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Abstract

The work investigates the damping behavior of a Quarter wave resonator analytically and nu-
merically, in which an incompressible approach is used. The Quarter wave resonator is inves-
tigated based on a methodology of decomposition that has been successfully used in the pre-
vious work of the Helmholtz resonator. The analytical investigation is implemented in MAT-
LAB. The simulation in MATLAB contains two loops: an inner loop investigating the damping
behavior in the frequency domain and an outer loop taking SPL into consideration. Iterations
are applied in the outer loop to adjust the amplitude of velocity in order to make sure the SPL
remains constant. The investigation is utilized to reveal the effects of the different proportion
of the length of the resonator to the damping behavior. Besides, the dominance of the linear
and nonlinear effect is also investigated. Furthermore, the numerical investigation is imple-
mented in an open source software OpenFOAM. The mesh is generated by simplifying the
resonator to a slice of it. Proper boundary conditions are chosen to maintain the accuracy of
results and to achieve the perturbation of the incident excitation. The effect of different refer-
ence length and the mesh resolution is also investigated and the reference length and mesh
resolution are set up properly. Then two approaches of obtaining the impedance of the neck
are implemented in MATLAB and the results are compared. Afterward, the damping effect is
evaluated. Overall, the results of the analytical investigation and numerical investigation are
compared and the possible inaccuracy is pointed out.
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Nomenclature

Roman Symbols

Au Amplitude of velocity [m/s]

c0 Speed of sound [m/s]

Cd Contraction factor [-]

d0 Diameter of the Quarter resonator [m]

f , g Riemann Invariants [m/s]

l0 Length of the backing cavity [m]

l0 Length of the neck [m]

lc Length correction [m]

le Effective length [m]

lr e f Reference length [m]

lsi m Simulation length [m]

ltot Total length of the Quarter resonator [m]

p Pressure [Pa]

p0 Atmospheric pressure [Pa]

pr e f Reference pressure [Pa]

pr ms Root square of pressure [Pa]

Pr Prandtl number [-]

R Refection coefficient [-]

Rl ,cor Corrected real-valued constant [-]
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Rl Real-valued constant [-]

Rspeci f i c Specific gas constant [J/(kg K)]

s Boundary layer parameter [-]

T Temperature [K]

t Time [s]

T0 Room Temperature [K]

u Velocity [m/s]

Z Impedance [N s/m3]

z Normalized impedance [-]

Zo Impedance of the neck [N s/m3]

Zs Specific impedance [N s/m3]

Zbc Impedance of the backing cavity [N s/m3]

Greek Symbols

γ Ratio of specific heats [-]

ρ Density [kg/m3]

ρ0 Ambient density [kg/m3]

σ Porosity [-]

Index and Superscripts

·′ Fluctuating value

·1 Position 1 at the inlet of the neck of the resonator

·2 Position 2 at the outlet of the neck of the resonator

·̂ Fourier transform

Acronyms

CFD Computational fluid dynamics

FFT Fast Fourier transform

SPL Sound pressure level [dB]
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1 Introduction

Combustion systems, such as the combustion chamber, are all facing fetal thermoacoustic
instabilities, which may cause the failure of the whole system. These instabilities may occur
due to feedback from unstable combustion processes and acoustical resonance within the
system. When the fluctuating incident wave is reflected from the wall, it may in turns, affect
the combustion process itself. When the amplitude of the wave is too larger, it may damage
the whole system. In order to absorb sound, reduce sound reflection and increase the stability
of the system, resonators are implemented in the combustion systems and also many other
industrial systems. Thus, the resonator is a very essential device in many applications. There
are basically two placement types of resonators, locally and non-locally reacting resonators.
As for the non-locally reacting resonators, the openings of the resonators are placed so far
that the incident angle of the acoustic wave affects the damping behavior of the resonator.
As for the locally reacting resonators, the openings of the resonators are placed so close that
the damping behavior of the resonator is irrelevant to the incident angle of the acoustic wave.
This is also the most commonly used placement types of the resonator. So, in this thesis, the
locally reacting resonators will be investigated. Further, three different types of the resonator
are normally applied, Helmholtz resonator, half wave resonator and Quarter wave resonator.
Among them, the Half-wave resonator has an open end and on the contrary, the Helmholtz
resonator and Quarter wave resonator has a closed end. But since the open end is sometimes
difficult to realize, the Helmholtz and Quarter wave resonator are more commonly used. The
Helmholtz resonator is more popular in the applications and it has also been well investi-
gated. Therefore, the Quarter wave resonator will be investigated in this thesis in order to fill
the blank of the research to characterize the Quarter wave resonator. The name of the Quar-
ter wave resonator is given because the length of the resonator is a quarter of the wavelength
at the eigenfrequency. Comparing with the Helmholtz resonator, the Quarter wave resonator
does not have a thin neck and a symmetrical backing cavity.

The goal of this thesis is to set up the analytical and numerical model of Quarter wave
resonator and investigate its damping behavior respectively and contrastively. Both analyti-
cal and numerical investigation is based on the decomposition methodology proposed in [7].
The resonator will be decomposed into two parts: neck and backing cavity and they will be in-
vestigated separately. The damping behavior of the whole resonator will be investigated after
adding the results of both parts together. Besides, the flow inside the neck should be con-
sidered as incompressible. This can be achieved when the length of the neck is short enough
compared to the wavelength so that the neck can be considered as acoustically compact. If the
neck is acoustically compact, the flow inside the neck can be considered as incompressible.

Moreover, the damping behavior of the resonator can be divided into two regions: the
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Introduction

linear region and the nonlinear region. The loss in the linear region is thermos-viscous loss
mainly caused by the friction at the wall and the loss in the nonlinear region is mainly caused
by the flow separation which is dominance at a higher velocity. This will be explained in Chap-
ter 3.

In Chapter 4, the analytical investigation will be implemented in MATLAB based on the
analogy of the resonator to a mechanical mass-spring-damper system. The damping behavior
will be derived based on the governing equations and iteration will be done to make the SPL
at the reference plane is the same as the target SPL. The effect of the different proportion of
neck will be investigated in order to set the proper length of the neck. Then the dominance of
linear and nonlinear will be investigated. The damping effect of the Quarter wave resonator
at different SPL will be evaluated.

In Chapter 5, the numerical investigation is implemented in OpenFOAM. Since the in-
compressible approach is only applied in the neck, the simulation of the neck will be done
numerically and the backing cavity will still be investigated analytically. The proper mesh will
be generated and the proper mesh resolution will be selected based on the results of the simu-
lation. Besides, the distance between the reference plane and the inlet of the resonator will be
selected differently to check its independence to the simulation results, which also mentioned
in [13]. At last, the results of the damping efficiency at different SPL will be evaluated.

In Chapter 6, the results from both analytical and numerical investigation will be com-
pared and evaluated. The results show qualitative agreement. However, the deviations exist
between the two investigations at the nonlinear damping effect. A correction coefficient will
be implement applied to the linear part and the results after the correction will be evaluated.
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2 Physical Background

This thesis investigates the damping behavior of the Quarter Wave Resonator using an incom-
pressible approach. When an acoustic wave propagates in the resonator, losses will take place.
Thus the reflected wave will be weakened. The damping behavior of the resonator indicates
how the damping effect happens and how well can the resonator weaken the acoustical wave.
In this section, several basic concepts related to this topic are introduced and assumptions,
in order to simplify the case, are prescribed.

2.1 Wave Equations

In order to simplify the problem, it is necessary to simplify the acoustic wave propagation
process and the media. Although these simplifications will bring certain limitations to the
application of the results, these assumptions not only simplify the mathematical analysis but
also make it possible to explain the basic rules and characteristics of sound wave propagation
in a simple and straightforward way.

• The fluid should be perfect fluid, i.e., there should be no viscosity in the media and the
wave should propagate without any loss.

• When there is no acoustic disturbance, the medium should be macro-static.

• When sound waves propagate, dense and sparse processes in the medium should be
adiabatic.

• The acoustic wave should be with small amplitude, i.e. the pressure fluctuation should
be much less than the mean pressure, the partial velocity should be much less than the
speed of sound, the partial displacement should be much less than the wavelength and
the incremental mass density should be much less than the static density.

Besides, this thesis investigates the resonator based on the one-dimensional simplifica-
tion. In one-dimensional simplification, only one direction is taken into consideration. The
one-dimensional continuity equation is basically the conservation of mass. It indicates that
the difference between the mass of the inflow volume element per unit time in the medium
and the mass of the outflow volume element should be equal to the increase or decrease in
the mass of the volume element.

∂ρ

∂t
+ ∂(ρu)

∂x
= 0 (2.1)
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Physical Background

In order to describe how the fluid reacts to the force acting on it, Newton’s second law is
applied to the particle system which helps to derive the momentum equation of the acoustic
wave. It shows that the change of the total particle momentum in unit time is equal to the total
force acting on the particles. This statement is often called the momentum-impulse principle.

