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Abstract—In the context of software-defined networking 

(SDN), we address a variant of the controller placement 

problem (CPP), which takes into account the network 

robustness at both control and data plane levels. For given 

maximum values of switch-controller and controller-controller 

delays at the regular state (i.e., when the network is fully 

operational), the aim is to maximize the network robustness 

against a set of failure states, each state defined as a possible 

malicious attack to multiple nodes. We assume that the 

attacker knows the data plane topology and, therefore, can 

adopt either one of three commonly considered node centrality 

attacks (based on the node degree, closeness or betweenness 

centralities), or an attack to the nodes which are the optimal 

solution of the critical node detection (CND) problem. We 

propose a set of robustness metrics which are used to obtain 

the optimal solutions for the robust CPP variant. We present a 

set of computational results comparing the average delays and 

robustness values of the robust CPP solutions against those 

minimizing only the average switch-controller and controller-

controller delays. Moreover, the influence of using the CND 

based attack in the robustness evaluation of CPP solutions is 

also assessed in the computational results. 
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I. INTRODUCTION  

In SDN networks, the control plane is decoupled from the 
data plane, allowing a more efficient network resources 
management. For resiliency (i.e., to avoid the single point of 
failure) and scalability (when the network size or the amount 
of control traffic is too large), the SDN control plane is based 
on multiple physically distributed controllers acting as a 
logically centralized controller. An immediate concern that 
arises is the number of controllers to be deployed and their 
placement throughout the network. This problem is known as 
the controller placement problem (CPP), which is a facility 
location problem variant shown to be NP-hard [1]. 

Large scale failures, caused by natural disasters, technical 
related issues or malicious human-made activities, can cause 
serious disruption in telecommunication networks [2]. 
Malicious attacks are becoming a major concern [3] and such 
threats have triggered the interest of network operators to 
evaluate the robustness of their networks. In this paper, we 
address the CPP aiming to maximize the network robustness 
against malicious attacks targeting to shut down a number of 
nodes simultaneously. 

Our CPP consider the following assumptions. Firstly, the 
controller placement must satisfy given maximum switch-
controller (SC) and controller-controller (CC) delays in the 
regular state (i.e., when the network is fully operational). 

Secondly, each switch connects to its closest controller both 
in the regular state and in any failure state. Thirdly, any 
controller can serve as a backup controller to any switch. We 
address the robust CPP against a set of attacks targeting the 
simultaneous shut down of up to 𝑝 nodes and we assume that 
the shutdown of a node includes the shutdown of the switch 
and of the collocated controller if it exists. A vulnerability of 
SDN networks is that if an attacker shuts down all controller 
nodes, then the entire network fails. So, we assume the 
operator is willing to place 𝐶 = 𝑝 + 1  controllers, 
guaranteeing that if all 𝑝  attacked nodes happen to be 
controller nodes, at least one controller node still survives 
and the data plane network is not disrupted. To guarantee 
this, we require the controller placement to be compliant 
with the following robustness property: if any set of 𝑝 
controller nodes fail, there must be still a path in the data 
plane from any switch to the surviving controller. 

In a recent work [4], the robust CPP against malicious 
attacks to multiple nodes was addressed. That work 
considers node attacks based on node centrality metrics and 
evaluates CPP solutions based on the disruption level of such 
attacks on the SDN control plane. Here, we extend that work 
by considering two important issues. Centrality-based 
metrics are commonly used to model malicious attacks [4-5] 
when assuming that the attacker has full knowledge of the 
data plane topology. Nevertheless, it is well known that the 
critical node detection (CND) problem [6] provides solutions 
that are optimal in the attacker’s perspective since they 
maximally disrupt the data plane network. So, in this work, 
we include the optimal solutions of CND as possible attacks 
in the evaluation of CPP solutions. Second, the disruption 
evaluation of a given attack should be performed to both the 
control plane and the data plane. In general, services between 
any two SDN switches can only be maintained when both 
switches can still connect to controllers, and also when there 
is at least one path between them in the data plane that 
survives the attack. So, in this work, the selection of the best 
robust CPP solutions considers a set of robustness metrics 
that also include the data plane disruption evaluation. 

In order to assess the delay penalties of robust controller 
placements when compared with their non-robust 
counterparts, we also describe how the CPP solutions 
minimizing only the average SC and CC delays can be 
optimally computed through integer linear programming. 
Moreover, the influence of using the CND based attacks in 
the robustness evaluation of the controller placements is also 
assessed in the computational results. 

The paper is organized as follows. Section II describes 
the related work. Section III presents the non-robust CPP 
minimizing the average SC and CC delays. Section IV 
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describes an enumeration method to obtain a set of robust 
CPP solutions. Section V describes how CPP solutions are 
evaluated in order to obtain the best robust solutions. Section 
VI presents and discusses the computational results. Finally, 
Section VII presents the main conclusions of this work. 

II. RELATED WORK 

For a given network, Critical Node Detection (CND) 
problems aim to optimally remove a subset of nodes (the 
critical nodes) in order to optimize or achieve a given 
network degradation metric. CND problems have been 
considered in different contexts [6-7] and are gaining special 
attention in the vulnerability evaluation of telecommuni-
cation networks to large-scale disasters [8-9] where the idea 
is to use the optimal solution of CND as the network 
vulnerability metric. Moreover, recent works use CND to 
enhance the network robustness to multiple node failures. In 
[10], the authors optimally select a set of r nodes that must 
be made robust in order to maximally improve the 
vulnerability of the network given by CND. In [11], the 
authors consider the addition of new links, within a given 
budget, to a transparent optical network so that the CND 
evaluation of the resulting topology is maximally improved. 

