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Abstract— It is apparent that one cannot rely solely on
physical test drives for ensuring the correct functionality of
autonomous vehicles. Since physical test drives are costly and
time consuming, it is advantageous to accompany them with
computer simulations. However, since most traffic scenarios are
not challenging, even simulations are often too time consuming.
To address this issue, we present an approach that creates
automatically critical driving situations, i.e., situations with a
small solution space for avoiding a collision. Our approach
combines reachability analysis for determining the size of
the solution space with optimization techniques to shrink it.
The solution space is reduced by shifting the initial states
of traffic participants, demanding an immediate and correct
action of the vehicle under test. We demonstrate our approach
by automatically increasing the criticality of several initially
uncritical situations recorded from real traffic.

I. INTRODUCTION

Testing is an integral part in the development processes of

the automotive industry [1]. Interfaces of many traditional

automotive systems are well defined, e.g., for anti-lock

braking, yaw stabilization, or adaptive cruise control, to name

only a few. In autonomous driving, however, all possible

environments in which a vehicle will drive are unknown at

design time so that vehicles will encounter situations that

have never been tested before. This is one of the main

reasons why one has to test autonomous road vehicles for

440 million km to demonstrate that they have a better

performance than humans with a 95% confidence level [2].

This translates to 12.5 years of test driving with a fleet of

100 test vehicles continuously driving. While this is already

extremely costly, the testing effort is based on the assumption

that the developed system is not changed during the testing

period; changes of the system would additionally prolongate

the testing phase.

While efforts with physical test fleets are steadily in-

creased [3]–[5], it is obvious that physical tests alone are

too costly and time consuming. For prototyping new ideas

more quickly, scaled-down vehicles are sometimes used [6],

[7]. The main direction taken by industry and academia,

however, is to accompany physical tests with virtual driving

tests, requiring the development of a simulation environment

in which vehicles can be tested by many factors faster

than in real-time, in order to expose the vehicle under

test—in this work referred to as the ego vehicle—to many

different situations, see e.g., [8]–[10]. Even this approach,

however, can be very time consuming since dangerous or
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interesting situations are rare events; in 2013 in the US, for

example, a human driver had to drive around 1.3 million

miles in order to obtain a reported injury [2, p. 2]. To further

reduce the effort in simulation-based testing, research on the

formalization of traffic rules is conducted to automatically

determine whether the ego vehicle caused a crash [11].

Testing efforts can be further reduced by formal methods,

which exhaustively consider uncertainties from initial states,

disturbances, and sensor noise; either during design time

[12], [13] or runtime [14]. Nevertheless, formal methods also

require interesting driving situations for validation purposes.

It is thus of great importance to automatically generate

interesting test cases. These test cases can either be applied

to the above-mentioned simulation environments, on proving

grounds [15], or in a mixed reality, where some vehicles are

real and others are added virtually [16].

Automatic or semi-automatic generation of interesting test

cases is a long-standing research area in software engineering

[17] so that we first review works in that area before present-

ing applications to autonomous vehicles. Many approaches

have been developed to generate test cases for discrete

systems found in software engineering, see e.g., [18]–[20].

When adding continuous variables, the situation becomes

much more complicated, timed systems with clocks being

the simplest extension [21]. However, for automated driving,

complicated vehicle dynamics must be added, requiring tech-

niques that work with mixed discrete/continuous systems,

also known as hybrid systems. The approaches in [22]–[26]

have been developed for general hybrid systems with rather

fixed interfaces so that they are not directly applicable for

generating interesting driving situations.

Only a few techniques have been developed for automatic

test case generation of hybrid dynamics addressing the needs

of autonomous systems. In [27] proprietary test case gener-

ation for automated vehicles was developed based on the

S-TaLiRo tool. An approach to infer the vehicle intelligence

level from a finite number of tests is presented in [28];

however, this work does not consider fully automatic test

case generation. While S-TaLiRo offers many optimization

engines to create interesting situations, other approaches

focus on machine learning techniques: Interesting scenarios

are grouped by unsupervised learning to find situations

where small deviations of the environment lead to great

performance variations in [29]. Combination and mutation

of recorded data is used in [30] to create new test cases.

