
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Combined Control and Data Plane Robustness of

SDN Networks against Malicious Node Attacks

Dorabella Santos

Instituto de Telecomunicações

Aveiro, Portugal
dorabella@av.it.pt

Amaro de Sousa

Instituto de Telecomunicações

DETI, Universidade de Aveiro

Aveiro, Portugal
asou@ua.pt

Carmen Mas Machuca

Technical University of Munich

Munich, Germany
cmas@tum.de

Abstract—In the context of software-defined networking

(SDN), we address a variant of the controller placement

problem (CPP), which takes into account the network

robustness at both control and data plane levels. For given

maximum values of switch-controller and controller-controller

delays at the regular state (i.e., when the network is fully

operational), the aim is to maximize the network robustness

against a set of failure states, each state defined as a possible

malicious attack to multiple nodes. We assume that the

attacker knows the data plane topology and, therefore, can

adopt either one of three commonly considered node centrality

attacks (based on the node degree, closeness or betweenness

centralities), or an attack to the nodes which are the optimal

solution of the critical node detection (CND) problem. We

propose a set of robustness metrics which are used to obtain

the optimal solutions for the robust CPP variant. We present a

set of computational results comparing the average delays and

robustness values of the robust CPP solutions against those

minimizing only the average switch-controller and controller-

controller delays. Moreover, the influence of using the CND

based attack in the robustness evaluation of CPP solutions is

also assessed in the computational results.

Keywords—SDN, controller placement, malicious node

attacks, integer linear programming

I. INTRODUCTION

In SDN networks, the control plane is decoupled from the
data plane, allowing a more efficient network resources
management. For resiliency (i.e., to avoid the single point of
failure) and scalability (when the network size or the amount
of control traffic is too large), the SDN control plane is based
on multiple physically distributed controllers acting as a
logically centralized controller. An immediate concern that
arises is the number of controllers to be deployed and their
placement throughout the network. This problem is known as
the controller placement problem (CPP), which is a facility
location problem variant shown to be NP-hard [1].

Large scale failures, caused by natural disasters, technical
related issues or malicious human-made activities, can cause
serious disruption in telecommunication networks [2].
Malicious attacks are becoming a major concern [3] and such
threats have triggered the interest of network operators to
evaluate the robustness of their networks. In this paper, we
address the CPP aiming to maximize the network robustness
against malicious attacks targeting to shut down a number of
nodes simultaneously.

Our CPP consider the following assumptions. Firstly, the
controller placement must satisfy given maximum switch-
controller (SC) and controller-controller (CC) delays in the
regular state (i.e., when the network is fully operational).

Secondly, each switch connects to its closest controller both
in the regular state and in any failure state. Thirdly, any
controller can serve as a backup controller to any switch. We
address the robust CPP against a set of attacks targeting the
simultaneous shut down of up to 𝑝 nodes and we assume that
the shutdown of a node includes the shutdown of the switch
and of the collocated controller if it exists. A vulnerability of
SDN networks is that if an attacker shuts down all controller
nodes, then the entire network fails. So, we assume the
operator is willing to place 𝐶 = 𝑝 + 1 controllers,
guaranteeing that if all 𝑝 attacked nodes happen to be
controller nodes, at least one controller node still survives
and the data plane network is not disrupted. To guarantee
this, we require the controller placement to be compliant
with the following robustness property: if any set of 𝑝
controller nodes fail, there must be still a path in the data
plane from any switch to the surviving controller.

In a recent work [4], the robust CPP against malicious
attacks to multiple nodes was addressed. That work
considers node attacks based on node centrality metrics and
evaluates CPP solutions based on the disruption level of such
attacks on the SDN control plane. Here, we extend that work
by considering two important issues. Centrality-based
metrics are commonly used to model malicious attacks [4-5]
when assuming that the attacker has full knowledge of the
data plane topology. Nevertheless, it is well known that the
critical node detection (CND) problem [6] provides solutions
that are optimal in the attacker’s perspective since they
maximally disrupt the data plane network. So, in this work,
we include the optimal solutions of CND as possible attacks
in the evaluation of CPP solutions. Second, the disruption
evaluation of a given attack should be performed to both the
control plane and the data plane. In general, services between
any two SDN switches can only be maintained when both
switches can still connect to controllers, and also when there
is at least one path between them in the data plane that
survives the attack. So, in this work, the selection of the best
robust CPP solutions considers a set of robustness metrics
that also include the data plane disruption evaluation.

In order to assess the delay penalties of robust controller
placements when compared with their non-robust
counterparts, we also describe how the CPP solutions
minimizing only the average SC and CC delays can be
optimally computed through integer linear programming.
Moreover, the influence of using the CND based attacks in
the robustness evaluation of the controller placements is also
assessed in the computational results.

The paper is organized as follows. Section II describes
the related work. Section III presents the non-robust CPP
minimizing the average SC and CC delays. Section IV

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or

future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

describes an enumeration method to obtain a set of robust
CPP solutions. Section V describes how CPP solutions are
evaluated in order to obtain the best robust solutions. Section
VI presents and discusses the computational results. Finally,
Section VII presents the main conclusions of this work.

II. RELATED WORK

For a given network, Critical Node Detection (CND)
problems aim to optimally remove a subset of nodes (the
critical nodes) in order to optimize or achieve a given
network degradation metric. CND problems have been
considered in different contexts [6-7] and are gaining special
attention in the vulnerability evaluation of telecommuni-
cation networks to large-scale disasters [8-9] where the idea
is to use the optimal solution of CND as the network
vulnerability metric. Moreover, recent works use CND to
enhance the network robustness to multiple node failures. In
[10], the authors optimally select a set of r nodes that must
be made robust in order to maximally improve the
vulnerability of the network given by CND. In [11], the
authors consider the addition of new links, within a given
budget, to a transparent optical network so that the CND
evaluation of the resulting topology is maximally improved.

