyzed preexisting data sche-
mas that are currently used in this domain. As these 
are not necessarily compatible with one another we 
are developing a tool that can import various data for-
mats and uses this information for creating an inte-
grated BIM model, preferably in the IFC format. Fur-
thermore, we use conventional 2D drawings as an 
additional data source for BIM model generation. 

This paper is structured as follows: In Section 2 we 
give a general overview of the RIMcomb research 
project’s scope in order to put the subsequently de-
scribed approaches into context. Section 3 describes 
our approach of digitizing technical drawings. We 
give an overview of the methods applied and the con-
clusions of our testing process. Section 4 describes 
how we intend to further use the digitized plan data 
and other data sources for the creation of BIM models 
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representing railway equipment. The paper ends with 
a summary and an outlook. 

2 THE RIMCOMB PROJECT 

The research project “RIMcomb: Railway Infor-
mation Modeling for the Equipment of Railway In-
frastructure” was initiated by SIGNON Deutschland 
GmbH in 2016 in cooperation with Technical Univer-
sity of Munich and AEC3 Deutschland GmbH. The 
project is funded by the Bavarian Research Founda-
tion and started in early 2017. 

The main focus of the research project is to develop 
and adapt new computer-supported methods for 
model-based collaboration between the different sub-
sections of technical railway equipment in order to in-
crease the efficiency of the planning process and the 
quality of the outcome. 

During the design, planning and construction of 
railway infrastructure and technical equipment, a 
multitude of domains experts are involved. Therefore, 
data exchange between these participants is an issue 
that needs to be addressed, as there a various special-
ized software tools available for different tasks that 
do not implement any common data standard. 

Also, most of railway construction projects in-
volve the modernization or alteration of existing in-
frastructure and thus the industry has to rely on tech-
nical drawings from past decades that are not 
necessarily consistent with the real-world circum-
stances. 

As described in Section 2 we developed a method 
that allows the automatic recognition of plan symbols 
in technical drawings of railway infrastructure. Be-
sides the use of this data described in Section 3, we 
also aim at comparing the generated data with real-
world data in order to identify discrepancies. This use 
case may create a significant benefit for the railway 
companies as the manual comparison of the as-built 
drawings with real-world stock data requires a con-
siderable amount of effort but is nonetheless neces-
sary. 

Here, machine-learning and convolutional neural 
networks (as outlined in Section 2) will also be em-
ployed to process video files of railway tracks in order 
to identify objects in single frames for the mapping of 
objects such as signals, balises, switches or poles of 
overhead lines. 

Another aspect in the scope of the research project 
is the development of a method that allows the auto-
mated checking of technical rules and regulations. As 
such approaches have already been applied outside of 
the infrastructure domain (Preidel and Borrmann, 
2016), we see a huge benefit in introducing them into 
the domain of railway equipment, as the amount of 
rules and regulations in this domain requires a large 
amount of manual work. 

3 DITIALIZATION OF PLAN DATA 

One major topic in the research project is the digital-
ization of conventional drawings depicting railway 
equipment infrastructure. While most drawings are 
available digitally, the interpretation of these plans 
has to be undertaken manually. This is necessary 
when the accuracy of plans has to be compared to 
real-world circumstances or in case of stocktaking. 

Our approach aims at supporting this process in or-
der to reduce the manual effort by automating at least 
parts of this image interpretation process. The first 
step towards this goal is the automatic recognition 
and highlighting of plan symbols on a given drawing 
and the subsequent storing of their count and location. 

3.1 Theoretical background 
In a first step, three preexisting methods of image 
recognition are described. We evaluated those tech-
niques in respect to the given problem. As none of 
those methods matched our requirements completely 
we also tested Convolutional Neural Networks, which 
are already widely used for image recognition, in re-
spect of their ability to detect plan symbols. 

3.1.1 Template Matching 
Template Matching is a well-known method for the 
searching of a template image in a larger image. This 
is made by sliding the template image over the input 
(larger) image and comparing them at every position. 
The result of this method is a grayscale image with a 
size of (W-w+1, H-h+1), where W and H are the 
width and the height of the input image, w and h are 
the width and the height of the template image. We 
investigated different comparison methods for each 
one of which there is a normalized version (Kaehler 
and Bradski, 2016). 
 
