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ABSTRACT
Testing is the most widely employed method to find vulnerabilities
in real-world software programs. Compositional analysis, based on
symbolic execution, is an automated testing method to find vulner-
abilities in medium- to large-scale programs consisting of many
interacting components. However, existing compositional analysis
frameworks do not assess the severity of reported vulnerabilities.
In this paper, we present a framework to analyze vulnerabilities
discovered by an existing compositional analysis tool and assign
CVSS3 (Common Vulnerability Scoring System v3.0) scores to them,
based on various heuristics such as interaction with related compo-
nents, ease of reachability, complexity of design and likelihood of
accepting unsanitized input. By analyzing vulnerabilities reported
with CVSS3 scores in the past, we train simple machine learning
models. By presenting our interactive framework to developers
of popular open-source software and other security experts, we
gather feedback on our trained models and further improve the
features to increase the accuracy of our predictions. By providing
qualitative (based on community feedback) and quantitative (based
on prediction accuracy) evidence from 21 open-source programs,
we show that our severity prediction framework can effectively
assist developers with assessing vulnerabilities.

CCS CONCEPTS
• Security and privacy→ Vulnerability management; • Soft-
ware and its engineering→ Software testing and debugging;

KEYWORDS
vulnerability assessment, software testing, symbolic execution, com-
positional analysis
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1 INTRODUCTION
Due to an increase in the size, features, and complexity of software
applications coupled with increased automation in the hands of
professional bug hunters, we have seen an explosion in the number
of vulnerabilities exposed in popular software. Automated soft-
ware testing is the preferred way for early detection of bugs in
programs leading to vulnerabilities. Popular vulnerability scanners,
however, report many, so-called, false positives [37] that may never
materialize in a real-world usage of the program or associated com-
ponents. In addition to expert knowledge, this calls for vulnerability
assessment techniques for reported vulnerabilities that take into
account the context of development, usage, underlying assets and
the likelihood of exploitation [10].

One such automated testing and vulnerability discovery tool
is Macke [29]. Macke is a compositional analysis tool based on
symbolic execution, that achieves higher instruction coverage and
discovers more potential vulnerabilities in many open-source pro-
grams than forward (simple and without compositional analysis)
symbolic execution tools, such as KLEE [7]. The basic idea be-
hind Macke is symbolic execution of isolated components in a pro-
gram, summarizing vulnerabilities found in them and, performing
a reachability analysis for the discovered vulnerabilities to generate
exploits. However, when exploits cannot be generated (potential
false-positives), Macke reports vulnerabilities without providing
any contextual information to help developers prioritize the fixing
process for reported vulnerabilities.

Fortunately, the Common Vulnerability Scoring System (CVSS)
[33], a standard that is being rapidly adopted by the IT industry,
is an existing system to rate the severity of a vulnerability and,
hence, prioritize them. CVSS scores vulnerabilities by combining
some properties of a vulnerability through empirically derived
parameters.

In this paper, we will present a data mining andmachine learning
based technique for correlating features of vulnerable components
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discovered by compositional analysis in C programs and predicting
CVSS3 base-score values.

Problem: The state-of-the-art vulnerability scanners do not sat-
isfactorily report found vulnerabilities. Static analysis tools, such
as Splint, report too many false-positives. Compositional analy-
sis tools, such as Macke, report fewer vulnerabilities (and, hence,
possibly fewer false-positives) than static analysis tools but, in the
absence of contextual information, it is difficult to triage bugs and
prioritize reported vulnerabilities for which no exploit could be
generated.

Solution: We collect a set of vulnerabilities reported in the past,
with CVSS3 scores, and the corresponding versions of the programs
affected by them. We compositionally analyze these programs with
Macke and process the results to extract some features from them.
Then, using scores of the collected set of past vulnerabilities as
ground truth, we apply basic machine learning techniques to learn
a model that can predict CVSS3 scores for vulnerable components
from the features. We present the vulnerabilities with predicted
severities to security and software testing experts and gather feed-
back on our prediction framework. Using this feedback, we add
more features and obtain new models that predict severities for
reported vulnerabilities with higher accuracy.

Contribution: Closing a gap in this field, we present a novel strat-
egy to utilize the contextual information provided by compositional
analysis that affects the severity of discovered vulnerable functions
in C programs. Building on the empirical evidence that composi-
tional symbolic execution reveals more vulnerabilities than forward
symbolic execution [29], we state and evaluate the claim that it also
results in relevant information for prioritizing vulnerabilities, such
as ease of exploitation and the extent of damage that a vulnerability
might cause if exploited. To the best of our knowledge, ours is the
first framework to automatically assess severity of vulnerabilities re-
ported by compositional symbolic execution, and evaluate it based
on the accuracy of assessment and feedback from the open-source
community.

This paper is structured as follows – section 2 gives an overview
of the background to our work. In section 3, we describe our re-
search methods and implementation of our prediction framework.
In section 4, we list and describe the evaluation criteria for our
methods, results and their interpretation and threats to validity of
our experiments. Section 5 lists some past works related to ours
and in section 6 we conclude the paper.

2 BACKGROUND
2.1 Symbolic Execution
Symbolic execution was introduced as a technique for software test-
ing by King [19]. It is a deterministic method that uses instrumen-
tation to dynamically collect constraints representing branching
conditions in a program and solves these path constraints to gener-
ate inputs that execute the corresponding paths in the program. A
path constraint (or path condition) may be defined as an ordered
sequence of conditional branches that a program’s execution takes
to reach from an entry point (e.g. main function) to an exit point
(e.g. return statement) of the program. Some of these paths may

lead to unhandled exceptional behaviour in the program (such as
buffer-overflows). Symbolic execution, and its practical approaches
such as concolic execution [34] and whitebox fuzzing [15], have been
shown [15] to be capable of extracting complex path-conditions
for edge-cases and exceptions where other methods, like random
testing, have failed to find potential vulnerabilities.