Most literature on CPP aims at minimizing the average or
maximum SC delays without addressing failure resilience. In
[12], the authors aim at minimizing combinations of average
and maximum delays and also consider load balancing of the
controllers. In [13], the authors aim at optimizing several
objectives (number of controllers, maximum SC delay,
maximum CC delay and controller load imbalance)
providing solutions based on search methods for different
objective combinations, on a software platform named
POCO. The CC delay is also an important requirement in the
logically centralized control plane, supported for example by
the two major SDN implementations ONOS [14] and ODL
[15], to guarantee efficient controller synchronization for
consistency reasons. However, minimizing the average SC
and CC delays are conflicting objectives [16]: considering
more controllers will, in general, decrease the average SC
delay but increase the average CC delay.

Different works have addressed the issue of making the
CPP more resilient to failures. In [17], the authors first
address the CPP for the regular state, minimizing the number
of controllers, while guaranteeing maximum values for the
SC and CC delays. Then, they address a resilient CPP variant
assuming that switches reconnect to the closest surviving
controller when loose connectivity with their primary
controller. Controllers are assumed to fail with a given
probability and the average SC delays take into account these
failure probabilities. The objective is a combination of
minimizing the controllers and the average SC delays. This
work considers only failures on the control plane.

In [18], a CPP is proposed in order to guarantee two node
disjoint paths from each switch to its primary controller, and
another CPP is proposed guaranteeing node disjoint paths
from each switch to its primary and to its backup controller.
These CPP solutions show enhanced robustness with small
SC delay penalties. In [19], the resilient capacitated CPP is
addressed considering multiple controller failures where each
switch has a given traffic load and controllers have an
associated capacity. An Integer Linear Programming (ILP)
model minimizing the number of controllers is proposed.
The ILP guarantees (i) the assignment of 𝑟 controllers to

each switch (ii) and given maximum values for the SC and
CC delays. Then, ILP can be extended to ensure that all the
control paths of each switch are link-disjoint. Both [18-19]
consider only single link and/or node failures at the SDN
data plane.

The authors in [5] address targeted attacks to an SDN
network. Assuming that the attacker has knowledge of the
data plane topology but is unaware of the controller
locations, the network vulnerabilities to centrality-based
attacks are studied. The controller placements are proposed
to be the least critical nodes, i.e., the nodes less chosen by the
different attacks. In [20], the CPP is addressed for a multiple
failure scenario; the SDN controller locations are based on a
failure correlation assessment of network nodes and links.
The authors consider different types of minimal cut sets
composed of nodes and/or links, to assess the network
unavailability.

III. THE NON-ROBUST CPP

Consider the data plane network represented by a
directed graph 𝐺𝐴 = (𝑁, 𝐴), where 𝑁 is the set of nodes and
𝐴 is the set of directed links. The number of nodes is given
by 𝑛 = |𝑁| and the directed link from node 𝑖 to node 𝑗 is
given by arc (𝑖, 𝑗) . The set of the adjacent nodes of 𝑖 is
denoted as 𝑉(𝑖). Given the propagation delay of each arc, the
shortest path delay between nodes 𝑖 and 𝑗 is denoted as 𝑑𝑖𝑗 .

The non-robust CPP focuses on the regular state, aiming
to optimize the control plane performance, by minimizing
either the average SC delay or the average CC delay [4]. We
further assume that the SC delay between any switch and its
primary controller does not exceed a given 𝐷𝑠𝑐 , and that the
CC delay between any two controllers does not exceed a
given 𝐷𝑐𝑐. Consider the decision variables given by:

𝑦𝑖 ∈ {0,1} binary variable that is 1 if a controller is placed
in node 𝑖, and 0 otherwise

𝑧𝑖𝑗 ∈ {0,1} binary variable that is 1 if the primary controller

of switch 𝑖 is placed in node 𝑗, and 0 otherwise

𝑐𝑖𝑗 ∈ {0,1} binary variable that is 1 is controllers are placed

in nodes 𝑖 and 𝑗 , and 0 otherwise (this means
that 𝑐𝑖𝑗 = 𝑦𝑖 ⋅ 𝑦𝑗)

The following ILP constraints define the set of all
feasible CPP solutions:

∑ 𝑦𝑖𝑖∈𝑁 = 𝐶 (1)

∑ 𝑦𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
≥ 1 𝑖 ∈ 𝑁 (2)

𝑦𝑖 + 𝑦𝑗 ≤ 1 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁\{𝑖}: 𝑑𝑖𝑗 > 𝐷𝑐𝑐 (3)

∑ 𝑧𝑖𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
= 1 𝑖 ∈ 𝑁 (4)

𝑧𝑖𝑗 ≤ 𝑦𝑗 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (5)

𝑐𝑖𝑗 ≤ 𝑦𝑖 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (6a)

𝑐𝑖𝑗 ≤ 𝑦𝑗 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (6b)

𝑐𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑗 − 1 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (6c)

𝑦𝑖 ∈ {0,1} 𝑖 ∈ 𝑁 (7a)

𝑧𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑑𝑖𝑗 ≤ 𝐷𝑠𝑐 (7b)

𝑐𝑖𝑗 ∈ {0,1} 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (7c)

