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Abstract

We study sets of points that cannot be reconstructed by their X-rays, the so-
called switching components: we extend known results to obtain their complete
algebraic characterization and we provide two constructions that improve the
existing ones by producing examples with few — though still exponentially-
many — elements. Furthermore, we extend the connection between switching
components and two problems in Number Theory: the first due to Prouhet,
Tarry and Escott, and the second involving the so-called pure product polyno-
mials. We address complexity and algorithmic aspects of the Prouhet-Tarry-
Escott problem.

Zusammenfassung

Wir betrachten Punktmengen, die durch ihre X-Strahlen nicht rekonstruiert
werden können, die sogenannten switching components: Wir erweitern Resul-
tate, um eine vollständige algebraische Beschreibung zu erhalten, und geben
außerdem zwei Konstruktionen an, die Beispiele mit wenigen — allerdings
exponentiell vielen — Elementen produzieren und die bestehenden Konstruk-
tionen verbessern. Ferner erweitern wir den Zusammenhang zwischen swit-
ching components und zwei Problemen der Zahlentheorie, das erste von Prou-
het, Tarry und Escott, und das zweite sogenannte reine Produkt Polynome be-
treffend. Wir betrachten das Prouhet-Tarry-Escott Problem auch hinsichtlich
Komplexität und Algorithmik.
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Chapter 1

Introduction and Notation

Tomography is concerned with the problem of recovering information on a
geometric object from its X-rays or projections. Its mathematical aspects were
first investigated by Radon [150]. Our interest focuses on its discrete version,
where the objects to be reconstructed are finite sets. According to Herman
and Kuba [99], the term discrete tomography was first introduced by Lawrence
Shepp [162] in 1994. Since then, the topic has developed in several directions:
studying the X-rays needed in order to allow unique reconstruction under
some restrictions on the sets [39, 44, 58, 63, 78], addressing upper and lower
bounds on the size of sets that cannot be reconstructed from the information on
their X-rays [16, 127], introducing point X-rays [64], investigating complexity
aspects [65, 79, 80, 158], algebraic aspects [18, 94], reconstruction algorithms
[24, 39, 50], approximation algorithms [91] and discussing the effect of pertur-
bations on the reconstruction [9, 12, 15, 57]. Applications of discrete tomogra-
phy include image processing [110], crystallography and material science [8,
17, 21, 156], and plasma physics [13].

In this thesis, we study sets of points that cannot be reconstructed by their
X-rays. A pair of (multi-) sets that have the same X-rays with respect to a given
subspace is called switching component.

Hajdu and Tijdeman [94] showed that every switching component with re-
spect to a fixed number of reduced lattice directions corresponds to a polyno-
mial divisible by certain binomials. A few years earlier Wiegelmann [175] had
shown a characterization in terms of toric ideals of the points x∗ ∈Nd that are
unique solutions to Ax = b, with A and b respectively a matrix and a vector
with integer non-negative entries. We extend the two approaches, and obtain
a unified algebraic characterization of switching components with respect to
subspaces of every dimension.

A crucial problem in discrete tomography is understanding how many di-
rections are needed in order to be able to reconstruct any finite subset of Zd.
Gardner and Gritzmann [78] showed that 7 pairwise linearly independent di-
rections are always sufficient to determine a convex lattice set in Z2, which im-
plies that the X-rays with respect to 7 pairwise linearly independent directions
lying on a plane uniquely determine every convex lattice set in Zd. Matoušek,
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Chapter 1. Introduction and Notation

Přívětivý and Škovroň [127] showed that there exist m directions reconstruct-
ing every set with size in O(1.81712m), but it is not clear how to determine the
directions that lead to the smallest switching components, namely the direc-
tions that would be the least useful in the reconstruction process.

Alpers and Larman [16] showed that X-rays with respect to m lattice direc-
tions in Z2 always uniquely determine subsets of Z2 with at most m points,
if m = 5 or m ≥ 7, while there exist switching components of size m if
m ∈ {1, 2, 3, 4, 6}. Furthermore, they showed that for every m, d ∈ N∗ and for
every ε > 0, there exist O(md+1+ε) points in Zd and m lattice directions that
do not reconstruct the points uniquely. This was the first upper bound on the
size of switching components that is polynomial in m, and it is not construc-
tive. Constructive methods to produce switching components with respect
to any m directions lead to sets of size 2m−1 [74], while directions that yield
switching components in Z2 of size in O(1.81712m) were devised in [127]. We
present two novel constructions: the first produces switching components in
Zd with respect to m directions and size inO(1.38m), provided m is big enough
compared to d, see Section 3.8; the second gives switching components in Zd

with respect to d2 directions and size in 2O(dlog(d)), that we can project to con-
struct switching components in Zd with respect to m directions and size in
2O(
√

mlog(
√

m)), for every m ∈N∗, and 2 ≤ d ≤ d
√

me, see 3.9.
There is an interesting relation between discrete tomography and number

theory, that was discovered by Alpers [6] and later analyzed in [18] together
with Tijdeman : switching components provide solutions to an old problem in
number theory, named after Prouhet, Tarry and Escott, the first three mathe-
maticians that defined it formally [70, 147, 171]. The task of the Prouhet-Tarry-
Escott (PTE) problem, in its general formulation, as presented in [18], is to find,
for a given κ ∈N∗, two disjoint multisets F1, F2 in Zd such that

∑
x∈F1

xq = ∑
x∈F2

xq

is fulfilled for every q ∈ Nd such that ‖q‖1 ≤ κ. While the connection de-
scribed in [18] is restricted to d = 2, we extend it to every d and show that
switching components with respect to certain classes of hyperplanes also yield
solutions to the Prouhet-Tarry-Escott problem. As a consequence of the con-
structions on switching components, we obtain a construction that produces
relatively small PTE-solutions.

We present an additional application to number theory that relates switch-
ing components to the so-called pure product polynomials, i.e., products of bino-
mials of the type

∏
i∈[κ]

(Xαi − 1)

for some positive integers α1, . . . , ακ ∈ N∗. It is a long-standing open pro-
blem to determine the minimum length of pure product polynomials for ev-
ery κ ∈N∗, or to establish its right asymptotic growth. Our constructions on

2



1.1 Content Overview and Contributions

switching components yield, for every κ ∈ N∗, pure product polynomials of
length in 2O(

√
κlog(

√
κ)) and in O(1.38κ).

For surveys on various aspects of discrete tomography we refer the reader
to [7, 14, 77, 89, 99, 100]. More details on the problems in Number Theory can
be found in [33, 34, 97].

Next we describe the content of the thesis. Afterwards, we will give the
formal setting and the basic definitions, as well as prove elementary results on
switching components that we will need throughout the thesis.

1.1 Content Overview and Contributions

Chapter 2 contains background knowledge on commutative algebra, with fo-
cus on Gröbner bases and Toric ideals.

In Chapter 3 we deal with the algebraic characterization of switching com-
ponents and the constructions of small-size ones. In section 3.1 we show
that switching components correspond to the elements of certain toric ideals.
Specifically, Theorem 3.1.7 is a generalization of results from [175] and [94],
and gives a complete characterization of switching components with respect
to subspaces of every dimension. In section 3.2 we model switching compo-
nents as the solutions to a Diophantine polynomial equation (joint work with
Peter Gritzmann). Section 3.3 relates switching components with projections
of cubes: this is a consequence of a result in [94]. We determine the minimal
size of the projection of a cube along a line in Proposition 3.3.9.
In Section 3.4 we present known results on the minimal size of switching com-
ponents, while we include in 3.5 relations between the coefficients of a polyno-
mial and those of its divisors. In order to determine small switching compo-
nents, the directions selected play a crucial role, as we explain in Section 3.6.
In Section 3.7 we include a class of pure product switching components that
have exponential size, while the union of finitely many copies of them pro-
vide a polynomial size switching component (joint work with Andreas Alpers
and Peter Gritzmann). Sections 3.8 and 3.9 present two constructions which
yield switching components with respect to m subspaces of size lower than
the trivial bound of 2m−1, using a copying technique and archimedean solids,
respectively. The results in 3.9 are fruit of joint work with Andreas Alpers and
Peter Gritzmann. Section 3.10 compares the two constructions. Parts of the
contributions of Chapter 3 will appear in a joint paper with Andreas Alpers
and Peter Gritzmann [10].

In Chapter 4, we discuss the relation between switching components and
the Prouhet-Tarry-Escott problem. Section 4.2 provides the first — to our know-
ledge — characterization of the solutions to the PTE-problem of every degree
and in every dimension. In Section 4.3.2 we extend a result of [18] by show-
ing, in all dimensions, that switching components with respect to m pairwise
linearly independent directions yield solutions to the PTE-problem of degree
m− 1. We also show that switching components with respect to (κ+d−1

k )-many

3



Chapter 1. Introduction and Notation

hyperplanes, provided that their normal vectors are in so-called generic posi-
tion, yield solutions to the PTE-problem of degree κ in dimension d (joint work
with Andreas Alpers and Peter Gritzmann). We conclude the section by show-
ing with algebraic arguments that switching components with respect to lines
are PTE-solutions.
In Section 4.4 we show that PTE-solutions are projections of switching com-
ponents, and in 4.5 we explain how we can apply the results of Chapter 3 to
devise small PTE-solutions (joint work with Andreas Alpers and Peter Gritz-
mann). In 4.6 we give an Integer Linear Programming model of the Prouhet-
Tarry-Escott problem, and determine with the help of X-press-Mosel FICO R©

[141] the ideal solutions with smallest magnitude up to degree 5.
Section 4.7 addresses complexity issues related to the Prouhet-Tarry-Escott
problem. Parts of the contributions of Chapter 4 will appear in a joint paper
with Andreas Alpers and Peter Gritzmann [11].

Chapter 5 presents a further connection between switching components
and number theory, specifically with the problem of determining the pure pro-
duct polynomials of smallest length. We give a generalization and use the
constructions of Chapter 3 to determine upper bounds.

1.2 Notation

Throughout the thesis, we assume d, m, k ∈ N∗, d ≥ 2, 1 ≤ k ≤ d − 1. Let
D,W ⊂ R. A weight function ω on Dd is a function

ω : Dd −→ W
x 7−→ ω(x)

whose support is finite, i.e., |{x : ω(x) 6= 0}| < ∞.
Classic choices for D andW are

D ∈ {N, Z, R} and W ∈
{
{0, 1}, N

}
.

Let F (Dd,W) be the set of all weight functions ω : Dd →W . The elements of
F (Dd,W) are our objects of interest.
IfW = {0, 1} we identify every function ω : Dd → W with its support, and
refer to F (Dd, {0, 1}) as the collection of finite sets of the type

F = {x ∈ Dd : ω(x) = 1} ⊂ Dd.

IfW = N, we identify every function ω : Dd →W as a finite multiset F ⊂ Dd

whose elements have multiplicity ω(x) ∈ N∗, and we write the list of its ele-
ments as

F = {{ x, . . . , x︸ ︷︷ ︸
ω(x)-times

: x ∈ Dd, ω(x) 6= 0}}. (1.1)

4



1.2 Notation

If D = Z, instead of F (Dd,W) we write

F d := F (Zd, {0, 1})
F d

N := F (Zd, N)

F d
N,N := F (Nd, N)

(1.2)

The elements of F d are called lattice sets. Note that F d ⊂ F d
N. In order to

make our treatise clearer, we define in the following the basic operations on
multiset. They follow naturally from (1.1) and the usual operations on sets, by
interpreting as distinct elements the ω(x)-many copies of a element x ∈ Dd

with ω(x) 6= 0.

Definition 1.2.1 (Size and Operations on Multisets).
Let W ⊂ N, and let F ∈ F (Dd,W), and let ω : Dd → N be its corresponding
weight function. We define the size of F as

|F| := ∑
x∈Dd

ω(x)

Let F1, F2 ∈ F (Dd,W) and let ω1, ω2 : Dd →N be the respective weight functions.
It holds F1 ⊂ F2 if and only if ω1(x) ≤ ω2(x) for every x ∈ Dd.
The weight function of F1 ∪ F2 is

ωF1∪F2 : Dd −→N

x 7−→ ω1(x) + ω2(x)

The weight function of F1 ∩ F2 is

ωF1∩F2 : Dd −→N

x 7−→ min{ω1(x), ω2(x)}

If min{ω1(x), ω2(x)} = 0 for every x ∈ Dd, we say that F1 and F2 are disjoint, and
we write F1 ∩ F2 = ∅.
The weight function of F1\F2 is

ωF1\F2
: Dd −→N

x 7−→ max{0, ω1(x)−ω2(x)}

Finally, F1 = F2 if and only if for every x ∈ Dd it holds ω1(x) = ω2(x).

Notice that ω(x) ≥ 1 for every x ∈ F, and |F| < ∞ for every F ∈ F (Dd,W).
Next we define a bijection between multisets.

Definition 1.2.2 (Bijection of Multisets).
Let W ⊂ N. Let F1, F2 ∈ F (Dd,W) and let ω1, ω2 : Dd → N be the respective
weight-functions. If |F1| = |F2|, we define a bijective function between multisets
σ : F1 → F2 from a bijection σ between the sets

F1 :=
⋃

x∈F1

{
{x} × [ω1(x)]

}
F2 :=

⋃
x∈F2

{
{x} × [ω2(x)]

}

5



Chapter 1. Introduction and Notation

such that for every y1 = (x1, n1) ∈ F1 and y2 = (x2, n2) ∈ F2 with n1 ∈ [ω1(x)]
and n2 ∈ [ω2(x)], and σ(y1) = y2, it holds

σ(x1) = x2.

Notice that the function σ exists since |F1| = |F2|.

Informally, an element x ∈ F1 with multiplicity ω(x) is treated as ω(x)-
many copies of the element x ∈ F1.

Definition 1.2.3. We denote the set of all k-dimensional linear subspaces of Rd as Sd
k ,

and we denote by Ld
k the subset of Sd

k of all such subspaces that are spanned by vectors
from Zd. In particular, the elements of Ld

1 will be referred to as lattice lines.

Depending on the purpose, a subspace S ∈ Sd
k could be expressed as

lin{s1, . . . , sk} as well as (lin{sk+1, . . . , sd})⊥, for suitable sj ∈ Rd, j ∈ [d]. A
direction s ∈ Zd is called reduced if the greatest common divisor of its entries
is 1.
Furthermore, for S ∈ Sd

k , we define the class of affine subspaces parallel to S
as

AR(S) := {v + S : v ∈ Rd}.

Then, for F ∈ F (Dd,W), with corresponding weight function ω : Dd → N,
and S ∈ Sd

k , the (discrete k-dimensional) X-ray of F parallel to S is the function

XSF : AR(S)→N

defined by
XSF(T) = ∑

x∈T
ω(x),

for each T ∈ AR(S). Notice that since every weight function has finite support,
the encoding of an X-ray is finite. We have introduced the necessary notions
to define tomographically equivalent multisets.

Definition 1.2.4 (Tomographically Equivalent Multisets).
Let F1, F2 ∈ F (Dd, N) and let S ∈ Sd

k be defined by linearly independent vectors
s1, . . . , sd ∈ Rd, as

S := lin{s1, . . . , sk} = {x ∈ Rd : Ax = 0}

where A ∈ R(d−k)×d is the matrix

A :=

sT
k+1
...

sT
d


We say that F1, F2 are tomographically equivalent (t.e.) with respect to S if and
only if

XSF1 = XSF2 (1.3)

6



1.2 Notation

Equivalently, F1, F2 are tomographically equivalent with respect to S if and only if
there exists a bijective function σ : F1 → F2 such that

x− σ(x) ∈ S ∀x ∈ F1 (1.4)

or, equivalently, if and only if the following multisets are equal:

{{Ax : x ∈ F1}} = {{Ax : x ∈ F2}} (1.5)

Definition 1.2.5 (Switching Component). Let F1, F2 ∈ F (Dd, N) be disjoint and
tomographically equivalent with respect to S, then the pair (F1, F2) is called a switch-
ing component (s.c. ) with respect to S.

The expression switching component can be found in the book by Herman
and Kuba [99] §1.2.2, where the focus is to reconstruct a binary matrix from
the knowledge of its row- and column-sums. Any matrix that contains a 2× 2
submatrix of the types

M1 :=
(

1 0
0 1

)
M2 :=

(
0 1
1 0

)
cannot be uniquely reconstructed, as their row- and column-sums do not change
by substituting M1 with M2. The term switching refers to the transition from a
configuration containing M1 to one containing M2. Other denominations were
given to the cases for which a unique reconstruction is not possible; in the lit-
erature we can also find the term ghosts, for example in [40, 170], as well as
interchange in [158], and bad configurations in [43].

We will use both formulations (1.4) or (1.5). If (F1, F2) is a switching com-
ponent with respect to S ∈ Sd

k , then it follows from (1.3), (1.4) and (1.5) that

|F1| = |F2|.

We call the number |F1| the size of the switching component (F1, F2).
If s ∈ Rd and S = lin{s} is a 1-dimensional subspace, we will often say that F1

and F2 are tomographically equivalent with respect to the direction s.

Definition 1.2.6 (Geometric Problem).
Let k, d, n, m ∈N∗ with d ≥ 2 and 1 ≤ k ≤ d− 1 as before.
We denote by GPk,d

N (n, m) — acronymous for Geometric Problem — the class of the
switching components (F1, F2) ∈ F d

N×F d
N with respect to m non-parallel subspaces

S1, . . . , Sm ∈ Lk, with F1 ∩ F2 = ∅ and |F1| = |F2| = n.
Analogously, GPk,d(n, m) is the class of switching components (F1, F2) ∈ F d × F d

with respect to m non-parallel subspaces S1, . . . , Sm ∈ Lk, with F1 ∩ F2 = ∅ and
|F1| = |F2| = n.

The definition of GP2(n, m) was first given in [18]: there it referred to the class
switching components of size n in the plane with respect to m + 1 directions.

7



Chapter 1. Introduction and Notation

A challenge in discrete tomography is to determine the minimum size of a
switching component (F1, F2) in

(
F (Dd,W)

)2 with respect to m non-parallel k-
dimensional subspaces. We denote this number by ψk,d

D,W (m). We will discuss
bounds on ψk,d

D,W (m) in Section 5.3. We will be interested mostly in the case
D = Z, andW = N orW = {0, 1}. For these cases, we simplify the notation
for ψk,d

D,W (m) as ψk,d
N (m) and ψk,d(m) respectively. Observe that

ψk,d
N (m) = min{n ∈N : GPk,d

N (n, m) 6= ∅}

and analogously forW = {0, 1}.

Example 1.2.7 (Example for GPk,d(3, 3)). An example of switching component in
F 2 with respect to the directions

S := {(1, 0)T, (0, 1)T, (1, 1)T}

is the pair (F1, F2) of sets

F1 :=
{(0

0

)
,
(

2
1

)
,
(

1
2

)}
F2 :=

{(1
0

)
,
(

0
1

)
,
(

2
2

)}
that we depict in Figure 1.1 as black and white points, respectively.

Figure 1.1: Switching component in dimension d = 2

In Proposition 1.2.8 we give easy transformations and properties of a
switching component (F1, F2) ∈ F (Dd,W)×F (Dd,W) with respect to m sub-
spaces S1, . . . , Sm ∈ S k.

Proposition 1.2.8 (Transformations on Switching Components).
Let D = R and W = N. Let k ∈ [d − 1], and let A1, . . . , Am ∈ R(d−k)×d be
full-rank matrices, defining the k-dimensional subspaces S1, . . . , Sm:

Si := {x ∈ Rd : Aix = 0} ∀i ∈ [m].

Let (F1, F2) ∈
(
F (Dd,W)

)2 be a switching component with respect to S1, . . . , Sm of
size n. Then the following statements hold true:

8



1.2 Notation

(i) If (F1, F2) ∈
(
F (Dd,W)

)2 is a switching component with respect to S1, . . . , Sm,
and

(F1 ∪ F1) ∩ (F2 ∪ F2) = ∅,

then
(F1 ∪ F1, F2 ∪ F2) ∈

(
F (Dd,W)

)2 (1.6)

is a switching component with respect to S1, . . . , Sm.

(ii) Let M ∈ Rd×d be non-singular, t ∈ Rd. Let Fj := {{Mx + t : x ∈ Fj}}, j ∈ [2].

Then (F1, F2) ∈
(
F (Dd,W)

)2 is a switching component with respect to the
subspaces Si := {x ∈ Rd : Ai M−1x = 0}, i ∈ [m].

(iii) Let Fj := {{(x, 0)T : x ∈ Fj}} ∈ F (Dd+1,W), j ∈ [2].

Then (F1, F2) ∈
(
F (Dd,W)

)2 is a switching component with respect to the
subspaces

Si := {y ∈ Rd+1 : (Ai | 0)y = 0} ∀i ∈ [m].

(iv) (F1, F2) is a switching component w.r.t. all the k + r-dimensional subspaces con-
taining Si, for all r ∈ [d− k− 1], i ∈ [m].

Proof. (i) The claim follows directly from the Definition 1.2.4, equation (1.5).
In fact, for every i ∈ [m] it holds

{{Aix : x ∈ F1}} ∪ {{Aix : x ∈ F1}} = {{Aix : x ∈ F2}} ∪ {{Aix : x ∈ F2}}.

(ii) For all i ∈ [m], by (1.5) it holds

{{Aix : x ∈ F1}} = {{Aix : x ∈ F2}} ∀i ∈ [m] (1.7)

hence

{{Ai M−1x : x ∈ F1}} = {{Ai M−1(Mx + t) : x ∈ F1}} =
= {{Aix + Ai M−1t : x ∈ F1}} = {{Aix + Ai M−1t : x ∈ F2}} =

= {{Ai M−1x : x ∈ F2}}

for all i ∈ [m]. Observe that F1 and F2 are disjoint since M is non-singular
and F1 ∩ F2 = ∅.

(iii) As for all x ∈ Fj and for all j ∈ [2] it holds

(Ai | 0)x = (Ai | 0)(x, 0)T = Aix,

it follows by (1.5)

{{(Ai | 0)x : x ∈ F1}} = {{Aix | x ∈ F1} = {Aix : x ∈ F2}} =

= {{(Ai | 0)x : x ∈ F2}} ∀i ∈ [m]

hence F1 and F2 are tomographically equivalent with respect to Si for all
i ∈ [m].

9



Chapter 1. Introduction and Notation

(iv) Let S := {x ∈ Rd | Ax = 0} with

A :=


aT

1
aT

2
...

aT
d−k


a1, . . . , ad−k ∈ Rd linearly independent. If T ⊂ Rd is a linear subspace of
dimension k + r containing Si, r ∈ [d− k− 1], then we can assume T to
be defined as

T := {x ∈ Rd : Ax = 0}
with

A :=


aT

1
aT

2
...

aT
d−k−r


Since {{Ax : x ∈ F1}} = {{Ax : x ∈ F2}}, it follows

{{Ax : x ∈ F1}} = {{Ax : x ∈ F2}}.

The claim follows by considering Ti ⊃ Si for all i ∈ [m].

We now interpret Proposition 1.2.8 from the point of view of GPk,d
N (n, m),

i.e., the class of switching components (F1, F2) with respect to m k-dimensional
non parallel subspaces, with Fi ∈ F d

N, see (1.2). From Proposition 1.2.8 (ii)
it follows that if M ∈ Zd×d is unimodular, i.e., its determinant is ±1, and
t ∈ Zd, then GPk,d

N (n, m) is invariant under the transformation x 7→ Mx + t,
see [161] §4.3. In a weaker sense, for every invertible M ∈ Zd×d and t ∈ Zd,
the transformation

φ : Zd −→ Zd

x 7−→ Mx + t

provides (φ(F1), φ(F2)) ∈
(
F d

N

)2 for every (F1, F2) ∈
(
F d

N

)2.
Further, GPk,d

N (n, m) embeds naturally in GPk,d+1
N (n, m) and GPk+r,d

N (n, m), for
every r ∈ [d− k− 1].

In most of the cases, we will fix D = Z and W = N. If not explicitly
stated otherwise, we consider subspaces S1, . . . , Sm ∈ Ld

k . Moreover, to ease
the notation, we will denote F1 and F2 as B and W, and refer to them as black
and white points.

The following example shows that the opposite implication of 1.2.8 (iv)
does not hold in general.

Example 1.2.9. There exist sets of points that are tomographically equivalent with
respect to hyperplanes but no lines. For example, let

b1 := (0, 0, 0)T b2 := (1, 1, 0)T

10



1.2 Notation

w1 := (0, 1, 1)T w2 := (1, 0, 1)T

and consider the subsets B := {b1, b2} and W := {w1, w2} of R3. They are tomogra-
phically equivalent with respect to the hyperplanes whose normal vectors are in

D := {(1, 0, 0)T, (0, 1, 0)T}

as the sets {pTbj : bj ∈ B} and {pTwj : wj ∈ W} are equal ∀p ∈ D, but they
are not tomographically equivalent with respect to any line. In fact, if B and W were
tomographically equivalent with respect to a line {µs : µ ∈ R}, with s ∈ Rd, then it
would follow s ∈ {b1 − w1, b1 − w2}. However,

b1 − w1 6= λ(b2 − w2) and b1 − w2 6= λ(b2 − w1) ∀λ ∈ R

x2

x3

x1

Figure 1.2: Switching component in Z2 with respect to three planes and no
lines, as in Example 1.2.9.

Definition 1.2.10 (Projection). Let r ∈N∗ and let M ∈ Rr×d, with rank (M) = r,
and let t ∈ Rd. We define a projection π as the function

π : Rd −→ Rr

x 7−→ Mx + t

we refer to π(x) as the projection of x ∈ Rd.

In the next lemma we show that the projection of a switching component
is a switching component itself. By Proposition 1.2.8, it is not restrictive to
assume the translation vector to be 0. We focus on the lattice case, the general
case can be shown similarly.

Lemma 1.2.11. Let the pair of multisets (B, W) ∈ F d
N ×F d

N be a switching compo-
nent with respect to the k-dimensional lattice subspace S ∈ Ld

k defined by k linearly
independent vectors s1, . . . , sk ∈ Zd:

S := lin{s1, . . . , sk}.

11



Chapter 1. Introduction and Notation

For r ∈ [d] let M ∈ Zr×d be a matrix defining a projection

π : Rd −→ Rr

x 7−→ Mx

and let π(B) := {π(b) : b ∈ B} and π(W) := {π(w) : w ∈ W}. Then π(B) and
π(W) are tomographically equivalent with respect to the subspace Sπ ⊂ Rr defined
as

Sπ := lin{Ms1, . . . , Msk},

provided that there exists i ∈ [k] such that Msi 6= 0.

Proof. If B and W are tomographically equivalent with respect to S, then by
(1.4) it follows that there exists a bijection σ : B→W such that

b− σ(b) =
k

∑
i=1

λbisi, (1.8)

with λbi ∈ R for every i ∈ [k] and every b ∈ B. We show that we can define a
bijection χ : π(B)→ π(W) such that

∀π(b) ∈ π(B) ∃µπ(b)1, . . . , µπ(b)k ∈ R s.t. π(b)− χ(π(b)) =
k

∑
i=1

µπ(b)i Msi

where we are considering π(B) and π(W) as multisets: if b1, b2 ∈ B are dif-
ferent, and Mb1 = Mb2, then both copies Mb1, Mb2 are included in π(B). As
B ∩W = ∅, it follows from (1.8) that the vector of coefficients (λb1, . . . , λbk) ∈
Rk is not identically zero, for all b ∈ B. Hence

k

∑
i=1

λbi Msi = M(b− σ(b)) = Mb−M(σ(b)) = π(b)− π(σ(b))

We set µπ(b)i := λbi for every b ∈ B and every i ∈ [k] and we define

χ(π(b)) := π(σ(b))

Then χ is well-defined on the elements of π(B) as it is a composition of func-
tions. Moreover, it is bijective as σ is bijective.

Lemma 1.2.11 does not assure that π(B) and π(W) are disjoint, nor
that the multiplicity of their points has not increased. Further, the vectors
Ms1, . . . , Msm may be not pairwise linearly independent. Since there exists
i ∈ [k] such that Msi 6= 0, we can only assume that the dimension of Sπ is at
least one. When projecting a switching component we will, case by case, define
the matrix M in such a way that, if needed, the above mentioned properties are
fulfilled. We will show in Section 3.9 that for a set of given pairwise linearly
independent directions S ⊂ Zd, it is possible to define a matrix M ∈ Z2×d such
that Ms1, . . . , Msm are pairwise linearly independent.

12



Chapter 2

Background Knowledge

For the reader’s convenience, we include in this chapter some of the back-
ground knowledge that will be needed throughout the thesis. Further refer-
ences to the literature are given in the sections.

Throughout this section, we assume d ∈ N∗. Let us consider the vector
space Rd. For i ∈ [d], we denote by ui the i-th unit vector:

uij =

{
1 if i = j

0 if i 6= j

Let p ∈N∗ ∪ {∞}. Let x ∈ Rd. If p 6= ∞, the p-norm of x is

‖x‖p :=
( d

∑
i=1
|xi|p

) 1
p
,

while the ∞-norm of x is

‖x‖∞ := max{|xi| : i ∈ [d]}.

Let A ⊂ Rd, we denote by lin(A), aff (A) and conv(A) respectively the linear
hull, affine hull and convex hull of A. We denote by bd (A), int (A) and relint (A)

respectively the boundary, the interior and the relative interior. If A ⊂ Rd is con-
vex and bounded, we denote by vol(A) and diam (A) respectively the volume
and diameter of A, i.e., the supremum distance between two points x, y ∈ A.
Vectors V ⊂ Rd are said to be in general position if every d of them are linearly
independent.

More details on convex geometry can be found, for example, in [22, 90],
while a deeper insight on convex polytopes is given in [83, 98, 168, 179].

2.1 Algebraic Background

In this section we include some well-known results from commutative algebra
and combinatorics. More details can be found, for example, in [66, 96, 136].

Let (R,+, ·) be a commutative ring with unity.
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Chapter 2. Background Knowledge

Definition 2.1.1 (Ideal). A subset I of R is an ideal if the following properties hold
true:

(i) 0 ∈ I,

(ii) x + y ∈ I for all x, y ∈ I and

(iii) x · y ∈ I for all x ∈ I, y ∈ R.

Let S ⊂ R, we define the ideal (S) generated by S as

(S) :=
{ t

∑
i=1

xi · yi : t ∈N, x1, . . . , xt ∈ S, y1, . . . , yt ∈ R
}

Let I be an ideal of R.
I is called proper if I 6= R.
I is called principal if it is of the type ({x}), i.e., if it can be generated by a single
element x ∈ R.
I is called prime if x · y ∈ I implies x ∈ I or y ∈ I.
I is called radical if for all n ∈ N and x ∈ R such that xn ∈ I it follows x ∈ I. The
radical of I is defined to be the set

√
I := {x : ∃n ∈N s.t. xn ∈ I}.

Note that
√

I is itself an ideal.

In the following proposition we introduce the most basic operations on
ideals.

Proposition 2.1.2 (Operations on Ideals). Let the sets S, T ⊂ R be finite and let
I = (S) ⊂ R,J = (T) ⊂ R be ideals. We define

I + J := {x + y : x ∈ I, y ∈ J} = (S ∪ T).

It is easy to show the second equality, which implies that I + J is an ideal. Observe
that I ∪ J ⊂ I + J but, in general, I ∪ J is not an ideal. We define the ideal intersection
I ∩ J as

I ∩ J := (x : x ∈ I, x ∈ J).

It is easy to show that I ∩ J is an ideal. The last operation we define is the product of
ideals:

I · J := {x · y : x ∈ I, y ∈ J} = (s · t : s ∈ S, t ∈ T)

It is easy to show the second equality, as well as I · J ⊂ I ∩ J.

The product x · y will be often denoted by xy. The following ideal operation
is sometimes referred to as colon ideal or quotient ideal.
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2.1 Algebraic Background

Definition 2.1.3 (Colon and Saturation). Let I, J ⊂ R be ideals. We define

I : J := { f ∈ R : f J ⊂ I}

I : J∞ :=
∞⋃

r=1

(
I : Jr)

I : J is called colon ideal, and I : J∞ is called the saturation of I with respect to J.

Remark 2.1.4. It is easy to show that I : J is an ideal of R, as well as I : J∞.

Definition 2.1.5 (Quotient Ring). Let I ⊂ R be an ideal. We define the Quotient
Ring R/I as the set of the classes x, x ∈ R with the property

x = y in R/I ⇐⇒ x− y ∈ I

We define the operations + and · on R/I as

+ : R/I × R/I −→ R/I

(x, y) 7−→ x + y

· : R/I × R/I −→ R/I

(x, y) 7−→ x · y

The following proposition follows easily since R is a ring and I and ideal.

Proposition 2.1.6. (R/I,+, ·) as defined in 2.1.5 is a ring.

The following property for rings is called after Emmy Noether, who first
introduced it in [138] putting it in connection with Hilbert’s Basis Theorem,
see 2.1.8.

Definition 2.1.7 (Noetherian Ring). A ring is called Noetherian if every ascending
chain of ideals stabilizes, i.e., if Ij{j∈N} ⊂ R is a sequence of ideals in R such that

I0 ⊂ I1 ⊂ I2 . . .

then there exists t ∈N such that It = It+k for every k ∈N.

In our setting, rings will always be Noetherian. It is easy to show that R
is a Noetherian ring if and only if all its ideals are finitely generated. We now
focus on polynomial rings. The following theorem is the well-known Hilbert’s
Basis Theorem. The original work was included in [103] and can be found in
[104, 106].

Theorem 2.1.8 (Hilbert’s Basis Theorem). If R is Noetherian, then R[X], the ring
of univariate polynomials with coefficients in R, is Noetherian.

We now introduce the relevant terminology for polynomial rings. In the
following, K is a field containing Z.
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Chapter 2. Background Knowledge

Definition 2.1.9 (Polynomial Ring Terminology). Let K[X1, . . . , Xd] be a poly-
nomial ring in the variables X1, . . . , Xd and coefficients in K. We will often use the
compact notation X = (X1, . . . , Xd), while a non boldface X will always represent a
single variable.
A term is a product of non-negative powers of the variables X1, . . . , Xd. Terms will

be often denoted by t. The set of all terms in K[X] is denoted by Td. A monomial
is the product between a term and a coefficient α ∈ K, and will be often denoted by
m . A binomial is the sum of two monomials. The exponent vector of a monomial
αXe1

1 Xe2
2 · · · · · X

ed
d is the vector e := (e1, e2, . . . , ed)

T ∈ Nd. We can use a more
compact writing and express a monomial as αXe. The degree of Xe is the number
deg(Xe) := e1 + · · ·+ ed.
We define the maps Exp and Log as

Exp: Nd −→ Td

(e1, e2, . . . , ed) 7−→ Xe

Log : Td −→Nd

Xe 7−→ (e1, e2, . . . , ed)

which are isomorphism of monoids. The support of a polynomial f (X) ∈ K[X] is the
list of monomials that appear in f with coefficients different from 0. It is denoted by
Supp ( f ).
The constant term of a polynomial f (X) ∈ K[X] is the monomial in Supp ( f ) whose
exponent vector is (0, . . . , 0) ∈Nd.
Two monomials αXa, βXb for which a = b are said to have the same literal part or
are called similar.

Definition 2.1.10 (Pure Binomial). A binomial in K[X1, . . . , Xd] is called pure if
it is of the form Xa − Xb, with Xa, Xb ∈ Td and coprime.

Definition 2.1.11 (Laurent Polynomials). Let d ∈N, we denote by

K[X1, . . . , Xd, X−1
1 , . . . , X−1

d ]

the ring of Laurent polynomials in the variables X1, . . . , Xd, defined as the set
of finite sums of monomials of the type αXa = αXa1

1 · Xa2
2 · · ·X

ad
d , α ∈ K,

a = (a1, . . . , ad) ∈ Zd. Let α, β ∈ K and let a, b ∈ Zd. The ring operations on
the monomials of K[X1, . . . , Xd, X−1

1 , . . . , X−1
d ] are defined as

αXa + βXa := (α + β)Xa

while if a 6= b then the sum of the monomials αXa and βXb is the polynomial

αXa + βXb.

The product of two monomials is defined as

αXa · βXb := αβXa+b
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2.1 Algebraic Background

Let I, J ⊂ Zd, with |I|, |J| < ∞. If f := ∑i∈I αiXi and g := ∑j∈J β jXj, we define

f + g := ∑
i∈I

αiXi + ∑
j∈J

β jXj

f · g := ∑
i∈I,j∈J

αiβ jXi+j

If not explicitly stated otherwise, we will assume the terms of polynomi-
als to have non-negative exponents and point out when we are considering a
Laurent polynomial.

Definition 2.1.12 (Monomial and Binomial Ideal). An ideal I ⊂ K[X1, . . . , Xd]

is called a monomial ideal (respectively binomial) if it can be generated by finitely
many monomials, (respectively binomials).

Monomial ideals allow computations to be performed easily, for example
it is shown in [102] that if I, J are monomial ideals, then

√
I, I ∩ J, I : J are

monomial ideals. Other important properties of monomial ideals can be found
in [29, 167]. A special class of binomial ideals are the so-called toric ideals that
we will present in the next section. Einsenbud and Sturmfels addressed several
aspects of binomial ideals in their seminal paper [67].

Lemma 2.1.13. Let k, d ∈ N∗. The number of terms of degree k in d variables is
(k+d−1

d−1 ).

Proof. We can show this with the stars and bars method, as introduced by
William Feller in [73]. We need to count the ways to assign non negative expo-
nents to the variables X1, . . . , Xd in such a way that the degree of the resulting
term is k. Hence we can equivalently imagine to place d− 1 separators into the
sequence

1 1 . . . 1︸ ︷︷ ︸
k times

in all possible ways. There are (k+d−1
d−1 ) ways to do so, and as the position of

the separators determines uniquely a term of degree k in d variables, the claim
follows.

The following is a classic result that can be found, for instance, in [154],
§2.2.

Lemma 2.1.14 (Multinomial Expansion). Let d, r, k ∈ N and let K[X1, . . . , Xd]

be a polynomial ring in d variables. Let m1, . . . , mr be monomials in K[X1, . . . , Xd].
Then the following equality holds:

(m1 + · · ·+ mr)
k = ∑

i1+i2+···+ir=k

(
k

i1, i2, . . . , ir

)
mi1

1 ·m
i2
2 · · ·m

ir
r

with (
k

i1, i2, . . . , ir

)
:=

k!
i1! · i2! · · · ir!
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Definition 2.1.15 (1, 2-Norm and Height of Polynomials).
Let X := (X1, . . . , Xd), let E ⊂ Nd be finite, and let f (X) ∈ K[X] such that

Supp ( f ) = {αXe : e ∈ E}. We define

‖ f ‖1 := ∑
αXe∈Supp ( f )

|α| (2.1)

‖ f ‖2 :=
(

∑
αXe∈Supp ( f )

(α)2
)1/2

(2.2)

Moreover, the height of f is defined as

ht( f ) := max
αXa∈Supp ( f )

|α|

Notice that ht( f ) is the ∞-norm of the vector of the coefficients of f .

The following lemma is not new, it was for example included in [122], al-
though stated in a less general form.

Lemma 2.1.16. Let X := (X1, . . . , Xd) and let f , g ∈ Z[X]. Then

‖ f g‖1 ≤ ‖ f ‖1‖g‖1.

Proof. Let I ⊂Nd and let f := ∑i∈I αiXi, g := ∑j∈I β jXj. It holds

‖ f g‖1 =
∥∥∥∑

i∈I
αiXi ·∑

j∈I
β jXj

∥∥∥
1
=
∥∥∥∑

i∈I
∑
j∈I

αi · β jXi+j
∥∥∥

1
≤

≤∑
i∈I

∥∥∥∑
j∈I

αi · β jXi+j
∥∥∥

1
= ∑

i∈I
|αi|‖g‖1 = ‖ f ‖1 · ‖g‖1

2.1.1 Gröbner Bases

In this section we present some results on Gröbner Bases that we will need in
the following chapters. Gröbner Bases were introduced by Buchberger in 1965
in his Ph.D. thesis [45]. Several books have been written on the topic since
then, we cite as reference for example [26, 56, 117, 118].

Definition 2.1.17 (Term Ordering). A term ordering τ on Td is a relation �τ on
Td that fulfills the following conditions:

(i) �τ is a total ordering on Td, i.e., for every t1, t2 ∈ Td, with t1 6= t2, it holds
either t1 �τ t2 or t2 �τ t1.

(ii) If t1, t2 ∈ Td are such that t1 �τ t2, then t1 · t �τ t2 · t for all t ∈ Td.

(iii) t �τ 1 for all t ∈ Td\{1}.
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2.1 Algebraic Background

Making use of the monoid isomorphism Log defined in 2.1.9, we could
equivalently have defined the relation �τ on Nd. We will slightly abuse the
terminology, for example referring to term orderings defined on K[X1, . . . , Xd],
as well as writing αXa �τ βXb instead of Xa �τ Xb, α, β ∈ K \ {0}.

Among the most commonly used term orderings, we mention the lexico-
graphic order �LEX or the degree-reverse-lexicographic order �DEGREVLEX defined
as:
Xa �LEX Xb if and only if the first non-zero entry of a− b is positive.
Xa �DEGREVLEX Xb if and only if deg(Xa) > deg(Xb) or deg(Xa) = deg(Xb)

and the last non-zero entry of a− b is negative.

Example 2.1.18. Let us consider the set of terms T3 in the variables X1, X2, X3. It
holds

X1X3 �LEX X2
2

as the first non-zero entry of (1, 0, 1)T − (0, 2, 0)T = (1,−2, 1)T is positive, while

X2
2 �DEGREVLEX X1X3

as the last non-zero entry of (0, 2, 0)T − (1, 0, 1)T = (−1, 2,−1)T is negative.