ρ(
∂u

∂t
+u

∂u

∂x
) =−∂p

∂x
(2.2)

Both Eq.(2.1) and Eq.(2.2) are nonlinear, which means they are difficult to solve. Since the
acoustical response is rather small compared to the ambient conditions, the notion is applied
by dividing the state variables into two part: its value in the reference state and the pertur-
bation that fluctuates around the reference state. In this thesis, the fluid can be assumed to
be homogeneous, so that the conditions of the reference state, which consist of the ambient
pressure p0, ambient density ρ0, ambient temperature T0 and the mean acoustic wave veloc-
ity u0, are in unity at all locations.

p = p0 +p ′,ρ = ρ0 +ρ′,u = u0 +u′ (2.3)

In order to simplify the Eq.(2.1) and Eq.(2.2), the variables in the those equations are re-
placed by the Eq.(2.3). Since the perturbations of the variables are sufficiently small, the prod-
uct of perturbation can be neglected. Then the linearization of the equations can be achieved,
i.e. the linearized continuity equation and the linearized one-dimensional momentum equa-
tion.

∂ρ′

∂t
+ρ0

∂u′

∂x
= 0 (2.4)

ρ0
∂u′

∂t
=−∂p ′

∂x
(2.5)

Besides, with the similar linearization process, the linear equation of state can also be de-
rived.

p ′ = c2
0ρ

′ (2.6)

Finally, by combining the Eq.(2.4), Eq.(2.5) and Eq.(2.6), the one-dimensional wave equa-
tion can be formulated:

∂2p ′

∂x2
− 1

c2
0

∂2p ′

∂t 2
= 0 (2.7)

Noted that the speed of sound c0 here can be treated as in the ideal gas. In this case, by
applying the equation of speed of the ideal gas, the expression for the speed of sound of the
ideal gas can be derived as:

c0 =
√
γRspeci f i c T0 (2.8)
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2.2 Acoustical Variables and Concepts

where the γ stands for the ratio of specific heats and the Rspeci f i c is the specific gas con-
stant.

Since in many applications the sound wave can be considered as the plane wave which
propagates in a 1-D manner, Eq.(2.7) can be decomposed into

(
∂p ′

∂x
+ 1

c0

∂p ′

∂t
)(
∂p ′

∂x
− 1

c0

∂p ′

∂t
) = 0. (2.9)

According to Eq.(2.9), the solution of the wave equation can be obviously derived into two
parts: incident and reflected wave. By using the Riemann invariants, it can be defined as

f = 1

2
(

p ′

ρ0c0
+u′), g = 1

2
(

p ′

ρ0c0
−u′) (2.10)

Conversely, the fluctuating velocity u′ and the fluctuating pressure p ′ can also be derived
by Eq.(2.10):

u′ = f − g , p ′ = ρ0c0( f + g ). (2.11)

2.2 Acoustical Variables and Concepts

In this subsection, the variables and the concepts that are mentioned in the following work
will be illustrated.

2.2.1 Impedance

Impedance acts as a very important property of the resonator in the frequency domain to de-
scribe its damping behavior. It shows how difficult it is to move the medium back and forth in
the resonator. The impedance consists of two parts: a real part and an imaginary part. Among
them, the real part is relevant to the Amplitude reduction and the imaginary part takes care of
the phase shift. It can be derived by:

Z = p̂

û
. (2.12)

where the ·̂ denotes the variables that are transformed from the time domain to the fre-
quency domain by Fourier transform.

In order to make the impedance more straightforward to compare, the characteristic spe-
cific acoustic impedance is used to normalize the impedance. The characteristic specific acous-
tic impedance is calculated as follow:

Zs = ρ0c0. (2.13)

Then the impedance is normalized by dividing Zs in Eq.(2.13):

z = Z

ZS
. (2.14)

5



Physical Background

2.2.2 Reflection Coefficient

Beside the impedance, another variable can be used to characterize the behavior of the res-
onator, the reflection coefficient, which shows to which degree the incident wave is reflected.
The reflection coefficient is the ratio of the reflected g wave to the incident wave f :

R = ĝ

f̂
. (2.15)

The reflection coefficient can also be calculated by the impedance:

R = Z −ρ0c0

Z +ρ0c0
= z −1

z +1
. (2.16)

As the impedance is a complex number, the reflection coefficient will also contain a real
part and an imaginary part. Thus, the gain of the reflection coefficient describes the reduction
in amplitude and the phase shows the phase change of the waves due to the reflection effect.

2.2.3 Sound Pressure Level

Sound pressure level (SPL) refers to the size of the effective sound pressure relative to a ref-
erence value measured in logarithmic scale, and its relationship with the reference value is
described in decibels (dB). The human hearing threshold (i.e. the lowest sound pressure for
hearing) for a 1 kHz sound is 20 µPa, which is usually used as a reference value pr e f for the
sound pressure level:

SPL = 20log10(
pr ms

pr e f
)dB (2.17)

Notice that the pr ms is the root mean square of the acoustic pressure. In this work, the
reflection coefficient is investigated as a function of both frequency and the SPL. It is relevant
to the dominance of the linear and nonlinear effect.
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3 Principle of Methodology to the
Investigation of Resonator

Figure 3.1: Analog of a resonator to a mechanical mass-spring-damper system.

The investigation of a resonator can analog to a mechanical mass-spring-damper system,
see [4]. As shown in Figure 3.1, in which the flow in the neck is considered as a mass m and
it oscillates inside the neck, the compressed and decompressed air in the backing cavity is
considered as the spring stiffness K and the losses due to the friction and flow separation is
represented by the damping coefficient R. In this case, the resonator can be regarded as a
single degree of freedom oscillators. Therefore, the damping effect can be divided into two
part:

• At the lower SPL, the damping effect is mainly caused by linear effect: the friction be-
tween the flow and the wall due to the viscosity. It takes place in the boundary layer of
the flow

• At the higher SPL, the flow separation is triggered and vortices are generated, which
lead to the dominance of the nonlinear effect. Most of the kinetic energy of the flow
is dissipated by forming the vortices which cause the loss of the acoustic energy. The
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Principle of Methodology to the Investigation of Resonator

higher the velocity is, the easier the flow separation occurs. When the velocity reaches a
certain level, the nonlinear effect will dominate.

In order to investigate the resonator, Ingard and Ising[8] suggested the methodology which
decomposes the resonator into two parts: the neck and the back cavity. This works resultful
on the Helmholtz resonator and it is easy to separate the two parts in the geometry of the
Helmholtz resonator. As shown in Figure 3.2, there is an obvious dividing line between the
neck and the backing cavity. So the methodology of the decomposition is reasonable for a
Helmholtz resonator. The investigation of this methodology has been done by Foerner [4]
and the results of this methodology are validated by the experiment.

(a) Complete Helmholtz resonator
(b) Decomposition into neck and backing vol-
ume

Figure 3.2: Sketch of the considered geometry and reference cut planes 1and 2 for the de-
composed Helmholtz resonator model from [13]

On the contrary, the geometry of the Quarter wave resonator does not have the obvious
dividing line between the neck and the back cavity.

In this thesis, a similar methodology is applied also on the Quarter wave resonator. To
implement this methodology, a specific length of the Quarter wave resonator is considered
as the neck and the rest will be the backing cavity as shown in the Figure 3.3(b). In this way
the impedance can also be decomposed into two parts: the impedance of the neck Zo and the
impedance of the back cavity Zbc :

Z = p̂ ′
1 − p̂ ′

2

û′
1

+ p̂ ′
2

û′
1

(3.1)

Since the length of the neck is short enough to be acoustically compact, the fluid inside
can be considered incompressible. Obeying the conservation of the mass in the neck, the
velocity u1 at point 1 and the velocity u2 at point 2 in the Helmholtz resonator are the same.
Therefore, in Helmholtz resonator Eq.(3.1) can be transformed in to:

Z = p̂ ′
1 − p̂ ′

2

û′
1

+ p̂ ′
2

û′
2

= Zo +Zbc (3.2)
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Notice that due to the asymmetrical configuration in the Quarter wave resonator, the ve-
locity u1 at point 1 and the velocity u2 at point 2 in the Quarter wave resonator are not the
same. They have the relation as follow:

u′
2 =σu′

1. (3.3)

In this case, Eq.(3.4) should be rewritten as:

Z = p̂ ′
1 − p̂ ′

2

û′
1

+σ p̂ ′
2

û′
2

= Zo +Zbc (3.4)

(a) Complete Quarter wave resonator (b) Decomposition into neck and backing vol-
ume

Figure 3.3: Sketch of the considered geometry and reference cut planes 1and 2 for the de-
composed Quarter wave resonator model
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4 Analytical Investigation

The analytical part of the thesis will be carried out in MATLAB. It is still based on the decom-
position of the resonator. Contrary to the Helmholtz resonator, the Quarter wave resonator
has an area jump which leads to an asymmetrical configuration. In order to characterize the
Quarter wave resonator with the similar methodology, a proper length of the neck should be
chosen and the rest of the resonator should be considered as the backing cavity.