Constraint (1) guarantees the placement of 𝐶 controllers.
Constraints (2) guarantee that for each node 𝑖 ∈ 𝑁 , there
must exist at least one controller placed in a node distanced
at most 𝐷𝑠𝑐 from 𝑖 (guaranteeing the maximum SC delay
requirement), and constraints (3) guarantee that any pair of
controllers are not placed in nodes distanced more than 𝐷𝑐𝑐
from each other (guaranteeing the maximum CC delay
requirement). Constraints (4–5) guarantee that each node 𝑖
has exactly one primary controller in a node distanced at
most 𝐷𝑠𝑐 and, when used, render constraints (2) redundant.
Constraints (6) are the linearization of the equalities
𝑐𝑖𝑗 = 𝑦𝑖 ⋅ 𝑦𝑗 and constraints (7) are variable domain

constraints. For each feasible solution, the average SC delay
of the 𝑛 − 𝐶 switches not hosting a controller is given by

𝑓𝑠𝑐 =
1

𝑛 − 𝐶
∑ ∑ 𝑑𝑖𝑗𝑧𝑖𝑗

𝑗∈𝑁\{𝑖}𝑖∈𝑁

while the average CC delay of the 𝐶(𝐶 − 1)/2 controller
pairs is given by

𝑓𝑐𝑐 =
2

𝐶(𝐶 − 1)
∑ ∑ 𝑑𝑖𝑗𝑐𝑖𝑗

𝑗∈𝑁:𝑖<𝑗𝑖∈𝑁

In the regular state, the aim is to optimize the SC and CC
delays, which are conflicting objectives [16]. The joint
optimization of these objectives is a bi-objective
optimization problem, which has multiple optimal solutions,
known as Pareto solutions. In this work, we consider only the
two Pareto opposites defined as:

MinAvgSC optimization problem that minimizes 𝑓𝑠𝑐 subject
to (1–7) and, then, minimizes 𝑓𝑐𝑐 subject to (1–
7) and guaranteeing the minimum value of 𝑓𝑠𝑐

MinAvgCC optimization problem that minimizes 𝑓𝑐𝑐 subject
to (1–7) and, then, minimizes 𝑓𝑠𝑐 subject to (1–
7) and guaranteeing the minimum value of 𝑓𝑐𝑐

 The solution of each of these problems is determined by
solving in sequence two ILP models. In our computational
instances, both problems are efficiently solved by a standard
ILP solver (we used CPLEX 12.6.1) with total runtime
always below 6 seconds in all cases.

IV. ENUMERATION OF ROBUST CPP SOLUTIONS

In order to enumerate the robust CPP solutions with
𝐶 = 𝑝 + 1 controllers, we first describe through integer
linear programming the set of feasible solutions where the
robustness property is imposed: if all but one controller node
shuts down, there is still a path in the SDN data plane
between any switch and the surviving controller. Consider
the previous variables 𝑦𝑖 and the following integer variables:

𝑥𝑖𝑗
𝑘 ∈ 𝑁0

+ non-negative integer variable indicating the

number of paths that include arc (𝑖, 𝑗) from switch
𝑘 to all controller nodes

Following [4], the following constraints define the set of
all robust CPP solutions:

(1–3), (7a)

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≤ 𝑦𝑖 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (8)

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≥ 0 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (9)

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉(𝑖) ≤ 𝐶(1 − 𝑦𝑖) 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁 (10)

∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉(𝑖) ≥ 𝑦𝑖 − 𝑦𝑘 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (11)

𝑥𝑖𝑘
𝑘 = 0 𝑘 ∈ 𝑁, 𝑖 ∈ 𝑉(𝑘) (12)

𝑥𝑖𝑗
𝑘 ∈ ℕ0

+ 𝑘 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐴 (13)

Constraints (8–13) guarantee the robustness property. For
each switching node 𝑘 ∈ 𝑁:

- if there is no controller placed in node 𝑖 (i.e., 𝑦𝑖 = 0),
constraints (8–9) become the usual path conservation
constraints and constraints (10–11) become redundant.

- if there is a controller placed in node 𝑖 (i.e., 𝑦𝑖 = 1),
constraints (10) guarantee that there is no outgoing arc in
node 𝑖 (to ensure that no path includes intermediate
controller nodes) and constraints (8–9,11) guarantee that
there is exactly one path ending at node 𝑖 (to ensure that
there is a path from 𝑘 to each controller node).

In addition, constraints (12) guarantee that there is no
path originating at k that ends at k, and constraints (13) are

the variable domain constraints of variables xij
k.

In order to enumerate all robust CPP solutions, the
approach in [4] is used. A flowchart with the enumeration
method is presented in Fig. 1. First, the optimal solution of
the following ILP model is computed:

Maximize ∑ 𝛾𝑖𝑦𝑖𝑖∈𝑁 (14)

Subject to

(1–3), (7a), (8–13)

where coefficients 𝛾𝑖 of the objective function (14) are the
nodes’ closeness centrality metric (motivated by the
assumption that nodes with higher closeness centrality are
more promising candidates for placing controllers).

Then, we use a random walk procedure to compute many
new robust CPP solutions. The random walk randomly
swaps a controller from its current node location to an
available adjacent node that does not yet host a controller. If
the generated solution is new (i.e., it has not been previously
found) and feasible (given by the feasibility test), the random
walk procedure continues with the new solution; otherwise, it
discards the solution and goes back to the previous solution.
The random walk ends if a maximum number 𝐼max of
solutions are discarded.

Fig. 1. Flow chart of the enumeration method.

