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Abstract

Constraint bandwidth imposes a challenge to publish/subscribe systems (pub/sub). Pub-
lish/Subscribe systems are often used by interactive mobile applications to communi-
cate with system back-ends. State-of-the art compression techniques such as GZip or
Deflate can be universally employed to reduce bandwidth. We propose dictionary-
based compression and online self-learning dictionary maintenance algorithms to go
well beyond the bandwidth reductions achieved with the state-of-the-art.

In this thesis, we show how to reduce bandwidth even further by employing Shared
Dictionary Compression (SDC) in pub/sub. However, SDC requires a dictionary to be
generated and disseminated prior to compression, which introduces additional computa-
tional and bandwidth overhead. The overhead is amortized by high compression ratios
on messages. To support SDC, we propose extensions for pub/sub and employ a new
class of brokers, called sampling brokers. Sampling brokers have the responsibility to
create, disseminate and maintain the dictionaries over time. Dictionary maintenance
is performed in an online way to adapt to new content biases and keep the bandwidth
reductions high using a Dictionary Maintenance Algorithm (DMA). The evaluation of
our proposed design shows that it is possible to compensate for the introduced overhead
and achieve signi�cant bandwidth reduction over o�-the-shelf compression algorithms
like Deflate.

The dictionary is created based on multiple parameters. How large the dictionary is,
based on how many messages it is composed and how long the dictionary is valid. We
analyse all the interactions of the variables to derive parameters for the compression. In
the �rst DMA we present, called Adaptive we use heuristics to �nd good parameter
combinations. In the second approach we present, called PreDict we use variable
�tting techniques and machine learning to derive even better parameter combinations
speci�c to the nature of the content of the messages and the topology in an automatic way.
The third approach we present, called TaPD (Topology aware PreDict), goes even
further and takes the graph of the overlay into account to also achieve high bandwidth
reductions in complex overlays with varying amount of messages sent per publishers.
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Zusammenfassung

Bandbreitenlimitationen stellen Publish/Subscribe Systeme (Pub/Sub) vor neue Heraus-
forderungen. Pub/Sub wird häu�g von mobilen Applikationen benutzt, um mit dem
Rechenzentrum zu kommunizieren. Existierende Kompressionsmethoden wie GZip oder
Deflate können universell eingesetzt werden, um die benötigte Bandbreite zu redu-
zieren. Wir stellen einen neuen selbst lernenden Ansatz vor, der Wörterbuch basierende
Komprimierung über die Zeit hinweg adaptiert um weit höhere Bandbreitenreduktionen
zu erreichen als mit bisher genutzen Methoden.

In dieser Dissertation zeigen wir, wie die benötigte Bandbreite weiter reduziert werden
kann mit Wörterbuch basierender Komprimierung, die speziell auf die Anforderungen
von pub/sub zugeschnitten wird. Dafür stellen wir Erweiterungen für Pub/Sub Syste-
me vor. Unter anderem den sogenannten “Sampling Broker”, der die Komprimierung
überwacht, Adaptionen der Parameter vornimmt und auf Basis dessen die Wörterbücher
erstellt, mit denen hohe Komprimierung erreicht werden kann. Unsere Erweiterungen
erzeugen die Wörterbücher und teilen sie zwischen den Publishern und den Subscribern.
Die Komprimierung wird kontinuierlich überwacht und adaptiert um ständig hohe Kom-
primierungsgrade zu erreichen. Die inhaltliche Tendenz der Nachrichten ändert sich
über Zeit. Damit das Wörterbuch nicht obsolet wird muss das Wörterbuch adaptiert
werden. Dazu werden die derzeitigen Kompressionsgrade und die potenziell höhere
Komprimierung mit einem neuen Wörterbuch verglichen. Sollte sich herausstellen, dass
ein neues Wörterbuch die Komprimierung erhöht, wird den Publishern und Subscribern
ein neues Wörterbuch unter der Berücksichtigung des hierbei induzierten Bandbreiten
Aufwands mitgeteilt. Die Evaluierung unseres Ansatzes zeigt, dass es möglich ist den
zusätzlichen Bandbreiten Aufwand von Wörterbuch basierter Komprimierung durch
hohe Kompressionsraten bei Nachrichten zu amortisieren. Dadurch können weit höhere
Bandbreitenreduktionen als mit GZip oder Deflate erreicht werden.

Das Wörterbuch wird unter der Berücksichtigung von mehreren Parametern erstellt. Wie
groß das Wörterbuch ist, basierend auf wievielen Nachrichten es erzeugt wird und wie
lange das Wörterbuch eingesetzt wird. Dazu haben wir alle Interaktionen der Variablen
untersucht und schlagen auf Basis dessen mehrere Verfahren vor um gute Parameter-
kombinationen herauszu�nden. Zuerst stellen wir den Algorithmus Adaptive vor, der
eine Heuristik benutzt um gute Kombinationen zu eruieren. Als zweiten Punkt stellen
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wir PreDict vor - ein Ansatz der durch automatische Kurvenanpassung und maschi-
nelles Lernen gute Kombinationen von Variablen errechnet. Unser dritter Ansatz, TaPD
nimmt den darunter liegenden Graphen der Kommunikation als Basis um noch höhere
Komprimierungen bei variierender Anzahl von Nachrichten je Publisher zu erreichen.
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Chapter 1

Introduction

Publish/subscribe (pub/sub) [1, 2, 3, 4, 5, 6, 7, 8, 9] is known as a scalable and e�cient
data dissemination mechanism that is widely used in the back-end of enterprise, smart-
phone and Internet of Things (IoT) applications [10, 11]. Its e�ciency comes from the
optimized routing algorithms. Pub/sub is used to decouple publishers and subscribers
in the following dimensions [4]: Space (interacting clients do not need to know each
other), time (interacting parties do not need to be actively participating at the same time)
and syncronisation (publishers and subscribers communicate asynchronously). These
properties are useful in a wide range of applications, hence pub/sub systems are used
widely in industry. Spotify [12], a music streaming service, uses a pub/sub system to send
noti�cations to the users. The Facebook Messenger uses Message Queuing Telemetry
Transport (MQTT) [13], a pub/sub protocol, to communicate with the back-end. In many
of these scenarios, bandwidth usage between the clients and the brokers is a concern.

1.1 Motivation

High bandwidth usage is a signi�cant concern. According to EuroStat [14], 87% of the
households in the EU-28 had access to the internet in 2017, while in 2007, only 55% of
the households had internet access. Also, broadband usage has increased, 85% of the
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1.2. PROBLEM STATEMENT

households had broadband access which is more than double the households compared
to 2007. Eurostat reports that also internet on mobile devices is on the rise. While in
2012, 36% of individuals aged 16 to 74 within the EU-28 used a mobile device to connect
to the internet, in 2017 the share was 65%. While in 2016, 96% of the households in total
were covered with Long-Term Evolution (LTE), 80% of the rural areas were covered with
LTE. This number went up from 36%, LTE coverage in rural areas in 2015.

While broadband usage and high speed coverage is increasing, still many areas are not
well covered. LTE coverage depends also on the country, while for example Norway is
covered almost 100%, Romania is only covered around 45%. The 3G/4G penetration in
Pakistan [15] was around 30% when accessed in October 2018.

Reducing the required bandwidth also reduces costs because mobile connections are
typically metered. Additionally, reducing the bandwidth enables interactive mobile
phone applications because more messages can be exchanged given the same available
bandwidth. High data usage is a concern for smartphone applications and interactive
mobile games [16]. Moreover, low bandwidth usage is important in Machine-to-Machine
(M2M) communication and IoT [11]. For example, sensors for precision farming in
agriculture are limited to transmitting a few kilobytes per day [17].

Bandwidth usage is a signi�cant concern also when high data rates are available. Mobile
internet connections are usually metered and contracts can have a limited budget of data
transfer included and additional bandwidth usage must be paid. When the data rate is
reduced by means of high compression, more information within the given bandwidth
constraint can be exchanged. For example, we can increase the sampling frequency
of sensors to report information more often, hence we are able to react on changing
conditions more proactively.

1.2 Problem statement

State of the art compression methods such as GZip or Deflate can be generally
employed to compress messages. These methods are often used in combination with
batching, that increases compression ratios at the cost of latency. So far compression is
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Figure 1.2.1: Relationships among all compression related variables and cost

a tradeo� between CPU, compression ratio and latency. Shared Dictionary Compression
(SDC) can go farther in terms of compression ratio. However, SDC requires a dictionary
to be generated and disseminated prior to compression, which introduces additional
computational and bandwidth overhead. Hence, compression in pub/sub systems is a
tradeo� between CPU, compression ratio, overhead and latency. If we use SDC, the
tradeo�s can be adjusted more �ne-grained. Figure 1.2.1 shows the variables we can
adjust in green bubbles and the e�ect on the cost in rectangles. For example, a large
dictionary is bene�cial for higher compression, but also imposes high CPU load on the
publishers for compressing the messages and sharing the dictionary between publishers
and subscribers amounts to higher overhead. Batching messages together increases
the redundancy within the batch, hence a higher compression ratio can be achieved,
but batching multiple messages together increases the latency. Sharing the dictionary
with more clients amounts to a higher bandwidth overhead, which lowers the overall
bandwidth reduction. Creating the dictionary from a larger window of historic messages
improves the compression ratio, but imposes higher CPU cost for creating the dictionary.

Our work contributes to the overall goal of reducing the required bandwidth in pub/sub
systems by contributing to the understanding of these variable in�uences and tradeo�s
and proposing approaches to automatically �nd good variable combinations. We focus
on the following research questions:

1. How can we extend pub/sub systems to support shared dictionary compression in
a user hidden way to enable higher bandwidth reductions than the state of the art?

2. Can we �nd good parameter con�gurations in an automated way for compression

5



1.3. APPROACH

using SDC to amortize the imposed overhead?

3. Since SDC imposes an overhead, which is amortized by enabling high compression
ratios, can we adapt to varying distributions of message publications so that no
additional overhead is imposed on publishers with low message rates?

1.3 Approach

Compression is a well-known technique for reducing data usage at the expense of higher
computational costs. O�-the-shelf compression algorithms, such as Deflate [18],
work well when redundancy can be leveraged. But single messages disseminated by the
pub/sub system typically do not exhibit a lot of redundancy. However, several subsequent
messages can exhibit redundancy like the schema. If JavaScript Object Notation (JSON)
or eXtensible Markup Language (XML) are used as a message serialization format, lots
of redundancy is shared between messages through the schema. In message formats like
Comma-separated values (CSV) or Protobuf (a binary message serialization format), there
is not a lot of redundancy introduced through the serialization format. Nevertheless there
are certain content biases, such as trending topics in twitter or multiple sensors measure
similiar values (e.g., temperature), which also have certain redundancy over time. We
propose SDC to capture the redundancy in a dictionary, further share the dictionary
to the publishers and subscribers so that publishers can use the dictionary to compress
messages and subscribers to uncompress the messages. To capture the content biases,
we propose a Dictionary Maintenance Algorithm (DMA), which observes the message
stream and creates a new dictionary to capture these biases.

First, we sketch the idea and propose an architecture to enable SDC for pub/sub since it
is one of the �rst works in that area. We propose a novel and lightweight protocol for
pub/sub which employs a new class of broker, called Sampling Broker (SB), to support
SDC. Our solution creates, and disseminates dictionaries using the SB. Dictionary
maintenance is performed regularly using an adaptive algorithm. We introduce a basic
heuristic which con�gures most of the parameters needed for creating dictionaries in a
semi-automatic way (called Adaptive). We evaluate the approach using a simulation
and a prototypical implementation. The evaluation of our proposed design shows that it

6



CHAPTER 1. INTRODUCTION

is possible to compensate for the introduced overhead and achieve signi�cant bandwidth
reduction over Deflate.

Then, we focus on a fully automatic approach called PreDict, which makes manual
con�gurations obsolete and optimizes for good variable combinations over time while
reducing the CPU for publishers and subscribers. Our evaluation is done using a simu-
lation and a prototypical implementation. We use many streaming datasets from social
media, public transport, exchanges and sensors to evaluate our approach

In the �nal part, we extend PreDict to work with a distributed pub/sub system with
a graph overlay, called TaPD (̃Topology Aware PreDict). Our approach aimes to
introduce low overhead for publishers sending messages at low rates while keeping
high compression ratios for publishers with high message rates. We achieve this by
keeping dictionaries for selected publishers active for a longer time. This degrades the
compression ratios to some extend but also reduces the imposed overhead which amounts
to overall higher bandwidth reductions for publishers. Additionally we employ recoding
in the overlay. Overall, this approach is more bandwidth e�cient since less overhead is
introduced.

1.4 Contributions

The main contributions of our work regarding compression in pub/sub systems are:

I. Introduction of SDC in pub/sub systems by extending the pub/sub design to support
compression as a core component

II. We introduce a new zero con�guration dictionary maintenance algorithm, called
PreDict, which derives all parameters using curve �tting and machine learning.

III. An extensions of PreDict, called TaPD, which reduces the overhead in dis-
tributed broker overlay and increases the overall bandwidth e�ciency.

Next we break up the main contribution in the following sub-contributions:

7



1.4. CONTRIBUTIONS

Shared Dictionary Compression in Publish/Subscribe Systems

We introduce the foundation for how pub/sub can be extended with SDC. We extend
the broker overlay with an additional role, called the Sampling Broker (SB). Then, we
evaluate many parameter combinations and motivate why continuous dictionary mainte-
nance is necessary to maintain high bandwidth reductions. Furthermore, we introduce a
simple heuristic for dictionary maintenance called Adaptive. This approach is partially
manually con�gured for each topic and uses a heuristic to adapt some of the parameters.

Our contributions in detail are:

i. We present our solution Simple SDC for pub/sub (SPSS): a fault-tolerant pub/sub
design with SDC for e�cient publication tra�c reduction.

ii. We introduce the use of sampling brokers for generating, maintaining, and dissemi-
nating dictionaries.

iii. We provide an adaptive algorithm for dictionary maintenance, which considers the
bene�ts of generating a new dictionary vs. the dictionary sharing overhead with
varying parameters.

iv. We evaluate our algorithm using several real world datasets by comparing to Deflate.
Our evaluation is implemented on top of an MQTT broker using a smartphone client.

PreDict: Predictive Dictionary Maintenance for Message Compres-
sion in Publish/Subscribe

The main shortcoming of our previous approach Adaptive is that it has to be manually
con�gured for each topic and the heuristic ends up with too large dictionaries. Large
dictionaries impact the overhead when shared between the clients and lead to high CPU
cost for publishers when compressing the messages, see Figure 1.2.1. Furthermore, the
manual con�guration is speci�c to the content of the messages. In cases of large brokers
handling lots of di�erent topics, this can become a operational burden.

8



CHAPTER 1. INTRODUCTION

We propose PreDict, a DMA for cloud-based pub/sub systems, which determines
all parameters in an automatic way using curve �tting methods and machine learning.
Furthermore, we take the overhead introduced to clients into account, based on a system
model for cloud-based pub/sub systems. In our evaluation, we show with a wide variety of
datasets that we can achieve bandwidth reductions with di�erent publisher-to-subscriber-
ratios without any manual con�guration and our approach is on par with the best
permutations of manually con�gured approaches.

In detail, our list of contributions are:

i. An in-depth analysis of the connection between the variables, the computational cost
and bandwidth reduction, which allows us to derive bene�cial variable combinations
in the DMA.

ii. A new self-adapting dictionary maintenance algorithm, called PreDict, which
uses small dictionaries, feature extraction methods and machine learning to reduce
the computational costs for the publishers and subscribers while achieving high
bandwidth reductions.

iii. An in-depth comparison of multiple DMAs and o�-the-shelf compression using
Deflate and Di� algorithms on large streaming datasets collected from social
media, currency exchanges and other sources. We compare the computational cost of
the algorithm itself, the additional computational cost for publishers and subscribers
and the bandwidth reduction including the introduced overhead.

iv. Additional evaluation of PreDict in combination with batching and a prototypical
implementation based on Apache Pulsar.

TaPD: Topology-aware PreDict

TaPD extends our work for cloud-based pub/sub systems to distributed broker overlays.
While PreDict performs well in scenarios where each publisher sends equal amounts
of messages, in cases where some publishers send many and lots of publishers just a few
messages, many publishers could be imposed by bandwidth overhead which cannot be
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1.4. CONTRIBUTIONS

amortized by high compression ratios on messages. TaPD proposes a mechanism to
prolong dictionaries for publishers, fallback to Deflate and recoding of messages in
the network. This allows us to have multiple dictionary versions active at the same time.
The main focus of this approach is to reduce the overhead for publishers which send
messages at low message rates.

The contributions of this approach are:

i. TaPD, a way to make PreDict aware of the overlay and to further reduce the
required bandwidth in cases where the message rates of publishers are distributed
exponentially.

ii. Pseudocodes and speci�cations of all algorithms for a real world implementation.

iii. A evaluation of TaPD using a simulation over various large streaming datasets
collected from social media, exchanges, and other sources.

Publications

This thesis contains material from two papers, a poster and a demo in addition to several
unpublished works. Parts of the content and contributions of this work have been
published in:
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California: ACM, 2016, pp. 117–124. isbn: 978-1-4503-4021-2. doi: 10.1145/
2933267.2933308

• C. Doblander, A. Khatayee, and H.-A. Jacobsen. “PreDict: Predictive Dictionary
Maintenance for Message Compression in Publish/Subscribe.” In: Middleware
’18. Rennes, France: ACM, 2018. isbn: 978-1-4503-5702-9. doi: 10.1145/
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CHAPTER 1. INTRODUCTION

• C. Doblander, K. Zhang, and H. A. Jacobsen. “Publish/Subscribe for Mobile Appli-
cations Using Shared Dictionary Compression.” In: 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). June 2016, pp. 775–776. doi:
10.1109/ICDCS.2016.70

• C. Doblander, S. Zimmermann, K. Zhang, and H.-A. Jacobsen. “Demo Abstract:
MOS: A Bandwidth-E�cient Cross-Platform Middleware for Publish/Subscribe.”
In: Proceedings of the Posters and Demos Session of the 17th International Middleware
Conference. Middleware Posters and Demos ’16. Trento, Italy: ACM, 2016, pp. 27–
28. isbn: 978-1-4503-4666-5. doi: 10.1145/3007592.3007607

1.5 Organization

In the following chapter, Chapter 2, we introduce the relevant background. Chapter 3
presents relevant related work in our �eld. Chapter 4 introduces the extended design
for pub/sub and presents Adaptive, a heuristic for dictionary maintenance. Chap-
ter 5 presents a zero con�guration dictionary maintenance algorithm which derives all
variables from curve �tting and machine learning. Furthermore, we provide additional
evaluation of PreDict using an implementation on top of a real world distributed
pub/sub, Apache Pulsar. Additionally, we evaluate batching. Chapter 6 shows the e�orts
towards making PreDict aware of the overlay, called TaPD. In Chapter 7 we conclude
and present future work. In the appendix we introduce the evaluation datasets and
additional results.
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Chapter 2

Background

First we introduce pub/sub and distributed pub/sub systems. Then we introduce the
relevant background regarding compression and dictionary compression.

2.1 Publish/subscribe systems

Pub/sub is an e�ective method to disseminate data while decoupling data sources and
sinks [8]. Event sources publish noti�cations (also called publications) on a topic and bro-
kers route the noti�cations to interested subscribers. In a topic-based model, subscribers
express their interest in a topic. The events belonging to that topic are then routed
through the broker overlay network to the interested subscribers. In a content-based
system, subscribers can additionally express predicates in their subscriptions which
further �lter publications belonging to a topic, by comparing those predicates with
attribute-value pairs embedded in the publications.
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2.2. DISTRIBUTED PUBLISH/SUBSCRIBE SYSTEMS

2.2 Distributed publish/subscribe systems

Pub/sub is used to communicate within the datacenter [23] and also with the edge devices
such as smartphones or sensors. Many pub/sub systems form a broker overlay [5, 6, 7,
24]. The message rates within the overlay not only depends on how many messages
each publisher produces but also to which brokers the publishers and subscribers are
connected. Some approaches allow for some kind of bandwidth economy through routing
messages in the overlay [25, 26, 27, 28], but these approaches do not reduce the size of
the messages.

2.3 Lossless compression

Compression schemes, like GZip [29], Snappy or De�ate [18], use a sliding window and
leverage the redundancy within that window to compress a noti�cation. The redundancy
within a window tends to be low compared to the redundancy between two subsequent
noti�cations. Therefore, we argue that SDC reduces bandwidth beyond what is possible
with traditional compression methods.

Deflate [18] uses a combination of LZ77 and Hu�man coding. GZIP [29] uses Deflate
as the compressed data format. GZip appends a header and a CRC32 checksum to De�ate.
When small noti�cations are compressed, it is possible that the compression gains do
not outweigh the additional large header. Thus, we employ Deflate, not GZip, as a
baseline for comparison.

2.4 Dictionary compression

SDC leverages similarity between noti�cations to improve compression ratios. One of
the �rst papers [30] about dictionary-based compression achieves 60%-70% compression
for English documents using a small dictionary. This idea is further explored in [31]
and subsequently extended in [32]. In this paper, we use SDC to refer to a combination
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CHAPTER 2. BACKGROUND

of dictionary-based compression and multiple passes of Hu�man Coding. Using this
method, references to the dictionary are represented very e�ciently.

For dictionary-based compression, we use the open-source library FemtoZip [33], which
we modi�ed for our approach. FemtoZip is a versatile library that o�ers many compres-
sion algorithms and that can also be used to create dictionaries. In this paper, when
we refer to a dictionary, we mean a combination of a dictionary and a Hu�man table
as de�ned in the FemtoZipCompressionModel. An alternative would be gzip [29], which
would also support setting a dictionary. We do not use gzip dictionary compression
because the maximum size of a dictionary is 16 kB and gzip adds checksums, which
unnecessarily increases the sizes of the messages. Furthermore, gzip uses the dictionary
only for the �rst sliding window.