Most literature on CPP aims at minimizing the average or 
maximum SC delays without addressing failure resilience. In 
[12], the authors aim at minimizing combinations of average 
and maximum delays and also consider load balancing of the 
controllers. In [13], the authors aim at optimizing several 
objectives (number of controllers, maximum SC delay, 
maximum CC delay and controller load imbalance) 
providing solutions based on search methods for different 
objective combinations, on a software platform named 
POCO. The CC delay is also an important requirement in the 
logically centralized control plane, supported for example by 
the two major SDN implementations ONOS [14] and ODL 
[15], to guarantee efficient controller synchronization for 
consistency reasons. However, minimizing the average SC 
and CC delays are conflicting objectives [16]: considering 
more controllers will, in general, decrease the average SC 
delay but increase the average CC delay. 

Different works have addressed the issue of making the 
CPP more resilient to failures. In [17], the authors first 
address the CPP for the regular state, minimizing the number 
of controllers, while guaranteeing maximum values for the 
SC and CC delays. Then, they address a resilient CPP variant 
assuming that switches reconnect to the closest surviving 
controller when loose connectivity with their primary 
controller. Controllers are assumed to fail with a given 
probability and the average SC delays take into account these 
failure probabilities. The objective is a combination of 
minimizing the controllers and the average SC delays. This 
work considers only failures on the control plane. 

In [18], a CPP is proposed in order to guarantee two node 
disjoint paths from each switch to its primary controller, and 
another CPP is proposed guaranteeing node disjoint paths 
from each switch to its primary and to its backup controller. 
These CPP solutions show enhanced robustness with small 
SC delay penalties. In [19], the resilient capacitated CPP is 
addressed considering multiple controller failures where each 
switch has a given traffic load and controllers have an 
associated capacity. An Integer Linear Programming (ILP) 
model minimizing the number of controllers is proposed. 
The ILP guarantees (i) the assignment of 𝑟  controllers to 

each switch (ii) and given maximum values for the SC and 
CC delays. Then, ILP can be extended to ensure that all the 
control paths of each switch are link-disjoint. Both [18-19] 
consider only single link and/or node failures at the SDN 
data plane. 

The authors in [5] address targeted attacks to an SDN 
network. Assuming that the attacker has knowledge of the 
data plane topology but is unaware of the controller 
locations, the network vulnerabilities to centrality-based 
attacks are studied. The controller placements are proposed 
to be the least critical nodes, i.e., the nodes less chosen by the 
different attacks. In [20], the CPP is addressed for a multiple 
failure scenario; the SDN controller locations are based on a 
failure correlation assessment of network nodes and links. 
The authors consider different types of minimal cut sets 
composed of nodes and/or links, to assess the network 
unavailability. 

III. THE NON-ROBUST CPP 

Consider the data plane network represented by a 
directed graph 𝐺𝐴 = (𝑁, 𝐴), where 𝑁 is the set of nodes and 
𝐴 is the set of directed links. The number of nodes is given 
by 𝑛 = |𝑁|  and the directed link from node 𝑖  to node 𝑗  is 
given by arc (𝑖, 𝑗) . The set of the adjacent nodes of 𝑖  is 
denoted as 𝑉(𝑖). Given the propagation delay of each arc, the 
shortest path delay between nodes 𝑖 and 𝑗 is denoted as 𝑑𝑖𝑗 . 

The non-robust CPP focuses on the regular state, aiming 
to optimize the control plane performance, by minimizing 
either the average SC delay or the average CC delay [4]. We 
further assume that the SC delay between any switch and its 
primary controller does not exceed a given 𝐷𝑠𝑐 , and that the 
CC delay between any two controllers does not exceed a 
given 𝐷𝑐𝑐. Consider the decision variables given by: 

𝑦𝑖 ∈ {0,1} binary variable that is 1 if a controller is placed 
in node 𝑖, and 0 otherwise 

𝑧𝑖𝑗 ∈ {0,1}  binary variable that is 1 if the primary controller 

of switch 𝑖 is placed in node 𝑗, and 0 otherwise 

𝑐𝑖𝑗 ∈ {0,1}  binary variable that is 1 is controllers are placed 

in nodes 𝑖  and 𝑗 , and 0 otherwise (this means 
that  𝑐𝑖𝑗 = 𝑦𝑖 ⋅ 𝑦𝑗) 

The following ILP constraints define the set of all 
feasible CPP solutions: 

∑ 𝑦𝑖𝑖∈𝑁 = 𝐶   (1) 

∑ 𝑦𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
≥ 1  𝑖 ∈ 𝑁 (2) 

𝑦𝑖 + 𝑦𝑗 ≤ 1  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁\{𝑖}: 𝑑𝑖𝑗 > 𝐷𝑐𝑐  (3) 

∑ 𝑧𝑖𝑗𝑗:𝑑𝑖𝑗≤𝐷𝑠𝑐
= 1  𝑖 ∈ 𝑁 (4) 