When no new solution can be computed by the random
walk, for each obtained CPP solution {𝜌1, … , 𝜌𝐶}, a
constraint is added to the ILP model in the form:

𝑦𝜌1
+ ⋯ + 𝑦𝜌𝐶 ≤ 𝐶 − 1

to remove it from the feasible set of solutions and the whole
process is repeated (i.e., we solve again the ILP model and
based on its optimal solution, we run again the random walk
to compute new robust CPP solutions). The whole
enumeration method stops when the ILP model is infeasible
(which means the complete set of robust feasible CPP
solutions was found) or when a pre-defined number of CPP
solutions, defined as 𝐿max, is reached.

The feasibility test of a solution has polynomial
complexity. First, the maximum 𝐷𝑠𝑐 and 𝐷𝑐𝑐 delays in the
regular state are straightforwardly checked with the shortest
path delays 𝑑𝑖𝑗 between all pairs of nodes of graph 𝐺. Then,

we start by eliminating from 𝐺 all outgoing arcs (𝑖, 𝑗) of all
nodes 𝑖 hosting a controller, and then running a shortest path
algorithm between all node pairs in the new graph, which has
complexity 𝒪(𝑛3). To check if there is a path in the SDN
data plane between any switch and any controller node, we
just need to verify if the shortest path from every switch to
every controller node is less than infinity.

V. EVALUATION OF THE ROBUST CPP SOLUTIONS

In order to evaluate the robustness of a controller
placement solution, as the robust ones determined by the
enumeration method (Section III) or the MinAvgSC and
MinAvgCC solutions (Section II), we first select the
malicious attacks of interest targeting up to 𝑝 node
shutdowns. Then, we propose a set of robustness metrics and
evaluate each controller placement by computing its
robustness metric values for the considered attacks of
interest. At the end, based on the robustness metric values of
each solution, the selection of the controller placements with
the best robustness values is straightforward.

A. Modelling Malicious Attacks

We assume the attacker has full knowledge of the SDN
data plane topology, but is unaware of the controller
locations. Under this assumption, attacks based on node
centrality metrics are commonly used [4-5]. However,
attacks based on the optimal solution of the critical node
detection (CND) problem maximally disrupt the data plane
[6], and therefore are potentially more damaging to the SDN
network than the centrality-based attacks.

The different centrality measures give different
information concerning network connectivity. Three
centrality-based attacks are considered: (i) node degree based
attack, i.e., nodes with the most neighbors are preferred; (ii)
closeness centrality based attack, i.e., the most central nodes
are preferred; and (iii) betweenness centrality based attack,
i.e., the most nodes serving the largest number of shortest
paths are preferred. In each of these attacks, the nodes with
greatest centrality values are the preferred ones, since
shutting them down should cause major disruption in the
network, from the attacker’s perspective. To select the 𝑝
nodes for shut down, the centrality measures are first
computed in the complete network graph. Then, for each
centrality measure, the node with greatest centrality value is
selected to fail and hence, it is removed from the network
graph. The centrality node values are recomputed for the
remaining network, and the process is repeated until 𝑝 nodes
have been selected.

In the context of our problem, we consider the CND
problem variant aiming to identify a set of 𝑝 nodes in the
data plane network, that when shutdown maximizes the
number of node pairs that become disconnected. The CND
problem can be formulated as an ILP model. To do so,
consider the data plane network represented by the
undirected graph 𝐺𝐸 = (𝑁, 𝐸), where 𝐸 is the set of
undirected links and each link is given by (𝑖, 𝑗) ∈ 𝐸 with
𝑖 < 𝑗. Consider 𝑉(𝑖) as the set of neighboring nodes of 𝑖 in
𝐺𝐸. Also consider the following auxiliary sets: the set of all
node pairs 𝑇 = {(𝑖, 𝑗) ∈ 𝑁 × 𝑁: 𝑖 < 𝑗} ; the complementary
set of 𝐸 given by 𝐸𝑐 = {(𝑖, 𝑗) ∈ 𝑇: (𝑖, 𝑗) ∉ 𝐸}; and set 𝑉(𝑖, 𝑗)
defined as 𝑉(𝑖) if |𝑉(𝑖)| ≤ |𝑉(𝑗)| , or 𝑉(𝑗) otherwise.
Consider the decision variables given by:

𝑣𝑖 ∈ {0,1} binary variable that is set to 1 if node 𝑖 is
selected as a critical node, and 0 otherwise;

𝑢𝑖𝑗 ∈ {0,1} binary variable that is set to 1 if nodes 𝑖 and 𝑗

are connected when the critical nodes are
removed, and 0 otherwise (𝑖 < 𝑗).

For readability purposes, both 𝑢𝑖𝑗 and 𝑢𝑗𝑖 may appear in

the following formulation but they represent the same
variable 𝑢𝑖𝑗 with 𝑖 < 𝑗. Following [9], the CND problem is

given by:

Minimize ∑ 𝑢𝑖𝑗(𝑖,𝑗)∈𝑇 (14)

Subject to:

∑ 𝑣𝑖𝑖∈𝑁 = 𝑝 (15)

𝑢𝑖𝑗 + 𝑣𝑖 + 𝑣𝑗 ≥ 1 (𝑖, 𝑗) ∈ 𝐸 (16)

𝑢𝑖𝑗 ≥ 𝑢𝑖𝑘 + 𝑢𝑗𝑘 − 1 + 𝑣𝑘 (𝑖, 𝑗) ∈ 𝐸𝑐 , 𝑘 ∈ 𝑉(𝑖, 𝑗) (17)

𝑣𝑖 ∈ {0,1} 𝑖 ∈ 𝑁 (18a)

𝑢𝑖𝑗 ∈ {0,1} (𝑖, 𝑗) ∈ 𝑇 (18b)

The objective function (14) is the minimization of the
number of node pairs that remain connected when the critical
nodes are removed. Constraint (15) imposes that exactly 𝑝
critical nodes are selected. Constraints (16) guarantee that if
there is a link between nodes 𝑖 and 𝑗, then they are connected
if none of them are critical nodes. Constraints (17) guarantee
that for nodes 𝑖 and 𝑗 that are not critical nodes and do not
share a link, then, for a neighbor node 𝑘 of one of them, if
the other node is connected to 𝑘 , then 𝑖 and 𝑗 are also
connected. Constraints (18) are the domain variable
constraints. In our computational instances, the CND
problem is efficiently solved by a standard ILP solver (we
used CPLEX 12.6.1) with total runtime always below 4
seconds in all cases.

