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Abstract

Experimental studies of the nature of the neutron beta decay are a powerful tool to test the
current Standard Model of particle physics. Correlations between particles involved in the
decay are used to characterize the weak interaction and to search for so far undiscovered
couplings between nuclei and leptons.
In this work, a comprehensive study of electron detection with plastic scintillators is pre-
sented, which aims to address all important contributions towards the determination of the
electron asymmetry and a clean description of the measured electron spectrum with the in-
struments P III and PERC. Important steps are a refined description of calibration
sources, a supplementary method for detector calibration using time of flight, a method to
convolute the spread of electron sources with a spatially dependent detector function and
an almost complete trigger function which is used to determine an important systematic
correction of the electron asymmetry measurement. The new measurement improves the
relative precision of the ratio between axial-vector and vector coupling to 4.4 ⋅ 10−4, four
times more precise than the current world average.
In the second part, the finalized data analysis of a new measurement of the proton asym-
metry with P III is provided. The proton asymmetry is sensitive to hypothetical right-
handed currents and scalar and tensor couplings. Analyses of systematic effects provide the
basis for a ∼ 10−3 measurement with the upcoming instrument PERC. A model for a for-
merly neglected influence of an energy dependent trigger efficiency in the proton detection
is deduced. The only published measurement, taken with P II, will be improved.

Zusammenfassung

Ein wichtiger Bestandteil verschiedener Tests zur Überprüfung des Standardmodells der Teil-
chenphysik sind experimentelle Untersuchungen des Neutronenbetazerfalls. Verschiedene
Korrelationskoeffizienten die diesen Zerfall beschreiben, ermöglichen eine Charakterisierung
der schwachen Wechselwirkung und darüber hinaus die Suche nach bisher unentdeckten
Kopplungen zwischen Kernen und Leptonen.
In dieser Arbeit wird eingehend die Elektronendetektion mit Plastikszintillatoren unter-
sucht, wobei versucht wird, auf alle wichtigen Bestandteile zur Bestimmung der Elektro-
nenasymmetrie mit dem Instrument P III einzugehen. Dies beinhaltet eine umfassende
Beschreibung des gemessenen Betaspektrums.
Die wichtigsten Schritte hierfür sind eine verbesserte Beschreibung von Kalibrationsquellen,
die Beschreibung einer neuen Methode zur Detektoreichung mittels Flugzeitmessung, eine
Methode zur Faltung von räumlichen Elektronenverteilungen mit ortsabhängigen Detektor-
funktionen und letztlich eine deutlich verfeinerte Beschreibung der Detektortriggerfunkti-
on, welche verwendet wird, um eine wichtige systematische Korrektur für die Messung der
Elektronenasymmetrie zu bestimmen. Diese neue Messung ermöglicht eine verbesserte Be-
stimmung des Verhältnisses zwischen Axialvektor- und Vektorkopplung mit einer relativen
Präzision von 4.4 ⋅ 10−4, was die Präzision des aktuellen Weltmittelwerts um einen Faktor
vier verbessert.
Der zweite Teil schließt die Datenanalyse einer neuen Messung der Protonenasymmetrie mit
P III ab. Die Protonenasymmetrie ist sensitiv auf hypothetische rechtshändige Ströme
und Skalar- und Tensorkopplungen. Die systematischen Analysen dieser Arbeit schaffen die
Grundlage für eine ∼ 10−3-Messung mit dem neuen Instrument PERC. Unter anderem wird
eine Korrektur für die bisher vernachlässigte Abhängigkeit der Detektionseffizienz von der
Protonenenergie abgeleitet. Die neue Messung wird das bisher einzige Resultat, welches mit
P II erreicht wurde, verbessern.
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1 Neutron Beta Decay

Beta decay has been discovered more than 100 years ago and its nature been explained
by a beforehand unexpected uncharged particle, the neutrino. Even 80 years after the first
theoretical description by Wolfgang Pauli and Enrico Fermi [Fer34], beta decay is subject to
investigation, even though facilities like the LHC provide access to more exotic new particles
than electron and proton emerging from neutron decay. But instead of directly searching for
new particles, unknown processes may also be discovered by precisely measuring assumedly
known quantities.

𝑛

𝑝

𝑒−

𝜈𝑒

(1.1)

In the Standard Model of particle physics, beta decay (1.1) as an example for the weak
interaction is regarded as a process of vector and axial-vector coupling [FG58; SM58]. That
means, the interaction between mother nucleus and decay products is mediated by a massive
charged particle. This point of view is based on experimental observations. Despite having
small influence, additional components of scalar and tensor coupling might still be present,
i.e. by a not yet discovered particle or coupling. A general phenomenological description of
beta decay is provided by the differential decay width [JTW57]:

d Γ =
𝐺F

2 |𝑉𝑢𝑑|
2

(2𝜋)5
𝐸𝜈𝐸􏽮𝐸2 − 𝑚2

𝑒 F (𝐸) |𝑀fi|
2 dΩ𝑒 dΩ𝜈

× 􏿰1 + 𝑎
𝑝⃗𝑒 ⋅ 𝑝⃗𝜈
𝐸𝑒𝐸𝜈

+ 𝑏
𝑚𝑒
𝐸𝑒

+ 􏾉𝜎𝑛􏽼 ⋅ 􏿶𝐴
𝑝⃗𝑒
𝐸𝑒
+ 𝐵

𝑝⃗𝜈
𝐸𝜈

+ 𝐷
𝑝⃗𝑒 × 𝑝⃗𝜈
𝐸𝑒𝐸𝜈

􏿹􏿳 .
(1.2)

It lists all possible quantities accessible by experiments. The instrument covered in this
work is the spectrometer P III which investigates the neutron decay in particular. It
provides access to the correlation parameters 𝐴, 𝐵, 𝐶 and scalar and tensor interactions
which are condensed in the Fierz term parameter 𝑏 [Fie37]. 𝐶 does not appear here, but will
attain attention later on.

Experiments of the P-series are most known for the measurement of the so-called
electron asymmetry parameter 𝐴. It is entirely determined by the relation between electron
momentum and neutron spin 𝜎𝑛. The quantity which is actually measured is the experi-
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1 Neutron Beta Decay

mental electron asymmetry:

𝐴exp =
∫1
0
d(cos𝜃)[(1 + 𝑏𝑚𝑒

𝐸𝑒
+ 𝛽𝑒𝐴𝑃 cos𝜃) − (1 + 𝑏

𝑚𝑒
𝐸𝑒
− 𝛽𝑒𝐴𝑃 cos𝜃)]

∫1
0
d(cos𝜃)[(1 + 𝑏𝑚𝑒

𝐸𝑒
+ 𝛽𝑒𝐴𝑃 cos𝜃) + (1 + 𝑏

𝑚𝑒
𝐸𝑒
− 𝛽𝑒𝐴𝑃 cos𝜃)]

(1.3)

=
𝑁↑(𝐸𝑒) − 𝑁↓(𝐸𝑒)
𝑁↑(𝐸𝑒) + 𝑁↓(𝐸𝑒)

=
1
2
𝛽𝑒𝐴𝑃
1 + 𝑏𝑚𝑒

𝐸𝑒

. (1.4)

In this formulation 𝑁↑(𝐸𝑒) denotes the number of electrons of an energy 𝐸𝑒 emitted in
neutron spin direction and is compared to the number of electrons emitted against neutron
spin direction 𝑁↓(𝐸𝑒). 𝜃 is the angle of the electron momentum to the neutron polarization.
𝑃 is called the neutron polarization and expresses the ratio of neutrons with spin oriented
in one or the other direction. Many details on the measurement of 𝐴 with P III are
covered in chapter 2. The current most precise value was determined with P II by
[Mun+13] to

𝐴Mund et al. = −0.11972(+53−65). (1.5)

A recent result by the UCNA collaboration where ultra cold neutrons are used is [Bro+18]

𝐴Brown et al. = −0.12015(72). (1.6)

The new result with P III improves the relative precision of this quantity to 17.4 ⋅ 10−4.
An experiment which detects electrons to determine 𝐴 is entirely conceivable. A setup to

directly measure the relation between neutrino momentum and neutron spin – the neutrino
asymmetry parameter 𝐵 – is more difficult to imagine. The direct detection of neutrinos and
assignment to a decay within the experiment is simply not possible for the required number
of events. Instead of pursuing neutrino counting, the proton as last participant in the decay
comes at help. By detecting proton and electron in coincidence, energy and momentum
conservation allows to infer on the movement of the related neutrino. 𝐵 is currently the
most precise relative measurement, performed with P II as well [Sch+07]:

𝐵Schumann et al. = 0.9802(50). (1.7)

A precise value for the proton asymmetry parameter 𝐶 has been determined in the same
measurement [Sch+08], identically by considering coincident events. 𝐶 is special in a sense
that it does not appear in equation (1.2) and therefore has no unique definition. Commonly
the average asymmetry (1.11) over the entire proton energy range is provided:

𝐶Schumann et al. = −0.2377(26). (1.8)

The determination of 𝐶 with P III is described in chapter 3. The data may also be
used to extract a new value for the neutrino asymmetry 𝐵. This subject will not be covered
in this work though.

1.1 Axialvector and Vector Coupling

In the following the relation of fundamental interactions to these parameters is discussed
and why properties of decay products would depend on the neutron spin at all.

The key is the coupling of the so-called 𝑊-boson only to left-handed particles and right-
handed antiparticles. The 𝑊-boson enables the beta decay, since it is the only particle

10



1.1 Axialvector and Vector Coupling

in the Standard Model which allows to change quark flavors and therefore makes the
transformation of neutrons into protons possible. It refines the decay (1.1) to

𝑢
𝑑
𝑑

𝑢
𝑑
𝑢

𝜈𝑒

𝑒−

𝑊−

𝑛

𝑝

. (1.9)

This follows from the most general Hamiltonian [LY56]

𝐻int =
𝐺𝐹𝑉𝑢𝑑
√2

􏿴[𝑢𝑝𝛾𝜇𝑢𝑛][𝑢𝑒𝛾𝜇(𝐶𝑉 + 𝐶𝑉𝛾5)𝑢𝜈] + [𝑢𝑝𝛾𝜇𝛾5𝑢𝑛][𝑢𝑒𝛾𝜇𝛾5(𝐶𝐴 + 𝐶𝐴𝛾5)𝑢𝜈]

+[𝑢𝑝𝑢𝑛][𝑢𝑒(𝐶𝑆 + 𝐶𝑆𝛾5)𝑢𝜈] +
1
2
[𝑢𝑝𝜎𝜇𝜈𝑢𝑛][𝑢𝑒𝜎𝜇𝜈(𝐶𝑇 + 𝐶𝑇𝛾5)𝑢𝜈]􏿹 + ℎ.𝑐.,

(1.10)

where in the Standard Model 𝐶𝑆 = 𝐶𝑆 = 𝐶𝑇 = 𝐶𝑇 = 0, 𝐶𝑉 = −𝐶𝑉 = 1 and 𝐶𝐴 = −𝐶𝐴 = −𝜆. For
purely leptonic decays the ratio between axial-vector and vector coupling 𝜆 = −1. For the
conversion from neutron to proton, QCD renormalization leads to an effective axial-vector
coupling different from unity, however.

In the Standard Model, the correlation coefficients 𝐴, 𝐵 and 𝐶 may be expressed by 𝜆
[Abe00] using

𝐴 = −2
𝜆(1 + 𝜆)
1 + 3𝜆2

, 𝐵 = −2
𝜆(1 − 𝜆)
1 + 3𝜆2

, 𝐶 = −𝑥𝐶(𝐴 + 𝐵) = 𝑥𝐶
4𝜆

1 + 3𝜆2
, (1.11)

where 𝜆 is considered to be purely real and radiative and recoil corrections are neglected.
𝑥𝐶 is a kinematic factor which follows from energy and momentum conservation and will
be explained in more detail in chapter 3. These expressions allow a direct measurement
of the ratio between axial-vector and vector coupling. The current most precise value is
deduced in [Mun+13]:

𝜆Mund et al. = −1.2761(+14−17) (1.12)

In practice, all measurements of the angular correlation coefficients are measurements of 𝜆.
The electron asymmetry measurement with P III improves this precision by a factor
of 2.5.

Calculations using Lattice QCD which model the complex processes which lead to the
effective ratio of coupling constants are constantly approaching experimental uncertainties.
A recent publication [Cha+18] obtains

𝜆LQCD = −1.2711(103)stat(70)sys, (1.13)

which hints to the possibility of actually comparing experimental and theoretical results not
too far in the future.

As previously noted, beta decay is not restricted to vector and axial-vector coupling per
se. Next to the decay of 6He, neutron decay is a very suitable tool for searches of scalar and
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1 Neutron Beta Decay

c

c

Figure 1.1: Measurements of 𝜆 are most precise using the electron asymmetry. With that
parameter fixed, the Fierz term 𝑏 from the electron spectrum and changes in
the proton asymmetry parameter 𝐶 may disentangle scalar and tensor couplings
exclusively from neutron decay measurements.

tensor couplings 𝑔𝑆 and 𝑔𝑇 [GN16]. Interactions of this kind would appear as an additional
term 𝑏𝑚𝑒

𝐸𝑒
in the phase space factor (1.2), which is zero within the Standard Model.

The effective coupling 𝑏 = 4
1+3𝜆2

(𝑔𝑆+3𝜆𝑔𝑇) enters differently in all measurable spectra. For

example the neutrino asymmetry is only sensitive to a correction 1 − (1+𝜆)(1−3𝜆)
2𝜆(1−𝜆) 𝑐𝑆𝑇

𝑚𝑒
𝐸𝑒
, where

𝑐𝑆𝑇 = 4
1+3𝜆2

(𝜆𝑔𝑆 − 𝑔𝑇) [IPT13] is introduced as an additional observable for convenience.
Combined analyses of different experiments which measure 𝑏 and 𝑐𝑆𝑇 allow the decorrelation
of scalar and tensor couplings. One set of such measurements is the determination of
the electron asymmetry combined with a new measurement of the proton asymmetry with
P III. Figure 1.1 shows the sensitivity to both couplings. Although these measurements
are mostly independent, a few correlated systematic effects remain and must be taken
into account. It is the task of the experimentalists to evaluate these effects to enable the
deduction of combined limits to scalar and tensor couplings.

1.2 Perkeo III

The instrument P III [Mär+09; Mär06] is the successor of P II [Abe+97], which
again is the successor of P [Bop+88]. All of these instruments are designed to allow
4𝜋-detection-coverage for charged decay particles from a cold neutron beam. Cold refers
to the low temperature of neutrons, which have a wavelength of ≈ 5Å or a velocity of
≈ 800m/s. This corresponds to 40K or a mean energy of 3meV/c2. The key idea of
the setup is to let the neutrons decay in the same homogeneous magnetic field which also
defines their spin direction. This way, electrons and protons from the neutron decay may
either be emitted and transported into the half-sphere against neutron spin direction, or
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1.2 P III

D
e
te
c
to
r
1

D
e
te
c
to
r
2

e-

p+
n

σn
⟹

θp

θe

Figure 1.2: A sketch of the P principle depicts two detectors which are connected by
a magnetic field. In the center, the magnetic field density has its maximum
and defines the neutron spin direction. A zoom to a neutron decay shows
the definition of the polar angle between proton or electron momentum and the
neutron spin.
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Figure 1.3: A sketch of the experiment P III shows the substantial components required
for the measurement of the proton asymmetry parameter 𝐶. Retardation elec-
trodes for proton blocking and proton-to-electron conversion devices, referred to
as Field Degraders, are not required for a measurement of the electron asym-
metry parameter 𝐴 and were not present in the measurement of 2009. A more
detailed view onto one of the detector sections can be found in Figure 3.1b.

the opposite, depending on their direction of emission. The sign of 𝜎𝑛 ⋅ 𝑝⃗𝑒 and 𝜎𝑛 ⋅ 𝑝⃗𝑝 from
the decay width (1.2) with 𝑝⃗𝑝 = −(𝑝⃗𝑒 + 𝑝⃗𝜈) can finally be measured by counting particles with
detectors placed inside the magnetic field which is connected to the decay volume. Figure
1.2 illustrates the basic idea.

For P II the neutron beam is traveling perpendicular to the magnetic field lines. This
allows a simple magnetic field setup with direct sight of the detectors onto the neutron beam.
In P III on the other hand, neutrons are traveling in longitudinal field direction.
This setup has the advantage of a larger decay volume at similar detector size. While
for P II the detector size is linearly increasing with the decay volume, Figure 1.3
illustrates that in P III only the beam divergence is a limiting factor.

For a continuous neutron beam of 2 ⋅ 1010cm−2s−1 capture flux density, such as the one
provided by PF1B at the Institut Laue-Langevin (ILL) [Abe+06] in Grenoble, a decay rate
of 5 ⋅ 104s−1 [Mär+09] can be reached. In the same mode, with P II only 400 s−1 may
be observed [Mun06]. The advantage of a much higher decay rate comes at the price of
a more complicated field design. In order to not let neutrons pass the particle detectors,
the magnetic field must separate neutron beam and charged particles. The influence of that
feature on drifts of charged particles is treated in section 3.2.2.
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1 Neutron Beta Decay

Figure 1.4: P III set up at cold neutron beam PF1B at the ILL in Grenoble for the
measurement of the proton asymmetry parameter 𝐶. The detector vessel in the
front pointing towards the city center of Grenoble hides the central part of the
magnet system where the neutrons decay. The rear part is referred to as the
Lyon detector vessel and is located in the downstream direction of the neutron
beam. The experimental zone is not accessible when the neutron beam shutter
is opened. Blue and red hoses are feed and return lines for the cooling water,
which keeps the conventional magnets below 60 °C despite the 300 kW of energy
consumption.
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Figure 1.5: Detector counts depending on the neutron flight time. By using a chopper the
neutron beam can be chopped into pulses. These pulses define a signal time win-
dow where neutron decay takes place and a background time window where the
background spectra can be measured. This allows an immediate subtraction of
background and yields clean signal spectra even for quickly varying background
levels.

The high instantaneous decay rate of P III allows the use of a pulsed beam. In-
stead of having a continuous beam of neutrons, only pulses are permitted to enter the
decay volume. Figure 1.5 shows how this enables a clean separation of signal events from
background events.

Previously background was measured by stopping the beam before the decay volume
by using a shutter. This changes the nature of the background spectrum since it misses
background contributions from the beam stop and introduces the shutter as additional source
of background signals on the other hand. The background contribution may therefore only
be determined with a relatively large uncertainty, see Table 1.1 for reference. For a chopped
measurement, the timing may be chosen such that environmental properties remain the
same for signal and background measurement: The chopper is closed and no neutrons hit
the beam stop.

Two beam times were conducted using P III to measure the electron asymmetry
𝐴exp. Experiences from the first run which was performed with a continuous beam, lead to
a second run using a pulsed beam and resulted in the so far largest concise data set for
the determination of the electron asymmetry parameter [Mes11; Sau18]. In this work this
will be referred to as P III 2009 and significant parts of the analysis are treated in
chapter 2. It focuses on the steps which reduce the uncertainty due to the electron detector
description. Contributions due to this work are marked in bold in Table 1.1. An impression
of the completed experimental setup for the third run, where the proton asymmetry 𝐶 was
measured, is captured in Figure 1.4.

1.2.1 Beamline

Before neutrons enter P III, the neutron beam has to be prepared. First of all, neutrons
have to be released. In the case of the P measurements, this is done inside the
research reactor of the ILL. The use of heavy water only moderates neutrons and allows
thermalization without complete neutron absorption, which occurs in light water reactors.
The released power of 58.3MW in normal operation [Ins17] is not further used and dissipates
into the neighbouring river Drac by a cooling system. Neutrons are moderated to cold
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1 Neutron Beta Decay

Type of Uncertainty Relative Uncertainty (10−3)
P II P III

Neutron Polarization 1.4 0.64Spin Flip Efficiency
Magnetic Mirror Effect 0.2 0.45
Background 1.0 0.11
Edge Effect 0.5
Detector Uniformity ⎫⎪⎪⎪⎬

⎪⎪⎪⎭
2.5

0.21
Detector Drift 0.37
Detector Nonlinearity 0.4
Calibration Source Description 0.1
Electron Backscattering (detectors) 0.04 0.21
Electron Backscattering (baffles) +0.6, −0.0
Dead Time 0.1 0.035
Radiative Correction 0.5 0.1
Total Systematic Uncertainty +3.6, −2.7 1.02
Statistical Uncertainty 3.8 1.4
Total +5.4, −4.4 1.73

Table 1.1: A comparison of uncertainties of the electron asymmetry measurements shows
the main improvements going from P II to P III. In this work and
[Sau18] the major uncertainties of the detector response could be reduced by a
factor of four. Improvements of the background handling are mainly due to using
a chopped neutron beam with P III.

neutrons by letting them pass through a vessel of liquid deuterium. Most of their energy
is transferred to the deuterium and the neutrons remain with a kinetic energy of roughly
3meV. To be able to transport neutrons from the reactor to the experimental sites, neutron
guides are used. The neutron optical potential of most materials is repulsive and enables
the use of supermirrors to guide the neutrons over long sections. Consequently, the beam
site PF1B can be situated 72m away from the reactor and still provide the worlds strongest
cold neutron beam for particle physics [Abe+06].

Polarization of the neutrons, i.e. selecting a preferred neutron spin direction relative to
a guiding magnetic field, may be achieved by several ways. Common to all methods is that
there is no way to rearrange spins of an unpolarized beam, such that all spins finally point
in the same direction. Instead, the goal is reached by filtering out the unwanted spin di-
rection. This is done using cells of polarized 3He, supermirror polarizers or a more recent
development, crystalline supermirror polarizers [Pet+16]. 3He-cells provide good transmis-
sion for the requested spin direction, but do not keep their internal polarization over a
longer period of time. Therefore, they are commonly not used for longer measurements,
but allow a precise characterization of the polarization of a beam [Kla+13]. For P III
measurements, a supermirror polarizer is used. By using Co as one of the reflecting materi-
als, polarization is achieved by exploiting different repelling potentials for different neutron
spin directions. The obtained polarization is on the order of 95 to 99%, but comes at the
price of a flux loss of roughly 80%. Since neutron mirrors and especially polarizer mirrors
are subject to aging, the first stage after the neutron guide from the reactor is wavelength
selection though: A boron coated turbine spins at a fixed speed and allows passage only
for neutrons with a small velocity range. Combining the transmission function with the
spectrum of the cold source, the outgoing wavelength spectrum is approximately triangu-
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1.2 P III

larly shaped with a width of 10%. All neutrons of the wrong velocity are captured in the
boron coating and may therefore not degenerate the polarizer. Once neutrons are polarized,
it is rather easy to switch their spin direction using a so-called adiabatic fast passage spin
flipper. This spin flipper exploits the motion of the neutron and generates a rotating mag-
netic field in the rest frame of the neutron. This kind of flipper commonly has an efficiency
of 1, which also means, that any degree of polarization is conserved and allows to create
a mirrored experimental setup from the viewpoint of the neutron. That fact is important:
Although P III provides an overall symmetric setup, it is not possible to produce two
exactly equivalent detectors, create an exactly symmetric magnetic field or avoid any diver-
gence of the neutron beam inside the instrument. Instead, the spin flip makes it possible
to perform two experiments at the same time and only exploit the symmetry of the setup to
suppress systematic effects, such as electron backscattering.

Inside P III there are no neutron guides which could keep the neutrons on track.
Any transversal velocity component leads to a spread of the beam up to a point where it
does not make sense to further increase the length of the decay volume. Five 6LiF-apertures
in the last section of the beamline trim the neutron beam to a cross section of 6×6 cm2 with
a divergence of ≈ 1.5 cm/m, making it possible to have reasonably sized detectors which may
capture all decay particles.

The end of the beamline is marked by the disk-chopper [Wer09]. 6LiF-tiles are turning
at a speed of up to 100Hz and allow the neutrons to pass through an opening of 22.2°. The
chopper position defines signal and background time windows.

1.2.2 Calibration Source Scanner

In order to measure electron spectra, reference sources must be used to calibrate the electron
detectors. These sources are used to determine a relation between electron energy and
detector signal. Since the energy of the emitted electrons does not depend on environmental
parameters, they are also used to monitor drifts of the detector response frequently. It is
not possible to manually install or remove calibration sources during the measurements.
Instead, the sources have to be moved automatically inside the vacuum. This is especially
delicate since the calibration sources are located on very thin and fragile carbon foils to
minimize energy losses.

The device in Figure 1.6 which fulfills these requirements is called scanner and allows the
positioning of five individual calibration sources within a wide range of coordinates. This
furthermore enables a characterization of the detector response depending on the position
on the detector.

1.2.3 Electron Detectors

Electrons are detected using plastic scintillators in combination with photomultiplier tubes
(PMTs). Their main advantages are a small response time and a low electron backscattering
probability, which reduces a major systematic effect. Although the relative energy resolution
is small compared to semiconductor detectors, plastic scintillators have the advantage of
being relatively cheap and are reasonably well understood – in spite of the studies in section
2.3.3. Figure 1.7a and Figure 1.7b show two designs of P III detectors which have in
common that light is read out from the sides.

Most of the effects which are discussed in the following chapter are related to detection
with plastic scintillators. The detection of protons is described in chapter 3.
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Figure 1.6: The scanner device which is used to position calibration sources in front of the
electron detectors [Wil07]. In horizontal direction, the whole sled is moving,
while vertically the sources can be moved away from their shields individually.
Meanwhile, the rubber belts have been replaced by steel wires to improve vacuum
compatibility and reduce friction.

(a) For the beam time of 2009, a large scintillator of
43 cm × 45 cm × 5mm was used and allowed elec-
tron detection without edge effect [Mes11]. The
large size required installation of the detector be-
fore P III could actually be set in place at
PF1B.

(b) A smaller detector designed by Lukas
Raffelt was used for the beam time of
2014. It has the advantage of being
installed from the back of P III
[Raf15].

Figure 1.7: In P III, electrons are detected with plastic scintillators. They provide a
large detection area and can be read out with little effort using photomultipliers.
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Figure 1.8: The absolute magnetic field density in P III is largest in the central volume
and decreases when following the charged particles along the dashed line towards
the detector vessels. There are no field minima in the decay volume to have a
well defined angular coverage of the particle detectors.

1.2.4 Guidance of Charged Particles

The guidance of decay particles to the detectors is crucial for the P experiments. It
must be treated accurately to reduce uncertainties which are related to the solid angle
coverage of the detectors.

An important property of the employed magnetic fields is that they allow adiabatic trans-
port of neutron spins and electrons and protons. Adiabatic means, that locally the magnetic
field can always be considered homogeneous, which leads to radial movement of protons
and electrons around the field lines with a radius of gyration

𝑟 =
𝑝
𝑒𝐵

sin𝜃. (1.14)

For momenta 𝑝 of up to 1.2MeV/c, in the central magnetic field of 152mT, 𝑟 < 2.6 cm.
Naturally, the radius decreases if the particle momentum is more parallel to the magnetic
field lines: 𝜃 → 0.

If 𝜃 = 0 is defined as particles moving in the direction of the neutron beam – downstream
– then the angular range covered by the downstream Lyon detector is defined for 𝜃 ∈ (0, 𝜋/2)
and the range covered by the upstream Grenoble detector by 𝜃 ∈ (𝜋/2, 𝜋). This only holds for
a magnetic field which is completely homogeneous in the neutron decay region. Practically
the field has the highest density in the center of the central volume and slightly decreases
towards the outer region. This has an implication on the accepted angular ranges of the
decay particles by the individual detectors: The magnetic flux which is enclosed by a gyrating
particle is an adiabatic invariant, i.e.

𝜋𝑟21 ⋅ 𝐵1 = 𝜋𝑟22 ⋅ 𝐵2, for slowly changing 𝐵

⇔
𝑝2

𝑒2𝐵1
sin2 𝜃1 =

𝑝2

𝑒2𝐵2
sin2 𝜃2

⇒ sin𝜃2 =
􏽱

𝐵2
𝐵1

sin𝜃1.

(1.15)

On one hand this implies a decreasing polar angle 𝜃1 → 𝜃2 for 𝐵2 < 𝐵1, which makes
particles advance faster along the magnetic field such as in Figure 1.8 for |𝑧| > 1m. On the
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other hand there may also be a point of sin𝜃 = 1, if the magnetic field is increasing in
the longitudinal direction of motion. At this point, the particle turns around and continues
in the opposite direction. This is called the magnetic mirror effect and leads to a change
of integration region for the angular coverage of the detectors and implies an important
correction to the measured asymmetry. For the electron asymmetry measurement this effect
is summarized in [Wan13] and will be investigated in [Klo18] for the proton asymmetry
measurement.

For the protons, which have small kinetic energies < 1 keV, also electrostatic fields are
involved which in contrast to magnetic fields may change the kinetic energy of charged
particles. For electric fields parallel to the magnetic guiding field, the longitudinal component
of the momentum increases or decreases depending on the charge of the particle 𝑞 and
the electric potential. While the transversal momentum remains the same, the overall
momentum decreases, which again changes the polar angle:

sin𝜃1 =
𝑝1 sin𝜃1

𝑝1
→

𝑝1 sin𝜃1
𝑝2

=
𝑝2 sin𝜃2

𝑝2
= sin𝜃2. (1.16)

In the nonrelativistic limit the change of the polar angle can be simply expressed by

sin𝜃2 =
􏽱

𝐸kin,1 + 𝑞(𝑈2 − 𝑈1)
𝐸kin,1

sin𝜃1. (1.17)

Again, there may be a point where sin𝜃 = 1 and the particle turns around. This is used in
section 3.2 to build up an electrostatic barrier for protons below a certain kinetic energy.