𝑧𝑖𝑗 ≤ 𝑦𝑗  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 (5) 

𝑐𝑖𝑗 ≤ 𝑦𝑖   𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (6a) 

𝑐𝑖𝑗 ≤ 𝑦𝑗  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (6b) 

𝑐𝑖𝑗 ≥ 𝑦𝑖 + 𝑦𝑗 − 1  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗 (6c) 

𝑦𝑖 ∈ {0,1} 𝑖 ∈ 𝑁 (7a) 

𝑧𝑖𝑗 ∈ {0,1}  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑑𝑖𝑗 ≤ 𝐷𝑠𝑐  (7b) 

𝑐𝑖𝑗 ∈ {0,1}  𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁: 𝑖 < 𝑗  (7c) 



Constraint (1) guarantees the placement of 𝐶 controllers. 
Constraints (2) guarantee that for each node 𝑖 ∈ 𝑁 , there 
must exist at least one controller placed in a node distanced 
at most  𝐷𝑠𝑐  from 𝑖  (guaranteeing the maximum SC delay 
requirement), and constraints (3) guarantee that any pair of 
controllers are not placed in nodes distanced more than 𝐷𝑐𝑐  
from each other (guaranteeing the maximum CC delay 
requirement). Constraints (4–5) guarantee that each node 𝑖 
has exactly one primary controller in a node distanced at 
most 𝐷𝑠𝑐  and, when used, render constraints (2) redundant.  
Constraints (6) are the linearization of the equalities 
𝑐𝑖𝑗 = 𝑦𝑖 ⋅ 𝑦𝑗  and constraints (7) are variable domain 

constraints. For each feasible solution, the average SC delay 
of the 𝑛 − 𝐶 switches not hosting a controller is given by  

𝑓𝑠𝑐 =
1

𝑛 − 𝐶
∑ ∑ 𝑑𝑖𝑗𝑧𝑖𝑗

𝑗∈𝑁\{𝑖}𝑖∈𝑁

 

while the average CC delay of the 𝐶(𝐶 − 1)/2  controller 
pairs is given by 

𝑓𝑐𝑐 =
2

𝐶(𝐶 − 1)
∑ ∑ 𝑑𝑖𝑗𝑐𝑖𝑗

𝑗∈𝑁:𝑖<𝑗𝑖∈𝑁

 

In the regular state, the aim is to optimize the SC and CC 
delays, which are conflicting objectives [16]. The joint 
optimization of these objectives is a bi-objective 
optimization problem, which has multiple optimal solutions, 
known as Pareto solutions. In this work, we consider only the 
two Pareto opposites defined as: 

MinAvgSC optimization problem that minimizes 𝑓𝑠𝑐 subject 
to (1–7) and, then, minimizes 𝑓𝑐𝑐 subject to (1–
7) and guaranteeing the minimum value of 𝑓𝑠𝑐 

MinAvgCC optimization problem that minimizes 𝑓𝑐𝑐 subject 
to (1–7) and, then, minimizes 𝑓𝑠𝑐 subject to (1–
7) and guaranteeing the minimum value of 𝑓𝑐𝑐 

 The solution of each of these problems is determined by 
solving in sequence two ILP models. In our computational 
instances, both problems are efficiently solved by a standard 
ILP solver (we used CPLEX 12.6.1) with total runtime 
always below 6 seconds in all cases. 

IV. ENUMERATION OF ROBUST CPP SOLUTIONS 

In order to enumerate the robust CPP solutions with 
𝐶 = 𝑝 + 1  controllers, we first describe through integer 
linear programming the set of feasible solutions where the 
robustness property is imposed: if all but one controller node 
shuts down, there is still a path in the SDN data plane 
between any switch and the surviving controller. Consider 
the previous variables 𝑦𝑖 and the following integer variables: 

𝑥𝑖𝑗
𝑘 ∈ 𝑁0

+  non-negative integer variable indicating the 

number of paths that include arc (𝑖, 𝑗) from switch 
𝑘 to all controller nodes 

Following [4], the following constraints define the set of 
all robust CPP solutions: 

(1–3), (7a) 

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≤ 𝑦𝑖   𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (8) 

∑ (𝑥𝑖𝑗
𝑘 − 𝑥𝑗𝑖

𝑘)𝑗∈𝑉(𝑖) ≥ 0  𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (9) 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉(𝑖) ≤ 𝐶(1 − 𝑦𝑖)  𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁 (10) 

∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉(𝑖) ≥ 𝑦𝑖 − 𝑦𝑘   𝑘 ∈ 𝑁, 𝑖 ∈ 𝑁\{𝑘} (11) 

𝑥𝑖𝑘
𝑘 = 0  𝑘 ∈ 𝑁, 𝑖 ∈ 𝑉(𝑘) (12) 

𝑥𝑖𝑗
𝑘 ∈ ℕ0

+  𝑘 ∈ 𝑁, (𝑖, 𝑗) ∈ 𝐴 (13) 

Constraints (8–13) guarantee the robustness property. For 
each switching node 𝑘 ∈ 𝑁: 

- if there is no controller placed in node 𝑖 (i.e.,  𝑦𝑖 = 0), 
constraints (8–9) become the usual path conservation 
constraints and constraints (10–11) become redundant.  