The notion of term ordering is needed in order to implement a division
algorithm among multivariate polynomials.

Definition 2.1.19 (Leading Term, Leading Coefficient, Leading Monomial).
Let K[X1, . . . , Xd] be a polynomial ring equipped with a term ordering �τ. Let
f (X) ∈ K[X], and consider Supp ( f ). We define the Leading Monomial of f with
respect to τ as the monomial αXa ∈ Supp ( f ) such that Xa �τ Xb for every other
βXb ∈ Supp ( f ) and we denote it by LM τ( f ). The Leading Term is Xa, and we
denote it by LT τ( f ), while the Leading Coefficient, denoted by LC τ( f ), is α.
If clear from the context, we omit the subscript τ.

In the following, we assume a term ordering τ fixed on K[X].

Theorem 2.1.20 (Multivariate Division).
Let s ∈ N∗ and let f , g1, . . . , gs ∈ K[X] \ {0}. Then there exist an algorithm that
computes r, q1, . . . , qs ∈ K[X] such that

f = q1g1 + · · ·+ qsgs + r

with the following properties:

(i) LT ( f ) �τ LT (qigi) ∀i ∈ [s].

(ii) None of the terms in Supp (r) belongs to the ideal (LT (g1), . . . , LT (gs)).

The following algorithm computes q1, . . . , qs, r of Theorem 2.1.20. Addi-
tionally, q1, . . . , qs, r from Algorithm 2.1.21 are such that ∀i ∈ [s] and ∀m ∈
Supp (qi) we have

m · LT (gi) /∈ lin{LT (g1), . . . , LT (gi−1)}
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Algorithm 2.1.21 (Division Algorithm).

Input: Term ordering �τ on K[X], f ∈ K[X], g1, . . . , gs ∈ K[X] \ {0}.
Output: r, q1, . . . , qs ∈ K[X] as in Theorem 2.1.20
p← f ; ∀i ∈ [s], qi ← 0; r← 0
repeat

repeat
Find the minimal i ∈ [s] such that LT (gi)|LT (p)

p← p− LM (p)
LM (gi)

· gi

qi ← qi +
LM ( f )
LM (gi)

until @i ∈ [s] such that LT (gi)|LT (p)
p← p− LM (p)
r ← r + LM (p)

until p = 0
return r, q1, . . . , qs

The polynomial r from Algorithm 2.1.21 is called the Normal Remainder of
f with respect to the ordered set G := {g1, . . . , gs} and it will be denoted by
NR G( f ). Notice that q1, . . . , qs, r of Algorithm 2.1.21 depend not only on G
and �τ, but also on the order of the polynomials g1, . . . , gs. We will define
special sets of polynomials G = {g1, . . . , gs} ⊂ K[X] — called Gröbner bases,
see Definition 2.1.27 — such that for every f ∈ K[X], the normal remainder
NR G( f ) does not depend on the order of the polynomials g1, . . . , gs but only
on the ideal (g1, . . . , gs) and the term ordering �τ. The following example
shows how the order of the polynomials in G may affect the output of Algo-
rithm 2.1.21.

Example 2.1.22 (Different Normal Remainders).
Let f , g, h ∈ K[X1, X2], defined as

f := X4
1 g := X2

1 + X2
2 h := X1X2 − 1

The following two expressions are possible outcomes of the division algorithm as pre-
sented in 2.1.20:

f (X) = (X2
1 − X2

2)g(X) + X4
2 if G := {g, h}

f (X) = −(X1X2 + 1)h(X) + X2
1 g(X)− 1 if G = {h, g}

Thus NR {g,h}( f ) = X4
2 and NR {h,g}( f ) = −1.

Definition 2.1.23 (Tail of Polynomial). Let f ∈ K[X]. The polynomial Tail( f ) is
defined as

Tail( f ) := LM ( f )− f

and is referred to as the tail of f .
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The tail of a polynomial is such that

LM ( f ) ≡ Tail( f ) mod f (2.3)

Let f , g1, . . . , gs ∈ K[X]. If a term αt ∈ Supp ( f ) is divisible by LT (gi) for some
i ∈ [s], i.e.,

∃t′ ∈ Td s.t. αt = αLT (gi)t′

we substitute αt with
α

LC (gi)
t′ · Tail(gi) (2.4)

hence we substitute the head of gi with its tail. The resulting polynomial r, with

r := f − αt +
α

LC (gi)
t′ · Tail(gi)

fulfills
f ≡ r mod gi

by (2.3). Moreover, it holds

f = r + αt− α

LC (gi)
t′ · Tail(gi)

= r +
α

LC (gi)
LM (gi)t′ −

α

LC (gi)
t′ · Tail(gi) =

= r +
α

LC (gi)
t′(LM (gi − Tail(gi))) = r +

α

LC (gi)
t′gi

(2.5)

with LT (t′gi) ≺ LT ( f ). Hence the substitution describes a step of the divi-
sion algorithm. In the following we present an algorithm that systematically
applies substitutions as in (2.4), when applicable. The algorithm was named
rewrite rule by Kreuzer and Robbiano, and included in [117] §2.2. It is equiva-
lent to the Division Algorithm 2.1.20, though we will use it when we need to
determine the Normal Remainder and do not need the coefficients q1, . . . , qs.

Algorithm 2.1.24 (Rewrite Rule).

Input: Term ordering �τ on K[X], f , g1, . . . , gs ∈ K[X] \ {0}.
Output: r, q1, . . . , qs ∈ K[X] as in Theorem 2.1.20
∀i ∈ [s], qi ← 0
repeat

if ∃αt ∈ Supp ( f ) such that LT (gi)|t for some i ∈ [s] then
f ← f − αt + Tail(gi)

αt
LC (gi)LT (gi)

qi ← qi +
α

LC (gi)
t′

until None of the terms in Supp ( f ) belongs to (LT (g1), . . . , LT (gs))

r ← f
return r, q1, . . . , qs
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By induction and by (2.5) it follows that the Algorithm 2.1.24 terminates
correctly.

If G := {g1, . . . , gs}, the reduction of f modulo G by means of the rewrite

rule is denoted by f G−→ NR G( f ).

Definition 2.1.25 (Leading Term Ideal). Let I ⊂ K[X] be an ideal. The ideal

LT (I) :=
(

LT ( f ) : f ∈ I
)

is called the Leading Term Ideal.

Theorem 2.1.26. Let I ⊂ K[X] be an ideal, I 6= (0). Then

(i) LT (I) is a monomial ideal.

(ii) There exist g1, . . . , gs ∈ I such that LT (I) =
(
LT (g1), . . . , LT (gs)

)
.

Definition 2.1.27 (Gröbner Basis). Let I ⊂ K[X]. The polynomials f1, . . . , fs form
a Gröbner basis of I if and only if

LT (I) =
(

LT ( f1), . . . , LT ( fs)
)

Proposition 2.1.28. Every ideal I ⊂ K[X] has a Gröbner basis { f1, . . . , fs} ⊂ I.
Moreover, it holds

I =
(

f1, . . . , fs
)

Theorem 2.1.29. Let { f1, . . . , fs} be a Gröbner basis of an ideal I ⊂ K[X] and let
f ∈ K[X]. Consider the division

f = q1 f1 + · · ·+ qs fs + f ∗

as in Theorem 2.1.20. Then f ∗ ∈ K[X] is uniquely determined by f , I and τ, i.e., f ∗

does not depend on the choice of the Gröbner basis .

Theorem 2.1.29 guarantees, for every f ∈ K[X], a canonical representation
of f ∈ K[X]/I as f ∗. In fact,

f = f ∗ in K[X]/I

because
f − f ∗ = q1 f1 + · · ·+ qs fs ∈ I

We call Normal Form the canonical representation f ∗ of f in K[X]/I.

Definition 2.1.30. The polynomial f ∗ as in Theorem 2.1.29 is called Normal Form
of f with respect to I, and it is denoted by NF I( f ).

If G is a Gröbner basis of the ideal I, then NR G( f ) = NF I( f ) for all
f ∈ K[X].
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Corollary 2.1.31. Let G := { f1, . . . , fs} be a Gröbner basis of an ideal I ⊂ K[X] and
let g ∈ K[X]. Then

g ∈ I ⇔ NR G(g) = 0

The following results were shown in [46].

Definition 2.1.32 (S-Polynomial). The S-polynomial of the pair f , g ∈ K[X] is
defined as

Spol ( f , g) =
LT (g)

LC ( f ) gcd(LT ( f ), LT (g))
f − LT ( f )

LC (g) gcd(LT ( f ), LT (g))
g

The S-polynomial of a pair f , g ∈ K[X] is a polynomial combination of f
and g that aims at canceling their leading terms.

Theorem 2.1.33 (Buchberger’s Criterion). Let I = ( f1, . . . , fs) ⊂ K[X]. Then
{ f1, . . . , fs} is a Gröbner basis of I if and only if

NR { f1,..., fs}(Spol ( fi, f j)) = 0 ∀1 ≤ i < j ≤ s

The following algorithm was introduced by Buchberger in [45]. It applies
Theorem 2.1.33 to determine Gröbner bases explicitly.

Algorithm 2.1.34 (Buchberger’s Algorithm).

Input: F = { f1, . . . , fs}, with fi 6= 0, i ∈ [s].
Output: A Gröbner basis G of the ideal I := ( f1, . . . , fs),

G := {g1, . . . , gr} ⊃ F.
G ← F
repeat
G ← G
for Each pair (gi, gj) with gi, gj ∈ G, and gi 6= gj do

r ← NR G(Spol (gi, gj))

if r 6= 0 then
G ← G ∪ {r}

until G = G
return G

The following is a well-known property of Buchberger’s Algorithm.

Remark 2.1.35 (Binomial-friendliness of Buchberger’s Algorithm).
Buchberger’s Algorithm is said to be binomial-friendly, because given binomials
f1, . . . , fs ∈ K[X] as input of Algorithm 2.1.34, the S-polynomials computed in the
procedure are binomials. Hence a binomial ideal has a Gröbner basis composed of bi-
nomials only.

Several improvements on Buchberger’s algorithm can be found in the lit-
erature, for example we cite [72, 82, 86]. A well-known technique to speed up
the algorithm is given by the following proposition.
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Proposition 2.1.36. If f , g ∈ K[X1, . . . , Xd] and LT ( f ), LT (g) are coprime, then

NR { f ,g}(Spol ( f , g)) = 0

Proof. For simplicity reasons, we show the statement for the case LC ( f ) =

LC (g) = 1. As LT ( f ), LT (g) are coprime, then Spol ( f , g) = LT (g) f −LT ( f )g.
We can re-write it as

Spol ( f , g) = LT (g) f − LT ( f )g = LT (g) f − f g + f g− LT ( f )g =

=
(
LT (g)− g

)
f −

(
LT ( f )− f

)
g.

(2.6)

We show now that (2.6) is an expression of division, i.e.,

LT ((LT (g)− g) f ) � LT (Spol ( f , g))

LT ((LT ( f )− f )g) � LT (Spol ( f , g))

meaning 0 = NR { f ,g}(Spol ( f , g)). We set s1 := LT ( f ) and t1 := LT (g),
s2 := LM (LT ( f )− f ) and t2 := LM (LT (g)− g), so that

LM ((LT (g)− g) f ) = t2s1 LM ((LT ( f )− f )g) = s2t1

By contradiction, assume that s2t1 ∈ Supp ((LT (g) − g) f ), hence there exist
t′ ∈ Supp (LT (g) − g) and s′ ∈ Supp ( f ) such that t′s′ = t1s2, and t′ ≺ t1.
It must be then s2 ≺ s′ so s′ = s1. Now t′s1 = t1s2, and since s1 and t1 are
coprime, then t1|t′, contradicting t′ ≺ t1. Hence s2t1 /∈ Supp ((LT (g)− g) f ).
Arguing in a similar way, we get t2s1 /∈ Supp ((LT ( f ) − f )g), which means
that both s1t2 and t1s2 appear in the right-hand side of

Spol ( f , g) = (LT (g)− g) f − (LT ( f )− f )g

so it must be s1t2 � LT (Spol ( f , g)) and t1s2 � LT (Spol ( f , g)), which implies
0 = NR { f ,g}(Spol ( f , g)).

As a consequence of Proposition 2.1.36 we have the following corollary.

Corollary 2.1.37. Let g1, . . . , gs ∈ K[X] be such that gcd(gi, gj) = 1 for all i, j ∈ [s]
with i < j. Then g1, . . . , gs form a Gröbner basis of the ideal they generate with respect
to any term ordering τ defined on K[X].

Proof. Follows directly from Buchberger’s Criterion 2.1.33 and from Proposi-
tion 2.1.36.

Gröbner bases for a fixed term ordering τ are not unique, but allow a
unique representation of f ∈ K[X]/I through the concept of Normal Form,
by Theorem 2.1.29. However, if we require some additional properties on the
Gröbner basis, we obtain a result on uniqueness.

Definition 2.1.38 (Reduced Gröbner Basis). A Gröbner basis { f1, . . . , fs} of an
ideal I ⊂ K[X] is called reduced if the following properties hold:
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2.1 Algebraic Background

(i) LC ( fi) = 1 ∀i ∈ [s].

(ii) The set {LT ( f1), . . . , LT ( fs)} is a minimal set of generators of LT(I)

Theorem 2.1.39. Let I ⊂ K[X] be an ideal and let τ be a term ordering on K[X].
Then there exists a unique reduced Gröbner basis of I with respect to τ (up to permu-
tations of the generators).

2.1.2 Toric Ideals

In this section we introduce toric ideals. They arise in various fields of math-
ematics, such as combinatorics [55, 153], statistics [140, 169] and integer pro-
gramming[119]. Toric ideals will be used in Section 3.1, as a way to express
switching components with respect to k-dimensional X-rays. The following
can be found in [168] §4, and [30].

Let A ∈ Zm×d and let η be the map

η : Nd −→ Zm

v 7−→ Av
(2.7)

Definition 2.1.40 (Toric Ideal).
Let a1, . . . , ad ∈ Zm and let us consider the matrix A = (a1, . . . , ad) ∈ Zm×d.
Consider the polynomial ring K[X1, . . . , Xd] and the ring of Laurent polynomials
K[Y1, . . . , Ym, Y−1

1 , . . . , Y−1
m ] in the variables Y := (Y1, . . . , Ym).

We define the K-algebra homomorphism

ϕ : K[X1, . . . , Xd] −→ K[Y1, . . . , Ym, Y−1
1 , . . . , Y−1

m ]

Xi 7−→ ∏
j∈[m]

Y
aji
j

hence we assign to Xi the term Yai , ai being the i-th column of A. The ideal

I(A) := ker(ϕ) ⊂ K[X1, . . . , Xd]

is called toric ideal associated to the matrix A.

Remark 2.1.41. As observed in [168], I(A) is an ideal, as it is the kernel of a K-
algebra homomorphism. Moreover, I(A) is prime, as the codomain of ϕ is an integral
domain.

Let us define the exponentiations

Exp1 : Nd −→ K[X1, . . . , Xd]

v 7−→ Xv

Exp2 : Zm −→ K[Y1, . . . , Ym, Y−1
1 , . . . , Y−1

m ]

v 7−→ Yv

25



Chapter 2. Background Knowledge

The functions Exp1 and Exp2 are monoid isomorphism, if we restrict the
codomain to the set of terms in K[X] and K[Y, Y−1] respectively. Then the
following diagram commutes

Nd Zm

K[X1, . . . , Xd] K[Y1, . . . , Ym, Y−1
1 , . . . , Y−1

m ]

η

Exp1 Exp2

ϕ

namely ϕ(Exp1(v)) = Exp2(η(v)), ∀v ∈Nd.

Proposition 2.1.42. Let A ∈ Zm×d. The toric ideal I(A) ⊂ K[X] associated to A
is spanned as a K-vector space by the set of binomials

{Xu − Xv | u, v ∈Nd, η(u) = η(v)}

Proof. A binomial Xu − Xv belongs to I(A) if and only if η(u) = η(v), that
is Au = Av. We need to show that every f ∈ I(A) can be written as a lin-
ear combination of binomials of the type Xu − Xv, with η(u) = η(v), and
coefficients in K. Let τ be a term ordering on K[X] and let f ∈ I(A). By
contradiction, f /∈ lin{Xu − Xv | u, v ∈ Nd, η(u) = η(v)}, and we can as-
sume f to be the polynomial in I(A)\lin{Xu − Xv | u, v ∈ Nd, η(u) = η(v)}
with the minimal leading monomial LM ( f ) := αXw with respect to τ. As
f ∈ I(A), it holds f (Ya1 , . . . , Yad) = 0, see Definition 2.1.40. Hence there
exists −αXh ∈ Supp ( f ) such that Aw = Ah and Xh ≺τ Xw. Then also
g := f − αXw + αXh ∈ I(A)\lin{Xu − Xv | u, v ∈ Nd, η(u) = η(v)}, and
LM (g) ≺τ LM ( f ), a contradiction to f being minimal.

Definition 2.1.43. Let v ∈ Zd, we denote by v+ the vector whose entries are

v+i := max{0, vi}

and analogously we denote by v− the vector whose entries are

v−i := max{0,−vi}

for every i ∈ [d]. It holds v+, v− ∈ Nd, v = v+ − v− and (v+i )
T · v−i = 0 for every

i ∈ [d].

Let us now define the map η as follows:

η : Zd −→ Zm

v 7−→ Av
(2.8)

observe η|Nd = η, see 2.7. The following corollary holds.

Corollary 2.1.44. With the above notation,

I(A) =
(
Xv+ − Xv− | v ∈ ker(η)

)
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Proof. By Proposition 2.1.42 it holds

I(A) = lin{Xu − Xv | u, v ∈Nd, η(u) = η(v)}

Let w1, w2 ∈ Nd and let Xw1 − Xw2 ∈ I(A), i.e., η(w1) = η(w2). We define
v+ := w1 and v− := w2, and it follows easily from Aw1 = Aw2

Av+ = Av− ⇔ A(v+ − v−) = Av = 0⇔ v ∈ ker(η)

The other inclusion follows by definition of I(A).

Corollary 2.1.45. For any given term ordering τ on K[X] there exists a finite subset
Gτ ⊂ ker(η), such that the reduced Gröbner basis of I(A) with respect to τ is the set

Gτ = {Xv+ − Xv− | v ∈ Gτ}.

Proof. From Corollary 2.1.44 it holds

I(A) =
(
Xv+ − Xv− | v ∈ ker(η)

)
hence by Hilbert’s Basis Theorem we can select a finite subset U ⊂ ker(η) such
that

I(A) =
(
Xv+ − Xv− | v ∈ U

)
When applying the Buchberger algorithm on the set {Xv+ − Xv− | v ∈ U}, we
compute S-polynomials between binomials, which will be as well binomials in
ker(η). The operations needed to reduce the Gröbner basis also preserve the
binomials.

Remark 2.1.46. By Corollary 2.1.45 we know that the toric ideal has a reduced Gröb-
ner basis Gτ. The elements of Gτ are pure binomials. In fact, suppose Xv+ −Xv− ∈ Gτ,
with gcd(Xv+ , Xv−) = Xu. Hence

Xv+ − Xv− =: Xu(Xw+ − Xw−)

which contradicts property (ii) of the definition of reduced Gröbner Bases 2.1.38, i.e.,
LT (Xw+ − Xw−) properly divides LT (Xv+ − Xv−), contradicting the minimality of
the generators in Gτ.

One may ask how the generators of I(A) shall be computed. A first ap-
proach could be to determine ker(η), which is a lattice whose generators can be
efficiently computed via the Hermite Normal Form, see [161], chapters 4− 5. We
see in the following how the set of generators of the lattice {x ∈ Zd | Ax = 0}
relate to the set of generators of I(A) in 2.1.45. We first define the lattice ideal.

Definition 2.1.47 (Lattice Ideal). Let A ∈ Zm×d and let η be the Z-linear map
η : Zd → Zm defined as η(x) = Ax. Let V = {v1, . . . , vr} ⊂ ker(η). Then the
ideal IV := (Xv+i − Xv−i : i ∈ [r]) ⊂ K[X] is called the lattice ideal associated to V.
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Clearly, IV ⊂ I(A), for all V ⊂ ker(η). The following theorem was shown
in [168].

Theorem 2.1.48. With the notation above, and t := ∏i∈[d] Xi, the following condi-
tions are equivalent:

(i) I(A) = IV : t∞

(ii) V is a set of generators of the lattice ker(η).

The following algorithm applies Theorem 2.1.48 to compute the toric ideal,
see [118].

Algorithm 2.1.49 (Computation of Toric Ideal).

Input: A ∈ Zm×d

Output: Toric ideal I(A)

Compute set of generators V := {v1, . . . , vr} of ker(η)
IV ← (Xv+i − Xv−i : i ∈ [r]) ⊂ Z[X]
I ← IV : (∏d

i=1 Xi)
∞

return I

A set of generators of ker(η) can be computed efficiently by means of Her-
mite Normal Form methods, see [161], chapters 4− 5. Bigatti, Scala and Rob-
biano [30] investigated methods to improve the efficiency of algorithms that
compute the saturation of ideals.
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Chapter 3

Switching Components:
Algebraic Interpretation and the
Hunt for Small Sizes

In this chapter we investigate the relation between discrete tomography and
algebra, extending results from [175] and [94]. In particular, we obtain a
complete characterization of switching components in Zd with respect to k-
dimensional subspaces. Furthermore, we model switching components with
respect to finitely-many directions contained in a given grid as the solutions to
a polynomial Diophantine equation. Switching components can be also inter-
preted as the union of projections of the vertices of cubes, a consequence of a
result in [94].

A crucial problem in discrete tomography is determining the minimum
size of a switching component with respect to finitely-many directions, as was
addressed in [16, 127]. We present a class of switching components of expo-
nential size that yield polynomial-size switching components by considering
multiple copies of them. This follows from a non-constructive argumentation
similar to the one provided in [16].

A well-known construction provides switching components with respect
to m directions and of size 2m−1, for every m ∈ N∗, see Algorithm 3.4.5. We
give two constructions that yield small switching components in sections 3.8
and 3.9: though the number of points is still exponential in m, we improve the
known constructive bounds by presenting a procedure that generates switch-
ing components of size in 2O(

√
m log(

√
m)).

3.1 Algebraic Interpretation of Switching Components

Let B, W ⊂ F d
N be a pair of multisets of Zd. We want to encode the pair

(B, W) as a polynomial in Z[X1, . . . , Xd], in a way that the property of being a
switching component with respect to a given subspace S ∈ Ld

k is reflected by
a corresponding property of the polynomial. As every switching component
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is invariant under translations by Proposition 1.2.8, we can assume that the
points of B and W have non-negative entries, hence B, W ∈ F d

N,N.

Definition 3.1.1 (Encoding of Point Multisets as Polynomials).
Let B, W ∈ F d

N,N be disjoint multisets. We define the map

θ : F d
N,N ×F d

N,N −→ Z[X1, . . . , Xd](
B, W

)
7−→ ∑

b∈B
Xb − ∑

w∈W
Xw (3.1)

On the other hand, a polynomial

f (X) = ∑
i1+···+id≤deg( f )

c(i1,...,id)X
(i1,...,id) ∈ Z[X1, . . . , Xd]

is associated with a pair of lattice multisets (B f , W f ) via the map

ρ : Z[X]→ F d
N,N ×F d

N,N

in the following way:
ρ( f ) =

(
B f , W f

)
B f :=

⋃
i1+···+id≤deg( f )

c(i1,...,id)
>0

{{c(i1,...,id)-many copies of (i1, . . . , id)}} (3.2)

W f :=
⋃

i1+···+id≤deg( f )
c(i1,...,id)

<0

{{−c(i1,...,id)-many copies of (i1, . . . , id)}}

where we count the points with their multiplicity |c(i1,...,id)|. We will refer to the poly-
nomial associated to a pair of multisets of black and white points in the sense of (3.1)
or to the multisets of points associated to a polynomial as in (3.2).

It is easy to show that the following proposition holds true.

Proposition 3.1.2. If we restrict the domain F d
N,N×F d

N,N of θ to disjoint multisets
it holds θ−1 = ρ.

In [95], expanding their work in [94], Hajdu and Tijdeman showed the fol-
lowing theorem:

Theorem 3.1.3 (Hajdu, Tijdeman [95]). Let X = (X1, . . . , Xd) and let v ∈ Zd

be a reduced direction. Two disjoint multisets B = {{b1, . . . , bn}} ∈ F d
N,N and

W = {{w1, . . . , wn}} ∈ F d
N,N are tomographically equivalent with respect to v, if and

only if the polynomial

θ(B, W) = ∑
b∈B

Xb − ∑
w∈W

Xw ∈ Z[X]

is divisible by the binomial Xv+ − Xv− .
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One implication of Theorem 3.1.3 holds also if we do not assume v to be a
reduced vector, as we show in theorem 3.1.5. We first show a lemma.

Lemma 3.1.4. Let v ∈ Zd and let v+, v− ∈ Nd as in Definition 2.1.43. Then for all
λ ∈N, the binomial Xλv+ − Xλv− is divisible by Xv+ − Xv− .

Proof. We show the lemma by induction on λ. If λ ∈ {0, 1}, the claim is easily
true. So let λ ≥ 2 and let the claim hold for λ− 1. Then we have

Xλv+ − Xλv− = X(λ−1)v+(Xv+ − Xv−)+ Xv−(X(λ−1)v+ − X(λ−1)v−),
which implies the assertion by induction hypothesis.

Theorem 3.1.5. Let X = (X1, . . . , Xd) and let v ∈ Zd. Consider two disjoint multi-
sets B, W ∈ F d

N,N and the correspondent polynomial

θ(B, W) = ∑
b∈B

Xb − ∑
w∈W

Xw ∈ Z[X].

If θ(B, W) is divisible by the binomial Xv+ − Xv− , then (B, W) is a switching compo-
nent with respect to the direction v.

Proof. If θ(B, W) is a multiple of Xv+ −Xv− , then there exists p(X) ∈ Z[X] such
that

θ(B, W) = p(X)
(
Xv+ − Xv−).

For every αXa ∈ Supp (p), the terms αXa+v+ and αXa+v− appear (before the
possible cancellations) in the expansion of θ(B, W) and, without loss of gen-
erality, they are such that ∪j∈[|α|]{a + v+} ⊂ B and ∪j∈[|α|]{a + v−} ⊂ W. As
a + v+ − (a + v−) = v+ − v− = v it follows that |α| copies of the black point
a+ v+ and |α| copies of the white point a+ v− are on the same line in direction
v, which rewrites as ∪j∈[|α|]{a + v+} and ∪j∈[|α|]{a + v−} are tomographically
equivalent with respect to v. Since this holds for every αXa ∈ Supp (p), we can
define multisets B, W as

B :=
⋃

αXa∈Supp (p)

∪j∈[|α|]{a + v+} W :=
⋃

αXa∈Supp (p)

∪j∈[|α|]{a + v−}

and (B, W) are tomographically equivalent with respect to v. As θ(B, W) =

p(X)
(
Xv+ − Xv−), it holds

B = B \
(

B ∩W
)

W = W \
(

B ∩W
)

and the claim follows.

Concerning the other implication in Theorem 3.1.3, the following result
holds.
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Theorem 3.1.6. Let v ∈ Zd, and let B := {{b1, . . . , bn}} and W := {{w1, . . . , wn}} be
disjoint. Suppose there exists a bijection σ : B → W such that for every i ∈ [n] there
exists λi ∈ Z such that

bi − σ(bi) = λiv.

Then the polynomial

θ(B, W) = ∑
b∈B

Xb − ∑
w∈W

Xw ∈ Z[X].

is divisible by the binomial Xv+ − Xv− .

Proof. First we notice that if there exists a bijection σ : B → W such that for
every i ∈ [n] there exists λi ∈ Z such that

bi − σ(bi) = λiv (3.3)

then (B, W) is a switching component with respect to v, by 1.2.4.
We write v ∈ Zd as v+ − v−, with v+, v− ∈ Nd, and (v+)Tv− = 0, see Defini-
tion 2.1.43, and write (3.3) as

bi − σ(bi) = λi(v+ − v−) ⇐⇒
{

bi − λiv+ = σ(bi)− λiv− if λi > 0

bi + λiv− = σ(bi) + λiv+ if λi < 0
(3.4)

Notice that if λi > 0 then bi− λiv+ is a non-negative vector: if by contradiction
an entry — that we can assume, without loss of generality, to be the first one —
of bi − λiv+ were negative, then by bi − λiv+ = σ(bi)− λiv− it would follow

bi1 − λiv+1 = σ(bi)1 − λiv−1 < 0

Since (v+1 )
Tv−1 = 0, the above expression rewrites as

bi1 = σ(bi)1 − λiv−1 < 0

or
bi1 − λiv+1 = σ(bi)1 < 0

which contradicts B, W ⊂ Nd. Arguing analogously, we have bi + λiv− ≥ 0 if
λi < 0.

We write θ(B, W) reordering its terms with respect to σ, and subsequently
split the summation into two parts, one corresponding to λi > 0, the other to
λi < 0:

θ(B, W) = ∑
i∈[n]

(
Xbi − Xσ(bi)

)
= ∑

i∈[n]
λi>0

(
Xbi − Xσ(bi)

)
+ ∑

i∈[n]
λi<0

(
Xbi − Xσ(bi)

)
(3.5)

Notice that λi 6= 0 for all i ∈ [n] as otherwise B and W would not be disjoint.
It follows from equation (3.3) and (3.5)

θ(B, W) = ∑
i∈[n]
λi>0

(
Xσ(bi)+λiv − Xσ(bi)

)
+ ∑

i∈[n]
λi<0

(
Xbi − Xbi−λiv

)
. (3.6)
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Substituting from (3.4) we obtain

θ(B, W) = ∑
i∈[n]
λi>0

(
Xσ(bi)−λiv−

(
Xλiv+ −Xλiv−

))
+ ∑

i∈[n]
λi<0

(
Xbi+λiv−

(
X−λiv− −X−λiv+

))
,

and by Lemma 3.1.4 we conclude that Xv+ − Xv− divides θ(B, W).

Next we extend 3.1.3 to multisets B, W ∈ F d
N,N that are tomographically

equivalent with respect to k-dimensional subspaces, 1 ≤ k ≤ d− 1. In the fol-
lowing theorem we show that the toric ideal I(A) describes — via the encod-
ing presented in 3.1.1 — the multisets B, W ∈ F d

N,N that are tomographically
equivalent with respect to subspaces parallel to {x ∈ Rd | Ax = 0}. Our result
is a generalization of proposition (4.1.2) in [175], where the focus is on posi-
tive matrices A ∈ Nk×d and the problem of deciding if, given b ∈ Nk, there
exists a unique x ∈ Nd such that Ax = b. The result in [175] is a consequence
of [168] §4. As we will explain later, Theorem 3.1.3 is also related to the men-
tioned result from [175], and the connection has — to our knowledge — never
been remarked. Theorem 3.1.7 will unify both results and provide a complete
algebraic characterization of switching components in Zd.

Theorem 3.1.7. Let B, W ∈ F d
N,N be two disjoint multisets of size n, and let

A ∈ Zk×d, rank (A) = k. Let Sk be the linear subspace of dimension d− k defined as

Sk := {x ∈ Rd : Ax = 0}.

Then B and W are tomographically equivalent with respect to Sk if and only if
θ(B, W) ∈ I(A), i.e., the toric ideal defined by the matrix A.

Proof. If B and W are tomographically equivalent w.r.t. Sk then there exists a
bijective function σ : B → W such that σ(b) = w if and only if A(b− w) = 0.
Hence the multisets of vectors of Zk below are equal:

{{Ab : b ∈ B}} = {{Aw : w ∈W}}.

We re-order the polynomial θ(B, W) ∈ Z[X] as

θ(B, W) = ∑
b∈B

(
Xb − Xσ(b)

)
= ∑

i∈[n]
Xhi
(

Xbi−hi − Xσ(bi)−hi
)

with Xhi := gcd(Xbi , Xσ(bi)). For every i ∈ [n], the vectors vi := bi − σ(bi) are
such that v+i = bi − hi and v−i = σ(bi)− hi, and Avi = 0.
Hence θ(B, W) ∈ I(A) ∩Z[X].

On the other hand, let Gτ := {v1, . . . , vr} ⊂ ker(η) as in Corollary 2.1.45,
and let

θ(B, W) ∈ I(A) =
(
Xv+i − Xv−i : i ∈ [r]

)
.

Hence there exist p1(X), . . . , pr(X) ∈ K[X], such that

θ(B, W) = ∑
i∈[r]

pi(X)(Xv+i − Xv−i ).
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The polynomials p1(X), . . . , pr(X) can be found applying the multivariate di-
vision Algorithm 2.1.21 to

f := θ(B, W) and {g1, . . . , gs} := {Xv+i − Xv−i : i ∈ [r]}.

As the generators of I(A) have leading coefficient equal to ±1, then, indepen-
dently of the chosen term ordering, the quotients returned by Algorithm 2.1.21
have integer coefficients. Hence p1(X), . . . , pr(X) ∈ Z[X]. For every i ∈ [r], the
polynomial pi(X)(Xv+i − Xv−i ) corresponds to a switching component w.r.t. Sk.
In fact, if αXe is a term in gi(X), then the 2|α| points corresponding to

αXe(Xv+i − Xv−i ) = αXe+v+i − αXe+v−i ,

consisting of |α| white points and |α| black points, are such that

A(s + v+i ) = A(s + v−i )

as a consequence of Avi = 0.

The following remark explains why Theorem 3.1.7 generalizes the results
from Hajdu and Tijdeman to switching components with respect to subspaces
of any dimension.

Remark 3.1.8. Let A ∈ Z(d−1)×d with rank (A) = d − 1, and consider the lin-
ear subspace Sd−1 := {x ∈ Rd : Ax = 0}. Then Sk has dimension 1, and the lattice
ker(η) as in Definition 2.1.47 is generated by a single reduced vector v. It follows
from Proposition 2.1.48 that the ideal I(A) is equal to (Xv+ − Xv−), as

(Xv+ − Xv−) : (t)∞ = (Xv+ − Xv−)

Then Theorem 3.1.7 generalizes Theorem 3.1.3.

Theorem 3.1.7 gives a complete characterization of switching components
with respect to a given lattice subspace. Notice that {0, 1}-switching compo-
nents correspond via 3.1.1 to the polynomials in f (X) ∈ I(A) that fulfill

ht( f ) = 1.

The following result is a consequence of Theorem 3.1.7.

Theorem 3.1.9. Let S be the k-dimensional subspace S = {x ∈ Rd|Ax = 0}, defined
by a full-rank matrix A ∈ Z(d−k)×d. Every switching component with respect to S is
a union of line-switching components whose directions are contained in S.

Proof. It follows from Theorem 3.1.7 that two disjoint multisets B, W ∈ F d
N,N

are tomographically equivalent with respect to S if and only if the polynomial
θ(B, W) belongs to the toric ideal I(A) defined by A, which can be written as

I(A) =
(
Xv+i − Xv−i : i ∈ [r]

)
, (3.7)

34



3.2 Algebraic Interpretation of Switching Components

where r ∈ N and Gτ := {v1, . . . , vr} ⊂ ker(η) is a reduced Gröbner basis
of I(A), as in Corollary 2.1.45. The vectors v1, . . . , vr belong to ker(η), see
(2.8), which means that the directions lin{vi} are contained in S, for every
i ∈ [r]. Moreover, every polynomial in I(A) is a polynomial combination of
the generators Xv+i − Xv−i , hence there exist α1, . . . , αr ∈ Z and q1, . . . , qr ∈ Nd

such that

θ(B, W) =
r

∑
i=1

αiXqi
(
Xv+i − Xv−i

)
.

By Theorem 3.1.3, for every i ∈ [r], the polynomial αiXqi
(
Xv+i − Xv−i

)
corre-

sponds to a switching component with respect to the direction vi, and this
concludes the proof.

Example 3.1.10. As an example of what is shown in Theorem 3.1.9, consider the
subsets of R3 from 1.2.9

B := {b1, b2} = {(0, 0, 0)T, (1, 1, 0)T}

W := {w1, w2} = {(0, 1, 1)T, (1, 0, 1)T}.

They are tomographically equivalent with respect to the hyperplanes

S1 := {x ∈ R3 : (1, 0, 0) · x = 0} S2 := {x ∈ R3 : (0, 1, 0) · x = 0}

The corresponding toric ideals in Z[X1, X2, X3] are

I1 := I
(
(1, 0, 0)

)
=
(

X2 − 1, X3 − 1
)

I2 := I
(
(0, 1, 0)

)
=
(

X1 − 1, X3 − 1
)

Furthermore,
θ(B, W) = 1 + X1X2 − X2X3 − X1X3.

As (B, W) is a switching component with respect to S1 and S2, from Theorem 3.1.7 it
follows θ(B, W) ∈ I1 ∩ I2, specifically

θ(B, W) = (X1 − X3) · (X2 − 1) + (−X1 − 1) · (X3 − 1) ∈ I1

θ(B, W) = (X2 − X3) · (X1 − 1) + (−X2 − 1) · (X3 − 1) ∈ I2

so that (B, W), as switching component with respect to S1, can be expressed as the
union of the switching components with respect to the direction (0, 1, 0)T

ρ
(
(X1 − X3) · (X2 − 1)

)
=
(
{(1, 1, 0)T, (0, 0, 1)T}, {(0, 1, 1)T, (1, 0, 0)T}

)
with the switching component with respect to the direction (0, 0, 1)T

ρ
(
(−X1 − 1) · (X3 − 1)

)
=
(
{(1, 0, 0)T, (0, 0, 0)T}, {(1, 0, 1)T, (0, 0, 1)T}

)
where ρ is as defined in 3.1.1. The same argument holds analogously for S2.
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3.2 Switching Components as Solutions of a Diophan-
tine Equation

In this section we show that the question whether there exists a switching
component of size n in the integer lattice can be formulated as a system of
Diophantine polynomial equations. Observe that as every system of finitely
many equations 

p1(X) = 0
...

pr(X) = 0

is equivalent to the single equation given by

∑
i∈[r]

(
pi(X)

)2
= 0,

we will then obtain a representation of switching components as solutions of
a single Diophantine polynomial equation. Let q, r ∈ N∗ and let S ⊂ Nq. A
Diophantine representation of S is a polynomial with integer coefficients p in
the variables X = (X1, . . . , Xr) and parameters a ∈ Nq such that p(X, a) = 0
admits an integer solution if and only if a ∈ S. For example, a Diophantine
representation of the perfect squares is given by the univariate polynomial
X2 − a.

The problem of finding an algorithm that decides if a given Diophantine
polynomial equation admits a solution in the integers is known as Hilbert’s
tenth problem [105]. It was shown to be undecidable by Matiyasevich [125] in
1970, by showing that every listable set, i.e., a set whose elements can be listed
in some order, possibly with repetitions, admits a Diophantine representation.
The result is also referred to as DPRM-theorem, after Davis, Putnam, Robinson
and Matiyasevich, whose contributions [59, 61, 155] played a major role in the
development of the proof. It was shown [51, 114, 157] the existence of a set of
natural numbers S, hence a listable set, for which the membership problem
is undecidable, i.e., for which no algorithm exists that determines, for every
y ∈ N, if y ∈ S or not. This lead to conclude that the Hilbert’s tenth problem
is undecidable. For a survey on undecidable problems, see for example [146].
For a survey of the results that lead to the negative answer to Hilbert’s tenth
problem, see [60, 126].

Let n, m ∈N∗, B := {b1, . . . , bn}, W := {w1, . . . , wn}, S := {s1, . . . , sm}. The
sets B, W, and S contain variables of the system that encodes the switching
component (B for black, W for white points) and the set of directions. In the
following, we restrict to the case d = 2 for simplicity.
For i ∈ [m], let

si =: (λi,1, λi,2)
T, ti =: (λi,2,−λi,1)

T.

Then, clearly, sT
i ti = 0. Further, for j ∈ [n], let

bj =: (β j,1, β j,2)
T, wj =: (ωj,1, ωj,2)

T.
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Next, we introduce variables xp,q,i to encode, for every i ∈ [m], a permutation
that assigns to every point of B a unique point of W on a line in direction si.
Hence we obtain for each i ∈ [m] the constraints

∑n
p=1 xp,q,i = 1 (q ∈ [n])

∑n
q=1 xp,q,i = 1 (p ∈ [n])

xp,q,i(1− xp,q,i) = 0 (p, q ∈ [n]).
(3.8)

Using these variables, we can now encode the X-ray constraints by the system

tT
i bp = ∑n

q=1 xp,q,itT
i wq (p ∈ [n]). (3.9)

Every integer solution of the system given by (3.8) and (3.9) will produce two
sets B and W which have the same X-rays in the given directions.

Note that the solvability of the system over the integers is equivalent to
the solvability over the rationals. Hence the condition that the sets should not
be equal can be encoded by applying an affine transformation to require that
b1 = 0, s1 = u1 and w1 = u1, where u1 is the first unit vector. By cancellation
of points in B ∩W, if necessary, we can convert any solution of this system to
a N-switching component of size at most n. Note that this formulation does
neither restrict the sizes of the coordinates of the directions nor those of the
points of B and W.

3.2.1 Enforcing Distinct Points in B and W in a Fixed Grid

Let l ∈ N∗ and suppose we want to find a switching component contained in
the grid [l]0 × [l]0. Let us define the univariate polynomial

f (X) :=
l

∏
i=0

(X− i) ∈ Z[X].

As it turns out, f can be used to encode, in a certain sense, a requirement
of the form “ 6=”.

Lemma 3.2.1.
Let l ∈ N∗ and let f (X) := ∏l

i=0(X − i) ∈ Z[X] be as before. The following holds
true.

