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Abstract— We propose an intersection crossing algorithm
for autonomous vehicles with vehicle to infrastructure (V2I)
communication capability. All vehicles attempting to cross the
intersection share their expected time of entering a critical zone
based on decentralized model predictive control (MPC) results.
These time suggestions are collected at a central intersection
management (IM) unit, which is responsible for coordinating
the vehicles. A time-based negotiation process between vehicles
and IM is conducted to find a safe solution. An advantage of
the approach is that model-based vehicle data is kept private,
while the computational burden of the intersection coordination
is distributed between the central IM and the vehicles. We prove
the existence of a feasible solution and illustrate the introduced
negotiation algorithm by simulation of an intersection crossing
scenario with disturbances. The results show that vehicles
remain in a safe distance without sharing private data.

I. INTRODUCTION

A recent trend in the automotive industry is the devel-

opment of autonomous vehicles. Commonly, these vehicles

include the capability of communication with their environ-

ment to share information with other traffic participants and

communicate with data clouds. Such applications are referred

as vehicle to vehicle (V2V) and vehicle to infrastructure

(V2I) technologies. A broad research effort has been spent

on regulating traffic from a global perspective and it has been

shown that those technologies have advantages compared to

current traffic management systems [1]. Intersections play

an important role and are often the bottleneck within urban

traffic control. In general, vehicles approaching an intersec-

tion share information with either an intersection system

(V2I) or with other vehicles (V2V). As a result, they receive

or compute a feedback signal which describes the desired

behavior and leads to a safe and smooth crossing. The use

of traditional traffic lights and signs becomes unnecessary.

The goal of an intelligent guiding intersection is the reso-

lution of conflicts among crossing vehicles, where conflicts

are situations leading to an unsafe behavior of participants.

Surveys on general motion coordination for distributed struc-
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tures are provided in [2] and [3], while [4] treats the specific

case of intersection management.

Significant work has been proposed to solve the scheduling

problem for intersection crossing in order to define an

appropriate crossing schedule for the vehicles [5]–[9].

However, above mentioned works make coarse assump-

tions on the local control of the vehicles what can result in

the loss of feasibility of their solutions. A stronger focus on

finding optimal or close-to-optimal solutions from a control

perspective is proposed e.g. in [10]–[14]. These approaches

assume either a given crossing order, or use a simplified

scheduling method, such as first-come-first-serve.

Recent work also considers to find the system-wide op-

timum which contains the determination of the crossing

order in relation with control optimization for the vehicles.

Initially, [15] proposes a linear programming formulation

incorporating a traffic model to solve the problem. Alter-

natively, mixed integer programs (MIP) are a natural way to

combine the combinatorial scheduling nature with an optimal

control problem of the vehicles [16], [17]. Last but not least,

model predictive control (MPC) is commonly used to solve

the intersection problem since it represents a powerful way

to provide computationally tractable problems and result in

close-to-optimal solutions [12], [14], [17]–[20].

In this paper, we present an algorithm for safe intersection

crossing based on a decentralized V2I communication archi-

tecture. Thereby, we assume that local vehicle control units

run model predictive controllers, connected to a centralized

scheduling unit, referred to as intersection management (IM).

The contribution of this work covers the consideration of

privacy-related data exchange between the vehicles and the

IM infrastructure, what is of interest in the field of vehicle

coordination [21], [22]. Thereby, we use the term privacy

to indicate that no vehicle information which enables to

draw conclusions about local vehicle functions or behav-

ior, such as model data or trajectory profiles, needs to be

shared with third parties. By explicitly integrating a global

timing coordination result as constraint in the local MPC

formulation, the communication effort is kept low due to

the little amount of information exchange. Additionally, the

coupling between the coordination level and local control

aims to find a close-to-optimal solution compared to a

centralized approach. The global coordination is formulated

as a convex quadratic optimization problem and thus scales

well, while the local vehicle MPC problem can be formulated

at arbitrary detail. The scheduling order is centrally defined

based on predictions received from the local vehicle control

units. Despite the low information exchange, we are able to
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Fig. 1. Exemplary intersection scenario with an intersection management
(IM) system and V2X capable vehicles.

provide a feasibility guarantee of the centralized scheduling

proposition for the vehicle control problems.

The remainder of the paper is organized as follows. Sec-

tion II introduces the vehicle control problems in Subsection

II-A, the global IM optimization in Subsection II-B, and

in Subsection II-C a simplified intersection representation.

