Reachset Model Predictive Control for Disturbed Nonlinear Systems

Bastian Schiirmann, Niklas Kochdumper, and Matthias Althoff

Abstract— The popularity of model predictive control (MPC)
is mainly founded on its easy implementation and its ability to
consider state and input constraints. For future applications in
safety-critical systems, however, it is necessary to provide formal
guarantees of safety despite disturbances and measurement
noise. In this paper, we include reachability analysis in an MPC
approach to obtain provably safe controllers which are easy
to implement. We consider continuous-time, nonlinear systems
affected by disturbances and measurement noise. In contrast
to most existing techniques, we explicitly consider the compu-
tation time and guarantee the satisfaction of state and input
constraints despite the previously-mentioned disturbances. We
use a novel type of dual mode MPC, which does not require
the computation of Lyapunov functions. We demonstrate the
applicability of our approach with a numerical example of
a chemical reactor, where we show the advantages of our
approach compared to existing MPC.

I. INTRODUCTION

In the last decades, model predictive control has gained a
lot of interest, both in academia as well as in industry. Ad-
vantages of this control method include its ability to provide
optimized control trajectories and to handle constraints for
both states and inputs. This, and its rather easy implemen-
tation, are the main reasons for its popularity in industry.
With growing interest in safety-critical applications, such as
autonomous driving or robots working together with humans,
current techniques for model predictive control have to be
enhanced to provide formal guarantees of correct behavior
despite complex dynamics, limited actuation capabilities,
external disturbances, and sensor noise.

Different techniques are proposed to achieve the above-
mentioned goals, both for linear [5] and nonlinear systems
[7], [21]: Many approaches optimize the center trajectory
and use a second auxiliary controller to track it, thereby
keeping the system in a “tube” around this trajectory. For
linear systems, this works well due to the superposition
principle [14], [19]. For nonlinear systems, this is harder,
and different auxiliary controllers have been proposed, e.g.,
sliding mode controllers [27], dynamic games [17], or even a
second MPC controller [18]. Recent approaches suggest the
application of contraction theory to obtain a controller [29].
Other developments are parametrized [25] and homothetic
MPC [26], which can adapt the tube size. Some approaches
use interval arithmetic [16] and reachable sets based on
zonotopes [6] to compute the reachable sets online.

This work is partially supported by the European Commission under the
project UnCoVerCPS (grant number 643921) and by the German Research
Foundation (DFG) project faveAC (grant number AL 1185/5-1).

The authors are with the Department of Informatics, Technische
Universitdt Miinchen, Boltzmannstr. 3, 85748 Garching, Germany (e-
mail: bastian.schuermann, niklas.kochdumper,
althoffj@tum.de)

In contrast to regular MPC, which requires most computa-
tions and optimizations during runtime, the majority of these
are performed offline in explicit MPC. This works for linear
[1], [10] and for nonlinear systems [12], [22], even with
disturbances [24], by dividing the state space into different
partitions and computing a (sub-)optimal controller which
satisfies the constraints offline in advance.

While a number of different approaches already exist, the
question of how to obtain efficient and provably-safe MPC
for constrained and disturbed nonlinear systems remains
open. Due to the implicit nature of regular MPC, it is
often not possible to apply formal verification tools like
reachability analysis [2], [4], [8] in order to prove safety.
While some approaches compute reachable sets online, they
face the problem that their reachability analysis methods
produce large over-approximations. That is also the case
for other techniques with implicit safety guarantees, e.g.,
the contraction-based approach [29], which easily becomes
rather conservative, since the contraction set has to hold
everywhere in the considered state space. Explicit MPC, on
the other hand, does not have these problems. However, due
to the division of the state space, the computation scales
exponentially with the number of dimensions and constraints,
so that only small-dimensional systems can be considered.
Another problem which most MPC approaches face is that
most of them (with the exception of, e.g., [30]) do not
consider computation time, therefore neglecting the fact that
the time which is needed to perform the optimizations after
a new measurement leads to delays and therefore possibly
unsafe and unstable behavior. From a practical point of view,
it is also often a problem that most techniques require a
Lyapunov function in order to prove stability or to compute
invariant sets. For real world, complex systems, Lyapunov
functions are often hard to obtain.

