
c©IFIP, 2018. Personal use of this material is permitted. Permission from IFIP must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

P4NFV: An NFV Architecture
with Flexible Data Plane Reconfiguration

Mu He, Arsany Basta, Andreas Blenk, Nemanja Deric, Wolfgang Kellerer
Chair of Communication Networks, Technical University of Munich, Germany
{mu.he,arsay.basta,andreas.blenk,nemanja.deric,wolfgang.kellerer}@tum.de

Abstract—Current architecture proposals for Network Func-
tion Virtualization (NFV) do not integrate hardware-accelerated
network function implementations. Recent research studies have
shown that pure software-based implementations cannot achieve
the needed line rates for today’s network services. We propose
P4NFV to fill this gap. Making use of an additional abstraction
layer, P4NFV is an architecture that can achieve software-
based network function implementations as well as handle
P4 for programming protocol-independent packet processors.
With P4NFV, network operators can still instantiate network
functions that are specified in terms of computing and storage
hardware, while making use of the performance improvements
of P4-enhanced networking hardware. Moreover, in order to
take the fast changing nature of today’s network services into
account, P4NFV integrates mechanisms to reconfigure P4-based
network functions at runtime: another missing gap in literature.
Based on a proof-of-concept implementation of P4NFV for four
network functions, we show promising measurement results.
Whereas the network function implementations tailored towards
reconfigurations add only marginal overhead, even configuring
network functions at runtime does not notably affect network
service operations with higher latency or severe packet loss.

Index Terms—Network Architecture, Network Function Vir-
tualization, Programmable Data Plane, Network Function Adap-
tation.

I. INTRODUCTION

Emerging applications and changing user demands are chal-
lenging today’s communication networks such as the Internet:
applications like augmented reality require low latency, while
big data applications introduce new dimensions of network
traffic in terms of scale and dynamicity. Such demands stand
in stark contrast to the inflexible nature of the legacy in-
frastructure. Hardware-based routers and middleboxes, which
cannot be easily upgraded or reconfigured, hinder the network
operators to update their infrastructure. To address these
issues, Network Function Virtualization (NFV) has emerged
to enable more flexible communication networks [1]. NFV
deploys Network Functions (NFs) as software running on
commodity servers. It decouples function logic from hardware
realization. As a result, operators can flexibly instantiate,
configure, migrate and terminate NF according to dynamic
system conditions [2]; hence operators can efficiently adapt
the infrastructure.

A pure software solution as proposed by recent NFV
approaches may also raise concerns. First, the line rate pro-
cessing target is hard to achieve in a software-based NF,
especially for small packets (≤ 128 Bytes) [3]. Second,
many NFs, such as Deep Packet Inspection (DPI) and packet

en/decryption, are compute-intensive. The appliance of gen-
eral purpose CPUs, which are not designed specifically for
those tasks, is not cost-effective from the techno-economic
perspective [4]. Thus, as a next step to address the issues
of pure software-based implementations, the combination of
software and programmable hardware is a promising research
direction [5], [6]. In this regard, P4 has been introduced
to program software and hardware networking devices. P4
promises to combine the advantages of both building blocks:
better packet processing performance due to hardware-based
networking implementations and the flexibility of software-
based programmability of network operations.

When compared to pure software implementations (without
P4), the nature of P4 promises several advantages in the NFV
scenario. First, NFs can be implemented with less amount
of code and the NF development phase becomes more effi-
cient [7]. Second, it is possible to simultaneously manage the
NFs that operate as software and in hardware. As an example,
the same P4 code of a firewall can be loaded in the BMv2 soft-
ware [8] or in the NetFPGA chip [9]. Moreover, the runtime
reconfigurability of P4 assists the flexible deployment of NFs
in the face of network dynamics [10]. Therefore, combining
P4 with NFV is promising to create a reconfigurable data plane
with high management efficiency.

The combination of P4 and NFV, however, is still missing
in the literature: there is no work that uses P4 to implement
NFs that can operate as software or hardware and can be
reconfigured at runtime. In this regard, we propose P4NFV,
which abstracts the underlying physical infrastructure as a set
of NF nodes running P4 programs with runtime reconfigura-
tion support. As state consistency becomes an issue in case
of reconfigurations, P4NFV preserves the consistency of NFs
during reconfiguration. The contributions are as follows:

• Proposing an NFV management architecture for P4-
enhanced data planes.

• Presenting two approaches to reconfigure P4-based net-
work functionality at runtime, and analyzing the ap-
proaches’ trade-offs.

• Implementation of a P4NFV prototype and evaluation of
NFs’ performance during reconfiguration.

The remainder of this paper is structured as follows.
Section II provides the background and the related work
of data plane programmability with P4, NFV management
architecture, and function chaining-related network operations

978-3-903176-14-0 c© 2018 IFIP



like optimization. Section III introduces the design of the
P4NFV architecture. Next, Section IV outlines the details of
our prototype implementation, highlighting the two data plane
reconfiguration approaches. Section V provides the evaluation
setup and results. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

This section briefly overviews data plane programmability
with P4, NFV management architectures, and data plane
reconfiguration approaches.

A. Data Plane Programmability with P4

Data plane programmability has drawn much attention in the
networking community. An merging approach to program the
data plane is to express the forwarding behavior with domain
specific languages, such as P4, and then to compile it to a
program/configuration that can be loaded in a target.

1) The P4 Language: Bosshart et al. [10] first proposed
the P4 programming language. All the basic building blocks of
packet processing, i.e., header parsing, actions based on header
matching and re-encapsulation, can be described with P4. The
header parsing is implemented as a state machine to identify
a sequence of headers and to extract them into metadata for
later processing. Following the Match+Action paradigm, the
match tables, associated with the user-defined actions, define
the pipeline of packet processing, and the tables are populated
via a control plane interface. Registers, meters and counters
can be declared in order to provide stateful implementations.