- if there is a controller placed in node 𝑖 (i.e., 𝑦𝑖 = 1 ), 
constraints (10) guarantee that there is no outgoing arc in 
node 𝑖  (to ensure that no path includes intermediate 
controller nodes) and constraints (8–9,11) guarantee that 
there is exactly one path ending at node 𝑖 (to ensure that 
there is a path from 𝑘 to each controller node). 

In addition, constraints (12) guarantee that there is no 
path originating at k that ends at k, and constraints (13) are 

the variable domain constraints  of variables xij
k. 

In order to enumerate all robust CPP solutions, the 
approach in [4] is used. A flowchart with the enumeration 
method is presented in Fig. 1. First, the optimal solution of 
the following ILP model is computed: 

Maximize ∑ 𝛾𝑖𝑦𝑖𝑖∈𝑁  (14) 

Subject to  

(1–3), (7a), (8–13) 

where coefficients 𝛾𝑖  of the objective function (14) are the 
nodes’ closeness centrality metric (motivated by the 
assumption that nodes with higher closeness centrality are 
more promising candidates for placing controllers).  

Then, we use a random walk procedure to compute many 
new robust CPP solutions. The random walk randomly 
swaps a controller from its current node location to an 
available adjacent node that does not yet host a controller. If 
the generated solution is new (i.e., it has not been previously 
found) and feasible (given by the feasibility test), the random 
walk procedure continues with the new solution; otherwise, it 
discards the solution and goes back to the previous solution. 
The random walk ends if a maximum number 𝐼max  of 
solutions are discarded. 

 

Fig. 1. Flow chart of the enumeration method. 

When no new solution can be computed by the random 
walk, for each obtained CPP solution {𝜌1, … , 𝜌𝐶},  a 
constraint is added to the ILP model in the form:  



𝑦𝜌1
+ ⋯ + 𝑦𝜌𝐶 ≤ 𝐶 − 1 

to remove it from the feasible set of solutions and the whole 
process is repeated (i.e., we solve again the ILP model and 
based on its optimal solution, we run again the random walk 
to compute new robust CPP solutions). The whole 
enumeration method stops when the ILP model is infeasible 
(which means the complete set of robust feasible CPP 
solutions was found) or when a pre-defined number of CPP 
solutions, defined as 𝐿max, is reached. 

The feasibility test of a solution has polynomial 
complexity. First, the maximum 𝐷𝑠𝑐  and 𝐷𝑐𝑐  delays in the 
regular state are straightforwardly checked with the shortest 
path delays 𝑑𝑖𝑗  between all pairs of nodes of graph 𝐺. Then, 

we start by eliminating from 𝐺 all outgoing arcs (𝑖, 𝑗) of all 
nodes 𝑖 hosting a controller, and then running a shortest path 
algorithm between all node pairs in the new graph, which has 
complexity 𝒪(𝑛3). To check if there is a path in the SDN 
data plane between any switch and any controller node, we 
just need to verify if the shortest path from every switch to 
every controller node is less than infinity. 

V. EVALUATION OF THE ROBUST CPP SOLUTIONS 

In order to evaluate the robustness of a controller 
placement solution, as the robust ones determined by the 
enumeration method (Section III) or the MinAvgSC and 
MinAvgCC solutions (Section II), we first select the 
malicious attacks of interest targeting up to 𝑝  node 
shutdowns. Then, we propose a set of robustness metrics and 
evaluate each controller placement by computing its 
robustness metric values for the considered attacks of 
interest. At the end, based on the robustness metric values of 
each solution, the selection of the controller placements with 
the best robustness values is straightforward. 

A. Modelling Malicious Attacks 

We assume the attacker has full knowledge of the SDN 
data plane topology, but is unaware of the controller 
locations.  Under this assumption, attacks based on node 
centrality metrics are commonly used [4-5]. However, 
attacks based on the optimal solution of the critical node 
detection (CND) problem maximally disrupt the data plane 
[6], and therefore are potentially more damaging to the SDN 
network than the centrality-based attacks. 

The different centrality measures give different 
information concerning network connectivity. Three 
centrality-based attacks are considered: (i) node degree based 
attack, i.e., nodes with the most neighbors are preferred; (ii) 
closeness centrality based attack, i.e., the most central nodes 
are preferred; and (iii) betweenness centrality based attack, 
i.e., the most nodes serving the largest number of shortest 
paths are preferred. In each of these attacks, the nodes with 
greatest centrality values are the preferred ones, since 
shutting them down should cause major disruption in the 
network, from the attacker’s perspective. To select the 𝑝 
nodes for shut down, the centrality measures are first 
computed in the complete network graph. Then, for each 
centrality measure, the node with greatest centrality value is 
selected to fail and hence, it is removed from the network 
graph. The centrality node values are recomputed for the 
remaining network, and the process is repeated until 𝑝 nodes 
have been selected. 