However, symbolic execution and its variants suffer from bottle-
necks of underlying constraint solvers [14] and path-explosion [8],
which leads to a major degradation of its performance in terms of
both, path-coverage and vulnerability discovery.

2.2 Compositional Analysis with Macke
Compositional analysis or compositional symbolic execution has
been proposed [11, 29, 32] as a mitigation strategy for the path-
explosion problem in simple symbolic execution. The basic idea of
compositional analysis is as follows – instead of symbolically exe-
cuting the full program, we symbolically execute all components,
such as functions, that can be executed in isolation. Then, we only
focus on the inter-compositional interactions of these components,
by means of directed symbolic execution [23]. In this way, the sym-
bolic execution engine would not have to deal with all those paths
that do not constitute any communication-related instructions be-
tween the components. Macke [29] is such a compositional analysis
tool for C language programs, where the components are functions.
We will, briefly, formally describe the working of Macke.

All the following description applies to all function, f , in the
program, P , that are executable and we assume that there is at
least one such function in P . An executable function is defined as a
function that can be called with arguments from another function
in the program. Let, the set of all executable functions in P be FP .
An executable function, f , may be represented as an execution tree
that characterizes the possible paths followed during a symbolic
execution of the function, as described by King [19]. If the list of
arguments to the function, f , is I = {α1,α2, . . . αn }, then a path-
condition, pc , is a Boolean expression over αi ’s. For every symbolic
execution of a function

pcinit ial = True (1)

Whenever a branching statement, e.g. If-else, with branching
condition, q, is encountered pc is extended as follows

pc = pc ∧ r (2)

where, r = q or ¬q.
Let the set of all pc’s symbolically executed in an isolated func-

tion, f , be PCf 1. By the end of every execution, a pc will represent
a path in f that ends due to (1) return statement, or (2) program
crash, or (3) exceptional condition, such as an assertion failure.
Macke considers case (2) as a segmentation fault occurring due
to buffer-overflow vulnerability and case (3) as a special case of
assertion-failure vulnerability. In this paper, we will only focus
on buffer-overflows. Let the subset of PC that corresponds to all
buffer-overflow vulnerabilities in f be PCvuln . The corresponding
arguments that execute the paths in PCvuln can be considered
exploits for these vulnerabilities.

1Note that PCf does not contain a set of all possible paths in f , but only those that
were symbolically executed.
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After symbolically executing all functions, f , in isolation Macke
performs directed symbolic execution to confirm the reachability
of vulnerable paths via function calls.

For describing directed symbolic execution and reachability let
us first define a function, parents . For any two isolated functions,
f1, f2 ∈ FP

∀f1, f2 ∈ FP : f1 ∈ parents ( f2) ⇐⇒ f1callsf2 (3)

I.e. The parents ( f ) function lists all functions that may poten-
tially call f .

Now, let f1 ∈ parents ( f2) and the set of vulnerabilities discov-
ered in f2 be PCvulnf2

. Then, a vulnerability in f2 is said to have
infected function, f1 if

∃pcf1 ∈ PCf1 ,∃pcf2 ∈ PC
vuln
f2

: pcf1 ∧ pcf2 (4)

Using a directed search strategy [23, 24], Macke reduces the set
of paths by removing those paths in PCf1 that do not satisfy the
relation in equation (4), thereby reducing path-explosion. Addition-
ally, it reports those vulnerabilities in isolated functions that can-
not be found by forward symbolic execution of themain function
but, nonetheless, might be reproducible through some functions in
parents ( f ). The above properties of Macke will be used for machine
learning, as described in section 3.

2.3 CVSS3
The first version of Common Vulnerability Scoring System (CVSS)
[25], introduced in 2003, proposed a way to capture the principal
characteristics of a vulnerability and assign a numerical score re-
flecting its severity. The latest version to be used is version 3.0, or
simply CVSS3. CVSS3 [33] consists of a base-score and optional
temporal and environmental scores. In this paper, we will only
focus on predicting the base-score. CVSS3 base-score is made up
of the following metrics, which can take one of the corresponding
values

• Attack Vector (AV) – The context in which exploiting the
vulnerability is possible.Allowed values: network, adjacent,
local and physical.
• Attack Complexity (AC) – The complexity of the attack pro-
cess, if possible. Allowed values: low and high.
• Privileges Required (PR) – The level of privileges an attacker
must have to carry out an exploit. Allowed values: none,
low and high.
• User Interaction (UI) – The amount of direct user interaction
required for the attacker to carry out an exploit. Allowed
values: none and required.
• Scope (S) – Whether or not other components (changed
scope) than the vulnerable one can be affected if the vulnera-
bility is exploited.Allowed values: unchanged and changed.
• Confidentiality (C) – The amount of confidential data that
will be exposed if the vulnerability is exploited. Allowed
values: none, low and high.
• Integrity (I) – How much information can the attacker mod-
ify in the exploited component. Allowed values: none, low
and high.

• Availability (A) – Can the attacker deny access to the ex-
ploited component and whether that component is critical.
Allowed values: none, low and high.

In section 4, we will see how effectively we can predict all of the
above CVSS3 base-score metrics.