2) The P4 Targets: P4 programs can be executed in var-
ious packet processing entities, i.e., targets, from switching
software to hardware devices. BMv2 [8] was the first software
switch prototype (the so called Simple Switch target). Another
software implementation is PISCES [7], which is derived from
Open vSwitch [11]. For hardware, SmartNIC [12] leverages
the programmability of the Network Flow Processor (NFP),
while P4FPGA [13] and P4-to-VHDL [14] enable P4 program
execution on FPGAs.

During the compilation of P4, the pipeline is translated into
a Table Dependency Graph (TDG) [10] and thereafter mapped
into the resources of the specific target. For different targets,
the resource mapping can be different: match tables can be
mapped to RAM in software switch [7], [8] and TCAM in
hardware reconfigurable chips [13], [14].

A software target is assumed to provide the greatest flex-
ibility in building up the Match+Action pipeline; however,
packets are processed one after the other, which can lead
to low resource utilization. On the contrary, for an NFP,
the corresponding P4 compiler can explore the parallelism
of stages in a pipeline. The parallelism leads to higher
utilization, and therefore line-rate packet forwarding can be
achieved [15]. Besides, specific logic transistors enable even
higher packet processing efficiency, compared with general
purpose CPUs [16].

Due to the increasing variety of P4 targets, performance
analyses are needed to identify and understand potential trade-
offs. Such understanding makes it possible to select the proper

platform for a specific use case. Current performance evalua-
tions (such as [7], [14], [17]) focus merely on static operations,
e.g., packet processing latency and throughput. It can be noted
that different targets introduce various implementation aspects,
which should be considered during implementation and de-
ployment of NFs. Hence, P4NFV introduces an abstraction
layer to take care of the various target-specific details.

B. NFV Management Architectures

A variety of NFV architectures have been proposed to tackle
various aspects of resource management in NFV [18]–[21],
with focus on, e.g., automation of NF provisioning, NF latency
reduction, dynamic resource scheduling, and dynamic service
function chaining.

Because of the complexity of software-based network
construction, vConductor [18] suggests to automate the NF
provisioning procedure, while considering various resource
scheduling and infrastructure fault isolation. To reduce latency
and increase resource usage efficiency, NetFATE [19] deploys
NFs not only in high-performance data center servers, but
also in the nodes that are close to end users. NFVnice [20]
dynamically schedules resources allocated to service chains
and thus enables fair share of CPU to NFs. With SDN support,
[21] orchestrates and chains NFs in a data center and demon-
strates the high dynamism and flexibility of function chaining
compared with legacy hardware architecture. The proposed
architectures, however, assume that NFs are implemented as
general software, which is not applicable to a data plane for P4
composed of software and hardware programmable devices.

C. Data Plane Reconfiguration Approaches

In this section, we report on work that targets at reconfigu-
rations enabled with and without P4.

1) Reconfiguration without P4: Several publications [22]–
[24] tackle the problem of how to reconfigure the data plane
with minimal disruption. The Split/Merge approach [22] con-
siders the dynamic scaling of NFs. A hypervisor abstracts the
states of NFs and manages their redistribution upon creating
or destroying NF replicas. OpenNF [23] is a control plane
architecture that can manage both NF state and networking
forwarding state. Special APIs and a combination of events
and forwarding updates can redistribute the packet processing
across a group of NFs. Zave et al. propose Dysco protocol [24]
to enable dynamic service chaining. When the sequence of
NFs changes, the protocol reconfigures the data plane packets
of the corresponding TCP session with small disruption.

2) Reconfiguration leveraging P4: The reconfiguration
capability of P4 has been leveraged to achieve data plane vir-
tualization, e.g., HyPer4 [25] and HyperV [26]. Like in other
virtualization scenarios, the target is to enable the sharing of
networking resources between multiple tenants (the ones that
receive virtual resources, i.e., a partition of the physical net-
working resources). Both approaches introduce a hypervisor
that enables multiple P4 programs to run isolated on the same
packet processing entity. Upon initialization, each processing
entity is configured with all necessary P4 programs. A table



is used to dispatch the tenant network traffics between the
P4 programs of the tenants. By updating certain table entries,
the hypervisor can even turn on/off the programs at runtime.
We leverage a similar approach to accommodate multiple P4
programs simultaneously on one network processing entity.
In contrast to the virtualization approaches, P4NFV focuses
on the capability to reconfigure the processing pipelines, i.e.,
to dynamically steer network traffics between P4 programs
running on the same networking entity.

To the best of our knowledge, there is no work that com-
bines NFV and P4 for heterogeneous resources for dynamic
use: the NFs are implemented with P4, deployed on various
targets, and reconfigured on the fly.

III. ARCHITECTURE DESIGN

In this section, we first enumerate the challenges of an
NFV architecture which leverages data plane reconfigurabil-
ity. Thereafter, we propose P4NFV, which can manage NFs
implemented with P4. Finally, we show that P4NFV complies
with the guideline NFV architecture proposed by the ETSI
organization [27]. For P4NFV, we assume a scenario where a
network provider deploys NFs or whole function chains over
time to process network traffic of different network services.

A. Design Goals

To support network dynamics, an NFV management archi-
tecture should consider the following three aspects.

