
Technische Universität München

Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Statik

ISOGEOMETRIC ANALYSIS OF THIN-WALLED STRUCTURES ON
MULTIPATCH SURFACES IN FLUID-STRUCTURE INTERACTION

Andreas Apostolatos

Vollständiger Abdruck der von der Ingenieurfakultät Bau Geo Umwelt der
Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender:

Prof. Dr.-Ing. habil. Fabian Duddeck

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Kai-Uwe Bletzinger
2. Prof. Dr. rer. nat. Bernd Simeon
3. Prof. Manolis Papadrakakis, Ph.D.

Die Dissertation wurde am 12.09.2018 bei der Technischen Universität
München eingereicht und durch die Ingenieurfakultät Bau Geo Umwelt
am 08.01.2019 angenommen.





Schriftenreihe des Lehrstuhls für Statik TU München

Band 38

Andreas Apostolatos

ISOGEOMETRIC ANALYSIS OF THIN-WALLED STRUCTURES ON
MULTIPATCH SURFACES IN FLUID-STRUCTURE INTERACTION

München 2018



Veröffentlicht durch

Kai-Uwe Bletzinger
Lehrstuhl für Statik
Technische Universität München
Arcisstr. 21
80333 München

Telefon: +49(0)89 289 22422
Telefax: +49(0)89 289 22421
E-Mail: kub@tum.de
Internet: www.st.bgu.tum.de

ISBN: 978-3-943683-51-6

©Lehrstuhl für Statik, TU München

kub@tum.de
www.st.bgu.tum.de


Abstract

In this thesis, the Isogeometric Analysis (IGA) of thin-walled struc-
tures modelled by trimmed Non-Uniform Rational B-Spline (NURBS)
multipatches and its application to partitioned Fluid-Structure Inter-
action (FSI) is detailed. The structural analysis spans from linear two-
dimensional elasticity up to three-dimensional geometrically non-
linear membrane and Kirchhoff-Love shell analysis. IGA is a modern
numerical method for solving Boundary Value Problems (BVPs) which
in contrast to the standard Finite Element Method (FEM) uses the ex-
act geometric description of the problem. In the present work, special
emphasis is put on the continuity of the solution between trimmed
NURBS multipatch surfaces which are standard in Computer-Aided
Design (CAD). In this way, no effort is spent in preparing the analysis
model as opposed to meshing in standard FEM and smoother approx-
imations of the unknown fields are enabled. The latter is critical for
the approximation of problems with high variational index such as the
Kirchhoff-Love shell problem. Additionally, surface coupled multi-
physics problems such as FSI especially benefit from the smoothness
of the solution provided by isogeometric structural analysis. Accord-
ingly, Penalty, Lagrange Multipliers and Nitsche-type methods are
detailed and elaborated for the multipatch coupling and the applica-
tion of weak Dirichlet boundary conditions on such structural models.
FSI simulation is of high importance for the prediction of the mutual
interaction between a fluid flow and a flexible structure. Typically,
the fluid and the structural problems are solved separately while the
coupling conditions are satisfied in an iterative manner along their
common interface. In this way, the independent use of suitable meth-
ods for the discretization of each physical field is enabled. To exploit
the benefits of isogeometric structural analysis on multipatches in
FSI, a novel isogeometric mortar-based mapping method for real
world CAD geometries is elaborated and detailed. Accordingly, field
transformations between low order discretized fluid surfaces and
trimmed multipatch NURBS representations of the structural sur-
faces are enabled in order to satisfy the interface constraints. The
thesis is complemented with numerical examples in a sequence of
increasing complexity, thus extending isogeometric analysis of thin-
walled structures on multipatch surfaces to multiphysics problems
of the fluid-structure interaction type.
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Zusammenfassung

In dieser Arbeit wird die Simulation der Fluid-Struktur-Interaktion
(FSI) bei Leichtbaustrukturen unter Verwendung der Isogeometri-
schen Analyse (IGA) basierend auf getrimmten Multi-Patch Non-Uni-
form Rational B-Spline (NURBS) Geometrien behandelt. Die Struk-
turanalyse reicht von Ebenen in linear elastischen Modellen und
bis zu räumlichen Problemen, die mittels geometrisch nichtlinearen
Membran- und Kirchhoff-Love-Schalen Formulierungen beschrie-
ben werden. IGA ist eine moderne numerische Methode, die in dieser
Arbeit auf der exakten Geometriebeschreibung mittels getrimmten
Multi-Patch NURBS basiert, was ein quasi-Standard in Computer-
Aided Design (CAD) ist. Durch die direkte Verwendung dieser Mo-
delle wird die Aufbereitung der Rechenmodelle stark erleichtert. Die
Hauptvorteile dieser Vorgehensweise bestehen darin, dass das Ana-
lysemodell nicht modifiziert wird und dass durch die Verwendung
von Ansatzfunktionen mit höherer Ordnung die volle Genauigkeit
bestehen bleibt. Dadurch bleibt die hohe Kontinuität erhalten, was
eine wichtige Eigenschaft für Randwertprobleme mit hohem Variati-
onsindex ist. Des Weiteren ist die höhere Glattheit der Lösung und
der Geometrie bei IGA besonders vorteilhaft bei Oberflächengekop-
pelten Problemen, wie z. B. Fluid-Struktur Interaktion. Generell sind
CAD Modelle durch mehrere NURBS Patches beschrieben, die zudem
getrimmt sein können. Deshalb werden in dieser Arbeit Verfahren auf
der Basis von Penalty, Lagrange-Multiplikator und Nitsche-Methode
für IGA entwickelt, um die Aufbringung von inter-Patch Kontinuitä-
ten und von schwachen Dirichlet Randbedingungen zu ermöglichen.
FSI Simulationen dienen der Vorhersage der Wechselwirkung von
Strömungen mit flexiblen Strukturen. Dabei werden typischerweise
Strömungs- und Strukturmodell getrennt mit den jeweils am besten
geeigneten Methoden und Diskretisierungen gelöst und die entspre-
chenden Kopplungsbedingungen an der gemeinsamen Oberfläche
iterativ erfüllt. Um die Vorteile der CAD-basierten IGA in der FSI-
Simulation nutzbar zu machen, wird eine neuartige Mortar-basierte
Formulierung zur Kopplung von Fluid-Diskretisierungen niedriger
Ordnung mit getrimmten Multi-Patch NURBS Oberflächen entwi-
ckelt und umgesetzt. In der vorliegenden Arbeit werden Benchmarks
und Beispiele mit steigender Komplexität gezeigt, um die entwickel-
ten Methoden zu erläutern und systematisch zu evaluieren.
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Computers are good at following instructions,
but not at reading your mind.

Donald Knuth

Chapter 1

Introduction and Motivation

In this thesis, the partitioned Fluid-Structure Interaction (FSI) of thin-
walled structures using their exact Computer-Aided Design (CAD) repre-
sentation is detailed. Thin-walled structures of membrane or shell type
are for instance stadium roofs and wind turbine blades, see Fig. 1.1. Such
structures are typically subject to interaction with wind in addition to
other types of external loading (e.g. self-weight, snow, etc.) and they can
be modelled by their mid-surface, see in Başar et al. [1]. Their mechanical
behaviour is herein predicted directly on their exact CAD representation
using Isogeometric Analysis (IGA). IGA was firstly introduced in Hughes
et al. [2] and Cottrell et al. [3] and it is a modern numerical method for
the discretization and numerical approximation of solutions to Bound-
ary Value Problems (BVPs) using the exact geometric description. Herein
Non-Uniform Rational B-Spline (NURBS)-based IGA is considered for the
solution of BVPs in multiple, possibly trimmed, surface patches stemming
directly from CAD. IGA exhibits two main advantages compared to stan-
dard Finite Element Method (FEM): The significantly costly meshing step
involved in preparing the computational model can be sidestepped since
the NURBS basis functions from the geometric parametrization can be
directly used for the analysis, see Fig. 1.2. Moreover, the NURBS basis func-
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1 Introduction and Motivation

(a) Olympic stadium in Munich, Ger-
many.

(b) Peace and Friendship stadium in
Piraeus, Greece.

(c) NREL phase VI wind tur-
bine (Simms et al. [7]).

Figure 1.1: Examples of thin-walled structures.

IGA computational modelFEM computational model

Figure 1.2: Faceted FEM (left) versus multipatch NURBS (right)
computational models for a wind turbine blade.

tions offer high order smooth approximations of the unknown fields, thus
providing higher convergence rates than standard FEM, see also in Buffa
et al. [4]. Additionally, IGA enables the numerical discretization of prob-
lems with high variational index such as Kirchhoff-Love shells, where the
standard C 0-continuous FEM cannot be directly applied. The herein con-
sidered structural analysis spans from two-dimensional linear elasticity to
geometrically nonlinear membranes and Kirchhoff-Love shells whose me-
chanical behaviour is predicted numerically, see also in Papadrakakis [5].
Moreover, these kinds of structural problems greatly benefit from IGA given
that they are posed on their mid-surface and that geometries stemming
directly from CAD are frequently described by their Boundary Representa-
tion (B-Rep). Therefore, mid-surface reduced structures offer an excellent
platform for Analysis in Computer-Aided Design (AiCAD) as demonstrated
in Isogeometric B-Rep Analysis (IBRA) firstly introduced in Breitenberger
et al. [6].

The challenge when applying IGA on trimmed multipatch geometries is
that the continuity of the solution between the multiple, possibly trimmed,
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1 Introduction and Motivation

patches has to be ensured along their shared interfaces. Additionally, the
application of Dirichlet boundary conditions has to be made weakly given
that the patches might be trimmed. In this thesis, multiple methods are
considered for treating the aforementioned problems which comprise
Penalty, Lagrange Multipliers and Nitsche-type methods. The application
of the aforementioned methods is firstly shown in two-dimensional lin-
ear elasticity. Subsequently, the Penalty versus the Nitsche-type method
and the Penalty versus the Lagrange Multipliers method are elaborated
and compared for the membrane and the Kirchhoff-Love shell problem,
respectively.

Using the Penalty method, the weak form is extended by quadratic terms
which contain Penalty parameters for the imposition of the desirable con-
straints, see also in Sanders et al. [8]. Provided that the constraints are
linear with respect to the unknown fields, the additional Penalty terms are
bilinear. As a result, elliptic problems remain elliptic which is highly desir-
able in terms of existence and uniqueness of solutions to such problems.
In addition, the corresponding discrete matrices can be precomputed and
used throughout the analysis, thus rendering the method efficient. Typi-
cally, smaller convergence rates than for the original problem are expected
which depend on the choice of the Penalty parameters, see in Babuška
[9]. Moreover, large values for the Penalty parameters may lead to badly
conditioned matrices which in some cases can be singular. On the other
hand, small values for the Penalty parameters might not be sufficient for
the fulfilment of the desirable constraints, see e.g. in Apostolatos et al. [10].
Therefore, an appropriate choice of the Penalty parameters has to be made
which is typically problem dependent. Furthermore, the Penalty method
is often called variationally inconsistent in that an one-to-one correspon-
dence between the strong and the weak forms of the problem cannot be
established. This can be observed as a plateau in the convergence graphs
as no uniform convergence can be obtained for a fixed Penalty parameter.
Therefore the Penalty parameter(s) has(have) to be successively increased,
leading in some cases to ill-conditioned systems.

The Lagrange Multipliers method on the other hand makes use of addi-
tional fields, the so-called Lagrange Multipliers fields, for the enforcement
of the desirable constraints, see also in Babuška [11] and Simeon [12]. As for
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1 Introduction and Motivation

the Penalty method, the additional Lagrange Multipliers terms are bilinear,
given that the desirable constraints are linear with respect to the unknown
fields. Therefore, the discrete matrices resulting from the Lagrange Multi-
pliers terms can be also in this case precomputed and used throughout
the analysis rendering the method efficient. Additionally, the Lagrange
Multipliers method is variationally consistent in contrast to the Penalty
method in that it is characterized by uniform convergence. However, the
formulation turns into a saddle point problem, see also in Apostolatos
et al. [10]. The latter means that the Ladyzhenskaya-Babuška-Brezzi (LBB)
condition needs to be satisfied in order to guarantee a unique solution
of the problem, see in Brezzi et al. [13] and Brivadis et al. [14] for more
information. This can be shown for particular problems and only for spe-
cial choices of the finite dimensional spaces, see also in Gresho et al. [15].
Therefore, it is difficult to ensure that any general saddle point formulation
has a unique solution. To circumvent this problem, alternative Lagrange
Multipliers formulations exist, see also in Teschemacher et al. [16]. An-
other drawback of the Lagrange Multipliers method in its original form is
that the discrete equation system is enlarged by the Lagrange Multipliers
Degrees of Freedom (DOFs). The latter can be bypassed when alternative
Mortar-based formulations are considered where the Lagrange Multipliers
are condensed out of the equation system, see also in Fritz et al. [17] and
Klöppel et al. [18].

Contrary to the aforementioned constraint enforcement methods, the
Nitsche-type approach makes use of field fluxes in addition to the un-
known fields for the enforcement of the desirable constraints. The method
was originally applied in Nitsche [19] to Dirichlet BVPs for which the un-
derlying solution spaces do not have to identically satisfy the boundary
conditions. Its application to domain decomposition problems is shown
in Sanders et al. [8], Fritz et al. [17], Hansbo et al. [20], Hansbo et al. [21],
Sanders et al. [22], and Nguyen et al. [23]. The method was then extended
to IGA in Apostolatos et al. [10], Du et al. [24], and Guo et al. [25], while
in Ruess et al. [26] its application to the NURBS-embedded Finite Cell
Method (FCM) (Parvizian et al. [27]) was shown. It is necessary to add
Penalty-like stabilization terms in the weak form of the problem in order
to maintain coercivity. The underlying stabilization parameters can then
be estimated by solving eigenvalue problems whose size is herein signifi-
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catly smaller than for the original problem since the constraints are applied
only along interfaces and boundaries, see in Apostolatos et al. [10], Griebel
et al. [28], and Apostolatos et al. [29]. Within the Nitsche-type method,
the size of the original discrete equation system remains unchanged and
moreover no user interference is needed since the stabilization parameters
can be estimated. The additional terms are nonlinear when geometrically
nonlinear structural analysis is considered since the fluxes are also herein
exploited. This means that the terms accounting for the constraint en-
forcement have to be be updated at each nonlinear iteration which has the
upside that the method dynamically adapts, but it has also the downside
that the computational overhead becomes significant. This is especially
highlighted in the Kirchhoff-Love shell analysis where the linearization
of the shear forces becomes necessary in the context of the Nitsche-type
method, which otherwise does not show up in the internal work. Neverthe-
less, whenever a Nitsche-type method is available it is typically preferred.

Surface coupled problems such as FSI (see also in Breuer et al. [30] and De
Nayer et al. [31, 32]), greatly benefit from the smoothness that IGA offers
along the common coupling interface, see also in Bazilevs et al. [33]. This is
especially important as the quality of the coupling interface plays a decisive
role in the overall solution accuracy and robustness for such problems. In
this work, the partitioned FSI simulation is extended to IGA on multipatch
surfaces for the discretization of the structural equilibrium equations cou-
pled with flow equations discretized by means of the Finite Volume Method
(FVM) (Ferziger et al. [34]), see also in Wüchner [35]. In particular, the actual
CAD geometries are used within isogeometric structural analysis, which
are typically described by trimmed NURBS multipatches. Concerning the
flow equations, the incompressible Navier-Stokes equations are consid-
ered which are discretized using the FVM within open-source software
OpenFOAM® (Jasak et al. [36]). The partitioned FSI approach is herein
employed as it allows for best-suited specialized solution schemes for each
physical field independently, see also in Klöppel et al. [18], Glück et al.
[37], and Unger et al. [38]. Accordingly, such fields as displacements and
tractions need to be transformed between trimmed multipatch NURBS
surfaces representing the structural FSI interface and low order polygonal
surfaces representing the fluid FSI interface. For this reason, a novel isoge-
ometric mortar-based mapping method is herein elaborated and assessed,
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Trimmed NURBS multipatches

Figure 1.3: Fluid-structure interaction using the exact CAD
model in isogeometric structural analysis.

thus extending IGA of thin-walled structures on trimmed multipatch sur-
faces to FSI, see Fig. 1.3.

Alternatively, the CAD representation (i.e. the trimmed multipatch NURBS
representation) of the FSI interface can be used as a mediator surface,
herein called the Exact Coupling Layer (ECL), for the transformation of
fields between two low order discretized surfaces in the context of par-
titioned FSI with standard FEM discretization of the structural problem.
Accordingly, the transformed fields from one low order discretization of the
surface to the other are smoothed through the ECL using the isogeometric
mortar-based mapping method. This smoothing is especially important
as the structural mesh is often coarser than the fluid mesh on the FSI in-
terface. The underlying reason is that the boundary layer and the flow
characteristics need typically much finer discretizations, see also in De
Nayer et al. [31] and Glück et al. [37].

To enable FSI simulations based on smooth trimmed multipatch NURBS
descriptions of thin-walled structures stemming directly from CAD, sev-
eral developments were accomplished and systematically evaluated. The
overall structure of the present thesis is summarized in the following.
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CHAPTER 2 sets forth the fundamentals regarding the parametric mod-
elling of curves and surfaces, the principles of variational calculus with
special focus on the requirements for the existence and uniqueness of
solutions to particular forms of variational problems. These variational
problems are then individualized for the case of thin-walled structural
analysis using Kirchhoff-Love shell and membrane theory. Especially for
the membrane theory, form-finding using the Updated Reference Strategy
(URS) is discussed. The corresponding content and notions are used in the
sequel of this thesis on the one hand for their application in NURBS-based
IGA of membrane and Kirchhoff-Love shell structures and on the other
hand for their application in isogeometric mortar-based surface coupling
on multipatch surfaces.

CHAPTER 3 focuses on the specialization of the parametric description of
curves and surfaces to NURBS, as standard in CAD. The notion of trimming
is briefly introduced and then the trimmed multipatch NURBS geometries
are discussed. Subsequently, three constraint enforcement methods are
elaborated and compared for their application to the continuity enforce-
ment between multipatches, namely, a Penalty, a Lagrange Multipliers
and a Nitsche-type method. All these methods are then compared in linear
static and modal analysis using two benchmark problems in the frame of
two-dimensional elasticity.

CHAPTER 4 demonstrates the application of IGA on multipatch surfaces for
the geometrically nonlinear structural analysis of membranes. Accordingly,
the Penalty and the Nitsche-type methods are elaborated and compared in
one benchmark, that of the four-point sail, and two real world engineering
applications, those of the middle sail of the Olympic stadium roof in Mu-
nich and of a hangar consisting of three connected inflated torus-shaped
tubes.

CHAPTER 5 demonstrates the application of IGA on multipatch surfaces
for the structural analysis of Kirchhoff-Love shells. Herein, the Penalty
and the Lagrange Multipliers methods are elaborated and compared over
a series of linear and nonlinear benchmark examples. At the end of this
chapter, the application of the aforementioned methodology to the real
world engineering example of the NREL phase VI wind turbine with flexible
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blades is shown. For the latter application, linear static and modal analyses
are performed and the solution is compared to a solution obtained using
standard FEM.

CHAPTER 6 demonstrates the extension of the isogeometric membrane
and Kirchhoff-Love shell analyses on multipatch surfaces to partitioned
FSI. Accordingly, a novel isogeometric mortar-based mapping method is
elaborated for transformations of fields between a low order discretized
surface and a surface consisting of trimmed NURBS multipatches, where
implementational aspects are also discussed. A short introduction to the
incompressible Navier-Stokes equations is provided along with a discus-
sion on the employed solution schemes within OpenFOAM®. Then, the
lid-driven cavity FSI benchmark example is used for the validation and the
demonstration of the proposed methodology. Lastly, the FSI simulations
of the inflatable hangar and the NREL phase VI wind turbine with flexible
blades in numerical wind tunnels are shown and compared to solutions
stemming from standard finite element structural discretizations.

The main contributions of this work consist in the elaboration and com-
parison of various constraint enforcement methods for IGA on multipatch
surfaces of thin-walled structures in FSI. Accordingly, a novel isogeometric
mortar-based mapping method is herein detailed for the coupling of the
structural equations in IGA on multipatches with the flow equations in
FVM. The isogeometric mortar-based mapping method is also used for
smoothing fields transformed between two low order discretized surfaces
taking advantage of the exact CAD description of their common interface.
Parts of IGA on multipatch surfaces in linear elasticity briefly discussed
in Chap. 3 can be found in Apostolatos et al. [10]. Moreover, parts of IGA
on multipatch surfaces detailed in Chap. 4 for membrane structures are
available in Apostolatos et al. [29, 39]. Lastly, parts of IGA on multipatch sur-
faces for Kirchhoff-Love shell problems presented in Chap. 5 are published
in Apostolatos et al. [40].
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Chapter 2

Foundations

This chapter provides the necessary notions and preliminaries for the se-
quel of this thesis. At first the differential geometry of curves and surfaces
is introduced along with the differential calculus over curvilinear spaces.
Subsequently, an introduction to variational calculus is provided where
special attention is drawn on the equivalence between strong and weak
forms of boundary value problems. Then, the existence and uniqueness
of solutions to variational problems and their corresponding mixed for-
mulations are briefly discussed. The structural analysis of Kirchhoff-Love
shells and membranes along with form-finding using the Updated Ref-
erence Strategy (URS) is subsequently introduced. Concerning the time
discretization of the dynamic equilibrium, the semidiscretized systems
using the Newmark method are detailed and then the discrete equation
systems resulting from the spatial discretization using the Finite Element
Method (FEM) are given.
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Figure 2.1: Differential geometry of curves: Images of the spiral
and its image through a unit ball.

2.1 Introduction to differential geometry

The following section sets forth the fundamentals regarding the differential
geometry of curves and surfaces which are later on exploited by specializing
the geometric description to Non-Uniform Rational B-Splines (NURBS). In
the sequel O’Neill [41] is closely followed and V ⊂R3, Ω ⊂R3 are assumed
to be open subspaces of Euclidean space R3 representing a surface and
a volume in Cartesian space with parametric images Ω̂ ⊂R2 and V̂ ⊂R3,
respectively. Additionally, Latin and Greek indices which are not explicitly
defined as variables span from 1 to 3 and from 1 to 2, respectively.

2.1.1 Differential geometry of curves

Let Ĉ : γ̃→ γ̂ be the parametrization of a curve where γ̃⊂R and γ̂⊂ V̂ are
its corresponding parametric and physical spaces, respectively. For the
special case of a spiral with increasing radius, where γ̃= [0, 12π] and where
V̂ ⊂R3 is the space defined by the coordinate system θ1-θ2-θ3 (Fig. 2.1),
its parametric description reads,

10



2.1 Introduction to differential geometry

Ĉ (θ ) = θi Â i =
1

30
θ cosθ Â 1+

1

30
θ sinθ Â 2+

3

10
θ Â 3 , (2.1)

Â i , i = 1, . . . , 3 being the orthonormal base vectors in V̂ and θi the coordi-
nates of any point in that system. The image of the spiral in V̂ is depicted in
the left of Fig. 2.1. The base (or velocity) vector of curve γ̂with parametriza-
tion Ĉ is defined as the vector Â : γ̃→ V̂ where,

Â=
∂ Ĉ

∂ θ
. (2.2)

The base vector of the spiral at the parametric locations θ = 36π/7, θ = 6π
and θ = 9π is also depicted in the left of Fig. 2.1. Additionally, one can
define at each parametric location of the curve γ̂ a convective orthonormal
space in V̂ spanned by vectors êt, ên and êb as,

êt =
1










∂ Ĉ
∂ θ










2

∂ Ĉ

∂ θ
, (2.3a)

êb =
1










∂ Ĉ
∂ θ ×

∂ 2 Ĉ
∂ θ 2










2

∂ Ĉ

∂ θ
×
∂ 2 Ĉ

∂ θ 2
, (2.3b)

ên = êb× êt , (2.3c)

known as the Frenet basis. The Frenet basis is important as vector êt (so-
called unit velocity vector) remains always tangent to curve γ̂, vector ên

(so-called main normal) points in the direction of the curvature of the curve
and vector êb (so-called binormal) carries information on the torsion of the
curve. The Frenet basis at θ = 10π for the case of the spiral geometry is also
shown in the left of Fig. 2.1. Consider the transformation V : V̂ →V ⊂R3,

V
�

θ1,θ2,θ3

�

= sin
θ3

2π

�

cosθ1 sinθ2e1+ sinθ1 sinθ2e2+ cosθ2e3

�

, (2.4)

ei being the base vectors in the Cartesian space R3, which transforms
domain V̂ into the unit ball V ,

V =
�

X ∈R3
�

�‖X‖2 ≤ 1
	

. (2.5)

The image of curve γ̂ through the unit ball parametrization in Eq. (2.4) is
then obtained by the parametrization C = V ◦ Ĉ : γ̃→ γ, see right part of

11



2 Foundations

Fig. 2.1. Accordingly, the tangent vector A : γ̃→V of curve γ is defined by
means of the base vector Â along γ̂ using the chain rule,

A=
∂ C

∂ θ
= A i

�

Â · Â i

�

, (2.6)

where Â · Â i are the components of base vector Â in V̂ and where the
Einstein’s summation convention over the repeated indices is assumed.
Moreover, vectors A i = ∂ C/∂ θi are the base vectors of the geometric
parametrization V of volume V in Eq. (2.4). In the same fashion, base
vector A is depicted for the given parametric locations θ = 36π/7, θ = 6π
and θ = 9π in the right part of Fig. 2.1 along with the spiral through the
unit ball parametrization.

The length of curve γ̂ in V and of curve γ in V̂ are given as,

|γ̂|=
ˆ
γ̂

dγ̂=
ˆ
γ̃
‖Â‖2 dθ , (2.7a)

|γ|=
ˆ
γ

dγ=
ˆ
γ̃
‖A‖2 dθ , (2.7b)

respectively.

2.1.2 Differential geometry of surfaces

A surface in R3 is defined by a map S : Ω̂→Ω, where Ω̂ ⊂R2 and Ω ⊂R3

stand for the parametric and geometric images of the surface, respectively.
As examples, the parametric descriptions of a hemisphere and a hyperbolic
paraboloid are given below,

S (θ1,θ2) = R̄ cosθ1 sinθ2 e1+ R̄ sinθ1 sinθ2 e2+ R̄ cosθ2 e3 , (2.8a)

S (θ1,θ2) = θ1 cosθ2 e1+θ1 sinθ2 e2+θ1

�

cos2θ2− sin2θ2

�

e3 , (2.8b)

in Ω̂ = [π, 2π]× [3π, 4π] and in Ω̂ = [0, 1/2]× [0, 2π], respectively. The corre-
sponding parametric and geometric images are then depicted in Figs. 2.2.
A local convective space for each surfaceΩmay be constructed as follows,

12
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θ1

θ2 Ω̂

(a) Parametric image of the hemisphere.

X1

X3
X2

A 1

A 2

A 3

X

θ1

θ2

Ω

(b) Geometric image of the hemisphere.

θ1

θ2 Ω̂

s p a c e s p a c e

(c) Parametric image of the hyperbolic paraboloid.

X1

X3 X2 A 1

A 2

A 3

θ1

θ2

Ω

(d) Geometric image of the hyperbolic paraboloid.

Figure 2.2: Differential geometry of surfaces: Images of the
hemisphere and the hyperbolic paraboloid in their parametric and

the geometric spaces.

Aα =
∂ S

∂ θα
, (2.9a)

A 3 =
1





A 1×A 2







2

A 1×A 2 , (2.9b)

where base vectors Aα and A 3 are the so-called covariant base vectors of the
surface parametrization S . The base vectors of the given parametrizations,
that of the hemisphere and the hyperbolic hyperboloid, at given surface
points are then shown in Fig. 2.2(b) and Fig. 2.2(d), respectively. Evidently,
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base vectors Aα are tangent to surface Ω at any given point and moreover
tangent to the Cartesian image of the parametric isolines θα, respectively,
whereas base vector A 3 corresponds to the surface normal. A contravariant
basis Ai for each surface Ω maybe constructed using the rule A i ·A j =δ j

i .
Since A 3 is perpendicular to both Aα at each point, it naturally follows that
A3 = A 3. The second order tensor A=Aαβ Aα⊗Aβ with components,

Aαβ = Aα ·Aβ , (2.10)

is called the metric tensor or the first fundamental form of surface Ω with
parametrization S . As opposed to curves, the curvature of a surface is
defined by means of the curvature second order tensor B = Bαβ Aα⊗Aβ

whose components are given by,

Bαβ =−
∂ A 3

∂ θα
·Aβ =−

∂ A 3

∂ θβ
·Aα = A 3 ·

∂ Aα
∂ θβ

, (2.11)

which is also known as the second fundamental form of surface Ω with
parametrization S . Since base vectors Aα are in general not normalized,
values Bαβ have no direct physical meaning and thus values,

B̄αβ =Bαβ ‖Aα‖2 ‖Aβ‖2 . (2.12)

can be used instead. At each point on the surface there can be identified a
minimum and maximum curvature, denoted by k̄1 and k̄2, respectively,
the so-called principal curvatures. The corresponding directions where the
principal curvatures occur are known as the principal directions. The eigen-
values and the corresponding eigenvectors of the generalized eigenvalue
problem,

B ·v= k̄ A ·v , (2.13)

are then the principal curvatures k̄α and principal direction vectors vα of
surface Ω with parametrization S at each point, respectively. In Eq. (2.13),
the scalar product is defined as B ·v=Bαβ v β , where v β are the contravari-
ant components of curvature direction vector v on surface Ω. In this way,
the Gaussian curvature is obtained by K̄ = k̄1 k̄2 at each point on surfaceΩ.
Surfaces for which K̄ > 0 everywhere are called synclastic surfaces whereas
surfaces for which K̄ < 0 everywhere are called anticlastic.
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k̄1 ‖A 1 ×A 2‖−1
2

-3.5
-3
-2.5
-2
-1.5
-1
-0.5
0

(a) First principal curvature k̄1
normalized by ‖A 1 ×A 2‖2.

0
0.5
1
1.5
2
2.5
3
3.5

k̄2 ‖A 1 ×A 2‖−1
2

(b) Second principal curvature
k̄2 normalized by ‖A 1 ×A 2‖2.

-15

-10

-5

0
K̄ ‖A 1 ×A 2‖−2

2

(c) Gaussian curvature K̄ nor-
malized by ‖A 1 ×A 2‖2

2.

Figure 2.3: Differential geometry of surfaces: Contour of the
curvature coefficients for the hyperbolic paraboloid.

Concerning the hemisphere, it is known that the curvature is the same
along each parametric direction and thus, the principal curvatures equal
the physical normal curvature components, namely, k̄1 = B̄11 = k̄2 = B̄22 =
1/R̄ , whereas component B̄12 is identically zero everywhere. Thus, the
Gaussian curvature of the hemisphere equals K̄ = 1/R̄ 2 > 0 and hence, the
hemisphere is a synclastic surface. Regarding the hyperbolic paraboloid
defined in Eq. (2.8b) it can be firstly observed that A 2 = 0 identically for
θ1 = 0. This is due to the fact that the aforementioned parametrization
S is constructed by squeezing parametric line θ2 to a point at θ1 = 0 and
revolving θ2 parametric direction around it. Therefore, surface normal
vector A 3 is not well defined at θ1 = 0. However, the surface normal vector
A 3 is well defined everywhere else and by solving eigenvalue problem
defined in Eq. (2.13) the principal curvatures k̄1 and k̄2 can be obtained.
The various curvature measures concerning the hyperbolic paraboloid are
then depicted in Fig. 2.3. The principal curvatures k̄1 and k̄2 are depicted
in Figs. 2.3(a) and 2.3(b), respectively, when scaled by ‖A 1×A 2‖2. In this
case, it is observed that K̄ < 0 (Fig. 2.3(c)) for all points but the center θ1 = 0
where A 3 is undefined and thus the hyperbolic paraboloid belongs to the
family of anticlastic surfaces.

2.2 Introduction to variational calculus

Herein a brief introduction to variational calculus is provided, focusing
on the aspects which are employed later on in this thesis. Such aspects
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include the variational formulations of thin-walled structures and the
mortar-based surface mapping method posed on multiple domains while
being subject to interface and boundary constraints. For laying the un-
derlying formalities, Logan [42] is followed in the sequel. The space of all
one-time weakly differentiable vector functions in Ω which are identically
zero along boundary ∂ Ω reads,

V =
�

h ∈H1 (Ω) |h= 0 on ∂ Ω
	

, (2.14)

where H1 (Ω) is the first order Sobolev space of the vector-valued square in-
tegrable functions h ∈L2 (Ω)with square integrable derivatives ∂ h/∂ X i ∈
L2 (Ω). It is assumed herein that the unknown function fields satisfy a
homogeneous Dirichlet boundary condition along the whole boundary
∂ Ω, without loss of generality. Accordingly, the admissible spaces for the
test and the solution fields are identical as in Eq. (2.14). Alternatively, in
case that the unknown function fields satisfy strongly an inhomogeneous
Dirichlet boundary condition along ∂ Ω the admissible space for the un-
known solution is different than the admissible space for the test functions
which comply strongly with the homogeneous Dirichlet boundary con-
ditions along ∂ Ω. It should be borne in mind that in case the Dirichlet
conditions are strongly imposed along a portion of the domain’s boundary
Γd ⊂ ∂ Ω, the admissible solution spaces do not have to comply with any
conditions along the Neumann boundary Γn = ∂ Ω \Γd where typically the
fluxes of the unknown field are weakly imposed. The latter implies that
Γd ∩Γn = ;. A functional L : V→R is a rule that maps each element h ∈V
to a real number. The extension of the derivative notion for real-valued
functions to functionals, that of the Gâteaux derivative provided below, is
essential for defining stationary points of functionals.

Definition 2.1: Gâteaux derivative

Given a functional L : V→R, where V is a vector space, the Gâteaux
derivative or first variation of L at an element d ∈V in the direction
of h ∈V is defined as the number,

δL (d) = lim
ε̃→0

L (d+ ε̃h)− L (d)
ε̃

=
∂

∂ ε̃
L (d+ ε̃h)

�

�

�

�

ε̃=0

. (2.15)

It can be easily observed that the Gâteaux derivative closely resembles the
notion of the directional derivative for multidimensional functions, where
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2.2 Introduction to variational calculus

in this case the direction is indicated by vector h ∈V . Function ε̃h stands
for the corresponding admissible variation which is in the sequel denoted
as δd. In order to motivate the importance of the Gâteaux derivative in
the context of structural analysis, in the latter case L , d and δd stand for
the potential energy, the displacement field and its admissible variation,
respectively.

2.2.1 Correspondence of strong and weak forms

The stationary points of functional L indicate possible locations where
L attains its minimum or maximum value which can be either local or
global. A vector d ∈ V is said to be a stationary point of functional L if
δL (d) = 0, where the variation is understood in the sense of Def. 2.1. The
aforementioned condition contains information on neither whether that
stationary point is local or global nor whether this is a location of minimum
or maximum. Whether a functional L attains a unique global or a number
local stationary point(s) depends on whether the underlying problem is
convex or concave, respectively. On the other hand, whether the stationary
point is a location of minimum or maximum also depends on the nature
of the underlying problem and corresponding information can be drawn
using the second order variation of L defined in a similar fashion as the first
variation in Def. 2.1. A fundamental principle of variational calculus, herein
presented for vector-valued functions, is provided in Lem. 2.1 below.

Lemma 2.1

Let F (X , d) be a continuous vector function in Ω. If the following
condition holds true,
ˆ
Ω

F (X , d) ·δd dΩ = 0 , (2.16)

for all admissible variations δd ∈V , then F (X , d) = 0 identically in Ω.

Concerning Eq. (2.16), derivatives are typically transferred from F onto the
test functionδd using integration by parts in order to reduce the continuity
requirements on d and obtain boundary terms which allow the imposition
of boundary conditions. Accordingly, the resulting maximum derivative or-
der m̄ ∈N onδd in the resulting variational form defines the Sobolev space
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where variation δd is restricted1, in other words V ⊂Hm̄ (Ω). Concerning
the variational (or weak) forms of the membrane and Kirchhoff-Love shell
problems, m̄ = 1 and m̄ = 2, respectively (see also Secs. 2.3.3 and 2.3.2). For
displacement-based structural analysis problems, where L stands for the
potential energy, the corresponding stationary point is the displacement
field d which produces the least potential energy. The Euler-Lagrange set
of Partial Differential Equations (PDEs), introduced in Thm. 2.1, represents
the equivalent strong form of problem δL = 0 when functional L has a
special integral form.

Theorem 2.1: Euler-Lagrange PDEs

Let d ∈V be the unknown field and L : V→R a potential of the form,

L (d) =
ˆ
Ω
J (X , d,∇d) dΩ , (2.17)

for a given functional J : V→R. Then, the stationary point d ∈V of
potential L satisfies the Euler-Lagrange PDEs, namely,

Jd (X , d,∇d)−∇·J∇d (X , d,∇d) = 0 in Ω, (2.18a)

d= 0 on ∂ Ω , (2.18b)

where Jd and J∇d are defined as follows,

Jd =
∂ J
∂ d 0

i

ei , (2.19a)

J∇d =
∂ J
∂ d 0

i , j

ei ⊗e j , (2.19b)

with d 0
i , j = ∂ d 0

i /∂ X j and where d= d 0
i ei stands for the decomposi-

tion of d in the Cartesian basis.