Comparison with Bugzilla severity. The popular bug-reporting
platforms such as [1] use Bugzilla’s nominal categories for prior-
itizing bug fixes. However, in past works [5] and from our own
experience, we note that the context-free ranking system of Bugzilla
results in an order that doesn’t truly represent the severities of bugs.
The first reason for this is that, for most of the bugs analyzed by
us (section 4), the development community ignored the “priority”
field of the reports, and used only the “severity” field as a proxy for
both, priority and severity. Unlike Bugzilla, for calculating CVSS
and CVSS3 scores, evaluation all base-score values is mandatory.
Secondly, we also found many instances in the analyzed programs
where the severity values in Bugzilla were changed by the de-
velopers when, either, the underlying assets were not considered
important enough, or the bug would not be fixed because it was
too complex to exploit it. However, CVSS base-scores explicitly
take into account underlying assets and attack complexity, thereby
eliminating the need for further arbitrary adjustment.

3 METHODOLOGY
In this section, we will give a high-level overview of the imple-
mented methods, including data collection, programs’ composi-
tional analysis, initial feature extraction, the first stage of machine
learning, interactive feedback gathering and machine learning with
combined features.

In the following subsections, we will use the running example of
Autotrace 0.31.1, a UNIX command-line-based program to convert
bitmap image formats to a vector graphics format.

3.1 Data Collection
We, firstly, require a set of known vulnerabilities with CVSS3 base-
scores to learn a predictive model. For this study, we only con-
sider buffer-overflow vulnerabilities. Because of reasons listed in
section 2.3, Bugzilla repositories, such as [1], were not suitable for
our study. The National Vulnerability Database (NVD) [2] contains
analyses of Common Vulnerabilities and Exposures (CVEs) by ag-
gregating program and vulnerability description, vulnerability type
enumeration, applicability statements, impact metrics (in CVSS or
CVSS3 format) and other relevant references.

After selecting NVD as our preferred database, we needed to
filter the data for reports

(1) that follow CVSS3 notation, instead of CVSS 1.0,
(2) about C programs,
(3) about buffer-overflows, and
(4) that state the name of the vulnerable function.

Setting the filters on the data collected from NVD, as described
above, we were left with a set of vulnerability reports that were
thorough in their description and had CVSS3 scores attached to
them. The next step is to, manually or automatically, determine
the name and version of the affected program and download the
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source-code of it. In section 4.1, we will present the size of dataset
and ground-truth for machine learning.

3.2 Compositional Symbolic Execution
As described in section 2.2, Macke performs compositional symbolic
execution by symbolically executing isolated functions in a pro-
gram and, then, performing a reachability analysis for the reported
vulnerabilities from parent (calling) functions. In this step of our
methodology, we perform compositional analysis on the programs
collected in section 3.1, using Macke.

The output of Macke includes a JSON file that lists

(1) all discovered vulnerabilities,
(2) source-code location of the vulnerable instruction, and
(3) functions through which an identical vulnerability may be

exploited.

The results of the analysis with Macke are presented in section 4.2.
In addition to the above list, Macke also outputs a call-graph of the
program. The call-graph for Autotrace 0.31.1 is shown in figure 1.
The vulnerable functions, as discovered by Macke, in this graph are
highlighted.

3.3 Feature Extraction
The output of running Macke on the candidate programs are pro-
cessed in this step to extract some features related to the vulnerabil-
ities and vulnerable functions. We will now describe these features
and our intuition behind including them as possibly correlating
factors for predicting the severity of vulnerabilities. Please note
that in the following list the terms “nodes” and “functions” are
used interchangeably. Also, we assume that each function in the
call-graph has an equal likelihood of sanitizing an input (argument).

(1) Node degree (d_in, d_out), defined as the number of callers
or callees (called, henceworth, also as neighbours) for a func-
tion in the call-graph. As explained by El Emam et al. [13],
and Nagappan et al. [28], node degree is an important feature
because the higher the node’s degree, the more likely that a
vulnerability in it may infect other functions, thereby lead-
ing to a failure in the program. For the function rle_fread
(figure 1) the values of incoming node degree, d_in, and
outgoing node degree, d_out, are 1 and 3, respectively. For
function, std_fread, d_in and d_out are 1 and 1, respec-
tively.

(2) Distance to interface (di), defined as the length of the shortest
path from an interface (such as main function) to the function.
The shorter the distance from an interface, the less likely it is
that a pointer argument was sanitized before being accessed.
The value of di for std_fread, as seen from figure 1 is 3,
while it is 2 for ReadImage.

(3) Clustering coefficient (cc), defined as the ratio of neighbour-
ing functions of a node that are also mutually connected
(as caller-callee pair). The intuition behind this feature is
that the bigger a cluster in which a vulnerable function is,
the more likely it is that this vulnerability may be exploited
by another function in the cluster. From figure 1, we can
see that rle_fread has 4 immediate neighbouring functions
(callers or callees). Out of 6 possible pairs of neighbours of

rle_fread, 3 are also connected to each other in a caller-
callee relationship. Therefore, the value of cc for rle_fread
is 0.5.

(4) Node path length (nl), defined as the average number of steps
that need to be taken to reach any reachable node from the
function being analyzed. If the node path length for a node is
low, it denotes a higher likelihood that an argument leading
to buffer-overflow is not being sanitized before being passed
between functions, assuming every function sanitizes input
with the same likelihood. From figure 1, we can see that there
are three functions that are reachable from rle_fread and
their distances from rle_fread are 1, 1 and 1, respectively.
Hence, the value of nl for rle_fread is 1 (average of 1, 1 and
1). In our implementation, we detect loops in the call-graph
and stop counting nodes when we encounter a loop (e.g. in
recursion).