Note that each malicious attack is defined by a set of p
nodes that are selected by the attacker to be shut down and
this set is computed based only on the data plane topology.
So, the set of p nodes of each attack are computed only once
for each data plane topology. Consider the set 𝑀 = {1,2,3,4}
representing all attacks such that 𝑚 = 1,2,3 represent the
node degree, closeness and betweenness based attack,
respectively, and 𝑚 = 4 represents the CND based attack. In
order to compare the robustness evaluation with and without
the CND based attack, we represent by 𝑀′ the subset
composed by only the centrality-based attacks.

B. Evaluation of CPP Solutions

Recall that for a given data plane network, a CPP
solution is a set of C nodes that host a controller each.
Consider 𝐺𝑚 as the surviving graph to the malicious attack
𝑚 ∈ 𝑀, i.e., when the p nodes of attack m are eliminated
from the data plane graph. To evaluate each CPP solution,
we consider three robustness metrics.

The first metric is the switch pair connectivity metric 𝑛𝑠𝑝.

To compute this metric, we first determine 𝑛𝑠𝑝
𝑚 , given by the

number of switch pairs that are connected in 𝐺𝑚 and both
switches can connect to a SDN controller. Then, we define
𝑛𝑠𝑝 = min𝑚∈𝑀 𝑛𝑠𝑝

𝑚 . This is the most important robustness

metric. It represents the minimum number of switch pairs
that are still able to support data flows amongst all
considered malicious attacks and the aim is to find the CPP
solution that maximizes it.

If multiple solutions have the maximum metric value 𝑛𝑠𝑝,

then, the second metric is the switch-controller metric 𝑛𝑠𝑐 .
To compute this metric, we first determine 𝑛𝑠𝑐

𝑚 given by the
number of switches that can connect to a surviving controller
distanced at most 𝐷𝑠𝑐 in 𝐺𝑚 . Then, we define 𝑛𝑠𝑐 =
min𝑚∈𝑀 𝑛𝑠𝑐

𝑚 . This is the second most important robustness
metric. It represents the minimum number of switches with
available SDN control plane within the maximum SC delay
amongst all considered malicious attacks.

Finally, if multiple solutions have the maximum metric
values 𝑛𝑠𝑝 and 𝑛𝑠𝑐, the third metric is the primary controller

metric 𝑛𝑝𝑐. To compute this metric, we first determine 𝑛𝑝𝑐
𝑚

given by the number of switches whose closest controller in
𝐺𝑚 is its primary controller (i.e., is the closest controller
before attack m). Then, we define 𝑛𝑝𝑐 = min𝑚∈𝑀 𝑛𝑝𝑐

𝑚 . This

is the last robustness metric and represents the number of
switches that do not require a change of their primary
controller avoiding temporary control plane disruption.

Note that the determination of 𝑛𝑠𝑝
𝑚 , 𝑛𝑠𝑐

𝑚 and 𝑛𝑝𝑐
𝑚 for each

𝑚 ∈ 𝑀 is polynomial since these values can be computed
with the shortest path lengths between every node pair and
these lengths are computed by running a shortest path
algorithm between all node pairs in 𝐺𝑚 (which has
complexity 𝒪(𝑛3)).

VI. COMPUTATIONAL RESULTS

In this section, we present a comparison analysis between
the non-robust optimal CPP solutions and the best robust
CPP solutions in terms of average delays versus robustness
to malicious node attacks. Moreover, the influence of using
the CND based attack in the robustness evaluation of all CPP
solutions is also assessed. All methods were implemented in
C++, using CPLEX 12.6 callable libraries running 8 threads.
All problem instances were solved on a 16 core server with
64 GB of RAM running Windows OS.

To define the instances for the computational results, two
topologies were considered as SDN data plane networks:
Germany50 with 50 nodes, 88 undirected links and an
average node degree of 3.52, depicted in Figure 2
(sndlib.zib.de) and CORONET CONUS with 75 nodes, 99
undirected links and an average node degree of 2.64,
depicted in Figure 3 (www.monarchna.com/ topology.html).

As in [4], given the geographical coordinates of the
nodes, each link length was computed as the shortest path

length between the end nodes, over the Earth’s surface.
Moreover, the delay between two nodes is given by the
shortest path length between them. The maximum delay
requirements 𝐷𝑠𝑐 and 𝐷𝑐𝑐 are defined as percentages of the
graph diameter, which is given by the largest delay between
any pair of nodes in the network. The graph diameter for
Germany50 is 934 km, while for CORONET CONUS is
6472 km. For each value of 𝐶, three sets of 𝐷𝑠𝑐, 𝐷𝑐𝑐 values
were considered (presented in Table I), representing different
tradeoffs between the SC and CC delays. These sets of
values were chosen to be tight, although guaranteeing that
the non-robust and robust problems were still feasible
resulting in a total number of 9 problem instances for each
network topology.

Fig. 2. Germany50 with 50 nodes and 88 links.

Fig. 3. CORONET CONUS with 75 nodes and 99 links.