4.1 Test Case Geometry

The parameters of the Quarter wave resonator, which are investigated in this thesis, are not
all selected from the previous cases. As shown in the name of this resonator, the total length
of the Quarter wave resonator is a quarter of the wavelength at eigenfrequency. Since there
is no actual experiment result for an actual Quarter wave resonator, the eigenfrequency of
the Quarter wave resonator is set as 400 Hz and the total length is set up accordingly; Other
parameters are set as in [3]:

ltot [mm] d0 [mm] σ [%]
QW 214.5 6.35 1.56

Table 4.1: Parameters of the Quarter wave resonator .

where the ltot is the total length of the Quarter wave resonator. As shown in the Figure 3.3,
ltot = lo + lcav

The length of the neck is not fixed in this part of the investigation and a length correction
lc , which accounts for the fluid that oscillates in front of the opening of the resonator, should
also be taken into consideration. According to Ingard[7], lc can be calculated as:

lc = 4

3π
d0. (4.1)

Due to the asymmetry of the Quarter wave resonator, only the opening need the correc-
tion, which means the effective length le = l0 + lc .

10



4.2 Governing Equations

Besides, the parameters of the resonator test environment is set as follow:

T [K] p0 [Pa] κ R [J/(mol·K)]
QW 293.15 105 1.4 8.3145

Table 4.2: Parameters of environment .

where T is the room temperature, p0 is the atmospheric pressure, κ is the heat capacity
ratio of air and R is gas constant.

4.2 Governing Equations

As shown in the equation, the impedance of the orifice is closely related to the pressure drop
between the position 1 and the position 2. According to Foerner [3, 4] and Cummings [1], the
pressure drop of the Quarter wave resonator can be formulated as:

∆p ′ ≈ ρ0
1

σ
le
∂u′

∂t
+Rl u′+ 1

2
ρ0

u′ ∣∣u′∣∣
(Cdσ)2 + 1

2
ρ0u′2(

1

σ2
−1) (4.2)

On the right hand of this equation, the first term represents the pressure drop of iner-
tia, which is without any loss. This term is derived by applying the incompressible Bernoulli
equation to both ends of the neck. The second term is caused by the friction at the wall and
Rl is a constant which used to characterize this thermo-viscous loss, see [11]. The third term
is responsible for the flow separation assuming that all the kinetic energy of the vortex is dis-
sipated and does not recover. Cd denotes the contraction factor, which is the ratio of the flow
core area to the cross-section area of the resonator, see also [14]. At low SPL, Cd = 1 since
there is no flow separation while at higher SPL, Cd < 1 since the flow separation takes place
in the resonator. The sharper the edge of the resonator is, the easier it will be to form the flow
separation and the stronger the flow separation will be, see [2] and [10]. The last term is the
additional term comparing to the Helmholtz resonator due to the asymmetry geometry of the
Quarter wave resonator, i.e., the area jump.

The Rl in Eq(4.2) is calculated in [11] as:

s =
1+ γ−1

Pr
1
2

d0
·
√

2ν

ω
(4.3)

Rl = sρl0ω. (4.4)

where s denotes the boundary layer parameter, γ is the kinematic viscosity, Pr is the
Prandtl number.

With Eq.(4.2), the impedance of the incompressible neck can be calculated by:

11



Analytical Investigation

Zo = ∆p̂ ′

û′ (4.5)

Besides, according to decomposition, the impedance of the back cavity is calculated sep-
arately, see [12] and also Hersh[6]:

Zbc =−iσcot(
ωlcav

c
)ρ0c0 (4.6)

Notice that compared to the expression for the Helmholtz resonator, there is an additional
open area ratio σ added in the equation due to the mass convention according to the Eq.(3.3)
in the asymmetrical geometry of the Quarter wave resonator.

4.3 Analytical Setup

Since the reflection coefficient is a function of frequency and SPL, there are two steps to char-
acterize the Quarter wave resonator analytically, see Figure 4.1. The first step, an inner loop
is set up to investigate the Quarter wave resonator’s damping behavior only in the frequency
domain in which the SPL is not changed. Then the second step is an outer loop adding the
SPL into consideration. The amplitude of the velocity fluctuation which relates to the actual
SPL is adjusted by iteration until it converges. When the reflection coefficient is derived, the
damping behavior of the Quarter wave resonator can be studied by analyzing the response of
reflection coefficient and also the impedance accordingly to the changes of parameters.

After setting up the parameters, the fluctuation of the pressure and velocity should be set
up first in order to derive the impedance and then the reflection coefficient. The flow is set as
a velocity driven flow with a fluctuating velocity set as follow:

u′ = Aucos(ωt ). (4.7)

Notice that the amplitude of the fluctuating velocity is not a constant value, it will be ad-
justed in the second loop to make the SPL constant on the reference plane.

The pressure of the resonator can be derived by the velocity in the time domain. According
to Eq.(2.12), a Fourier transform is required to derive both velocity and pressure fluctuation
in the frequency domain. It can be achieved by applying a function in MATLAB, Fast Fourier
Transform. When doing the FFT to the pressure drop, there is derivative in the first term of the
Eq.(4.2) needs to be dealing with. According to the properties of Fourier transform:

∂û′

∂t
= iωU ′(ω) (4.8)

There are two ways to do the Fourier transform to pressure drop from the time domain to
the frequency domain. One method is to do the derivative first and then do FFT, the other one
is to directly use the properties of Fourier transform so that the derivative part can be spared.
Both two methods have been tested and the result shows a very good agreement. In this part
of the work, the first method is used.
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4.3 Analytical Setup

Figure 4.1: Workflow in MATLAB

4.3.1 Iteration process

After all this preparation, the damping behavior at a frequency range from 25 Hz to 700 Hz
is investigated. However, the damping behavior of the resonator is also relevant to the SPL,
so this is when the outer loop comes in. The goal of the outer loop is to make the SPL at the
reference plane constant as the target SPL. The reason why it is needed is that the acoustic
wave is damped significantly at the eigenfrequency. As the result of this, the actual SPL at
reference plane will also reduce to a lower SPL. Whereas in this investigation, the damping
behavior should be evaluated under a constant SPL.

To achieve that, the outer loop carries out iterations to adjust the amplitude of the incident
wave’s velocity, so that the actual SPL at every frequency could be consistent with the target
SPL. To be more elaborate, in this stage, every amplitude of the velocity at every frequency in
every loop will be modified, especially the amplitude around the eigenfrequency will be mag-
nified. So that even though the damping behavior is most significant at the eigenfrequency,
the actual SPL can remain consistent.

Notice that in the compressible simulation, it is the amplitude of the incoming wave f
need to be adjusted, see[13] and the adjustment in incompressible is done by adjusting the
amplitude of velocity:

Au(ω,SPL) = |1−R(ω,SPL)|10SPL/20

p
2pr e f∣∣1+R(ω,SPL)exp(−iω2lr e f )ρ0c0

∣∣ . (4.9)

In the beginning, a constant velocity amplitude is assumed and then it is adjusted based
on the reflection coefficient and the actual SPL. The velocity in each iteration oscillates until it
converges to a stable value. When the difference between reflection coefficient in the last two
iterations is smaller than the threshold value, e.g., 1e-6, the result from the last simulation is
taken as the final result, which makes the SPL at the reference plane constant, see Figure 4.2.
The gain of the reflection coefficient oscillates during the iteration process and it eventually
converges to the approaching value. Notice that iterations needed at 120dB are much more
than at the 70dB.
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Figure 4.2: The iteration process to derive the reflection coefficient at different SPL(70dB
and 120dB)

The adjustment of the amplitude of velocity Au is shown in Figure 4.3. The first guess of
Au is too low for the target SPL, so the second guess becomes much larger. But it is too large
so that the third one is set to be a bit smaller. In this way, the amplitude of velocity finally
approaches the approaching value. Also, notice that it only takes a few iterations at 70dB until
the velocity amplitude approaches the final result; However it takes dozens of iterations at
120dB to eventually converge, which can be observed in Figure 4.3(b): the curve of velocity
oscillates many times around the approaching value. These phenomena are caused by the
dominance of the linear and nonlinear regime, which is explained in Section 4.4.2
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Figure 4.3: The iteration of excitation amplitude at different SPL(70dB and 120dB)

The results of the iteration process are shown in Figure 4.4. Notice that ui ni t denotes the
initial guess of the velocity and it is set the same at each frequency. However, the final velocity
profile is completely different from the initial guess. The pattern is similar in both 70dB and
130dB. At the eigenfrequency, the velocity is much higher than the velocity at the frequency
away from the eigenfrequency. The closer the frequency is to the eigenfrequency, the higher
excitation is needed. At the frequency, which is far away from the eigenfrequency, the exci-
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4.3 Analytical Setup

tation is significantly lower. This phenomenon matches with the theory well: At the eigenfre-
quency, the damping effect is extremely considerable; So that the excitation amplitude needs
to be high enough to overcome the damping effect in order to maintain the constant SPL.
On the contrary, the damping effect is much lower at the frequency away from the eigenfre-
quency. As the result, only low excitation is needed. Moreover, although the velocity profile is
similar at both 70dB and 130 dB, the excitation amplitude at 130dB is much higher than that
at 70dB. It is also reasonable according to the definition of SPL.
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Figure 4.4: Velocity profile at different SPL(70dB and 130dB)