(5) Vulnerabilities discovered (nv) depends on the output ofMacke,
and it denotes the number of unique vulnerable instructions
discovered by Macke. A higher number of buffer-overflow
vulnerabilities indicate [27] that an argument might be as-
sumed to be sanitized by a calling function, but such a
sanitization never took place in reality. In the functions,
rle_fread and std_fread, Macke discovered 1 vulnerable
instruction each, i.e. nv is 1. However, for ReadImage (fig-
ure 1) Macke found the instructions in, both, rle_fread
and std_fread, to be exploitable. Therefore, nv is 2 for
ReadImage.

(6) Maximum length of infection (li) depends on the results
of compositional analysis. It is the longest chain of caller-
callee pair through which the same vulnerability was dis-
covered by Macke. The intuition behind this feature [29]
is that if the same vulnerability can be exploited in a long
chain, then it is more likely that a sanitization on passed
arguments was not performed. We can see from the call-
graph in figure 1 that the underlying “causes”, or unsafe
operation, for the vulnerabilities in ReadImage function are
in std_fread and rle_fread. In both cases, the maximum
length of infection, li, is 2 (ReadImaдe → std_f read or
ReadImaдe → rle_f read).

3.4 Prediction of CVSS3 Base Scores
3.4.1 Preparation of data for prediction models. With the ground

truth and features related to functions and vulnerabilities, the next
step is to train machine learning models to learn the correlation
between these features and CVSS3 base-scores and use a linear or
non-linear combination of the features to predict these base-scores.

We consider each CVSS3 base-score value as individual targets
for prediction and generate the final CVSS3 severity score, severity,
based on the formula in the original specification document of
CVSS3 [33], calc_cvss3. i.e.

severity = calc_cvss3(yAV ,yAC ,yPR ,yU I ,yS ,yC ,yI ,yA ) (5)

where the subscripts, base , are the CVSS3 base-scores described in
section 2.3, Concretely,

ybase = f Lbase (V ) (6)

where,
V = [d_in,d_out ,di, cc,nl ,nv, li] (7)
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main

input_tga_reader

at_bitmap_init

at_exception_new fopen

fprintf at_exception_fatal

fseek

fread

ReadImage fclose

rle_fread std_freadat_exception_warning fputs

malloc

ftell

fgetc

free

Figure 1: Call-graph of Autotrace 0.31.1 program to convert a TGA bitmap to vector graphics format

The superscript, L, in equation (6) stands for “learned”, denoting
the learned model, f Lbase . The [. . . ] in equation (7) represents a
vector of feature values.

3.4.2 Machine learning models. We apply two standard machine
learning algorithms to learn functions, f L , viz.

(1) Random-forest classifier,
(2) Naive Bayes classifier,

We use scikit-learn [31], a widely used machine learning toolkit
in Python. For all models, we apply K-fold cross-validation on the
training dataset. We, then, apply the model with best validation
score on the test dataset to calculate the test scores, which are
reported in section 4.

For presentation to the experts for gathering feedback, we apply
the best of all machine learning models (based on test scores) to
predict scores for those vulnerabilities that were discovered by
Macke but were previously unreported.

3.5 Presentation and Feedback Gathering
3.5.1 Interactive reporting of vulnerabilities. After learning pre-

dictive models for CVSS3 base-score values we present the predic-
tions to security and software development experts in an interactive
medium to obtain feedback from them. The requirements for such
a presentation medium are

(1) Ability to interact with the call-graph, including zooming in
on functions and viewing the source-code.

(2) Ability to view CVSS3 base-scores and aggregate values, by
clicking on the function node.

(3) Ability for the user to change base-score values, using a
numerical text-box. The aggregate CVSS3 value must be
updated automatically.

(4) Tracking all the above interaction, including when a function
node is clicked, source-code is expanded and a base-score
value is updated.

(5) Ability for the user to send textual feedback, using a multi-
line text-box.

We created a web-application on a server running NodeJS, with a
ReactJS frontend. The resultant interface, satisfying all the require-
ments, for Autotrace program is shown in figure 2.

3.5.2 Feedback from experts. The goal of this step is to learn
from our target audience how effective a severity prediction tool

Figure 2: Severity assessment interface for Autotrace 0.31.1
with interactive call-graph

would be in improving the manual task of prioritizing vulnerabili-
ties. We provide a link to the online tool to selected experts listed
in section 4.4 and show the predicted CVSS3 base-score values and
the aggregate score, for previously reported and unreported vul-
nerabilities. However, the distinction between previously reported
and unreported vulnerabilities is invisible to the experts, so that
their feedback may be validated. For previously unreported vul-
nerabilities, if the experts disagree with the predicted values, we
ask for their reasons for disagreement, so that we can improve our
prediction framework. From the experts that choose to participate
in our survey, we collect the following information

(1) Which function node was expanded (by clicking on it, as
shown in figure 2).

(2) Function nodes for which any CVSS3 base-score value was
changed (if an expert disagreed with the predicted value),
along with the old and new values,

(3) Function for which the expert referred to the source-code,
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(4) Textual feedback, when the expert wanted to provide feed-
back or clarifications,

(5) (optional) expert’s full name and email if they agreed to be
contacted by us.

Above information is stored in a MySQL backend and processed
manually by us at the end. The qualitative analysis of received
feedback will constitute our first measure of effectiveness.

3.6 Feature Addition
Based on the feedback received from experts, we add more features
to extend the predictive power of our machine learning models.
The new features added and the intuition behind including them
are as follows

(1) Function size (s), a simple count of LLVM [21] instructions
in the function. The intuition behind this feature is that a
higher number of instructions might indicate that, instead
of splitting the functionality across various single-purpose
function, it exists in a singular function. Vulnerability in-
side such a function that is not interacting with, and hence
doesn’t depend for the sanitization of its inputs on, other
functions of the program should be fixed with a high priority.