TABLE I. MAXIMUM DELAYS OF EACH PROBLEM INSTANCE

Instance ID 1 2 3 4 5 6 7 8 9

𝑪 4 4 4 6 6 6 8 8 8

Germany50
𝑫𝒔𝒄 (%) 30 35 40 25 30 35 20 25 30

𝑫𝒄𝒄 (%) 60 40 35 65 60 40 75 65 60

CORONET

CONUS

𝑫𝒔𝒄 (%) 30 35 40 20 25 30 20 25 30

𝑫𝒄𝒄 (%) 55 40 30 80 55 50 65 55 50

The maximum number 𝐿max of CPP solutions in the
enumeration method (see Section IV) was set to 100000. As
for the maximum number 𝐼max of consecutive solution
discards by the random walk, it was set to 10000 based on
preliminary tests. The values used for the number of attacked
nodes 𝑝 were 3, 5 and 7. Since 𝐶 = 𝑝 + 1, the number of
controllers for each case is 4, 6 and 8, respectively.

The optimal non-robust CPP solutions were obtained by
solving MinAvgSC and MinAvgCC (see Section II). For each
of these two solutions, besides the average SC and CC delays
(given by the optimal values of the objective functions), their
robustness metrics 𝑛𝑠𝑝 , 𝑛𝑠𝑐 and 𝑛𝑝𝑐 were also computed as

described in Section V.B. The robustness parameters were
computed both against the set 𝑀 of attacks (which include
the CND based attack) and against the subset 𝑀′ (composed
only by the centrality-based attacks).

Then, the best robust CPP solutions were computed. For
each solution, besides the robustness metrics 𝑛𝑠𝑝 , 𝑛𝑠𝑐 and

𝑛𝑝𝑐 (computed as described in Section V), their average SC

and CC delays were also computed. Like in the non-robust
CPP solutions, the robustness parameters were computed
both against the set 𝑀 of attacks and against the subset 𝑀′.

Table II presents the obtained robustness metric values of
all solutions for the nine Germany50 network instances.

Column ‘ID’ identifies the instance ID (as defined in Table I)
and column ‘ 𝑝 ’ identifies the number of attacked nodes
(recall that 𝐶 = 𝑝 + 1). The last row of Table II presents the
average values of each column which enable us to compare
the robustness assessment of the different CPP solutions.

The results presented in Table II highlight the influence
of using the CND based attack in the robustness evaluation
of all controller placement solutions. When only centrality-
based attacks are considered, the main robustness metric
value 𝑛𝑠𝑝

𝑚 is much higher than that value when considering

all attacks, misleading us to conclude that the network is
much more robust to malicious node attacks than it really is.
As a consequence, when only centrality-based attacks are
considered, all robustness metric values are very similar, on
average, for the MinAvgSC and MinAvgCC non-robust
solutions. Moreover, the best robust CPP solution can only
improve the least important robustness metric values 𝑛𝑠𝑐

𝑚 and
𝑛𝑝𝑐

𝑚 when compared with the non-robust solutions.

On the other hand, when all attacks are considered (i.e.,
including CND), we observe that the MinAvgSC solution is
more robust in the main robustness metric value 𝑛𝑠𝑝

𝑚 than the

MinAvgCC solution. Note that minimizing the average SC
delay spreads out the controllers while minimizing the
average CC delay tends to concentrate controllers in the
center of the network. So, the results indicate that having

TABLE II. ROBUSTNESS PARAMETERS OF THE OPTIMAL NON-ROBUST AND ROBUST SOLUTIONS FOR GERMANY50

 Centrality based Attacks (M’) Centrality + CND based Attacks (M)

 MinAvgSC MinAvgCC Robust CPP MinAvgSC MinAvgCC Robust CPP

ID 𝒑 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄

1

3

1081 44 42 1081 47 41 1081 47 47 711 36 28 711 40 39 711 44 41

2 1081 34 29 1081 34 29 1081 34 29 666 34 29 666 34 29 666 34 29

3 1081 47 29 1081 47 37 1081 47 46 666 37 30 666 37 34 711 45 32

4

5

990 28 24 990 39 37 990 43 39 496 28 24 496 37 34 496 43 39

5 990 33 28 990 38 29 990 44 43 496 33 28 496 38 29 496 44 40

6 990 37 29 990 39 30 990 42 26 496 37 29 171 19 18 496 40 26

7

7

441 29 24 441 23 18 441 34 31 301 29 24 181 23 18 301 34 31

8 441 31 24 441 30 25 441 40 37 301 31 24 301 30 25 301 40 35

9 441 26 19 441 31 16 441 40 36 301 26 19 301 31 16 301 40 35

Avg: 837.3 34.3 27.6 837.3 36.4 29.1 837.3 41.2 37.1 492.7 32.3 26.1 443.2 32.1 26.9 497.7 40.4 34.2

TABLE III. ROBUSTNESS PARAMETERS OF THE OPTIMAL NON-ROBUST AND ROBUST SOLUTIONS FOR CORONET CONUS

 Centrality based Attacks (M’) Centrality + CND based Attacks (M)