The expressions in Eqs. (2.18) and (2.19) are written with respect to the
Cartesian coordinate system without loss of generality and can be also
expressed with respect to a curvilinear coordinate system as introduced in
Sec. 2.1.2. The Euler-Lagrange PDEs in Eq. (2.18) are derived by means of

1 Number m̄ is also known as the variational index of the corresponding weak form,
that is, the highest derivative order on the test function.
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the chain rule when computing the first variation of functional J using
Eq. (2.15) for each admissible variation δd ∈V while subsequently using
Lem. 2.1. In the context of displacement-based structural analysis, Jd and
J∇d in Eqs. (2.19) stand for the external body forces and the internal stress
tensor field, respectively. As aforementioned, the Euler-Lagrange PDEs in
Eq. (2.18) represent the strong form of finding the stationary point d ∈V of
potential L subject to boundary condition in Eq. (2.18b). On the other hand,
multiplying Eq. (2.18a) with a δd ∈V , integrating overΩ and subsequently
performing integration by parts, the so-called weak or variational form of
problem in Eq. (2.18) is obtained, namely: Find d ∈V such that,ˆ

Ω
∇δd : J∇d (X , d,∇d) dΩ+

ˆ
Ω
δd ·Jd (X , d,∇d) dΩ = 0 , (2.20)

for all δd ∈V . Weak form in Eq. (2.20) is in general nonlinear and is equiv-
alent to strong form in Eq. (2.18) meaning that the solution of the weak
form is the same as for the strong form. As aforementioned, conditions can
also be applied onto the fluxes of vector d along Γn ⊂ ∂ Ω which in case of
displacement-based structural analysis would stand for externally applied
boundary tractions. In the latter case,V is not subject to the homogeneous
boundary conditions along that portion of the boundary.

2.2.2 Existence and uniqueness of solutions to variational
problems

As mentioned in Sec. 2.2.1, weak form defined in Eq. (2.20) is equivalent
to strong form defined in Eq. (2.18) and thus inherits all properties from
the Euler-Lagrange PDEs. The Euler-Lagrange PDEs, depending on the
physical problem they describe, might be elliptic (displacement-based
structural analysis), parabolic (heat conduction), hyperbolic (incompress-
ible Navier-Stokes flow equations) etc., see in Courant et al. [43] for more
information. In this thesis, elliptic Euler-Lagrange PDEs are among oth-
ers considered which in general govern displacement-based structural
analysis problems. For this family of PDEs and their corresponding weak
forms, see Eq. (2.20), there may be a unique solution, provided sufficient
boundary conditions are applied, when additional conditions are met.
Suppose that weak form in Eq. (2.20) can be written as follows: Find d ∈V
such that,

a (δd, d) = l (δd) ∀δd ∈V , (2.21)
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where a : V ×V → R and l : V → R is a form and a functional, respec-
tively. The following theorem ensures well-posedness of the weak form in
Eq. (2.21) (see in Kikuchi et al. [44] and Ciarlet [45]).

Theorem 2.2: Lax-Milgram theorem

Let ‖ • ‖V be a norm in V . Then, if the following conditions are met,

i. Form a is bilinear, that is, a (c h, d) = a (h, c d) = c a (h, d),
a
�

h1+h2, d
�

= a
�

h1, d
�

+a
�

h2, d
�

and a
�

h, d1+d2

�

= a
�

h, d1

�

+
a
�

h, d2

�

for all c ∈R and all h, h1, h2, d, d1, d2 ∈V ,

ii. Form a is continuous, that is, there exists a real C̄ > 0 such that,
a (h, d)≤ C̄ ‖h‖V ‖d‖V for all h, d ∈V ,

iii. Form a is coercive (or elliptic), that is, there exists a real C > 0
such that, a (d, d)≥C ‖d‖2

V for all d ∈V ,

iv. l is a linear functional, that is, l (αh+d) = αl (h) + l (d) for all
real numbers α and for all h, d ∈V ,

weak form in Eq. (2.21) has one unique solution d ∈V .

Lax-Milgram Thm. 2.2 is clearly confined to variational problems of the
form in Eq. (2.21) where form a is bilinear, continuous and coercive (or
elliptic) in V ×V and where l is a linear functional in V . For displacement-
based structural analysis problems the aforementioned physical interpre-
tation is apparent: Statically determinate linear problems which are typi-
cally elliptic attain a unique solution in terms of displacements. However,
geometrically nonlinear problems in general may have turning and/or
bifurcation points where one unique solution cannot be identified and
thus a unique solution for a general nonlinear weak form in Eq. (2.21) is
not guaranteed.

Next, suppose that variational problem in Eq. (2.21) is subject to a lin-
ear equality vector constraint c = c (d) along a subdomain D ⊂ Ω. Then,
the constrained problem can be formulated by means of the Lagrange
Multipliers method, namely: Find d ∈V and λ ∈L2 (D ) such that,

a (δd, d) + 〈δc,λ〉0,D + 〈δλ, c〉0,D = l (d) , (2.22)
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for all δd ∈V and for all δλ ∈L2 (D ). Scalar product 〈•,•〉0,D in Eq. (2.22)
is understood as the inner product in the L2(D ) space, namely,

〈δc,λ〉0,D =
ˆ

D
δc ·λdD . (2.23)

Weak form in Eq. (2.22) is a mixed or saddle-point formulation. For the
latter problem to have a unique solution, additional conditions need to be
met which are summarized in Thm. 2.3, see also in Boffi et al. [46].

Theorem 2.3: Ladyzhenskaya-Babuška-Brezzi condition

Let form a be a continuous bilinear form in V ×V and l a linear
functional in V as per Thm. 2.2. Let also bilinear form a be coercive
in Vk×Vk where subspace Vk ⊂V is defined as,

Vk =
�

d ∈V
�

�〈δλ, c〉0,D = 0 for all δλ ∈L2 (D )
	

. (2.24)

If in addition the Ladyzhenskaya-Babuška-Brezzi (LBB) (or inf-sup)
condition is satisfied, namely, there exists a constant Ĉ > 0 such that,

inf
λ∈L2(D )

sup
d∈V

〈c,λ〉0,D

‖d‖V ‖λ‖0,D
≥ Ĉ , (2.25)

then mixed formulation in Eq. (2.22) has a unique solution.

It is not a trivial problem for any kind of weak form in Eq. (2.22) to fulfil
the LBB condition in Eq. (2.25). One of the most well-known problems of
this type is the Stokes problem, see Gresho et al. [15] for more information,
for which it can be shown that the LBB condition in Eq. (2.25) is satisfied
only for special selections of the discrete subspaces concerning the primal
and the Lagrange Multipliers fields, but not for any.

2.3 Continuum mechanics of thin-walled structures

In this section, an introduction to continuum mechanics for thin-walled
structures is provided and Başar et al. [1] is closely followed. Starting from
the continuum mechanics in the differential volume, the initial Boundary
Value Problems (iBVPs) for the mid-surface reduced structural models
of the Kirchhoff-Love shell and the prestressed membrane are shown.
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Then, the corresponding weak formulations of the aforementioned iBVPs
are demonstrated and a short introduction to form-finding analysis for
prestressed membranes is given.

2.3.1 Preliminaries

This section focuses on the continuum mechanics on curvilinear systems
of thin-walled structures including Kirchhoff-Love shells and membranes.
At first, the basics regarding mechanics in 3D space are laid. Therefore, let
V ⊂R3 be the continuum’s reference geometry consisting of all material
points X defining the continuum. The primal unknown of the problem is
the displacement field d : V →Vt , where Vt consists of all points x= X +d
for each time instance t ∈ T in the closed time domain T = [T0, T∞]. A
total Lagrangian description of the motion is assumed and accordingly all
tensors are referred to the reference configuration of the problem. Let A i

be a curvilinear basis of V which can be computed in a similar fashion
as in Eq. (2.9) for a given volume parametrization V . Then, each point of
the Cartesian space can be written in terms of either the Cartesian or the
curvilinear basis as follows,

X = X i ei = θi A i , (2.26)

X i and θi being the Cartesian and the convective coordinates of position
vector X . Accordingly, the displacement field can also be expressed in both
the Cartesian and the covariant basis in the same fashion as the position
vector in Eq. (2.26), namely,

d= d 0
i ei = d i A i . (2.27)

Evidently, the base vectors of the current configuration can be expressed
similar to the base vectors in the reference configuration, see Eq. (2.9),
namely,

ai =
∂ x

∂ θi
= A i +

∂ d

∂ θi
. (2.28)

Let S = S0
i j ei ⊗ e j be the 2nd Piola-Kirchhoff (PK2) stress tensor of the

continuum expressed over the Cartesian basis. The stress tensor can be
also expressed with respect to the covariant basis of the aforementioned
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Figure 2.4: Representation of the differential volume in both the
Cartesian and a curvilinear coordinate system.

curvilinear space with its contravariant components being,

S i j = S0
k l

�

Ai ·ek

� �

A j ·el

�

, (2.29)

where Ai are the contravariant base vectors in 3D, see also Fig. 2.4. In
this way, the equilibrium can be posed in either space. Regarding the
kinematics, the Green-Lagrange (GL) strain tensor E = Ei j Ai ⊗A j is used,
being the energetically conjugate strain measure to the 2nd Piola-Kirchhoff
stress measure, whose components in the continuum are defined as,

Ei j =
1

2

�

αi j −Ai j

�

, (2.30)

Ai j and αi j being the metric tensor coefficients of the continuum for the
reference and the current configuration, respectively, defined similar to
metric coefficients of a surface in Eq. (2.10). In terms of the material law, the
linear Hooke’s law (St. Venant Kirchhoff material model) is employed which
is defined with the aid of the material tensor C = Ci j k l A i ⊗A j ⊗A k ⊗A l ,
whose components read,

Ci j k l =
E

2 (1+ν)

�

Ai kA j l +Ai l A j k +
2ν

1−2ν
Ai jAk l

�

, (2.31)

E and ν being the Young’s modulus and the Poisson’s ratio of the elastic
structure. Moreover, Ai k = Ai ·Ak in Eq. (2.31) are the contravariant metric
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Figure 2.5: Continuum mechanics for thin-walled structures:
Mid-surface reduction.

coefficients. Then, the stress-strain relation in the continuum reads,

S = C : E , (2.32)

which is valid for large deformations but small strains. Lastly, inertial and
damping forces are considered, which are of the form ρd̈ and c ḋ, respec-
tively, where ρ, c , ḋ and d̈ stand for the structural density, the damping
coefficient, the velocity and the acceleration vectors, respectively. As afore-
mentioned, in this thesis thin-walled structures of Kirchhoff-Love shell or
membrane type are considered. Therefore, it is assumed that the structure
is only represented by its mid-surface Ω, whereas the out-of-plane strain
and stress components Ei 3, E3i ,S i 3,S3i identically vanish, as it is explained
in Sec. 2.3.2. The latter assumptions are valid for thin shells and mem-
branes where h̄/R̄ � 20, R̄ and h̄ being the radius of curvature (Eq. (2.11))
and the thickness of the structure which is herein considered constant,
respectively. In the next sections a brief introduction to structural analysis
of Kirchhoff-Love shells and membranes is provided.

2.3.2 Structural analysis of Kirchhoff-Love shells

Let the continuum’s geometry V , described in Sec. 2.3.1, be thin in θ3-
direction, see Fig. 2.5. Following the thin structure assumption in Sec. 2.3.1,
a reduction to the mid-surface Ω can be performed and in this way each
point on the continuum’s space described in Eq. (2.26) can be expressed
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2.3 Continuum mechanics of thin-walled structures

as follows,

X = θαAα+θ3A 3 , (2.33)

for all (θ1,θ2) ∈ Ω̂ and all θ3 ∈ [−h̄/2, h̄/2], where the covariant base vectors
Aα and A 3 are given in Eqs. (2.9). The displacement field d is then also
restricted on the mid-surface and can then be expressed by its in-plane and
out-of-plane components on the covariant space of the surface, namely,

d= d αAα+d3A 3 . (2.34)

Accordingly, the current configuration is only represented by the mid-
surface Ωt for each time instance t ∈T. In this way, the continuum’s GL
strain components can be expressed as,

Eαβ = εαβ +καβθ3+O
�

θ 2
3

�

, (2.35a)

εαβ =
1

2

�

ααβ −Aαβ
�

, (2.35b)

καβ =
�

Bαβ −βαβ
�

, (2.35c)

where ε = εαβAα ⊗ Aβ and κ = καβAα ⊗ Aβ are the resulting membrane
and bending strain tensors, respectively, and where Aαβ and ααβ stand for
the metric tensor coefficients of the mid-surface Ω defined in Eq. (2.10) in
the reference and current configuration, respectively, see also in Kiendl
et al. [47]. In addition, Bαβ and βαβ stand for the curvature coefficients
defined in Eq. (2.11) in the reference and the current configuration, respec-
tively, meaning that the bending strain κ is the change of the curvature
between the reference and the current configuration. Warping and other
high-order effects along the thickness are neglected (see Eq. (2.35a) where
high order terms with respect to θ3 are assumed negligible), which is a valid
assumption for thin-walled structures. In this way, cross sections normal
to the mid-surface are assumed to remain normal to the mid-surface and
planar after the deformation. In addition, cross sections normal to the
mid-surface remain normal to the mid-surface after deformation, with the
implication that no out-of-plane shear deformation may occur. Hooke’s
law defined in Eq. (2.32) is then also reduced to the mid-surface and the out-
of-plane stress components are assumed negligible, that is, S i 3 = S3i = 0
as a result of the elimination of the out-of-plane strain components. Ad-
ditionally, the stress components Sαβ are linearly distributed along the
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thickness as a result of the linear distribution of the strain components
along the thickness, see Eq. (2.35). In this way, the constant part of the
stress components results into a membrane in-plane stress-resultant force
tensor n= nαβAα⊗Aβ whereas the remaining linear symmetric with re-
spect to the θ3 = 0 axis part results in a stress-resultant moment tensor
m=mαβAα⊗Aβ , see Fig. 2.5. These resulting stress-resultant force and
moment tensors are obtained by pre-integration of the stress components
Sαβ along the thickness θ3-direction, namely,

nαβ =
ˆ h̄/2

−h̄/2
Sαβ dθ3 = Sαβ |θ3=0 h̄ , (2.36a)

mαβ =
ˆ h̄/2

−h̄/2
Sαβ θ3 dθ3 = Sαβ |θ3=0

h̄ 3

12
, (2.36b)

where Sαβ |θ3=0 = Sαβ
�

θ3 = 0
�

, see also in Gross et al. [48]. Therefore, reduc-
ing the three-dimensional continuum down to a surface has the implica-
tion of generating moments. Linear Hooke’s law in Eq. (2.32) can then be
split to account separately for the membrane and the bending parts of the
stress, namely,

n= Cm : ε , (2.37a)

m= Cb :κ , (2.37b)

where,

Cm = h̄ CαβγδAα⊗Aβ ⊗Aγ⊗Aδ , (2.38a)

Cb =
h̄ 3

12
CαβγδAα⊗Aβ ⊗Aγ⊗Aδ , (2.38b)

respectively, taking into consideration only the in-plane components of
the material tensor C defined in Eq. (2.31). Let w = wαAα = a3 − A 3 be
the difference of the surface normal vector between the current and the
reference configuration, respectively, see Fig. 2.6. Assuming small strains,
it can be shown (Başar et al. [1]) that the covariant components of vector
w are given by,

wα =−
�

∂ d3

∂ θα
+d γBγα

�

, (2.39)
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Figure 2.6: Continuum mechanics for thin-walled structures:
Deformation of the mid-surface at time t ∈T.

where Bγα stand for the covariant components of the curvature tensor, see
Eq. (2.11), in the reference configuration. In this way, the rotation vector
ω at a given location X is defined with the aid of w, namely,

ω= A 3×w=ωζAζ , (2.40a)

ωζ =−
�

∂ d3

∂ θα
+d γBγα

�

εαζ , (2.40b)

ε = εαζAα ⊗ Aζ being the permutation second order tensor. Thus, the
rotation is a linear differential operator over the displacement field d. Ac-
cordingly, the rotation vector can be defined along any curve on surfaceΩ.
Let γ⊂Ω be a curve along which the rotation vector is to be determined.
Let also êt = ê αt Aα and ên = ê αn Aα be the tangent and the normal to curve
γ unit vectors on the tangent space of surface Ω where ε · êt = −ên and
ε · ên = êt. In this way, a local orthonormal basis (êt, ên, A 3) is constructed.
The rotation vector can be split into its bending and its twisting compo-
nents namely,

ω=ωtêt+ωnên , (2.41a)
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ωt =ω · êt =

�

∂ d3

∂ θα
+d γBγα

�

ê αn , (2.41b)

ωn =ω · ên =−
�

∂ d3

∂ θα
+d γBγα

�

ê αt . (2.41c)

Subsequently, displacement and/or rotation Dirichlet boundary condi-
tions are prescribed along a portion of the body’s boundary Γd ⊂ ∂ Ω,
confining ourselves to homogeneous Dirichlet boundary conditions with-
out loss of generality. Forces p̄ and/or moments r̄ are applied over another
portion of the shell’s boundary Γn ⊂ ∂ Ω forming the Neumann boundary
conditions. Finally, it is also assumed that the elastic body is subject to
body forces denoted by b= b αAα+ b3A 3. Then, the Kirchhoff-Love iBVP
reads:

ρd̈ β + c ḋ β +nαβ |α−qαB βα + b β = 0 , in Ω×T , (2.42a)

ρd̈3+ c ḋ3+nαβBαβ +qα|α+ b3 = 0 , in Ω×T , (2.42b)

mαβ |α−qβ = 0 , in Ω×T , (2.42c)

d= d0 , in Ω at t = T0 , (2.42d)

ḋ=υ0 , in Ω at t = T0 , (2.42e)

d= 0 , on ⊂ Γd×T , (2.42f)

ω= 0 , on ⊂ Γd×T , (2.42g)

nαêα = p̄ , on ⊂ Γn×T , (2.42h)

mαêα = r̄ , on ⊂ Γn×T , (2.42i)

where ê= êαAα stands for the normal to the Neumann boundary Γn. The
stress-resultant traction force and the stress-resultant traction moment
vectors are given by,

nα = nαβAβ +qαA 3 , (2.43a)

mα =mαβAβ , (2.43b)

respectively. Moreover, the covariant derivative with respect to θα, the
first and the second time derivatives are denoted by •|α, •̇ and •̈, respec-
tively. Additionally, qα stand for the contravariant components of the
shear force vector. Eqs. (2.42a), (2.42b) and (2.42c) represent the in-plane,
the out-of-plane and the moment equilibrium, respectively. Eqs. (2.42d)
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2.3 Continuum mechanics of thin-walled structures

and (2.42e) stand for the initial conditions of the displacement and the
velocity fields, respectively. Eqs. (2.42f) and (2.42g) stand for the Dirich-
let boundary conditions on the displacement and rotation fields along
Γd, respectively, whereas Eqs. (2.42h) and (2.42i) stand for the Neumann
boundary conditions along Γn. For the placement of the weak form of the
Kirchhoff-Love BVP, solution space V defined in Eq. (2.14) needs to be
redefined in order to account for twice weakly differentiable functions
which satisfy also the rotation Dirichlet boundary conditions, that is,

V =
n

h ∈
�

H2 (Ω)
�3 �
�h= 0 andω (h) = 0 along ⊂ Γd

o

. (2.44)

The additional derivative requirement comes from the presence of second
order derivatives on the displacement field through the bending strain
defined in Eq. (2.35c). As it is mentioned in Sec. 2.3.2, the problem can
be formulated by enforcing weakly the Dirichlet boundary conditions,
rendering the admissible space V free from complying with the Dirichlet
boundary conditions along Γd. The weak form of the Kirchhoff-Love shell
iBVP defined in Eqs. (2.42) for each time instance t ∈T reads: Find d ∈V
such that:




δd,ρh̄ d̈
�

0,Ω
+



δd, c h̄ ḋ
�

0,Ω
+a (δd, d) = l (δd) ∀δd ∈V , (2.45)

where form a : V ×V→R and linear functional l : V→R in Eq. (2.45) are
defined as follows,

a (δd, d) :=
ˆ
Ω
δε : n dΩ+

ˆ
Ω
δκ : m dΩ , (2.46a)

l (δd) := 〈δd, b〉0,Ω +



δd, p̄
�

0,Γn
+ 〈δω, r̄〉0,Γn

. (2.46b)

It can be shown that for linear kinematics, problem in Eq. (2.45) has a
unique solution as per Lax-Milgram theorem in Thm. 2.2, see also in Noels
et al. [49].

2.3.3 Structural analysis of membranes

Membranes can be generally derived from shells by neglecting the bend-
ing stiffness and the shear deformation. This kind of structures can only
withstand tensile stresses when no stabilization is considered because sig-
nificant amount of compressive stresses might result in wrinkling which
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in principle represents zero energy modes (static indeterminacy). In or-
der to attain a static equilibrium configuration, also internal prestress

n0 = nαβ0 Aα ⊗ Aβ needs to be applied, in addition to a stabilizing body
force field b (pneumatic structures). As a result of the applied internal
prestress, the boundaries need either to be fully supported with a given
condition d= g on Γd or cables need to be embedded, see also in Philipp et
al. [50–53] and Bauer et al. [54]. Let the set of boundary embedded cables be
geometrically defined by C : Γ̂c→ Γc ⊂ ∂ Ω which are also prestressed with
prestress f̂0 = f̂0 A⊗A, where A stands for the base vector of the parametriza-
tion C , see Eq. (2.6). The kinematics of the embedded cables are defined
via the GL strain tensor ε̂ = ε̂ Ã⊗ Ã similar to Eq. (2.35a), whose component
write,

ε̂ = a ·a−A ·A , (2.47)

where Ã= ‖A‖−2
2 A stands for the contravariant base vector of the cables’

convective space. Additionally, A and a stand for the base vectors of the
reference and the current configuration of the cables, respectively. Similar
to the definition in Eq. (2.32), the 2nd Piola-Kirchhoff force field f̂= f̂ A⊗A
for the set of cables is defined through the constitutive material law as,

f̂ = Ê Â ε̂ , (2.48)

for all X ∈ Γc where Ê and Â, stand for the Young’s modulus and the cross
sectional area of the cables, respectively. Then, the strong form of the
membrane iBVP reads,

ρd̈ β + c ḋ β +
�

nαβ +nαβ0

�

|α+ b β = 0 in Ω×T , (2.49a)

ρd̈3+ c ḋ3+
�

nαβ +nαβ0

�

Bαβ + b3 = 0 in Ω×T , (2.49b)

ρ̂d̈+ ĉ ḋ+ t+ t̂= 0 on Γc×T , (2.49c)

d= d0 in Ω at t = T0 , (2.49d)

ḋ=υ0 in Ω at t = T0 , (2.49e)

d= g on Γd×T , (2.49f)

t= p̄ on Γn×T , (2.49g)

where ρ̂ and ĉ stand for the density and the damping coefficient of the
cables. In contrast to shells, membrane problems can only be formulated
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2.3 Continuum mechanics of thin-walled structures

by means of nonlinear strain measures so that they are rendered stat-
ically determinate. Eqs. (2.49a) and (2.49b) stand for the in-plane and
out-of-plane dynamic equilibrium, respectively. Eq. (2.49c) stands for the
dynamic equilibrium along the boundaries where cables are embedded.
The initial conditions on the displacement and velocity fields are given in
Eqs. (2.49d) and (2.49e), respectively. Then, Eqs. (2.49f) and (2.49g) repre-
sent the Dirichlet and the Neumann boundary conditions, respectively.
Concerning the traction vectors appearing in Eq. (2.49c), they are defined
by means of the Cauchy stress tensor, namely,

t=
�

nαβ +nαβ0

�

êαaβ , (2.50a)

t̂=
�

f̂ + f̂0

�

‖A‖2a , (2.50b)

respectively, see also in Başar et al. [1]. Note that the traction vector along
the boundary of the membrane defined in Eq. (2.50a) is defined similar to
Eq. (2.43a) by neglecting the shear force and adding the prestress. For the
weak form of the membrane iBVP one-time weakly differentiable functions
are enough and thus, the space defined in Eq. (2.14) is in this case valid.
Therefore, the weak form of the membrane iBVP reads: Find d ∈V such
that,




δd,ρh̄ d̈
�

0,Ω
+



δd, c h̄ ḋ
�

0,Ω
+



δd, ρ̂Â d̈
�

0,Γc
+



δd, ĉ Â ḋ
�

0,Γc

+a (δd, d) = l (δd) ∀δd ∈V ,
(2.51)

where form a : V ×V→R and linear functional l : V→R in Eq. (2.51) are
defined as follows,

a (δd, d) :=
ˆ
Ω
δε :

�

n+n0

�

dΩ+
ˆ
Γc

δε̂ :
�

f̂+ f̂0

�

dΓ , (2.52a)

l (δd) := 〈δd, b〉0,Ω +



δd, p̄
�

0,Γn
. (2.52b)

Given that no significant wrinkling due to excessive compressive forces
develops throughout the analysis, problem in Eq. (2.51) is well-defined.

2.3.4 Form-finding analysis

Being typical for membrane structures, prestress is applied frequently in
conjunction with a stabilizing surface traction field, chosen in such a way
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that the membrane can withstand the occurring load cases without dam-
age and significant wrinkling. Thus, the structure is in static equilibrium
before the loading process (e.g. by external loads due to snow, wind, live
load or earthquakes) begins. The latter means that the displacement field
resulting from zero external tractions and without root point excitation
(inhomogeneous Dirichlet boundary conditions) equals zero. It should be
borne in mind that not any free-form surface Ω representing a membrane
structure is in static equilibrium given the prescribed Dirichlet/Neumann
boundary conditions, the embedded cables and the corresponding pre-
stress fields, see Sec. 2.3.3, as opposed to other structures, such as plates,
shells etc. This is due to the fact that membrane theory requires the internal
forces to be tangential to the structure’s surface, which results in a direct
coupling between overall forces, state and shape. Thus, the challenge is to
find the specific equilibrium shape for a given prestress distribution (pos-
sibly extended by some external follower force terms in case of inflatable
structures) since this constitutes an inverse problem with all the associ-
ated difficulties for numerical solution schemes. More specifically, the
discrete solution is non-unique with respect to the tangential movements
of the geometric parametrization. Therefore, a large variety of so-called
form-finding methods was developed which use different strategies to
regularize the inherent singularity in the discrete equations for the compu-
tation of equilibrium shapes of membranes subject to prescribed prestress
fields. One approach is the Dynamic Relaxation method, see in Day [55],
Barnes [56], and Wakefield [57], where a fictitious transient analysis of
the membrane structure is performed considering significant damping
which finally reaches the static equilibrium configuration representing
the sought membrane shape under prestress. Another class of solution
procedures is based on the idea of the so-called Force Densities which was
introduced in Linkwitz et al. [58] and Linkwitz [59]. An extension of this
to a consistent formulation in the frame of large deformation continuum
mechanics was realized through the Updated Reference Strategy (URS) in-
troduced in Bletzinger et al. [60]which extends the originally non-solvable
weak form, written in terms of Cauchy stresses in the current configura-
tion, by a stabilization term formulated in terms of the 2nd Piola-Kirchhoff
stress state in a step-wise updated reference configuration based on a
homotopy mapping. Enhancements and adaptations of the URS can be
found in Wüchner et al. [61] and Dieringer et al. [62] amongst others. Due
to its generality regarding the type of structural model (cable, membrane
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or any combinations of them) and especially the flexibility to employ any
suitable set of basis functions, see also in Philipp et al. [52], this is the nu-
merical solution approach used within the present work. The extended
functional for the form-finding analysis based on the URS is provided in
Eq. (34) on page 152 of the original publication in Wüchner et al. [61]. In
this thesis the URS is used when considering only the stabilization term,
that is the term related to the 2nd Piola-Kirchhoff force tensor.

2.4 Space and time discretization

The iBVPs and their corresponding weak forms for the Kirchhoff-Love
shells and the membranes in Secs. 2.3.2 and 2.3.3, respectively, are dis-
cretized separately in space and in time. For the space discretization, the
Buvnov-Galerkin finite element discretization is employed which is later
on extended to account for IGA.

2.4.1 Semidiscretization

Consider a partition Th of Ω consisting of a set of finite elements Ti , i =
1, . . . , ne ∈ N. For a standard FEM approach this triangulation results in
a faceted representation Ωh of Ω which is not the case for IGA. However,
the discrete equation systems within both numerical approaches have
identical forms and therefore are presented herein unified. Let space Vh

be a finite dimensional subspace of V , such that,

Vh =
§

h ∈V
�

�

�h|Ti
∈P(Ti ) for all i = 1, . . . , ne

ª

, (2.53)

where P(Ti ) stands for the space of all polynomial vector functions in
element Ti . Subsequently, letφi , i = 1, . . . , dimVh be a basis of Vh. Then,
for each element d ∈Vh there exists reals d̂i such that,

d=
dimVh
∑

i=1

φi d̂i , (2.54)

at a given time instance t ∈T. Reals d̂i are the so-called Degrees of Freedom
(DOFs) and can be grouped into a vector, namely,

d̂=
h

d̂1 · · · d̂dimVh

iT
, (2.55)
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to ease the set-up of the discrete equations systems. In this way, projection
of either variational form in Eq. (2.45) or in Eq. (2.51) onto Vh×Vh yields
a nonlinear equation system, which in dynamic residual form writes,

R d(d̂) := M ¨̂d+ D ˙̂d+ R (d̂)− F̂ , (2.56)

where d̂, ˙̂d and ¨̂d stand for the discrete vectors of the displacement, the
velocity and the acceleration DOFs, respectively, whereas F̂ stands for the
externally applied force vector. The mass matrix M in Eq. (2.56) for the
Kirchhoff-Love and the membrane problem has entries,

M(i , j ) =
¬

φi ,ρφ j

¶

Ω
, (2.57a)

M(i , j ) =
¬

φi ,ρφ j

¶

Ω
+
¬

φi , ρ̂φ j

¶

Γc

, (2.57b)

respectively. The components of the steady-state residual vector R in
Eq. (2.56) on the other hand for the Kirchhoff-Love and the membrane
problem are given by,

R(i ) =
ˆ
Ω

∂ ε

∂ d̂i

: n dΩ+
ˆ
Ω

∂ κ

∂ d̂i

: m dΩ (2.58a)

R(i ) =
ˆ
Ω

∂ ε

∂ d̂i

: (n+n0)dΩ+
ˆ
Γc

∂ ε̂

∂ d̂i

: (f̂+ f̂0)dΓ , (2.58b)

as per the definitions of the corresponding forms in Eqs. (2.46a) and (2.52a),
respectively. In this way, the entries of the steady-state tangent stiffness
matrix K for the Kirchhoff-Love and membrane problem are given by
K(i , j ) = ∂ R(i )/∂ d̂ j , namely,

K(i , j ) =
ˆ
Ω

∂ ε

∂ d̂i

:
∂ n

∂ d̂ j

dΩ+
ˆ
Ω

∂ 2ε

∂ d̂i ∂ d̂ j

: n dΩ+

ˆ
Ω

∂ κ

∂ d̂i

:
∂m

∂ d̂ j

dΩ+
ˆ
Ω

∂ 2κ

∂ d̂i ∂ d̂ j

: m dΩ ,

(2.59a)

K(i , j ) =
ˆ
Ω

∂ ε

∂ d̂i

:
∂ n

∂ d̂ j

dΩ+
ˆ
Ω

∂ 2ε

∂ d̂i ∂ d̂ j

: (n+n0)dΩ+

ˆ
Γc

∂ ε̂

∂ d̂i

:
∂ f̂

∂ d̂ j

dΓ +
ˆ
Γc

∂ 2ε̂

∂ d̂i ∂ d̂ j

: (f̂+ f̂0)dΓ ,

(2.59b)
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respectively. Lastly, the entries of the force vector F̂ are given by,

F̂(i ) =



φi , b
�

0,Ω
+



φi , p̄
�

0,Γn
+

®

∂ω

∂ d̂i

, r̄

¸

0,Γn

, (2.60a)

F̂(i ) =



φi , b
�

0,Ω
+



φi , p̄
�

0,Γn
, (2.60b)

for the Kirchhoff-Love shell and the membrane problem, respectively.

2.4.2 Time discretization and discrete equation system

Having defined the semi-discrete equation system in Eq. (2.56), the New-
mark method is employed for the time discretization. That is because it
is unconditionally stable for linear problems, second order in time and
it is associated with the least numerical damping, see in Newmark [63].
The forthcoming derivations can be however easily exploited for any desir-
able time integration method. In this way, assumed is that the continuous
time domain T is discretized in time steps tn̂ with constant time step size
∆t = tn̂ − tn̂−1. Let d̂n̂ = d̂(tn̂ ) stand for the discrete vector of DOFs at
time step tn̂ ∈T. Following Newmark [63], the assumptions below on the
displacement, the velocity and the dynamic residual at tn̂ are made,

d̂n̂ = d̂n̂−1+∆t ˙̂dn̂−1+ (∆t )2
�

1

2
−βn

�

¨̂dn̂−1+ (∆t )2βn
¨̂dn̂ , (2.61a)

˙̂dn̂ =
˙̂dn̂−1+∆t

�

1−γn

� ¨̂dn̂−1+∆t γn
¨̂dn̂ , (2.61b)

R d(d̂n̂ ) = M ¨̂dn̂ + D ˙̂dn̂ + R (d̂n̂ )− F̂n̂ , (2.61c)

where βn and γn are the so-called Newmark parameters and where F̂n̂ =
F̂ (tn̂ ). Substituting Eqs. (2.61a) and (2.61b) in Eq. (2.61c), Eq. (2.56) can be
written solely depending on the displacement field of time step tn̂ namely,

R d(d̂n̂ ) =

�

1

βn (∆t )2
M +

γn

βn∆t
D

�

d̂n̂ + R (d̂n̂ )− F̂n̂−
�

1

βn
M +

γn

βn∆t
D

�

d̂n̂−1−
�

1

βn∆t
M −

βn−γn

βn

�

˙̂dn̂−1−
�

1−2βn

2βn
M −∆t

2βn−γn

2βn
D

�

¨̂dn̂−1 .

(2.62)
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2 Foundations

The iterative Newton-Raphson method is subsequently employed for solv-
ing the nonlinear equation system in Eq. (2.62) at each time step tn̂ ∈T. In
this way, the linearized equation system to be solved at the î -th Newton-
Raphson iteration writes,

K d(d̂n̂ ,î )∆n̂ ,î d̂=−R d(d̂n̂ ,î ) , (2.63)

d̂n̂ ,î being the discrete vector of DOFs at î -th nonlinear iteration within
n̂-th time step and where the displacement increment is defined as,

∆n̂ ,î d̂ := d̂n̂ ,î+1− d̂n̂ ,î . (2.64)

The effective tangent stiffness matrix K d is then given by,

K d(d̂n̂ ,î ) =

�

1

βn (∆t )2
M +

γn

βn∆t
D

�

+ K (d̂n̂ ,î ) . (2.65)

2.4.3 Modal analysis and Rayleigh damping approach

It is possible for a structure with a linear strain measure and linear material
law, to decompose its dynamic response into a number of linearly indepen-
dent modes using the so-called modal analysis. These modes are called
eigenmode shapes and the corresponding frequencies eigenfrequencies or
natural frequencies. To obtain the eigenvalue problem which governs the
modal decomposition of the dynamic system, firstly the damping matrix
and the external loading are neglected from residual equation system in
Eq. (2.56). Then, it is assumed that the discrete vector of DOFs is decom-
posed on its space-time dependence as,

d̂= v̂ sin(ω̂t ) , (2.66)

v̂ being the time invariant set of DOFs. Additionally, since also nonlinear
strain measures are considered within this thesis, a first order linearization
of the steady-state residual R (d̂) in Eq. (2.56) is performed, that is,

R (d̂)≈ K 0d̂ , (2.67)

where K 0 = K (d̂0,0) stands for the linear stiffness matrix, that is, the tangent
stiffness matrix evaluated at t = T0 and at the first nonlinear iteration. In
this way, residual equation system in Eq. (2.56) becomes,

−ω̂2 Mv̂+ K 0v̂= 0 , (2.68)
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2.4 Space and time discretization

which is an eigenvalue problem to be solved for the eigenmode shapes v̂i

and the corresponding eigenfrequencies fi = ω̂i /2π, i = 1, . . . , dimVh.

Regarding the damping matrix D , the Rayleigh damping approach (see in
Clough et al. [64] and Thomsen et al. [65]) is employed, that is,

D =αr M +βr K 0 , (2.69)

αr,βr ∈R?+ being the Rayleigh damping parameters. In a similar manner
as in Chowdhury et al. [66], given two significant frequencies fi , f j with
i , j = 1, . . . , dimVh of the problem and their corresponding damping ratios
ζi ,ζ j , respectively, the Rayleigh parameters can be estimated as follows,

αr =
2ω̂i ω̂ j

ω̂2
j − ω̂

2
i

�

ω̂ jζi − ω̂iζ j

�

, (2.70a)

βr =
2ω̂i ω̂ j

ω̂2
j − ω̂

2
i

�

−
ζi

ω̂ j
+
ζ j

ω̂i

�

, (2.70b)

respectively.
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Chapter 3

Isogeometric Analysis on
Multipatch Surfaces

In this chapter the preliminaries concerning NURBS-based IGA on trim-
med multipatches are laid which are used in the sequel of this thesis and
studies Apostolatos et al. [10] and Breitenberger et al. [6] are closely fol-
lowed. Given the parametric description of curves and surfaces demon-
strated in Chap. 2, this chapter starts with the NURBS-based paramet-
ric description of curves and surfaces. Subsequently, the trimmed multi-
patch representation of surfaces in Computer-Aided Design (CAD) is shown
and the methodology for handling trimmed surface NURBS multipatches
within isogeometric analysis is subsequently discussed. Concerning the
continuity enforcement across the multipatches, the Penalty, the Lagrange
Multipliers and the Nitsche-type methods are formulated and elaborated.
These methods are then compared in the static analysis of an infinite plate
with a hole subject to tension and in the modal analysis of a circular plate
within two-dimensional linear elasticity.
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3 Isogeometric Analysis on Multipatch Surfaces

3.1 Parametric modelling using non-uniform rational
b-splines

In the following, the NURBS parametrized curves and surfaces are intro-
duced along with the underlying basis functions. The NURBS basis func-
tions consist of piecewise rational polynomial functions constructed using
the piecewise polynomial b-spline basis functions and a set of weights. In
turn, the b-spline basis functions originate from the Bernstein polynomial
basis functions used for constructing Bézier curves and surfaces which
constitute the origins of modern CAD modelling. More information on the
subject can be found in Piegl et al. [67].