1.3 PERC

Experiments described in this work, namely the measurement of the electron and proton
asymmetry of the neutron beta decay, will be enhanced with the upcoming instrument
PERC (proton-electron-radiation-channel). It will break with the tradition of symmetric
setups and provide a port for decay electrons and protons only on one end. It is intended
as a user facility and provides the opportunity to measure with secondary spectrometers
other than those of the P-collaboration. The main improvement over previous ex-
periments is an eight-meter-long non-depolarizing neutron guide inside an equally long
superconducting solenoid. The use of a neutron guide to limit the decay section solves
the problems with diverging beams and therefore allows much longer neutron pulses and
higher average decay rates. PERC is going to be set up at the new beam site MEPHISTO,
at the Forschungsreaktor München (FRM II), where a similar cold neutron flux is expected,
compared to PF1B. Especially the studies of the proton asymmetry measurement should be
regarded as preparatory work for measurements with PERC, which provides a cleaner en-
vironment with neutron decay region and particle detection being separated more strictly.
Figure 1.9 shows a schematic setup of PERC.
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8m, 1.5T

Neutron Guide

3T- 6T

Neutron Beam Stop

Connect

Figure 1.9: The superconducting magnet system of PERC defines an eight meter long decay
region. Decay particles whose momentum polar angle is above a certain threshold
may be filtered by a 3 to 6T selector magnet. Neutron beam divergence is
addressed by using a non-depolarizing neutron guide within the decay region.
User experiments can be attached to the right end of the instrument.
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2 Electron Detection and Electron Asymmetry A

A major task of an experiment with the goal to measure the spectrum of a particle decay is
to understand and model the processes from the source to the detector. In the case of beta
decay measurements, this includes the understanding of the theoretical decay spectrum at
the source, the transport of the decay particles to the detector and the detection process.
For scintillation detection, the conversion of kinetic particle energy into light and after the
light transport, the conversion of light back to electrons to a measured pulse amplitude must
be understood.

Decay Particle Transport Energy-to-Light-Conversion

Light TransportPMT ResponseSignal Processing

Although some of these processes cannot easily be separated into independent parts, the
above diagram shows the outline of this chapter. Corrections to the electron asymmetry
measurement will be deduced as a result of the studied effects. Some results presented here
are not explicitly applied in this work, but find their use in [Sau18].

2.1 Electron Spectra

Within this section a refined theoretical description of beta decay electron sources, as well
as electron capture sources will be presented. Parts of this section are a further evolution of
[Roi10], with the goal of employing all information available. It finally allows to determine
the electron detector response function independently of the neutron beta decay spectrum,
which was previously not possible. The major systematic effect of the measurement with
P II can be reduced by a factor of four, see Table 1.1. The theoretical description of the
calibration sources finally only has a relative uncertainty of 10−4 on the electron asymmetry.

2.1.1 Beta Decay

The electron spectrum of beta decay may be fully described by equation (1.2). Being a
three-body-decay, the energies of the final state particles are continuously distributed. By
summing over all spins and neglecting couplings beyond the Standard Model – namely the
Fierz interference term 𝑏 = 0 – the electron phase space density in units of electron masses
can be written as:

𝑁(𝑇) ∝ 𝑝𝑊(𝑊0 − 𝑇)2𝐶(𝑇)𝐹(𝑍, 𝑇) = √𝑇2 + 2𝑇(𝑇 + 1)(𝑊0 −𝑊)2𝐶(𝑇)𝐹(𝑍, 𝑇)(1 + 𝛿𝑅(𝑇,𝑊0)). (2.1)

Here 𝑝 is the electron momentum, 𝑊 the total electron energy, 𝑊0 = 𝑄+1 the complete energy
release, i.e. the mass difference between mother and daughter nucleus, 𝑇 the kinetic energy
of the electron and 𝑍 the charge of the daughter nucleus. The shape factor 𝐶(𝑇) accounts
for the forbiddenness of the decay. It is unity for allowed decays such as the neutron decay.
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For so-called unique forbidden decays the shape factor has a general form, while for non-
unique decays 𝐶(𝑇) usually has to be determined experimentally. The Fermi function 𝐹 is a
correction which changes the emission spectrum due to the Coulomb interaction of the 𝛽±-
particle with the nucleus. 𝛿𝑅 accounts for external radiative corrections, due to emission of
real or virtual photons, given in [Sir67] to first order in 𝛼. Only higher order contributions
couple to the nucleus and have a low impact on the shape of the beta spectrum [BB82]. By
using the term 𝑞 = (𝑊0 −𝑊) for the momentum of the antineutrino, the recoil energy of the
daughter nucleus and a finite neutrino mass are neglected. In most cases this is a valid
assumption; for the neutron beta decay the proton may carry up to 1‰ of the total kinetic
energy and its momentum should be considered in precision measurements.

The shape factor 𝐶(𝑇) has been described by [KU41] whereas 𝐹(𝑍, 𝑇) was proposed in
[Fer34] already. In this work a method by [BB82] was implemented to calculate the Coulomb
amplitudes of the electron radial wave functions 𝛼𝑘(𝑇). These may be used to obtain the
corrections

𝐹(𝑍, 𝑇) = 𝐹0𝐿0 =
𝛼2−1 + 𝛼21
2𝑝2

, (2.2)

𝐶(𝑇) = (2𝐿 − 1)!
𝐿
􏾜
𝑘=1

𝜆𝑘
𝑝2(𝑘−1)𝑞2(𝐿−𝑘)

(2𝑘 − 1)!(2(𝐿 − 𝑘) + 1)!
, (2.3)

𝜆𝑘 =
𝛼2−𝑘 + 𝛼2𝑘
𝛼2−1 + 𝛼21

, (2.4)

for an (L-1)th forbidden unique transition. Except for the beta decay of the neutron and
completely stripped atoms, electrons of the atomic shell may alter the Coulomb potential of
the mother nucleus and therefore change the shape factors. The parametrization by [Sal+87]
for the screening potential is used as compensation. The resulting spectra are in agreement
with the program BetaShape [Mou15]. Theoretical uncertainties arise from the assumption
that the charge distribution inside the nucleus be uniform. [BB82] show that the energy
dependent difference to other charge distributions is negligible for 𝐹(𝑇) and < 1% for 𝐶(𝑇).
The detector calibration does not suffer from these uncertainties.

Neutron

The neutron, only having an allowed decay channel, has small corrections to the shape of
the decay electron spectrum. 𝐶(𝑇) = 1 only leaves radiative corrections [Sir67; Sha71; IPT13]
and the Fermi function 𝐹(𝑍, 𝑇). The latter is often described by

𝐹(𝑍, 𝑇) ≈
2𝜋𝜂

1 − 𝑒−2𝜋𝜂
, 𝜂 =

𝛼𝑍
𝛽
, (2.5)

valid for small electron energies and low 𝑍 [MM33]. For precise calculations, either the
relativistic Fermi function [Fer34]

𝐹(𝑍, 𝑇) = 􏿶1 +
1
2
𝑆􏿹
4(2𝑟𝑝𝑚𝑒𝛽)2𝑆

Γ2(3 + 2𝑆)
e𝜋𝜂

(1 − 𝛽2)𝑆
􏿗Γ 􏿴1 + 𝑆 + 𝑖𝜂􏿷􏿗

2
, 𝑆 = √1 − 𝛼2𝑍2 − 1 (2.6)

should be used or even equation (2.2), which respects the recoil of the daughter nucleus
and spares the application of a correction [Wil82]. It should be noted, that the nuclear
charge radius 𝑟𝑝 refers to a uniformly charged sphere [BB82] and is related to the measured

[AM13] root mean square radii by √⟨𝑟2⟩ = 􏽯
3
5𝑟. Figure 2.1b shows that the approximation
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(a) Several corrections have to be applied to cal-
culate the inner branch of the 137

55Cs beta de-
cay spectrum. The Fermi function is impor-
tant at low energies, while the shape factor
alters the spectrum at high energies. Radia-
tive corrections only have little impact.
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(b) Often equation (2.5) is applied to correct for
the attracting potential of the mother nu-
cleus in beta decay. For neutrons the ap-
proximation is justified with a relative de-
viation < 10−3, for nuclei with large 𝑍, the
relation cannot be used.

Figure 2.1: In the approximation of radial electron wavefunctions the Fermi function may be
calculated to sufficient precision. The same assumption is used for the calculation
of shape factors of forbidden beta decays. The Fermi function gets very large
for high-𝑍-nuclei.

(2.5) may not be used for large 𝑍, but was sufficiently precise for the description of neutron
decay spectra in the past.

An interesting extension to the Standard Model of particle physics is an additional factor
(1+𝑏/𝑊) which is called the Fierz term and accounts for possible scalar and tensor couplings.
A first measurement of 𝑏 was performed by [Hic+17] and provides agreement with zero. The
data set of the P III electron asymmetry measurement has potential to significantly
improve the precision of this measurement.

Cesium-137

A common calibration source is 137
55Cs, an emitter of a continuous spectrum of electrons

as well as of internal conversion electrons (see section 2.1.2) and transition gammas. Cor-
rections to the beta spectrum attain special attention, since the low-energetic part of the
spectrum will be used to obtain the trigger function of detectors used in P III. The
two main contributions to the beta decay spectrum are a second non-unique transition to
the ground state of 137

56Ba, described by [BC83] and a first unique transition to the excited
state 137m

56Ba:

137
55Cs 30.05 a, 1175.63 keV

11/2−
2.552min, 661.659 keV

1/2+
283.5 keV

3/2+ 137
56Ba

5.64%

0.00061%

94.36%

(2.7)
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2 Electron Detection and Electron Asymmetry A

The transition to the 1/2+ excited state is neglected due to its low probability. The large
impact of the Fermi function and the shape factor is visible in Figure 2.1a.

2.1.2 Electron Capture

In contrast to beta decay, where an electron and an antineutrino are emitted, in electron
capture (EC) an electron from the atomic shell is captured and a neutrino emitted, leaving
the daughter core in an excited state. The de-excitation can occur via gamma emission or
internal conversion, where the emitted energy is transferred to a shell electron which then
gets released from the atom.

𝑢
𝑑
𝑢

𝑢
𝑑
𝑑

𝜈𝑒𝑒−

𝑊−

𝑝

𝑛

(2.8)

The energy of the gamma equals the difference of energy levels and allows a precise determi-
nation of nuclear excitation energies. The energy of emitted conversion electrons depends
on the origin of the electron, i.e. the most likely emission of an electron from the K-shell
carries less energy than electrons from outer shells, since the binding energy must be over-
come. The small differences in electron binding energy between shells ∼ 10 keV compared
to energy differences of nuclear excitation levels ∼ 100 keV - 1000 keV make electron cap-
ture transitions excellent calibration sources. The ratio of conversion electron emissions to
gamma emissions is expressed by internal conversion coefficients (ICC) which can be mea-
sured, but usually are calculated to higher precision with knowledge about the multipolarity
of the decay [Kib+08].

2.1.3 Auger Electrons

Electron capture and internal conversion remove an electron from one of the atomic shells
and therefore create a vacancy, leaving the atom in an excited state. This vacancy gets filled
by electrons from higher shells by fluorescence or Auger- and Coster-Kronig-transitions.
While fluorescence most likely is not detected in P III, Auger and Coster-Kronig
electrons are transmitted towards the detectors like any other decay electron and add up to
the detected signal. With fluorescence shifting the vacancy to a higher shell and Auger and
Coster-Kronig transitions even creating further vacancies, a cascade of electrons may be
emitted after just a single nuclear decay. A simple approach for the calculation of electron
combination probabilities is already described in [Roi10] where sub-shells were combined
to one shell and Coster-Kronig transitions were neglected. However, for high-Z elements
like lead – the daughter nucleus in Bi-decay – the energy difference within shells may be
several keV.

By the means of gamma spectroscopy the binding energies of electron shells can be de-
termined to very high precision, compared to uncertainties in beta spectroscopy. Therefore
one is tempted to use electron capture transitions for the low-energy calibration of scin-
tillation detectors: In absence of internal conversion, one vacancy in the electron shell is
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2.1 Electron Spectra

left which potentially de-excites by Auger electron emission at low energies. However, the
experimental knowledge about the fluorescence yields 𝜔K,L,M is limited [Dao+15], also due
to the binding of elements in compounds. This adds up to large uncertainties in the rela-
tive amount of electron combinations and currently makes a precise determination of the
detector function in the low-energy region difficult. For decays with internal conversion
electrons, this argument does not hold, as the additional Auger electrons can be seen as a
correction to the pure conversion electron spectrum.

2.1.4 Decay Cascades

Except for beta decay to (meta-)stable states, a typical decay seldom involves a single
electron. The electronic signal of P processing is based on a charge integrating ADC
(see section 2.8.3), acquiring signals over a period of 200 – 300ns during one event, to
allow detection of backscattering events below the trigger threshold, a subject described in
more detail in sections 2.2.4 and 2.6. This long integration period leads to the acquisition
of the summed up signal of a complete decay event, involving conversion electrons and
Auger electrons.

The large number of subshells allows a huge number of different de-excitation chains
following an electron capture event. An exemplary cascade up to the 𝑁-shell in chronological
order might look as follows:

ECK →𝑋KL2 + 𝑒L2M1M1 + 𝑒M1M3N7 + 𝑒M3N1N3 + 𝑒M1N1N4 +⋯+
𝑒ICC-L1 + 𝑒L1L2N3 + 𝑋L2N1 +⋯ ,

which is just one of many possible combinations. 𝑋KL2 is a radiative transition of an electron
of the L2-shell to the K-shell. 𝑒M1M3N7 fills a hole in the M1-shell with an electron from the
M3-shell by emitting an electron from the N7-shell. It cannot be distinguished from 𝑒M1N7M3 .
The width of excited atomic states typically is much broader than nuclear excitation, which
normally leads to atomic de-excitation before emission of a conversion electron. Emission
from the 𝑁-shell and beyond are neglected due to their small energy.

To obtain the distribution of decay cascades for a specific isotope, in a first step, the prob-
abilities for transition into the next atomic and nuclear state is calculated for each initial or
intermediate state. A state can be identified by a number of base (#subshells+#nuclear states), us-
ing one digit per nuclear state or hole in the atomic shell. Duplicates are excluded by sorting
the digits in ascending order. The lack of experimental data requires the use of approximative
calculations relying on the Dirac-Hartree-Slater and Dirac-Fock models. [CCM79] provides
theoretical subshell transition widths for 𝐾- and 𝐿-Auger transitions. 𝑀-Auger and -Coster-
Kronig transition widths are taken from [McG72]. Fluorescence transition probabilities are
provided by [Sco74] for 𝐾-shell de-excitation, by [Pur07] for 𝐿-shell de-excitation and 𝑀-
shell de-excitation for 𝑍 ≥ 65 and by [CC84] for 𝑀-shell de-excitation for 𝑍 < 65. Since the
accuracy of overall fluorescence yields is likely to be more exactly determined than subshell
yields, an overall correction is applied to the subshell transition widths to comply with em-
pirical fits to experimental data by [Dao+15] or [Bam+72]. A program described by [Jön+07;
Fri12] could provide easier access to atomic transition probabilities.

Electron capture ratios for calibration sources in P III are provided in [Bé+99;
Bé+06; Bé+08; Bé+10], more detailed subshell probabilities are given in [Fir97].

In combination with internal conversion coefficients, each path of the complete decay
and de-excitation tree diagram is traversed, keeping track of probabilities and transitions
including electron emission. Some paths and branches have to be cut if they are unlikely to
limit the number of possible paths. Furthermore, some electron emissions are merged into
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(a) Four different calibration source types cover
the full detection range up to 1MeV. The
line sources have several branches for inter-
nal conversion transitions which depend on
the emitted conversion electron and addi-
tional Auger electrons. The 137Cs source ad-
ditionally has two beta spectra, one of them
being visible in the range < 500 keV.
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(b) In the low energy region, Auger electrons
mark the end of the spectrum. The influence
of electron cascades is visible especially for
de-excitations with 𝐿-dominated Auger elec-
trons (BiL). Electrons with energies below
1 keV are not considered. The graphs also
show the energy resolution of 0.5 keV used
for further calculations.

Figure 2.2: Theoretical energy spectra are calculated as input for further convolution. The
presented lines show the sum of energies of all electrons from a single decay.
Line spectra are either originating from internal conversion in the higher energy
region or Auger electrons in the lower energy region. A gamma transition
from excited nuclear states of electron capture must precede to allow pure Auger
spectra.

one without altering initial and final state if their energies are the same within 0.2 keV or
0.5 keV in the case of Bismuth. Despite these simplifications, for the latter ≈ 9000 electron
combinations are possible, where ≈ 16 million unique decay chains are combined. Caching
is used to quickly access the condensed information about electron combinations and skip
the time and memory consuming calculations. The resulting theoretical energy spectra are
shown in Figure 2.2.

Usually the calculation of Auger cascades is done using Monte Carlo methods [PBC87;
Gua+07], since there is interest in the investigation of sub-shells beyond the 𝑀-shell, which
further blows up the number of possible de-excitation paths. So far, there seems to be no
other tool than the one described in this work, which performs the described steps explicitly
using the complete probability net.

2.2 Particle Transport

In P III electrons and protons, coming from a calibration source or the neutron beam,
are guided to the detector by a magnetic field. For the recent measurement of the proton
asymmetry, there are also electrostatic fields involved. Particle tracking in electromagnetic
fields is done by [Klo18]. A study of electron motion in P III only for the magnetic
field is described in [Roi10]. In addition to lossless movement in the magnetic field, there
is interaction with matter, leading to energy loss and change of direction.
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2.2 Particle Transport

2.2.1 Energy Losses at Thin Layers

Electrons of the P III proton asymmetry measurement are not entirely transported to
the detectors without energy loss. In contrast to synchrotron radiation which leads to losses
in the sub-meV-range, passage through matter may lead to a significant loss of kinetic
energy. For calibration sources which are positioned on a carbon holder foil, at least half
of the calibration electrons are interacting with these foils of ≈ 200nm thickness. Later
on, the electrons have to pass the proton-to-electron converters, again being equipped with
a thin carbon foil of 100nm thickness at the maximum of the electric potential. Lastly,
the electron detectors are covered with a non-scintillating layer of ITO (Indium-Tin-Oxide)
which allows pulling the electric potential at the surface of the detector to ground even for
a layer thickness of 20nm.

Ionization

Charged particles in the low-energy range of keV to MeV mainly transfer their kinetic
energy to matter by ionization. The material specific energy loss is described in [BS64]
for electrons. For low-density materials such as carbon, the low-energy region of the
ionization energy loss may be approximated by

d𝐸
d𝑥

≈ −𝐴𝜌𝐸1−𝐵, 𝐸 < 100 keV, (2.9)

with path length 𝑥, material density 𝜌 and arbitrary parameters 𝐴 and 𝐵. The kinetic energy
after a path length 𝑙 is then extracted by solving the differential equation to

𝐸out(𝑙) = 􏿴𝐸𝐵in − 𝐴𝐵 𝑙 𝜌􏿷
1/𝐵
. (2.10)

For carbon 𝐴 ≈ 0.65 keV1.74cm2/g and 𝐵 ≈ 1.74 are determined from a fit to material-specific
data [Ber+14]. The effective path length increases with the polar angle by cos−1 𝜃 if straggling
is neglected for very thin layers. The energy distribution of the outgoing particles then
follows to be

d(cos𝜃)
d𝐸out

=
𝐴𝐵2𝑙𝜌𝐸𝐵−1out

􏿴𝐸𝐵in − 𝐸𝐵out􏿷
2 . (2.11)

The relative number of particles getting stuck in the layer is 𝐴𝐵 𝑙 𝜌𝐸−𝐵in . Averaging over
this distribution yields the mean energy for outgoing electrons. As an example, Figure 2.3
shows the energy loss at a carbon holder foil similar to the ones used in P III.

For the analysis of the electron asymmetry calibration data, it is assumed, that one of the
detectors does not have direct sight onto the calibration sources. The visible energy spectrum
per electron is therefore smeared out following the distribution (2.11). For very large polar
angles and energy losses ≳ 1 keV, the assumption of the absence of straggling should be
reevaluated to improve the loss model. Spectra from both detectors have to be combined
in order to account for the detector mixing of multi-electron events. Not considering the
effect of energy losses in the foils would lead to a relative underestimation of the electron
asymmetry on the order of 10−4 corresponding to a tenth of the total uncertainty.

2.2.2 Flight Times

After leaving a calibration foil or being emitted from neutron decay, each electron requires
a certain amount of time to reach one of the detectors. Typical flight times range from 15 to
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Figure 2.3: Energy loss at thin layers such as calibration source carrier foils may be treated
as an energy offset, if the initial electron energy is > 50 keV. Below, an effective
path length is not sufficient, but the width of the loss distribution should be
considered for further evaluation of calibration spectra. The energy loss along
the shortest path perpendicular to the surface is much smaller than the average
energy loss for isotropic emission.

200ns. This flight time depends on the starting position, the energy and the emission angle.
For multi-electron events of calibration sources this allows every electron, even those with
low relative energy, to be the first to be detected. From the center of the instrument, where
the scanner device is located, the empirical formula

𝑡(𝜃, 𝐸) ≈
1

𝑐𝛽(𝐸) 􏿶
𝑏

√𝜋2 − 4𝜃2
− 𝑎􏿹 , 𝑎 = 2.277m, 𝑏 = 18.74m, (2.12)

which is deduced from a fit to simulation data, may be used to estimate the flight time. Its
simple invertibility enables an estimation of the probability that an electron 𝑒−1 of a multi-
electron event with 𝑛 particles reaches a detector first:

𝑝(𝑒−1 first) =
1
100

1
􏾜

cos𝜃1=0.01

𝑛
􏾟
𝑖=2

𝜃(𝑡Flight(𝜃1,𝐸1)+𝑡Gate,𝐸𝑖)

􏾙
𝜃(𝑡Flight(𝜃1,𝐸1),𝐸𝑖)

sin𝜃d𝜃. (2.13)

The summation indicates discrete steps – in this case 100 – for possible emission angles
of the considered first electron. 𝑡Gate is used as upper integration limit after the start time
and is defined by the electronic setup, c.f. section 2.8.3. This method therefore allows the
determination of the number of delayed electrons per event, which had already been studied
in [Roi10], where a less efficient algorithm is used however.

A particular application of this information arises from the combination with the detector
trigger function from section 2.6. A low-energetic electron which reaches the detector
first might not release a trigger signal and its energy information likely gets lost. Only
one of the following electrons may then be the new first electron and a reduced number
of electrons then is detected. This effect leads to a further distortion of the multi-electron
event distribution. The effect on the electron asymmetry in the currently analyzed energy
range is small |Δ𝐴/𝐴| < 10−4, but it allows a better description of calibration spectra in the
low-energy region and may enable using a larger analysis window in energy in the future.
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2.2 Particle Transport

2.2.3 Point Spread Function

The movement of particles inside external fields is often predicted by applying particle
tracking simulations. Many qualitative, but also quantitative insights can still be obtained
from symbolical calculations. A particularly interesting information is the projection of a
charged particle point source onto a detector by transport inside a magnetic field, the so-
called point spread function (PSF) [Dub15b]. It can be used to calculate the probability that
an electron will hit a detector and can also be combined with spatially dependent detector
response functions.

Singularities

A charged particle emitted at a point 𝑥0 = (0, 0, 0) inside a magnetic field 𝐵⃗ initially will
have a polar or pitch angle of 𝜃 and an azimuth of 𝛼. Assuming 𝐵⃗ to be constant, 𝜃 will
remain constant as well and 𝛼 will change constantly along the flight path 𝑧

𝛼(𝑧) =
𝑧

𝑟0 cos𝜃
, 𝑟0 =

𝑝
𝑒𝐵
. (2.14)

𝑟0 is the gyration radius for emission at 𝜃 = 90° and increases with particle momentum 𝑝.
Now 𝑅 is introduced to be the distance between the particle position 𝑥⃗ = (𝑥, 𝑦, 𝑧) and the
center of gyration (0, 0, 𝑧):

𝑅
𝑟0
= 2 sin𝜃 􏿙sin

𝑧
2𝑟0 sin𝜃

􏿙 . (2.15)

The direct relation of 𝑅 and 𝜃 for fixed distances 𝑧 between source and detector now leads
to divergences of the electron distribution along 𝑅 as Figure 2.4 shows. This behavior may
lead to unexpected signatures even in continuous energy spectra [Dub15a]. If 𝑧 is not fixed,
as for electrons coming from a neutron beam for instance, the divergences are smoothed
out, and the radial distribution simply is

𝑓(𝑅 < 2𝑟0, 𝜙) =
1

4𝜋𝑅𝑟0
, or (2.16)

𝑔(𝑅 < 2𝑟0) = 2𝑟0􏾙
2𝜋

0
𝑓(𝑅, 𝜙)𝑅d𝜙 = 1. (2.17)

The maximum radius 2𝑟0 cannot be exceeded. In section 2.4.6 it is worked out, why equation
(2.17) is sufficient for electron detection in P III, even for calibration sources which
are located at fixed distance from the detectors.

Asymmetric Point Spread Function

In the case of non-isotropic, but asymmetric emission of particles, the PSF naturally has to
be adapted. Equation (2.17) now has an additional asymmetric part [Dub+14]

𝑔𝐴(𝑅) = 1 + 𝐴exp
2
𝜋􏽱

1 −
𝑅2

4𝑟20
, (2.18)

with asymmetry 𝐴exp = 𝛽(𝐸)𝐴𝑃 for neutron beta decay. This includes the polarization of
the neutrons 𝑃 ∈ [−1, 1] and the relative electron velocity 𝛽. It expresses what is expected
intuitively: Emission to the preferred half space yields more particles in the center of
gyration, while particles emitted in the suppressed direction end up further outside.

31



2 Electron Detection and Electron Asymmetry A
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(a) For small ratios 𝑧/𝑟, the number of diver-
gences is small and the maxima are more
prominent.
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(b) If the distance to the detector is increased,
the divergences are distributed more equally
and washing out.

Figure 2.4: To illustrate the occurrence of divergences in the point spread function, the
clockwise gyration movement is shown as solid black circles, for isotropically
distributed polar angles and fixed azimuth. The blue dots represent the end
position of the particle on a detector at distance 𝑧 to the source. To show
the radial distribution on the detector, the end positions are projected onto
the horizontal axis by the gray dashed circles. The particle distribution, i.e. the
density of gray lines, is finally shown below the sketch.

32



2.2 Particle Transport

0x4010

0x0404

0x0104

0x4001

0x1010

0x0440

0x0140

0x1001

L
o
w
er

E
d
g
e

0x
01

Right

Edge

0x04

Left

H
alf Sphere

0x1000

Lo
we

r

Ha
lf S

ph
ere

0x
01
00

0xXX YY

(a) Each cut between disk border and pixel border
can be classified by a 16 bit value. The sum of all
values yields the full pixel classification.

(b) There are many different ways to cut
a rectangle with a circle. The obtained
classifiers are shown for a selection of
cuts.

Figure 2.5: To be able to calculate the integral of a rotational invariant function with max-
imum radius inside a pixel, partially or fully covered by the disk with that ra-
dius, the cuts of the disk border with the pixel border are used to classify the
integration region.

Pixelized Point Spread Function

Section 2.4.6 will show, that the convolution of an advanced detector function with the PSF
is hard to accomplish by means of symbolical calculations. To overcome this problem, the
detector function, as well as the PSF, will be presented as pixels, a typical digital image
representation. To comply with normalization and demanded precision, the probability for
a particle to hit a pixel will be calculated exactly.

Classification To get a precise anti-aliased representation of a rotational invariant function
𝑓(𝑅) by pixels, a distinction of cases has to be done for the coverage of the pixels by a
disk 𝒟 which defines the domain of definition with values > 0. In the case of the PSF this
would be a disk with radius 2𝑟0.

The pixels can be cut by the disks border 𝜕𝒟 in many different ways, all leading to
different descriptions of the intersection. To efficiently classify each type, combinations of
16 bits describing a cut of pixel borders 𝜕𝒫 and 𝜕𝒟 are introduced in Figure 2.5a, which
are added up to yield pixel classifiers in Figure 2.5b. They are unique, as long as the disk
may not completely fit into one pixel. A distinction of case has to be done, if this condition
is not met.