(2) Approximate function complexity (fx), a count of LLVM basic-
blocks in the function. A basic-block [16] is defined as a
straight-line of instruction-sequence that contains no branches
inside it, other than the entry or exit points of the block. Na-
gappan et al. [28] claimed and showed with case studies
that the number of basic blocks and arcs in CFG, which
may be an approximation of McCabe’s complexity measure,
correlate well with the possibility of a module’s failure in
many projects. In our case, a higher function complexity (in
terms of basic-blocks) may indicate a higher likelihood that
a vulnerable instruction was left unhandled unintentionally.

(3) Pointer parameters (pt), the number of parameters that a
function accepts that are of pointer type. Pointers are im-
portant for a vulnerable function because we are dealing
with buffer-overflow vulnerabilities only. If more pointer
parameters are specified, then there is a higher likelihood
that access to at least one of them might be in an unsafe
manner.

After adding these features to the existing features, we learn the
new predictive functions, f L , for all CVSS3 base-score values, us-
ing the same machine learning algorithms as listed in section 3.4.
The accuracy of the final learned model, on previously reported
vulnerabilities, constitutes the second effectiveness measure of our
tool.

4 EVALUATION
Based on the methodology of our study, as described in the previous
section, we will now discuss the experiments carried out for evalu-
ating the effectiveness of our prediction framework. The raw-data
related to all stages of evaluation has been made public by us at [3].

Table 1: Programs analyzed and vulnerabilities in them

Program
and Version LOC

Connec-
ted
func-
tions

Vulner-
able
func-
tions
from
NVD,
(with
CVSS)
| |N | |

Vulne-
rable
func-
tions
CVSS
scored

manually,
| |M | |

Vulner-
able
func-
tions
found
by

Macke,
| |X | |

BlueZ 5.42 286,206 49 3 2 6
AutoTrace 0.31.1 18,581 23 3 0 3
GraphicsMagick 1.3 324,422 22 4 4 10
Icoutils 0.31.1 40,093 45 2 3 5
ImageMagick 6.0.4-8 476,747 51 1 3 8
Jasper 1.900.27 46,578 33 3 4 19
Jasper 2.0.10 46,622 33 2 3 6
Libarchive 3.2.1 204,993 62 1 4 15
Libass 0.13.3 18,745 46 1 3 29
Libmad 0.15.1 12,866 22 1 1 4
Libplist 1.12 6,075 69 1 5 27
Libsndfile 1.0.28 85,189 153 1 3 40
Libxml2 2.9.4 334,796 36 2 3 22
Lrzip 0.631 18,622 115 1 1 7
Openslp 2.0.0 55,545 27 1 3 17
Potrace 1.12 12,928 28 1 3 13
Rzip 2.1 2,651 34 1 3 19
Tcpdump 4.9.0 103,152 13 1 1 7
Tiff 4.7.0 82,725 125 3 2 6
Virglrenderer 0.5.0 57,213 70 2 0 21
Ytnef 1.9.2 4,818 70 6 1 12

Total 41 52 296

4.1 Vulnerability Reports and Affected
Programs

The 21 open-source programs analyzed in this study are listed in
table 1. The second column in table 1 lists the lines of source-code in
the programs. The analyzed programs range from, approximately,
2,000 to 470,000 lines of code, with an average of, approximately,
100,000 lines of code

The third column in table 1 lists the number of connected func-
tions in the analyzed programs. We define connected functions as
the functions that are (potentially) reachable, as determined by a
simple syntactic analysis, from an entry point in the program. Many
of the analyzed programs have several direct entry points (such
as main) or public APIs. In this study, for every program, we only
choose the connected component that contains a function which is
present in one of the collected vulnerability reports (from NVD).

The fourth column in table 1 lists the number of vulnerable
functions (functions containing at least one reported vulnerability)
reported in the respective program in NVD. These vulnerability
reports are obtained after applying all the filters described in sec-
tion 3.1. The number of CVSS3 scored vulnerable functions, as we
can see from table 1, is not large enough to effectively train any ma-
chine learning algorithm. Therefore, to augment this list obtained
from NVD, we manually score some more vulnerable functions,
listed in the fifth column of table 1, that are discovered by Macke.
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4.2 Analysis with Macke
After collecting the vulnerability reports and the respective affected
versions of the programs, the next step is to apply Macke on these
programs to find the vulnerabilities including ones listed in sec-
tion 4.1.

The sixth column in table 1 lists the number of vulnerable func-
tions discovered by Macke in approximately 30 minutes. We can see
that the number of unique vulnerable functions found by Macke,
296, is more than the reported vulnerable functions in NVD. After
carefully analyzing the results, we found that all vulnerabilities
reported in NVD were also found by Macke within the given time-
limit. The extra vulnerabilities and vulnerable functions may or
may not be true positives.

4.3 Feature Extraction and Machine Learning
After running Macke on the programs to be analyzed, the next
step is to extract features from the programs and their analyses
results, as described in section 3.3, and learn our prediction models
using them. The ground truth to be used for machine learning is
G = N ∪M , where N andM are as shown in table 1.