3.1.1 Non-uniform rational b-spline curves

In this section the NURBS curves are introduced. Let the curve’s parametric
space γ̂ be defined via a knot vector Θ consisting of a set of knots θ̂i ∈Θ,
with i = 1, . . . , m ∈N in ascending order. Given also a polynomial order p̂ ,
the NURBS basis functions Rp̂ ,i , with i = 1, . . . , n ∈N, are constructed by
means of the b-spline basis functions Np̂ ,i in γ̂ as,

Rp̂ ,i (θ ) =
ŵi Np̂ ,i (θ )

∑n
j=1 ŵ j Np̂ , j (θ )

, ∀θ ∈ γ̂ , (3.1)

where ŵi stand for the weights of the NURBS basis functions in Θ. The
number of knots, the number of the basis functions and the polynomial
order of the basis functions are related via m = n + p̂ + 1. Then, the b-
spline basis functions Np̂ ,i are constructed by means of the Cox-De Boor
recursion formula, that is,

Nq̂ ,i (θ ) =
θ − θ̂i

θ̂i+q̂ − θ̂i

Nq̂−1,i (θ )+
θ̂i+q̂+1−θ
θ̂i+q̂+1− θ̂i+1

Nq̂−1,i+1 (θ ) , ∀θ ∈ γ̂ , (3.2)

where q̂ = 0, . . . , p̂ . Thus, the b-spline basis functions Np̂ ,i are obtained by a

recursive construction q̂ = 0, . . . , p̂ where N0,i (θ ) = 1 for θ ∈ [θ̂i , θ̂i+1[while
N0,i (θ ) = 0 identically elsewhere concerning the constant basis functions.
Moreover, the definition 0/0= 0 is also assumed in Eq. (3.2). The b-spline
and subsequently the NURBS basis functions attain C∞-continuity within
each knot span ]θ̂i , θ̂i+1[⊂ γ̂ and C p̂−k̂i -continuity across knots θ̂i , k̂i being
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3.1 Parametric modelling using non-uniform rational b-splines

the multiplicity of knot θ̂i in Θ. In this way, given a set of Control Points
(CPs) X̂ i , i = 1, . . . , n ∈ N in Rα Euclidean space, known as the Control
Polygon, the corresponding NURBS curve C : γ̂→Rα is defined as follows,

C (θ ) =
n
∑

i=1

Rp̂ ,i (θ ) X̂ i , (3.3)

at each parametric location θ ∈ γ̂. Within this thesis, open knot vectors Θ
are considered, namely, the first and the last knots, θ̂1, θ̂m ∈Θ respectively,
have p̂ + 1-multiplicity so that the curve is interpolated by the control
polygon at the beginning and at the end. In the sequel, saying that a NURBS
basis Rp̂ ,i , i = 1, . . . , n is of polynomial order p̂ implies that its underlying
b-spline basis Np̂ ,i attains polynomial order p̂ .

3.1.2 Non-uniform rational b-spline surfaces

The two-dimensional NURBS basis functions Rp̂1,p̂2,i , j , with i = 1, . . . , m1 ∈
N and j = 1, . . . , m2 ∈N, are constructed by means of the two-dimensional
b-spline basis functions Np̂1,p̂2,i , j in a similar fashion as the NURBS curves
in Eq. (3.1), that is,

Rp̂1,p̂2,i , j

�

θ1,θ2

�

=
ŵi , j Np̂1,p̂2,i , j

�

θ1,θ2

�

∑n1

k=1

∑n2

l=1 ŵk ,l Np̂1,p̂2,k ,l

�

θ1,θ2

� ∀
�

θ1,θ2

�

∈ Ω̂ , (3.4)

p̂α, mα and nα standing for the polynomial orders, the number of knots at
each knot vector Θα and the number of one-dimensional b-spline basis
functions in θα-parametric direction, respectively. Surface’s parametric
domain Ω̂ is then defined by the square domain spanned in θα-direction
by knot vector Θα. Additionally, ŵi , j stands for the weight associated with
NURBS basis function Rp̂1,p̂2,i , j . The two-dimensional b-spline basis func-
tions Np̂1,p̂2,i , j in turn are constructed as a tensor product of the underlying
one-dimensional b-spline basis functions, that is,

Np̂1,p̂2,i , j

�

θ1,θ2

�

=Np̂1,i

�

θ1

�

Np̂2, j

�

θ2

�

, ∀
�

θ1,θ2

�

∈ Ω̂ . (3.5)

In this way, given a net of points X̂ i , j inR3 known as the Control Point Net,
the corresponding NURBS surface S : Ω̂→Ω ⊂R3 is given by,

S
�

θ1,θ2

�

=
n1
∑

i=1

n2
∑

j=1

Rp̂1,p̂2,i , j

�

θ1,θ2

�

X̂ i , j , ∀
�

θ1,θ2

�

∈ Ω̂ . (3.6)
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3 Isogeometric Analysis on Multipatch Surfaces

Since open knot vectorsΘα are herein considered, see Sec. 3.1.1, surfaceΩ
interpolates the four corners of the control point net. The latter property
along with the affine covariance of the NURBS basis functions allows for
the application of strong Dirichlet boundary conditions at boundaries of
untrimmed patches within NURBS-based IGA. In the sequel, assumed is an
one-to-one a map (i , j )→ k such that Rp̂1,p̂2,i , j →Rp̂1,p̂2,k with k = 1, . . . , n1n2

for a sequential ordering of the NURBS (or b-spline) basis functions which
is necessary for the construction of the discrete equation systems.

3.1.3 Refinement

Given a NURBS-based geometric model, a refinement can be performed
in order to enhance the underlying NURBS basis functions and obtain a
more flexible CAD model. For NURBS curves and surfaces, see Secs. 3.1.1
and 3.1.2 respectively, the so-called knot insertion and order elevation
refinement strategies are available, see in Piegl et al. [67] for more infor-
mation. These naturally extend to NURBS volumes which however are
not part of this thesis. Within the aforementioned refinement strategies,
a new refined NURBS basis is constructed. Additionally, the geometric
space spanned by the original NURBS basis is a subspace of the geometric
space spanned by the newly constructed one, thus allowing for preserv-
ing the geometric model unchanged while having more flexibility. This
is especially important in CAD modelling as it is often desirable to cre-
ate local features on a given geometric model which the initial NURBS
parametrization may not allow for. In terms of IGA this step is essential as
the initial CAD model might not be analysis suitable in terms of approxi-
mation power and thus refinement may eventually be necessary. The two
main refinement strategies are summarized in Fig. 3.1. As an example, the
hemisphere described in Sec. 2.1.2 is herein used, constructed this time
using a NURBS parametrization, see Fig. 3.1(a), where the knot lines, the
control polygon and the CPs are denoted by solid lines, dashed lines and
circles, respectively. Within knot insertion, new knots θ̂i are added into the
parametric space Ω̂, see Fig. 3.1(b) and accordingly the newly generated
control polygon approaches the hemisphere. On the other hand, when
order elevation is employed the polynomial order of the NURBS basis
functions is increased, see Fig. 3.1(c), where evidently the corresponding
refined control polygon keeps a larger distance from the actual geometry
when compared to knot insertion. The latter can be attributed to the higher
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3.2 Computer-aided geometric description of surfaces

X1

X3X2 θ1
θ2

(a) NURBS model.

X1

X3X2 θ1
θ2

(b) h-refinement.

X1

X3X2 θ1
θ2

(c) p-refinement.

Figure 3.1: Refinement: NURBS modelling of a hemisphere
along with the h-(knot insertion) and p-(order elevation) refined

models.

order basis functions obtained by order elevation provided that all control
point weights are strictly positive. Nevertheless, in both cases more CPs
are generated and thus more flexibility is added into the model. These
refinement strategies are also used for refining the NURBS-based IGA
computational models. The knot insertion resembles the h-refinement
in standard FEM where more elements are added in the model, whereas
the order elevation resembles the p-refinement in high-order FEM where
the order of the basis functions is increased. Moreover, an hp-refinement
technique can be used in NURBS-based IGA where a combination of the
h- and p- refinement is employed such that the continuity of the basis
functions is kept unchanged. Additionally, a k -refinement strategy is also
available where both elements are added while increasing the polynomial
order of the basis, see in Hughes et al. [2] for more information. Thus, the
refinement in NURBS-based IGA can be efficiently performed using ex-
isting highly efficient algorithms from CAD as opposed to standard FEM
where the mesh generation may be a bottleneck.

3.2 Computer-aided geometric description of surfaces

It is typical for any kind of three-dimensional geometry in CAD to be de-
scribed by its bounding surface, known as Boundary-Representation (B-
Rep) description of the geometry. This is mainly due to the complexity of
generating a volume parametrization for any arbitrary three-dimensional
geometry which is typically not needed in CAD. Therefore, mid-surface
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3 Isogeometric Analysis on Multipatch Surfaces

reduced structural models, such as shells and membranes, which are de-
scribed in CAD using trimmed multipatch surfaces within their B-Rep
representation benefit from Analysis in Computer Aided Design AiCAD as
demonstrated firstly in Breitenberger et al. [6].

3.2.1 Trimmed surfaces

A trimmed NURBS surface Ω is obtained using a set of trimming curves
Ĉ i : γ̃i → γ̂i ⊂ Ω̂, with i = 1, . . . , nt ∈ N which define a closed bounded
subset of the surface’s original square parametric space Ω̂, see Sec. 3.1.2.
It is clear that trimming curves have three images: The parametric one γ̃i ,
the physical one γ̂i which is obtained using the map Ĉ i and the geometric
one obtained by the composed map C i = S ◦ Ĉ i , see also in Sec. 2.1.1. In
this way, multiple bounded subsets of Ω̂ may be defined and thus also
surfaces with holes can be elegantly constructed. Trimming curves Ĉ i are
in general NURBS curves, see Eq. (3.3), whose physical image is a subset
of the surface’s parametric image Ω̂. Additionally, these curves have a
representation on the Cartesian space, γi ⊂ Ω, via the transformation
C i = S ◦ Ĉ i : γ̃i → γi , S being the NURBS parametrization of surface Ω
in Eq. (3.6). The parametric space of an example trimming curve γ̂4, the
surface’s parametric space Ω̂, the surface’s geometric space Ω and the
corresponding transformations are shown in Fig. 3.2. The aforementioned
trimming technique is highly beneficial in that the parametrization S of
surface Ω remains unchanged and in that re-trimming can be efficiently
performed by defining only a new set of trimming curves in Ω̂.

3.2.2 Trimmed multipatch surfaces

The trimming procedure described in Sec. 3.2.1 provides a lot of flexibility
in describing arbitrary shapes in Euclidean space originating from generic
models. However, in real world engineering practice, multiple trimmed sur-
faces are considered to accurately describe large scale models, such as cars,
ships, airplanes, etc. Let Ω(i ), with i = 1, . . . , ns ∈N, be a non-overlapping
domain decomposition of Ω, meaning that,

ns
⋃

i=1

Ω(i ) =Ω , (3.7a)
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γ̂1

γ̂2

γ̂3

γ̂4

θ1

θ2
Ω̂

γ3

γ4

γ1

γ2

Ω

X1X2

X3

Geometric map S

γ̃4
θ (4)

θ (4)

θ (4)

Geometry map Ĉ 4

Figure 3.2: Computer-aided description of surfaces: Trimming
operation for NURBS surfaces.

ns
⋃

i=1

Ω(i ) =Ωd , (3.7b)

Ω(i ) ∩Ω( j ) = ; ∀(i , j ) ∈ I , (3.7c)

Ω(i ) ∩Ω( j ) = γ(i , j )
i ∀(i , j ) ∈ I , (3.7d)

⋃

(i , j )∈I
γ
(i , j )
i = γi , (3.7e)

I being the set of all pairs (i , j )where i , j = 1, . . . , ns with i 6= j and let ni ∈N
be the number of non-empty sets γ(i , j )

i . Each of the surface patch subdo-
mainΩ(i ) has a NURBS parametrization S (i ) : Ω̂(i )→Ω(i ) as per Eq. (3.6) and
a set of trimming curves γ̂(i )j , with parametrizations Ĉ (i )j as per Eq. (3.3),

for j = 1, . . . , n (i )t ∈ N, n (i )t being the number of curves trimming patch
Ω(i ). An example of a trimmed multipatch geometry is depicted in Fig. 3.3
along with the distinct patch parametric spaces and the corresponding

trimming curves. In terms of CAD, each interface γ(i , j )
i has a unique repre-

sentation from each of the neighbouring patches, namely, γ̂(i )j and γ̂( j )i in

the parametric spaces of patches Ω(i ) and Ω( j ), respectively. For real world
engineering applications, this distinct representation of the patch inter-
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γ̂(i )j

θ (i )2
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Ω̂(i )

θ
( j )
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θ
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i

γ(i )j

γ
( j )
i

X1X2

X3

Geometric map S ( j )

Geometric map S (i )

γ
(i , j )
i

Figure 3.3: Computer-aided description of surfaces: Trimmed
NURBS multipatch surfaces.

faces is in general not identical in the physical space, that is,γ(i )j ∩γ
( j )
i 6= γ

(i , j )
i .

The accuracy of the interface parametrization from each neighbouring
patch is then controlled by a tolerance which in most CAD software is user
defined. However, when applying IGA on trimmed NURBS multipatches,

it is important that the trimming curves γ(i )j and γ( j )i representing the in-

terface γ(i , j )
i are identified so that the evaluation of the interface integrals,

accounting for the continuity enforcement across the multipatches, can
be performed. Most CAD software provide this identification of the patch
interfaces through a sew option where the topological information of the
geometry is generated.
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3.3 Isogeometric analysis on multipatch surfaces

3.3 Isogeometric analysis on multipatch surfaces

In this section various methods are studied concerning the continuity
enforcement of the solution across mutlipatches within IGA on multipatch
surfaces. This is very important as strong enforcement of the interface
conditions is restrictive and cannot be applied on arbitrarily trimmed mul-
tipatch models directly stemming from CAD, see for example in Kiendl
et al. [68]. These methods comprise Penalty, Lagrange Multipliers and
Nitsche-type formulations. The two-dimensional linear plane stress prob-
lem is herein employed as model problem and the methods are then selec-
tively extended to account for the three-dimensional geometrically linear
and nonlinear Kirchhoff-Love shells and membranes. However, the in-
troduction of IGA on trimmed patches is skipped as its application has
been successfully demonstrated within Isogeometric B-Rep Analysis (IBRA)
in Breitenberger et al. [6].

3.3.1 Model problem − Two-dimensional elasticity

The two-dimensional plane stress analysis is chosen as model problem for
the demonstration of the methods concerning the continuity enforcement
of the solution between multipatches. Accordingly, the strong and the weak
formulation of the two-dimensional plane stress analysis is equivalent to
that of the membrane analysis, see Eqs. (2.49) and (2.51), when restricted
into the two-dimensional space R2 by neglecting the prestress and the
cables. The aforementioned problem is depicted in Fig. 3.4 where only
two neighbouring patches, Ω(i ) and Ω( j ) are considered for the sake of
clarity and ê(i )n stands for the outward normal to boundary ∂ Ω(i ) vector. In
the sequel, the restriction of any field within subdomain Ω(i ) is indicated
by a superscript, e.g. for the displacement field d|Ω(i ) = d(i ). The interface
Dirichlet and Neumann compatibility conditions then read,

d(i )−d( j ) = 0 , (3.8a)

t(i )+ t( j ) = 0 , (3.8b)

respectively, along the common interface γ(i , j )
i . In the sequel, the displace-

ment jump across interface γi is indicated by χ̂ where d(i )−d( j ) = χ̂ (i , j ) =
χ̂ |

γ
(i , j )
i

. The problem is then posed on the decomposition of domain Ω de-

fined in Eqs. (3.7) and thus the solution space defined in Eq. (2.53) may be
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X1(d 0
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Figure 3.4: Isogeometric analysis on multipatch surfaces: Model
problem-two dimensional plane stress analysis.

constructed as a product space which is discontinuous between the subdo-
mains Ω(i ), i = 1, . . . , ns, namely, V =

∏ns

i=1 V
(i ). In this way, no continuity

of the solution across the multipatches is assumed, which is considered
in the following by means of the various Domain Decomposition Methods
DDMs, see also in Toselli et al. [69].

3.3.2 Isogeometric discretization

Concerning the discretization of the aforementioned weak forms, IGA
on multipatch surfaces is employed. In this way, the finite dimensional
subspace Vh ⊂V is constructed using the parametric description of each
patch Ω(i ) as Vh =

∏ns

i=1 V
(i )
h where,

V (i )h =
§

d(i ) ∈V (i )
�

�

�d(i ) ∈R
�

Ω(i )
�

∀i = 1, . . . , ns with d= 0 on Γd

ª

, (3.9)

R(Ω(i )) being the space of all vector-valued piecewise rational polynomials
for which the NURBS basis functions of the geometric parametrization
constitute a basis in each patch Ω(i ). Although functions from space in
Eq. (3.9) identically satisfy the Dirichlet boundary conditions, it is shown
in Chaps. 4, 5 and 6 how these conditions can also be weakly applied in

the corresponding variational forms. Let φ̄
(i )
j , with j = 1, . . . , dimV (i )h , be

a basis of V (i )h for all i = 1, . . . , ns. Then, there exist reals d̂ (i )j , the so-called
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Degrees of Freedom (DOFs), such that for each d ∈Vh it holds,

d=
ns
∑

i=1

dimV (i )h
∑

j=1

φ̄
(i )
j d̂ (i )j . (3.10)

Herein, the vector-valued NURBS basis functions are constructed as,

φ̄
(i )
r =R (i )

p̂ (i )1 ,p̂ (i )2 ,k
el , (3.11)

where k = dr /3e and l = r − 3dr /3e+ 3 for all r = 1, . . . dimV (i )h stand for
the indices of the CPs and the Cartesian directions, respectively. Addi-
tionally, R (i )

p̂ (i )1 ,p̂ (i )2 ,k
and n (i )α , stand for the scalar-valued NURBS basis func-

tions in patch Ω(i ) with polynomial orders p̂ (i )1 and p̂ (i )2 and the number of
CPs of patch Ω(i ) in θ (i )α -parametric direction, respectively, see Sec. 3.1.2.

The latter implies that dimV (i )h = 3n (i )1 n (i )2 . These DOFs do not represent
physical values since they are defined on the CPs which in general do not
interpolate the geometry. In the same way, the admissible space of the La-

grange Multipliers field can be constructed as V̂h =
∏

(i , j )∈I V̂
(i , j )
h ⊂L2(γi),

where V̂ (i , j )
h ⊂ R

�

γ
(i , j )
i

�

and where R
�

γ
(i , j )
i

�

stands for the space of all

vector-valued rational polynomials along γ(i , j )
i of a given NURBS interface

parametrization. Similar to Eq. (3.10), let φ̂
(i , j )
k , with k = 1, . . . , dim V̂ (i , j )

h

be a basis for each V̂ (i , j )
h . Then, for each λ ∈ V̂h there exist reals λ̂(i , j )

k , the
so-called Lagrange Multipliers DOFs, such that,

λ=
∑

(i , j )∈I

dimV̂ (i , j )
h

∑

r=1

φ̂
(i , j )
r λ̂(i , j )

r , (3.12)

where the vector-valued NURBS basis functions φ̂
(i , j )
r are constructed

similar to Eq. (3.11), namely, φ̂
(i , j )
r =R (i , j )

p̂ ,k el where R (i , j )
p̂ ,k stand for the scalar-

valued NURBS basis functions defined in Eq. (3.1) on curve γ(i , j )
i and where

k = dr /3e and l = r − 3dr /3e + 3 for all r = 1, . . . dim V̂ (i , j )
h . For the sake

of simplicity, the displacement and the Lagrange Multipliers DOFs are
grouped into vectors accounting for each patch Ω(i ) and each interface
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γ
(i , j )
i , namely,

d̂(i ) =
�

d̂ (i )1 · · · d̂ (i )
dimV (i )h

�T

, (3.13a)

λ̂
(i , j )
=
�

λ̂
(i , j )
1 · · · λ̂

(i , j )

dimV̂ (i , j )
h

�T

. (3.13b)

The following discrete equation systems are presented for the general
geometrically nonlinear problem and are used in the sequel of this thesis.
The linearized equilibrium equation in Eq. (2.63) at time step tn̂ and at
Newton-Raphson iteration î for the multipatch setting reads,











K (1)d · · · 0
...

...
...

0 · · · K (ns)
d











∆n̂ ,î











d̂(1)

...

d̂(ns)











=−











R (1)d

...

R (ns)
d











, (3.14)

where K (i )d , R (i )d and∆n̂ ,î d̂(i ) = d̂n̂ ,î+1− d̂(i )
n̂ ,î

stand for the dynamic tangent

stiffness matrix in Eq. (2.65), the dynamic residual vector in Eq. (2.56) and
the displacement increment in Eq. (2.64) at patch Ω(i ), respectively. The
extensions of the discrete equation system in Eq. (3.14) with the coupling
terms stemming from each DDM are shown in the following sections.

3.3.3 Penalty method

Let α̂ : γi→R?+ be the Penalty parameter defined along the interface γi,R?+
being the set of strictly positive real numbers. Accordingly, the variational
form of the problem using Penalty writes: Find d ∈V with χ̂ ∈L2(γi) such
that,




δd,ρh̄ d̈
�

0,Ω
+



δd, c h̄ ḋ
�

0,Ω
+a (δd, d)+




δχ̂ , α̂ χ̂
�

0,γi
= l (δd) , (3.15)

for all δd ∈V with δχ̂ ∈L2(γi). The Penalty parameter is chosen piecewise
constant along each interface as α̂|

γ
(i , j )
i

= α̂(i , j ). As typical for the Penalty

methods, the Penalty term added in Eq. (3.15) is bilinear and coercive, see
Lax-Milgram Thm. 2.2, since the imposed condition is linear with respect
to the displacement field. Therefore, variational problem in Eq. (3.15) pre-
serves the properties of the original problem in terms of existence and
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uniqueness of the solution. Projecting weak form in Eq. (3.15) ontoVh×Vh

yields the following discrete equation system,











K (1)d + Ĉ (1)α̂ · · · Ĉ (1,ns)
α̂

...
...

...

Ĉ (ns,1)
α̂ · · · K (ns)

d + Ĉ (ns)
α̂











∆n̂ ,î











d̂(1)

...

d̂(ns)











=−











R (1)d + R̂ (1)α̂
...

R (ns)+ R̂ (ns)
α̂











(3.16)

where the entries of the additional Penalty matrices Ĉ (i )α̂ , Ĉ (i , j )
α̂ and the

residual vectors R̂ (i )α̂ are given by,

Ĉ (i )α̂ (k ,r ) =
ns
∑

j=1, j 6=i

D

φ̄
(i )
k , α̂(i , j )φ̄

(i )
r

E

0,γ(i , j )
i

, (3.17a)

Ĉ (i , j )
α̂ (k ,r ) =−

D

φ̄
(i )
k , α̂(i , j )φ̄

( j )
r

E

0,γ(i , j )
i

, (3.17b)

R̂ (i )α̂ = Ĉ (i )α̂ d̂(i )
n̂ ,î
+

ns
∑

j=1, j 6=i

Ĉ (i , j )
α̂ d̂( j )

n̂ ,î
. (3.17c)

The shortcoming of the Penalty method lies in that correspondence be-
tween the strong and the weak form cannot be established, see Sec. 2.2.1,
and thus the Penalty method is often called variationally inconsistent. The
latter has the implication that a uniform convergence to the solution can-
not be guaranteed for a constant Penalty parameter. On the other hand,
increasing the Penalty parameter might result in badly conditioned sys-
tems which may lead to inaccurate solutions and render iterative solvers
inapplicable, see also in Babuška [11] for more information. Since the ad-
ditional Penalty terms of the weak form in Eq. (3.15) are linear in terms
of the displacement field, matrices in Eqs. (3.17) are constant and thus,
can be precomputed and used throughout the analysis which in addition
to the positive definiteness of equation system in Eq. (3.16) leads to an
efficient and stable methodology for IGA on multipatches. The magnitude
of the Penalty parameters is problem dependent and it is discussed in the
corresponding sections.

51



3 Isogeometric Analysis on Multipatch Surfaces

3.3.4 Lagrange Multipliers method

Another popular method for the constraint enforcement is the Lagrange
Multipliers method within which an additional Lagrange Multipliers fieldλ
is introduced. Then, the corresponding weak formulation of the problem
by means of the Lagrange Multipliers method writes: Find d ∈ V and
λ ∈L2(γi) such that,




δd,ρh̄ d̈
�

0,Ω
+



δd, c h̄ ḋ
�

0,Ω
+a (δd, d) +




δχ̂ ,λ
�

0,γi
+



δλ, χ̂
�

0,γi

= l (δd) ,
(3.18)

for all δd ∈V with δχ̂ ∈L2(γi) and for all δλ ∈L2(γi). The additional La-
grange Multipliers terms in Eq. (3.18) turn the problem into a saddle point
formulation, see Sec. 2.2.2, meaning that the Ladyzhenskaya-Babuška-
Brezzi (LBB) condition defined in Thm. 2.3 needs to be satisfied so that a
unique solution to the problem can be guaranteed. It is required to take
into consideration the additional Lagrange Multipliers discretization in
Eq. (3.12) for the statement of the discrete equation system corresponding
to the Lagrange Multipliers method. Projection of weak form in Eq. (3.18)
onto Vh×Vh× V̂h yields,

















K (1)d · · · 0
...

...
... Λ

0 · · · K (ns)
d

ΛT 0

















∆n̂ ,î

















d̂(1)

...

d̂(ns)

λ̂

















=

−

















R (1)d +
∑

(1, j )∈I Λ
(1, j )λ̂

(1, j )
n̂ ,î

...

R (ns)
d +

∑

(ns, j )∈I Λ
(ns, j )λ̂

(ns, j )
n̂ ,î

ΛT d̂n̂ ,î

















,

(3.19)

where d̂n̂ ,î stands for the complete vector of displacement DOFs d̂ on the
entire multipatch geometry, namely,

d̂=
h

d̂(1) · · · d̂(ns)
iT

, (3.20)
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at n̂-th time step and î -th nonlinear iteration. Additionally, λ̂
(i , j )
n̂ ,î stands

for the Lagrange Multiplier DOFs along γ(i , j )
i at time step n̂ and nonlinear

iteration î . The Lagrange Multipliers matrixΛ and the assembled Lagrange
Multipliers vector of DOFs λ̂, respectively, read,

Λ=













... Λ(1,ns) ...

· · ·
... · · ·

...
Λ(ns,1) ...













, (3.21a)

λ̂=
h

· · · λ̂(1,ns) · · ·
iT

. (3.21b)

Moreover, the additional Lagrange Multipliers matrices Λ(i , j ) in Eq. (3.21a)
have entries,

Λ
(i , j )
(k ,r ) =±

D

φ̂
(i , j )
k ,φ̄

(i )
r

E

0,γ(i , j )
i

, (3.22)

for all pairs (i , j ) ∈ I, where the ± sign depends on the ordering of patches
Ω(i ) and Ω( j ) in the definition of Eq. (3.8a). The saddle point nature of the
Lagrange Multipliers method is revealed in its discrete form from the zero
block at the lower right bottom of the system’s matrix, see Eq. (3.19). The
discrete subspace V̂h has to be so chosen as to satisfy the Ladyzhenskaya-
Babuška-Brezzi (LBB) condition in Thm. 2.3 in the discrete level, but this
problem is not trivial for any arbitrary isogeometric discretization, see also
in Brivadis et al. [14]. Although the saddle point formulation offered by
the Lagrange Multipliers method is variationally consistent as opposed to
Penalty method, the resulting equation system needs not to be positive def-
inite with zeros in the main diagonal, rendering also in this case iterative
solvers inapplicable. In addition, the problem is not guaranteed to have
a unique solution which greatly depends on the selection of the discrete
subspaces and thus the linear equation system resulting from the field
discretizations may be singular. Thus, the Lagrange Multipliers discretiza-
tion is problem dependent and is chosen in such a way that the discrete
equation system in Eq. (3.19) is not singular, whenever possible. Similar
to Penalty method, also in this case the additional Lagrange Multipliers
matrices are constant and can be precomputed rendering the method-
ology efficient, yet not necessarily stable due to its saddle point nature.
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The Lagrange Multipliers field can be condensed out for special types of
problems including plane stress analysis, resulting in the so-called Mortar
formulation leading to a well-posed problem, see also in Klöppel et al. [18].

3.3.5 Nitsche-type method

An alternative to the Penalty and the Lagrange Multipliers methods is
offered by the Nitsche-type method, firstly introduced in Nitsche [19] for
the solution of Dirichlet BVPs where the corresponding solution spaces do
not identically satisfy the Dirichlet boundary conditions. The method is
herein employed for the continuity enforcement across the multipatches.
The mean interface traction vector t along the interface γi needs to be

introduced, whose restriction at each interface γ(i , j )
i reads,

t̄(i , j ) = t̄|
γ
(i , j )
i

=
1

2

�

t(i )− t( j )
�

, (3.23)

and where t(i ) = ê(i )n ·n
(i ) stands for the traction vector along ∂ Ω(i ), n(i ) being

the restriction of the 2nd Piola Kirchhoff force tensor at subdomain Ω(i )

as per Eq. (2.36a). By also introducing a stabilization parameter β̂ : γi→
R?+ which is defined piecewise constant along γi similar to the Penalty
parameter in Sec. 3.3.3, the weak form of the problem with Nitsche writes:
Find d ∈V with χ̂ , t̄ ∈L2(γi) such that,




δd,ρh̄ d̈
�

0,Ω
+



δd, c h̄ ḋ
�

0,Ω
+a (δd, d)

−



δχ̂ , t̄
�

0,γi
−



δt̄, χ̂
�

0,γi
+
¬

δχ̂ , β̂ χ̂
¶

0,γi

= l (δd) ,
(3.24)

for all δd ∈V with δχ̂ ,δt̄ ∈L2(γi). The Penalty-like stabilization term in
Eq. (3.24) is necessary for maintaining coercivity of the weak form. It can
be shown that if there exist constants Ĉ (i , j ) > 0 such that,

‖t̄(i , j )‖2
0,γ(i , j )

i

≤ Ĉ (i , j )a (d, d) ∀d ∈V , (3.25)

along each interface boundary γ(i , j )
i , then the extended bilinear form in

Eq. (3.24) remains coercive as per Lax-Milgram Thm. 2.2 whereas it main-
tains its symmetry and boundedness, see also in Apostolatos et al. [10]
and Griebel et al. [28]. Condition in Eq. (3.25) results in an estimate for the
stabilization parameter along each interface, namely β̂ (i , j ) = β̂|

γ
(i , j )
i

, which
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is obtained by solving a set of interface eigenvalue problems. In a similar
fashion as in Sec. 3.3.3, projecting weak form in Eq. (3.24) onto Vh ×Vh

results in the following discrete equation system,












K (1)d + Ĉ (1)n + Ĉ (1)
β̂
· · · Ĉ (1,ns)

n + Ĉ (1,ns)
β̂

...
...

...

Ĉ (ns,1)
n + Ĉ (ns,1)

α̂ · · · K (ns)
d + Ĉ (ns)

n + Ĉ (ns)
β̂













∆n̂ ,î











d̂(1)

...

d̂(ns)











=−













R (1)d + R̂ (1)n + R̂ (1)
β̂

...

R (ns)
d + R̂ (ns)

n + R̂ (ns)
β̂













,

(3.26)

where the entries of the additional Nitsche matrices Ĉ (i )n , Ĉ (i , j )
n and residual

vectors R̂ (i )n are given by,

Ĉ (i )n (k ,r ) =−
1

2

ns
∑

j=1, j 6=i







*

∂ t(i )

∂ d̂ (i )k

�

�

�

�

�

d̂(i )
n̂ ,î

,φ̄
(i )
r

+

0,γ(i , j )
i

+

*

φ̄
(i )
k ,
∂ t(i )

∂ d̂ (i )r

�

�

�

�

�

d̂(i )
n̂ ,î

+

0,γ(i , j )
i

±

*

∂ 2t(i )

∂ d̂ (i )k ∂ d̂ (i )r

�

�

�

�

�

d̂(i )
n̂ ,î

, d(i )
n̂ ,î
−d( j )

n̂ ,î

+

0,γ(i , j )
i






,

(3.27a)

Ĉ (i , j )
n (k ,r ) =−

1

2









*

∂ t(i )

∂ d̂ (i )k

�

�

�

�

�

d̂(i )
n̂ ,î

,φ̄
( j )
r

+

0,γ(i , j )
i

+

*

φ̄
(i )
k ,
∂ t( j )

∂ d̂ ( j )r

�

�

�

�

�

d̂(i )
n̂ , ĵ

+

0,γ(i , j )
i









, (3.27b)

R̂ (i )n (k ) =±
1

2

ns
∑

j=1, j 6=i





®

φ̄
(i )
k , t(i )

�

�

�

d̂(i )
n̂ ,î

− t( j )
�

�

�

d̂( j )
n̂ ,î

¸

0,γ(i , j )
i

+

*

∂ t(i )

∂ d̂ (i )k

�

�

�

�

�

d̂(i )
n̂ ,î

, d(i )
n̂ ,î
−d( j )

n̂ ,î

+

0,γ(i , j )
i






.

(3.27c)
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The signs± in Eqs. (3.27a) and (3.27c) depend on the ordering of the patch
pairs in I with respect to the definition of the interface jump in Eq. (3.8a)
and the definition of the mean interface traction in Eq. (3.23). Moreover,
d(i )

n̂ ,î
stands for the actual displacement field at time step tn̂ and at î -th

Newton-Raphson iteration in patch Ω(i ). Matrices Ĉ (i )
β̂

, Ĉ (i , j )
β̂

and residual

vectors R̂ (i )
β̂

related to the Penalty-like stabilization terms are defined as in

Eqs. (3.17). The discrete form of the condition in Eq. (3.25) which leads to
coercivity may be written in terms of the generalized eigenvalue problem,

det
�

Q̂ (i , j )
n − Ĉ (i , j )K (i , j )

�

= 0 , (3.28)

which is solved for the corresponding eigenvalues Ĉ (i , j )
r along each non-

empty interface γ(i , j )
i . Auxiliary matrices Q̂ (i , j ) and K (i , j ) are defined as,

Q̂ (i , j )
n =





Q̂ (i )n q̂(i , j )
n

q̂( j ,i )
n Q̂ ( j )n



 , (3.29a)

K (i , j ) =







K (i ) |
γ
(i , j )
i

0

0 K ( j ) |
γ
(i , j )
i






, (3.29b)

where K (i ) |
γ
(i , j )
i

stands for the restriction of the tangent stiffness matrix K (i )

on the DOFs along the interface γ(i , j )
i . Moreover, The entries of matrices

Q̂ (i )n and q̂(i , j )
n are given by,

Q̂ (i )n (k ,r ) =
1

4

ns
∑

j=1, j 6=i







*

∂ t(i )

∂ d̂ (i )k

�

�

�

�

�

d̂(i )
n̂ ,î

,
∂ t(i )

∂ d̂ (i )r

�

�

�

�

�

d̂(i )
n̂ ,î

+

0,γ(i , j )
i

±

*

∂ 2t(i )

∂ d̂ (i )k ∂ d̂ (i )r

�

�

�

�

�

d̂(i )
n̂ ,î

, t(i )|d̂(i )
n̂ ,î
− t( j )|d̂( j )

n̂ ,î

+

0,γ(i , j )
i






,

(3.30a)
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q̂ (i , j )
n (k ,r ) =−

1

4

*

∂ t(i )

∂ d̂ (i )k

�

�

�

�

�

d̂(i )
n̂ ,î

,
∂ t( j )

∂ d̂ ( j )r

�

�

�

�

�

d̂( j )
n̂ ,î

+

0,γ(i , j )
i

, (3.30b)

where also here the sign± in Eq. (3.30a) depends on the ordering of patches
Ω(i ) and Ω( j ) in patch pair (i , j ) ∈ I. Eq. (3.28) is posed on the beginning
of each time step tn̂ so that the stabilization parameters are estimated
once every time step tn̂ , thus maintaining the quadratic convergence of
the Newton-Raphson nonlinear scheme. Then, the estimation of the stabi-
lization parameter needs to be chosen as

β̂ (i , j ) ≥ 2ni max
r

Ĉ (i , j ) . (3.31)

This is an approximation and it is only used for obtaining an estimation
of the stabilization parameters at each time step. For geometrically linear
problems, the terms containing second derivatives with respect to the
DOFs vanish and problem in Eq. (3.28) is by construction linear. Since
relation in Eq. (3.31) only provides an estimation, higher values can be
chosen in case coarse time step sizes are considered so that the extended
by Nitsche problem remains coercive. However, only the lower bounds of
the stabilization parameters in (3.31) are used in this thesis.