15
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4.4 Results of the Analytical Investigation

4.4.1 The Proportion of the Incompressible Neck

Because of the area jump in the Quarter wave resonator, it doesn’t have a real neck; In order
match, the method used in the investigation of the Helmholtz resonator, a suitable percent-
age of the Quarter wave resonator should be taken as the neck. As the result of different pro-
portion, the damping behavior also differs from each other. The pattern of it can be used to
determine the appropriate length of the neck in this analytical model when a corresponding
experiment is implemented.
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Figure 4.5: Reflection coefficient at different proportion at SPL 70dB and 130dB

As shown in Figure 4.5, the results of reflection coefficient in SPL 70dB and 130dB are ex-
tremely different. As for the result at the lower SPL 70dB, the eigenfrequency differs at the dif-
ferent proportion of the neck. The larger the proportion, the higher the eigenfrequency; When
the proportion is set to be 25%, the eigenfrequency matches perfectly at the target frequency
and the length of the neck equals to 6.25% of the wavelength, which can still be considered as
acoustically compact. Along with the increase in proportion, the gain of the reflection coeffi-
cient also increases slightly. On the contrary, the trend of the changes goes into the completely
different direction at the higher SPL 130dB. The only similar result at 130dB is that the eigen-
frequency also moves to a higher frequency when the proportion of neck increases. Notice
that the gain of the reflection coefficient at eigenfrequency decreases dramatically from 0.6 to
0.2. These results show that the damping behavior at higher SPL has a stronger dependence
on the proportion of neck than that at the lower SPL. This phenomenon can be explained by
the investigation of impedance.

Besides the reflection coefficient, the impedance is also a very essential value to charac-
terize the damping behavior of the resonator. On the one hand at the lower SPL, according to
Figure 4.6, the resistance rises almost the same amount over the whole frequency spectrum
at the different proportion of the neck. The increase of the resistance is linear to the increase
of the proportion. This is reasonable because, at lower SPL, the damping behavior remains
in the linear regime. The excitation of the acoustic incident wave is not intensive enough to
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4.4 Results of the Analytical Investigation

trigger the flow separation and the dissipation is mainly caused by the friction between the
fluid and the wall. Since the energy loss due to the friction has a linear relation to the length
of the wall, i.e., in this case, the length of the neck. The increase of resistance is also in a linear
manner. As for the reactance, the deviation is quite small compared to the resistance. There
is a slight deviation at the lower frequency but at the higher frequency, the resistance remains
the same. The deviation between different cases decreases with the increase of the frequency.
However, this deviation can be neglected compared to the resistance.

On the other hand at the higher SPL, the resistance is no longer in the linear regime see
Figure 4.7. In this case, the nonlinear effect plays the dominant role. When the proportion of
the neck increases, the whole resistance also increase. Moreover, the eigenfrequency at differ-
ent proportion also changes. It also moves to a higher frequency which is similar in the lower
SPL case. As for the reactance, the situation at higher SPL is identical with that at lower SPL.
With this pattern, the more reasonable proportion can be set according to the experiment.
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Figure 4.6: Impedance at different proportion at SPL 70dB
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Figure 4.7: Impedance at different proportion at SPL 130dB
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4.4.2 Dominance of Linear and Nonlinear Effect

A resonator behaves in the linear regime only when the partial velocity is extremely small,
which only occurs when the SPL is accordingly small. Because SPL is a value that shows the
strength and the intensity of an acoustic wave and it is defined by the RMS of the amplitude of
the pressure according to Eq.(2.17). In this case, the damping behavior of the resonator would
be intensively depending on the frequency while on the contrary, the SPL plays only a less
important role. When the SPL is relatively high, the flow separation will be triggered, which
mainly responsible for the nonlinear effect.
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Figure 4.8: Numbers of iteration at different SPL

In order to study the dominance of the linear and nonlinear effect, several aspects can
be taken into consideration. Firstly, times of iteration, which is needed to converge to the
approaching value, can show the dominance in different SPL. When the SPL is low, the lin-
ear effect takes the dominant part of the resonator’s behaving manner. As a result of this, the
reflection coefficient can be seen as a pure function of frequency. The iteration needed to
derive the actual reflection coefficient might only need a few times to reach the final result.
Conversely, the situation at the higher SPL is very different. When the SPL is set to be high
enough, the nonlinear effect, i.e., the flow separation dominates. In this case, the reflection
coefficient is also dependent on the SPL. Hence, the iteration takes much more times to con-
verge at the final result, because the starting value of the amplitude of the velocity leads to
a considerable deviation from the actual SPL to the target SPL, which needs a lot more iter-
ations to converge, see Figure 4.8. At the lower SPL it only takes around 5 iterations for the
gain of reflection to converge, but at the higher SPL, it takes almost 65 iterations. The times of
iteration increase slightly at the lower SPL, but it increases much more rapidly at the higher
SPL. These results indicate that the nonlinear effect takes an increasingly dominant part with

18



4.4 Results of the Analytical Investigation

an increasing SPL.
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Figure 4.9: Normalized impedance of the neck at different SPL(70dB and 130dB)

Secondly, the evidence of the dominance of both effect can also be found in the impedance.
As shown in Figure 4.9, when the SPL is 70dB, the resistance stays in the linear regime and the
nonlinear effect barely influences the impedance. The resistance increases linearly along with
the increase of frequency. Compared to 70dB, the resistance at 100dB has a considerate devi-
ation from the linear regime at the eigenfrequency, which indicates that the flow separation
is triggered and the nonlinear effect starts to exceed the linear effect. Notice that at 100dB,
the nonlinear effect has not taken the dominant part yet, since the excitation is not strong
enough and energy loss due to the flow separation is not large enough. However, the resis-
tance at 130dB shows a completely different manner. The resistance at eigenfrequency rises
dramatically to almost 6 times larger than the resistance in the linear regime. This result sug-
gests that the nonlinear effect becomes the dominance at 130dB. Moreover, this significant
deviation takes place only at the frequency near the eigenfrequency; But the resistance is in
good agreement at both ends of the frequency spectrum away from the eigenfrequency. This
indicates that the nonlinear effect can only happen at eigenfrequency. The nonlinear effect
cannot be triggered at the frequency away from the eigenfrequency even at the higher SPL. As
for the reactance, the results from both SPLs remain the same which suggests that the reac-
tance of the neck is irrelevant to the excitation amplitude. These results validate to the results
and conclusion in [9] and also Eq.(4.2).
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4.4.3 Damping Behavior at Different SPL

The damping behavior of a resonator is not only related to the frequency but also the SPL. In
this part of the thesis, it is investigated more explicitly in term of SPL. Before analyzing the
results, one more concept needs to be explained. At the eigenfrequency, the reactance of the
resonator is zero, which only leaves the resistance to affect the gain of the reflection coeffi-
cient. According to Eq.(2.16), the optimal normalized resistance should be equal to one. In
this case, there should be no reflection at all. Therefore the closer the normalized resistance
to one, the closer the reflection coefficient to zero, i.e., the better damping behavior the res-
onator has. When the normalized resistance at eigenfrequency is below the optimal value one,
the resonator is categorized as normal-damped. When the normalized resistance at eigenfre-
quency is larger than the optimal value one, the resonator is called over-damped. The main
effect of these to the damping behavior is that, if the resonator is normal-damped, the gain of
the reflection coefficient decreases with the increasing SPL; On the contrary, if the resonator
is over-damped, the gain of the reflection coefficient also increases with the increasing SPL.
This is also mentioned in [3].

As shown in Figure 4.10, the normalized resistance increases from 0.3 at 70dB to 1.5 at
130dB. The increasing rate of the resistance is rather small at the lower SPL, but it rises along
with the increase of the SPL. As the result, the resistance grows more rapidly at the higher SPL.
Notice that the normalized resistance exceeds 1 at around 120dB and the damping behavior
of the resonator changes from normal-damped to over-damped.

It is more clearly shown in Figure 4.11 how the normal-damped and over-damped be-
haves. The gain of the reflection coefficient decreases until 120dB and it starts to increase
after it exceeds 120dB. Even though the simulation is only done at the SPL up to 130dB, it is
still conjecturable that the gain of the reflection coefficient will keep on increasing afterward.
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Figure 4.10: Normalized resistance of Quarter wave resonator at different SPL
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Figure 4.11: Gain of reflection coefficient of Quarter wave resonator at different SPL
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5 Numerical Investigation

The numerical investigation is implemented on OpenFOAM. The version of this thesis using
is 2.3.x and the working environment is Ubuntu 14.04. Moreover, the PIMPLE solver is used
due to the incompressible assumption. Notice that the numerical simulation is not used for
the entire resonator but only the neck, for the incompressible approach is only applied on
the neck, not the backing cavity. The backing cavity will still use the analytical method as
explained in chapter 2. For the workload of the numerical simulation takes up too much time
doing simulation at the whole frequency spectrum, the numerical investigation will only be
done at the eigenfrequency.