The dictionary creation with FemtoZip works as follows. A dictionary is sampled from
a set of messages by computing the Longest Common Substrings (LCS), ranking the
substrings according to their occurrences and reducing overlap by merging the substrings.
By ranking the substrings, the most valuable entries tend to be placed at the end. Finally,
the dictionary is truncated from the beginning to a certain size to ensure that only
the highest ranked substrings are present in the �nal dictionary. Then, the Hu�man
tables are created from a set of messages and the truncated dictionary. In this way,
references to dictionary entries can also be present in the table. The dictionary and
Hu�man tables together form a compression model that is shared with the clients and
used by publishers to compress messages and by subscribers to decompress messages.
A dictionary can be thought of as a blob prepended to the message and entries are
referenced relative to a given position. As an example, a reference <-10,4> at position 3 of
the message would go back to the -7 position of the dictionary and take the next 4 bytes.
Although many workloads are text based, the dictionary is not limited to strings and can
contain arbitrary byte sequences. Because the dictionary entries are merged together
and because the Hu�man table is built from the messages that are compressed with the
dictionary, the symbols of the Hu�man table also weigh the references to the dictionary
accordingly. This is e�cient for compression but makes it di�cult to incrementally
update the dictionary. A substitute for incrementally updating the whole compression
model would be to compress the new model using the previous model. Because this
would increase the corner cases of the protocol (e.g., high churn of S and ℙ) we did not
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2.5. EXAMPLE DICTIONARY COMPRESSION

consider it. But we compress the compressmodel using Deflate, which reduces the
size by ≈ 40%.

2.5 Example dictionary compression

As an example, Listing 2.5.1 shows the dictionary created from the Section 1.3 which is
truncated to the most valuable 300bytes of data.

Listing 2.5.1: Example dictionary from introduction

u d i s s e m i n a t e e v a l u a t i o n i n t r o d u c e d t h a t the i . Our e f o r e the ed
overhead compress ion f o r pub / sub redundancy in , we f o r p u b l i s h e r s

c o n t e n t b i a s e s , pub / sub system ing d i c t i o n a r i e s bandwidth
r e d u c t i o n p u b l i s h e r s and s u b s c r i b e r s , which u s i n g a s i m u l a t i o n
and a p r o t o t y p i c a l i m p l e m e n t a t i o n . approach

Listing 2.5.2: Example sentence

We e v a l u a t e the approach u s i n g a s i m u l a t i o n and a p r o t o t y p i c a l
i m p l e m e n t a t i o n .

When we compress an example sentence, see Listing 2.5.2 using the dictionary in List-
ing 2.5.1, we end up with the following compressed sentence, see Listing 2.5.3. As an
example, “<-289,9>” refers to “e evaluation “, the “e”, which completes the �rst word is
taken from the end of “disseminate”. The dictionary can be though of a prepended blob
of data and each position in the blob is referenced relative.

Listing 2.5.3: Example sentence compressed

W< −289 ,9 > < −252 ,6 > < −25 ,9 > < −88 ,53 >
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Chapter 3

Related Work

To the best of our knowledge, there is no paper that explores the use of SDC or com-
pression of individual messages within pub/sub. Traditional compression such as GZip
or Deflate can be universally employed, hence do not need a speci�c extension to
the pub/sub system. Consequently, we extend the scope of our related work to general
bandwidth reduction mechanisms for pub/sub. Then we look at delta compression [34]
and deduplication [35]. Finally we look at related �elds in communication protocols
(HTTP) and the use of dictionaries in databases.

3.1 Bandwidth reduction in pub/sub

Other approaches for reducing bandwidth in pub/sub consider user-de�ned aggregation
functions, which assist application programmers in implementing e�cient context prop-
agation [36]. One main goal of our approach is to remove any operational complexity via
automatic con�guration; hence, our approach can easily be adopted in existing pub/sub
systems. Routing mechanism in pub/sub are used to provide bandwidth economy [37].
That way messages can be routed through non-congested links at di�erent speeds.

17



3.2. DELTA ENCODING AND DEDUPLICATION

3.2 Delta encoding and deduplication

REAP [34] presents a data di�erencing algorithm. MultiDi� performs signi�cantly
better than simple delta encoding. The patch can reference multiple other preceding
noti�cations. The protocol uses windows of noti�cations, which can be referenced
by the di�. To address out-of-order noti�cations, the delta is always computed to
noti�cations within a certain preceding window; the subscribers are then instructed
to cache this window. The noti�cations in the window can also be di�s of preceding
noti�cations; hence, at-least once guarantees are mandatory. Our work targets a di�erent
kind of environment. Many publishers can send messages on a single topic. Publishers
would need the messages from other publishers to compress messages. In addition, our
approach should not require ordering guarantees that are di�cult to ful�ll in cyclic
pub/sub broker overlays. In content-based pub/sub, this approach has another weakness,
since subscribers to the same topic receive di�erent publications due to their unique
predicates. In this case, the deltas would have to be re-encoded between communicating
peers introducing additional computational overhead.

We are unable to compare with their results because the utilized datasets are not publicly
available. Their workloads are mainly NATO-speci�c XML messages or Simple Object
Access Protocol (SOAP) messages.

Deduplication algorithms are used to reduce bandwidth usage in the context of database
replication [35]. In delta compression [38], one noti�cation is described in terms of
another noti�cation.

For comparison, we implement an approach using delta encoding with VCDiff as a
representative approach in this area.

3.3 Dictionary compression in HTTP

Dictionary based compression is proposed for HTTP [39]. SDCH is a proposal for a
HTTP/1.1-compatible extension to enable inter-response data compression. LinkedIn
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CHAPTER 3. RELATED WORK

reported [40] an average bandwidth reduction of 24% on top of GZIP. Brotli [41] also con-
tains a static dictionary sampled from a multi-lingual web corpus to improve compression
ratios speci�cally for web pages.

While the techniques to create a dictionary are similar, we optimize towards pub/sub
systems. Furthermore, we look at topologies of brokers decoupling publishers from
subscribers. Here SDC is used only between client and server.

3.4 Dictionary compression in databases

Dictionary compression is also widely used in databases [42] to achieve performance
gains for I/O-intensive queries. Percona Server for MySQL [43] supports dictionary
compression for columns. Dictionary compression is bene�cial in the back end databases
of ERP systems because more than half of the columns are string columns [44]. Databases
also often use so-called lightweight compression schemes [42]. These schemes allow
querying on compressed data or allow the dictionary to be used as an index. HBase
uses a dictionary to compress the write-ahead log [45]. The implementation available
in HBase captures the most recently used messages in a dictionary. Entries are evicted
when the maximum number of entries is reached; in the worst case, 160 MB is used.

BigTable [46], a distributed storage system for structured data, uses a custom compression
scheme, which includes sampling a dictionary. First, Data Compression Using Long
Common Strings [31] is used. In the second pass, a small window is used, similar to
De�ate. They report a 10-to-1 reduction in space. The main reason is that web pages
from a single host share large amounts of boiler plate which is identi�ed in the �rst
run and included in the dictionary. Dictionary-based compression is also used in main
memory column stores [47]. The dictionary can also be used to index and to rewrite
queries. This approach reduces the memory consumption of the database.

The main di�erences among the works on databases and our work, which targets pub/sub,
are the di�erent costs and optimization goals. In compression for pub/sub, the goal
is to reduce the overall bandwidth between publishers and subscribers, including all
the related overhead, which has di�erent scaling properties than the work targeting
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3.4. DICTIONARY COMPRESSION IN DATABASES

databases. A 160 MB dictionary would be too large for IoT sensors, although it would
be bene�cial for bandwidth reduction. Our work concerns the trade o� for enabling
dictionary-based compression in pub/sub and how to determine the sweet spot in terms
of bandwidth reduction in an online and automated manner. As an example, we need to
reduce the size of the dictionary to reduce the overhead of sharing a dictionary; smaller
dictionaries simultaneously also reduce the compression ratio. The dictionaries that we
use are ≈ 10 kB or smaller, depending on the message content of the stream. Furthermore,
sharing a dictionary in topologies that have many more publishers than subscribers is
challenging because the dictionary is di�cult to amortize when only a few messages are
sent per publisher.
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Chapter 4

Shared Dictionary Compression in
Publish/Subscribe Systems

Popular compression methods, such as GZip or Deflate can generally be applied for
moderate performance gains. In this chapter we demonstrate how higher bandwidth
reductions can be obtained by employing Shared Dictionary Compression (SDC) in
pub/sub.

First, we give an overview of our approach in Section 4.1. Then, in Section 4.2, we present
our design for pub/sub using SDC. We then compare our approach to the state of the art
in Section 4.3. In Section 4.3.5 we show the results of our prototypical evaluation on top
of Message Queuing Telemetry Transport (MQTT).

Parts of the content of this chapter are published as [19, 21, 22].

4.1 Overview

Our approach adds a new type of broker, subsequently called sampling broker, to the
pub/sub design. A Sampling Broker (SB) is responsible for sampling noti�cations to
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Figure 4.1.1: Noti�cation delivery in pub/sub overlay

create dictionaries, maintenance of said dictionaries over time and disseminating them
in the overlay network. An adaptive algorithm is employed for periodical maintenance
which creates a new dictionary with speci�c parameters when it is bene�cial to do so over
keeping an older version, and fault-tolerance is provided by sending the dictionaries to
a caching service. Figure 4.1.1 shows a high level overview of a broker overlay extended
by the sampling broker SB1. Publishers P1,2 send messages to the subscribers S1,2. After
the noti�cations n1,2 are published, the adaptive algorithm decides that the bandwidth
can be reduced by employing a dictionary. A new dictionary SD3 is sampled and sent
through the pub/sub overlay. The dictionary can then be used by P1,2 to compress the
noti�cations c4,5 and S1,2 can uncompress the noti�cations. The �gure is used as an
example throughout the whole paper.

To motivate and evaluate our work, we consider the following representative use case. We
imagine a scenario where mobile phones use an application to communicate with a back
end, which provides various services. Upon starting the application on a smartphone,
a map centered around its current location is displayed. Additionally, the application
subscribes to nearby noti�cations in order to refresh its view of the map. All user-facing
events are sent via the mobile phone network. While fast mobile connections are readily
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available in city centers, the same cannot be said for rural areas. Providing the user a
real-time view of the map requires a high incoming event throughput rate, which may
not be desirable if the phone is operating on a metered data plan. We evaluate this use
case using the dataset of the DEBS 2015 Grand Challenge [48], which contains taxi trips
records in NYC for a year. We measure the bandwidth savings when these events are
sent to a mobile phone that displays the information on a map in real-time.

4.2 SDC in publish/subscribe

Our approach, called Simple Shared dictionary compression for Pub/Sub (SSPS), in-
troduces several new components. We introduce a new broker class, called Sampling
Broker (SB), which can be a separate broker instance or a role assigned to an existing
broker. Additionally, we introduce a caching service (CS) to provide fault tolerance.
The responsibility of a SB is to create dictionaries, monitor the compression ratio, and
maintain the dictionary over time. The CS caches the dictionaries, such that newly
joining subscribers or publishers can acquire required dictionaries.

Dictionary sampling

To enable SDC in pub/sub, we �rst have to sample noti�cations to create dictionaries. In
SSPS, we propose a single dedicated SB per topic, with a dictionary generated for each. A
SB carries the main computational load of our approach, which is the sampling of publi-
cations. To balance the computational load of many topics, consistent hashing [49] of the
topics could be used to assign the SB to a physical instance. A SB subscribes to the topic
and accumulates the noti�cations in a ring bu�er with a �xed size (Bsize). A prede�ned
hash function is used to generate the dictionary based on the stored noti�cations.
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Sharing of the dictionary

After the dictionary is sampled, it is added to the cache and published on the correspond-
ing dictionary topic. Note that all publishers and subscribers sending and receiving
data on a topic are subscribed to the corresponding dictionary topic and will receive the
appropriate dictionary. After a �xed expiry timestamp Texp attached to each dictionary
elapses, no publisher is allowed to compress a noti�cation using this dictionary. Lmax
is a prede�ned time interval, which is well above the worst case maximum publisher-
subscriber latency and the maximum clock skew within the network. After Texp + Lmax
the subscriber is also allowed to dismiss the dictionary. Each dictionary has an identi�er,
which is referenced to in the compressed noti�cations.

Caching service

The caching service provides fault tolerance for the dictionaries. Equation 4.2.1 shows
how long every SD is cached. The CS is essentially a fault-tolerant key-value store.

Texp + 2 × R × Lmax (4.2.1)

Continuous dictionary maintenance

Before a dictionary expires, the SD has to either increase the expiry time or sample a new
dictionary. The SB is only allowed to increase the expiry time until Texp − Lmax . First, the
expiry in the caching service is increased, then a new noti�cation on the dictionary topic
is published, which increases the expiry of the SD at the publishers and subscribers.

New publishers

We have to consider two cases. The �rst occurs when a publisher creates a new topic
and starts publishing, the second case occurs when the publisher starts publishing on
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an existing topic. In the �rst case, the publisher starts sending noti�cations on the topic
and also subscribes to the dictionary topic. When the SB has created a dictionary, it
will be published on the dictionary topic which belongs to the noti�cation topic. The
publisher always compresses the noti�cations using the dictionary whose expiry is the
farthest in future. In the second case, the publisher can start sending the noti�cations
without compression and eventually acquire the SD from the CS. No additional latency
is incurred since the publisher can always publish uncompressed noti�cations.

New subscribers

When a subscriber subscribes to a topic, it also issues a subscription to the corresponding
dictionary topic, which is calculated using a prede�ned hash function on the original
topic. When the subscriber receives a compressed noti�cation and the dictionary is not
available, the dictionary has to �rst be acquired from the caching service. In this case,
an additional latency of Lmax can occur when receiving the �rst message.

Dictionary maintenance

The dictionary has to be resampled to maintain high bandwidth savings. Hence, we
propose an adaptive algorithm, which probes the noti�cations to detect if a new dic-
tionary would improve the compression (see Section 4.2.2). Each dictionary has an
identi�er, which is unique within a topic and within the timespan Texp + 2 × Lmax . In our
experiments, a single byte is used to represent this ID. Figure 4.1.1 shows an example
of the algorithm in practice. The subscript numbers on the noti�cations denote the
sequence. The assumption is that the subscribers S1,2 are already connected, but no
noti�cation have been sent so far. The publishers P1,2 start to publish the noti�cations
n1,2. SB1 and S1,2 receive the noti�cations. SB1 begins to sample the noti�cations and
publishes a new SD3 on the corresponding dictionary topic. P1,2 and S1,2 are subscribed
to the topic and receive D3. From now on, P1,2 can publish compressed noti�cations c4,5.
The subscribers S1,2 can decompress the noti�cations using the cached dictionary.
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4.2.1 Analysis of overhead

Dictionary publication

The dictionary size is bounded to a multiple of the average uncompressed noti�cation
size. In our evaluation, we consider multipliers of up to 21 of the original noti�cation
size + Hu�man Trees. All publishers |P | and subscribers |S| have to receive the dictionary.
Equation 4.2.2 shows the total bandwidth used for spreading a new dictionary.

(|P | + |S|) × SDsize (4.2.2)

Memory consumption of dictionaries across the overlay

There can be situations when multiple dictionaries are active at the same time. This
situation occurs when the bandwidth savings of the new dictionary pay o� faster than
waiting for the expiry of the old dictionary. This depends on the behavior of the dictionary
maintenance algorithm and how it adapts to changes in the content of publications. In
general over time, the sampling frequency and estimation of Texp should be stable. Hence
the additional memory consumption of the SD is on the publisher and subscriber SDsize .

Dictionary sampling time

Sampling a dictionary is at worst an O(N 3/2) operation [31]. For practical workloads, the
average case is O(N ). N stands for the total number of bytes of the noti�cations in the
bu�er, ∑buf f erlengtℎ

i=0 = |Ni |. Our experiments con�rm this observation. Once the dictionary
is sampled, it is limited to a speci�c size. The cost of trimming a dictionary to a certain
size is negligible compared to the sampling time.
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4.2.2 Adaptive algorithm

We propose an adaptive algorithm to choose SDmultiplier , Bsize , and Texp . Our proposed
heuristic is conservative in the sense that a new dictionary is only spread when it is
certain that the cost of spreading can be amortized.

Overview

Every time a dictionary expires (Texp is reached), the algorithm �rst computes the amount
of bandwidth reduction that can be achieved if a new dictionary would be published. If
the gain from a new dictionary is higher than a certain threshold, the dictionary is
published, otherwise the existing dictionary is prolonged. In addition, the algorithm
changes the parameters of the dictionary creation (SDmultiplier or Bsize) for the bandwidth
evaluation at the next expiry time.

Bandwith reduction

To calculate the amortization time, we need to estimate the bandwidth reduction (BR) of
a new dictionary. BR is estimated by splitting the recorded messages into a training and
validation set. Splitting the data into two independent sets is a technique known from
machine learning. In case the set is not split, the calculated bandwidth reductions tend
to be not reproducible similar to when a machine learning method is validated on the
training data. A dictionary is sampled on the training set and the bandwidth reduction is
derived by comparing the uncompressed validation set with the compressed validation
set. We decided to take 70% for training and 30% of the noti�cations for validation.

We can calculate the bandwidth reduction (BR) of the new dictionary using the uncom-
pressed size of the noti�cations TB and the size of the compressed noti�cations CTB
using Equation 8:

BR = 1 − CTB
TB (4.2.3)
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Amortization time

The time needed to amortize the dictionary Tamortize is calculate using the current rate
(R) and the estimated bandwidth reductions (BR). The rate, see Equation 4.2.4, is derived
by dividing the total size of the noti�cations by the time span between the �rst and last
message in the bu�er.

TS = tbuf f ersize − t0

R = ∑buf f ersize
i=0 |ni |

TS
(4.2.4)

The amortization time then takes the size of the dictionary and the bandwidth reduction
into account using the estimated rate R (see Equation 11):

Tamortize =
|SD|
R × BR (4.2.5)

Dictionary parameters

When the dictionary is sampled, two parameters are taken into account: SDmultiplier and
Bsize . When use of a dictionary is prolonged, the SDmultiplier and Bsize parameters are
increased and taken into account for the next evaluation. It could be that an increase of
the dictionary size or sampling window size result in greater bandwidth reduction. Every
time the con�guration of a dictionary is changed, the counter adaptations is increased.
After a certain amount of tries with increasing variations, Bsize is no longer increased
since the computational costs become too high. This parameter should instead be chosen
according to the average noti�cation size.
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Expiry time

Equation 4.2.6 shows how the expiry time of a dictionary is calculated. A dictionary
should at least amortize 10×, this value being chosen experimentally. Additionally, we
added a factor based on how often di�erent parameters of the dictionary were chosen.
Each time the parameters of the dictionary are changed, the adaptation counter is
increased. The computational cost of the dictionary sampling grows with increasing Bsize
and the compression cost of the publishers increase when the SDmultiplier is increased.

Texp = Tamortize ∗ adaptations3 ∗ 10 (4.2.6)

4.3 Evaluation

We present three experiments. First, we evaluate the compression potential and compu-
tational cost of SSPS using varying permutations to �nd the best con�guration. Then,
we present an evaluation of the adaptive dictionary maintenance algorithm and discuss
the trade-o� between the computational cost and bandwidth reduction in view of the
practical limits assessed in the �rst experiment. Finally, we present a practical use case
evaluation using an experimental implementation on top of MQTT [50].

4.3.1 Datasets

Compression performance depends on the redundancy within a noti�cation and between
noti�cations. For that purpose, we took several real world datasets with varying degrees
of redundancy. The DEBS15 dataset contains taxi trips from New York. The original
dataset is published in Comma-separated values (CSV). To study the e�ect of di�erent
formats we converted the noti�cations into JSON, XML and Google Protobuf. Google
Protobuf [51] generates an e�cient binary noti�cation based on a �eld description. The
Twitter dataset is acquired from the Twitter API and contains Tweets including metadata
from New York. We extracted only the content of the tweets to measure the compression
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performance on a highly variable text without any schema overhead. The Air Quality
dataset comes from the NYC Open Data Portal [52]. This is used as an example of an IoT
dataset, which includes many sensor readings. The EPEX dataset is extracted from the
energy spot market auctions from the European Power Exchange. We use this dataset to
test our solution with �nancial data, which mostly contains numbers and some repetitive
information like contract types.

4.3.2 Compression potential using SDC

We emulated the connection of a publisher to the broker and evaluated multiple con�gura-
tion dimensions. The size of the bu�er Bsize is based on how many preceding noti�cations
the dictionary has sampled. The window Wsize denotes how often the bu�er is sampled.
The maximum size of the dictionary is set to a multiple of the average noti�cation
size. Equations 4.3.1,4.3.2 show the permutations. As an example, the con�guration
W300, B100, SD2 means that every 300 noti�cations, a dictionary is built using the last 100
noti�cations and the dictionary size is limited to 2× the average noti�cation size. At least
20k noti�cations are employed from each dataset.

size = {50, 100, 200, 300, 500, 800, 1300,
2100, 3400, 5500}

(4.3.1)

multiplier = {0.3, 0.5, 1, 2, 3, 5, 8, 13, 21} (4.3.2)

The evaluations are conducted on a machine with 4×Intel Xeon CPU E7-4850 v3 @
2.20GHz.

The emulation uses the library FemtoZip [33]. FemtoZip is a SDC library which can be
used to build dictionaries. We used the class FemtoZipCompressionModel to
generate the dictionaries from the noti�cations. The compression model creates also an
optimal Hu�man tree. The dictionary size is the sum of the size of both components. The
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Dataset Mean size Best B/W /M SD size SD OH Deflate (size) SDC (size) Deflate (%) SDC (%)
DEBS15-XML 711.41 2100/5500/21 22460.0 5.08 332.36 85.18 53.3 88.0
DEBS15-JSON 530.41 2100/5500/21 18659.0 4.39 289.68 83.99 45.4 84.2
DEBS15-CSV 191.41 500/5500/21 11540.0 3.1 125.2 72.75 34.5 62.0
DEBS15-PB 174.96 500/5500/21 11183.0 3.03 161.02 83.64 8.0 52.2
EPEX Spot 94.72 1300/3400/3 7810.0 3.3 73.79 24.59 21.6 74.0
AirQ-XML 536.53 3400/5500/21 18798.0 4.42 321.52 77.43 40.0 85.6
Twitter (meta) 2995.74 100/5500/21 69739.0 13.68 1241.52 438.74 58.7 85.4
Twitter (tweets) 84.87 5500/5500/21 9304.0 2.69 80.19 53.44 5.7 37.0

Table 4.3.1: Shared Dictionary compression vs. De�ate

dictionary part is limited to a multiple of the average noti�cation size, see Equation 4.3.2.