If arbitrary rectangular shapes are allowed for the pixels, there are 46 distinct pixel
classifiers which have to be handled independently. The trivial case is a pixel which fully
covers 𝒟. The pixel value would simply be the area of the disk. Another simple and typical
case is the pixel which is fully covered by 𝒟. Here the integral of 𝑓(𝑅, 𝜙) in the domain
of definition of the pixel is to be evaluated. These types are an example for the special
handling of small radii. Both types are classified as 0x0000 and must be distinguished by
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Figure 2.6: The loss of numerical accuracy may lead to a faulty cut assignment, ending
up in wrong classifications. For a cut of the solid black disk border at 𝑦𝑃, the
horizontal component is solved to be 𝑥1 > 𝑥𝑃. The expected cut at 𝑥𝑃 would be
𝑦1 < 𝑦𝑃, however, the numerical accuracy is too low and the returned value is
𝑦2 > 𝑦𝑃. The classification for the lower right pixel results in 0x1010 instead of
the expected 0x1450.

the pixel size and radius ratios.
Special care has to be taken when determining the cut coordinates. For a vertical pixel

border at 𝑥𝑃 and a disk of radius 𝑅 centered at (𝑥0, 𝑦0), they are found by solving

(𝑦 − 𝑦0)2 + (𝑥𝑃 − 𝑥0)2 = 𝑅2 ⇒ 𝑦 = 𝑦0 ± 􏽮𝑅2 − (𝑥𝑃 − 𝑥0)2. (2.19)

The numerical calculation of a square-root involves a loss of numerical accuracy. In
particular cases, especially, when the disk is centered on a pixel border, an erroneous
attribution of cuts to the wrong pixels might occur. This may lead to a situation presented
in Figure 2.6. Problems can be identified by checking for even number of cuts per pixel.
It is sufficient to correct the classification of the pixels, since differences in the spatial
coordinates which are required to obtain the covered area are negligible. The correction
simply ensures the application of the correct formulas. Except for pixels at the detector
edge, there are always four pixels involved for one miscalculation of cuts. This allows the
selection of the right correction.

Integration The integration over several shapes is required to obtain the correct pixel
coverage:

• rectangles

• right triangles with catheti along 𝑥- and 𝑦-axes

• isosceles triangles with apex in the center of the disk

• circular segments

• circular sectors.

Figure 2.7a shows a possible composition of these shapes. Formulas which allow to calculate
the respective PSF coverage by these shapes are given in the appendix A.1.
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(a) A pixel cut by the disk border is segmented
into different shapes to allow integration
over the covered domain. The integral over
a circular segment can be obtained by sub-
tracting an isosceles triangle from a circular
sector.

(b) The algorithm allows the calculation of the
PSF at arbitrary resolutions. The final num-
ber of pixels is to be chosen depending on
the use case. For the determination of the
edge effect, a single pixel is sufficient, while
a complex detector function may require a
finer grid.

Figure 2.7: In order to simplify the application of the PSF to a detector or an opening
function, the PSF is projected onto a grid of pixels. Common anti-aliasing
algorithms [Bre65; Wu91] only yield approximate coverage for not fully covered
pixels. Normalization is guaranteed by performing an exact piecewise calculation
of the covered area.
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Asymmetric Pixelized Point Spread Function

For the asymmetric point spread function (APSF) (2.18), no closed form solution could be
found and the integration must be approximated:

1
𝑅􏽱

1 −
𝑅2

4𝑟20
≈
1
𝑅
−
1
2𝑟0

􏿶
𝑅
4𝑟0

+
𝑅3

64𝑟30
+

𝑅5

512𝑟50
+ …􏿹 . (2.20)

A final term 𝑐(𝑅/2𝑟0)𝑠 can be added to assure that the series expansion is zero at 𝑅 = 2𝑟0,
as for the original expression. 𝑐 is determined by the expansion prefactors, while 𝑠 can be
chosen, such that the expansion formula is optimized. For a series expansion to fifth order
this can be done by minimizing

1

􏾙
0

d𝑥 􏿶√1 − 𝑥2 − 𝑥 􏿶
1
𝑥
−
𝑥
2
−
𝑥3

8
−
𝑥5

16
−
5𝑥𝑠

16 􏿹􏿹
2

(2.21)

with respect to 𝑠, where 𝑥 = 𝑅
2𝑟0

. The best integer solution yields 𝑠 = 24.
The integration over the required shapes yields trivial but lengthy integrals, not given

here. Special care must be taken when implementing the formulas to evaluate higher order
polynomials in the right order to prevent significant loss of numerical precision.

Application

Even without interest in the detector function, the pixelized point spread function can be a
useful tool due to its intrinsic normalization. It allows an easy calculation of edge effects, i.e.
the loss of events because of a limited detector size. In section 2.4.8 the PSF is extended to a
beam spread function, by convolution of the neutron beam profile with the PSF for electrons
of a specific energy. The larger coverage of the detector by high energetic electrons leads to a
nonlinearity as a result of the non-uniformity of the scintillation light transport. The same
cause changes the measured asymmetry, since the APSF leads to more electrons reaching
the detector at large radii when they are emitted in neutron spin direction. This effect is
investigated in section 2.4.7

2.2.4 Backscattering

A large source of uncertainty in the detection of low-energetic electrons is backscattering:
The particle only deposits a fraction of its energy in the detector and then leaves again
before being entirely stopped. The backscattering probability for silicon detectors is roughly
three times as large as for plastic scintillators. Although the former provide a higher energy
resolution for single events, the systematic error introduced by backscattering currently
does not allow the use of semi-conductor detectors. This – next to economic reasons and
a better timing resolution – is the main motivation to continue using plastic scintillators
within P III.

Simulations

The absence of a comprehensive database requires the use of particle scattering simulations
to estimate the energy deposition of electrons in plastic scintillators. In principle backscat-
tering from a planar surface may be described by five observables:

• incoming energy 𝐸in
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Figure 2.8: Backscattering simulations with Geant4 show an excellent agreement with mea-
sured data, if backscattering of backscattered electrons is taken into account.
The presented height of the spectrum is completely extracted from a fit to the
sum spectrum of the neutron decay and only differs by up to 3% from the data.
The graph represents the integration ∫ d𝜂dΓ𝛽

d𝐸ind𝐸out
d𝐸in over the incoming beta de-

cay spectrum with a lower angular limit for 𝜃out to account for the magnetic
mirror effect.

• incoming polar angle 𝜃in

• outgoing energy 𝐸out

• outgoing polar angle 𝜃out

• outgoing azimuth 𝜙 relative to the incident azimuth.

The displacement of the outgoing electron which should not exceed 2mm for 𝐸in < 1MeV
is neglected in this case. A Monte Carlo simulation provides all of these parameters.
Validation with experimental data can mostly only be done by integrating over some of
them. In [Kim+15] several Geant4 low-energy models are reviewed by comparing to multiple
experiments. Therein the Single Coulomb Scattering model is tested to be the most precise
choice. The authors do not provide details about the influence of the choice of the ionization
model – namely the Livermore or Penelope model. They refer to insignificant differences,
a statement which could not be confirmed in this work. The backscattering probability of
both models differs by 10%.

With P III, the absolute backscattering probability 𝜂opp(𝐸in, 𝐸out) to the opposite
detector can be extracted from neutron decay data. 𝜂opp ≈ 6% and is about as large as
𝜂same, which describes backscattering onto the same detector due to the magnetic mirror
effect – see section 1.2.4. A comparison to simulations in Figure 2.8 shows the necessity
to include secondary backscattering – backscattering of already backscattered electrons. A
simplified correction for this effect finally shows, that the simulated backscattering coefficient
only differs by up to 3% relative to the data if the Geant4 Livermore ionization model is
used.
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2 Electron Detection and Electron Asymmetry A

Backscattering with Elise

A setup to actually measure the backscattering dependence on all five observables could
be realized with the magnet spectrometer E [Roi12; Gra13; Dai14; Lam15]. A closed
90Sr beta source provides electrons with energies up to ≈ 2MeV by emission from decaying
daughter nuclei 90Y. Energy selection is done by insertion of two pinholes, each after 90°
of deflection. The provided electron beam has a low divergence, which allows to vary the
incident angle by turning the primary detector. Properties of the outgoing electrons can then
be measured by a moving secondary detector, which can be rotated around the primary
detector. An exemplary sketch in [Gra13] shows a possible setup. An important feature is
the possibility to calibrate the secondary detector with the primary electron beam to reduce
the systematic uncertainty of detector calibration. Such a setup will allow to find a suitable
set of simulation parameters, which can then be used to create reliable simulations of more
complex detector geometries.

Backscattering Detection in PERC

For PERC, there will only be one main detector and backscattering detection is limited
to energy and time resolving veto detectors. These detectors cannot be used for further
data analysis, since they have to be placed in a region with high background rates. A
collaborative study of the new systematic effects are summarized in the thesis by Carmen
Ziener [Zie14]. The main difference between P measurements and PERC will be the
use of the magnetic filter, which will only allow almost perpendicular incidence on the
detector and suppress passage of backscatter electrons at the same time. A main concern
is actually not backscattering from the main detector, but undetected backscattering from
the veto detectors onto the main detector. The handling of this issue in section 2.7 will
also be applied to upcoming measurements with PERC. An important improvement is the
higher light extraction efficiency. It leads to a lower detection threshold [Bar17], compared
to those considered in [Zie14] or used with P III.

2.3 Nonlinear Detector Response

An ideal calorimetric detector would provide an output signal which is perfectly proportional
to the energy deposited. Real detectors usually do not fulfill this specification, but deviate
from linearity. This shortcoming is usually called nonlinearity and may have several origins.
A nonlinear detector response is not a problem per se, as long as it is sufficiently well
known. In the following, theoretical and experimental approaches are presented to obtain
a good detector description.

2.3.1 Scintillation Quenching

The transformation of kinetic energy of charged particles to light in organic scintillators is
a multi-step process [Bir64]. A typical plastic scintillator is mainly made of a base material
such as Polyvinyltoluene or Polystyrene and doped with fluorescing substances such as 𝑝-
Terphenyl or POPOP, also called fluors. Traversing charged particles transfer their kinetic
energy mainly to the base material by ionization and excitation, the latter being more likely
for low particle energies. Electrons which are released by ionization themselves undergo
the same energy loss processes, leading to cascades of secondary particles.

Excited base molecules may fluoresce or transfer their energy by Förster resonance energy
transfer (FRET) [För48], a non-radiative energy transfer process, which is more likely since
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Figure 2.9: The detector nonlinearity is applied by shrinking theoretical input spectra from
Figure 2.2 by applying nonlinear relations such as equations (2.22) or (2.28)
to single electrons. The graph shows the impact of combined scintillator and
electronics nonlinearity on the theoretical spectrum of 137Cs. The upper energy
scale is mapped onto the lower energy scale.

donor and acceptor spectra are overlapping. The energy may also be be transformed into
vibrational excitation and finally dissipate as heat. A random walk of energy transfers
or exciton diffusion [Pow71] may end up hitting a fluor acting as exciton trap, whose
absorption spectrum overlaps with emission from the base material, but which emits at
higher wavelengths. Here radiative de-excitation is more likely, since fluor donor and base
acceptor spectra do not overlap. This largely extends the mean free path of a photon. To
further limit self-absorption by the primary fluor with concentrations ≈ 1.5%, an additional
secondary fluor with concentrations ≈ 0.1% may further shift the wavelength and increase
the absorption length.

A survey to find the source of the uncommonly large nonlinearity for P III detectors
results in an extensive study of processes leading to nonlinearities in the scintillation
process. A semi-empirical model was worked out by Birks [Bir52] and usually is applied to
describe scintillation quenching:

d𝐿
d𝑥

=
𝑔d𝐸d𝑥

1 + 𝑘𝐵
d𝐸
d𝑥

⇔
d𝐿
d𝐸

=
𝑔

1 + 𝑘𝐵
d𝐸
d𝑥

. (2.22)

Further models which evolved over time and an approach to simulate quenching effects
using scattering simulations are presented in section 2.3.3.

For the nonlinearity of P III detectors it finally turned out, that bandwidth limita-
tions in the signal processing are responsible for a similar behavior. A description using
equation (2.22) with increased 𝑘𝐵 yields a decent reproduction of measured data. It is im-
portant to note, that no good description of the measured spectra can be achieved if non-
linearity relations are applied after summing up electron energies of an electron cascade.
More details about a comparison of several nonlinearity models are provided in [Sau18].
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2 Electron Detection and Electron Asymmetry A

2.3.2 Detector Calibration via Time of Flight Measurement

The calibration of a calorimetric detector requires a reference measurement which allows
to determine the energy of incident particles independently. This can be done by assuming
a particular energy spectrum of the particle source – such as for radioactive calibration
sources – or by determining a different quantity, which allows to draw conclusions on
the individual particle energy. One of these quantities is the time of flight (ToF) which a
particle requires to cover a well-known distance. It allows to determine the speed of the
particle and therefore its energy.

The electron ToF was so far only used to separate events on two distinct detectors
connected by a magnetic field. In particular, for P III, the time difference between two
trigger signals during one event is used to decide which detector was hit first. In the case
of neutron decay measurements the second trigger is then considered as a backscattered
electron. So far, there were no attempts to use the timing information to draw conclusions
on the electron energy. The main reason is the angular distribution of the electrons relative
to the magnetic field which theoretically allows infinitely large flight times: The gross flight
path to travel a distance 𝑙 along the magnetic field increases by a factor cos−1 𝜃, for a polar
angle 𝜃.

[Dub16] proposes a method to overcome this problem which and is proven to be working
in [Roi+18]. Here, the inverse magnetic mirror effect is used to project even large initial
polar angles 𝜃0 of the momentum to the magnetic field to almost parallel movement along
the magnetic field:

sin𝜃(𝑧) =
􏽱

𝐵(𝑧)
𝐵0

sin𝜃0. (2.23)

If 𝐵(𝑧)/𝐵0 is small for most of the distance 𝑙 between start and stop point, the actual flight
path can be considered to be almost 𝑙 as well. Since the electron energy is solely determined
from the ToF, it is not required to know the spectrum at the stop detector which is to be
calibrated. Any electron source which provides a start signal and electrons in the required
energy range is therefore suitable as calibration device. For this experiment a scintillator
doped with 90Sr fulfills this purpose. It is read out by a PMT connected by a light guide.
Figure 2.10 shows a schematic overview of the experiment. The stop detector which is
located in the low field region consists of a scintillator, light guide and PMT as well.
The PMT signal therefore provides energy and timing information which can finally be
used to determine the stop detector calibration. The following sections provide a more
detailed insight to aspects which are not covered in [Roi+18].

Adiabatic Transport

The magnetic field densities at the starting point were varied to be 2.5T, 1.3T and 0.7 T,
which quickly decreased to 22mT of the 4.43m of transport section. For the largest change
of magnetic field from 2.5T to 22mT, perpendicular starting angles lead to the maximal
angle of 5.3° within the transport section, which increases the flight path by a maximum
of 4‰. However, good things often come for a price: The magnetic flux 𝐵⃗ ⋅ 𝐴 must be
conserved and as 𝐵⃗ is decreasing, the through-flown area 𝐴 must increase, and therefore a
starting section 𝐴0 is widening to a covered area of 𝐴1 = 𝐴0 ⋅ 𝐵0/𝐵1. An electron with center
of gyration in distance 𝑟0 to the center of the magnetic field, will finally have a center of
gyration of 𝑟1 = 𝑟0 ⋅ √𝐵0/𝐵1. The energy dependent fraction of transmitted electrons can be
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Figure 2.10: The ToF experiment was setup to trigger for coincident signals in start and stop
detector. The upper part shows the decreasing magnetic field at the start in
blue and the sketched particle movement in red. Photons which are released
in the scintillators (light blue) are guided to photomultiplier tubes (PMTs). The
trigger logic in the lower part registers an event if photons are detected in both
of the PMTs. The signal amplitude in the right detector is then compared to
the ToF – the time difference of the signals between right and left detector.

expressed as
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d𝐼

d𝑟0d𝜃
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⎛
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2 sin𝜃√𝐸2 + 2𝑚𝐸
, 0

⎞
⎟⎟⎟⎟⎟⎠d𝑟0d𝜃. (2.24)

𝐼(𝑟0, 𝜃) denotes the distribution of electrons escaping the start detector depending on the
distance to the center. 𝑎 is the inner radius of the vacuum tube, where electrons eventually
are absorbed if their distance to the central axis is too large. These calculations are only
valid in the case of adiabatic transport, which in simple words means: The change of the
magnetic field must be small for one gyration. This condition can be expressed by the
adiabatic parameter:

𝜂 =
2𝜋𝑝𝑒
𝑒𝐵2

􏿙
d𝐵
d𝑧
􏿙 ≪ 1. (2.25)

The magnet P is magnetically shielded and must allow access to the center of the
solenoid at the same time. Figure 2.11 shows how end-plates with central holes fulfill both
conditions but lead to a quick decrease of the magnetic field. The holes in the plates finally
lead to an adiabatic parameter 𝜂 ≈ 1 for energies of < 1MeV, estimated in Figure 2.12b,
which contradicts the required condition. It is therefore not sufficient to simply assume
equation (2.23), but it has to be checked by means of particle tracking calculations.

Magnetic Field Calculations In contrast to the typical approach of finite-element calcu-
lations, the Mathematica add-on Radia v4.31 [CEC98] uses a boundary integral method
to obtain static magnetic field densities created by coils and magnetized solids. The mag-
netization of ferromagnetic solids still is calculated by finite-element relaxation, however.
The magnetic field was measured at 1 T nominal magnetic field density along the central
axis of the solenoids, by using a Hall probe. This data is used to tune the magnetic field
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Figure 2.11: The superconducting magnet P is shielded by steel-plates which quickly
decrease the magnetic field on the central axis. To the left, the beginning of the
low field section is visible. A rubber hose is used as light-tight envelope for the
start detector.

calculations and obtain the expected magnetic field at any point in the setup for arbitrary
currents through the supraconducting solenoid. Figure 2.12a shows the resulting magnetic
field along the central axis.

Particle Tracking To test the assumption of equation (2.23) an updated version of the
particle tracking code which is described in [Roi10] is used. The initial parameters which
allow a particle to reach the stop detector have to be found. A scan of the kinetic energy,
the distance to the center of the start detector and the initial polar angle is done to obtain
an allowed range for the azimuthal angle. To simplify calculations the vacuum vessel is
assumed to be centered in the magnetic field. This allows to reduce the variation of the
starting position along one axis, using the cylindrical symmetry to transform any starting
point to the investigated parameter range by rotation:

𝑥⃗ ⟶ 𝑅𝑥⃗ = 􏿶
0
􏿖𝑥⃗􏿖􏿹 , 𝑝⃗ ⟶ 𝑅𝑝⃗.

Scattering The initial kinematic parameters which are required to decide whether an elec-
tron will reach the stop detector are estimated by using the simulation toolkit Geant4
v10.3.1 [All+16], carefully taking into account required adaptations to the default settings
[Kim+15]. Good precision even at low energies requires more computation time and there-
fore only few events (300000) are simulated using the single Coulomb scattering model.
The start scintillator has a thickness of 5mm and is doped with a 90Sr source at a depth of
2.5mm. To reach the stop detector, the decay electrons of 90Sr or its daughter isotope 90Y
have to overcome the remaining 2.5mm of scintillator, leading to an energy loss of at least
450 keV, which provides enough light emission from the start detector to be used as a start
signal. Electrons which are able to interpenetrate the start detector are distributed around
the center of the detector within a large radius of 1 cm and a mean distance to the center
of 3.4mm as Figure 2.13a shows. Finally the simulation provides all required parameters
for these particles to decide whether they may hit the stop detector as well.
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(a) The magnetic field of the setup is measured
at 1 T and calculated for all configurations.
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timation of the adiabatic parameter shows,
that the required condition (2.25) is not ful-
filled. Consequently the evolution of the po-
lar angle along the flight path must be ana-
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Figure 2.12: Measurements of the magnetic field in the 1 T configuration are used to tune
the calculations. The calculated magnetic field allows an estimation of the
adiabatic parameter.
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(b) The figure shows the distribution of elec-
trons that can reach the detector in the low-
field region. The magnetic flux leaves the
inner region of the vacuum tube by large
parts and only electrons at small distances
to the center are transmitted.

Figure 2.13: The observed coincident count rate was much smaller than expected. The reason
is the small diameter of the vacuum tube in the transport section. The figures
show the distribution of simulated electrons originating from the 90Sr source,
after traversing the scintillator.
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Despite the activity of 8 kBq, only a coincident rate of ≈ 30 events/s was observed at
𝐵 = 3T. This does not hint to a malfunction of the magnetic transport, but simply is
an interaction of the electron distribution at the start detector and its imaging onto the
stop detector. If the detector would be centered in the magnetic field, a coincident rate of
≈ 47 events/s would be expected from the simulation. A slight shift of the detector off axis
by 2mm may explain the deviation.

Data Analysis

In principle the ToF method does not depend on any knowledge about the energy spectrum
at the stop detector. The energy of each particle is calculated by its ToF. Unfortunately the
timing information depends on the signal pulse shape and therefore the whole apparatus
must be calibrated. The scintillation light is guided to the PMTs by rather long light guides
of lengths 50 cm for the start detector and 20 cm for the stop detector, which increases the
probability for an early first photon for events with high photon yield compared to events
with only few photons. Furthermore the employed constant fraction discriminator has a
time-walk, delaying its output signal especially for low amplitudes.

The absolute timing of the time-to-digital converter can be calibrated by artificially ex-
tending the signal path of either the start or the stop detector by precisely known delays.
The timing differences between separate measurements then yield a timing-channel-relation.
For the determination of the time-walk characteristic, start and stop detector may be moved
close to each other to effectively reduce the flight path to zero. The timing characteristic of
coincident events in this configuration then yields the correction which has to be applied
for the actual ToF measurement.

Timing Offset The minimal ToF for an electron is given by 𝑡𝑚𝑖𝑛 = 𝑙/𝑐 or, if the energy
is known, by 𝑡 = 𝑙/(𝛽𝑐). During the analysis it turned out, that despite the application
of the timing correction function, a considerable number of electrons would reach the
detector quicker than light. Most likely, during the course of adapting the experiment to
the calibration measurement, cables were switched, which would add a constant offset to
the timing difference between both detectors. Although a lot of the theoretical precision is
lost, this slip does not render the measurement useless:

The change of velocity is decreasing with increasing kinetic energy. Therefore the ToF
is getting insensitive to the particle energy at high energies, which is confirmed by the
measured time vs. energy distribution in Figure 2.14a. However, this also means, that the
ToF of particles at high energies can be used for the determination of the timing offset.

𝛽 = 􏽯1 − 𝛾
−2 =

􏽱
1 −

𝑚2
𝑒𝑐4

𝐸2
⇒

d𝛽
d𝐸

=
𝑚2
𝑒𝑐4

𝐸3
􏽰
1 − 𝑚2𝑒 𝑐4

𝐸2

⇒ Δ𝑡 ≈
𝑙𝑚2

𝑒𝑐3

𝐸3
􏽰
1 − 𝑚2𝑒 𝑐4

𝐸2

Δ𝐸. (2.26)

At 1.5MeV kinetic energy, a precision of 1% for the theoretical description of the spectrum
would be sufficient to determine the additional constant offset with an uncertainty < 10 ps.
To get an estimate of the offset, the detector function is fitted at low energies. Afterwards
these parameters are fixed and only the offset is fitted. These steps are repeated until all
parameters remain stable. A variation of parameters in the scattering simulation, as well as
a variation of particle tracking parameters yields an estimate for the systematic uncertainty
of the timing offset of 50 ps. This is not sufficient to obtain a reliable detector function, but
allows to test the ToF calibration method to be applicable for electron detectors.
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(b) The measured ToF data are used to extract
a nonlinearity relation between energy and
measured amplitude. The model gain curve,
here defined as the ratio of mean amplitude
and extracted energy, shows good agreement
with the measured data.

Figure 2.14: A simultaneous fit to measured detector responses at different flight times allows
the determination of the detector nonlinearity. A constant timing offset between
both detectors can be fixed by exploiting the small change in ToF at high electron
energies.

Detector Function Basically the same detection process as for the P III detectors must
be applied here, except that only one PMT is used per detector, which largely simplifies the
determination of the trigger function. The same toolkit which is used for the analysis of a
Compton scattering calibration method [Sau18] is adapted to the energy determination by
ToF. Results are therefore easily comparable and agree with a model assuming scintillation
quenching according to Birks, presented in Figure 2.14b.

A method presented in [Roi+18] introduces an assumption about the asymptotic behavior
of the detector gain at high energies. By requiring a constant gain at high energies, the
timing offset can be fixed at higher precision. Incomplete energy deposition in the scintillator
at high energies and electronics effects for large amplitudes may lead to nonlinearity even
at high energies, though. Differences in the results between [Roi+18] and Figure 2.14b arise
from releasing the restriction.

ToF Detector Charaterization in PERC

The instrument PERC is equipped with a filter magnet [Dub+08; Kon+12] which is used
to enhance the sensitivity of the asymmetry measurements in neutron decay, but which
could also be used as a starting field for a ToF measurement, similar to the presented
measurement. Figure 2.15 shows how adiabatic transport of electrons is already guaranteed
by the design of the coils and the magnetic field will be mapped and therefore well known
to allow reliable tracking simulations. Assuming that the 8m long central coil is operated
at 2% of its nominal current, the minimum magnetic field would be 30mT. Starting at
almost 6T, starting angles of 90° would be projected onto 4°. However, the flip would not
happen immediately and an intermediate flight path with 𝐵 ≈ 100mT must be considered as
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Figure 2.15: The coil configuration of PERC guarantees adiabatic transport of charged par-
ticles even for high energies (here: 800 keV) and allows the application of
equation (2.23) to calculate the polar angle 𝜃 of the momentum. An initial
polar angle of 90° is reduced to ≈ 6° in the long flight section.

well. A simulation of particles starting almost at 95% of the field maximum yields a ToF
difference of 10% for particles emitted at 90° compared to particles emitted at 0°. This is
comparable to the experiment performed with Perkino. A method to determine the angular
spread of electrons at the start detector is proposed in [Dub16] and would only require
minimal changes to the ToF setup.

2.3.3 Simulating Quenching

An inconvenient property of scintillation quenching as described by equation (2.22) [Bir52]
is the dependency of the parameter 𝑘𝐵 on the particle type and the inability to deduce it
from first principles. The differential energy loss d𝐸/d𝑥, obtained from Bethe’s formula or
as an adaptation for electrons and positrons [RC54] tabulated in [BS64], does not express
properties of the secondary particles which absorb the energy of the primary particle and
are responsible for the excitation of the scintillator base material. Therefore a comprehensive
description of the process cannot only depend on d𝐸/d𝑥. This can easily be seen by comparing
the maximum energy transfer of an electron of mass 𝑚𝑒 with kinetic energy 𝐸𝑘𝑖𝑛 to an
electron and the maximum energy transfer of a proton with the mass 𝑚𝑝 and the same
kinetic energy to an electron, which classically is limited by momentum conservation:

𝐸max,𝑒
𝐸max,𝑝

􏵶
𝐸kin

nonrelativistic=
1
2

4𝑚𝑝𝑚𝑒

(𝑚𝑝+𝑚𝑒)2

≈
𝑚𝑝

8𝑚𝑒
. (2.27)

The same holds for the mean energy transfer. Protons which generally have a higher
energy loss than electrons [Ber+14] are releasing many low-energetic electrons, while primary
electrons may release secondary electrons with energies comparable to their own. An
approach, which tries to disentangle the secondary particle dependencies is presented by
[Vol+66]. Therein quenching arises by quenching centers for high local energy deposition.
However, there is an account for higher energetic secondaries, also called delta rays, by

46



2.3 Nonlinear Detector Response

assuming no quenching for these particles:

d𝐿
d𝑥

= 𝑔 􏿰(1 − 𝐹𝑠)
d𝐸
d𝑥

exp 􏿶−
𝑘𝐵
2
(1 − 𝐹𝑠)

d𝐸
d𝑥 􏿹

+ 𝐹𝑠
d𝐸
d𝑥 􏿳

. (2.28)

The quenching parameter 𝑘𝐵/2 is inserted intentionally to be comparable to Birks’ quenching
(2.22) for small d𝐸/d𝑥. 𝐹𝑠 accounts for the mean delta ray energy and depends on the energy
of the primary particle and the mean excitation energy 𝐼, a material parameter:

𝐹𝑠 =
1
2

ln 􏿵 4𝑚𝑒𝐸
𝑀𝑇0

􏿸

ln 􏿵 4𝑚𝑒𝐸
𝑀𝐼

􏿸
. (2.29)

𝑇0 is defined as the minimum energy a secondary particle must have to be considered
as a delta ray and hence presents itself as second free parameter to describe scintillation
quenching. Equation (2.29) assumes the primary mass 𝑀 ≫ 𝑚𝑒, neglecting delta rays for
incident electrons, by stating that the integral energy loss of secondary particles be small for
low primary particle energies; a strong statement, considering that only few eV are required
to excite the scintillator. The relation also neglects quenching of secondary particles, which
is considerable at energies in the 10 to 100 keV range.

A modern method which allows studying the basic idea of considering secondary elec-
trons in more detail is the application of scattering simulations to track the particle move-
ments. The low-energy electromagnetic Livermore physics model of Geant4 allows tracking
of electrons with energies down to 10 eV [Inc16; PCS91], which is close to energies required
for atomic excitation. In this framework, any residual energy loss calculated by Geant4 can
be treated as energy that is locally transmitted to surrounding molecules.