1) Abstraction: In order to balance the trade-off among
performance, investment and revenue, infrastructure providers
should be able to deploy heterogeneous resources, i.e., com-
modity server and hardware equipment, for NF provisioning.
To ease the operation of the heterogeneous resources, ab-
straction should hide target-specific implementation details,
APIs, and performance trade-offs among heterogeneous data
plane platforms. Abstracting the infrastructure simplifies the
procedure of managing both software and hardware resources.
Realizing abstraction via an additional layer can make it
possible that infrastructure providers offer various NFs, from
lite ones, such as packet forwarder, to advanced ones that are
more compute-intensive, such as packet en/decryption.

2) Flexibility: The architecture should be able to cope
with dynamics such as changing network traffic conditions
or changes in terms of NF’s requirements like for emerging
service cases. For instance, during the operation of an NF,
the requirements from the NF in terms of Quality of Service
(QoS) and/or reliability and resilience may alter. The above
dynamics should be handled through proper NF management
schemes, including feature upgrade, instance migration, pa-
rameter adaptation, etc. In other words, it should be possible
to instantiate, (re-)configure, (re-)located and upgraded each
deployed NF in a flexible manner, with minimum interruption
of operation [1].

3) Consistency: Beside abstraction and flexibility, a holistic
architecture design should also integrate consistency. Con-
sistency aims at two aspects: (1) consistency during opera-
tion without any adaption and (2) consistency when actually

Commodity Server

Programmable Hardware Switch

Physical Layer

Abstraction Layer

NF Node (Abstracted)

Resource 

Optimizer

Resource 

Optimizer

NF Central

Manager

NF Central

Manager

Processing, memory, I/O capacity

Function

Compiler

Function

Compiler

NF Request

Handler

NF Request

Handler

Admin CLI &

GUI Dashboard

Admin CLI &

GUI Dashboard

Management and Orchestration Entity 

(MOE)

Policy

Interpreter

Policy

Interpreter

NF

Configurator

NF

Configurator

Tab./Reg.

Configurator

Tab./Reg.

Configurator

Resource

Monitor

Resource

Monitor

Ctrl./Mgmt. Interface

NF/Policy Request

P4 Capability

Flow/Reg./Cnt.

Databases

Flow/Reg./Cnt.

Databases

Operator

Conf. and Mon. 

Entity (CME)

Fig. 1. Illustration of P4NFV architecture design. The physical layer consists
of different P4-enabled entities which are abstracted in the abstraction layer
for the ease of management.

adapting existing NF deployments. First, during operation,
performance consistency ensures that all abstracted resources
provide the capacities as they claim without any unpredictable
performance behavior. This might be particularly challenging
when facing heterogeneous P4-enabled platforms with perfor-
mance tradeoffs. Second, when adapting the NF deployments,
e.g., when migrating an NF from a hardware to a software
target, the performance guarantees should maintain. Moreover,
logical consistency should always be preserved, even in case
of reconfigurations; e.g., a stateful NF such as a L4 firewalls
should not let malicious traffic during reconfigurations.

B. P4NFV Architecture

This section introduces the P4NFV architecture. It
overviews its components and clarifies how P4NFV realizes
the design goals as mentioned in the last section. Fig. 1
illustrates the architecture of P4NFV. It is logically composed
of five components: the Physical Layer, the Abstraction Layer,
the Control and Management Interface (CMI), the Configu-
ration and Monitor Entity (CME), and the Management and
Orchestration Entity (MOE).

1) Physical Layer: The physical layer consists of vari-
ous types of packet processing entities (targets) that can be
programmed with P4. As shown in Fig. 1, green squares



represent commodity servers that can host software targets,
and orange squares represent programmable hardware targets.
Note that the physical layer can be extended to incorporate
other entities which are not programmable. For instance,
commodity routers with configurable forwarding information
bases can also be controlled in the architecture. Such hybrid
infrastructure can benefit from both NF deployment flexibility
[4] and CAPEX/OPEX cost saving [19].

2) Abstraction Layer (NF Nodes): This layer abstracts the
physical resources. All the abstracted processing entities can
implement the Match+Action pipelines as demanded by P4.
Specifically, each entity is abstracted as an NF node, which is
equipped with processing, memory and I/O resources and is
able to host multiple NFs. Through the abstraction, various tar-
gets are modeled with their own performance characteristics,
e.g., whether they can process packets in parallel or note. The
performance models assist the network operator to decide the
best target for a particular NF requirement. To preserve data
plane consistency, the resources are monitored by the upper
components to alleviate, e.g., overload situations, which may
cause data plane performance degradation.

3) Control and Management Interface (CMI): This in-
terface is the logical communication channel between CME
(introduced later) and the underlying NF nodes. For different
targets, the actual implementation of CMI can be different;
however, the distinction is completely transparent to the above
components in P4NFV. All the operations, e.g., push compiled
P4 programs to NF nodes, populate match tables, fetch counter
values and read/write registers, pass through this interface.

4) Configuration and Monitor Entity (CME): The com-
ponents of the Configuration and Monitor Entity (CME) are
the Configurators, the Resource Monitor and the Databases.
Based on the configurations received from MOE, the Config-
urators take the responsibility of implementation of the NFs
in the respective physical NF nodes.

The Resource Monitor collects the statistics from the Ab-
straction Layer periodically and notifies MOE in an event-
based fashion, i.e., whenever any performance indicator, e.g.,
the load balancing factor and physical link utilization, violates
a predefined threshold. Besides, the Resource Monitor also
collects the values of registers and counters and keeps such
state information in the Databases. With the help of registers,
flow information can be stored, such as header fingerprint,
average arrival rate, and forwarding state. The Database ap-
proach has a clear advantage: it can help to maintain the global
consistency of various NF instances during reconfiguration.