The heatmaps in Figure 4.3.1 show the sweet spot of each dataset when the update
frequency of the dictionary is set to 5500. The y-axis shows the dictionary multiplier,
the x-axis the bu�er size. The overall tendency is that bandwidth savings increase as
more noti�cations are sampled. However after a certain size, it does not make sense to
further grow the bu�er. The same applies to the dictionary. While in most cases the best
bandwidth savings are achieved with the biggest dictionary sizes, at a certain threshold
the gain in bandwidth savings are not substantial.

Table 4.3.1 shows the best con�guration for SDC. Column Mean size is the mean size
of the noti�cations. Column Best B/W denotes how long the bu�er should be and after
how many noti�cations the dictionary should be refreshed. Column SD size shows how
many additional bytes the average overhead per message is and column SD OH shows
the introduced overhead in average per noti�cation. The columns Deflate (size) and
SDC (size) show how big in average the message is including the average overhead of the
protocol. The last two columns show how big the bandwidth savings are. The overhead
is largely introduced by the dictionary. Note that we added one byte per message for the
protocol overhead to denote if the message is uncompressed or which dictionary identi�er
is used. The Deflate evaluation has no dictionaries and thus does not introduce any
protocol overhead to the noti�cations.

An interesting observation is that there is nearly no di�erence in the bandwidth usage
between XML, JSON and Protobuf when SDC is used. This is not the case when Deflate
is used. The schema overhead and common attribute combination are promoted in the
shared dictionary, which is similar in all schema variations. Therefore, the developer can
choose the noti�cation format which is most convenient without worrying about data
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Figure 4.3.1: Bu�er size vs. dictionary multiplier, update freq. set to 5500
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size.

The overall tendency in our evaluation shows that it makes sense to sample bigger
dictionaries and exchange them less frequently. The best dictionary multiplier in the
EPEX Spot market data stream is only 3. This has to do that there is a limited amount of
variation in the text properties, while the rest of the properties is numerical.

Figure 4.3.2 summarizes the performance comparison between SDC and Deflate. One
observation is that small noti�cations are less compressible using Deflate, since there
is less repetition within a noti�cation. Tweets also have less repetition within a single
tweet, hence the Deflate performance is low. Using SDC, where common words and
tags are promoted to the SD, the bandwidth savings are higher.
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Figure 4.3.2: % bandwidth reduction incl. overhead

4.3.3 Computational costs of SDC

In the emulation experiment, we record wall clock time of the individual operations. Our
experiment employs one �xed thread per core. Figure 4.3.3 shows that the time to com-
press a single message is linear to the size of the dictionary. Note the near-exponential
scale on the x-axis. The uncompression process is performed in constant time. Figure 4.3.1
shows that at a certain size of the dictionary not a lot more bandwidth reductions manifest.
Additionally, the computational power needed to compress messages grows. Hence it
makes sense that the adaptive algorithm probes if a bigger dictionary pays o� instead of
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defaulting to a bigger SDmultiplier .

4.3.4 Adaptive algorithm

We tested the adaptive algorithm in an emulation that publishes at a �xed rate of 100
noti�cations/sec. We simulated the DEBS data stream over the �rst 100k noti�cations.

Algorithm 4.2 shows the pseudocode of Adaptive. It is initialized with the parameter
minImpr which changes how aggressive the Dictionary Maintenance Algorithm (DMA)
is towards reaching higher bandwidth reductions. When the T TL is reached, which is
expressed as point in time in the future, the algorithm evaluates the current savings
and how high the savings would be with a new dictionary. In case the gain with the
new dictionary is higher, a new dictionary is created. The T TL is set according the
amortization time of the dictionary and how often the parameters oft the dictionary
were already increased. The reason the existing adaptations are counted is that each
adaptation increases the parameters and increased parameters means increased CPU
cost for the sampling broker. That way, the sampler should �nd an equilibrium after
some time.

Figure 4.3.4 shows the behavior of the algorithm over time. When a dictionary expires,
a decision is made to either create a New SD or to Prolong SD, shown by the blue
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Algorithm 4.1: Adpative - Estimate savings
Data: Set of messages M

1 Procedure estimateBR(M)
2 Mtrain ← {Mbuf f ersize×0.3...Mbuf f ersize}
3 Mtest ← {M0...Mbuf f ersize×0.3}
4 SizeUtest ← ∑buf f ersize×0.3

i=0 |ni | // Uncompressed size
5 dc ← buildDictionary(Mtrain)
6 compress(Mtest )
7 SizeCtest ← ∑buf f ersize×0.3

i=0 |ni | // Compressed size
8 return 1 − SizeUtest

SizeCtest // Estimated BR

and green dots. The decision is based on the Current Savings and the estimated New
Savings. The lineTotal BWreduction shows the bandwidth reduction over time taking
into account the introduced overhead. The initial dictionary holds for more than 50k
noti�cations and not enough new savings could be acquired to justify spreading a new
dictionary. After 50k of noti�cations the content of the noti�cations changes which
causes a drop of the bandwidth savings with the dictionary. The adaptive algorithm
reacts by creating a new dictionary and changing the con�guration. Alternating once
the SDmultiplier and once the Bsize is increased.
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Figure 4.3.4: Adaptive algorithm over time

The adaptive algorithm could not reach the optimal results we have shown in the evalua-
tion of the compression potential (see Table 4.3.2). While the JSON and XML variants are
roughly ≈ 4% worse than the best parameter combination, the CSV variant is more than
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Algorithm 4.2: Adaptive - Main loop
Data: Minimum Improvement minImpr

1 Procedure runAdaptive(minImpr)
2 initialize M , BS and , DM arrays
3 msgCount, T TL, buf f erI dx, multiplierI dx ← 0
4 adaptationsCount, adaptations ← 0
5 f irstBreak ← 100
6 step ← increaseBuf f er while msgCount < f irstBreak do
7 M ← append(M, m)
8 msgCount ← msgCount + 1
9 dc ← sampleDictionary(buf f er)

10 BR ← estimateBR(M)
11 Tamortize ← |dc|

R×BR
12 T TL ← Tarmortize ∗ 2000
13 publisℎ(dc, T TL)
14 while m ← nextMsg() do
15 M ← append(M, m)
16 if T TL is reacℎed then
17 currentSavings ← calcSavings(dc)
18 newSavings ← estimateBR(M)
19 BRgain ← newSavings − currentSavings
20 if BRgain > minImpr then
21 adaptations ← adaptations + 1
22 dc ← sampleDictionary(M)
23 Tamortize ← |dc|

R×BR
24 T TL ← Tarmortize ∗ 10 ∗ adaptations3
25 payof f NotSuccess ← 2 ∗ payof f T imeMsec
26 publisℎ(dictionary, T TL)
27 else
28 adaptations ← 0
29 T TL ← payof f NotSuccess
30 if adaptationsCount < 4 then
31 alternateIncrease(… ) // Algorithm 4.3
32

33 adaptationsCount ← adaptationsCount + 1
34 payof f NotSuccess ← 2 ∗ payof f T imeMsec
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Algorithm 4.3: Adaptive - Alternating increase
Data: Minimum Improvement minImpr

1 Procedure alternateIncrease()
2 if step = increaseBuf f er then
3 buf f erI dx++
4 M ← resize(M, BS[buf f erI dx])
5 step ← increaseDictSize
6 else
7 multiplierI dx++
8 step ← increaseBuf f er

≈ 20% worse. The adaptive algorithm starts without knowing what the best parameter
combination is and over time tries to achieve higher bandwidth savings. Every time a
dictionary is sampled, a computational cost is incurred, hence it is not feasible to try
out too many combinations for the sampling broker. Nevertheless, in all three cases the
results are better than Deflate.

Dataset Best in eval. Deflate Adaptive
DEBS15-XML 88.0 % 53.3 % 85.46 %
DEBS15-JSON 84.2 % 45.4 % 80.17 %
DEBS15-CSV 62.0 % 34.5 % 41.65 %

Table 4.3.2: Adaptive algorithm

4.3.5 Implementation on top of MQTT

The prototype is implemented on top of MQTT [50]. An existing MQTT-compliant
broker [53] is extended to handle the sampling broker role. We measure the throughput
in a real-world environment which includes a hosted server at a provider, an Android
application as a subscriber and another server as publisher.

The Android phone is switched to 2G Mode. The signal quality is between −91 and
−82dBm, which explains the �akiness of the connection and of our results. Ping latency
is between 290 − 650ms, which models our motivating rural scenario.

Figure 4.3.5 shows end to end latency at percentile in this experiment. Every 100 no-
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ti�cations, the subscriber responds to a noti�cation by publishing on a separate topic.
The subscriber receives this noti�cation and derives the latency. The results show a
signi�cant reduction in latency especially in the higher percentiles. Figure 4.3.6 shows
the throughput rate in our experiment. First, 5000 uncompressed noti�cations are sent
with the time span between the �rst and last message recorded (see bar Uncompressed).
We then measured the time taken to send the dictionary (bar SD only). The dictionary
multiplier is set to 1. We then send 5000 compressed noti�cations using the dictionary and
also measured the time interval between the �rst and last message (bar Compressed).
The bar Compressed + SD shows the time to transmit both the dictionary and 5000
compressed noti�cations. The chart shows that using SDC, ≈ 40% less time is needed
to send 5000 noti�cations. Potentially, the dictionary can be used for another 5000
noti�cations which would amortize the dictionary overhead even more.
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Chapter 5

PreDict: Predictive Dictionary
Maintenance for Message
Compression in Publish/Subscribe

Shared dictionary compression (Shared Dictionary Compression (SDC)) is able to go
further in terms of bandwidth reduction by extracting the redundancy from a large set
of messages into a dictionary [32]. However, the challenge with SDC is in choosing the
parameters of the dictionary depending on the topology and the content of the messages,
as well as amortizing the overhead introduced by sharing the dictionaries in the topology.
Thus, SDC for pub/sub is an operational burden because, for each topic, a di�erent set of
parameters has to be con�gured or a Dictionary Maintenance Algorithm (DMA), which
does not consider the topology, may choose unfavorable parameter combinations or
introduce bandwidth overhead that cannot be amortized.

To address this challenge, we design a new dictionary maintenance algorithm called
PreDict that adjusts its operation over time by adapting its parameters to the message
stream and that amortizes the resulting compression-induced bandwidth overhead by
enabling high compression ratios.

Parts of the content of this chapter are published as [20]. Additionally, this thesis presents
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Figure 5.1.1: Relationships among algorithm variables (green) and cost (blue)

an evaluation on even more datasets and over larger windows of messages.

5.1 Overview

PreDict observes the message stream, takes the costs speci�c to pub/sub into account
and uses machine learning and parameter �tting to adapt the parameters of dictionary
compression to match the characteristics of the streaming messages continuously over
time. The primary goal is to reduce the overall bandwidth of data dissemination without
any manual parameterization.

The challenge that we address in this paper is continuously adapting the parameters
and the dictionary used for compression in a resource-e�cient manner while still being
able to react to new content biases in the stream to ensure high bandwidth reductions
given the topology. Figure 5.1.1 summarizes the variable in�uences and con�icting
parameter adjustments and e�ects on the costs in pub/sub. An adequate DMA would
solve the operational concerns of selecting the parameters for dictionary compression in
an automatic and online way and make this approach practicable for real-world usage.
The content of messages can change over time, e.g., a stream from weather sensors
changes depending on the season and Twitter messages change depending on current
events such as elections and football games. Having a vast dictionary that covers all
potential entries is not bene�cial because the references to the entries become longer.
Moreover, a large dictionary introduces overhead when the dictionary is shared in the
pub/sub topology and causes higher computational costs for publishers in compressing
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the messages and for subscribers in decompressing the messages.

The system model we assume for our DMA is topic-based pub/sub with a single interme-
diary decoupling publishers and subscribers, henceforth called topology in this paper. See
Figure 5.1.2 The single intermediary can be implemented in a scalable and fault-tolerant
manner [54, 55, 56]. Many pub/sub systems available from cloud providers expose a
single API endpoint while the backend is implemented as a fault-tolerant broker overlay.

PreDict, our DMA, continuously observes the message stream at one of the brokers and
decides to either recreate the dictionary based on more promising parameters to achieve
higher bandwidth reductions or to retain the current dictionary. We use a combination
of machine learning and model �tting to determine the parameters for the dictionary,
therein also considering the overhead caused by sharing the dictionary in the pub/sub
topology.

The remainder of this paper is organized as follows. In Section 5.2.3, we �rst introduce our
metrics and then, we introduce dictionary-based compression and analyze the relation-
ships among key variables to draw conclusions concerning our DMA. In Section 5.3, we
present our PreDict approach. In Section 5.4, we introduce the evaluation benchmarks
and �nally we present experimental results.
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5.2 Dictionary parameter analysis

First, we introduce our target metrics; then, we introduce dictionary-based compression
and the libraries that we use. Before we introduce PreDict, our dictionary maintenance
algorithm (DMA), and to understand important interactions, we analyze the relationships
among the variables shown in Figure 5.1.1.

5.2.1 Evaluation metrics

The goal of our approach is to reduce bandwidth usage overall (BR). The BR metric
is calculated from the bandwidth usage of the uncompressed messages (B.u) and the
compressed messages (B.c) which include the overhead introduced by dictionary com-
pression; see Equation 5.2.1. As outlined in our system model, which is similiar to that
of cloud-based pub/sub we assume a single intermediary broker. We do not account for
overhead of sharing the dictionary in the broker overlay because brokers do not need
to compress or uncompress messages, hence, do not need a dictionary. Nevertheless an
implementation would have to disseminate the dictionary to the clients either through
the broker overlay or through other means, like a CDN (Content Delivery Network).
Since brokers reside within the cloud and are connected by high bandwidth connections,
overhead is less concern between the clients and the cloud service.

The bandwidth usage of the compressed messages (B.c) is calculated from the size of the
compressed messages |M.c| that are sent once from the publishers (ℙ) to the broker. The
broker forwards all compressed messages (M.c) to each subscriber (S). Each dictionary
is shared with all publishers and subscribes; hence, the overhead equals the size of the
dictionary |DC | that is shared with each publisher and subscriber (|ℙ|+ |S|). The challenge
for SDC in pub/sub is that each ℙ sends only |M.c|

|ℙ| messages, while each subscriber
(S) receives all compressed messages (M.c). Because there are fewer messages being
published per ℙ, it is di�cult to amortize the introduced overhead through a higher
compression ratio of messages in topologies that have many more publishers (ℙ) than
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subscribers (S).

B.u = |M.u| (1 + |S|)
B.c = |M.c| (1 + |S|) + |DC | (|ℙ| + |S|)

BR = 100 − 100 BR.c
BR.u

(5.2.1)

Topologies with many more ℙ than S are frequent in the Internet of Things (IoT) where
many sensors (ℙ) send messages to a few analytics engines or centralized data collection
points (S) [57]. In Smart City applications [58], many sensors send their information to
a few interested parties or to a single database for o�ine analytics tasks.

5.2.2 DMA variable interactions

Dictionary maintenance a�ects bandwidth reduction via certain key variables. Fig-
ure 5.1.1 shows an overview of all variables (green) and the e�ect on costs (blue). Cre-
ating a larger dictionary is bene�cial for higher compression ratios but increases the
overhead when sharing dictionaries with clients. Creating the dictionary from more
history increases the quality of the dictionary and only a�ects the Sampling Broker (SB)
performance. When the dictionary is refreshed more often (low MC), new content biases
can be incorporated faster, thereby improving the compression ratio. However, overhead
from sharing th dictionary is incurred more often, which depends on the topology.

Dictionary sampling in the DMA has two parameters: the history size (HS) and the
dictionary size. The dictionary size is expressed as a multiplier of the mean message
size, called the dictionary multiplier (DM). After the DMA has published a dictionary,
it waits until a certain number of messages (MC) is reached. Then, the DMA creates a
new dictionary and measures the impact. A larger history results in a more accurate
estimation of the impact of a new dictionary but also in higher computational cost. A
smaller MC results in higher computational costs for the SB. However, it is possible to
react faster to changes in the content of the message stream and to incorporate bene�cial
substrings faster to further reduce bandwidth.
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5.2.3 Dictionary analysis and costs

To design a DMA, we have to understand the relationship between costs and bandwidth
reduction of the two dictionary parameters from which the algorithm can choose from:
the history size and the dictionary multiplier. In the plots, we show as an example the
Twitter dataset, which is extracted from the Twitter Firehose; more details regarding the
datasets are given in Section 5.4.

History length

Figure 5.2.1 shows the relation between the number of historic messages in kB and the
time to create a compression model in seconds. The blue line shows the least-squares
regression line over all datasets, and the colored dots show the four chosen datasets and
the actually measured values. The �gure shows that the relation is linear but depends
on the content of the messages. This cost is incurred by the SB when it estimates the
impact of a new dictionary.

Figure 5.2.2 shows the e�ect of the number of histories on the bandwidth reduction.
In this experiment, we take a number of messages from the history and compress the
next 10k messages. Generally speaking, the bandwidth reduction increases when more
messages from the history are sampled, but at a certain point, the gains plateau. In
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certain datasets, e.g., Meetup-comments, some gains are still achieved; however, with
more than 5500 messages, we did not observe any signi�cant improvement in bandwidth
reductions.

Dictionary size

Figure 5.2.3 shows the relationship between the dictionary size and the time needed to
compress 1000 messages. For the twitter-us.json dataset, the relation increases linearly
until a dictionary size of 70 kb, which corresponds to a size of 21× the average message
size. After this point, the CPU time remains nearly constant. The CPU time plateaus
because the additional entries in the dictionary do not tend to be useful, as shown in
Figure 5.2.4. This graph presents least-squares regression lines with the same boundary
at 70 kb. The pattern is similar in all datasets, but the thresholds are content dependent,
e.g., in the tpch-lineitem dataset, the threshold is ≈ 8 kb, which corresponds to a multiplier
of 65× the mean message size.

An ideal dictionary only contains entries that are actually used. We di�erentiate dic-
tionary usage and internal usage. Internal usage refers to reused redundancy within a
message. Table 5.2.1 shows the average entry usage from all datasets. In this experiment,
we �rst create a dictionary from 5500 messages, and then we use it to compress the
next 10k messages and record which parts of the message are reused (internal usage)
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Multiplier Dictionary usage Internal usage
1.0x 97.8% 19.4%
2.0x 93.9% 15.9%
3.0x 94.4% 15.0%
5.0x 91.3% 12.6%
8.0x 91.6% 12.5%

13.0x 91.0% 12.4%
21.0x 87.4% 11.2%
34.0x 82.6% 10.5%
55.0x 74.6% 10.2%
91.0x 65.7% 10.3%

Table 5.2.1: Dictionary usage as a function of message size, mean of all datasets
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and which parts of the dictionary are used. The usage of the dictionary is the highest
when the dictionary size equals the message size. When the dictionary is 5× the message
size, 10% of the dictionary remains unused. Although the overall usage of the dictionary
decreases, more entries still reference the dictionary. The internal usage is approximately
20% when a dictionary is equal to the size of an average message. When the dictionary
becomes larger, the internal usage decreases. This is because longer substrings can be
referenced from the dictionary rather than from the redundancy within the message.

Figure 5.2.5 shows how often each chunk in the dictionary is used. Many chunks of
the dictionary are used more than 5000 times, corresponding to nearly every other
message. Small parts are even used more than 10k times, which means that these parts
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are referenced multiple times within a single message. The substrings are sorted before
they are merged, and the most common substrings are at the end of the dictionary.

Entries that are not used are a result of changes in the bias of the stream. Higher
dictionary usage can be achieved if the content is known upfront, which is not possible
in a stream. Figure 5.2.6 shows the mean bandwidth reduction and the dictionary size
as a multiplier of the average message size. The general trend is that larger dictionaries
induce higher compression ratios. However, this trend plateaus because the additional
entries in the dictionary are not used very often.

Parameter selection conclusions

The main computational load is from extracting the Longest Common Substrings (LCS)
and ranking them. After we have sampled the dictionary, we can evaluate di�erent
dictionary sizes with low additional computational costs. For this purpose, we take the
dictionary, truncate it to a speci�c size, create a compression model that includes the
Hu�man tables and evaluate the bandwidth reduction. As shown in Figure 5.2.6, the
bandwidth reduction can be modeled using a polynomial. In this way, we can determine
a good parameter for the dictionary size by observing only several points and then �tting
a polynomial over several observations.

We select ≈ 300messages as a quali�ed number of historic messages to create a dictionary,
as shown in Figure 5.2.2. The mean of all datasets plateaus at this threshold. Nevertheless,
when we examine the compression ratios of the speci�c dictionary over longer parts of
the stream, we observe that using more messages creates dictionaries that retain the
compression ratios longer.

5.3 PreDict dictionary maintenance

Here, we introduce our approach for an online DMA that considers the conclusions
drawn in the parameter analysis and enables automatic con�guration of the content of
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the message stream through parameter �tting and machine learning.

The DMA shares the dictionary with the clients and de�nes after how many messages
(MC) the stream is observed again. Then, publishers can use the dictionary to compress
the messages, and the subscribers decompress the messages. When the MC is reached,
the DMA has to decide to either keep the dictionary or share a new dictionary with the
clients that promises higher compression ratios. It is important to determine an accurate
MC. An MC that is too high may miss additional BR gains with a new dictionary. An MC
that is too low causes additional bandwidth overhead and computational e�ort when
assessing the current BR. The MC is speci�c to content bias changes in the stream; hence,
we use machine learning techniques to determine the variable. Machine learning requires
a vector of features to predict a target, which is the MC in our case. The features that
we use are derived from the substring scores of the dictionary. To extract the features,
we introduce the substring repository (SR), which tracks the substrings and their scores
over time and calculates the features to predict the MC.