5.1 Test Case Geometry

Since the incompressible approach is only utilized on the neck of the resonator, the case ge-
ometry of the numerical simulation only contains a small space in front of the resonator and
the incompressible neck as shown in Figure 5.1. The geometry parameters of the resonator
will be the same as the previous analytical model so that the results of both models can be
comparable.

Figure 5.1: Test Case Geometry

In order to set up the proper case geometry, several simulations have been implemented.
As shown in Table 5.1, the reference length has been set to be different, in order to investigate
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5.1 Test Case Geometry

lr e f [mm] Re(zo) [-] ∆Re(zo) [%] Im(zo) [-] ∆Im(zo) [%]
Case 1 25 0.3743 - 9.0249 -
Case 2 35 0.3746 0.08 9.0135 0.13

Table 5.1: Results of cases with different reference length

its effect. The simulation results show only a slight deviation in the impedance, which can be
neglected. According to [13], the simulation result should be independent of the position of
the chosen reference plane. These simulation results validate the conclusion in [13].

Furthermore, the proper simulation domain is also investigated in this work. As the bound-
ary conditions of this incompressible simulation are defined through prescribed oscillated ve-
locity and fixed pressure value, the vortices should not across the simulation domain, because
this is not accounted for the boundary treatment. In [13], the simulation domain is extended
on both sides of the Helmholtz resonator in order to avoid the vortices crossing the simulation
domain. However, in this work for the Quarter wave resonator, the simulation domain is only
extended before the inlet, since in the Quarter wave resonator, the backing cavity is the same
size as the neck. The vortices dissipate faster in the thin backing cavity, so there is no need to
extend to the simulation domain on the outlet side. The simulation in this work is set up be
far enough so that the vortices will not reach the border of the simulation domain.
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5.2 Meshes
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Figure 5.2: Mesh

Notice that the σ is the porosity of the resonator. It can be calculated as the ratio of the
cross-sectional area of the duct and neck; Based on the mass conservation, it can also be
derived the relation of the velocity.

There are two important setups of the meshes which should be taken care of. Firstly, the
meshes near the no-slip wall, see section III in Figure 5.2 , should have a relatively higher reso-
lution so that the friction within the boundary layer can be well captured. The friction is a very
essential component of the resonator character which contributes a lot to the resistance of the
impedance. So the resolution should be high enough so that the velocity gradient can be re-
vealed. Simulations with higher and lower resolution have all been implemented, the results
show that the simulation with higher resolution near the wall has slightly higher resistance.
The deviation between the case with different resolution is relatively small. As explained be-
fore, the friction is one of the major cause of the resistance, so this result is consistent with the
theory. Besides, the cell resolution in the section I should also be high enough. Even though
the friction at that section has an only minor effect on the resonator, it is still necessary not to
neglect it. Secondly, the cells around the corner, which is the section II in Figure 5.2, should
also have higher resolution and shape should be close to the square. Due to the area jump,
the velocity changes rapidly at the corner and vortex is triggered. Thus a well-refined mesh is
required to capture the velocity gradient smoothly and explicitly.

Several simulations are done to investigate the dependency of the result to the mesh reso-
lution. As shown in the Table 5.2, case 1 is for the lower resolution and case 2 is for the higher
resolution. Even though the number of cells in case 2 is almost 170% to that in case 2, the de-
viation of both resistance and reactance in no more than 2.5%. This indicates that the mesh
is fine enough to capture the damping effect so that even though there is a huge difference in
the number of cells, the deviation of results is small enough to be neglected. But in order to
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5.2 Meshes

ensure the simulation is more accurate, all the simulations are done in higher resolution.
Moreover, higher grading in the normal direction to the wall can achieve the high reso-

lution, but it also leads to the cells far away from the wall have a rather higher length-width
ratio. This may lead to a problem, but in this simulation, no fetal problem has been found.

number of cells [-] Re(zo) [-] ∆Re(zo) [%] Im(zo) [-] ∆Im(zo) [%]
Case 1(not refined) 21131 0.3663 - 9.1629 -

Case 2(refined) 34800 0.3743 2.18 9.0249 1.51

Table 5.2: Results of cases with different cell resolution

Figure 5.3: Velocity profile of the boundary layer
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5.3 Numerical Setups

OpenFOAM[5] is a framework for developing application executables that use packaged func-
tionality contained within a collection of approximately 100 C+ libraries. OpenFOAM is shipped
with approximately 250 pre-built applications that fall into two categories: solvers, that are
each designed to solve a specific problem in fluid (or continuum) mechanics; and utilities,
that are designed to perform tasks that involve data manipulation. The solvers in OpenFOAM
cover a wide range of problems in fluid dynamics. The solver used in this numerical inves-
tigation is PimpleFOAM. It is a large time-step transient solver for incompressible, turbulent
flow[5], but instead of turbulent flow, laminar flow will be investigated.

5.3.1 Boundary Conditions

5°

Figure 5.4: Boundary conditions of the case

Since the geometry of the resonator is centrosymmetric, the numerical investigation can
be simplified to a small slice of the resonator, see Figure 5.4. This can be achieved in the Open-
FOAM by simply using the wed g e boundary condition on the symmetry plane. The result of
this simplification should be the same as the full geometry but saves much time and effort.
Notice that in this model, only one resonator is investigated, so the porosity is presented by
the ratio of the circular sector of the two cross-section area.

The boundary condition is one of the most important setups in numerical simulations.
The boundary conditions in this work are set mainly based on [13]. One of the key to set up
the boundary conditions in this work is to set up the boundary condition of the inlet and
the outlet correctly. The boundary condition of the inlet is defined as velocity-driven and the
velocity is oscillating as the excitation to the resonator. In order to achieve this, the boundary
condition groovy bc is utilized. This boundary condition is basically a mixed-BC where value,
gradient and valueFraction are specified as expressions instead as fields. As for the outlet,
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the boundary condition is defined as fixed pressure to meet the mass convention, since the
incompressible approach is utilized in this work. The wall of the duct is set as the slip-wall.
This boundary condition indicates that no boundary layer is developed near the wall and thus
no friction has taken place. In this case, the velocity can maintain constant, see the same setup
in [13]. As for the wall in the neck, it is defined as a no-slip wall, since the friction in the neck
is one of the most essential components in the damping effect of the resonator. Moreover, the
wall outside the neck is also set as no-slip. Even though the friction there is much smaller than
the friction in the neck, it is still necessary for an accurate investigation of the resonator.

Since the numerical simulation is done only in the incompressible neck, in order to inves-
tigate the damping behavior of the whole resonator, the backing cavity is investigated analyt-
ically basing on the Eq.(4.6) and then the two results will be combined.

5.3.2 Evaluation Approaches

In the numerical part, there are two approaches to derive the impedance of the neck see[13].
The workflow of the two approaches is shown in Figure 5.5

Figure 5.5: Workflow of two approaches to derive the impedance of the incompressible
neck from [13]

According to [13], in approach 1, the total impedance is calculated first, then impedance
from the reference plane to the inlet of the resonator, which is denoted as Zduct ,pot , is sub-
tracted to get the impedance of the neck. The Zduct ,pot for the Quarter wave resonator can be
calculated by:

Zduct ,pot = iρωlr e f u′. (5.1)

where lr e f is the distance between the reference plane to the inlet of the resonator, see
Figure 5.1.

On the contrary in approach 2, the pressure drop between the reference plane to the inlet
of the resonator, which is denoted as ∆Pduct , is subtracted first, then the neck impedance is
derived directly. The ∆Pduct for the Quarter wave resonator can be derived by:

∆Pduct = ρlr e f
∂u′

∂t
. (5.2)
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where ∂u′
∂t can be derived using MATLAB function di f f .