5) NF Management and Orchestration Entity (MOE):
As the central component of P4NFV’s architecture, it consists
of the NF Request Handler, the Resource Optimizer, the
Policy Interpreter, the NF Central Manager, and the Function
Compiler. The network operator interacts with MOE through
the Admin CLI & GUI Dashboard module offering different
management operation possibilities: e.g., configuring global
policies or checking the resource usage of nodes.

MOE automates the whole process of initiating, coordi-
nating and managing NFs. The NF Request Handler listens

Virtual

Network
Virtual

Storage
Virtual

Computing

Computing

Hardware
Storage

Hardware

Network

Hardware

Virtualization Layer

NFVI

VNF 1 VNF 2 VNF 3

EMS 1 EMS 2 EMS 3

OSS/BSS

VNF

Manager(s)

Virtualized 

Infrastructure

Manager(s)

Orchestrator

Service, VNF and 

Infrastructure Description

NFV Mangament and 

Orchestration

Fig. 2. ETSI NFV reference architecture framework [27]. P4NFV realizes the
ETSI architecture, where in addition, physical resources are also P4-enabled.

to new NF requests, as well as policy updates of existing
NFs. Together with the NF Request Handler and the Policy
Interpreter, the Resource Optimizer implements the requests
with optimized configurations, including the P4 programs.

The configurations are directed to the NF Central Manager,
and then passed to CME, which in turn implements them in
the NF nodes. In the meantime, the NF Central Manager
listens to the data plane status via CME and re-optimizes the
NF deployment and configuration. The re-optimization can be
triggered either by the operator manually, or by the NF Central
Manager itself. The Function Compiler is a set of compilers
(e.g., p4c for BMv2 and SDNet for NetFPGA) and is able to
compile P4 program for different targets.

C. Mapping to the ETSI Architecture Framework

In this section, we briefly discuss whether P4NFV is compli-
ant with the proposed ETSI NFV architecture. ETSI (European
Telecommunication Standards Institute) proposed a guideline
NFV reference architecture framework in [27] (shown in
Fig. 2). The framework defines the functional blocks and the
reference points needed to support the infrastructure services
in the operator’s network. Within NFV, the infrastructure
services are referred to as the network services, which are
provided by the NFs. To show the compliance, we map the
components of P4NFV to blocks in the framework.

In the reference architecture, the Virtualized Infrastructure
Manager (VIM) controls the virtualization process and exposes
the NFVI to the other modules. In P4NFV, the Resouce
Monitor and the Resource Optimizer take over this part, and
the abstraction layer corresponds to the NFVI.

The intermediate level in the reference architecture consists
of various VNFs and Element Management Systems (EMSs).
Each VNF is an implementation of a network application
running atop the NFVI resources. The VNFs’ instantiation
and termination are controlled by the VNF Manager(s), which
is represented by the NF Central Manager and Function
Compiler. During a VNF’s lifetime, its management, such as



MemoryMemory ALUALUMemory ALU

L2 

Switching

L2 

Switching

L3 

Routing

L3 

Routing

MemoryMemory ALUALUMemory ALU

L2 

Switching

L2 

Switching

L3 

Routing

L3 

Routing

Flag=1Flag=1 Flag=0Flag=0

MemoryMemory ALUALUMemory ALU

L2 

Switching

L2 

Switching

L3 

Routing

L3 

Routing

MemoryMemory ALUALUMemory ALU

L2 

Switching

L2 

Switching

Reconfigure

Reconfigure

Packet 

Processing Path

Packet 

Processing Path

Pipeline Manipulation (PM)

Program Reload (PR)

Fig. 3. Illustration of the two proposed data plane reconfiguration approaches.
The green arrows represent the path of packet processing. After reconfigura-
tion, only L2 switching NF remains in the NF node.

fault recovery, performance monitoring and accounting [27],
are handled by its corresponding EMS, which corresponds
to the NF Configurator, Table/Register Configuration and
Resource Monitor in P4NFV.

The NFV Orchestrator at the top level realizes NF requests
by coordinating other modules in the reference architecture. It
is represented as the combination of the NF Request Handler,
Policy Interpreter and Resource Optimizer.

IV. P4NFV PROTOTYPE IMPLEMENTATION TARGETING
RECONFIGURATION

Two challenges appear during the prototype implementa-
tion: (1) how to reconfigure the data plane during runtime,
and (2) how to reduce the impact of reconfigurations on packet
processing. We propose two solutions called Pipeline Ma-
nipulation (PM) and Program Reload (PR).

A. P4NFV Runtime Reconfiguration Mechanisms

Fig. 3 demonstrates the two reconfiguration approaches.
1) Pipeline Manipulation (PM): In a nutshell, after the P4

program is loaded in the target, we leverage binary register
values to manipulate the packet processing Match+Action
pipeline at runtime. The pipeline is described by the TDG,
which shows the dependency between different tables.

Fig. 4 shows the pipeline of a switch capable of performing
L2 and L3 forwarding. MAC/IP forwarding and ACL are
considered as different NFs, each guarded with a binary
register value to indicate its existence. Upon initialization, all
functions are enabled. After we change the register value of
MAC forwarding from 1 to 0, the packets will bypass it and
jump to the IP forwarding NFs. Similarly, we can disable IP
forwarding plus ACL and only keep MAC forwarding.

2) Program Reload (PR): It provides more flexibility to
reconfigure the functionality of the NFs, in comparison with
PM. Every time a node needs to be reconfigured, the target will
be loaded with a new compiled P4 program (including parser,
processing actions and deparser), followed by populating the
new match table entries. Note that because of the implementa-
tion limits, some targets, especially hardware ones, may need

MAC
Match: dst MAC

Action: set OUTPORT

IPv4
Match: dst IPv4

Action: set OUTPORT

Bypass

IPv6
Match: dst IPv6

Action: set OUTPORT

ACL
Match:

src/dst MAC/IP, IP Proto
Action: drop

Fig. 4. Packet processing pipeline of a switch.

to stop packet processing completely when a new configuration
is being loaded, which causes service interruption.