5.3.1 Substring repository

The SR retains for each substring the following information: current score, occurrences
in previous dictionaries (initialized with 1), mean scores of past occurrences (initialized
with the current score) and sum of squared current scores to further derive the standard
deviation (�) of the scores. When the MC is reached, the LCS are extracted from a
set of messages. Then, we update the SR using the new substrings and scores. The
new substrings are not the same, but substrings from the SR can contain one or more
new substrings. Hence, the SR has two operations: put and demerge. Put adds a new
substring to the repository, which does not have any overlaps. Demerge is chosen when
the substring overlaps with existing substrings. As an example, assume that a substring
abcdfg is sampled and that the SR contains two entries: abcdfgwxyz and abcdfgjklp. After
a demerge operation, the SR would contain abcdfg, wxyz and jklp.
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5.3.2 Features for MC prediction

The substring score is a metric that represents the importance of the substring for the
compression of messages. Equation 5.3.1 shows the calculation of the score as in the
FemtoZip library [33], where S denotes the substring and O denotes the occurrences
within the messages that were used to create the dictionary. The overhead of referencing
a substring in the dictionary is three bytes; hence, substrings longer than three bytes
should be included in the dictionary.

f (S, O) =
⎧⎪⎪
⎨⎪⎪⎩

O (|S|−3)
|S| , if |S| ≥ 3

0, otherwise
(5.3.1)

Periodically, we reassess the substring every time the MC is reached and extract the
features used for machine learning. One feature is the standard deviation (�), which
shows how stable the substring score is. When the standard deviation is smaller, the
entries do not change as much and remain equally important between the probes. The
intuition behind the standard deviation is the following: when it is higher, the entries
are more volatile, e.g., trending topics on Twitter. Hence, the MC should be shorter to
recreate up-to-date dictionaries more often. The mean score indicates how important
the substrings are for compression. Some message streams exhibit constant changes, and
some datasets also include periods of large changes. Hence, predicting the MC based on
two features that express the importance and volatility appears to be reasonable.

Using the scores and occurrences recorded by the SR, we calculate the features. We use
the mean standard deviation (�.mean) to express the volatility of the substring score, as
shown in Equation 5.3.2, where Si denotes the score of the substring at the itℎ time of its
evaluation, and O denotes the occurrences. The second feature used for prediction is the
mean of the scores of substrings (s.mean), which expresses the average importance, as
shown in Equation 5.3.3, where N denotes the number of substrings in the dictionary.

�2 = ∑N
i=1 S2i − O (∑N

i=1 Si
O )2

O (5.3.2)
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S.mean = ∑N
i=1 Si
N (5.3.3)

Bootstrapping and recording training data − The main challenge in predicting the
MC is creating a training dataset. Creating a training dataset is time consuming and
computationally expensive because we need to create a new dictionary and measure
how well it performs. Without su�cient training data, the prediction algorithm can
easily predict an MC that is out of bounds. To reduce the reliance on training data, we
�rst gather the MC.base derived from the amortization time of the overhead introduced
by sharing the dictionary, as shown in Equation 5.3.4. The intuition behind MC.base
is that the overhead introduced by sharing a dictionary should pay o�; otherwise, no
bandwidth reductions can be obtained and MC.base is a safe value, where the additional
bandwidth overhead from sharing a dictionary is 0.1%. MC.base is calculated from the
estimated bandwidth reduction (BR), the mean message size (∅), and the overhead (oℎ).
Furthermore, we choose a factor of 1000, which means that the sharing of the dictionary
should be amortized at least 1000× or that the introduced overhead from sharing a
dictionary is 0.1%. This value has been found to be a safe compromise between overhead
and bandwidth reduction.

oℎ = |DC | (|P | + |S|)

MC.base = oℎ (100 − BR)
∅ 100 1000

(5.3.4)

To bootstrap the training dataset, we use MC.base until a su�cient number of obser-
vations has been recorded (see Equation 5.3.5). Once we collect a su�cient number
of observations, the algorithm constructs the machine learning model and further MC
predictions are derived from the model.

f (�.mean, s.mean) =
⎧⎪⎪
⎨⎪⎪⎩

< 6, MC.base, see Equation 5.3.4

≥ 6 obs., p(�.mean, s.mean)
(5.3.5)

The training data is created in the following manner: when MC is reached, the DMA

52



CHAPTER 5. PREDICT: PREDICTIVE DICTIONARY MAINTENANCE

probes the dictionary. The dictionary has an age counter of how often MC is allowed
to be prolonged (Case 5.3.6). This is because there may be new biases in the message
stream that could be represented in the dictionary to increase BR. Because the dictionary
has already been amortized more than initially expected, we create a new dictionary to
determine whether the message stream exhibits new patterns and potentially achieves
further bandwidth reductions.

f (dcage) =
⎧⎪⎪
⎨⎪⎪⎩

dcage ≥ 6, Dictionary too old

otℎerwise, Equation 5.3.8
(5.3.6)

The algorithm creates a new dictionary and calculates BR.dict by compressing several
recent messages. The new dictionary should achieve an at least a 1% improvement
(I .min) in terms of BR compared to BR.curr , which is the currently deployed dictionary;
see Equation 5.3.7. To make the algorithm more robust against small �uctuations in
compression performance, we also track BR.avg, which is the average BR achieved.
BR.imp then shows how good the bandwidth reductions of the new dictionary are
compared to the currently active dictionary.

I .min = BR.curr
100

BR.imp = max(BR.avg, BR.curr) − BR.curr
(5.3.7)

f (BR.imp) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

BR.imp ≥ I .min, a) increase

BR.imp ≤ I .min, b) decrease

otℎerwise, c) ≈ same

(5.3.8)

In Case 5.3.8.a, the current dictionary performs better than initially measured. Hence, we
extend MC by the same number of messages that it has served for and also increase the
expectations of BR to the current evaluation (BR.dict). We update the outcome regarding
MC in the training dataset for future predictions. The dictionary age is not increased.
When the bandwidth reductions decrease by more than BR.imp (5.3.8.b), a new dictionary
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is created. We append it to the training dataset using only half of the validity time of the
dictionary (MC

2 ). The assumption taken is that given the value of the features extracted
from the SR, the number of messages for which the dictionary was valid (MC) should be
lower. In Case 5.3.8.c, the dictionary performed well, and the current messages can be
compressed as well as before. We record this observation in the training dataset. Then,
we extend the dictionary again and also increase the age counter of the dictionary.

Regression model − Over time, we construct a training dataset and move from the
heuristic to the prediction model. The main problems that we face are a limited amount
of training data and outliers. Because training data is not readily available and compu-
tationally expensive to obtain, we cannot use a machine learning method that relies on
a large dataset. Using a sophisticated prediction model on a small dataset is di�cult
because over�tting becomes more di�cult to avoid. By starting with the heuristic and
values that ensure a low overhead, we prime the training dataset with feasible values.
Hence, the predictions are also in that range and further evolve using future data. For
the prediction model, we use ordinary least squares (OLS).

Dictionary variables − The dictionary is created using two variables: the dictionary
size (expressed as the dictionary multiplier) and the number of historic messages. Fig-
ure 5.2.6 shows that it is possible to model the relation between the bandwidth reduction
and the dictionary size using a second-order polynomial. To �t the polynomial, we create
dictionaries at multiple points using the dictionary multipliers shown in Equation 5.3.9.

DM = {0.5, 1, 2, 3, 5, 8, 13, 21} (5.3.9)

First, we split the messages into training and test datasets. The reason for this split
is that when a dictionary is constructed from the same set of messages on which the
bandwidth reduction is calculated, the bandwidth reduction is overestimated. A similar
e�ect is known in machine learning as over�tting. Then, we construct a dictionary
using the training dataset and shorten it using a multiple of the mean message size, as
shown in Alg. 5.1 Line 7. Next, we construct the Hu�man model and test the bandwidth
reduction using the test dataset. Using the recorded observations, we �t a function using
a Gauss-Newton Optimizer, as shown in Alg. 5.1 Line 11. Then, we �nd a point where

54



CHAPTER 5. PREDICT: PREDICTIVE DICTIONARY MAINTENANCE

the steepness of the curve starts to �atten. This point is de�ned as the point where a less
than 3% increase is achieved; see Alg. 5.1.17. We take this point as a dictionary multiplier
(DM).

The second variable, the number of historic messages (ℍS), is increased in ascending
steps until 500 is reached; see Equation 5.3.10. This is because after 500 messages, the
bandwidth reduction does not increase signi�cantly; see Figure 5.2.2.

ℍS = {50, 100, 200, 300, 500} (5.3.10)

PreDict pseudocode − We specify the implementation of PreDict in pseudocode; see
Alg. 5.2. The algorithm waits until 500 messages have been collected; see Line 6. Then, the
algorithm creates a dictionary, predicts the MC and shares the dictionary with the clients.
After the initial phase is completed, the algorithm switches to continuous maintenance
mode of the dictionary. When both the MC and the maximum dictionary age are reached,
the algorithm creates a new dictionary and shares the dictionary with the clients; see
Line 12. If the MC is reached, the algorithm probes the bandwidth reduction in the
current serving dictionary to check whether the BR.curr has decreased; see Line 18. The
updateModel function adjusts the recorded MC in the training dataset and rebuilds
the prediction model.

5.4 Evaluation

We �rst describe how we compare with traditional compression and delta encoding. Then,
we introduce the simplest way to implement dictionary compression (SingleDict)
and an approach that creates new dictionaries at �xed time intervals. Subsequently,
we introduce Adaptive the current state-of-the-art DMA. Finally, we introduce the
datasets and their statistics.
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Algorithm 5.1: Find dictionary multiplier
Data: M representing historic messages
Result: Dictionary size in bytes

1 Procedure probeMultiplier(M)
2 M.train ← {Mbuf f ersize×0.3…Mbuf f ersize}
3 M.test ← {M0…Mbuf f ersize×0.3}
4 DC ← buildDictionary(M.train)
5 Bℝ ← init() // List of Tuples(multiplier, br)
6 for dm ∈ DM do
7 dc ← resize(DC, dm ×meanM)
8 ℎm ← buildHuf fmann(dc,M.train)
9 br ← evaluate(ℎm,M.test) // Evaluate with test

10 Bℝ ← append(Bℝ, (br, dm))
11 f ← GaussN ewtonOptimizer(Bℝ)
12 I .old, I .new, dm, i ← 0
13 repeat
14 dmbest++, i++
15 I .old ← I .new
16 I .new ← f (i)
17 until (I .n − I .o) < 3% or i > max(DM)
18 return dmbest ×meanMessageSize(M)

5.4.1 Other approaches

For each dataset, we run all DMAs with combinations of con�guration options to deter-
mine the best performing combination for each dataset and sampler. We evaluate �ve
di�erent algorithms, see Table 5.4.1, and compare them in terms of the CPU time for
publishers, subscribers and SB, and the overall bandwidth reduction, which includes the
introduced overhead.

DEFLATE

To compare with traditional compression, we choose Deflate [18]. The compression
is end-to-end, which means that a publisher compresses the message and the subscriber
decompresses the message; hence, no SB is needed, and no additional protocol overhead
has to be factored in.
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Algorithm 5.2: Main procedure
Data: stream of messages on a single topic

1 Procedure maintainDictionaries(… )
2 initialize M and , dictionary mlp arrays
3 ℍS ← {50, 100, 200, 300, 500}
4 MC, HSIndex ← 0
5 predicted ← f alse
6 while |M| < 500 do
7 M ← append(M, nextMsg())
8 MC ← predictMC(...) // Start, see Equation 5.3.5
9 BR.dict ← sℎareDictionary(M, MC)

// Alg. 5.3
10 while m ← nextMsg() do
11 M ← append(M, m)
12 if MC reacℎed and dictage > maxdictage then
13 MC ← predictMC(… )
14 predicted ← true
15 BR.dict ← sℎareDictionary(M, MC)
16 else if MC reacℎed then
17 I .min ← BR.dict

100
18 BR.curr ← calculateSavings()
19 BR.imp ← … // See Equation 5.3.7
20 updateAvgSavings(BR.curr)
21 if BR.imp ≥ I .min then // See Equation 5.3.8.a
22 updatePred(2 ×MC, predicted)
23 MC ← 2 ×MC
24 BR.dict ← BR.curr // Raise expectations
25 continue // Keep current dictionary
26 else if BR.imp ≤ I .min then // See Equation 5.3.8.b
27 updatePred( MC

2 , predicted)
28 increaseHSIndex(… ) // More history
29 else // See Equation 5.3.8.c
30 predicted ? updatePred(MC, predicted)
31 predicted ← f alse
32 dictage++
33 if dictage < maxDictAge then
34 MC ← 2 ×MC
35 continue // Keep current dictionary

36 MC ← predictMC(… )
37 sℎareDictionary(M, MC)
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Algorithm 5.3: Helper functions
Data: Dictionary

1 Procedure shareDictionary(M, MC)
2 bSize ← buf f Array [buf f erI dx]
3 dSize ← dictArray [multiplierI dx]
4 dc ← sampleDictionary(M, bSize, dSize)
5 BR ← calculateSavings()
6 predictionMade ← true
7 sendDict(dc,MC) // Send dictionary to clients
8 return BR
9 Procedure updatePred(MC.new, predicticted)
10 if predicticted then
11 updateFeatureMatrix(MC.new)

Algorithm Description
DEFLATE O�-the shelf compression
VCDi� Delta encoding
Fixed rate Best possible combination
Singledict Simplest benchmark
Adaptive Baseline and state-of-the-art
PreDict Our approach

Table 5.4.1: Algorithm overview

VCDi�

To use VCDiff in pub/sub, we encode s messages as the di�erential to the previous
message. We use a Java library [59] that implements RFC3284 [60]. We also evaluate
sending the di�erential of two consecutive messages using the O(ND) Di�erence Algo-
rithm [61]. In our experiments, the BR achieved using VCDiff was found to be higher;
hence, we use VCDiff as the baseline achievable with delta encoding.

SingleDict dictionary maintenance

SingleDict is the simplest method for implementing dictionary compression in pub/sub.
It creates only one dictionary from sampling the �rst 10k messages. We choose a large
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range of dictionary multipliers, see Equation 5.4.1, and evaluate all permutations. This
benchmark shows the bandwidth reduction when only a single dictionary is used without
any maintenance.

DM = {0.3, 0.5, 1, 2, 3, 5, 8, 13, 21, 35, 56, 91} (5.4.1)

FixedRate dictionary maintenance

FixedRate is a benchmark for PreDict. It does not consider any feedabck; hence, it
is able to �nd the baseline of when no heuristic or prediction is used to determine the MC.
Furthermore, we evaluate DM×BS×WS parameter permutations; see Equation 5.4.2. We
then show the best performing permutation in terms of BR. DM is the set of dictionary
multipliers used, ℍS lists the bu�er sizes for historic messages and Mℂ indicates how
long the dictionary was valid. The initial DM and BS used to sample the dictionary are
set to the �rst values of the sets. Every 10 dictionaries, the algorithm increases the history
size and the dictionary size by one in an alternating manner. The goal of this algorithm is
to show what BR can be achieved when the DMA does not react to content bias changes
or is unaware of the topology and only optimizes for the highest compression ratio of
messages.

DM = {0.3, 0.5, 1, 2, 3, 5, 8, 13, 21}
BS = {50, 100, 200, 300, 500, 800, 1300, 2100, 3400, 5500}
Mℂ = {1500, 7500, 15000, 30000}

(5.4.2)

Adaptive sampler

Adaptive is an implementation of the DMA presented in [19] and represents the
current state of the art. After a warm-up phase of 100 messages, where the messages
are bu�ered, the algorithm begins to sample a dictionary. Then, the current message
rate (R) is derived, and the impact on BR is estimated. The adaptive algorithm considers
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the amortization time calculated based on the bandwidth usage of the stream and the
estimated bandwidth reductions of a new dictionary. The calculation does not consider
the ratio of publishers to subscribers. AS de�nes that the overhead of the new dictionary
should pay o� at least 2000 times and sets the T TL accordingly. This approach assumes
a T TL in seconds, which means that it would also need a prediction of the message rate.
The evaluation of Adaptive did not consider changing message rates over time and
assumed that the message rate remains constant [19]. If the message rate decreases, the
computational overhead would increase since the sampling broker would have to make
the decision whether to renew the dictionary or prolong the dictionary. In the contrast,
when the message rate increases, an outdated dictionary would be active longer and may
not achieve high bandwidth reductions. In the evaluation of this approach, we consider
a constant message rate; hence, these cases do not occur. The BR estimation splits the
dataset into training (70%) and test datasets (30%). The dictionary is constructed from the
training dataset, and the test dataset is compressed using the dictionary, from which the
BR is derived. Because the estimation of BR creates a new dictionary, it also causes a high
computational load for the SB. When the T TL is reached, the algorithm �rst calculates
the BR with the current savings and compares it to the gain in savings for the case where
a new dictionary would be used. If the estimated gain in BR is larger than a prede�ned
threshold (MI ), a new dictionary is created from the entire bu�er. The calculation of
the T TL includes an exponential that expresses how many changes to the dictionary
con�guration have been made. Because the parameters regarding the dictionary size only
increase over time, every change to the parameters means a higher cost for publishers,
subscribers and the SB. If no gain above the minimum improvement (MI ) is reached,
the dictionary parameters are increased. Increasing the bu�er size or the dictionary size
can improve the compression, and thus, when the next T TL is reached, it is quite likely
that a new dictionary reaches the MI . The main assumption behind this approach is
that the parameters will reach a certain equilibrium and stop increasing because no MI
can be reached. We evaluate Adaptive with MI = {1, 2, 3, 4, 5} and present the best
performance in terms of BR.
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Dataset Short Format Messages Size Mean NSim Std NSim
DEBS 2015 DEBS csv csv 1999999 367M 83.90 4.50
DEBS 2015 DEBS json json 1999999 1G 97.19 0.67
DEBS 2015 DEBS xml xml 1999999 1.4G 98.03 0.47
GDAX Exchange Gdax json json 1729210 429M 81.69 18.96
Github GH json json 126245 302M 92.05 4.34
Meetup comments Comm json json 1213782 1.2G 95.80 1.66
Meetup events Eve json json 1014903 2.4G 88.91 4.10
Meetup RSVPs RSVPS json json 5641665 7.4G 97.50 0.77
Neutron Neut log log 800228 229M 81.77 14.97
Twitter US Twitter json json 635037 2G 96.04 3.70
TPCH lineitems tpch tbl tbl 6001215 725M 98.12 0.72
Bart arrivals Bart json json 7935189 11G 86.30 14.32
Chicago bike Chi-b json json 6102802 2.7G 98.45 0.32
METAR AWC US MET json json 9411665 4.6G 97.62 0.86
NYC Bike Live NYC-B json json 10192643 4G 98.08 0.54
GTFS EDmonton GTFS-E json 19791498 6.4G 96.80 0.58
Satellites sat json json 29609645 5.9G 95.08 0.73
Twitch Events twitch json json 1753147 2.0G 58.76 36.35

Table 5.4.2: Dataset statistics

5.4.2 Datasets

We collected several datasets from public API endpoints, as shown in Table 5.4.2. The
DEBS2015 dataset [48] contains all taxi trips within New York over a year. We converted
the dataset into JSON, XML and ProtoBuf [51] to also observe the BR with di�erent
message formats. The GDAX dataset was acquired from a public API of the GDAX
Exchange. The Github dataset was also extracted from the publicly available API and
contains noti�cations of various hosted repositories. The Meetup datasets were acquired
from three di�erent public API endpoints. The Meetup comments feed contains text
messages that users post to comment on an event. The Meetup events stream contains
all newly created events by their members, and Meetup RSVPs are a stream of people
who attend the events. The Neutron log is a large log�le from an Openstack cluster that
contains info and error messages of the networking service. The Twitter dataset was
extracted from the public Twitter Firehose, therein being restricted to coordinates located
within the U.S., and it was scraped in November 2016 during the US presidential elections.
Additionally, we generated data from the TPC-H benchmark because dictionary-based
compression can be employed when replicating databases over geographically separated
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data centers. The datasets are realistic for evaluating the compression because they
exhibit real-world content bias changes. Furthermore, all datasets are publicly available.
Additionally, many of these Web services use pub/sub in there backend infrastructure [12]
or as an abstraction for communicating with smartphone applications [13].

An important metric for the datasets is the similarity between messages. To quantify the
datasets and make our work comparable to works that cannot publish their datasets, we
computed the ratio of common substrings larger than 3; see Equation 5.4.3. We introduce
two metrics that describe the datasets: the mean similarity and the standard deviation. A
higher mean similiarity indicates a better performing dictionary-based compression. A
higher standard deviation indicates a greater need for a DMA that reacts to bias changes.
Table 5.4.2 shows the metrics in the last two columns.

Furthermore, the boxplots in Figure 5.4.1, show the variance of the similarity. The DEBS
2015 datasets in the various formats exhibit similarity as expected. The XML format
introduces more overhead and hence a higher redundancy. The Neutron log has a broad
distribution of similarity. When further examining the content of the dataset, we observe
that, at night fewer users use the cluster, recon�gure the virtual networks and bring up
new virtual machines; hence, similar status messages are dominant. Conversely, during
the day, users of the cluster bring up or shut down virtual machines more frequently,
producing less similar log messages.

n = {1, 2,…100}

f (mt) =
⎧⎪⎪
⎨⎪⎪⎩

|mt |, if |mt | > 3
0, otherwise

s(m, n) = 2∑i=submatcℎes
i=0 f (|simi |)

|m| + |n|

NSim =
test=100
∑
test=0

eval=begin+100
∑

eval=begin
s(mtest , meval)

(5.4.3)

62



CHAPTER 5. PREDICT: PREDICTIVE DICTIONARY MAINTENANCE

20 30 40 50 60 70 80 90 100

Similarity

DEBS-csv

DEBS-json

DEBS-xml

Gdax-json

GH-json

Comm-json

Eve-json

RSVPS-json

Neut-log

tpch-tbl

Twitter-json

Bart-json

BTC-json

Chi-B-json

MET-json

NYC-B-json

GTFS-E-json

sat-json

twitch-Eve-json

Figure 5.4.1: Normalized Similarity
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5.4.3 Metrics

The BR is calculated from all messages in the topology; see Section 5.2.1, Equation 5.2.1.
It includes all messages transmitted and the overhead introduced when dictionary-based
compression is used according to the system model. For VCDiff and Deflate, there
is no additional overhead because these methods do not need to share information for
compression. We do not consider any additional overhead for VCDiff in pub/sub. In a
real-world implementation, additional protocol overhead must be considered. In addition
to the dictionary, all SDC methods assume a metadata �eld in the message of a single byte
that identi�es the dictionary that the subscribers use to choose the correct dictionary to
decompress the message.

The computational costs are measured in terms of CPU time. For the computational cost
of the publisher, we take the time needed to compress each message in nanoseconds and
sum these times for all messages. We do the same for the subscribers, where we take the
time to decompress each message in nanoseconds. Similarly, the computational overhead
of the SB is the time needed for the evaluation of the dictionary performance, dictionary
creation and updates of the prediction model. The server used for the evaluation contains
4x Intel Xeon E7v3 @ 2.20GHz CPUs.