The goal of this work is to combine reachability analysis
with regular MPC in order to obtain provably safe controllers
for disturbed nonlinear systems with constraints on states
and inputs. Our new approach aims at transferring safety
guarantees from reachability analysis to model predictive
control. As a consequence, operators are not required to
know any Lyapunov functions, nor have any other deep
knowledge of control theory. This makes our approach par-
ticularly appealing for problems in practice. We are even able
to consider the delay caused by the computation time of our
approach. We also do not need to pre-compute a fixed tube
size as required in many previously-mentioned approaches,
which reduces conservatism. In addition, we are able to take
continuous time dynamics and measurement noise, which are
neglected in many existing approaches but which are critical



to provide safety guarantees, into account.

The paper is organized as follows. After a formal problem
formulation in Sec. II, we present the main algorithm in
Sec. III. The applicability of the algorithm is demonstrated
in a numerical example in Sec. IV. This is followed by a
discussion of the algorithm in Sec. V and a conclusion in
Sec. VL.

II. PROBLEM FORMULATION

We consider a continuous-time system with disturbed,
nonlinear dynamics of the form

@(t) = f(2(t), ult), w(t)), (1)

with states z(¢) € R™, inputs u(t) € R™, and disturbances
w(t) € W C RE (W is compact, i.e., closed and bounded).
We do not require any stochastic properties for w(-); we only
assume that any possible disturbance trajectory is bounded
at any point in time in the compact set W. We denote this by
w(-) € W, which is shorthand for w(t) € W,Vt € Rf. We
use the same shorthand later for state and input constraints.
We denote the solution of (1) with initial state 2:(0), input
u(+), and disturbance w(-) at time ¢ as &(x(0), u(-), w(-), ).
The measurement of the system is modeled by a function h,
returning the measured state Z(t) subject to a compact set
of measurement errors }V C R°:

2(t) € X(t) = {h(x(t),n() |n(t) € V}.

If not all states are measurable, X (t) can also be obtained
by a set-based observer [9], [15].

The goal is to find an MPC controller which steers the
system from an initial state 2(0) € X in finite time into
a goal set Xy while minimizing some cost function. At the
same time, the controlled system must satisfy state and input
constraints despite disturbances and measurement noise, i.e.,

§(w(0),u(-),w(-),-) €, 2
u(-) €U, 3)

where X' and U are both convex sets in R™ and R™,
respectively.

III. REACHSET MODEL PREDICTIVE CONTROL

In this section, we present our novel reachset model
predictive control approach. After an overview, we provide
required definitions and further detail our approach. In the
end, we show all properties in the main theorem.

Overview

The basic idea of our reachset MPC is shown in Fig. 1.
Starting from the solution of the previous step (Fig. 1(a)),
we obtain a measurement Z(¢) at time ¢ (Fig. 1(b)). As there
might be measurement noise, we only know that we are
in some uncertain set X' (t), which is a singleton when the
state can be precisely measured. Based on this measurement,
we are looking for the optimal controller which steers the
system to the goal set X’;. Since we cannot optimize for an
infinite time horizon, we use a dual-mode MPC [20]. This
means we consider a final prediction horizon of length ¢

and require that the prediction ends in a terminal region {2
(defined formally later in Def. 4), for which we know a safe
and stabilizing controller.

Based on the obtained measurement, we optimize a new
reference trajectory xr.r(:-|t), which is tracked with a fixed
feedback controller. To solve the optimization problem and
to compute the reachable set, we need some time t., and we
apply the controller from the previous prediction to the sys-
tem during this time. Using reachability analysis, we predict
where we end after the optimization and computation of the
reachable set and use this set X'(¢+1,|t) as the initial set for
our optimization problem (Fig. 1(c)). We use the notation
(t 4 t.|t) to refer to the prediction for time ¢ + ¢. made
at time t. For efficiency reasons, we solve the optimization
problem for the center trajectory only, but with tightened
constraints (Fig. 1(d)). We then use reachability analysis to
check if all possible solutions X (+|t) are guaranteed to satisfy
all constraints (Fig. 1(e)). Only if this is the case, and if
the computations finish in the allocated time t., we apply
the new, guaranteed-safe solution. If not, we use a feasible
solution which consists of the solution from the previous
step, extended by the safe controller from the terminal region
(Fig. 1(f)). Therefore, under the common assumption that
we know a feasible trajectory at the initial time, we always
know a feasible solution, which we can use as a backup if we
cannot find a better feasible solution in the available time.
We then apply the solution for time At before we start the
next optimization problem based on the new measurement.
The feasible solution is defined as:

Definition 1 The feasible solution is a possible non-
optimal input trajectory, which leads to trajectories
E(x(t),u(-),w(), ) satisfying the constraints (2)-(3)
and ends in the terminal region ) after time ty:
E(z(t),u(-),w(-),t +tn) € Q.

After defining reachable sets, we explain all steps of our
approach in detail and discuss the guarantees at the end of
this section.

Reachability Analysis

To ensure the satisfaction of constraints despite distur-
bances and measurement noise, we use reachable sets:
Definition 2 For a system (1), the reachable set
Riuw(S) C R™ for a time t, inputs u(-) € U C R™,
disturbances w(-) € W C RY, and a set of initial states
S C R™ is the set of end states of trajectories starting in S
after time t, i.e.,
Riuw(S) = {z(t) € R"3x(0) € S,u(-) e U, w(-) e W
The reachable set over a time interval [t1,t2] is the union of
all reachable sets for these time points, i.e.,

Rity to)uw(S) = U Riuw(S).
tE[ty,ta]

If we consider the reachable set for a system with feedback
uyp(2(t)), then we denote by Ry, w(S) the reachable set
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Fig. 1. Ilustration of our reachset MPC approach: Beginning with a feasible
solution set X'(-|t — At) from the previous time step (a), we obtain the
measurement of the (possibly uncertain) state at time ¢ (b). Based on this
set of possible states, we compute the reachable set X (¢ + t.|t) (blue) for
the time t. which we need to solve the optimization problem (c). Starting
with the center of this reachable set, we optimize the reference trajectory
Zre(-|t) (green) for the time horizon ¢y (d). After the optimization, we
compute the corresponding reachable set X (+|¢) (green) (e). If all constraints
are satisfied for the reachable set, we use the new reference trajectory and
continue with the next iteration at time ¢+ At¢. If the solution is not feasible
or is not computed in time, we follow the feasible solution (red) from the
previous time step, which is extended by the auxiliary controller in the
terminal region €2 (f).

obtained if we consider the closed-loop dynamics &(t) =
flz(t), upp(2(t)), w(t)) subject to disturbances and mea-
surement errors. Since it is not possible to compute exact
reachable sets for most systems [23], we compute over-
approximations instead.

We represents sets by zonotopes due to their favorable
properties for reachability analysis [2]:

Definition 3 A set is called a zonotope if it can be written
as

Z:{:UGR”

x:chiG)\,)\E [71,1]”}.
i=1

Here, ¢ € R"™ defines the center of the zonotope, and G €
R™*P jts generator matrix. We use (¢, G) as a more concise
notation of Z.

Dual Mode MPC

As is common in MPC, we use dual mode MPC [20] to
limit the prediction horizon. We use the control law

uo(2(t)) = Koi(t) )
to stabilize a terminal region ) and the control law
=o(t) + K(2(t) — zres(t)) (5)

which controls the system into the terminal region. Here,
v(t) denotes the reference input, which is optimized online,
and x,.y refers to the corresponding state trajectory. The

unpco(2(t))

feedback matrices K € R™*™ and Kg € R™*™ can be
different from each other, and K can even be time-varying as
discussed at the end of this section. We use linear controllers
for faster computation times; however, all concepts presented
also work for nonlinear controllers. The terminal region €2 is
defined as a region of attraction in which the state and input
constraints are satisfied:

Definition 4 Given a dynamical system of the form (1) and
a terminal control law (4). The terminal region €}, Xy C
Q C X, is defined as

Q= {x‘Vn €V :h(z,n) € Q}’

Using a terminal region is standard in many MPC ap-
proaches and is required to provide guarantees beyond the
finite prediction horizon [20]. It is computed before the
controller is applied online. There exist different ways to
compute an approximation of an invariant set of a controller;
many of them use Lyapunov functions, which might be
hard to find in practice. While a region of attraction can
also be computed using Lyapunov functions, there also exist
methods to compute them automatically and in many cases
more efficiently using reachable sets [11]. The region of
attraction is usually much larger than a positive invariant set,
which provides more flexibility to our approach. In addition,
by checking the satisfaction of the constraints during the
execution of the algorithm from [11], we can automatically
compute a safe region of attraction, i.e., a region of attraction
for which the state and input constraints are satisfied despite
disturbances.