(i) f has l + 1 distinct roots.

(ii) The polynomial f (X) − f (Y) = ∏l
i=0(X − i) −∏l

i=0(Y − i) in Z[X, Y] is
divisible by X−Y i.e.,

h(X, Y) :=
f (X)− f (Y)

X−Y
∈ Z[X, Y].

(iii) For all i, j ∈ [l]0 we have

h(i, j) = 0 ⇐⇒ i 6= j.
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Proof. (i) This is obvious.

(ii) We just expand f into

f (X) = α0X + · · ·+ αlXl+1

and observe that

f (X)− f (Y) = α0(X−Y) + α1(X2 −Y2) + . . . αl(Xl+1 −Yl+1)

and

Xi −Yi = (X−Y)
i−1

∑
j=0

X jYi−j−1 (
i ∈ [l + 1]

)
.

(iii) From the proof of (ii) we have

h(X, Y) =
f (X)− f (Y)

X−Y
= α0 + α1(X + Y) + · · ·+ αl

l

∑
j=0

X jYl−j.

Hence, for i ∈ {0, . . . , l}, we have

h(i, i) = α0 + 2α1i + · · ·+ (l + 1)αlil = f ′(i)

where f ′(X) is the formal derivative of f . Since f does not have multiple
roots, f and f ′ do not share a common root, whence f ′(i) 6= 0. Further,
for i, j ∈ [l]0 with i 6= j we obtain

h(i, j) =
f (i)− f (j)

i− j
=

0− 0
i− j

= 0,

which completes the proof.

Now, for j1, j2 ∈ [n], we have,

bj1 6= wj2 ⇐⇒ β j1,1 6= ωj2,1 ∨ β j1,2 6= ωj2,2.

Hence we can encode the disjointness condition by amending the system in
(3.8) by the additional constraints

f (β j1,1) = f (β j1,2) = f (ωj2,1) = f (ωj2,2) = 0
(

j1, j2 ∈ [n]
)

h(β j1,1, ωj2,1) · h(β j1,2, ωj2,2) = 0
(

j1, j2 ∈ [n]
)
.

We can use the same approach to guarantee that none of the points in B nor in
W is repeated. All that needs to be done is to add the constraints

h(β j1,1, β j2,1) · h(β j1,2, β j2,2) = 0
(

j1, j2 ∈ [n] ∧ j1 6= j2
)

h(ωj1,1, ωj2,1) · h(ωj1,2, ωj2,2) = 0
(

j1, j2 ∈ [n] ∧ j1 6= j2
)
.

One of the first approaches toward modeling solutions to combinatoric
problems as solutions to polynomial systems was presented in [5] and later
expanded in [120]. The polynomial h of Lemma 3.2.1 was used in [5] in a
model of the problem of 3-coloring of a graph, to enforce two adjacent nodes
of a graph to be colored differently.
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3.2.2 Bounding n and l

The formulations in (3.8) and Section 3.2.1 for the existence of switching com-
ponents with respect to m directions both depend on the parameters n and the
latter also on l i.e., the size of the switching component and the size of the grid
that contains the sets B and W. Of course, since we are interested in small
switching components and there exist switching components in Z2 of size in
(m3+ε) for every ε, as shown in [16], we may assume that

n ≤ (m3+ε).

The vectors
si := (1, i)T (

i ∈ [m]
)

lead to a switching component in {0, . . . , m} ×
{

0, . . . , m(m−1)
2

}
, as we will see

in more details in Section 3.6.1.
Hence, in principle, we can solve O(m3+ε)-many polynomial systems for a
fixed l to obtain the smallest n for which there exists a switching component for
m directions in the grid [l]0 × [l]0. It is not clear how to determine bounds on
l. It may be possible that the smallest switching component involve directions
and points with large coordinates.
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3.3 Switching Components as Cube Projections

From Theorem 3.1.7 it follows that analyzing the switching components with
respect to given subspaces is equivalent to study the elements of a certain toric
ideal. We now focus on switching components with respect to 1-dimensional
subspaces or, shortly, with respect to directions, as in Theorem 3.1.3. This is
the classic setting in discrete tomography.

We now define the concept of pure product switching component or switching
element.

Definition 3.3.1 (Pure Product Switching Component or Switching Element ).
Let d, m ∈ N∗, X := (X1, . . . , Xd) and let S := {s1, . . . , sm} ⊂ Zd be a set of pair-
wise linearly independent directions. We call switching element or pure product
switching component the switching component associated via 3.1.1 to the polyno-
mial fS(X) ∈ Z[X] defined as

fS(X) :=
m

∏
i=1

(
Xs+i − Xs−i

)
(3.10)

The following theorem was showed by Hajdu and Tijdemann [94]. It guar-
antees the possibility to express every switching component with respect to
directions in a set S as the union of multiple copies of translations of switching
elements ρ( fS).

Theorem 3.3.2 (Hajdu, Tijdeman [94]). Let t1, . . . , td ∈N, and let

S = {si ∈ Zd, i ∈ [m]}

be a set of directions si = (si1, . . . , sid)
T such that ∑m

i=1 |sij| < tj for all j ∈ [d]. Let

V := {v ∈Nd | vj < tj −
m

∑
i=1
|sij| ∀j ∈ [d]}. (3.11)

Let X = (X1, X2, . . . , Xd) and let fS(X) ∈ Z[X] be the polynomial

fS(X) =
m

∏
i=1

(Xs+i − Xs−i ). (3.12)

Then the polynomial associated to any switching component with respect to the di-
rections in S and contained in the grid [0, t1] × [0, t2] × . . . [0, td] can be uniquely
written as

fS(X) · ∑
v∈V

cvXv (3.13)

with cv ∈ Z, and every such polynomial corresponds to a switching component.

The condition on the grid in Theorem 3.3.2 is given to enforce the existence
of the expression in (3.13). We may drop the condition on the entries of the
vectors in V given in (3.11) and simply construct, for a given S, a large enough
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grid so that the condition ∑m
i=1 |sij| < tj is fulfilled. Of course the uniqueness of

the representation in (3.13) is not lost. The authors considered a more general
setting than N-switching components, showing the result for switching com-
ponents weighted over an integral domain R such that the polynomial ring
R[X1, X2] is a unique factorization domain. As the following example shows,
an analogous of theorem 3.3.2 for {0, 1}-switching components is, in general,
not true, namely {0, 1}-switching components cannot always be obtained as
union of translations of {0, 1}-switching elements.

Example 3.3.3. Theorem 3.3.2 ensures that every N-switching component with re-
spect to S is the union of copies of translations of the N-switching element associated
with fS. A similar statement does not hold for {0, 1}- switching components, for
example consider the set of directions

S :=
{(1

0

)
,
(

1
1

)
,
(

1
−1

)
,
(

1
−2

)}
the corresponding switching element in Z[X1, X2] is

fS :=∏
s∈S

(
Xs+ − Xs−) = (X1 − 1)(X1X2 − 1)(X1 − X2)(X1 − X2

2) =

=X4
1X2 − X3

1X3
2 − X3

1X2
2 − X3

1X2 − X3
1 + X2

1X4
2 + X2

1X3
2 + 2X2

1X2
2 + X2

1X2+

X2
1 − X1X4

2 − X1X3
2 − X1X2

2 − X1X2 + X3
2

and fS corresponds to a N- switching component, as the monomial 2X2
1X2

2 ∈ Supp ( fS)

has coefficient 2.
The polynomial (X1 + 1) fS(X), which is equal to

X5
1X2−X4

1X3
2−X4

1X2
2−X4

1 +X3
1X4

2 +X3
1X2

2 +X2
1X2

2 +X2
1−X1X4

2−X1X2
2−X1X2 +X3

2 ,

corresponds via ρ, see 3.1.1, to a {0, 1}- switching component with respect to the

Figure 3.1: The switching component corresponding to fS of 3.3.3. The bigger
black point in position (2, 2) has weight 2.

directions in S. It is the union of the N-switching components which are translation
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of switching elements and correspond to X1 fS and fS (after deletion of the points
appearing in both of the resulting multisets B and W). Clearly, X1 fS(X) does not
correspond to a {0, 1}- switching component, nor does any polynomial of the type
m fS(X) where m ∈ Z[X1, X2] is a monomial. Hence a {0, 1}-version of Theorem
3.3.2 does not hold. Note that since Z[X1, X2] is a unique factorization domain, then
(X1 + 1) fS(X) is the unique way (up to permutations of the factors) of expressing
the polynomial corresponding to the switching component in figure 3.2 as product of
irreducible polynomials.

Figure 3.2: The switching component corresponding to (X1 + 1) fS of 3.3.3.

Notice that it does not seem practicable to generalize Theorem 3.3.2 using
the characterization of switching components with respect to k-dimensional
subspaces given in Theorem 3.1.7: in fact, if A1, . . . , Am are the matrices defin-
ing subspaces S1, . . . , Sm, then by Theorem 3.1.7 a switching component with
respect to subspaces S1, . . . , Sm corresponds via 3.1.1 to an element g(X) ∈ Z[X]
in the intersection of toric ideals

m⋂
i=1

I(Ai). (3.14)

However, the ideal in (3.14) does not have, in general, an easy representation
like the one existing for the case of line switching components, where the ideals
I(Ai) are principal, and their intersection is furthermore principal, see 3.1.8.
There are cases for which it is easy to compute the intersection of toric ideals:
consider again the example from 3.1.10. We need to intersect the ideals I1 and
I2, with

I1 =
(

X2 − 1, X3 − 1
)

I2 =
(

X1 − 1, X3 − 1
)

.

All the elements of I1 are of the type p1(X)(X2 − 1) + p2(X)(X3 − 1), with
p1(X), p2(X) ∈ K[X], and since

NR {X3−1,X1−1}(p1(X)(X2 − 1) + p2(X)(X3 − 1)) = NR {X1−1}(p1(X)(X2 − 1)),

we have

p1(X)(X2 − 1) + p2(X)(X3 − 1) ∈ I2 ⇐⇒ p1(X)(X2 − 1) ∈
(
X1 − 1

)
(3.15)
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because the generators of I2 form a Gröbner basis (with respect to any term
ordering). Equation (3.15) is equivalent to p1(X) ∈

(
X1 − 1

)
, from which it

follows that the intersection of the toric ideals I1 and I2 is

I1 ∩ I2 =
(
X3 − 1, (X1 − 1)(X2 − 1)

)
The situation from Example 3.1.10 is special because the generators of the

ideals are very simple, the element X3 − 1 appears in both ideals, and the
other generators are involving different variables. A general formula that com-
putes the intersection of ideals requires computing a so-called elimination ideal,
see [56], §4. A way to produce a subclass of switching components with re-
spect to subspaces S1, . . . Sm is considering the elements of the product ideal
I(A1) · . . . · I(Am). As observed in 2.1.2, we have

I(A1) · . . . · I(Am) ⊂
⋂

i∈[m]

I(Ai)

Let ri ∈N for all i ∈ [m] and let us denote by fi1, . . . , firi ∈ Z[X] the generators
of I(Ai) as described in 2.1.45. We have

I(A1) · . . . · I(Am) = ∑
(j1,...,jm)∈[r1]×···×[rm]

(
f1j1 · . . . · fmjm

)
. (3.16)

Every polynomial of the ideal in (3.16) belongs to I(Ai) for every i ∈ [m],
hence it corresponds, via 3.1.1, to a switching component with respect to the
subspaces S1, . . . , Sm.

3.3.1 Switching Components as Union of Zonotopes

The result from Hajdu and Tijdeman in 3.3.2 offers another interpretation, that
relates switching components with zonotopes. We recall the definition of zono-
tope and of Newton polytope.

Definition 3.3.4 (Zonotope). Let n ∈ N∗ and let ai, bi ∈ Rd for all i ∈ [n]. The
Minkowski sum of the n segments conv{ai, bi}, i = 1, . . . , n is called zonotope.

Theorem 3.3.2 shows that every switching component with respect to a set
of directions S := {s1, . . . , sm} is a union of translations of the vertices of 2-
colored zonotopes, i.e.,

ZS := ∑
i∈[m]

{0, 1}si =
{
(s1, . . . , sm)c : c ∈ {0, 1}m} (3.17)

where (s1, . . . , sm) is a matrix in Zd×m, and every point (s1, . . . , sm)c for which
‖c‖1 is an even number is colored black, and every point (s1, . . . , sm)c for which
‖c‖1 is an odd number is colored white, resulting in a partition of ZS into two
multisets Z b

S and Zw
S . Every time there exist I, J ⊂ [m], respectively even and

odd, such that
∑
i∈I

si = ∑
j∈J

sj
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we delete the points ∑i∈I si and ∑j∈J sj respectively from Z b
S and Zw

S . This
construction leads to the switching component ρ( fS) associated via 3.1.1 to fS.
Notice that in 3.1.1 we have set the terms in fS that have positive coefficients
to be encoded as black points, while this choice matches the colors given to ZS

only if m is even. For example, let us consider the switching component from
Example 1.2.7. The list of directions is

S := {(1, 0)T, (0, 1)T, (1, 1)T}.

The polynomial fS is

fS = X2
1X2

2 − X2
1X2 − X1X2

2 + X1 + X2 − 1.

The (multi)set of black points corresponds to the combinations with coeffi-
cients

{(0, 0, 0)T, (1, 1, 0)T, (1, 0, 1)T, (0, 1, 1)T},

and analogously the (multi)set of white points corresponds to combinations
with coefficients

{(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (1, 1, 1)T}.

Hence we obtain

B :=
{(0

0

)
,
(

1
1

)
,
(

2
1

)
,
(

1
2

)}
W :=

{(1
0

)
,
(

0
1

)
,
(

1
1

)
,
(

2
2

)}
by deleting (1, 1)T from both B and W we obtain that (B, W) is ρ( fS) with
swapped colors.

The concept of Newton polytope allows us to associate a convex set to a poly-
nomial.

Definition 3.3.5 (Newton Polytope). Let K be a field containing Z, and let X
be the vector of d variables (X1, . . . , Xd). Let N ⊂ Nd be finite, and let f (X) =

∑a∈N caXa ∈ K[X] be a polynomial. Then the Newton polytope of f is defined as

Newt ( f ) := conv{a ∈Nd : ca 6= 0}.

As explained in [179], §7.3, every zonotope is a projection of a cube. We
show in the following that Theorem 3.3.2 allows us to interpret every switch-
ing component as a union of projections of the vertices of cubes (possibly re-
peated and translated).

Let Cm ⊂ Rm be the standard unit cube

Cm = {x ∈ Rm | 0 ≤ xi ≤ 1 ∀i ∈ [m]}.

The vertices of Cm allow the following natural coloring.
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3.3 Switching Components as Cube Projections

Definition 3.3.6 (bw-Cube). Let us consider CZm := {0, 1}m, i.e., the vertices of
a m-dimensional cube. We refer to CZm as cube as well. We assign colors black and
white to the points of CZm via the function

c : CZm −→ {black, white}

c(x) = black if
m

∑
i=1

xi is even

c(x) = white if
m

∑
i=1

xi is odd

We then split the elements of CZm into two sets of different colors:

Cb
Zm := {x ∈ CZm : c(x) = black} Cw

Zm := {x ∈ CZm : c(x) = white}
(3.18)

It is easy to see that (Cb
Zm , Cw

Zm) is a switching component with respect to the
directions u1, . . . , um ∈ Rm.

In the next proposition, we show that the switching component ρ( fS) is a
projection of a 2-colored cube.

Proposition 3.3.7. Let d, m ∈ N∗ and let S := {s1, . . . , sm} ⊂ Zd be a set of pair-
wise linearly independent directions spanning Rd. Let M := (s1, . . . , sm) ∈ Rd×m,
and z := ∑i∈[m] s−i ∈ Rd and let π : Rm → Rd, be defined as π(x) := Mx + z.
Let H := π(Cb

Zm) ∩ π(Cw
Zm). Then the switching component ρ( fS) associated to fS

is equal to (
π(Cb

Zm)\H , π(Cw
Zm)\H

)
up to switching the colors. As a consequence,

conv
((

π
(
Cb

Zm

)
\H
)
∪
(
Cw

Zm

)
\H
))

= Newt ( fS)

Proof. The expansion of fS can be written as

fS = ∑
I⊂[m]

(
(−1)|I|∏

i∈I
Xs−i · ∏

i∈[m]\I
Xs+i
)

Let x ∈ CZm , and let I = {i : xi = 1}. It holds

π(x) = Mx + z = z + ∑
i∈[m]

xisi = z + ∑
i∈I

si ≥ 0

the above vector corresponds to the term (−1)IXz ·∏i∈I Xsi , which appears in
the expansion of fS, since

(−1)|I|Xz ·∏
i∈I

Xsi = (−1)|I|∏
i∈I

Xs+i · ∏
i∈[m]\I

Xs−i

the signum (−1)|I| ensures that the coloring defined in 3.3.6 is inherited by the
points corresponding to the terms of fS. If m is odd, then this coloring is the
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opposite of the one defined on ρ( fS) in 3.1.1. Moreover, the monomials that
cancel in the expansion of fS correspond to points in H, that appear in both
π(Cb

Zm) and π(Cw
Zm), and viceversa.

The claim
conv

((
π
(
Cb

Zm

)
\H
)
∪
(
Cw

Zm

)
\H
))

= Newt ( fS)

follows by considering the convex hulls.

The following theorem combines Theorem 3.3.2 and Proposition 3.3.7 to
conclude that switching components are sums of multiple copies of projections
of cubes.

Theorem 3.3.8 (Line Switching Components are Unions of Cube Projections).
Let d, m ∈ N∗, let S := {s1, . . . , sm} ⊂ Zd be a set of pairwise linearly independent
directions spanning Rd, and let (B, W) ∈ F d

N ×F d
N be a switching component with

respect to the directions of S. Then (B, W) is the union of copies of finitely- many
projections of the 2-colored cube CZm .

Proof. From Theorem 3.3.2 it follows that there exists a polynomial p(X) ∈
Z[X] such that p(X) fS(X) corresponds to (B, W) via the usual encoding in
3.1.1, and fS is defined as before by

fS(X) := ∏
s∈S

(Xs+ − Xs−).

Let r := |Supp (p(X))|, let α1, . . . , αr ∈ Z\{0} be the coefficients of p(X) and
let a1, . . . , ar ∈Nd be the exponents of the terms of p(X) so that

p(X) := ∑
i∈[r]

αiXai .

By Proposition 3.3.7 the points corresponding to the polynomial fS via 3.1.1 are
a projection of CZm : in fact, let z := ∑i∈[m] s−i ∈ Zd and M := (s1, . . . , sm) ∈ Zd×m

and define

π : Rm −→ Rd

x 7−→ Mx + z

then by Proposition 3.3.7 it holds ρ( fS) =
(
π(Cb

Zm)\H, π(Cw
Zm)\H

)
, where

H = π(Cb
Zm) ∩ π(Cw

Zm). As already observed in 3.3.7, the coloring defined on
ρ( fS) in 3.1.1 and the coloring given to CZm match only if m is even. We con-
tinue making this assumption, if m were odd we would need just to switch the
colors to ρ( fS). The polynomial p(X) fS(X) can be written as

p(X) fS(X) = ∑
i∈[r]

αiXai fS(X).

In the following we define r-many projections of CZm whose images corre-
spond to αiXai fS(X), for every i ∈ [r]. For every i ∈ [r], the number |αi| is the
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multiplicity given to the points of π(CZm) (respectively black and white), and
the term Xai describes the translation of π(CZm) by the vector ai. For all i ∈ [r]
we define the projection

πi : Rm −→ Rd

x 7−→ Mx + z + ai

and obtain that the switching component corresponding to αiXai fS(X), that we
denote by (B, W)i, for every i ∈ [r] is

(B, W)i =

{⋃
j∈[|αi |]

(
πi(Cb

Zm), πi(Cw
Zm)
)

if αi ≥ 0⋃
j∈[|αi |]

(
πi(Cw

Zm), πi(Cb
Zm)
)

if αi < 0

and finally
(B, W) =

⋃
i∈[r]

(B, W)i.

If B ∩W 6= ∅, we simply replace B and W with B \
(

B ∩W
)

and W \
(

B ∩W
)

respectively.

From Theorem 3.3.8 it follows that our knowledge about switching com-
ponents is connected to the possible projections of cubes. The first problem
that rises is understanding what is the biggest number of points that can be
identified projecting a single cube CZm . We focus on projections along a line,
i.e., let M ∈ R(m−1)×m with rank (M) = m− 1, and let π be the projection

π : CZm −→ Rm−1

x 7−→ Mx

and consider Cb
Zm and Cw

Zm as defined in (3.18). We have

π(Cb
Zm) = {Mx : ‖x‖1 is even} π(Cw

Zm) = {Mx : ‖x‖1 is odd}

We want to choose M so that the size of

H := π(Cb
Zm) ∩ π(Cw

Zm)

is as big as possible. If x ∈ Cb
Zm and y ∈ Cw

Zm , then

Mx = My ⇐⇒ M(x− y) = 0.

As rank (M) = m− 1, the above statement rewrites as

∃λ ∈ R\{0}, v ∈ Rm\{0} s.t.

{
lin{v} = lin{Mu1, . . . , Mum}⊥

x− y = λv
(3.19)

In the next proposition we show how to choose v so to make H as big as
possible.
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Proposition 3.3.9. Let CZm = {0, 1}m, and m ≥ 3. Then the minimal size of a
switching component obtained as a projection of CZm along a direction v ∈ Zm, not
parallel to any of the directions in {u1, . . . , um, 0}, is 3 · 2m−3.

Proof. We want to choose v ∈ Zd\{u1, . . . , um, 0} so to create as many as pos-
sible pairs (xi, yj) ∈ Cb

Zm × Cw
Zm fulfilling (3.19). By symmetry, we can think

first of pairing the black point x = (0, . . . , 0)T, and then count how many other
points are paired up. Assume x gets paired with a white point y ∈ Cw

Zm . By
symmetry, we can assume all the non-zero entries of yT to be the left-most en-
tries. Otherwise, we would just consider a change of coordinates on the points
of CZm . Hence

yi :=

{
1 i ≤ ‖y‖1

0 i > ‖y‖1
(3.20)

Observe that ‖y‖1 is odd, because y is a white point, as well as ‖y‖1 > 1
because the direction we are considering should not be a unit vector. Hence
‖y‖1 ≥ 3. As in (3.19) we can set v := y, all the entries of v are 0 or 1. Fur-
thermore if xi − yj = λijv is fulfilled for some pair (xi, yj) ∈ Cb

Zm × Cw
Zm , as

the entries of xi − yj are in {0,±1}, then λij ∈ {±1}. We consider the pairs
(xi, yj) ∈ Cb

Zm × Cw
Zm such that

uT
k xi = 1 ∀ k ∈ {1, . . . , ‖y‖1}

uT
k yj = 0 ∀ k ∈ {1, . . . , ‖y‖1}

uT
k xi = uT

k yj ∀ k ∈ {‖y‖1 + 1, . . . , m}.
(3.21)

It follows
xi − yj = v.

The number of such pairs is given by 2m−‖v‖1 . Since ‖v‖1 is an odd number, we
are sure that xi and yj as defined in (3.21) will be colored differently. It could
be that ‖xi‖1 is odd instead of even, and viceversa for ‖yj‖1: in order to have
an element in Cb

Zm ×Cw
Zm , we would simply consider the pair (yj, xi) instead of

(xi, yj). The maximum number of pairs we can form in this way is obtained
when ‖v‖1 is minimal, hence ‖v‖1 = 3 and the number of pairs is 2m−3. Hence,
the number of points canceled is 2m−2, which means that the remaining ones
are 3 · 2m−2, that form a switching component of size 3 · 2m−3.

We recall the switching component presented in Example 1.2.7, given by
the sets

B :=
{(0

0

)
,
(

2
1

)
,
(

1
2

)}
W :=

{(1
0

)
,
(

0
1

)
,
(

2
2

)}
which are tomographically equivalent with respect to the directions in S

S := {s1, s2, s3} := {(1, 0)T, (0, 1)T, (1, 1)T}.

The pair (B, W) attains the minimum size of a switching component obtained
as projection of a single cube. By Renyi’s Theorem 3.4.2, that we will treat in
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more details in Section 3.4, the minimum size of a switching component with
respect to 3 lines is 3, hence in this case the minimum possible size is attained.
The projection matrix A ∈ R2×3 of rank 2 is given by

A :=
(
s1 s2 s3

)
=

(
1 0 1
0 1 1

)

3.3.2 Switching Components in a Bounded Grid

In the following we introduce the problem of determining if a bounded grid
in Z2 contains switching components with respect to m distinct reduced direc-
tions

S = {(ai, bi) ∈N×Z : gcd(ai, bi) = 1, i ∈ [m]}.

The problem was addressed in [40–44, 93]. We will briefly survey the current
literature and relate the problem to Theorem 3.3.8.

Let n1, n2 ∈N and let a grid G ⊂ Z2 be defined as

G := {(i, j) ∈ Z2 : 0 ≤ i < n1, 0 ≤ j < n2}

The set S is called valid for G if ∑m
i=1 ai < n1 and ∑m

i=1 |bi| < n2. If S is valid for
G, then the vertices of the zonotope ZS, as defined in (3.17), are contained in
G:

ZS := ∑
i∈[m]

{0, 1}si.

The work of Hajdu [93], together with that from Brunetti, Dulio, Peri [40–44],
deals with the problem of deciding under which assumptions a subset of G
with given X-rays in the directions in S can be uniquely reconstructed, i.e., is
unique with the given property.

The line of research was started by Hajdu in [93], where he characterized
the cases where reconstruction is not possible. Namely, he showed that the
X-rays in the m directions in S do not identify uniquely a subset of G if m is
such that

m <


∞ if n2 ≤ 4 or n1 = 6

5 if (n1, n2) ∈ {(8, 6), (8, 8), (10, 6), (12, 6)}
4 otherwise

This result, together with Theorem 3.3.8, implies that for all m ∈ N there ex-
ists a union of finitely many projections of CZm = {0, 1}m that fit into a grid
G with n2 ≤ 4 or n1 = 6, for m ≤ 4 there exist a union of finitely many pro-
jections of CZm that fit into a grid with (n1, n2) ∈ {(8, 6), (8, 8), (10, 6), (12, 6)},
and for m ≤ 3, there exist a union of finitely many projections of CZm that
fit into a grid of dimensions (n1, n2), where n2 > 4 and n1 6= 6, as well as
(n1, n2) /∈ {(8, 6), (8, 8), (10, 6), (12, 6)}. Furthermore, the mentioned unions
of projections of CZm yield non-weighted sets.
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As three directions never reconstruct a subset of G, Brunetti, Dulio and Peri
studied in [41, 42] the first interesting case, i.e., the case of four directions, and
they determined, for any grid G with n1 ≥ n2 ≥ 5 and n1 6= 6, a set S with four
or five directions depending only on n2, if n2 ≥ 15 and on n2 and n1 otherwise,
such that any subset of G can be uniquely reconstructed from its X-rays in the
directions of S. In the case where four directions suffice, the authors show that
the they must be of the type

S := {s1, s2, s3, s1 + s2 ± s3}

In [40] Brunetti, Dulio, Hajdu and Peri showed that a grid G that does not
contain switching components with respect to the m directions in S cannot be
too big, namely it fulfills

n1 ≤ (2m+1 − 1)(max
i∈[m]

ai) ∨ n2 ≤ (2m+1 − 1)(max
i∈[m]
|bi|) (3.22)

The above result, together with Theorem 3.3.8, implies that if a grid G contains
a union of finitely many projections of the cube CZm that contains no multiple
points, then it does not fulfill (3.22).

A further aspect which is investigated in [40] deals with modifying the
polynomial p(X1, X2) fS(X1, X2), corresponding to a switching component with
respect to S by Theorem 3.1.3, as

g(X) :=
(

p(X1, X2) + Xe1
1 Xe2

2

)
fS(X1, X2),

where (e1, e2) ∈N2, in such a way that if

αXc ∈ Supp (p(X1, X2) fS(X1, X2)) ∧ |α| > 1

and other assumptions hold for αXc, then the coefficient β of Xc in g(X) fulfills
|β| < |α|, and the number of monomials of g(X) that have coefficients not
in {1,−1} has not increased. This allows to reduce and eventually remove the
multiplicity of the points corresponding to the polynomial p(X1, X2) fS(X1, X2)

and obtain a {0, 1}-switching component.
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3.4 On the Minimal Size of a Switching Component

We now address the problem of determining the smallest size of a switching
component. As already mentioned in Section 1.2, we denote by ψk,d

D,W (m) the

minimum size of a switching component (B, W) in
(
F (Dd,W)

)2 with respect
to m non-parallel k-dimensional subspaces. Our standard choices are D = Z,
andW = N orW = {0, 1}. We simplify the notation for ψk,d

D,W (m) respectively
as ψk,d

N (m) and ψk,d(m). If k = 1 we write respectively ψd
N(m) and ψd(m).

One of the biggest challenges in discrete tomography is determining up-
per and lower bounds on ψk,d

D,W (m). The knowledge on ψk,d
D,W (m) is crucial

because for every l < ψk,d
D,W (m), every multiset of Dd of cardinality l is deter-

mined uniquely by its X-rays with respect to any m distinct (lattice) subspaces
S1, . . . , Sm ⊂ Rd. Moreover, small switching components can be used to gen-
erate small solutions to the Prouhet-Tarry-Escott problem, as we will see in
Section 4.5. Observe

ψk,d
N (m) ≤ ψk,d(m) (3.23)

However, no value of m is known for which ψk,d
N (m) < ψk,d(m).

Similarly, if D1 ⊂ D2 ⊂ D it is easy to see that

ψk,d
D2,W (m) ≤ ψk,d

D1,W (m).

By Proposition 1.2.8 (iv) we have that every pair (B, W) ∈
(
F d

N

)2 that is
a switching component with respect to m distinct k-dimensional subspaces
S1, . . . , Sm ⊂ Kd is also a switching component with respect to all the t-
dimensional subspaces containing S1, . . . , Sm, for all t ∈ {k + 1, . . . , d − 1}.
Hence, the next proposition follows.

Proposition 3.4.1. Let m ∈N∗. For every t ∈ {k + 1, . . . , d− 1} it holds

ψt,d
D,N(m) ≤ ψk,d

D,N(m).

The following lower bound on ψd
D,N(m) was shown by Rényi in [152]:

Theorem 3.4.2 (Rényi [152]). For every d ≥ 2 it holds that ψd
D,N(m) ≥ m.

If D = R we can consider a regular 2m-gon in Rd and obtain ψd
R,N(m) ≤ m.

Thus the bound in 3.4.2 is tight for all m ∈N∗.
If D = Z the bound in 3.4.2 is tight for m ∈ {1, 2, 3, 4, 6}: specifically, Alpers
and Tijdeman showed the following theorem in [18] applying results that Gard-
ner and Gritzmann showed in [78].

Theorem 3.4.3. If m ∈ {1, 2, 3, 4, 6} then ψ2(m) = m.
If m = 5 or m > 6, then ψ2(m) ≥ m + 1.

As far as we know, no better lower bounds have been established. In
the following example we show that Rényi’s Theorem 3.4.2 does not hold for
k > 1.
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Example 3.4.4. The sets B, W of F 3 defined as

B = {(2, 8, 0)T, (3, 0, 3)T, (6, 5, 1)T}

W = {(2, 5, 3)T, (3, 8, 1)T, (6, 0, 0)T}
are tomographically equivalent with respect to the 2-dimensional subspaces

S1 := {x ∈ R3 : uT
1 x = 0} S2 := {x ∈ R3 : uT

2 x = 0}

S3 := {x ∈ R3 : uT
3 x = 0} S4 := {x ∈ R3 : (1, 1, 1) · x = 0}

because
{uT

i b : b ∈ B} = {uT
i w : w ∈W} ∀i ∈ [3]

and
{(1, 1, 1)Tb : b ∈ B} = {10, 6, 12} = {(1, 1, 1)Tw : w ∈W}

The possible directions with respect to whom B and W could be tomographically equiv-
alent are (2, 8, 0)T − w for all w ∈ W. Hence it suffices to consider non-zero integer
multiples of

s1 :=

 0
1
−1

 s2 :=

1
0
1

 s3 :=

 1
−2

0


We can easily see with a computer software, such as CoCoA [2], that the polynomial
∑b∈B Xb − ∑w∈W Xw is not divisible by the binomial Xs+i − Xs−i for all i ∈ [3], and
by Lemma 3.1.4, it is moreover not divisible by Xλs+i − Xλs−i , for all i ∈ [3] and for
every λ ∈N∗. Hence by Theorem 3.1.3 B, W are not tomographically equivalent with
respect to si, for all i ∈ [3].

Concerning upper bounds on ψk,d(m), which are also upper bounds on
ψk,d

N (m) by (3.23), an easy and well-known construction for switching compo-
nents with respect to given k-dimensional subspaces S1, . . . , Sm applies Propo-
sition 1.2.8 (iv), by choosing m distinct 1-dimensional subspaces lin{si}, such
that lin{si} ⊂ Si and si ∈ Zd, ∀i ∈ [m], iteratively doubling the number of
points and alternating the colors, as explained in Algorithm 3.4.5.

Algorithm 3.4.5 (Doubling Process).

Input: m ∈N∗, s1, . . . , sm ∈ Zd pairwise linearly independent
Output: (Bm, Wm) ⊂ Zd t.e. with respect to s1, . . . sm and s.t.

|Bm| = |Wm| ≤ 2m−1

i← 1
B1 ← {0}
W1 ← {s1}
for i = 2, . . . , m do

i← i + 1
Choose λi ∈ Z

Bi ← Bi−1 ∪ {x + λi si : x ∈Wi−1}
Wi ←Wi−1 ∪ {x + λi si : x ∈ Bi−1}

return (Bm, Wm) ⊂ Zd
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3.4 On the Minimal Size of a Switching Component

The multisets B := Bm and W := Wm as returned by Algorithm 3.4.5 are
clearly tomographically equivalent with respect to the lines in direction si,
i ∈ [m], and moreover w.r.t. the subspaces S1 . . . , Sm, by 1.2.8 (iv). Algorithm
3.4.5 was first included in [121] for the case k = 1. Observe that certain choices
of λi in the second step of the for-loop might lead to B and W being multisets.
Should we need to avoid this, we could for example choose λi so that

‖λisi‖2 > diam (conv(Bi−1 ∪Wi−1))

for all i ∈ {2, . . . , m}. The size of the switching component (B, W) with this
construction is at most 2m−1.

Theorem 3.4.6. It holds ψk,d(m) ≤ 2m−1 for all k, m ∈N∗.

l1 l1

l2 l2

l1

Figure 3.3: Doubling Procedure

Alpers and Larman discussed upper bounds on ψZd(m) in [16], where they
showed the following theorem.

Theorem 3.4.7 (Alpers, Larman [16]).
For every ε > 0, and d ≥ 2, it holds ψd(m) ∈ O(md+1+ε).

The bound shown in 3.4.7 is polynomial in m and is the best asymptotic
bound known so far. It was achieved by showing the existence of a {0, 1}
switching component in a certain grid. Its proof is non-constructive. Possible
improvements to this result include a constructive approach that leads to the
given polynomial bound, or a better bound that concerns N-switching com-
ponents.

A similar, and somehow dual, question was the motivation to a paper of
Matoušek, Přívětivý and Škovroň [127]. The authors investigated lower and
upper bounds for the number F(m), defined as the maximum number n for
which there exist m directions s1, . . . , sm such that every set of at most n points
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l1

l2 l2

l1
l1

l2 l2

l1

l3
l3

l3
l3

Figure 3.4: Doubling Procedure (continued)

in R2 that can be uniquely reconstructed from its discrete X-rays in the direc-
tions s1, . . . , sm. They concluded

2Ω
(

m
log(m)

)
≤ F(m) ≤ O(1.81712m).

The upper bound follows by showing that for every set of distinct directions
s1, . . . , sm, there exist O(1.81712m) points that form a switching component
with respect to s1, . . . , sm. If we allow multisets, and denote by Fmult the func-
tion analogous to F in the weighted case, then it was shown in [127] that
Fmult(m) ≤ O(1.79964m). The lower bound improves the one given by Bianchi
and Longinetti in [28], namely

m + Ω(
√

m) ≤ F(m).

The function F(m) represents the maximum number n such that there exists
a set of directions s1, . . . , sm with respect to whom no {0, 1}-switching com-
ponent of size smaller than n exist, in other words, the maximum number
of points that one is sure can be reconstructed using just m directions cho-
sen carefully. The function ψd(m), instead, asks for the minimum number
n such that there exists a set of directions s1, . . . , sm and a switching com-
ponent of size n with respect to s1, . . . , sm. Equivalently, every set with less
than ψd(m)-many points can be reconstructed using any set of m directions.
Small switching components over N can be found for not too large m by com-
puter search, for example looking at pure products, that is, constructing switch-
ing components with respect to m pairwise linearly independent directions
S = {s1, . . . , sm} ⊂ Zd, whose corresponding polynomial via θ in 3.1.1 is

fS(X) := ∏
i∈[m]

(Xs+i − Xs+i ) ∈ Z[X]
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3.4 On the Minimal Size of a Switching Component

see 3.3.1. The first such investigation was conducted in the Master’s Thesis by
Kiermaier [113] for m = 1, . . . , 10.

Observe that the smallest size of a pure product switching component
yields an upper bound on ψd

N(m):

ψd
N(m) ≤ 1

2
min

S:={s1,...,sm}⊂Zd

pairwise l.i.

‖ fS‖1, (3.24)

and analogously for the {0, 1}-case:

ψd(m) ≤ 1
2

min
S:={s1,...,sm}⊂Zd

pairwise l.i.
ht( fS)=1

‖ fS‖1. (3.25)

It is not clear if there exists an m ∈ N∗, for which the inequalities in (3.24)
and (3.25) are strict.

In the tables below we denote by Sm the set of directions whose corre-
sponding pure product switching component has the minimal found size, and
denote by S the recurrent set of directions

S := {(1, 0)T, (0, 1)T, (1, 1)T, (1,−1)T}.

Notice that 2n := ‖ fS‖1 while the size of the corresponding switching com-
ponent is equal to n. We include the best directions we found for the cases
m = 11, . . . , 20 as well as the ones included in [113] for m = 1, . . . , 10.

m 2n Set of directions Sm

1 2 {(1, 0)T}
2 4 {(1, 0)T, (0, 1)T}
3 6 {(1, 0)T, (0, 1)T, (1, 1)T}
4 8 S
5 12 S ∪ {(2, 1)T}
6 12 S ∪ {(2, 1)T, (1, 2)T}
7 20 S ∪ {(2, 1)T, (1, 2)T, (2,−1)T}
8 24 S ∪ {(2, 1)T, (1, 2)T, (2,−1)T, (3, 1)T}
9 36 S ∪ {(2, 1)T, (1, 2)T, (2,−1)T, (3, 1)T, (1,−3)T}
10 40 S ∪ {(2, 1)T, (1, 2)T, (2,−1)T, (3, 1)T, (1,−3)T, (4, 3)T}
11 60 S ∪ {(2, 1)T, (1, 2)T, (2,−1)T, (3, 1)T, (1,−3)T, (4, 3)T, (3, 2)T}

Table 3.1: Smallest found switching components for m = 1, . . . , 11

To keep the lists shorter, we now define as S′ the set of 5 directions

S′ := {(2, 1)T, (1, 2)T, (2,−1)T, (1,−3)T, (1,−2)T}
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Figure 3.5: Switching component with respect to 6 directions and of size 6, as
in table 3.1

m 2n Set of directions Sm

12 60 S ∪ S′ ∪ {(2,−3)T, (3,−2)T, (3,−1)T}
13 84 S ∪ S′ ∪ {(1, 4)T, (3,−2)T, (4,−5)T, (5,−1)T}
14 116 S ∪ S′ ∪ {(1,−4)T, (1, 3)T, (2,−3)T, (3,−2)T, (3,−1)T)}
15 172 S ∪ S′ ∪ {(3, 2)T, (1,−4)T, (1, 3)T, (3, 1)T, (4, 3)T, (5, 1)T}
16 248 S ∪ S′ ∪ {(3, 2)T, (1, 3)T, (1,−4)T, (2,−5)T, (2, 3)T, (3,−5)T, (3, 1)T}
17 286 S ∪ S′ ∪ {(3, 2)T, (1, 3)T, (2, 3)T, (1, 4)T, (2,−3)T, (2, 5)T, (3, 1)T, (4, 1)T}

Table 3.2: Smallest found switching components for m = 12, . . . , 17

In the following, to save some space, we denote by S′′ the set

S′′ := {(3, 2)T, (1, 3)T, (2, 3)T, (1, 4)T}

m 2n Set of directions Sm

18 364 S ∪ S′ ∪ S′′ ∪ {(3,−2)T, (3, 1)T, (4,−5)T, (4, 1)T, (5,−1)T}
19 428 S ∪ S′ ∪ S′′ ∪ {(3, 1)T, (1,−5)T, (2,−3)T, (3,−2)T, (4, 1)T, (5,−1)T}
20 572 S ∪ S′ ∪ S′′ ∪ {(3,−2)T, (2,−3)T, (2, 5)T, (3, 1)T, (4,−1)T, (4, 1)T, (5,−1)T}

Table 3.3: Smallest found switching components for m = 18, . . . , 20

Observe that the size of the switching component corresponding to the
directions Sm for m = 7, . . . , 20 are upper bounds for the size of the minimal
switching component with respect to m directions, while for m = 1, . . . , 6, the
found switching components have minimal size.
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3.4 On the Minimal Size of a Switching Component

Figure 3.6: Switching component with respect to 20 directions and of size 572,
as in table 3.3. The bigger points correspond to monomials with coefficients 2
or −2.
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3.5 Small Polynomials

By Theorem 3.1.3 a switching component with respect to a reduced direction
s ∈ Zd corresponds via 3.1.1 to a polynomial g(X) ∈ Z[X1, . . . , Xd] such that

Xs+ − Xs− |g(X)

Hence, looking for a small switching component with respect to m pairwise
linearly independent directions S = {s1, . . . , sm} ⊂ Zd corresponds to search-
ing for a multiple g(X) ∈ Z[X] of the polynomial

fS(X) := ∏
i∈[m]

(Xs+i − Xs−i ) ∈ Z[X] (3.26)

having small 1-norm, in the sense of Definition 2.1.15. We recall that ‖g‖1

equals twice the size of the corresponding switching component.
The problem of understanding the relation between the size of a polyno-

mial and the size of its multiples has been investigated mainly for d = 1 and
mainly from the point of view of factoring a polynomial. Given a polynomial,
a bound on the size of its factors is important to devise an algorithmic way to
determine a non trivial factorization. In the following definition we introduce
different measures of a polynomial, that together with the norms defined in
2.1.15 give estimates on the magnitude of its coefficients.