5.4.4 Prediction error MC

Table 5.4.3 presents the prediction errors of PreDict. We �nd that message formats
such as CSV and ProtoBuf exhibit more changes in content biases because there is
minimal schema overhead in the dictionary; hence, the predicted MC is shorter, and
consequently, more dictionaries are used during the evaluation. The results of the Meetup
comments and Github datasets are surprising because they are large datasets but no
more than 5 dictionaries were used; hence, only the bootstrapping heuristic is used in
PreDict. This is because of the content of the messages. For example, in the Meetup
comment dataset, a large part of a link is repeated 3×, and some other larger chunks
of a message are nearly always the same. Only certain parts, e.g., the event id and the
comments, are highly random and are not captured in the dictionary. Because BR remains
approximately the same in these datasets, there is no need to continuously update the
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dictionary; see also Table 5.4.4, where a permutation of SingleDict performs the best
in the Meetup comments dataset.

When examining the content of the dictionaries in the comments dataset, the schema is
present but not many parts of the �elds are present. Since comments are in free text, there
does not seem to be enough bias to promote these parts in the dictionary. When looking
at the results in Table 5.4.4, the BR is still high but the Singledict sampler performed best
for the comments dataset.

Dataset Dictionaries MPE
Debs2015-pb 229 75.4%
Github-json 5 31.3%
Meetup-rsvps-json 71 6.1%
Meetup-events-json 12 33.7%
Meetup-comments-json 5 30.8%
Debs2015-xml 35 3.1%
Debs2015-csv 162 54.2%
Gdax-json 30 50.2%
Debs2015-json 50 24.3%
Twitter-us-json 15 0.0%
Neutron-log 22 50.9%

Table 5.4.3: Prediction error MC

Figure 5.4.2 shows the predicted MC and the actual MC over time for the debs2015-json
dataset. In many cases, the predicted values were too small, and the dictionary could
have been active for a longer time. In 75% of the cases, it was predicted correctly.

5.4.5 Bandwidth reduction

Table 5.4.4 presents the best result for each algorithm with respect to the achieved
bandwidth reduction. The presented computational costs correspond to the best result in
terms of bandwidth reduction. The unit of the computational cost is the total CPU time
in minutes. The results for BR show the method with the highest BR of all permutations
in the case with one subscriber and one publisher when applied to topologies that have
many more publishers than subscribers.
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Figure 5.4.2: Prediction error of PreDict

The lowest computational overhead for publishers is achieved with Deflate and VCDiff.
PreDict uses ≈ 30%more CPU time on the publisher side. Note that Deflate uses the
implementation available in Java SE 8 (java.util.zip.De�ater). The library that PreDict
uses is implemented in Java only. Adaptive uses a heuristic that increases the size
of the dictionary when no further BR is achieved and ultimately ends up with a large
dictionary, which negatively a�ects the CPU overhead. PreDict �ts the parameters
and takes as the dictionary size the value that is 3% below the maximum, which is a good
compromise between overhead and BR.

The computational costs for the subscribers are similar under all approaches. Surpris-
ingly, the cost for PreDict is even lower than that of Deflate which uses the ZLib
compression library. In addition, the Hu�man table is shared upfront and often reused;
hence, the runtime optimizations of the Java runtime can be used.

The CPU cost for SB is 0 with Deflate and VCDiff because no DMA is needed.
PreDict uses the fewest resources because, compared to Adaptive, no additional
dictionary is built to estimate BR. FixedRate shows the best performance when no
feedback is incorporated and hence always creates a new dictionary.

Dictionary compression also works well with binary data; see the DEBS2015-pb dataset,
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a ProtoBuf encoded variant. Using a DMA the BR is approximately 50%, while Deflate
achieves a 7% BR. This shows that single messages lack su�cient redundancy that can
contribute to the BR but there is su�cient redundancy that is shared among several
messages. VCDiff which only encodes the delta between two consecutive messages,
has no signi�cant BR.

The mean BR using Deflate was 41.3%. Deflate and VCDiff have no additional
overhead that depends on the topology; hence, the BR is the same for all topology con�gu-
rations. Adaptive, FixedRate and SingleDict are not aware of the publisher-to-
subscriber ratio. In the case where there are many publishers, the overhead is excessive,
and dictionary-based compression con�gured without knowing the topology leads to
overhead that cannot be amortized; even o�-the-shelf compression using Deflate is
a better option. PreDict considers the topology and still achieves ≈ 72% bandwidth
reductions in toplogies with 1k publishers and a single subscriber. If the topology contains
10k publishers and and a single subscriber, the overall bandwidth reduction drop to 44%
which is still 3%pp more than Deflate. The other approaches didn’t reach bandwidth
reductions over Deflate or even add more overhead than ever could be amortized.

Figure 5.4.3 shows the worst, best and median case results in boxplots for all permutations
using Adaptive and SingleDict. We included PreDict to emphasize that it does
not need any con�guration. Adaptive and SingleDict use parameters that are
manually con�gured, while PreDict adapts itself to the messages of the stream. For
this �gure, we took the best result in terms of BR as the baseline of each method, and the
boxplot shows how much better or worse the results can be with other con�gurations
that do not achieve that high BR. Note that the deviation of BR is expressed in percentage
points, while the CPU costs are expressed relative to the result with best BR per DMA.

When SingleDict is con�gured with un�t parameters, the BR can decrease by as much
as 25%pp, and the CPU costs can be up to 85% worse for the publisher and up to 38%
worse for the subscriber. When the optimal parameters are not taken for Adaptive the
BR can be decrease up to 6%pp while the CPU cost for the publishers can range between
25% better and 60% worse, with the median being 21% worse. The main reason for this
behavior is that Adaptive ends up with dictionaries that are too large, which do not
have a high impact on the BR. Furthermore, if the DMA ends up with dictionaries that are
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too large, then the overhead is ampli�ed in topologies that have many more publishers
than subscribers.
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SB CPU cost relative to result with best BR per DMA

Figure 5.4.3: Worst, median, and best case deviations from the best result in terms of BR

5.4.6 Bandwidth reduction over time

Figure 5.4.4 shows both the performance of multiple DMAs and why dictionary main-
tenance is valuable. At ≈ 600k messages, the best SingleDict permutation achieves
the highest BR; from this point on, the content of the dictionary becomes outdated, and
the BR decreases. Adaptive and PreDict react by creating new dictionaries and can
even improve the bandwidth reductions. The worst case con�guration of Adaptive is
even worse than SingleDict.
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Figure 5.4.4: Bandwidth savings over time

Figure 5.4.5 shows the bandwidth reduction over time of PreDict, Adaptive and
FixedRate for the debs2015.csv dataset. This dataset has no schema overhead be-
cause of the XML or JSON encoding; hence, the compression is only dependent on the
repetitions of the content. PreDict evaluates 162× the compression, see Table 5.4.2,
and decides to either prolong the dictionary or create a new one. We can observe that
PreDict takes some time to fully adapt to the content of the stream, and then, the
BR increases. This is a general trend in nearly all datasets, particularly in the Neutron
dataset. The gap between the best and worst case SingleDict is approximately 6%.
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Figure 5.4.5: Bandwidth savings over time

The average BR of PreDict is 72.6%, which is 0.3% better than the best permutation of
Adaptive and 0.5% better than the best permutation of FixedRate in the case of a
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topology that has one publisher and one subscriber. Note that in both Adaptive and
FixedRate, many permutations are evaluated, and only the best permutation in terms
of BR is shown. PreDict represents a single result without con�guration. When more
publishers are in the topology, PreDict still achieves a high BR while Adaptive
and the benchmarks introduce overhead that cannot be amortized by high compression
ratios. In a topology with 10k publishers and a single subscriber, PreDict still achieves
a BR of 70.7%, whereas all other methods achieve worse performances than o�-the-shelf
compression Deflate.

5.5 Supplementary evaluation

We evaluated another dimension batching. When multiple messages are batched to-
gether, the redundancy within a batch increases, hence o�-the-shelf compression such as
Deflate achieves higher compression ratios. In scenarios, such as our motivating
examples in Internet of Things (IoT) or smartphone applications, latency is critical.
Furthermore not so many messages are exchanged, hence batching would introduce
high latency since multiple messages have to awaited to be batched together. However,
batching is often used when workloads are not latency sensitive, such as background
processing of large chunks of messages. We want to show at which tresholds o�-the-shelf
compression performs as good as SDC with the related protocol overhead.

Next we want to show the performance of PreDict by extending Apache Pulsar, a
distributed pub/sub system.

5.5.1 Batching of messages

We evaluate another dimension, batching to show the impact on the compression band-
width reduction. Batching is tradeo� between latency and compression ratio in case
of the shelf compression is used. Batching is available in many o�-the-shelf pub/sub
systems such as Kafka [62] or Apache Pulsar [63]. When Batching is activated, the
publisher waits till several messages are published and then sends them to the broker as
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a single batch. Furthermore the whole batch is acknowledged at once which improves
throughput.

We evaluate the following permutations, see Equation 5.5.1:

BS = {1, 2, 3, 5, 8, 13, 21, 34, 55}
DMA = {PreDict , Deflate }

EV = BS ×DMA
(5.5.1)

When multiple messages can be batched together, o�-the-shelf compression such as
Deflate performs better since the redundancy between messages can be used to reduce
the size. Figure 5.5.1 shows that in the case where one publisher and subscriber, using
PreDict very high compression can be achieved from the �rst message on. But o�-
the-shelf compression such as Deflate works nearly as good as PreDict when 20
or more messages can be batched together.
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80

B
R

1 publisher and 1 subscriber - Mean bandwidth reduction vs. batchsize

PreDict

Deflate

Figure 5.5.1: Batch compression, Deflate and PreDict

In case we have 1k publishers and just a single subscriber, we need to acknowledge
the overhead of sharing the dictionary. The dictionary can only be amortized through
high compression ratios on messages, but in this scenario, each publisher only shares |M |

|ℙ| .
Since less messages are sent per publisher, batching would incure high latency.

For a real world use case batching of messages on the publisher side must be questioned.
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The case of high numbers of publishers and a single subscriber are often the case in
IoT. As an example, sensors in the �eld report soil moisture every hour. Batching of
10 messages together would result in bandwidth reductions similar to PreDict but
the farmer may loose actionable information for many hours and the irrigation system
may not be triggered in time. Nevertheless, if such a scenario is feasible, we can see
that PreDict is ≈ 20% in the case of a batchsize of 1. At batchsize 10, no signi�cant
advantages of PreDict can be seen.
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Figure 5.5.2: Batch compression, Deflate and PreDictcon�gured with 1k publishers

Furthermore we include the results when a small batchsize of 2 is possible. Deflate,
which achieves 41.2% bandwidth reduction in the scenario of batchsize 1, increases the
bandwidth reduction to 57.1%. When there are 10k publishers and a single subscriber,
this number is even better than PreDict which achieves 46.5%.

Additional results with di�erent batchsizes are available in the Appendix B.

5.5.2 Extension of Apache Pulsar

We extended Apache Pulsar [63] to support SDC. The broker starts an additional service
per topic which executes the PreDict. Pulsar is fully asyncronous using evented I
O. Hence our extension is also implemented in that way. When a new dictionary is
available, publishers and subscribers are noti�ed. When they are ready, the pull the
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dictionary from the broker. The compression and decompression is done in a user
invisible way. The only di�erence is that when a publisher creates a new topic, it sets a
�ag that it should be compressed using SDC.

For the evaluation we evaluate di�erent publisher to subscriber ratios and di�erent com-
pression methods. We evaluate PreDict, o�-the-shelf compression using Deflate
and no compression, see Equation 5.5.2. The rate is expressed in bits per second (bps).

|ℙ| = {1, 2, 3, 5, 8, 13, 21, 34, 55}
|S| = {1, 2, 3, 5, 8, 13, 21, 34, 55}
ℝ = {64K, 128K, 256K, 512K, 1M, 2M, 4M, 8M, 16M, 32M}

DMA = {PreDict , Deflate, uncompressed}
EV = |ℙ| × |S| ×DMA × ℝ

(5.5.2)

First, we start the Pulsar broker on a VM backed by a node with a spinning disk. All
topics are persistet to disk, hence the drive speed is also important. Since messages are
compressed and have a smaller size, we expect less I
O. Listing [lst:broker benchmark] shows the benchmark results of the disk. Then we
copy the dataset to the publishers. After the dataset is copied, we set up the bandwidth
limitations between the broker and clients. Listing 5.5.2 shows the outgoing bandwidth
limitations enacted speci�cally to a client with a speci�c ip adress. Listing 5.5.3 shows
the outgoing bandwidth limitations from the client to the broker.

Listing 5.5.1: Broker disk benchmark
t ime sh −c " dd ␣ i f =/ dev / z e r o ␣ o f = t e s t f i l e ␣ bs =512 ␣ count =10000 ␣ o f l a g = d i r e c t ␣&&␣ sync "
5 7 . 7 2 0 s and 8 9 . 1 kB / s

t ime sh −c " dd ␣ i f =/ dev / z e r o ␣ o f = t e s t f i l e ␣ bs =1000 k ␣ count =1k ␣&&␣ sync "
5 . 8 9 3 s and 182 MB/ s

Listing 5.5.2: Bandwidth limitations at broker
ubuntu@bigenv − p u l s a r −broker − 1 3 : \ $ tcshow e t h 0
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{
" e t h 0 " : {

" o u t g o in g " : {
" ds t −network = 1 7 2 . s u b s c r i b e r . i p / 3 2 , ␣ p r o t o c o l = i p " : {

" f i l t e r _ i d " : " 8 0 0 : : 8 0 3 " ,
" de lay ’ ’ : ␣ " 5 0 . 0 ms " ,

␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ " r a t e ’ ’ : " 64K" ,
}

} ,
" incoming " : { }

}
}

Listing 5.5.3: Bandwidth limitations publisher or subscriber
ubuntu@bigenv − p u l s a r − c l i e n t − 7 2 4 : \ $ tcshow e t h 0
{

" e t h 0 " : {
" o u t g o in g " : {

" ds t −network = 1 7 2 . b r o k e r . i p / 3 2 , ␣ p r o t o c o l = i p " : {
" f i l t e r _ i d " : " 8 0 0 : : 8 0 3 " ,
" d e l a y " : " 5 0 . 0 ms " ,
" r a t e " : " 64K"

}
} ,

" incoming " : { }
}

}

Once the datasets are copied to the publishers, the bandwidth limitations are enacted,
the controller publishes a message on a speci�c topic. When the message is received,
each publishers starts to publish 20.000

|ℙ| messages and each subscriber waits until 20.000
messages are received. We measure the timespan between start and �nish. Each message
is sent syncronously, hence the broker con�rms the reception of the message after it has
been persisted in the log. Each message received by the subscriber is acknowledged to
the broker, this advances the cursor in the log to the next message.

Slow network connections often lead to timeouts in the evaluation. If we run into a
timeout, we cancel the benchmark and rerun it. At 1Mbps, we had to rerun the benchmark
on average 5 times until we had a usable result. Figure 5.5.3 shows the performance
improvements for consumers when PreDict is used in a bandwidth limited scenario
using the Twitter dataset. The bandwidth is limited to 1Mbps for all clients, which
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corresponds to a rural 3G connection. All producers are started at the same time, so in
case 3 producers send messages, each producer sends 20000

3 messages. We can see that
when 5 publishers start sending at the same time, we hit the bandwidth limitions on the
subscriber side, hence compression of messages pays o�. The more publishers, the faster
messages arrive at the broker, the higher the speedup. The maximum speedup was 4 for
the Twitter dataset which using PreDict achieves 84.4% bandwidth reductions.

Figure 5.5.4 shows the performance when bandwidth is limited in both directions to
4Mbps which corresponds roughly to a HSDPA mobile connections. We see that the
connections to the consumers become a bottleneck once we have 34 publishers sending
messages, which is expected since in the 1Mbps experiment we hit the bottleneck at
around 5 publishers.

Overall we can see that when bandwidth is not constraint, we achieve around 1.1×
speedup. The reason is that messages are persisted faster to disk on the broker. Reducing
the size of the messages using SDC also improves the performance of disk based message
queues.

Additional results are available in the Appendix C. We show additionally the subscriber
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speedup and also publisher speedup at di�erent bandwidth constraints.
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5.5. SUPPLEMENTARY EVALUATION
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Chapter 6

TaPD: Topology-aware PreDict

Many pub/sub systems are distributed and the individual brokers are connected through
an overlay network. Publishers and subscribers connect to the brokers and messages are
routed along a speci�c path from the publishers to the subscribers through the overlay.

The challenge with Shared Dictionary Compression (SDC) in pub/sub systems is that on
links with a low amount of messages, the introduced overhead of dictionary compression
cannot be amortized. In this chapter, we propse TaPD, an approach to make PreDict
aware of the underlying topology. TaPD defaults to compression algorithms which do
not introduce overhead or prolonging dictionaries even longer to reduce overhead at the
cost of lower compression ratios. Furthermore, we use brokers to re-code messages in
the network to keep the overall bandwidth reductions high. The goal is that no overhead,
which is inpossible to amortize, is imposed for all clients.

6.1 Overview

In TaPD, we address the problem of high overhead by adapting to the speci�cs of a
graph topology. We extend our previous approach PreDict, with brokers that have
the ability to re-code messages. As an example, in case a publisher sends a message
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B1
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Figure 6.1.1: Clients connections connected to overlay

in Deflate, the broker can uncompress the message and then compress using a new
dictionary and forward it using dictionary compression. Furthermore, we allow multiple
dictionaries to be active at the same time. This �exibility allows us to keep dictionaries
longer active in subparts of the overlay and amortize the overhead of the dictionary
despite the degradation in compression ratio.

The system model we assume for TaPD is a distributed pub/sub overlay, see Figure 6.1.1.
(Compare to the system model of standalone PreDict, see Section 5.1) Each publisher
and each subscriber is connected to one broker. The brokers are connected to a certain
degree with other brokers.

6.2 Topology-aware compression in publish/subscribe

First, we introduce the overlay we assume for the evaluation of TaPD. Then, we
explain the evaluation metrics and formulate bandwith reduction in the graph as an
optimization problem. Finally, we introduce TaPD, which makes our previous approach
PreDict topology aware. The system model we assume is that of a distributed pub/sub
systems. Pub/sub systems exhibiting similiar properties are Padres [6], Scribe [64],
PastryStrings [65] or Siena [5, 24]. Additionally we assume that the system includes
a leader election system such as Paxos [66] or Raft [67] and a consistent key-value store
such as Zookeeper [68].
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Figure 6.2.1: Overlay for message dissemination

6.2.1 Topology

Each publisher and subscriber is connected to a single broker. Each broker is connected to
a certain number of other brokers. One of the brokers is selected to also be the Sampling
Broker (SB) of the topic. Our assumption is that each message is routed along the shortest
path through the overlay. Furthermore, the dictionary is shared through the overlay and
routed along the shortest path to each publisher and subscriber by the sampling broker.

The overlay resembles a graph, see Figure 6.2.1. Each publisher (Pi) is connected to one
broker (Bi). Messages �ow from publishers towards subscribers (Si). Each subscriber
receives 100% of the messages. The publishers in this example publish each the same
amount of messages. The messages are routed along the shortest path to the subscribers.
The connections from publishers to brokers and from brokers to subscribers are directed.
The connections between the brokers are undirected. The values towards the target on
the edges denote percentages of total messages published on a topic.

A similiar graph is formed for the dissemination of dictionaries, see Figure 6.2.2. One
broker acts as the SB, colored in red in the �gure. Each client (publishers and subscribers)
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Figure 6.2.2: Overlay for dictionary dissemination

receives the dictionary. The values on the edges towards the target indicate the size of the
dictionary. In this exeample, we use dictionaries that are 50kB. Because dictionaries are
sent along the shortest path, they may take di�erent routes than messages. On the edge
betwenn B0 and B1 no dictionary is sent. The overhead from sharing a dictionary may not
amortize on the individual edges between the brokers. In that case, since the dictionaries
are shared through other links, the overall bandwidth reductions on other links is higher.
This is not a concern since other connections to the broker are not impacted by overhead.

6.2.2 Evaluation metrics

We model the pub/sub overlay as graph (G) with the clients and brokers as vertices (V )
and edges (E(i, j)) as a link from Vi to Vj . The bandwidth reduction of the individual
links is calculated the following way, see Equation 6.2.1. The size of the uncompressed
messages. To calculate the bandwidth reduction on a edge E(i,j).br between two vertices
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V , we need

V = ℙ ∪ S ∪ B
E(i,j).u = |M(i,j).u|

E(i,j).c =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

|M(i,j).u| × ℂ.dc + |DC(i,j)| if SDC

|M(i,j).u| × ℂ.d if Deflate compression

|M(i,j).u| if No compression

E(i,j).br = 100.0 − (100/B(i,j).u × B(i,j).c)

(6.2.1)

The total bandwidth reduction (BR) represents the total overall bandwidth using com-
pression compared to using no compression.

BG.c =
i=i.max,j=j.max

∑
i=1,j=1

E(i,j).c

BG.u =
i=i.max,j=j.max

∑
i=1,j=1

E(i,j).u

BR = 100 − 100 BG.c
BG.u

(6.2.2)

6.2.3 Optimization problem

We can formulate the goal of TaPD as an optimization problem. We classify the edges
of the graph into three di�erent categories. Edges which are between publishers and
brokers, subscribers and brokers and between two brokers, see Equation 6.2.3.

E(i,j) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

PE(i,j), Publisher edge if Vi ∈ ℙ or Vj ∈ ℙ
SE(i,j), Subscriber edge if Vi ∈ S or Vj ∈ S
BE(i,j), Broker edge if Vi ∈ B and Vj ∈ B

(6.2.3)
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Our goal for TaPD is to maximise the BR subject to the following constraints, see Equa-
tion 6.2.4. Edges between publishers and brokers and brokers and subscribers should have
a lower bandwidth than Deflate. The variables TaPD can choose is on which edges to
use SDC vs. Deflate, expressed as a integer variable (E(i,j).usedc. When SDC is used,
how much the dictionary should be prolonged (dictionary degradation E(i,j).degrade).
CR.def late denotes the compression ratio when Deflate is used. CR.dc when SDC is
used.

maximise
(E(i,j).usedc,E(i,j).degrade)

100 − 100 × (∑E(i,j).c +∑E(i,j).d)
∑E(i,j).u

subject to (|PE(i,j).u| × CR.dc × E(i,j).degrade + |DC(i,j).d |) × E(i,j).usedc+
(|PE(i,j).u| × CR.def late) × (E(i,j).usedc − 1) ≤ PE(i,j).u) × CR.def late

(|SE(i,j).u| × CR.dc × E(i,j).degrade + |DC(i,j).d |) × E(i,j).usedc+
(|SE(i,j).u| × CR.def late) × (E(i,j).usedc − 1) ≤ SE(i,j).u) × CR.def late

E(i,j).usedc = {0, 1}
E(i,j).degrade ≤ 1
E(i,j).degrade > 0

(6.2.4)

TaPD decides wheter an edge should use a dictionary (E(i,j).usedc) and how much the
dictionary is degraded (E(i,j).degrade).