3) Trade-offs between PM and PR: For PM, all NF nodes
run the same P4 program which includes all NF implementa-
tions. The MOE only needs to update the registers. However,
PM demands additional Match+Action resources, which limits
the total number of NFs that can be implemented at the same
time. Furthermore, since registers can only be applied inside
the pipeline, it is not capable of reconfiguring parser and de-
parser. When it comes to PR, different versions of P4 programs
are pushed to different NF nodes, which could decrease reli-
ability and increase management cost. Furthermore, PR may
lead to service interruption for some targets. The advantages of
PR are (1) that it demands less Match+Action resources, and
(2) that it can reduce packet processing latency with proper
pipeline compilation (i.e., merging different tables).

B. State Management

During data plane reconfiguration, the states (e.g., register
values) that reside in the NFs need to be consistently updated,
otherwise the newly arrived packets will experience improper
processing. Consider the migration of an IDS (Intrusion Detec-
tion System), where packet drops happen during the migration.
The new IDS instance may process an incomplete fingerprint
of a malicious flow as packets haven been dropped; hence, the
IDS may fail to report the attack [28].

There are two alternatives to preserve the states during
reconfiguration. First, the states are transferred directly in
the data plane together with the live traffic [29]. In this
case, NF nodes generate data plane packets with payloads
of state information. Second, a central entity collects the
states from the data plane and redistributes them. P4NFV
applies the second option. The Resource Monitor uses CMI
to collect the states and stores them in the database. Notably,
the introduction of MOE and CME induces latency overhead
for state updates. In order to reduce such latency, P4NFV
periodically fetches the states associated with the NF and only
redistributes the states that are involved in the reconfiguration.

Fig. 5 illustrates the NF migration with PR. Four types of
messages are involved, which are predefined for the BMv2
target [8]. The load new config file indicates that a new data
plane will be configured on the target. A series of table adds
populate the table entries. State migration consists of a series
of register read/writes which copy the register values directly



Node (Source) Mgmt Entity Node (Target)

States
Mig.

States
Mig.

load new config file

table add
...

load new config file

table add
...

register read
...

register write
...

swap configsswap configs

Fig. 5. The message exchange and states of NF (on/off) during migration
with PR from an initial to a target NF node.

from the source to target NF node. Finally, the swap configs
signals the moment when the new data plane would take effect
on the target. The procedure of PM is similar to that of PR,
but a bit simpler: a series of table adds configure the table
entries, and then write register messages turn on and off the
NF at the respective NF nodes. Because of packet buffering in
BMv2, we do not lose any packet when we switch to a new
configuration or change register values in a pipeline.

V. PERFORMANCE EVALUATION

This section first elaborates on P4NFV in a realistic sce-
nario. Afterwards, we take intensive measurements to report
on the general performance of our P4NFV implementation in
terms of CPU usage and latency. Then we evaluate our two
reconfiguration approaches PM and PR.

A. Example Realization of P4NFV for Network Edges

Recently, strict latency requirement and high network traffic
overhead in the core drive the infrastructure providers to
virtualize and locate NF nodes at the edge of the network
infrastructure [19]. Such virtualization reduces the investment
and expedites the infrastructure deployment process [19], [30].
Moreover, locating NFs in the proximity of the end-users also
contributes to smaller end-to-end latency, which is critical for
emerging applications like autonomous driving.

However, the NF nodes deployed at the edge are still limited
with resources and thus prone to overload in the face of highly
dynamic traffic from end-users. There are two opportunities of
improvement introduced by P4NFV: first, P4 itself promises
a better and more efficient hardware utilization [16]; second,
P4NFV introduces data plane reconfiguration mechanisms that
relocate the NF instances if possible.

We implemented four types of NFs for the prototype
demonstration: a Packet Forwarder, a NAT, a Firewall and
a Load Balancer. The Packet Forwarder forwards the packets
based on destination MAC or IP addresses. It also modifies
the source and destination MAC addresses for each packet. Its
forwarding rules, stored as table entries, are populated with the
CMI upon the startup of the network and remain static. The
NAT is capable of translating private and public IP addresses.
The end-users and the core data centers typically have private
network addresses, whereas the network entities in between
use public network addresses [19]. The Firewall detects and

NAT

Firewall

Load Balancer

Core

Aggregation

Access

NF Node

End-Host/Server
S1 S2

S3 S4

S5

H4

H1 H2

Packet Forwarder

H3

Fig. 6. Topology setup of the use case study with five NF nodes and four
types of NFs.

blocks malicious flows that originate from the end-users. It
works in the stateful manner: other than blocking flows based
on static rules, it calculates fingerprints of flows and blocks
the ones if the fingerprints violate the predefined policy. In
our case, the fingerprint of a flow is its packet inter-arrival
rate. The Firewall drops packets of flows whose fingerprints
are higher than a threshold.