Definition 3.5.1 (Mahler Measure, Weighted Bombieri Norm).
Let d = 1, n ∈ N, and let g(X) = ∑n

i=0 αiXi ∈ Z[X] be an integer polynomial. We
denote by M(g) the Mahler measure of g, defined as

M(g) := |LC (g)| · ∏
z∈C:g(z)=0

max{1, |z|}.

We denote by [g]2 the weighted l2-Bombieri norm, defined as

[g]2 :=
( n

∑
i=0

1
(n

j)
(αj)

2
) 1

2
.

Computing the Mahler measure of a given polynomial is often not easy, a
bound which is often used in estimation is the following, that was given by
Mignotte in [132] and referred to as Landau’s inequality in [134]:

M(g) ≤ ‖g‖2 ∀g ∈ Z[X] s.t. |Supp (g)| > 1.

Let p(X) = ∑t
i=0 βiXi ∈ Z[X] be an irreducible factor of g of degree t ∈ N,

1 ≤ t < n. One of the first contribution dealing with estimates of p to be
found in the literature is due to Mignotte, who showed in 1974 several results
concerning the relations between the coefficients of g and p. In particular, he
showed the following inequality:

‖p‖1 ≤ 2t‖g‖2. (3.27)

58



3.5 Small Polynomials

As a matter of fact, he showed a stronger result, that bounds the values of
every coefficient of p with a function depending on the binomial coefficients
and the 2-norm of g:

|βi| ≤
(

t
i

)
‖g‖2 ∀i ∈ {0, 1, . . . , t}.

Mignotte [133] showed in 1988 the following upper bound on the 2-norm of p:

‖p‖2 ≤ e
√

n(n + 2
√

n + 2)1+
√

n M(g)1+
√

n
2 .

By using the bound M(g) ≤ ‖g‖2, we can re-write Mignotte’s bound as

‖p‖2 ≤ e
√

n(n + 2
√

n + 2)1+
√

n‖g‖1+
√

n
2 .

In 1992 Beauzamy [25] showed that if g(0) 6= 0, then

|βi| ≤

√
1
2

(
t
i

)(
n
t

)
[g]2

which implies

ht(p) ≤ 3
3
4

2
√

π

3
n
2
√

n
[g]2.

In the nice survey [1], Abbott showed that none of the mentioned bounds is
universally better than the others.
Boyd shows in [37] and [38] bounds of the type

ht(p) ≤ C(r)‖g‖r

where C(r) := M(1 + |x + 1|q)
1
q and q = r

r−1 is the conjugate Hölder expo-
nent of r. In 2004 Panaitopol and Ştefănescu showed in [142] that under the
assumption n ≥ 4 and g(0) 6= 0 it holds

ht(p) ≤

√(
t
i

)(1
2

(
n
t

)
[g]22 − α2

0 − α2
n

)
.

Coron extended Mignotte’s result (3.27) to bivariate polynomials in 2004 in
[54], where he showed that two polynomials p, g ∈ Z[X1, X2] with maximum
degree n separately in X1 and X2, and such that p divides g, fulfill

ht(p) ≤ 2(n+1)2‖g‖2.

In 2006 Hinek and Stinson extended Coron’s result to multivariate polynomi-
als p, g ∈ Z[X1, . . . , Xd], showing the following in [107]:

ht(p) ≤ 2(n+1)d−1‖g‖2 (3.28)

The above result is one of the few concerning multivariate polynomials.
The following theorem was showed by Mignotte [133] and establishes the

existence of a multiple of (X − 1)k with coefficients in {0,±1} and degree not
too high. It has implications in the Prouhet-Tarry-Escott problem, that we will
discuss in Chapter 4.
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Theorem 3.5.2 (Mignotte). Given k ∈ N, there exists a polynomial f (X) ∈ Z[X]

of degree at most k2 log(k) and height equal to 1, which is multiple of (X− 1)k.

An open question is to show a similar result for the multivariate case, i.e.,
for f as in equation (3.26). Another research goal that we can find in the liter-
ature is the problem of determining if a given ideal contains polynomials with
few terms, especially monomials and binomials. From the point of view of
switching components, the goal is to find a multiple g(X) of fS(X) such that
the cardinality of Supp (g) is as small as possible, regardless of the magnitude
of the coefficients that appear in g(X), hence regardless of ‖g‖1, which is twice
the size of the corresponding switching component. We will comment on this
aspect in Section 3.6, though very briefly. Background and state of art can be
found for example in [67, 109, 135].

We consider the following problem, where f ∈ Z[X1, . . . , Xd] is any poly-
nomial, not necessarily as in (3.26).

min
g(X)∈Z[X]

‖ f (X)g(X)‖1 (3.29)

In the following proposition we show a property of g(X) ∈ argmin(‖ f g‖1).

Proposition 3.5.3. Let g(X) ∈ argmin(‖ f g‖1), as defined in equation 3.29.
Then for all m0 := αXa ∈ Supp (g) there exist m1 := βXb ∈ Supp (g) and
m2 := γXc ∈ Supp ( f ), m3 := δXd ∈ Supp ( f ) such that m0 · m2 and m1 · m3

are similar, i.e., such that a + c = b + d.

Proof. By contradiction, we assume a + c 6= b + d for all monomials
m1 ∈ Supp (g) and m2, m3 ∈ Supp ( f ). This implies that the monomials in
Supp (m0 · f ) are different from the monomials in Supp ((g−m) f ), hence

‖ f g‖1 = ‖ f (g−m0) + f m0‖1 = ‖ f (g−m0)‖1 + ‖ f m0‖1 > ‖ f (g−m0)‖1

which is a contradiction to g(X) ∈ argmin(‖ f g‖1).

Another approach is to look for directions s1, . . . , sm ∈ Zd such that the
polynomial fS(X) has itself small 1-norm. In tables 3.1, 3.2 and 3.3 we included
small 1-norm polynomials fS for S composed of m directions, m ∈ [20]. We will
discuss in Section 3.8 how to extend the result to all values of m ∈N.
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3.6 Selecting Good Directions

As we have seen in sections 3.1 and 3.4, every switching component with re-
spect to m pairwise linearly independent directions S = {s1, . . . , sm} ⊂ Zd

corresponds to a polynomial p(X) fS(X) ∈ Z[X1, . . . , Xd] with

fS(X) = ∏
s∈S

(Xs+ − Xs−) ∈ Z[X].

We are putting particular emphasis on the case where the directions in S span
Rd. In this way, the zonotope defined by S is full-dimensional, see 3.3.4. By
Theorem 3.4.7, we know that there exists a switching component of size poly-
nomial in m, however, no method to construct it has been found so far. As we
have already observed, the size of the switching component is 1

2‖p(X) fS(X)‖1,
so the number of terms of p(X) fS(X) as well as the magnitude of its coefficients
play a role in keeping ‖p(X) fS(X)‖ small. We focus on the case p(X) = 1, and
present two approaches to select the directions in S, the first aiming at mini-
mizing the number of terms of fS, the second leading to ht( fS) = 1.

We point out that with good directions we intend here directions that pro-
vide small switching components, thus, from the reconstruction point of view,
those that could be named as bad directions, as they do not allow unique re-
construction of small sets.

3.6.1 Directions leading to Few Terms

We try to resemble the polynomial (X1 − 1)m, that has m + 1 terms. Choosing
fS = (X1 − 1)m is not an option, since the directions of S are all equal to the
unit vector u1. For example, in dimension d = 2, we choose the directions in S

to be

s1 :=
(

1
1

)
, s2 :=

(
1
2

)
, s3 :=

(
1
3

)
, . . . , sm−1 :=

(
1

m− 1

)
, sm :=

(
1
m

)
We denote by P the Newton polytope of fS, and observe that it is contained in
the rectangle [0, m]× [0, m(m+1)

2 ], hence the number of terms of fS is at most(m(m + 1)
2

+ 1
)
(m + 1).

The polytope P is a zonotope, as already observed in Section 3.3.1. We can
estimate the number of terms of fS in a more refined way, by counting the
number of integer points in P. In order to do so, we apply Pick’s theorem
[145], which relates the volume of a polytope in dimension d = 2 with the
number of its integer points in the interior and on the boundary.

Theorem 3.6.1 (Pick’s Theorem [145]). Let P ⊂ R2 a polytope. It holds

vol(P) = |int (P) ∩Z2|+ 1
2
|bd (P) ∩Z2| − 1.
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To compute the volume of the zonotope P, we apply McMullen’s formula,
see [129].

Theorem 3.6.2 (McMullen’s Formula [129]). Let m ∈ N∗ and let ai, bi ∈ Rd for
all i ∈ [m]. Let Pi be a segment, defined as

Pi := conv{ai, bi} = ai + [0, 1](bi − ai) ∀i ∈ [m]

and consider the zonotope Z = P1 + · · ·+ Pm. Then

vol(Z) = ∑
1≤j1<···<jd≤m

∣∣∣det(bj1 − aj1 , bj2 − aj2 , . . . , bjd − ajd)
∣∣∣. (3.30)

If we apply McMullen’s formula to the zonotope P, we obtain

vol(P) = ∑
1≤i<j≤m

|det(si, sj)| = ∑
1≤i<j≤m

(j− i) =
m−1

∑
i=1

m

∑
j=i+1

(j− i) = (3.31)

=
m−1

∑
i=1

( m

∑
j=i+1

j−
m

∑
j=i+1

i
)
=

m−1

∑
i=1

(1
2
(m + i + 1)(m− i)− (m− i)i

)
=

(3.32)

=
m−1

∑
i=1

(m− i)(m− i + 1)
2

=
m

∑
l=2

(
l
2

)
(3.33)

where the last equality holds by applying the substitution l = m− i + 1. We
show the following formula.

Proposition 3.6.3. Let m ∈N∗. Then

m

∑
l=2

(
l
2

)
=

m(m− 1)(m + 1)
6

Proof. We show the claim by induction on m. If m = 1 then both sides are
equal to 0. We assume the statement true for m− 1, and show it for m. Hence

m

∑
l=2

(
l
2

)
=

(
m
2

)
+

m−1

∑
l=2

(
l
2

)
=

(
m
2

)
+

(m− 1)(m− 2)m
6

=

=
3m(m− 1) + (m− 1)(m− 2)m

6
=

m(m− 1)(m + 1)
6

which concludes the proof.

The numbers { 1
6 m(m− 1)(m + 1) : m ∈N∗} are called tetrahedral numbers,

see [164] §2.16. By Proposition 3.6.3 it follows

vol(P) =
m(m− 1)(m + 1)

6
. (3.34)

62



3.6 Selecting Good Directions

We plug (3.34) into Pick’s theorem and obtain

2vol(P) = 2|int (P) ∩Zd|+ |bd (P) ∩Zd| − 2 ≥ |P ∩Z2| − 2. (3.35)

From equations (3.34) and (3.35) it follows

|P ∩Z2| ≤ m(m− 1)(m + 1)
3

+ 2

We have obtained a polynomial bound on the number of terms of fS, of order
O(m3), though the only bound we know on the coefficients of fS is exponential
in m, specifically it is 2m−1, see Section 3.7.

3.6.2 Directions leading to Low Coefficients

On the other hand, one could try the opposite approach, and spread the di-
rections of S as far as possible, so to have no two monomials originating from
the product that are similar. A way to do this is to choose, for example in
dimension d = 2, the directions in S to be of the type(

1
i1

)
,
(

1
i2

)
, . . . ,

(
1
im

)
with the set I := {i1, . . . , im} having distinct subset sums, i.e., being such that
the set {

∑
j∈J

j : J ⊂ I
}

has 2|I| = 2m elements. The directions selected are clearly pairwise linearly
independent and spanning R2. An example for a set having distinct subset
sums is the list of powers of 2:

I := {1, 2, . . . , 2m−1}

other constructions for I with smaller maxx∈I x are included in [31]. When
expanding the product in fS, no two monomials appearing have the same lit-
eral part, hence the coefficients of fS are all ±1, however fS has exponentially
many terms in its support. The challenge is to find a way to balance the two
approaches given in 3.6.1 and here, i.e., select m directions that are similar
enough to allow cancellations, and bound the number of terms in the support
of fS, as well as spread the directions enough so that the coefficients do not
grow too much.
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3.7 Large Size Pure Product leading to a Small Switch-
ing Component

In this section we show that for every m ∈ N∗, the pure product switching
component corresponding to the pairwise linearly independent directions in

Sm := {(1, i)T : i ∈ [m]} ⊂ Z2

has size 2m−1, while there exists a switching component (non pure product)
with respect to the directions in Sm of size in O(m4 log4 m).

Let m ∈N∗, and set

Sm := {(1, i)T : i ∈ [m]}.

Note that the directions in Sm are pairwise linearly independent. Now, let
X := (X1, X2) and

fSm(X) := ∏
s∈Sm

(
Xs+ − Xs−) = ∏

i∈[m]

(
X1Xi

2 − 1
)
∈ Z[X1, X2].

Then the size of the pure product switching component corresponding to Sm

is the number

n :=
1
2
‖ fSm‖1.

In the following lemma, we determine ‖ fSm‖1.

Lemma 3.7.1. For every m ∈N∗,

‖ fSm‖ = 2m.

Proof. For I ⊂ [m], let
ι(I) := ∑

i∈I
i.

Then

fSm(X) = ∏
i∈[m]

(
X1Xi

2 − 1
)
= ∑

I⊂[m]

(−1)m−|I|X|I|1 Xι(I)
2 = (−1)m ∑

I⊂[m]

(−1)|I|X|I|1 Xι(I)
2

= (−1)m

(
∑

I⊂[m]
|I|≡0 (mod 2)

X|I|1 Xι(I)
2 − ∑

J⊂[m]
|J|≡1 (mod 2)

X|J|1 Xι(J)
2

)
.

Finally note that, whenever I, J ⊂ [m] with |I| ≡ 0 (mod 2) and |J| ≡ 1,
(mod 2), the corresponding monomials are different i.e.,

X|I|1 Xι(I)
2 6= X|J|1 Xι(J)

2 .

Hence no two terms of fSm(X) cancel and we have ‖ fSm‖1 = 2m.
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3.7 Large Size Pure Product leading to a Small Switching Component

Now we show that for every m ∈ N∗ there exists a switching component
with respect to Sm whose size is bounded by a polynomial in m. More precisely,
we prove the following theorem.

Theorem 3.7.2. There exists a {0-1}-switching component in Z2 with respect to Sm

whose size is in O(m4 log4(m)).

In the remainder of this section we give a proof of Theorem 3.7.2. We follow
the counting arguments of Alpers and Larman [16].

For l ∈ N∗ set Gl := [l]0 × [l]0 and, for i ∈ [m], let µi denote the number of
lines parallel to (1, i)T that intersect Gl .

Lemma 3.7.3. Let l ≥ i− 1. Then

µi = (i + 1)l + 1.

Proof. Let ti := (i,−1)T. Then ti is normal to the i-th direction (1, i)T, and
it suffices to count the different values of vTti for v := (ν1, ν2)T ∈ Gl i.e., of
iν1 − ν2 for ν1, ν2 ∈ {0, . . . , l}. For ν1 = 0, we have l + 1 different non-positive
values. For ν2 = 0, there are l different positive multiples of i. From each
of these we can subtract any number ν2 ∈ [i − 1]. Since all these values are
different, and all possible values are generated in this way, we obtain

µi = (l + 1) + l + (i− 1)l = (i + 1)l + 1.

In the following, let l ≥ m ≥ 3, l ≡ 1 (mod 2) and set

r := r(l) :=
1
2
(l + 1)2.

We consider subsets of Gl of cardinality r.
The X-ray of a set in Gl of cardinality r in direction (1, i)T can be viewed

as a weak µi-composition of the number r, see [166] §1.2. Thus, the number of
different X-rays in the given direction is bounded from above by the number(

r + µi − 1
µi − 1

)
of different weak µi-compositions of r. Therefore the number of subsets of Gl
of cardinality r that can be distinguished by the m X-rays in the directions of
Sm is bounded from above by

∏
i∈[m]

(
r + µi − 1

µi − 1

)
.

With the aid of Lemma 3.7.3, and using that

2 ∑
i∈[m]

µi = 2 ∑
i∈[m]

(
i + 1)l + 1

)
= m

(
2 + l(m + 3)

)
= 2m + lm2 + 3ml ≤ 3m2l
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Chapter 3. Switching Components: Algebraic Interpretation and the Hunt for Small Sizes

we obtain

∏
i∈[m]

(
r + µi − 1

µi − 1

)
≤ ∏

i∈[m]

(
r + µi

µi

)
≤ ∏

i∈[m]

(
r + 1

)µi = ∏
i∈[m]

( (l + 1)2

2
+ 1
)µi

≤ ∏
i∈[m]

l2µi ≤ l3m2l .

On the other hand, the number of different subsets of Gl of cardinality r is(
2r
r

)
.

Using standard estimates for this central binomial coefficient, and applying
some elementary manipulations, we get(

2r
r

)
≥ 4r

2
√

r
=

2(l+1)2

√
2(l + 1)

≥ 2l2
. (3.36)

Hence we can conclude that there must exist a {0-1}-switching component
in Gl with respect to Sm whose size is bounded from above by r(l) whenever

l3lm2
< 2l2

.

Thus, for
l ∈ O(m2 log2(m))

there must exist a switching component of size in O(m4 log4(m)).
If we allow N-switching components, i.e., we consider the points of Gl with a
weight, bounded by r, then the number of X-rays does not change, while the
number of different subsets of Gl of cardinality r becomes(

2r2

r

)
.

Equation (3.36) is modified as follows:(
2r2

r

)
≥
(2r2

r

)r
= (2r)r = (l + 1)(l+1)2

. (3.37)

From (3.37) it follows that there exists a N-switching component in Gl when-
ever

l3lm2
< (l + 1)(l+1)2

It suffices l > 3m2, hence for
l ∈ O

(
m2),

there exists a switching component of size in O(m4) in the grid Gl . We sum-
marize the results of this section in the following theorem.
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3.7 Large Size Pure Product leading to a Small Switching Component

Theorem 3.7.4. Let d = 2, m ∈N∗, and let

Sm := {(1, i)T : i ∈ [m]}.

There exists a N-switching component, respectively a {0, 1}-switching component, in
Z2 with respect to Sm whose size is in O(m4), respectively in O(m4 log4(m)).

Remark 3.7.5. The directions in Sm, with

Sm = {(1, i)T : i ∈ [m]}

appear in the final remarks of [127], in regard to a problem posed by Holub [108] in
2003. The task was to determine, for every m ∈ N∗, the maximum number of points
that the directions in Sm can reconstruct uniquely. Our result implies that the direc-
tions in Sm cannot reconstruct uniquely O(m4 log4(m))-many points (and O(m4) if
we allow multisets). The problem has connections to equations on semigroups, specif-
ically word equations involving powers of concatenations of words, see [159].

3.7.1 Number of Copies of the Pure Product

Theorem 3.7.2 guarantees, for every m ∈ N, the existence of a polynomial
pm(X) ∈ Z[X] and a constant Cm ∈N such that

‖pm(X) fSm(X)‖1 ≤ C2
mm4 log4(m)

Moreover, the degree of both variables X1 and X2 in pm(X) fSm(X) is bounded
from above by Cmm2 log2(m). For every monomial αXa ∈ Supp (pm), the pro-
duct αXa fSm corresponds to |α| copies of the pure product switching compo-
nent corresponding to fSm .
Thus ‖pm‖1 represents the number of copies of the pure product switching
component corresponding to fSm needed to yield a switching component with
respect to the directions in Sm and size at most C2

mm4 log4(m). We obtain the
following upper bound on ‖pm‖1.

Theorem 3.7.6. With the notation above, it holds

‖pm‖1 ∈ O
(
2m4 log4(m)m8 log8(m)

)
.

The proof of Theorem 3.7.6 follows applying a theorem from Coron [54],
see equation (3.28).

Theorem 3.7.7 (Coron [54]). Let X = (X1, X2) and let h1(X), h2(X) ∈ Z[X] be
two non zero polynomials of maximum degree t separately in X1 and X2 such that h1

divides h2. Then
ht(h1) ≤ 2(t+1)2‖h2‖2

We apply Coron’s theorem to pm(X) and pm(X) fSm(X) and obtain

ht(pm) ≤ 2(Cmm2 log2(m)+1)2‖pm fSm‖2.
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As a consequence of the standard inequalities between p-norms, the 2-norm of
a polynomial is bounded from above by its 1-norm. Thus

ht(pm) ≤ 2(Cmm2 log2(m)+1)2‖pm fSm‖1 ≤ 2(Cmm2 log2(m)+1)2
C2

mm4 log4(m). (3.38)

Furthermore, the number of terms of pm is at most(
Cmm2 log2(m)−m + 1

)
·
(

Cmm2 log2(m)− m(m + 1)
2

+ 1
)

. (3.39)

For every polynomial h(X) ∈ Z[X], by standard inequalities between the p-
norms, it holds

‖h‖1 ≤ |Supp (h)| · ht(h). (3.40)

Hence, combining (3.38), (3.39) and (3.40), we obtain the following upper bound
on the 1-norm of pm:

‖pm‖1 ≤ 2(Cmm2 log2(m)+1)2
C2

mm4 log4(m)
(

Cmm2 log2(m)−m + 1
)
·

·
(

Cmm2 log2(m)− m(m + 1)
2

+ 1
)

,

which implies
‖pm‖1 ∈ O

(
2m4 log4(m)m8 log8(m)

)
,

leading to the desired upper bound on the number of copies of the pure pro-
duct switching component needed to build the polynomial-size switching com-
ponent of Theorem 3.7.2.

3.8 Switching Components of Size in O(1.38m)

We apply a copying technique to use known small switching components with
respect to a fixed number of directions to create small switching components
with respect to m pairwise linearly independent directions, for all m ∈N∗. As
an example, consider the vectors S := {s1, s2, s3, s4, s5, s6} ⊂ Z2

S :=
{(1

0

)
,
(

0
1

)
,
(

1
1

)
,
(

1
−1

)
,
(

1
2

)
,
(

2
1

)}
.

They were included in [78] as the minimal example of directions defining a
lattice 12-gon. In fact, the polynomial fS(X) := ∏i∈[6](Xs+i − Xs+i ) ∈ Z[X1, X2]

has 1-norm equal to 12:

fS(X) := ∏
i∈[6]

(Xs+i − Xs+i ) =

= X6
1X5

2 − X5
1X6

2 − X6
1X4

2 + X4
1X6

2 + X5
1X2

2 − X2
1X5

2 − X4
1X2 + X1X4

2 + X2
1 − X2

2+

−X1 + X2 = X(6,5)T − X(5,6)T − X(6,4)T
+ X(4,6)T

+ X(5,2)T − X(2,5)T − X(4,1)T
+
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3.8 Switching Components of Size in O(1.38m)

+X(1,4)T
+ X(2,0)T − X(0,2)T − X(1,0)T

+ X(0,1)T
,

see figure 3.5. The idea is to modify the directions in S through an invertible
transformation, hence multiplying every element of S by an invertible matrix
M ∈ Z2×2, in a way that the directions in S′ := S ∪ {Ms1, . . . , Ms6} are pair-
wise linearly independent. We define a new switching component with respect
to 12 directions, corresponding to the polynomial fS′ ∈ Z[X1, X2] defined as

fS′(X) := ∏
s∈S′

(Xs+ − Xs−) = ∏
s∈S

(Xs+ − Xs−) ·∏
s∈S

(X(Ms)+ − X(Ms)−)

By Lemma 2.1.16 we know that the 1-norm of the product of two polynomials
is lower than or equal to the product of the 1-norms of the factors, hence it
holds

‖ fS′‖1 ≤
∥∥∥∏

s∈S

(Xs+ − Xs−)
∥∥∥

1
·
∥∥∥∏

s∈S

(X(Ms)+ − X(Ms)−)
∥∥∥

1
.

We will show in Lemma 3.8.1 that the following holds:∥∥∥∏
s∈S

(X(Ms)+ − X(Ms)−)
∥∥∥

1
= 12,

hence ‖ fS′‖1 ≤ 144. This method allows us to use a known switching com-
ponent to produce a switching component with respect to 12 directions with
1
2 · 144 = 72 points. Possibly, the resulting switching component is not a
{0, 1}-switching component, but might contain multiple points. The dou-
bling process given in 3.4.5 would have lead to a switching component of size
211 = 2048. Simple computer search gives us a switching component of size
30, see table 3.2. We will use the idea hinted above to construct switching
components of size O(1.38m) for all m ∈ N. Before doing so, we show three
lemmas that will allow us to modify the set of directions S without modifying
the 1-norm of the corresponding polynomial fS ∈ Z[X], as well as producing
copies of S so that the resulting directions are pairwise linearly independent.

In the next lemma, we show that the norm of fS is not affected if we multi-
ply the directions s1, . . . , sm by an invertible matrix.

Lemma 3.8.1. Let S = {s1, . . . , sm} ⊂ Zd be a set of directions. Let M ∈ Zd×d,
with det(M) 6= 0. Let M(S) := {M · s | s ∈ S}. Define

fS(X) := ∏
s∈S

(Xs+ − Xs−) ∈ Z[X]

fM(S)(X) := ∏
v∈M(S)

(Xv+ − Xv−) ∈ Z[X]

It holds ‖ fS‖1 = ‖ fM(S)‖1.

Proof. We consider the ring of Laurent polynomials Z[X, X−1] and we observe

fS(X) := ∏
i∈[m]

(Xs+i − Xs−i ) = X∑i∈[m] s−i ∏
i∈[m]

(Xsi − 1).
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Let g(X) := ∏i∈[m](Xsi − 1) ∈ Z[X, X−1], hence

fS(X) = X∑i∈[m] s−i g(X).

The supports of fS and g are clearly in bijection, as well as ‖ fS‖1 = ‖g‖1. It
holds

fM(S)(X) := ∏
v∈M(S)

(Xv+ − Xv−) = ∏
i∈[m]

(X(Msi)
+ − X(Msi)

−
) =

= (−1)m ∑
I⊂[m]

(−1)|I|X∑i∈I(Msi)
−

X∑i∈[m]\I(Msi)
+

.

As for every i ∈ [m] it holds (Msi)
+ = (Msi) + (Msi)

− by definition, we can
rewrite the above expression as follows:

(−1)m ∑
I⊂[m]

(−1)|I|X∑i∈I(Msi)
−

X∑i∈[m]\I(Msi)
+
=

=(−1)mX∑i∈[m](Msi)
− · ∑

I⊂[m]

(−1)|I|X∑i∈[m]\I(Msi) =

=(−1)mX∑i∈[m](Msi)
− · ∑

I⊂[m]

(−1)|I|XM·(∑i∈[m]\I si) =

=(−1)mX∑i∈[m](Msi)
− · ∑

αXa∈Supp (g)
αXMa.

As M is invertible, fM(S) cannot be identically zero, and all the vectors Ma with
αXa ∈ Supp (g) are distinct. So it follows ‖ fM(S)‖1 = ‖g‖1, which is equal to
‖ fS‖1 as already observed.

In the second lemma we show that if d = 2, it is not restrictive to assume
the directions of S to have positive entries.

Lemma 3.8.2. Let m ∈ N∗ and let S := {s1, . . . , sm} ⊂ Z2 with si = (xi, yi)
T

pairwise linearly independent, and assume that the first non-zero entry of every vector
si to be positive. There exists an invertible matrix M ∈ Z2×2 such that Msi ≥ 0 for
all i ∈ [m], and the directions Ms1, . . . , Msm are pairwise linearly independent.

Proof. First we observe that assuming the first non-zero entry of every vector si
to be positive is not restrictive for our purpose, as this would mean including
in S the vector si or −si, and clearly si is pairwise linearly independent with
the vectors in S\{si} if and only if −si fulfills the same property. Moreover,
changing the sign of a vector does not affect the number of terms of fS, but
only their sign. Let N ∈N be defined as

N := max
j∈[m]

min{n ∈N : nxj + yj ≥ 0}

Note that if xi = 0 for some i ∈ [m], then by the assumption made on the
directions of S, it holds yi ≥ 0. Hence N is well defined. We define the matrix
M ∈ Z2×2 as

M :=
(

1 0
N 1

)
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3.8 Switching Components of Size in O(1.38m)

Then by construction Msi = (xi, Nxi + yi)
T ≥ 0. As M is invertible, it follows

that Ms1, . . . , Msm are pairwise linearly independent.

By lemmas 3.8.1 and 3.8.2, when looking for the minimum size switching
component of type fS in Z2 it is not restrictive to assume the vectors of S to
have non negative entries. However, requiring the positivity of the vectors of
S might lead to vectors with very large entries. In the next lemma we devise a
way to augment the set of directions S with a transformation of S itself, in such
a way that the vectors in the resulting set are pairwise linearly independent.

Lemma 3.8.3. Let m ∈ N∗, S = {s1, . . . , sm} ⊂ N2 a set of pairwise lin-
early independent directions. Then for every r ∈ N∗ there exist invertible matrices
M1, . . . , Mr ∈N2×2 such that the vectors in

⋃r
i=1 Mi(S) are pairwise linearly inde-

pendent.

Proof. We show the claim by induction on r. If r = 1, we can choose M = I2 the
identity matrix, and the claim follows because I2(S) = S. We assume the claim
true for r and show it for r + 1. The vectors in V :=

⋃r
i=1 Mi(S) are pairwise

linearly independent by induction hypothesis. We need to define a matrix
Mr+1 such that the vectors of V ∪Mr+1(S) are pairwise linearly independent.
We define

N := 1 + max
u,v∈V

‖u‖1‖v‖1. (3.41)

As V contains at least a vector, and (0, 0)T /∈ V by assumption, it holds N ≥ 2.
We define the matrix Mr+1 ∈N2×2 as

Mr+1 :=
(

N 1
1 N

)
It follows det(M) 6= 0 as N ≥ 2. Hence the vectors in Mr+1(S) are pairwise
linearly independent. We have to show that a vector in Mr+1(S) and a vector
in V are linearly independent. Let u = (α1, β1)

T ∈ V and v = (α2, β2)T ∈ V.
Then Mr+1u = (Nα1 + β1, α1 + Nβ1)

T, so the claim follows by showing that
the following matrix is non-singular:(

Nα1 + β1 α2

α1 + Nβ1 β2

)
which is equivalent to showing (Nα1 + β1)β2 − α2(α1 + Nβ1) 6= 0.
By contradiction, let us assume (Nα1 + β1)β2− α2(α1 + Nβ1) = 0. This rewrites
as

N(α1β2 − α2β1) + β1β2 − α2α1 = 0. (3.42)

As all the vectors in V are pairwise linearly independent by induction hypoth-
esis, it holds α1β2 − α2β1 6= 0. Hence equation (3.42) is equivalent to

N =
α2α1 − β1β2

α1β2 − α2β1
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as N is positive, the above equation implies

N =
|α2α1 − β1β2|
|α1β2 − α2β1|

≤ |α2α1 − β1β2| ≤ |α2α1|+ |β1β2| ≤ ‖u‖1‖v‖1

but this is contradicting the way N was defined in (3.41), being N > ‖u‖1‖v‖1

for all u, v ∈ V.

In Theorem 3.8.4 we apply lemmas 3.8.1, 3.8.2 and 3.8.3 to devise, for every
m ∈N∗, a switching component in Z2 of size inO(

(
n

1
r
)m

), using a given pure
product switching component with respect to r ≤ m directions and of size n.

Theorem 3.8.4. Let r, m ∈N∗ with r ≤ m and let the directions in S, with

S := {s1, . . . , sr} ⊂ Z2,

be pairwise linear independent directions such that fS = n. We can construct a
switching component (B, W) ∈ F 2

N,N ×F 2
N,N of size at most 1

2 (n
m+r

r ) with respect
to m pairwise linearly independent lattice directions.

Proof. Let q := dm
r e and observe

r · q = r ·
⌈m

r

⌉
≥ m

We show that we can define at least m directions by constructing q sets of r
directions each, in a way that the resulting r · q directions obtained are pairwise
linearly independent. By Lemma 3.8.3, there exist matrices M1, . . . , Mq ∈ Z2×2

such that the r · q vectors in

V := {Mjsi : i ∈ [r], j ∈ [q]}

are pairwise linearly independent. It holds

fV(X) := ∏
v∈V

(Xv+ − Xv−) = ∏
j∈[q]

∏
i∈[r]

(X(Mjsi)
+ − X(Mjsi)

−
) ∈ Z[X1, X2]

For every j ∈ [q], we recall Mj(S) = {Mjs | s ∈ S}, hence by Lemma 3.8.1 it
follows ‖∏i∈[r](X

(Mjsi)
+ − X(Mjsi)

−
)‖1 = n. By lemma 2.1.16 we conclude

‖ fV‖1 ≤ ∏
j∈[q]

n = nq ≤ n
m+r

r ∈ O(n m
r ),

which concludes the proof.

In the next theorem we show how to use the switching component in Z2 of
Theorem 3.8.4 to construct a switching component of the same size in higher
dimension, in a way that the resulting directions span Rd.
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Theorem 3.8.5. Let r, m ∈N∗ with r ≤ m, let the directions in S, with

S := {s1, . . . , sr} ⊂ Z2,

be pairwise linear independent and such that fS = n. Let d ∈N fulfill

2 ≤ d ≤ 2
⌈m

r

⌉
.

Then we can construct a switching component (B, W) ∈ F d
N,N × F d

N,N of size at
most 1

2 (n
m+r

r ) with respect to m pairwise linearly independent lattice directions span-
ning Rd.

Proof. Consider the construction described in the proof of Theorem 3.8.4, that
lead to a switching component in Z2 with respect to m directions and size at
most 1

2 (n
m+r

r ). Let q := dm
r e be as before and let V ⊂ Z2 be the set of r · q-

many directions defined in the proof of 3.8.4. Now consider X := (X1, . . . , Xd).
In order to obtain a switching component in dimension d ≤ 2q, we modify
fV in the following way: let t1, . . . , tq ∈ {0, . . . , 2(q − 1)} and consider the
polynomial

f̃ (X) := ∏
j∈[q]
i∈[r]

(
(Xtj+1, Xtj+2)

(Mjsi)
+ − (Xtj+1, Xtj+2)

(Mjsi)
−
)

Thus ‖ f̃ ‖1 = ‖ fV‖1 ≤ nq. Consider the function

Log : Td −→Nd

Xe 7−→ e

that to every term Xe associates the exponent vector e, that was defined in 2.1.9.
Let

αji := Log
(
(Xtj+1, Xtj+2)

(Mjsi)
+)

β ji := Log
(
(Xtj+1, Xtj+2)

(Mjsi)
−)

The polynomial f̃ corresponds to a pure product switching component
with respect to the directions

{αji − β ji : j ∈ [q], i ∈ [r]}.

They are pairwise linearly independent and span a space of dimension d, with
d ≤ 2q. We obtain directions spanning R2q by choosing tj := 2(j− 1) for all
j ∈ {1, . . . , q}. In this way, we ensure that all variables X1, . . . , Xd appear in the
support of f̃ .
Moreover, f̃ is a pure product switching component with respect to the direc-
tions given by the columns of the following rq× 2q matrix:

M1s1 . . . M1sr 0 . . . 0 0 . . . 0
0 . . . 0 M2s1 . . . M2sr 0 . . . 0
...

...
...

...
...

...
...

...
...

0 . . . 0 0 . . . 0 Mqs1 . . . Mqsr


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The columns of the matrix above are pairwise linearly independent, and are
spanning R2q, as {Mjsi : j ∈ [q], i ∈ [r]} are pairwise linearly independent and
{Mjsi : i ∈ [r]} span R2 for all j ∈ [q].

Theorem 3.8.4 allows us to construct switching components in Z2 for arbi-
trarily many directions starting from a known switching component of size n
with respect to r directions. In Theorem 3.8.5 we lift the switching component
of Theorem 3.8.4 to a d-dimensional space, provided that d ≤ 2dm

r e. The size of
the resulting switching component depends on the value of n

1
r . The method

provided by theorems 3.8.4,3.8.5 yields better results when n
1
r is as small as

possible. In the table below, we list the values of (2n)
1
r for the switching com-

ponents listed in tables 3.1, 3.2 and 3.3. As before, r represents the number of
directions, 2n the minimum 1-norm of a polynomial fS that was found, with
|S| = r, and in the last column we include n

1
r rounded up at the 4th digit. For

r = 3, we have n
1
3 = 1.8172, which we know also from the already mentioned

result in [127].

r 2n (2n)
1
r

1 2 2
2 4 2
3 6 1.8172
4 8 1.6818
5 12 1.6438
6 12 1.5131
7 20 1.5342
8 24 1.4878
9 36 1.4891
10 40 1.4462

r 2n (2n)
1
r

11 60 1.4510
12 60 1.4067
13 84 1.4062
14 116 1.4044
15 172 1.4095
16 248 1.4115
17 286 1.3948
18 364 1.3877
19 428 1.3757
20 572 1.3737

Table 3.4: Upper bounds on the size of switching components

Corollary 3.8.6. Let m ∈ N∗ and let 2 ≤ d ≤ 2d m
20e. There is a constructive way

to produce switching components in Zd of size at most 1
2 · 572

m+20
20 , i.e., in O(1.38m),

with respect to m pairwise linearly independent directions in Nd.

Proof. Consider the pure product switching component with respect to r = 20
directions and of size n = 572, from table 3.3 and depicted in figure 3.6. Lem-
mas 3.8.1, 3.8.2, 3.8.3 and theorems 3.8.4, 3.8.5 give us a constructive method
that yields switching components in Zd, 2 ≤ d ≤ 2d m

20e, with respect to m
directions and size lower than

572
m+20

20 ∈ O(1.38m).
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3.8 Switching Components of Size in O(1.38m)

Remark 3.8.7. The bound of 1
2 · 572

m+20
20 on the size of a switching component with

respect to m directions in Z2 is better than the bound 2m−1, that we obtain from the
doubling procedure 3.4.5, for values of m that are bigger or equal than 18, but the
construction in 3.8.4 leads to N-switching components, while the procedure in 3.4.5
can easily return {0, 1}-switching components.

The computer search we have undertaken to determine the mentioned ta-
bles 3.1, 3.2 and 3.3, was not extensive, and there could be room for improve-
ment. By arguments similar to those in lemmas 3.8.1, 3.8.2, 3.8.3 and Theorem
3.8.4, we can then find a switching component of size O((2n)

1
r )m) for every

m ∈ N∗. We decided not to look for better numerical results than the ones
we obtained from r = 20 directions, because Section 3.9 will give the desired
improvement and will generalize Theorem 3.8.4, yet applying a different pro-
cedure.
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3.9 Switching Components from Special Polytopes

The vertices of a polytope with many symmetries are a natural choice for
switching components with small size. In the current section we consider
Archimedean solids, that are semi-regular polyhedra in R3, whose facets are
regular polygons, and whose vertices are identical, i.e., there exists an isometry
of the polyhedron that sends a vertex to every other vertex. They are 13 in
total — even though their number could be 14 according to a different classi-
fication [92] — and they can be identified by their vertex configuration, which
is a sequence composed of the number of sides that the faces around a vertex
have. More details on Archimedean solids can be found in [172, 173]. In the
following, we show that the vertices of certain Archimedean solids can be col-
ored to form switching components, and we generalize their structure to any
dimension.

Let d ∈N∗ and let Sd be the set of all permutations of order d, hence

Sd = {σ : [d]→ [d] : σ is bijective}

If x = (x1, . . . , xd)
T ∈ Zd, and σ ∈ Sd we denote by σ(x) the vector

σ(x) := (xσ(1), . . . , xσ(d))
T.

3.9.1 The Permutahedron

We denote by Ud the set of the points whose entries are permutations of (1, . . . , d)T

Ud := {σ(1, . . . , d)T : σ ∈ Sd}

The number of points contained in Ud is d!. For every d ∈ N∗, the so-called
Permutahedron is

Pd := conv(Ud).

According to Ziegler [179], the Permutahedron was first investigated by Schoute
[160]. It carries interesting properties, for example, it is a simple zonotope. The
following proposition holds.

Proposition 3.9.1. The Permutahedron Pd has dimension d− 1 for every d ∈N∗.