To estimate the probability of energy transfer to one of the circumjacent fluors, a random
walk Monte Carlo simulation is performed on a 3D grid representing the base molecules,
doped with random occurrences of fluor molecules. The choice of a three dimensional
grid is done due to observations by [Pow71], suggesting that sole one dimensional exciton
migration along polymer chains is unlikely. The probability for Förster resonance energy
transfer from a donor to an acceptor depends on the spectral overlap, which is assumed
to be equal for all molecules, and the distance ∝ 𝑟−6. A random walk is assumed to be
finished when a fluor is reached or the energy is not further non-radiatively transferred.
As a result, in Figure 2.16 the overall probability of successful energy transfer to a fluor
is determined, as well as the dependence on the distance between initial base excitation
and final acceptor fluor. The probability for an initial excitation to be trapped by a fluor is
found to depend on the fluor concentration 𝑐f and the nonradiative transfer probability 𝑝nr
by

𝑝trap(𝑐f, 𝑝nr) = 1 − 􏿶1 + 𝐶1
𝑐f

1 − 𝑝nr
􏿹
−1

, (2.30)

with 𝐶1 = 0.87, which is slightly higher than a nearest neighbor calculation by [Ros68;
Rud66] who find 𝐶1 = 0.66. The latter is intrinsic to nearest neighbor three dimensional
random walks and denotes the probability of not returning to the origin.

The distance 𝑟 of the origin to the point where the absorption takes place is distributed
by

1
𝑝trap

d𝑝trap
d𝑟

=
𝐶22,1(1 − 𝑝

2𝐶2,2
nr )

𝑑2
𝑟 exp 􏿵−𝐶2,1(1 − 𝑝nr)𝐶2,2

𝑟
𝑑
􏿸 , (2.31)
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Figure 2.16: The probability of trapping an excitation is simulated by using a 3D random
walk of Förster resonance energy transfers. Naturally the probability increases
for larger fluor concentrations 𝑐f. Radiative energy loss is considered as ex-
tinction of the excitation. Therefore, a large probability for non-radiative en-
ergy transfer 𝑝nr also increases that probability. A simultaneous fit of equation
(2.30) agrees well with simulated data.

with 𝐶2,1 = 1.72, 𝐶2,2 = 0.45 and 𝑑 = −3√𝑛 being the distance between two neighbouring base
molecules at particle density 𝑛.

If an exciton hits an already excited fluor, either there is bimolecular excitation of a
base molecule and the fluor, which could hinder fluorescence, or the random walk simply
continues. For the latter case, the concentration of traps is reduced locally, also reducing the
probability of hitting another fluor. A simulation taking this into account yields 𝐶1 = 0.78,
𝐶2,1 = 1.32 and 𝐶2,2 = 0.39.

These simulations are performed outside of Geant4 as the microscopic scale is beyond the
scope of its particle tracking. The obtained relations can now be used to define a grid of
fluors inside the detector which can be excited by neighbouring energy depositions. Since
the time for emission of a fluorescence photon is much larger than the time a particle needs
to be stopped, fluors can be considered to be saturated, once they are excited. In [PH71]
bimolecular quenching – the formation of a higher excited state due to neighbouring excited
molecules – for concentrations of 𝑝-Terphenyl of 0.35% is considered to be unlikely but the
depletion of unexcited fluors is assumed to be the main source of quenching. That is the
crucial assumption which leads to quenching in the simulated model.

When a particle track including secondary electrons is finished, the number of excited
fluors is counted and defines the number of emitted photons. By this step, reabsorption of
first fluor photons is neglected, as it can be be applied later on. The free parameter range
is limited by requiring an emission of ≈ 10 photons per keV [Sai14a].

Keeping these assumptions, the results of a quick first simulation are sobering: The
obtained nonlinearity expressed by 𝑘𝐵 = (20.9 ± 2.1)nm/keV for equation (2.22) is too small.
This is not unexpected however, since equation (2.30) is completely neglecting effects of
self-quenching. Measurements by [SB53] show, that increasing concentrations of fluors
lead to a saturation and later even to a decrease of the light response, reducing the effective
fluor concentration.
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In order to attain a realistic quenching parameter of 𝑘𝐵 ≈ 120nm/keV, the effective fluor
density must be decreased to 0.02%, which is on the order of the secondary fluor concen-
tration. It might therefore be concluded, that secondary fluor saturation is responsible for
quenching effects in plastic scintillators. Further investigation to disentangle between static
quenching and saturation effects will be required to gain deeper insight into scintillation pro-
cesses. This might help to understand recently measured differences in d𝐸/d𝑥-dependencies
for different types of scintillators (polyvinyltoluene and polystyrene) [Pös+18].

2.4 Light Extraction from Scintillator

Light that is produced by scintillation has to be transported to the edges of the scintillator
to get detected by PMTs, which are coupled to the scintillator with light guides. Light
transport is typically done via internal total reflection. Because of finite angles of total
reflection and absorption, only a fraction of the initially emitted light reaches the PMTs.
The effective intensity will be calculated in the first part of this section. For the P III
2014 detector, the light guides were not directly coupled to the scintillator, but a small gap
with a thickness of about one sheet of paper is between the two parts. In the second part,
losses resulting from this gap will be calculated.

2.4.1 Light Transport

As a good approximation, light in a scintillator gets emitted isotropically at its source. Light
collection can be achieved by two methods:

1. read-out from the back

2. read-out from sides, exploiting total reflection

Both detector concepts have been applied for P measurements over the years, with
different results. The first is less prone to surface deterioration and has a large overall
light output when combined with a reflective coating. The second provides better detector
uniformity, i.e. the independence of the light output on the impact position of the detected
particle. It does not forgive careless handling however, as the concept depends on good light
transport and reflection. Overall, read-out from sides has proven to be the better choice
and will be treated in the following.

Light extraction from the sides is possible, because the refraction index of the scintillator
of 𝑛S = 1.58 [Sai14a] is quite high. This way, a large fraction of the emitted light (77%)
does not leave the scintillator through the front plane (i.e. the surface), but gets transported
via total internal reflection. However, light can get absorbed in the material or the total
reflection might not be perfect because of surface roughness. In the following, these effects
will be investigated to calculate an effective light yield per PMT depending on the light
source position.

Efforts to calculate the spatially dependent light output from surfaces have been made
by [SJ49] and later, including light losses and more complicated geometries, by [Kei70]. In
[Plo00] this was applied to one of the P II detectors. However, these calculations led
to closed form solutions, whereas the distribution over multiple PMTs at one surface will
have to be carried out numerically. More realistic results are finally obtained by ray-tracing
simulations. A calculation yields quicker results however and allows to fix the principle
geometry before studying higher order effects. Both methods are applied in Figure 2.24 and
show comparable results.

Two cases will be covered for the following considerations:
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(a) In the plane parallel to the surface the light
direction is defined by the azimuth 𝜙. It
varies between 0 and 2𝜋.

θ

θinner

θouter

(b) The polar angle 𝜃 defines, whether the light
exits through the surface or is transported
through the edges.

Figure 2.17: The light direction is defined in standard spherical coordinates.

1. light guides at two edges of the scintillator and directly coupled to the scintillator,

2. light guides at four edges of the scintillator and coupled with a tiny gap in between
scintillator and light guide.

These are two basic concepts for the detectors employed in P III.
The choice of these configurations is defined by a few conditions:

• maximize light output

• minimize intensity dependence on light source position

• detector must fit inside instrument

There is no optimal solution and the best compromise has to be found for each specific
situation. A further simple but expensive concept is to directly couple PMTs or silicon
photomultipliers to the edges of the scintillator. This yields the highest light collection
efficiency, but decreases the overall detector uniformity for large scintillators.

Critical Angle

Before taking a look at special geometries, first the transport of light inside the scintillator
will be considered, a process that has to be taken into account for all detectors of this kind.

The light direction is defined in spherical coordinates, which simplifies some of the
calculation steps, but may quickly lead to false assumptions about the solid angle of light
extraction. As in figure 2.17b, 𝜃 is the polar angle to the normal of the scintillator planes
and 𝜙 the azimuth to the normal 𝑛𝑥 = (1, 0, 0) of the outgoing edge.

Limits inside the Scintillator A distinction of cases provides an overview, of where light
may leave the scintillator. 𝛼𝐺𝑥, 𝛼𝐺𝑦 and 𝛼𝐺𝑧 are used as critical angles of the respective
planes:

|𝜃| < 𝛼𝐺𝑧
The light gets lost through the surface.
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|𝜃| > 𝛼𝐺𝑧
|𝜙| < 𝛼𝐺𝑥

|𝜃| < arcsin( cos𝛼𝐺𝑥cos𝜙 )
The light is stored in the scintillator.

|𝜃| > arcsin( cos𝛼𝐺𝑥cos𝜙 )
The light is emitted through the plane with normal 𝑛𝑥.

|𝜙| > 𝛼𝐺𝑥 ∧ |𝜙| <
𝜋
2 − 𝛼𝐺𝑦

The light is stored in the scintillator.
|𝜙| > 𝜋

2 − 𝛼𝐺𝑦

|𝜃| < arcsin(
cos𝛼𝐺𝑦
sin𝜙 )

The light is stored in the scintillator.

|𝜃| > arcsin(
cos𝛼𝐺𝑦
sin𝜙 )

The light is emitted through the y-plane.
The limits for 𝜃 are found, when applying Snell’s law according to the planes, i.e.

cos𝜙 sin𝜃 = cos𝛼𝐺𝑥 = 􏽮1 − 𝑛−2𝑥 (2.32)

sin𝜙 sin𝜃 = cos𝛼𝐺𝑦 = 􏽯1 − 𝑛
−2
𝑦 (2.33)

cos𝜃 = cos𝛼𝐺𝑧 = 􏽮1 − 𝑛−2𝑧 . (2.34)

For now, light exiting through the x-plane will be considered. Therefore, only the angular
limits of 𝜙 ∈ [−𝛼𝐺𝑥, 𝛼𝐺𝑥] ∧ 𝜃 ∈ 􏿯arcsin( cos𝛼𝐺𝑥cos𝜙 ),

𝜋
2 − arcsin( cos𝛼𝐺𝑥cos𝜙 )􏿲 are taken into account for

integration.
A further limitation of this range is introduced if a different material is used for the light

guide. In the case of P III, the light guides are made of Poly(methyl methacrylate)
(PMMA), or Plexiglas®. Since its refractive index is slightly smaller (𝑛L ≈ 1.50 [Bea+15])
than the one of the scintillator, further photons get lost during the transport in this material.

Change of Light Direction The initial direction of light is described by the vector

𝑣⃗inner =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos𝜙 sin𝜃
sin𝜙 sin𝜃

cos𝜃

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.35)

When the light reaches one of the edges of the scintillator, it will be refracted or reflected,
depending on its angle to the edges normal. To simplify the calculation of the outer
light direction vector 𝑣⃗outer, the following transformations for a refraction at the y-z-edge
are applied:

𝑣⃗inner
𝑅−→

⎛
⎜⎜⎜⎜⎜⎜⎝

cos𝜃inner
0

sin𝜃inner

⎞
⎟⎟⎟⎟⎟⎟⎠
𝐷−→

⎛
⎜⎜⎜⎜⎜⎜⎝

cos𝜃outer
0

sin𝜃outer

⎞
⎟⎟⎟⎟⎟⎟⎠
𝑅−1−−−→ 𝑣⃗outer (2.36)

The rotation 𝑅 is a rotation around the x-axis with the rotation angle 𝜃𝑅 such that
sin𝜙 sin𝜃 −→ 0.

𝑅 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 cos𝜃𝑅 − sin𝜃𝑅
0 sin𝜃𝑅 cos𝜃𝑅

⎞
⎟⎟⎟⎟⎟⎟⎠ , 𝜃𝑅 = arctan(sin𝜙 tan𝜃) (2.37)
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The refraction 𝐷 maps the inner vector onto the outer vector following Snell’s law

sin𝜃outer
sin𝜃inner

=
𝑛S
𝑛L

= 𝑛 (2.38)

for the refraction from the scintillator into the light guide. With

cos2 𝜃outer = 𝑛2(cos2 𝜙 sin2 𝜃 − 1) + 1

and applying 𝑅−1 to rotate back into the initial frame, the direction of the outgoing light is
expressed by

𝑣⃗outer =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

􏽯𝑛
2(cos2 𝜙 sin2 𝜃 − 1) + 1

􏽯𝑛
2(1 − cos2 𝜙 sin2 𝜃) sin𝜙 tan𝜃

􏽯1+sin
2 𝜙 tan2 𝜃

􏽰
𝑛2(1−cos2 𝜙 sin2 𝜃)

1+sin2 𝜙 tan2 𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
􏽯𝑛

2(cos2 𝜙 sin2 𝜃 − 1) + 1
𝑛 sin𝜙 sin𝜃
𝑛 cos𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.39)

The following relations were used:

sin 􏿴arctan(tan𝜃 sin𝜙)􏿷 =
tan𝜃 sin𝜙

􏽯1 + tan2 𝜃 sin2 𝜙

cos 􏿴arctan(tan𝜃 sin𝜙)􏿷 =
1

􏽯1 + tan2 𝜃 sin2 𝜙

1 − sin2 𝜃 cos2 𝜙
1 + tan2 𝜃 sin2 𝜙

= cos2 𝜃.

By setting 𝑣outer,𝑥 to zero, it follows immediately, that the limits for light leaving the scin-
tillator are given by

𝑛2(1− cos2 𝜙 sin2 𝜃) = 1 (2.40)

⇒􏿘
𝜋
2
− 𝜃􏿘 < arcsin

⎛
⎜⎜⎜⎜⎝
√1 − 𝑛−2

cos𝜙

⎞
⎟⎟⎟⎟⎠ (2.41)

⇒|𝜙| < arcsin 𝑛−1. (2.42)

For reasons of symmetry, the integration region for 𝜃 may be halved at 𝜃 = 𝜋
2 , simplifying

inequation (2.41) to

arcsin
⎛
⎜⎜⎜⎜⎝
√1 − 𝑛−2

cos𝜙

⎞
⎟⎟⎟⎟⎠ < 𝜃 <

𝜋
2

(2.43)

Limits inside the Light Guide With the new light direction the limits from equations (2.33)
and (2.34) now turn into

𝑛S
𝑛L

sin𝜙 sin𝜃 = 􏽯1 − 𝑛
−2
L (2.44)

𝑛S
𝑛L

cos𝜃 = 􏽯1 − 𝑛
−2
L . (2.45)
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Figure 2.18: The combination of refractive indices for scintillator and light guide limits the
angles taken into account for integration to the lower right part, i.e. small 𝜙
and large 𝜃.

This further decreases the integration limits to

𝜃 ∈

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
arcsin

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

􏽰
1 − 𝑛2L

𝑛2S

cos𝜙

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, arccos

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
􏽯𝑛

2
L − 1
𝑛S

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝜋
2 , |𝜙| < arcsin

⎛
⎜⎜⎜⎜⎝
􏽯𝑛

2
L−1

𝑛S

⎞
⎟⎟⎟⎟⎠

arcsin
⎛
⎜⎜⎜⎜⎝
1
𝑛S

􏽯𝑛
2
L−1

sin𝜙

⎞
⎟⎟⎟⎟⎠ , otherwise

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.46)

In particular, this also further limits 𝜙, since

1
𝑛S
􏽯𝑛

2
L − 1

sin𝜙max
= 􏽰

1 − 𝑛2L
𝑛2S

cos𝜙max
at 𝜙max = arctan

⎛
⎜⎜⎜⎜⎜⎝􏽱

𝑛2L − 1
𝑛2S − 𝑛2L

⎞
⎟⎟⎟⎟⎟⎠ (2.47)

Figure 2.18 shows the resulting limitations. The figure also considers the grease which is
used to ensure an optical coupling between scintillator and light guide. See below for an
estimate of its refractive index.

Attenuation

The employed materials polyvinyltoluene and PMMA have a finite attenuation length which
leads to a decrease of the intensity of the light. In [Sai14a] the bulk attenuation length
for the scintillator BC-400 is given as 1

𝜆 = 250 cm and in [Sai14b] 1
𝜆 > 400 cm for the

scintillator BC-440. The attenuation length of PMMA is ≈ 1m but will be varied later
on. Additionally, with each reflection, roughness of the surfaces can cause a loss of
light. This can be accounted for by an additional approximative effective attenuation of
𝜆rough = − ln(𝜔)(

cos𝜃
ℎ + sin |𝜙| sin𝜃

𝑤 ) with 1 − 𝜔 being the light loss per reflection, ℎ = 5mm the
thickness of the detector and 𝑤 the height of the scintillator or the light guide. Since the
roughness is not known, the effective absorption length (𝜆 + 𝜆rough)−1 is a free parameter
which has to be deduced from the measurements.

A light beam starting from position 𝑥 = 𝑥0 with angles 𝜙 and 𝜃 traverses a path length
𝑙S
2 −𝑥

cos𝜙 sin𝜃 inside a scintillator of length 𝑙S and a path length 𝑙L

􏽱

𝑛2S
𝑛2L
(cos2 𝜙 sin2 𝜃−1)+1

inside a straight
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(a) The curves of reflectivity and transmittance
for Plexiglas® GS 222, measured by the man-
ufacturer, show that the light guides are al-
most opaque for UV-light.
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(b) The drop of transmittance 𝑡 when attain-
ing the UV-region affects the spectra of the
scintillation light [Sai14a; Sai14b]. This ef-
fect is slightly compensated by the decreas-
ing quantum efficiency of the PMTs [Ham95]
for larger wavelengths.

Figure 2.19: The limited transmittance of the PMMA light guides affects the spectrum that
reaches the PMTs. With increasing light path, the mean wavelength of the light
reaching the PMTs is increasing as well.

light guide of length 𝑙L. The final intensity after attenuation on the way to the PMT now is

𝐼(𝑥, 𝜙, 𝜃, 𝜔) = 𝜔𝑛𝑅𝑦 ⋅ exp

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(𝜆L − ln(𝜔)( cos𝜃ℎ + sin |𝜙| sin𝜃
𝑤L

))𝑙L

􏽰
𝑛2S
𝑛2L
(cos2 𝜙 sin2 𝜃 − 1) + 1

+
−(𝜆S − ln(𝜔) cos𝜃ℎ ) 􏿵 𝑙S2 − 𝑥􏿸

cos𝜙 sin𝜃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.48)

The part sin |𝜙| sin𝜃
𝑤S

was omitted here and replaced by 𝜔𝑛𝑅𝑦, which accounts for the exact
number of reflections 𝑛𝑅𝑦 on the y-plane of the scintillator. This can be done, because 𝑛𝑅𝑦
is known from the calculation of accepted angles.

So far, the attenuation length 𝜆 is assumed to be a constant, but for PMMA it actually
depends on the wavelength. The wavelength dependent reflectivity and transmittance are
shown in Figure 2.19a for light passing a block of 𝐿 = 90mm of Plexiglas® GS 222. Since
these are measured values – the measured reflectivity 𝑅 and the measured transmission 𝑇
– they have to be transformed to 𝑟 – the probability for reflection at one surface – and 𝑡 –
the probability for transmission through one surface:

𝑅 = 𝑟 + (1 − 𝑟)𝑡𝑟𝑡(1 − 𝑟) = 𝑟(1 + 𝑡2(1 − 𝑟)2) (2.49)
𝑇 = (1 − 𝑟)2𝑡. (2.50)

Here up to one reflection is allowed. The solution to these equations are solutions to
polynomials of third order and therefore expressed in closed form. The net transmittance 𝑡
as well as the scintillation spectra of BC-400 from [Sai14a] and BC-440 from [Sai14b] are
shown in Figure 2.19b.

The final light output after a path length 𝑙 can be obtained by integrating over the complete

54



2.4 Light Extraction from Scintillator

BC-440

BC-400

0 100 200 300 400 500

130

140

150

160

170

180

190

l[cm]
λ
[c
m
]

Figure 2.20: The attenuation depends on the wavelength. This leads to a different attenua-
tion and scintillation spectrum at the PMT for different path lengths.

light path attenuation and the scintillation spectrum ℐ (Λ).

𝐼(𝑙) =
∫ Λmax

Λmin
𝑡(Λ)𝑙/𝐿ℐ (Λ)dΛ

∫ Λmax

Λmin
ℐ (Λ)dΛ

=
Λmax

􏾙
Λmin

𝑡(Λ)𝑙/𝐿𝜄(Λ)dΛ (2.51)

𝜆L(𝑙) = −
ln 𝐼(𝑙)
𝑙

(2.52)

In Figure 2.20 𝜆(𝑙) displays an almost linear dependence on the path length 𝑙.

Fresnel Reflection

Light that moves between two media of different refractive indices can be reflected although
its incident angle is below the critical angle. For non-magnetic materials and unpolarized
light the probability of reflection can be expressed as [Hec02]

𝑅 =
1
2

⎡
⎢⎢⎢⎢⎣􏿶
𝑛out cos𝛼in − 𝑛in cos𝛼out
𝑛out cos𝛼in + 𝑛in cos𝛼out

􏿹
2

+ 􏿶
𝑛in cos𝛼in − 𝑛out cos𝛼out
𝑛in cos𝛼in + 𝑛out cos𝛼out

􏿹
2⎤⎥⎥⎥⎥⎦ . (2.53)

Since 𝛼out is connected to 𝛼in by sin𝛼out =
𝑛1
𝑛2 sin𝛼in and transmission to light guides

corresponds to transitions through the x-plane, the relation changes to

𝑅(𝑛, 𝜒) =
􏿴𝑛2 − 1􏿷

2
􏿴2𝑛2𝜒4 + 􏿴1 − 3𝑛2􏿷 𝜒2 + 𝑛2􏿷

(𝑛𝜒 + 􏽯𝑛
2 􏿴𝜒2 − 1􏿷 + 1)2(𝑛􏽯𝑛

2 􏿴𝜒2 − 1􏿷 + 1 + 𝜒)2
, (2.54)

with

1. scintillator → grease

𝑛1 =
𝑛S

𝑛Grease
, 𝜒1 = cos𝜙 sin𝜃 (2.55)

2. grease ↔ light guide

𝑛2,3 =
𝑛Grease
𝑛L

, 𝜒2,3 =
􏽱

𝑛2S
𝑛2Grease

(cos2 𝜙 sin2 𝜃 − 1) + 1 (2.56)
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3. grease → PMT faceplate

𝑛4 =
𝑛Grease
𝑛PMT

, 𝜒4 =
􏽱

𝑛2S
𝑛2Grease

(cos2 𝜙 sin2 𝜃 − 1) + 1 (2.57)

4. PMT faceplate → photocathode

𝑛5 =
𝑛PMT
𝑛PC

, 𝜒5 =
􏽱

𝑛2S
𝑛2PMT

(cos2 𝜙 sin2 𝜃 − 1) + 1. (2.58)

Since the Fresnel reflection slightly polarizes the outgoing light, the polarization in the
case of transition from light guide to PMT could be taken into account. However, the
probability for reflection in the latter case is rather small and later uncertainties are much
larger, so this effect can be neglected.

By regarding Fresnel reflections, the probability of light being directly transmitted into
the photocathode of the PMT decreases by a factor of

5
􏾟
𝑖=1
(1 − 𝑅(𝑛𝑖, 𝜒𝑖)).

In the case of reflection, the light path length increases, which leads to a higher absorption
probability and allows to neglect more than one Fresnel reflection. The refractive index of
the PMT faceplate is assumed to be 𝑛PMT ≈ 1.50 [Sch15] with borosilicate glass as the given
material [Ham95] for the PMT R5924. The specific type of glass is not named, however the
refractive index of 1.50 that is referenced in the data sheet of the comparable PMT R1307
[Ham98] leads to the assumption, that the glass type BK10 or similar is used. Absorption
will be neglected, since the light loss for a thin window is smaller than 1‰.

More challenging are the properties of the vacuum grease that is used to connect op-
tical elements without gaps. Both candidates, Dow Corning® High Vacuum Grease and
Rhodorsil – Graisse pour Vide, formerly fabricated by Rhône-Poulenc, are based on the sil-
icone Polydimethylsiloxane whose physical properties have been investigated by [Sch+09].
Although both greases share the same basis, [Plo00] showed significant differences in light
transmission for both fabricates, which could be due to the additional substances inside
the products. Especially the former seems a lot more opaque when taken in larger quan-
tities, indicating a higher absorbance. For instance, [Lee+08] showed that it is possible to
attain a large variation of the optical properties by adding e.g. ZrO2-nanoparticles. Despite
these facts, for further calculation the refractive index will be kept at 𝑛Grease ≈ 1.44 and
absorption will be neglected due to the low thickness of the layer.

The optical properties of the directly attached photocathode – it is coated by evaporation
– have been investigated by [MS05]. Hamamatsu® would not provide information about the
exact composition of the photocathode, but the quantum efficiency curve in [Ham95] leads
one to assume that it basically consists of RbCsSb. According to [Ham07] the measurement
of the quantum efficiency already includes reflectivity effects. By assuming perpendicular
incidence of light and PMTs coupled to air, the new quantum efficiency can be estimated to

𝜂(𝜙, 𝜃,Λ) ≈
[1 − 𝑅 (𝑛4, 𝜒4)] [1 − 𝑅 (𝑛5, 𝜒5)] [1 + 𝑅 (𝑛4, 𝜒4) 𝑅 (𝑛5, 𝜒5)]

􏿯1 − 𝑅 􏿵 1
𝑛PMT

, 1􏿸􏿲 􏿯1 − 𝑅 􏿵𝑛PMT
𝑛PC

, 1􏿸􏿲 􏿯1 + 𝑅 􏿵 1
𝑛PMT

, 1􏿸 𝑅 􏿵𝑛PMT
𝑛PC

, 1􏿸􏿲
𝜂𝑅5924(Λ). (2.59)
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Figure 2.21: The quantum effeciency given in [Ham95] (green line) is corrected by calculating
adapted reflectivities.

The impact of this correction is shown in Figure 2.21.
Double reflection inside the faceplate is included here, since the refractive index of the

photocathode is quite large and thus also the probability for reflection. A photon that gets
reflected at the PMT will henceforth be declared as lost, since it will likely be absorbed
inside light guides or the scintillator and the actual endpoint of its path is hard to predict.

The increased absorbance for higher angle impinging photons due to the increased effective
thickness, which is discussed in [MS05] is not included here. However, with increasing
thickness, the absorbance of the photoelectron increases as well. A simple assumption for
the probability of an electron to escape would be

𝑝PE =
1
𝑑

𝑑

􏾙
0

(1 − e−𝑥/𝜆𝛾)e−(𝑑−𝑥)/𝜆𝑒−d𝑥 =
𝜆𝑒−
𝑑 􏿶1 +

1
𝜆𝑒− − 𝜆𝛾

􏿴𝜆𝛾e−𝑑/𝜆𝛾 − 𝜆𝑒−e−𝑑/𝜆𝑒−􏿷􏿹 , (2.60)

where 𝜆𝛾 and 𝜆𝑒− are the mean free paths of photon and electron and 𝑑 the thickness of
the photo layer. For the conception of a PMT one would try to increase this probability, i.e.
choosing the thickness 𝑑 of the PMT such that the outcome of photoelectrons is maximized
for a standardized setup. With increasing thickness 𝑑/𝜒, the quantum efficiency would
therefore further diminish. While 𝜆𝛾 can be calculated from the imaginary part of the
refractive index 𝑛PC and the thickness 𝑑 from the transmission, the actual absorbance
for electrons 𝜆𝑒− is still unknown and it cannot be proven that 𝑑 was chosen to be at the
maximum, therefore the effect will be neglected for now.

Integration

Up to now the intensity of one particular light beam at the PMT has been calculated. Since
the PMT is covering a whole area, the full intensity of a particular light source is obtained
by integration over a range of emission angles. Using the intensity from equation (2.48),
the detected light emitted from a point (𝑥, 𝑦) is written as

𝐼(𝑥, 𝑦, 𝜔) = 􏾙
Λ

􏾙
𝜙(𝑥,𝑦)

𝜃max(𝜙)

􏾙
𝜃min(𝜙)

1
􏾜
𝑛𝑅=0

􏿰
3
􏾟
𝑖=1
(1 − 𝑅(𝑛𝑖, 𝜒𝑖))􏿳 𝜂(𝜙, 𝜃,Λ)⋅

[𝑅(𝑛1, 𝜒1)+(1 − 𝑅(𝑛1, 𝜒1))2𝑅(𝑛2, 𝜒2)]𝑛𝑅⋅
𝐼(𝑥 + 𝑛𝑅 × 𝑙S, Λ, 𝜙, 𝜃, 𝜔) sin𝜃d𝜃d𝜙dΛ

(2.61)
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Side View
                          
                          Light Guides

Top View

6 Photomultipliers
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Scintillator

Figure 2.22: The P III 2009 detector was read out from the sides. The scintillators
size was 43 × 45 cm2, coupled to light guides of 40 cm length. To fit into the
instrument, the vacuum vessels were extended by “ears”. Figure adapted from
a sketch by M. Schumann.

with 𝜃 being limited to the range (2.46) on page 53. The variables 𝑛𝑖 and 𝜒𝑖 are defined
in equations (2.54) – (2.58). Fresnel reflections at the scintillator-to-light guide edge are
limited to the first order (𝑛𝑅 ≤ 1). No closed form solution is found for this expression,
which can be calculated numerically however.

2.4.2 Perkeo III 2009 Detector

For the beam time 2009, the detector was chosen to be read out from two sides. To increase
the light output, the light guides were directly coupled to the scintillator using an optical
grease.

This setup allows a direct application of equation (2.61). Since each side is split into
three parts – one inner and two outer PMTs – first the limiting regions 𝜙(𝑥, 𝑦) have to be
calculated. Figure 2.23 shows the mapped integration region.

The obtained formula allows to visualize the detected light intensity depending on the
position of emission. Examples for single PMTs are shown in figure 2.25.