As described in section 3.4, we trained two machine learning
models using features listed in section 3.3. The dataset for learning,
G , is split into training (75%) and testing (25%) sets. The training set
is split for 4-fold cross-validation, i.e. 4 machine-learning models
are trained by holding out each fold one-by-one, and the best model
chosen. Because of the small training set, we chose only 4 folds
for cross-validation, instead of, say, 10 folds that is more common
in many papers. To remove the effect of random initial states, for
all iterations, we train 10 models generated with different seeds
and perform majority voting for predicting base-score values. We
calculate the accuracy measure for all base-scores values, which
is the ratio of correct predictions of the predictions made. The
results of training machine learning models are shown in table 2.
The accuracy metric listed is on the testing dataset and the best
accuracy scores for every base-score value is listed in bold-face text.

Table 2: Prediction results on test dataset – with original fea-
tures (section 3.3) only

Random Forest Naive Bayes
AV 0.59 0.27
AC 0.55 0.59
PR 0.91 0.95
UI 0.73 0.45
S 0.91 0.91
C 0.64 0.45
I 0.55 0.27
A 0.82 0.55

We can see from these results that, except for attack complexity
and privileges required, random-forest classifier performs the best
in terms of test accuracy scores. Even though some of the accuracy
scores, such as for attack vector, confidentiality impact and integrity
impact seem to be low (0.59, 0.64 and 0.55 respectively), we don’t

Table 3: Summary of feedback received by experts

Expert ID Programs
analyzed

Functions
expanded

Comments
left

1 1 1 1
2 1 4 1
3 1 1 1
4 1 1 1
5 1 2 2
6 1 8 4
7 3 6 3

Unique 5 20 13

consider them too bad because these base-score values may be in
one of 4, 3 and 3 classes respectively.

4.4 Feedback from Experts
The best models obtained from the learning phase are used to pre-
dict CVSS3 base-scores for the vulnerabilities in the set (X −G) (pre-
viously unreported vulnerabilities) and the final CVSS3 scores for
them calculated using the equations presented in [33]. For getting
feedback, we contacted (1) developer mailing-lists of the programs
analyzed, (2) students of “Security Engineering” lecture course, who
had sufficient background in secure software development princi-
ples and symbolic execution, and (3) two members of technical staff
at our organization, one of whom has a doctoral degree in a secu-
rity-related field. The call-graphs, respective CVSS3 base-scores,
and final scores are, then, shown to the experts using the interface
described in section 3.5.

In table 3, we have summarized the feedback received from the
experts that we contacted. The second column in table 3 shows the
number of programs that an expert analyzed. The third column
shows the number of unique functions in the programs for which an
expert clicked to either, expand to view the source code or, only view
the assigned CVSS3 base-scores. The last column in table 3 shows
the number of comments or feedback items left by the respective
expert during the entire exercise. The last row of this table lists
the number of unique analyzed programs, functions and feedback
items received by us. In listing 1, we have presented verbatim some
of these feedback items. We have omitted some comments from
this paper because they were either, identical to the feedback items
shown, or were unrelated to bug triage, e.g. “you must examine the
latest version of this program because some vulnerabilities were
fixed later.”

Listing 1: Some feedback from experts
Program : J a s p e r 2 . 0 . 1 0
Functions s e l e c t e d : j p c _de c_de codepk t
Comment :
Without p i n p o i n t i n g the v u l n e r a b l e i n s t r u c t i o n , the
f u n c t i o n i s very hard to ana l y z e manual ly . Looking
a t the s i z e o f t h i s f u n c t i o n ( 2 5 0 l i n e s ) , i t might be a
good i d e a to keep the s c o r e high , because i t ' s l i k e l y
to be reused somewhere . I a l s o t h i nk the s i g n a t u r e
o f the f u n c t i o n s u gg e s t s the incoming pa rame te r s a r e
very v a r i e d and , hence , might be prone to be ing u n s a n i t i z e d

Functions s e l e c t e d : j p c_dec_decodepk t , main , j p c_de c_ l ookahead
Comment :
The t o o l l o ok s g rea t , but i t would be r e a l l y u s e f u l i f
f o r each f u n c t i o n you would a l s o i n d i c a t e the number
o f the LOC where the b u f f e r ove r f l ow v u l n e r a b i l i t y
o c cu r s . Otherwise , f o r l a r g e f un c t i on s , i t i s d i f f i c u l t
t o p i npo i n t the v u l n e r a b i l i t y manual ly . Of course , i t i s
a l s o e a s i e r to ana l y z e the code o f commented f u n c t i o n s
in compar ison to f u n c t i o n s wi thout any comments .
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Program : Rz ip 2 . 1
Functions s e l e c t e d : r ead_buf , wr i t e_u16 ,

BZ2_bzBuffToBuffCompress , w r i t e _ bu f
Comment :
A l l OK .

Functions s e l e c t e d : r ead_u8
Comment :
A l l i s OK but f o r t h i s f i l e I 'm not su r e the r e s u l t o f

c o n f i d e n t i a l i t y

Functions s e l e c t e d : r ead_s t ream , wr i t e_ s t r eam , wr i t e_u32
Comment :
I t h i nk the f i l e i s used l o c a l l y .

Program : L i b a s s 0 . 1 3 . 3
Functions s e l e c t e d : a s s _ p r e _ b l u r 1 _ v e r t _ c
Comment :
To me t h i s f u n c t i o n does not seem to be e x p l o i t a b l e v i a the

network .