3.3.6 Numerical integration

In this section, the procedure for the numerical integration along the patch

interfaces γ(i , j )
i is presented and accordingly the Gauss integration rule is

assumed, see also in Hughes et al. [70, 71]. Let γ̂(i )j and γ̂( j )i be the images

of interface γ(i , j )
i in the parametric spaces of patches Ω(i ) and Ω( j ), respec-

tively, see Fig. 3.3. Let the intersections of all knot lines in Ω̂( j ) with γ̂( j )i be

denoted by θ ( j )i ,r ∈ Ω̂( j ) with r = 1, . . . , n̂ ( j )i , Ω̂( j ) being the parametric space

of patch Ω( j ), see Sec. 3.1.2. Their projection projγ̂(i )j
θ
( j )
i ,r on curve γ̂(i )j via

the geometric space onto patch Ω̂(i ) is given by,

projγ̂(i )k
θ
( j )
i ,r =

�

�

S (i )
�−1
◦ S ( j )

�

�

θ
( j )
i ,r

�

, (3.32)

where S (i ) and S ( j ) stand for the geometric maps of patches Ω(i ) and Ω( j ),
respectively, see Eq. (3.6). The aforementioned projection is in general
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nonlinear and is herein computed using the Newton-Raphson iteration
method. Given also the intersections of all knot lines in patchΩ(i ) with γ(i )j ,

namely θ (i )j ,s ∈ γ
(i )
j with s = 1, . . . , n̂ (i )j , all points {projγ̂(i )j

θ
( j )
i ,r ,θ (i )j ,s } are then

sorted along the trimming curve γ̂(i )j , namely, θ̄
(i )
j ,q , q = 1, . . . , n̄ (i )j ∈N. In this

way, the Gauss integration takes place at each interval ]θ̃ (i )j ,q , θ̃ (i )j ,q+1[⊂ γ̃
(i )
j ,

q = 1, . . . , n̄ (i )j −1, where

θ̃ (i )j ,q =
�

Ĉ (i )j

�−1 �

θ̄
(i )
j ,q

�

, (3.33)

given the map Ĉ (i )j and parametric space of the trimming curve γ̃(i )j see also
Fig. 3.2, thus ensuring that the integrands are C∞-continuous. Similarly,
for the numerical integration along boundaries Γ (i )d = ∂ Ω

(i ) ∩Γd, whenever

the application of weak Dirichlet boundary conditions is considered, let γ̂(i )d
stand for the parametric description of the trimming curve representing
Γ (i )d in patchΩ(i ). Then, once more the intersections θ (i )d,s , s = 1, . . . , n̂ (i )d ∈N,

of the knot lines of parametric space Ω̂(i ) with the trimming curve γ̂(i )d

are computed and sorted along γ̂(i )d so that the Gauss integration can be

performed at each interval ]θ̃ (i )d,s , θ̃ (i )d,s+1[⊂ γ̃
(i )
d , s = 1, . . . , n̂ (i )d −1, once more

ensuring that the integrands are C∞-continuous, where θ̃ (i )d,s is computed
similar to Eq. (3.33). The number of the Gauss points is then dependent
on the polynomial order of the integrand which may vary depending on
the underlying weak formulation and the employed constraint enforce-

ment method. Given that the images of trimming curves γ̂(i )j and γ̂( j )i in

the geometric space, namely γ(i )j and γ( j )i , are a good approximation of

the interface curve γ(i , j )
i , inversion of the aforementioned projection from

patch Ω(i ) onto patch Ω( j ) is equivalently valid.

3.4 Numerical examples

Next, two geometrically linear problems are considered to demonstrate the
application of NURBS-based IGA on multipatches in both static and modal
analysis. For both problems the same material properties are used, that is,
Young’s modulus and Poisson ratio equal to E = 105 Pa and ν= 0, respec-
tively. The Penalty parameter is then chosen as a scaling of the Young’s
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Figure 3.5: Infinite plate with a hole under tension: Problem
placement.

modulus, that is, α̂(i , j ) = E ×103. The Lagrange Multipliers discretization is
chosen based on the coarsest discretization from the neighbouring patches.
For the sake of clarity, numerically computed values are indicated by ei-
ther a subscript •h or superscript •h to distinguish them from the reference
solutions.

3.4.1 Infinite elastic plate with circular hole in tension

Herein a comparison of the DDMs described in Secs. 3.3.3-3.3.5 is pro-
vided on the problem of an infinite elastic plate with circular hole, which
is subject to tensional loading at X1 = ±∞. The plate is modelled using
its one quarter by applying symmetry boundary conditions, roller sup-
ports, as well as exact tractions at its upper and right edge, see Fig. 3.5. The
rectangular plate has length size equal to L̄ = 4 m and radius of its hole
equal to R̄ = 1 m. Exact solution in terms of both the displacements and
stresses can be obtained via analytical methods as explained in Barber [72].
Moreover, the problem’s domain is decomposed into two patches, herein
denoted by Ω(i ) and Ω( j ), sharing a common interface γ(i , j )

i .
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3 Isogeometric Analysis on Multipatch Surfaces

Then, the deformation and normal force distribution n 11 is depicted in
Figs. 3.6 for a given refinement level also when using the Nitsche-type
method, see Eq. (3.24), for the continuity enforcement of the displacement

field across γ(i , j )
i . PatchΩ(i ) is parametrized using 16 elements with p̂ (i )1 = 4

and p̂ (i )2 = 3 polynomial orders of the corresponding NURBS basis functions
whereas patchΩ( j ) is parametrized using 121 elements and corresponding

polynomial orders of the underlying NURBS basis functions p̂ ( j )2 = 1 and

p̂ ( j )2 = 2, see Sec. 3.1.2. For the given parametrization of patches Ω(i ) and

Ω( j ), interface γ(i , j )
i is aligned with the θ (i )1 and the θ ( j )2 parametric lines in

the parametric spaces of patchesΩ(i ) andΩ( j ), respectively. Therefore, the
solutions d(i ) and d( j ) are piecewise quartic C 3-continuous and piecewise
linear C 0-continuous along γ(i , j )

i , respectively. This has the implication of

oscillating discontinuous force components across the interface γ(i , j )
i from

patch Ω( j ) resembling standard piecewise C 0-continuous finite elements
whereas the fourth order smooth NURBS interpolation of the displacement
field from patch Ω( j ) results in an excellent approximation of the interface
force components when compared to the analytical force distributions,
see Figs. 3.7, highlighting the superiority of IGA to standard FEM in terms
of approximation power.

Concluding, the DDMs are compared within refinement studies using the

relative interface error of the displacements in H1
�

γ
(i , j )
i

�

-norm and the

relative interface traction field in L2
�

γ
(i , j )
i

�

-norm, see Figs. 3.8 and 3.9,
respectively. For the convergence graphs, a low and a high order NURBS
basis is used. For the low order NURBS basis, the underlying polynomial

orders are chosen as p̂ (i )1 = 1, p̂ (i )2 = 2, p̂ ( j )1 = 3 and p̂ ( j )2 = 2, whereas for the
high order NURBS basis the underlying polynomial orders are chosen as

p̂ (i )1 = 3, p̂ (i )2 = 4, p̂ ( j )1 = 5 and p̂ ( j )2 = 4. The convergence studies suggest supe-
riority of the Lagrange Multipliers and Nitsche methods against the Penalty
method for which a fixed Penalty parameter is chosen. On the other hand,
a suitable Lagrange Multipliers discretization needs to be found for the
Lagrange Multipliers method and accordingly an enlarged by additional
DOFs, non-positive definite equation system needs to be solved. This is
not the case for the Nitsche-type method, where the system properties
do not differ from the original one and no problem specific parameter
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Figure 3.6: Infinite plate with a hole under tension:
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along the multipatch geometry using Nitsche.
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Figure 3.7: Infinite plate with a hole under tension: Interface
force distribution from both neighbouring patches against the

analytical solution using Nitsche.

or discretization need to be selected. Nevertheless, all aforementioned
DDMs provide highly accurate results in the context of NURBS-based IGA
on multipatches for linear elasticity thus extending IGA to multipatches
for this kind of problems.
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Figure 3.10: Modal analysis of a circular plate: Problem
placement and first eigenmode shape of the multipatch geometry

using Nitsche.

3.4.2 Modal analysis of a circular plate

Lastly, the modal analysis of a circular plate is herein considered to demon-
strate the extension of IGA to multipatches in the context of structural dy-
namics, see Fig. 3.10. Accordingly, the problem setting and the first eigen-
mode shape when using Nitsche is depicted in Fig. 3.10(a) and Fig. 3.10(b),
respectively. As reference solution a single patch solution using 3600 el-
ements with polynomial orders of the NURBS basis p̂1 = 17 and p̂2 = 16
is employed. As in Sec. 3.4.1 the plate is modelled only by its one quarter
when applying symmetry conditions and the problem’s domain is decom-

posed into two patches Ω(i ) and Ω( j ) sharing a curved interface γ(i , j )
i , see

Fig. 3.10(a). The first eigenmode shape (Eq. (2.68)), which is obtained us-
ing Nitsche, is depicted in Fig. 3.10(b). Subsequently, a refinement study
for a low and a high polynomial order of the underlying NURBS basis is
performed based on the relative error in the first and in the fifth eigenfre-
quencies of the problem, see Figs. 3.11. The low polynomial orders of the

NURBS basis are chosen as p̂ (i )1 = 2, p̂ (i )1 = 1, p̂ ( j )1 = 3, p̂ ( j )2 = 2 whereas the
high polynomial orders are chosen one order higher in each parametric di-
rection. It is evident that the Penalty method for a fixed Penalty parameter
levels off at a given accuracy level, whereas the Lagrange Multipliers and
the Nitsche methods converge uniformly to the solution. However, the
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Figure 3.11: Modal analysis of a circular plate: Convergence
graphs for the first and the fifth eigenfrequencies using Nitsche for
a low and a high order NURBS polynomial basis of the multipatch

geometry.

Lagrange Multipliers method is associated with an oscillatory convergence
behaviour, typical for saddle point problems for which the LBB condition
in Thm. 2.3 is not guaranteed. Contrary, the Nitsche method is associated
with uniform convergence for which no problem dependent parameters
need to be adjusted. It can be concluded that the proposed methods extend
naturally IGA to multipatches in the context of structural dynamics.
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3.5 Concluding remarks

3.5 Concluding remarks

In this chapter the preliminaries and the formalities for performing iso-
geometric analysis on multipatches are laid. Accordingly, the geometric
parametrization of surfaces using NURBS, as standard in CAD, is shown.
Then, the trimmed multipatch representation of NURBS surfaces is illus-
trated and the isogeometric discretization of fields over such surfaces is
highlighted. In addition, the Penalty, the Lagrange Multipliers and Nitsche-
type methods for the enforcement of the interface constraints are shown
along with their application to the two-dimensional plane stress prob-
lem in both linear statics and dynamics. In the following chapters, these
methods are selectively chosen for their application to three dimensional
prestressed membranes, Kirchhoff-Love shells and to the isogeometric
mortar-based mapping method. The general procedure for isogeomet-
ric analysis on multipatches described in this chapter is subsequently
followed throughout the thesis.
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Chapter 4

Isogeometric Membrane Analysis
on Multipatches

Membranes are widely used in engineering practice as their inherently
optimal load carrying behaviour and their architectural free-form shapes
result in high-end modern engineering structures. Typically, membranes
are subject to prestress in addition to prestressed cables which might be
embedded into their geometry. Therefore, form-finding analysis is nec-
essary for obtaining the desirable configuration of static equilibrium for
this kind of structures, see Sec. 2.3.4. Isogeometric analysis on multipatch
surfaces offers an optimal platform for closing the circle design − form-
finding− structural analysis− design as demonstrated in Philipp et al. [52].
In this chapter the Penalty and the Nitsche-type methods presented in
Secs. 3.3.3 and 3.3.5, respectively, are elaborated and compared for the
multipatch coupling and the application of weak Dirichlet boundary con-
ditions in the context of form-finding, modal and geometrically nonlinear
transient analysis for membrane structures. In the sequel of this chapter,
studies in Apostolatos et al. [29, 39] are closely followed.

67



4 Isogeometric Membrane Analysis on Multipatches

Dirichlet boundary Γd

Γd

Ω(1)
Ω(2)

Ω(3)

Ω
�

np

�

γ(1,2)
i

γ(1,3)
i

γ(2,...)
i

γ(3,...)
i

γ(...,n )i

Γ (2)c

Γ (3)c

Γ

�

np

�

c

Embedded cables on Γc

Interface boundary γi

Interface boundary to a
non-depicted domain

Point constraints

Γ (1)c

b

Figure 4.1: Problem placement: Decomposition of the
membrane’s surface in multiple domains with boundary

embedded cables.

4.1 Theory

In this section the extensions of the Penalty and Nitsche-type methods for
the multipatch coupling presented in Secs. 3.3.3 and 3.3.5, respectively,
to account also for weak Dirichlet boundary conditions in the context of
isogeometric analysis of membrane structures on multipatches are shown.
The Updated Reference Strategy (URS) is used for the form-finding analysis,
as discussed in Sec. 2.3.4. Accordingly, only the displacement continuity
condition defined in Eq. (3.8a) along with the inhomogeneous Dirichlet
boundary condition defined in Eq. (2.49f) need to be enforced in the weak
form of the problem.

4.1.1 Problem placement

Herein surface Ω represents a flexible surface whose kinematics are gov-
erned by the membrane theory, see Sec. 2.3.3. The governing iBVP and
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4.1 Theory

weak form of the membrane problem are shown in Eqs. (2.49) and in
Eq. (2.51), respectively, which define the structural behaviour of each patch
Ω(i ) assuming as in Sec. 5.1.1 the non-overlapping decomposition of do-
main Ω defined in Eqs. (3.7). The corresponding problem setting of a
membrane structure on multipatches subject to Dirichlet and Neumann
boundary conditions along with boundary embedded cables is shown in
Fig. 4.1. In the following sections, the Penalty and the Nitsche-type meth-
ods are elaborated for the isogeometric analysis of membrane structures
on multipatch surfaces. The theory is complemented by three examples.
Moreover, Dirichlet conditions at discrete points are enforced strongly,
whereas Dirichlet conditions along Γd are enforced weakly. Clearly, Γ (i )d = ;
if patchΩ(i ) does not have any intersection with Γd. Let in the sequel nd ∈N
to be the number of non-empty boundary segments Γ (i )d .

4.1.2 Penalty method

Let ᾱ : Γd→R?+ be the Penalty parameter associated with the application
of weak Dirichlet boundary conditions along Γd. Then, the extension of
weak form in Eq. (3.15) to account for isogeometric analysis of membrane
structures, see (2.51), on multipatches accounting weakly for the applica-
tion of the Dirichlet boundary conditions reads: Find the displacement
field d ∈V ∪L2(Γd) for each time instance t ∈Twith χ̂ ∈L2(γi) such that,




δd,ρh̄ d̈
�

0,Ωd
+



δd, c h̄ ḋ
�

0,Ωd
+



δd, ρ̂Â d̈
�

0,Γc
+



δd, ĉ Â ḋ
�

0,Γc
+

a (δd, d)+



δχ̂ , α̂ χ̂
�

0,γi
+ 〈δd, ᾱd〉0,Γd

= l (δd) +



δd, ᾱg
�

0,Γd
,

(4.1)

for all δd ∈V ∪L2(Γd)with δχ̂ ∈L2(γi). The definition of the displacement
jump χ̂ is given in Sec. 3.3.1. Since the additional terms appear only on
the Dirichlet boundary which can be decomposed between the patches,
namely, Γ (i )d = ∂ Ω

(i ) ∩Γd for all i = 1, . . . , ns, the coupling components of
the equation system in Eq. (3.16) are not affected and hence the coupled
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system becomes,











K (1)d + Ĉ (1)α̂ + C̄ (1)ᾱ · · · Ĉ (1,ns)
α̂

...
...

...

Ĉ (ns,1)
α̂ · · · K (ns)

d + Ĉ (ns)
α̂ + C̄ (ns)

ᾱ











∆n̂ ,î











d̂(1)

...

d̂(ns)











=

−











R (1)d + R̂ (1)α̂ + R̄ (1)ᾱ
...

R (ns)
d + R̂ (ns)

α̂ + R̄ (ns)
ᾱ











,

(4.2)

where the additional residual vectors R̄ (i )ᾱ are given by,

R̄ (i )ᾱ = C̄ (i )ᾱ d̂(i )
n̂ ,î
− F̄ (i )ᾱ . (4.3)

The additional matrices C̄ (i )ᾱ and force vectors F̄ (i )ᾱ due to the weak enforce-
ment of the Dirichlet boundary conditions have entries,

C̄ (i )ᾱ ( j ,k ) =
D

φ̄
(i )
j , ᾱ(i )φ̄

(i )
k

E

0,Γ (i )d

, (4.4a)

F̄ (i )ᾱ ( j ) =
D

φ̄
(i )
j , ᾱ(i )g

E

0,Γ (i )d

, (4.4b)

where the Penalty parameter ᾱ(i ) = ᾱ|
Γ
(i )
d

is chosen piecewise constant along

each boundary Γ (i )d . The Penalty method offers herein also an efficient and
straightforward approach for handling both the multipatch coupling and
the application of weak Dirichlet boundary conditions. The shortcoming of
the Penalty method lies in that the underlying Penalty parameters need to
be increased with the refinement so that a uniform convergence to the so-
lution can be obtained due to the variational inconsistency of the method
itself, see Sec. 3.3.3. Herein the Penalty parameters are chosen as a scaling
of the material matrix norm ‖Dm‖F times the inverse of the minimum
element area and the maximum polynomial order along each Dirichlet

boundary Γ (i )d and each interface γ(i , j )
i for α̂(i , j ) and ᾱ(i ), respectively.
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4.1.3 Nitsche-type method

As an alternative to the aforementioned Penalty method in Sec. 4.1.2, a
Nitsche-type method is herein proposed, see also in Sec. 3.3.5, for the
multipatch coupling and the application of weak Dirichlet boundary con-
ditions in the context of isogeometric membrane analysis on multipatches.
Let β̄ : γi → R?+ be the stabilization parameter associated with the weak
enforcement of the Dirichlet boundary conditions in Eq. (2.49f). In this
way, the extension of the weak form in Eq. (3.24) to account for isogeomet-
ric analysis of membrane structures on multipatches with weak Dirichlet
boundary conditions reads: Find the displacement field d ∈V ∪H1(Γd) for
each time instance t ∈Twith χ̂ , t̄ ∈L2(γi) such that,




δd,ρh̄ d̈
�

0,Ωd
+



δd, c h̄ ḋ
�

0,Ωd
+



δd, ρ̂Â d̈
�

0,Γc
+



δd, ĉ Â ḋ
�

0,Γc

+a (δd, d)−



δχ̂ , t̄
�

0,γi
−



δt̄, χ̂
�

0,γi
+
¬

δχ̂ , β̂ χ̂
¶

0,γi

−〈δd, t〉0,Γd

−〈δt, d〉0,Γd
+



δd, β̄d
�

0,Γd
= l (δd)−




δt, g
�

0,Γd
+



δd, β̄g
�

0,Γd
,

(4.5)

for all d ∈V ∪H1(Γd)with δχ̂ ,δt̄ ∈L2(γi). Moreover, t̄ stands for the mean
interface traction defined in Eq. (3.23) and t for the traction vector defined
in Eq. (2.50a) for the membrane problem. As for the Penalty parameter
in Sec. 4.1.2, the stabilization parameter is defined piecewise constant
along each boundary Γ (i )d , namely, β̄ (i ) = β̄|

Γ
(i )
d

. Equivalent to Nitsche-type

method for the multipatch coupling introduced in Sec. 3.3.5 the necessary
condition for coercivity due to the additional terms along the Dirichlet
boundary in Eq. (4.5) is the existence of constants C̄ (i ) > 0 such that,

‖t(i )‖2
0,Γ (i )d

≤ C̄ (i )a (d, d) ∀d ∈V , (4.6)

along each Dirichlet boundary Γ (i )d . In this way, the equation system in
Eq. (3.26) in this case becomes,













K (1)d + Ĉ (1)n + Ĉ (1)
β̂
+ C̄ (1)n + C̄ (1)

β̄
· · · Ĉ (1,ns)

n + Ĉ (1,ns)
β̂

...
...

...

Ĉ
(ns,1)
n + Ĉ (ns,1)

β̄
· · · K (ns)

d + Ĉ (ns)
n + Ĉ (ns)

β̂
+ C̄ (ns)

n + C̄ (ns)
β̄












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∆n̂ ,î
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
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, (4.7)

where the additional Nitsche matrices C̄ (i )n and residual vectors R̄ (i )n have
entries,

C̄ (i )n ( j ,k ) =−

*

∂ t(i )
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�
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�
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�

d̂(i )
n̂ ,î
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�
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(4.8a)

R̄ (i )n ( j ) =−

*

∂ t(i )

∂ d̂ (i )j

�

�

�

�

�

�

d̂(i )
n̂ ,î

, d(i )
n̂ ,î
−g
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−
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φ̄
(i )
j , t(i )

�
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�
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n̂ ,î

¸

0,Γ (i )d

. (4.8b)

Matrices C̄ (i )
β̄

and vectors R̄ (i )
β̄

related to the stabilization terms in Eq. (4.7)

are defined as the corresponding discrete matrices and vectors resulting
from the Penalty method in Eqs. (4.3) and (4.4), respectively. Moreover,
the discrete form of the necessary condition for coercivity in Eq. (4.6) can
be formulated as a generalized eigenvalue problem similar to Eq. (3.28),

det

�

Q̄ (i )− C̄ (i ) K (i ) |
Γ
(i )
d

�

= 0 , (4.9)

which is solved for the corresponding eigenvalues C̄ (i )r along each non-

empty boundary Γ (i )d . The components of matrices Q̄ (i ) in Eq. (4.9) are
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defined as,

Q̄ (i )( j ,k ) =

*

∂ t(i )

∂ d̂ (i )j

�

�

�

�

�

�

d̂(i )n̂ ,î

,
∂ t(i )

∂ d̂ (i )k

�

�

�

�

�

d̂(i )n̂ ,î

+

0,Γ (i )d

+

*

∂ 2t(i )

∂ d̂ (i )j ∂ d̂ (i )k

�

�

�

�

�

�

d̂(i )n̂ ,î

, t(i )
�

�

�

d̂(i )n̂ ,î

+

0,Γ (i )d

.

(4.10)

Additionally, K (i ) |
Γ
(i )
d

stands for the restriction of tangent stiffness matrix

K (i ) of patch Ω(i ) at the DOFs along the Dirichlet boundary Γ (i )d . Applying
the Nitsche-type method for the interface continuity and the application
of weak Dirichlet boundary conditions the estimates for the stabilization
parameters β̂ (i , j ) and β̄ (i ) become,

β̂ (i , j ) ≥ 4ni max
r

Ĉ (i , j )
r , (4.11a)

β̄ (i ) ≥ 4nd max
r

C̄ (i )r , (4.11b)

respectively.

4.2 Numerical examples

Next, three examples are used for the demonstration of the aforemen-
tioned methods in the context of isogeometric membrane analysis on
multipatches. The first one is the well-established benchmark of the four-
point sail, see in Wüchner [35]. For this example, form-finding analysis is
used to obtain the shape of static equilibrium and subsequently modal and
geometrically nonlinear transient analysis given a live load are performed.
Subsequently, the middle sail of the Olympic stadium roof in Munich is
considered in the context of practically relevant applications. Accordingly,
form-finding, modal and transient analyses are performed. Lastly, another
example of practical relevance, that of an inflatable hangar consisting of
three inflatable torus-shaped tubes, is used in order to show the applica-
tion of the aforementioned methods on real world engineering problems.
For all aforementioned numerical examples, the initial conditions for the
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(a) Example of a four-point sail.
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(b) Multipatch geometry.

Figure 4.2: Four-point sail: Problem setting.

displacement and the velocity fields are chosen as d0 = 0 and υ0 = 0, re-
spectively, in the context of transient analysis. As reference solution, a
single patch solution or a standard finite element solution within Carat++
software (Fischer [73]) is used.

4.2.1 Four-point sail

The first numerical example consists of the form-finding and subsequently
modal and geometrically nonlinear transient analysis of a four-point sail,
see Fig. 4.2. A picture of the four-point sail and the corresponding problem
setting are shown in Figs. 4.2(a) and 4.2(b), respectively. This membrane
structure has been extensively used as a demonstrator for the URS method
discussed in Sec. 2.3.4. For the case set-up, the work in Wüchner [35] is
followed. The sail and the definition of its underlying multipatch geome-
try consisting of three patches with two interfaces is shown in Fig. 4.2(b),
where four cables are attached to all four external edges. The Young’s mod-
ulus, the Poisson’s ratio, the density and the thickness of the membrane
structure are defined as E = 8×108 Pa,ν= 0.4,ρ = 800 Kg/m3 and h̄ = 10−3

m, respectively. Additionally, the sail is subject to isotropic prestress, with
the normal components equal to n 11

0 = n 22
o = n0 = 3× 103 N/m and the

shear components set to zero. Regarding the cables, the Young’s modulus,
the density and the diameter of their circular cross sections these are set
as Ê = 1.6× 1011 Pa, ρ̂ = 8300 Kg/m3 and D̂ = 12× 10−3 m, respectively.
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Figure 4.3: Four-point sail: Problem setting for the form-finding
analysis.

Moreover, all cables are subject to the same prestress condition with mag-
nitude f̂0 = 6×104 N.

At first, the geometry of static equilibrium for the four-point sail is sought.
The problem setting for the form-finding analysis is depicted in Fig. 4.3,
where the reference geometry consists of planar patches. However, their in-
terfaces are chosen curved and the underlying parametrizations attain sin-
gularities. Especially for patchΩ(2), two parametric singularities at its fixed
ends exist. The expected solution of the URS consists of radii of curvature at
each Γ (i )c equal to R̄ = f̂0/n0 = 20 m, in this case, see in Bletzinger et al. [60].
For the refinement study, patches Ω(1), Ω(2) and Ω(3) are parametrized us-
ing

�

14 ir/9
�

,
�

2 ir/3
�

and
�

3 ir/2
�

elements, respectively, where ir = 1, . . . , 22
is the refinement index. The respective patch parametrizations of three
refinement levels are shown in Fig. 4.4. In addition, two polynomial order
settings are considered: The low polynomial order setting where patches
Ω(1) and Ω(3) are parametrized using biquadratic b-spline bases and patch
Ω(2) is parametrized using a bicubic b-spline basis. On the other hand, the
fine polynomial order setting consists of parametrizing patches Ω(1) and
Ω(3) using bicubic b-spline bases and patch Ω(2) with a biquartic b-spline
basis. As reference the solution of a single patch parametrization using
a bicubic b-spline basis and 2500 elements is used. For the form-finding
analysis, 20 form-finding iterations are used for both methods and the
form-finding iterations are also halted if the norm of displacement incre-
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(a) Refinement level ir = 1. (b) Refinement level ir = 3. (c) Refinement level ir = 5.

Figure 4.4: Four-point sail: Parametrizations for three different
refinement levels concerning the form-finding analysis.

(a) Single patch. (b) IGA on multipatches with Penalty.

Figure 4.5: Four-point sail: Form-finding results using the
Penalty method at refinement level ir = 5 for the high polynomial

order setting against the single patch solution.

ment from one form-finding iteration to another is smaller or equal to 10−4.
The form-found geometries for the reference single patch and three-patch
geometry using the Penalty method at refinement step ir = 5 corresponding
to the high polynomial order setting are shown in Fig. 4.5 demonstrating
excellent accordance between each other. One can observe an excellent
qualitative match of the results when using IGA on multipatches compared
to the single patch solution. For the quantitative discussion of the results,
convergence graphs are used. At first, the relative error of the form-finding
analysis in the L2(Ω)-norm is shown in Fig. 4.6 for both the low and the
high polynomial order settings in case of increasing h-refinement of the
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Figure 4.6: Four-point sail: Relative error of the form-finding
results in each patch.
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Figure 4.7: Four-point sail: Error in the interface conditions of
the form-finding results.

parametrization (knot insertion) where clearly the Nitsche outperforms
the Penalty method in both settings. Then, the error in the L2(γi)-norm
is shown in Fig. 4.7 once more for both the low and the high polynomial
order settings, where the Nitsche-type method achieves a higher accuracy
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Figure 4.8: Four-point sail: Evolution of the Penalty and the
stabilization parameters for each interface through refinement.

by two and three orders of magnitude than the Penalty method.

Subsequently, the evolution of the Penalty and the stabilization parame-
ters for the Penalty and the Nitsche-type methods are shown in the set of
Figs. 4.8 for both polynomial order settings. The estimated stabilization
parameters for the Nitsche-type method are one order of magnitude larger
than the Penalty parameters for the Penalty method but the rate of increase
as the element size goes to zero is the same for both. Furthermore, in set of
Figs. 4.9, the evolution of the stabilization parameters for the Nitsche-type
method is shown for both the low and the high polynomial order settings
for three selected refinement levels and for each interface. As expected,
the stabilization parameters increase with the form-finding iterations as
the shape of the membrane is changing but at the convergence region the
stabilization parameters obtain also their converged values.

For the modal and the transient analyses (Fig. 4.11), two representative
settings are considered: One coarse and one fine setting. The coarse setting
uses the low polynomial order as described before and the refinement level
ir = 6. The fine setting is characterized by using the high polynomial order
and refinement level ir = 12. The corresponding reference configurations
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Figure 4.9: Four-point sail: Evolution of the stabilization
parameters corresponding to Nitsche-type method for each

interface through form-finding iterations.

of static equilibrium under the prestress state are obtained using the URS
and the Nitsche-type method for the multipatch coupling. In Fig. 4.10 three
mode shapes corresponding to eigenfrequencies f1, f4 and f20 are depicted
for the single patch reference isogeometric discretization and the isoge-
ometric discretization on multipatches when using the Penalty method.
As before, the qualitative results show excellent agreement between iso-
geometric analysis on single and multiple patches. As quantitative study
of the eigenfrequency analysis, Fig. 4.11(a) shows the computed eigenfre-
quency spectrum for the coarse and fine setting scaled by the numerical
spectrum of the reference single patch solution corresponding to the first
400 eigenfrequencies. As expected, the finer the discretization becomes
the closer the results get to the reference solution, where both the Penalty
and the Nitsche-type methods yield highly accurate results.

For the transient analysis of the four-point sail, the time span T= [0,1] s
is chosen. As mentioned at the beginning of this section, the considered
dynamic load is defined as,

b (t ) =−0.05
�

�sin (6πt )
�

�e3 [Pa] , for all t ∈T . (4.12)
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(a) f1 = 4.65 Hz (single patch). (b) f4 = 5.22 Hz (single patch). (c) f20 = 11.21 Hz (single patch).

(d) f h
1 = 4.65 Hz (IGA on multi-

patches with Penalty).
(e) f h

4 = 5.22 Hz (IGA on multi-
patches with Penalty).

(f) f h
20 = 11.23 Hz (IGA on multi-

patches with Penalty).

Figure 4.10: Four-point sail: Comparison between the single
and multipatch mode shapes (Penalty).
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Figure 4.11: Four-point sail: Relative error in the computed
eigenfrequencies and time-displacement curves.

80



4.2 Numerical examples

10−4

10−3

10−2

10−1

100

0 0.2 0.4 0.6 0.8 1
t [s]

‖χ̂‖0,γi [m]

Fine case
Coarse case

Nitsche
Penalty

(a) Evolution of the error in the displacement in-
terface condition.

100

101

102

103

0 0.2 0.4 0.6 0.8 1










∑

(i , j )∈I
�

t(i ) + t( j )
�










0,γi

[N/m]

Fine case
Coarse case

Nitsche
Penalty

t [s]
(b) Evolution of the error in the traction interface
condition.

Figure 4.12: Four-point sail: Evolution of the error in the
displacement and traction interface condition throughout the

time.

For the estimation of the Rayleigh damping parameters, eigenfrequen-
cies f1 = 4.6568 Hz and f10 = 8.9537 Hz from the reference single patch
solution are used, see Sec. 2.4.3. By substituting them in Eqs. (2.70), the
specific Rayleigh damping parameters αr = 3.8497 s−1 and βr = 0.0023 s
are obtained. For the single patch, the coarse and the fine settings, the
same time step size for the Newmark time integration scheme is chosen as
∆t = 2×10−3 s. The corresponding time-displacement curves for the d 0

3
component of the displacement field at the middle of the sail is shown in
Fig. 4.11(b) for both the coarse and the fine settings and for both methods
against the single patch solution. For the coarse setting the Nitsche-type
method does not accurately predict the amplitude of the oscillation, how-
ever when refining the spatial discretization both methods deliver highly
accurate results.

Furthermore, the error in the interface conditions along γi throughout the
time is investigated, see Fig. 4.12. The evolution of the error in the interface
Dirichlet condition in Eq. (3.8a) in the L2(γi)-norm for both methods is
shown in Fig. 4.12(a). The Nitsche-type method outperforms the Penalty
method in both the coarse and fine polynomial order settings. Fig. 4.12(b)
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(a) Single patch. (b) IGA on multipatches with Penalty.

Figure 4.13: Four-point sail: Deformation at t = 0.36 s scaled by
10 for both the single and the multipatch model (Penalty).
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(a) First principal force n1 contour at time t = 0.81
s (single patch).
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(b) First principal force n1 contour at time t = 0.81
s (IGA on multipatches with Penalty).

Figure 4.14: Four-point sail: Principal force n1 contour at
t = 0.81 s for both the single and multipatch models.

then shows the evolution of the error in the interface Neumann condition
in Eq. (3.8b) in the L2(γi)-norm for both methods and for both polynomial
order settings demonstrating high accuracy especially for the high polyno-
mial order setting.
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(a) Impression of the Munich’s Olympic
stadium and the middle sail of its roof.
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(b) Multipatch geometry of the middle sail of the
Olympic stadium roof in Munich.

Figure 4.15: Middle sail of the Olympic stadium roof in Munich:
Problem setting.

Figs. 4.13 and 4.14 depict the deformation at time t = 0.36 s scaled by 10
and the contour of the first principal force field at time t = 0.81 s, respec-
tively, for the reference single patch solution and the solution obtained
using isogeometric analysis on multipatches with Penalty. The results
show excellent agreement indicating the successful performance of both
methods for these kinds of problems with emphasis on the Nitsche-type
method.

4.2.2 Middle sail of the Olympic stadium roof in Munich

In this section the middle sail of the Olympic stadium roof in Munich is
investigated, see Fig. 4.15. The roof of the Olympic stadium in Munich
consists of nine sail-like structures. These are connected to each other
on fixed locations at their boundaries which in turn are attached to pil-
lars (Otto [74]). These pillars are herein assumed to be rigid and thus no
interaction between the sails is expected. Therefore, only the middle sail’s
structural behaviour of this roof is herein considered. The prestressed
middle sail consists of a cable net out of steel where plexiglas plates are
mounted on it (detailed view is shown on bottom picture in Fig. 4.15(a)).
The corresponding geometric model of the middle sail using five b-spline
patches is shown in Fig. 4.15(b). For the assessment of the global structural
behaviour, the very detailed structure is assumed to behave like a homog-
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enized, prestressed membrane and this can be modelled by respective
homogenized structural properties of a prestressed membrane roof with
boundary embedded cables (Dieringer [75] and Philipp [76]). In this way,
the plexiglas plates are assumed to have thickness h̄plexiglas = 7× 10−3 m
whereas they do not contribute to the structural stiffness of the prestressed
roof but only to the mass with density ρplexiglas = 500 Kg/m3. It is assumed
that each of the inner cables has diameter equal to D̂inner = 1.4×10−2 m
corresponding to cross sectional area Âinner = π D̂ 2

inner/4 = 4.9π× 10−5

m2. For each square of characteristic length l̄ = 75×10−2 m of the struc-
ture, four inner cables (two along each side of the characteristic square)
are included. In this way, the homogenized thickness of the structure is
given by h̄ = h̄plexiglas + 2 Âinner/l̄ . All steel cables are assumed to have
Young’s modulus and density of Esteel = 210× 109 Pa and ρsteel = 7850
Kg/m3, respectively. Then, the density of the membrane is homogenized
byρ = 1.15(ρplexiglas h̄plexiglas l̄ 2+4ρsteel Âinner l̄ ), where 15% additional mass
due to the hinges and other welding material is added. With respect to
the stiffness of the sail, the homogenized Young’s modulus of the sail is
given as E = 2 Esteel Âinner/(l̄ h̄ ). The cable net itself can be assumed having
a negligible Poisson effect and as the plexiglas plates do not contribute
to the structural stiffness of the sail, the Poisson’s ratio is assumed to be
zero. To obtain the desirable shape of equilibrium of the prestressed sail,
the ratio between the area of the boundary cables and the thickness of
the membrane is set to 10, that is, the boundary cables have cross sec-
tional area of Â = 10h̄ . The diameter of the boundary cables is assumed
to be D̂outer = 5 D̂inner, that is, five times the diameter of the inner cables.
However, this is not in accordance with the chosen value for the cross
sectional area of the boundary cables and for this reason the Young’s
modulus and the density of the boundary cables are scaled with the ratio
between the actual and the assigned value of the cross sectional area that
is Ê = Esteelπ D̂ 2

outer/(4 Â) and ρ̂ =ρsteelπ D̂ 2
outer/(4 Â), respectively. To con-

clude, the homogenized membrane has Young’s modulus, Poisson’s ratio,
density and thickness of E = 1.1632×1010 Pa, ν= 0, ρ = 1543.2968 Kg/m3

and h̄ = 0.0074 m, respectively. On the other hand, the boundary cables
have Young’s modulus, density and cross sectional area of Ê = 1.0905×1010

Pa, ρ̂ = 407.6693 Kg/m3 and Â = 0.074 m2, respectively. The choice for the
values of the prestresses for the membrane n 11

0 = n 22
0 = n0 (n 12

0 = 0) and

the boundary cables f̂ (i )0 for obtaining the sail geometry as in Philipp [76] is
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n0 [N/m] f̂ (1)0 f̂ (2)0 f̂ (3)0 f̂ (4)0 f̂ (5)0

2×108 1680 f̂0 1730 f̂0 1595 f̂0 1690 f̂0 1350 f̂0

n0 [N/m] f̂ (6)0 f̂ (7)0 f̂ (8)0 f̂ (9)0 f̂ (10)
0

2×108 1250 f̂0 1250 f̂0 1575 f̂0 1550 f̂0 1845 f̂0

Table 4.1: Middle sail of the Olympic stadium roof in Munich:
Definition of the prestress for the membrane and the boundary

cables.

shown in Table 4.1 where f̂0 = 4×105 N is a constant scaling of all prestress
values for the boundary cables.

As accurate reference solution for the form-finding, the modal and the
transient analysis, the solution of the same problem using 30312 linear
triangular elements and the standard FEM is used. In Fig. 4.16(a) the refer-
ence configuration of the form-finding problem is shown.

Concerning the refinement study d11
�

ir+4
�

/5e, d7
�

ir+4
�

/5e, d14
�

ir+4
�

/5e,
d3
�

ir+4
�

/5e and d12
�

ir+4
�

/5e elements for patchesΩ(1),Ω(2),Ω(3),Ω(4) and
Ω(5) are used, where the refinement index ranges as ir = 1, . . . , 12. Accord-
ingly, the discretizations and the form-found geometries along with the
corresponding geometric errors for three selected refinements are de-
picted in Fig. 4.16. The corresponding parametrizations of the refinement
sequence are depicted in Figs. 4.16(b)-4.16(d). As it can be seen at the
corresponding figures, patches Ω(2), Ω(4) and Ω(5) attain parametrization
singularities as the corresponding patches are degenerated to triangles.
Two polynomial order settings are accordingly used: The low polynomial
order setting within which patches Ω(1), Ω(3), Ω(5) are parametrized using
piecewise C 0-continuous bilinear b-spline basis functions and patches
Ω(2), Ω(4) using C 1-continuous biquadratic b-spline basis functions and
the high polynomial order setting within which patches Ω(1), Ω(3), Ω(5) are
parametrized using piecewise C 1-continuous biquadratic b-spline basis
functions and patches Ω(2), Ω(4) using C 2-continuous bicubic b-spline ba-
sis functions.
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(a) Problem setting for the reference configuration
of the form-finding analysis.