 MinAvgSC MinAvgCC Robust CPP MinAvgSC MinAvgCC Robust CPP

ID 𝒑 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄

1

3

2485 69 62 2485 67 37 2485 71 65 2016 64 62 2016 64 37 2016 64 64

2 2485 49 33 2485 66 52 2485 68 63 2016 49 33 2016 64 52 2016 64 63

3 2485 56 39 2485 56 38 2485 56 39 2016 56 39 2016 56 38 2016 56 39

4

5

1191 49 45 1191 60 57 1191 61 59 983 49 45 983 60 57 983 61 59

5 1191 59 48 1191 60 49 1191 60 49 973 59 48 973 60 49 973 60 49

6 1191 65 53 561 32 31 1191 65 54 973 63 53 561 32 31 974 64 56

7

7

849 50 48 849 63 60 849 64 61 610 50 48 620 63 60 620 64 61

8 849 64 53 849 61 48 849 64 55 620 64 53 610 61 48 620 64 54

9 771 55 47 561 32 30 771 55 52 620 55 47 430 32 30 620 55 52

Avg: 1499.7 57.3 47.6 1406.3 55.2 44.7 1499.7 62.7 55.2 1203.0 56.6 47.6 1136.1 54.7 44.7 1204.2 61.3 55.2

more spread out controllers makes the solutions more robust
to malicious node attacks. Finally and more importantly, the
best robust CPP solutions are now able to improve, on
average, all robustness metric values, when compared with
the previous non-robust CPP solutions. Although these
improvements are more significant for the robustness metric
values 𝑛𝑠𝑐

𝑚 and 𝑛𝑝𝑐
𝑚 , there are also cases where the main

robustness metric value 𝑛𝑠𝑝
𝑚 is also improved. Overall, by

including the CND based attack in the robustness evaluation,
besides obtaining a more accurate evaluation, we are able to
compute more robust CPP solutions.

Table III presents the obtained robustness parameters of
all solutions for the nine CORONET CONUS network
instances. Like in the previous case, when only centrality-
based attacks are considered (set M’), the main robustness
metric value 𝑛𝑠𝑝

𝑚 is much higher than that value when

considering all attacks (set M). Now, in both cases (either
considering M’ or M), we observe that the MinAvgSC
solution is more robust in all robustness metric values than
the MinAvgCC solution. Recall that CORONET CONUS
topology has a much lower average node degree than
Germany50. This means that having more spread out
controllers make the solutions even more robust to malicious
node attacks for network topologies with lower average node
degrees. Moreover, when all attacks are considered, the best
robust CPP solutions are able to improve only slightly, on
average, the main robustness metric value 𝑛𝑠𝑝

𝑚 when

compared with the MinAvgSC solution but it improves
significantly the other two robustness metric values.

So far, we have shown that the method proposed to
compute the best robust CPP solutions can provide solutions
more robust than those minimizing only the average SC and
CC delays. Now, let us focus on the average SC and CC
delay penalties of the best robust CPP solutions. Figure 4
presents as bar charts the average SC delays of MinAvgSC
solutions, best robust CPP solutions against set M' and
against set M for all instances of both networks. As expected,
the average SC delays of the robust CPP solutions are always
higher than the optimal values of the MinAvgSC solutions.
Nevertheless, the delay penalties are small in all cases
showing that the improved robustness against malicious node
attacks does not significantly degrade the SDN control plane
performance in the regular state concerning switch-controller
delays. Another interesting observation from these results is
that the robust CPP solutions obtained by including the CND
based attack do not necessarily have higher average SC
delays since there are some cases where the delay penalties
of the CPP solutions against set M are lower than those of the
CPP solutions against set M’.

Figure 5 presents as bar charts the average CC delays of
MinAvgCC solutions, best robust CPP solutions against set
M' and against set M for all instances of both networks. As
before, the average CC delays of the robust CPP solutions
are always higher than the optimal values of the MinAvgCC
solutions. In these cases though, the CC delay penalties are
more significant in some instances than in the previous cases,
showing that, as already observed before, the more robust
solutions tend to require more spread out controllers, which
in turn, impose higher average delays between controllers.
Note though, that the average CC delays might not be so
relevant in practice since the maximum CC delay (parameter
𝐷𝑐𝑐 imposed in all CPP solutions) is the main parameter that
impacts the synchronization efficiency between controllers

[16] and the average CC delays of the solutions are all well
below the maximum value considered for each instance. As a
final remark, the conclusion drawn before between the delay
penalties of the CPP solutions computed against set M and
against set M’ also stands in this case, i.e., the robust CPP
solutions obtained by including the CND based attack have
lower average CC delays in some of the instances.

Germany50

CORONET CONUS

Fig. 4. Average SC delays of the MinAvgSC solutions (white columns),

best robust CPP solutions against set 𝑀′ (grey columns) and against set 𝑀

(dark grey columns) for all instances of Germany50 (top) and CORONET

CONUS (bottom).

Germany50

CORONET CONUS

Fig. 5. Average CC delays of the MinAvgCC solutions (white columns),

best robust CPP solutions against set M′ (grey columns) and against set M
(dark grey columns) for all instances of Germany50 (top) and CORONET

CONUS (bottom).

VII. CONCLUSIONS

The robustness of SDN networks to malicious node
attacks requires both the data plane and the control plane
disruption evaluation. This is because services between any
two SDN switches can only be maintained when both

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

d
sc

 %

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

d
sc

 %

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

d
cc

 %

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9

d
cc

 %

switches can still connect to controllers, and also when there
is at least one path between them in the data plane that
survives the attack. To this aim, we have addressed a variant
of CPP which takes into account the network robustness at
both control and data plane levels. For given maximum
values of SC and CC delays at the regular state, the aim of
our CPP variant was to maximize the SDN robustness
against a set of failure states, each one given by a possible
malicious attack to multiple nodes.

We have assumed that the attacker knows the data plane
topology and, therefore, can adopt either one of three
commonly considered node centrality attacks (node degree,
node centrality of node betweenness) or an attack to the
nodes which are the optimal solution of the CND problem.