Program : ImageMagick 6 . 0 . 4 −8
Functions s e l e c t e d : ReadRLEImage
Comment :
Here i t l o ok s to me l i k e tho s e code w i l l be e x p l o i t a b l e v i a the

network as imagemagic i s o f t e n used to pa r s e network da t a

Synthesizing Feedback. As a qualitative measure of effectiveness,
we wanted to know if our framework successfully helped the ex-
perts assign severity to vulnerabilities.We could distill the following
main points from the feedback received from experts who used our
prediction framework

(1) Most experts found the tool to be useful.
(2) Triage process is significantly affected by the size of the

source-code being analyzed.
(3) In the absence of relevant comments, the perceived severity

of functions is affected by how “complex” it is.
(4) The perceived severity of a vulnerable function, somehow,

depends on what parameters are passed to it.
(5) Experts would prefer pinpointing of the vulnerable instruc-

tions, rather than only the affected function.
(6) At least one expert was suspicious of the confidentiality

impact score assigned to a function.

4.5 Machine Learning from Improved Features
Based on the feedback received from experts, we add more features,
expecting to increase the accuracy scores for all base-score values.
The added features, as listed in section 3.6, are – number of LLVM
instructions in the function, number of basic-blocks in the func-
tions and the number of function parameters that are of pointer
type. Using these three additional features, we, now, train the same
machine learning models as in section 4.3, i.e. 4-fold cross-validated
random-forest classifier and naive Bayes classifier. The accuracy
scores on the test set after adding these three features to the existing
features (total ten features) are shown in table 4. The results show
that, after including three more features the random-forest classi-
fier and naive Bayes classifier were, both, able to more accurately
predict most of the CVSS3 base-score values of the ground truth.
The best scores, as we can see from table 4, were all found with
random-forest classifier. Especially notable is the results that, with
new features based on the feedback received from security experts
and developers, privileges-required (pr) and scope change (sc) could
be predicted with 100% accuracy in the test dataset. User-interface
(ui) could also be predicted with an almost-perfect accuracy.

Table 4: Prediction results on test dataset – with original and
added features (section 3.6)

Random Forest Naive Bayes
AV 0.64 0.50
AC 0.82 0.55
PR 1.00 0.95
UI 0.95 0.95
S 1.00 0.95
C 0.91 0.91
I 0.73 0.50
A 0.91 0.82

4.6 Interpretation of the Results
Based on the various experiments conducted by us, we will now
take a big-picture view of the results obtained.

4.6.1 Effectiveness of Prediction. From tables 2 and 4, we can
see that, while some CVSS3 base-score values could be predicted by
our framework with high accuracy, there are others for which the
framework does not perform reasonably well. We want to stress in
this work that we don’t claim that all features of extracted functions
may correlate with all base-score values.

It is, perhaps, not surprising that the accuracy in predicting attack
vector and integrity impact was not as high as, say, availability
impact. This is because attack vector of a reported vulnerability
describes the means through which a system may be attacked by
an outsider. This base-score value may only be predicted based on
more detailed information about the deployment, and usage, if at
all. Similarly, integrity impact describes the effect on the overall
integrity of the data managed, manipulated or protected by the
system and it is difficult to predict it based only on features of
a function. However, intuitively, the high accuracy in predicting
base-score values of attack complexity or availability impact can
be explained, respectively, by taking into account complexity of
a function (section 3.6) [13] and the effect that a buffer-overflow
vulnerability would have, if exploited, i.e. program crash. This is
clearly reflected in our results.

Therefore, we can claim by looking at our results that our cho-
sen features can be used to assign correctly most of the base-score
values with a high accuracy for previously reported bugs. However,
for other base-score values, where the accuracy of prediction is not
as high, we should use other sources, such as function or require-
ments specifications, or even manual intervention for increasing
effectiveness assessment.

4.6.2 Effectiveness of Overall Framework. The comments, as
listed in listing 1, indicate that most experts who used our tool
were satisfied by the format of the tool and agreed with the pre-
dicted values for base-scores of previously unseen vulnerabilities.
Some of the feedback, as seen in listing 1, was not concerned with
the features of the analyzed programs and functions but instead
with the presentation of the results. Even though these comments
could not be used to enrich the list of features, we used them to
improve our interactive tool. For example, we extended it to in-
clude and highlight the precise lines of code where a potential
buffer-overflow may occur.
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Therefore, by qualitatively analyzing feedback received from
the experts, we can claim that such a tool for predicting CVSS3
severities can effectively aid vulnerability assessment.

4.6.3 Adaptability of Features. Our framework depends on ef-
fective discovery of vulnerabilities by a reliable tool. We chose
Macke for this, due to the following reasons. Firstly, Macke can
find more vulnerabilities [29] in isolated functions, than forward
symbolic execution. It also generates fewer false-positives than
static-analyzers, such as Splint. Secondly, Macke outputs “maxi-
mum length of infection” (li), that we discussed in section 3.3.
According to an ad-hoc analysis of features, this is one of the most
highly correlated features to most CVSS3 base-score values and,
therefore, is crucial in increasing the accuracy of predictions.

However, an important feature of our tool is that it does not
depend on the technique used to discover the vulnerable functions.
All the features used for machine learning, except li, can be just
as easily extracted using any static analyzer or even a manual code
review. A comparison of the effectiveness of severity assessment
based on different vulnerability scanners is left as a future work.

4.7 Threats to Validity
We will now discuss some threats to validity of our results, espe-
cially in the context of generalization to other programs or pro-
gramming languages.

4.7.1 Subjectivity of Assessment. The subjectivity of existing
CVSS3 scores directly affected our methodology. The assignment
of these base-scores may not be objective or reproducible when the
same vulnerabilities are presented to two different experts. This
would be detrimental because we have assumed that our ground
truth always holds. We counter this threat by including 21 different
programs in our analysis, which introduces variation in factors
influencing the manual process.