The following Section III describes the procedure of the

proposed negotiation algorithm in Subsection III-B, after

stating preliminary assumptions in Subsection III-A, and

provides a feasibility guarantee of the solution in Subsection

III-C. Next, Section IV illustrates the algorithm procedure

numerically. Finally, Section V contains concluding remarks

and an outlook for future work.

II. PROBLEM STATEMENT

Before formally setting up the problem, we provide an

intuition on the solution approach. Fig. 1 illustrates our sys-

tem setup with an exemplary intersection crossing scenario.

Each vehicle solves a local path following control problem.

At the point the vehicle approaches the intersection area it

shares its expected time of arrival at the intersection point

with the IM, which receives data from all vehicles. If the

IM detects a safety relevant conflict, it imposes updated

reference times, specifying when the the affected vehicles

should arrive at the intersection. It is worth mentioning,

that no model related information is exchanged but only

time values. Thus, it is possible that the IM reference time

is infeasible for vehicles. This is recognized and adjusted

by the IM through a suggested feedback time from the

vehicles regarding the reference. Conducting this negotiation

iterations the deviation of the vehicle suggestions and the

IM reference times converges towards zero assuming that

negotiating vehicles are in a brake-safe distance to the

intersection. While the vehicles are in the negotiation zone

the procedure is repeated in an any-time fashion to cope for

uncertainties in both the models and the environment.

Now, the components of the problem are formulated. First,

we propose model-based in-vehicle (local) controllers subject

to constraints connecting the local agents (vehicles) with the

supervisory layer (IM), similar to [11], [12], [17]. Second,

the optimization problem for the IM system is formulated.

And finally, we explain the representation of the intersection

itself.

A. Vehicles

We assume that each vehicle is equipped with a local

MPC controller, which determines the vehicles’ trajectories

according to given paths.

Each vehicle i ∈ {1, ..., N} uses a discrete-time private

vehicle model for its local MPC problem. We describe these

models by

xi(k + 1) = fi (xi(k), ui(k)) , (1)

where xi(k) ∈ R
ni and ui(k) ∈ R

mi are the state and input

vectors at discrete time instant k, respectively. An arbitrary

state description can be assumed, however, it shall contain

information on the vehicle’s position and velocity.

The MPC problem is described by

minimize
ui

M−1
∑

k=0

li (xi(k), ui(k)) + Vi(xi(M)) (2a)

subject to xi(k + 1) = fi (xi(k), ui(k)) , (2b)

xi ∈ Xi, ui ∈ Ui, (2c)

xi(M) ∈ Xi ⊂ Xi, (2d)

x(kref,i) = xref,i, (2e)

with the prediction horizon M . Problem (2) optimizes the

cost function li (xi(k), ui(k)) and terminal cost Vi(xi(M))
subject to the model dynamics (1), the sets Xi and Ui

which constrain the states and input sequences xi and ui,

respectively, as well as the terminal constraint (2d) with

terminal set Xi. Furthermore, we introduce the time-based

constraint (2e), where kref,i ∈ {1, ...,M} is a reference time

and xref,i ∈ Xi the corresponding reference state. These will

be shared by the IM to coordinate the vehicles through the

intersection area once the latter is reached by a vehicle’s

prediction horizon. Note that (2) without (2e) represents

a standard MPC description which can be used for path

tracking control. By solely adding (2e) once the vehicle is in

the vicinity of an intersection we make the problem suitable

for the proposed intersection negotiation process.

According to [23], we know that there exists a minimum

for the optimization (2a) - (2d) if

• M is finite,

• fi(·), li(·), and Vi(·) are continuous,

• Ui is compact, and Xi as well as Xi are closed,

• the initial state xi(0) ∈ Xi.

Our feasibility analysis in Section III-C proofs the existence

of a minimum when (2e) is added to the problem.



B. Intersection Management System

The IM computer has knowledge of the predicted arrival

times at the intersection zone, tsug,i, of all vehicles i ∈
{1, ..., N}. The crossing order is determined based on the

sorted first time suggestions in the initialization phase of each

negotiation round. It is worth to mention that the crossing

order is determined in each control time step and therefore

can change while vehicles are driving within the negotiation

zone. The result is a order set O containing indexes i ∈
{1, ..., N} inserted according the determined crossing order.

Furthermore, its main responsibility is to ensure a specified

safety time between crossing vehicles. We define the safety

time between two consecutive vehicles i and i+1 as ts,i,i+1.