The exact geometry of the light guides as in 2.22 is not included in the calculations. Since
five separate light guides per PMT lead to the centered PMT, the light guides are curved and
therefore are not of equal length. This could be accounted for by splitting the detector in 15
separate sections and introducing adapted lengths for the light guide segments. Difference
due to this effect are small, as a comparison to a Monte-Carlo simulation with a realistic
geometry in Figure 2.24 proves.

2.4.3 Perkeo III 2014 Detector

For the P III 2014 detector from Figure 1.7b, the light guides were not directly coupled
to the scintillator, but a small gap with the thickness of about one sheet of paper is between
the two parts. This way, light losses inside the light guides are reduced, but light may
actually be stored inside the scintillator. That simplifies the limits of the integral (2.61) to
expressions (2.42) and (2.43). However, a non-negligible fraction of light gets lost in the
newly created gap.
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Figure 2.23: Multiple reflections at the top and bottom planes lead to multiple light cones
mapped to the scintillators x-plane. Therefore a piecewise integration over 𝜙 has
to be done. Horizontal lines depict the separation between PMTs/light guides.
In this figure light cones which reach the top left PMT of the P III 2009
detector are drawn.
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(a) The calculation (lines) for the light outcome
at the outer PMTs compared to simulations
(dots).
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(b) The calculation (lines) for the light outcome
at the middle PMTs compared to simulations
(dots).

Figure 2.24: A comparison of the outcome of equation (2.61) with data from a simulation
with Geant4 done by [Sau15] shows good agreement. Larger differences are due
to the form of the light guides, which has been approximated as straight and
equally shaped in the calculation, whereas the simulation includes their real
geometry. Furthermore, the simulation respects roughness by allowing isotropic
reflection, while in the calculation it is accounted for by a fixed loss probability.
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(a) Light intensity at the upper left PMT without
roughness.
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(b) Light intensity at the upper left PMT with a
light loss of 1% per reflection.
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(c) Light intensity at the middle left PMT with-
out roughness.
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(d) Light intensity at the middle left PMT with
a light loss of 1% per reflection.

Figure 2.25: The position dependent light intensity per PMT of the P III 2009 detector
shows both, angular and distance dependence. Without losses, the maximum
incoming light intensity is at 11% right before the light guides. A loss of 1%
per reflection decreases the light intensity significantly.
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Figure 2.26: The refraction inside the gap between detector and light guide increases the
light loss. If the projected path length 𝑘 is larger than 𝑧1, the light will not be
coupled into the light guide.

Losses in the Gap between Scintillator and Light Guide

For now it will be assumed that light only gets lost in the z-direction, as if the scintillator
would be infinitely large. Furthermore, the probability for light emission shall be equal
at any depth 𝑧0, such that the same can be said for the 𝑧1-coordinate at the scintillator
edge. Actually this would only apply for impinging electrons with high energies – most
of the detected electrons do not penetrate deeper than 1mm. The error introduced by this
assumptions is negligible.

Figure 2.26 depicts the light loss in a gap of width 𝑑, if the projection 𝑘 of the outgoing
position 𝑧1 of the photon onto the ingoing position is larger than the thickness ℎ of the light
guide allows. Expressed by the means of equation (2.39) this implies

𝑘 =
𝑑 cos𝜃

􏽯cos2 𝜙 sin2 𝜃 − 1 + 𝑛−2S
> 𝑧1 (2.62)

Solving this equation leads to

𝜃 < arctan

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
􏽯𝑑

2 𝑛2S + 􏿴𝑛2S − 1􏿷 𝑧21

𝑧1􏽯1 − 𝑛
2
S sin

2 𝜙

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.63)

which shows that the lower integration limit of equation (2.43) changes to

arcsin 􏿶√
1 − 𝑛−S2
cos𝜙 􏿹 −→ arctan

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
􏽯𝑑

2 𝑛2S + 􏿴𝑛2S − 1􏿷 𝑧21

𝑧1􏽯1 − 𝑛
2
S sin

2 𝜙

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.64)

to compensate for the loss in the gap. At 𝑑 = 0 this transformation is the identity as
expected. The complete loss can be accounted for by integrating 𝐼(𝑥, 𝜙, 𝜃, 𝜔) over 𝑧 from 0
to ℎ, if the assumption of an equally distributed light output at the edge of the scintillator
is kept. The variation of 𝑧 will decrease the integration range for 𝜃. Assuming a gap of
about 100um (one sheet of paper), the loss is about 2%. Figure 2.27b illustrates that in
the region of reasonable gap sizes, the light loss increases proportionally with the gap. The
effect may be reduced by increasing the thickness of the light guide. This would require a
larger read-out cross section at the end of the light guides, though.

Fresnel Reflections Increased

By increasing the number of boundary surfaces, i.e. using a gap, the probability for Fresnel
reflections, which grows with 𝑛1

𝑛2
, gets larger as well. Furthermore, if light is reflected at
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(a) With decreasing distance to the detector
surface, the relative loss of light increases.
Here, refraction is considered for one direc-
tion only.
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(b) The integrated light loss depends on the ratio
𝑑/ℎ of gap size and light guide thickness, so
the gap should be as small as possible.

Figure 2.27: Losses due to the gap, when assuming that no absorption takes place in the
scintillator.

the surface of the light guide, the path length inside the gap doubles, compared to equation
(2.62). These effects have to be taken into account when applying equation (2.61) to the new
detector design. Figure 2.28 shows a typical light response distribution for the upper PMT
on the left side of the detector.

Coupling Directly to the Light Guide

The decrease of integration range for a coupling with gaps shows that the overall light
output for a detector with directly coupled light guides would be larger. On the other hand,
the angular acceptance for the integrated light signal did not depend on the light source
position so far. Figure 2.29 shows how direct coupling may increase position dependency
of the light yield. Photons may enter the closest light guide, but eventually leave it again,
whereas a gap ensures that light which enters a light guide should remain inside. In Figure
2.30a the angular acceptance of directly coupled light guides is shown to be larger. On the
other hand, Figure 2.30b depicts the position dependence.

2.4.4 Monte Carlo Simulations

The simulations for light transport inside the P III 2009 [Sau15] and 2014 [Ber17]
detectors are performed using Geant4 [All+16]. These simulation include all features dis-
cussed here, but also allow surfaces to be defined as rough, which basically introduces a
probability for non-planar reflection. This feature is superior to assuming a simple light
loss probability, as it also allows a change of direction inside the scintillator.

2.4.5 Localization of Events

An event on one of the detectors consists of time information and amplitudes for each of the
PMTs. As seen in the last section 2.4.1, the light response has a signature for specific regions
over the detector. This should allow a reconstruction of the event position by analyzing the
corresponding set of PMT amplitudes. This may be useful to verify the detector positioning
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Figure 2.28: Here the position dependent light yield of the P III - 2014 detector is
shown for the upper left PMT. It is similar to Figure 2.25a. The absolute
value is smaller due to the losses in the gap between scintillator and light
guide. This is compensated by using PMTs on all four sides of the scintillator.
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(a) Without gap, some of the photons entering
the left guide are lost, since their angle is
too large for total reflection on the upper
face. Figure 2.30b shows the corresponding
detector uniformity.
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(b) With a tiny gap, photons should not leave
through the light guides. Not shown here is
that a part of the light is stored inside the
scintillator, however.

Figure 2.29: For read-out from four sides direct coupling of the light guides to the scintillator
should be avoided to keep the position dependency of the light yield low. The
gaps reduce the overall light collection efficiency however.
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(a) Coupling the light guides directly to the scintilla-
tor reduces the number of interfaces and therefore
increases the overall light output. With gaps, a
part of the light is stored inside the scintillator
and absorbed eventually.
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Figure 2.30: A calculation which neglects all absorption effects shows the accepted angles
of light emission with and without gap between scintillator and light guides.
The increased light yield without gaps comes at the price of a poor uniformity.

or identify and exclude anomalous events from the analysis. In section 3.4 the method is
applied to identify a background source.

The emission of scintillation light is a statistical process and therefore subject to fluctu-
ations following a Poisson distribution

𝑝(𝑛𝛾, 𝜆) =
𝜆𝑛𝛾

𝑛𝛾!
e−𝜆. (2.65)

The expected amount of light is expressed in 𝜆, whereas the observed number of photons
𝑛𝛾 can vary around the mean value. The relative width of the distribution

𝑛𝛾
𝜆 decreases

with an increasing 𝜆, so the better the light output, the better is the chance to get a reliable
position reconstruction.

The number of photons per MeV of incident particle energy is given in [Sai14a] as a
percentage of anthracene scintillator efficiency.

𝜆(𝐸, 𝑥, 𝑦) = 𝐸 × 17 400 /MeV × 65%× 𝜂PMT × 𝐼(𝑥, 𝑦) (2.66)
= 𝜆0(𝐸) × 𝜂PMT × 𝐼(𝑥, 𝑦). (2.67)

An additional factor 𝜂PMT is introduced here which accounts for quantum efficiency of the
PMTs which describes how many of the incident photons actually get converted into a
measurable signal. 𝐼(𝑥, 𝑦) from equation (2.61) returns the detection efficiency for light that
originates from a position (𝑥, 𝑦) on the detector. At low number of photons this process
actually does not follow a Poisson distribution, but for the purpose of testing the method it
fulfills the requirements. The nonlinear photon emission dependence on 𝐸 can be accounted
for by replacing 𝜆0 by a suitable nonlinear function from section 2.3.

The number of measured photons 𝑛𝛾 can be obtained from the PMT amplitude which is
given in channels 𝐶 by a gain factor 𝑔 = 𝐶

𝑛𝛾
. This factor, as well as the quantum efficiency

is not exactly known and can also be obtained from the response function.
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2.4 Light Extraction from Scintillator

Likelihood Method

A common way to optimize a set of parameters is the minimum 𝜒2 estimation. However, the
parameter finding for a relatively simple model can be accelerated by using the Likelihood
method where the probability for the observed events is going to be maximized. I.e. for a
probability density function 𝑓(𝑥𝑖 ∣ 𝜃) with a set of parameters 𝜃, the so-called joint density
function

𝑓(𝑥1, 𝑥2, ..., 𝑥𝑛𝐸 ∣ 𝜃) =
𝑛𝐸
􏾟
𝑖=1

𝑓(𝑥𝑖 ∣ 𝜃) (2.68)

has to be maximized. For the detector response function, 𝑓 must be split into the product
of the Poisson light distributions of each PMT. The set of gain 𝑔𝑗 and quantum efficiency 𝜂𝑗
for each PMT 𝑗 has to be determined such that this product turns out to be the most likely
combination for measured amplitudes 𝐶𝑖𝑗:

ℒ𝑚𝑎𝑥 = max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛𝐸
􏾟
𝑖=1

𝑛PMT
􏾟
𝑗=1

𝜆
􏿪
𝐶𝑖𝑗
𝑔𝑗
􏿭

𝑖𝑗

𝑔𝑗 􏿩
𝐶𝑖𝑗
𝑔𝑗
􏿬!
e−𝜆𝑖𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.69)

𝜆𝑖𝑗 = 𝜆𝑖𝑗(𝐸, 𝜂𝑗, 𝑥𝑖, 𝑦𝑖) = 𝜆0(𝐸) × 𝜂𝑗 × 𝐼𝑗(𝑥𝑖, 𝑦𝑖). (2.70)

Since only integer values are allowed for the number of photons 𝑛𝛾, the Poisson distribution
has steps that are inconvenient for numerical minimizer algorithms. For this reason, the
distribution can be transformed into a continuous approximation

ℒ𝑚𝑎𝑥 ≈ max

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑛𝐸
􏾟
𝑖=1

𝑛PMT
􏾟
𝑗=1

𝜆

𝐶𝑖𝑗
𝑔𝑗
− 1
2

𝑖𝑗

𝑔𝑗Γ 􏿵
𝐶𝑖𝑗
𝑔𝑗
+ 1

2
􏿸
e−𝜆𝑖𝑗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.71)

For a large number 𝑛𝐸 of events, ℒ will become very small, so a common way to calculate
the maximum is to take the logarithm, which is a monotonically increasing function, of the
product which turns the expression into a sum, the log-likelihood:

ℓ̂𝑚𝑎𝑥 =
1
𝑛𝐸

lnℒ𝑚𝑎𝑥 (2.72)

≈ max
⎡
⎢⎢⎢⎢⎣
1
𝑛𝐸

𝑛𝐸
􏾜
𝑖=1

𝑛PMT
􏾜
𝑗=1

􏿶􏿶
𝐶𝑖𝑗
𝑔𝑗
−
1
2􏿹

ln𝜆𝑖𝑗 − ln 𝑔𝑗 − ln Γ 􏿶
𝐶𝑖𝑗
𝑔𝑗
+
1
2􏿹
− 𝜆𝑖𝑗􏿹

⎤
⎥⎥⎥⎥⎦ . (2.73)

A fixed set of parameters 𝑔 and 𝜂 can now be used to determine the approximate position
(𝑥𝑖, 𝑦𝑖) of each event 𝑖 by minimizing

−
𝑛PMT
􏾜
𝑗=1

􏿶􏿶
𝐶𝑖𝑗
𝑔𝑗
−
1
2􏿹

ln𝜆𝑖𝑗 − ln 𝑔𝑗 − ln Γ 􏿶
𝐶𝑖𝑗
𝑔𝑗
+
1
2􏿹
− 𝜆𝑖𝑗􏿹 .

Furthermore, the detector parameters 𝑔 and 𝜂 can now be optimized as well in a superor-
dinate process, yielding the localization of the events and the detector parameters in one
action.
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(a) Reconstruction of simulated data by the fit-
ting method works well for events in the cen-
ter of the detector. For events which end
up further outside, basically only one of the
corners may be assigned.
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(b) By using a trained neural network to recon-
struct data, the results are comparable, but
not as good as for the fit. This method is
much quicker than fitting every data point,
however.

Figure 2.31: To test the capability to reconstruct the position of detector events, simulated
data is applied to two methods. The colors show the mean deviation of the
reconstruction from the actual position in mm.

Spatial Resolution

The quality of reconstruction is tested with simulated data before being applied to measure-
ments. For a set of reasonable parameters 𝑔 and 𝜂, simulated light output events whose
distribution follows the parameter set can be used to test the goodness of reconstruction,
which is presented in Figure 2.31a. It turns out, that in the center of the detector, an event
position can be reconstructed with a precision < 1 cm.

While this is promising and can be verified with comparison to calibration data sets,
the application of this method to more than sample data sets with a few hundreds of
thousands of events is impractical. Therefore an alternative method with a large higher
data throughput is considered in the following.

Neural Network

A well chosen fitting algorithm will find the optimal solution to given input parameters.
Fitting the impact position of events occurring at rates of 1000 per second is not practial
though due to time constraints.

The reduction of a set of input parameters to fewer output parameters can also be per-
formed by the use of artificial neural networks, however. These networks consist of a set
of neurons, each having a number of input and output connections. 𝑛in input neurons are
fed with the 𝑛in-dimensional raw data, while 𝑛out output neurons return the result. In the
case of position reconstruction, there are eight PMT amplitudes for the input and two coor-
dinates for the impact position as a result. In between there are hidden layers of neurons
which may perform different, but usually simple operations on their inputs. The net used
here is presented by Figure 2.32.

The quality of the reconstruction is tested by evaluating the output of a scanning data set.
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Figure 2.32: Schematic representation of the neural net used for position reconstruction.
The actual network has twice as many neurons per layer. The lower branch
allows data normalization. The mean deviation in the training set is ≈ 20mm.
Training data is generated from a simulated light distribution and includes
Poisson broadening and electronic noise.
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(a) Grenoble sided upstream detector. The
goodness of the reconstruction can be esti-
mated by comparing to scan measurements.
Red boxes indicate the expected mean posi-
tion, if the center of the magnetic field was
mapped onto the center of the detectors.

(b) Lyon sided downstream detector. Both de-
tectors are installed slightly too low. This is
in agreement with tracking simulations and
pinhole measurements [Klo18]. A slight im-
pact of the 𝑅⃗ × 𝐵⃗ drift in the horizontal di-
rection is also visible.

Figure 2.33: Reconstructed electron impact positions on the detector (24 × 24 cm2) deduced
from PMT amplitudes using a neural network. The reconstruction works es-
pecially well in the center of the detector, while near the edges the signature
of the signal distribution basically only allows the assignment to one of the
corners. The reconstructed events are collected in two-dimensional histograms.

In this set, a movable pointlike Bismuth source is put into the magnetic field region which
connects central volume and electron detectors using the scanner device from section 1.2.2.
This test proves the applicability of the method to a certain extend. Figure 2.33 shows that
the reconstruction works well in the central region of the detector and also reveals a slight
misalignment between the image of the central volume and the detector.

2.4.6 Detector Nonlinearity

For a scintillator edge which is entirely read out, the integrated light output approximately
is 𝐼(𝑥) ∼ e−𝜆𝑥 for 𝑥 being the distance to the scintillator edge. For a scintillator being read
out from two opposite sides, this transforms into

𝐼(𝑥) ∼
𝑎 􏿵cosh 􏿵 2𝑥𝑙 􏿸 − cosh(1)􏿸

cosh(1) − 1
+ 1, (2.74)

𝑥 now being the distance to the middle of the scintillator, 𝑙 the complete width and 𝑎 the
fraction of light being lost at the middle compared to the edges [Fri08].

The smoothness of the detector response may now be used to motivate the use of an
averaged point spread function (PSF) 𝑓(𝑟) = 𝑟−1 despite singularities which are introduced
at the outset of section 2.2.3.
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Figure 2.34: The real point spread function for a point source at fixed energy shows the
occurrence of rings on the detector. However, when integrating over a line
with distance 𝑥 to the center, the rings are averaged out.
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Figure 2.35: Light output at different 𝑥-positions as calculated with the real PSF (dots) and
the conventional PSF (dashed lines) yields comparable results. Therefore the
conventional PSF may be employed even for calibration sources when calcu-
lating the signal broadening due to light transport. The data correspond to an
energy of 364 keV.

The cosh(𝑥)-dependence of the detector function is independent of the 𝑦-component on the
detector. Therefore, integration over the PSF over the Cartesian coordinate 𝑦 = √𝑅2 − 𝑥2 at
a fixed distance 𝑥 to the projected source center yields the distribution 𝑁(𝐼) of the detector
response, as illustrated by the blue line in Figure 2.34.

𝑁(𝐼) =
2𝑟0

􏾙
𝑥(𝐼)

1

􏽮𝑅2 − 𝑥(𝐼)2
d𝑅 = ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2𝑟0 +􏽯4𝑟
2
0 − 𝑥(𝐼)2

𝑥(𝐼)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (2.75)

Figure 2.35 compares the detector response of the real PSF including singularities to the
conventional PSF without singularities. The integration over several of the rings is smooth-
ing the divergences and justifies the application of the simple PSF which may more easily
be mapped onto any detector function in section 2.2.3.

Figure 2.36 shows several effects of the broadening due to light transport in the P III
2009 detector. In the center of the detector, influences due to the finite coverage of the PSF
are rather small. The effect becomes important, when the calibration by pointlike sources is

69



2 Electron Detection and Electron Asymmetry A

Nonlinear Spectrum

PE Spectrum with PSF

PE Spectrum without PSF

PE Spectrum with Beam Profile

0 200 400 600 800

10
-5

10
-4

10
-3

10
-2

Energy [keV]

In
te
n
si
ty
[k
e
V

-
1
]

Figure 2.36: Pixelized point spread functions from section 2.2.3 are applied to a simulated
detector function [Sau15] to obtain the effect of the detector response on the
137Cs spectrum from Figure 2.9. The resulting photoelectron yield slightly de-
pends on the extension of the source. A zoom shows the difference between
pointlike 137Cs-sources and a hypothetical extended 137Cs-source. The transi-
tion from pointlike calibration source to the neutron beam leads to a relative
change of 2 ⋅ 10−4 of the electron asymmetry, as Figure 2.38 shows.

applied to an extended source such as the neutron beam. Here the increasing gradient of
the cosh(2𝑥/𝑙)-dependence for |𝑥| → 𝑙/2 becomes noticeable.

2.4.7 Asymmetric Point Spread Function

Effects of the asymmetric point spread function (APSF) (2.18) on asymmetry measurements
are discussed in [Dub+14], but with emphasis on the edge effect. This effect which describes
the incomplete coverage of the particle beam by a detector is not present in the measurement
of the electron asymmetry with P III, however. Instead, a combination of the spatial
inhomogeneity of the detector response function and the APSF comes into play.

An exaggerated example for spatial electron distributions following equation (2.18) with
maximal asymmetry is shown in Figure 2.37. The actual differences of electron distributions
are almost not visible by eye for a typical asymmetry 𝛽𝐴𝑃 ∼ ±0.05 at large electron energies.

A correction now arises from the fact that outer regions on the detector provide a larger
light response than inner regions. Therefore electrons emitted at an energy 𝐸 against
neutron spin direction cause a smaller detector response 𝐿↓(𝐸) than electrons of the same
energy emitted in neutron spin direction (𝐿↑(𝐸)). This decreases the measured asymmetry
towards higher energies and increases the measured asymmetry towards lower energies.

The measured asymmetry then is

𝐴exp,PSF(𝐸) =
𝑁↑(𝐿↑(𝐸)) − 𝑁↓(𝐿↓(𝐸))
𝑁↑(𝐿↑(𝐸)) + 𝑁↓(𝐿↓(𝐸))

. (2.76)

and provides the theoretical basis for the correction, which is obtained by comparing a flat
detector response to a simulated [Sau15] realistic response using the pixelized APSF from
section 2.2.3.
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(a) For emission in spin direction of the neu-
tron, most of the electrons would impinge
outside the projected beam profile.

(b) Electrons emitted against spin direction are
almost completely projected directly onto the
detector.

Figure 2.37: To illustrate the effect of the asymmetric beam spread function, the asymmetry
is set to 2

𝜋𝛽𝐴𝑃 ≡ ±0.99. The black regions show more likely electron impacts
and lie wider outside if electrons are emitted against their preferred emission
direction. The large radii stem from the high kinetic energy of 750 keV.

Uncertainties to the corrections mainly come from the model choice for the detector non-
uniformity. The center position of the mapped beam is obtained by an analysis of scan data
and single PMT spectra combinations, which is not described in this work. On both detectors
the beam is displaced by (26.0 ± 5)mm in the vertical direction and in horizontal direction
by (−7.1 ± 5)mm and (3.5 ± 5)mm on the Grenoble and the Lyon detector respectively. This
difference shows the influence of 𝑅⃗ × 𝐵⃗ drifts in the separator section of the magnetic field.
Uncertainties due to the beam positioning are estimated by shifting the horizontal position
by 5mm in both directions.

2.4.8 Point Spread Function to Beam Spread Function

In contrast to pointlike calibration sources, electrons from the neutron beam are coming
from a spatially extended source. The PSF must therefore be extended to a beam-spread
function (BSF), which implies a convolution of the point spread with the neutron beam
profile, mapped onto the detector by the magnetic field. The average beam profile may be
approximated by

d𝑓
d𝑥d𝑦

=
1

4𝑑2Γ2(5/4)
exp 􏿶−

(𝑥 − 𝑥0)4

𝑑4 􏿹 exp 􏿶−
(𝑦 − 𝑦0)4

𝑑4 􏿹 , 𝑑 = 45.4mm, (2.77)

with its center at (𝑥0, 𝑦0). Figure 2.40a illustrates the difference between a pointlike source
and the neutron beam. The projected neutron beam covers more area with higher light re-
sponse, and shifts small beta asymmetries at lower energies to higher ADC channels. Con-
sequently, the uncorrected measured asymmetry obtained from a point-source calibration
would be lower than the actual asymmetry. This effect overcompensates the correction due
to the asymmetric point spread function, resulting in Figure 2.38 and an overall positive
relative correction of 4.2 ⋅ 10−4, where the effects from section 2.2.1 are included as well for
technical reasons.
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(a) Grenoble sided upstream detector.
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(b) Lyon sided downstream detector.

Figure 2.38: The asymmetric BSF in combination with the detector inhomogeneity leads
to a significant positive correction at higher energies (> 500 keV). The actual
effect of the asymmetric PSF is negative in the low-energetic region, which is
compensated for by a higher signal response in the outer detector region. The
plots also include a correction for spin dependent pedestal widths, which only
play a significant role in the very low energy range. The resulting corrections
are shown as a green solid line for the assumed displacement to the center of
the detector. Dashed lines indicate a displacement of −5mm and dotted lines
a displacement of 5mm relative to the most likely position.

2.5 PMT Response

Counting of photons in P III is done with PMTs. Those consist of a photo layer which
exploits the photoeffect to transform incident photons into electrons and several dynodes or
meshes in order to amplify the charge of a single photoelectron. In the case of P III,
mesh PMTs are used, since they are less sensitive to external magnetic fields. In contrast to
classical dynode PMTs they require a larger number of amplification stages – 19 compared
to 12 or eight – as the gain factor at each stage only is Λ ≳ 2.

Commonly [Plo00], primarily out of practical reasons, the PMT response to emitted pho-
toelectrons is approximated by a Poisson distribution function, although the underlying
statistical process is more complex. Especially for small numbers of photoelectrons, this
approximation fails and does not reflect the actual signal response. A more realistic expres-
sion is deduced in [Sau18] and will be briefly summarized in the following:

For each amplification stage the probability of obtaining 𝑘𝑖 electrons out of 𝑘𝑖−1 incoming
electrons is expressed by the Poisson probability distribution

𝑝(𝑘𝑖, 𝑘𝑖−1) =
(Λ𝑘𝑖−1)𝑘𝑖
𝑘𝑖!

e−Λ𝑘𝑖−1. (2.78)

Consequently, the probability of obtaining 𝑘𝑁 > 0 electrons in the 𝑁-th stage for 𝑘0 initial
photoelectrons is

𝑃(𝑘𝑁, 𝑘0, 𝑁) =
∞
􏾜
𝑘1=1

∞
􏾜
𝑘2=1

⋯
∞
􏾜

𝑘𝑁−1=1

𝑁
􏾟
𝑖=1

𝑝(𝑘𝑖, 𝑘𝑖−1), (2.79)

which is a rather unhandy expression. The probability for zero electrons at any stage is
already excluded since this leads to an extinction of the signal. The probability for extinction
is expressed by

𝑃(0, 1,𝑁) = exp [(exp [(exp [(exp [⋯] − 1)Λ] − 1)Λ] − 1)Λ] , (2.80)
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which is nested 𝑁 times up to the 𝑁-th innermost term exp(−Λ). Equation (2.80) may be
evaluated exactly, but for any non-zero charge output of the PMT, equation (2.79) must be
simplified to be of practical use.

For large electron numbers, the discrete probability distribution 𝑃 may be approximated
by a continuous probability distribution for a continuous number of electrons 𝑥 using a
diffusion approximation

𝑃Diff(𝑥, 𝑘 = 𝑘0, 𝑁) = e−𝐴/𝐵
⎛
⎜⎜⎜⎜⎝𝛿(𝑥) +

e−𝑥/𝐵√𝐴/𝑥
𝐵

𝐼1

⎛
⎜⎜⎜⎜⎝
2√𝐴𝑥
𝐵

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ , 𝐴 = 𝑘Λ𝑁, 𝐵 =

Λ𝑁 − 1
2(Λ − 1)

. (2.81)

𝐼1 denotes the modified Bessel function of the first kind. [Sau18] now shows, that a very
good description of experimental PMT responses can be obtained by combining equations
(2.80, 2.79, 2.81):

𝜉(𝑥, 𝑘) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(𝑃(0, 1,𝑁))𝑘, 𝑥 = 0
𝑃(𝑘𝑛, 𝑘, 𝑛) ⋅ 𝑃Diff(𝑥, 𝑘𝑛, 𝑁 − 𝑛), while 𝑘𝑛 ≤ 20, 𝑛 ≤ 14
𝑃Diff(𝑥, 𝑘, 𝑁), otherwise.

(2.82)

Henceforth 𝜉(𝑐, 𝑘), which relates measurable channels to a number of photoelectrons by a
gain factor, will be used.

One consequence of the amplification process is a broadening of the detector function.
In addition to the broadening due to the photoelectron statistics, the variance is increased
by a factor of Λ/(Λ − 1), resulting in a relative width increased by 30% for a mesh PMT
with a typical gain of Λ = 2.4.

2.6 Trigger Function

Before the data acquisition system starts recording an event, a trigger signal has to be
emitted. For P III this signal is primarily created by a constant fraction discrimina-
tor. Subsequently the condition two-out-of-six triggers (or two-out-of-four, in the case of
P III 2014) has to be fulfilled to start a new event. In the past, a simplified method
was used to determine the trigger function while in section 2.6.2 a more complete descrip-
tion is derived.