Somewhat related to automatic test case generation for

motion planning are the following topics: a) fault detection

strategies, which help automating tests [31]; b) tools for the
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statistical analysis of mission goals indirectly supporting the

search for interesting test cases [32]; and c) testing of low-

level controllers of autonomous vehicles [33]–[35].

None of the previous approaches are based on constructive

algorithms, ensuring that generated situations have a small

and quantifiable solution space. Our test case generation

is the first that quantifies the solution space by explicitly

computing the drivable area of the ego vehicle. We construct

scenarios so that the drivable area is optimized towards a

user-defined value, making it possible to obtain situations

with a desired criticality in terms of drivable area.

The paper is organized as follows: Sec. II provides a

detailed problem statement followed by Sec. III presenting

an overview of our proposed solution. The optimization ap-

proach for creating critical scenarios is described in Sec. IV.

We demonstrate the applicability of the optimization routine

using scenarios that are originally not critical in Sec. V

followed by conclusions in Sec. VI.

II. PROBLEM STATEMENT

The goal of this paper is to automatically generate traffic

situations for which it is hard to obtain a safe motion plan.

We first specify the motion planning problem similarly to

[36], followed by defining the drivable area of the ego

vehicle. Let us denote by f(x(t), u(t)) the right hand side

of the state space model of the ego vehicle so that

ẋ(t) = f(x(t), u(t)),

where x ∈ R
n is the state vector and u ∈ R

m is the

input vector. We further require the initial state x0 ∈ R
n

(x(t0) = x0), the initial time t0, and the final time tf . The

time-varying, allowed space on the road surface is denoted

by Wfree(t) ⊂ R
2. Let us introduce the power set P ()

for the function O(x(t)) : R
n → P (R2) returning the

occupancy of a vehicle, which has to lie within the free

space: ∀t ∈ [t0, tf ] : O(x(t)) ⊆ Wfree(t). We also require

constraints g(x(t), u(t), t) ≤ 0, such as speed limits or other

traffic rules [11]. Equality constraints can be constructed

from inequality constraints (e.g., x ≤ 0∧−x ≤ 0 ≡ x = 0).

The goal region G ⊂ R
n can consist of disjoint sets and as

soon as x(t) ∈ G at time t = tf , a feasible solution is found.

After introducing an input trajectory as u(·) (in contrast to

a value u(t) at time t) and the cost function of the obtained

solution J(x(t), u(t), t0, tf ), we can finally formulate the

motion planning problem as finding

u∗(·) = argmin
u(·)

J(x(t), u(t), t0, tf )

subject to

ẋ(t) = f(x(t), u(t)), O(x(t)) ⊆ Wfree(t),

g(x(t), u(t), t) ≤ 0, x(t0) = x0, x(tf ) ∈ G.
(1)

We denote a feasible (not necessarily optimal solution) as

χ(t;x0, u(·)) which meets all constraints in (1). Since we

are not only interested in the optimal solution, but in the

space of solutions, we require the set of reachable states

[37]. In particular, we use a so-called anticipated reachable

set, which excludes states that will inevitably result in an

accident. After introducing the set of initial states X0, the

set of input trajectories U , and the time horizon th ≥ tf , we

define the anticipated reachable set as

R(t;X0,Wfree(·), th) =

{

χ(t;x0, u(·))

∣

∣

∣

∣

∃u(·) ∈ U ,

∃x0 ∈ X0, O
(

χ(τ ;x0, u(·))
)

⊆ Wfree(τ) for τ ∈ [t0, th]

}

.

Using the previously introduced occupied region O(x), the

drivable area becomes

D(t;X0,Wfree(·), th) =
⋃

x∈R(t;X0,Wfree(·),th)

O(x).

To quantify the solution space over time, we introduce the

function area(D), returning the area of the drivable area.

For simplicity of notation, we introduce the tuple S =
(X0,Wfree(·)) representing a scenario and write

A(S, t) = area
(

D(t;X0,Wfree(·), th)
)

.