In this work two of these methods are used: 

- Normalized Square Difference Matching 
Method: 
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- Normalized Correlation Coefficient Matching 
Method: 
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Here T is the template image, I the input image, R the 
result image and 
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With the first comparison method a perfect match is 
0 and a perfect mismatch is 1. For the second meth-
od 1 stands for a perfect match and -1 for a complete 
mismatch. 

3.1.2 Contours search 
This technique compares objects with their contours. 
A contour lies on the border between the black and 
white spaces. A contour tree contains the hierarchy 
between the contours or how they relate to one an-
other. Contours can be compared with the help of im-
age moments. An image moment is a characteristic of 
a given contour calculated by summing over the pix-
els of that contour. The Hu invariant moments (Hu, 
1962) were used in our work to compare contours. 
The Hu moments are combinations of different nor-
malized central moments and are scale, rotation and 
translation invariant. However, this method works 
only if the symbol is not connected to other lines or 
objects in the image, because then the contour around 
the symbol can’t be defined properly. 

3.1.3 Cascade Classifiers 
First proposed by Viola & Jones, 2001, it was origi-
nally used for face detection, but can be used for 
many types of objects. This method learns by search-
ing for Haar-like features in an image. These features 
differentiate between dark and bright parts of an im-
age by subtracting the sum of the pixels in the white 
parts from the sum of the pixels in the dark parts. The 
features are placed over the image in different loca-
tions and sizes to extract certain patterns. 
 

Figure 1. The Haar-like features 

A cascade classifier is a machine learning method in 
which the information computed in a given classifier 
is used for the next classifier and becomes more com-
plex at each stage. “The Viola-Jones detector uses 
AdaBoost, but inside of a larger context called a “re-
jection cascade”. This “cascade” is a series of nodes, 
where each node is itself a distinct multi-tree Ada-
Boosted classifier. The basic operation of the cas-
cade is that sub-windows from an image are sequen-
tially tested against all of the nodes, in a particular 
order, and those windows that “pass” every classifier 
are deemed to be members of the class being 
sought.”(Kaehler and Bradski, 2016). 

3.1.4 Convolutional Neural Networks 
A neural network is a form of machine learning, in 
which the computer "learns" from given data. For the 
sake of this work, a convolutional neural network 
(CNN or ConvNets) is used, which speeds up the 
training process especially with images. One of the 
first CNN is called LeNet5 (LeCun et al., 1998), 
which has started an new era of state-of-the-art artifi-
cial intelligence. CNNs are so effective for image 
recognition because they use filters to detect patterns 
(or features) in an image. Different locations of the 
image are searched for these features and a value is 
saved, representing how well every pattern matches 
the image in a given location (Rohrer, 2016). This re-
sults in a map which represents where each feature 
occurs in the image. By matching the feature for every 
possible location in the image, a convolution is made. 
The features are then passed to the actual neural net-
work (In Figure 2 from the left): 

Every layer has multiple neurons which are connect-
ed to one another between the layers (Figure 2). Each 
of the connections between the nodes is weighted 
(marked with W), which means that they are multi-
plied by a number, that is between -1 and 1. The neu-
ral network “learns” by adjusting the weight until the 
required output is obtained. An activation function is 
required to generate an output from given input in a 
processing unit (or neuron). The ReLU (Rectified 
Linear Unit) function was used in this work to nor-
malize the values in the feature map that was calcu-
lated. This simplifies the calculation by setting all 
negative values to zero. The ReLU has the mathemat-
ical form: f(x) = max(0, x). To make the calculations 
less complex the size of the feature map can be re-
duced with a max pooling layer. This is done by tak-
ing only the maximum value of a given window and 
saving it at the correct location in a new smaller fea-
ture map. 

3.2 Concept 
Even in today's modern world, in which almost eve-
rything is digitized, many technical drawings are still  

 

Figure 2. Simplified neural network with an input layer on the 
left, an output layer on the right and one hidden layer in the 
middle. 



only available in paper form. The main reason for this 
is that most of the infrastructure that exists today was 
built before the widespread availability of computers. 
Many of these drawings are now being digitized to be 
used by modern computer programs. Much of the dig-
itization process of a technical drawing consists of 
recognizing and locating different symbols which is 
often a difficult and time-consuming task. Therefore, 
this work aims to find a method of automating this 
process at least in parts and drastically reducing the 
processing time. 