2.6.1 Homogeneous Fixed Threshold Approximation

Underlying assumptions of the method described in [Fri08] are, that a fixed minimum
number of photoelectrons releases a trigger pulse and that the light is equally distributed
onto all PMTs. Using the binomial distribution, the probability for 𝑙 out of 𝑛 coincidentally
triggering channels is

𝐵(𝑊, 𝑙) = 􏿶
𝑛
𝑙 􏿹
𝑊 𝑙(1 − 𝑊)𝑛−𝑙, (2.83)

with the probability 𝑊(𝑁) of a channel for releasing a trigger with 𝑁 incoming photons.
The trigger probability therefore is

𝑇(𝑊) = 1 − 𝐵(𝑊, 0) − 𝐵(𝑊, 1) = 1 − (1 −𝑊)𝑛 􏿶1 +
𝑛𝑊
1 −𝑊􏿹 . (2.84)

73



2 Electron Detection and Electron Asymmetry A

With a threshold of one required photoelectron for a trigger signal this transforms into

𝑇1(𝑁) = 1 − (1 − 𝑞)𝑛𝑁 􏿶
𝑛

(1 − 𝑞)𝑁
− 𝑛 + 1􏿹 (2.85)

or for a two-photoelectron-threshold into

𝑇2(𝑁) = 1 − 􏿰(1 − 𝑞)𝑁 􏿶1 +
𝑞𝑁
1 − 𝑞􏿹􏿳

𝑛
⎛
⎜⎜⎜⎜⎜⎜⎝

𝑛
(1 − 𝑞)𝑁(1 + 𝑞𝑁

1−𝑞 − 𝑛 + 1)

⎞
⎟⎟⎟⎟⎟⎟⎠ , (2.86)

with quantum efficiency 𝑞 for a conversion of a photon into a photoelectron. To obtain the
trigger function in channels 𝑐, the number of photons was then replaced by

𝑁 = 𝑔 ⋅ 𝑐

using a gain factor 𝑔 or an expression including a nonlinear description of the energy-
channel-relation [Mes11]. An approximatic description of the measured trigger function
succeeded with that model, but the obtained parameters are rather nonphysical.

While the functions 𝑇1 and 𝑇2 certainly cover a part of the detection process, the initial
assumptions made are too strong and have to be refined in the following.

2.6.2 Almost Complete Trigger Model

In section 2.5 a quarter of the signal broadening is shown to result from the response of
the PMTs. Therefore the signal transport has to be split into at least two parts:

1. light distribution onto the PMTs, depending on the light source position and its strength

2. transformation of a photoelectron into an electrical pulse

Furthermore, electronic noise adds an additional broadening which is only by parts the
same for discriminator and QDCs, however this subtlety will be neglected here and the
broadening of the detected signal and the discriminator threshold will be treated separately.

Following section 2.4, the light is not equally distributed onto all PMTs, but actually two
PMTs take almost all of the light, depending on the position of the light sources. This is
true even for a detector with an overall homogeneous light response. Therefore equations
(2.85) or (2.86) cannot be used to obtain a physically correct description.

The mean number of photons reaching a specific PMT 𝑖 per overall number of emitted
photons can be obtained from dedicated simulations or calculations (see section 2.4). To get
the mean number of photoelectrons per emitted photons 𝜆𝑖, the quantum efficiency 𝑞 has
to be multiplied with the mean number of photons. Now the distribution of photoelectrons
can be expressed in terms of a Poisson distribution:

𝑝𝑖(𝑘, 𝑁) = e−𝜆𝑖𝑁
(𝜆𝑖𝑁)𝑘

𝑘!
. (2.87)

Therefore the signal response 𝑠(𝑐, 𝑁) to 𝑁 photons produced as output by the PMT is given
by

𝑠𝑖(𝑐, 𝑁) =
∞
􏾜
𝑘=0

𝜉𝑖(𝑐, 𝑘)𝑝𝑖(𝑘, 𝑁), (2.88)
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2.6 Trigger Function

where 𝜉(𝑐, 𝑘) is the response of a PMT to 𝑘 photoelectrons in terms of QDC channels 𝑐 as
described in section 2.5.

The threshold for a trigger signal is set in terms of channels to 𝑐𝑇, which like the measured
channel 𝑐 is subject to electronic noise. The probability of relasing a trigger from a single
PMT signal is then (erf ((𝑐 − 𝑐𝑇)/𝜎) + 1)/2, with noise 𝜎. The overall signal distribution can
be expressed as a sum of a triggered part 𝜉 and an untriggered part 𝜉:

𝑠𝑖(𝑐, 𝑁) = 𝑡𝑖(𝑐, 𝑁) + 𝑢𝑖(𝑐, 𝑁)

=
1
2 􏿶

erf 􏿶
𝑐 − 𝑐𝑇
𝜎√2

􏿹 + 1􏿹
∞
􏾜
𝑘=0

𝜉𝑖(𝑐, 𝑘)𝑝𝑖(𝑘, 𝑁) +
1
2 􏿶

erf 􏿶
𝑐𝑇 − 𝑐
𝜎√2

􏿹 + 1􏿹
∞
􏾜
𝑘=0

𝜉𝑖(𝑐, 𝑘)𝑝𝑖(𝑘, 𝑁)

=
∞
􏾜
𝑘=0

𝜉𝑖(𝑐, 𝑘)𝑝𝑖(𝑘, 𝑁) +
∞
􏾜
𝑘=0

𝜉𝑖(𝑐, 𝑘)𝑝𝑖(𝑘, 𝑁).

(2.89)

For practical reasons the influence of a non-zero 𝜎 will be accounted for by adding up
several spectra with different 𝑐𝑇. The error function term (erf(𝑥) + 1)/2 can then simply be
replaced by the Heaviside Θ.

The measured spectrum 𝑆 for a fixed number of initial photons can then be calculated by
convolution:

𝑆(𝑐,𝑁) = (𝑠1(𝑁) ∗ 𝑠2(𝑁) ∗ ⋯ ∗ 𝑠𝑛(𝑁))(𝑐). (2.90)

Luckily, the properties of the Poisson distribution allow to combine this combinatorially
complicated function into a single expression, namely

𝑆(𝑐,𝑁) =
∞
􏾜
𝑘=0

Ξ(𝑐, 𝑘)𝑃(𝑘,𝑁), 𝑃(𝑘,𝑁) = 𝑝1+2+⋯+𝑛(𝑘, 𝑁) (2.91)

since the convolution of two Poisson distributions again yields a Poisson distribution:

𝑝1+2(𝑘, 𝑁) = (𝑝1(𝑁) ∗ 𝑝2(𝑁))(𝑘) =
𝑘
􏾜
𝑗=0
𝑝1(𝑗, 𝑁) ⋅ 𝑝2(𝑘 − 𝑗, 𝑁)

= e−(𝜆1+𝜆2)𝑁
((𝜆1 + 𝜆2)𝑁)𝑘

𝑘!

𝑘
􏾜
𝑗=0

𝑘!
𝑗!(𝑘 − 𝑗)! 􏿶

𝜆1
𝜆1 + 𝜆2

􏿹
𝑗

􏿶
𝜆2

𝜆1 + 𝜆2
􏿹
𝑘−𝑗

􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
=1

= e−(𝜆1+𝜆2)𝑁
((𝜆1 + 𝜆2)𝑁)𝑘

𝑘!
.

(2.92)

To include the trigger condition and obtain a triggered spectrum 𝑆𝑇, certain parts of the
spectrum have to be subtracted, however. For a one-out-of-𝑛 condition, the convolution of
all untriggered spectra does not contribute to the measured spectrum:

𝑆𝑇,1(𝑐, 𝑁) = 𝑆(𝑐,𝑁) − 𝑈0(𝑐, 𝑁), 𝑈0(𝑐, 𝑁) = (𝑢1(𝑁) ∗ 𝑢2(𝑁) ∗ ⋯ ∗ 𝑢𝑛(𝑁))(𝑐). (2.93)

The cut which is introduced between the triggering and the non-triggering part of the single
PMT spectra does not allow a simplification of this relation as in equation (2.91). Instead
every possible combination of photoelectrons has to be taken into account:

𝑈0(𝑐, 𝑁) =
𝑐
􏾜
𝑐1=0

𝑐−𝑐1
􏾜
𝑐2=0

⋯
𝑐−𝑐1−𝑐2−⋯−𝑐𝑛−2

􏾜
𝑐𝑛−1=0

𝑢1(𝑐1, 𝑁) ⋅ 𝑢2(𝑐2, 𝑁)⋯𝑢𝑛(
=𝑐𝑛

􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉𝑐 − 𝑐1 − 𝑐2 −⋯ − 𝑐𝑛−1)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍

=∏𝑛
𝑖=1∑

∞
𝑘𝑖=0

𝜉𝑖(𝑐𝑖,𝑘𝑖)𝑝𝑖(𝑘𝑖,𝑁)

. (2.94)
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When the trigger condition is two-out-of-𝑛, the contribution 𝑈1 which includes one triggered
(𝑡1 or 𝑡2 or ...) and 𝑛−1 untriggered spectra has to be subtracted as well. For three coincident
triggers, two triggered spectra must be subtracted, and so on.

This turns out to be a huge number of combinations which, numerically calculated, may
consume a long time when fitting the spectra. To be of practical use, the relation must
further be simplified.

The inner part of equation (2.94) is the product of 𝑛 PMT response functions and 𝑛
Poisson distributions, the latter indicating at which scale the normalized PMT response
functions occur. If the same PMT gain 𝜉𝑖 = Ξ for every individual PMT is used, the
number of performed convolutions is already largely reduced by symmetry 𝜉1(𝑘1)𝜉2(𝑘2) =
Ξ(𝑘1)Ξ(𝑘2) = Ξ(𝑘2)Ξ(𝑘1). The remaining part may also be transformed:

𝑛
􏾟
𝑖=1

𝑝𝑖(𝑘𝑖, 𝑁) = exp 􏿶−𝑁
𝑛
􏾜
𝑖=1
𝜆𝑖􏿹 ⋅ 𝑁

∑𝑛
𝑖=1 𝑘𝑖 ⋅

(∑𝑛
𝑖=1 𝜆𝑖)

∑𝑛
𝑖=1 𝑘𝑖

(∑𝑛
𝑖=1 𝑘)!

⋅
(∑𝑛

𝑖=1 𝑘𝑖)!

(∑𝑛
𝑖=1 𝜆𝑖)

∑𝑛
𝑖=1 𝑘𝑖

⋅
𝑛
􏾟
𝑖=1

𝜆𝑘𝑖𝑖
𝑘𝑖!

= exp(−𝑁𝜆)
(𝑁𝜆)𝑘

𝑘!
⋅

𝑘!
𝑘1!𝑘2!⋯ 𝑘𝑛!

𝑛
􏾟
𝑖=1

􏿶
𝜆𝑖
𝜆 􏿹

𝑘𝑖

= 𝑃(𝑘,𝑁) ⋅ 􏿶
𝑘

𝑘1, 𝑘2, … , 𝑘𝑛
􏿹

𝑛
􏾟
𝑖=1

􏿶
𝜆𝑖
𝜆 􏿹

𝑘𝑖
,

(2.95)

where 𝜆 = ∑𝑛
𝑖=1 𝜆𝑖 is the total combined relative mean light and photoelectron response and

𝑘 = ∑𝑛
𝑖=1 𝑘𝑖 the total number of photoelectrons. The probability for a certain distribution of

photoelectrons onto all PMTs is a product of a Poisson distribution to the overall photo-
electron yield and a multinomial distribution. This allows to pre-calculate triggered spectra
only depending on the number of emitted photoelectrons which can afterwards simply be
applied to theoretical photoelectron spectra.

A final remark must be made about the calculation of the multinomial distribution.
Although the multinomial coefficient can be broken down into binomial coefficients

􏿶
𝑘

𝑘1, 𝑘2, … , 𝑘𝑛
􏿹 =

𝑛
􏾟
𝑖=1

􏿶
∑𝑖
𝑗=1 𝑘𝑗

𝑘𝑖
􏿹

whose calculation can easily be cached and optimized, for a large total number of pho-
toelectrons the number of combinations still goes beyond all scope. To overcome this
problem, a sensible numerical limit 𝐼min ≥ ∑

𝑐 Ξ(𝑐, 𝑘), ∀𝑘 ≥ 𝑘max must be chosen, such that
Ξ(𝑐, 𝑘) ≈ 0, ∀𝑘 ≥ 𝑘max and the inner part of equation (2.94) transforms into

𝑛
􏾟
𝑖=1

𝑘max
􏾜
𝑘𝑖=0

𝜉𝑖(𝑐𝑖, 𝑘𝑖)𝑝𝑖(𝑘𝑖, 𝑁).

2.6.3 Implications

Two major implications follow from the new approach that will make the handling of
the trigger function less convenient. They both arise from the condition of at least two
coincidentally triggering PMTs.

Formerly the trigger function could be calculated once and was then multiplied to any
theoretical untriggered spectrum:

𝑇(𝐶) = 𝑡(𝐶) ⋅ 𝑆(𝐶). (2.96)
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(a) A trigger threshold of 1 photoelectron (PE)
equivalents for a 2-out-of-2 condition leads
to different trigger functions for different
numbers of PEs. The trigger function for
one PE per PMT is steeper than for one and
two PEs.
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(b) Without changing the threshold parameters,
the trigger function changes for different
kinds of input spectra. In this plot also the
spatial shape of the source distribution, as
well as the timing differences have an influ-
ence.

Figure 2.39: The new approach to calculate the influence of the trigger threshold changes
the trigger function between spectra. It is not possible to simply multiply a
function 𝑡(𝐶) to the pulse height spectrum, but the triggered spectrum has to be
evaluated for each source independently.

Now the shape of the input spectrum 𝑆 also changes 𝑡. This comes from the nonlinear
behavior of the cut in the signal due to the trigger threshold. The PMT response pulse
height spectrum to a single photoelectron is differently shaped than the response to more
photoelectrons (in terms of width and skewness of the distribution) and therefore a threshold
cut breaks the convolution property

𝜉(𝑐, 𝑘1) ∗ 𝜉(𝑐, 𝑘2) = 𝜉(𝑐, 𝑘1 + 𝑘2), but (2.97)
𝜉(𝑐, 𝑘1) ∗ 𝜉(𝑐, 𝑘2) ≠ 𝜉(𝑐, 𝑘1 + 𝑘2), (2.98)

with triggered spectra 𝜉. Figure 2.39a shows how this affects the trigger function. A spectrum
with increasing intensity towards zero signal (as the Cs spectrum) therefore has a different
trigger function than a function with decreasing signal towards zero (as the neutron beta
decay spectrum).

While the overall homogeneity is excellent for a plastic scintillator of this size, the dis-
tribution of the light is mostly a geometric consequence. Light being produced directly in
front of a light guide will mostly enter only one light guide, while light being produced in
the middle of the scintillator is by large parts distributed onto the two middle light guides
and may also enter outer light guides. This makes the detection of events in the middle
of the detector more likely. The neutron beam is spread over a rectangular shape and its
events must be handled differently than pointlike calibration sources.

2.6.4 Extraction from Data

Two methods are used to extract the trigger function experimentally. One method is to
use electron backscattering events from neutron decay data. Here electrons which hit
one of the detectors do not deposit all of their energy, are leaving the detector again

77



2 Electron Detection and Electron Asymmetry A

(a) The distribution for an electron of
50 keV is significantly different for dif-
ferent kinds of sources. The rectangular
shape shows electrons from the neutron
beam, while the circular shape is the
point spread function stemming from a
calibration source.

(b) The trigger probability also depends on the po-
sition of impact. Events in front of one of the
light guides are less likely for a trigger signal, as
most of the light is collected by a single PMT.

Figure 2.40: The new trigger function includes the light distribution for each PMT. A posi-
tion dependence can therefore be included in the calculation of the theoretical
spectra.

and eventually hit the opposite detector. The spectrum of triggering events on the second
detector is compared to the spectrum of all events on the second detector. Dividing the
first by the latter can be used to obtain the theoretical trigger parameters. This method has
two potential problems: Backscattered electrons experience two additional 𝑅 × 𝐵-drifts in
P III and therefore arrive with some displacement on the opposite detector compared
to primary events. This displacement has been measured to be on the order of 1 cm and
can be neglected. Furthermore the effect of late coming signals during the QDC integration
window has not been investigated thoroughly and could introduce a time of flight effect to
the measured trigger function.

A second method is to use the low-energetic region of the Cs calibration spectrum and
compare it to the theoretical expectation. In this case the trigger function is obtained by
fitting the theoretical spectrum including a trigger function to measured data. Despite the
progress made in the description of the shape, a more detailed description of the screening
function for the shape and Fermi functions as well as a description for the exchange effect
is missing [Mou+14].

Figure 2.41 shows fits to the data performed with both methods and compares the resulting
trigger functions. For the first time a physically motivated description of the trigger function
is employed and satisfactorily agrees with the data. Differences between extraction from
backscattering data and the Cs spectrum might arise from timing effects of the QDCs. For
further application, the second method is used.
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2.7 Undetected Backscattering
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(a) When extracting the trigger function from
the backscattering data of neutron decay, a
late rise compared to the trigger function ex-
tracted from the Cs spectrum (dashed lines)
is visible.
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(b) The trigger function can also be extracted
by fitting to an absolute spectrum of the Cs
spectrum. The dashed lines show the theo-
retical signal without a trigger function.

Figure 2.41: Two methods are used to extract a trigger function from measured data. The
extracted threshold parameters are differing but the obtained precision is suffi-
cient for current purposes.

2.7 Undetected Backscattering

An important systematic effect on the determination of the electron asymmetry comes from
the combination of electron backscattering – see section 2.2.4 – and the trigger function. An
electron initially hitting one of the detectors might not fully deposit its energy, but leave the
detector again. For this effect several cases have to be considered. Basically a backscattered
electron may be transported to the opposite detector if the emission angle to the normal of
the detector surface 𝜃 < 𝜃lim or be reflected on the magnetic field for 𝜃 > 𝜃lim, impinging the
same detector again. The limiting angle 𝜃lim is defined by the magnetic mirror effect – see
section 1.2.4. The probabilities for backscattering onto the respective detectors are denoted
as 𝜂opp and 𝜂same. A decision tree as in Figure 2.42 can be used to visualize possible
event chains. For the measurement of the asymmetry, the first impact is crucial as it
determines the measured emission direction. Here the trigger function plays an important
role, since the deposited energy in the primary detector might not be sufficient to relase a
trigger signal. Consequently the event could be assigned to the wrong emission direction.
A theoretical description was done in [SA08] already, however the application to measured
data underestimates the effect on the asymmetry, mainly due to false assumptions about
the detector function when extrapolating the effect from the data.

Now a response function 𝐿(𝐸) describing the light response to an electron that completely
deposits its energy inside one of the scintillators is introduced to account for quenching
effects. If an electron gets backscattered from the first detector with remaining energy 𝐸2,
its light response is 𝐿1 = 𝐿(𝐸) −𝐿(𝐸2) in the first detector and 𝐿2 = 𝐿(𝐸2) in the second detec-
tor. With the trigger function 𝑇(𝐿) which describes the measured spectrum with included
probability to start the acquisition of a signal 𝐿, for a backscatter event, the probability to
correctly measure the full event is

𝑝Tbs = |𝑇(𝐿1)| = |𝑇(𝐿(𝐸) − 𝐿(𝐸2))|. (2.99)

In this case it is irrelevant whether the second impact releases a trigger as well, as the
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𝑒− on detector 1

Backscattering

Detector 1 does not trigger

Backscattering to detector 2

Detector 2 does not trigger

Detector 2 triggers

Backscattering to detector 1

Detector 1 does not trigger

Detector 1 triggers

Detector 1 triggers
Backscattering to detector 2

Backscattering to detector 1

No Backscattering
Detector 1 does not trigger

Detector 1 triggers

Figure 2.42: A first order decision tree is used to visualize the effects of backscattering.
Green boxes denote events with correct emission direction and energy infor-
mation. Gray boxes denote events without any trigger at all, while yellow stands
for the right emission direction assignment, but detection at lower energy, and
red misses both, emission direction and full energy reconstruction.

signal acquisition is running for both detectors during a reasonable time.
In case of undetected backscattering, i.e. the first impact does not release a trigger, but

the second impact is registered, the probability is expressed as

𝑝Tubs = (1 − |𝑇(𝐿1)|) ⋅ |𝑇(𝐿2)|. (2.100)

Assuming two identical detectors, the spectrum of detected energy 𝐸𝑑 of an initial electron
with energy 𝐸 now is

𝐼𝑇(𝐸𝑑) =
=undetected backscattering + (no backscattering + detected backscattering)
=𝑇(𝐿(𝐸𝑑)) ⋅ (1 − |𝑇(𝐿(𝐸) − 𝐿(𝐸𝑑))|)􏿋􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿌􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏻰􏿍
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⋅(𝜂same(𝐸, 𝐸𝑑) + 𝜂opp(𝐸, 𝐸𝑑))

+

⎛
⎜⎜⎜⎜⎜⎜⎝1 −􏾙

𝐸

0
(
normalized undetected backscattering
􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉|𝑇(𝐿(𝐸2))| ⋅ (1 − |𝑇(𝐿(𝐸) − 𝐿(𝐸2))|) ⋅

backscatter probability
􏿇􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿈􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿊􏿉(𝜂same(𝐸, 𝐸2) + 𝜂opp(𝐸, 𝐸2)))d𝐸2

⎞
⎟⎟⎟⎟⎟⎟⎠

⋅ 𝛿(𝐸𝑑 − 𝐸),

(2.101)

with 𝜂same/opp(𝐸, 𝐸2) being the probability of backscattering with incident energy 𝐸 and emit-
ting energy 𝐸2 to the opposite or the same detector respectively. In this case it is assumed
that the energy deposition of undetected events cannot be reconstructed. It depends on the
time of flight between the two impacts and the QDC integration timing. A typical time of
flight is 30ns [Roi10] and it is possible to miss the energy which is deposited in the first
detector for some of the events. If the energy can be reconstructed, only the number of de-
tected events is reduced. Figure 2.43 shows the correction for both cases, with and without
energy reconstruction.
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2.7 Undetected Backscattering

The measured asymmetry including this effect now is

𝐴𝑒𝑥𝑝 =
𝑁 ′
↑ − 𝑁 ′

↓

𝑁 ′
↑ + 𝑁 ′

↓
(2.102)

=
𝑁nbs
↑ + 𝐷same

↑ + 𝐷opp
↑ + 𝑈same

↑ + 𝑈opp
↓ − 𝑁nbs

↓ − 𝐷same
↓ − 𝐷opp

↓ − 𝑈same
↓ − 𝑈opp

↑

𝑁nbs
↑ + 𝐷same

↑ + 𝐷opp
↑ + 𝑈same

↑ + 𝑈opp
↓ + 𝑁nbs

↓ + 𝐷same
↓ + 𝐷opp

↓ + 𝑈same
↓ + 𝑈opp

↑
, (2.103)

where 𝑁nbs is used for the spectrum without backscattering, 𝐷same and 𝐷opp for the spectra
of detected backscattering onto the same or the opposite detector and 𝑈same and 𝑈opp for
the respective undetected spectra. Assuming equal detector functions, (2.103) can also be
simplified to

𝐴𝑒𝑥𝑝 ≈
(𝛼 − 𝜖)𝑁↑ + 𝜖𝑁↓ − (𝛼 − 𝜖)𝑁↓ − 𝜖𝑁↑

(𝛼 − 𝜖)𝑁↑ + 𝜖𝑁↓ + (𝛼 − 𝜖)𝑁↓ + 𝜖𝑁↑
= 􏿵1 − 2

𝜖
𝛼
􏿸
𝑁↑ − 𝑁↓

𝑁↑ + 𝑁↓
, (2.104)

with the triggered fraction without backscattering and with detected backscattering 𝛼 and
the fraction of undetected backscattering 𝜖 for clean and untriggered spectra 𝑁.

Since detector 𝑆1(2) and trigger functions 𝑇1(2) are different for both detectors, the measure-
ment of decay products from neutrons which are polarized towards detector 1 is represented
as follows:

𝑁 ′
↑ =𝑁 ′

↑(𝐸)
=(1 − 𝜂same(𝐸) − 𝜂opp)𝑁↑(𝐸) ⋅ 𝑇1(𝐿(𝐸)) no backscattering (bs)

+
𝐸

􏾙
0

𝜂same(𝐸, 𝐸2)𝑁↑(𝐸) ⋅ [𝑇1(𝐿(𝐸) − 𝐿(𝐸2)) ∗ 𝑆1(𝐿(𝐸2))]d𝐸2 detected bs to D1

+
𝐸

􏾙
0

𝜂opp(𝐸, 𝐸2)𝑁↑(𝐸) ⋅ [𝑇1(𝐿(𝐸) − 𝐿(𝐸2)) ∗ 𝑆2(𝐿(𝐸2))]d𝐸2 detected bs to D2

+
𝐸max

􏾙
𝐸

𝜂same(𝐸1, 𝐸)𝑁↑(𝐸1) ⋅ (1 − |𝑇1(𝐿(𝐸1) − 𝐿(𝐸))|) ⋅ 𝑇1(𝐿(𝐸))d𝐸1 undetected bs to D1

+
𝐸max

􏾙
𝐸

𝜂opp(𝐸1, 𝐸)𝑁↓(𝐸1) ⋅ (1 − |𝑇2(𝐿(𝐸1) − 𝐿(𝐸))|) ⋅ 𝑇1(𝐿(𝐸))d𝐸1 undetected bs to D2

(2.105)

The solid lines in Figure 2.43 show the resulting corrections.

2.7.1 Estimation of Systematic Effects

An important part of the correction is the determination of the actual trigger function.
Both methods described in section 2.6.4 were used and differences for the corrections on
the order of 2% were obtained. Together with the uncertainties for the description of the
underlying theoretical spectra (Cs and backscattering) and timing effects the uncertainty is
estimated to 5%.

Further uncertainties are the calculation of the backscattering probabilities 𝜂same and 𝜂opp,
where the latter has the main contribution to the correction. The magnetic field in the
detector region is known only on a 10% level, which hardly changes 𝜂same + 𝜂opp, but shifts
between 𝜂same and 𝜂opp due to a change of the limiting angle 𝜃lim = arcsin√𝐵1/𝐵0 of the
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Figure 2.43: The correction has a positive sign, as undetected backscattering to the opposite
detector decreases the measured asymmetry. It increases towards lower ener-
gies, as the probability for triggering decreases. Solid lines show the correction
without energy reconstruction, dashed lines show the correction when the en-
ergy information of the undetected impact is not lost. The green dotted line
shows an estimation with very simple assumptions.

magnetic mirror effect. Simplifying the angular distribution of backscattered electrons to
sin 2𝜃 results in

𝜂opp
𝜂same + 𝜂opp

= cos2􏽮𝐵1/𝐵0 (2.106)

Δ
𝜂opp

𝜂same + 𝜂opp
=
1
2􏽱

𝐵0
𝐵1

sin 􏿴2􏽮𝐵1/𝐵0􏿷 Δ
𝐵1
𝐵0

≈ 7%, (2.107)

which is increased to 10% to account for the simplified angular distribution of backscattered
electrons. The backscattering probability 𝜂(𝐸in, 𝜃in, 𝐸out, 𝜃out) is obtained by performing a
Monte Carlo simulation, briefly described in section 2.2.4. To account for the neglect
of secondary backscattering, the choice of the ionization model and uncertainties in the
angular distribution of the scattering model, an uncertainty of 20% is assumed for the
determination of energy dependent backscattering coefficients.

Another important uncertainty is the reconstruction of the energy of undetected events.
The integration window starts a few ns before the triggering signal enters the QDC. If the
time of flight for an undetected backscattered electron is smaller than this timing buffer,
then the energy is reconstructed, otherwise it is lost or partly lost. The effect is maximized
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2.8 Signal Processing

if full energy reconstruction is assumed for all events, i.e.

𝑁 ′
↑ =𝑁 ′

↑(𝐸)
=(1 − 𝜂same(𝐸) − 𝜂opp)𝑁↑(𝐸) ⋅ 𝑇1(𝐿(𝐸)) no backscattering

+
𝐸

􏾙
0

𝜂same(𝐸, 𝐸2)𝑁↑(𝐸) ⋅ [𝑇1(𝐿(𝐸) − 𝐿(𝐸2)) ∗ 𝑆1(𝐿(𝐸2))]d𝐸2 detected bs to D1

+
𝐸

􏾙
0

𝜂opp(𝐸, 𝐸2)𝑁↑(𝐸) ⋅ [𝑇1(𝐿(𝐸) − 𝐿(𝐸2)) ∗ 𝑆2(𝐿(𝐸2))]d𝐸2 detected bs to D2

+
𝐸

􏾙
0

𝜂same(𝐸, 𝐸2)𝑁↑(𝐸1) ⋅ [1 − 𝑇1(𝐿(𝐸) − 𝐿(𝐸2))] ∗ 𝑇1(𝐿(𝐸2))d𝐸2 undetected bs to D1

+
𝐸

􏾙
0

𝜂opp(𝐸, 𝐸2)𝑁↓(𝐸1) ⋅ [1 − 𝑇2(𝐿(𝐸) − 𝐿(𝐸2))] ∗ 𝑇1(𝐿(𝐸2))d𝐸2 undetected bs to D2

(2.108)

In contrast to backscattering without full energy reconstruction (2.105) spectra from both
detectors are convoluted here. The correction increases by 15%, shown with dashed lines
in Figure 2.43.

systematic effect magnitude
trigger function 5%
magnetic field 10%
simulation 20%
energy reconstruction 15%
combined 27%

The combination of all effects yield an uncertainty of 27%. Including the correction in
the fit increases the absolute value of the asymmetry by a fractional amount of 5 ⋅ 10−4.
Conservatively the final uncertainty of the correction is set to 1.5 ⋅ 10−4.