(b) Parametrization for refine-
ment level ir = 1.

(c) Parametrization for refine-
ment level ir = 4.

(d) Parametrization for refine-
ment level ir = 8.
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(g) Form-found multipatch ge-
ometry and error for ir = 8.

Figure 4.16: Middle sail of the Olympic stadium roof in Munich:
Problem setting for the form-finding analysis along with three

selected NURBS parametrizations of three different refinement
levels and the corresponding form-found geometries when using

the Nitsche-type method.

In Figs. 4.16(e)- 4.16(g) the error distribution of the form-finding results is
shown for three selected refinement levels when the Nitsche-type method
is used. Clearly, the error decreases as the element size goes to zero and
it can be observed that the highest levels of error are concentrated along
the patch interfaces and, in particular, at the singularity locations, as ex-
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Figure 4.17: Middle sail of the Olympic stadium roof in Munich:
Relative error of the form-finding analysis for each patch.
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Figure 4.18: Middle sail of the Olympic stadium roof in Munich:
Error in the interface conditions of the form-finding analysis for

individual patch interfaces.

pected. In Fig. 4.17 and Fig. 4.18, the relative error in the L2
�

Ω(i )
�

-norm
for each patch and the absolute error along each patch interface in the

L2
�

γ
(i , j )
i

�

-norm is shown against the maximum element area for every
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Figure 4.19: Middle sail of the Olympic stadium roof in Munich:
Evolution of the Penalty and the stabilization parameters for each

interface throughout refinement.

refinement level, respectively. Regarding the relative error in each patch,
the Nitsche-type method outperforms the Penalty method in both the low
and the high polynomial order settings. Concerning the absolute error
along the interfaces, it can be seen that the Nitsche-type method once
more outperforms the Penalty method for both the coarse and the fine
settings.

In Fig. 4.19 the evolution of the Penalty and stabilization parameters for
the Penalty and the Nitsche-type methods is shown for both the low and
high polynomial order settings. Notwithstanding that the order of mag-
nitude for the Penalty and the stabilization parameters concerning the
Penalty and the Nitsche-type method, respectively, is of the same order,
the Nitsche-type method provides significantly more accurate results than
the Penalty method in terms of both the relative error in each patch and the
absolute interface error. This confirms the superiority of Nitsche against
the Penalty method in terms of accuracy for this kind of problems.

In Fig. 4.20 the evolution of the stabilization parameters of the Nitsche-type
method for two selected refinement levels throughout the form-finding

88



4.2 Numerical examples

107

108

109 β̂
(i , j )

ir = 8ir = 1

γ(1,2)
i γ(3,5)

iγ(3,4)
iγ(2,3)

i

0 0.2 0.4 0.6 0.8 1
î

20
(a) Low polynomial order case.

107

108

109

1010

0 0.2 0.4 0.6 0.8 1
î
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Figure 4.20: Middle sail of the Olympic stadium roof in Munich:
Evolution of the stabilization parameters in Nitsche’s method for

each interface throughout form-finding iterations.

iterations is shown for both the low and the high polynomial order settings.
It can be deduced that at the beginning of the form-finding iterations,
where the shape of the sail is strongly modified, there is a notable change
of the stabilization parameters which mostly tend to increase smoothly. It
can be seen that as the form-finding iterations converge to a form-found
shape, the corresponding stabilization parameters also converge to a con-
stant value, which is expected.

Next, two multipatch isogeometric discretizations are chosen for the modal
and the transient analysis (Fig. 4.22). Regarding the coarse setting, the
h-refinement level ir = 5 and the low polynomial order setting is chosen
whereas for the fine setting the h-refinement level ir = 10 and the high poly-
nomial order setting as described above is chosen. The reference geometry
of all isogeometric discretizations is computed using the URS form-finding
method whereas the Nitsche-type method is employed for the multipatch
coupling.

A modal analysis is performed based on the FEM mesh, the coarse and the
fine isogeometric settings. The eigenmode shapes of eigenfrequencies f1,
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(a) f1 = 6.40 Hz (FEM). (b) f4 = 8.52 Hz (FEM). (c) f7 = 10.53 Hz (FEM).

(d) f h
1 = 6.40 Hz (IGA on multi-

patches with Nitsche).
(e) f h

4 = 8.52 Hz (IGA on multi-
patches with Nitsche).

(f) f h
7 = 10.53 Hz (IGA on multi-

patches with Nitsche).

Figure 4.21: Middle sail of the Olympic stadium roof in Munich:
Mode shapes for the finite element discretization (upper row) and

for the isogeometric analysis on multipatch surfaces using the
Nitsche-type method (lower row) corresponding to refinement

level ir = 10 and to the high polynomial order setting.

f4 and f7 for the FEM mesh and the multipatch isogeometric discretiza-
tions using Nitsche are shown in Fig. 4.21 using contours of the displace-
ment field corresponding to each modal shape. The results show excellent
agreement between the standard FEM and the isogeometric analysis on
multipatch surfaces.

Fig. 4.22(a) shows the computed eigenfrequencies of the coarse and the
fine isogeometric settings when using both methods scaled by the eigen-
frequencies computed with the reference FEM model. The Nitsche-type
method provides less accurate results than the Penalty method for the
coarse case, a fact which is however corrected in the fine setting where the
results of both methods match accurately the expected FEM solution.

Next, a geometrically nonlinear transient analysis of the prestressed sail
with edge cables is performed. Concerning the transient analysis, the struc-
ture is left unloaded and its own weight is also considered negligible. Then,
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Figure 4.22: Middle sail of the Olympic stadium roof in Munich:
Relative error in the computed eigenfrequencies and

time-displacement curves.

a root point excitation of the structure is assumed for which the motion of
all fixed corners is imposed as,

g (t ) = 0.03 sin (8πt ) e2 [m] , for all t ∈T, (4.13)

where the time span for this problem is chosen as T = [0,1] s. The time
step size for the coarse and the fine settings is chosen as ∆t = 0.0013 s
and∆t = 0.001 s, respectively. The time step size∆t = 0.001 s is also cho-
sen for the time discretization of the reference FEM solution. Since the
imposition of the inhomogeneous Dirichlet boundary conditions is done
strongly in this case, the admissible solution spaces for the test and un-
known fields are not the same but the unknown displacement field needs
to be chosen in such a way as to identically satisfy the motion at all fixed
corners, see Hughes et al. [70] for more information. For the estimation
of the Rayleigh damping parameters according to Eqs. (2.70) the eigenfre-
quencies f1 = 6.403 Hz and f2 = 7.209 Hz from the reference FEM model
are used resulting in αr = 4.2616 s−1 and βr = 0.0023 s for the Rayleigh
damping parameters. As inspection point, the material point with coordi-
nates X a = 47.9297 e1+121.3484 e2+35.1936 e3 [m] is used. This point is
chosen as a node in the FEM mesh which is subsequently projected onto
both isogeometric multipatch settings in order to get the closest point
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Figure 4.23: Middle sail of the Olympic stadium roof in Munich:
Evolution of the error in the Dirichlet and Neumann interface

conditions over the simulation time.

projections as the FEM and the multipatch isogeometric models are not
identical in the form-found state.

The 2-norm of the displacement ‖d|X a
‖2 is then computed and compared

throughout the simulation time between each isogeometric multipatch
setting and the FEM reference mesh and the results are summarized in
Fig. 4.22(b). The legends are the same as in Fig. 4.22(a) and are not repeated
in Fig. 4.22(b) not to overshadow the time-displacement curves. For the
coarse setting, it can be seen that the Nitsche-type method is significantly
more accurate than the Penalty method. The time-displacement curve
corresponding to the Nitsche-type method overlaps with the finite ele-
ment solution for the fine setting. The Penalty method on the other hand
overestimates the displacement magnitude at the inspection point for
the coarse setting. However, the corresponding results are considerably
improved for the fine setting concerning the Penalty method, which are
however still less accurate as for the Nitsche-type method.

Furthermore, Fig. 4.23 shows the evolution of the error in the Dirichlet and
Neumann interface conditions in the L2(γi)-norm (Eqs. (3.8a) and (3.8b),
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Figure 4.24: Middle sail of the Olympic stadium roof in Munich:
Displacement norm and first principal stress-resultant force
contour at t = 0.44 s for the FEM and IGA multipatch models.

respectively) against the time. Concerning the evolution of the error in the
interface Dirichlet condition, the Nitsche-type method clearly outperforms
the Penalty method for both settings. Concerning the interface Neumann
condition, the Nitsche-type method delivers more accurate results than
the Penalty method.

In Fig. 4.24 the contour of the displacement 2-norm ‖d‖2 and the distribu-
tion of the first principal stress-resultant force field n p

1 in the local Cartesian
space is shown at the time instance t = 0.44 s using FEM and isogeomet-
ric analysis on multipatch surfaces with Nitsche. As it can be deduced
from the illustration, the results are highly accurate in terms of both the
displacement field itself and the stress-resultant force field.
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(a) Picture of an inflatable hangar www.cimne.
com/websasp/ulites/news.asp (online on
31.01.2019).
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Figure 4.25: Inflatable hangar: Problem setting.

4.2.3 Inflatable hangar

Lastly, an inflatable hangar is considered in the context of practically rele-
vant applications. The structure consists of three semi-torus shaped tubes,
see Fig. 4.25. A picture of the hangar and its underlying CAD model with
boundary conditions are shown in Figs. 4.25(a) and 4.25(b), respectively.
Each tube is connected to its neighbouring tube(s) through the shared in-
terface making the structure coherent. The tubes are coming into contact
tangentially to each other, thus sharing a common curved interface. For
each semi-torus tube, the inner and the overall radii are given as R̄i = 1.25
m and R̄o = 10 m, respectively. The Young’s modulus, the Poisson’s ratio,
the density and the thickness of the membrane are given as E = 3.1×108

Pa,ν= 0.3,ρ = 1250 Kg/m3 and h̄ = 6×10−4 m, respectively (Wüchner et al.
[77]). The inner pressure for keeping the inflated structure in equilibrium
is modelled by a follower load b= a3 [KPa], where a3 stands for the outward
surface normal vector in the current configuration. The corresponding
NURBS multipatch CAD model consists of 24 patchesΩ(i ) with 24 Dirichlet
boundaries Γ (i )d at the ground and 52 interface boundaries γ(i )i . The torus
structure needs an inhomogeneous anisotropic prestress state with zero
shear stress components due to its different radii of curvature along its
principal curvature directions. Therefore, the prestress values which need
to be applied such that the structure remains in equilibrium under the
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(a) Coarse isogeometric discretization. (b) Fine isogeometric discretization.

Figure 4.26: Inflatable hangar: Coarse and fine multipatch
NURBS parametrizations.

given internal pressure are,

n 11
0 =

‖b‖2R̄i

2h̄
, (4.14a)

n 22
0 = n 11

0

2R̄ + R̄i sinθ2

R̄ + R̄i sinθ2
, (4.14b)

and n 12
0 = 0, see in Fryer et al. [78], where (θ1,θ2) ∈ [0,π]× [0, 2π] stands for

the principal curvature directions of the half torus-shaped tubes depicted
in Fig. 4.25(b) and R̄ = R̄o+ R̄i. Prestress components n 11

0 , n 22
0 are defined

along the principal curvature directions θ1 and θ2, respectively.

For this example, no form-finding analysis is performed as the reference
equilibrium configuration is obtained using the aforementioned values
for the prestress and the exact geometry of the inflated half torus-shaped
tubes which represent the inflatable hangar. Similar to the previous nu-
merical examples, two isogeometric discretizations are considered and
the corresponding results are compared against the reference FEM solu-
tion when the same roof structure is solved using C 0-continuous bilinear
elements. Two isogeometric computational models are herein considered,
see Fig. 4.26. For both settings adjacent patches are parametrized using
different polynomial orders for the corresponding NURBS basis functions.
The coarse setting in Fig. 4.26(a) consists of patches with C 1-continuous
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(a) f1 = 1.74 Hz (FEM). (b) f2 = 2.05 Hz (FEM). (c) f4 = 3.5 Hz (FEM).

(d) f h
1 = 1.74 Hz (IGA on multi-

patches with Nitsche).
(e) f h

2 = 2.07 Hz (IGA on multi-
patches with Nitsche).

(f) f h
4 = 3.52 Hz (IGA on multi-

patches with Nitsche).

Figure 4.27: Inflatable hangar: Comparison of selected mode
shapes between the reference FEM solution and the NURBS

multipatch solution using the Nitsche-type method.

biquadratic NURBS basis functions for all patches and the fine setting
in Fig. 4.26(b) consists of patches with C 1-continuous biquadratic and
C 2-continuous bicubic NURBS basis functions.

As in the previous examples, also here modal and transient analyses are
performed (Fig. 4.28). The modal analysis is performed for both the coarse
and the fine settings of the isogeometric multipatch discretizations and
for the reference finite element solution. The corresponding mode shapes
of eigenfrequencies f1, f2 and f4 for the reference FEM solution and the
fine setting using the Nitsche-type method are shown in Fig. 4.27, where
excellent agreement of the results between the isogeometric analysis on
multipatch surfaces and the reference FEM solution is exhibited. The com-
puted eigenfrequencies of the coarse and the fine settings scaled by the
eigenfrequencies of the reference FEM solution are shown in Fig. 4.28(a).
The Penalty method outperforms the Nitsche-type method for the coarse
setting, whereas both methods provide satisfactory results of comparable
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Figure 4.28: Inflatable hangar: Relative error in the computed
eigenfrequencies and time-displacement curves.

accuracy for the fine setting.

In the same manner as for the previous numerical examples, a transient
analysis of the inflated structure is performed. Concerning the Rayleigh
damping, the values αr = 0.1177 and βr = 0.0014 are assigned (Wüchner
et al. [77]). The time span of the simulation is T= [0, 10] s and a root point
excitation of the structure is considered. In this way a motion along Γd is
imposed as,

g (t ) = 10−3 sin (10πt ) e1+10−1 sin (2πt ) e2+10−4 sin (5πt ) e3 . (4.15)

The time step size for the reference finite element mesh, the coarse and the
fine settings are chosen as∆t = 10−3 s,∆t = 0.00125 s and∆t = 0.01 s, re-
spectively. An inspection point on the structure is chosen X a = 0.3655e1+
−1.18882e2+11.63053e3 [m ] and the displacement component along the
X2-Cartesian axis is investigated. In Fig. 4.28(b) it is shown the displace-
ment component d 0

2 |X a
for the coarse and the fine setting of the multi-

patch isogeometric discretization and the FEM mesh. The results show
highly satisfactory agreement with the reference solution while the finer
the discretization becomes the better the results are. However, also in this
example, the results from the isogeometric analysis on multipatches with
Penalty were found to be worse in terms of the amplitude when compared
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(c) Evolution of the traction interface condition.

Figure 4.29: Inflatable hangar: Evolution of the Dirichlet and
interface conditions throughout the time.

with Nitsche especially for the coarse setting. Subsequently, the error in
the Dirichlet and in the interface conditions along Γd and γi, respectively,
is studied, see Fig. 4.29. The evolution of the error in the Dirichlet condi-
tion along Γd, the patch interface Dirichlet condition and the patch inter-
face Neumann condition throughout the simulation time are depicted in
Fig. 4.29(a), Fig. 4.29(b) and Fig. 4.29(c), respectively. Concerning the error
along the Dirichlet boundary Γd the Penalty and the Nitsche-type meth-
ods perform similarly. The Nitsche-type method produces more accurate
results with respect to the satisfaction of the patch interface Dirichlet and
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(a) FEM. (b) IGA on multipatches with Nitsche.

Figure 4.30: Inflatable hangar: Scaled by 20 deformation at at
time t = 2.65 s for both the FEM and the multipatch isogeometric

computational models.
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(b) IGA on multipatches with Nitsche.

Figure 4.31: Inflatable hangar: 2nd principal force n2 contour at
different time t = 6.23 s for both the FEM and the multipatch

isogeometric computational models.

Neumann conditions in both the coarse and the fine settings compared to
the Penalty method.

Figs. 4.30 and 4.31 show the scaled by 20 deformation at time t = 2.65 s
and the contour of the second principal stress-resultant force n p

2 at time
t = 6.23 s, respectively, for both the finite element and the IGA on multi-
patches with Nitsche models. The results of the isogeometric analysis on
multipatches show excellent agreement to the reference FEM solution.
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4.3 Concluding remarks

In this chapter, the application of the Penalty and Nitsche-type methods for
the multipatch coupling and enforcement of weak Dirichlet boundary con-
ditions in the context of isogeometric membrane analysis on multipatches
is demonstrated. At first, the extensions of the weak forms introduced in
Sec. 3.3 to account for weak Dirichlet boundary conditions is shown for the
two chosen methods. Subsequently, three examples are used as demon-
stration: One well-established benchmark example, that of the four-point,
where a full framework consisting of form-finding using the URS on the
CAD model, modal analysis and subsequently geometrically nonlinear
transient analysis is performed. The results are compared to a single patch
solution. Lastly, the practically relevant examples of the middle sail of the
Olympic stadium roof in Munich and an inflatable hangar are used for
the demonstration of the applicability of the proposed methods in the
context of real world engineering problems. The Nitsche-type method was
found to be superior as compared to the Penalty method for this kind of
problems for all analyses herein considered.
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Chapter 5

Isogeometric Kirchhoff-Love
Shell Analysis on Multipatches

Kirchhoff-Love shell structures constitute an important category of thin
shells, their main benefit being that the underlying formulation is purely
displacement-based. The latter comes in the price that the variational
index of the corresponding weak form raises to two, in other words at least
C 1-continuous functions for the discretization are needed, see in Başar
et al. [1]. Isogeometric analysis is then perfectly suited for the numerical ap-
proximation of such problems as the underlying NURBS basis functions are
typically smooth. The underlying CAD geometry typically comprises mul-
tiple trimmed patches, see Chap. 3, and thus the continuity of the solution
across neighbouring patches needs to be addressed. Moreover, parametric
singularities and locations with C 0-continuity (e.g. kinks in the geome-
try) need to be also addressed. The Penalty and the Lagrange Multipliers
methods are chosen for the multipatch coupling following Apostolatos
et al. [40]. Then, a series of benchmark examples are used and the NREL
Phase VI wind turbine with two flexible blades, see in Simms et al. [7], is
chosen for demonstrating the extension of the proposed methodology in
industrial scale applications.
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Figure 5.1: Problem placement: Domain decomposition of the
shell’s surface.

5.1 Theory

The initial Boundary Value Problem (iBVP) and the corresponding weak
form of equilibrium for the Kirchhoff-Love shell problem is discussed
in Sec. 2.3.2 whereas IGA on multipatches is demonstrated in Sec. 3.3.
Therefore, this chapter discusses only the extensions of the weak forms and
the corresponding discrete equation systems arising from the application
of the Penalty and the Lagrange Multipliers methods for the multipatch
coupling for this type of problems.

5.1.1 Problem placement

Herein Ω represents a flexible surface whose mechanical behaviour is
governed by the Kirchhoff-Love shell theory, see Sec. 2.3.2. Assuming the
decomposition of Ω defined in Eqs. (3.7), iBVP in Eqs. (2.42) holds at each
patch Ω(i ). Therefore, also the rotation field in Eq. (2.40) needs to be con-
tinuous across the neighbouring patches Ω(i ) and Ω( j ) in addition to the
displacement continuity in Eq. (3.8a), that is,

ω(i )+ω( j ) = 0 , (5.1)

along γ(i , j )
i for all (i , j ) ∈ I. It is important to note that the rotation conti-

nuity condition in Eq. (5.1) implies that the interface tangent and normal
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to boundaries ∂ Ω(i ) ∩γ(i , j )
i and ∂ Ω( j ) ∩γ(i , j )

i vectors in Eqs. (2.3.2), namely

ê(i )n , ê(i )t and ê( j )n , ê( j )t , respectively, have opposite to each other directions.
Evidently, the interface normal and the tangent vectors to the interface
boundaries from the neighbouring patches in industrial CAD geometries
are not necessarily aligned since the physical images of the interface bound-
aries are not necessarily identical, see Sec. 3.2.2. However, this causes no
problem to the proposed methodology as it is shown in Breitenberger et al.
[6]where ‘‘dirty’’ CAD geometries are successfully dealt with. The afore-
mentioned problem is depicted in Fig. 5.1 along with the corresponding
Dirichlet and Neumann boundary conditions. In the sequel, the interface
rotation jump is denoted by χ̃ , that is,ω(i )+ω( j ) = χ̃ (i , j ) = χ̃ |

γ
(i , j )
i

, similar to

the displacement jump defined in Sec. 3.3.

5.1.2 Penalty method

The weak form of the Penalty method defined in Eq. (3.15) is extended by an
additional Penalty term with associated Penalty parameter α̃ : γi→R?+ and
the corresponding weak form of equilibrium in Eq. (2.45) for the Kirchhoff-
Love shell analysis, becomes: Find the displacement field d ∈V for each
time instance t ∈Twith χ̂ , χ̃ ∈L2(γi) such that,




δd,ρh̄ d̈
�

0,Ωd
+



δd, c h̄ ḋ
�

0,Ωd
+

a (δd, d) +



δχ̂ , α̂ χ̂
�

0,γi
+



δχ̃ , α̃ χ̃
�

0,γi
= l (δd) ,

(5.2)

for all δd ∈V with δχ̂ ,δχ̃ ∈L2(γi). In this way, the corresponding discrete
equation system with Penalty (Eq. (3.16)) becomes,











K (1)d + Ĉ (1)α̂ + C̃ (1)α̃ · · · Ĉ (1,ns)
α̂ + C̃ (1,ns)

α̃

...
...

...

Ĉ (ns,1)
α̂ + C̃ (ns,1)

α̃ · · · K (ns)
d + Ĉ (ns)

α̂ + C̃ (ns)
α̃











∆n̂ ,î











d̂(1)

...

d̂(ns)











=











R (1)d + R̂ (1)α̂ + R̃ (1)α̃
...

R (ns)
d + R̂ (ns)

α̂ + R̃ (ns)
α̃











,

(5.3)
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where α̃(i , j ) = α̃|
γ
(i , j )
i

. Matrices C̃ (i )α̃ ,C̃ (i , j )
α̃ and vectors R̃ (i )α̃ are given similar

to Eqs. (3.17), namely,

C̃ (i )α̃ (k ,r ) =
ns
∑

j=1, j 6=i

­

ω(i )
�

φ̄
(i )
k

�

, α̃(i , j )ω(i )
�

φ̄
(i )
r

�

·

0,γ(i , j )
i

, (5.4a)

C̃ (i , j )
α̃ (k ,r ) =

­

ω(i )
�

φ̄
(i )
k

�

, α̃(i , j )ω( j )
�

φ̄
( j )
r

�

·

0,γ(i , j )
i

, (5.4b)

R̃ (i )α̃ = C̃ (i )α̃ d̂(i )
n̂ ,î
+

ns
∑

j=1, j 6=i

C̃ (i , j )
α̃ d̂( j )

n̂ ,î
. (5.4c)

This straightforward extension of weak form in Eq. (3.16) to account for the
continuity requirements within Kirchhoff-Love shell analysis proves highly
beneficial since the original problem remains coercive provided that not
too large values for the Penalty parameters are chosen. Herein, the Penalty
parameters α̂ and α̃ are chosen as a scaling of the matrix norms ‖Dm‖F and
‖Db‖F corresponding to the material matrices for the membrane and the
bending stiffness of the Kirchhoff-Love shell, respectively (see Appx. A).

5.1.3 Lagrange Multipliers method

The application of the Lagrange Multipliers method for the continuity en-
forcement in isogeometric Kirchhoff-Love shell analysis on multipatches is
herein performed using an additional Lagrange Multipliers field µ across
the interface boundary γi. In this way, weak form in Eq. (3.18) combined
with the weak form of equilibrium of the Kirchhoff-Love shell in Eq. (2.45)
results in: Find d ∈V with χ̂ , χ̃ ∈L2(γi) and λ,µ ∈L2(γi) such that,




δd,ρh̄ d̈
�

0,Ωd
+



δd, c h̄ ḋ
�

0,Ωd
+a (δd, d)

+



δχ̂ ,λ
�

0,γi
+



δλ, χ̂
�

0,γi
+



δχ̃ ,µ
�

0,γi
+



δµ , χ̃
�

0,γi
= l (δd) ,

(5.5)

for all δd ∈ V with δχ̂ ,δχ̃ ∈ L2(γi) and for all δλ,δµ ∈ L2(γi). Let Ṽh ⊂
L2(γi) be the finite dimensional space for Lagrange Multipliers field µ .
Similar to space V̂h defined in Sec. 3.3.4, space Ṽh is also constructed as

Ṽh =
∏

(i , j )∈I Ṽ
(i , j )
h where µ(i , j ) = µ |(i , j )

γi
∈ Ṽ (i , j )

h and moreover the choice

V̂h, Ṽh ⊂ P0

�

γ
(i , j )
i

�

is herein employed, P0

�

γ
(i , j )
i

�

being the space of all
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constant vector functions along γ(i , j )
i . In this way, given a basis of each

Ṽ (i , j )
h , namely, φ̃

(i , j )
k with k = 1, . . . , dim Ṽ (i , j )

h one has,

µ=
∑

(i , j )∈I

dimṼ (i , j )
h

∑

k=1

φ̃
(i , j )
k µ̂

(i , j )
k , (5.6)

µ̂
(i , j )
k being the DOFs of the additional Lagrange Multipliers discretiza-

tion. It is important to note that spaces V̂ (i , j )
h and Ṽ (i , j )

h are not necessarily
the same but may differ thus allowing for different Lagrange Multipliers
discretizations for λ and µ . In this way, the discrete equation system in
Eq. (3.19) becomes,
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�

ΛT d̂n̂ ,î
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


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.

(5.7)

The additional matrices and vectors associated with the new Lagrange
Multipliers field µ in Eq. (5.7) are then given in a similar to Eqs. (3.21),
namely,

M=













... M(1,ns) ...

· · ·
... · · ·

...
M(ns,1) ...













, (5.8a)
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µ̂=
h

· · · µ̂(1,ns) · · ·
iT

, (5.8b)

once more µ̂ (i , j )
n̂ ,î

standing for the complete vector of Lagrange Multipliers

DOFs for µ along γ(i , j )
i at time step tn̂ and nonlinear iteration î . Moreover,

submatrices M(i , j ) in Eq. (5.8a) have entries,

M(i , j )
(k ,r ) =

­

φ̃
(i , j )
k ,ω

�

φ̄
(i )
r

�

·

0,γ(i , j )
i

, (5.9)

for all pairs (i , j ) ∈ I, similar to Eq. (3.22). As aforementioned, a constant
discontinuous Lagrange Multipliers discretization is chosen for both λ
and µ . In addition, field λ|

γ
(i , j )
i

is discretized using as many elements n̂ (i , j )

as the coarsest of the neighbouring patches Ω(i ) and Ω( j ) has whereas field
µ |

γ
(i , j )
i

is discretized with ñ (i , j ) = dn̂ (i , j )/2e number of elements.

5.2 Numerical examples

In the following sections, three benchmark examples and one practically
relevant case are chosen as demonstration. For the benchmark examples,
one geometrically linear and two geometrically nonlinear problems are
considered where the Penalty and the Lagrange Multipliers methods are
systematically evaluated and compared. Lastly, the Penalty method is
chosen for its application to geometrically linear and modal analysis of
the NREL phase VI wind turbine with flexible blades, see in Simms et al.
[7], due to its modularity and robustness especially needed for large scale
engineering problems.

5.2.1 Scordelis-Lo roof

The first chosen benchmark example is that of the geometrically linear
Scordelis-Lo roof, studied firstly in Scordelis et al. [79]. For this example,
the Young’s modulus, the Poisson ratio and the thickness are chosen as
E = 4.32×105 Pa, ν= 0 and h̄ = 25 cm, respectively. The geometry is a part
of a cylinder whose axis lies along the X1-coordinate with length L̄ = 50
m whereas its radius and arc equals R̄ = 25 m and φ̄ = 4π/9, respectively.
The structure is supported at X1 =±L̄/2 with diaphragms, meaning that
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Figure 5.2: Scordelis-Lo roof: Problem placement.

(a) Deformation scaled by 7. (b) 2-norm of the rotation field ‖ω‖2.

9
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Figure 5.3: Scordelis-Lo roof: Postprocessing (Lagrange
Multipliers). Setting corresponding to refinement level ir = 5.

Patches Ω(1), Ω(2), Ω(3), Ω(4) modelled using 49, 132, 48 and 108
elements, respectively, whereas pairs Ω(1),Ω(3) and Ω(2),Ω(4) have

biquartic and bicubic bases, respectively.

the motion of the shell is confined in X2- and X3-directions. Since no sym-
metry reduction is herein employed, the original geometry is treated as
a whole, while symmetrically dividing it into four patches and fixing cor-
ner with coordinates (−L̄/2,−R̄ sin(φ̄/2), R̄ cos(φ̄/2)) to prevent rigid body
movements. Additionally, a uniform constant dead load b= 0.09 e3 KPa is
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Figure 5.4: Scordelis-Lo roof: Convergence study. Relative
displacement error in the L 2-norm at each subdomain against the
sum of the minimum element areas for the multipatch geometry.

applied over the whole surface of the structure, see Fig. 5.2. Subsequently,
a convergence study for the displacement, the force and moment field is
performed, where as reference solution a single patch solution using 2400
bidecic basis is used. Two polynomial order settings are herein considered:
A low order setting where patch pairs Ω(1), Ω(3) and Ω(2), Ω(4) are modelled
using bicubic and biquadratic bases, respectively, and a high order set-
ting within which patch pairs Ω(1), Ω(3) and Ω(2), Ω(4) are modelled using
biquartic and bicubic bases, respectively. Regarding the h-refinement, see
Sec. 3.1.3, patches Ω(1), Ω(2), Ω(3) and Ω(4) are refined using d4ir/3e × d4ir/3e,
d7ir/4+ 2e × d7ir/4+ 3e, d6ir/4e × d6ir/4− 2e and d8ir/5+ 4e × d8ir/5+ 1e ele-
ments in θ1- and in θ2-parametric directions, respectively. The scaling
of the Penalty parameters is chosen constant throughout the refinement
as 103 and 0.25× 103 for α̂ and α̃, respectively. The scaled deformation
and the contour of the rotation field ω is depicted in Fig. 5.3. Since the
Penalty parameters are chosen constant, the Penalty method levels off
at a given accuracy level in all convergence graphs associated with the
high order setting, see Figs. 5.4 and 5.5. On the contrary, the Lagrange
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(c) Ω(1), Ω(3) bicubic and Ω(2), Ω(4) biquadratic
bases.
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Figure 5.5: Scordelis-Lo roof: Convergence study. Relative error
in the force and moment tensors at each subdomain against the
sum of the minimum element areas for the multipatch geometry.

Multipliers method demonstrates uniform convergence to the solution
since the Lagrange Multipliers fields are refined also uniformly following
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Figure 5.6: Slit annular plate subject to tip lifting line force:
Problem placement.
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Figure 5.7: Slit annular plate subject to tip lifting line force:
Postprocessing (Penalty). Results corresponding to the fine setting.

the rule described in Sec. 5.1.3.

5.2.2 Slit annular plate subject to tip lifting line force

In this section, the geometrically nonlinear benchmark problem of a slit
annular plate subject to tip lifting force is studied, see in Sze et al. [80].
The Young’s modulus and the Poisson ratio are accordingly chosen as
E = 21×103 Pa and ν= 0, respectively. The inner radius, the outer radius,
the thickness of the shell and the load magnitude are chosen as R̄i = 6 m,
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Figure 5.8: Slit annular plate subject to tip lifting line force:
Load-displacement curves.

R̄o = 10 m, h̄ = 3 cm, and p̄= 8×10−1 e3 [N/m], respectively. The problem
is subsequently decomposed into four patches, see Fig. 5.6. Two settings
are chosen for this case: The coarse setting for which patches Ω(1), Ω(2),
Ω(3) and Ω(4) are parametrized using thirty-six, eighteen, twenty-eight and
ten elements, respectively, all having C 1-continuous biquadratic bases.
On the other hand, the fine setting consists in parametrizing patches Ω(1),
Ω(2), Ω(3) and Ω(4) with two hundred-nine, one-hundred five, two hundred
seventy-three and one hundred fifty-three elements, respectively, where
patches Ω(1) and Ω(3) have a C 1-continuous biquadratic basis and patches
Ω(2) and Ω(4), a C 2-continuous bicubic basis. The scaling of the Penalty
parameters is chosen as 102 and 103 for α̂ and α̃, respectively. For the solu-
tion of the nonlinear problem, sixty-one load steps are used with Newton-
Raphson tolerance equal to 10−6 in the residual forces. The ultimate shell’s
deformation and the distribution of the physical moment component
m̄ 22 =m 22‖A 2‖2

2 across the shell’s surface for the fine setting and when us-
ing the Penalty method is depicted in Fig. 5.7. Lastly, the load-displacement
curves corresponding to the d 0

3 component of the displacements at points
with current position vectors xa and xb (see Fig. 5.7(a)) for both the coarse
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Figure 5.9: Cantilever subjected to end moment: Problem
placement.

and the fine settings against the reference solution provided in Sze et al.
[80] are depicted in Fig. 5.8. It is worth mentioning that the reference
solution corresponds to a Reissner-Mindlin shell formulation and there-
fore the reference load-displacement curves cannot be identical with the
ones provided by the isogeometric analysis on multipatch surfaces for a
Kirchhoff-Love shell. However, the problem considers a relatively thin
structure and thus the results from both theories are very close to each
other when the fine setting is considered, as expected.

5.2.3 Cantilever subjected to end moment

The second geometrically nonlinear problem herein considered is that
of a cantilever subject to an end moment. The material properties of the
cantilever, that is, the Young’s modulus and Poisson ratio are equal to
E = 1.2×103 Pa and ν= 0, respectively. Accordingly, the length, the width
and thickness of the cantilever are chosen as L̄1 = 12 m, L̄2 = 1 m and h̄ = 10
cm, respectively. The end bending moment is chosen as r̄=−(2πE Ii/L̄1)e2,
where Ii = L̄2L̄ 3

1/12 is the cantilever’s moment of inertia. It is known that
under this loading, the cantilever bends into a circle of radius R̄ = E Ii/‖r‖2,
see in Sze et al. [80] and Kiendl [81]. The computational domain is de-
composed into three patches, see Fig. 5.9. These patches are neighbour-
ing through three interfaces which are chosen in this example curved.
Quadratic Bézier curves (see in Piegl et al. [67]) are chosen for the geomet-
ric description of interfaces γ(1,2)

i and γ(1,3)
i whereas a cubic Bézier curve is
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X m

(a) Ultimate cantilever’s deformation.

(b) The 2-norm of the ultimate displacement field ‖d‖2.
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Figure 5.10: Cantilever subjected to end moment:
Postprocessing (Lagrange Multipliers). Results corresponding to

the fine setting.

chosen for the geometric description of the interface γ(2,3)
i . Important is to

note that within this decomposition of the cantilever, patch Ω(1) attains a
parametric singularity on its boundary point γ(1,2)

i ∩γ(1,3)
i as its rectangular

parametric space is degenerated into a triangle in the geometric space, see
Sec. 3.2 for the geometric description of NURBS patches. For this numeri-
cal example the tolerance in the 2-norm of the residual forces within the
Newton-Raphson scheme is chosen as 10−5 and twenty load steps are em-
ployed. The scaling of the Penalty parameters α̂ and α̃ is chosen as 102 and
10−2, respectively. As in the previous examples, one coarse and one fine set-
ting are considered: The coarse setting consists of parametrizing patches
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Figure 5.11: Cantilever subjected to end moment:
Load-displacement curves.

Ω(1),Ω(2) andΩ(3) using four, ten and twenty-one elements, respectively, all
attaining C 2-continuous bicubic polynomial bases. Concerning the fine
setting, patches Ω(1), Ω(2) and Ω(3) are parametrized with sixteen, twenty-
four and fifty-five elements, respectively, all attaining C 3-continuous bi-
quartic polynomial bases. The ultimate cantilever’s deformation and the
ultimate displacement field in the 2-norm using the Lagrange Multipliers
method and corresponding to the fine setting is shown in Fig. 5.10. As
expected, the cantilever is bent into a circle of the expected radius while
both the Penalty and the Lagrange Multipliers methods are proven to
handle pointwise singularities even when these appear on the interface
γi. Subsequently, the load-displacement curves for the d 0

3 |X m
and d 0

1 |X m

components of the displacement field of the mid-point at the tip of the
cantilever X m along ∂ Ω(3), see Fig. 5.10(a), are depicted in Fig. 5.11 for both
the Penalty and the Lagrange Multipliers methods. The results obtained
using both methods are highly accurate as shown in the corresponding
load-displacement curves where the curves overlap with the reference
solution proposed in Sze et al. [80] for the fine setting.
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5.2 Numerical examples

(a) Picture of the NREL phase VI wind tur-
bine Simms et al. [7].

flexible blades
rotor hub

rotor blade hubs
stator nacelle

stator tower

X3

X2
X1

blank

blank
(b) Trimmed multipatch blade geometry.

Figure 5.12: NREL phase VI wind turbine: Problem setting.

5.2.4 NREL phase VI wind turbine with flexible blades

In this section, the NREL phase VI wind turbine with flexible blades (Simms
et al. [7]) is employed as demonstration of isogeometric analysis on mul-
tipatch surfaces in industrial scale applications, see Fig. 5.12. A picture
of the actual turbine can be seen in Fig. 5.12(a). The corresponding CAD
model consisting of rigid parts and the two flexible blades whose stiff-
ness is enhanced using two longitudinal spars along the longitudinal trim-
ming curves on the blades’ surfaces, is shown in Fig. 5.12(b). The Penalty
method is accordingly chosen for this application. The Lagrange Multipli-
ers method is not herein considered because its discrete equation system
is enlarged by the Lagrange Multipliers DOFs and because of its saddle
point nature, see in Eq. (5.7), which render the method inapplicable in its
original form. However, an alternative form of the Lagrange Multipliers
method for Kirchhoff-Love shells proposed in Teschemacher et al. [16] can
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5 Isogeometric Kirchhoff-Love Shell Analysis on Multipatches

X3

X2
X1

(a) Standard finite element mesh.