As is common in dual mode MPC, we also use this
terminal region to obtain the feasible solution as a backup
plan by using the remainder of the previous solution:

ve(rlt + At) = v(r|t) for T = [t + At + t., t +tn]. (6)

Once we reach the terminal region at time ¢+ ¢y, we switch
to the terminal controller (4).

During operation, we compute future reachable sets X (t+
Att) = Ratupypew(X(t)) based on the current input
trajectory v(-|t), with X'(£) composed of the measured state
Z(t) plus measurement uncertainty. Note that even though
X (t) might be partly outside of the reachable set, we know
from the over-approximative nature of the reachability anal-
ysis that the real state x(¢) must lie inside the reachable set
from the previous step, i.e., z(t) € X (t|t — At). Therefore,
we only have to consider the intersection X'(t) NX (¢|t — At)
as the initial set for the next optimization. This is a common
approach used in set-based observers [9], [15].



Considering the Computation Time

When starting the optimization for a new measurement,
we consider its computation time t.. To be safe, we need
to know the reachable set after ¢, due to uncertainties and
disturbances:

X(t + tClt) = th,uMPc,W(X(t))'

By applying the reference trajectory plus feedback controller
from the previous optimization, we know that the reachable
set after the optimization time is inside the reachable set
from the previous optimization.

The allowed computation time ¢, for the optimization and
reachability analysis is a user-defined design parameter. Note
that £. can be estimated quite well by restricting the iterations
of the optimization algorithm and by considering the fact
that the computation time for the reachability analysis scales
approximately linear with the considered time horizon. How-
ever, inappropriate values of ¢, do not impede the desired
properties in (2)-(3), as we can always go back to the feasible
solution if t. is not sufficient to find a new solution. We
compute the reachable set for this alloted time (see Fig. 1(c)).
If the optimization algorithm finishes before that, we keep
following the previous solution until the designated time,
from which point on we apply the new solution. If we reach
this point in time without a new feasible solution, we simply
keep following the previous feasible solution and start a new
optimization (see Fig. 1(f)).

Contraction Constraint

An important consideration in MPC is to ensure the
convergence to the goal set in a finite amount of time. While
this could be done using Lyapunov functions, we use an
approach similar to [6] which does not require a Lyapunov
function. Through the construction of the terminal region
using the approach from [11], we know that after reaching
the terminal region, we converge in finite time to the desired
goal set. Therefore, we only have to ensure that we converge
in finite time to the terminal region. To do so, we introduce
the distance operator from [6]:

Definition 5 Given sets X and ® = 1/(1+ «)Q, with « €
RF, | X||o is defined as

| X|l¢ =min B, st. X C (1+5)®, 3>0.

As mentioned in [6], ||X |lo is equal to zero if and only
if X C @, and if ¢ Q, it follows that ||z]¢ > . The
authors also show that if ® is a polyhedron defined by the
intersection of half-spaces of the form ® = {z : dl'z <
ei,t € {1,...,p}} that contains the origin (e; > 0,i €
{1,...,p}) and X = (¢, G) is a zonotope, then ||X||¢ can
be obtained from the equality

Y dT — &g GTdi
”X”‘i’:maX{O,lnllax ic—ei+| ,1}’

P ei

where ||GTd;||; denotes the sum of the absolute values of
vector GTd;. By defining the distance with respect to the
tighter set ®, we ensure a desired contraction rate, as shown
later in Thm. 1.