2.8 Signal Processing

Until here, all processes up to the plugs of the PMT bases are discussed. The remaining parts
belong to the signal processing and cover the transformation of analog PMT signals into
fitted spectra. For the electron asymmetry measurement, the electronic setup is described in
[Mes11]. The following parts refer to changes which were applied for the proton asymmetry
measurement. Figure 2.44 schematically shows the electronic signal processing.

For the measurement of PMT amplitudes charge integrating ADCs (QDCs) are employed.
These are not self-triggering and therefore need an external start signal, which is provided
by a constant fraction discriminator connected to a coincidence unit. The analog signals
for the QDCs are bypassed in delay cables to allow processing time for the trigger signal.
The discriminator output also provides a per-channel-input to a time-to-digital converter
(TDC), which allows to separate signals with a resolution of 0.8ns. One measurement cycle
is defined by a fixed time of 10 s in the case of the electron asymmetry measurement and 700
chopper turns (≃ 9.2 s) for the proton asymmetry measurement. The time difference between
PMT and chopper triggers allow an assignment of events to the signal and background time
windows for later data analysis.
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2 Electron Detection and Electron Asymmetry A

Figure 2.44: The schematic electronics setup for the proton asymmetry measurement is
adapted from the electron asymmetry measurement [Mes11]. It is optimized
for shorter delays and adapted to eight PMTs per detector. In principle, the de-
tectors can be triggered individually, although this mode was not used during
the beam time.

2.8.1 Cables

Since the electronic modules are not located near the detector, but in crates being accessible
even when the neutron beam is switched on, the analog PMT signals have to be carried
for a distance of approximately 8.6m. Since a trigger logic is used to later start the charge
integration, the signal has to be delayed by 200ns, which is an equivalent of 40m at a
typical envelope velocity of 0.66 × 𝑐. Each meter of cable attenuates the signal and adds
electronic noise at the same time. Therefore the main parameters are attenuation and
shielding. The typical “cable from the cabinet” is an RG58, a cheap and robust choice, but
with rather poor characteristics. An extensive survey of cable types yielded the best price-
performance ratio for an LG-195 as the connection between detector vessel and electronics
and an RG223 for the delay cables. While the typical rise time of a PMT pulse is 1 to 2ns,
the main part of the charge is carried by a wave packet of ≈ 20ns length. To estimate the
resulting signal loss of ≈ 38%, a signal frequency of 50MHz is assumed. A special kind of
cable is used inside the detector vessels to connect the PMTs with feed-throughs. To limit
outgasing from the typical PVC sheathing, Kapton® is used instead. This kind of cable is
rather hard to attach to a plug, though and should be avoided if possible.

2.8.2 Fan-Out and Trigger Logic

To split the analog signals between pulse analysis and trigger logic, a linear fan-out module
Philipps Scientific Model 748 [Phi96] is used. Crosstalk is small for frequencies inferior to
100MHz, for strong short PMT pulses small pulses related to neighboring channels are
observed, however. As a consequence individual modules are used for each detector to
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Wait for Backscattering

(a) The LogicBox firmware allows to read out all
integration samples – one per 10 ns – of an
event. To reduce the amount of data, only
the first and the last sample of the integra-
tion region are kept.

Switch has no effect
since internal resistance
is too large

ADC

Switch for discharge
of capacitor

(b) An active integrator circuit is used to mea-
sure the charge of incoming PMT signals.
An external signal switches between integra-
tion and discharging.

Figure 2.45: Charge-integrating ADCs are used for pulse height analysis of PMT pulses.
The system is not self-triggering and requires an external discriminator. The
signal height is extracted from the difference of a start and a stop sample.

eliminate the detection of pseudo events on the opposite detector. In [Mes11] crosstalks
related to the connected discriminator were investigated, an effect which could not be
reproduced with a CAMAC based constant fraction discriminator CAEN C808 [CAE11].
Studies of the nonlinearity of the linear fan-out modules show [Sac16; Sau18], that the
limited bandwidth of up to 250MHz is the reason for a significant deviation from linearity
on the same order of magnitude as scintillation quenching.

The use of a freely programmable so-called LogicBox, developed by the electronics work-
shop of the Physikalisches Institut, Universität Heidelberg, allowed to test different trigger
patterns applied to the discriminator output. While typically, a two-out-of-all-PMTs trigger
condition is imposed, this pattern was changed to a two-out-of-all-sides condition. This
decreases the number of random afterpulses and background coincidences and conserves
the spatial homogeneity of the trigger function.

A further LogicBox module, acting as the controlling unit, finally triggers the pulse
integration of the individual QDCs. The controlling unit also receives trigger information
from the chopper and sets the spin flipper state. For this measurement, always both detectors
were triggered, a successful scheme which allows backscattering detection even below the
trigger threshold. In principle it would also be possible to treat both detectors individually,
which is an extension of the former electronic setup.

2.8.3 Charge Integrating ADCs

The QDCs, also part of the LogicBox family, allow sampling at 100MHz, a mode which is
used to investigate the timing, depicted in Figure 2.45a. To reduce the data load, only two
samples, a start and a stop sample, were passed to the internal buffer during the productive
measurement. To obtain the detected charge, a simple subtraction of the start sample value
from the stop sample value has to be performed.

Although PMT pulses have a typical length of about 20ns, the integration window is kept
open to allow the energy detection of backscattered electrons. Particle tracking simulations
in [Roi10] show, that a time window of 200ns is sufficient to capture almost all backscat-
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tering events. To allow a complete discharge of the integration unit, the trigger unit is
blocking new incoming signals for 700ns. A study of the nonlinearity of the QDCs [Sac16;
Sau18] showed an integral nonlinearity of less than 1%. A rate dependent effect discovered
in the P III 2009 measurements [Sau18] and described in a simulation using LTSpice
[LTS; Raf17] can be corrected by applying an empirically determined offset. Unfortunately,
the effect was only discovered after the beam time of 2014 and therefore renders a feature
which automatically measures the pedestal before and after each cycle block of eight or 32
cycles useless. In this mode, every 10 µs an event is triggered, mainly without having any
input signal. However, at this rate, the correction is maximal.

2.8.4 Data Acquisition Software

Electronic setup and data acquisition is done by the program pudel, which is a redesign of
the formerly used dackel [Mes11; Kap07], the successor of mops. pudel is an acronym for
“P’s universal detector electronics library”.

Next to the implementation by strictly following an object-oriented approach of C++, the
main improvement is the use of separate CPU threads for the read-out of detector data,
slow control data and the collection of event data inside ROOT [BR97] trees. This prevents
overflows of buffers which could occur for dackel where all tasks are done sequentially.
Furthermore the logging output is improved to give immediate feedback about event rates
or erroneous data acquisition.

Part of pudel is PudelTV which is a browser based approach to present a quick online
analysis of recently measured data. It provides a brief overview of signal and background
measurements and slow control data.

2.8.5 Raw Data Processing

Before the raw data may be analyzed, it is processed in several steps by using the tool
p3reduce by Heiko Saul [Sau18]. It allows a reduction of the event based data to multi-
dimensional histograms by applying various cuts. All figures containing experimental data
in this work are based on output of one of the many p3reduce analysis tools. A typical
workflow is presented in section 3.5.

2.9 p3fit

All of the processes mentioned in this chapter are modeled in the in-house analysis soft-
ware p3fit. Initially being a FORTRAN program, over time it was replaced by C++ code,
gained a terminal, configuration file and scripting interface, different fitter algorithms were
included and its models were extended and optimized, also in the course of this work. The
historical evolution makes it tedious to further extend the program however, motivating a
code refactoring, which was implemented for this work.

Crucial parts for the implementation of different models are already described in the
preceding sections, a few technical details of the implementation are found in appendices
A.2 and A.3.

2.10 Conclusion

Figure 2.46 and Figure 3.14a present how well the combination of all detector effects applies
to measured spectra. The knowledge about the detectors allows to keep its calibration
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(b) In logarithmic scale, the quality of detector
and source description is demonstrated. Sig-
nificant differences between model and data
only appear at very low energies.

Figure 2.46: A combined fit of the detector function to measured calibration spectra is used
to extract all detector parameters required for the determination of the electron
asymmetry.

independent of the measured neutron beta decay spectrum and releases a former correlation
between measured spectrum and detector function. It will allow to deduce a limit on the
Fierz term using the sum of polarized beta spectra of Figure 2.47b.

The presented steps in this chapter allow the analysis of experimental beta asymmetry
data collected with P III in 2009. It results in the new most precise ratio between
axial-vector and vector coupling [Sau18]

𝜆 = −1.27641(45)stat(33)sys
= −1.27641(56) (2.109)

𝐴 = −0.11985(17)stat(12)sys
= −0.11985(21).

In combination with the most recent neutron lifetime measurement [Pat+18], a competitive
result for the CKM matrix element 𝑉ud, solely from neutron measurements can be deduced
[CMS18]:

𝑉ud =
􏽱

4908.6(1.9)s
877.7(+0.8−0.7)s(1 + 3𝜆2)

= 0.97462(+57−53), (2.110)

which agrees well with 𝑉ud = 0.97420(21) [Tan+18] from superallowed beta decays, where
large corrections for nuclear structure effects are required however.

The energy dependence of the electron asymmetry (1.4) may also be used to obtain a
preliminary limit on the Fierz term [Sau18]:

𝑏 = 0.017(21) (2.111)

This method is less sensitive to systematic uncertainties, but does not provide the same
statistical precision as an extraction of this parameter from the neutron beta decay spectrum.

Direct contributions of this work to the final relative systematic uncertainty of Δ𝐴sys/𝐴 =
103 ⋅ 10−5 of the electron asymmetry parameter are the correction for undetected backscat-
tering of 50(20) ⋅ 10−5 and the correction of 42(21) ⋅ 10−5 for the detector non-uniformity and
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(b) The description of the neutron beta de-
cay sum spectrum fits the data even be-
low 100 keV. The detector function is en-
tirely extracted from calibration fits. Here
the Fierz term is fixed to be zero.

Figure 2.47: The figures show one out of 89 independent data sets for each detector. The
asymmetry is extracted by averaging over individual fit results for all data sets
[Sau18].

the finite thickness of the carrier foils. All systematic uncertainties of the measurement
are listed in Table 1.1. The process of electron detection is described to a level that makes
the analysis of the detector function independent of the actual subject of investigation,
namely the neutron beta decay spectrum. The current analysis window sets the systematic
uncertainty of the theoretical description of calibration sources to 10 ⋅ 10−5. To preserve this
uncertainty while decreasing the lower energy limit will require more precise data for the
description of calibration sources or the application of new calibration techniques, such as
energy determination using time-of-flight.
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Compared to the TeV range of center-of-mass energy in collider facilities, beta decay mea-
surements are considered to be low energy particle physics. This refers to the 10 keV to
several MeV of maximum kinetic energy of the emitted electron. The actual low energy part
is hidden in the recoil of the daughter nuclei, however. For heavy nuclei, the recoil can be
neglected without hesitation, for the lightest, namely the proton, it plays an important role.

The maximum kinetic energy of the proton in neutron beta decay is 751.2 eV, as a result
of energy and momentum conservation:

𝐸𝑝,max =
𝑚2
𝑛 − 𝑚2

𝑒 − 2𝑚𝑛𝑚𝑝 + 𝑚2
𝑝

2𝑚𝑛
. (3.1)

The so-called proton asymmetry parameter 𝐶 does not appear in the differential decay
width (1.2), but is directly related to electron asymmetry 𝐴 and neutrino asymmetry 𝐵 by a
kinematical factor 𝑥𝐶 [IPT13] due to energy and momentum conservation:

𝐶 = −𝑥𝐶(𝐴 + 𝐵) =
4𝑥𝐶𝜆
1 + 3𝜆2

in the Standard Model. (3.2)

𝑥𝐶 includes access to the complete spectrum of the proton recoil and may be calculated
to be 𝑥𝐶 = 0.275 905(10) using [IPT13]. Additional contributions by radiative and recoil
corrections are covered in section 3.1.3.

Equation (3.2) allows a test of the Standard Model, by comparing this result to mea-
surements of 𝜆 by the means of a measurement of the electron asymmetry or the electron-
antineutrino correlation. Extensions to the Standard Model affect the correlation coefficients
differently and would manifest themselves as deviations between different results for 𝜆.

The first and only successful experimental determination of the proton asymmetry was
performed with the predecessor of P III, P II [Sch+08]. This chapter presents a
new measurement of 𝐶 with P III, which in its outline, similar to chapter 2, follows
the track of the proton in the experiment. At first, the emission of the proton from neutron
decay is discussed. The transport in the magnetic field is mainly covered in [Klo18], but two
electrostatic devices are studied in more detail: Retardation electrodes and a wire grid are
used to block protons depending on their energy and the proton detection system accelerates
protons to release secondary electrons which are detected by an electron detector. Lastly the
treatment of background events is described, before providing a preliminary error budget.

3.1 Proton Detection

The detection mechanism of this first measurement with P II in Figure 3.1a was
similar to the one now used in P III in Figure 3.1b: Decay protons are guided along
the magnetic field which connects two opposite detection systems. The magnetic field acts
as a reference for the neutron spin and allows 4𝜋 coverage of the solid angle of the decay
particle momentum. Since the kinetic proton energy is too low to allow direct calorimetric
detection, the protons must be accelerated before detector contact. An electrostatic potential
is inserted in the magnetic field region to achieve this. Since one requirement is the
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(a) In P II, protons were directly accelerated onto the converter foil. The electrostatic
potential accelerates low-energetic secondary electrons onto a scintillator detector. Most
electrons from beta decay are hardly affected by the foil and acceleration potential. Adapted
from [Sch07].
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(b) The P III setup additionally provides proton energy information by a lite version of
a MAC-E filter. A retardation plane before the acceleration section allows to block protons
with energies below a threshold. The complete setup is shown in Figure 1.3.

Figure 3.1: Combined proton-and-electron detectors are used to determine the proton asym-
metry parameter 𝐶 and the antineutrino asymmetry parameter 𝐵. The low kinetic
energy of the proton requires acceleration by electrostatic potentials. To allow
detection of electrons in the 1MeV range, an extremely thin carbon converter
foil releases secondary electrons which are emitted by the impinging proton.
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3.1 Proton Detection

possibility of energy resolved electron detection during the same measurement period, no
dedicated proton detector, such as avalanche photo diodes or microchannel plates can be
used. Instead, the accelerated protons traverse an extremely thin carbon foil of ≈ 20 µg/cm2

thickness, which leads to emission of secondary electrons, released by elastic scattering of
the proton with carbon atoms. The secondary electrons themselves are accelerated onto the
electron detector by the repelling electrostatic potential and have enough energy to release
a trigger signal. Results of a measurement by Lukas Raffelt to characterize the required
conductive coating on the surface of the electron detector is briefly described in section A.4
of the appendix.

3.1.1 Coincident Detection

The setup of P II in Figure 3.1a does not allow direct discrimination of proton and
electron signals. Instead, the time of flight properties are exploited. A proton will always take
more time to reach a detector, than its corresponding electron. Therefore, two successive
detector events may be assigned to first an electron and second a proton, neglecting random
coincidences. The distance from the decay volume to the detectors is sufficiently short
to largely exclude random coincidences. This method yields four different detector hit
dependent spectra 𝑁±

± , whose upper index designates the detector hit by the electron, while
the lower index indicates the detector hit by the corresponding proton [GJL95]:

𝑟 = 𝛽
𝐸
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For 𝑟 < 1 or 𝐸kin < 236 keV there are two possible emission directions for the neu-
trino at fixed electron and proton emission directions, while for 𝑟 > 1 the five parameters
(𝐸, 𝜃𝑒, 𝜙𝑒, 𝜃𝑝, 𝜙𝑒) uniquely define the process. The sign of the polarization 𝑃 can be changed
by a neutron spin flipper.

The coincidental proton asymmetry

𝐶exp(𝐸) =
𝑁+
+ (𝐸) + 𝑁−
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(3.8)

is therefore expressed depending on the electron energy 𝐸 and obtained by a fit to the
corresponding spectrum. In practice, in the fit 𝐴 and 𝐵 are expressed by 𝜆 which finally
is used again to obtain 𝐶 from equation (3.2). For systematic reasons the spin is flipped,
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3 Proton Detection and Proton Asymmetry C

rather than mixing events from both detectors. Considering only electron events which hit
the +-detector, the asymmetry reads

𝐶exp(𝐸) =
𝑁↑
+(𝐸) + 𝑁↓

−(𝐸) − 𝑁↑
−(𝐸) − 𝑁

↓
+(𝐸)

𝑁↑
+(𝐸) + 𝑁↓

−(𝐸) + 𝑁↑
−(𝐸) + 𝑁

↓
+(𝐸)

. (3.9)

𝑁↑ and 𝑁↓ are events on the same detector with the spin flipper switched off (↑) or on
(↓). Background subtraction was only performed by measurements without neutrons and
the fit range was set to higher electron energies, which excludes the main background
contributions [Sch07]. Probably to suppress random coincidence from background signals,
the discriminator threshold of the electron detector was set quite high. This may have an
impact on the proton energy dependence of the proton detection efficiency – see section 3.3.1
for reference. Therefore a different detector system is required to verify this first result.

3.1.2 Differential Detection

Similar to the approach of chopping the neutron beam to get a clean background subtraction,
the proton asymmetry is directly measured with P III by chopping or rather blocking
the protons – on a much longer time scale. A variable electrostatic potential between
decay volume and the combined proton and electron detector allows to block protons away
from detection. The electrodes which define this potential are installed in a magnetic
field minimum and complete a simple MAC-E filter – compare to the experiments KATRIN
[Ste+13] and 𝑎SPECT [Sim+09] – which allows some proton energy resolution for the blocking
range. The setup is sketched in Figure 3.1b.

Many features of the measurement campaign 2014 to determine the proton asymmetry are
described in [Raf16]. Therein an overview of the measurement setup, including the beam
line and electron detectors, and an outline of steps towards the final result are presented.
A detailed study of important systematic corrections related to particle propagation will be
included in the dissertation by Michael Klopf [Klo18].

The experimental asymmetry now is measured by subtracting spectra 𝑁↑↓(𝑈block) with all
protons blocked from spectra with protons included 𝑁↑↓(𝑈𝑅):

𝐶exp(𝑈𝑅) =
𝑁↑(𝑈𝑅) − 𝑁↑(𝑈block) − 𝑁↓(𝑈𝑅) + 𝑁↓(𝑈block)
𝑁↑(𝑈𝑅) − 𝑁↑(𝑈block) + 𝑁↓(𝑈𝑅) − 𝑁↓(𝑈block)

(3.10)

At the blocking voltage 𝑈block > 𝐸𝑝,min/𝑒, no protons may overcome the electrostatic barrier
and only electrons may reach the detector, which for this measurement are considered to
be background.

3.1.3 Proton Spectrum

The phase space (1.2) of neutron beta decay is expressed in terms of electron and antineutrino
momenta, which makes analytical studies of proton properties not straightforward. In
[IPT13; Iva17] numerically integrable expressions for the proton spectrum including first
order radiative and recoil corrections are deduced. An additional contribution of proton-
photon interaction is derived in [Iva+13].

Following the directions of [IPT13], the kinematical factor 𝑥𝐶 from equation (3.2) may be
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(a) Similar to the electron asymmetry 𝐴,
the proton asymmetry 𝐶 prefers emission
against neutron spin direction over emission
in spin direction. The various lines show
the accessible spectra for different retarda-
tion modes.
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(b) The proton asymmetry 𝐶 increases almost
linearly with the kinetic energy. It is sen-
sitve to the Fierz term 𝑏 and an addi-
tional scalar-and-tensor coupling contribu-
tion which could appear in the neutrino
asymmetry 𝐵.

Figure 3.2: Theoretical calculations by [IPT13; Iva17] yield an easily numerical integrable
representation of the proton recoil spectrum. Here, the spectra are presented for
an axial-vector to vector coupling constant 𝜆 = −1.275.

calculated using
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2(𝐸0 ± 𝑝𝑝)
, (3.11)

where 𝑝𝑝 is the proton momentum and 𝐸𝑒 and 𝐸0 are the electron energy and the endpoint
of the electron spectrum. This relation does not include radiative and recoil corrections
which yield a much more complicated function. Furthermore an additional contribution
by the electron-antineutrino correlation parameter 𝑎 must be added to the denominator, if
low-energy parts of the proton spectrum are excluded from the integration – i.e. 𝑝𝑝,min > 0.
In the Standard Model recoil and radiative corrections result in a relative change of the
proton asymmetry parameter 𝐶 of about 1.7‰, which depends on the measured ratio of
axial-vector and vector couplings. The neglect of higher order corrections is accounted
for by an assumed relative uncertainty of 3 ⋅ 10−4. Figure 3.2a shows the corresponding
differential proton spectra for polarized neutrons.

A measurement of the proton recoil spectrum cannot be done by direct energy detection,
but may only be derived from time of flight information like in the experiments aCORN
[Dar+17] and Nab [Bae+13] or by an integral measurement, such as in the experiment 𝑎SPECT
[Sim+09]. By applying a blocking voltage like in 𝑎SPECT, the sensitivity to scalar-and-tensor
coupling contributions is enhanced – see section 1.1. An exemplary influence of a nonzero
Fierz interference term on the differential proton asymmetry is sketched in Figure 3.2b.

Doppler Effect

Although it seems unlikely, the neutron velocity 𝑣𝑛 has an influence on the measured
proton asymmetry. By changing the reference from the neutron at rest to the lab frame, a
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Figure 3.3: The Doppler effect increases the measured asymmetry on the upstream detector
and must therefore be corrected by a negative correction factor. For the down-
stream detector the opposite correction is applied. By not mixing detectors for
the evaluation of the asymmetry, the correction remains small. The correction
is displayed for different retardation modes.

transformation of the polar angle 𝜃 to the magnetic field has to be done:

cos𝜃 =
𝑣𝑝 cos𝜃
𝑣𝑝

to rest frame−−−−−−−−−−−→
𝑣𝑝 cos𝜃 − 𝑣𝑛

􏽯𝑣
2
𝑝 sin2 𝜃 + (𝑣𝑝 cos𝜃 − 𝑣𝑛)2

=
𝑣𝑝 cos𝜃 − 𝑣𝑛

􏽯
𝑣2𝑝 + 𝑣2𝑛 − 2𝑣𝑝𝑣𝑛 cos𝜃

= cos𝜃𝑛.

(3.12)

Here 𝜃𝑛 is used for the polar angle in the neutron rest frame, which is important for
the asymmetric angular distribution, while 𝜃 denotes the observed polar angle. These
calculations can be performed non-relativistically, since the kinetic energy of the proton is
more than six orders of magnitude smaller than its rest energy.

Consequently there are more events observed on the downstream detector Lyon (𝜃 < 𝜋/2),
than on the upstream detector Grenoble (𝜃 > 𝜋/2). The correction in Figure 3.3 for a neutron
velocity 𝑣𝑛 = 800m/s becomes quite large at small proton energies where the phase space
is rather small, but decreases to below 3 ⋅ 10−3 towards the endpoint of the spectrum. The
individual corrections for different measurement modes which are described in the following
section yield:

Retardation Rel. Correction (10−3)
10V 3.59
20V 3.51
50V 3.31
200V 2.52
400V 1.25

The Doppler effect increases the measured asymmetry on the upstream detector and decreases
it on the downstream detector. The sign for the correction must be chosen correspondingly.
The uncertainty is estimated to be below 10% by taking into account the neutron spectrum
and divergence of the neutron beam.

3.2 Retardation System

The most important experimental difference to the measurement of the proton asymmetry
parameter 𝐶 with P II lies in the use of a set of retardation electrodes, which prevent
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Figure 3.4: A photo of the retardation electrode system (opening diagonal ≈ 75 cm) taken
from the central volume [Klo15]. The wire grid which defines the retardation
plane is visible, as well as the electrodes which can be set individually. The
separation into upper and lower electrodes was foreseen to induce an 𝐸⃗× 𝐵⃗ drift
to residual gas ions.

particles from the decay region with kinetic energies below a certain threshold to reach the
detectors.

The electrode system was designed by Michael Klopf [Klo18] and was initially foreseen
to be used without any grid to circumvent background issues which were observed in the
measurement with P II [Dei05]. This wireless concept has two drawbacks:

1. A plasma can build up undisturbed between both proton detectors.

2. The retardation region has an inhomogeneous potential which leads to a more com-
plicated transmission function.

During the experiment the first point made at least one wire grid a requirement, while the
second point hinted to the best position of the grid being the retardation plane. It finally
turned out, that the grid in a region of low electric fields imposed no problems. This leads
to the assumption, that the creation of ions in P II was solely related to the large
potential gradient due to the vicinity of the grid to the acceleration potential of the converter
foil.

The retardation electrode system in P III consists of several electrodes, which can be
set to individual potentials. Strong electric fields at the wires can be avoided by increasing
the electrode potential towards the wire grid. The photo in Figure 3.4 shows the electrodes
after insertion of the grid.

3.2.1 Measurement Scheme

The measurement scheme was selected, such that most time is spend on measuring the
proton asymmetry at blocking voltages at 𝑈𝑅 = 10V and 𝑈𝑅 = 20V as these provide most
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statistics and have the smallest experimental uncertainties. For studies of the shape of the
differential proton asymmetry, there were also measurements at 50V, 200V and 400V
retardation voltage. Protons were completely blocked at 𝑈𝑅 = 850V. The final scheme with
the number of cycles per setting in consecutive order row-by-row was

Emptying Ramping Measurement Emptying Ramping Measurement
8 × 0V 8 × 10V 32 × 10V 8 × 0V 8 × 850V 32 × 850V
8 × 0V 8 × 50V 32 × 50V 8 × 0V 8 × 20V 32 × 20V
8 × 0V 8 × 850V 32 × 850V 8 × 0V 8 × 10V 32 × 10V
8 × 0V 8 × 400V 32 × 400V 8 × 0V 8 × 850V 32 × 850V
8 × 0V 8 × 20V 32 × 20V 8 × 0V 8 × 850V 32 × 850V
8 × 0V 8 × 200V 32 × 200V.

One block consists of 528 cycles, running for ≈ 1.5h, with 700 chopper turns ≃ 9.2 s per cycle.
The spin flip pattern for eight cycles alternates between 01101001 and 10010110 (1 - spin flipper
on, 0 - spin flipper off) between blocks, to cancel possible remaining ramping effects. Data
from trap emptying and ramping cycles are not used for the final analysis. For emptying the
particle trap, which is build up by the retardation potentials and the connecting magnetic
field, the retardation electrodes are physically detached from the high voltage supply and
connected to the environmental ground potential to ensure that no low-energetic ions may
remain trapped. No measurement runs are performed at 0V to ensure that hypothetical
ionization related to the neutron beam cannot be detected and misinterpreted as real events.

In section 3.4, background issues related to the high voltage required for proton detection
are addressed. To minimize the uncertainty of the dead time correction due to varying signal
rates, only measurements which were performed in short succession are combined. Since
more time is spend on signal measurements, than on background measurements, the latter
have to be split onto signal data sets. The fraction of data from a background measurement
which is assigned to a signal data set 𝑆 follows

𝑡𝑆bg
𝑡bg

=
1

∑
𝑆𝑖

#𝑆𝑖cycles×#
bg
cycles

Δ𝑇𝑆𝑖bg

#𝑆cycles × #
bg
cycles

Δ𝑇𝑆bg
, (3.13)

where Δ𝑇𝑆bg denotes the time difference between signal and background measurement and
accounts for background drifts. The number of background cycles #bgcycles – with protons fully
blocked – cancels here, but plays a role when combining multiple background measurements
into a single signal measurement. For 𝑆𝑖 only signal measurements after the preceding
and up to the following background measurement are considered. In practice, background
data sets are not split, but statistical errors are scaled by 􏽯𝑡bg/𝑡

𝑆
bg. This leads to correlated

statistical errors between measurements at different retardation voltage settings.

3.2.2 Asymmetric Retardation

All retardation voltages 𝑈𝑅 mentioned so far are referring to a symmetrical setup, where
both electrode systems are set to equal potentials. Driving both systems at different voltages
opens up opportunities for systematic tests. For these tests, one of the electrode systems is
set to full proton retardation, while the other is set to 10V or 400V potential.

First of all, accidental misassignments of secondary electron events to the wrong detector
can be excluded. No proton signal is expected on the fully blocked detector. If however
there is such a signature on this detector, this may hint to secondary electrons which are
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(a) Protons which directly reach the proton de-
tector effectively experience almost no drift.
Reflected protons are more unlikely to be de-
tected, since they are shifted by up to several
cm. The red region shows the retardation
plane.
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(b) Drifting protons are more likely to not reach
the conversion foil, which is of finite size.
Therefore an asymmetry is measured for
asymmetrically blocking setups. A higher
asymmetry for the Grenoble (G) detector
agrees with positioning measurements using
calibration sources.