Next, we propose a quadratic optimization problem for

finding optimal intersection crossing times, by considering

the safety times:

minimize
tref

(tref − tsug)
T
Q(κ) (tref − tsug) + cT (tref )

(3a)

subject to tref,1 + ts,1,2 ≤ tref,2 (3b)

tref,2 + ts,2,3 ≤ tref,3
...

tref,N−1 + ts,N−1,N ≤ tref,N

Thereby, tref = (tref,1, ..., tref,N )T is a vector in R
N
+ which

contains time reference values indicating when the vehicles

are supposed to be at the intersection zone. On the contrary,

tsug = (tsug,1, ..., tsug,N )
T

is a vector in R
N
+ with the

stacked time predictions of the vehicles. These vectors, tref
and tsug are sorted according the index set O. The diagonal

matrix Q(κ) ∈ R
N×N weights the deviation of reference and

suggested time values for each vehicle, thus the diagonal of

Q(κ) is of the form (q1(κ), ..., qN (κ)). Each qi(κ) ∈ R is

adjusted after a negotiation time step κ by

qi(κ+ 1) = qi(κ) + ǫ | tref,i − tsug,i |, (4)

where ǫ is an update constant. Similar, the constant vector

c = (c1, ..., cN ) weights the time reference values. The

constraints (3b) ensure the safety times between crossing ve-

hicles. Note that also tsug and tref depend on κ. For reasons

of presentations, however, we skip this dependency and refer

to it only when required for explanation. To conclude, the

optimization (3) considers three intuitive tasks. The quadratic

term orientates the reference result towards the vehicles’

suggestions, while the linear term minimizes the reference

time values itself to obtain a high vehicle throughput. In

addition, the constraints ensure a safety distance between

the vehicles.

C. Representation of Intersection

We simplify the intersection scenario shown in Fig. 1

to an intersection problem of two vehicles. This is illus-

trated in Fig. 2. Each vehicle follows a pre-defined path.

The intersection point I represents the position where a

vehicle enters the intersection zone, as illustrated in Fig. 1.
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Fig. 2. Simplified illustration of the intersection scenario for the example
i ∈ 1, 2. Presented are the paths of the vehicles, the intersection zone I
reduced to a single point, the start of the negotiation zone pneg,i, di,i+1,
the minimum distance to I when the predecessor vehicle is at I , and the
minimum stopping distance pstop,i.

Furthermore, the negotiation zone introduced in the same

figure is mapped on the vehicles’ paths indicated by the

points pneg,i. The geometric configuration of the intersection

and the chosen path of a vehicle as well as its dimensions

and velocity influence the safety interval ts,i,i+1 of two

consecutive vehicles, introduced in Subsection II-B. In this

paper we assume a constant approximation of this value. To

ensure safe intersection crossing for general cases this shall

be investigated in more detail in future work. The distance,

di,i+1, describes the closest allowed position to I of vehicle

i+1 at the time vehicle i approaches I if ts,i,i+1 is fulfilled.

The minimal stopping distance to I for vehicle i is illustrated

with pstop,i and marks the position where a safe stop before I
would still be possible according to the states and dynamics

of the vehicle.

III. NEGOTIATION ALGORITHM

This section describes in Subsection III-B the procedure

of the V2I-based negotiation algorithm for safe intersection

crossing, after presenting some preliminary assumptions in

Subsection III-A. A formal representation is provided in

Algorithm 1, which is described in the following. Moreover,

Fig. 3 graphically illustrates the signal flow and optimization

problems in both the IM system and the vehicles. Thereafter,

in Subsection III-C, we investigate the algorithm convergence

and provide a feasibility guarantee for the local MPC prob-

lems.

A. Preliminaries

We assume that vehicles follow their pre-defined paths and

compute their local trajectories based on a MPC control law.

If a vehicle enters the negotiation zone during (k − 1, k], it

participates in the negotiation process starting at time k. Let

us define the following state sets.



Algorithm 1 Intersection Crossing Negotiation

1: clock ← k
2: procedure INITIALIZATION

3: Vehicles:

4: for i ∈ {1, ..., N} do (in parallel)

5: compute MPC (2), determine tsug,i
6: send tsug,i → IM

7: IM:

8: determine vehicle crossing order for current negoti-

ation round

9: procedure NEGOTIATION

10: κ = 1 ⊲ negotiation loop counter

11: Q(κ)← Qinit

12: repeat

13: IM:

14: compute tref considering ts and tsug (3)

15: broadcast tref,i → vehicles i ∈ {1, ..., N}

16: Vehicles:

17: for i ∈ {1, ..., N} do (in parallel)

18: compute MPC (2)

19: send tsug,i → IM

20: IM:

21: update cost ∀i ∈ {1, ..., N}:
22: qi(κ+ 1)← qi(κ) + ǫ | tref,i − tsug,i |
23: if | tref,i − tsug,i |< δ then

24: return success

25: until κ = κmax

26: Vehicles:

27: apply control

28: clock ← k + 1

IM
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Fig. 3. Signal exchange and optimization problems during negotiation
process.