The goal of this work is to create a scenario S with a

reference solution space Aref (t) > 0 using a weight w(t) >
0:

argmin
S

∫ th

0

w(t)
(

A(S, t)−Aref (t)
)2
. (2)

The weight w(t) > 0 is time-varying so that one can put

more or less emphasis on achieving the reference solution

space at different times.

III. OVERVIEW OF THE APPROACH

In order to solve (2), we optimize the initial states of

other traffic participants including the ego vehicle until the

desired size of the drivable area is obtained. This principle is

illustrated in Fig. 1 for a deliberately simple static scenario,

in which only the size of the leftmost static obstacle is

changed. One can see that with slight changes, a rather

simple motion planning problem quickly becomes hard due

to the small remaining drivable area.

(1)

(2)

(3)

Fig. 1. Drivable area of the ego vehicle driving from left to right for
different sizes of the leftmost static obstacle. Since only slower trajectories
are feasible in scenario (3), the drivable area does not reach as far right.

When not only considering static obstacles, but also other

traffic participants, one has to compute the effect of their

changed initial states on their future occupancy. Different

types of vehicle predictions are discussed in Sec. III-A.



Given the predictions of other traffic participants, we present

in Sec. III-B how the drivable area of the ego vehicle is

computed, which is later optimized.

A. Predictions of Other Traffic Participants

Possible future occupancies of other traffic participants

have to be removed from the allowed space Wfree(·) of the

ego vehicle to avoid collisions. There are basically two main

options: a) One provides single trajectories of other traffic

participants or b) provides a set of possible trajectories. In the

first case one creates a scenario in which the motion planner

has to find a safe solution when the other trajectory is known,

which is typically the case in collaborative driving [38], [39].

In the second case, the future movement of other traffic

participants is unknown, which is typically the case for non-

communicating traffic participants, such as e.g., bicyclists.

While single trajectories are obtained either from record-

ings or by using simulation models [36], the computation

of a set of behaviors is not straightforward. For the latter

case we use the tool SPOT [40]. An example of computing

the drivable area in an intersection is presented in Fig. 2

for a specific time interval. Please note that SPOT returns

sets for each consecutive time interval. After denoting the

free space obtained from road boundaries and static obstacles

by Wstatic, the drivable area of other traffic participants by

Dother(·), and introducing the set difference between sets A
and B as A \ B, we obtain Wfree(·) =Wstatic \ Dother(·).
The obtained free space is used subsequently to obtain the

drivable area of the ego vehicle, which additionally considers

constraints due to the vehicle dynamics so that it is a subset

of Wfree(·).

vehicle V1

vehicle V2

Fig. 2. Drivable areas of vehicles in an intersection within the time interval
[1.5,2] s. A detailed scenario description can be found in [40, Sec. V].

B. Computation of the Drivable Area

We compute the drivable area D(t;X0,Wfree(·), th) ac-

cording to the approach presented in [41]. To efficiently

compute the drivable area, it is represented by the union of

Cartesian products of convex polytopes. Each polytope rep-

resents a set of position/velocity pairs, which can be reached

in the x- and y-direction. Polytopes are chosen because they

are closed under intersection, which is required for removing

regions from the drivable area possibly occupied by another

traffic participant or static obstacle. An example of a drivable

area is presented in Fig. 3 of an overtaking scenario for

different time steps. For a more detailed description, the

reader is referred to [41]. The drivable area is used in the

optimization routine below to generate scenarios which have

a minimum weighted deviation to a desired drivable area

according to (2).

initial situation

ego vehicle vehicle A

vehicle B

time: 0.9 s

drivable area of other vehicles

drivable area of 

ego vehicle

time: 1.5 s

time: 2.4 s

drivable area including 

solutions after overtaking 

drivable area including solutions 

without overtaking 

Fig. 3. Drivable area at different time steps for an overtaking scenario.
The ego vehicle can either stay behind car A or barely overtake it. Due to
illustration reasons, only the positions and not the velocities are shown.