In the context of our problem, we consider the CND 
problem variant aiming to identify a set of 𝑝 nodes in the 
data plane network, that when shutdown maximizes the 
number of node pairs that become disconnected. The CND 
problem can be formulated as an ILP model. To do so, 
consider the data plane network represented by the 
undirected graph 𝐺𝐸 = (𝑁, 𝐸),  where 𝐸  is the set of 
undirected links and each link is given by (𝑖, 𝑗) ∈ 𝐸  with 
𝑖 < 𝑗. Consider 𝑉(𝑖) as the set of neighboring nodes of 𝑖 in 
𝐺𝐸. Also consider the following auxiliary sets: the set of all 
node pairs 𝑇 = {(𝑖, 𝑗) ∈ 𝑁 × 𝑁: 𝑖 < 𝑗} ; the complementary 
set of 𝐸 given by 𝐸𝑐 = {(𝑖, 𝑗) ∈ 𝑇: (𝑖, 𝑗) ∉ 𝐸}; and set 𝑉(𝑖, 𝑗) 
defined as 𝑉(𝑖)  if |𝑉(𝑖)| ≤ |𝑉(𝑗)| , or 𝑉(𝑗)  otherwise. 
Consider the decision variables given by: 

𝑣𝑖 ∈ {0,1}  binary variable that is set to 1 if node 𝑖  is 
selected as a critical node, and 0 otherwise; 

𝑢𝑖𝑗 ∈ {0,1}  binary variable that is set to 1 if nodes 𝑖 and 𝑗 

are connected when the critical nodes are 
removed, and 0 otherwise (𝑖 < 𝑗). 

For readability purposes, both 𝑢𝑖𝑗 and 𝑢𝑗𝑖 may appear in 

the following formulation but they represent the same 
variable 𝑢𝑖𝑗 with 𝑖 < 𝑗. Following [9], the CND problem is 

given by: 

Minimize ∑ 𝑢𝑖𝑗(𝑖,𝑗)∈𝑇  (14) 

Subject to: 

∑ 𝑣𝑖𝑖∈𝑁 = 𝑝   (15) 

𝑢𝑖𝑗 + 𝑣𝑖 + 𝑣𝑗 ≥ 1  (𝑖, 𝑗) ∈ 𝐸 (16) 

𝑢𝑖𝑗 ≥ 𝑢𝑖𝑘 + 𝑢𝑗𝑘 − 1 + 𝑣𝑘  (𝑖, 𝑗) ∈ 𝐸𝑐 , 𝑘 ∈ 𝑉(𝑖, 𝑗) (17) 

𝑣𝑖 ∈ {0,1}  𝑖 ∈ 𝑁 (18a) 

𝑢𝑖𝑗 ∈ {0,1}  (𝑖, 𝑗) ∈ 𝑇 (18b) 

The objective function (14) is the minimization of the 
number of node pairs that remain connected when the critical 
nodes are removed. Constraint (15) imposes that exactly 𝑝 
critical nodes are selected. Constraints (16) guarantee that if 
there is a link between nodes 𝑖 and 𝑗, then they are connected 
if none of them are critical nodes. Constraints (17) guarantee 
that for nodes 𝑖 and 𝑗 that are not critical nodes and do not 
share a link, then, for a neighbor node 𝑘 of one of them, if 
the other node is connected to 𝑘 , then 𝑖  and 𝑗  are also 
connected. Constraints (18) are the domain variable 
constraints. In our computational instances, the CND 
problem is efficiently solved by a standard ILP solver (we 
used CPLEX 12.6.1) with total runtime always below 4 
seconds in all cases. 

Note that each malicious attack is defined by a set of p 
nodes that are selected by the attacker to be shut down and 
this set is computed based only on the data plane topology. 
So, the set of p nodes of each attack are computed only once 
for each data plane topology. Consider the set 𝑀 = {1,2,3,4} 
representing all attacks such that 𝑚 = 1,2,3  represent the 
node degree, closeness and betweenness based attack, 
respectively, and 𝑚 = 4 represents the CND based attack. In 
order to compare the robustness evaluation with and without 
the CND based attack, we represent by 𝑀′  the subset 
composed by only the centrality-based attacks. 



B. Evaluation of CPP Solutions 

Recall that for a given data plane network, a CPP 
solution is a set of C nodes that host a controller each. 
Consider 𝐺𝑚 as the surviving graph to the malicious attack 
𝑚 ∈ 𝑀, i.e., when the p nodes of attack m are eliminated 
from the data plane graph. To evaluate each CPP solution, 
we consider three robustness metrics. 

The first metric is the switch pair connectivity metric 𝑛𝑠𝑝. 

To compute this metric, we first determine 𝑛𝑠𝑝
𝑚 , given by the 

number of switch pairs that are connected in 𝐺𝑚  and both 
switches can connect to a SDN controller. Then, we define 
𝑛𝑠𝑝 = min𝑚∈𝑀 𝑛𝑠𝑝

𝑚 . This is the most important robustness 

metric. It represents the minimum number of switch pairs 
that are still able to support data flows amongst all 
considered malicious attacks and the aim is to find the CPP 
solution that maximizes it. 

If multiple solutions have the maximum metric value 𝑛𝑠𝑝, 

then, the second metric is the switch-controller metric 𝑛𝑠𝑐 . 
To compute this metric, we first determine 𝑛𝑠𝑐

𝑚  given by the 
number of switches that can connect to a surviving controller 
distanced at most 𝐷𝑠𝑐  in 𝐺𝑚 . Then, we define 𝑛𝑠𝑐 =
min𝑚∈𝑀 𝑛𝑠𝑐

𝑚 . This is the second most important robustness 
metric. It represents the minimum number of switches with 
available SDN control plane within the maximum SC delay 
amongst all considered malicious attacks. 