Definition 1: [23] Xk→f,i is the set of states

(Xk→f,i ⊆ Xi) which are steerable by a feasible ui ∈ Ui to

Xf,i in k or less steps.

Additionally, we define a minimum-step set:

Definition 2: Xkmin→f,i is the set of states with a min-

imum possible k for which a feasible ui ∈ Ui exists

that steers the system to Xf,i in exactly kmin steps and

Xkmin→f,i is not empty.

Finally, a brake-safe set is defined.

Definition 3: Xstop,i = {xi|vi = 0, pi < I} is a terminal

set wherein the velocity vi and position pi are elements of

the state vector xi, and I is the reference position of entering

the intersection zone. Furthermore, Xinter,i = {xi|pi = I}.
For all vehicles i ∈ {1, ..., N} in the negotiation process,

the following assumption holds:

Assumption 1: If a vehicle participates in the intersection

negotiation process, for its current state it holds xi ∈
Xk→stop,i and Xk→stop,i is not empty.

Based on Assumption (1), we further assume:

Assumption 2: Xk→stop,i ⊂ Xkmin→inter,i, that means

for all vehicles which have the ability to stop at pi < I
there exists also a feasible control sequence ui which steers

the system to pi = I in kmin steps.

B. Procedure Description

The negotiation rounds are conducted within the inter-

sampling period while vehicles are driving. Thus, an

achieved negotiation result during (k − 1, k] affects the

control input ui(k), where the clock k is assumed to be

synchronized system-wide.

At the beginning of each control time step k for k ∈ N0,

every vehicle conducts a MPC computation according to (2)

and shares the resulting predicted time, tsug,i, at I (compare

Fig. 2) with the IM system (lines 2 - 8 of Algorithm 1).

Based on the collected time suggestions of all participating

vehicles, the IM computer determines the crossing order

of the vehicles through the intersection zone. If a vehicle

participates the first time, since it just entered the negotiation

zone, tsug,i is computed based on (2) without considering

(2e). Next, the cost matrix is initialized with Qinit, then

the negotiation process starts by computing the reference

times tref according to problem (3), where the suggestions

of the vehicles tsug and the safety time ts are considered.

The resulting tref,is are broadcast to the respective vehicles

(lines 13 - 15). Consequently, the vehicles try to realize the

global time suggestions in their local problem by applying

the hard constraint (2e) within (2). By using methods such

as exact penalty functions the possibility of an infeasible

constraint (2e) can be considered [24]. This leads to a new

time suggestion tsug,i from the vehicles, where in the feasible

case it equals the reference tref,i and else the resulting tsug,i
presents an attempt to achieve tref,i as close as possible

(lines 16 - 19). After receiving the new vehicle suggestions

the IM updates the cost matrix according to line 22 of

Algorithm 1. If tsug,i and tref,i differ, the cost qi(κ + 1)
increases (lines 20 - 22). We call the negotiation terminated

when the deviation of | tref,i − tsug,i | is bounded by δ



(lines 23 - 24). Otherwise, it stops after a maximum number

of iterations κmax (line 25). Finally, the receding horizon-

fashioned control can be applied for time step k and time

proceeds to k + 1 (lines 26 - 28). We can summarize the

order of time values during the negotiation procedure as

Initialization → ... → tref (κ) → tsug(κ) → Q(κ + 1) →
tref (κ+ 1)→ tsug(κ+ 1)→ ... .

Remark 1: In order to cope with the conversion between

the discrete domain in problem (2) to continuous variables

in (3) we use discrete values in the continuous problems, i.e.

tsug = ksug . Contrary, we apply the rounded values (floor

function) of tref as kref in the constraint (2e) and in the

cost update (4).

C. Termination and Feasibility

Before showing that the algorithm terminates, we make

a statement for the time suggestions from the local control

units.

Proposition 1: For the set of feasible times Tf,i = {t|pi =
I} it holds Tf,i ∈ [tmin,i;∞).