X3

X2
X1

(b) B-rep computational model.

Figure 5.13: NREL phase VI wind turbine: Standard finite
element and IGA on multipatch surfaces computational models

for the flexible blades.

be used for large scale engineering applications instead.

The original computational model in Sicklinger et al. [82] involves a com-
posite material model with varying thickness by analyzing the data pro-
vided in Simms et al. [7]. Herein a simplified model is used with a Saint-
Venant Kirchhoff material model. The homogenized Young’s modulus,
density and thickness of the flexible blades are obtained by a calibration us-
ing a geometrically linear static and a modal analysis against the maximum
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5.2 Numerical examples

(a) Right blade.

tip patches

spar patch

(b) Right blade exploded.

Figure 5.14: NREL phase VI wind turbine: Right blade of the
NREL Phase VI wind turbine, both complete and decomposed into

its underlying trimmed patches.

displacement and the first eigenfrequency, respectively, computed in Sick-
linger et al. [82]. In this way, the Young’s modulus, the density and the thick-
ness of the flexible blades are assumed to be E = 6×1010 Pa,ρ = 1.515×103

Kg/m3 and h̄ = 7 mm, respectively. The Poisson ratio is then chosen as
ν = 0.2. Regarding the static analysis, the flexible blades are subject to
their self-weight, namely, b=−ρh̄ e3. The results of IGA on multipatches
for this example are compared with the results obtained using a standard
finite element discretization of the flexible blades, see Fig. 5.13. Accord-
ingy, the FEM model consists of 48630 triangular elements (Fig. 5.13(a))
based on a shell model with Reissner-Mindlin kinematics within software
Carat++. Then, the corresponding h-refined multipatch NURBS compu-
tational model of the flexible blades is shown in Fig. 5.13(b). Subsequently,
the NURBS computational model of the right blade is shown both intact
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X1

X3

0

2.9191e-03
‖d‖2 [m]

(a) Contour of the 2-norm of the displacement field ‖d‖2 (FEM).

X1

X3

1.1684e-11

3.0350e-03
‖d‖2 [m]

(b) Contour of the 2-norm of the displacement field ‖d‖2 (IGA on multipatches with Penalty).

Figure 5.15: NREL phase VI wind turbine: Contour of the
2-norm of the displacement fields under the self-weight of the
wind turbine blades for both the FEM and IGA models over the

scaled by 200 current configuration.

and decomposed into its underlying trimmed patches in Fig. 5.14 where
the geometric complexity and the large number of the underlying trim-
med NURBS multipatches comprising the geometry is highlighted. It is
worth mentioning that the spars and the tip of the NURBS computational
model are connected to the rest of the blades’ skin with a C 0-parametric
continuity forming geometric kinks, thus adding another complexity to
the NURBS multipatch model. Each blade consists of 37 trimmed patches
with 170 interface boundaries of highly diverse sizes and parametrizations.
Moreover, since the NURBS patches connecting the blades to the rigid ro-
tor blade hubs are heavily trimmed, no strong boundary conditions can be
applied. Therefore, weak application of the Dirichlet boundary conditions
along 12 boundaries has to be used in this case, which can be achieved
by enhancing weak form in Eq. (5.2) with boundary terms as shown in
Sec. 4.1.2 for the membrane problem. The rule for the choice of the addi-
tional Penalty parameter ᾱ follows the aforementioned rule for α̂discussed
in Sec. 5.1.2. A rotational Dirichlet boundary condition could also be ap-
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X2

X1

X3

(a) 1st mode shape (FEM) corresponding to eigen-
frequency f1 = 8.876031 Hz (1st flapwise).

X2

X1

X3

(b) 1st mode shape (IGA) corresponding to eigen-
frequency f h

1 = 8.799294 Hz (1st flapwise).

X2

X1

X3

(c) 2nd mode shape (FEM) corresponding to eigen-
frequency f2 = 12.17649 Hz (1st edgewise).

X2

X1

X3

(d) 2nd mode shape (IGA) corresponding to eigen-
frequency f h

2 = 11.91276 Hz (1st edgewise).

X2

X1

X3

(e) 3rd mode shape (FEM) corresponding to eigen-
frequency f3 = 41.42258 Hz (2nd flapwise).

X2

X1

X3

(f) 3rd mode shape (IGA) corresponding to eigen-
frequency f h

3 = 41.17361 Hz (2nd flapwise).

Figure 5.16: NREL phase VI wind turbine: Three first mode
shapes with their corresponding eigenfrequencies for both the

FEM and IGA on multipatches with Penalty models.

plied in the same way as the displacement Dirichlet boundary condition
using another Penalty term in Eq. (5.2) if needed, see also in Breitenberger
et al. [6]. The scaling associated to the Penalty parameters is then chosen
as the inverse of the minimum element edge size along each interface and
Dirichlet boundary (see Sec. 3.3.6) for α̂, α̃ and ᾱ, respectively.
The contour of the 2-norm of the displacement field ‖d‖2 across the blades
in the current configuration due to self-weight for both the standard FEM
and IGA on multipatches is shown in Fig. 5.15 demonstrating excellent
accordance of the results. Moreover, an eigenfrequency analysis for both
models is performed (Eq. (2.68)) and the first three eigenfrequencies of
both the standard FEM and IGA models are shown in Fig. 5.16 demonstrat-
ing an excellent accordance of the results also in structural dynamics.
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5 Isogeometric Kirchhoff-Love Shell Analysis on Multipatches

5.3 Concluding remarks

This chapter demonstrates the extension of the isogeometric Kirchhoff-
Love shell analysis firstly introduced in Kiendl et al. [47] to multipatches
using the Penalty and the Lagrange Multipliers methods. The application
of the proposed methodology in a real world engineering example, that
of the NREL phase VI wind turbine with flexible blades, shows the rel-
evance of the proposed methodology to geometries stemming directly
from CAD where the Penalty method can be beneficially used for both
the continuity enforcement of the solution across the multipatches and
the application of weak Dirichlet boundary conditions, see also in Breiten-
berger et al. [6]. In addition, the handling of parametric singularities and
C 0-continuities can be treated without additional effort in the frame of the
proposed methodology, see Secs. 5.2.3 and 5.2.4, respectively. The results
suggest that isogeometric analysis on multipatches for Kirchhoff-Love
shell analysis naturally extends to trimmed multipatches accounting for
geometries stemming directly CAD also for real world engineering models.
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Chapter 6

Fluid-Structure Interaction using
the Isogeometric Mortar Method

This chapter presents the extension of Fluid-Structure Interaction (FSI)
to account for thin-walled structures of membrane and Kirchhoff-Love
shell type in isogeometric analysis on multipatches, see Chaps. 4 and 5
respectively. Firstly, the isogeometric mortar-based mapping method is
introduced and elaborated. This is essential as fields need to be trans-
formed between a trimmed multipatch NURBS surface representing the
structural FSI interface and a low order surface discretization represent-
ing the fluid FSI interface, as the fluid iBVP is herein spatially discretized
by means of the Finite Volume Method (FVM), see also in Bazilevs et al.
[33]. Subsequently, the Navier-Stokes equations are briefly discussed in
an Arbitrary Lagrangian-Eulerian (ALE) description of the motion and the
partitioned FSI approach is introduced. Then, the lid-driven cavity FSI
benchmark is used for the demonstration and the validation of the method-
ology. Lastly, the fluid-structure interaction of the inflatable hangar and
the NREL phase VI wind turbine with flexible blades in numerical wind
tunnels is shown, thus extending isogeometric analysis on multipatch
surfaces to multiphysics problems of fluid-structure interaction type.
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6 Fluid-Structure Interaction using the Isogeometric Mortar Method

6.1 Isogeometric mortar-based mapping for surfaces

In this section the isogeometric mortar-based mapping method is de-
scribed where fields are transformed between a low order faceted dis-
cretization and a NURBS multipatch description of a surface. Additionally,
the NURBS multipatch description of the surface can be used as a me-
diator Exact Coupling Layer (ECL). The ECL can be used to smooth the
transformed fields between two low order representations of the FSI in-
terface and it is represented using the exact CAD model of the common
interface. In the sequel of this chapter it is assumed that Ω and Ωh are the
exact surface representation stemming from CAD as described in Chap. 3
and a low order faceted representation of the surface with a finite number
of C 0-continuous low order elements, respectively.

6.1.1 Theory

This section presents the problem placement along with the weak for-
mulation and the discrete equation system governing the isogeometric
mortar-based mapping method. All formulas are provided for the spe-
cial case where fields are transformed between a low order discretized
and a multipatch NURBS surface, however the following principles might
well apply for any mortar-based mapping method. Accordingly, let Ti ,
i = 1, . . . , ne ∈ N stand for the set of standard low order finite elements
in Ωh. Let υh ∈ Υ h be a field defined isoparametrically on the low order
discretized surface Ωh where,

Υ h =
§

υh ∈L2
�

Ωh

�

�

�

�υh
|Ti
∈Pα

�

Ti

�

for all Ti ∈Ωh

ª

, (6.1)

and wherePα

�

Ti

�

stands for the linear (α= 1) or bilinear (α= 2) polynomial
vector-valued functions in each finite element Ti . Let also Ω(i ), i = 1, . . . , ns

be a non-overlapping decomposition of Ω as defined in Eqs. (3.7). The
goal is to find that fieldυ ∈L2

�

Ωd

�

which is the closest toυh in the L2(Ωd)-
space, namely,

υ= arg min
υ∈L2(Ωd)

‖υh−υ‖0,Ωd
, (6.2)

where field υ is discontinuous along the interface γi and where Ωd is de-
fined in Eq. (3.7b). The problem in Eq. (6.2) might herein also be subject
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Ωh
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Ω(nd)

γ(1,...)
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γ
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i

Γd

Meshing CAD representation

Mapping

Figure 6.1: Problem placement: Low order FEM discretization
and CAD representation of a surface Ω.

to the following interface and boundary conditions,

υ= 0 on Γd , (6.3a)

υ(i )−υ( j ) = 0 on each γ(i , j )
i , (6.3b)

ω(i )t +ω
( j )
t = 0 on each γ(i , j )

i , (6.3c)

where υ(i ) = υ|Ω(i ) and ω(i )t =ωt

�

υ(i )
�

using only the rotation around the

tangent to each boundary γ(i , j )
i vector following the definition introduced

in Eq. (2.41b), see Fig. 6.1. Let χ̂ and χ̃ be the interface jump on υ and its
rotation around the tangent to the interface vectorωt(υ), respectively, see
also Secs. 3.3.1 and 5.1.1. With the aforementioned conditions in Eqs. (6.3)
one can restrict the transformed field along Γd while simultaneously main-
taining a solution in H1

�

γi

�

. The solution of problem in Eq. (6.2) subject to
the interface and boundary conditions in Eqs. (6.3) can be obtained by the
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6 Fluid-Structure Interaction using the Isogeometric Mortar Method

minimization of the augmented with Penalty terms functional L : Υ →R,

L (υ) =
1

2

�

‖υh−υ‖2
0,Ωd
+ ‖α̂χ̂‖2

0,γi
+ ‖α̃χ̃‖2

0,γi
+ ‖ᾱυ‖2

0,Γd

�

, (6.4)

where space Υ of the admissible variations herein reads,

Υ =

(

υ ∈
ns
∏

i=1

R
�

Ω(i )
�

⊂L2
�

Ωd

�

�

�

�χ̂ , χ̃ ∈L2
�

γi

�

and υ ∈L2
�

Γd

�

)

, (6.5)

since fieldυ is isogeometrically defined overΩd and where R
�

Ω(i )
�

stands
for the space of all rational vector-valued polynomials in patch Ω(i ) for
which the NURBS basis functions from the geometric parametrization of
Ωd form a basis, see also Sec. 3.3.2. In this way, the corresponding weak
form of the aforementioned problem reads: Given a υh ∈ Υ h, find a υ ∈ Υ ,
such that,

a (δυ,υ) = l (δυ) , for all δυ ∈ Υ . (6.6)

The bilinear form a : Υ × Υ → R and the linear functional l : Υ → R in
Eq. (6.6) are defined as follows,

a (δυ,υ) := 〈δυ,υ〉0,Ωd
+



δχ̂ , α̂χ̂
�

0,γi
+



δχ̃ , α̃χ̃
�

0,γi
+

〈δυ, ᾱυ〉0,Γd
,

(6.7a)

l (δυ) :=
¬

δυ ,υh
¶

0,Ωd

. (6.7b)

The weak form in Eq. (6.6) has a unique solution since bilinear form in
Eq. (6.7a) is coercive and continuous whereas functional in Eq. (6.7b) is
linear in Υ , see Thm. 2.2. However, the quality of the solution depends on
the choice of the Penalty parameters as typical for the Penalty methods,
see also in Babuška [9]. Let the subdomains Ω(i ) be represented by a set of
trimmed NURBS patches within a surface CAD model, see Sec. 3.2.2. In this
way, spaces Υ h and Υ are by construction finite dimensional and therefore
given the vector-valued standard finite element and NURBS basis func-

tions at each patchΩ(i ),φh
i , i = 1, . . . , dimΥ h and φ̄

(i )
j , j = 1, . . . , dimR

�

Ω(i )
�

,
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6.1 Isogeometric mortar-based mapping for surfaces

respectively, one has,

υh =
dimΥ h
∑

i=1

φh
i υ̂

h
i , (6.8a)

υ=
ns
∑

i=1

dimR(Ω(i ))
∑

j=1

φ̄
(i )
j υ̂

(i )
j , (6.8b)

where υ̂h
j and υ̂(i )j stand for the DOFs of the finite element and the isoge-

ometric discretization within each patch Ω(i ), respectively. These can be
grouped into vectors similar to Eq. (3.13a), that is,

υ̂h =
h

υ̂h
1 · · · υ̂h

dimΥ h

iT
, (6.9a)

υ̂(i ) =
h

υ̂(i )1 · · · υ̂(i )dimΥ

iT
. (6.9b)

Accordingly, the discrete equation system corresponding to the weak form
in Eq. (6.6) reads,

�

C rr+ C α̂,α̃,ᾱ

�

υ̂= C rnυ̂
h , (6.10)

where,

C rr =











C (1)rr · · · 0
...

...
...

0 · · · C (ns)
rr











, (6.11a)

C rn =











C (1)rn · · · 0
...

...
...

0 · · · C (ns)
rn











, (6.11b)

C α̂,α̃,ᾱ =











Ĉ (1)α̂ + C̃ (1)α̃ + C̄ (1)ᾱ · · · Ĉ (1,ns)
α̂ + C̃ (1,ns)

α̃

...
...

...

Ĉ (ns,1)
α̂ + C̃ (ns,1)

α̃ · · · Ĉ (ns)
α̂ + C̃ (ns)

α̃ + C̄ (ns)
ᾱ











, (6.11c)

υ̂=
h

υ̂(1) · · · υ̂(ns)
iT

. (6.11d)
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Penalty matrices Ĉ (i )α̂ and Ĉ (i , j )
α̂ are defined as per Eqs. (3.17a) and (3.17b),

respectively, in Sec. 3.3.3, and are used for the imposition of the field’s

continuity across γ(i , j )
i . On the other hand, Penalty matrix C̄ (i )ᾱ is defined in

Eq. (4.4a), see Sec. 4.1.2, and is used for the imposition of a homogeneous
boundary condition along the Dirichlet boundary Γ (i )d . Moreover, Penalty

matrices C̃ (i )α̃ , C̃ (i , j )
α̃ are given similar to Eqs. (5.4a) and (5.4b), respectively,

where instead of the total rotation of fieldω(υ), the rotation around the
tangent to boundary γi, namely ωt(υ) defined in Eq. (2.41b), is herein
considered. These can be used for the imposition of the rotation continuity

acrossγ(i , j )
i and are herein only used when the displacement is transformed

onto the multipatch geometry. Additionally, the entries of matrices C (i )rr ,
C (i )rn are given by,

C (i )rr ( j ,k ) =
D

φ̄
(i )
j ,φ̄

(i )
k

E

0,Ω(i )
, (6.12a)

C (i )rn (j,k) =
D

φ̄
(i )
j ,φh

k

E

0,Ω(i )
, (6.12b)

The matrix containing the Penalty terms, namely, C α̂,α̃,ᾱ in Eq. (6.11c),
is optional and can be selectively used. In case some of the correspond-
ing Penalty contributions are not considered, the corresponding Penalty
parameter at the subscript of C α̂,α̃,ᾱ is replaced by zero. Its application de-
pends on the numerical example, see Sec. 6.4. As aforementioned, problem
in Eq. (6.10) is well defined provided that the corresponding Penalty pa-
rameters are carefully chosen. Herein, the following choice of the Penalty
parameters is made,

α̂(i , j ) = p̂ (i , j )
max

�

h (i , j )
i

�−1
(6.13a)

α̃(i , j ) = α̂(i , j ) ‖B t‖−1
F , (6.13b)

ᾱ(i ) = p̂ (i )max

�

h (i )d

�−1
, (6.13c)

where p̂ (i , j )
max stands for the maximum polynomial order of the NURBS

parametrizations S (i ), S ( j ) for patches Ω(i ) and Ω( j ), respectively. Similarly,
p̂ (i )max stands for the maximum polynomial order of the NURBS parametriza-
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tion Ω(i ). Then, h (i , j )
i and h (i )d in Eqs. (6.13a) and (6.13c) are given by,

h (i , j )
i = min

s=1,...,n̄ (i )j −1

�

�

�

�

�

γ(i )j |
]θ̃ (i )j ,s ,θ̃

(i )
j ,s+1 [

�

�

�

�

�

, (6.14a)

h (i )d = min
s=1,...,n̂ (i )d −1

�

�

�

�

�

γ(i )d |
]θ̃ (i )d,s ,θ̃

(i )
d,s+1 [

�

�

�

�

�

, (6.14b)

respectively, where n̄ (i )j and n̂ (i )d stand for the number of intersections of

trimming curve γ(i , j )
i with the knot lines in patches Ω(i ), Ω( j ) and the num-

ber of intersections of trimming curve Γ (i )d with the knot lines in patchΩ(i ),

see Sec. 3.3.6. Curves γ(i )j and γ(i )d stand for the geometric representation of

trimming curves γ̂(i )j and γ̂(i )d , respectively, and the definitions of γ̂(i )j , γ̂(i )d ,

θ̃ (i )j ,s and θ̃ (i )d,s can be found in Sec. 3.3.6. Additionally, γ(i )d |
]θ̃ (i )d,s ,θ̃

(i )
d,s+1 [

, |γ(i )j | and

‖B t‖F stand for the restriction of the trimming curve γ(i )d in ]θ̃ (i )d,s , θ̃ (i )d,s+1[,

the length of curve γ(i )j and the matrix norm of the B-operator matrix of
the rotation fieldωt (see Appx. A), respectively. Thus, the Penalty parame-
ters for the enforcement of the field continuity constraints and the weak
Dirichlet boundary conditions are chosen as the inverse of the minimum
element edge sizes along the corresponding trimming curves whereas
for the enforcement of the interface rotation continuity of the field, the
corresponding Penalty parameter is scaled with the matrix norm of the
B-operator matrix associated with the rotation field.

For the mortar-based transformation of a field υ defined isogeometrically
on a multipatch NURBS surface to a field υh defined on a standard finite
element discretized surface, problem in Eq. (6.10) simply reverses, that is,

C nnυ̂
h = C nrυ̂ , (6.15)

where C nn is defined similar to C rr in Eq. (6.11a) with entries,

Cnn (i , j ) =
¬

φh
i ,φh

j

¶

0,Ωd

, (6.16)

and where C nr =
�

C rn

�T
, see in Eq. (6.11b). The fact that the variational

problem of the isogeometric mortar-based mapping method is well-posed
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Projection of the finite element mesh in the patch level

Ω(i )
Ω(i )h

X l

X j

X k

Figure 6.2: Realization: NURBS patch Ω(i ) and the part of the

finite element mesh Ω(i )h ⊂Ωh which has a projection on Ω(i ).

is reflected onto the fact that matrices C rr and C nn, are square, symmetric
and positive definite, see Eqs. (6.10) and (6.15), respectively.

6.1.2 Realization

In this section the technicalities and the implementational aspects of the
isogeometric mortar-based mapping method are discussed. As already
mentioned in Sec. 6.1.1, the isogeometric mortar-based mapping method
is used for the transformation of fields between a multipatch NURBS and
a low order discretized surface. Since the technical details for dealing
with surface multipatches in terms of IGA and the corresponding han-
dling of the interface conditions is discussed in Chap. 3, herein only one
NURBS surface patch and the corresponding part Ω(i )h ⊂ Ωh of the finite
element meshΩh which has a projection on Ω(i ) is considered, see Fig. 6.2.
The focus is then drawn on the evaluation of the integrals on Ω(i ), see
Eqs. (6.12a), (6.12b) and (6.16), respectively. Within this thesis, the exact
geometry Ω(i ) for each patch is chosen as the integration surface. Accord-
ingly, the finite element mesh is projected on the NURBS surface, by pro-
jecting each node X i , i = 1, . . . , nn ∈ N onto Ω(i ) through the nonlinear

map θ (i )j =
�

S (i )
�−1 �

X j

�

for all nodes in the finite element mesh using a
Newton-Raphson scheme. Consider the finite element X j - X k - X l in right
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Figure 6.3: Realization: Projection of Ω(i )h onto Ω(i ).

part of Fig. 6.2. Each of its nodes are projected ontoΩ(i ) to obtain the corre-
sponding parametric coordinates in the parametric space Ω̂(i ) of the patch.
Subsequently, a linear interpolation between the projected nodes in the
parametric space Ω̂(i ) is made in order to obtain the image of the finite
element in the parametric space of the patch, namely, θ (i )j -θ (i )k -θ (i )l , see left
part of Fig. 6.3. The latter linear approximation of the finite element edges
in the parametric space of the patch is a consistent approximation since
the projection error tends to zero as the element size gets smaller. Then,
the image of the finite element in the geometric space can be obtained
using the geometric transformation in Eq. (3.6), see right part of Fig. 6.3.

Typically, there exist finite elements which are partially projected inside
and partially outside the boundaries of the patch’s parametric space. To ob-
tain the parts of these elements which lie within the computational domain
of the patch, the corresponding finite element edges are clipped with the
patch boundary using an iterative bisection method. Accordingly, given a
finite element edge X n - X m whose vertex X n has a projection in patchΩ(i )

and whose other vertex X m has no projection onΩ(i ), a sequence of points
X i = (1−λi)X n +λi X m and X o = (1−λo)X n +λo X m , with λi,λo ∈ [0, 1], is
generated along edge X n - X m . Then, points X i have a projection X (i )i on
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X n
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X i
X o

X (i )i

Ω(i )h

Ω(i )

�

S (i )
�−1

Figure 6.4: Realization: Projection of a finite element edge onto
patch’s boundary.

patchΩ(i ) through the nonlinear map in Eq. (3.32), while points X o do not
have such a projection, see Fig. 6.4. Within each iteration the mid-point
X m =

�

X i+ X o

�

/2 is assigned to either X i or to X o depending on whether
or not it has a projection in patchΩ(i ). The aforementioned iterations carry
on until a user specified tolerance where in the converged state, point X m

is assumed to be the closest point of edge X n - X m on patch boundary of
Ω(i ). In this way, the part of the finite element edge with a projection within
patch’s computational domain is obtained.

The set of trimming curves γ(i )k , k = 1, . . . , n (i )t ∈Nwhich trim patch Ω(i ) is

subsequently linearized. For the linearization, p̂ (i )k +1 points equidistantly

placed in the parametric space γ̂(i )j of each trimming curve together with

the corresponding Greville Abscissae1 of the curve are chosen, where p̂ (i )k

stands for the polynomial order of NURBS curve γ(i )k , see Sec. 3.1.1. Next,
the projected elements in the NURBS parametric space are clipped with

1 The Greville Abscissae are parametric locations where the basis functions attain their
highest values.
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the aforementioned linearized trimming curves, in order to exclude parts
of the elements which are projected outside the patch’s computational
domain. In this way, the computational domain for the evaluation of the
integrals in Eq. (6.6) is obtained, see the shaded area in Fig. 6.3. Then, the
projected finite elements in the parametric space of patch Ω(i ) are clipped
with the knot lines of the patch’s parametric space Ω̂(i ), thus obtaining
subregions where the integrands in Eqs. (6.12) are C∞-continuous and
where the Gauss integration can be performed. The aforementioned re-
sulting regions may attain an arbitrary polygonal shape and thus they are
subsequently triangulated using a very simple triangulation rule since this
is merely needed for the distribution of the Gauss points. Finally, the Gauss
points are generated on each resulting sub-triangle where the integrals in
Eqs. (6.12) are numerically evaluated.

6.2 Computational fluid dynamics

In this study, the incompressible Navier-Stokes equations are numerically
solved by means of the Finite Volume Method (FVM), see in Ferziger et al.
[34], within the open-source software OpenFOAM®, see also in Jasak et al.
[36]. For the sake of completeness, the Navier-Stokes equations are herein
repeated. Given is a volume Ṽ ⊂R3 moving with a given velocity field ud

within which the flow field is defined in an Arbitrary Lagrangian-Eulerian
(ALE) description of the motion. The unknown fields of the problem are
the fluid velocity and pressure fields denoted by u and p , respectively.
Moreover, the fluid density ρ̃ is considered herein constant. In this way,
the Navier-Stokes iBVP reads,

ρ̃D u−∇ ·σ = 0 , in Ṽ , (6.17a)

∇ ·u= 0 , in Ṽ , (6.17b)

u= υ̃ , on Ω̃d , (6.17c)

t̃= τ̃ , on Ω̃n , (6.17d)

where υ̃ and τ̃ stand for the inlet velocity along the inlet boundary Ω̃d ⊂ ∂ Ṽ
and the prescribed tractions along the outlet boundary Ω̃n ⊂ ∂ Ṽ . Herein
no body forces are assumed for the aforementioned fluid iBVP. The linear
momentum and the mass conservation when assuming constant density
within Ṽ are represented by Eqs. (6.17a) and (6.17b), respectively. More-
over, the material derivative D u, the components of the internal fluid
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6 Fluid-Structure Interaction using the Isogeometric Mortar Method

Cauchy stress tensorσ =σi j ei ⊗e j (Newtonian fluid) and the boundary
traction vector t̃ along ∂ Ṽ in Eqs. (6.17), respectively, are defined as,

D u=
∂ u

∂ t
+
�

u−ud
�

·∇u , (6.18a)

σi j =−pδi j +µ
1

2

�

∂ ui

∂ X j
+
∂ u j

∂ X i

�

, (6.18b)

t̃= ẽn ·σ . (6.18c)

D •, µ and ẽn being the material derivative, the dynamic fluid viscosity and
the surface normal to Ω̃n, respectively, see in Gresho et al. [15] for more
information. Additionally, the expressions∇ ·u,

�

u−ud
�

·∇u, respectively,
in an open-form read,

∇ ·u=
∂ ui

∂ X i
, (6.19a)

�

u−ud
�

·∇u=
�

u d
i −ui

� ∂ u j

∂ X i
e j , (6.19b)

where ui , u d
i and ei with i = 1, . . . , 3, stand for the Cartesian components of

the fluid velocity field, the relative domain velocity field and the Cartesian
base vectors, respectively. The Einstein’s summation convention over the
repeated indices is also assumed. In principle, the linear momentum in
Eq. (6.17a) can be scaled by 1/ρ̃ so that the fluid problem is only character-
ized by one constant, the so-called kinematic viscosity defined as ν̃=µ/ρ̃.
For the definition of the fluid properties of the numerical examples in
Sec. 6.4 only the kinematic viscosity is given as it fully characterizes the
fluid problem.

As aforementioned, the FVM method within open-source software Open-
FOAM® is chosen for the discretization of problem in Eqs. (6.17) in the
frame of Computational Fluid Dynamics (CFD). Among the various solu-
tion procedures and adaptations offered by OpenFOAM®, herein a laminar
solver for the cavity FSI benchmark (Sec. 6.4.1), a Large Eddy Simulation
(LES) for the hangar FSI simulation (Sec. 6.4.2) and an Unsteady Reynolds
Averaged Navier-Stokes (uRANS) for the NREL phase VI wind turbine FSI
simulation (Sec. 6.4.3) are employed, see in Breuer et al. [30], Ferziger et
al. [34], and Sagaut [83] for more information. The latter diverse solution
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6.3 Partitioned fluid-structure interaction

approaches are chosen in order to show the applicability of the proposed
FSI methodology for different fidelities of the CFD problem.

6.3 Partitioned fluid-structure interaction

In this section the partitioned FSI approach is briefly introduced, see also
in Glück et al. [37]. Herein assumed is that the structural and the fluid
domains share a common interfaceS = ∂ Ṽ ∩Ω, whereΩ is the domain of
definition for the structural iBVP, see Secs. 2.3.2 and 2.3.3 for the Kirchhoff-
Love and the membrane iBVP, respectively. In this way, the structural iBVP
defined by Eqs. (2.42) and (2.49) for the Kirchhoff-Love and the membrane
analysis, respectively, and the fluid iBVP in Eqs. (6.17) are subject to the
following Dirichlet and Neumann interface conditions acrossS ,

ḋ−u= 0 , onS ×T , (6.20a)

b̃+ t̃= 0 , onS ×T , (6.20b)

respectively, to account for a continuous solution acrossS . Accordingly,
the Computational Structural Dynamics (CSD) problem governed by ei-
ther the Kirchhoff-Love or the membrane theory, see Secs. 2.3.2 and 2.3.3,
respectively, is discretized using IGA on multipatch surfaces or standard
FEM. Additionally, ḋ and u stand for the structural and fluid velocity fields,
respectively, which have to be equal across the common interface as per
Eq. (6.20a). Moreover, Eq. (6.20a) enforces also the continuity of the inter-
face displacements across the common interface, namely,

d−U = 0 , onS ×T , (6.21)

when integrating Eq. (6.20a) on time, U being the fluid displacement field
across the FSI interface. Concerning the traction equilibrium across S ,
see Eq. (6.20b), the surface traction vector b̃ of the structural FSI interface
contributes to the body force vector b on the right-hand side of weak forms
in Eqs. (2.45) and (2.51) for the Kirchhoff-Love shell and the membrane
problems, respectively, and the fluid traction vector t̃ is given in Eq. (6.18c),
see in Quarteroni et al. [84] for more information. Evidently, the structural
surface traction field b̃ is defined by means of the 2nd Piola-Kirchhoff
stress tensor whereas the fluid traction field t̃ is defined by means of the
Cauchy stress tensor due to the different descriptions of motion assumed
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6 Fluid-Structure Interaction using the Isogeometric Mortar Method

for the structural and the fluid iBVPs, respectively. In this case the Piola
transformation can be used to define the Neumann interface constraint
in Eq. (6.20b) consistently, see in Zienkiewicz et al. [85].

Since the FVM within OpenFOAM® is chosen for the solution of the CFD
problem, the fluid FSI interface is represented by a low order faceted sur-
face, see Sec. 6.2. Additionally, the herein presented FSI simulations in-
volving IGA discretizations for the structure or the ECL, employ the isogeo-
metric mortar-based mapping method introduced in Sec. 6.1 and are com-
pared against FSI simulations of the same problems involving standard
FEM structural discretizations using the standard mortar-based mapping
method (Wang [86]). Let S and Sh denote in the sequel the exact CAD
representation and a low order discretization of the FSI interface. The
restriction of the FSI interface at each patch is denoted byS (i ) =S ∩Ω(i ).
Moreover, Sh may represent the FSI interface of the fluid domain since
the FVM is employed as discretization method for the CFD problem or the
FSI interface of the structural domain whenever FEM is used for the CSD
problem. A distinction should be then made clear from the context.

The solution of the CSD and CFD problems subject to interface conditions
in Eqs. (6.20) and Eq. (6.21) is achieved using a fixed-point iterative ap-
proach known as Gauss-Seidel (GS) iterative method, see also in Glück et al.
[37] and Sicklinger et al. [82]. Accordingly, the CFD problem is solved as a
Dirichlet problem by complying with the resulting interface displacement
and velocity field from the solution of the CSD problem, whereas the CSD
problem is in turn solved as a Neumann problem subject to the interface
traction field emanating from the solution of the CFD problem. In this way,
the displacement field of the structural FSI interface d|S is transformed
onto the fluid FSI interface displacement field U and accordingly the fluid
traction field at the FSI interface t̃|Sh

is transformed onto the traction field

on the structural FSI interface −b̃ . This interaction takes place at each
time step tn̂ , assuming a matching time discretization for both the CSD
and the CFD problems, until a specified termination criterion based on
the relative change of the structural displacement across the FSI interface
in the 2-norm at each FSI iteration k̂ is met, given a user defined tolerance
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ε̃, namely,

‖ d̂n̂ ,k̂ |S
− d̂n̂ ,k̂−1 |S

‖2

‖ d̂n̂ ,k̂ |S
− d̂n̂−1 |S ‖2

< ε̃ , (6.22)

d̂n̂ ,k̂ |S
being the vector of structural displacement DOFs on the FSI in-

terface at time step tn̂ and at k -th FSI iteration. Moreover, d̂n̂−1 |S stands
for the vector of structural displacement DOFs on the FSI interface at
the converged coupled FSI state at time step tn̂−1. In Eq. (6.22) index î
introduced in Sec. 2.4.2 on d̂ representing the Newton-Raphson iteration
is omitted since d̂n̂ ,k̂ is assumed to be the set of displacement DOFs at
the converged state of the CSD problem for the geometrically nonlinear
analysis at time step tn̂ and at k̂ -th FSI iteration. The aforementioned
interface fixed point iterations are stabilized and accelerated using the
Aitken relaxation method, see in Küttler et al. [87]. The implementation of
the aforementioned methodology as well as both the standard and the iso-
geometric mortar-based mapping methods are hosted in the open-source
software EMPIRE (Wang [86]).

Accordingly, the displacement and the traction fields can be transformed
using Eq. (6.10) or Eq. (6.15) depending on the transformation direction
which is known as consistent transformation, see also in Küttler et al. [87].
In case Eq. (6.10) is used for the transformation of displacements, all ad-
ditional Penalty terms defined in Eqs. (6.11c) are considered, since the
displacement and the rotation continuity across the multipatches along
with the Dirichlet boundary conditions need in this case to be weakly
enforced. On the other hand, only the additional Penalty matrix C α̂,0,0

is employed in case Eq. (6.10) is used for the transformation of the trac-
tions, excluding continuity of the rotation field and weak application of
the Dirichlet boundary conditions. This is so because the interest in this
case lies only in the continuity of the transformed traction field across the
multipatches. Let F̃b and F̃t be the consistent force vectors corresponding
to the traction field b̃ on the CPs of the multipatch surface (or finite ele-
ment nodes when FEM is used for the discretization of the CSD problem)
and to the traction field t̃ on the nodes of the polygonal mesh representing
the fluid FSI interface. Similar to Eq. (3.10), in case the force vector F̃b is
computed on a multipatch NURBS surface, it can be split among each
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6 Fluid-Structure Interaction using the Isogeometric Mortar Method

patch Ω(i ), namely,

F̃b =
h

F̃ (1)b · · · F̃ (ns)
b

iT
. (6.23)

The entries of the force vectors F̃ (i )b and F̃t are then given by,

F̃ (i )b ( j ) =
D

φ̄
(i )
j , b̃

E

0,S (i )
, (6.24a)

F̃t (i ) =
¬

φh
i , t̃
¶

0,Sh

, (6.24b)

respectively,φh
i and φ̄

(i )
j being the vector-valued standard FEM and the

NURBS basis functions, see in Eqs. (6.8a) and (6.8b), respectively. In case
the CSD problem is discretized using standard FEM, the consistent force
vector F̃b on the structural FSI interface is computed similar to the fluid
consistent force vector in Eq. (6.24b). In this way, the fluid traction field t̃
can be transformed into the traction field on the structural domain b̃ using
Eq. (6.15), which can then be transformed into the consistent force vector
F̃b similar to Eq. (6.24b).

An alternative to fulfilling Eq. (6.20b) is the satisfaction of the discrete
virtual work on the FSI interface, which in matrix form reads,

δÛT
F̃t−δd̂T

|S
F̃b = 0 , (6.25)

where δÛ and δd̂|S stand for the virtual fluid displacement DOFs onSh

and the virtual structural displacement DOFs onS . The transformation
of the virtual displacement field as per Eq. (6.15) then reads,

δÛ = C−1
nn C nrδd̂|S . (6.26)

Substituting Eq. (6.26) into Eq. (6.25) results in,

F̃b =
�

C−1
nn C nr

�T
F̃t . (6.27)

The relation above in Eq. (6.27) is known as conservative mapping, see also
in Wang [86] and Küttler et al. [87], and can be used only for the transfor-
mation of forces ensuring the satisfaction of the discrete interface virtual
work in Eq. (6.25) instead of the satisfaction of the traction equilibrium
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condition in Eq. (6.20b). Similar to the consistent mapping, if the conser-
vative transformation of forces takes place from the CAD surface to the
low order discretized surface in the frame of the ECL method, relation in
Eq. (6.27) simply inverses, namely,

F̃ h
b =

�

C−1
rr C rn

�T
F̃b , (6.28)

where in this thesis the additional Penalty terms are excluded for the con-
servative transformation of the force vectors and where F̃ h

b stands for the
consistent force vector on the standard FEM discretized CSD problem
whose entries are computed similar to Eq. (6.24b). Thus, a direct trans-
formation of the consistent force vectors is offered by the conservative
mapping as per Eqs. (6.27) and (6.28) bypassing the computation of the
traction fields. A thorough comparison of both the consistent and the con-
servative transformation of tractions and forces, respectively, is provided
in Wang [86] and in practice either can be used.