B. Evaluation Setup and Procedure

We adopt a three-tier topology as presented in [31], which is
depicted in Fig. 6. We differentiate three networking domains:
access, aggregation, and core. The dark red color represents
the core domain, the lighter color the aggregation domain, and
the light red color the access domain. Circles labeled from S1-
S5 denote the physical nodes hosting the P4-based network
functions. Square nodes represent end-hosts and servers in the
access and the core domain. The two nodes S1 and S2 in the
access region are gateways that connect the end-user nodes
H1-H3. Each gateway node is linked to the two aggregation
nodes S3 and S4. The aggregation node S5 accumulates traffic
from end-users and forwards it to the core node, where H4
represents the server that the end-users want to connect to.
For our proof-of-concept implementation, we apply the Simple
Switch target [8] to host the NFs and build up the topology
with Mininet. For the implementation of CMI, we apply BMv2
CLI that comes with the Simple Switch target. We use the
D-ITG [32] traffic generator to create network traffic. The
evaluations are executed in an environment with Ubuntu 16.04,
an Intel Xeon E3-1275v5 CPU of 3.6GHz, and 32 GB of
RAM. For each evaluation scenario, we repeat 30 runs to gain
statistical confidence.

C. General Performance Evaluation

In the first setting without reconfiguration, UDP packets are
sent from H1 to H4. We analyze the impact of different packet
rates per second (pps) and payload sizes (Bytes). For our
investigations of implementation details, we use one Packer
Forwarder NF, which locates on node S1.

1) Packet Rate vs. CPU Usage: Fig. 7a shows boxplots
of the software switch’s CPU utilization in percentage over
increasing packet rates. The different shapes in the boxplots
indicate the corresponding mean values. The CPU utilization
increases with the packet rate and the maximum mean value is



around 19%. Whereas the CPU utilization increases with the
packet rate, the different payload sizes (50, 500, and 1000)
only pose a marginal impact on the CPU utilization. The
observation of rate-dependent CPU utilizations motivate for
the use of the reconfiguration mechanisms of P4NFV.

2) Pipeline vs. CPU Usage: The implementation of PM can
be realized with multiple tables. We now investigate whether
the the number of tables can impact the performance of
NFs. We use the Packet Forwarder located on node S3. We
have two alternatives for the implementation. All actions are
either implemented in three tables (one table per step: decide
output port, update source MAC, update destination MAC)
or in one aggregated table. To elaborate on the overhead of
additional tables (can be the case for the PM), we analyze also
an implementation with two more dummy tables mimicking
the behavior of an ACL filtering function. Fig. 7b shows the
CPU utilization. For the same packet rate, more tables in the
pipeline add a CPU utilization overhead, which is notable in
case of packet rates from 1300 to 2100.

3) Pipeline vs. Latency: As for the latency, Fig. 7c reports
nearly 20% higher average processing latency when we have
five tables instead of one. The results confirm that an NF
implementation with more tables induces higher resource
utilization and processing latency. The latency and the previous
CPU usage results demonstrate the potential overhead of PM,
whereas with PR, multiple tables of different NFs can be
compressed in favor of lower resource utilization and latency.

We also observe an interesting phenomenon that the latency
decreases when the packet rate is higher. This happens because
of the thread-based implementation of the Simple Switch
target. In case of higher packet rates, the threads fall less
asleep, and it takes less time until the threads wake up to
process the packets, which contributes to shorter latency.

D. Stateless NF Migration

We choose the NAT as a representative for reconfiguration of
a stateless NF. We send UDP traffic from H1 to H4, following
the path S1-S3-S5. For each run, we first instantiate the NAT
on S1 after 5 seconds and then migrate the NAT to S3 after
another 5 seconds. For PM, we enable/disable the NAT tables
through updating the binary value in the register, whereas
for PR, we load different P4 programs with/without the NAT
implementation, followed by populating the tables accordingly.
We analyze two packet rates 1000 pps and 3000 pps for three
payload sizes 50, 500, and 1000 Bytes. The plots show the
mean values and the 95% confidence intervals of 30 runs.

1) Impact on Functionality: We first examine the NF’s
functionality during migration. All UDP packets successfully
reach the destination. After dumping all the packets and check-
ing their source IP addresses, we confirm that the IP addresses
are modified correctly in all scenarios, meaning that no service
disruption happens during NF migration. The BMv2 switch
can start working with the new intended packet processing
pipeline immediately after the new configuration, e.g., the
register values or P4 code, is set via the CMI. However,
this observation applies mainly to P4 software targets; for

hardware targets, additional mechanisms such as buffering
may be required to ensure minimal service disruption, i.e.,
latency increase and potential packet drops.

2) Impact on Latency: We measure the packet transmission
latency from the source to the destination, which reflects the
processing time of the NFs along the forwarding path. The
results are reported in Fig. 8. In general, the difference between
different UDP payload sizes is not significant. For the packet
rate of 1k, the difference between PM and PR is marginal.
When the packet rate increases to 3k, peaks show up in the
curves when reconfigurations happen. This overhead (more
obvious for PR) comes from longer queuing delays in the NF.

E. Stateful NF Migration
The stateful firewall NF drops UDP flows that originate

from a source IP having a sending rate higher than a threshold.
The sending rates are stored in the registers, indexed by hash
values that are calculated from packet header 3-tuples (src.
IP, dst. IP, and IP protocol number). They indicate whether a
flow has to be blocked or not. The stateless load balancer NFs
are placed in S1 and S2. They randomly forward packets to
balance the load on both links. When performing migration,
the MOE needs to configure the initial and target NF node in
order to preserve the state consistency, e.g., keep dropping the
packets of the blocked flows. MOE reads the register entries
from source NF node S1 and then writes to the target S5.

In order to emulate traffic that will be forwarded as well as
blocked by the firewall, we create two UDP data sources. The
host H1 sends UPD traffic to H4 with a high packet rate — the
traffic should be blocked by the firewall. For the concurrent
non-blocking traffic, H2 sends 1000 UDP packets per second
to H4 with 50 Byte payload. For each run, we initiate the
firewall on S1 and then start the traffic generation. The UDP
packets from H1 should be blocked, whereas the ones from H2
should always reach the destination. Thereafter, the firewall is
migrated at time 5s from S1 to S5. We record the forwarding
latencies of all packets that belong to the concurrent flows.