4.7.2 Subjectivity of Feedback. Similar to the ground truth for
machine learning, there is also subjectivity in feedback from the
experts who participated in the study. Since none of the partici-
pants analyzed every program, we needed a way to balance their
opinions based only on the programs that they analyzed. The mea-
sure that we took to counter this threat is to manually interpret
the experts’ feedback and use a distilled list of feedback items for
feature addition.

4.7.3 Randomization. The machine learning results (accuracy)
may not be reproducible with the same initial training and testing
dataset, due to the randomization in the implementation of random-
forest classifier and naive Bayes classifier in scikit-learn [31]. To
counter this threat, we performed 10 runs, with different seeds, of
every fold of 4-fold verification and obtain the results of prediction
from a majority voting algorithm for every base-score value.

4.7.4 Criticism of CVSS. Another threat to validity is the scoring
system of our choice, CVSS3. As discussed previously by Allodi and
Massacci [4] and Holm and Afridi [17], CVSS scores are not always
indicative of how bug fixing in real-world should be prioritized.
However, as authors of both these papers admit, there aren’t any
competing vulnerability ranking measures that take into account

as many factors for ranking severity of vulnerabilities as CVSS does
and, hence, we chose it for our experiments.

4.7.5 External Threats to Validity. The last threat to validity
is the external threat of variance in the nature of the analyzed
programs. We have analyzed programs for which we could find
reported vulnerabilities with CVSS3 scores in NVD. However, the
common characteristics of these programs were that they were all
open-source and maintained by members of a large and growing
community with a different set of skills and expertise that we didn’t
account for. We claim here that the results obtained by us generalize
only over the set of programs analyzed by us, but may not hold
for other industrial software, embedded systems or proprietary
real-world programs.

5 RELATEDWORK
5.1 Automatic Bug Assessment
By observing correctly that most past works in severity prediction
[9, 39, 40] have been concerned with text-mining from bug repos-
itories, Bettenburg et al. [6] decided to investigate features that
make a bug report good. They concluded in this paper that reports
containing steps to reproduce bugs and stack traces are considered
to be most useful. However, none of the related works analyzed by
us make use of the stack traces (that can be automatically generated
by executing the exploit) to predict severity. Lamkanfi et al. [20]
compared text-mining algorithms and concluded that a naive Bayes
classifier performs the best in terms of ROC measure when applied
on the textual content of bugs reported in Eclipse and GNOME
open-source projects. However, the vulnerabilities could be classi-
fied in one of two classes only, viz. severe or not severe. Research
by Menzies and Marcus [26], and Chaturvedi and Singh [9] ap-
plied similar text-mining approaches on NASA’s Project and Issue
Tracking System (PITS), with promising results, where the severity
scale ranges from 1 to 5, with 1 being most severe. Other severity
prediction frameworks, such as [35, 36, 39, 40], have also focussed
on the textual content of the bug reports. There have been only
a few, to our knowledge, works that do severity prediction using
source-code or any other intermediate representation (e.g. control-
flow-graph and call-graph) of the system-under-test. Palomba et al.
[30] presented a method for improving bug prediction in software
components using code smells. El Emam et al. [13] presented a
technique for early detection of components in the software that
may be faulty, based on metrics derived from the object-oriented
design. However, a discussion of the severity of predicted faults
is not included in [13]. Some past works by Nagappan et al. [28],
Nagappan and Ball [27], and El Emam et al. [13] have inspired the
choice of function and call-graph features that we have used in our
study to learn the severity of vulnerabilities in them.

5.2 CVSS Scale
Papers such as [18], by Houmb et al., use CVSS to predict the fre-
quency and impact of failures from a risk management perspective.
Dobrovoljc et al. [12] suggest an improvement over CVSS that ex-
plicitly includes the features of perceived attackers who may be
able to exploit a vulnerability. Similarly, Wang et al. [38], and Liu
and Zhang [22] also suggest new scales by pointing our certain
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deficiencies in CVSS that restrict its usage in their contexts. Allodi
and Massacci [4], and Holm and Afridi [17] present criticisms of
CVSS’s ability to quantify the severity of discovered vulnerabilities
by pointing out that vulnerabilities that are reported with sample
exploits can, generally, be a much better indicator of their severities.

5.3 Contribution
By analyzing the related works above our work tries to fill the gaps
in research in the following ways –

(1) Our work treats the system-under-test as a set of interacting
components and predicts the severity of vulnerabilities based
on heuristics of the affected functions and their interactions
with other functions.

(2) To the best of our knowledge, our framework is the first
to correlate call-graph features and compositional analysis
results to any severity measures of reported vulnerabilities,
CVSS or otherwise.

(3) Our work also comments on whether certain CVSS base-
scores are suitable to be predicted by only the syntactic
properties of a program.

6 CONCLUSION
In this paper, we described a framework for automatically predict-
ing the severity of vulnerable functions reported by a composi-
tional symbolic execution tool. Using a systematic procedure, we
collected data from NVD about vulnerabilities reported in the past
with CVSS3 severity scores for C programs. For the collected vul-
nerabilities, we compiled and analyzed the same programs with
Macke, a compositional analysis tool based on symbolic execution.
From the results of programs’ analyses, we extracted some features
for training machine models to predict CVSS3 base-score values.
The results from the best model were, then, presented to various
experts in the field of secure software development to obtain their
feedback on the tool and predicted base-score values. Based on the
feedback received, we updated the list of features to be extracted
from the programs and re-trained the machine learning models.
Our evaluation showed that the accuracy of predictions with the
updated list of features had an improvement for all CVSS3 base-
score values. Using this empirical result and qualitative feedback
from the community of experts, we have shown that our predictive
framework can effectively help developers assess the severity of
vulnerabilities reported by Macke.
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