Proof. It follows easily by observing that every y = (y1, . . . , yd) ∈ Ud fulfills

y1 + · · ·+ yd = ∑
i∈[d]

i =
(d + 1)d

2

Hence Ud is contained in the hyperplane H := {x ∈ Rd : ∑i∈[d] xi =
(d+1)d

2 }
and since H is convex, we have Pd ⊂ H. Hence Pd has at most dimension d− 1.
Consider the d− 1 points of Ud obtained by swapping two adjacent entries of
p0 := (1, . . . , d)T:

p1 := (2, 1, 3, . . . , d)T, p2 := (1, 3, 2, 4, . . . , d)T, . . . pd−1 := (1, 2, . . . , d− 2, d, d− 1)T.
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3.9 Switching Components from Special Polytopes

We show that {p0, p1, . . . , pd−1} are affinely independent by showing, equiva-
lently, that the d− 1 vectors defined as ai := pi − p0 for every i ∈ [d− 1] are
linearly independent. We construct a matrix A ∈ Zd×(d−1) whose columns are
the vectors ai, i ∈ [d− 1]. We obtain

A =



1 0 . . . . . . 0

−1 1 0 . . .
...

0 −1 1
. . .

...
... 0

. . . . . . 0
...

...
. . . −1 1

0 . . . . . . 0 −1


Observe that A has rank d− 1: for example, we can add the last row, which is
equal to uT

d−1, to the (d− 1)-th row, and by iteration we obtain the matrix(
0 . . . 0
−Id−1

)
,

which has clearly rank d − 1. Hence Pd has at least dimension d − 1, which
completes the proof.

For d = 4 the Permutahedron P4 is a truncated octahedron in the three di-
mensional space H := {x ∈ R4 : ∑i∈[4] xi = 10}. It has 14 faces (8 regular
hexagons and 6 square), 36 edges, and 24 vertices. Its vertex configuration is
(4, 6, 6), see figure 3.7. In R3 it can be realized as the convex hull of all the
points whose coordinates are permutations of (0,±1,±2).

Figure 3.7: Truncated Octahedron

In the following we show that the points in Ud can be split into two sets
B, W so that (B, W) is a switching component with respect to (d

2) lattice direc-
tions.
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Theorem 3.9.2. For every d ∈ N∗, there exists two sets B, W ⊂ Zd such that
B ·∪W = Ud, |B| = |W| = d!

2 , and (B, W) is a switching component with respect to
the (d

2) lattice directions defined as

sij := ui − uj ∀ 1 ≤ i < j ≤ d,

where ui is the i-th unit vector in Zd.

Proof. As every point in Ud is obtained as σ(1, . . . , d)T for some σ ∈ Sd, we can
divide the elements of Ud using the parity of the permutation σ as criterion.
The parity N(σ) associated to a permutation σ ∈ Sd is the number

N(σ) :=
∣∣{(i, j) ∈ [d]2 : i < j and σ(i) > σ(j)}

∣∣.
We set

B := {σ(1, . . . , d)T ∈ Ud : N(σ) is even} W := {σ(1, . . . , d)T ∈ Ud : N(σ) is odd}.

As the number of even permutations is equal to the number of odd permuta-
tions, it holds |B| = |W| = d!

2 .
Let y = (y1, . . . , yd)

T ∈ B. It holds y = σ1(1, . . . , d)T for some σ1 ∈ Sd such
that N(σ1) is even.
For every 1 ≤ i < j ≤ d consider the transposition τij ∈ Sd, that swaps the
entries i and j of a vector in Zd, and consider τij(y):

τij(y) = (y1, . . . , yi−1, yj, yi+1, . . . , yj−1, yi, yj+1, . . . , yd)
T.

It corresponds to σ2(1, . . . , d)T with σ2 ∈ Sd. Since σ2 = τij ◦ σ1, we have that
N(σ2) is odd, hence τij(y) ∈W. Moreover,

y− τij(y) = (0, . . . , 0, yi − yj, 0, . . . , 0, yj − yi, 0 . . . , 0)T = (yi − yj) · sij

which completes the proof.

The pair (B, W) as provided by Theorem 3.9.2 is a {0, 1}-switching com-
ponent with respect to m := (d

2) directions and size d!
2 . As 2m = d(d − 1) it

holds
d < 1 +

√
2
√

m.

We use Stirling’s approximation to estimate (1+
√

2
√

m)!, see [73], section 2.9.

Theorem 3.9.3 (Stirling’s Approximation [73]). Let n ∈N. it holds

n! ∼
√

2πn
(n

e

)n
for n→ ∞.

A rougher upper bound on n! is given by

n! ≤ 2n log2(n) ∀n ∈N∗.
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By Theorem 3.9.3 we obtain that the size of the switching component given
by 3.9.2 can be bounded from above in the following way

d! < (1 +
√

2
√

m)! ≤ 2(1+
√

2
√

m) log2(1+
√

2
√

m) ∈ 2O(
√

mlog(
√

m)). (3.43)

In the following theorem we show that the switching component formed by
the points of Ud is a pure product.

Theorem 3.9.4. Let d ∈N∗ and let

Ud := {σ(1, . . . , d)T : σ ∈ Sd}

as before, and let (B, W) be as defined in Theorem 3.9.2, i.e.,

B := {σ(1, . . . , d)T ∈ Ud : N(σ) is even} W := {σ(1, . . . , d)T ∈ Ud : N(σ) is odd}

with
N(σ) :=

∣∣{(i, j) ∈N2 : i < j and σ(i) > σ(j)}
∣∣.

Let sij = ui − uj for every 1 ≤ i < j ≤ d and let

S := {sij : 1 ≤ i < j ≤ d}.

Then
θ(B, W) = ± ∏

i∈[d]
Xi · fS(X) ∈ Z[X] (3.44)

Proof. By Theorem 3.1.3 we know that as (B, W) is a switching component with
respect to the direction in S, then the polynomial

θ(B, W) = ∑
σ∈Sd

N(σ)≡0 (mod 2)

Xσ(1,...,d)T − ∑
σ∈Sd

N(σ)≡1 (mod 2)

Xσ(1,...,d)T

is divisible by the binomial Xi − Xj for every 1 ≤ i < j ≤ d. Hence θ(B, W) is
divisible by fS(X). Moreover, the polynomial θ(B, W) is divisible by the mono-
mial ∏i∈[d] Xi, since every term Xσ(1,...,d)T

of θ(B, W) is divisible by ∏i∈[d] Xi. As
the term ∏i∈[d] Xi does not divide fS(X), there exists p(X) ∈ Z[X] such that

θ(B, W) = p(X) ∏
i∈[d]

Xi · fS(X).

The polynomial θ(B, W) has degree d in every variable Xi, while fS has degree
d− 1 in every variable. This implies deg(p) = 0, that means p(X) is a constant.
As all coefficients of the terms of θ(B, W) are either 1 or −1, it follows p(X) =
±1, which concludes the proof.

In order to eliminate the factor ∏i∈[d] Xi in (3.44) it is sufficient to trans-
late the points in Ud by (−1, . . . ,−1)T ∈ Zd. Thus the switching component
corresponding to Ud is a pure product.
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3.9.2 The Truncated Cuboctahedron

We now focus on the so-called Truncated Cuboctahedron, that is an Archimedean
solid and is depicted in figure 3.9.7. It is defined as

conv{σ(±1,±(1 +
√

2),±(1 + 2
√

2)T) : σ ∈ S3}

The vertex configuration of the Truncated Cuboctahedron is (4, 6, 8), as
around every vertex there are a square, an hexagon and an octahedron.

If we drop the regularity condition on the facets, we can choose the set of
vertices to be lattice points:

{σ(±a,±b,±c)T : σ ∈ S3, a < b < c ∈ Z}

and obtain a switching component of size 24 with respect to 9 directions. We
can further generalize this to every dimension d ∈N.

Definition 3.9.5 (d-Dimensional Truncated Cuboctahedron). Let d ∈ N∗. We
define

T Cd := {σ(i1, i2 · 2, . . . , id · d)T : σ ∈ Sd, (i1, . . . , id) ∈ {1,−1}d}

The set conv
(
T Cd

)
⊂ Rd is called d-dimensional Truncated Cuboctahedron.

Figure 3.8: Truncated Cuboctahedron

In the next proposition we show that conv(T Cd) is a d-dimensional poly-
tope.

Proposition 3.9.6. conv(T Cd) ⊂ Rd has dimension d.

Proof. As in the proof of Proposition 3.9.1, we consider the points of T Cd given
by transposition of subsequent entries of p0 := (1, . . . , d)T:

p1 := (2, 1, 3, . . . , d)T, p2 := (1, 3, 2, 4, . . . , d)T, . . . pd−1 := (1, 2, . . . , d− 2, d, d− 1)T.

Moreover, we consider the point pd := (−1, 2, . . . , d)T ∈ T Cd. Like we did in
the proof of 3.9.1, we show that p0, . . . , pd are d+ 1 affinely independent points
by showing that the vectors ai := pi − p0, for i ∈ [d] are linearly independent.
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3.9 Switching Components from Special Polytopes

We construct a matrix A ∈ Zd×d whose columns are the vectors ai, i ∈ [d− 1].
We obtain

A =



1 0 . . . . . . 0 −2

−1 1 0 . . .
... 0

0 −1 1
. . .

...
...

... 0
. . . . . . 0 0

...
...

. . . −1 1 0
0 . . . . . . 0 −1 0


We perform elementary operations on the rows of A: we add the last row to
the (d− 1)-th row, the (d− 1)-th to the (d− 2)-th and so on, until we obtain
the matrix (

0 −2
−Id−1 0

)
,

which has clearly rank d, and the claim follows.

Next theorem shows that the vertices of the d-dimensional Truncated Cuboc-
tahedron form a switching component.

Theorem 3.9.7. The vertices of the d-dimensional Truncated Cuboctahedron can be
colored to form a switching component of size n := 2d−1d! with respect to m := d2

pairwise linearly independent directions.

Proof. As before, let

T Cd = {σ(i1, i2 · 2, . . . , id · d)T : σ ∈ Sd, (i1, . . . , id) ∈ {1,−1}d}.

It holds |T Cd| = 2d · d!. We define two sets B, W ⊂ Zd such that

|B| = |W| = 2d−1 · d! =: n ∧ T Cd = B ∪̇W

Given a point (x1, . . . , xd)
T ∈ T Cd, consider the permutation σ ∈ Sd such

that σ(1, . . . , d)T = (|x1|, |x2|, . . . , |xd|)T. The parity N(σ) associated to σ is the
number

N(σ) :=
∣∣{(i, j) ∈ [d]2 : i < j and σ(i) > σ(j)}

∣∣.
We define the function δ : T Cd → Z as

δ(x1, . . . , xd)
T := N(σ) + |{j ∈ [d] : xj < 0}|,

hence δ(x1, . . . , xd)
T is a parity number associated to (x1, . . . , xd)

T.
If δ(x1, . . . , xd)

T is even, then we assign the point (x1, . . . , xd)
T to B, if it is odd,

we assign it to W.

B :=
⋃

(x1,...,xd)
T∈T Cd

δ(x1,...,xd)
T∈2Z

{(x1, . . . , xd)
T} W :=

⋃
(x1,...,xd)

T∈T Cd
δ(x1,...,xd)

T∈2Z+1

{(x1, . . . , xd)
T}

(3.45)
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The sets B and W have n := 2d−1 · d! elements each, as we can easily construct
a bijection between B and W. We show in the following that B and W are
solutions to GP1,d(2d−1 · d!, d2). Let ui be the i-th unit vectors in Zd. Consider
the set of directions S defined as

S := {ui : i ∈ [d]} ∪ {ui + uj : ∀ 1 ≤ i < j ≤ d} ∪ {ui − uj : ∀ 1 ≤ i < j ≤ d}

The number of directions in S is then d + (d
2) + (d

2) = d2. We show that the sets
B and W, as defined in (3.45), are tomographically equivalent with respect to
the directions in S, by showing that for every direction s ∈ S and every point
x ∈ B, we can determine an unique point y ∈W such that

x− y = λs

for some λ ∈ R. For simplicity reasons, in the following we call such a point y
the neighbor of x in direction s.
Let x := (x1, . . . , xi, . . . , xj, . . . , xd)

T ∈ B, then x has the following neighbors in
the directions of S:

yui := (x1, . . . ,−xi, . . . , xd)
T in direction ui ∀i ∈ [d]

y(ui+uj) := (x1, . . . ,−xj, . . . ,−xi, . . . , xd)
T in direction ui + uj ∀i, j ∈ [d], i < j

y(ui−uj) := (x1, . . . , xj, . . . , xi, . . . , xd)
T in direction ui − uj ∀i, j ∈ [d], i < j

In fact, for all i ∈ [d] and for all 1 ≤ i < j ≤ d it holds

x− yui = (0, . . . , 0, 2xi, 0, . . . , 0)T = 2xi · ui (3.46)

x− y(ui+uj) = (0, . . . , 0, xi + xj, 0, . . . , 0, xi + xj, 0, . . . , 0)T = (xi + xj) · (ui + uj)

x− y(ui−uj) = (0, . . . , 0, xi − xj, 0, . . . , 0, xj − xi, 0, . . . , 0)T = (xi − xj) · (ui − uj)

It is easy to see that yui , y(ui+uj), y(ui−uj) are in W, as the parity of their δ-image
is different than the parity of δ(x):

δ(yui) = δ(x)± 1 δ(y(ui−uj)) ≡ δ(x) + 1 mod 2,

and denoting as σij the permutation that fulfills σij(1, . . . , d)T = y(ui+uj), we
have

δ(y(ui+uj)) = N(σij) + |{l ∈ [d] : uT
l y(ui+uj) < 0}| =

= N(σij) + |{l ∈ [d] : xl < 0}|+ r

where

r =


0 if xi · xj < 0

2 if xi > 0∧ xj > 0

−2 if xi < 0∧ xj < 0

Furthermore,
N(σij) ≡ N(σ) + 1 mod 2,
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hence
δ(y(ui+uj)) ≡ δ(x) + 1 mod 2.

This concludes the proof of B and W being a switching component of size
2d−1 · d! with respect to the d2 directions in S.

Remark 3.9.8. Notice that equation (3.46) together with Theorem 3.1.6 implies that
the polynomial θ(B, W), with B and W as in (3.45), is divisible by the binomial
X2

i − 1, for every i ∈ [d].

The construction of T Cd depends on d ∈ N∗, hence given m ∈ N which is
not a perfect square, we can return at best a switching component with respect
to d2 directions, with d2 the smallest square number which is bigger than m.
In the next proposition we compare the size of T Cd in (3.49) with the size of
a switching component with respect to m directions that we would obtain by
the doubling procedure 3.4.5.

Next lemma is a variant of Stirling’s formula, that we will apply in Propo-
sition 3.9.10 to estimate the size of T Cd.

Lemma 3.9.9. Let n ∈N, then

n! ≤
(n + 1

2

)n

Proof. We show the claim by induction on n. If n = 1 we get 1 ≤ 1. We assume
that the claim holds for n ∈N and we show it for n + 1. We have

(n + 1)! = n!(n + 1) ≤
(n + 1

2

)n
(n + 1) = 2

(n + 1
2

)n+1
(3.47)

To conclude we need to show

2 ≤
(n + 2

n + 1

)n+1
=
(

1 +
1

n + 1

)n+1
(3.48)

As(
1 +

1
n + 1

)n+1
=

n+1

∑
i=0

(
n + 1

i

)
1

(n + 1)i ≥
1

(n + 1)0 + (n + 1)
1

(n + 1)1 = 2

the claim follows from equation (3.47).

In the next proposition, we show that if m = d2, then the size of T Cd is in
2O(
√

mlog(
√

m)), as we showed in (3.43) for the Permutahedron.

Proposition 3.9.10. For d = d
√

me, the size of T Cd is less than 2d
√

m e log2(d
√

m e+1)−1.

Proof. The number m is between two perfect squares

b
√

mc2 ≤ m ≤ d
√

me2
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Hence we set d := d
√

me. The size of the switching component associated to
the correspondent T Cd ⊂ Zd is

2d−1 · d! = 2d
√

m e−1 · (d
√

m e)! (3.49)

We apply Lemma 3.9.9 to estimate the factorial, and we obtain

2d
√

m e−1 · (d
√

m e)! ≤ 2d
√

m e−1 ·
(d√m e+ 1

2

)d√m e
=

=
1
2
(
d
√

m e+ 1
)d√m e.

The claim follows.

We recall Lemma 1.2.11 on projections of switching components, and con-
sider the vertices of a Truncated Cuboctahedron in Zd, divided in two disjoint
sets B, W as shown in Proposition 3.9.7. We show that we can construct a
matrix M ∈ Z2×d such that the projection π : Zd → Z2 with π(x) := Mx
preserves the number of directions of the switching component associated to
T C.

Lemma 3.9.11. Let d ∈N∗. There exists a matrix M ∈ Z2×d such that the directions
Mui, M(uj + ur), M(uj − ur) are pairwise linearly independent, ∀i, j, r ∈ [d] with
j < r.

Proof. Let N := 2d + 2 and let a1, a2, . . . , ad ∈N be such that

ar > N · (ai + aj)al ∀i, j, l, r ∈ [d], with i, j, l < r;

a possible choice is defining

a1 := 1 ar := 1 + N · ∑
i,j,l<r

(ai + aj)al ∀r ∈ {2, . . . , d}

Let M ∈ Z2×d be defined as(
d d− 1 . . . 2 1
a1 a2 . . . ad−1 ad

)
We show that any two of the vectors Mui, M(uj + ur), M(uj − ur) ∈ Z2 with
i, j, r ∈ [d] and j < r are linearly independent.
We need to consider the following possible pairs:

(a) Mui, Muj with i < j

(b) Mui, M(uj + ur) with j < r

(c) Mui, M(uj − ur) with j < r

(d) M(uj + ur), M(ul + uh) with j < r, l < h and (j, r) 6= (l, h)
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(e) M(uj + ur), M(ul − uh) with j < r, l < h and (j, r) 6= (l, h)

(f) M(uj − ur), M(ul − uh) with j < r, l < h and (j, r) 6= (l, h)

where

Mui =

(
d− i + 1

ai

)
M(ui + uj) =

(
2d− i− j + 2

ai + aj

)

M(ui − uj) =

(
j− i

ai − aj

)
We analyze each of the cases separately:

(a) Mui, Muj with i < j. We show that the matrix(
d− i + 1 d− j + 1

ai aj

)
cannot have determinant equal to 0. By contradiction, let

(d− i + 1)aj = (d− j + 1)ai

that cannot be, since aj > ai and d− i + 1 > d− j + 1.

(b) Mui, M(uj + ur) with j < r. The matrix(
d− i + 1 2d− j− r + 2

ai aj + ar

)
cannot have determinant equal to 0. By contradiction, let

(d− i + 1)(aj + ar) = (2d− j− r + 2)ai. (3.50)

There are three possible cases: i < r, i > r and i = r. If i < r, then

(d− i + 1)(aj + ar) > ar > Nai > (2d− j− r + 2)ai

hence (3.50) cannot be true. If i > r, then

(2d− j− r + 2)ai > ai > N(aj + ar) > (d− i + 1)(aj + ar)

which is contradicting (3.50). Lastly, let i = r. Since j < r by assumption,
then j < i, and (3.50) rewrites as

(d− i + 1)aj = (d− j + 1)ai

which contradicts

ai(d− j + 1) > ai > N(aj + aj)aj > Naj > (d− i + 1)aj
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(c) Mui, M(uj − ur) with j < r. Consider the matrix(
d− i + 1 r− j

ai aj − ar

)
its determinant is (d− i + 1)(aj − ar)− (r − j)ai which cannot be 0, since
(d− i + 1)(aj − ar) < 0 as well as −(r− j)ai < 0.

(d) M(uj + ur), M(ul + uh) with j < r, l < h and (j, r) 6= (l, h). Consider the
matrix (

2d− j− r + 2 2d− l − h + 2
aj + ar al + ah

)
.

By contradiction its determinant is 0, which means

(al + ah)(2d− j− r + 2) = (aj + ar)(2d− l − h + 2) (3.51)

If r < h or h < r holds, w.l.o.g. r < h, then

(al + ah)(2d− j− r + 2) > ah > N(aj + ar) > (aj + ar)(2d− l − h + 2)

which is contradicting (3.51). If r = h then one among l < j and j < l has
to hold, otherwise it would be (j, r) = (l, h), excluded by hypothesis. Let
us assume l < j. Hence

(al + ah)(2d− j− r + 2) > (aj + ah)N > (aj + ar)(2d− l − h + 2)

which contradicts (3.51).

(e) M(uj + ur), M(ul − uh) with j < r, l < h and (j, r) 6= (l, h). Consider the
matrix (

2d− j− r + 2 h− l
aj + ar al − ah

)
.

Its determinant is (2d− j− r + 2)(al − ah)− (h− l)(aj + ar) which cannot
be 0, as (2d− j− r + 2)(al − ah) < 0 and −(h− l)(aj + ar) < 0.

(f) M(uj − ur), M(ul − uh) with j < r, l < h and (j, r) 6= (l, h). Consider the
matrix (

r− j h− l
aj − ar al − ah

)
By contradiction, its determinant is 0, which is equivalent to

(al − ah)(r− j) = (aj − ar)(h− l) (3.52)

Without loss of generality, h > r or h = r. Assume first h > r. Then
equation (3.52) can be rewritten as

ah = (ar − aj)
h− l
r− j

+ al
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but as

ah > N(ar + aj)al > N(ar + aj) + al >
h− l
r− j

(ar − aj) + al

we get a contradiction. If r = h then w.l.o.g. we can assume j < l. Hence
equation (3.52) becomes

ar(l − j) = (r− j)al − (r− l)aj

which contradicts

ar(l − j) > ar > N(al + aj) > (r− j)al − (r− l)aj.

This concludes the proof that all vectors Mui, M(uj + ur), M(uj − ur) ∈ Z2

with i, j, r ∈ [d] and j < r are pairwise linearly independent.

Next lemma extends Lemma 3.9.11 by defining a projection matrix M ∈ Zl×d

so that the directions in Zl Mui, M(uj + ur), M(uj − ur) are pairwise linearly
independent and spanning Rl , ∀i, j, r ∈ [d] with j < r and for every 2 ≤ l < d.

Lemma 3.9.12. Let d ∈ N∗ and let h ∈ N∗ such that 2 ≤ h < d. There exists
a matrix M ∈ Zh×d such that the directions Mui, M(uj + ur), M(uj − ur) are
pairwise linearly independent and are spanning Rh, ∀i, j, r ∈ [d] with j < r .

Proof. If h = 2, consider as M the matrix presented in Lemma 3.9.11. If h > 2,
define as in Lemma 3.9.11 the numbers N := 2d+ 2 and a1, a2, . . . , ad ∈N such
that

ar > N · (ai + aj)al ∀i, j, l, r ∈ [d], with i, j, l < r

for example

a1 := 1 ar := 1 + N · ∑
i,j,l<r

(ai + aj)al ∀r ∈ {2, . . . , d}

Let M ∈ Z2×d be as in the proof of Lemma 3.9.11

M :=
(

d d− 1 . . . 2 1
a1 a2 . . . ad−1 ad

)
Let now define a matrix M ∈ Zh×d as

M :=
(

M
Ih−2 A

)
where A is any matrix in Z(h−2)×(d−2). As Mui, M(uj + ur), M(uj − ur) are
pairwise linearly independent ∀i, j, r ∈ [d] with j < r, then also Mui, M(uj + ur),
M(uj − ur) are pairwise linearly independent. Moreover, the directions Mui,
M(uj + ur), M(uj − ur) span Rh since the first h columns of M, corresponding
to the directions Mu1, . . . , Muh, form an h× h non-singular matrix.
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Theorem 3.9.13 is a straightforward consequence of 3.9.7, 3.9.10, 3.9.11 and
3.9.12.

Theorem 3.9.13. For every m ∈ N∗ and every 2 ≤ d ≤ d
√

me there exists a
switching component in Zd with respect to m directions and of size at most

1
2
(
d
√

m e+ 1
)d√m e,

i.e., in 2O(
√

mlog(
√

m)).

We conclude this section showing that T Cd is a pure product switching
component, see 3.3.1. This result will be needed in Chapter 5.

Theorem 3.9.14. Let T Cd be as defined in 3.9.5 and let B, W as in (3.45). Let

S := {2ui : i ∈ [d]} ∪ {ui + uj : ∀ 1 ≤ i < j ≤ d} ∪ {ui − uj : ∀ 1 ≤ i < j ≤ d}.

The polynomial associated to (B, W) via the usual encoding 3.1.1 is equal to ± fS.

Proof. As shown in 3.9.7 and observed in 3.9.8, (B, W) is a switching compo-
nent with respect to the directions of S. As B and W contain points with neg-
ative entries, we translate both B and W by a vector (d, . . . , d) ∈ Zd, and we
denote by B and W the resulting sets, respectively. By Proposition 1.2.8, this
operation does not affect the property of being a switching component. The
translation let entries in the range {−d, . . . ,−1} be in {0, . . . , d− 1}, as well as
entries of values in {1, . . . , d} get in {d+ 1, . . . , 2d}. By definition of T Cd, 3.9.5,
for all i ∈ [d] there exists a point x ∈ B∪W such that the i-th entry of x is equal
to 2d. By 3.1.6, the polynomial

g(X) := ∑
b∈B

Xb − ∑
w∈W

Xw

is divisible by the polynomial fS, where

fS := ∏
i∈[d]

(X2
i − 1) ∏

1≤i<j≤d
(XiXj − 1) ∏

1≤i<j≤d
(Xi − Xj)

The degree of fS is 2 + d− 1 + d− 1 = 2d in every variable, as well as the de-
gree of g(X), hence g divided by fS is a polynomial of degree 0, i.e., a constant
α ∈ Z:

g(X) = α · fS(X)

As g(X) does not contain multiple points, and fS(X) has integer coefficients, it
follows α = ±1.

One advantage that both the Permutahedron and the d-dimensional Trun-
cated Cuboctahedron share, is that they form switching components of “small”
size and are contained in small grids. However their projections might lose
this property.
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Archimedean solids in discrete tomography were already considered by
Gardner in [77], §2.2: he showed that the so-called Truncated Icosidodecahedron,
whose vertex configuration is (4, 6, 10), and the Snub Dodecahedron, with vertex
configuration (3, 3, 3, 3, 5), are convex polyhedra in R3 whose sets of vertices
have the same X-rays with respect to 6 directions in general position. It is an
open problem to establish if there exist two distinct convex lattice sets with
the same X-rays with respect to 7 or more lattice directions of R3 in general
position, see [77], §2.2.

3.10 Bounds Comparison

In this section we compare the bounds given by theorems 3.8.4, 3.9.13 and
the doubling procedure 3.4.5. By Theorem 3.8.4, for every m ∈ N∗ we can
determine a switching component in Z2 with respect to m directions of size at
most

1
2

572d
m
20 e

By Theorem 3.9.13, for every m ∈N we can determine a switching component
in Z2 with respect to m directions of size at most

2d
√

m e−1(d
√

m e)!

while the doubling procedure 3.4.5 gives us a bound of 2m−1. We show the
following:

Proposition 3.10.1. There exists m0 ∈ N such that for every m ∈ N, m > m0 it
holds

2d
√

m e−1(d
√

m e)! < 1
2

572d
m
20 e < 2m−1.

The proof follows easily by applying the well-known Sandwich Theorem, see
[85], proposition 3.25.

Proof. We show equivalently that there exists m0 ∈ N such that for every m ∈
N, m > m0 it holds

2d
√

m e(d
√

m e)! < 572d
m
20 e < 2m. (3.53)

Observe
572

m
20 ≤ 572d

m
20 e ≤ 572

m
20+1

hence it is sufficient to show that for m ∈N big enough, the following inequal-
ities hold true

2d
√

m e(d
√

m e)! < 572
m
20 (3.54)

572
m
20+1 < 2m (3.55)
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As the functions x
1
m and xm defined for x ∈ R+ are increasing for every m ∈

N∗, showing inequalities (3.54) and (3.55) is equivalent to show that for m ∈N

big enough the following holds:(
2d
√

m e(d
√

m e)!
) 1

m
<
(

572
m
20

) 1
m
= 572

1
20 (3.56)(

572
m
20+1

) 1
m
< 2 (3.57)

We set l := 572
1
20 and observe 1.37 < l < 1.38. Inequality (3.56) follows by

Theorem 3.9.13, since

lim
m→∞

(
2d
√

m e(d
√

m e)!
) 1

m
= 1 (3.58)

Concerning inequality (3.57), we easily see

lim
m→∞

(
572

m
20+1

) 1
m
= lim

m→∞
572

1
20 · 572

1
m = 572

1
20 = l. (3.59)

The claim follows.

The constructions given in theorems 3.8.4 and 3.9.13 give switching compo-
nents of sizes at most 1

2 572d
m
20 e and 2d

√
m e−1(d

√
m e)!, respectively. We showed

in Proposition 3.10.1 that the former construction is asymptotically worse than
the latter. However, for small values of m, a bound such as 1

2 572d
m
20 e can

be competitive too. For example, if m = 20, then 1
2 572d

m
20 e = 286 while

2d
√

m e−1(d
√

m e)! = 1920. If the difference⌈m
20

⌉
− m

20

is big compared to m
20 , for example for small m such that m mod 20 is a small

number, rounding up m
20 has a big effect on m

20 . In these cases, instead of
1
2 572d

m
20 e, one could use in Theorem 3.8.4 a switching component from tables

3.1, 3.2 and 3.3 with respect to fewer directions, so to have a more refined
bound. For example, if m = 21 then

2d
√

m e−1(d
√

m e)! = 1920
1
2

572d
m
20 e = 163592

while using a smallest known switching component with respect to 12 lines as
sample, see table 3.2, we obtain

1
2

60d
m
12 e =

1
2

60d
21
12 e = 1800.

Hence, it might be worth investigating other bounds obtainable from Theorem
3.8.4. However, the bound 2d

√
m e−1(d

√
m e)! is asymptotically better than any

bound we can obtain fixing a sample switching component and replicating it a
suitable number of times, by arguments similar to those presented in the proof
of proposition 3.10.1.
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Chapter 4

The Prouhet-Tarry-Escott
Problem in Discrete Tomography

The Prouhet-Tarry-Escott (PTE) problem is a several centuries old problem
which appears in many disguises in different areas of mathematics. A first ex-
ample of PTE-solution was mentioned in a letter from Euler to Goldbach [71]
dated 1751, see 4.4.4. Prouhet [147] first formalized the problem in 1851. The
problem was then investigated by Escott [70] in 1910 and posed as a question
by Tarry [171] in 1913. In 1952, Dickson dedicates chapter XXIV of the second
volume of his manuscript History of the Theory of Numbers [62] to the problem,
that he attributed to Tarry and Escott only. Wright pointed out Prouhet’s con-
tribution in [177]. The problem has connections to problems in number the-
ory [33, 34, 122, 128, 144], among which we mention the easier Waring’s problem
[178], algebra [137], graph theory [101], combinatorics [3, 124], computer sci-
ence [32] and coding theory [76]. Generalizations are discussed in [18, 48, 116,
148, 149]. Surveys can be found in [7, 33, 34, 62, 97].

4.1 The Prouhet-Tarry-Escott Problem

In this section we define the general Prouhet-Tarry-Escott problem, as introduced
in [18], and show several related results. If a ∈ Zd and q ∈ Nd, we denote by
aq the quantity

aq := ∏
i∈[d]

aqi
i .

Definition 4.1.1 (General Prouhet-Tarry-Escott Problem). Given κ, n, d ∈ N∗,
find disjoint multisets {{a1, ..., an}} and {{b1, ..., bn}} of points in Zd such that for all
q ∈Nd with ‖q‖1 ≤ κ it holds

n

∑
i=1

aq
i =

n

∑
i=1

bq
i .

We also write [a1, . . . , an] =κ [b1, . . . , bn] for such a solution.
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We abbreviate as PTEd(n, κ) the problem of finding solutions

[a1, . . . , an] =κ [b1, . . . , bn]

in Zd. We call size of a PTE-solution the number n, degree the number κ,
while d is the dimension of the space. Requiring the multisets {{a1, ..., an}} and
{{b1, ..., bn}} to be disjoint, we are automatically excluding the so-called trivial
solutions, i.e., multisets {{a1, ..., an}} and {{b1, ..., bn}} such that {{a1, ..., an}} is a
permutation of {{b1, ..., bn}}. The case d = 1 will be referred to as the classic case,
and denoted simply as PTE(n, κ). For example, the sets {0, 4, 5}, {1, 2, 6} ⊂ Z

form a solution of PTE(3, 2), since

0 + 4 + 5 = 9 = 1 + 2 + 6
02 + 42 + 52 = 41 = 12 + 22 + 62

Below we describe simple transformations that can be performed on a so-
lution of PTEd(n, κ) in order to obtain new solutions, also in higher or lower
dimensions. The following proposition for the case d = 1 was first published
by Frolov in [74].

Proposition 4.1.2 (Translation of PTE). Let [a1, . . . , an] =κ [b1, . . . , bn], ai, bj ∈ Zd

for all i, j ∈ [n]. Then [a1 + t, . . . , an + t] =κ [b1 + t, . . . , bn + t] for all t ∈ Zd.

Proof. Let us fix an exponent vector (q1, . . . , qd) ∈ Nd such that ‖q‖1 ≤ κ,
which corresponds to one of the equations defining the PTEd(n, κ) problem.
We define the set E as follows:

E := {(j1, . . . , jd)T ∈Nd | (j1, . . . , jd) ≤ (q1, . . . , qd) component-wise}

It holds

∑
i∈[n]

d

∏
s=1

(ais + ts)
qs =

= ∑
i∈[n]

∑
(j1,...,jd)∈E

(
q1

j1

)(
q2

j2

)
· . . .

(
qd

jd

)
aj1

i1aj2
i2 · . . . · ajd

id · t
q1−j1
1 tq2−j2

2 · . . . · tqd−jd
d =

= ∑
(j1,...,jd)∈E

(
q1

j1

)(
q2

j2

)
· . . .

(
qd

jd

)
· tq1−j1

1 tq2−j2
2 · . . . · tqd−jd

d ∑
i∈[n]

aj1
i1aj2

i2 · . . . · ajd
id =

= ∑
(j1,...,jd)∈E

(
q1

j1

)(
q2

j2

)
· . . .

(
qd

jd

)
· tq1−j1

1 tq2−j2
2 · . . . · tqd−jd

d ∑
i∈[n]

bj1
i1bj2

i2 · . . . · bjd
id =

= ∑
i∈[n]

∑
(j1,...,jd)∈E

(
q1

j1

)(
q2

j2

)
· . . .

(
qd

jd

)
· tq1−j1

1 tq2−j2
2 · . . . · tqd−jd

d bj1
i1bj2

i2 · . . . · bjd
id =

= ∑
i∈[n]

d

∏
s=1

(bis + ts)
qs .

The claim follows.
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Notice that from Proposition 4.1.2 it follows that it is not restrictive to as-
sume the points of a PTEd solution to have positive entries.

Proposition 4.1.3 (Linear Transformation of PTE).
Let d, t ∈ N∗ and let [a1, . . . , an] =κ [b1, . . . , bn], ai, bj ∈ Zd for all i, j ∈ [n], let
M ∈ Zt×d. Then [Ma1, . . . , Man] =κ [Mb1, . . . , Mbn] in Zt.

Proof. Let q = (q1, . . . , qt)T ∈ Nt be such that q1 + · · ·+ qt ≤ κ, which corre-
sponds to one of the equations defining the PTEt(n, κ) problem. Let us write
the matrix M as (vT

1 , . . . , vT
t )

T with vT
j the j-th row of M, for all j ∈ [t]. Then

n

∑
i=1

t

∏
j=1

(vT
j ai)

qj = ∑
i∈[n]

t

∏
j=1

( d

∑
h=1

vjhaih

)qj

Denoting as hj a vector (hj1, . . . , hjt)
T ∈Nt, and recalling Lemma 2.1.14 on the

multinomial expansion, the above expression can be re-written as the follow-
ing:

n

∑
i=1

d

∏
j=1

( d

∑
h=1

vjhaih

)qj
=

= ∑
i∈[n]

d

∏
j=1

∑
hj1+···+hjd=qj

(
qj

hj1, . . . , hjd

)
(vj1ai1)

hj1 · . . . · (vjdaid)
hjd =

=
n

∑
i=1

∑
h11+···+h1d=q1

...
ht1+···+htd=qt

(
q1

h11, . . . , h1d

)
· . . . ·

(
qt

ht1, . . . , htd

)
vh1

1 · . . . · vht
t ah1

i · . . . · aht
i =

=
n

∑
i=1

∑
h11+···+h1d=q1

...
ht1+···+htd=qt

(
q1

h11, . . . , h1d

)
· . . . ·

(
qt

ht1, . . . , htd

)
vh1

1 · . . . · vht
t ah1+···+ht

i =

= ∑
h11+···+h1d=q1

...
ht1+···+htd=qt

(
q1

h11, . . . , h1d

)
· . . . ·

(
qt

ht1, . . . , htd

)
vh1

1 · . . . · vht
t

n

∑
i=1

ah1+···+ht
i (4.1)

Since ‖hj‖1 ≤ qj, ∀j ∈ [t], it holds

‖h1 + · · ·+ ht‖1 ≤ ‖h1‖1 + ‖h2‖1 · · ·+ ‖ht‖1 ≤ q1 + · · ·+ qt ≤ κ
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Since [a1, . . . , an] =κ [b1, . . . , bn], the expression in (4.1) can be rewritten as

= ∑
h11+···+h1d=q1

...
ht1+···+htd=qt

(
q1

h11, . . . , h1d

)
· . . . ·

(
qt

ht1, . . . , htd

)
vh1

1 · . . . · vht
t

n

∑
i=1

bh1+···+ht
i =

= ∑
i∈[n]

t

∏
j=1

(vT
j bi)

qj ,

which proves the claim.

Definition 4.1.4. Let M ∈ Zd×d be an invertible matrix and let t ∈ Zd. Two PTEd
solutions of degree κ ∈N of the type [a1, . . . , an] =κ [b1, . . . , bn] and

[Ma1 + t, . . . , Man + t] =κ [Mb1 + t, . . . , Mbn + t]

are called equivalent.

The following operations on PTE-solutions create PTE-solutions respec-
tively of bigger size, lower dimension, higher dimension, and lower degree
in a lower dimensional space.

Proposition 4.1.5. Let n, s, κ, γ ∈ N∗ and let ai, bi, cj, dj ∈ Zd for all i ∈ [n]
and j ∈ [s]. Let [a1, . . . , an] =κ [b1, . . . , bn], and [c1, . . . , cs] =γ [d1, . . . , ds]. The
following statements hold true.

(i) [a1, . . . , an, c1, . . . , cs] =min{κ,γ} [b1, . . . , bn, d1, . . . , ds].

(ii) If {{c1, . . . , cs}} ⊂ {{a1, . . . , an}} and {{d1, . . . , ds}} ⊂ {{b1, . . . , bn}}, then
{{a1, . . . , an}}\{{c1, . . . , cs}} and {{b1, . . . , bn}}\{{d1, . . . , ds}} are PTEd solutions
of degree min{κ, γ}.

(iii) Let r ∈ Z. Let ai, bj ∈ Zd+1 be defined as

ai :=
(

ai
r

)
bi :=

(
bi
r

)
for all i, j ∈ [n]. Then [a1, . . . , an] =κ [b1, . . . , bn].

(iv) Let I ⊂ [d], and let π : Rd → R|I| be the canonical projection π(v) = vI ,
i.e., the function that associates to every vector v ∈ Rd, the vector π(v) whose
entries are the entries of v that have indices in I. Then

[π(a1), . . . , π(an)] =κ [π(b1), . . . , π(bn)].

(v) Let {i1, . . . , is} ⊂ [d] and let t ∈ Z[X1, . . . , Xs] be a term of total degree r ∈N.
Define the map χi1,...,is : Rd → Rd−s+1 as

χi1,...,is((v1, . . . , vi1 , . . . , vis , vd)) := (v1, . . . , t(vi1 , . . . , vis), . . . , vd)
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that removes the coordinates i2, . . . , is of v and substitutes to the coordinate i1
the term t evaluated in vi1 , . . . , vis . Then

[χ(a1), . . . , χ(an)] =b κ
r c [χ(b1), . . . , χ(bn)].

Proof. (i) Let q = (q1, . . . , qd)
T ∈ Nd such that q1 + · · · + qd ≤ min{κ, γ},

which corresponds to one of the equations defining the PTEd(n, min{κ, γ})
problem. As ∑i∈[n] aq

i = ∑i∈[n] bq
i and ∑i∈[s] cq

i = ∑i∈[s] dq
i then trivially

∑
i∈[n]

aq
i + ∑

i∈[s]
cq

i = ∑
i∈[n]

bq
i + ∑

i∈[s]
dq

i .

(ii) Let q = (q1, . . . , qd)
T ∈ Nd such that q1 + · · · + qd ≤ min{κ, γ}, as

∑i∈[n] aq
i = ∑i∈[n] bq

i and ∑i∈[s] cq
i = ∑i∈[s] dq

i then

∑
i∈[n]

aq
i − ∑

i∈[s]
cq

i = ∑
i∈[n]

bq
i − ∑

i∈[s]
dq

i .

(iii) Let q = (q1, . . . , qd, qd+1)
T ∈Nd+1 with ‖q‖1 ≤ κ, a nd let v := (q1, . . . , qd) ∈Nd.

Clearly ‖v‖1 ≤ κ. Hence

∑
i∈[n]

aq
i = rqd+1 ∑

i∈[n]
av

i = rqd+1 ∑
i∈[n]

bv
i = ∑

i∈[n]
b

q
i .

(iv) Let v ∈N|S| with ‖v‖1 ≤ κ. Define q ∈Nd as

qi :=

{
vi, if i ∈ S

0 otherwise

As ‖q‖1 ≤ κ, it follows

∑
i∈[n]

π(ai)
v = ∑

i∈[n]
aq

i = ∑
i∈[n]

bq
i = ∑

i∈[n]
π(bi)

v.