1) Impact on Functionality: We confirm that no firewall
service disruption happens during migration for any scenario,
as no packets of the blocked flow reaches the destination
server. The state that indicates the blocking of H1’s flow is
copied from S1 to S5 before the firewall is actually migrated.
Thus P4NFV is able to preserve the state information of the
firewall during its migration.

2) Impact on Latency: We do not observe any packet loss
of the concurrent traffic. However, as illustrated in Fig. 9, the
migration indeed poses an impact on the forwarding latency.
In general, PR introduces slightly higher latency (0.6ms)
than PM (0.5ms), and PR’s performance degradation lasts
0.3s longer than PR. Because of more packets buffering, the
maximal delay during firewall migration of 3k pps can be two
times of 1k pps. Such delay can be alleviated by applying P4
targets that support parallel packet processing.

F. Comparison With a Legacy NFV Solution
Following the legacy NFV solution, we implement pure

software-based NFs running inside VMs. We deploy the VMs



100 500 900 1300 1700 2100

Packet Rate [pps]

0

10

20

C
P

U
U

sa
g
e

[%
]

50 Bytes

500 Bytes

1000 Bytes

(a) CPU Usage Comparison - Traffic

100 500 900 1300 1700 2100

Packet Rate [pps]

0

10

20

C
P

U
U

sa
g
e

[%
]

1 table

3 tables

5 tables

(b) CPU Usage Comparison - Tables

100 500 900 1300 1700 2100

Packet Rate [pps]

0.00

0.25

0.50

0.75

1.00

A
v
g
.

L
a
t.

[m
s]

1 table

3 tables

5 tables

(c) Latency Comparison - Tables

Fig. 7. (a) shows the relation between the CPU usage of different payload sizes and packet rates. (b) shows the relation between the CPU usage of different
packet rates and the number of table matches in the pipeline (payload size 50 Bytes). (c) shows the relation between the average latency of different packet
rates and the number of table matches in the pipeline (payload size 50 Bytes).

5 10

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(a) PM - 1k pps

5 10

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(b) PR - 1k pps

5 10

Timestamp [sec]

0.25

0.30

0.35

0.40

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(c) PM - 3k pps

5 10

Timestamp [sec]

0.25

0.30

0.35

0.40

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(d) PR - 3k pps

Fig. 8. Impact of NAT (stateless NF) migration on the packet forwarding latency, comparing two reconfiguration approaches and different packet rate. The
NAT is instantiated at time 5s, and then migrated at time 10s.

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(a) PM - 1k pps

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(b) PR - 1k pps

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(c) PM - 3k pps

4 5 6 7

Timestamp [sec]

0.4

0.6

0.8

1.0

L
a
t.

[m
il
li
se

c
] 50 Bytes

500 Bytes

1000 Bytes

(d) PR - 3k pps

Fig. 9. Impact of firewall (stateful NF) migration on the concurrent traffic, comparing two reconfiguration approaches and different packet rate. The migration
is triggered at time 5s.

in an OpenStack cloud and evaluate the performance during
VM migrations. We instantiate three VMs which act as the
traffic source/sink and the packet processing entity respec-
tively. We implement the NAT and the stateful firewall in
Python with the Scapy library [33]. The NF migration makes
use of the VM live-migration option of OpenStack [34].

For the NAT scenario, a flow with 500 pps is generated
for 15s (7500 to be transmitted in total). On average 108.43
packets are lost during the migration of the NAT, which
corresponds to a service disruption of 0.217s. For the firewall
scenario, two flows with 500 pps are generated for 15s.
Because the state is stored in the firewall VM, there is no
need to coordinate the state migration. Also for the VM-based
NF setting, no packets of the blocked flow reach the sink.
However, the non-blocked flow experiences a similar packet
loss as in the NAT scenario: on average 120.53 packets are
lost, which corresponds to a service disruption of 0.241s.

In contrast to the legacy solution, P4NFV can migrate both
NFs without any service interruption. For the performance, we
observe only a short latency increase during migration.

VI. CONCLUSION

Leveraging the data plane programmability of P4, we pro-
pose an NFV architecture that is able to use hybrid infras-

tructure resources and reconfigure the network functionali-
ties in the field. The architecture preserves the consistency
of stateful NFs during reconfigurations. Two approaches to
achieve runtime reconfiguration are proposed with the consid-
eration of network state management. Based on a prototype
implementation, we evaluate various performance indicators
of the architecture. Static performance evaluations motivate
the necessity of NF relocation in face of dynamic traffic,
as well as the careful design of the pipeline structure. As a
highlight, we provide comprehensive evaluations of the data
plane performance during runtime reconfiguration. In compar-
ison with a conventional VM solution, P4NFV ensures the
liveness of functions and acceptable performance degradation
when functions are migrated. As reconfiguration of some
hardware targets may introduce packet loss, we believe that
reconfiguration mechanisms avoiding losses are interesting
future work.

ACKNOWLEDGMENT

This work has been funded by ERC FlexNets Project
(grant No 647158), the German BMBF SENDATE-PLANETS
Project (ID C2015/3-1), and the DFG ModaNet Project (grant
No KE 1863/8-1). The authors alone are responsible for the
content of the paper.



REFERENCES

[1] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Kluegel, and
A. Martinez-Alba, “How to measure network flexibility? a proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
2018.