Proof: From Assumptions 1 and 2 we know that there

exists a tmin,i = kmin,i. Furthermore, as Assumption 1

holds, the set of states Xstop,i = {xi|vi = 0, pi < I} is

a feasible set which leads to {t|p = I} → ∞.

Theorem 1: Given Assumptions 1 and 2, the intersection

negotiation algorithm terminates and its solution is feasible

for the local optimization problems (2), such that tref,i ∈
Tf,i for all i ∈ {1, ..., N}.

Proof: We show the asymptotic convergence of Algo-

rithm 1, where for brevity of notation δ (line 23) is neglected.

Thus, tref,i = tsug,i, i ∈ {1, ..., N} is used to proof Theorem

1 and ensure feasibility of problem (2).

From constraint (2e) we know tsug,i(κ) = tref,i(κ) if

tref,i(κ) ∈ Tf,i, since we assume that the stated con-

ditions in Subsection II-A are met. Furthermore, since

(4) is a non-decreasing function qi(κ) increases with

growing κ if tref,i 6= tsug,i. Knowing that cT in

(3a) is constant, we assume that qi ≫ ci, for i ∈
{1, ..., N}, holds and thus the cost function of (3) re-

duces to (tref − tsug)
T Q(κ) (tref − tsug) + cT (tref ) ≈

(tref − tsug)
T
Q(κ) (tref − tsug).

Now, consider the case tref,i(κ) ≥ tsug,i(κ − 1). We

have tmin,i ≤ tsug,i(κ − 1) ≤ tref,i(κ) and consequently

tref,i(κ) ∈ Tf,i. This results in tsug,i(κ) = tref,i(κ) and the

cost value, qi(κ+ 1) = qi(κ), remains constant.

Next, we investigate all tref,i(κ) < tsug,i(κ− 1). For the

consecutive time suggestion it holds tsug,i(κ) ≤ tsug,i(κ−1)
and tref,i(κ) ≤ tsug,i(κ), with equality if tref,i(κ) ∈ Tf,i

what results again in an constant cost update. However,

if strict inequality holds (tref,i(κ) < tsug,i(κ)) the cost

increases, qi(κ + 1) > qi(κ). We summarize that at ne-

gotiation step κ the time suggestion, tsug,i(κ) has either

converged to tref,i(κ), or it holds tsug,i(κ) > tref,i(κ) with

qi(κ + 1) > qi(κ). Because of this cost increase of all

tref,i(κ+1) 6∈ Tf,i and constant costs for all tref,i(κ+1) ∈
Tf,i, we can draw the conclusion tref,i(κ+1) > tref,i(κ) if

tref,i(κ) 6∈ Tf,i. Note, that the increase of the reference-time

tref,i(κ+ 1) > tref,i(κ) does not affect the convergence of

any consecutive vehicles j > i. If due to an active constraint

(3b) such a increase causes tref,j(κ + 1) > tref,j(κ) and

tref,j(κ) ∈ Tf,j , then tref,j(κ+ 1) remains in Tf,j . For all

tref,j(κ) 6∈ Tf,j the previous reasoning for i holds. There-

fore, | tref,i(κ+1)−tsug,i(κ+1) |= 0 if tref,i(κ+1) ∈ Tf,i.

Else for tref,i(κ+1) 6∈ Tf,i we find asymptotic convergence

| tref,i(κ+1)−tsug,i(κ+1) |<| tref,i(κ)−tsug,i(κ) | which

will result in tref,i(κ+ 1) ∈ Tf,i.

IV. NUMERICAL RESULTS

For the simulation setup, we assume perfect path tracking

capability of the vehicles, what enables us to model the

vehicles driving on a straight line. We further model the car

fleet, consisting of homogeneous vehicles, with the discrete

and linear time invariant point mass model

xi(k + 1) = Aixi(k) +Biui(k), (5)

where the system and input matrices are defined as

Ai =

(

1 Ts

0 1

)

and Bi =

(

T 2
s /2
Ts

)

, (6)

respectively. Therein, Ts = 0.1s is the control sampling time

and xi = (pi, vi)
T

∈ R
2 contains the position state pi and

velocity state vi of vehicle i. The input ui ∈ R in (5) is the

vehicle acceleration. We specify the MPC problem (2) as

minimize
ui

M−1
∑

k=0

(vi(k)− vref,i(k))
2

(7a)

subject to xi(k + 1) = Aixi(k) +Biui(k), (7b)

xi ∈ Xi, ui ∈ Ui (7c)

pi(kref,i) = pref,i, (7d)

where Xi is the set {(pi, vi) ∈ R
2 | pi ∈

pathi, vi ∈ [0, 15 m/s]} and Ui = {ui ∈ R | ui ∈
[

−4 m/s2, 4 m/s2
]