IV. OPTIMIZATION ROUTINE

In order to solve a finite optimization problem, we dis-

cretize the time equidistantly to tk = ∆t ·k, ∆t ∈ R
+ being

the step size and k ∈ N the time step. Thus, the reference

area over time can be represented as a q-dimensional vector

with entries aref,k = Aref (tk), where q = ⌈(th − t0)/∆t⌉
and ⌈α⌉ returns the smallest integer greater than or equal to

α ∈ R. Additionally, we introduce the operator γ(S) return-

ing the area profile, i.e., the development of the drivable area

over discrete times tk:

γ(S) :=
[

a1, a2, . . . , aq
]

, ak = A(S, tk).

Thus, the discrete-time approximation of the optimization

problem in (2) can be written in matrix notation as

argmin
S

(γ(S)− aref )
TW (γ(S)− aref ), (3)

where W = diag([w(t1), . . . , w(tq)]) and diag(ξ) returns

the diagonal matrix of a vector ξ. Since motion planning

problems in two dimensions can be invariant with respect

to position and orientation (i.e., when the vehicle is in an

unstructured environment (e.g., parking lot), all vehicles can

be translated and rotated without changing the problem),

we fix the position and orientation of the ego vehicle for



solving (3). As a consequence, only remaining states of the

ego vehicle, such as velocity, are optimized, while for all

other vehicles all initial states are optimized. In the future,

we will automatically detect whether the problem is invariant

with respect to position and orientation and remove the above

restriction depending on the situation. Also, please note that

in this work, we only optimize the initial states of vehicles,

while the optimization of their individual movement is the

subject of future work. We first rewrite (3) as a quadratic

programming problem and later extend it using binary search.

A. Formulation as a Quadratic Programming Problem

The influence of the scenario on the drivable area cannot

be described explicitly, which would be required when using

numerical optimization routines. Instead, we construct a

local model by first estimating the influence of each traffic

participant on the drivable area individually. Let us define

a variation of the ith component of the initial state of

vehicle Vj by ∆x
(j)
0,i . Please note that one of the vehicles

V1, . . . , Vp is the ego vehicle and that we introduce p as

the total number of considered traffic participants. Next, we

denote the initial scenario by S0 and define the operator

S(〈i, j〉,∆x̃
(j)
0,i ) returning an updated scenario after the ith

initial state of vehicle Vj has changed to x
(j)
0,i := x

(j)
0,i+∆x̃

(j)
0,i .

The tilde on ∆x̃
(j)
0,i is used to distinguish this change from

the change ∆x
(j)
0,i actually realized later during optimization.

We define the change in the area profile as

b
(j)
i :=

γ(S
(

〈i, j〉,∆x̃
(j)
0,i )

)

− γ(S0)

∆x̃
(j)
0,i

, (4)

where b
(j)
i ∈ R

q . Assuming a linear relation between the

change of the initial state and the obtained area profile in

the vicinity of the original scenario S0, we obtain for ∆x
(j)
0,i

the new area profile

γ
(

S(〈i, j〉,∆x
(j)
0,i )

)

≈ γ(S0) + b
(j)
i ∆x

(j)
0,i . (5)

After introducing n(j) as the number of state variables of

the j th traffic participant, we further simplify the notation by

stacking all b
(j)
i values in a q × r matrix (r =

∑p
j=1 n(j))

to obtain

B = [b
(1)
1 , b

(1)
2 , . . . , b

(1)
n(1), b

(2)
1 , . . . , b

(2)
n(2), . . . , b

(p)
n(p)] ∈ R

q×r

(6)

and all variations of initial states analogously in

∆x0 = [∆x
(1)
0,1,∆x

(1)
0,2, . . . ,∆x

(1)
0,n(1), . . . ,∆x

(p)
0,n(p)] ∈ R

r.
(7)

We write S(∆x0) to represent a new scenario when the

change is represented by the vector ∆x0, which is approxi-

mated by the sum of individual changes from (5):

γ(S(∆x0)) ≈ γ(S0) +

p
∑

j=1

n(j)
∑

i=1

b
(j)
i ∆x

(j)
0,i . (8)