Finally, if multiple solutions have the maximum metric 
values 𝑛𝑠𝑝 and 𝑛𝑠𝑐, the third metric is the primary controller 

metric 𝑛𝑝𝑐. To compute this metric, we first determine 𝑛𝑝𝑐
𝑚  

given by the number of switches whose closest controller in 
𝐺𝑚  is its primary controller (i.e., is the closest controller 
before attack m). Then, we define 𝑛𝑝𝑐 = min𝑚∈𝑀 𝑛𝑝𝑐

𝑚 . This 

is the last robustness metric and represents the number of 
switches that do not require a change of their primary 
controller avoiding temporary control plane disruption. 

Note that the determination of 𝑛𝑠𝑝
𝑚 , 𝑛𝑠𝑐

𝑚  and 𝑛𝑝𝑐
𝑚  for each 

𝑚 ∈ 𝑀 is polynomial since these values can be computed 
with the shortest path lengths between every node pair and 
these lengths are computed by running a shortest path 
algorithm between all node pairs in 𝐺𝑚  (which has 
complexity 𝒪(𝑛3)). 

VI. COMPUTATIONAL RESULTS 

In this section, we present a comparison analysis between 
the non-robust optimal CPP solutions and the best robust 
CPP solutions in terms of average delays versus robustness 
to malicious node attacks. Moreover, the influence of using 
the CND based attack in the robustness evaluation of all CPP 
solutions is also assessed. All methods were implemented in 
C++, using CPLEX 12.6 callable libraries running 8 threads. 
All problem instances were solved on a 16 core server with 
64 GB of RAM running Windows OS. 

To define the instances for the computational results, two 
topologies were considered as SDN data plane networks: 
Germany50 with 50 nodes, 88 undirected links and an 
average node degree of 3.52, depicted in Figure 2 
(sndlib.zib.de) and CORONET CONUS with 75 nodes, 99 
undirected links and an average node degree of 2.64, 
depicted in Figure 3 (www.monarchna.com/ topology.html).  

As in [4], given the geographical coordinates of the 
nodes, each link length was computed as the shortest path 

length between the end nodes, over the Earth’s surface. 
Moreover, the delay between two nodes is given by the 
shortest path length between them. The maximum delay 
requirements 𝐷𝑠𝑐  and 𝐷𝑐𝑐  are defined as percentages of the 
graph diameter, which is given by the largest delay between 
any pair of nodes in the network. The graph diameter for 
Germany50 is 934 km, while for CORONET CONUS is 
6472 km. For each value of 𝐶, three sets of 𝐷𝑠𝑐, 𝐷𝑐𝑐  values 
were considered (presented in Table I), representing different 
tradeoffs between the SC and CC delays. These sets of 
values were chosen to be tight, although guaranteeing that 
the non-robust and robust problems were still feasible 
resulting in a total number of 9 problem instances for each 
network topology. 

 

Fig. 2. Germany50 with 50 nodes and 88 links. 

 

Fig. 3. CORONET CONUS with 75 nodes and 99 links. 

TABLE I.  MAXIMUM DELAYS OF EACH PROBLEM  INSTANCE  

Instance ID 1 2 3 4 5 6 7 8 9 

𝑪 4 4 4 6 6 6 8 8 8 

Germany50 
𝑫𝒔𝒄 (%) 30 35 40 25 30 35 20 25 30 

𝑫𝒄𝒄 (%) 60 40 35 65 60 40 75 65 60 

CORONET 

CONUS 

𝑫𝒔𝒄 (%) 30 35 40 20 25 30 20 25 30 

𝑫𝒄𝒄 (%) 55 40 30 80 55 50 65 55 50 



The maximum number 𝐿max  of CPP solutions in the 
enumeration method (see Section IV) was set to 100000. As 
for the maximum number 𝐼max  of consecutive solution 
discards by the random walk, it was set to 10000 based on 
preliminary tests. The values used for the number of attacked 
nodes 𝑝 were 3, 5 and 7. Since 𝐶 = 𝑝 + 1, the number of 
controllers for each case is 4, 6 and 8, respectively. 

The optimal non-robust CPP solutions were obtained by 
solving MinAvgSC and MinAvgCC (see Section II). For each 
of these two solutions, besides the average SC and CC delays 
(given by the optimal values of the objective functions), their 
robustness metrics 𝑛𝑠𝑝 , 𝑛𝑠𝑐  and 𝑛𝑝𝑐 were also computed as 

described in Section V.B. The robustness parameters were 
computed both against the set 𝑀 of attacks (which include 
the CND based attack) and against the subset 𝑀′ (composed 
only by the centrality-based attacks). 

Then, the best robust CPP solutions were computed. For 
each solution, besides the robustness metrics 𝑛𝑠𝑝 , 𝑛𝑠𝑐  and 

𝑛𝑝𝑐 (computed as described in Section V), their average SC 

and CC delays were also computed. Like in the non-robust 
CPP solutions, the robustness parameters were computed 
both against the set 𝑀 of attacks and against the subset 𝑀′. 

Table II presents the obtained robustness metric values of 
all solutions for the nine Germany50 network instances. 

