
Behavior Modeling of Automation Components
using cross-domain Interdependencies

Benjamin Brandenbourger, Milan Vathoopan, and Alois Zoitl
fortiss GmbH

Guerickestr. 25, 80805 Munich, Germany
{brandenbourger, vathoopan, zoitl}@fortiss.org

Abstract—Within the multi-disciplinary engineering process
of a cyber-physical production system, the information about
the plant is increasing steadily. Different departments work on
separate domain-specific models and tools allowing a specialized
view of the same system. However, data exchange and linking the
heterogeneous information across domains is a critical issue. This
paper investigates behavior modeling of automation components
out of interdependencies coming from different disciplines such as
mechanics, electrics, and software engineering. By this, the inter-
linking of the domain-specific models, as an enabling step towards
early cross-domain validation and facilitated system evolution,
allows a common understanding of the correct functionality of the
system. The concept will be explained through the example of a
pneumatic stopper and evaluated in AutomationML, an emerging
standard in automation, to store and exchange artifacts between
domain-specific engineering tools.

I. INTRODUCTION

When it comes to Industrie 4.0 [1], manufacturing systems
are driven from mass production towards highly customized
goods with a lot size close to 1 [2]. Faster commissioning
and shorter down-times support the main goal of efficient
production for best rate of yield. Cyber-physical systems such
as intelligent components and machines present a new per-
spective for this enterprise environment by offering a modular-
ized encapsulation and flexible applications. Their increasing
capabilities enable the exposition of their smart behaviors as
services, allowing a service-oriented paradigm across all layers
of the enterprise manufacturing environment [3], [4]. But in
industry practice, domain-specific engineers use heterogeneous
and especially isolated tools with barely no interaction and
data exchange capabilities [5].

In this context, the goal of this paper is to create an
integrated mechatronic model of an automation component
encompassing different domain-specific models and their con-
sistent interdependencies with each other [6]. This common
model is composed of various heterogeneous artifacts created
by different disciplines such as mechanics, electronics, and
information technology [7]. The progression and transforma-
tion of the artifacts are an issue for maintaining existing
interdependencies along the engineering phases. The presented
approach uses the behavioral model as the center of the mecha-
tronic model while connecting the domain-specific artifacts
together in order to ensure a dedicated unit behavior which can
be provided to an overall system [8]. The behavioral model

describes the behavior of an individual component, combined
components, stations, and eventually the complete production
system in a particular physical state [8]. The presented work
concentrates on behavioral models of individual components
but can later be expanded at each object scale and design stage.
The idea is based on a model-based method presented in [9]
which encompasses seamless engineering with continuous data
management.

The remainder of this paper is structured as follows. Sec-
tion II gives an overview of available work in the field of
behavior modeling and its integration in the bigger context of
reconfigurable manufacturing systems. Background and defi-
nitions of used terms are described in Section III. Section IV
describes the approach for linking the behavioral model to
other domain-specific models while Section V deals with the
implementation of the approach in AutomationML (AML). In
Section VI the advantages of the approach are presented and
discussed. Finally, Section VII offers the paper conclusion.

The work presented in this paper has been supported by
the German Federal Ministry of Economic Affairs and En-
ergy (BMWi) as part of the research program ”Autonomik
Industrie 4.0” in the research project OPAK (Funding no.
01MA13012F).

II. RELATED WORK

Hummel introduces integrated behavior models in his work,
which combine structural, behavioral, and spatial aspects of a
mechatronic system into one common model [10]. He uses the
models, which are based on a thorough mathematical theory,
for automated analysis and early validation by simulation.
Contrary to our approach, Hummel focuses on centralized
composed automation systems and not on decentralized au-
tomation components. Furthermore, the structural view is the
central point of connection, whereas we approach the track of
having the component’s behavior as a hub.

Berardinelli et al. investigate the combination of Au-
tomationML and Performance Model Interchange Format
(PMIF) [11]. PMIF is a common representation devised in
the performance engineering domain for model-based system
performance analysis and simulation based on Queueing Net-
work Models. The goal is an early performance validation of
cyber-physical production systems by linking the two models.
The approach of linking the AML-model with the PMIF-model
is similar to the presented work. However, Berardinelli et al.978-1-5090-1314-2/16/$31.00 c© 2016 IEEE

provide no details on describing the behavior of automation
systems.

Another approach presented by Legat et al. is based on
interface behavior modeling of design artifacts from various
disciplines [12]. The approach supports automatic verification
of the functional conformance of the artifacts. The different
scopes such as context (mechanical engineering), platform
(electric/electronic engineering discipline) and software (soft-
ware engineering) are linked together to a system viewpoint
which includes the whole mechatronic system. However, the
behavior is modeled indirectly and implicitly by linking items
of different scopes together. A discipline-independent behav-
ioral model does not exist.