To solve this using a solver, the following additional information would be needed
upfront: How many messages are published per publisher and the overall message size
(|PE(i,j).u|). And how many messages in total are published (|SE(i,j).u|). Furthermore a
model is needed for dictionary degradation (E(i,j).degrade). The amount of messages and
how much the dictionary has degraded at the point of publication of the message is only
available posterior, hence we decided to build a simulation and a model for the dictionary
degradation.
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6.2.4 Dictionary degradation analysis

TaPD extends the dictionaries way longer than their initially planned lifetime, we need a
model for the degradation to simulate our approach. PreDict observes the bandwidth
reductions and when additional reductions can be obtained, a new dictionary is being
shared in the overlay. Edge brokers would measure the degradation and can react.

Dictionaries typically contain two parts, the schema overhead and short term biases.
Short time biases get outdated soon while schema overhead stays the same over a longer
time. We observed this parts in PreDict where we use the ratio of these values to
predict the active time the dictionary should be used. The ratio depends on the dataset.
In some datasets, the dictionary degrades very fast, others stay roughly the same. The
reason is that either the short term biases change too fast and these parts of the dictionary
get outdated quickly or that there are no biases in the stream.

Table 6.2.1 shows the results we use for the model. In this experiment, we create a single
dictionary using PreDict but instead of continously maintaing and refreshing the
dictionary, we observe how the �rst dictionary degrades. In some datasets the dictionary
degraded by up to 17.3% while for other datasets the compression ratio did not degrade.
Additionally, we looked at the swing of the compression ratio. Every 10k messages we
compress 100 messages using the dictionary and record the compression ratio. We take
the maximum and minium compression ratio and calculate the di�erence that is shown
in the column SDC swing. We can see swings in terms of compression ratio of up to
43.8% when no dictionary maintenance is active.

6.3 Dictionary maintenance algorithm

We assume that PreDict is executed on the sampling broker. PreDict has also ways
to take the overlay into account but for a system-model of cloud-based pub/sub. We
assume PreDict is con�gured as the topology would only contain a single publisher
and subscriber. With TaPD, the Dictionary Maintenance Algorithm (DMA) itself does
not need to take the overlay into account since we allow re-coding and degradation of
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dictionaries in the overlay. TaPD tackles adjustment to the overlay on a di�erent level.

6.4 Evaluation

We evaluated TaPD using a simulation. Simulations allow us to evaluate large topologies.
The simulation is implemented in Python [69] and uses the results from the dictionary
degradation as an input.

6.4.1 Simulation setup

First we generate a based on a distribution random numbers. This random numbers
denote how many messages each publisher sends during the simulation. Equation 6.4.1
shows all the di�erent distributions we simulate. The Zipf distribution is often used for
generating workloads for pub/sub systems [56]. We also included Rayleigh and Gamma
which we assume are realistic for Internet of Things (IoT) workloads. We also include
Equal, which assumes that each publisher sends the same amount of messages. We think
this is also a realistic scenario for example for IoT, where each sensor sends messages
at a �xed rate, e.g., every hour. In that case, each publisher sends approximately the
same amount of messages. Further we include Exponential for scenarios where a single
publisher sends most messages while other publishers send only occational messages.

D = {Zipf,Gamma,Rayleigh,Exponential,Normal,Equal} (6.4.1)

Second, we construct a graph. The graph is constructed based on 3 con�guration vari-
ables. How many publishers ℙ, how many subscribers S, how many brokers B and the
connectivity within the broker overlay ℂ. Algorihtm 6.1 shows how we create the graph
from these parameters. First we connect broker to random other brokers with links in
both directions. Then we connect each publisher to a random broker and each subscriber
to a random broker.
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Algorithm 6.1: Connect message dissemination graph
Data: List of ℙ, List of S, List of B, List of ℙ and the connectivity between brokers as C
Result: Overlay as a graph

1 Procedure connect_vertices (ℙ, S,B,ℙ, C)
2 g ← G // Initialize empty graph

// Connect brokers to a certain degree at random
3 foreach B in B do
4 foreach i in {1, 2..C} do
5 RB ← cℎooseRandom(B)
6 addEdge(g, B, RB) // Both directions
7 addEdge(g, RB, B)

8 foreach P in ℙ do
9 RB ← cℎooseRandom(B)

10 addEdge(g, P, RB)
11 foreach S in S do
12 RB ← cℎooseRandom(B)
13 addEdge(g, RB, S)
14 return g

Then we setup all path between publishers and subscribers for message dissemination.
Algorihtm 6.2 shows how we setup the shortest path between publishers and subscriber
and between the sampling broker and the other brokers. Since the shortest path calcula-
tion is expensive, we want to cache the shortest paths in a lookup table.

Algorithm 6.4 shows the main procedure of the simulation. Once we have setup to
graph and calculated the routes, we begin generating the workload based on the de�ned
distribution. The wokload contains a sequence of which publisher sends a message.
Based on the Table 6.2.1 we extract how many dictionaries were created for the speci�c
dataset. Then we insert for each dictionary dissemination a marker in the sequence of
messages.

We begin iterating trough the generated sequence, see Line 6.4.7. In case it marker
represents a dictionary, we spread the dictionary to all brokers, see Line 6.4.10. In
case a message is received at a publisher, we begin iterating through the edges of the
dissemination graph of the publisher and account for the overhead. The �rst edge is
goes from the publisher to �rst broker. The �rst thing we check is how many messages
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Algorithm 6.2: Initialize simulation
Data: OL describing the overlay, S all subscribers, ℙ all publishers
Result: Mesage and dictionary dissemination graph using shortest path

1 Procedure initialize_simulation(S,B,ℙ, C)
2 DD ← set() // Holds dictionary dissemination edges
3 SB ← cℎooseSB(B)
4 G ← connect_vertices(S,B,ℙ, C) // Directed graph
5 foreach P ∈ B do
6 sp ← sℎortestpatℎ(SB, B,G) // Dictionary path SB and P
7 Union(DD, sp)
8 MD ← dict()
9 foreach P ∈ ℙ do
10 sp ← set()
11 foreach S ∈ S do
12 tempsp ← sℎortestpatℎ(P, S,G) // Message paths ℙ and S
13 Union(sp, tempsp)
14 MD[P] ← sp
15 return DD, MD

Algorithm 6.3: Calculate message size
Data: Current version of dictionary, most recent created by SB and p as parameters
Result: Messagesize in kb

1 Procedure calculate_msgsize (currentDict, recentDict, p)
// Parameters according to extracted variables, see Table 6.2.1

2 normalizedMsgSize ← p.average_messagesizekb
100 ∗ 100

3 if currentDict then
// Dictionary is available

4 if currentDict = recentDict then
// Newest dictionary ⇒ highest compression

5 return normalizedMsgSize ∗ p.sdccompression
6 else

// Outdated dictionary ⇒ degraded compression ratio
7 return normalizedMsgSize ∗ p.sdcmin
8 else

// No dictionary ⇒ use Deflate
9 return normalizedMsgSize ∗ p.def late
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Algorithm 6.4: Simulation
Data: M representing historic messages
Result: Dictionary size in bytes

1 Procedure simulatePubsub (OL, S,DS, D, DR, p)
2 pubstate ← initPublisℎer(ℙ, p.dictvalidtime); substate ← initPublisℎer(S)
3 brokerstate ← initPublisℎer(B); DD, MD ← initializeSimulation(. . . )
4 SEℚ ← messageDistribution(D, DR)
5 foreach SEQ in SEℚ do
6 if SEQ = D then

// A new dictionary is spread through the overlay foreach E(i,j) ∈ DD do
7 if (i ∈ B and j ∈ B) then

// New dictionary version for each broker
8 Bi .dictversion ← newversion
9 Bj .dictversion ← newversion

10 E(i,j).d += 1
11 else
12 E ← MD[SEQ] // Get cached edges
13 foreach E(i,j) ∈ E do

// A message is sent from publihser to �rst broker
14 if i ∈ ℙ and j ∈ B then
15 if ℙi .pubcnt ≥ ℙi .nextdictmsg then

// Treshold for getting new dictionary from B
16 ℙi .dictversion ← Bj .dictversion
17 E(i,j).d += 1
18 ℙi .nextdictmsg += p.dictvalidtime
19 E(i,j).u += p.average_messagesize
20 E(i,j).c += calcMessageSize(ℙi .dictversion, p)

// Message from broker to subscriber
21 if i ∈ B and j ∈ S then

// Check if subscriber needs a new dictionary
22 if Bi .dictversion ≠ Sj .dictversion then
23 Sj .dictversion ← Bi .dictversion
24 E(i,j).d += 1
25 E(i,j).u += p.average_messagesize
26 E(i,j).c += calcMessageSize(Bi .dictversion, p)

// Message from broker to broker
27 if i ∈ B and j ∈ B then

// Check if subscriber needs a new dictionary
28 E(i,j).u += p.average_messagesize
29 E(i,j).c += calcMessageSize(Bi .dictversion, p)
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the publisher has already sent. If the publisher has already published enough messages,
hence a dictionary is already amortized, the publisher gets a new dictionary. We account
for the overhead on the edge.

We check how many messages the publisher has already sent. If the publisher has already
sent enough messages, then the dictionary has already amortized or enough bandwidth
was saved using Deflate and then aquires the latest dictionary available at the broker.
As long as the dictionary is the latest, we assume the normal compression ratio, once it
gets outdated we assume the degraded compression ratio, see Algorithm 6.3.

In a similiar way, we calculate the bandwidth between brokers. But brokers are assured
to have the latest dictionary, hence always the best compression ratio is applied. The
computational cost of decompressing of a message compressed using Deflate or a
degraded dictionary is imposed on the edge broker. Publishers with high message rates
will be updated to the latest dictionary version since higher compression ratios will
anyway amortize the new dictionary. Publishers with low message rates will be very like
to be re-coded from either de�ate or degraded dictionaries. Hence, in topologies with
Zipf or Exponential distributions, the re-coding overhead will be low.

6.4.2 Results

Table 6.4.2 shows the overall bandwidth reduction results of TaPD at various distribu-
tions of publications per publisher. In the experiment, we use 5000 individual publishers,
each publishing at di�erent rates. The broker overlay contains 50 brokers which were
interconnected with 3 random connections to each other. Additionally, we added 20
subscribers. In total, we sent 1M messages and for the input of the simulations we use
the results of the Table 6.2.1.

BR.overall = 100.0 − (100 × (∑M(i,j).c +∑Oℍ(i,j))
∑M(i,j).u

(6.4.2)

Equation 6.4.2 shows how we calculate the overall compression. First, we classify if
the edge is from a publisher to a broker, broker to subscriber or a broker to broker,
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see Equation 6.2.3. For each category of links we sum up the uncompressed message
size Me .u when no compression would be employed and relate this to the sum of the
compressed messages Me .c including the overhead (Oℍ).

BR.mean = ∑(100 − (M(i,j).u × (M(i,j).c +Me .dc)))
|M(i,j)|

(6.4.3)

Table 6.4.1 shows the mean bandwidth reduction per category according to Equation 6.4.3.

In case each publisher sends an equal amount of messages, BR.mean = BR.overall.

Table 6.2.1 shows that the mean bandwidth reduction using Deflate for debs2015.json
dataset was around 45%. Figure 6.4.1 shows the boxplots for each of the evaluated
distributions. In the Equal case, we see a narrow boxplot showing a bandwidth reduction
of around 60% for publishers. The slight deviations are caused when dictionary was
already outdated and the publisher continued sending message, hence the degradation
is imposed. All subscribers use all dictionaries available and also always the most recent
versions, hence the distribution is very small and the bandwidth reductions are around
85%. PreDict alone, see Table 5.4.4 achieved the bandwidth reductions of 82.5% when
only one publisher and one subscriber are present in the topology.

Another interesting observation in Table 6.4.2 is comparing the results of di�erent dis-
trubions. The debs-json dataset achieves the bandwidth reduction of 60.2% for publishers
when each publisher sends the same amount of messages. In case the amount of messages
is Zipf distributed, the bandwidth reductions are as high as 81.5%. This is because a few
publishers send most messages, hence they can amortize always fresh dictionaries easily
and reach high compression ratios.

When using the Zipf distribution, only a few publishers are responsible for nearly all
messages. For these publishers, the dictionary imposed overhead easily amortizes. How-
ever, the other publishers which do not send a lot of messages won’t ever reach the
state where it pays o� to use a dictionary. In case a dictionary compression is chosen
for this publisher, then we keep the dictionary active for a longer time but at the cost
of lower compression ratios. When we look at the overall compression, see Table 6.4.2,
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we can see that high bandwidth reductions can be achieved for publishers. The many
publishers which send only a few messages and fallback to either Deflate or use a
degraded dictionary, do not impact the overall bandwidth reductions. Table 6.4.1 shows
the mean bandwidth reduction per edge. This metric shows that most links have similar
performance as Deflatein the case of Zipf distribution.

Figure 6.4.1 shows the distribution of the bandwidth reduction on the individual links
on the exemplary DEBS-json dataset. We can see that in the broker overlay, since the
message dissemination graph di�ers from the dictionary dissemination graph, single
edges may not amortize and even exhibt negative compression ratios. This would be
edges which are only used for dictionary dissemination. But other edges would amortize
higher since no overhead is imposed.

We show additional results in the Appendix D.1.
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6.4. EVALUATION
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Chapter 7

Conclusions

Bandwidth usage is a signi�cant concern, despite network expansion and the availability
of high data rates. Mobile internet connections are still metered. Data plans for mobile
phones typically have a �xed amount of data included, exceeding the data introduces
costs. Also in many Industry 4.0 scenarios, bandwidth limitations are already hit, hence
reducing the required bandwidth enables higher sampling rates.

We have shown that by employing Shared Dictionary Compression (SDC) in pub/sub sys-
tems, we can signi�cantly reduce the bandwidth compared to o�-the-shelf compression
such as Deflate. Furthermore, we have shown that this approach can be implemented
in a user hidden way. All parameters regarding the compression can be automatically
determined using polynomial �tting and machine learning. Moreover, it is possible
to adapt to varying degrees of publication rates and to complex graph overlays while
achieving higher bandwidth reductions than o�-the-shelf compression in most of the
scenarios.

We think that our results can have a signi�cant impact on the design of future pub/sub
systems. To achieve high bandwidth reductions, compression cannot be seen as an
independent technique. Compression has to become an integral part of the design in
pub/sub systems. Our simulations, evaluations and a prototypical implementation on top
of Apache Pulsar show that it is possible to hide all the complexity behind abstractions

97



and without any additional con�guration. We do not see any obstacles to adopt these
techniques at the core of pub/sub systems.

An interesting observation is that there is nearly no di�erence in the bandwidth usage
between XML, JSON and Protobuf encoded messages when SDC is used. This is not the
case when Deflate is used. The schema overhead and common attribute combinations
are promoted in the dictionary, which is similar in all schema variations. Hence, the
developer can choose the message format which is most convenient without worrying
about data size or binary encodings.

The analysis of the actual usage of the dictionary has shown to be very valuable. The most
surprising discovery was that there is an upper bound on the cpu usage for compression
with large dictionaries which is dependent on the content. The reason for this behavior
is that the additional entries tend to be less used. Nevertheless the bandwidth reductions
still increases the bigger the dictionary is and these huge dictionaries are actually needed
when the dictionary is used for a longer time. It is also important that these dictionaries
are sampled over a huge quantity of messages. In the evaluation we have shown that
having a big dictionary and creating this dictionary over many messages can still com-
pete regarding overall bandwidth reduction. This can be a favorable scenario from an
implementation standpoint since a dictionary can be preshared without any extensions
to the pub/sub.

Current limitations and extensions needed for real world usage

Message count requires a central entity which is not possible in a completely distributed
pub/sub systems. But counting the messages exactly is not needed, we estimate that
a number +/ − 10% will still perform well. We propose an extension of the protocol
between the brokers which shares how many messages were observed on which topic.
The overhead could be potentially further reduced using counting bloom�lters.

The sampling broker is a role which is executed per topic in the overlay. Choosing the
optimal place is subject to several constraints and costs. Constraints are for example the
available CPU at the broker and the cost of propagating the dictionaries depends on the
position in the graph.
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CHAPTER 7. CONCLUSIONS

In many pub/sub systems, subscribers are moving. In the case state is needed at the edge
brokers, such as proposed by TaPD, the state has to move along the publishers and
subscribers. This requires additional entities replicating the state and providing fault
tolerance. In the end this is a tradeo� between bandwidth reductions and implementation
complexity in the brokers.

We see future work in the following areas:

Delta encoding of dictionaries − Currently we always assume a complete new dic-
tionary. The new dictionary can be compressed using the old dictionary and the size
reduction is around 30%. To reduce the size further, the merging of the substrings could
be adapted to ignore minor changes in ranks of the dictionary. This would potentially
reduce the compression only slightly but would on the other side reduce the size of the
delta substantially.

Extend for content-based pub/sub − Our work assumes topic-based pub/sub with
“focused channels” and a Dictionary Maintenance Algorithm (DMA) per topic. We believe
that SDC for pub/sub can also be extended to content-based pub/sub. In content-based
pub/sub subscriptions are expressed as queries and messages are matched against these
queries. To cover a wide variety of messages, large dictionaries would be needed. But
large dictionaries additionally impose bandwidth overhead when sharing the dictionary,
CPU load on the publishers when compressing the messages. Hence, a vast dictionary
covering all possible content biases should be avoided. We think that upfront clustering
or matching on the type of the message, e.g., a hash of the �elds present in the message,
could reveal a “focused channel” and subsequently a smaller dictionary. Topic detection
techniques could be used [70] to identify “focused channels” and to build custom small
dictionaries for higher compression ratios.

Event speci�c dictionaries − Sensor networks in the �eld often measure continously
the environment on a continous basis. Sudden events like wild�res impose a high load in
terms of messages and the messages have to be disseminated within a short timeframe.
The message content during such events might be very speci�c. Hence also a speci�c
dictionary for such events could be bene�cial to reduce bandwidth exactly at times when
high message rates are needed.
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Content-based pub/sub matching − Content-based pub/sub could be extended to
match noti�cations without decompressing. Lightweight compression algorithms are
used in databases which allow queries to be executed on top of compressed data. Adapting
such a compression scheme to work on streaming data could improve matching speed
and reduce bandwidth at the same time.

Tree-aware dictionary dissemination − In TaPD we assume messages are routed
along the shortest path. Many pub/sub systems form a tree within the overlay to dissemi-
nate the messages. Using a tree it is possible to full�ll ordering guarantees. We think that
TaPD could be adapted to trees with various stages of recoding and di�erent lifetimes
of dictionaries along the tree branches.

In network batching − When multiple messages can be batched together Deflate
or other compression algorithms work well. The challenge in pub/sub systems is that the
guarantees (e.g., ordering, delivery) are typically enforced on a message level. Batches
are often implemented as container on top of messages. For example, in Apache Pulsar,
a batch is committed as single message to the log. Compressing and uncompressing
messages always needs a dictionary when SDC is used. Hence for logs or latency
insesitive workloads, batching reduces the operational complexity at the cost of increased
latency. If this tradeo� can be taken is highly dependent on the scenario. As an example,
if for the user a latency of 10 seconds is acceptable and around 5 messages a second are
sent, the batchsize is already in the region where Deflate can perform similar to SDC.

Reduction of I/O for persistent queues − Our implementation on top of Apache
Pulsar has shown that I/O is reduced which has a signi�cant e�ect on spinning disks.
Benchmarks on SSDs hinted the potential for a signi�cant improvement of throughput
once the bandwidth limitations are hit. We think that an extensive evaluation could
reveal additional bene�ts of SDC especially for write-ahead logs.

Privacy preserving dictionary creation − Messages in pub/sub systems are often
exchanged encrypted. Creating dictionaries from encrypted messages is not possible
since typically random padding is prepended. A trusted intermediary which has access
to the content of the messages could create the dictionary. Secure enclaves, e.g., Intel
SGX, could be used as a way to implement such a trusted intermediary.
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New compression libraries − New compression libraries emerged recently that sup-
port dictionary-based compression. Brotli [41] and ZStandard [71] are notable examples.
We believe that both Brotli and ZStandard could reduce the computational overhead for
publishers and subscribers signi�cantly because of their highly optimized implementa-
tions. Preliminary evaluation has shown not necessarly higher bandwidth reductions,
but more evalutions . We believe that our approaches for DMA are su�ciently general
to also work with these libraries.