(v) We assume without loss of generality that {i1, . . . , is} = {1, . . . , s} ⊂ [d]
and we denote by χ the function χ1,...,s. Let t := ∏i∈[s] Xri

i , where ri ∈ N

for every i ∈ [s] and ∑i∈[s] ri = r. Let v ∈Nd−s+1 with ‖v‖1 ≤ b κ
r c. Then

∑
j∈[n]

(
χ(aj)

)v
= ∑

j∈[n]
(

s

∏
h=1

ari
jh)

v1(ajs+1)
v2 · . . . · (ajd)

vd−s+1 = ∑
i∈[n]

aq
i (4.2)

with q ∈Nd defined as

qi :=

{
riv1, if i ∈ [s]

vi otherwise
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It holds

‖q‖1 = r · v1 + v2 + · · ·+ vd−s+1 ≤ r(v1 + · · ·+ vd−s+1) ≤ r
⌊κ

r

⌋
≤ κ,

from which it follows that the expression in (4.2) is equal to

∑
i∈[n]

aq
i = ∑

i∈[n]
bq

i = ∑
i∈[n]

(χ(bi))
v.

It was first observed in [74] that if [a1, . . . , an] =κ [b1, . . . , bn], then the mul-
tisets

{{αai + β : i ∈ [n]}} , {{αbi + β : i ∈ [n]}}
with α ∈ Z\{0}, β ∈ Z are a PTE-solution of degree κ.
Lemma 4.1.6 and Theorem 4.1.7 are classic results and can be found, for in-
stance, in [33, 34].

Lemma 4.1.6. Let d = 1 and let a1, . . . , an, b1, . . . , bn, κ ∈ N such that ai ≥ κ and
bj ≥ κ, for every i, j ∈ [n]. The following statements are equivalent:

(i) [a1, . . . , an] =κ [b1, . . . , bn].

(ii) (X− 1)(κ+1)
∣∣∣∑n

i=1 Xai −∑n
i=1 Xbi .

(iii) deg
(

∏n
1=1(X− ai)−∏n

1=1(X− bi)
)
≤ n− (k + 1).

Proof. The equivalence of (i) and (ii) is easily seen by evaluating each of the

∂q

∂Xq

(
n

∑
i=1

Xai −
n

∑
i=1

Xbi

)
, q = 0, . . . , κ,

at X = 1, and keeping in mind that (ii) is equivalent to the fact that X = 1 is a
root of order (κ + 1) of ∑n

i=1 Xai −∑n
i=1 Xbi .

The equivalence of (i) and (iii) follows by Newton’s symmetric polynomial
identities: let us consider the following polynomials in Z[X1, . . . , Xn]:

ps(X1, . . . , Xn) :=
n

∑
i=1

Xs
i s ∈N∗

e0(X1, . . . , Xn) := 1

e1(X1, . . . , Xn) :=
n

∑
i=1

Xi

e2(X1, . . . , Xn) := ∑
1≤i<j≤n

XiXj

...

en(X1, . . . , Xn) :=
n

∏
i=1

Xi

et(X1, . . . , Xn) := 0 ∀t > n
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These are known as s-th power sum and elementary symmetric polynomials re-
spectively. The following recursion formula (Newton identities [130]) holds:

t · et(X1, . . . , Xn) =
t

∑
j=1

(−1)j−1et−j(X1, . . . , Xn)pj(X1, . . . , Xn) ∀n, t ∈N∗

(4.3)
It implies that et is a polynomial combination of p1, . . . , pt for all t. As

n

∏
i=1

(X− ai) =
n

∑
j=0

(−1)n−jen−j(a1, . . . , an)X j

then the polynomial ∏n
i=1(X − ai) −∏n

i=1(X − bi) has degree lower than or
equal to n− (κ + 1) if and only if

pj(a1, . . . , an) = pj(b1, . . . , bn) ∀j = 0, . . . , κ

which concludes the proof.

Observe that by Proposition 4.1.2, it is not restrictive to assume ai ≥ κ and
bj ≥ κ, for every i, j ∈ [n]. The first mention of the following result is due to
Bastien [23].

Theorem 4.1.7. Let n, κ ∈N. Then PTE(n, κ) is feasible only if n > κ.

Proof. The claim follows directly from the equivalence between (i) and (iii) in
Lemma 4.1.6, as the degree of the polynomial in (iii) has to be a non-negative
integer number, hence n ≥ κ + 1.

The result of Theorem 4.1.7 justifies the next definition.

Definition 4.1.8 (Ideal Solutions). Solutions to PTE(κ + 1, κ) are called ideal.

Ideal solutions are known to exist for κ = 0, . . . , 9 and κ = 11. Despite the
efforts spent on determining if ideal solutions exist for all κ (and specifically
for κ = 10), little progress has been made on the topic. Upper bounds on the
minimal size of a PTE-solution of degree κ will be discussed in Section 4.5. A
good source that stores known ideal PTE-solutions is Shuven’s website, see
[163]. If [a1, . . . , aκ+1] =κ [b1, . . . , bκ+1], then from 4.1.6 (iii) it follows

κ+1

∏
i=1

(X− ai)−
κ+1

∏
i=1

(X− bi) = C ∈ Z

The decomposition of the constant C in prime factors contains relevant infor-
mation for determining a possible ideal solution. In fact, it can be shown [35]
that if a prime number p divides C, then b1, . . . , bκ+1 can be reordered so that

ai ≡ bi mod p ∀i ∈ [κ + 1].
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It follows that a computer search of an ideal solution can be reduced of a factor
of 1

p for each of the κ + 1 equivalences. It is then crucial to determine large
primes that divide C. Investigations in this sense have been carried out by
Caley [47, 48] and by Borwein, Lisoněk and Percival [35].

The following theorem generalizes Theorem 4.1.7 to dimension d > 1.

Theorem 4.1.9. Let n, κ ∈N. Then PTEd(n, κ) is feasible only if n > κ.

Proof. By contradiction, let (F1, F2) ∈ Z2 ×Z2 be a solution of size n and de-
gree k ≥ n of PTEd, with

F1 := {{a1, . . . , an}} F2 := {{b1, . . . , bn}}

In particular, we assume F1 and F2 disjoint.
Let s ∈ Zd be a vector, we define the projection

π : Zd −→ Z

x 7−→ sTx

As F1 and F2 are disjoint, it is possible to choose the vector s so that π(F1)

and π(F2) are disjoint multisets, for example it is sufficient to choose s not
orthogonal to any of the vectors a− b, with a ∈ F1 and b ∈ F2, i.e., finitely many
possibilities for s are to be excluded. By Proposition 4.1.3, (π(F1), π(F2)) is a
classic PTE-solution of degree κ and size n. Hence by Theorem 4.1.7 follows
π(F1) = π(F2), a contradiction.

In the next section we will give a characterization of PTEd-solutions, that,
from now on, we will mostly denote by a pair of multisets (B, W) ⊂ Zd ×Zd.

4.2 Characterization of PTEd Solutions

We generalize the characterization (i) ⇔ (ii) of Lemma 4.1.6 to dimension
d ≥ 1. We need two lemmas: in the first one, we show an equivalent formula-
tion to (B, W) being a PTEd solution of degree κ, in the second, we determine a
Gröbner basis of the ideal which we will need in Theorem 4.2.3. Observe that
by 4.1.2 it is not restrictive to assume all points of B and W to have coordinates
greater than or equal to κ. Moreover, to every polynomial f (X) ∈ Z[X] cor-
responds a pair of multisets (B f , W f ) via the function ρ as defined in 3.1.1, so
that

f (X) = ∑
b∈B f

Xb − ∑
w∈W f

Xw. (4.4)

Thus, it is not restrictive to assume every polynomial in Z[X] to be in the form
given in 4.4, for some (B f , W f ) ⊂Nd ×Nd.

Lemma 4.2.1. Let κ ∈ N, B, W ⊂ Nd and let bi, wi ≥ κ for every b ∈ B, w ∈ W
and i ∈ [d]. Let

f (X) := ∑
b∈B

Xb − ∑
w∈W

Xw.
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Then (B, W) is a PTEd solution of degree κ if and only if( ∂

∂X1

)q1
· · ·
( ∂

∂Xd

)qd
(

f (X)
)
|X=(1,...,1) = 0

for every (q1, . . . , qd) ∈Nd such that q1 + · · ·+ qd ≤ κ.

Proof. We show the claim by induction on κ ∈ N. If κ = 0, and q ∈ Nd with
‖q‖1 ≤ κ, then q = (0, . . . , 0)T. Hence( ∂

∂X1

)0
· · ·
( ∂

∂Xd

)0(
f (X)

)
|X=(1,...,1) = f (1, . . . , 1) = 0 ⇐⇒ |B| = |W|

which rewrites as (B, W) form a PTEd solution of degree 0.
We assume the claim true for κ − 1, and show it for κ. Assume (B, W) are a
PTEd solution of degree κ. As this implies that they are a PTEd solution of
degree κ − 1, by induction hypothesis we obtain( ∂

∂X1

)q1
· · ·
( ∂

∂Xd

)qd(
f (X)

)
|X=(1,...,1) = 0 (4.5)

for every (q1, . . . , qd) ∈Nd such that q1 + · · ·+ qd ≤ κ− 1. Hence we just need
to show equation (4.5) for every (q1, . . . , qd)

T ∈Nd with q1 + · · ·+ qd = κ. Let
us denote by p(X) the multivariate polynomial defined as

p(X) := ∏
i∈[d]

Xi · (Xi − 1) · . . . · (Xi − qi + 1). (4.6)

By definition of q, the polynomial p has degree at most κ. We have( ∂

∂X1

)q1
· · ·
( ∂

∂Xd

)qd(
f (X)

)
= ∑

b∈B
p(b)Xb−q − ∑

w∈W
p(w)Xw−q.

As b ≥ q and w ≥ q for every b ∈ B and w ∈W, we obtain(
∑
b∈B

p(b)Xb−q − ∑
w∈W

p(w)Xw−q
)
(1, . . . , 1) = ∑

b∈B
p(b)− ∑

w∈W
p(w) = 0

since ∑b∈B p(b)−∑w∈W p(w) corresponds to a combination of equations of the
PTEd problem of degree κ: in fact, for every αXa ∈ Supp (p) it holds

∑
b∈B

αba − ∑
w∈W

αwa = 0.

On the other hand, let (4.5) hold for every (q1, . . . , qd)
T ∈ Nd with ‖q‖1 = κ.

Since b ≥ q and w ≥ q for every b ∈ B and w ∈W, we can write equation (4.5)
as

0 =
(

∑
b∈B

p(b)Xb−q − ∑
w∈W

p(w)Xw−q
)
(1, . . . , 1) = ∑

b∈B
p(b)− ∑

w∈W
p(w)
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with p as in (4.6). The only term in p that has degree κ is Xq, all the others have
degree strictly lower than κ. Hence we can write p as

p(X) = Xq + g(X)

with deg(g) < κ. As before, g corresponds to a combination of the equations
from the PTEd problem of degree κ − 1. By induction hypothesis, it holds

∑
b∈B

g(b)− ∑
w∈W

g(w) = 0

which implies
∑
b∈B

bq − ∑
w∈W

wq = 0,

as desired.

In the next lemma, we define an ideal that we will use in theorem 4.2.3, and
show that its generators form a Gröbner basis.

Lemma 4.2.2. Let κ ∈N, and let Iκ ⊂ Z[X] be the ideal defined as

Iκ := ∑
(j1,...,jd)∈Nd

∑d
s=1 js=κ+1

(
(X1 − 1)j1 · . . . · (Xd − 1)jd

)
.

Then the generators of Iκ form a Gröbner basis with respect to LEX X1 � · · · � Xd.

Proof. The set

E := {(j1, . . . , jd)T ∈Nd |
d

∑
s=1

js = κ + 1}

has N := (κ+d
d−1) elements by Lemma 2.1.13. For the sake of convenience, we

denote by f1, . . . , fN the polynomials in

{(X1 − 1)j1 · ... · (Xd − 1)jd : (j1, . . . , jd)T ∈ E}

listed in lexicographic order with respect to their leading terms, so that

Iκ = ( f1, . . . , fN).

By Buchberger’s Algorithm 2.1.34, in order to show that { f1, . . . , fN} is a Gröb-
ner basis of Iκ, we need to show that the normal remainders of the S−polynomials
Spol ( f1, f j) with respect to { f1, . . . , fN} are 0 for every i, j ∈ [N] with i < j. Let
i < j ∈ [N], let (i1, . . . , id)

T, (j1, . . . , jd)T ∈ E and let

fi := (X1 − 1)i1 · . . . · (Xd − 1)id f j := (X1 − 1)j1 · . . . · (Xd − 1)jd

Let v := (i1, . . . , id)
T − (j1, . . . , jd)T. Then

Spol ( fi, f j) = Xv− fi − Xv+ f j.
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As already observed in 2.1.43, it holds (v+)Tv− = 0, thus it follows that Xv+

and Xv− are coprime, and that

(i1, . . . , id)
T − v+ = (j1, . . . , jd)T − v−

We denote by w the vector (i1, . . . , id)
T − v+. Let 1 := (1, . . . , 1)T ∈ Zd. Thus

Spol ( fi, f j) = Xv− fi − Xv+ f j =
(

Xv−(X− 1)v+ − Xv+(X− 1)v−
)

︸ ︷︷ ︸
=:gij

(X− 1)w.

(4.7)
As Xv+ and Xv− are coprime, by 2.1.36 it follows that (X− 1)v+ and (X− 1)v−

form a Gröbner basis with respect to LEX of the ideal they generate. Hence the
normal remainder of the polynomial

gij ∈
(
(X− 1)v+ , (X− 1)v−)

with respect to {(X−1)v+ , (X−1)v−} is equal to 0. This means that there exist
hi(X), hj(X) ∈ Z[X] such that

gij = hi(X) · (X− 1)v+ + hj(X) · (X− 1)v− (4.8)

and this is an expression of division, namely

LT (hi(X)(X− 1)v+) ≤ LT (gij) and LT (hj(X)(X− 1)v−) ≤ LT (gij)

(4.9)
Plugging (4.8) in (4.7), we obtain

Spol ( fi, f j) =
(

hi(X)(X− 1)v+ + hj(X)(X− 1)v−
)
(X− 1)w = hi fi + hj f j

and from (4.9) and the second property of a term ordering, see 2.1.17, it follows
LT (hi fi) ≤ LT (Spol ( fi, f j)) and LT (hj f j) ≤ LT (Spol ( fi, f j)), from which it
follows that the normal remainder of Spol ( fi, f j) with respect to f1, . . . , fN is 0,
and the claim follows.

We are now ready to state and show the main result of the section, that
generalizes Lemma 4.1.6. By Proposition 4.1.2 we can assume a solution (B, W)

of PTEd(n, κ) to be composed of points of Nd whose entries are bigger than or
equal to κ. This property translates to the polynomial θ(B, W) as

θ(B, W) ∈ (Xκ1), (4.10)

where Xκ1 is the term ∏i∈[d] Xκ
i . In Theorem 4.2.4 we will show that the char-

acterization given in Theorem 4.2.3 is independent from the assumption given
in (4.10).

Theorem 4.2.3 (Characterization of PTEd Solutions of Degree κ). Let κ ∈ N.
Let Lκ denote the ideal

Lκ := (Xκ1),
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and let Fκ denote the set

Fκ := { f (X) ∈ Z[X] : ρ( f ) is a PTEd solution of degree κ},

where ρ is the function defined in 3.1.1. Let us define the ideals Jκ and Iκ as

Jκ :=
⋂

(i1,...,id)∈Nd

∑d
s=1 is=κ

(
(X1 − 1)i1+1, . . . , (Xd − 1)id+1

)
(4.11)

Iκ := ∑
(j1,...,jd)∈Nd

∑d
s=1 js=κ+1

(
(X1 − 1)j1 · ... · (Xd − 1)jd

)
. (4.12)

Then it holds
Fκ ∩ Lκ = Jκ ∩ Lκ = Iκ ∩ Lκ.

Proof. We show the statement by showing

(i) Iκ ∩ Lκ ⊂ Jκ ∩ Lκ.

(ii) Jκ ∩ Lκ ⊂ Fκ ∩ Lκ.

(iii) Fκ ∩ Lκ ⊂ Iκ ∩ Lκ.

(i) We show Iκ ⊂ Jκ. Let g(X) ∈ Iκ = ( f1, . . . , fN), with N = (κ+d
d−1) as in

Lemma 4.2.2. Then there exist h1, . . . , hN , such that g = ∑i∈[N] hi fi. It suffices
to show that the summand hi fi ∈ Jκ, for all i ∈ [N]. Assume

g(X) = h(X)(X1 − 1)j1 · ... · (Xd − 1)jd

for some h(X) ∈ Z[X] and some (j1, . . . , jd)T ∈ Nd with j1 + · · ·+ jd = κ + 1.
We denote by E the set

E :=
{
(i1, . . . id)

T ∈Nd :
d

∑
j=1

ij = κ
}

and for every (i1, . . . id)
T ∈Nd we denote by J(i1,...id) the ideal

J(i1,...id) :=
(
(X1 − 1)i1+1, . . . , (Xd − 1)id+1

)
so that Jκ :=

⋂
(i1,...,id)T∈E J(i1,...id).

We show that g(X) ∈ J(i1,...id), ∀(i1, . . . id) ∈ E. In fact, as j1 + · · ·+ jd = κ + 1,
for every tuple (i1, . . . , id) ∈ E there exists t ∈ [d] such that jt > it, otherwise,
if js ≤ is ∀s ∈ [d], then we would have

κ + 1 =
d

∑
s=1

js ≤
d

∑
s=1

is = κ
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a contradiction. Hence jt ≥ it + 1 for some t ∈ [d], so that

g(X) = h(X)(X1 − 1)j1 · . . . · (Xd − 1)jd =

= h(X)
(

∏
s∈[d]\{t}

(Xs − 1)js
)
(Xt − 1)jt−it−1(Xt − 1)it+1 ∈ J(i1,...id)

hence g(X) ∈ J(i1,...id), ∀(i1, . . . id)
T ∈ E, from which follows g(X) ∈ Jκ. Thus

Iκ ∩ Lκ ⊂ Jκ ∩ Lκ.
(ii) Let f (X) = ∑b∈B Xb − ∑w∈W Xw ∈ Jκ ∩ Lκ, and let (q1, . . . , qd)

T ∈Nd

such that q1 + · · · + qd = t ≤ κ. To every such a vector (q1, . . . , qd)
T corre-

sponds an equation of the PTEd(n, κ) formulation. There exists (i1, . . . , id)
T ∈Nd

such that i1 + · · ·+ id = κ and such that

(q1, . . . , qd)
T ≤ (i1, . . . , id)

T

component-wise.
As f ∈ Jκ =

⋂
(i1,...,id)T∈E J(i1,...,id), there exist hi1(X), . . . , hid(X) ∈ Z[X] such that

f (X) = hi1(X)(X1 − 1)i1+1 + · · ·+ hid(X)(Xd − 1)id+1

We can apply the partial derivatives ( ∂
∂Xs

)qs to f for all s ∈ [d] and obtain( ∂

∂X1

)q1
· · ·
( ∂

∂Xd

)qd
f =

=
( ∂

∂X1

)q1
· · ·
( ∂

∂Xd

)qd
(

hi1(X)(X1 − 1)i1+1 + · · ·+ hid(X)(Xd − 1)id+1
)

(4.13)

which evaluated on the point (1, . . . , 1) is equal to 0, as qs ≤ is for all s ∈ [d].
Notice that since f (X) ∈ Lκ, the expression in 4.13 is not identically zero.
Thus ρ( f ) is a PTEd solution of degree κ by lemma 4.2.1, and f ∈ Fκ ∩ Lκ.

(iii) Let f (X) = ∑b∈B Xb−∑w∈W Xw ∈ Fκ ∩ Lκ. By contradiction, f /∈ Iκ. As
before, N := (κ+d

d−1) and Iκ = ( f1, . . . , fN). We can write a division expression

f (X) = h1(X) f1 + · · ·+ hN(X) fN + r(X)

where r(X) is the normal form of f (X) with respect Iκ, i.e., none of the terms
in Supp (r) belongs to (LT ( fi) : i ∈ [N]). In particular, deg(r) < κ + 1, being
{LT ( f1), . . . , LT ( fN)} equal to the set of terms in d variables and degree κ + 1.
As by Lemma 4.2.2 the generators of Iκ are a Gröbner basis with respect to LEX,
we have

f ∈ Iκ ⇐⇒ r(X) = 0.

The polynomial f corresponds to a PTEd solution of degree κ, as well as
hi(X) fi(X), for every i ∈ [N], by what we showed in (i) and (ii). Thus, it
follows from 4.1.5 that r corresponds to a PTEd solution of degree κ. Consider
the multisets of points corresponding to r, that we denote by Br and Wr ⊂Nd.
By contradiction, r(X) 6= 0, which translates as Br 6= Wr.
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Assume r(X) has degree κ, therefore there exists αXa ∈ Supp (r) such that
∑i∈[d] ai = κ, and α 6= 0.
As r(X) corresponds to a PTEd solution of degree κ, it follows from Lemma
4.2.1 that ( ∂

∂X1

)a1
· · ·
( ∂

∂Xd

)ad(
r(X)

)
|X=(1,...,1) = 0 (4.14)

For every γXc ∈ Supp (r) with ∑i∈[d] ci < κ it holds( ∂

∂X1

)a1
· · ·
( ∂

∂Xd

)ad(
γXc) = 0.

Moreover, if ∑i∈[d] ci = κ and c 6= a, then there exists j ∈ [d] such that cj < aj,
which implies again ( ∂

∂X1

)a1
· · ·
( ∂

∂Xd

)ad(
γXc) = 0.

Hence the only term of r that survives after the derivatives
(

∂
∂X1

)a1 · · ·
(

∂
∂Xd

)ad

is αXa, namely

( ∂

∂X1

)a1
· · ·
( ∂

∂Xd

)ad(
r(X)

)
=
( ∂

∂X1

)a1
· · ·
( ∂

∂Xd

)ad(
αXa) = α ∏

j∈[d]
aj!

with the convention 0! = 1. Together with (4.14), we obtain

α = 0.

Thus r(X) cannot have degree κ. We can assume it has degree κ− 1 and repeat
the argument, which eventually leads to r(X) = 0. Therefore, f ∈ Iκ, and
moreover f ∈ Iκ ∩ Lκ, which concludes the proof.

Theorem 4.2.3 characterizes PTEd-solutions composed only of points whose
coordinates are bigger than or equal to κ. Next we show that the characteriza-
tion does not depend on this assumption.

Theorem 4.2.4. Let κ ∈ N and let (B, W) ⊂ Nd ×Nd. Then (B, W) form a PTEd
solution of degree κ if and only if

θ(B, W) ∈ Iκ,

where Iκ is as defined in 4.2.3.

Proof. First observe that the statement can be equivalently rewritten as

θ(B, W) ∈ Fκ ⇐⇒ θ(B, W) ∈ Iκ.

As shown in part (iii) of the proof of Theorem 4.2.3 it holds

θ(B, W) ∈ Fκ ⇒ θ(B, W) ∈ Iκ,

104



4.2 Characterization of PTEd Solutions

since the proof does not require θ(B, W) ∈ Lκ. On the other hand, we assume
θ(B, W) ∈ Iκ, then obviously we have Xκ·1 · θ(B, W) ∈ Iκ ∩ Lκ. Hence, by theo-
rem 4.2.3 it follows

Xκ1 · θ(B, W) ∈ Fk ∩ Lκ,

in particular Xκ1 · θ(B, W) ∈ Fk. Since by proposition 4.1.2, PTEd solutions are
invariant under translations, it holds

Xκ1 · θ(B, W) ∈ Fκ ⇐⇒ θ(B, W) ∈ Fκ,

which concludes the proof.

Theorem 4.2.4 gives a characterization of PTEd solutions of degree κ: they
correspond, via θ, as defined in 3.1.1, to a polynomial in the ideal Iκ, and vice-
versa.

In addition to [18], the characterization of PTEd solutions of Theorem 4.2.4
has implications on the recent paper from Černý [49], where the author showed
that multi-dimensional words obtained by compositions of finite sequences
of morphisms induce PTEd solutions: from Theorem 4.2.4 it follows, in fact,
that in order to show the result in [49], it is sufficient to show that the consid-
ered multi-dimensional words correspond to polynomials in the ideal Iκ (4.12).
Other related contributions are the works from Prugstapitak [148, 149], that in-
vestigated the Prouhet-Tarry-Escott problem over the Gaussian integers.

Remark 4.2.5. By Theorem 4.2.4 every PTEd solution of degree κ corresponds via θ

in 3.1.1, to a polynomial f ∈ Iκ with

Iκ := ∑
(j1,...,jd)∈Nd

∑d
s=1 js=κ+1

(
(X1 − 1)j1 · ... · (Xd − 1)jd

)
;

thus we can define

E := {j ∈Nd :
d

∑
s=1

js = κ + 1}

and obtain that for every j ∈ E there exist gj(X) ∈ Z[X] such that

f = ∑
j∈E

gj(X)(X− 1)j.

Every summand of f , namely

gj(X)(X− 1)j j ∈ E

corresponds, by Theorem 3.1.3, to a switching component with respect to the directions

S := {ui : ji 6= 0}

If we extend the way we count lines, and admit several copies of the same directions, we
obtain as S a multiset of directions, where each direction ui appears with multiplicity
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ji. The cardinality of S, in the sense of 1.2.1 is then equal to ‖j‖1, thus it is κ + 1. For
example, let r ∈N∗, then the polynomial

(X1 − 1)r

corresponds to a switching component with respect to r identical directions. Thus
Theorem 4.2.4 implies that every PTEd solution of degree κ is a union of switching
components with respect to κ + 1 (possibly repeated) directions.
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4.3 Switching Components as Solutions to PTE

In [18] Alpers and Tijdeman established the following connection between
switching components in the plane and the Prouhet-Tarry-Escott problem.

Theorem 4.3.1 (Alpers, Tijdeman [18]). Let s1, . . . , sm be pairwise linearly indepen-
dent directions in Z2, and let B, W ∈ F 2 be disjoint and tomographically equivalent
with respect to s1, . . . , sm. Then (B, W) is a solution to PTE2 of degree m− 1.

In this section, we show how Theorem 4.3.1 can be generalized to higher di-
mensions. In order to show the relation between the solutions of GP1,d(n, κ + 1)
and the solutions of PTEd(n, κ), κ ≥ 2, we need Proposition 4.3.2 and the con-
cepts of Section 4.3.1.

Let K be a field containing Z, and let K[X1, . . . , Xd] be a polynomial ring.
We consider the K-vector space of homogeneous polynomials in K[X1, . . . , Xd]

of degree r ∈N, which we denote by Vd,r. It is easy to see that

Vd,r := lin{t ∈ Td : deg(t) = r}.

By Lemma 2.1.13 and by observing that the elements of Td are linearly inde-
pendent, we obtain dim(Vd,r) = (r+d−1

d−1 ).
In [12, 18], the following proposition was shown.

Proposition 4.3.2. Let r ∈ N, r ≥ 2. For i = 1, . . . , r, let αi, βi ∈ K and let
si = (αi, βi)

T, be pairwise linearly independent directions. Then the polynomials

(β1X1 − α1X2)
r−1, . . . , (βrX1 − αrX2)

r−1 ∈ K[X1, X2]

form a basis of the K-vector space V2,r−1.

We will extend Proposition 4.3.2 to higher dimensions in 4.3.15.

4.3.1 Vectors in Generic and Uniform Position

We present concepts introduced by Geramita and Orecchia in [84] concerning
points in the projective space in so-called generic position. As Sd

1 , the set of
all 1-dimensional linear subspaces of Rd, is isomorph to Pd−1, the (d − 1)-
dimensional projective space, we can apply the results of [84] to vectors in
Rd\{0}. For us, those are normal vectors of hyperplanes, or the directions of
lines. All results of this section were shown in [84], and we include them here
for the reader’s convenience, to have a uniform treatise. Propositions 4.3.10
and 4.3.11 follow directly from results in [84], while the proof we include is
substantially different.

Definition 4.3.3 (Vectors in Generic l-Position and Uniform Position).
Let V := {v1, . . . , vl} ⊂ Rd be a set of l distinct vectors. Consider all terms ti of

degree r in d variables X1, . . . , Xd, with i ∈
[
(r+d−1

d−1 )
]

by Lemma 2.1.13, listed with
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respect to any term ordering, for example LEX with X1 � . . . ,� Xd. Consider the
matrix Ar(v1, . . . , vl) ∈ R(r+d−1

d−1 )×l defined as

Ar(v1, . . . , vl)ij := ti(vj) i ∈
[(r + d− 1

d− 1

)]
, j ∈ [l].

If there is no possibility of confusion, we write Ar instead of Ar(v1, . . . , vl). We say
that the vectors in V are in generic l-position if the matrix Ar has maximal rank for
every r ≥ 1.
We say that the vectors in V are in uniform position, if ∀q ≤ l, every subset of
cardinality q of V is in generic q-position.

Remark 4.3.4. Notice that the rank of the matrices Ar does not depend on vj but
only on lin(vj) for every j ∈ [l]: in fact, if for some j ∈ [l] we substitute a vector
vj by λvj, where λ ∈ R\{0}, we obtain the following relation between the matrix
Ar(v1, . . . , λvj, . . . , vl) and the matrix Ar(v1, . . . , vj, . . . , vl):

Ar(v1, . . . , λvj, . . . , vl)ij = λr Ar(v1, . . . , vj, . . . , vl)ij ∀i ∈
[(r + d− 1

d− 1

)]
,

which means that the j-th column of Ar(v1, . . . , λvj, . . . , vl) is a multiple of the j-th
column of Ar(v1, . . . , vl), which clearly does not affect the rank. This follows because
the terms ti, with i ∈

[
(r+d−1

d−1 )
]

are homogeneous of degree r. Hence, the concept of
genericity in 4.3.3 is well-defined for directions.

The following fact was observed in [84].

Proposition 4.3.5. Let the matrix Ar := Ar(v1, . . . , vl) ∈ R(r+d−1
d−1 )×l be as defined

before. The set of non-trivial (i.e., non identically zero) solutions of the homogeneous
system of linear equations

yT Ar = 0 y ∈ R(r+d−1
d−1 ) (4.15)

is in bijection with the set of non-zero homogeneous polynomial in d variables and of
degree r vanishing at v1, . . . , vl .

Proof. Consider all terms of degree r in d variables, listed with respect to the
standard LEX, t1, . . . , t

(r+d−1
d−1 )

, and let y ∈ R(r+d−1
d−1 ) be a non-zero solution to

yT Ar = 0. For the sake of simplicity, we denote by I the set {1, . . . , (r+d−1
d−1 )}.

Then the non-zero polynomial ∑i∈I yiti, homogeneous of degree r, vanishes at
v1, . . . , vl , since by yT Ar = 0 it follows

∑
i∈I

yiti(vi) = 0 ∀i ∈ [l].

On the other hand, for every homogeneous non-zero polynomial of degree r
f (X) ∈ R[X1, . . . , Xd] there exists a non-zero vector y ∈ R(r+d−1

d−1 ) such that

f (X) = ∑
i∈I

yiti.

If f (vi) = 0 for every i ∈ [l], then it follows yT Ar = 0, as desired.
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As a consequence of Proposition 4.3.5, if rank (Ar) = t, then the subspace
U of Vd,r of homogeneous polynomials of degree r vanishing at v1, . . . , vl has
dimension (r+d−1

d−1 )− t.
The following lemma is applied to show Proposition 4.3.7.

Lemma 4.3.6. If v1 . . . , vl ∈ Rd are such that (r+d−1
d−1 ) ≥ l and Ar defined as in 4.3.3

has maximal rank (i.e.,it has rank l), for some r ∈N, then Ar+1 has rank l.

Proof. We can apply a change of coordinates so that the first entry of every
vector vi is not zero. As observed in 4.3.4, we can then scale the vectors so
that their first entry is 1 without affecting the rank of the matrix Ar. Hence the
following equality is fulfilled by every term ti of degree r, i ≤ (r+d−1

d−1 ):

ti(vj) = (X1ti)(vj) ∀j ≤ l

and X1ti are all terms of degree r + 1 that are obtained as X1ti. From this
follows that the matrix Ar is a submatrix of Ar+1, and hence

l = rank (Ar) ≤ rank (Ar+1).

But as Ar+1 has at most rank l due to its size, the claim follows.

Next proposition characterizes vectors in generic l-position.

Proposition 4.3.7 (Geramita, Orecchia [84]). Let V := {v1, . . . , vl} ⊂ Rd. Then
V is in generic l-position if and only if the least degree r0 of a non-zero homogeneous
polynomial vanishing at v1, . . . , vl is the least integer r0 such that (r0+d−1

d−1 ) > l, and
the subspace U ⊂ Vd,r0 of the homogeneous polynomials vanishing at v1, . . . , vl has
dimension (r0+d−1

d−1 )− l.

Proof. If V is in generic l-position, then the implication follows from 4.3.3 and
4.3.5.
On the other hand, if the least degree r0 of a non-zero homogeneous polyno-
mial vanishing at v1, . . . , vl is the least integer r0 such that (r0+d−1

d−1 ) > l, then the
matrix Ar, as in Definition 4.3.3, has maximal rank for every r ≥ 1: in fact, if
r < r0, the matrix Ar ∈ R(r+d−1

d−1 )×l is such that (r+d−1
d−1 ) ≤ l. By assumption, there

is no non-zero homogeneous polynomial vanishing at v1, . . . vl , which means
there is no linear combination of the rows of Ar that is 0, hence Ar is full rank.
If r = r0, by assumption the subspace U of the homogeneous polynomials of
degree r vanishing at v1, . . . , vl has dimension (r+d−1

d−1 )− l, hence Ar has rank
l. If r > r0 we apply Lemma 4.3.6 recursively to Ar0 , that is full-rank from the
previous case, and the claim follows.

Proposition 4.3.7 can be rewritten as: V is in generic l-position if and only if
there is no non-zero homogeneous polynomial of degree r0, with (r0+d−1

d−1 ) ≤ l,
vanishing at v1, . . . , vl .
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Thanks to Lemma 4.3.6, we can check if l vectors v1, . . . , vl ∈ Rd are in generic
l-position by testing if the rank of the matrix Ar, with

Ar
ij = ti(vj) i ∈

[(r + d− 1
d− 1

)]
, j ∈ [l]

is (r+d−1
d−1 ) for every r ≤ r0, with

r0 = min{r ∈N :
(

r + d− 1
d− 1

)
≥ l}.

Proposition 4.3.8.

(i) If l vectors in Rd, 1 ≤ l ≤ d, are in generic l-position, then they are linearly
independent. If l vectors in Rd, l > d, are in generic l-position, then there are d
of them that are linearly independent.

(ii) d linearly independent vectors in Rd are in uniform position.

(iii) Distinct vectors in R2 are in uniform position.

(iv) Four vectors in R3, every 3 of them linearly independent, are in uniform position.

Proof. (i) By definition of generic l-position, A1(v1, . . . , vl) is full-rank. Hence,
if l ≤ d then rank (A1) = l, which means v1, . . . , vl are linearly independent,
while if l > d, then rank (A1) = d, which means d vectors among v1, . . . , vl are
linearly independent.
(ii) Let v1, . . . , vd ∈ Rd be linearly independent. By Lemma 4.3.6 it is sufficient
to show that for every t ∈ [d], and every 1 ≤ i1 < i2 < · · · < il ≤ d, and

r0 := min
{

r ∈N∗ :
(

r + d− 1
d− 1

)
≥ t
}

the matrix Ar(vi1 , . . . , vil ) is full-rank for all r ∈ {1, . . . , r0}. It holds r0 = 1 for
all t ∈ [d] as (

1 + d− 1
d− 1

)
= d ≥ t ∀t ∈ [d]

and the matrix A1 is full rank for every choice of t, as v1, . . . , vd are linearly
independent.
(iii) We show the statement by induction on the number of vectors l. If l = 1
the claim is easily true. We assume it true for l vectors, and show it for l + 1.
Consider l + 1 distinct vectors in R2. As before, we can apply a change of
coordinates and assume that the first entry of every vector is not zero, then
we can scale every vector so that the first entry is 1. In this way, for every
i ∈ [l + 1] we can assume

vi =

(
1
αi

)
,
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with α1, . . . , αl+1 ∈ R distinct. By definition, v1, . . . , vl+1 ∈ R2 are in uniform
position if for every q ≤ l + 1, every subset of {v1, . . . , vl+1} containing q vec-
tors is in generic q-position. By induction hypothesis, this holds true every
time q < l + 1, hence we just need to show it for q = l + 1, namely we need
to show that v1, . . . , vl+1 are in generic (l + 1)-position. By Lemma 4.3.6, it
suffices to show that Ar(v1, . . . , vl+1) is full-rank for every r such that

r ≤ min
{

r0 ∈N : l + 1 ≤
(

r0 + 2− 1
2− 1

)}
hence for every r ≤ l. Then the matrix Ar(v1, . . . , vl+1) fulfills

Ar(v1, . . . , vl+1) =


1 1 . . . . . . 1
α1 α2 . . . . . . αl+1
α2

1 α2
2 . . . . . . α2

l+1
...

...
...

...
...

αr
1 αr

2 . . . . . . αr
l+1

 ∈ R(r+1)×(l+1).

Thus Ar(v1, . . . , vl+1) is a submatrix of the following Vandermonde matrix, see
[75] §4 :

M :=



1 1 . . . . . . 1
α1 α2 . . . . . . αl+1
α2

1 α2
2 . . . . . . α2

l+1
...

...
...

...
...

αr
1 αr

2 . . . . . . αr
l+1

...
...

...
...

...
αl

1 αl
2 . . . . . . αl

l+1


∈ R(l+1)×(l+1).

The determinant of M is equal to

∏
1≤i<j≤l+1

(αj − αi),

and since the numbers αi are all distinct, we have det(M) 6= 0. This concludes
the proof that Ar(v1, . . . , vl+1) is full-rank.
(iv) Let v1, . . . , v4 ∈ R3 and let every 3 of them be linearly independent. By
(ii), it follows that every 3 vectors among {v1, . . . , v4} are in uniform position.
Hence by definition, we only need to check that v1, . . . , v4 are in generic 4-
position. By Lemma 4.3.6, it suffices to show that Ar(v1, . . . , v4) is full-rank for
every r such that (

r + 3− 1
3− 1

)
≤ 4,

hence for r ≤ 1. The matrix A1(v1, . . . , v4) is full rank, i.e., it has rank 3, since
for example v1, v2, v3 are linearly independent.

Next we give an example of vectors in R3 that are in uniform position.
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Example 4.3.9. The 6 vectors

{v1, . . . , v6} = {(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (1, 1, 2)T, (1, 2, 1)T, (2, 1, 1)T} ⊂ R3

are in uniform position. With d = 3, the minimum degree r such that 6 ≤ (r+d−1
d−1 ) is

2. Every three vectors among v1, . . . , v6 are linearly independent. Moreover the ma-
trix A2 ∈ R6×6 with A2

ij := ti(vj), being {t1, . . . , t6} = {X2, XY, XZ, Y2, YZ, Z2},
is non singular:

A2 :=



1 0 0 1 1 4
0 0 0 1 2 2
0 0 0 2 1 2
0 1 0 1 4 1
0 0 0 2 2 1
0 0 1 4 1 1


By Lemma 4.3.6 this is all we have to check.

In the following proposition we show that there exist l lattice directions in
generic l-position, for every l ∈N∗.

Proposition 4.3.10. For every l, d ∈ N∗, there exist l vectors of Zd that are in
generic l-position.

Proof. We show this by induction on l. For l = 1 the claim is trivial. Assume
there are l − 1 lattice directions that are in generic (l − 1)-position. We can
apply a change of coordinates so that the first entry of vi is not zero, and then
scale every vector so that the first entry is 1, for every i ∈ [l − 1]. In this way,
the vectors could in principle be no longer in Zd, but the rank of the matrices
Ar would not be affected, for every r, see 4.3.4. By definition, the matrix Ar

is full-rank for all r ≥ 1, and by Lemma 4.3.6 this is equivalent to Ar being
full-rank for all r ∈ {1, . . . , r0} with

r0 := min
{

r ∈N∗ :
(

r + d− 1
d− 1

)
≥ l − 1

}
.

We want to show that we can choose an additional direction vl so that the
vectors v1, . . . , vl−1, vl ∈ Qd are in generic l-position. Let

r1 := min
{

r ∈N∗ :
(

r + d− 1
d− 1

)
≥ l
}

.

Clearly r1 ≥ r0. We distinguish two cases, r1 = r0 and r1 > r0.
Case 1: r1 = r0. Hence it holds(

r0 + d− 1
d− 1

)
≥ l > l − 1 >

(
(r0 − 1) + d− 1

d− 1

)
as r0 is the smallest natural number for which (r0+d−1

d−1 ) ≥ l − 1. Hence the ma-
trix Ar associated to v1, . . . , vl−1 is a submatrix of the matrix Ar associated to
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v1, . . . , vl−1, vl for all r ∈ {1, . . . , r0 − 1}, i.e., it is full-rank for every choice of
vl , due to the fact that v1, . . . , vl−1 are in generic (l− 1)-position. Consider now

the matrix Ar0 ∈ R(
r0+d−1

d−1 )×l , as depicted in (4.16), associated to v1, . . . , vl . As
v1, . . . , vl−1 are in generic (l − 1)-position, the submatrix Ar0

{1,...,l−1} of Ar0 ob-
tained selecting the first l− 1 columns of Ar0 , is full-rank, i.e., it has rank l − 1.
This means that there exists at least one (l − 1) × (l − 1) minor of Ar0

{1,...,l−1}
which is non-zero, let us call it A∗. We want to show that it is possible to
choose vl so that v1, . . . , vl−1, vl are in generic l-position, thus we write the
vector vl as the vector of variables (X1, . . . , Xd). The l × l minors of Ar0 are
the homogeneous polynomials of degree r0 in the variables X = (X1, . . . , Xd)

defined as

f I(X) := ∑
j∈I

(−1)l+j Ajtj(X) ∀I ⊂
{

1, . . . ,
(

r0 + d− 1
d− 1

)}
, |I| = l

where Aj are (l − 1)× (l − 1) minors of Ar0
{1,...,l−1} and tj is a term of degree r0

in d variables.