The results should be the same due to the mathematically Fourier transform properties. It
is confirmed in the [13] that the results from both approaches are in good agreement. There
was only a considerably small deviation between the two approaches. In this work, both ap-
proached are all being tested at lower SPL in the Frequency spectrum near the eigenfrequency.
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Figure 5.6: Normalized resistance and reactance of the impedance of the neck obtained
from different evaluation approaches

As shown in Figure 5.6, normalized resistance and reactance show good agreement. The
resistance is extremely similar and the deviation between the two approaches is also small.
More deviation has taken place in the reactance. Even though the shape of the reactance plot
is the same, the reactance obtained from approach 1 is constantly slightly larger than that
obtained from approach 2. However, these discrepancies can be acceptable and it is validated
in [13]. In this part of the investigation, the approach 2 is utilized.
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5.3.3 Iteration Process

The iteration process is also necessary for the numerical simulation. However, this can not be
done in the OpenFOAM and part of it has to be done in MATLAB. The process is described
as follow: firstly, the data is withdrawn from OpenFOAM and then is inputted into MATLAB.
In MATLAB the impedance and the reflection coefficient are calculated analytically. Based
on Eq(4.9), an adjusted velocity amplitude is derived. Afterward, the new velocity amplitude
is implemented in the OpenFOAM and a new simulation starts. This iteration process stops
when the amplitude of velocity or the reflection coefficient converge to approaching value.
As shown in Figure 5.7, the amplitude of velocity oscillates around the approaching value.
The more times the iteration has, the closer it is to the final result. Notice that the iteration
process at the higher SPL level needs more times of iteration. It takes a dozen times at, for
example, 120dB. On the contrary, the iteration processes at lower SPL, SPL below 100dB in this
work, need only one simulation as long as the initial guess of amplitude is not too far from
the final result. The reason for this has been already explained in the previous chapter. The
accuracy of the iteration in OpenFOAM is not as good as that in the analytical investigation
since OpenFOAM is much more comprehensive than MATLAB. It needs much more iterations
to reach the accuracy in MATLAB and it is not necessary since the accuracy now is enough for
the current investigation.
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Figure 5.7: The iteration of excitation amplitude at SPL 120dB

The focusing point of this thesis is the damping behavior at the eigenfrequency. However,
in order to make sure the method used in the analytical model also works in the numerical
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model. Thus, several simulations are done in the lower SPL at 70dB. As shown in Figure 5.8,
the velocity profile shows the same pattern as that in the analytical investigation. even though
the initial guess of the velocity is the same at every frequency, it ends up at a different value.
The velocity amplitude at both ends of the frequency spectrum is rather low, while it increases
rapidly to the maximum at the eigenfrequency. The curve of the velocity profile is discontinu-
ous and not smooth since only limited simulations have been done in the frequency domain.
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Figure 5.8: Velocity profile at SPL 70dB
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5.4 Results of the Numerical Simulations

5.4.1 Original Data from OpenFOAM

In the actual simulation process, the data of every time step at every cell has been computed.
However, these data cannot reveal the damping behavior without post-processing. In this
work, the velocity and the pressure at the reference plane are calculated as the average value
of data on the whole reference plane. As shown in Figure 5.9, velocity and the pressure are
harmonic. Since the flow in this numerical simulation is set to be velocity-driven, the pres-
sure is the response of the excitation. Notice that there are changes taken place in amplitude
and phase. The amplitude of the pressure changes obviously and its phase also shifts a little
bit backward. The change in amplitude will contribute to the resistance of the impedance and
the shift in phase will lead to the reactance. Moreover, in the numerical simulation, the time
has been set to be exactly 10 periods in order to let the acoustic wave fully propagated in the
resonator and only the last period is inputted to the analytical computation in MATLAB.

Moreover, the velocity and the pressure profile can be presented by a post-processing soft-
ware, Paraview. What shown in Figure 5.10 is the velocity profile of one period at 120dB. Notice
that the velocity around the edge is much higher than the other place. At the beginning of this
period, the flow flows in the neck of the resonator and small vortices are triggered inside the
neck. However, with the constraint of the wall of the narrow neck, the vortices disappeared
very quickly. At the end of this period, when the flow flows out, much larger vortices are gen-
erated. Contrary to the narrow neck, the outflow does not have the restraint of the wall. So it
is fully developed to a much larger scale. Also, notice that not only the flow inside the neck
participates in the oscillation, there is still a small part of the flow outside the resonator which
also participates in the oscillation. This is the reason why a length correction is needed in
Section 4.1
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Figure 5.9: Velocity and pressure profile at the reference plane
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Figure 5.10: Vortices generated around the inlet of the resonator at 130dB
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5.4.2 Damping Behavior at Different SPL

As mentioned in the previous chapter, the eigenfrequency of the Quarter wave resonator in
this thesis is set as 400Hz and this numerical investigation is mainly focused on the damp-
ing behavior at the eigenfrequency at different SPL. Firstly, the normalized resistance of the
Quarter wave resonator at different SPL is presented in Figure 5.11. At the lower SPL from
70dB to 90dB, the normalized resistance can be considered as constant. There are only very
small changes taken place in these lower SPL. The normalized resistance starts to increase
gradually at the higher SPL from 90dB to 130dB. At first, the increasing rate of the normalized
resistance is rather small, but the higher the SPL is, the higher the increasing rate becomes.
Notice that the normalized resistance exceed 1 at 130dB, which means that the damping man-
ner changes from normal-damped to over-damped at 130dB. As for the gain of the reflection
coefficient, as shown in Figure 5.12, it decreases very slightly at the lower SPL from 70dB to
90dB. The decreasing rate begins to rise from 90dB, as a result, the gain of the reflection co-
efficient decrease more significantly at the higher SPL. Notice that, the decreasing trend has
not changed with the SPL range from 70dB to 130dB, even though the normalized resistance
exceeds 1. However, it is also predictable that the gain of the reflection will start to increase at
the SPL over 130dB. These results are similar to the analytical results and the comparison of
both results will be further discussed in the next chapter.

33



Numerical Investigation

70 80 90 100 110 120 130

SPL [dB]

0.4

0.6

0.8

1

1.2
R

e
(z

) 
[-

]

Figure 5.11: Normalized resistance of Quarter wave resonator at different SPL
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Figure 5.12: Gain of reflection coefficient of Quarter wave resonator at different SPL
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6 Comparison of the Analytical Results
and The Numerical Results

In this part of the thesis, the results from both analytical investigation(MATLAB) and numer-
ical investigation(OpenFOAM) are compared with each other.

As shown in Figure 6.1, the starting point of the normalized of the analytical investigation
is at around 0.3, but the starting point of the normalized of the numerical investigation is at
around 0.4. Since at the lower SPL 70dB, the resistance is mainly caused by the friction, this
difference indicates that the friction captured in the numerical investigation is larger than that
in the analytical one. Furthermore, the normalized resistance in the analytical investigation
shows a more obvious increasing trend than that in numerical one, since it starts to increase
from 70db in the analytical investigation while it remains constant until 90dB. What’s more,
the normalized resistance in analytical investigation exceeds 1 at 120dB while in the numeri-
cal investigation, it exceeds 1 at almost 130dB.

Beside the normalized resistance, the gain of the reflection coefficient of both investiga-
tions is also compared, see Figure 6.2. The gain of the reflection coefficient of the analytical
model is almost 0.6 while that of the numerical model is only 0.5, which means that the damp-
ing effect captured numerically is better than that captured analytically. Since the decrease of
the gain of the reflection coefficient in the analytical model is more significant than that in
the numerical model, the gain of the reflection coefficient in the analytical model becomes
lower than that in the numerical model; And it reaches its minimum value at 120dB, which is
a bit lower than that in numerical model. This indicates that the resonator in MATLAB trans-
forms from normal-damped to over-damped a bit earlier than that in OpenFOAM. However,
the overall trend is shown in the both Figure 6.1 and Figure 6.2 is similar and the damping
behavior corresponds in some degree, which validates with each other.
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Figure 6.1: Normalized resistance at different SPL in analytical and numerical investiga-
tion
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Figure 6.2: Gain of the reflection coefficient at different SPL in analytical and numerical
investigation
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6.1 Correction Based on the Comparison of Results

According to the comparison in the last section, the normalized resistance of the analytical
and numerical investigation has a small deviation at the lower SPL range from 70dB to 90dB.
Since at the lower SPL, the damping behavior remains in linear regime and the damping effect
is mainly caused by the friction, which is a linear component. In this case, it is possible to
implement a correction coefficient to the term which is responsible to the friction. According
to Eq(4.2), the term Rl u′ take care of the thermo-viscous losses and it is a linear term. And this
Rl is appropriate real-valued constant which might not accurately capture the frictions in the
neck. Thus a correction coefficient η is added as follow:

Rl ,cor = ηRl . (6.1)

where the Rl ,cor denotes the corrected value. The correction coefficient is chosen properly so
that the normalized resistance of both analytical and numerical investigation at the low SPL
can be in good agreement. As shown in Figure 6.3, the corrected normalized resistance of the
analytical investigation at 70dB is now the same as the results of the numerical investigation.
After the correction, the normalized resistance of both investigations shows good agreement
at the lower SPL. However, the deviation of the normalized resistance between the two in-
vestigations rises with the increasing SPL. The reason for this is that even though the linear
damping effect has been corrected, there is still deviation in the nonlinear effect, i.e. the flow
separation, which is not corrected. Since it is nonlinear, a correction coefficient is not suffi-
cient. Thus, in this work, no further correction will be utilized.
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Figure 6.3: Normalized resistance at different SPL in analytical(corrected) and numerical
investigation
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Figure 6.4: Gain of the reflection coefficient at different SPL in analytical(corrected) and
numerical investigation

38



7 Summary and Conclusion

This work investigates the damping behavior of a Quarter wave resonator using an incom-
pressible approach. The incompressible approach means that the flow in the should be con-
sidered as incompressible. To achieve this, the length of the neck should be small enough
compared to the wavelength of the acoustic wave so that the neck can be considered as acous-
tically compact. When the neck is acoustically compact, the flow inside the neck can be treated
as incompressible. Moreover, decomposition methodology, which was suggested by Ingard
and Ising [7], is applied in this work. This methodology was well applied to the Helmholtz
resonator and also to the Quater wave resonator done by Foerner [4]. And in this work, it
is also implemented on the Quarter wave resonator. The investigation of the Quarter wave
resonator in this work contains two part: the analytical part and the numerical part. The ana-
lytical investigation is implemented in MATLAB and the numerical investigation is utilized in
OpenFOAM. Notice that the evaluation process of the numerical investigation is done in the
MATLAB. The parameters of the Quarter wave resonator in both parts are set as the same in
order to make sure the results are comparable. The focusing point of this work is the damp-
ing behavior at eigenfrequency and this is compared to the end of the work. Since there is a
deviation between the two investigations, a reasonable correction is implemented.