Shah et al. [13] pursue the approach of capturing dependen-
cies between different domains through the use of a common
view of the system in SysML. The necessary semantics
from each of the domains are included within SysML by
using profiles which do not modify the underlying SysML
metamodel. In this work, the behavioral model is not taken
into account explicitly but modeled implicitly in Modelica.
Nevertheless, the main idea of creating dependencies between
different domains through the use of a common view of the
system in a description language is similar to the presented
approach in this work.

In [14], the authors describe a manufacturing process in
AML adopting the Product-Process-Ressource (PPR) view. A
behavioral description of PLC software deployed on mecha-
tronic components by means of sequential function charts
(SFC) is also provided. The authors follow the same approach
on modeling resources which contain all process actions
executable by the resource with their control and behavior.
However, the exact interlinking between control code, behavior
and other models is not described in detail.

In summary, our presented approach differentiates from the
above mentioned works by using an explicit behavioral model
which forms the center of the integrated mechatronic model of
an automation component. Domain-specific models influence
the behavior model by linking internal objects from different
domains together. Especially the combination of so-called
skills, representing executable functions, with the behavioral
model is a novel approach.

III. DOMAIN-SPECIFIC MODELS

The different disciplines involved in the engineering of an
automation component use a heterogeneous tool landscape
which needs different views on the component realized in
different domain-specific models. These models are created
and worked with in separate engineering tools. In previous
work [9], we proposed a multi-level modeling approach based
on a metamodel. A metamodel is a ’model used to model
modeling itself’ [15]. It means, that this metamodel is a
model that specifies valid concepts which can exist within
the domain of industrial automation. The metamodel enables
the modeling of integrated mechatronic models of automation
components on different levels of details. For this, various
libraries containing domain-specific information (e.g., skills,

control code snippets, mechanical interfaces, ...) are embedded
in the metamodel. Manufacturer specific components inherit
from the mechatronic models and support a correct-by-design
technique.

This work focuses on four different models contained in the
integrated mechatronic model. More domain-specific models
could be used (e.g., EPLAN), but would not create added value
for understanding the presented approach. The four models
described in domain-specific languages (DSLs) represent:

3D-model and Kinematics: A 3D-model contains a graph-
ical representation of the automation component and is created
by the mechanical engineer. Additionally, kinematics give
information about moving space and trajectories.

Control Code: Control code controls the hardware of the
automation component with human-readable computer instruc-
tions and is created by the software and electrical engineer.
The control code is subdivided into sections such as program
organization units (POUs) from IEC-61131 which contain
commands for reading inputs and setting outputs.

Skills: Skills are a standardized encapsulated representation
of abilities offered by the automation component. These basic
automation functions are defined by the software engineer.
In more complex systems, basic skills can be orchestrated
to composed skills which are in the most cases application-
specific. The presented approach is based on functional engi-
neering that supports the use of descriptive functions instead of
abstract I/O-values. The exact way of how a basic skill works
is programmed in the corresponding POU in the control code
which interacts with the hardware over inputs and outputs.

Behavior: The description of how a component should
behave is realized in a behavior model. A behavior model
reflects the expected correct behavior for example in form
of a state machine or a sequential function chart. It can be
created and extended by any discipline as the correct behavior
is discipline-independent.

IV. MODELING INTERDEPENDENCIES BETWEEN
DOMAIN-SPECIFIC MODELS

The four models introduced in Section III describe domain-
specific views on the modeled automation component. The
integrated mechatronic model aims at including the different
domain-specific models and especially creating inter model
relationships. These relationships are used to model cross-
domain dependencies of the same object stored in different
domain-specific models. We are not using model transforma-
tion to map the different domain-specific models and lan-
guages to other models.

All models of an automation system have in common, that
the hardware and the correct behavior of the component form
the basis [10]. The correctness of the domain-specific artifacts
is verified and validated through debugging and testing of
the code, using simulation, and applying correct-by-design
techniques [16]. Therefore, the behavior model is used as
the accumulated information storage while different domain-
specific models directly influence the behavior model (see
Figure 1).

The behavior model can be modeled in different ways,
e.g., finite state machine (FSM), pulse diagram, sequence flow
chart (SFC) etc. Depending on the requirements (e.g., timing
constraints, parallelism) one model is more suitable than the
other. In our approach and for better understanding, we assume
the behavior model to be a FSM, even if timing constraint are
more effort to be modeled.

The synthesis process of the behavior model consists of
three steps:

1) Identifying the necessary, component-specific states of
the behavior model.

2) Placing the transitions between the states describing the
correct behavior.

3) Linking the information of the domain-specific models
to the transitions and their triggers.

The last step shows clearly how the intra model relationships
(here state transitions) on the behavior model are directly
dependent on the given domain-specific models or influence
them.