Using (6) and (7), we can write (8) as

γ(S(∆x0)) ≈ γ(S0) +B∆x0. (9)

Inserting (9) into (3) and introducing ∆a0 := γ(S0)− aref
results in the following quadratic programming problem:

argmin
∆x0

(γ(S0) +B∆x0 − aref )
TW (γ(S0) +B∆x0 − aref )

= argmin
∆x0

(∆a0 +B∆x0)
TW (∆a0 +B∆x0)

= argmin
∆x0

(B∆x0)
TW (B∆x0) + ∆aT0 W (B∆x0)

+ (B∆x0)
TW∆a0 +∆aT0 W∆a0

= argmin
∆x0

∆xT
0 W̃∆x0 + cT∆x0,

(10)

where

W̃ = BTWB,

c = ∆aT0 (WB +WTB).
(11)

Please note that ∆aT0 W∆a0 can be removed in (10) since

it only shifts the value of the optimization problem: We are

only interested in the ∆x0 minimizing the area and not in

the minimum cost value, so that this offset can be removed.

As a result, we obtain an optimization problem over the shift

of the initial state ∆x0 instead of an optimization problem

of abstract scenarios S as originally formulated in (3).

So far, we have not considered constraints, but clearly we

have to restrict the velocity of each vehicle to be within

[0, vmax], where vmax is the maximum allowed velocity on

the road or a maximum velocity that considers a certain

amount of overspeeding. We also add the constraint that the

area profile should always be positive; although the true area

is always positive, negative values can be computed due to

the assumption on linearity in (5). Let velInd(j) return

the index of the state x(j) representing the velocity of the

j th vehicle. We can now formulate the following constraints:

∀j : x
(j)
0,velInd(j) +∆x

(j)
0,velInd(j) ∈ [0, vmax] (velocity),

∀i ∈ [0, q] : γ(S0)i + (B∆x0)i ≥ 0 (area).
(12)

If the model of a vehicle does not have velocity as a state

(e.g., when it is an input), we make the obvious changes to

(12). The minimization of (10) together with the constraints

in (12) results in a quadratic program, for which efficient

solvers exist [42]. The combination with binary search is

addressed in the next subsection.

B. Binary Search

To address the problem that b
(j)
i in (4) is undefined when

the drivable area becomes empty, we switch to binary search,

which does not require computing b
(j)
i . When a scalar target

value lies in between two values, binary search iteratively

splits the half where the target lies [43].

In our work, binary search acts as a repair mechanism

when the last ∆x0 has caused the solution space to become

empty. We denote the initial state before the last quadratic

programming update as x0,before and the initial state after

the update as x0,after . Our binary search implementation in

Alg. 1 is terminated once the solution space is re-established



Algorithm 1 binarySearch(x0,before, x0,after, µ)

Require: Initial state x
(j)
0,before,i and x

(j)
0,after,i before and

after last quadratic programming update, iteration limit

µ
Ensure: x

(j)
0,i so that solution space is not empty

1: bmax ← 0
2: for j = 1 . . . p do

3: for i = 1 . . . n(j) do

4: b
(j)
abs,i ←

∣

∣

∣

∣

γ(S(〈i,j〉,∆x̃
(j)
0,i))−γ(S0)

∆x̃
(j)
0,i

∣

∣

∣

∣

5: end for

6: end for

7: bsorted ← sort(babs)
8: while not empty(bsorted) do

9: vI, sI ← pop(bsorted)
10: for θ = 1 . . . µ do

11: x
(vI)
0,curr,sI ← 0.5(x

(vI)
0,before,sI + x

(vI)
0,after,sI)

12: acurr ← γ(S(〈sI, vI〉,∆x
(vI)
0,curr,sI))

13: if ∀l : acurr,l > 0 then

14: return x
(vI)
0,curr,sI

15: else

16: x
(vI)
0,after,sI ← x

(vI)
0,curr,sI

17: end if

18: end for

19: end while

20: return x
(vI)
0,before,sI

or after a user-defined limit of µ iterations has been reached.