Firstly, the goal was to set up the analytical model in the MATLAB. Based on the method-
ology mentioned above, the Quarter wave resonator was also decomposed into two parts: the
neck and backing cavity; And they were investigated separately. Since the reflection coeffi-
cient, which an essential value to characterize a resonator, is a function of both frequency and
SPL, there are two loops applied in this part of the investigation. In the first loop, the resonator
was investigated only over the frequency spectrum. Initially, the pressure drop between to
both ends of the neck was derived at every frequency. Then the pressure drop and the velocity
were transformed from time domain to frequency domain using the MATLAB function: FFT.
Then the impedance of the neck was computed by dividing the transformed pressure drop
to the transformed velocity. The impedance of the backing cavity was calculated separately.
Afterward, the total impedance was derived by adding the impedance of the neck and the
backing cavity together and the reflection coefficient was also calculated. One very important
key to this work is that the SPL at the reference plane should maintain constant as a target
SPL. Due to the damping effect, the actual SPL at the reference plane was lower than the tar-
get SPL, iterations are implemented in the second loop to adjust the excitation amplitude of
the incident acoustic wave, i.e. the amplitude of the velocity. The higher the SPL was, the more
iterations needed. When the reflection coefficient of the resonator converged to an approach-
ing value, which indicates the SPL at the reference plane was finally constant, this value was
taken as the final result. Since there is no obvious dividing line between the neck and the
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backing cavity, effects of different proportions of the neck were investigated. The changes of
the proportion led to the shift of the eigenfrequency of the resonator and also the damping
efficiency. As for the effect on the impedance, the proportions of the neck had more influence
on the resistance than the reactance. What’s more, at the lower SPL, the resistance remained
at the linear regime. At the higher SPL, the resistance stayed at the nonlinear regime and the
resistance at the eigenfrequency increased significantly. Notice that the change of the propor-
tion did not have an effect on the reactance. Besides, the normalized resistance at the eigen-
frequency raised with the increasing SPL and it exceeded 1 at around 120dB, which means
the damping behavior transformed for normal-damped to the over-damped. Thus, the gain
of the reflection coefficient decreased to the minimum and started to increase at 120dB.

Secondly, the similar methodology was implemented in OpenFOAM. In this work, only
the neck was investigated in the OpenFOAM and the backing cavity still used the analytical
model, since the incompressible assumption was only applied in the neck. In order to simplify
the numerical simulation, only a wedge of the resonator was simulated. In order to achieve
this, the wedge boundary condition was utilized. One difficulty in this part of the work was
the mesh generation. The resolution of the mesh should be fine enough to capture the friction
and the vortices. Several resolutions were simulated and the results showed only a slight de-
viation, which indicated the resolutions were all fine enough. Then the distance between the
reference plane the should be chosen. According to [13], the position of the reference should
not have an effect on the results. This was validated also in these simulations. There was only a
slight deviation between the results of the simulations with different reference distance. There
were two approaches mentioned in [13] to obtain the impedance of the neck. The simulation
results at 70dB of both approaches showed good agreement. Then the simulation results of
the neck are added together with the analytical results of the backing cavity and the same it-
eration process was utilized to main the constant SPL at the reference position. It only took
one time of the iteration at the lower SPL while it took much more iterations at the higher SPL.
Finally, at the eigenfrequency, the damping efficiency at different SPL was investigated. The
normalized resistance increased with the increasing SPL and it exceeded 1 at around 130dB.
Thus the gain of the reflection coefficient maintained a decreasing trend. However, it is also
predictable that the gain of the reflection coefficient will also increase after 130dB since the
resonator at 130 is over-damped.

Furthermore, the results of the analytical and numerical investigation were compared. In
general, the trend of the curves of the normalized resistance and the gain of the reflection of
the were similar but there were still deviations. In the analytical investigation, the resonator
transformed from normal-damped to over-damped at 120dB while in the numerical simula-
tion it transformed at 130dB. The deviation of the analytical and numerical investigation was
rather small at the lower SPL but it increased with the increasing SPL. Since the linear regime
is dominant at the lower SPL and the nonlinear regime is dominant at the higher SPL, the lin-
ear part of the both analytical and numerical showed rather good agreement but the nonlinear
part was not. Therefore, a correction coefficient was applied to the linear term, i.e. the friction,
to correct the deviation at the lower SPL. After the correction, the resistance at the lower SPL
showed very good agreement while the deviation still increased with the increasing SPL. This
indicates that the nonlinear part of the analytical and numerical investigation had deviation.
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However, at this point, it is not possible to determine whether is the analytical investigation
over-predict or the other way around. This can be determined when corresponding experi-
ments are implemented.
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A MATLAB Script

A.1 Analytical Investigation

1 clear;
2 clc;
3 %% MATLAB SCRIPT OF ANALYTICAL INVESTIGATION OF QUATER-WAVE RESONATOR
4 %*************************************************************************
5 %% TARGET
6 SPL = 120;
7 % dB targert SPL at reference plane
8 f_eig_target = 400;
9 % 1/s eigenfrequency of the resonator

10 %% OVERALL PARAMETERS
11 l_ref = 0.00;
12 %reference length [m]
13 Pr_norm = 0.72;
14 %Prandtl number [-]
15 kappa_norm = 1.4;
16 %Ratio of specific heats [-]
17 M_norm = 0.0289644;
18 %Molar mass [kg/mol]
19 T_norm = 293.15;
20 %Temperature [K]
21 R_norm = 8.3144598;
22 %Gas constant [J/kgK]
23 p_norm = 100000;
24 %Atmospheric pressure [Pa]
25 pa_norm = 20e-6;
26 %Commonly used reference sound pressure in air [Pa]
27 Rho_norm = p_norm * M_norm / (R_norm * T_norm);
28 %Density [kg/m^3]
29 c_norm = sqrt(kappa_norm * p_norm / Rho_norm);
30 %Speed of sound [m/s]
31 visk_dyn_norm = 17.1e-6;
32 %Dynamic viscosity [Pa s]
33 visk_kin_norm = visk_dyn_norm/Rho_norm;
34 %Kinetic viscosity [m^2/s]
35 %% GEOMETRICAL PARAMETER
36 d_0 = 0.00635;
37 %Diameter of the duct [m]
38 l_correction = 4/(3 * pi) * d_0;
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39 %Length correction [m]
40 l_all = 1/4 * c_norm / f_eig_target;
41 %Total length of the QW Resonator [m]
42 l_0 = 0.02;
43 %Length of the neck of the QW Resonator [m]
44 l_e = l_0 + l_correction;
45 %Effective length [m]
46 l_cav = l_all - l_0;
47 %Length of the backing cavity [m]
48 Cd = 0.76;
49 %Vena contracta [-]
50 sigma = 0.0156;
51 %Porosity [-]
52 %% LOOP
53 j_limit = 100;
54 %Limit of the outer loop
55 frequency_range = 800;
56 %Range of the frequency spectrum
57 %% SET UP VECTORS
58 fft_Z = zeros(j_limit,frequency_range);
59 %Impedance [N s/m^3]
60 fft_R = zeros(j_limit,frequency_range);
61 %Reflection coefficient [-]
62 fft_Z_0 = zeros(j_limit,frequency_range);
63 %Impedance of the neck [N s/m^3]
64 fft_Z_bc = zeros(j_limit,frequency_range);
65 %Impedance of the backing cavity [N s/m^3]
66 amplitude_fft_R = zeros(j_limit,frequency_range);
67 %Gain of the reflection coefficient [-]
68 phase_fft_R = zeros(j_limit,frequency_range);
69 %Phase of the reflection coefficient [degree]
70 f_vec = linspace(25,(frequency_range + 24),frequency_range);
71 %frequency range 25-1000 Hz
72 A_u = zeros(j_limit,frequency_range);
73 %Amplitude of velocity [m/s]
74 R_eigen_freq = zeros(1,j_limit);
75

76 %% LOOP
77 flag_inertia = 1;
78 flag_viscosity = 1;
79 flag_flowseparation = 1;
80 flag_areajump = 1;
81 flag_backcavity = 1;
82 for j = 1:j_limit
83 %outer loop
84