Column ‘ID’ identifies the instance ID (as defined in Table I) 
and column ‘ 𝑝 ’ identifies the number of attacked nodes 
(recall that 𝐶 = 𝑝 + 1). The last row of Table II presents the 
average values of each column which enable us to compare 
the robustness assessment of the different CPP solutions. 

The results presented in Table II highlight the influence 
of using the CND based attack in the robustness evaluation 
of all controller placement solutions. When only centrality-
based attacks are considered, the main robustness metric 
value 𝑛𝑠𝑝

𝑚  is much higher than that value when considering 

all attacks, misleading us to conclude that the network is 
much more robust to malicious node attacks than it really is. 
As a consequence, when only centrality-based attacks are 
considered, all robustness metric values are very similar, on 
average, for the MinAvgSC and MinAvgCC non-robust 
solutions. Moreover, the best robust CPP solution can only 
improve the least important robustness metric values 𝑛𝑠𝑐

𝑚  and 
𝑛𝑝𝑐

𝑚  when compared with the non-robust solutions. 

On the other hand, when all attacks are considered (i.e., 
including CND), we observe that the MinAvgSC solution is 
more robust in the main robustness metric value 𝑛𝑠𝑝

𝑚  than the 

MinAvgCC solution. Note that minimizing the average SC 
delay spreads out the controllers while minimizing the 
average CC delay tends to concentrate controllers in the 
center of the network. So, the results indicate that having 

TABLE II.  ROBUSTNESS PARAMETERS OF THE OPTIMAL NON-ROBUST AND ROBUST SOLUTIONS FOR GERMANY50 

  Centrality based Attacks (M’) Centrality + CND based Attacks (M) 

  MinAvgSC MinAvgCC Robust CPP MinAvgSC MinAvgCC Robust CPP 

ID 𝒑 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 

1 

3 

1081 44 42 1081 47 41 1081 47 47 711 36 28 711 40 39 711 44 41 

2 1081 34 29 1081 34 29 1081 34 29 666 34 29 666 34 29 666 34 29 

3 1081 47 29 1081 47 37 1081 47 46 666 37 30 666 37 34 711 45 32 

4 

5 

990 28 24 990 39 37 990 43 39 496 28 24 496 37 34 496 43 39 

5 990 33 28 990 38 29 990 44 43 496 33 28 496 38 29 496 44 40 

6 990 37 29 990 39 30 990 42 26 496 37 29 171 19 18 496 40 26 

7 

7 

441 29 24 441 23 18 441 34 31 301 29 24 181 23 18 301 34 31 

8 441 31 24 441 30 25 441 40 37 301 31 24 301 30 25 301 40 35 

9 441 26 19 441 31 16 441 40 36 301 26 19 301 31 16 301 40 35 

Avg: 837.3 34.3 27.6 837.3 36.4 29.1 837.3 41.2 37.1 492.7 32.3 26.1 443.2 32.1 26.9 497.7 40.4 34.2 

TABLE III. ROBUSTNESS PARAMETERS OF THE OPTIMAL NON-ROBUST AND ROBUST SOLUTIONS FOR CORONET CONUS 

  Centrality based Attacks (M’) Centrality + CND based Attacks (M) 

  MinAvgSC MinAvgCC Robust CPP MinAvgSC MinAvgCC Robust CPP 

ID 𝒑 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 𝒏𝒔𝒑 𝒏𝒔𝒄 𝒏𝒑𝒄 

1 

3 

2485 69 62 2485 67 37 2485 71 65 2016 64 62 2016 64 37 2016 64 64 

2 2485 49 33 2485 66 52 2485 68 63 2016 49 33 2016 64 52 2016 64 63 

3 2485 56 39 2485 56 38 2485 56 39 2016 56 39 2016 56 38 2016 56 39 

4 

5 

1191 49 45 1191 60 57 1191 61 59 983 49 45 983 60 57 983 61 59 

5 1191 59 48 1191 60 49 1191 60 49 973 59 48 973 60 49 973 60 49 

6 1191 65 53 561 32 31 1191 65 54 973 63 53 561 32 31 974 64 56 

7 

7 

849 50 48 849 63 60 849 64 61 610 50 48 620 63 60 620 64 61 

8 849 64 53 849 61 48 849 64 55 620 64 53 610 61 48 620 64 54 

9 771 55 47 561 32 30 771 55 52 620 55 47 430 32 30 620 55 52 

Avg: 1499.7 57.3 47.6 1406.3 55.2 44.7 1499.7 62.7 55.2 1203.0 56.6 47.6 1136.1 54.7 44.7 1204.2 61.3 55.2 

 



more spread out controllers makes the solutions more robust 
to malicious node attacks. Finally and more importantly, the 
best robust CPP solutions are now able to improve, on 
average, all robustness metric values, when compared with 
the previous non-robust CPP solutions. Although these 
improvements are more significant for the robustness metric 
values 𝑛𝑠𝑐

𝑚  and 𝑛𝑝𝑐
𝑚 , there are also cases where the main 

robustness metric value 𝑛𝑠𝑝
𝑚  is also improved. Overall, by 

including the CND based attack in the robustness evaluation, 
besides obtaining a more accurate evaluation, we are able to 
compute more robust CPP solutions. 