Online optimization − The topologies of pub/sub systems constantly change due to
new brokers joining or faults. Also network conditions tend to change and clients are
mobile. Hence, assuming a static topology for optimization is not feasible. Changing and
transforming the message dissemination topology or changing rolas has a certain cost
attached to it. Hence we propose a new way of online optimization of the topology by
leveraging deep reinforcement learning on a �tted simulation model. Once a simulation
model can be derived from the current system, many scenarios can be simulated by a
deep learning agent. Examples would be for example that additional delay is applied to
a replicating broker, maybe it makes sense to migrate to a di�erent broker or change the
replication to a di�erent broker. Another example would be that suddenly a subscriber is
increasing the messaging rate to a point where persisting to disc becomes the bottleneck.
In such a scenario the pub/sub system could react by introducing load balancing on this
topic or multiple persistent queues on di�erent disks. Another way could be creating a
new dictionary to reduce the message sizes to a point where the brokers can keep up with
this load. This technique is similar to reinforcement learning agents that are trained to
play video games [72]. Once an agent is trained with all the scenarios and adaptations to
the system, it can react very quickly to changes and adapt the pub/sub system to varying
load.
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Appendix A

Datasets

A.1 DEBS 2015 Taxitrip datasets

Listing A.1.1: DEBS 2015 dataset in csv
07290 D3599E7A0D62097A346EFCC1FB5 , E7750A37CAB07D0DFF0AF7E3573AC141 ,2013 −01 −01 0 0 : 0 0 : 0 0 , 2 0 1 3 −0 1 −0 1

0 0 : 0 2 : 0 0 , 1 2 0 , 0 . 4 4 , − 7 3 . 9 5 6 5 2 8 , 4 0 . 7 1 6 9 7 6 , − 7 3 . 9 6 2 4 4 0 , 4 0 . 7 1 5 0 0 8 , CSH , 3 . 5 0 , 0 . 5 0 , 0 . 5 0 , 0 . 0 0 , 0 . 0 0 , 4 . 5 0

22 D70BF00EEB0ADC83BA8177BB861991 , 3 FF2709163DE7036FCAA4E5A3324E4BF ,2013 −01 −01 0 0 : 0 2 : 0 0 , 2 0 1 3 −0 1 −0 1
0 0 : 0 2 : 0 0 , 0 , 0 . 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , 0 . 0 0 0 0 0 0 , CSH , 2 7 . 0 0 , 0 . 0 0 , 0 . 5 0 , 0 . 0 0 , 0 . 0 0 , 2 7 . 5 0

0 EC22AAF491A8BD91F279350C2B010FD , 7 7 8 C92B26AE78A9EBDF96B49C67E4007 ,2013 −01 −01 0 0 : 0 1 : 0 0 , 2 0 1 3 −0 1 −0 1
0 0 : 0 3 : 0 0 , 1 2 0 , 0 . 7 1 , − 7 3 . 9 7 3 1 4 5 , 4 0 . 7 5 2 8 2 7 , − 7 3 . 9 6 5 8 9 7 , 4 0 . 7 6 0 4 4 5 , CSH , 4 . 0 0 , 0 . 5 0 , 0 . 5 0 , 0 . 0 0 , 0 . 0 0 , 5 . 0 0

1390 FB380189DF6BBFDA4DC847CAD14F , BE317B986700F63C43438482792C8654 ,2013 −01 −01 0 0 : 0 1 : 0 0 , 2 0 1 3 −0 1 −0 1
0 0 : 0 3 : 0 0 , 1 2 0 , 0 . 4 8 , − 7 4 . 0 0 4 1 7 3 , 4 0 . 7 2 0 9 4 7 , − 7 4 . 0 0 3 8 3 8 , 4 0 . 7 2 6 1 8 9 , CSH , 4 . 0 0 , 0 . 5 0 , 0 . 5 0 , 0 . 0 0 , 0 . 0 0 , 5 . 0 0

Listing A.1.2: DEBS 2015 dataset in json
{ " t ip_amount " : " 0 . 0 0 " , " payment_type " : "CSH " , " d r o p o f f _ l a t i t u d e " : " 4 0 . 7 1 5 0 0 8 " , " d r o p o f f _ d a t e t i m e " : "2013 −01 −01

0 0 : 0 2 : 0 0 " , " m e d a l l i o n " : " 0 7 2 9 0 D3599E7A0D62097A346EFCC1FB5 " , " p i c k u p _ d a t e t i m e " : "2013 −01 −01 0 0 : 0 0 : 0 0 " , " mta_tax " :
" 0 . 5 0 " , " t o t a l _ a m o u n t " : " 4 . 5 0 " , " t o l l s _ a m o u n t " : " 0 . 0 0 " , " s u r c h a r g e " : " 0 . 5 0 " , " h a c k _ l i c e n s e " : "

E7750A37CAB07D0DFF0AF7E3573AC141 " , " fa re_amount " : " 3 . 5 0 " , " p i c k u p _ l o n g i t u d e " : " − 7 3 . 9 5 6 5 2 8 " , " p i c k u p _ l a t i t u d e " :
" 4 0 . 7 1 6 9 7 6 " , " t r i p _ t i m e _ i n _ s e c s " : " 1 2 0 " , " d r o p o f f _ l o n g i t u d e " : " − 7 3 . 9 6 2 4 4 0 " , " t r i p _ d i s t a n c e " : " 0 . 4 4 " }

{ " t ip_amount " : " 0 . 0 0 " , " payment_type " : "CSH " , " d r o p o f f _ l a t i t u d e " : " 0 . 0 0 0 0 0 0 " , " d r o p o f f _ d a t e t i m e " : "2013 −01 −01
0 0 : 0 2 : 0 0 " , " m e d a l l i o n " : " 2 2 D70BF00EEB0ADC83BA8177BB861991 " , " p i c k u p _ d a t e t i m e " : "2013 −01 −01 0 0 : 0 2 : 0 0 " , " mta_tax " :

" 0 . 5 0 " , " t o t a l _ a m o u n t " : " 2 7 . 5 0 " , " t o l l s _ a m o u n t " : " 0 . 0 0 " , " s u r c h a r g e " : " 0 . 0 0 " , " h a c k _ l i c e n s e " : " 3
FF2709163DE7036FCAA4E5A3324E4BF " , " fa re_amount " : " 2 7 . 0 0 " , " p i c k u p _ l o n g i t u d e " : " 0 . 0 0 0 0 0 0 " , " p i c k u p _ l a t i t u d e " :
" 0 . 0 0 0 0 0 0 " , " t r i p _ t i m e _ i n _ s e c s " : " 0 " , " d r o p o f f _ l o n g i t u d e " : " 0 . 0 0 0 0 0 0 " , " t r i p _ d i s t a n c e " : " 0 . 0 0 " }
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A.2. SOCIAL MEDIA DATASETS

Listing A.1.3: DEBS 2015 dataset in xml
< t r i p >

<t ip_amount > 0 . 0 0 < / t ip_amount >
<payment_type >CSH</ payment_type >
< d r o p o f f _ l a t i t u d e > 4 0 . 7 1 5 0 0 8 < / d r o p o f f _ l a t i t u d e >
< d r o p o f f _ d a t e t i m e >2013 −01 −01 0 0 : 0 2 : 0 0 < / d r o p o f f _ d a t e t i m e >
< meda l l i on >07290 D3599E7A0D62097A346EFCC1FB5 </ meda l l i on >
< p i c k u p _ d a t e t i m e >2013 −01 −01 0 0 : 0 0 : 0 0 < / p i c k u p _ d a t e t i m e >
<mta_tax > 0 . 5 0 < / mta_tax >
< to ta l_amount > 4 . 5 0 < / to ta l_amount >
< t o l l s _ a m o u n t > 0 . 0 0 < / t o l l s _ a m o u n t >
< surcharge > 0 . 5 0 < / surcharge >
< h a c k _ l i c e n s e >E7750A37CAB07D0DFF0AF7E3573AC141 </ h a c k _ l i c e n s e >
<fare_amount > 3 . 5 0 < / fare_amount >
< p i c k u p _ l o n g i t u d e > −73 .956528 </ p i c k u p _ l o n g i t u d e >
< p i c k u p _ l a t i t u d e > 4 0 . 7 1 6 9 7 6 < / p i c k u p _ l a t i t u d e >
< t r i p _ t i m e _ i n _ s e c s >120 </ t r i p _ t i m e _ i n _ s e c s >
< d r o p o f f _ l o n g i t u d e > −73 .962440 </ d r o p o f f _ l o n g i t u d e >
< t r i p _ d i s t a n c e > 0 . 4 4 < / t r i p _ d i s t a n c e >

</ t r i p >

Listing A.1.4: DEBS 2015 dataset - Protobuf message format
o p t i o n j a v a _ p a c k a g e = " de . tum . i 1 3 . pb " ;
o p t i o n j a v a _ o u t e r _ c l a s s n a m e = " De bs 20 15P ro to s " ;

message T a x i t r i p {
r e q u i r e d s t r i n g m e d a l l i o n = 1 ;
r e q u i r e d s t r i n g h a c k _ l i c e n s e = 2 ;
r e q u i r e d s t r i n g p i c k u p _ d a t e t i m e = 3 ;
r e q u i r e d s t r i n g d r o p o f f _ d a t e t i m e = 4 ;
r e q u i r e d u i n t 3 2 t r i p _ t i m e _ i n _ s e c s = 5 ;
r e q u i r e d f l o a t t r i p _ d i s t a n c e = 6 ;
r e q u i r e d f l o a t p i c k u p _ l o n g i t u d e = 7 ;
r e q u i r e d f l o a t p i c k u p _ l a t i t u d e = 8 ;
r e q u i r e d f l o a t d r o p o f f _ l o n g i t u d e = 9 ;
r e q u i r e d f l o a t d r o p o f f _ l a t i t u d e = 1 0 ;
r e q u i r e d s t r i n g payment_type = 1 1 ;
r e q u i r e d f l o a t fa re_amount = 1 2 ;
r e q u i r e d f l o a t s u r c h a r g e = 1 3 ;
r e q u i r e d f l o a t mta_tax = 1 4 ;
r e q u i r e d f l o a t t ip_amount = 1 5 ;
r e q u i r e d f l o a t t o l l s _ a m o u n t = 1 6 ;
r e q u i r e d f l o a t t o t a l _ a m o u n t = 1 7 ;

}

A.2 Social media datasets

Listing A.2.1: Twitter US json dataset
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{ " c r e a t e d _ a t " : " Thu Dec 08 1 5 : 1 7 : 1 6 +0000 2 0 1 6 " , " i d " : 8 0 6 8 8 0 3 3 1 4 4 5 9 6 4 8 0 6 , " i d _ s t r " : " 8 0 6 8 8 0 3 3 1 4 4 5 9 6 4 8 0 6 " , " t e x t " : " I ’ ve
t o l d my mom numerous t i m e s t h a t I have a s l e e p i n g problem y e t e v e r y t i m e I ’m up a l l n i g h t she y e l l s a t me and
a s k s why I ’m not a s l e e p ? ? " , " s o u r c e " : " u003ca h r e f =" h t t p : / / t w i t t e r . com / download / iphone " r e l =" n o f o l l o w " T w i t t e r
f o r iPhone / a " , " t r u n c a t e d " : f a l s e , " i n _ r e p l y _ t o _ s t a t u s _ i d " : n u l l , " i n _ r e p l y _ t o _ s t a t u s _ i d _ s t r " : n u l l , "
i n _ r e p l y _ t o _ u s e r _ i d " : n u l l , " i n _ r e p l y _ t o _ u s e r _ i d _ s t r " : n u l l , " i n _ r e p l y _ t o _ s c r e e n _ n a m e " : n u l l , " u s e r " : { " i d
" : 5 1 2 6 5 5 1 4 5 , " i d _ s t r " : " 5 1 2 6 5 5 1 4 5 " , " name " : " " , " screen_name " : " C o l e F i g l e y 3 " , " l o c a t i o n " : " O−H" , " u r l " : " h t t p : / /
I n s t a g r a m . com / c o l e _ f i g 3 " , " d e s c r i p t i o n " : " \ # AWOLSC: c f i g l e y 3 " , " p r o t e c t e d " : f a l s e , " v e r i f i e d " : f a l s e , "
f o l l o w e r s _ c o u n t " : 9 4 1 , " f r i e n d s _ c o u n t " : 3 7 0 , " l i s t e d _ c o u n t " : 3 , " f a v o u r i t e s _ c o u n t " : 2 2 0 7 4 , " s t a t u s e s _ c o u n t " : 2 4 0 1 3 ,

" c r e a t e d _ a t " : " S a t Mar 03 0 1 : 3 6 : 1 0 +0000 2 0 1 2 " , " u t c _ o f f s e t " : − 2 8 8 0 0 , " t ime_zone " : " P a c i f i c Time ( US \& Canada )
" , " ge o_ e na b l e d " : t rue , " l a n g " : " en " , " c o n t r i b u t o r s _ e n a b l e d " : f a l s e , " i s _ t r a n s l a t o r " : f a l s e , "
p r o f i l e _ b a c k g r o u n d _ c o l o r " : " 0 0 0 0 0 0 " , " p r o f i l e _ b a c k g r o u n d _ i m a g e _ u r l " : " h t t p : / / abs . twimg . com / images / themes / theme1 /
bg . png " , " p r o f i l e _ b a c k g r o u n d _ i m a g e _ u r l _ h t t p s " : " h t t p s : / / abs . twimg . com / images / themes / theme1 / bg . png " , "
p r o f i l e _ b a c k g r o u n d _ t i l e " : f a l s e , " p r o f i l e _ l i n k _ c o l o r " : " DD2E44 " , " p r o f i l e _ s i d e b a r _ b o r d e r _ c o l o r " : " 0 0 0 0 0 0 " , "
p r o f i l e _ s i d e b a r _ f i l l _ c o l o r " : " 0 0 0 0 0 0 " , " p r o f i l e _ t e x t _ c o l o r " : " 0 0 0 0 0 0 " , " p r o f i l e _ u s e _ b a c k g r o u n d _ i m a g e " : f a l s e , "
p r o f i l e _ i m a g e _ u r l " : " h t t p : / / pbs . twimg . com / p r o f i l e _ i m a g e s / 8 0 4 9 3 8 2 1 4 6 7 0 7 6 1 9 8 4 / l f r v e d Z 1 _ n o r m a l . j p g " , "
p r o f i l e _ i m a g e _ u r l _ h t t p s " : " h t t p s : / / pbs . twimg . com / p r o f i l e _ i m a g e s / 8 0 4 9 3 8 2 1 4 6 7 0 7 6 1 9 8 4 / l f r v e d Z 1 _ n o r m a l . j p g " , "
p r o f i l e _ b a n n e r _ u r l " : " h t t p s : / / pbs . twimg . com / p r o f i l e _ b a n n e r s / 5 1 2 6 5 5 1 4 5 / 1 4 8 1 0 6 2 7 6 4 " , " d e f a u l t _ p r o f i l e " : f a l s e , "
d e f a u l t _ p r o f i l e _ i m a g e " : f a l s e , " f o l l o w i n g " : n u l l , " f o l l o w _ r e q u e s t _ s e n t " : n u l l , " n o t i f i c a t i o n s " : n u l l } , " geo " : n u l l ,

" c o o r d i n a t e s " : n u l l , " p l a c e " : { " i d " : " d e 5 9 9 0 2 5 1 8 0 e 2 e e 7 " , " u r l " : " h t t p s : / / a p i . t w i t t e r . com / 1 . 1 / geo / i d /
d e 5 9 9 0 2 5 1 8 0 e 2 e e 7 . j s o n " , " p l a c e _ t y p e " : " admin " , " name " : " Ohio " , " f u l l _ n a m e " : " Ohio , USA " , " count ry_code " : " US " , "
count ry " : " Un i t ed S t a t e s " , " bounding_box " : { " type " : " Polygon " , " c o o r d i n a t e s " : [ [ [ − 8 4 . 8 2 0 3 0 9 , 3 8 . 4 0 3 1 8 6 ] ,
[ − 8 4 . 8 2 0 3 0 9 , 4 2 . 3 2 7 1 3 3 ] , [ − 8 0 . 5 1 8 6 2 6 , 4 2 . 3 2 7 1 3 3 ] , [ − 8 0 . 5 1 8 6 2 6 , 3 8 . 4 0 3 1 8 6 ] ] ] } , " a t t r i b u t e s " : { } } , " c o n t r i b u t o r s " :
n u l l , " i s _ q u o t e _ s t a t u s " : f a l s e , " r e t w e e t _ c o u n t " : 0 , " f a v o r i t e _ c o u n t " : 0 , " e n t i t i e s " : { " h a s h t a g s " : [ ] , " u r l s " : [ ] , "
u s e r _ m e n t i o n s " : [ ] , " symbols " : [ ] } , " f a v o r i t e d " : f a l s e , " r e t w e e t e d " : f a l s e , " f i l t e r _ l e v e l " : " low " , " l a n g " : " en " , "
t imestamp_ms " : " 1 4 8 1 2 1 0 2 3 6 7 8 5 " }

Listing A.2.2: Meetup comments dataset
{ " v i s i b i l i t y " : " p u b l i c " , " member " : { " member_id " : 1 2 2 0 7 5 5 0 2 , " photo " : " h t t p : / / photos1 . m e e t u p s t a t i c . com / photos / member / 8 / 8 / c /

d / thumb_247295021 . j p e g " , " member_name " : " P a i r i c " } , " comment " : " < p>Booked S e a t H15 . < / p> " , " i d " : 4 7 2 3 9 5 0 3 1 , " mtime
" : 1 4 7 8 6 0 8 2 4 3 0 0 0 , " even t " : { " event_name " : " Watch \ " N o c t u r n a l Animals \ " Cinewor ld " , " e v e n t _ i d " : " 2 3 5 4 1 2 2 9 9 " } , " group
" : { " jo in_mode " : " open " , " count ry " : " i e " , " c i t y " : " Dubl in " , " name " : " Dubl in Horror S o c i e t y " , " g roup_ lon " : − 6 . 2 5 , " i d
" : 1 3 3 3 2 5 0 2 , " urlname " : " Dubl in −Horror − S o c i e t y " , " c a t e g o r y " : { " name " : " movies / f i l m " , " i d " : 2 0 , " shortname " : " movies −
f i l m " } , " group_photo " : { " h i g h r e s _ l i n k " : " h t t p : / / photos4 . m e e t u p s t a t i c . com / photos / even t / 9 / 5 / 8 / 0 / h i g h r e s _ 3 4 3 4 7 8 2 7 2 .
j p e g " , " p h o t o _ l i n k " : " h t t p : / / photos2 . m e e t u p s t a t i c . com / photos / eve n t / 9 / 5 / 8 / 0 / 6 0 0 _343478272 . j p e g " , " p h o t o _ i d
" : 3 4 3 4 7 8 2 7 2 , " thumb_l ink " : " h t t p : / / photos4 . m e e t u p s t a t i c . com / photos / even t / 9 / 5 / 8 / 0 / thumb_343478272 . j p e g " } , "
g r o u p _ l a t " : 5 3 . 3 3 } , " s t a t u s " : " a c t i v e " }

Listing A.2.3: Meetup events dataset
{ " u t c _ o f f s e t " : 3 9 6 0 0 0 0 0 , " venue " : { " count ry " : " AU" , " c i t y " : " E r s k i n e v i l l e " , " a d d r e s s _ 1 " : " Sydney Park Rd ( Opp . M i t c h e l l Rd )

" , " name " : " Sydney Park " , " l on " : 1 5 1 . 1 8 9 5 9 , " l a t " : − 3 3 . 9 0 7 8 9 } , " r s v p _ l i m i t " : 0 , " v e n u e _ v i s i b i l i t y " : " p u b l i c " , "
v i s i b i l i t y " : " p u b l i c " , " maybe_rsvp_count " : 0 , " d e s c r i p t i o n " : " < p> J o i n , connect , s o c i a l i s e , and network with o t h e r
c r e a t i v e s from a c r o s s Sydney a t a gorgeous , hidden , h a r b o r s i d e park . < / p><p> Arts , music , f a s h i o n , f i l m ,
communication , pe r fo rming a r t s , d e s i g n and more − a l l c r e a t i v e s a r e welcome . < / p><p> J o i n the Facebook even t f o r
d e t a i l s : < br ><a h r e f = \ " h t t p s : / /www. f a c e b o o k . com / e v e n t s / 1 0 5 4 6 6 0 0 3 2 6 6 7 2 4 / \ " c l a s s = \ " l i n k i f i e d \ " > h t t p s : / /www.
f a c e b o o k . com / e v e n t s / 1 0 5 4 6 6 0 0 3 2 6 6 7 2 4 / < / a > </p><p> Plus , a t t e n d e e s w i l l go i n t o the running t o win a \ $1 , 0 0 0
exposure package . < / p><p>Eat , dr ink , and mingle with Sydney ’ s i n c r e d i b l e c r e a t i v e community . Th i s i s a f r e e
s o c i a l g a t h e r i n g − a t t e n d by y o u r s e l f or with f e l l o w c r e a t i v e s . < / p > " , " mtime " : 1 4 7 8 6 0 8 2 8 6 5 9 2 , " e v e n t _ u r l " : " h t t p : / /

www. meetup . com / Sydney −C r e a t i v e s / e v e n t s / 2 3 5 2 9 0 6 3 8 / " , " y e s _ r s v p _ c o u n t " : 2 9 , " payment_requ i red " : " 0 " , " name " : " Sydney
C r e a t i v e s P i c n i c " , " i d " : " 2 3 5 2 9 0 6 3 8 " , " t ime " : 1 4 8 4 9 6 4 0 0 0 0 0 0 , " group " : { " jo in_mode " : " open " , " count ry " : " au " , " c i t y " : "
Sydney " , " name " : " Sydney C r e a t i v e s " , " g roup_ lon " : 1 5 1 . 2 1 , " i d " : 2 7 8 2 2 9 2 , " urlname " : " Sydney −C r e a t i v e s " , " c a t e g o r y
" : { " name " : " c a r e e r / b u s i n e s s " , " i d " : 2 , " shortname " : " c a r e e r − b u s i n e s s " } , " group_photo " : { " h i g h r e s _ l i n k " : " h t t p : / /
photos2 . m e e t u p s t a t i c . com / photos / even t / b / e / 4 / c / h i g h r e s _ 4 4 9 1 4 8 7 1 6 . j p e g " , " p h o t o _ l i n k " :

" h t t p : / / photos2 . m e e t u p s t a t i c . com / photos / e ven t / b / e / 4 / c / 6 0 0 _449148716 . j p e g " , " p h o t o _ i d " : 4 4 9 1 4 8 7 1 6 , " thumb_l ink " : " h t t p : / /
photos4 . m e e t u p s t a t i c . com / photos / even t / b / e / 4 / c / thumb_449148716 . j p e g " } , " g r o u p _ l a t " : − 3 3 . 8 7 } , " s t a t u s " : " upcoming " }
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A.3. FINANCIAL DATASETS