6.4 Numerical examples

In the following sections three numerical examples are provided for the
demonstration and the validation of the proposed isogeometric mortar-
based mapping method. The first one is the well-established cavity FSI
benchmark (Sec. 6.4.1), see in Kassiotis et al. [88], which due to the ease
of its geometry allows for a detailed evaluation of the field transforma-
tion properties and attributes of the isogeometric mortar-based mapping
method. The second numerical example consists of the FSI simulation of
the hangar (Sec. 4.2.3) in numerical wind tunnel for three different inner
pressure magnitudes extending isogeometric membrane analysis on multi-
patches to FSI. Lastly, the FSI simulation of the NREL phase VI wind turbine
with flexible blades in numerical wind tunnel is investigated (Sec. 6.4.3),
see also in Sicklinger et al. [82], thus extending isogeometric analysis of
Kirchhoff-Love shells on multipatches in large scale engineering multi-
physics problems. For the sake of clarity, let in the sequel d̂h |S and b̃h be
the displacement and traction fields at the structural FSI interface when
standard FEM is used for the discretization of the CSD problem.
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Figure 6.5: Lid-driven cavity: Problem placement and CFD
computational domain.

6.4.1 Lid-driven cavity

In this section the lid-driven cavity FSI benchmark is employed (Fig. 6.5),
see also in Kassiotis et al. [88], for the demonstration and evaluation of the
isogeometric mortar-based mapping method and the application of isoge-
ometric membrane analysis on multipatches in multiphysics problems,
due to the simplicity of its geometry while relatively large deformations are
allowed. For this case, the kinematic viscosity is chosen as ν̃= 10−2 m2/s,
the left and right walls are fixed where the fluid velocity is zero, the top wall
is moving with a time varying velocity υ̃ =

�

1− cos (2πt /5)
�

e1 [m/s] and
a flexible membrane is attached at the bottom, see left part of Fig. 6.5(a).
The whole surface of the flexible membrane represents the FSI interface,
thus S and Ω are in this identical. Additionally, a small portion of the
left and right fixed walls towards the upper moving wall are chosen as
inlet and the outlet, respectively. Accordingly, the part representing the
inlet allows for a transition from the zero to the prescribed velocity at the
moving top wall whereas the pressure is prescribed to zero along the part
representing the outlet. This allows for easier convergence in the fluid
domain since the incompressibility condition in Eq. (6.17b) can be easier
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Figure 6.6: Lid-driven cavity: Trimmed vs untrimmed
representation of the flexible membrane’s geometry.

satisfied. Regarding the flexible membrane at the bottom, its Young’s mod-
ulus, Poisson ratio, density and thickness are chosen as E = 250 Pa, ν= 0,
ρ = 500 Kg/m3 and h̄ = 2 mm, respectively. For this numerical example,
the applied prestress is zero. This can cause problems to some linear equa-
tion solvers as the CSD problem is singular in the first solution step due
to the negligible structural stiffness in X2-direction. The aforementioned
problem can be circumvented by adding a small amount of prestress at
the first Newton-Raphson iteration of the CSD problem and then release
it. The time span and the time step size for the coupled problem is chosen
as T = [0,20] s and ∆t = 10−2 s, respectively, whereas the implicit Euler
time integration scheme within OpenFOAM® is herein employed for the
time discretization of the fluid problem. The Reynolds number2 in this
case does not exceed 200, thus resulting in a laminar flow.

Accordingly, the CFD domain is a unit square with thickness of 10 cm. The
CFD problem is solved as two-dimensional in X1-X2 plane, meaning that
the velocity and pressure are constant in the width X3-direction. Accord-
ingly, the CFD domain is discretized using a 30×30 grid for all employed
simulations, see Fig. 6.5(b). On the other hand, the membrane structure
is discretized using a reference finite element mesh with 100 bilinear ele-
ments (FEM100), a coarse finite element mesh with six bilinear elements
(FEM6), a single patch geometry with twenty quadratic in X1-direction and

2 The Reynolds number is given by Re= u L/ν̃where u and L is a characteristic velocity
and a characteristic length, respectively, and it can be used for classification of fluid flows as
laminar or turbulent.
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(a) Reference FSI-FEM100.

(b) FSI-IGA1. (c) FSI-IGA2. (d) FSI-IGA3.

Figure 6.7: Lid-driven cavity: Streamlines of the CFD solution
over the deformed domain at time t = 19 s.

(a) FSI-FEM6. (b) FSI-FEM6-IGA1. (c) FSI-FEM6-IGA2.

Figure 6.8: Lid-driven cavity: Streamlines of the CFD solution
over the deformed domain without and with ECL at time t = 19 s.

linear in the X3-direction elements (IGA1), a trimmed two-patch geometry
where the interface is an arc of a circle (IGA2) see top part of Fig. 6.6 and
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Figure 6.9: Lid-driven cavity: Time-displacement curves for the
structural displacement at X1 = 0.5 m.

an untrimmed three-patch geometry with straight interfaces (IGA3), see
bottom part of Fig. 6.6. The CSD problem is also two-dimensional and
accordingly the displacement field d 0

3 in the X3-direction is set to zero.
However, the latter does not necessarily mean that a constant deformation
along the X3-axis is obtained and thus a small variation of the structural
deformation along the X3-axis occurs for some of the employed structural
discretizations.

A set of FSI simulations is accordingly performed involving FEM100 mesh
for the structure as reference (FSI-FEM100), IGA1 structural discretization
(FSI-IGA1), IGA2 structural discretization (FSI-IGA2), IGA3 structural dis-
cretization (FSI-IGA3), FEM6 mesh for the structure (FSI-FEM6), FEM6
mesh for the structure with IGA1 parametrization for the ECL (FSI-FEM6-
IGA1) and FEM6 mesh for the structure with IGA2 parametrization for
the ECL (FSI-FEM6-IGA2). The streamlines of the FSI simulations at time
t = 19 s using the IGA structural discretizations against the reference so-
lution using FEM100 is shown in the set of Figs. 6.7 demonstrating an
excellent qualitative accordance of the results. Accordingly, the stream-
lines of the FSI simulations at time t = 19 s considering the FEM6 structural
mesh and the ECL with a single and a two-patch representation, namely,
the FSI-FEM6-IGA1 and FSI-FEM6-IGA2 simulations, respectively, against

141



6 Fluid-Structure Interaction using the Isogeometric Mortar Method

10−3 10−2 10−1 10010−5

10−4

10−3

10−2

10−1

‖d−dh‖0,S
‖d‖0,S

h [m]

1
2

IGA3
IGA2
IGA1

(a) Relative error in the L2(S )-norm for the dis-
placement transformation.

10−5

10−4

10−3

10−2

10−1

10−3 10−2 10−1 100

h [m]

‖b̃−b̃h‖0,S




b̃






0,S

1
2

IGA2
IGA1

(b) Relative error in the L2(S )-norm for the trac-
tion transformation.

Figure 6.10: Lid-driven cavity: Relative error in the mapping
from IGA to FEM using a reference field defined on IGA1, IGA2

and IGA3 surface representations at t = 19 s of the corresponding
FSI simulation.

the pure FSI-FEM6 simulation is shown in the set of Figs. 6.8 where the
smoothing of the displacement field when using the ECL is exhibited. For
the quantitative comparison of the results, the time-displacement curves
of the structural displacement at the middle of the membrane, namely at
X1 = 0.5 m, are shown, see Fig. 6.9. Accordingly, the time-displacement
curves for the FSI simulations and the FSI simulations with the ECL are de-
picted in Figs. 6.9(a) and 6.9(b), respectively. As it can be observed, the FSI
simulations using IGA on single patch and on multipatch surfaces for the
structural discretization deliver highly accurate results when compared
to the reference FSI simulation involving a highly refined finite element
structural discretization. On the other hand, the application of the ECL
improves the quality of the interface displacement field, see Figs. 6.8(b)
and 6.8(c) for the single and multipatch representation of the ECL, re-
spectively, whereas it produces highly accurate results given that the CSD
problem is only discretized using six elements, see Fig. 6.9(b).

Next, the isogeometric mortar-based mapping method is evaluated with
regard to its convergence behaviour. In the following convergence graphs
the observed convergence rates are mentioned, for which rigorous proofs
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(b) Displacement transformation from IGA2 to
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Figure 6.11: Lid-driven cavity: Mapping of the displacement
field defined on IGA1 and IGA2 surface representations at t = 19 s
from FSI-IGA1 and FSI-IGA2 simulations, respectively, to FEM for

a given discretization level.
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(a) Traction transformation from IGA1 to FEM.
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(b) Traction transformation from IGA2 to FEM.

Figure 6.12: Lid-driven cavity: Mapping of the traction field
defined on IGA1 and IGA2 surface representations at t = 19 s from

FSI-IGA1-ECL and FSI-IGA2-ECL simulations, respectively, to
FEM for a given discretization level.

are however pending. Accordingly, the quantities of interest are the dis-
placement and the traction fields along with their corresponding trans-
formations. The first set of graphs in Fig. 6.10 shows the convergence of
the consistent mapping in the displacement and traction fields ontoSh,
when these are originally defined on the CAD surface. More specifically,
the convergence graph in Fig. 6.10(a) shows the convergence based on the
relative error in the L2(S )-norm for the displacement field defined on the
CAD surface for the FSI-IGA1, the FSI-IGA2 and FSI-IGA3 simulations at
time t = 19 s against its transformed field onSh, for various mesh densities
with 5, 10, 20, 40, 80 and 160 elements, respectively, where h stands for
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Figure 6.13: Lid-driven cavity: Error in the transformation of
tractions from FEM to IGA using a reference traction field defined

on the FE surface at t = 10 s of the FSI simulation.

the minimum finite element edge inSh. Similarly, Fig. 6.10(b) shows the
convergence based on the relative error in the L2(S )-norm of the traction
field defined on the CAD surface for the FSI-FEM6-IGA1 and FSI-FEM6-
IGA2 simulations at time t = 19 s against its transformed field onSh. Both
graphs demonstrate excellent convergence rates for all geometries em-
ployed, notwithstanding the optimal convergence behaviour observed for
the transformation of the fields defined on the single patch geometry when
compared to the multipatch geometries, as expected. The displacement
and traction fields defined on the IGA1 and IGA2 surface representations
from FSI-IGA1, FSI-IGA2 and FSI-IGA1-ECL, FSI-IGA2-ECL simulations at
time t = 19 s along with their corresponding transformations on the low
order discretized surface are then shown in Figs. 6.11 and 6.12, respectively.

Subsequently, Fig. 6.13 shows the convergence graphs corresponding to
the isogeometric mortar-based mapping of the fields defined on the fluid
FSI interface onto the different CAD surface representations. For the re-
finement study, IGA1 is refined successively using 3, 6, 12, 24, 48, 96, 192,
384, 768 and 1536 elements with quadratic (low order) and cubic (high
order) basis functions in X1-direction, whereas one linear element is cho-
sen in the X3-direction. Then, IGA2 is refined using (5,1)-(2,1), (9,2)-(5,1),
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Figure 6.14: Lid-driven cavity: Mapping of the traction field
defined on fluid FSI interface at t = 19 s from FSI-FEM100

simulation to the various CAD surface representations ofS for
given refinement levels.

(15,3)-(9,2), (30,6)-(18,4), (57,11)-(34,7), (123,31)-(81,21), (246,62)-(162,42),
(492,124) and (324,84) elements in X1, X3-directions for patch S (1) and
patchS (2), respectively, where the corresponding polynomial order of the
basis is chosen as bilinear-biquadratic (low order) and biquadratic-bicubic
(high order). Lastly, IGA3 is discretized using (3,1)-(5,1)-(8,2), (6,2)-(10,5)-
(15,7), (9,4)-(15,7)-(21,10), (18,9)-(31,15)-(46,23), (36,18)-(60,30)-(89,44),
(70,35)-(115,57)-(177,88), (140,70)-(230,115)-(354,177) and (280,140)-(460-
230)-(708,354) elements in X1-, X3-directions for patch S (1), patch S (2)
and patchS (3), respectively, where the polynomial order of the basis is cho-
sen as biquadratic-bilinear-bilinear (low order) and bicubic-biquadratic-
bilinear (high order).

In this case, the square root of the smallest area among the isogeometric
elements in the multipatch model is chosen as characteristic measure
for the discretization density h for the relative errors in the domain S ,
see Fig. 6.13(a). Regarding the interface error, the smallest element edge
length along the interface γi is chosen as characteristic measure h of the
mesh density, see Fig. 6.13(b). The relative error in the L2(S )-norm for
the traction field taken from the FSI-FEM100 simulation at time t = 19 s
when transformed onto the different CAD surface representations with
the aforementioned refinement is shown in Fig. 6.13(a), for both the low
and the high order bases. Accordingly, the jump in the traction field along
the interface γi for the multipatch CAD representations of the surface in
the L2(γi)-norm is shown in Fig. 6.13(b). It can be observed that the single
patch solution demonstrates quadratic convergence for both polynomial
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Figure 6.15: Lid-driven cavity: Error in the transformation of
tractions from FEM to IGA using a reference displacement field

defined on the FE surface at t = 10 s of the FSI simulation.

order settings, whereas the convergence order drops to linear concern-
ing the multipatch models with Penalty. Moreover, the two-patch model
demonstrates better convergence rates than the three-patch one does,
a fact which can be attributed to the skewness of the isogeometric ele-
ments in the three-patch model in contrast to the two-patch model where
only one element in X3-direction is used. The traction field defined on the
fluid FSI interface from FSI-FEM100 simulations at time t = 19 s and its

146



6.4 Numerical examples

C−1
rr C rn

�

C rr + C α̂,α̃,ᾱ
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Figure 6.16: Lid-driven cavity: Transformation of the
displacement field defined on the low order surface discretization
at t = 19 s from FSI-FEM100 simulation to the various CAD surface

representations ofS for given refinement levels.

transformation onto the various CAD representations of the surface are
then shown in Fig. 6.14 for a qualitative assessment of the isogeometric
mortar-based mapping from a low order surface discretization to CAD
surface representations.

Lastly, convergence graphs for the isogeometric mortar-based mapping
of the displacement field defined on the fluid FSI interface mesh from
simulation FSI-FEM100 at time t = 19 s onto IGA1 and IGA2 surface repre-
sentations are drawn, corresponding to the ECL concept (Fig. 6.15). The
refinement studies of IGA1 and IGA2 surface models are the same as pre-
viously, where herein the complete Penalty matrix C α̂,α̃,ᾱ is taken into
account. The relative error on the displacement field in the L2(S )-norm
is shown in Fig. 6.15(a) where as before quadratic rates of convergence
are observed for the single patch model and linear convergence rates are
observed for the multipatch model. The solution accuracy however is not
significantly improved for the high order bases when compared to the
low order bases. The interface error on the jump of the displacement field
and its rotation around the tangent to the patch boundary vector for the
different refinement levels in the L2(γi)-norm is shown in Fig. 6.15(b) re-
garding the trimmed two-patch model IGA2. One can observe here an
improvement of the fulfilment of the interface conditions for the high or-
der bases and an almost linear convergence rate. Then, Fig. 6.15(c) shows
the error in the fulfilment of the Dirichlet condition in the L2(Γd)-norm
for both CAD models where quadratic convergence rates are observed.
Additionally, an improvement of the solution for the high order bases is
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Figure 6.17: Hangar in numerical wind tunnel: Problem
placement.

also observed in this case. In the latter case, the minimum element edge
size along Γd is chosen as a measure of the discretization density h . Lastly,
the 2-norm of the displacement field defined on the fluid FSI interface and
the corresponding 2-norms of its transformation on the IGA1 and IGA2
surface representations is shown in Fig. 6.16. Once more, an excellent
transformation can be seen which in addition respects the interface and
boundary conditions when using the isogeometric mortar-based mapping
method in combination with Penalty.

6.4.2 Inflatable hangar in numerical wind tunnel

In this section the FSI simulation of the inflatable hangar introduced in
Sec. 4.2.3 in numerical wind tunnel is investigated, see Fig. 6.17. The mate-
rial properties of the hangar are described in the corresponding Sec. 4.2.3,
with the only difference that herein three different magnitudes for the inner
pressure are chosen, namely, ‖b‖2 = 1 KPa (p1000), ‖b‖2 = 2 KPa (p2000)
and ‖b‖2 = 4 KPa (p4000) and the prestress is adapted using Eqs. (4.14) so
that the hangar remains in equilibrium with respect to its shape. The wind
is modelled through the incompressible Navier-Stokes in Eq. (6.17) with
kinematic viscosity of the air equal to ν̃= 1.5451×10−5 m2/s . Regarding the
CFD domain a mesh with ~hundred thousand polyhedral elements is em-
ployed, which is successively refined towards the hangar region whereas
the locally refined region around the hangar is made using the snappy-
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Whole CFD domain Sliced CFD domain Close-up on the hangar

Figure 6.18: Hangar in numerical wind tunnel: CFD
computational domain.

HexMesh mesh generator of OpenFOAM®, see Fig. 6.18. Accordingly, an
LES solution approach is employed using an one equation eddy-viscosity
Subgrid-Scale Model for the turbulence modelling, see in Yoshizawa et al.
[89] and Huang et al. [90] for more details. The inlet velocity υ̃ is chosen
using an 1/7-power law from the bottom up to the height of the hangar
and then is kept constant with an amplitude of 35 m/s corresponding to
a hurricane condition. The latter extremely strong wind conditions are
chosen to obtain significant deformations on the inflatable hangar and to
investigate its behaviour when the inner pressure is successively increased.
No-slip conditions are assumed at the two sides and the bottom walls
whereas slip conditions3 are assumed at the top wall of the wind tunnel.
Lastly, the pressure is set to zero at the outlet. The time domain is chosen
as T= [0, 5] s with time step size∆t = 2×10−3 s and the Backward Differ-
entiation formula 2 (BDF2) is herein employed, see in Hairer et al. [91] for
more details. Before the beginning of the FSI simulation, the CFD problem
is solved irrespective of the structure for twenty seconds with time step
size equal to 5×10−3 s in order to start the FSI simulation with a divergence
free velocity field, in other words a converged fluid pressure field.

Concerning the partitioned FSI approach, the consistent mapping method
is chosen for the transformation of the displacement fields whereas the
conservative mapping method is chosen for the transformation of the
consistent force vectors as described in Sec. 6.3. Accordingly, nine sim-
ulations are performed: FSI simulations for the standard FEM structural

3 A slip condition imposes the normal to the wall velocity component to zero.

149



6 Fluid-Structure Interaction using the Isogeometric Mortar Method

Patch boundaries Patch boundaries
X1

X3
X1

X2 X1

X2

Figure 6.19: Hangar in numerical wind tunnel: Mapped finite
element mesh of the hangar onto the NURBS multipatch surface

(the different colors indicate the different NURBS patches).
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Figure 6.20: Hangar in numerical wind tunnel: Mapped fluid
FSI interface mesh onto the NURBS multipatch surface (the

different colors indicate the different NURBS patches).

discretization which are used as reference (see also in Sec. 4.2.3) for all
three inner pressure magnitudes (FSI-FEM-p1000, FSI-FEM-p2000 and FSI-
FEM-p4000), FSI simulations for the standard FEM structural discretization
with an ECL whose geometry corresponds to the multipatch isogeometric
discretization in Sec. 4.2.3 for all three inner pressure magnitudes (FSI-
FEM-ECL-p1000, FSI-FEM-ECL-p2000 and FSI-FEM-ECL-p4000) and FSI
simulations with the multipatch isogeometric structural discretization
as presented in Sec. 4.2.3 (FSI-IGA-p1000, FSI-IGA-p2000 and FSI-FEM-
p4000) once more for all three inner pressure magnitudes. In the follow-
ing, the FSI simulations for which wrinkling occurs are separated from
those ones where wrinkling does not occur. In principle, wrinkling in the
standard membrane theory is not permitted as it represents deformation
patterns associated with zero energy, see Sec. 2.3.3. However, these results
are herein used for the demonstration of the advantages when using the
ECL method in FSI simulations where the mesh distortion might be critical
for the robustness of the CFD solver. According to the methodological
procedure concerning the isogeometric mortar-based mapping method
described in Sec. 6.1.2, the low order discretized surface is projected on

150



6.4 Numerical examples

(a) FSI-FEM-p1000. (b) FSI-FEM-p2000. (c) FSI-FEM-p4000.

(d) FSI-FEM-ECL-p1000. (e) FSI-FEM-ECL-p2000. (f) FSI-FEM-ECL-p4000.

(g) FSI-IGA-p1000. (h) FSI-IGA-p2000. (i) FSI-IGA-p4000.

Figure 6.21: Hangar in numerical wind tunnel: Streamlines at
t = 0.42 s for all performed simulations.

the NURBS multipatch geometry. The projected structural finite element
mesh onto the multipatch NURBS geometry in the frame of simulations
FSI-IGA-p1000, FSI-IGA-p2000 and FSI-IGA-p4000 and the projected fluid
FSI interface mesh onto the multipatch NURBS geometry concerning the
simulations FSI-FEM-ECL-p1000, FSI-FEM-ECL-p2000 and FSI-EFM-ECL-
p4000 are depicted in Figs. 6.19 and 6.20, respectively, highlighting the
boundary projection algorithm for elements with projection on more than
one patch (see Fig. 6.4 from the theory Sec. 6.1.2). Moreover, the fluid FSI
interface mesh does not follow the exact torus shape and the tori com-
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(a) FSI simulation with FEM discretization for the structural iBVP Wang [86].
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(b) FSI simulation with FEM discretization for the structural iBVP and ECL.

Figure 6.22: Hangar in numerical wind tunnel: Structural (FEM)
and fluid interface deformation along with the fluid velocity

magnitude ‖u‖2 in Ṽ at time t = 0.61 s for the FSI-FEM-p1000 and
FSI-FEM-ECL-p1000 simulations.

prising the hangar geometry from the fluid FSI interface mesh side are
not connected with each other through a shared curved interface as for
the finite element and the multipatch isogeometric structural models but
with straight planes allowing for a better fluid mesh between the tori. The
latter choice is critical for the fluid mesh at these locations which otherwise
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Figure 6.23: Hangar in numerical wind tunnel:
Time-displacement curves corresponding to FSI-FEM-p1000 and

FSI-FEM-ECL-p1000 simulations.

would be highly distorted. Therefore, a gap between the tori can be ob-
served in Fig. 6.20 as the elements comprising the planes between the tori
have no unique projection on the multipatch NURBS surface. This how-
ever causes no problem to the displacement transformation as it can be
seen in the sequel, but it does not allow for the consistent transformation of
tractions. Therefore, the conservative mapping approach is herein chosen
for the transformation of the consistent force vectors, see also in Sec. 6.3.
For the forthcoming investigations based on the time-displacement curves,
the material point X m = 2.5 e2+12.5 e3 in the middle of the hangar is used.

The streamlines of the CFD solution at time t = 0.42 s of all FSI simulations
are shown in set of Figs. 6.21, where the wrinkling of the FSI-FEM-p1000
and FSI-FEM-p2000 can be observed in Figs. 6.21(a) and 6.21(b), respec-
tively. In simulations FSI-FEM-ECL-p1000 and FSI-FEM-ECL-p2000 it can
be observed how the wrinkles are not transferred onto the fluid FSI in-
terface by means of ECL, see Figs. 6.21(d) and 6.21(e), respectively. For
the corresponding FSI-IGA-p1000 and FSI-IGA-p2000 no wrinkling is ob-
served, a fact which can be attributed to the relatively large high order
elements within the corresponding highly smooth IGA discretization on
multipatches. Lastly, simulations FSI-FEM-p4000, FSI-FEM-ECL-p4000
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(b) FSI simulation with FEM discretization for the structural iBVP and ECL.

Figure 6.24: Hangar in numerical wind tunnel: Structural (FEM)
and fluid interface deformation along with the fluid velocity

magnitude ‖u‖2 in Ṽ at time t = 2.1 s for the FSI-FEM-p2000 and
FSI-FEM-ECL-p2000 simulations.

and FSI-IGA-p4000 produce similar results, something which is expected
as no wrinkling for this set of simulations is observed.

Firstly, the results of simulations FSI-FEM-p1000 and FSI-FEM-ECL-p1000
are evaluated and compared. For both simulations, the discretized using
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Figure 6.25: Hangar in numerical wind tunnel:
Time-displacement curves corresponding to FSI-FEM-p1000 and

FSI-FEM-ECL-p2000 simulations.

the standard FEM CSD solution is associated with wrinkling behaviour,
see set of Figs. 6.22. In Fig. 6.22(a) it can be observed that the wrinkles are
transferred into the fluid FSI interface whereas Fig. 6.22(b) shows how the
transformed displacement field onto the fluid FSI interface is smoothed
through the ECL. The latter is significant for the CFD solution as the mesh
quality within the CFD domain is not only critical in terms of the solution
accuracy but also from the viewpoint of the robustness of the CFD sim-
ulation. The latter means that termination of the CFD simulation due to
solution singularity may occur due to severe distortion of the fluid mesh.
Concerning the FSI simulation, the fluid interface displacement field is ob-
tained by the transformation of the structural displacement field, possibly
through the ECL, which is then transformed onto the displacement field of
the cells in the interior of the CFD domain. The latter is achieved herein by
means of a Laplacian problem using the quadratic inverse distance method
towards the hangar, provided by OpenFOAM®. The corresponding time-
displacement curves are shown in Fig. 6.23. A termination due to solution
singularity of the CFD simulation is observed for the FSI-FEM-p1000 case
at time t = 0.618 s, which does not occur for the FSI-FEM-ECL-p1000 sim-
ulation where the smoothing when using the ECL allows for an uncritical,
with respect to CFD simulation, fluid FSI interface displacement field thus
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Figure 6.26: Hangar in numerical wind tunnel: Structural (IGA
on multipatches with Nitsche) and fluid interface deformation

along with the fluid velocity magnitude ‖u‖2 in Ṽ at time t = 1.96 s
for the FSI-IGA-p1000 and FSI-IGA-p2000 simulations.

allowing for the simulation to carry on until the end time, that is, t = 5 s, see
Fig. 6.23(a). Fig. 6.22 shows the structural deformation, the corresponding
ECL deformation and the fluid FSI interface mesh deformation at time
t = 0.61 s, that is, a little before the FSI-FEM-p1000 simulation terminates
due to solution singularity. Moreover, the relative error in the displace-
ment magnitude at X m against the time for each involved transformation
of the displacement field is shown in Fig. 6.23(b), demonstrating a highly
accurate performance of both mortar-based mapping methods.
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Figure 6.27: Hangar in numerical wind tunnel:
Time-displacement curves corresponding to FSI-IGA-p1000 and

FSI-IGA-p2000 simulations.

Next, the simulations FSI-FEM-p2000 and FSI-FEM-ECL-p2000 are inves-
tigated. Wrinkling behaviour is observed at isolated locations in the CSD
solution herein as well, but not as significant as in the previous simulation
set. However, no termination due to solution singularity of the CFD simula-
tion is observed while the structural deformations, the corresponding ECL
deformation and the fluid FSI interface mesh deformations are shown in
Fig. 6.24. As before, the localized wrinkling behaviour is not transferred into
the fluid FSI interface when employing the ECL, thus allowing for a smooth
deformation pattern. The corresponding time-displacement curves of the
structural displacements at X m and the relative error of the displacement
transformation at X m (Fig. 6.25) are shown in Figs. 6.25(a) and 6.25(b),
respectively. It can be observed that simulations FSI-FEM-p2000 and FSI-
FEM-ECL-p2000 produce almost identical time-displacement curves up
to t = 2 s and then a deviation is noted which can be attributed to the
deformation smoothing that the ECL offers. As before, the error of the
displacement transformation for all employed mortar-based mapping ap-
proaches is highly satisfactory.

Then, the FSI-IGA-p1000 and FSI-IGA-p2000 are evaluated and compared.
As aforementioned, no wrinkling for these simulations is observed in con-
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(c) FSI simulation with multipatch isogeometric discretization with Nitsche for the
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Figure 6.28: Hangar in numerical wind tunnel: Structural (FEM
and IGA on multipatches with Nitsche) and fluid interface

deformation along with the fluid velocity magnitude ‖u‖2 in Ṽ at
time t = 1.9 s with inner pressure p = 4000 Pa.
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Figure 6.29: Hangar in numerical wind tunnel:
Time-displacement curves corresponding to FSI-FEM-p4000,

FSI-FEM-ECL-p4000 and FSI-IGA-p4000 simulations.

trast to the corresponding ones when using a standard finite element
discretization for the CSD problem, see Figs. 6.26 for the structural and
the transformed onto the fluid FSI interface deformation patterns at time
t = 1.96 s. The corresponding time-displacement curves and the relative er-
ror in the displacement mapping at X m (Fig. 6.27) are shown in Figs. 6.27(a)
and 6.27(b), respectively. It can be observed that the maximum oscillation
amplitude decreases as the inner pressure, and accordingly the prestress,
are increased, whereas the dynamic behaviour of the FSI-IGA-p2000 sim-
ulation is more stable than that for the FSI-IGA-p1000 simulation due to
the added structural stability from the increased internal pressure and
prestress.

Subsequently, the results from the FSI-FEM-p4000, FSI-FEM-ECL-p4000
and FSI-IGA-p4000 simulations are evaluated and compared. In this case
the resulting deformation of the inflatable hangar is significantly smaller
and more stable in terms of wrinkles than in the previous cases, thus ex-
hibiting the way that the inner pressure and prestress field can be adjusted
relative to each other, in order to obtain a structure with the desired stiff-
ness without needing to modify the material parameters in the frame of FSI
with pneumatic membrane structures. The structural, ECL and fluid FSI in-
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terface deformations at time t = 1.9 s are shown in Fig. 6.28 demonstrating
good agreement of the solutions from all involved FSI simulations. For the
quantitative comparison of the results (Fig. 6.29), the time-displacement
curves of the structural displacement at X m is shown in Fig. 6.29(a). The
amplitude and the frequency of the resulting time-displacement curves
demonstrate very good agreement for the displacement at X m where a
phase shift can also be observed. This can be attributed to the sensitivity
of the CFD solution against the fluid FSI interface mesh quality and to
the diverse CSD discretization methods. Accordingly, the relative error of
the displacement transformation at X m for all involved transformations
using the isogeometric and standard mortar-based mapping methods are
shown in Fig 6.29(b), demonstrating that the error of the displacement
transformation at X m can be considered negligible.

Lastly, the results from the isogeometric mortar-based mapping method
for the transformation of the displacement field defined on the multipatch
NURBS surface onto the fluid FSI interface mesh and from the structural
finite element mesh to the multipatch NURBS surface are demonstrated.
Accordingly, the FSI solution in terms of the displacement field from FSI-
IGA-p1000 simulation at time t = 0.9 s defined on the multipatch NURBS
geometry is transformed on the fluid FSI interface mesh, see Fig. 6.30,
demonstrating an excellent accuracy even for highly non-matching sur-
face representations.

The corresponding relative error of the displacement in theL2 (S )-norm is
found in this case ~0.92%. In the same way, the displacement field defined
on the finite element discretized structural domain from the FSI-FEM-
ECL-p1000 simulation also at time t = 0.9 s is transformed onto the multi-
patch NURBS surface, see Fig. 6.31. The relative displacement error in the
L2(S )-norm is found in this case to be ~1.84%. Moreover, concerning the
displacement and rotation interface jump in the L2(γi)-norm, these are
‖χ̂‖0,γi

= 0.02778 m and ‖χ̃‖0,γi
= 0.02089 rad, respectively, whereas the

L2(Γd)-norm of the displacement field along the Dirichlet boundary Γd is
computed as ‖d‖Γd

= 0.0008185 m.
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Figure 6.30: Hangar in numerical wind tunnel: Mapping of the
displacement field defined on the multipatch NURBS surface at
time t = 0.9 s from FSI-IGA-p1000 simulation onto the fluid FSI

interface mesh.
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Figure 6.31: Hangar in numerical wind tunnel: Mapping of the
displacement field defined on the FEM structural discretization of
the hangar at time t = 0.9 s from FSI-FEM-ECL-p1000 simulation

onto the multipatch NURBS surface.

6.4.3 NREL phase VI wind turbine in numerical wind tunnel

In this section the FSI simulation of the NREL phase VI wind turbine with
flexible blades (see Sec. 5.2.4) in numerical wind tunnel is investigated, see
also in Simms et al. [7], Sicklinger et al. [82], Sørensen et al. [92], and Wüch-
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ner et al. [93]. The selected material parameters for the flexible blades are
presented in Sec. 5.2.4 and the kinematic viscosity for the air is as before
ν̃= 1.5451×10−5 m2/s . The inlet velocity is chosen constant as υ̃=−7 e2

m/s and the pressure is set equal to zero at the outlet, see Fig. 6.32. Ac-
cordingly, the side walls, the top and the bottom walls of the wind tunnel
are set to slip boundary conditions. Moreover, the domain consists of two
parts4: One non-rotating outer part and a rotating inner cylindrical part
containing the rotor hub and the wind turbine blades which is rotating
around X2-axis with constant angular velocityω= 7.5398 rad/s. The fluid
FSI interface is assigned to be the part containing the flexible blades. Note
that S contains only the flexible blades across which the aerodynamic
forces are acting, that is, the inner spars of the flexible blades are not part
ofS , see Fig. 5.14. The time interval for the coupled problem is chosen as
T= [0,5] s with a time step size of∆t = 10−3 s and herein also the BDF2
time integration method is used for the fluid problem. As in the previous
numerical example, herein also the CFD problems is solved independently
of the structure for 5 seconds with the same time step size as for the FSI
simulation in order to have a divergence free fluid velocity field at the
start of the FSI simulation. Concerning the CSD problem, the multipatch
NURBS Kirchhoff-Love shell model with Penalty is employed, see Sec. 5.2.4.
Since the flexible blades are subject to constant angular velocity, a rota-
tional frame is assumed for the structural problem. To achieve this, the
corresponding CSD problem is solved with time varying gravitational bg

and constant centrifugal bc body forces given by,

bg(t ) =ρg h̄Ω2(t ) ·e3 , (6.29a)

bc(t ) =ρ|X1|h̄ω2 e1 , (6.29b)

respectively, where X1 is the distance from the center of rotation. The
rotation tensor Ω2(t ) =Ω

i j
2 (t )ei ⊗e j around X2-axis is defined as,

Ω
i j
2 (t ) =−sin (ωt ) εi j

2 + cos (ωt ) δi j
2 , (6.30)

where εi j
2 = ε

αβ and δi j
2 =δ

αβ for α,β = 1, 3 stand for the components of
the permutation and delta Kronecker tensor on the X1-X3 plane, respec-
tively, meaning that εi 2

2 = ε
2i
2 =δ

i 2
2 =δ

2i
2 = 0 for all i = 1, . . . , 3. Concerning

4 In the original study in Sicklinger et al. [82] also an independent rotation of the flexible
blades around X1-axis was considered to achieve an emergency brake manoeuvre.
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Figure 6.32: NREL phase VI wind turbine in numerical wind
tunnel: Problem placement.

the aerodynamic body forces b̃ acting along the flexible blades onS , these
are computed similar to the gravitational body forces bg in Eq. (6.29a),
namely,

b̃(t ) =Ω2(t ) · t̃ , (6.31)

given that the fluid tractions t̃ are referred to the initial configuration of
the flexible blades at each time instance t . The latter approach allows for
solving the CSD problem without considering inhomogeneous Dirichlet
boundary conditions which accelerates the solution process. A limitation
is however that only flexible blades rotating with constant angular velocity
can be confronted with this approach, where in another case additional
rotational inertial effects need to be addressed. Concerning the CFD setup,
this is taken from the study in Sicklinger et al. [82] and corresponding views
of the CFD mesh with a close-up on the right blade are depicted in Fig. 6.33
where a mesh refinement in the neighbourhood of the wind turbine can
be observed and the CFD mesh comprises ~ten million cells. Concerning
the CFD solution approach, the Arbitrary Moving Interface (AMI) method
provided in OpenFOAM® is employed, in order to couple the solution
between the steady and rotating parts of the fluid domain Ṽ , see also in
Fig. 6.32. For the CSD, the standard finite element mesh of a shell with
Reissner-Mindlin kinematics and the multipatch isogeometric model with
Penalty and Kirchhoff-Love kinematics introduced in Sec. 5.2.4 are herein
employed and evaluated.
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Figure 6.33: NREL phase VI wind turbine in numerical wind
tunnel: CFD computational domain.

Close-up Right blade Tip
X1

X3

X1

X3

X2

X3

Figure 6.34: NREL phase VI wind turbine in numerical wind
tunnel: Mapped fluid interface mesh onto the NURBS multipatch
surface (the different colors indicate the different NURBS patches).

For the FSI simulation using the standard finite element mesh of the flexible
blades, the standard mortar-based mapping method elaborated in Wang
[86] is used whereas for the FSI simulation using the multipatch isogeo-
metric discretization of the flexible blades, the isogeometric mortar-based
mapping method introduced in Sec. 6.1 is used. Accordingly, the mapped
elements from the fluid FSI interface onto S of the multipatch NURBS
surface are shown in Fig. 6.34 highlighting once more the excellent perfor-
mance of the proposed methodology especially across the patch bound-
aries (see Fig. 6.4).
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(a) t = 1.6 s (FEM). (b) t = 3 s (FEM). (c) t = 4.4 s (FEM).

(d) t = 1.6 s (IGA on multi-
patches with Penalty).

(e) t = 3 s (IGA on multi-
patches with Penalty).

(f) t = 4.4 s (IGA on multi-
patches with Penalty).

Figure 6.35: NREL phase VI wind turbine in numerical wind
tunnel: Q-criterion and blade deformation scaled by 170 at

exemplary time instances for both the finite element and the
multipatch isogeometric (Penalty) discretizations.

The Q-criterion 5 coloured with the corresponding fluid velocity magnitude
at exemplary time instances for both FSI simulations with the standard
finite element and multipatch isogeometric discretizations is shown in
the set of Figs. 6.35 where the deformation of the flexible blades is herein
scaled by 170. The results demonstrate excellent qualitative accordance re-
gardless of the highly diverse structural discretizations and mapping tech-
niques, thus extending the isogeometric mortar-based mapping method
to real world engineering applications.