Table III presents the obtained robustness parameters of 
all solutions for the nine CORONET CONUS network 
instances. Like in the previous case, when only centrality-
based attacks are considered (set M’), the main robustness 
metric value 𝑛𝑠𝑝

𝑚  is much higher than that value when 

considering all attacks (set M). Now, in both cases (either 
considering M’ or M), we observe that the MinAvgSC 
solution is more robust in all robustness metric values than 
the MinAvgCC solution. Recall that CORONET CONUS 
topology has a much lower average node degree than 
Germany50. This means that having more spread out 
controllers make the solutions even more robust to malicious 
node attacks for network topologies with lower average node 
degrees. Moreover, when all attacks are considered, the best 
robust CPP solutions are able to improve only slightly, on 
average, the main robustness metric value 𝑛𝑠𝑝

𝑚  when 

compared with the MinAvgSC solution but it improves 
significantly the other two robustness metric values. 

So far, we have shown that the method proposed to 
compute the best robust CPP solutions can provide solutions 
more robust than those minimizing only the average SC and 
CC delays. Now, let us focus on the average SC and CC 
delay penalties of the best robust CPP solutions. Figure 4 
presents as bar charts the average SC delays of MinAvgSC 
solutions, best robust CPP solutions against set M' and 
against set M for all instances of both networks. As expected, 
the average SC delays of the robust CPP solutions are always 
higher than the optimal values of the MinAvgSC solutions. 
Nevertheless, the delay penalties are small in all cases 
showing that the improved robustness against malicious node 
attacks does not significantly degrade the SDN control plane 
performance in the regular state concerning switch-controller 
delays. Another interesting observation from these results is 
that the robust CPP solutions obtained by including the CND 
based attack do not necessarily have higher average SC 
delays since there are some cases where the delay penalties 
of the CPP solutions against set M are lower than those of the 
CPP solutions against set M’. 

Figure 5 presents as bar charts the average CC delays of 
MinAvgCC solutions, best robust CPP solutions against set 
M' and against set M for all instances of both networks. As 
before, the average CC delays of the robust CPP solutions 
are always higher than the optimal values of the MinAvgCC 
solutions. In these cases though, the CC delay penalties are 
more significant in some instances than in the previous cases, 
showing that, as already observed before, the more robust 
solutions tend to require more spread out controllers, which 
in turn, impose higher average delays between controllers. 
Note though, that the average CC delays might not be so 
relevant in practice since the maximum CC delay (parameter 
𝐷𝑐𝑐  imposed in all CPP solutions) is the main parameter that 
impacts the synchronization efficiency between controllers 

[16] and the average CC delays of the solutions are all well 
below the maximum value considered for each instance. As a 
final remark, the conclusion drawn before between the delay 
penalties of the CPP solutions computed against set M and 
against set M’ also stands in this case, i.e., the robust CPP 
solutions obtained by including the CND based attack have 
lower average CC delays in some of the instances.  

 
Germany50 

 
CORONET CONUS 

Fig. 4. Average SC delays of the MinAvgSC solutions (white columns), 

best robust CPP solutions against set 𝑀′ (grey columns) and against set 𝑀 

(dark grey columns) for all instances of Germany50 (top) and CORONET 

CONUS (bottom). 

 
Germany50 

 
CORONET CONUS 

Fig. 5. Average CC delays of the MinAvgCC solutions (white columns), 

best robust CPP solutions against set M′ (grey columns) and against set M 
(dark grey columns) for all instances of Germany50 (top) and CORONET 

CONUS (bottom). 

VII. CONCLUSIONS 

The robustness of SDN networks to malicious node 
attacks requires both the data plane and the control plane 
disruption evaluation. This is because services between any 
two SDN switches can only be maintained when both 
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switches can still connect to controllers, and also when there 
is at least one path between them in the data plane that 
survives the attack. To this aim, we have addressed a variant 
of CPP which takes into account the network robustness at 
both control and data plane levels. For given maximum 
values of SC and CC delays at the regular state, the aim of 
our CPP variant was to maximize the SDN robustness 
against a set of failure states, each one given by a possible 
malicious attack to multiple nodes. 

We have assumed that the attacker knows the data plane 
topology and, therefore, can adopt either one of three 
commonly considered node centrality attacks (node degree, 
node centrality of node betweenness) or an attack to the 
nodes which are the optimal solution of the CND problem. 

We have also described how CPP solutions minimizing 
only the average SC and CC delays can be optimally 
computed through integer linear programming so that in the 
computational results a comparison analysis has been 
conducted between the non-robust and best robust CPP 
solutions in terms of average delays versus robustness to 
malicious node attacks. The computational results have 
shown that enhanced robustness against malicious attacks to 
multiple nodes are obtained with small average SC delay 
penalties while the CC delay penalties might be more 
significant although well below the required maximum 
values. 

Concerning the influence of using the CND based attack 
in the robustness evaluation of controller placements, the 
computational results have shown that it enables to compute 
more robust CPP solutions. Moreover, the results have also 
shown that the robustness evaluation becomes more accurate 
since when only centrality-based attacks are considered, the 
switch pair connectivity metric 𝑛𝑠𝑝 is much higher than that 

value when considering all attacks, misleading us to 
conclude that the network is much more robust to malicious 
node attacks than it really is.  
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