The different methods for symbol recognition were 
tested in different ways. The first two methods do not 
require training and can be implemented directly to 
find symbols. The Cascade Classifiers and the Con-
volutional Neural Networks require many images for 
training. These images are generated by cutting tech-
nical drawings into thousands of smaller images and 
then placing the searched symbol over half of the im-
ages in different sizes and locations. This generates 
two kinds of images – positive images with the sym-
bol and negative images without it. After these meth-
ods have been trained, they must be tested to measure 

the accuracy of finding the symbol. This course of ac-
tion differs from other approaches that use machine 
learning techniques for image detection. Normally, 
our way of generating the training data would result 
in a machine learning algorithm, that would only de-
tect the exact image that is was trained with – which 
is not useful for e.g. detecting faces in a picture. How-
ever, since plan symbols are always of a similar shape 
or match one another exactly, the chosen training data 
work fine in our scope. 

3.3 Prototypical implementation 
The methods were tested on many different technical 
drawings to measure the accuracy. An example can 
be seen in Figure 4, which is a part of a telecommu-
nication technical drawing. 

Figure 3 shows the symbol for which the image 
was searched. 

As a result, the corresponding symbols in the im-
age are marked by red rectangles (Figure 5). The dif-
ferent methods show similarly results with this image, 
but the template matching method is not scale and ro-
tation invariant and works only if the symbol always 
has the same size and rotation. The cascade classifiers 
method is scale and rotation invariant, but still fails if 
the shape of the symbol is simple and therefore does 
not have many distinct features. However, the convo-
lutional neural networks were found to be very accu-
rate, even when tested with many different types of 
symbols. 

 

Figure 4. Test image. 

 

Figure 3. Test symbol. 

Figure 5: Exemplary results.  



The CNN was not only tested with technical draw-
ings, but also with artificially generated images to 
better test the accuracy. It showed above 95% of ac-
curacy for detecting if a symbol is on the image or not 
and 80-85% of accuracy for finding the exact location 
of the symbol. 

3.4 Conclusion 
Both the template matching and the contour methods 
are very easy and fast to implement but work only un-
der certain conditions. The cascade classifier is a 
more complex method, but still fails if the symbol has 
too few features. The last technique, the artificial neu-
ral networks, is the most “sophisticated” method and 
can be used in many situations with very few disad-
vantages and almost no limitations with today’s pow-
erful computers. The neural network, which was de-
signed for this work, can be further modified for even 
better results. An overview of our findings is given in 
Figure 6 (Stoitchkov, 2018). 

4 BIM MODELS FOR RAILWAY 
INFRASTRUCTURE 

The previously described method of automatically 
detecting plan symbols is only one aspect of the 
RIMcomb research project’s goals. To use the col-
lected data for creating BIM models we need to in-
vestigate how such models can be created. Further-
more, the image recognition approach is only one of 
various sources of preexisting data that can be used 
for model creation. In the following section, an over-
view of data formats is given as well as an approach 
of how a model can be created from different data 
sources. 

4.1 Data Formats 
One of the main aspects of Building Information 
Modeling is data consistency and the collaboration of 
different project partners using the same set of data. 
These two aspects require data formats, which can be 
imported and exported by different software applica-
tions. 

An analysis of the software market offers many 
different software tools, which meet these require-
ments and can be used for creating building models 
or performing simulations on them. The vendor-neu-
tral format “Industry Foundation Classes” (IFC) pro-
vides the possibility to exchange model data amongst 
an enormous range of different applications. Besides 
open formats, many software providers implement 
proprietary interfaces between their tools, which of-
ten lead to a higher data quality in the receiving ap-
plication but is also limited to the use of a few tools.   