To select the variable subject to binary search, we choose

as a heuristic the one with the largest sensitivity, i.e., the

variable associated to the largest b
(j)
i value in (4) as shown in

lines 1-7 of Alg. 1. Please note that the command sort(babs)
returns a sorted list of sensitivities. If the binary search on

this variable would exceed the iteration limit µ (line 10), the

variable with the next lowest sensitivity is changed using

binary search (line 9), where pop(bsorted) returns the first

vehicle index vI and state index sI in the list bsorted and

removes them from the list. If all variables of all vehicles

exceed the iteration limit, the result before the last quadratic

programming update is returned, so that Alg. 1 always re-

establishes a solution space.

Please keep in mind that after one variable has been

successfully modified via binary search, previous variables

which could not be changed anymore can possibly be

changed again due to the modified traffic situation. For

this reason, after a solution space is regained, the quadratic

programing problem in (10) is re-iterated until the difference

in the cost function

κ = (γ(S)− aref )
TW (γ(S)− aref )

between updates is smaller than a user-defined value ǫ.
We also set a limit itmax for switching between quadratic

programming and binary search. The overall algorithm com-

bining quadratic programming and binary search is presented

in Alg. 2. There, we use the function quadProg(solve (10)),

which solves one iteration of the quadratic programming

problem and returns the next initial state x0,curr, the

updated scenario S, and the Boolean variable success

whether b
(j)
i existed for all initial state variables and

vehicles. Furthermore, binarySearch calls Alg. 1, and

updateScenario(S, x
(j)
0,i ) returns an updated scenario given

the previous one S and the new initial state x
(j)
0,i .

Algorithm 2 optimizedScenario(x0, ǫ, itmax, µ,W, aref )

Require: Initial state x0, threshold ǫ, iteration limit itmax,

binary search iteration limit µ, weighting matrix W ,

reference area profile aref
Ensure: critical scenario S

1: κnew ← 0, κold ← −∞, it← 0, x0,curr ← x0

2: while |κnew − κold| ≥ ǫ and it < itmax do

3: success← true

4: while |κnew − κold| ≥ ǫ and success = true do

5: κold ← κnew, x0,old ← x0,curr

6: x0,curr, S, success← quadProg(solve (10))
7: κnew ← (γ(S)− aref )

TW (γ(S)− aref )
8: end while

9: x
(v)
0,s ← binarySearch(x0,old, x0,curr, µ)

10: S ← updateScenario(S, x
(v)
0,s)

11: κnew ← (γ(S)− aref )
TW (γ(S)− aref )

12: it← it+ 1
13: end while

V. NUMERICAL EXAMPLES

Before we present results, we introduce the representation

of the road network. For our benchmarks we use lanelets

[44] as atomic, interconnected, and drivable road segments

to represent the road network. A lanelet is defined by its

left and right bound, where each bound is represented by an

array of points. An example of a complicated intersection

constructed from lanelets including tram lines is shown in

Fig. 4. We have enhanced lanelets by traffic regulations, e.g.,

the speed limit, as presented in [36].

lanelet (road)

lanelet (rail)

road vehicle
tram

driving
direction

ego vehicle

right bound

left bound

lanelets

Fig. 4. Lanelets of a complex intersection in the city center of Munich
(ID GER Muc 1a of [36]). Besides roads, tram rails are also modeled.



We investigate three different scenarios SA, SB , and

SC , with varying numbers of other traffic participants to

illustrate our approach. SA is a deliberately simple scenario

to illustrate the approach, and SB , SC are taken from Com-

monRoad, which is a publicly available set of benchmark

scenarios [36]. For all subsequent scenarios we set ∀t :
aref (t) = 1 and w(t) = 1. To better illustrate the results,

we only show the drivable area of the ego vehicle and not of

other traffic participants. All optimizations are executed on

an Intel Core i7-6500U with 4 cores, which run at 2.5 GHz

and the computation times are summarized in Tab. I. The

quadratic programming problems quadProg(·) are solved

using ECOS [45].