The following analyzes the behavior relevant content of the
domain-specific models and the links to and from the behavior
model (arrows in Figure 1):

A. Behavior - Kinematics

The invocation of the corresponding kinematics stored in
the 3D-model can be derived out of the behavior model. A
kinematic is performed when a transition is taken or a new
state is reached in the behavior model (e.g.; when a pneumatic
stopper unit changes from the state retracted to extended, the
corresponding kinematic is called in the 3D-model).

B. Skills - Behavior

Calling a skill corresponds to a transition from one state to
another in the behavior model. If the skill moveOut offered by
a pneumatic stopper unit is called, the corresponding transition
from the state retracted to extended is performed. If the FSM
of the behavior model resides in a state which doesn’t have any
transition supporting the called skill, the skill is not performed.
The converse (’a transition in the behavior model calls a
corresponding skill’) is out of scope of this paper.

C. Behavior - Control Code

A transition in the FSM of the behavior model can call a
POU located in the control code. With this relationship the link
between the components behavior and its hardware, controlled
by inputs and outputs through POUs stored in the control code,
is realized. Furthermore, as skills invoke transitions in the
behavior model and a transition can invoke a POU-call, by
transitivity a skill can call a POU which corresponds exactly
to the main idea of how skills are implemented.

D. Control Code - Behavior

Input-values of the hardware influence the beginning or
completion of transitions in the FSM of the behavior model.
Therefore, inputs are modeled as OnStateEntry or OnStateExit
conditions in the FSM (e.g., limit sensor needs to toggle before

Skill A

3D-Model +
Kinematics

Skills

Skill B

Behavior

State A State B

Skill B

Skill A

Control code

Fig. 1. Integrated, mechatronic model and interdependencies between
behavior, kinematics, skills, and control code

the stopper unit has reached a defined state; a filling level
sensor needs to switch before another state can be reached).

V. EVALUATION

In [9] a metamodel supporting the different domain-specific
models is presented. However, this metamodel needs to be
extended with a class of links for being able to create the
interdependencies between the domain-specific models. The
metamodel has been implemented in AutomationML which
supports natively the linking of objects. Herefore, so-called
VariableInterfaces and internal/external links are used for
modeling relationships within models (intra-model dependen-
cies) and between different models (inter-model dependen-
cies). They inherit an attribute called refURI describing a
unified resource identifier (URI) and are of type xs:anyURI.
The URI contains a fragment right after the delimiter ’#’
according to [RFC3986, ch.3]. This fragment addresses a
variable within a file containing a domain-specific model.
Similar to [8], this approach allows associating variables from
3D-models, control program, skills, and behavior models to
each other by using AutomationML.

A pneumatic stopper unit is used as a simple application
example. The stopper unit has two logical positions (retracted
and extracted) which are detected by two limit sensors and
offers the skills moveOut and moveIn. Furthermore, the 3D-
model modeled in COLLADA consists of a static part and
a movable piston and stores the kinematics for extracting
and retracting the piston. The control code is structured in
two POUs (POU moveOut and POU moveIn) and stored in a
PLCopen XML file. Each POU contains the actual information

about setting the correct outputs for switching the valve which
controls the piston.

Applying the presented approach to this application example
results in a behavior model described in PLCopen XML
with the two states retracted and extracted. The transitions
correspond to the skills moveOut and moveIn and the onEntry-
conditions of the states are linked to the corresponding input
values of the limit sensors.

VI. RESULTING OPTIONS

Besides efficient and time-saving integration of behavior
models into integrated mechatronic models, more advantages
can be deducted out of modeling interdependencies:

• Scalability: Multiple components can be combined into
a single system by composition. The presented approach
is also able to support more complex systems.

• Correctness by construction: Extending an integrated
mechatronic model with more information (e.g. from a
plant engineer or a manufacturer) will keep the basic
behavior model unchanged and therefore correct.

• Avoidance of malfunction: Only skills which are mod-
eled as transitions in the behavior model can be called in
a specific state. The hardware can therefore be protected
from faulty usage or programming by the plant engineer.

• Automatic code generation: Control code can automat-
ically be synthesized out of the behavior model as this
model contains all control code relevant information (e.g.,
inputs/outputs, timing, sequences, ...).

• Simulation, virtual commissioning: The integrated
mechatronic model can be used as a virtual automation
component which reacts on external factors such as
digital inputs by performing for example a kinematic
depicted in a visualization.

• Error detection: Inconsistent input-values or state
changes which are not modeled in the behavior model
point towards an occurring error.

VII. CONCLUSION

The understanding of the correct operation mode of an
automation component is domain-independent. A behavioral
model of this automation component can therefore be used
from an early stage in engineering to model the correct
operation mode. By means of a simple but intuitive application
example, it has been shown how interdependencies between
the different disciplines and the behavioral model, and the
way of affecting the behavior has been modeled. Different
options result out of this modeling such as better support
for parallel engineering, cross-domain error-detection, and a
common understanding of the correct operation mode.