5 The Q-criterion is used for vortex identification based on the second invariant of the
fluid velocity gradient.
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Figure 6.36: NREL phase VI wind turbine in numerical wind
tunnel: Displacement at the tip X t and total torque versus time.

Next, a quantitative comparison of the results in Fig. 6.36 is provided.
Accordingly, the time-displacement curves at the tip of the right blade
X t = 5.029 e1−0.013007 e2+0.24821 e3 [m] and the rotor shaft torque are
depicted in Figs. 6.36(a) and 6.36(b), respectively. The magnitude of the
displacement field at the tip of the right blade from the CSD solution shows
excellent accordance between the standard finite element mesh and the
multipatch isogeometric discretization of the flexible wind turbine blades
in terms of the pattern and frequency of the oscillations. However, the FEM
solution exhibits slightly larger displacements which can be attributed to
the underlying Reissner-Mindlin kinematics of the employed model for
the standard FEM discretization in contrast to the Kirchhoff-Love shell
kinematics associated with the multipatch isogeometric discretization of
the flexible wind turbine blades. The error of the transformed displace-
ment fields onto the fluid FSI interface at the tip is found negligible for this
case. Concerning the rotor shaft torque, it can be observed that the pure
CFD simulation produces the largest values and the FSI simulation with
the FEM discretization of the flexible blades the lowest ones.

Subsequently, two points X u =−4.7603 e1−0.03568 e2+0.00997 e3 [m] and
X d =−0.74041 e1+0.07505 e2−0.06956 e3 [m] are chosen in the upstream
and the downstream sides of the left wind turbine blade, respectively, for
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Figure 6.37: NREL phase VI wind turbine in numerical wind
tunnel: Traction magnitude and the corresponding relative error

of the transformation at X u in the upstream side versus time.
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Figure 6.38: NREL phase VI wind turbine in numerical wind
tunnel: Traction magnitude and the corresponding relative error

at X d in the downstream side versus time.

the evaluation of the corresponding traction fields, see Figs. 6.37 and 6.38,
respectively. Accordingly, the fluid traction field t̃ versus the time is shown
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Figure 6.39: NREL phase VI wind turbine in numerical wind
tunnel: Transformation of the displacement field defined on the
multipatch NURBS surface at time t = 3 s onto fluid FSI surface.
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Figure 6.40: NREL phase VI wind turbine in numerical wind
tunnel: Transformation of the traction field defined on the fluid
FSI surface at time t = 3 s onto the multipatch NURBS surface.

in Figs. 6.37(a) and 6.38(a) for both FSI and the pure CFD simulations,
respectively. It can be observed that taking into consideration the FSI
coupling has an effect on the fluid traction field, see Fig. 6.38(a), even for
relatively small displacement fields as in this numerical example. Addition-
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ally, the relative error of the traction transformation at X u and X d versus
time is shown in Figs. 6.37(b) and 6.38(b), respectively, where it can be
observed that both the standard and the isogeometric mortar-based map-
ping methods produce excellent transformations for the traction fields on
the flexible wind turbine blades.

Next, the transformation of fields using the isogeometric mortar-based
mapping method developed in 6.1 is quantified. Firstly, the displacement
field taken from the FSI simulation with the multipatch isogeometric dis-
cretization for the flexible blades at time t = 3 s and transformed onto the
fluid FSI interface using Eq. (6.10), see Fig. 6.39, demonstrating excellent
performance of the proposed method. For this case, the relative transfor-
mation error of the displacement field in the L2 (S )-norm is found 0.038%
which is highly satisfactory given the complexity and the size of the geom-
etry. Lastly, the traction field from the same FSI simulation defined on the
fluid FSI interface is taken at time t = 3 s and transformed onto the NURBS
multipatch geometryS using Eq. (6.15), see Fig. 6.40. For the sake of clar-
ity, both the upstream and the downstream sides are herein depicted, see
Figs. 6.40(a) and 6.40(b), respectively. The results show once more excel-
lent accordance even for a highly oscillatory field, such as the traction field
in this case, and the corresponding relative transformation error in the
traction field is in this case found 4.31% based in the L2 (S )-norm whereas
the interface jump of the traction field between the multipatches is equal
to ‖χ̂‖0,γi

= 0.215 N/m2.

6.5 Concluding remarks

This chapter demonstrates the FSI application of thin-walled structures of
membrane and Kirchhoff-Love shell type discretized using isogeometric
analysis on multipatches. Accordingly, a novel isogeometric mortar-based
mapping method is developed for the transformation of fields between
trimmed multipatch and low order discretized surfaces. The herein pro-
posed isogeometric mortar-based mapping method can be used directly
in FSI when IGA on multipatches for the CSD problem is employed and
for smoothing the fields defined on the FSI interface for FSI applications
where the CSD problem is discretized using standard FEM. The numerical
examples comprise the lid-driven cavity FSI benchmark as standard in
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literature and two examples of practical relevance, that is, the inflatable
hangar and the NREL phase VI wind turbine with flexible blades in corre-
sponding numerical wind tunnels. The results suggest that isogeometric
analysis on multipatches can be successfully used for multiphysics ap-
plications of the fluid-structure interaction type with many advantages
stemming from the exact representation of the FSI interface via NURBS
multipatches and the smooth high order fields that isogeometric analysis
offers as opposed to standard FEM.

170



Chapter 7

Conclusions and Outlook

In this thesis the Isogeometric Analysis (IGA) of thin-walled structures
on multiple, possibly trimmed, patches using Non-Uniform Rational B-
Splines (NURBS) and its extension to coupled Fluid-Structure Interac-
tion (FSI) is shown. Accordingly, two-dimensional linear elasticity, three-
dimensional membrane and Kirchhoff-Love shell analyses are consid-
ered where also nonlinear strain measures are taken into account, see
Chaps. 3, 4 and 5, respectively. Regarding the multipatch coupling and the
application of weak Dirichlet boundary conditions, different constraint
enforcement methods are elaborated and tested (Penalty, Lagrange Mul-
tipliers and Nitsche-type methods) in the context of IGA of thin-walled
structures on multipatches.
Concerning the application of IGA for thin-walled structures in FSI a novel
isogeometric mortar-based mapping method is elaborated and evaluated
for geometries stemming directly from Computer-Aided Design (CAD),
see Chap. 6. As synthesis of this work, the FSI of the inflatable hangar
(introduced in 4.2.3) and the NREL phase VI wind turbine with flexible
blades (introduced in 5.2.4) within corresponding numerical wind tunnels
is shown in Secs. 6.4.2 and 6.4.3, respectively, as a demonstration of the
aforementioned methodology to real world engineering applications in

171



7 Conclusions and Outlook

the context of multiphysics.
Firstly, the basics are laid regarding geometric modelling, variational prob-
lems, existence and uniqueness of solutions to special types of variational
problems in addition to structural analysis of Kirchhoff-Love shells and
membranes. Accordingly, an introduction to the corresponding discrete
equation systems of the finite element discretization is provided.
Then, an introduction to IGA is given and subsequently the application of
various constraint enforcement methods consisting of Penalty, Lagrange
Multipliers and Nitsche-type formulations in the context of linear elasticity
is provided. This is due to the ease of two-dimensional linear elasticity com-
pared to three-dimensional membrane and Kirchhoff-Love shell analysis,
allowing for detailed evaluation of the aforementioned methods. The un-
derlying formulations and the corresponding discrete equation systems
are provided and compared using two benchmark examples, one in linear
static and one in modal analysis.
Concerning IGA of three-dimensional thin-walled structures on multi-
patches, the aforementioned methods are selectively chosen for their appli-
cation to membranes and Kirchhoff-Love shells. Accordingly, the Penalty
method is extended to both membranes and Kirchhoff-Love shell analyses.
The advantages of the Penalty method for these kinds of problems lie in
its implementational simplicity and computational efficiency, whereas its
main disadvantages are that it is variationally inconsistent and that one or
more Penalty parameters have to be chosen. Nevertheless, a rule for the
choice of the Penalty parameters is provided in this work. The application
of the Lagrange Multipliers method is herein extended to account for the
isogeometric Kirchhoff-Love shell analysis on multipatches. Accordingly,
two independent Lagrange Multipliers fields are used for the enforcement
of the displacement and rotation continuity between the multipatches. It
is concluded that piecewise constant discontinuous discretizations for the
Lagrange Multipliers fields provide accurate and stable results. Moreover,
it is observed that a finer discretization for the Lagrange Multipliers field
associated with the displacement continuity constraint rather than for the
discretization of the Lagrange Multipliers field associated with the rotation
continuity constraint leads to more stable results for the underlying dis-
crete saddle point formulation. The Nitsche-type method is then extended
to account for the isogeometric membrane analysis on multipatches within
form-finding and geometrically nonlinear transient analysis. The main
benefits of the Nitsche-type method lie in the consistency of its variational
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formulation and in that no user interference is necessary. Accordingly,
stabilization of the corresponding variational form is needed to render the
method coercive. This is achieved using Penalty-like stabilization terms
where the stabilization parameters can be estimated solving a series of
interface and boundary eigenvalue problems. The effort involved in the
latter procedure is considered minimal as the eigenvalue problems are
of relatively small size. Since the Nitsche-type methods involve the inter-
face fluxes which are nonlinear for geometrically nonlinear problems, the
corresponding interface and boundary contributions need to be recom-
puted at each nonlinear iteration which compromises the computational
efficiency. However, the latter has the advantage that the interface and
boundary coupling terms are adapted during the transient analysis as op-
posed to Penalty and Lagrange Multipliers methods.
The novel approach of the isogeometric mortar-based mapping method is
also shown as an extension of the standard mortar-based mapping method
to account also for geometries stemming directly from CAD. The method-
ological and implementational aspects are accordingly discussed. The
underlying formulation is extended with Penalty terms for the continu-
ity enforcement of the transformed fields and the application of weak
Dirichlet boundary conditions when fields are transformed onto a surface
consisting of trimmed NURBS multipatches, whenever desirable. Subse-
quently, the concept of the Exact Coupling Layer (ECL) is introduced and a
series of FSI simulations are used for validating the proposed methodology.

Regarding the continuity enforcement and the application of weak Dirich-
let boundary conditions in IGA on multipatches, the Lagrange Multipliers
method needs to be deeper investigated. In this thesis, only the original
saddle point formulation of the Lagrange Multipliers method is used. This
led in many cases to ill-conditioned systems, a fact which can be attributed
to the failure of meeting the Ladyzhenskaya-Babuška-Brezzi (LBB) con-
dition. This is because it is not a trivial problem to show that the LBB
condition is met for any isogeometric and Lagrange Multipliers discretiza-
tion. Alternative Lagrange Multipliers formulations, such as the mortar
method, the perturbed Lagrange Multipliers method etc., need to be de-
veloped and systematically evaluated for the isogeometric membrane and
the Kirchhoff-Love shell analysis on multipatches.
In this work, the Penalty method is also used for the continuity of the trans-
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formed fields and the application of weak Dirichlet boundary conditions in
the context of the isogeometric mortar-based mapping method. Since the
mortar-based mapping method for surfaces is a linear problem, it would be
beneficial to study alternative formulations, based on Lagrange Multipli-
ers or Nitsche-type methods, for the enforcement of the aforementioned
constraints. The proposed isogeometric mortar-based mapping method
needs to be tested and evaluated for additional multiphysics and surface
coupled problems such as, thermal-fluid-structure interaction, aeroacous-
tics, contact mechanics etc. Additionally, the isogeometric mortar-based
mapping method needs to be extended to account for transformation of
fields between two multipatch NURBS surfaces for its application to mul-
tiphysics problems where the coupled fields along the common interface
are both discretized using IGA on multipatches stemming from different
CAD parametrizations. The aforementioned extension could be applied to
FSI using IGA for the structural discretization and the NURBS-enhanced
finite element method for the fluid discretization.
Concerning the FSI simulation of the hangar in numerical wind tunnel,
additional investigations need to be done. Firstly, an FSI simulation using
a highly resolved finite element mesh needs to be performed for all three
inner pressure magnitudes to minimize the influence of the non-smooth fi-
nite element solution in the flow fields and obtain a better quality reference
solution. Then, a successive refinement of the multipatch isogeometric
discretization needs to be done for the FSI simulation with all three inner
pressure magnitudes to obtain a sufficiently fine structural resolution with
respect to the resulting structural deformations of the herein employed FSI
problems. Moreover, the influence of the volume change in the hangar on
the inner pressure and nonlinear constitutive laws ought to be taken into
account in order to obtain results of physical relevance since the resulting
deformations are significantly large in this case.
Conclusively, regarding the FSI simulation of the NREL phase VI wind
turbine with flexible blades in numerical wind tunnel, additional physical
behaviours may be studied. The proposed framework can be extended to
account also for varying rotational velocity of the blades which is directly
exerted from the wind and to account also for the emergency brake ma-
noeuvre studied in Sicklinger et al. [82]. Additionally, a composite material
can be chosen to obtain a structural model closer to the experimental one
in Simms et al. [7]within the isogeometric discretization of the Kirchhoff-
Love shell problem on multipatches.

174



Appendix A

Discretization Aspects

Herein, a brief introduction to the discretization of the fields introduced
in Chap. 2 is provided inspired by Kiendl [81]. To ease the notations, the
surface normal vector in the current configuration of the surface Ωt is
written as,

a3 =
1

ā3
ã3 , (A.1a)

ã3 = a1×a2 , (A.1b)

ā3 = ‖ã3‖2 . (A.1c)

Given is the finite dimensional admissible space Vh with basis φi , i =
1, . . . , dimVh, see Sec. 2.4.1. The first derivative of each membrane strain
component εαβ with respect to DOF d̂i in Eq. (2.58a) is given by,

∂ εαβ

∂ d̂i

=
1

2

�

∂ φi

∂ θα
·aβ +aα ·

∂ φi

∂ θβ

�

. (A.2)
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Accordingly, the first derivative of each bending strain component καβ
with respect to DOF d̂i in Eq. (2.58a) reads,

∂ καβ

∂ d̂i

=−
∂ βαβ

∂ d̂i

, (A.3)

where the first derivative of each curvature component βαβ with respect

to DOF d̂i in the current configuration is given by,

∂ βαβ

∂ d̂i

=
∂ 2φi

∂ θα∂ θβ
·a3+

∂ aα
∂ θβ

·
∂ a3

∂ d̂i

, (A.4)

and where the first derivative of the surface normal vector in the current
configuration with respect to DOF d̂i is,

∂ a3

∂ d̂i

=
1

ā3

∂ ã3

∂ d̂i

−
1

ā 2
3

∂ ā3

∂ d̂i

ã3 , (A.5)

with,

∂ ā3

∂ d̂i

=
1

ā3
ã3 ·
∂ ã3

∂ d̂i

, (A.6a)

∂ ã3

∂ d̂i

=
∂ φi

∂ θ1
×a2+a1×

∂ φi

∂ θ2
. (A.6b)

The constitutive laws in Eqs. (2.37) are written in matrix form as,

nv = Dmεv , (A.7a)

mv = Dbκv , (A.7b)

•v = [•0
11 •0

22 •0
12
]T being the Voigt notation of the aforementioned ten-

sors expressed on a local orthonormal basis where the constitutive law is
applicable. Accordingly, the material matrices for the membrane and the
bending parts of the stiffness write,

Dm =
E h̄

1−ν2











1 ν 0

ν 1 0

0 0 1−ν











, (A.8a)

Db = h̄ 2 Dm . (A.8b)
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E ,ν and h̄ being the Young’s modulus, the Poisson ratio and the thickness,
respectively. The second derivative of each membrane strain component
εαβ with respect to DOFs d̂i and d̂ j in Eq. (2.59a) then reads,

∂ 2εαβ

∂ d̂i ∂ d̂ j

=
1

2

�

∂ φi

∂ θα
·
∂ φ j

∂ θβ
+
∂ φ j

∂ θα
·
∂ φi

∂ θβ

�

. (A.9)

Accordingly, the second derivative of each bending strain component καβ
with respect to DOFs d̂i and d̂ j in Eq. (2.59a) is given by,

∂ 2καβ

∂ d̂i ∂ d̂ j

=−
∂ 2βαβ

∂ d̂i ∂ d̂ j

, (A.10)

where the second derivative of each curvature componentβαβ with respect

to DOFs d̂i and d̂ j is computed as,

∂ βαβ

∂ d̂i d̂ j

=
∂ 2φi

∂ θα∂ θβ
·
∂ a3

∂ d̂ j

+
∂ 2φ j

∂ θα∂ θβ
·
∂ a3

∂ d̂i

+
∂ aα
∂ θβ

·
∂ 2a3

∂ d̂i d̂ j

. (A.11)

The second derivative of the surface normal a3 in the current configuration
with respect to DOFs d̂i and d̂ j is given by,

∂ 2a3

∂ d̂i ∂ d̂ j

=
1

ā3

∂ 2ã3

∂ d̂i ∂ d̂ j

−
1

ā 2
3

∂ ā3

∂ d̂ j

∂ ã3

∂ d̂i

−
1

ā 2
3

∂ ā3

∂ d̂i

∂ ã3

∂ d̂ j

+

1

ā 2
3

 

−
∂ 2ā3

∂ d̂i ∂ d̂ j

+
2

ā3

∂ ā3

∂ d̂i

∂ ā3

∂ d̂ j

!

ã3 ,

(A.12)

where the second derivatives of ã3 and ā3 with respect to DOFs d̂i and d̂ j

is,

∂ 2ã3

∂ d̂i ∂ d̂ j

=
∂ φi

∂ θ1
×
∂ φ j

∂ θ2
+
∂ φ j

∂ θ1
×
∂ φi

∂ θ2
, (A.13a)

∂ 2ā3

∂ d̂i ∂ d̂ j

=
1

ā3

 

∂ 2ã3

∂ d̂i ∂ d̂ j

· ã3+
∂ ã3

∂ d̂i

·
∂ ã3

∂ d̂ j

!

−

1

ā 3
3

�

∂ ã3

∂ d̂i

· ã3

�

 

∂ ã3

∂ d̂ j

· ã3

!

,

(A.13b)
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respectively. From the above definitions it is clear that basis functionsφi

need to be at least one time continuously differentiable for the structural
analysis of Kirchhoff-Love shells but not for the structural analysis of mem-
branes where only C 0-continuous basis functions are needed. The first
derivative with respect to DOF d̂i and the second derivative with respect to
DOFs d̂i and d̂ j of the cable’s strain tensor ε̂, see Eqs. (2.58b) and (2.59b),
respectively, is defined similar to Eqs. (A.2) and (A.9), respectively. The ro-
tation vectorω defined in Eq. (2.40) is a linear differential operator on the
displacement field d. Accordingly, the first derivative of its contravariant
componentωζ with respect to DOF d̂i appearing in Eq. (2.60a) writes,

∂ ωζ

∂ d̂i

=−
�

∂ φi

∂ θα
·A 3+φi ·A

γBγα

�

εαζ . (A.14)

Then, the B-operator matrix for the rotation vectorωt in Eq. (2.41b) around
the tangent to the boundary vector êt whose norm is used as scaling for
the Penalty parameter in Eq. (6.13b) is given by,

B t =
�

∂ ωζ

∂ d̂1
ê ζt · · · ∂ ωζ

∂ d̂dimVh

ê ζt

�

. (A.15)

Lastly, the derivatives of the traction vector t with respect to DOFs is con-
sidered, as this plays an important role in the Nitsche-type formulations.
The following derivations are based on membrane analysis which naturally
includes two-dimensional linear elasticity. Accordingly, the first derivative
of the traction vector in Eq. (2.50a) with respect to DOF d̂i in Eqs. (4.8)
and (4.10) reads,

∂ t

∂ d̂i

=
∂ nαβ

∂ d̂i

êαaβ +
�

nαβ +nαβ0

�

êα
∂ φi

∂ θβ
, (A.16)

where ∂ nαβ/∂ d̂i = Cαβγδ∂ εγδ/∂ d̂i and where the derivative ∂ εγδ/∂ d̂i is
defined in Eq. (A.2). Lastly, the second derivative of the traction vector with
respect to DOFs d̂i and d̂ j appearing in Eqs. (3.27a) and (3.30a) writes,

∂ 2t

∂ d̂i ∂ d̂ j

=
∂ nαβ

∂ d̂i

êα
∂ φ j

∂ θβ
+
∂ nαβ

∂ d̂ j

êα
∂ φi

∂ θβ
+
∂ 2nαβ

∂ d̂i ∂ d̂ j

êαaβ , (A.17)

where as before ∂ 2nαβ/(∂ d̂i ∂ d̂ j ) = Cαβγδ∂ 2εγδ/(∂ d̂i ∂ d̂ j ) and the second
derivative of the membrane strain components with respect to the DOFs
is given in Eq. (A.9).
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Appendix B

Co-Simulation

In a Co-Simulation environment, multiple programs can be combined
and exchange data in arbitrary ways for solving multiphysics problems,
see also in Sicklinger et al. [82]. Herein, the co-simulation environment in
open-source software EMPIRE (Wang [86]) is used and extended for the
prediction of Fluid-Structure Interaction (FSI) phenomena detailed in this
thesis. The communication of the different programs is done through an
Application Programming Interface (API) embedded into the participating
programs using a Message Passing Interface (MPI). Given a set of np ∈N
programs each of which has a set of fields υ[ j ]i where i = 1, . . . , n [ j ]f ∈N and
j = 1, . . . , np, the task is to appropriately exchange these fields between
the programs with predefined connections at each Gauss-Seidel (GS) itera-
tion as mentioned in Sec. 6.3 for the FSI co-simulation, see Fig. B.1. The
aforementioned field exchanges might be also subject to a set of filters Φi ,
i = 1, . . . , n̄f ∈ N. The filters in this thesis comprise the standard Mortar-
based Mapping method (MM), the Field Integration (FI), see in Wang [86],
and the Isogeometric Mortar-based Mapping method (IMM) elaborated
in this work. The mortar-based mapping methods are used for the trans-
formation of fields between two non-matching interfaces. The FI filter is
herein used for the transformation of traction fields into force vectors as
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Program 1

Program npυ[1]1

υ[1]i

υ
[np]
1

υ
[np]
j

Co-Simulation enviroment using MPI

...
...

...

υ[1]
n [1]f

...

υ
[np]

n
[np ]
f

Φl

Φ1

Φk

Φq

Φn̄f

API

Figure B.1: Co-Simulation: Schematic of the co-simulation
environment.

per Eqs. (6.24). Due to the fact that the tractions are discretized with the
same basis functions as the displacement fields in the frame of the parti-
tioned FSI approach using the mortar-based mapping method, Eq. (6.24)
can be inverted and the corresponding filter is called inverse Field Inte-
gration (iFI), so that the force vectors can be transformed into traction
fields by multiplying the discrete vector of traction Degrees of Freedom
(DOFs) with C−1

rr or C−1
nn (Eqs. (6.11a) and (6.16)) depending on whether

they are defined on a multipatch NURBS or a low order discretized surface,
respectively.

Regarding the lid-driven cavity FSI benchmark, see Sec. 6.4.1, two types
of simulations are used. Fig. B.2 summarizes the employed solution ap-
proaches within the corresponding co-simulation environments. The one
type consists in FSI simulations where the CSD and CFD problems are
directly coupled while the CSD problem is discretized using both stan-
dard FEM and IGA on both single patch and multipatch surfaces within
Carat++ or Matlab®, see Fig. B.2(a). The other type consists in FSI simu-
lations where the CSD problem is discretized with standard FEM within
Carat++ or Matlab® and the coupling to CFD takes place through an
ECL within Carat++ or Matlab®, see Figure B.2(b). For this example, the
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Matlab

d|S

F̃b

b̃

API

Carat++/
OpenFOAM®

U

F̃t

t̃

MM (or IMM)
MM (or IMM)

FI iFI

(a) FSI simulation.

Carat++

dh|S

F̃b

b̃hFI

OpenFOAM®

U

F̃t

t̃
iFI

Matlab

b̃
d|SIMM

IMM IMM

IMM

API

Carat++/

(b) FSI simulation with ECL.

Figure B.2: Co-Simulation for the lid-driven cavity:
Co-simulation environments with participating programs and

connections at each GS iteration.

d|S
F̃b

OpenFOAM®

U
F̃t

MM (or IMM)

MM (or IMM)

API

Matlab
Carat++/

(a) FSI simulation.

Carat++
dh|S
F̃ h

b

OpenFOAM®

U
F̃t

Matlab

F̃b

d|SIMM

IMM IMM

IMM

APIAPI
(b) FSI simulation with ECL.

Figure B.3: Co-Simulation for the inflatable hangar in numerical
wind tunnel: Co-simulation environments with participating

programs and connections at each GS iteration.

consistent approach is used for both the transformation of displacements
and tractions, see also in Sec. 6.3.

Concerning the inflatable hangar in numerical wind tunnel (Sec. 6.4.2) the
same two types of simulations as in the lid-driven cavity FSI benchmark are
used (Fig. B.3). Herein, the difference is that the consistent force vectors
are transformed using the conservative approach (Figs. B.3(a) and B.3(b))
for the traditional FSI simulations and the FSI simulations with the ECL,
respectively. For this example a Matlab® code is employed for the CSD and
the ECL problems using a multipatch isogeometric discretization, whereas
Carat++ is used for the standard FEM discretization of the hangar.
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Carat++

F̃b

b̃h

dh|S

F̂n̂ computeForces.cpp
Ω ·bg +bc

OpenFOAM®

U F̃t
MM
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rotateForces.cpp

t̃Ω · t̃ F̃t
Ω· iFI

FI
MM Copy

API
(a) FSI simulation with FEM discretization for the
CSD problem.

Carat++

F̃b

b̃h

dh|S

OpenFOAM®

U F̃t
MM

rotateForces.cpp

t̃Ω · t̃ F̃t
Ω· iFI

FI

MM Copy
API
(b) FSI simulation with multipatch isogeometric
discretization for the CSD problem.

Figure B.4: Co-Simulation for the NREL phase VI wind turbine
in numerical wind tunnel: Co-simulation environments with
participating programs and connections at each GS iteration.

Lastly, regarding the NREL phase VI wind turbine in numerical wind tunnel,
see Sec. 6.4.3, two FSI simulations are performed: One using standard FEM
and one using a multipatch isogeometric discretization for the CSD prob-
lem withinCarat++. Herein, the CSD problem is solved as non-rotating by
adding time-varying gravitational forces and constant centrifugal forces,
since the blades are rotating with constant angular velocity. In order to
demonstrate the modularity of the aforementioned co-simulation envi-
ronments, the cases are modelled differently, see Fig. B.4. For the FSI simu-
lation with FEM discretization of the CSD problem, see Fig. B.4(a), two ad-
ditional C++ programs, rotateForces.cpp and computeForces.cpp
are employed. Program rotateForces.cpp is used for the transforma-
tion of the fluid forces t̃ to account for the rotation of the blades. The sec-
ond program computeForces.cpp computes the rotating gravitational
body forces bg and the constant centrifugal body forces bc due to the ro-
tational inertia on the fluid FSI interfaceS and subsequently transforms
them onto the structural FSI interface using the standard mortar-based
mapping method. Regarding the second FSI simulation using the mul-
tipatch isogeometric discretization for the CSD problem, see Fig. B.4(b)
the C++ program rotateForces.cpp is employed. Accordingly, the ro-
tating gravitational body and constant centrifugal forces are computed
within the CSD program and the aerodynamic tractions are rotated using
rotateForces.cpp program. Then, for the transformation of the result-
ing traction field onto the NURBS multipatch geometry the isogeometric
mortar-based mapping method is used.
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[1] Y. Başar and W. B. Krätzig. Mechanik der Flächentragwerke. Theorie,
Berechnungsmethoden, Anwendungsbeispiele. Braunschweig:
Vieweg, 1985. ISBN: 978-3-322-93983-8. DOI:
10.1007/978-3-322-93983-8.

[2] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. “Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh
refinement.” In: Computer Methods in Applied Mechanics and
Engineering 194.39-41 (2005), pp. 4135–4195. DOI:
10.1016/j.cma.2004.10.008.

[3] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis:
Toward integration of CAD and FEA. Chichester et al.: Wiley, 2009.
ISBN: 978-0-470-74873-2.

[4] A. Buffa, G. Sangalli, and C. Schwab. “Exponential Convergence of
the hp Version of Isogeometric Analysis in 1D.” In: Spectral and
high order methods for partial differential equations ICOSAHOM
2012. Ed. by M. Azaïez, J. S. Hesthaven, and H. El Fekih. Vol. 95.
Lecture notes in computational science and engineering, 1439-7358.
Cham: Springer, 2014, pp. 191–203. ISBN: 978-3-319-01600-9. DOI:
10.1007/978-3-319-01601-6_15.

183

https://doi.org/10.1007/978-3-322-93983-8
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1007/978-3-319-01601-6_15


Bibliography

[5] M. Papadrakakis. Solving large-scale problems in mechanics: The
development and application of computational solution methods /
edited by Manolis Papadrakakis. 1993. ISBN: 0471938092.

[6] M. Breitenberger, A. Apostolatos, B. Philipp, R. Wüchner, and
K.-U. Bletzinger. “Analysis in computer aided design: Nonlinear
isogeometric B-Rep analysis of shell structures.” In: Computer
Methods in Applied Mechanics and Engineering 284 (2015),
pp. 401–457. DOI: 10.1016/j.cma.2014.09.033.

[7] D. Simms, S. Schreck, M. Hand, and L. J. Fingersh. “NREL unsteady
aerodynamics experiment in the NASA-Ames wind tunnel: a
comparison of predictions to measurements.” In: National
Renewable Energy Laboratory Colorado, USA (2001).

[8] J. D. Sanders, J. E. Dolbow, and T. A. Laursen. “On methods for
stabilizing constraints over enriched interfaces in elasticity.” In:
International Journal for Numerical Methods in Engineering 78.9
(2009), pp. 1009–1036. DOI: 10.1002/nme.2514.

[9] I. Babuška. “The Finite Element Method with Penalty.” In:
Mathematics of Computation 27.122 (1973), pp. 221–228. DOI:
10.2307/2005611.

[10] A. Apostolatos, R. Schmidt, R. Wüchner, and K.-U. Bletzinger. “A
Nitsche-type formulation and comparison of the most common
domain decomposition methods in isogeometric analysis.” In:
International Journal for Numerical Methods in Engineering 97.7
(2014), pp. 473–504. DOI: 10.1002/nme.4568.

[11] I. Babuška. “The finite element method with Lagrangian
multipliers.” In: Numerische Mathematik 20.3 (1973), pp. 179–192.
DOI: 10.1007/BF01436561.

[12] B. Simeon. “On Lagrange multipliers in flexible multibody
dynamics.” In: Computer Methods in Applied Mechanics and
Engineering 195.50-51 (2006), pp. 6993–7005. DOI:
10.1016/j.cma.2005.04.015.

[13] F. Brezzi and K.-J. Bathe. “A discourse on the stability conditions for
mixed finite element formulations.” In: Computer Methods in
Applied Mechanics and Engineering 82.1-3 (1990), pp. 27–57. DOI:
10.1016/0045-7825(90)90157-H.

184

https://doi.org/10.1016/j.cma.2014.09.033
https://doi.org/10.1002/nme.2514
https://doi.org/10.2307/2005611
https://doi.org/10.1002/nme.4568
https://doi.org/10.1007/BF01436561
https://doi.org/10.1016/j.cma.2005.04.015
https://doi.org/10.1016/0045-7825(90)90157-H


Bibliography

[14] E. Brivadis, A. Buffa, B. Wohlmuth, and L. Wunderlich.
“Isogeometric mortar methods.” In: Computer Methods in Applied
Mechanics and Engineering 284 (2015), pp. 292–319. DOI:
10.1016/j.cma.2014.09.012.

[15] P. M. Gresho, R. L. Sani, and M. S. Engelman. Incompressible flow
and the finite element method. Chichester: Wiley, 2000, 1998. ISBN:
0471492507.

[16] T. Teschemacher, A. M. Bauer, T. Oberbichler, M. Breitenberger,
R. Rossi, R. Wüchner, and K.-U. Bletzinger. “Realization of
CAD-integrated shell simulation based on isogeometric B-Rep
analysis.” In: Advanced Modeling and Simulation in Engineering
Sciences 5.1 (2018), p. 276. DOI: 10.1186/s40323-018-0109-4.

[17] A. Fritz, S. Heber, and B. I. Wohlmuth. “A comparison of mortar and
Nitsche techniques for linear elasticity.” In: CALCOLO 41.3 (2004),
pp. 115–137. DOI: 10.1007/s10092-004-0087-4.

[18] T. Klöppel, A. Popp, U. Küttler, and W. A. Wall. “Fluid--structure
interaction for non-conforming interfaces based on a dual mortar
formulation.” In: Computer Methods in Applied Mechanics and
Engineering 200.45-46 (2011), pp. 3111–3126. DOI:
10.1016/j.cma.2011.06.006.

[19] J. Nitsche. “Über ein Variationsprinzip zur Lösung von
Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen
Randbedingungen unterworfen sind.” In: Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg 36.1 (1971),
pp. 9–15. DOI: 10.1007/BF02995904.

[20] A. Hansbo and P. Hansbo. “An unfitted finite element method,
based on Nitsche’s method, for elliptic interface problems.” In:
Computer Methods in Applied Mechanics and Engineering 191.47-48
(2002), pp. 5537–5552. DOI: 10.1016/S0045-7825(02)00524-8.

[21] P. Hansbo and J. Hermansson. “Nitsche’s method for coupling
non-matching meshes in fluid-structure vibration problems.” In:
Computational Mechanics 32.1-2 (2003), pp. 134–139. DOI:
10.1007/s00466-003-0467-7.

[22] J. D. Sanders, T. A. Laursen, and M. A. Puso. “A Nitsche embedded
mesh method.” In: Computational Mechanics 49.2 (2012),
pp. 243–257. DOI: 10.1007/s00466-011-0641-2.

185

https://doi.org/10.1016/j.cma.2014.09.012
https://doi.org/10.1186/s40323-018-0109-4
https://doi.org/10.1007/s10092-004-0087-4
https://doi.org/10.1016/j.cma.2011.06.006
https://doi.org/10.1007/BF02995904
https://doi.org/10.1016/S0045-7825(02)00524-8
https://doi.org/10.1007/s00466-003-0467-7
https://doi.org/10.1007/s00466-011-0641-2


Bibliography

[23] V. P. Nguyen, P. Kerfriden, M. Brino, S. P. A. Bordas, and E. Bonisoli.
“Nitsche’s method for two and three dimensional NURBS patch
coupling.” In: Computational Mechanics 53.6 (2014), pp. 1163–1182.
DOI: 10.1007/s00466-013-0955-3.

[24] X. Du, G. Zhao, and W. Wang. “Nitsche method for isogeometric
analysis of Reissner--Mindlin plate with non-conforming
multi-patches.” In: Computer Aided Geometric Design 35-36 (2015),
pp. 121–136. DOI: 10.1016/j.cagd.2015.03.005.

[25] Y. Guo, M. Ruess, and D. Schillinger. “A parameter-free variational
coupling approach for trimmed isogeometric thin shells.” In:
Computational Mechanics 59.4 (2017), pp. 693–715. DOI:
10.1007/s00466-016-1368-x.

[26] M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank.
“Weakly enforced essential boundary conditions for
NURBS-embedded and trimmed NURBS geometries on the basis of
the finite cell method.” In: International Journal for Numerical
Methods in Engineering 95.10 (2013), pp. 811–846. DOI:
10.1002/nme.4522.

[27] J. Parvizian, A. Düster, and E. Rank. “Finite cell method.” In:
Computational Mechanics 41.1 (2007), pp. 121–133. DOI:
10.1007/s00466-007-0173-y.

[28] M. Griebel and M. A. Schweitzer. “A Particle-Partition of Unity
Method Part V: Boundary Conditions.” In: Geometric analysis and
nonlinear partial differential equations. Ed. by S. Hildebrandt and
H. Karcher. Berlin and London: Springer, 2003, pp. 519–542. ISBN:
978-3-540-44051-2. DOI: 10.1007/978-3-642-55627-2_27.

[29] A. Apostolatos, K.-U. Bletzinger, and R. Wüchner. “Nitsche’s
method for form-finding of multipatch isogeometric membrane
analysis.” In: PAMM 18.1 (2018), e201800106. DOI:
10.1002/pamm.201800106.

[30] M. Breuer, G. De Nayer, M. Münsch, T. Gallinger, and R. Wüchner.
“Fluid--structure interaction using a partitioned semi-implicit
predictor--corrector coupling scheme for the application of
large-eddy simulation.” In: Journal of Fluids and Structures 29
(2012), pp. 107–130. DOI:
10.1016/j.jfluidstructs.2011.09.003.

186

https://doi.org/10.1007/s00466-013-0955-3
https://doi.org/10.1016/j.cagd.2015.03.005
https://doi.org/10.1007/s00466-016-1368-x
https://doi.org/10.1002/nme.4522
https://doi.org/10.1007/s00466-007-0173-y
https://doi.org/10.1007/978-3-642-55627-2_27
https://doi.org/10.1002/pamm.201800106
https://doi.org/10.1016/j.jfluidstructs.2011.09.003


Bibliography

[31] G. De Nayer, J. N. Wood, M. Breuer, A. Apostolatos, and R. Wüchner.
“Coupled Simulations Involving Light-weight Structures within
Turbulent Flows: A Complementary Experimental and Numerical
Application.” In: PAMM 18.1 (2018), e201800030. DOI:
10.1002/pamm.201800030.

[32] G. De Nayer, A. Apostolatos, J. N. Wood, K. U. Bletzinger,
R. Wüchner, and M. Breuer. “Numerical studies on the
fuid-structure interaction of an air-inflated flexible hemisphere in
turbulent flows.” In: Journal of Fluids and Structures 82 (2018),
pp. 577–609. DOI: 10.1016/j.jfluidstructs.2018.08.005.

[33] Y. Bazilevs, M.-C Hsu, and M. A. Scott. “Isogeometric
fluid--structure interaction analysis with emphasis on
non-matching discretizations, and with application to wind
turbines.” In: Computer Methods in Applied Mechanics and
Engineering 249-252 (2012), pp. 28–41. DOI:
10.1016/j.cma.2012.03.028.
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