Ar0 =



t1(vl)
...

Ar0
{1,...,l−1}

...

...
t
(

r0+d−1
d−1 )

(vl)


∈ R(

r0+d−1
d−1 )×l (4.16)

Every polynomial f I that involves A∗ is not identically zero, since A∗ 6= 0 and
the terms t1, . . . , t

(
r0+d−1

d−1 )
are linearly independent. Hence it suffices to choose

one, for example the one with greater leading term with respect to LEX, that
we denote by f I∗(X), and choose vl in a way that f I∗(vl) 6= 0. Hence the matrix
Ar0 has rank l, which means that v1, . . . , vl are in generic l-position.
Case 2: r1 > r0. It holds(

r1 + d− 1
d− 1

)
≥ l >

(
r0 + d− 1

d− 1

)
≥ l − 1

hence it follows (r0+d−1
d−1 ) = l − 1. From the minimality of r1 follows also

r1 = r0 + 1. We need to show that for all r ∈ {1, . . . , r1}, we can choose vl ∈ Rd

so that the matrix Ar as in Definition 4.3.3 evaluated on v1, . . . , vl is full-rank.
Again for r ∈ {1, . . . , r0}, the matrix Ar associated to v1, . . . , vl−1 is a submatrix
of the matrix Ar associated to v1, . . . , vl−1, vl , so if the former has maximal rank
(r+d−1

d−1 ), then also the latter has. For the cases r = r0 + 1, we argue as in Case
1.

Proposition 4.3.11. For every l, d ∈ N∗, there exist l vectors of Zd that are in
uniform position.

113



Chapter 4. The Prouhet-Tarry-Escott Problem in Discrete Tomography

Proof. It is sufficient to apply Proposition 4.3.10 to every subset of cardinality
t, ∀t < l. Assume v1, . . . , vl−1 are in uniform position. In order to add vl in a
way that v1, . . . , vl−1, vl are in uniform position, we need to choose vl in such
a way that ∀t < l, ∀{i1, . . . , it} ⊂ {1, . . . , l − 1} we have vi1 , vi2 , . . . , vit , vl are
in (t + 1)-generic position, i.e., we have to choose vl such that finitely many
non-zero polynomials do not vanish in vl .

Propositions 4.3.10 and 4.3.11 were shown in [84] using concepts from
Zariski’s topology, and without requiring the vectors to be in Zd. We preferred
to devise another proof to conclude the existence of lattice vectors in generic
and uniform position, instead of modifying the existing one.

The notion of vectors in uniform position resembles the well-known notion
of vectors in general position, however the two properties are not equivalent.
While vectors in uniform position are also in general position, the other impli-
cation does not hold, in general.

Proposition 4.3.12. Let l ∈ N∗, and let v1, . . . , vl ∈ Rd be in uniform position.
Then v1, . . . , vl are in general position.

Proof. If V = {v1, . . . , vl} ⊂ Rd are in uniform position, then for every
t ∈ {1, . . . , l}, every subset of V of cardinality t is in generic t-position. We
choose t = d and from the definition of generic position 4.3.3 it follows that
in particular, choosing r = 1 it holds (r+d−1

d−1 ) = (1+d−1
d−1 )) = d and the matrix

A1 ∈ Rd×d has rank d, which concludes the proof.

In the following example, we give 6 vectors in general position that are not
in uniform position.

Example 4.3.13. The vectors in R3

{v1, . . . , v6} := {(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (1, 1,−1)T, (−1, 2,−1)T, (1, 7, 7)T}

are in general position (every 3 of them are linearly independent) but are not in generic
6-position (and moreover not in uniform position), as (r+d−1

d−1 ) = 6 for r = 2 and the
matrix

A2(v1, . . . , v6)ij = ti(vj) = (X2
1 , X1X2, X1X3, X2

2 , X2X3, X2
3)

T(vj) ∈ R6×6

is singular.

A2(v1, . . . , v6) =



1 0 0 1 1 1
0 0 0 1 −2 7
0 0 0 −1 1 7
0 1 0 1 4 49
0 0 0 −1 −2 49
0 0 1 1 1 49


det(A2) = 0

114



4.3 Switching Components as Solutions to PTE

In the following example, we see that vectors in generic position are not
always in general position.

Example 4.3.14. Being in generic position does not imply being in general position.
In fact, consider the vectors

{v1, v2, v3, v4} := {(1, 0, 0)T, (0, 1, 0)T, (0, 0, 1)T, (0, 1, 1)T} ⊂ R3

as v2 + v3 = v4, they are not in general position. However, the matrices

A1(v1, v2, v3, v4)ij = ti(vj) = (X1, X2, X3)
T(vj) ∈ R3×4

A1(v1, v2, v3, v4) =

1 0 0 0
0 1 0 1
0 0 1 1


A2(v1, v2, v3, v4)ij = ti(vj) = (X2

1 , X1X2, X1X3, X2
2 , X2X3, X2

3)
T(vj) ∈ R6×4

A2(v1, v2, v3, v4) =



1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 1
0 0 0 1
0 0 1 1


are both full-rank, and as (r+d−1

d−1 ) = (4
2) = 6 > 4, by Lemma 4.3.6 it follows that

v1, v2, v3, v4 are in generic 4-position.

4.3.2 Hyperplane Switching Components and the PTE problem

We now extend Theorem 4.3.1 from [18] to dimension d ≥ 2 in two ways.
The reason for the two-fold generalization lies in the fact that the only proper
subspaces of R2 are 1-dimensional, and they can be interpreted both as lines
and hyperplanes.

Proposition 4.3.15. Let K be a field containing Z, let X = (X1, . . . , Xd), r ∈ N,
v1, . . . , vl ∈ Zd in generic l-position, with l = (r+d−1

d−1 ). Then the polynomials

g1 := (v11X1 + · · ·+ v1dXd)
r, . . . , gl := (vl1X1 + · · ·+ vldXd)

r

are a basis of the vector space Vr,d generated by the terms of degree r in K[X].

Proof. The number of terms in Vr,d is l = (r+d−1
d−1 ). We denote the terms as

t1, . . . , tl . The order of the terms is not relevant, we could for example fix the
order LEX with X1 � X2 � · · · � Xd. It is sufficient to show that there exists
an invertible matrix C ∈ Kl×l such that

(g1, . . . , gl)
T = C · (t1, . . . , tl)

T,
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i.e., C is a change of basis matrix. For every i = 1, . . . , l it holds that

(vi1X1 + · · ·+ vidXd)
r =

l

∑
j=1

αjtj(vi) · tj(X1, . . . , Xd)

where αj are the binomial coefficients occurring in the power expansion, which
depend on tj, and tj(vi) is the term tj evaluated in the vector vi. We define the
entries cij of the matrix C as

cij := αjtj(vi),

and obtain 
(v11X1 + · · ·+ v1dXd)

r

(v21X1 + · · ·+ v2dXd)
r

...
(vl1X1 + · · ·+ vldXd)

r

 = C ·


t1

t2
...
tl

 (4.17)

Every column j of C is multiple of the corresponding αj 6= 0, so C is invertible
if and only if the matrix c′ij := tj(vi) is invertible. As the vectors v1, . . . , vl are in
generic l-position, the non-singularity of C follows from Definition 4.3.3.

Before showing one of the main results of this section, we need a lemma.

Lemma 4.3.16. Let v1, . . . , vl ∈ Rd be in generic l-position. Then ∀h ∈ N with
1 ≤ h ≤ l, ∃ J ⊂ {v1, . . . , vl}, |J| = h, such that the vectors in J are in generic
h-position.

Proof. By contradiction, there exists h ∈ [l] such that for every J ⊂ {v1, . . . , vl},
|J| = h, the vectors in J are not in generic h-position. This means that for every
such a J, there exists a degree r such that the matrix Ar(J) is not full-rank. We
set

rJ := min{r : Ar(J) is not full-rank} ∀J ⊂ {v1, . . . , vl}, |J| = h

We define
r1 := max{rJ : J ⊂ {v1, . . . , vl}, |J| = h}

Hence Ar1(J) is not full-rank for all J ⊂ {v1, . . . , vl} with |J| = h.

As v1, . . . , vl are in generic l-position, then the matrix Ar1(v1, . . . , vl) ∈ R
(

r1+d−1
d−1 )×l

is full-rank.
We distinguish two cases: (r1+d−1

d−1 ) > l or (r1+d−1
d−1 ) ≤ l.

If (r1+d−1
d−1 ) > l then

rank (Ar1(v1, . . . , vl)) = l

which would mean for every J ⊂ {v1, . . . , vl} with |J| = h, the matrix Ar1(J)
has rank h, a contradiction.
If (r1+d−1

d−1 ) ≤ l then

rank (Ar1(v1, . . . , vl)) =

(
r1 + d− 1

d− 1

)
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Hence there exists a set I ⊂ [l] with |I| = (r1+d−1
d−1 ) such that the submatrix

Ar1
I of Ar1(v1, . . . , vl) obtained selecting the columns with indices in I is non

singular.
If |I| ≥ h, then we get a contradiction, because every h-many columns of
Ar1

J must be linearly independent, which means Ar1(J) is full-rank for all
J ⊂ {vi : i ∈ I}, |I| = h.
If |I| < h again we get a contradiction, because we can choose J1 ⊂ {vi : i /∈ I}
with |J1| = h− |I|. We consider

J := {vi : i ∈ I} ∪ J1.

The matrix Ar1(J) ∈ R
(

r1+d−1
d−1 )×h contains Ar1

I as a submatrix, hence its rank
is (r1+d−1

d−1 ). This is a contradiction, and the claim follows.

In the next theorem we show that under certain generality assumptions,
hyperplane switching components yield PTEd solutions.

Theorem 4.3.17.
Let κ, d ∈N∗, consider m := (κ+d−1

d−1 ) distinct hyperplanes S1, . . . , Sm ∈ Ld
d−1 whose

normal vectors v1, . . . , vm ∈ Zd are in generic m-position.
Let the multisets B := {{b1, . . . , bn}} and W := {{w1, . . . , wn}} ⊂ Zd be tomogra-
phically equivalent with respect to S1, . . . , Sm. Then (B, W) is a solution of PTEd of
degree κ.

Proof. As B and W are tomographically equivalent with respect to S1, . . . , Sm,
then |B ∩ T| = |W ∩ T| ∀T ∈ AK(Si) ∀i ∈ [m] which means that the following
multisets are equal:

{{vT
i b1, . . . , vT

i bn}} = {{vT
i w1, . . . , vT

i wn}} ∀i ∈ [m] (4.18)

For 1 ≤ r ≤ κ, let l := (r+d−1
d−1 ). Observe that l ≤ m, and consider the polyno-

mials

g1(X) = (v11X1 + · · ·+ v1dXd), . . . , gl(X) = (vl1X1 + · · ·+ vldXd).

As v1, . . . , vm are in generic m-position, then by Lemma 4.3.16 it follows that
after a possible re-ordering we can assume v1, . . . , vl to be in generic l-position.
Hence from Proposition 4.3.15 it follows that there exists an invertible matrix
C ∈ Kl×l such that

t1

t2
...
tl

 = C ·


(v11X1 + · · ·+ v1dXd)

r

(v21X1 + · · ·+ v2dXd)
r

...
(vl1X1 + · · ·+ vldXd)

r

 = C ·


gr

1
gr

2
...

gr
l

 (4.19)

where t1, . . . , tl are the terms of degree r in the variables X1, . . . , Xd. Let i1, . . . , id ∈
N s.t. i1 + · · ·+ id = r, and let ti be the corresponding term Xi1

1 · · ·X
id
d . Hence
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n

∑
j=1

(
bi1

j1 · · · b
id
jd − wi1

j1 · · ·w
id
jd

)
=

n

∑
j=1

(
ti(bj)− ti(wj)

)
=

=
n

∑
j=1

l

∑
h=1

Cih
(

gh(bj)
r − gh(wj)

r) = l

∑
h=1

Cih

n

∑
j=1

(
gh(bj)

r − gh(wj)
r) = 0

where the last equality follows from equation (4.18). Hence (B, W) is a
solution of PTEd of degree κ.

Remark 4.3.18. In dimension d = 2, any set of distinct vectors is in uniform po-
sition, see Proposition 4.3.8. Moreover, (κ+d−1

d−1 ) = κ + 1 and hyperplanes and lines
coincide. Hence, Theorem 4.3.17 is a generalization of Theorem 4.3.1 to dimension
d ≥ 2.

4.3.3 Line Switching Components and the PTE Problem

In the following, we present another generalization of Theorem 4.3.1. We first
need a lemma that allows us to apply the results on hyperplanes switching
components of Theorem 4.3.17 to lines switching components as well.

Lemma 4.3.19. Let s1, . . . sκ+1 ∈ Zd be pairwise linearly independent vectors. Then
there exist m := (κ+d−1

d−1 ) vectors v1, . . . , vm ∈
⋃

i∈[κ+1] lin{si}⊥ that are in uniform
position.

Proof. By contradiction, every v1, . . . , vm ∈ U :=
⋃

i∈[κ+1] lin{si}⊥ are not in
uniform position. We consider the maximum number c for which we find
v1, . . . , vc ∈ U in uniform position. By contradiction, c < m. This means that
for every choice of vc+1 ∈ U, the vectors v1, . . . , vc, vc+1 are not in uniform
position, hence from Lemma 4.3.6 there exists a number r ∈N such that(

r + d− 1
d− 1

)
≤ c + 1

and the corresponding matrix Ar ∈ Z(r+d−1
d−1 )×(c+1), with

Ar
ij := ti(vj)

is not full-rank.
As v1, . . . , vc are in uniform position, it cannot be that (r+d−1

d−1 ) < c + 1, hence
it holds (r+d−1

d−1 ) = c + 1 and Ar is a square matrix. As Ar is not full-rank for
every choice of vc+1 ∈ U, it follows that the determinant of Ar (with vc+1 = X
varying)

∆(X) := det(Ar
ij)(v1, . . . , vc, X)

is a homogeneous polynomial of degree r that vanishes on all points of U.
Moreover, ∆(X) is not identically zero, as v1, . . . , vc are in uniform position.
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As s1, . . . , sκ+1 are pairwise linearly independent, we have that U is the union
of κ + 1 distinct hyperplanes through 0 ∈ Rd, implying that ∆(X) has κ + 1
distinct linear factors, namely sT

i X, ∀i ∈ [κ + 1]. But as c < (κ+d−1
d−1 ) and

(r+d−1
d−1 ) = c + 1, it follows(

r + d− 1
d− 1

)
≤
(

κ + d− 1
d− 1

)
implying r ≤ κ, a contradiction to ∆(X) having κ + 1 linear factors.

By Lemma 4.3.19 it follows that every set of κ + 1 pairwise linearly in-
dependent directions in Zd is contained in (κ+d−1

d−1 )-many hyperplane whose
normal vectors are in uniform position. The following theorem yields another
generalization of Theorem 4.3.1.

Theorem 4.3.20. Solutions of GP1,d(n, κ + 1) are solutions of PTEd(n, κ), κ ≥ 1.

Proof. Follows from Lemma 4.3.19, Proposition 1.2.8 part (iv) and Theorem
4.3.17.

Remark 4.3.21. By Theorem 3.1.7 we have a complete characterization of switching
components with respect to k-dimensional subspaces, k ∈ [d− 1] via the ideal I(A),
and by theorem 4.2.4 we have a complete characterization of solutions to PTEd in
terms of a polynomial ideal. So another approach to prove theorems 4.3.17 and 4.3.20
is showing the inclusion of the ideals. We follow this path in Section 4.3.4 only for
switching components with respect to lines.

The results of this section could be extended in the following way:

Conjecture 4.3.22. Let d, κ ∈N∗. There exists a function

ξ : N× {1, . . . , d− 1} →N

such that if (B, W) ∈ F d
N ×F d

N form a switching component with respect to ξ(κ, r)
distinct subspaces of dimension r, then (B, W) is a PTEd of degree κ.

From theorems 4.3.17 and 4.3.20 it is reasonable to conjecture

ξ : N× [d] −→N

(κ, r) 7−→
(

κ + r
κ

)
We should also determine the correct notion of “independence” for subspaces
of dimension r ∈ [d− 1], that would extend the concept of generic position to
the cases r ∈ {2, . . . , d− 2}.
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4.3.4 Algebraic Proof of the Relation between Switching Compo-
nents and PTE Problem

In Theorem 4.2.4 we showed a characterization of the PTEd solutions of degree
κ. Namely, they correspond via the usual encoding 3.1.1, to the polynomials
of the ideal I ⊂ Z[X1, . . . , Xd] defined as

Iκ := ∑
(j1,...,jd)∈Nd

∑d
s=1 js=κ+1

(
(X1 − 1)j1 · ... · (Xd − 1)jd

)
.

Let S := {s1, . . . , sκ+1} ⊂ Zd be a set of κ pairwise linearly independent direc-
tions. From Theorem 3.1.3, we know that a polynomial g(X) ∈ Z[X1, . . . , Xd]

representing a switching component with respect to the directions in S has to
be multiple of the polynomial fS ∈ Z[X1, . . . , Xd], defined as

fS(X) := ∏
s∈S

(
Xs+ − Xs−

)
(4.20)

In this section we prove again Theorem 4.3.20 by showing that fS ∈ I for all S.

Theorem 4.3.23. Solutions of GP1,d(n, κ + 1) are solutions of PTEd(n, κ).

Proof. We show fS ∈ Iκ by induction on κ. If κ = 0, then S = {s} ⊂ Zd,
fS = Xs+ −Xs− and we denote by I0 the ideal of the polynomials corresponding
to the PTEd solutions of degree 0:

I0 := (X1 − 1, X2 − 1, . . . , Xd − 1) ⊂ Z[X1, . . . , Xd].

As fS 6= 0, at least one of the terms Xs+ and Xs− must be divisible by at least
one of the terms {X1, . . . , Xd}, hence, by using the rewrite rule

Xi ≡ 1 mod I ∀i ∈ [d]

see 2.1.24, we obtain
fS

I0−→ 0

which is equivalent to fS ∈ I0, being the generators of I0 a Gröbner basis by
Corollary 2.1.37.

Let us assume the claim true for κ, we want to show it for κ + 1. We denote
by Iκ ⊂ Z[X1, . . . , Xd] the ideal

Iκ := ∑
(j1,...,jd)∈Nd

∑d
s=1 js=κ+1

(
(X1 − 1)j1 · ... · (Xd − 1)jd

)

corresponding to the PTEd solutions of degree κ, and analogously we denote
by Iκ+1 the ideal whose elements correspond to PTEd solutions of degree κ + 1:

Iκ+1 := ∑
(j1,...,jd)∈Nd

∑d
s=1 js=κ+2

(
(X1 − 1)j1 · ... · (Xd − 1)jd

)
.
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Let the vectors s1, . . . , sκ+1, sκ+2 ∈ Zd be pairwise linearly independent and let
S := {s1, . . . , sκ+1} and S′ := S ∪ {sκ+2}, and denote the correspondent poly-
nomials fS and fS′ respectively, as defined in equation (4.20). It holds

fS′ = fS · (Xs+κ+2 − Xs−κ+2)

We observe

Iκ+1 = Iκ(X1 − 1) + Iκ(X2 − 1) + · · ·+ Iκ(Xd − 1) = Iκ(X1 − 1, . . . , Xd − 1)

so that it follows fS′ ∈ Iκ+1 because fS ∈ Iκ by induction hypothesis and

(Xs+κ+2 − Xs−κ+2) ∈ (X1 − 1, . . . , Xd − 1)

as already observed. By definition of ideal, if fS ∈ Iκ then every multiple of fS

belongs to Iκ, so the claim follows.
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4.4 PTE-Solutions are Projections of Switching Compo-
nents

In the previous sections we have explained under which conditions certain so-
lutions to GPκ,d are solutions to PTEd. In this section we investigate the reverse
implication. In general, PTE-solutions are not solutions to GP, as shown by the
following example.

Example 4.4.1 (PTE2 Solution that is not a GP2 Solution). Let the sets B, W ⊂ Z2

be
B := {(0, 0)T, (1, 2)T, (2, 1)T, (3, 1)T, (5, 1)T, (5, 2)T, (5,−2)T}
W := {(1, 0)T, (0, 1)T, (2, 2)T, (4, 0)T, (4,−1)T, (4, 3)T, (6, 0)T}

as depicted in figure 4.1. They form a solution to PTE2(7, 2), but are not tomogra-
phically equivalent with respect to any line (or hyperplane, in this context), as one
can see applying the results from [94]. In order to show this, it is sufficient to con-
sider all vectors b1−wj, j ∈ [7], as possible candidates for line directions with respect
to whom B, W could be tomographically equivalent, and check that the polynomial
∑i∈[7](Xbi − Xwi) is not divisible by the binomial X(b1−wj)

+ − X(b1−wj)
−

, for every
j ∈ [7]. This can be easily checked with an algebraic computer software, for example
CoCoA [2]. The points in this example are a union of two switching components with
respect to 3 lines each, namely B = B1 ∪ B2 and W = W1 ∪W2 with

B1 = {(0, 0)T, (1, 2)T, (2, 1)T} W1 = {(1, 0)T, (0, 1)T, (2, 2)T}

B2 = {(3, 1)T, (5, 1)T, (5, 2)T, (5,−2)T} W2 = {(4, 0)T, (4,−1)T, (4, 3)T, (6, 0)T}
that are switching components with respect to the sets of directions

S1 := {(1, 0)T, (0, 1)T, (1, 1)T} and S2 := {(1,−1)T, (1, 2)T, (1,−2)T}

respectively.

Example 4.4.2 (Small PTE2 Solution, not as many Lines). The sets

B := {(0, 6)T, (4, 2)T, (5, 1)T}

W := {(1, 5)T, (2, 4)T, (6, 0)T}
which are obtained from the PTE(3, 2) solution [0, 4, 5] =2 [1, 2, 6], form a PTE2(3, 2)
solution, however they are a switching component with respect to the line in direction
(1,−1)T only.

It was shown in [113] that every solution of the classic PTE problem can be
obtained as a projection of a suitable switching component in Z2, see Theorem
4.4.3. A switching component consists of a pair of multisets B and W of points.
In a projection, each point of B counts positively, each point of W negatively.
A projection along an affine subspace can thus evaluate to zero although the
subspace contains a point of B∪W (the number of points of B and W, counted
with multiplicity, must be equal). We exclude as direction of projection the
directions with respect to whom B and W are tomographically equivalent.
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Figure 4.1: Example 4.4.1

Theorem 4.4.3. Every classic PTE-solution [b1, . . . , bn] =κ [w1, . . . , wn] can be ob-
tained as projection of a switching component in Zd for an arbitrary set of κ + 1
pairwise linearly independent directions s1, . . . , sκ+1 ∈ Zd different from the unit
vector u1 and such that uT

1 si = 1 for all i ∈ [κ + 1].

Proof. By Proposition 4.1.6 there exists p(X1) ∈ Z[X1] such that

n

∑
i=1

Xbi
1 −

n

∑
i=1

Xwi
1 = p(X1) · (X1 − 1)κ+1.

By the encoding defined in 3.1.1, ∑n
i=1 Xai −∑n

i=1 Xbi is associated to the multi-
sets

B = {{(b1, 0, . . . , 0)T, . . . , (bn, 0, . . . , 0)T}} ⊂ Zd

W = {{(w1, 0, . . . , 0)T, . . . , (wn, 0, . . . , 0)T}} ⊂ Zd.

Let S denote an arbitrary set of κ + 1 pairwise linearly independent directions
different from u1 ∈ Zd, s1, . . . , sκ+1, and such that uT

1 si = 1 for all i ∈ [κ + 1].
Let

fS(X) =
κ+1

∏
i=1

(Xs+i − Xs−i )

be the pure-product switching component associated to S. Let g(X) denote the
polynomial

g(X) := p(X1) · fS(X)

corresponding to a switching component with respect to the directions in S by
3.1.3. Consider the ideal I := (X2 − 1, . . . , Xd − 1), whose generators form a
Gröbner basis with respect to LEX by Proposition 2.1.36. Hence the remainder
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of the division of f by {X2− 1, . . . , Xd− 1} is the normal form of f with respect
to I, see 2.1.29 and 2.1.30. Applying the rewrite rule to g(X), see Algorithm
2.1.24, we easily obtain

NF I(g(X)) = p(X1)(X1 − 1)κ+1 (4.21)

as g(X) is not divisible by Xi − 1 for all i ∈ {2, . . . , d} and the first entries of
s1, . . . , sκ+1 are equal to 1 by the assumption made on S.
Let (B, W) ∈ F d

N × F d
N be the switching component associated to g(X) via

3.1.1. As we will show now, reducing g(X) modulo I can be interpreted as
projecting (B, W) as defined in 1.2.10, by a projection π : Zd → Z, whose
matrix is

A := (1, 0, . . . , 0) ∈ Z1×d

i.e., π(x) := Ax. In fact, from equation (4.21) there exist g2, . . . , gd ∈ Z[X] such
that the following is an expression of division:

g(X) = g2(X)(X2 − 1) + · · ·+ gd(X)(Xd − 1) + p(X1)(X1 − 1)κ+1

since LC (Xi − 1) = 1 for all i ∈ {2, . . . , d}, the polynomials g2, . . . , gd are
ensured to have integer coefficients.
For i ∈ {2, . . . , d}, the polynomials gi(X)(Xi − 1) correspond through 3.1.1 to
a switching component (Bi, Wi) ∈ F d

N × F d
N with respect to the direction ui,

hence denoting as Mi the matrix obtained by the identity matrix Id removing
the i-th column, we obtain by (1.5)

{{Mib : b ∈ Bi}} = {{Miw : w ∈Wi}} ∀i ∈ {2, . . . , d}

in particular

{{uT
1 b : b ∈ Bi}} = {{uT

1 w : w ∈Wi}} ∀i ∈ {2, . . . , d}.

Hence

π((B, W)) = π(B2, W2) ∪ · · · ∪ π(Bd, Wd) ∪ π(B, W) = (B, W).

It is clear that there are different switching components that could be pro-
jected to the same PTE-solution, it is sufficient to choose different sets of di-
rections s1, . . . , sκ+1 in 4.4.3. We also observe that the dimension d in Theorem
4.4.3 is an arbitrary number bigger than or equal to 2. Theorem 4.4.3 together
with 3.3.8 implies the PTE-solutions can be obtained as union of projections of
2-colored cubes.

Remark 4.4.4. The historically first PTE-solution can be obtained by projection of a
classic switching component. This first PTE-solution is in fact a family of solutions
for κ = 2 with n = 4 appearing in a 1750 letter from Goldbach to Euler [87]:

[α + β + δ, α + γ + δ, β + γ + δ, δ] =2 [α + δ, β + δ, γ + δ, α + β + γ + δ],
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with integer parameters α, β, γ, δ.
By translation invariance (setting α + β + γ + δ = 0) Euler [71] subsequently sim-
plified this to

[0, α + β, α + γ, β + γ] =2 [α, β, γ, α + β + γ].

The Goldbach/Euler solution can be obtained by (vertical) projection of the switching
component

B = {(0, 0)T, (α + β, λ)T, (α + γ, λ + µ)T, (β + γ, µ)T}
W = {(α, λ)T, (β, 0)T, (γ, µ)T, (α + β + γ, λ + µ)T},

obtained by the classic doubling procedure along s1 = (α, λ)T, s2 = (β, 0)T, and
s3 = (γ, µ)T with integer parameters α, β, γ, λ, µ.

4.4.1 Summary on the Relation between Switching Components and
PTE

GP1,d(n, κ + 1) ⇒ PTEd(n, κ) Theorems 4.3.20 and 4.3.23

GPd−1,d(n, (κ+d−1
d−1 ))

+ generic position ⇒ PTEd(n, κ) Theorem 4.3.17

PTEd(n, κ) ; GPt,d(n, κ), 1 ≤ t ≤ d− 1 Example 4.4.1

PTEd(n, κ) ⇒ union of GP1,d(n, κ), Theorem 4.2.4 and 4.2.5

PTE1(n, κ) ⇒ projections of suitable GPd(n, κ) Theorem 4.4.3
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4.5 Small PTE-Solutions

It is a long-standing open problem to determine the minimum size of a PTE-
solution of degree κ, for every κ ∈N. Particularly, it is not known if ideal solu-
tions exist for every κ: so far, ideal solutions are known to exist for κ ∈ [9] ∪ {11}.
Borwein, Lisoněk and Percival in [35] devised a computational approach to
attack this question, and though they did not succeed in finding any ideal so-
lution for the degrees for which none is known, they managed to find an ideal
solution of degree 9 with smaller elements than the solutions known at the
time. The best bounds on the minimum size of a PTE-solution of degree κ ∈N

were given in [131, 176] and are inO(k2). However, they are non-constructive.

Remark 4.5.1. In [76] it is mentioned that no constructive way to produce PTE-
solutions of size of order lower than 2κ is known, however Maltby [123] and Cipu
[52] presented constructive ways to find solutions of degree κ and size in 2O(

√
κlog(

√
κ)

andO(1.19κ) respectively, looking for small pure products, as we will explain in more
details in Chapter 5. A way to efficiently construct PTE-solutions would imply NP-
completeness of Reed-Solomon decoding, see [76].

As every classic PTE-solution of degree κ corresponds to a multiple of the
univariate polynomial (X − 1)κ+1 by Lemma 4.1.6, a polynomial p(X) such
that

‖p(X)(X− 1)κ+1‖1

is small, leads to a small size PTE-solution of degree κ.
Considerable attention has been given to all results that establish the existence
of multiples of given polynomials with bounded 1-norm (see Section 3.5) as
for example Mignotte’s Theorem 3.5.2, that ensures the existence of a multi-
ple of (X − 1)κ+1 of degree lower than (κ + 1)2 log(κ + 1) with coefficients in
{0,±1}. Mignotte’s theorem, together with Proposition 4.1.6, implies the fol-
lowing result.

Proposition 4.5.2.
Let κ ∈N∗. There exists a PTE-solution [b1, . . . , bn] =κ [w1, . . . , wn] with

n ≤ (κ + 1)2 log(κ + 1)

and
{b1, . . . , bn, w1, . . . , wn} ⊂ {0, . . . , (κ + 1)2 log(κ + 1)}.

Proposition 3.5.3 for d = 1 ensures that if p(X)(X − 1)κ+1 corresponds to
the minimal PTE-solution of degree κ, then the terms of p(X) cannot be “too
far away” from one another. Let us choose for example κ = 10, the first case for
which the existence of an ideal solution to the PTE problem is not known, and
consider the minimal size of a PTE-solution, corresponding to a polynomial
p̄(X)(X− 1)11 such that

p̄(X)(X− 1)11 ∈ argmin{n : ‖p(X)(X− 1)11‖1 = n}.
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Consider the sequence of monomials in Supp ( p̄), in ascending order with re-
spect to the degree. As we showed in general in Proposition 3.5.3, we conclude
that two subsequent terms of p̄, αXt1 and βXt2 , with t1, t2 ∈ N, t1 < t2 and
α, β ∈ Z are such that t2 − t1 ≤ 11. Otherwise, if t2 − t1 > 11, it would hold

‖(X− 1)11 p̄(X)‖1 =
∥∥∥(X− 1)11 ·

(
∑

m∈Supp ( p̄)
deg(m)≤t1

m
)
+(X− 1)11 ·

(
∑

m∈Supp ( p̄)
deg(m)≥t2

m
)∥∥∥

1
=

=
∥∥∥(X− 1)11 ·

(
∑

m∈Supp ( p̄)
deg(m)≤t1

m
)∥∥∥

1
+
∥∥∥(X− 1)11 ·

(
∑

m∈Supp ( p̄)
deg(m)≥t2

m
)∥∥∥

1
>

>
∥∥∥(X− 1)11 ·

(
∑

m∈Supp ( p̄)
deg(m)≥t2

m
)∥∥∥

1

contradicting p̄(X)(X− 1)κ+1 ∈ argmin{n : ‖p(X)(X− 1)11‖1 = n}.
The following theorems show that switching components yield classic PTE-

solutions.

Theorem 4.5.3. Let d, m, n ∈ N∗ and let s1, . . . , sm ∈ Z2 be pairwise linearly
independent directions. Let F1 := {{b1, . . . , bn}} ∈ F 2

N, F2 := {{w1, . . . , wn}} ∈ F 2
N

be disjoint and tomographically equivalent with respect to s1, . . . , sm. Let s ∈ Zd be
such that F1, F2 are not tomographically equivalent with respect to s, and let v ∈ Z2

be such that vTs = 0. Then the multisets

B := {{vTb1, vTb2, . . . , vTbn}} and W := {{vTw1, vTw2, . . . , vTwn}}

form a non-trivial PTE-solution of degree m− 1.

Proof. By Theorem 4.3.20, (F1, F2) is a solution to PTEd(n, m− 1). By Proposi-
tion 4.1.3 the multisets B and W, form a solution of degree m− 1 to the classic
PTE problem:

[vTb1, vTb2, . . . , vTbn] =m−1 [vTw1, vTw2, . . . , vTwn] (4.22)

As F1 and F2 are not tomographically equivalent with respect to s, the sets in
(4.22) are distinct, hence they are not a trivial PTE-solution.

The following theorem generalizes 4.5.3 to dimension d ≥ 2.

Theorem 4.5.4.
Let κ, d ∈N∗, consider m := (κ+d−1

d−1 ) distinct hyperplanes S1, . . . , Sm ∈ Ld
d−1 whose

normal vectors v1, . . . , vm ∈ Zd are in uniform position.
Let Sm+1 ∈ Ld

d−1 with normal vector vm+1 ∈ Zd. Let B := {{b1, . . . , bn}} and
W := {{w1, . . . , wn}} ⊂ Zd be multisets tomographically equivalent with respect to
S1, . . . , Sm but not with respect to Sm+1. Then the multisets B and W

B := {{vT
m+1b1, . . . , vT

m+1bn}} W := {{vT
m+1w1, . . . , vT

m+1wn}}

form a solution of PTE1 of degree κ.
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Proof. The multisets B and W are distinct, as B and W are not tomographically
equivalent with respect to Sm+1 by assumption. Let 1 ≤ q ≤ κ and consider
the polynomial

gm+1 := (vT
m+1(X1, . . . , Xd))

q =

(q+d−1
d−1 )

∑
j=1

αjtj(vm+1)tj

where tj, j ∈ [(q+d−1
d−1 )], are the terms of degree q in d variables and αj are

suitable binomial coefficients. It holds
n

∑
i=1

(
(vT

m+1bi)
q − (vT

m+1wi)
q
)
=

=
n

∑
i=1

(
gm+1(bi)− gm+1(wi)

)
=

=
n

∑
i=1

( (q+d−1
d−1 )

∑
j=1

αjtj(vm+1)tj(bi)−
(q+d−1

d−1 )

∑
j=1

αjtj(vm+1)tj(wi)
)
=

=
n

∑
i=1

(q+d−1
d−1 )

∑
j=1

αjtj(vm+1)
(

tj(bi)− tj(wi)
)
=

=

(q+d−1
d−1 )

∑
j=1

αjtj(vm+1)
n

∑
i=1

(
tj(bi)− tj(wi)

)
= 0.

The last equality holds as (B, W) is a PTEd solution of degree κ by Theorem
4.3.17, hence (B, W) is a PTE1 solution of degree κ.

Theorems 4.5.3 and 4.5.4 allow us to use the results from Chapter 3 to con-
struct small PTE-solutions.
Theorem 3.8.4 together with Theorem 4.5.3 yield the following corollary:

Corollary 4.5.5. For every κ ∈ N∗, and d ∈ {1, . . . , 2b κ
20c}, we can construct a

PTEd solutions of degree κ and size in O(1.38κ).

Theorem 3.9.13, together with Theorem 4.5.3 imply the following result.

Corollary 4.5.6. Let κ, d ∈ N∗ such that 1 ≤ d ≤ d
√

ke, we can construct a PTEd
solutions of degree κ and size in 2O(

√
κlog(

√
κ)).

Notice that for d = 1, corollaries 4.5.5 and 4.5.6 are not competitive with
the results that we mentioned in 4.5.1 from Maltby and Cipu. Moreover, as we
can embed every classic PTE-solution into Rd simply by setting the additional
d− 1 coordinates to 0, as explained in 4.1.5 (iii), the upper bounds on the size
of classic PTE-solutions hold also for the d-dimensional case. However, the
affine hull of the points obtained this way has dimension less than d. Hence
corollaries 4.5.5 and 4.5.6 provide two constructions of PTE-solutions that give
— to our knowledge — better bounds than any other construction known so
far, and such that the affine hull of the points involved has dimension d.
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4.6 The PTE-Problem as an Integer Linear Program

We present an algorithmic approach to find classic PTE-solutions given the de-
gree and the interval of N containing them. Our model will allow us to look
for a solution with minimum size, or to determine the smallest interval that
contains an ideal solution, as we will explain in Section 4.6.1. In order to do
so, we will model the PTE-problem as an Integer Linear Program, in short ILP.
This is a novel approach that might have the potential to boost the algorithmic
experiments in this area, by applying more sophisticated techniques from In-
teger Programming, and extensions are currently under investigations. Com-
putational approaches related to the PTE-problem have been carried by Caley
[47, 48] and by Borwein, Lisonĕk and Percival [35]. More details on Linear and
Integer Programming can be found, for example, in [53, 90, 161].

Let κ ∈N, by Lemma 4.1.6 we know that a PTE-solution

(B, W) ∈ FN ×FN

corresponds via the function θ as defined in 3.1.1 to an univariate polynomial
f (X) ∈ Z[X] divisible by (X − 1)κ+1. As already observed, it is not restrictive
to assume B ∪W ⊂ N. Let l ∈ N such that B ∪W ⊂ [0, l + κ + 1]. The
unknown quantities of our problem are the coefficients x := (x0, x1, . . . , xl) ∈
Zl+1 of the polynomial

p(X) =
l

∑
i=0

xiXi ∈ Z[X],

such that

f (X) = p(X)(X− 1)κ+1.

As already observed, we have

|B| = |W| = 1
2
‖ f ‖1.

We denote by (a0, a1, . . . , aκ+1) the coefficients of (X− 1)κ+1, i.e.,

ai := (−1)κ+1+i
(

κ + 1
i

)
,

and we denote by y0, y1, . . . , yl+κ+1 ∈ Z the coefficients of f , so that

f (X) =
l+κ+1

∑
i=0

yiXi.
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Let A ∈ Z(l+κ+2)×(l+1) be the matrix defined as follows:

A :=



a0 0 0 0 . . . . . . 0 . . . 0
a1 a0 0 0 . . . . . . 0 . . . 0
a2 a1 a0 0 . . . . . . 0 . . . 0
...

...
...

. . . . . . . . . 0 . . . 0
aκ+1 aκ aκ−1 . . . a0 0 0 . . . 0
0 aκ+1 aκ aκ−1 . . . a0 0 . . . 0
... 0 aκ+1

. . . . . . . . .
. . . . . .

...
...

... 0
. . . . . . . . . . . .

. . . 0
...

...
...

. . . aκ+1 . . . . . . a1 a0
...

...
...

... 0 aκ+1 . . . a2 a1
...

...
...

...
... 0 . . .

. . .
...

...
...

...
...

...
...

. . . aκ+1 aκ

0 . . . . . . . . . . . . . . . . . . 0 aκ+1



(4.23)

The matrix A is a particular Toeplitz Matrix. The representation of the convo-
lution between the vector (a0, . . . , aκ+1) and the vector x, which results in the
vector containing the coefficients of the product between (X− 1)κ+1 and p(X),
can be expressed as a matrix multiplication using A, see [88] §9.1. Namely, the
vector y ∈ Zl+κ+2, whose entries are the coefficients of the polynomial f , is
determined by the following relation:

y = A · x.

Finding a PTE-solution of minimum size in the interval [0, l + κ + 1] translates
into finding a solution to the following optimization problem:

min
x∈Zl+1\{0}

‖Ax‖1 (4.24)

As PTE-solutions are invariant with respect to translations, see proposition
4.1.2, we can assume 0 to be in either in B or W, so it is not restrictive to as-
sume the constant term of p(X) to be bigger than or equal to 1. Hence, finding
the minimal PTE- solution in a given interval is equivalent to the following
problem:

min
x∈Zl+1

uT
1 x≥1

‖Ax‖1 (4.25)

We modify problem (4.25) and turn it into an Integer Linear Program.
Let 1 ∈ Rl+κ+2 be the vector whose entries are all 1. Consider the following
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ILP:

min
x∈Rl+1

z∈Rl+κ+2

1Tz

−z ≤Ax ≤ z

uT
1 x ≥ 1

x ∈ Zl+1

(4.26)

In the following proposition we show that problem (4.25) can be equiv-
alently stated as problem (4.26). The proof is a standard exercise in Linear
Optimization courses, and we include it here for the reader’s convenience.

Proposition 4.6.1. Problems (4.25) and (4.26) are equivalent.

Proof. First we observe

|Ax| ≤ z⇔ −z ≤ Ax ≤ z, (4.27)

where the absolute value in |Ax| is intended component-wise. Let x∗ ∈ Zl+1

with uT
1 x∗ ≥ 1 be a solution to problem (4.25), and define

t∗ := |Ax∗| ∈ Rl+κ+2.