Optimal Control Problem

The optimization problem which is solved online at time
t is given by

min J (X(t + tc|t),v(-|t)) )
t+tn
— min / L(pes (716), v(7|0))dr + V (re (t + tu]E)
v(-1t) Jert,
S.t.
Treg(t +te|t) = center(X (¢ + t.|t)), (8)
Tref(t+T[t) = f(@res(t + 7[t), v(t + 7[t),0), )

V7 €[t +te,t +tN],

v(rlt) eU(TIt), VT E[t+te,t+1tn], (10)
Trep(TIt) € X(T|t), VT E[t+tert+1tn], (11)
Trep(t+tn|t) € @, (12)
N(t)—1
S lwres (t+ kAL |0
k=1

N(t—At)—1
= > st — At + EALE = Ab)[lo < —a, (13)
k=1

where center (X (t+t.|t)) refers to the center of the zonotope
X(t+t.|t) and N(t) = mingey Tpep(t + EAL|t) € B.

We minimize the cost function J(-) in (7), consisting of
a positive definite state cost L(-) and a positive definite
terminal cost V'(-), with respect to the center trajectory,
which starts from the center of the reachable set (8) after
t.. To ensure the satisfaction of the constraints for the
disturbed, closed-loop dynamics, we use tightened time-
dependent input (10) and state constraints (11), Z(-) and
X(-), respectively, as discussed later. As is common in
dual-mode MPC, we have a terminal constraint (12), which
requires that the center trajectory ends in a tightened terminal
region ®. Finally, we have a contraction constraint (13) with
parameter & (not necessarily equal to «), which ensures
convergence to the terminal region ).

Tightened Constraints

To be able to apply our MPC approach online, we
only optimize the center trajectory without computing the
reachable sets during this optimization. While it is possible
to optimize over reachable sets [28], this is not possible
in real-time for fast systems. The authors of [6] propose
optimizing over the reachable sets; however, they do not
discuss the computation times and their approach is rather
conservative as demonstrated later in Sec. IV. Instead, we
optimize only the center trajectory and tighten the constraint
sets accordingly, such that state and input constraints are met.
At the end of the optimization, we perform a reachability
analysis to check if all constraints are actually satisfied. If
this is not the case, we always have the feasible solution as
a safe fallback. We initially guess the size of the reachable
set and the resulting inputs from the controller based on
the reachable set from the feasible solution and verify the



solution later. This means we take the size of the reachable
set of the feasible solution at the corresponding time step,
scaled by a factor v € RT, and use this set to tighten
the constraints sets. To do this in a set-based fashion, we
introduce the Minkowski difference denoted by &, i.e., the
subtraction of two sets, as the complement of the Minkowski
sum: for sets X', Y C R™ we define

XoY={r+tylrecX,ycl}
XoY={:CR"z0YC X}

This allows us to write the tightened constraints as

Xt+7)= X@’y()e(t—At—f—ﬂt—At)

O pep(t — At + 7]t — At)),VT € [te,t],

Ut +r)=Uo K7<22(t At 47|t — At)
O Tyep(t — At + 7]t — At)),VT € [te,tn],
=0 97(23(15 — At +tylt — At)
O pep(t — At + tylt — At)).

As the reachable sets might change their size, the constraints
become time-dependent. If this guess is too conservative, we
only obtain a sub-optimal solution; if it is too optimistic, we
have to go back to the feasible solution. In any case, we have
a safe solution in the end.

Guarantees Through Reachability Analysis

After obtaining the center trajectory, we use the pre-
defined feedback controller to compute the reachable set
for the closed-loop dynamics. We start from the reachable
set X(t + t.|t) and compute it for the remaining prediction
horizon (see Fig. 1(e)). Afterwards, we check if the reachable
set satisfies the state and input constraints at all times, if the
final reachable set is completely inside the terminal region,
and if the contraction constraint is also satisfied for the
reachable sets, i.e., we check if V7 € [t., tn] :

X(t+7lt) C X, (14)
o(t + 7t @ K ()?(t—&-T\t) @xref(t+r|t)) cu, (15)

X(t+tnlt) S P, (16)
N(t)—1
> IX(E+ kAL
k=1
N(t—At)—1
= > X+ (k= DALt - At)]le < —a, (17)
k=1

where we evaluate the contraction constraint (17) only at
finitely many time points to obtain a finite cost and where