[2] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley,
and L. Mathy, “Flow processing and the rise of commodity network
hardware,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 2, pp. 20–26, 2009.

[3] Z. Niu, H. Xu, L. Liu, Y. Tian, P. Wang, and Z. Li, “Unveiling
performance of NFV software dataplanes,” in Proceedings of the 2nd
Workshop on Cloud-Assisted Networking. ACM, 2017, pp. 13–18.

[4] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform handling and
abstraction of NFV hardware accelerators,” IEEE Network, vol. 29, no. 3,
pp. 22–29, 2015.

[5] N. Zilberman, P. M. Watts, C. Rotsos, and A. W. Moore, “Reconfigurable
network systems and software-defined networking,” Proceedings of the
IEEE, vol. 103, no. 7, pp. 1102–1124, 2015.

[6] H. Moens and F. De Turck, “Customizable function chains: Managing
service chain variability in hybrid NFV networks,” IEEE Transactions
on Network and Service Management, vol. 13, no. 4, pp. 711–724, 2016.

[7] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “PISCES: A programmable, protocol-independent software
switch,” in Proceedings of ACM SIGCOMM. ACM, 2016, pp. 525–538.

[8] “P4 behavioral-model,” https://github.com/p4lang/behavioral-model/, ac-
cessed: 2018-02-20.

[9] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in Proceedings of IEEE Interna-
tional Conference on Microelectronic Systems Education. IEEE, 2007,
pp. 160–161.

[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[11] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, and P. Shelar, “The Design and Im-
plementation of Open vSwitch,” in Proceedings of NSDI, vol. 15, 2015,
pp. 117–130.

[12] “Netronome SmartNIC,” https://www.netronome.com/blog/p4-
programmability-for-the-netronome-agilio-smartnic/, accessed: 2018-
02-20.

[13] H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster, and
H. Weatherspoon, “P4FPGA: a rapid prototyping framework for P4,” in
Proceedings of ACM SOSR. ACM, 2017, pp. 122–135.

[14] P. Benácek, V. Pu, and H. Kubátová, “P4-to-VHDL: Automatic gener-
ation of 100 gbps packet parsers,” in Proceedings of the IEEE Annual
International Symposium on Field-Programmable Custom Computing
Machines. IEEE, 2016, pp. 148–155.

[15] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proceedings of ACM
SIGCOMM. ACM, 2016, pp. 44–57.

[16] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches.” in Proceedings of NSDI, 2015,
pp. 103–115.

[17] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A P4 language
benchmark suite,” in Proceedings of ACM SOSR. ACM, 2017, pp.
95–101.

[18] W. Shen, M. Yoshida, K. Minato, and W. Imajuku, “vconductor: An
enabler for achieving virtual network integration as a service,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 116–124, 2015.

[19] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta,
and V. Riccobene, “An open framework to enable NetFATE (Network
Functions at the edge),” in Proceedings of IEEE NetSoft. IEEE, 2015,
pp. 1–6.

[20] S. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic backpres-
sure and scheduling for NFV service chains,” in Proceedings of ACM
SIGCOMM. ACM, 2017, pp. 71–84.

[21] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Dynamic
chaining of virtual network functions in cloud-based edge networks,”
in Proceedings of IEEE NetSoft. IEEE, 2015, pp. 1–5.

[22] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes.” in Proceedings of NSDI, vol. 13, 2013, pp. 227–240.

[23] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling innovation in network func-
tion control,” in ACM SIGCOMM Computer Communication Review,
vol. 44, no. 4. ACM, 2014, pp. 163–174.

[24] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford, “Dy-
namic service chaining with dysco,” in Proceedings of ACM SIGCOMM.
ACM, 2017, pp. 57–70.

[25] D. Hancock and J. Van Der Merwe, “Hyper4: Using P4 to virtualize the
programmable data plane,” in Proceedings of ACM CoNEXT. ACM,
2016, pp. 35–49.

[26] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “HyperV: A
high performance hypervisor for virtualization of the programmable
data plane,” in Proceedings of International Conference on Computer
Communication and Networks. IEEE, 2017, pp. 1–9.

[27] ETSI, “Network Functions Virtualisation (NFV);
Architectural Framework v1.1.1 ETSI GS NFV
002,” 2013, http://www.etsi.org/deliver/etsi gs/NFV-
MAN/001 099/002/01.01.01 60/gs NFV-002v010101p.pdf [Accessed:
01.04.2018].

[28] W. Wang, Y. Liu, Y. Li, H. Song, Y. Wang, and J. Yuan, “Consistent state
updates for virtualized network function migration,” IEEE Transactions
on Services Computing, 2017.

[29] S. Luo, H. Yu, and L. Vanbever, “Swing state: Consistent updates for
stateful and programmable data planes,” in Proceedings of ACM SOSR.
ACM, 2017, pp. 115–121.

[30] N. Katta, M. Hira, A. Ghag, C. Kim, I. Keslassy, and J. Rexford,
“CLOVE: How I learned to stop worrying about the core and love the
edge,” in Proceedings of ACM HotNets. ACM, 2016, pp. 155–161.

[31] M. Gao, B. Addis, M. Bouet, and S. Secci, “Optimal orchestration of
virtual network functions,” Computer Networks, 2018.

[32] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-
itg distributed internet traffic generator,” in Proceedings of International
Conference on the Quantitative Evaluation of Systemss. IEEE, 2004,
pp. 316–317.

[33] “Scapy Library,” https://github.com/secdev/scapy, accessed: 2018-06-10.
[34] “OpenStack Instance Live Migration,”

https://docs.openstack.org/nova/pike/admin/configuring-
migrations.html, accessed: 2018-06-10.