We have also described how CPP solutions minimizing
only the average SC and CC delays can be optimally
computed through integer linear programming so that in the
computational results a comparison analysis has been
conducted between the non-robust and best robust CPP
solutions in terms of average delays versus robustness to
malicious node attacks. The computational results have
shown that enhanced robustness against malicious attacks to
multiple nodes are obtained with small average SC delay
penalties while the CC delay penalties might be more
significant although well below the required maximum
values.

Concerning the influence of using the CND based attack
in the robustness evaluation of controller placements, the
computational results have shown that it enables to compute
more robust CPP solutions. Moreover, the results have also
shown that the robustness evaluation becomes more accurate
since when only centrality-based attacks are considered, the
switch pair connectivity metric 𝑛𝑠𝑝 is much higher than that

value when considering all attacks, misleading us to
conclude that the network is much more robust to malicious
node attacks than it really is.

ACKNOWLEDGMENT

This paper is based upon work from COST Action
CA15127 ("Resilient communication services protecting end
user applications from disaster-based failures ‒ RECODIS")
supported by COST (European Cooperation in Science and
Technology). The work was financially supported by FCT
(“Fundação para a Ciência e Tecnologia”), Portugal, under
the projects CENTRO-01-0145-FEDER-029312 and
UID/EEA/50008/2013 and through the postdoc grant
SFRH/BPD/111503/2015.

REFERENCES

[1] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem”, ACM HotSDN 2012, New York, USA, pp. 7-12 (2012).

[2] J. Rak, D. Hutchison, E. Calle, T. Gomes, M. Gunkel, P. Smith, J.
Tapolcai, S. Verbrugge, and L. Wosinska, “RECODIS: Resilient

communication services protecting end-user applications from
disaster-based failures”, ICTON 2016, We.D1.4, Trento, Italy (2016).

[3] M. Furdek, L. Wosinska, R. Goscien, K. Manousakis, M. Aibin, K.
Walkowiak, S. Ristov, and J. Marzo, “An overview of security
challenges in communication networks”, RNDM, pp. 43-50,
Halmsatd, Sweden (2016).

[4] D. Santos, A. de Sousa, and C. Mas Machuca, “Robust SDN
Controller Placement to Malicious Node Attacks”, DRCN 2018, Paris
France (2018).

[5] D. F. Rueda, E. Calle and J. L. Marzo, “Improving the Robustness to
Targeted Attacks in Software Defined Networks (SDN)”, DRCN
2017, pp. 78-85, Munich, Germany (2017).

[6] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M.
Pardalos, “Detecting Critical Nodes in Sparse Graphs”, Computers &
Operations Research, vol. 36, pp. 2193–2200, 2009.

[7] A. Veremyev, V. Boginski, and E. Pasiliao, “Exact Identication of
Critical Nodes in Sparse Networks via New Compact Formulations”,
Optimization Letters, vol. 8, pp. 1245–1259, 2014.

[8] T. Dinh, Y. Xuan, M. Thai, P. Pardalos, and T. Znati. On new
approaches of assessing network vulnerability: hardness and
approximation. IEEE/ACM Trans. on Networking, vol. 20, pp. 609–
619, 2012.

[9] D. Santos, A. de Sousa, and P. Monteiro, “Compact Models for
Critical Node Detection in Telecommunication Networks”, Electronic
Notes in Discrete Mathematics, vol. 64, pp. 325-334, 2018.

[10] A. de Sousa, D. Mehta, and D. Santos, “The Robust Node Selection
Problem aiming to Minimize the Connectivity Impact of any Set of p
Node Failures”, DRCN 2017, Munich, Germany, pp. 138-145 (2017).

[11] F. Barbosa, A. de Sousa, and A. Agra, “Topology Design of
Transparent Optical Networks Resilient to Multiple Node Failures”,
accepted to RNDM 2018.

[12] Y. Jiménez, C. Cervelló-Pastor, and A. J. García, “On the controller
placement for designing a distributed SDN control layer,” IFIP 2014,
Trondheim, Norway (2014).

[13] D. Hock, M. Hartmann, S. Gebert, M.l Jarschel, Th. Zinner, and P.
Tran-Gia, “Pareto-Optimal Resilient Controller Placement in SDN-
based Core Networks,” ITC 2013, Shanghai, China (2013).

[14] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.
Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an open, distributed SDN OS,” ACM HotSDN
2014, New York, USA, pp. 1-6 (2014).

[15] OpenDaylight: A Linux foundation collaborative project. [Online].
Available: http://www.opendaylight.org.

[16] T. Zhang, A. Bianco and P. Giaccone, “The role of inter-controller
traffic in SDN controllers placement”, NFV-SDN 2016, Palo Alto,
USA, pp. 87-92 (2016).

[17] N. Perrot and T. Reynaud, “Optimal placement of controllers in a
resilient SDN architecture”, DRCN 2016, Paris, France, pp. 145-151
(2016).

[18] P. Vizarreta, C. Mas Machuca, and W. Kellerer, “Controller
placement strategies for a resilient SDN control plane”, RNDM 2016,
Halmstad, Sweden, pp. 253-259 (2016).

[19] M. Tanha, D. Sajjadi, R. Rubyy, and J. Pan, “Capacity-aware and
Delay-guaranteed Resilient Controller Placement for Software-
Defined WANs”, IEEE Trans. on Network and Service Management
(Early Access), pp. 1-15, 2018.

[20] G. Nencioni, B. E.Helvik, and P. E. Heegaard, “Including Failure
Correlation in Availability Modeling of a Software-Defined
Backbone Network”, IEEE Trans. on Network and Service
Management, vol. 14, no. 4, pp. 1032-1045, 2017.