= min X C P.
N(t) gcnelng(t—l—kAﬂt)f(I) (18)

To evaluate if the zonotope X'(t 4+ 7|t) = (¢, G) satisfies
convex state and input constraints of the form X = {x €

R™|Cz < d}, we simply have to check if the following
inequality holds:

p
Ce+ ) |CgW| <, (19)

i=1

with ¢() denoting the i-th column of G' € R™*? and where
the absolute value and less or equal operators are both
performed element-wise. Using this formula and using the
fact that the reachability analysis provides us with reachable
sets for time intervals in the form of zonotopes, we can
efficiently check if the constraints (14)-(17) are satisfied for
the reachable sets at all times. If this is the case, we apply the
new control input to the system and start with a new iteration
step. If the solution does not satisfy all those constraints or
if the computation takes longer than the pre-specified time,
we apply the input from the feasible solution instead.

Algorithm 1 Reachset MPC Algorithm
1: Initialize: ¢ <— 0,v(:| — At) < initial feasible solution
while z(t) ¢ Q2 do
uw(T) = v(7|t — At) + K(&(T) — 2rep (7]t — Al)),
T e[t t+t]
vy(+|t) + feasible solution (6)
5: v*(:|t) « solution of optimization problem (7)
: if Optimization problem feasible & solved in time &
(14)—(17) satisfied then v(-|t) + v*(:|¢)
: else v(-[t) < vy (-|t)
end if
: u(T) + o(7[t) + K (2(7) — zres (T]t)),
T € [t +te, t + Al]
10: tt+ At
11: end while
12: u(7) < Ko&(r), 7>t

Main Theorem

Theorem 1 If we know an initial feasible solution at t = 0,
then Alg. 1 remains feasible for all times and the sys-
tem robustly converges to the goal set Xy in finite time.
During the whole time, the system satisfies the state and
input constraints (2)-(3) despite disturbances and uncertain
measurements.

Proof: We have to show three things: (i) The system
remains recursively feasible, i.e., in each step we can find a
feasible solution, (ii) the system reaches the goal set Xy in
finite time, and (iii) the constraints are satisfied at all times
despite disturbances and measurement noise. We keep the
proof concise, as many parts follow standard robust MPC
techniques, as used in [6].

(i) This can be shown by induction:
Base Case: For t=0, we know a feasible solution by assump-
tion.
Induction Hypothesis: If we know a feasible solution at time
t, then we can always get a feasible solution at ¢ + At.
Induction Step: For every step at time ¢+ At, we know from



the over-approximative way of computing the reachable set,
that we start inside the reachable set of the previous step, i.e.,
X (t+At) C X(t+ At|t), for which we know the remainder
of the solution from the previous step, i.e., v(t + 7|t), V7T €
[At, ty]. Since the solution at time ¢ is feasible, it ends in
the terminal region, where we know by construction that the
terminal controller provides a feasible solution, see Def. 4.
Therefore, the previous solution extended by the terminal
controller, see (6), is always feasible and can be applied if
we do not find a better solution in time.

(i1) The terminal region €2 is computed such that any state
inside €2 robustly converges to the goal set X’y in finite time
despite disturbances and sensor noise. Therefore, we only
have to ensure reaching the terminal region in finite time.
From the contraction constraint (17), we enforce reaching
the terminal region in at most (1/«) Zszl | X (t+ kAL |9
steps. If we find a new solution, we know from (17) that this
new solution satisfies the rate of at least —a. Let us now
show that the feasible solution is also guaranteed to have
this convergence rate:

N(t)—1
>R+ kAL — At)|o
k=1
N(t—At)—1
= > IR+ (k= DAL - At
k=1

= —|| Xttt — Al < —av,

where we denote by X(t + kAt|t — At) the resulting
reachable set from the feasible solution v (-|t). Since X(t+
(N(t — At) — 1)At|t — At) C @, we know from (18) that
N(t—At) = N(t)41 and that | X (t+ (N (t—At)—1)At|t—
At)|lg = 0. Therefore, the difference is only the cost of
—|| X ([t — At)||ls. Because X (t|t — At) ¢ Q, it follows
from Def. 5 that || X(t|t — At)|ls > «, and therefore the
last inequality holds. As we can always revert to the feasible
solution, the convergence in finite time is guaranteed.