Listing A.2.4: Meetup RSVPs dataset
{ " venue " : { " venue_name " : " B a l t e n s w i l e r s t r a s s e 5 " , " l on " : 8 . 6 2 8 7 1 4 , " l a t " : 4 7 . 4 4 3 4 6 2 , " venue_ id " : 2 4 8 4 8 4 3 6 } , " v i s i b i l i t y " : "

p u b l i c " , " r e s p o n s e " : " no " , " g u e s t s " : 0 , " member " : { " member_id " : 1 9 5 0 9 0 8 6 3 , " photo " : " h t t p : / / photos4 . m e e t u p s t a t i c . com /
photos / member / 3 / 2 / 7 / 4 / thumb_251112916 . j p e g " , " member_name " : " Nadia " } , " r s v p _ i d " : 1 6 3 8 5 2 7 3 4 0 , " mtime
" : 1 4 7 8 6 0 8 2 7 1 8 8 9 , " even t " : { " event_name " : " Show up t o meet p e o p l e " , " e v e n t _ i d " : " 2 3 4 8 9 1 7 4 3 " , " t ime " : 1 4 7 9 1 3 5 6 0 0 0 0 0 , "
e v e n t _ u r l " : " h t t p : / /www. meetup . com / B a s s e r s d o r f −Language −Cul ture −Meetup / e v e n t s / 2 3 4 8 9 1 7 4 3 / " } , " group " : { "
g r o u p _ t o p i c s " : [ { " u r l k e y " : " e s l " , " top ic_name " : " E n g l i s h as a Second Language " } , { " u r l k e y " : " e s l − p r a c t i c e " , "
top ic_name " : " ESL p r a c t i c e " } , { " u r l k e y " : " language −exchange " , " top ic_name " : " Language Exchange " } , { " u r l k e y " : "
e n g l i s h − l anguage " , " top ic_name " : " E n g l i s h Language " } , { " u r l k e y " : " c u l t u r e " , " top ic_name " : " C u l t u r e " } , { " u r l k e y " : "
m o t i v a t i o n " , " top ic_name " : " M o t i v a t i o n " } , { " u r l k e y " : " c o n v e r s a t i o n " , " top ic_name " : " C o n v e r s a t i o n " } , { " u r l k e y " : "
s o c i a l n e t w o r k " , " top ic_name " : " S o c i a l Networking " } , { " u r l k e y " : " c u l t u r e −exchange " , " top ic_name " : " C u l t u r e Exchange
" } , { " u r l k e y " : " l anguage " , " top ic_name " : " Language \& C u l t u r e " } , { " u r l k e y " : " l e a r n i n g " , " top ic_name " : " L e a r n i n g " } ,
{ " u r l k e y " : " c o u r s e s −and−workshops " , " top ic_name " : " Courses and Workshops " } ] , " g r o u p _ c i t y " : " B a s s e r s d o r f " , "
g roup_count ry " : " ch " , " g roup_ id " : 2 0 7 5 2 1 3 3 , " group_name " : " B a s s e r s d o r f Language and C u l t u r e Meetup " , " g roup_ lon
" : 8 . 6 1 , " group_ur lname " : " B a s s e r s d o r f −Language −Cul ture −Meetup " , " g r o u p _ l a t " : 4 7 . 4 5 } }

A.3 Financial datasets

Listing A.3.1: EPEX Spot market
"2012 −01 −01 1 0 : 4 5 : 0 0 + 0 1 " ; " 2 0 1 2 − 0 1 − 0 1 1 1 : 0 0 : 0 0 + 0 1 " ; " 1 5 min " ; " germany / a u s t r i a " ; ; ; ; ; ; ;
"2012 −01 −01 1 1 : 0 0 : 0 0 + 0 1 " ; " 2 0 1 2 − 0 1 − 0 1 1 2 : 0 0 : 0 0 + 0 1 " ; " h our ly " ; " f r a n c e " ; 1 0 ; 1 5 ; 1 0 ; 1 3 . 0 1 ; 1 3 . 0 1 ; 8 6 ; 8 6
"2012 −01 −01 1 1 : 0 0 : 0 0 + 0 1 " ; " 2 0 1 2 − 0 1 − 0 1 1 2 : 0 0 : 0 0 + 0 1 " ; " h our ly " ; " germany / a u s t r i a " ; 5 ; 2 5 ; 5 ; 1 5 . 2 4 ; 1 5 . 2 3 ; 1 1 7 4 . 3 ; 1 1 7 4 . 3
"2012 −01 −01 1 1 : 0 0 : 0 0 + 0 1 " ; " 2 0 1 2 − 0 1 − 0 1 1 1 : 1 5 : 0 0 + 0 1 " ; " 1 5 min " ; " germany / a u s t r i a " ; ; ; ; ; ; ;

Listing A.3.2: GDAX Cryptocurrency exchange
{ " type " : " open " , " p r i c e " : " 7 0 9 . 6 5 0 0 0 0 0 0 " , " r e m a i n i n g _ s i z e " : " 0 . 0 1 0 0 0 0 1 1 " , " sequence " : 1 7 0 7 5 9 6 1 5 6 , " s i d e " : " buy " , "

o r d e r _ i d " : " 7 1 a7db5f −9 b02 −49 d8 −8 c61 −4321134985 ec " , " p r o d u c t _ i d " : " BTC−USD " , " t ime " : "2016 −11 −15 T10 : 2 1 : 5 7 . 9 7 8 0 0 0 Z
" }

{ " type " : " done " , " r e a s o n " : " c a n c e l e d " , " p r i c e " : " 7 0 9 . 7 0 0 0 0 0 0 0 " , " sequence " : 1 7 0 7 5 9 6 1 5 7 , " s i d e " : " buy " , " o r d e r _ i d " :
" 0 8 7 3 b924 −8 d18 −422 b−ae14 − a 2 3 c e 4 e 6 6 8 e 7 " , " r e m a i n i n g _ s i z e " : " 0 . 0 1 0 0 0 3 2 1 " , " p r o d u c t _ i d " : " BTC−USD " , " t ime " :
"2016 −11 −15 T10 : 2 1 : 5 8 . 2 7 0 0 0 0 Z " }

{ " s i z e " : " 0 . 0 1 0 0 0 3 2 1 " , " type " : " r e c e i v e d " , " t ime " : "2016 −11 −15 T10 : 2 1 : 5 8 . 3 5 0 0 0 0 Z " , " p r i c e " : " 7 0 9 . 6 5 0 0 0 0 0 0 " , " o r d e r _ t y p e
" : " l i m i t " , " s i d e " : " buy " , " o r d e r _ i d " : " 7 0 7 8 7 3 fc −e7eb −453 f −804 f − b d 1 8 1 8 4 9 5 f 4 1 " , " p r o d u c t _ i d " : " BTC−USD " , "
sequence " : 1 7 0 7 5 9 6 1 5 8 }

{ " type " : " open " , " p r i c e " : " 7 0 9 . 6 5 0 0 0 0 0 0 " , " r e m a i n i n g _ s i z e " : " 0 . 0 1 0 0 0 3 2 1 " , " sequence " : 1 7 0 7 5 9 6 1 5 9 , " s i d e " : " buy " , "
o r d e r _ i d " : " 7 0 7 8 7 3 fc −e7eb −453 f −804 f − b d 1 8 1 8 4 9 5 f 4 1 " , " p r o d u c t _ i d " : " BTC−USD " , " t ime " : "2016 −11 −15 T10 : 2 1 : 5 8 . 3 5 0 0 0 0 Z
" }

{ " type " : " done " , " r e a s o n " : " c a n c e l e d " , " p r i c e " : " 7 0 9 . 6 5 0 0 0 0 0 0 " , " sequence " : 1 7 0 7 5 9 6 1 6 0 , " s i d e " : " buy " , " o r d e r _ i d " : " 7 1
a7db5f −9 b02 −49 d8 −8 c61 −4321134985 ec " , " r e m a i n i n g _ s i z e " : " 0 . 0 1 0 0 0 0 1 1 " , " p r o d u c t _ i d " : " BTC−USD " , " t ime " :
"2016 −11 −15 T10 : 2 1 : 5 9 . 2 8 1 0 0 0 Z " }

A.4 Other datasets
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Listing A.4.1: Openstack Neutron Service
2016 −11 −14 0 6 : 2 5 : 1 1 . 9 4 9 89152 DEBUG o s l o _ m e s s a g i n g . _ d r i v e r s . amqpdr iver [ req −e6208ddc −913 c −4075− bee4 − aebd3c9bad51 − −

− − −] s end ing r e p l y msg_id : 4 d c 6 0 8 3 4 4 5 f 5 4 4 a 1 8 3 c c 8 7 9 5 1 7 2 a 6 f a 5 r e p l y queue :
r e p l y _ f 1 2 8 9 4 5 e c 2 1 7 4 5 0 5 9 8 2 6 5 5 a 8 8 c e e c 9 6 0 t ime e l a p s e d : 0 . 0 4 2 4 9 0 6 1 1 7 8 4 2 s _ s e n d _ r e p l y / u s r / l i b / python2 . 7 / d i s t −
packages / o s l o _ m e s s a g i n g / _ d r i v e r s / amqpdr iver . py : 7 4

2016 −11 −14 0 6 : 2 5 : 1 2 . 0 4 0 89128 INFO neutron . wsgi [ req −3 e6dbc63 −7 e6 f −4006 −84 fc −7 f 2 a 9 0 b 5 f f 6 6
e 2 f e c 8 2 e f d f 3 4 f 4 2 8 3 b e 7 7 8 b c a 3 4 c 2 c 2 6666747 c 8 d 4 b 4 1 7 9 9 0 1 0 6 6 3 9 e 4 b 5 4 c 1 1 − − −] 1 7 2 . 2 4 . 1 8 . 1 1 9 − − [ 1 4 / Nov / 2 0 1 6
0 6 : 2 5 : 1 2 ] "GET / v2 . 0 / p o r t s . j s o n ? t e n a n t _ i d =9 c 6 d 7 8 6 8 d 1 7 f 4 c f b b b 3 4 0 2 7 5 5 b c c 0 6 9 4 \& d e v i c e _ i d =7 f42e441 −42 f0 −4 a23 −
a3eb −857 aba3abc67 HTTP / 1 . 1 " 200 1225 0 . 0 2 1 4 1 5

2016 −11 −14 0 6 : 2 5 : 1 2 . 0 8 4 89128 INFO neutron . wsgi [ req −66658959 − d f b f −421 c −9 dea − b a b 1 4 f 3 1 0 8 b 2
e 2 f e c 8 2 e f d f 3 4 f 4 2 8 3 b e 7 7 8 b c a 3 4 c 2 c 2 6666747 c 8 d 4 b 4 1 7 9 9 0 1 0 6 6 3 9 e 4 b 5 4 c 1 1 − − −] 1 7 2 . 2 4 . 1 8 . 1 1 9 − − [ 1 4 / Nov / 2 0 1 6
0 6 : 2 5 : 1 2 ] "GET / v2 . 0 / networks . j s o n ? i d = dd0e99 f0 −4112 −458 f − a30 f −328 b517ed627 HTTP / 1 . 1 " 200 903 0 . 0 4 0 3 5 1

2016 −11 −14 0 6 : 2 5 : 1 2 . 0 9 7 89128 INFO neutron . wsgi [ req −54 fa4d30 −7585 −4 be2 −8 b7a − b 7 a 8 3 5 a c c 9 8 1
e 2 f e c 8 2 e f d f 3 4 f 4 2 8 3 b e 7 7 8 b c a 3 4 c 2 c 2 6666747 c 8 d 4 b 4 1 7 9 9 0 1 0 6 6 3 9 e 4 b 5 4 c 1 1 − − −] 1 7 2 . 2 4 . 1 8 . 1 1 9 − − [ 1 4 / Nov / 2 0 1 6
0 6 : 2 5 : 1 2 ] "GET / v2 . 0 / f l o a t i n g i p s . j s o n ? f i x e d _ i p _ a d d r e s s = 1 7 2 . 2 4 . 4 5 . 1 9 4 \& p o r t _ i d =1 f 5 1 d d f 9 −448d−469d−84 d1
−01628131 c6bc HTTP / 1 . 1 " 200 232 0 . 0 0 8 5 5 9

2016 −11 −14 0 6 : 2 5 : 1 2 . 1 3 8 89128 INFO neutron . wsgi [ req −444 be002 − f188 −46 e1 −8 f55 −0 b 0 5 4 0 0 8 c 7 f a
e 2 f e c 8 2 e f d f 3 4 f 4 2 8 3 b e 7 7 8 b c a 3 4 c 2 c 2 6666747 c 8 d 4 b 4 1 7 9 9 0 1 0 6 6 3 9 e 4 b 5 4 c 1 1 − − −] 1 7 2 . 2 4 . 1 8 . 1 1 9 − − [ 1 4 / Nov / 2 0 1 6
0 6 : 2 5 : 1 2 ] "GET / v2 . 0 / s u b n e t s . j s o n ? i d =0 bfb3997 −0678 −4 ddb −9 f03 −20 e 9 2 7 0 f 4 3 c f HTTP / 1 . 1 " 200 994 0 . 0 3 8 4 0 1

Listing A.4.2: TPCH lineitems
1 | 1 5 5 1 9 0 | 7 7 0 6 | 1 | 1 7 | 2 1 1 6 8 . 2 3 | 0 . 0 4 | 0 . 0 2 | N | O| 1996 −03 −13 | 1996 −02 −12 | 1996 −03 −22 | DELIVER IN PERSON | TRUCK | e g u l a r c o u r t s above

the |

1 | 6 7 3 1 0 | 7 3 1 1 | 2 | 3 6 | 4 5 9 8 3 . 1 6 | 0 . 0 9 | 0 . 0 6 | N | O| 1996 −04 −12 | 1996 −02 −28 | 1996 −04 −20 |TAKE BACK RETURN | MAIL | l y f i n a l d e p e n d e n c i e s :
s l y l y b o l d |

1 | 6 3 7 0 0 | 3 7 0 1 | 3 | 8 | 1 3 3 0 9 . 6 0 | 0 . 1 0 | 0 . 0 2 | N | O| 1996 −01 −29 | 1996 −03 −05 | 1996 −01 −31 |TAKE BACK RETURN | REG AIR | r i o u s l y . r e g u l a r ,
e x p r e s s dep |

1 | 2 1 3 2 | 4 6 3 3 | 4 | 2 8 | 2 8 9 5 5 . 6 4 | 0 . 0 9 | 0 . 0 6 | N | O| 1996 −04 −21 | 1996 −03 −30 | 1996 −05 −16 |NONE | AIR | l i t e s . f l u f f i l y even de |

1 | 2 4 0 2 7 | 1 5 3 4 | 5 | 2 4 | 2 2 8 2 4 . 4 8 | 0 . 1 0 | 0 . 0 4 | N | O|1996 −03 −30 | 1996 −03 −14 | 1996 −04 −01 |NONE | FOB | pending f o x e s . s l y l y r e |

121



Appendix B

PreDict at di�erent batchsizes

B.1 Additional results for PreDict at di�erent batch-
sizes
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APPENDIX B. PREDICT AT DIFFERENT BATCHSIZES
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B.1. ADDITIONAL RESULTS FOR PREDICT AT DIFFERENT BATCHSIZES
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B.1. ADDITIONAL RESULTS FOR PREDICT AT DIFFERENT BATCHSIZES
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APPENDIX B. PREDICT AT DIFFERENT BATCHSIZES
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Appendix C

Pulsar evaluation

C.1 Subscriber faster compared to no compression

Grey areas denote missing results because of connection timeouts.

C.2 Publisher faster compared to no compression

Grey areas denote missing results because of connection timeouts.
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APPENDIX C. PULSAR EVALUATION
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C.2. PUBLISHER FASTER COMPARED TO NO COMPRESSION
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Figure C.2.1: Heatmap - Producer faster 64K

1 2 3 5 8 13 21 34 55

Consumers

34
21

1
3

8
5

3
2

1

P
ro

d
u

ce
rs

1.6

1.8 1.7 1.7

1.8 1.8 1.8 1.8

2 1.9 1.9 1.9 1.9

2 2 2 1.9

2 2.1 2.1 2

2 2 2.1 2 2

2 1.9 2 1.9 2 1.9 2 2 1.9

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 128K - 50ms latency

1.7

1.8

1.9

2.0

2.1

Figure C.2.2: Heatmap - Producer faster 128K

133



C.2. PUBLISHER FASTER COMPARED TO NO COMPRESSION

1 2 3 5 8 13 21 34 55

Consumers

5
5

34
21

13
8

5
3

2
1

P
ro

d
u

ce
rs

0.99 0.96 1

1 1 0.9 0.91 1.1

1 0.96 1.1 0.98 1 1.1

1.2 1.1 1.1 1.1 1.1 1

1.2 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1 1.1

1.1 1.1 1.1 1.1 1.1 1 1.1

1.1 1.1 1.1 1.1 1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1 1.1 1.1 1.1

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 512K - 50ms latency

0.95

1.00

1.05

1.10

1.15

Figure C.2.3: Heatmap - Producer faster 512K

1 2 3 5 8 13 21 34 55

Consumers

55
34

21
13

8
5

3
2

1

P
ro

d
u

ce
rs

1 0.93 0.97 1 0.91 1.1 1.2 0.93 1.1

1.1 0.98 1.1 0.91 0.93 0.94 1 1 1

1 1.1 1.1 1.1 0.98 1.1 1 1.1 0.9

1.1 1.1 1.1 1.1 1.1 1 1.1 1.1 1

1.1 1.1 1.1 1.1 0.98 1.1 1.1

1.1 1.1 1.1 1.1 0.95 1.1 1.1 1.1

1.1 1.1 1 1.1 1 1.1 1.1 1.1 1

1.1 1.1 1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1 1.1 1.1 1.1

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 1M - 50ms latency

0.96

1.02

1.08

1.14

1.20

Figure C.2.4: Heatmap - Producer faster 1M

134



APPENDIX C. PULSAR EVALUATION

1 2 3 5 8 13 21 34 55

Consumers

5
5

34
21

13
8

5
3

2
1

P
ro

d
u

ce
rs

0.95 1.1 1 0.96 0.89 1 1.2 0.92 0.99

0.99 0.97 0.99 1 0.96 0.98 1.1 1.1

1.1 0.97 1 1 1.1 0.98 1 0.95 0.99

1 1.1 1.1 1.1 1.1 1.1 1 1 1.1

1.2 1.1 1.1 0.99 1.2 1.2 1.1 1.1

1.1 1 1.1 1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.98 1.1

1.1 1.1 1.1 1.1 1.1 1 1 1 1.1

1.1 1.1 1 1.1 1.1 1.1 1.1 1 1.1

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 2M - 50ms latency

0.90

0.96

1.02

1.08

1.14

Figure C.2.5: Heatmap - Producer faster 2M

1 2 3 5 8 13 21 34 55

Consumers

55
34

21
13

8
5

3
2

1

P
ro

d
u

ce
rs

0.89 1 0.98 1 0.93 1 1.3 0.98 0.99

1 1.1 1 0.97 1.1 1 1 0.96 1.1

1 1.1 1 1 1 1 0.98 1.1 1.1

1.1 1.1 1.1 1.1 1 1.1 1 1 1.1

1.1 1.2 1.1 1.2 1.1 1.1 1.2 1.1 1

1.2 1.1 1 1.1 1.1 1.1 1.1 0.97 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

0.95 1 1.1 1.1 1 1.1 1 1.1 1.1

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 4M - 50ms latency

0.96

1.04

1.12

1.20

1.28

Figure C.2.6: Heatmap - Producer faster 4M

135



C.2. PUBLISHER FASTER COMPARED TO NO COMPRESSION

1 2 3 5 8 13 21 34 55

Consumers

5
5

34
21

13
8

5
3

2
1

P
ro

d
u

ce
rs

0.94 1 1.1 1 1 0.92 1 1 0.91

0.98 1 1.1 0.95 0.9 1 0.92 1 1

1 1 0.98 1 1 0.99 0.96 0.98 1.2

1.1 1.1 1.1 1.1 1 1 1 1 1.1

1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 1.2 1.1 1 1.1 1.1 1.1

1.1 1.1 1.1 1.1 1 1.1 1.1 1.1 1.1

1 1 1.1 1.1 1 1.1 1.1 1.1 1.1

1.1 1.1 0.99 1 1.1 1.1 1.1 1 1.3

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 8M - 50ms latency

0.96

1.04

1.12

1.20

1.28

Figure C.2.7: Heatmap - Producer faster 8M

1 2 3 5 8 13 21 34 55

Consumers

55
34

21
13

8
5

3
2

1

P
ro

d
u

ce
rs

0.91 1 0.97 0.98 0.96 0.98 1 0.97 0.92

1.1 1 0.98 1 0.95 1.1 0.94 0.92 1

0.98 1 1.1 0.98 1.1 0.97 1 1 1.1

1.1 1.2 1.1 1.1 1.2 1.1 1 1.2 1

1.1 1.2 1.1 1.1 1.2 1.1 1.1 1.1 1.1

1.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1

1.1 1.1 1.1 0.96 1.1 1.1 1.1 1.1 1.1

1 1.1 1.1 1.1 1.1 1.1 1.1 1 1.1

1 1.1 1.1 1.1 1.1 1.1 1.1 1 1.1

Publisher x times faster sending 20k messages
using PreDict - twitter-us-json - 16M - 50ms latency

0.95

1.00

1.05

1.10

1.15

Figure C.2.8: Heatmap - Producer faster 16M

136



Appendix D

TAPD

D.1 Additional results for TaPD
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Figure D.1.1: Distribution for dataset Bart-json
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Figure D.1.2: Distribution for dataset twitch-Eve-json

139



D.1. ADDITIONAL RESULTS FOR TAPD

55 60 65 70 75

Publisher

Subscriber

Broker

P: 5000, B: 50, S: 20, C: 3, M: 1000000 - meetup-rsvps.json - Zipf - BR distribution

55 60 65 70 75

Publisher

Subscriber

Broker

P: 5000, B: 50, S: 20, C: 3, M: 1000000 - meetup-rsvps.json - Gamma - BR distribution

55 60 65 70 75

Publisher

Subscriber

Broker

P: 5000, B: 50, S: 20, C: 3, M: 1000000 - meetup-rsvps.json - Rayleigh - BR distribution

55 60 65 70 75

Publisher

Subscriber

Broker

P: 5000, B: 50, S: 20, C: 3, M: 1000000 - meetup-rsvps.json - Exponential - BR distribution

55 60 65 70 75

Publisher

Subscriber

Broker

P: 5000, B: 50, S: 20, C: 3, M: 1000000 - meetup-rsvps.json - Normal - BR distribution

55 60 65 70 75

Publisher

Subscriber

Broker

P: 5000, B: 50, S: 20, C: 3, M: 1000000 - meetup-rsvps.json - Equal - BR distribution

Figure D.1.3: Distribution for dataset rsvps-json
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