85 for k = 1:frequency_range
86 % inner loop
87 f = f_vec(k);
88 %% PREPARETION FOR FFT FUNCTION
89 N = 2000;
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90 % Length of signal
91 fs = 2000 * f;
92 % Sampling frequency
93 t = (0:N-1)/(fs);
94 % Time vector
95 freq = (0:N/2) * fs/N;
96 %% VELOCITY
97 if j == 1
98 A_u(j,:) = 0.02;
99 %Initial guess of amplitude of velocity

100 end
101 u_vec = A_u(j,k) * sin(2 * pi * f * t);
102 %Velocity [m/s]
103 u_dt_vec = A_u(j,k) * 2 * pi * f * cos(2 * pi * f * t);
104 %Derivative of velocity
105 %% CALCULATE REAL-TIME VALUE R_l
106 s = 1/d_0 * (1 + (kappa_norm-1)/sqrt(Pr_norm)) * sqrt(2 * ...

visk_kin_norm / (2 * pi * f));
107 %Boundary layer parameter [-]
108 R_l = s * Rho_norm * (2 * pi * f) * (l_e);
109 %Real-valued constant
110 %% CALCULATE PRESSURE
111 ∆_p_vec = flag_inertia * (Rho_norm * l_e / sigma * u_dt_vec)...
112 + flag_viscosity * (R_l * u_vec/sigma)...
113 + flag_flowseparation * (1/2 * Rho_norm * u_vec ...

.* abs(u_vec)/(Cd * sigma)^2) ...
114 + flag_areajump * 1/2 * (Rho_norm * u_vec .* ...

u_vec * (1/sigma^2-1));
115 %Pressure drop
116 %% FFT
117 fft_∆_p = fft(∆_p_vec,N);
118 fft_u = fft(u_vec,N);
119 %% CALCULATE THE IMPIEDENCE OF THE DUCT
120 fft_Z_0(j,k) = fft_∆_p(2)/fft_u(2);
121 %% CALCULATE THE IMPIEDENCE OF THE BACK CAVITY
122 fft_Z_bc(j,k) = flag_backcavity * (-1i * cot(2 * pi * f * ...

l_cav/c_norm) * Rho_norm * c_norm/sigma);
123 %% CALCULATE THE IMPIEDENCE OF QW RESONATOR
124 fft_Z(j,k) = fft_Z_0(j,k)+ fft_Z_bc(j,k);
125 %% REFLECTION COEFFICIENT
126 fft_R(j,k) = (fft_Z(j,k) - Rho_norm * c_norm)/(fft_Z(j,k) + ...

Rho_norm * c_norm);
127 %% CALCULATE THE AMPLITUDE OF VELOCITY FOR THE NEXT LOOP
128 A_u(j+1,k) =abs(1 - fft_R(j,k)) * 10^(SPL/20) * ...

sqrt(2)*pa_norm/(abs(1+fft_R(j,k)*exp(-1i * 2 * pi * f * ...
l_ref/c_norm))*Rho_norm*c_norm);

129 %% AMPLITUDE OF REFLECTION COEFFICIENT
130 amplitude_fft_R(j,k) = abs(fft_R(j,k));
131 %% PHASE OF REFLECTION COEFFICIENT
132 phase_fft_R(j,k) = angle(fft_R(j,k));
133 end
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134 %% ACCURACY OF REFLECTION COEFFICIENT
135 if j ≥ 2
136 if ...

abs((min(amplitude_fft_R(j,:))-min(amplitude_fft_R(j-1,:))))<1e-5
137 %0.00001
138 break;
139 %terminate the loop if the R approach a static value
140 end
141 end
142 end

A.2 Evaluation in Numerical Investigation

The MATLAB script of the two different approaches to compute the impedance of the neck.

1 % Calculate the derivative of velocity
2 diff_u(j,:)=diff(u(j,:))./diff(t);
3 %% FFT
4 fft_p = fft(p(j,:));
5 fft_u = fft(u(j,:));
6 fft_diff_u = fft(diff_u(j,:));
7 %% APPROACH 1
8 fft_Z_tot(j,1) = fft_p(2)/fft_u(2);
9 fft_Z_duct_pot(j,1) = 1i * Rho_norm * 2 * pi * f * (l_AB - l_0) * ...

fft_u(2);
10 %Calculate the impedance
11 fft_Z_bc(j,1) = -1i * cot(2 * pi * f * l_cav/c_norm) * Rho_norm * ...

c_norm/sigma;
12 fft_Z_0(j,1) = fft_Z_tot(j,1) - fft_Z_duct_pot(j,1);
13 %Substract the impedance from reference plane to the inlet of the ...

resonator
14 fft_Z(j,1) = fft_Z_0(j,1) + fft_Z_bc(j,1);
15 fft_R(j,1) = (fft_Z(j,1) - Rho_norm * c_norm)/(fft_Z(j,1) + Rho_norm ...

* c_norm)
16 %% APPROACH 2
17 ft_∆_p = fft_p(2) - Rho_norm * (l_AB - l_0) * i * 2 * pi * f * fft_u(2);
18 fft_∆_p = fft_p(2) - Rho_norm * (l_AB - l_0) * fft_diff_u(2);
19 %Substract the pressure drop from reference plane to the inlet of the ...

resonator
20 fft_Z_0(j,2) = fft_∆_p/fft_u(2);
21 %Calculate the impedance
22 fft_Z(j,2) = fft_Z_0(j,2) + fft_Z_bc(j,1);
23 fft_R(j,2) = (fft_Z(j,2) - Rho_norm * c_norm)/(fft_Z(j,2) + Rho_norm ...

* c_norm)
24 %Iterations in order to make sure the SPL at the reference plane is ...

constant
25 A_u(j+1,1) =abs(1 - fft_R(j,1)) * 10^(SPL/20) * ...

sqrt(2)*pa_norm/(abs(1+fft_R(j,1)*exp(-1i * 2 * pi * f * ...
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l_ref/c_norm))*Rho_norm*c_norm);
26 A_u(j+1,2) =abs(1 - fft_R(j,2)) * 10^(SPL/20) * ...

sqrt(2)*pa_norm/(abs(1+fft_R(j,2)*exp(-1i * 2 * pi * f * ...
l_ref/c_norm))*Rho_norm*c_norm);

47



Bibliography

[1] A. Cummings. Transient and multiple frequency sound transmission through perforated
plates at high amplitude. Journal of the Acoustical Society of America, 79(4):942–951, April
1986.

[2] R. Piero E. Laudien, R. Pongratz and D. Preclick. Fundamental mechanisms of combus-
tion instabilities: Experimental procedures aiding the design of acoustic cavities. Liquid
Rocket Engine Combustion Instability, pages 377–399, Jan 1995.

[3] K. Förner and W. Polifke. Scattering to Higher Harmonics for Quarter-Wave and
Helmholtz Resonators. AIAA JOURNAL, December 2016.

[4] Kilian H. Förner. Nonlinear aeroacoustic characterization of resonators. journal acous-
tic, March 2013.

[5] The OpenFOAM fundation. User guide. 2017.

[6] A. S. Hersh, B. E. Walker, and J. W. Celano. Helmholtz resonator impedance model, part
1: Nonlinear behavior. AIAA Journal, 41(5):795–808, May 2003.

[7] U. Ingard. On the theory and design of acoustic resonators,. Journal of Acoustical Society
of America, 25(6):1037, November 1953.

[8] U. Ingard and H. Ising. Acoustic nonlinearity of an orifice. The Journal of the Acoustical
Sociaty of America, 42(1):6–17, 1967.

[9] P. Martinez-Lera K. Förner, J. Tournadre and W. Polifke. Characterization of the nonli-
near response of a helmholtz resonator. Annual Report, pages 33–45, 2015.

[10] W. Polifke I. Lopez Arteaga K. Förner, M. A. Temiz and A. Hirschberg. On the non-linear
influence of the edge geometry on vortex shedding in helmholtz resonators. 22nd Inter-
national Congress on Sound and Vibration (ICSV22), 2015.

[11] J.J. Keller and E Zauner. On the use of helmholtz resonators as sound attenuator.
Zeitschrift fuer angewandete Mathematik und Physik ZAMP, 46(3):297–327, 1995.

[12] Ronald L. Panton and John M. Miller. Resonant frequencies of cylindrical helmholtz res-
onators. Journal of the Acoustical Society of America, 57(6):1533–1535, June 1975.

48



BIBLIOGRAPHY

[13] Jonathan Tournadre, Kilian Förner, Paula Martinez-Lera, Wolfgang Polifke, and Wim
Desmet. Determination of acoustic impedance for helmholtz resonators through in-
compressible unsteady flow simulations. 22nd AIAA/CEAS Aeroacoustics Conference, May
2016.

[14] Qi Zhang and Daniel J. Bodony. Numerical investigation and modelling of acoustically
excited flow through a circular orifice backed by a hexagonal cavity. Journal of Fluid
Mechanics, 693:367–401, Jan 2012.

49