(iii) Before we apply the new solution, we check the
constraints for the over-approximated reachable set of the
disturbed system in (14)-(17). If they are satisfied, then the
new solution is safe and can be applied. If they are violated,
we apply the safe feasible solution; see (i). [ ]

Extension

As mentioned before, we cannot guarantee that the solu-
tion resulting from the reference trajectory which is com-
puted with the tightened constraints (10)-(13) will satisfy
the actual constraints (14)-(17). While we are always safe,
this might make our approach unnecessarily conservative.
One way to overcome the problem without getting too
conservative is to compute several possible solutions in
parallel. Using different estimations of reachable sets and
inputs applied by the feedback controller results in several
optimization problems with different constraints. As they are
completely independent, we can utilize modern multi-core
processors by solving them and using reachability analysis
in parallel and thus choose the best feasible solution.

IV. NUMERICAL EXAMPLE

To compare our reachset MPC control algorithm with the
approach from [6], we use the same nonlinear continuous
stirred tank reactor (CSTR) system for our numerical exam-
ple. The model of the reactor for an exothermic, irreversible
reaction A — B with constant liquid volume is given by [6]:

dC’A_q E
i —V(CAf Ca) — ko exp( RT> Ca+wp,
— == Ty —-T)— ——— -
a v D= eXp( RT) Ca
U-A
—(T.—-T , 2
g T D (20)

where C4 is the concentration of A in the reactor, T
is the temperature of the reactor and 7, is the coolant
stream temperature. The system state is defined as z =
[(Ca—CY), (TfTO)]T, and the system input as u =
T.—T?, with the steady state C§ = 0.5mol/l, T® = 350 K,
TC0 = 300 K. The model parameters can be found in [6].

The set of inputs is &/ = [—20, 70] K and the uncertainty
w = [wy, we]? is bounded by w; € [—~0.1,0.1] mol /(I min)
and we € [—2,2] K/min. The example does not consider
state constraints and assumes that the state can be precisely
measured.

In order to determine a terminal region {2, we compute
an LQR controller for the system linearized at the steady
state x5 = [0, 0], which results in Ko = [66.65, —4.86].
We then use the approach from [11] to calculate € as
explained before. The time step size of At = 1.8s and
a prediction horizon of ¢t = 19.8s, which is equal to
N = 11 time steps, are the same as in [6]. We keep
the reference inputs constant in each time step. The cost
functions L(z,v) = v'R.v and V(z) = 27Q.z are
applied; R, = 1072, and Q.. is a diagonal matrix with 100
and 1 on the diagonal. Since no cost function is provided
in [6], we use these parameters to best approximate their
trajectory. We use a« = & = 0.1 for the contraction parameter
and U = [—18, 68] K for the tightened input constraints.
For the control law wup pc(xz) we apply a time-varying
feedback matrix K, where at each time step k, we obtain
a new K as an LQR controller for the system linearized
at z* = (Tpes (t+ KAL) + ey (84 (k4 1)At]t) ) /2 and
with input weighting matrix R = 100 and state weighting
matrix () as the identity. In order to reproduce the behavior of
the disturbed system during the execution of the algorithm,
we simulate the model (20) with random values for the
disturbances w. For the allocated optimization time we use
the value t. = 0.54 s.

Our algorithm is implemented in MATLAB and we use the
ACADO toolbox [13] to solve the optimal control problems
with a multiple shooting algorithm. For the reachable set
computation we use the CORA toolbox [3]. All computations
are performed on a 2.9GHz quad-core i7 processor with
32GB memory and without using parallel computing.

The initial solution for the first numerical example with
initial state o = [-0.15, —45]7 is displayed in Fig. 2.
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Fig. 2. Center trajectory (black) and reachable sets at discrete time points
(blue) of the initial solution for our approach. A resulting trajectory of the
real system is shown in red, its reachable set in gray, and the terminal region
Q in green.
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Fig. 3. Initial solution with reachable sets for the rMPC approach, taken

from [6].