TABLE I

COMPUTATION TIMES

Scenario SA SB SC

Iterations for quadratic programming 1 1 7

Computation times [s] 0.36 5.56 35.40

A. Example Scenario SA

Scenario SA is a deliberately simple scenario to illustrate

the approach, where the ego vehicle follows a straight lane

blocked by a static obstacle. The ego vehicle starts with a

velocity of v0 = 20m
s

. Since we do not change the position

of the ego vehicle due to a possible position invariance

as mentioned in Sec. IV, it only remains to optimize the

velocity. After only one iteration of quadratic programming

and the subsequent binary search (see Alg. 2), the initial

velocity of 20m
s

is increased to 44.8m
s

, to the point where the

scenario is almost impossible to complete without accident.

Fig. 5. Scenario SA before and after the optimization.

B. Example Scenario SB

The next scenario SB is on an urban road in Munich

with two lanes, with traffic facing in the same direction

(ID=GER Muc 2 of [36]). The speed limit is 18m
s

. The ego

vehicle starts on the left lane with a velocity of 14m
s

, and

the other four traffic participants are on the right or behind

the ego vehicle, driving at 13-14m
s

. Directly in front of the

ego vehicle is a parked car, modeled by a static obstacle.

Fig. 6. Scenario SB before and after the optimization. For clarity, we do
not plot the drivable area of other traffic participants.

The velocities are changed to 13.3m
s

, 14.0m
s

and 12.5m
s

from front to rear on the right lane, and 15.4m
s

for the vehicle

on the left lane. Also, the other traffic participants on the right

lane were pushed closer together, in an attempt to wall off

the right lane. However, the ego vehicle still finds a spot to

slip in and pass the obstacle. Because of the higher velocity

of 17.9m
s

compared to the vehicle ahead, another evasive

maneuver directly after the static obstacle is required, making

the scenario very dangerous as shown in Fig. 7.

(a) Original drivable area. (b) Optimized drivable area.

Fig. 7. Drivable area of scenario SB before and after the optimization.

C. Example Scenario SC

Scenario SC is a rural road with two lanes, one for

each direction (ID=GER B471 1a). The speed limit is 28m
s

.

Ahead of the ego-vehicle is a long obstacle, simulating

a construction. It is blocking the whole lane, effectively

constricting the road to only one lane for about 60 meters.

On the other lane, two vehicles are coming towards the ego

vehicle: First, a very broad truck moving at 8.3m
s

, followed

by a normal car with 28m
s

. The ego-vehicle starts at 18m
s

.

The velocity of the ego-vehicle is increased to 27.5m
s

. The

starting position of the truck is moved into the construction

area, and its velocity is adjusted to 13.5m
s

. The car in the

back is pushed back even further, while changing its velocity

to 14m
s

. The resulting scenario can be described as follows:

The ego vehicle arrives at the construction zone, but has



Fig. 8. Scenario SC before and after the optimization. For clarity, we do
not plot the drivable area of other traffic participants.

to conduct an emergency break to let the oncoming truck

pass (situation at the top of Fig. 10). Once the way is clear,

it speeds up to pass through that area (situation in center

of Fig. 10) before the second car arrives, barely missing it

(situation at the bottom of Fig. 10).

(a) Original drivable area. (b) Optimized drivable area.

Fig. 9. Drivable area of scenario SC before and after the optimization.

VI. CONCLUSIONS

We have presented an approach to automatically alter

traffic situations so that they become more critical in the

sense that the solution space of the ego vehicle is reduced.

Our approach is the first that can create situations optimized

with respect to the drivable area of the ego vehicle, making

it possible to realize a desired criticality. Since the presented

approach does not require any user interaction, it can be

used to adjust large sets of traffic situations. While we do

not guarantee that we find the most critical situation, most

returned situations are significantly more critical with respect

to the solution space. Although the computation of critical

scenarios consumes computation time, our experiments have

shown that it only takes a few seconds to obtain a critical

situation. This would otherwise require several thousands of

kilometers to be driven in a simulator.
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