Then (x∗, t∗) ∈ Rl+1 ×Rl+κ+2 is feasible for (4.26) as it fulfills the condition

−z ≤ Ax ≤ z

because of the remark made in (4.27). Moreover, for all (x, z) ∈ Rl+1 ×Rl+κ+2

which are feasible for (4.26) it holds

1Tz =
l+κ+2

∑
i=1

zi ≥
l+κ+2

∑
i=1
|(Ax)i| = ‖Ax‖1 ≥ ‖Ax∗‖1 =

l+κ+2

∑
i=1

z∗i = 1Tz∗

Hence (x∗, z∗) is a solution of (4.26).
On the other hand, let (x∗, z∗) ∈ Rl+1 × Rl+κ+2 be a solution to (4.26), let
x ∈ Zl+1 with uT

1 x∗ ≥ 0 and let z := |Ax| ∈ Rl+κ+2, component-wise. The
pair (x, z) is a feasible point for (4.26). Hence it holds

‖Ax‖1 =
l+κ+2

∑
i=1
|(Ax)i| =

l+κ+2

∑
i=1

zi ≥
l+κ+2

∑
i=1

z∗i ≥
l+κ+2

∑
i=1
|(Ax∗)i| = ‖Ax∗‖1

Therefore x∗ is a solution of (4.25)

In the next section we will explain how we modified (4.26) to determine
small magnitude ideal PTE-solutions of low degree, and how we implemented
the model with FICO R© X-press-Mosel [141].
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4.6.1 Search for Ideal Solutions of Small Magnitude

In the previous section, we showed that the solutions to the ILP in (4.26) cor-
respond to the PTE-solutions of degree κ and minimum size, contained in the
interval [0, l + κ + 1]. In this section, we look at the problem of determining
PTE-solutions of given degree and size, and minimum magnitude: we define
the magnitude of a PTE-solution (B, W) as the number

M(B, W) := max
x∈B∪W

x− min
x∈B∪W

x,

which describes the minimum length of an interval containing B ∪W. If we
assume 0 ∈ B ∪W and B ∪W ⊂ N, then the magnitudeM(B, W) is equal to
maxx∈B∪W x. We want to verify if known ideal solutions have minimal magni-
tude, using a modified version of the ILP (4.26). For example, let us consider
the ideal solution of degree 2 we included at the beginning of the chapter,
({0, 4, 5}, {1, 2, 6}). We want to check if it has minimum magnitude, i.e., if an
ideal solution of degree 2 exists in the interval [0, 5]. Hence the degree l of
the corresponding polynomial p(X) has to be strictly lower than 3, i.e., we fix
l = 2. We use the ILP (4.26) specialized as follows:

κ := 2; l := 2; a := (−1, 3,−3, 1)T; 2κ + 2 = 6

A :=



−1 0 0
3 −1 0
−3 3 −1

1 −3 3
0 1 −3
0 0 1


∈ Z6×3

Hence, we obtain

min
x∈R3

z∈R6

1Tz

1Tz = 6

−z ≤ Ax ≤ z

x0 ≥ 1

x ∈ Z3

(4.28)

The ILP in (4.28) is a feasibility problem, having fixed the value of the objec-
tive function to be 6. We implemented it with Xpress Mosel by FICO R© Xpress
Optimization [141] and obtained as output the following ideal PTE-solution of
degree 2 and magnitude strictly lower than 5:

({{0, 3, 3}}, {{1, 1, 4}}).

We list in table 4.1 the ideal Prouhet-Tarry-Escott solutions included by Son-
dow in Sloane’s on-line database [165] and conjectured to have the minimal
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magnitude possible. For degrees 1, . . . , 4 they are claimed to have the mini-
mal magnitude, however the cited references do not seem to be sufficient to
support the claim.

κ Bκ,Wκ

1 {{0, 2}}, {{1, 1}}
2 {{0, 3, 3}}, {{1, 1, 4}}
3 {{0, 3, 4, 7}}, {{1, 1, 6, 6}}
4 {{0, 4, 8, 16, 17}}, {{1, 2, 10, 14, 18}}
5 {{0, 3, 5, 11, 13, 16}}, {{1, 1, 8, 8, 15, 15}}
6 {{0, 18, 19, 50, 56, 79, 81}} , {{1, 11, 30, 39, 68, 70, 84}}
7 {{0, 4, 9, 23, 27, 41, 46, 50}}
{{1, 2, 11, 20, 30, 39, 48, 49}}

8 {{0, 24, 30, 83, 86, 133, 157, 181, 197}}
{{1, 17, 41, 65, 112, 115, 168, 174, 198}}

9 {{0, 12, 125, 213, 214, 412, 413, 501, 614, 626}}
{{5, 6, 133, 182, 242, 384, 444, 493, 620, 621}}

Table 4.1: Small magnitude ideal PTE-solutions

For every κ ∈ [9], we define l as

l := −κ − 2 + max
x∈Bκ∪Wκ

x

where (Bκ, Wκ) is the PTE-solution of small magnitude and degree κ as in-
cluded in table 4.1, so that the degree l + κ + 1 of the polynomial f fulfills

l + κ + 1 = max
x∈Bκ∪Wκ

x− 1.

We verify if (Bκ, Wκ) has minimum magnitude by solving the following ILP
for every κ ∈ [9]:

min
x∈Rl+1

z∈Rl+κ+2

1Tz

1Tz = 2κ + 2

−z ≤Ax ≤ z

uT
1 x ≥ 1

x ∈ Zl+1

(4.29)

If the output is “infeasible”, then (Bκ, Wκ) has minimum magnitude, other-
wise, the output produced is an ideal solution of degree κ and magnitude
strictly smaller thanM(Bκ, Wκ). We ran our code on the different cases using
a computer server with 128GB of RAM, 4 AMD-Opteron 6174-CPUs (2,2GHz),
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12 cores each with 512kB L2-Cache per core. The code is included in the ap-
pendix. Table 4.2 includes the output of (4.28) for degrees κ = 1, . . . , 5. The out-
put obtained, i.e., “infeasible” proves that the ideal solutions of degree κ ∈ [5]
in table 4.1 have minimum magnitude or, equivalently, that no ideal solution
of smaller magnitude exists. While for the cases κ = 1, . . . , 5, our program

κ Bκ Wκ max{x∈Bκ∪Wκ} x− 1
Output of
ILP (4.29)

1 {{0, 2}} {{1, 1}} 1 infeasible
2 {{0, 3, 3}} {{1, 1, 4}} 3 infeasible
3 {{0, 3, 4, 7}} {{1, 1, 6, 6}} 6 infeasible
4 {{0, 4, 8, 16, 17}} {{1, 2, 10, 14, 18}} 17 infeasible
5 {{0, 3, 5, 11, 13, 16}} {{1, 1, 8, 8, 15, 15}} 15 infeasible

Table 4.2: Minimum magnitude ideal PTE-solutions, and output of (4.29)

produced the output in table 4.2 in less than a second, the cases κ ≥ 6 seem
beyond reach with the current methodology: after several days of computing,
the program failed to return an output or stopped because of insufficient mem-
ory. From a computational point of view, it might be better to choose a new
linear objective function, say for example uT

1 z, instead of solving the feasibil-
ity problem (4.29). In fact, if the objective function is constant, then a branch
and bound procedure cannot discard any branch and will have to test all the
exponentially-many branches. For degrees κ ≥ 6, we tried inserting a new
objective function, though with no apparent gain. Cutting plane methods, see
for example [53], might provide the desired improvement.

Ideal solutions of small magnitude are included also in Borwein’s book
[33], though some of them are not the minimal ones: for example, for degree
κ = 2, the given solution is ({0, 4, 5}, {1, 2, 6}), and for degree κ = 5 is

({0, 4, 9, 17, 22, 26}, {1, 2, 12, 14, 24, 25})

In his book, Borwein mentions the paper he was working on together with
Lisonĕk and Percival, [35], where they compute two new ideal solutions of
degree 9 of magnitude sensibly smaller than the previously known one, hence
they most likely had the tools to find at least the ideal solutions of low degree
included in table 4.1, but were simply focusing on the ones of higher degrees.

134



4.7 Complexity Aspects

4.7 Complexity Aspects

In this section we investigate the complexity of decision problems related to
the Prouhet-Tarry-Escott Problem. We will show reductions from classic prob-
lems such as PARTITION and SUBSET SUM. Even though the reductions pre-
sented are very easy, to our knowledge complexity theory issues in this area
have never been addressed. These results give an indication that problems
related to PTE are not expected to be easy to solve. For more details on com-
plexity theory we refer to [81, 90].

We first recall two well-known NP-complete problems, that we will use
for our reductions.

Problem 4.7.1 (PARTITION).
Instance: {a1, . . . , at} ⊂N.
Question: Does there exist a partition X ·∪Y of {a1, . . . , at}with ∑ai∈X ai = ∑ai∈Y ai
for all j ∈ [κ]?

Problem 4.7.2 (SUBSET SUM).
Instance: {a1, . . . , at} ⊂N, S ∈N∗.
Question: Does there exist a subset X ⊂ {a1, . . . , at} with ∑ai∈X ai = S?

It was shown in [112] that PARTITION and SUBSET SUM are NP-complete.
We recall the concept of oracle and polynomial reduction.

Definition 4.7.3 (Oracle, Polynomial Reduction). Given two problems Π1 and
Π2, an oracle for Π2 is a function that associates to any given input I of Π2 a solution
L, so that there exists a polynomial f : N→N such that

size(L) ≤ f (size(I)).

We say that Π1 can be polynomially reduced to Π2, and we denote it as

Π1 ≤p Π2,

if there exist an algorithm that solves Π1 by performing polynomially many elemen-
tary operations on numbers that have polynomial size and by calling an oracle for Π2

polynomially many times. We also say that Π2 is as hard as Π1.

The first decision problem related to the PTE that we devise concerns de-
termining whether a multiset of natural numbers forms a PTE-solution of a
certain degree. Considering only natural numbers is not restrictive by 4.1.2.

Problem 4.7.4 (PTE-SOLUTION).
Instance: {a1, . . . , at} ⊂N, κ ∈N∗.
Question: Does there exist a partition X ·∪Y of {a1, . . . , at}with ∑ai∈X aj

i = ∑ai∈Y aj
i

for all j ∈ [κ]?

In the following proposition, we show that PTE-SOLUTION is NP-complete
by reducing PARTITION to it.
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Proposition 4.7.5. PTE-SOLUTION is NP-complete.

Proof. The problem PTE-SOLUTION is trivially in NP. To show that it is NP-
hard, we can do an easy reduction from PARTITION: given an instance {a1, . . . , at},
we fix κ = 1. Then there exist a partition X ·∪ Y of {a1, . . . , at} if and only if
X ·∪Y is a PTE-solution of degree 1.

We observe that the sets X and Y do not need to have the same number of
elements, so they would not be, in a strict sense, a PTE-solution (see Definition
4.1.1). However, if without loss of generality |X| < |Y|, then we can append to
X as many 0 as needed to fulfill |X| = |Y|, i.e.,

X̃ := X
|Y|−|X|⋃

i=1

{0} Ỹ := Y

and X̃, Ỹ ⊂N are a PTE-solution in the sense of Definition 4.1.1.
We introduce the problem WEAK PARTITION, that was shown to be NP-

complete by van Emde-Boas in [68].

Problem 4.7.6 (WEAK PARTITION).
Instance: {a1, . . . , at} ⊂N.
Question: Does there exist (x1, . . . , xt) ∈ {0,±1}t, (x1, . . . , xt) 6= (0, . . . , 0), such
that ∑i∈[t] aixi = 0?

The following decision problem asks for the existence of a PTE-solution of
a certain degree contained in a given subset of N.

Problem 4.7.7 (PTE-SOLUTION IN SUBSET OF N).
Instance: {a1, . . . , at} ⊂N, κ ∈N.
Question: Do there exist two non-empty disjoint sets {b1, . . . , br}, {w1, . . . , wr} con-
tained in {a1, . . . , at}, for some r, s ∈ N such that ∑i∈[r] bj

i = ∑i∈[s] wj
i , for all

j ∈ [κ]?

We reduce WEAK PARTITION to PTE-SOLUTION IN SUBSET OF N in the
following proposition.

Proposition 4.7.8. PTE-SOLUTION IN SUBSET OF N is NP-complete.

Proof. Obviously PTE-SOLUTION IN SUBSET OF N is in NP. We perform a re-
duction from WEAK PARTITION. Let {a1, . . . , at} ⊂N be an instance of WEAK

PARTITION. Then {a1, . . . , at}, κ = 1 is an instance of PTE-SOLUTION IN SUB-
SET OF N, and the returned non-empty subsets {b1, . . . , bs}, {w1, . . . , wr} con-
tained in {a1, . . . , at} define the vector x ∈ {0,±1}t in the following way:

xi :=


1 if ai ∈ {b1, . . . , bs}
−1 if ai ∈ {w1, . . . , wr}
0 otherwise

Furthermore,{a1, . . . , at} is a YES-instance of WEAK PARTITION if and only if
{a1, . . . , at}, κ = 1 is a YES-instance of PTE-SOLUTION IN SUBSET OF N .
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Next we introduce the problem of deciding if a given interval contains
a PTE-solution of a certain degree and bounded size, and show it is NP-
complete.

Problem 4.7.9 (PTE-SOLUTION IN SUBSET OF N AND BOUNDED SIZE).
Instance: {a1, . . . , at} ⊂N, n, κ ∈N.
Question: Do there exist two non-empty disjoint sets {b1, . . . , br}, {w1, . . . , ws} con-
tained in {a1, . . . , at}, for r, s ∈ N with r, s ≤ n such that ∑i∈[r] bj

i = ∑i∈[s] wj
i , for

all j ∈ [κ]?

Proposition 4.7.10. PTE-SOLUTION IN SUBSET OF N AND BOUNDED SIZE is
NP-complete.

Proof. The problem is clearly in NP. We reduce 4.7.7 to it.
PTE-SOLUTION IN SUBSET OF N is the subproblem of PTE-SOLUTION IN SUB-
SET OF N AND BOUNDED SIZE with n = t.

Problem 4.7.11 (EQUIVALENCE OF PTE-SOLUTIONS).
Instance: d ∈N, (B1, W1), (B2, W2) ∈ F d

N×F d
N (PTEd-solutions of degree κ ∈N).

Question: Are (B1, W1), (B2, W2) equivalent in the sense of Definition 4.1.4?

Notice that the problem does not depend on the degree of the solutions κ,
nor on (B1, W1), (B2, W2) being PTE-solutions, hence the brackets in the for-
mulation. If we fix the dimension of the space d ∈ N, then EQUIVALENCE OF

PTE-SOLUTIONS ∈ P.
Problem 4.7.11 is equivalent to asking if there exist an affine linear transforma-
tion ζ : Rd → Rd such that(

B2 = ζ(B1) ∧ W2 = ζ(W1)
)
∨

(
B2 = ζ(W1) ∧ W2 = ζ(B1)

)
(4.30)

The following problem reduces to EQUIVALENCE OF PTE-SOLUTIONS, as
we show in Proposition 4.7.13.

Problem 4.7.12 (AFFINE EQUIVALENCE).
Instance: d ∈N, A1, A2 ∈ F d

Question: Does there exist an affine transformation ζ : Rd → Rd, hence a matrix
M ∈ Rd×d and a vector t ∈ Rd such that ζ(x) := Mx + t for all x ∈ Rd and
ζ(A1) = A2 or ζ(A2) = A1?

Observe that if the dimension d is fixed, then 4.7.12 is easily in P.

Proposition 4.7.13. AFFINE EQUIVALENCE≤p EQUIVALENCE OF PTE-SOLUTIONS.

Proof. Assume to have an oracle that solves EQUIVALENCE OF PTE-SOLUTIONS,
and let A1, A2 ∈ F d be an instance of AFFINE EQUIVALENCE.
Then (A1, A1),(A2, A2) is an instance of problem EQUIVALENCE OF PTE-SOLUTIONS

4.7.11, and by equation (4.30), it is an YES-instance of 4.7.11 if and only if
A1, A2 ∈ F d is an YES-instance of AFFINE EQUIVALENCE.
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As observed by Weltge [174], it follows from the work by Kaibel and
Schwartz [111] that AFFINE EQUIVALENCE is at least as hard as Graph Iso-
morphism, yielding the following proposition.

Proposition 4.7.14. EQUIVALENCE OF PTE-SOLUTIONS is as hard as GRAPH

ISOMORPHISM.

Closely connected is the following problem introduced by Akutsu [4]:

Problem 4.7.15 (CONGRUENCE).
Instance: A1, A2 ∈ F d

Question: Does there exist an isometry ξ : Rd → Rd, hence an orthogonal matrix
M ∈ Rd×d, i.e., such that MT = M−1, and a vector t ∈ Rd such that ξ(x) := Mx + t
for all x ∈ Rd and ξ(A1) = A2 or ξ(A2) = A1?

Akutsu showed that CONGRUENCE is at least as hard as Graph Isomor-
phism, see [20] for a survey on the current challenges related to Graph Isomor-
phism.
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Chapter 5

Pure Product Polynomials and
Switching Components

In this chapter we consider a number theory problem and show its connection
to discrete tomography.

Let us define the infinity norm of a univariate polynomial f (X) ∈ Z[X] as

‖ f ‖∞ := sup
{z∈C:|z|=1}

| f (z)| (5.1)

Notice that while the 1-norm of a polynomial is defined as the 1-norm of the
vector of its coefficients, the ∞-norm of a polynomial is different from the ∞-
norm of its coefficient vector.

The following lemma was included in [34] as easy consequence of the def-
initions, see 2.1.15.

Lemma 5.0.1. Let f ∈ Z[X]. It holds

‖ f ‖∞ ≤ ‖ f ‖1.

Proof. Let |z| = 1, then

| f (z)| = |α0 + α1z + · · ·+ αnzn| ≤ |α0|+ |α1z|+ · · ·+ |αnzn| = ‖ f ‖1

Hence, as | f (z)| ≤ ‖ f ‖1 for all z ∈ C with |z| = 1, it follows

sup
{z∈C:|z|=1}

| f (z)| ≤ ‖ f ‖1

which concludes the proof.

Definition 5.0.2 (Pure Product Polynomial). Let m ∈N∗ and let a1, . . . , am ∈N∗.
The univariate polynomial

f (X) :=
m

∏
i=1

(Xai − 1)

is called pure product of order m.
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Definition 5.0.3 (Minimum ∞, 1-Norm of Pure Product Polynomials).
We define the following quantities:

A∞(m) := min
a1,...,am∈N∗

∥∥∥ m

∏
i=1

(Xai − 1)
∥∥∥

∞

A1(m) := min
a1,...,am∈N∗

∥∥∥ m

∏
i=1

(Xai − 1)
∥∥∥

1

where the ∞-norm is as defined in (5.1), and the 1-norm is as defined in 2.1.15.

Pure product polynomials form a subclass of Prouhet-Tarry-Escott solu-
tions. In fact, for every a ∈N∗ it holds

Xa − 1 = (X− 1) ·
a−1

∑
i=0

Xi

hence any polynomial f (X) = ∏m
i=1(Xai − 1) as in Definition 5.0.2 can be writ-

ten as

f (X) =
m

∏
i=1

(Xai − 1) = (X− 1)m
m

∏
i=1

( ai−1

∑
j=0

X j
)

,

and by Lemma 4.1.6 it follows that every pure product polynomial of order m
yields a PTE-solution of degree m− 1 and size 1

2‖ f ‖1.

5.1 Bounds on A∞(m) and A1(m)

Let m ∈N and suppose {b1, . . . , bm} ∈ argmin
a1,...,am∈N

‖ f ‖1, hence by Lemma 5.0.1 it

follows

A1(m) =
∥∥∥ m

∏
i=1

(Xbi − 1)
∥∥∥

1
≥
∥∥∥ m

∏
i=1

(Xbi − 1)
∥∥∥

∞
≥ A∞(m),

which yields A∞(m) ≤ A1(m) for all m ∈N.
The problem of determining A∞(m) for every m ∈ N was first posed in 1959
by Erdős and Szekeres [69], where they showed

A∞(m) ≥ (2m)
1
2 ,

still the current best lower bound on A∞(m). They further showed

lim
m→+∞

A∞(m)
1
m = 1.

Moreover, they conjectured that A∞(m) < exp(m1−c) for some c < 1.
The current best lower bound on A1(m) is

A1(m) ≥ 2m,
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see for example the proof given in [34]. In 1960, Atkinson [19] showed

A∞(m) ≤ exp(O(m 1
2 log(m)),

and in 1982 Odlyzko [139] showed

A∞(m) ≤ exp
(
O
(

3
√

m(log(m))4
))

.

Kolountzakis [115] improved Odlyzko’s bound by showing

A∞(m) ≤ exp( 3
√

m).

Belov and Konyagin showed that ∃c ∈ R such that

A∞(m) ≤ exp(c(log(m)4)).

see [27] (translated from the original in Russian). Maltby [123] showed

A1(m) ≤ 2
√

m(
√

m)! (5.2)

by considering a root system Φ of rank
√

m, with m positive roots that he ex-
pressed as a combination of the

√
m fundamentals roots. He used the positive

roots to define the m exponents of a pure product polynomial. The pure pro-
duct polynomial defined in this way has 1-norm lower than the order of the
Weil group associated to Φ, namely 2d

√
me · (d

√
me)!. Recalling A1(m) ≥ 2m,

he showed algorithmically in [122] that A1(7) = 16, as was already conjectured
in [34]. Further, Maltby gave an algorithm that determines A1(m) in at most
2m!22m−1 iterations, and gave stronger lower and upper bounds for A1(m) for
some values of m.
Cipu [52] improved the running time of the algorithm designed by Maltby,
and showed that the minimum 1-norm of a pure product polynomial of order
m is attained for exponents that are lower than (m− 1)

m−1
2 . He also observed

A1(n + m) ≤ A1(n) · A1(m) ∀n, m ∈N

that follows easily from the submultiplicativity of the 1- norm of polynomi-
als 2.1.16. Using this fact, he showed for example A1(m) ≤ 2

m
4 ∼ 1.19m for

m ≥ 36.
The most recent paper on this topic was published in 2015 by Bourgain and

Chang [36]. They improved the lower and upper bounds from Erdős/Szekeres
and Kolountzakis on A∞(m) under the assumption that the set of exponents
{a1, . . . , am} is a so-called proportional subset of {1, . . . , maxi∈[m] ai} or has suf-
ficiently large arithmetic diameter. In the following table we include the known
values of A1(m), that can be found in [122].
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m A1(m)

1 2
2 4
3 6
4 8
5 10
6 12

m A1(m)

7 16
8 16
9 20

10 24
11 ∈ [24, 28]
12 ∈ [24, 36]

Table 5.1: Values of A1(m)

It was a long-standing open problem to determine if for every κ ∈ N∗,
the minimal size of a PTE-solution of degree κ can be attained by a pure pro-
duct polynomial of order κ + 1. Maltby’s contribution [122] lead to a negative
answer, as A1(7) = 16 while the minimal size of a PTE-solution of degree 6
is 7, i.e., the corresponding polynomial has norm 14. In the next section, we
generalize pure product polynomials to arbitrary dimension.

5.2 Multivariate Pure Products Polynomials

In 3.3.1 we defined pure product switching components as pairs of multisets

(B, W) ∈ F d
N ×F d

N

corresponding, via ρ in 3.1.1, to a polynomial of the type

fS(X) :=
m

∏
i=1

(
Xs+i − Xs−i

)
for m pairwise linearly independent directions S := {s1, . . . , sm} ⊂ Zd. We
define now multivariate pure product polynomials. They include, in parti-
cular, the polynomials associated to pure product switching components, see
Definition 3.3.1.

Definition 5.2.1 (Multivariate Pure Product Polynomial). Let X = (X1, . . . , Xd),
and let S := {s1, . . . , sm} ⊂ Zd. The polynomial

fS(X) :=
m

∏
i=1

(
Xs+i − Xs−i

)
(5.3)

is called pure product polynomial in Z[X].

Similarly to the univariate case 5.0.3, we define as Ad
1(m) the quantity

Ad
1(m) := min

s1,...,sm∈Zd\{0}

∥∥∥ m

∏
i=1

(
Xs+i − Xs−i

)∥∥∥
1

(5.4)
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For the case d = 1 we defined a pure product polynomial as

∏
i∈[m]

(Xai − 1)

for positive integer exponents a1, . . . , am, see Definition 5.0.2. This is general-
ized by (5.3) and (5.4), where we allow vectors in Zd\{0} up to the sign of
the factors, which does not affect the 1-norm of the correspondent polynomial.
The next proposition follows easily.

Proposition 5.2.2. For every d, m ∈N∗, it holds

Ad
1(m) ≥ Ad+1

1 (m)

Proof. Let X = (X1, . . . , Xd), m ∈N and let {s1, . . . , sm} ⊂ Zd such that

{s1, . . . , sm} ∈ argmin
∥∥∥ m

∏
i=1

(
Xs+i − Xs−i

)∥∥∥
1
.

For every i ∈ [m], we define

si :=
(

si
0

)
∈ Zd+1

so that

∏
j∈[d]

X
sij
j = ∏

j∈[d+1]
X

sij
j ∀i ∈ [m]

Hence

Ad
1(m) =

∥∥∥ m

∏
i=1

(
Xs+i − Xs−i

)∥∥∥
1
=
∥∥∥ m

∏
i=1

(
∏

j∈[d+1]
X

s+ij
j − ∏

j∈[d+1]
X

s−ij
j

)∥∥∥
1
≥ Ad+1

1 (m)

where the last inequality holds by definition of Ad+1
1 (m).

In the following proposition, we show the reversed inequality. It was al-
ready observed in [113] for d = 1.

Proposition 5.2.3. For every d, m ∈N∗, it holds

Ad
1(m) ≤ Ad+1

1 (m).

Proof. Let X = (X1, . . . , Xd), m ∈ N∗ and let S := {s1, . . . , sm} ⊂ Zd+1\{0}
such that

S ∈ argmin
∥∥∥ m

∏
i=1

(
∏

j∈[d+1]
X

s+ij
j − ∏

j∈[d+1]
X

s−ij
j

)∥∥∥
1
.

We denote by fS the corresponding polynomial. Without loss of generality, we
can assume S to not contain any direction of the form (0, . . . , 0, α,−α)T ∈ Zd+1,
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with α ∈ Z\{0}. Should it not be the case, we could multiply all directions in
S by an invertible matrix M ∈ Z(d+1)×(d+1) of the type

M :=
(

Id 0
0 N

)
with N ∈ N big enough. By Lemma 3.8.1, the norm of pure product polyno-
mial defined by Ms1, . . . , Msm is equal to ‖ fS‖1.
Since no direction in S is of the form (0, . . . , 0, α,−α)T ∈ Zd+1, it holds

fS(X1, . . . , Xd, Xd) 6= 0.

For every i ∈ [m], we define

si :=


si,1
...

si,d−1
si,d + si,d+1


For every i ∈ [m], we can consider either si or −si without affecting the norm
of fS. Hence it is not restrictive to assume(

si,d ≥ 0 ∧ si,d+1 ≥ 0
)

∨
(
si,dsi,d+1 ≤ 0 ∧ si,d + si,d+1 ≥ 0

)
.

Let X̂ := (X1, . . . , Xd−1) and for every i ∈ [m] let ŝi ∈ Zd−1 be defined as

ŝi :=

 si,1
...

si,d−1


so that sT

i = (ŝT
i , si,d + si,d+1). If si,d ≥ 0 and si,d+1 ≥ 0, then

∏
j∈[d+1]

X
s+ij
j − ∏

j∈[d+1]
X

s−ij
j = X̂ŝ+i Xsi,d

d · X
si,d+1
d+1 − X̂ŝ−i

and it follows

X̂ŝ+i Xsi,d
d · X

si,d+1
d+1 − X̂ŝ−i ≡ Xs+i − Xs−i mod Xd+1 − Xd.

If si,dsi,d+1 ≤ 0 and si,d + si,d+1 ≥ 0 then we distinguish between two cases:
si,d ≥ 0 or si,d < 0. If si,d ≥ 0, then

∏
j∈[d+1]

X
s+ij
j − ∏

j∈[d+1]
X

s−ij
j = X̂ŝ+i Xsi,d

d − X̂ŝ−i X−si,d+1
d+1

which yields

X̂ŝ+i Xsi,d
d − X̂ŝ−i X−si,d+1

d+1 ≡ X̂ŝ+i Xsi,d
d − X̂ŝ−i X−si,d+1

d mod Xd+1 − Xd

144



5.3 Multivariate Pure Products Polynomials

and

X̂ŝ+i Xsi,d
d − X̂ŝ−i X−si,d+1

d = X−si,d+1
d

(
X̂ŝ+i Xsi,d+si,d+1

d − X̂ŝ−i
)
= X−si d+1

d

(
Xs+i − Xs−i

)
.

If si,d < 0, analogously we have

∏
j∈[d+1]

X
s+ij
j − ∏

j∈[d+1]
X

s−ij
j = X̂ŝ+i Xsi,d+1

d+1 − X̂ŝ−i X−si,d
d

leading to

X̂ŝ+i Xsi,d+1
d+1 − X̂ŝ−i X−si,d

d ≡ X̂ŝ+i Xsi,d+1
d − X̂ŝ−i X−si,d

d mod Xd+1 − Xd

and again

X̂ŝ+i Xsi,d+1
d − X̂ŝ−i X−si,d

d = X−si,d
d

(
X̂ŝ+i Xsi,d+si d+1

d − X̂ŝ−i
)
= X−si,d

d

(
Xs+i − Xs−i

)
.

Observe

Ad+1
1 (m) = ‖ fS(X1, . . . , Xd, Xd+1)‖1 ≥ ‖ fS(X1, . . . , Xd, Xd)‖1 (5.5)

since the terms in Supp ( fS) which are similar, are still similar after substituting
Xd+1 with Xd, while if two terms αt1 and βt2 of Supp ( fS) are not similar, i.e.,
t1 6= t2, but they are similar after substituting Xd+1 with Xd, which means

t1(X1, . . . , Xd, Xd) = t2(X1, . . . , Xd, Xd),

then their contribution to the 1-norm of fS(X1, . . . , Xd, Xd) is of |α + β|, which
by the triangular inequality is lower or equal than |α|+ |β|, that is their con-
tribution to the 1-norm of fS(X1, . . . , Xd, Xd+1). Inequality (5.5) can be manip-
ulated further as

‖ fS(X1, . . . , Xd, Xd)‖1 =
∥∥∥ m

∏
i=1

(
Xs+i − Xs−i

)∥∥∥
1
≥ Ad

1(m)

where the first equality holds because

fS(X1, . . . , Xd, Xd) = Xh
d

m

∏
i=1

(
Xs+i − Xs−i

)
for some h ∈ N, and the last inequality holds by definition and from the as-
sumption that no direction in S is of the type (0, . . . , 0, α,−α)T, with α ∈ Z, so
that

m

∏
i=1

(
Xs+i − Xs−i

)
6= 0.

The claim follows.

We unite propositions 5.2.2 and 5.2.3 in the following theorem.

Theorem 5.2.4. For every d, m ∈N∗ it holds

Ad
1(m) = Ad+1

1 (m)

In the next section, we will show upper bounds on A1(m) arising from
upper bounds on the minimum size of switching components.
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Chapter 5. Pure Product Polynomials and Switching Components

5.3 Pure Product Polynomials and the Size of Switching
Components

We apply results on switching components to the problem of determining
small pure product polynomials. From Theorem 5.2.4 we obtain that the value
of A1(m) is a lower bound for the minimal size of a pure-product switching
component with respect to m directions. More precisely, the next theorem fol-
lows.

Proposition 5.3.1. For every d, m ∈N∗ it holds

A1(m) ≤ min
S:={s1,...,sm}⊂Zd

pairwise l.i.

‖ fS‖1

Proof. The statement holds since by Theorem 5.2.4 we have A1(m) = Ad
1(m)

for every d ∈N∗. By definition of Ad
1(m), we have

Ad
1(m) = min

s1,...,sm∈Zd\{0}

∥∥∥ m

∏
i=1

(
Xs+i − Xs−i

)∥∥∥
1
≤ min

S:={s1,...,sm}⊂Zd

pairwise l.i.

‖ fS‖1.

By Theorem 3.1.3, every switching component with respect to the direc-
tions in S corresponds to a polynomial p(X) fS(X) ∈ Z[X], hence we have

ψd
N(m) ≤ 1

2
min

S:={s1,...,sm}⊂Zd

pairwise l.i.

‖ fS‖1,

as already observed in (3.24).
In [16] it was shown that there exists a {0, 1}-switching component with re-

spect to m given pairwise linearly independent directions of size ∈ O(md+1+ε),
for all ε > 0. As we already observed, it is not clear if this reflects into a bound
on the size of pure product switching components which is polynomial in m.
Should it be the case, then by Proposition 5.3.1 we would obtain a polynomial
bound on A1(m).

Let us recall the sizes of the small pure product switching components in-
cluded in table 3.4. By Proposition 5.3.1, for every m ∈ N∗, twice the size of
a pure product switching component is an upper bound for A1(m), hence the
inequalities of table 5.2 hold true.

However, the bounds presented in [52] are tighter. Proposition 5.3.1 to-
gether with theorems 3.8.4, 3.9.13 and 5.2.4, yield the following upper bound
on A1(m).

Theorem 5.3.2. For all m ∈N∗, A1(m) ≤ min{572d
m
20 e, 2d

√
me · d

√
me!}.

146



5.3 Pure Product Polynomials and the Size of Switching Components

A1(1) ≤ 2
A1(2) ≤ 4
A1(3) ≤ 6
A1(4) ≤ 8
A1(5) ≤ 12
A1(6) ≤ 12
A1(7) ≤ 20
A1(8) ≤ 24
A1(9) ≤ 36
A1(10) ≤ 40

A1(11) ≤ 60
A1(12) ≤ 60
A1(13) ≤ 84
A1(14) ≤ 116
A1(15) ≤ 172
A1(16) ≤ 248
A1(17) ≤ 286
A1(18) ≤ 364
A1(19) ≤ 428
A1(20) ≤ 572

Table 5.2: Bounds on the values of A1(m)

For m big enough, the upper bound A1(m) ≤ 2d
√

me · d
√

me! is tighter than
A1(m) ≤ 572d

m
20 e, as shown in 3.10.1, however for small values of m they can

be both competitive, as already observed at the end of Section 3.10. The bound
we provide in Theorem 5.3.2, namely

A1(m) ≤ 2d
√

me · d
√

me!,

is the same presented by Maltby in [122]: we write explicitly d
√

me to ensure
the integrality of the dimension of the Truncated Cuboctahedron, in our case,
or of the rank of the root system Φ, in Maltby’s case. The truncated Cubocta-
hedron is in fact the geometric realization of a Coxeter system, as explained in
[151].

We can use the knowledge from Proposition 5.3.1 also as a mean to get
lower bounds on the size of pure-product switching components from the
knowledge of A1. Table 5.1 together with proposition 5.3.1 implies, in fact, that
the size of a pure product switching component with respect to 10 directions
is bigger than or equal to 12. This is the only new fact we can deduce from
table 5.1, as we know already from Theorem 3.4.3 that for m > 6, the minimal
size of a switching component with respect to m directions — not necessarily
a pure product one — is a least m + 1.
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We include here the code in Xpress Mosel by FICO R©Xpress Optimization [141]
that we used in section 4.6.1. We write k instead of κ to denote the degree of
the PTE-problem. The parts highlighted in red should be initialized according
to table 5.3 for every degree k ∈ {2, 3, 4, 5}. Notice that for k = 1 the ideal
PTE-solution with smallest magnitude is given by the polynomial (X− 1)2, so
that the cofactor p(X) has degree 0, see 4.1.6. We encode the product Ax as a
vector y ∈ Zl+1, where

yj =
l+k+1

∑
i=0

a{j−i mod l+k+2} xi ∀j ∈ {0, . . . , l}.

However, since the command mod of Mosel does not always return a non-
negative integer, but is instead defined to return r ∈ Z such that

r ∈ {(j− i) + λ(l + k + 2) : λ ∈ Z},

|r| < l + k + 2 and r · (j− i) ≥ 0, we write instead

yj =
l+k+1

∑
i=0

a{l+k+2+j−i mod l+k+2} xi ∀j ∈ {0, . . . , l}

to make sure that the subscript of a is non-negative. Since A is an integer
matrix, it follows from Ax = y that if x is integer, then y is integer as well, so
we could spare the integrality constraints on the entries of y. However, this
sometimes leads to numerical errors. We model 4.29 by fixing the degree l of
the polynomial p(X) as

l := −1− k + max
x∈Bk∪Wk

x

so that the degree t of the polynomial f (X) is

t := l + k + 1 = max
x∈Bk∪Wk

x,

and we require yt = 0. In this way, commenting the line correspondent to
yt = 0, we obtain the ideal solutions of table 4.2, for k ∈ [5].
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ILP to determine Small Magnitude PTE-Solution of Degree k=1

model " PTE "
opt ions n o i m p l i c i t , explterm ;
uses "mmxprs " ;

parameters
k = 1 ; ! degree of PTE
h = 2 ; ! k+1
l = 0 ; ! the degree of the polynomial p ( x ) as in

! the s m a l l e s t s o l u t i o n known
t = 2 ; ! t = l +k+1
t t = 3 ; ! t t = l +k+2
end−parameters

d e c l a r a t i o n s
C o e f f i c i e n t s = 0 . . l ;
Length = 0 . . t ;
Bin = 0 . . h ;
a : array ( Bin ) of i n t e g e r ;
vec : array ( Length ) of i n t e g e r ; ! vec tor used to def ine

! the rows of A
x : array ( C o e f f i c i e n t s ) of mpvar ; ! c o e f f i c i e n t s of p
y : array ( Length ) of mpvar ; ! c o e f f i c i e n t s of f
z : array ( Length ) of mpvar ; ! a u x i l i a r y v a r i a b l e s

norm : l i n c t r ;
s t a t u s : s t r i n g ;
end−d e c l a r a t i o n s

setparam ( "XPRS_THREADS " , 1 2 ) ;

a : : [ 1 , −2 , 1 ] ; ! c o e f f i c i e n t s of (X−1)^h
f o r a l l ( j in Bin ) do
vec ( j ) := a ( j ) ;
end−do
f o r a l l ( j in h + 1 . . t ) do
vec ( j ) := 0 ;
end−do

f o r a l l ( i in C o e f f i c i e n t s ) do
x ( i ) i s _ i n t e g e r ;
x ( i ) i s _ f r e e ;
end−do
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f o r a l l ( j in Length ) do
y ( j ) i s _ i n t e g e r ;
y ( j ) i s _ f r e e ;
end−do

f o r a l l ( j in Length ) do ! here we impose y=Ax
sum ( i in C o e f f i c i e n t s ) vec ( ( t t + j−i ) mod t t )∗ x ( i ) − y ( j )= 0 ;
end−do

x (0) >=1 ;

y ( t ) = 0 ;

f o r a l l ( j in Length ) do
sum ( i in C o e f f i c i e n t s ) vec ( ( t t + j−i ) mod t t )∗ x ( i ) − z ( j ) <= 0 ;
end−do

f o r a l l ( j in Length ) do
sum ( i in C o e f f i c i e n t s ) vec ( ( t t + j−i ) mod t t )∗ x ( i )+ z ( j ) >= 0 ;
end−do

norm:= sum( i in Length ) z ( i ) ;
norm=2∗k + 2 ; ! i f we keep t h i s l i n e , norm i s a constant , so we

! have a f e a s i b i l i t y problem , otherwise we are
! looking f o r the PTE−s o l u t i o n of s m a l l e s t s i z e
! and magnitude s t r i c t l y smal ler than t

minimize ( norm ) ;
case g e t p r o b s t a t of
XPRS_OPT : s t a t u s := "Optimum found " ;
XPRS_UNF : s t a t u s := " Unfinished " ;
XPRS_INF : s t a t u s := " I n f e a s i b l e " ;
XPRS_UNB : s t a t u s := "Unbounded " ;
XPRS_OTH : s t a t u s := " Fa i l ed " ;
e l s e s t a t u s := " ? ? ? " ;
end−case
wr i te l n ( " The norm i s " , g e t o b j v a l ) ;
f o r a l l ( i in C o e f f i c i e n t s ) do
wri te ( " C o e f f i c i e n t of p (X) in p o s i t i o n " , i ) ;
wr i te l n ( " " , g e t s o l ( x ( i ) ) ) ;
end−do
f o r a l l ( j in Length ) do
wri te ( " Vector y " , j ) ;
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wr i te l n ( " " , g e t s o l ( y ( j ) ) ) ;
end−do
wr i te l n ( " " , s t a t u s ) ;
end−model

If we consider other degrees, the only things that change are the values of the
parameters and the entries of the vector a, that we highlighted in red in the
code. For k = 2, . . . , 5, we list in table 5.3 the initializations that differ from
the case k = 1 above. Notice that we are requiring only y(t) = 0, because
we assume we know an ideal PTE-solution in the interval [0, t] and want to
establish if there exists one in [0, t− 1]. Should we need to restrict the interval
further, we would require y(r) = 0 for other values r ∈ {0, . . . , t}.

k h l t tt a
2 3 1 4 5 [1,−3, 3,−1]
3 4 3 7 8 [1,−4, 6,−4, 1]
4 5 13 18 19 [1,−5, 10,−10, 5,−1]
5 6 10 16 17 [1,−6, 15,−20, 15,−6, 1]

Table 5.3: Initializations of parameters for degrees k ∈ {2, 3, 4, 5}.
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