}. We use a horizon of M = 100 and

vref,i(k) = 8.3m/s is used to integrate an environmental

velocity reference. The conditions for the existence of a

minimum in Subsection II-A are met and we have a solution

to the optimization problem. Note that we simplified the

MPC formulation by neglecting the terminal constraint and

cost. Furthermore, in (7d), we reduce the time constraint (2e)

by only considering the position component with a reference

position pref,i at a reference time kref,i. Next, we define the

vector ts = (0.5 s, ..., 0.5 s)
T

∈ R
N−1 with constant safety

time between vehicles. During simulation the weights c of

the reference times in (3) are kept constant at value one,

while Q(κ) is dynamically updated according to Algorithm

1.

Fig. 4 illustrates the negotiation process introduced in

Algorithm 1 for the worst case scenario where all vehicles

request to enter the intersection zone at the same time. In this

case 4 vehicles are in the negotiation zone and suggest an

arrival time of tsug = 1.1s, which is the initial negotiation

iteration 0 (lines 2 - 8 of Algorithm 1). Subsequently, the
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IM splits these suggestions according to the safety distance

ts. During negotiation, the increasing costs q1(κ) orients

tref,1 towards tsug,1 (line 22 in Algorithm 1). Once all

deviation values are below a certain bound (convergence

bound in bottom plot of Fig. 4), the algorithm is converged

and the latest suggested time values can be applied to

the local control of the vehicles. After explaining the

negotiation process, we show the simulation of a complete

intersection crossing scenario with any-time replanning in the

disturbed case. Therefore, we model vehicles approaching

to an intersection from tree different lanes lane 1, lane 2,

and lane 3. Vehicles are added randomly to the entrance of

the intersection negotiation zone at position −15m. After

the vehicle negotiation converged, as described above, the

respective control input is applied to the systems. A super-

visory function implemented in the IM computer checks the

divergence of tsug and tref during every control time step.

If necessary, a new negotiation round is started. We model

this necessity by applying a random disturbance (marked

with  in Fig. 5) in the speed state vi of vehicles vi. For

example, such a disturbance appears for the second vehicle

v2 at time t = 1.2s. This leads to a new negotiation process

and consequently to a different crossing order of the vehicles

as originally planned.

TABLE I

TIME SUGGESTIONS FROM VEHICLES BEFORE AND AFTER APPEARANCE

OF DISTURBANCE

disturbance at t = 1.2s
vehicle tsug before tsug after

v1 2.1s 2.1s
v2 2.6s 3.7s
v3 3.2s 2.6s
v4 3.8s 3.1s
v5 4.3s 4.3s

Table I lists the suggested times tsug,i for vehicles v1 - v5

after the converged negotiation rounds. The middle column

shows the suggested arrival times at the entrance of the

intersection zone before the disturbance emerges, while the

right column illustrates the changed order as vehicle v2 was

disturbed.

At the intersection zone (position 0 in Fig. 5) all vehicles

have the specified safety distance ts = 0.5s. The reference

velocity for crossing the intersection is vref = 8.3m/s,

marked by the dashed line in Fig. 5. If necessary, the vehicles

differ from vref to meet the imposed time constraints from

the IM. This results in the speed profiles illustrated in the

lower plot of Fig. 5.

V. CONCLUSIONS

We introduced a negotiation approach for safe intersection

crossing of automated vehicles. Local model-based control

predictions from vehicles are shared with a central IM com-

puter, which detects safety critical scenarios. Furthermore, it

advises the vehicles to adjust their control signals to achieve

an appropriate arrival time in case of unsafe scenarios. If the

reference time constraint from the IM is not feasible for the

vehicles, they suggest a new value considering the reference

as a soft constraint in their local MPC problem. Therefore,

the resulting negotiation procedure uses no private crucial

vehicle data to solve the decentralized optimization problem.

Subject to future work will be the consideration of the

influence of coupled vehicle dynamics due to e.g. platooning

scenarios. There is the need to investigate computational

versus performance measures and the influence of the MPC

horizon length to the performance behavior. Furthermore,

methods for defining scenario dependent safety times will

be investigated.
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