Since the paper presents currently ongoing work, for a first
step, some aspects are beyond the scope of this article, e.g.
determination of the behavioral states, skills, and the elec-
trical/electronic, inverse kinematic by linking the kinematic
model to the behavior model as well as mechanical aspects
have been considered in an abstract way. Despite the improve-
ments for behavioral modeling achieved with the presented

methodology, there is still a lot of work remaining to further
improve behavior modeling. The future work will investigate
the scalability of the approach by supporting inheritance of
behavioral models through different abstraction layers in order
to model more complex automation components and even
complete automation systems. The usage of behavioral models
needs to be discussed with industry partners in further detail.
Especially the comparison of the presented expected behavior
model with the input values from the hardware and deduction
of error-states is a passionate topic. Furthermore, the creation
and processing of sufficiently formalized and standardized
behavioral models in order to allow automated analysis is
another example of further work that the authors are aiming
to elaborate.

REFERENCES

[1] VDI, “Statusreport Referenzarchitekturmodell Industrie 4.0 (RAMI4.0),”
http://www.vdi.de/industrie40, 2014.

[2] U. Lindemann and G. Baumberger, Individualisierte Produkte. Springer,
2006.

[3] L. De Souza, P. Spiess, D. Guinard, M. Khler, S. Karnouskos, and
D. Savio, “Socrades: A web service based shop floor integration in-
frastructure,” The internet of things, pp. 50–67, 2008.

[4] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting
with the SOA-based internet of things: Discovery, query, selection, and
on-demand provisioning of web services,” IEEE Transactions on Service
Computing, vol. 3, pp. 223–235, 2010.

[5] A. Fay, S. Biffl, D. Winkler, R. Drath, and M. Barth, “A method to
evaluate the openness of automation tools for increased interoperability,”
Industrial Electornics Society (IECON), pp. 6844–6849, 2013.

[6] K. Thramboulidis, “Challenges in the development of mechatronic
systems: The mechatronic component,” IEEE Int. Conf. on Emerging
Technolgies and Factory Automation (ETFA), pp. 624–631, 2008.

[7] O. Kovalenko, D. Winkler, M. Kalinowski, E. Serral, and S. Biffl,
“Engineering process improvement in heterogeneous multi-disciplinary
environments with defect causal analysis,” Proceedings of the 21st
EuroSPI conference, pp. 73–85, 2014.

[8] S. Suess, S. Magnus, M. Thron, Z. H., U. Odefey, A. Strahilov,
A. Klodwaski, and T. Baer, “Test methodology for virtual commissioning
based on behaviour simulation of production systems,” 2016, pp. 1–8.

[9] B. Brandenbourger, M. Vathoopan, and A. Zoitl, “Engineering of Au-
tomation Systems using a Metamodel implemented in AutomationML,”
in International Conference on Industrial Informatics (INDIN). IEEE,
2016.

[10] B. Hummel, “Integrated Behavior Modeling of Space-Intensive Mecha-
tronic Systems,” Institut für Informatik der Technischen Universität
München, 2010.

[11] L. Berardinelli, E. Maetzler, T. Mayerhofer, and M. Wimmer, “Inte-
grating Performance Modeling in Industrial Automation through Au-
tomationML and PMIF,” in International Conference on Industrial
Informatics (INDIN). IEEE, 2016.

[12] C. Legat, J. Mund, A. Campetelli, G. Hackenberg, J. Folmer, D. Schuetz,
M. Broy, and B. Vogel-Heuser, “Interface Behavior Modeling for
Automatic Verification of Industrial Automation Systems’ Functional
Conformance,” at - Automatisierungstechnik, pp. 815–825, 2015.

[13] A. Shah, A. Kerzhner, D. Schaefer, and C. J. Paredis, “Multi-View
Modeling to Support Embedded Systems Engineering in SysML,”
Hutchison, Kanade et al. (Ed.) Graph Transformations and Model-
Driven Engineering, vol. 5765, pp. 580–601, 2010.

[14] A. Lueder, L. Hundt, and A. Keibel, “Description of manufacturing
processing using AutomationML,” Proc. of 17th IEEE Int. Conf. on
Emerging Technolgies and Factory Automation (ETFA), pp. 1–8, 2012.

[15] O. M. O. F. (MOF), “Core Specification v 2.0,”
http://www.omg.org/docs/formal/06-01-01.pdf, 2006.

[16] V. Vyatkin, H.-M. Hanisch, C. Pang, and C.-H. Yang, “Closed-Loop
Modeling in Future Automation System Engineering and Validation,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 1, pp. 815–
825, 2009.