In contrast to these developments for building con-
structions, no state-of-the-art application or exchange 
format does exist for modelling infrastructure pro-
jects, although projects such as IFC-Rail or the pro-
posal of Allah Bukhsh et al. (2016) are under devel-
opment. One reason is based in the geometrical 
project dimensions: Buildings normally have a 
ground area less than 100 meters per site and an ele-
vation of a couple of meters. Therefore, a high infor-
mation density occurs on a comparatively small vol-
ume (different layers of a wall, structural analysis, 
architectural properties, etc.). In contrast to this, in-
frastructural projects usually reach over many kilo-
meters and therefore the data density can extremely 
vary within the project’s alignment. Thinking of mod-
elling a railway path between two stations makes this 
aspect a bit clearer: The nearer the station is, the more 
signals, switches or security systems are needed 
whereas the lines in the outer field only need rails, 
swells, railway signals and electric components. 

Figure 6: Overview of advantages and disadvantages of the different image recognition methods. 

https://www.dict.cc/englisch-deutsch/comparatively.html


This leads to the need of new storing approaches 
in (existing) data formats. There are already some 
data formats in use today, however, they are mostly 
limited to one discipline of railway engineering or can 
only be used by one specific software tool.  

Modelling of infrastructural components is quite a 
challenge today, as most of the software products for 
infrastructure planning are based on the paradigm of 
drawing generation and thus are not capable to repre-
sent semantically rich 3D models. 

At the same time, these tools are tailored and well-
suited for the respective engineering task. On the 
other hand, the creation of BIM models for railway 
engineering is only partially supported. Creating 
model components in well-established BIM author-
ing tools, which are known from building modeling, 
can only be realized by either using building elements 
and append additional properties or creating new 
components based on generic templates. Both ap-
proaches can only offer the high data quality that is 
known from today’s building models, when a lot of 
effort is put into the model creation. 

Also, the data exchange of such models is a big 
challenge. Once they have been created in a BIM au-
thoring tool, the export into a vendor-neutral format 
leads to another significant issue. Up to now, IFC has 
no preexisting classes for storing infrastructural com-
ponents (they will be introduced in IFC 5). Besides 
IFC, there are some data formats such as PlanPro or 
railML providing schemata for storing and transfer-
ring information about infrastructural components 
(especially for railway infrastructure) but cannot rep-
resent the elements’ geometry in a high quality. 

4.2 Model creation 
Due to the lack of a standardized data format and 

the need of the digitalization of existing drawings, a 
software-application is being developed in scope of 
the RIMcomb research project that combines data 
from different sources and automatically creates an 
integrated BIM model from this diverse information 
(Figure 6). To integrate as much import data formats 
as possible, a basic task is to define a set of the mini-
mal necessary information to create a model, which is 
suitable for advanced modelling and simulation tasks 
(e.g. supplying the existing state of a railway path for 
redevelopment planning). 

To start with a manageable set of data, the data 
schema PlanPro was used to set up the preprocessing 
tool. PlanPro is developed by DB Netz AG and it is 
used for gathering information needed in an interlock-
ing system. Therefore, this format is powerful for 
storing information about different components that 
are necessary for security aspects of railway traffic. 
However, this schema holds only coarse information 
about the railway alignment, which causes to inte-
grate additional GIS data. We plan to integrate this 
information in a later implementation step.  

The link between the preprocessing tool and the 
BIM Editor is realized by an SQL database, which is 
controlled via the Entity Framework. This offers a lot 
of flexibility for the use of the preprocessed data and 
retains the possibility to use other programs for the 
modelling process as well. 

Figure 6: Workflow of creating BIM models of railway equipment infrastructure from various data sources 
by using predefined object-oriented model part templates. 



The tool will serve as a testing platform in the re-
search project to investigate how we can use and com-
bine existing data in order to create a functioning BIM 
model. 

5 SUMMARY AND OUTLOOK 

This paper gives a general overview of the RIMcomb 
research project that aims at introducing BIM meth-
ods and technologies into the domain of railway 
equipment engineering. In addition to the main pro-
ject goals, we discussed the ongoing research and first 
findings. In this scope, the automatic recognition of 
technical symbols in technical drawings by using dif-
ferent methods of image recognition is described in 
detail. Our results show that this method has large po-
tential in automating a labor-intensive task and can 
also be employed to create semantic models of rail-
way infrastructure. As a machine-learning based ap-
proach has the highest rates of correct recognitions 
we aim at improving this method in further research. 
This is especially important for the comparison of el-
ements depicted in technical drawings with real-
world video data gathered from railway track inspec-
tions. 
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