During Alg. 1, the maximum computation time for the
optimization and reachability analysis is 0.51 s < t., which
means that we are able to perform all computations in real
time. As a comparison to our algorithm, Fig. 3 shows the
initial solution of the robust MPC (rMPC) approach from
[6] for the same example. It is clearly visible from Fig. 2
and Fig. 3 that our reachable sets are smaller than the ones
computed with rMPC. Small reachable sets are advantageous
because they minimize the probability that the input or
state constraints are violated. In addition, there is also a
better chance that the sets are located inside the terminal
region. Furthermore, the rMPC algorithm exhibits several
major disadvantages that our approach is able to avoid:
First, it does not provide formal safety guarantees for time-
continuous systems, as it only considers time-discretized
systems. Second, rMPC directly optimizes over the reachable

sets, which leads to large computation times, because the
reachable sets have to be calculated for each iteration of the
optimization algorithm. To avoid this, we only optimize the
center trajectory and compute the reachable sets only once
after the optimization. Third, the technique that rMPC uses
for reachability analysis results in larger over-approximations
of the real reachable set of the system, as their technique is
more conservative than our approach.

In order to compare our approach with the rMPC algo-
rithm, we use the same parameters and same initial point
as the authors in [6]. However, the example is not really
suited for a good comparison of control approaches, because
to stabilize the system from this initial point, the maximal
available control input has to be applied for nearly the whole
time horizon. This does not leave much room for the other
objectives like minimization of the cost function or counter-
acting disturbances. Therefore, we provide a second example
for the initial point 2o = [—0.3, —30]. Compared to the case
above, we changed the final prediction horizon to ty = 9 s
and the input weighting matrix to R, = 0.9. The results
are displayed in Fig. 4. For this example, the maximum
computation time for optimization and reachability analysis
is 0.37s < t. This example nicely demonstrates that our
repeated optimization enables finding feasible trajectories
that have a lower cost than the initial solution.

1 L 1
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Fig. 4. Our approach for a different initial point with terminal region
Q (green), center trajectory (solid black) and reachable sets at discrete
time points (blue) of the initial solution, center trajectories for all iterations
(dashed black), real system trajectory (red), and reachable set for the real
system trajectory (gray). The resulting reachable sets can be seen better in
the magnified section.
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V. DISCUSSION OF THE ALGORITHM

The computational complexity for our optimization is the
same as for regular MPC. During operation, we solve the
optimal control problem (8)-(13). Since we solve it only
for a single state, we can use the same solvers which are
developed for solving nonlinear programs and which are used
for existing MPC. The only additional computation effort



is the reachability analysis [2], which has a complexity of
O(n?), with n denoting the dimension of the state space.

Because this computation only has to be performed once
for the whole time horizon, we are able to do these computa-
tion in real-time, as shown in the numerical example. Since
we do not optimize over the reachable sets and therefore are
not able to obtain a global optimal solution (which is not
feasible for nonlinear programs in general), we save a lot of
computation time while still guaranteeing safety.

An advantage of our approach is that any kind of feedback
controller can be used to track the center trajectory and
counteract disturbances. It is also not necessary to compute
the invariant set or some contraction set which has to hold
everywhere in the state space. Instead, we compute the
actual reachable set based on the predicted future situation,
resulting in a less conservative solution.

VI. CONCLUSION

We present a novel reachset MPC algorithm which com-
bines reachability analysis with dual-mode MPC. This allows
us to prove safety for continuous-time, nonlinear systems
with disturbances and uncertain measurements. Due to the
online computation of reachable sets, we are not restricted
to fixed-size tubes as often seen in literature and therefore are
less conservative. In addition, we directly take computation
times into account and optimize the trajectory based on the
set of initial states after the computation, rather than applying
inputs that are computed for states which are measured
before the optimization begins.

Compared to the few existing MPC techniques which use
reachability analysis, our approach has significant advan-
tages, as we are able to provide guarantees for continuous-
time systems and we are able to consider measurement noise
and computation times, which are neglected by others. We
illustrate the advantages of our approach compared to an
existing approach in the numerical example and also show
that the computations can be performed in real-time.

The resulting controller has a simple structure, and it
can be implemented using standard reachability solvers. In
addition, as we do not need to know Lyapunov functions, our
approach is easy to use and therefore appealing in practice.
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