Figure 3.5: Measurements with asymmetric retardation settings are very sensitive to the
the magnetic field. Especially 𝑅⃗ × 𝐵⃗ drifts lead to shifts of the proton position
perpendicular to the magnetic field.

emitted from the opposite proton conversion foil towards the blocked detector and are able
to pass the blocked conversion foil and be detected. This effect is excluded for most of
the data sets in section 3.3.1, with a different method, however. A second effect to be
studied is related to 𝐸⃗ × 𝐵⃗ and 𝑅⃗ × 𝐵⃗ drifts. The first lets charged particles drift in the
direction of 𝐸⃗ × 𝐵⃗ in combined electrical and magnetic fields. The latter induces drifts
in curved magnetic fields perpendicular to curvature and magnetic field, such as in the
separator section between neutron beam and charged particle path of P III. Both
effects have an influence on the edge effect, which arrises due to a finite detector size
and its incomplete coverage of the charged particle beam. In an ideal environment, the
blocking electrodes would simply reflect any incoming protons, which were then registered
by the unblocked detector. The measured asymmetry should therefore be zero. In the real
environment, the mentioned effects lead to a measurable asymmetry in Figure 3.5b, hinting
to a loss of protons which experience these drifts. Figure 3.5a illustrates the drift effect for
two protons, one being directly transmitted, one being reflected first. In [Klo18], this effect
is studied using particle tracking simulations which include the measured magnetic field of
P III and calculated electric fields for retardation electrodes and proton detector. A
validation of the electric field calculations follows in the next section.

3.2.3 Reach-Through

To minimize the reach-through of the electric potential at the blocking electrodes, the wire
grid was inserted in the central proton blocking electrode. This grid also acts as an absorber
for charged particles which are trapped in the magnetic field between the electric field
boundaries of the Field Degrader.

While the grid already reduces the reach-through by a factor of ≈ 20, there still is a change
of potential in the wire grid layer, depending on the distance to the wires. The grid extends
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(b) The calculation in the inner region shows a
variation of the electric potential within 3%,
leading to an effective blocking potential. A
comparison with other methods shows devi-
ations < 0.05% [Klo18].

Figure 3.6: To calculate the grid blocking potential, the boundary problem is split into two
parts. A three dimensional outer region is mainly determined by the electrode
potentials, while two dimensional slices of the inner region is dominated by the
wire grid potentials. Within ten iterations indicated in b, a smooth transition
between both models is obtained and converges to the final result.

over a width of 52.5 cm with wires of 25 µm diameter and a spacing of 5mm. Since the
dimension of the wires are much smaller than the overall dimensions of the system, it is
difficult to find a reasonable finite element mesh that allows the calculation of the potential
inside the space. In [Klo18] a simulation of the whole P III instrument is performed
to obtain the electric potential at any point. This section shows a cross-check of the results
obtained therein, using a different method.

Simulation

The problem can be expressed as the Dirichlet boundary problem with Laplace’s equation

ΔΦ = 0,where 𝜌(𝑥⃗) = 0
Φ|𝜕𝑉 = 𝑈electrode.

(3.14)

Only for a few geometries this can be solved analytically, so a numerical solution will be
found using Mathematica’s numerical equation solver with finite elements. As already
mentioned, the main task is to include the small wires within the large volume. One
approach is to split the problem into a near-wire-region and a region which is far enough
away from the wires such that the microscopic influence of the potential vanishes. The far-
region can be implemented as seen in Figure 3.6a. The electrodes are at fixed potentials,
while the inner end of the far-region is defined as a floating potential whose behavior is a
result of the following calculations.
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3.2 Retardation System

Figure 3.7: The horizontal blue lines show the boundary position used for the far-region
boundary condition. The blue circle shows the theoretical shape of the wire,
while the black lines show the 2D-mesh. Each red rectangle shows the next
zooming stage.

2D-Approach

For this approach, the region inside the central electrode is separated into 2D-slices, such
that the wires appear as circles as in Figure 3.7.

For each of these slices, the boundary conditions are taken from the far-region simulation.
Since in 2D, the space has to be separated into triangular mesh elements – instead of
tetrahedrons in 3D – the number of finite elements is largely reduced and the calculation
accelerated. The slices are chosen in this way, because the potential between two slices
only changes slowly and interpolation can be used to reconnect the result to a 2D surface
such as in Figure 3.6a.

By applying these steps – calculating the far-region potential, afterwards the near-region
potential – several times, a converging solution can be found. Possible initial parameters
are:

1. setting the complete inner region to the potential of the inner electrode

2. do not use an inner boundary condition at all (as if there were no wires)

The convergence in Figure 3.6b is the result of the first approach.

Comparison to other Methods

In [Klo18] the presented geometry is implemented with COMSOL [COM] and neBEM [MM06]
to compare the outcome of the simulations. Differences of the methods are < 0.05% which
makes the computational error negligible compared to effects due to surface potentials.
An advantage of the combination of two and three dimensional geometries is the quick
convergence. However, the implementation of more complex geometries is time consuming,
compared to a COMSOL model.

3.2.4 Grid Effect

The presence of wire grids in the retardation plane gives rise to the probability of protons
hitting these wires. For these cases, two things have to be considered:

• Either the proton is lost or reflected.
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(b) Correction to the differential proton asym-
metry for different retardation voltages when
assuming no backscattering. Protons which
are emitted in neutron spin direction have a
higher probability to hit a wire, which rela-
tively increases the measured asymmetry.

Figure 3.8: A wire grid which is installed in the retardation plane of the electrode system
allows protons to hit these wires. In a model for an estimation of the influence
on the measured proton asymmetry, the wires are rectangularly shaped and may
be hit from the front or on the sides.

• The wires are made of aluminum – the proton might sputter an aluminum ion.

A simulation with TRIM [ZZB10] shows that the sputtering probability is ≈ 5% and can
therefore be neglected. Even if an ion is released, it only has a chance of being detected if
at least three atomic shell electrons are missing, due to the thickness of the carbon foil in
the proton-to-electron converter.

Proton reflection plays a role, however. Protons with an energy of 500 eV which hit an
aluminum target under an angle of 45° have a probability of ≈ 35% to be reflected. This
probability increases towards lower energies. Depending on where the wire is hit, the proton
might continue towards the originally aimed detector or the opposite detector. This effect
was not considered for the measurement with P II [Sch07] and will be treated later
on.

Hit Probability

First of all the overall probability that a proton hits one of the wires is obtained. Here a
rectangular wire of thickness 𝑑1 and width 𝑑2 is considered. While the proton is passing
the thickness 𝑑1 in the wire grid plane, it covers a range 𝑥 in Figure 3.8a.

The starting point 𝑠 is considered to be uniformly distributed within 0 and the distance
between two wires 𝑎. Following the sketch, the wire is hit, if 𝑠 > 𝑎 − 𝑑2 − 𝑥 and therefore the
probability to hit the wire is

𝑃hit =

⎧⎪⎪⎨
⎪⎪⎩

𝑥+𝑑2
𝑎 , 𝑥 + 𝑑2 < 𝑎

1, otherwise.
(3.15)
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The angle of gyration Δ𝜙 as a parameter for 𝑥 can be expressed as follows:

𝑑1 = 𝑣 𝑡 cos𝜃 (3.16)

⇒ Δ𝜙 =
𝑣 𝑡 sin𝜃
𝑟 sin𝜃

=
𝑑1

𝑟 cos𝜃
. (3.17)

Here the proton moves with a total velocity 𝑣 at polar angle 𝜃 to the magnetic field. The
radius of gyration is defined by 𝑟 sin𝜃, where

𝑟 =
𝑝𝑝
𝑒 𝐵𝑅

, (3.18)

according to the Lorentz force in a magnetic field 𝐵𝑅 in the retardation plane. An expression
for 𝑥 requires a distinction of cases. The azimuth 𝜙 is uniformly distributed between 0 and
2𝜋. For reasons of symmetry however it can be limited to (−𝜋/2 − Δ𝜙/2, −Δ𝜙/2).

𝑥
𝑟 sin𝜃

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(𝜙 + Δ𝜙) − sin𝜙, 𝜙 > −𝜋2
2, 𝜙 > 𝜋

2 − Δ𝜙
1 + sin(𝜙 + Δ𝜙), otherwise.

(3.19)

The first branch is only accessible for Δ𝜙 < 𝜋, the second only for Δ𝜙 > 𝜋. On average, the
coverage reduces to

𝑥 = 2𝑟 sin𝜃

⎧⎪⎪⎨
⎪⎪⎩

Δ𝜙
2𝜋 +

1
𝜋 sin 􏿵Δ𝜙2 􏿸 , Δ𝜙 < 2𝜋

1, otherwise.
(3.20)

𝑥 cannot be used to calculate the average hit probability though, which would be overesti-
mated for Δ𝜙 close to 2𝜋. Instead it must be determined by integration:

𝑃hit(Δ𝜙(𝑟, sin𝜃, 𝑑1), 𝑑2) =
2
𝜋

−Δ𝜙
2

􏾙
−𝜋+Δ𝜙

2

d𝜙

⎧⎪⎪⎨
⎪⎪⎩

𝑥(𝜙, Δ𝜙)+𝑑2
𝑎 , 𝑥 + 𝑑2 < 𝑎

1, otherwise,
(3.21)

which may be evaluated to analytical but unhandy expressions.
The corresponding correction to the measured asymmetry can now be calculated by as-

suming proton loss if a wire is hit:

𝐶measured(𝐸𝑝) = 2𝐶real(𝐸𝑝)

1

∫
ℜ𝔢
􏽱
1−

𝐵0
𝐵𝑅
􏿶1−

𝑒𝑈𝑅
𝐸𝑝 􏿹

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1 − 𝑃hit

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝑟(𝐸𝑝),

􏽱

𝐵𝑅(1−cos2 𝜃)

𝐵0􏿶1−
𝑒𝑈𝑅
𝐸𝑝 􏿹

, 𝑑1, 𝑑2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
cos𝜃d(cos𝜃)

1

∫
ℜ𝔢
􏽱
1−

𝐵0
𝐵𝑅
􏿶1−

𝑒𝑈𝑅
𝐸𝑝 􏿹

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
1 − 𝑃hit

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
𝑟(𝐸𝑝),

􏽱

𝐵𝑅(1−cos2 𝜃)

𝐵0􏿶1−
𝑒𝑈𝑅
𝐸𝑝 􏿹

, 𝑑1, 𝑑2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
d(cos𝜃)

(3.22)

Since the polar angle 𝜃 does not change the probability of whether the front face of the
wire is hit, the width 𝑑2 of a wire has no influence on the measured asymmetry, only the
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3 Proton Detection and Proton Asymmetry C

thickness 𝑑1 is crucial. For a thickness of 𝑑1 = 25 µm Figure 3.8b shows the correction. Peaks
occur at the energy where all of the protons emitted in one of the half-spheres start to
overcome the electrostatic barrier. At this energy 𝐸𝑝 =

𝑒𝑈𝑅

1−𝐵𝑅
𝐵0

, the angular distribution of

proton momenta has a singularity at 90°, where the correction is maximal. For lower
energies the singularity does not overcome the potential, while at higher energies, it already
occurs at smaller polar angles. The overall corrections to the measured integral proton
asymmetries would then be

Retardation Rel. Correction (10−4)
10V -4.3
20V -4.8
50V -6.3
200V -12.1
400V -13.7

Proton Backscattering

The situation changes, if backscattering is considered. If the backscattered proton continues
to move towards the originally aimed detector, the correction simply gets smaller. If instead
it moves towards the opposite detector, the measured asymmetry is reduced, which is very
similar to undetected backscattering in electron detection as discussed in section 2.7:

𝐶measured ≈
􏿴𝑁↑ − 𝑁↓􏿷 (1 − 𝑃hit) + 􏿴𝑁↑ − 𝑁↓􏿷 (𝑝same − 𝑝opp)𝑃hit
􏿴𝑁↑ + 𝑁↓􏿷 (1 − 𝑃hit) + 􏿴𝑁↑ + 𝑁↓􏿷 (𝑝same + 𝑝opp)𝑃hit

(3.23)

=
􏿴𝑁↑ − 𝑁↓􏿷 (1 − (1 − 𝑝same + 𝑝opp)𝑃hit)

􏿴𝑁↑ + 𝑁↓􏿷 (1 − (1 − 𝑝same − 𝑝opp)𝑃hit)
(3.24)

= 𝐶real

⎛
⎜⎜⎜⎜⎝1 − 2

𝑝opp𝑃hit
1 − (1 − 𝑝same − 𝑝opp)𝑃hit

⎞
⎟⎟⎟⎟⎠ = 𝐶real 􏿵1 − 2

𝜖
𝛼
􏿸 , (3.25)

where 𝑝same is the probability of reflection in forward direction and 𝑝opp is the probability of
reflection towards the wrong detector. The probability for false assignment 𝜖 and the overall
detection probability 𝛼 for not being lost in the wire correspond to the same notation used
for undetected electron backscattering in equation (2.104).

This effect will be studied in more detail in [Klo18], including angular and energy dis-
tributions of the backscattering probability. To obtain an estimate for the expected order
of magnitude, the following assumptions are made: The wires are still considered to be of
rectangular shape. If a proton hits the front face of the wire, it will move towards the
opposite detector in case of reflection. If one side of a rectangular wire is hit, it may
continue to move in its original direction if it is backscattered. These cases can be ac-
counted for by either setting the thickness 𝑑1 or the width 𝑑2 to zero when calculating 𝑃hit.
For the backscattering probability, 35% will be used in both cases. In Figure 3.9 it results
in a measured asymmetry which is smaller than the actual asymmetry by a factor of about
3‰. Again, it must be noted, that this result is based on simple assumptions and a more
realistic behavior is still to be evaluated. The correction may probably be determined with
a relative uncertainty of 1‰ on the proton asymmetry.

For future measurements with PERC, proton backscattering from grid wires will not have
the same influence on the measured asymmetry, since only one detector will be used and a
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Figure 3.9: A rough estimate of the correction due to the grid effect yields 3‰ if proton
backscattering is taken into account. In the simplified model, hitting the front
face of a wire may result in backscattering in the opposite direction, while
scattering off of the side of a wire lets the proton continue its movement in the
same direction.

false assignment of the emission direction is excluded. Therefore the positive effect on the
homogeneity of the electric potential may be exploited, as well as the disturbing influence
on plasma build-up between magnetic filter and retardation potential, without the drawback
of a relatively large correction. The transmission function of the blocking potential may
be characterized experimentally by using the positron source CALIPSO which has been
developed by Romain Virot for this purpose [Vir17].

3.3 Field Degrader

The key instrument of the proton asymmetry measurement is a proton-to-electron converter
device, referred to as Field Degrader. It allows the detection of those protons that are able
to overcome the electrostatic barrier of the retardation system. A photo with an installed
converter foil is shown in Figure 3.10a. It is a symmetrical reflectron setup, consisting of 15
electrodes on each side, linearly increasing the electric potential up to the central potential,
where a converter foil is installed. The foil “converts” accelerated protons into secondary
electrons, which can then be detected by the electron detector on the other side of the foil.
Each symmetric pair of electrodes is surrounded by a copper plated Kapton® foil to allow
a step-wise potential reduction towards the detector vessels, depicted in Figure 3.11. This
design works excellently under air, but has some drawbacks when employed in vacuum:
The small space of 0.17mm for each layer of shielding foils is hard to evacuate, such that
the pressure inside the device is larger than expected. This gives rise to small discharges
and subsequent photon and charged particle emission which leads to background events in
the adjacent detector, investigated in section 3.4. A more detailed description of the Field
Degrader design can be found in [Raf16].

3.3.1 Secondary Electrons

The key to an efficient proton detection, is an efficient production of secondary electrons.
Naturally, the number of electrons produced along a path length d𝑥 is related to the proton
energy loss d𝐸/d𝑥. Since the proton will lose all of its kinetic energy in the course of its
detection, the first thing which comes into the mind is to increase the proton energy as
far as possible. However, secondary electrons are produced at atomic scale energies of few
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(a) The converter employed in P III has an opening
diagonal of 47 cm and would have allowed a converter
foil size of 34 cm diagonal. Installation could only be
achieved once though and finally a much smaller foil had
to be used.

(b) A miniature version of the converter is used for test mea-
surements to study conversion properties. Protons are ac-
celerated onto the foil by up to −25 kV over a distance of
7 cm and release secondary electrons on the opposite side.

Figure 3.10: The proton-to-electron converters consist of several electrodes which generate a
quasi-homogeneous electric field in the inner region towards the converter foil.
Within the converter foil, the accelerated proton transfers its kinetic energy to
secondary electrons which leave the foil eventually. The electrostatic potential
accelerates these secondaries out of the device in turn.
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(a) The Teflon insulators used as spacers between the electrodes
are supported by an inside ceramic tube (dashed lines). The
grooves were added during the beam time to overcome issues
with sparks along the surface of the hydrophilic Teflon. The
red framed detail is shown in Figure 3.11b.

(b) The tiny spaces between the
foils are at equal potential
(colors blue to red), but not
sufficient to efficiently evac-
uate the detector system.

Figure 3.11: The primary-proton-secondary-electron accelerator (“Field Degrader”) creates a
homogeneous electric field by step-wise increase of the acceleration potential
applied to the electrodes. The figures show a cut through the white Teflon insu-
lators at one of the edges of the device. In orange the insulating Kapton® foils
are shown with brown copper plating. They allow a decrease of the maximum
potential at the foil to the surrounding ground potential within a few millime-
ters. For the actual Field Degrader there are 15 outer electrodes. The colors
from blue to red indicate the local potential, creating a nearly constant electric
field in the inner region.

eV, such that their mean free path length is short. Usually one would try to set the Bragg
peak of proton stopping to the detector sided surface of the foil to maximize the secondary
production, but unfortunately the energy loss d𝐸/d𝑥 ∝ 𝛽 for small energies [Lin53] and the
usually observed Bragg peak only appears at much higher energies.

The transport of secondary electrons may be treated as diffusion [Ste57] and the number
of escaping electrons can then be regarded as exciton loss in scintillators [Bir52; Bir53].
The probability for an escaping electron, released at a distance 𝑟 to the surface, is then

𝑝(𝑟) =
1
2 􏿶

exp 􏿶−
𝑟
a0
􏿹 +

𝑟
a0

Ei 􏿶−
𝑟
a0
􏿹􏿹 , (3.26)

where 𝑎0 is a typical length on the order of the mean free path and Ei is the exponential

integral function defined by Ei(𝑧) = −
𝑧
∫
∞

e−𝑡/𝑡d𝑡. This inclusion of the space element in the

evaluation of Lambert-Beer’s law is the main difference to a similar calculation performed
in [Ber16]. The assumption of a constant secondary electron energy in the range of 20 to
30 eV [Ste57] which might certainly be true for high proton energies, cannot hold, due to
the small maximum energy transfer which is possible at low proton energies. Therefore,
Dirac scattering – describing the cross section of elastic scattering of two particles with
spin – is assumed to obtain the number of secondary electrons with sufficient energy to
overcome the work function. An empirical formula by [SD79] is used to estimate the mean
free path of low-energetic electrons before inelastic scattering occurs. This value is set to
𝑎0 in equation (3.26).

The only free parameter which remains for the secondary electron yield (SEY) is the energy
required to overcome the surface potential. According to [Ste57] this barrier is expected to
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(a) For the measurements with the Mini De-
grader, the detected SEY saturates in the re-
gion of 15 keV. This is related to the MCP
detection efficiency. Variations at higher en-
ergies are due to the instable proton source.
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(b) The expected SEY from the model shows that
more electrons are expected in backward di-
rection than in forward direction for the
foils employed in P III. This behav-
ior was observed during a test measurement
where only one Field Degrader was installed.

Figure 3.12: A test measurement with a thin foil of a thickness of 17 µg/cm2 is used to tune
the model for prediction of the secondary electron yield (SEY). For the thicker
foils (20 µg/cm2) employed in P III this allows to estimate the number of
expected electrons per proton in dependence on the proton energy and to derive
a corresponding correction to the measured asymmetry.

be lower than the actual work function. For graphite, from Figure 3.12a, 3.5 eV above the
highest energy in the density of states is found to be of reasonable magnitude.

In preparation of the measurement of the neutrino asymmetry with P II, studies
of converter foil properties were performed, with emphasis on proton energy [Rei99] and
angular dependence [Bra00]. The use of a scintillator for electron detection makes disen-
tangling of the SEY and the trigger function difficult at lower proton energies, though. To
better understand the detection efficiency in relation to the acceleration voltage, a minia-
ture version of the Field Degrader, called Mini Degrader, shown in Figure 3.10b was used
to convert protons coming from a time of flight energy selector.

Test Measurements at BOB

Experiences with the high voltage system during the beam time point out the necessity
of performing small scale test measurements to study the proton detection. A setup by
Wolfgang Schott and Erwin Gutsmiedl in preparation of a bound beta decay measurement
(BOB) provides low-energetic protons from a duoplasmatron source. The energy resolution
of this source is enhanced by a time of flight selector, consisting of two Bradbury-Nielsen
[BN36] gates which sequentially let protons pass. A microchannel plate (MCP) finally detects
the protons, providing timing information of the event, relative to the gate switching.

In order to perform foil characterization studies, the Mini Degrader is put in front of the
MCP, which now detects secondary electrons instead of protons. In contrast to scintillators,
the detection efficiency of MCPs for electrons decreases with increasing energy. The setup
provides a good means to disentangle the SEY and the detector function. The Bachelor
thesis of Karina Bernert [Ber16] presents these measurement in detail. A recurring feature
of all foils is the formation of an efficiency plateau in the region of 𝑈FD ≈ 15 kV acceleration
voltage in Figure 3.12a. It can be explained by the decreasing MCP detection efficiency
𝜂MCP(𝑈FD) [Ham06] for increasing electron energies.
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Figure 3.13: To resolve issues with an unstable proton source, which increase the uncertainty
for measured SEYs, a deflector will be used, to alternate between a direct proton
measurement and a secondary electron measurement. The rate of directly
detected protons (red) can then be related to the measured electron (blue) rate.

To reproduce the measured curve, the ion stopping simulation tool TRIM [ZZB10] is used.
TRIM does not provide information about secondary electrons, but can be used to simulate
straggling of ions and returns the local energy loss. This information is sufficient to compile
the complete SEY 𝜂SE with the beforehand mentioned methods. Due to the long dead time
of the detector, multiple secondary electrons may only lead to a single trigger. The event
rate therefore is proportional to

𝑝Detection = 1 − exp 􏿴−𝑛SE𝜂MCP(𝑈FD)􏿷 . (3.27)

For small probabilities 𝑛SE𝜂MCP this increases linearly, but saturates when approaching
unity. The spread in the SEY due to proton straggling is on the order of 10% and may be
neglected compared to the statistical spread of actually escaping electrons ∼ √𝑛SE.

A further rise of the SEY for acceleration potentials beyond 18 kV cannot be reproduced
by the calculations. It is probably related to an instability of the flux from the proton source,
which strongly increased after some time. Therefore measurements could not be reproduced
on an absolute scale, especially calling the data points at high energies in question. Instead
of stabilizing the proton source to the required rate, the actual proton flux could also be
measured independently from the conversion detector.

This can be achieved by a electrostatic pinholed deflector, which allows normal operation
when switched off, but deflects the proton beam onto a second MCP when switched on,
shown as a sketch in Figure 3.13. A SEY measurement will then be improved significantly.

Energy Dependent Detection Efficiency

The observed plateau in the measurement at BOB is a consequence of the properties of
the employed MCP. On the other hand, the measurement with P III is done with a
scintillator whose trigger function is not yet saturating at similar electron energies. There-
fore, there is no such plateau and the detection efficiency depends on the incident energy of
the proton. The observations of the test measurements can be used to tune the theoretical
SEY calculation and finally obtain a detection efficiency in dependence on the initial proton
energy with P III. Direct measurement of this effect would be possible with the test
setup as well, but will only be performed in combination with the new deflector electrodes.

The number of expected secondary electrons 𝑛SE(𝐸) can be read off in Figure 3.12b. The
difference between measured and theoretical proton asymmetry can then be calculated by
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plugging the electron trigger function 𝑇(𝐿(𝐸)) – see section 2.6.2 – into

𝑁↑
↓ =

1

􏾙

ℜ𝔢
􏽰
1−

𝐵0
𝐵𝑅
􏿵1− 𝑒𝑈𝑅

𝐸max
􏿸

d cos𝜃
𝐸max

􏾙
𝑒𝑈𝑅

1−
𝐵𝑅
𝐵0

sin2 𝜃

d𝐸
dΓ𝑃 􏿴𝐸,

𝜋
2 ∓ (

𝜋
2 − 𝜃)􏿷

d𝐸dΩ
􏿴1 − 􏿮1 − 𝑇(𝑛SE,1(𝐸))􏿱 􏿮1 − 𝑇(𝑛SE,2(𝐸))􏿱􏿷

(3.28)

𝑇(𝑛SE) = exp(−𝑛SE(𝐸))
∞
􏾜
𝑘=0

𝑛SE(𝐸)𝑘

𝑘!
𝑇(𝑘 ⋅ 𝐿(𝑒𝑈FD)) (3.29)

and comparing the resulting asymmetry to the same formula with 𝑇 = 1. The lower inte-
gration limits are defined by the retardation potential 𝑈𝑅 from section 3.2, which blocks
protons depending on their kinetic energy, but also on their polar angle 𝜃𝑅 in the retarda-
tion plane:

𝐸min =
𝑒𝑈𝑅

cos2 𝜃𝑅
=

𝑒𝑈𝑅

1 − 𝐵𝑅
𝐵0

sin2 𝜃
(3.30)

The number of secondary electrons is assumed to follow a Poisson distribution with mean
value 𝑛SE, which agrees with measurements by [Rei99]. This value also depends on the
incident angle of the proton on the converter foil

𝜃FD = arctan

􏽭
⃓
⃓
⃓
⎷

𝐸𝑃

𝐵FD
𝐵0

sin2 𝜃

𝐸𝑃 􏿵1 −
𝐵FD
𝐵0

sin2 𝜃􏿸 − 𝑒𝑈FD

, (3.31)

but only changes the correction by 5% with the maximum incident angle 𝜃FD,max = 9.3° being
small. However, the angular dependency is responsible for the overshoot of the correction
in Figure 3.14b between 300 and 400V.

Due to the relatively large flight times of the proton inside the field degrader, 𝑛SE(𝐸) is
split into 𝑛SE,1(𝐸) for the outgoing proton and 𝑛SE,2(𝐸) for the reentering proton. The time
between both electron emissions can be calculated by the reflectron time of flight

Δ𝑡 =
2𝐿√2𝐸kin

𝑈 􏽰
𝑚𝑝

𝑒
, (3.32)

which yields 300 to 500ns for the expected kinetic energy of ≈ 6 keV when escaping the foil.
This timing creates two well separated PMT pulses which have to be treated independently,
leading to the combined trigger probability 1−(1−𝑇1)(1−𝑇2). Unfortunately Δ𝑡 is too long to
be identified as a double hit within one event, which would have allowed to confirm proton
stopping simulations, but is short enough to not release a second event, however.

The required trigger function 𝑇(𝐿) from section 2.6 again is obtained by a fit to a measured
137Cs spectrum. Additionally, a 207Bi source is used to fix the remaining detector parameters.
Figure 3.14a presents a simultaneous fit to both sources for the Lyon detector. The obtained
trigger threshold of ≈ 0.5 photoelectron equivalent is a factor of 2.7 smaller than the
corresponding threshold for the electron asymmetry measurement. On one hand this implies
more detected background events, but allows the detection of single conversion electrons
with a probability of ≈ 28% on the other hand. Table 3.1 shows an overview of trigger
probabilities where the complete detector function with individual scintillator quenching
and coincident electronics nonlinearity are included.
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(a) A simultaneous fit to 137Cs and 207Bi cal-
ibration spectra yields the trigger function
which is used to estimate the proton trig-
ger efficiency. No edge effect was present for
the calibration measurements, as they were
performed without converter foils.
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(b) The finite trigger efficiency requires the mea-
sured asymmetry to be corrected by −8‰ for
the Grenoble detector and −4‰ for the Lyon
detector. For increasing retardation volt-
ages, the correction decreases, as the energy
of the transmitted protons is less spread.

Figure 3.14: The secondary electron yield of the converter foil depends on the initial proton
energy. As the differential proton asymmetry increases with the proton energy,
this induces a correction on the measured integral proton asymmetry.

# of Detector Grenoble Detector Lyon
Secondaries 16 kV 15.5 kV 15 kV 16 kV 15.5 kV 15 kV

1 26.7 28.6 30.5 30.5 32.6 34.6
2 67.3 69.6 71.8 70.7 72.9 74.9
3 87.6 89.0 90.3 88.9 90.2 91.3
4 95.6 96.3 96.8 96.0 96.6 97.1
5 98.5 98.8 99.0 98.6 98.9 99.1
6 99.5 99.6 99.7 99.5 99.6 99.7

Table 3.1: Probabilities of trigger signals by a certain number of coincident secondary elec-
trons in %. In combination with the secondary electron yield distribution, the
probability to detect a proton is obtained.
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(a) Most data was collected at −15 kV acceler-
ation voltage. All modes 10V, 20V, 50V,
200V and 400V are used and the corre-
sponding secondary electron spectra are well
described.
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(b) At the beginning of the beam time, the retar-
dation electrodes were driven at 10V, 200V
and 400V. The Grenoble Field Degrader
was accelerating protons towards a poten-
tial of −16 kV.

Figure 3.15: To validate the asymmetry correction of the energy dependent proton trigger
efficiency from Figure 3.14b, predicted secondary sum spectra are compared to
measured spectra. The latter are scaled by the number of decay electrons
detected in the same time. Electron detector parameters are fixed in Figure
3.14a. The only free parameters are the work function and the thickness of the
converter foil.

The edge effect – the fraction of absorbed particles – for protons and electrons is considered
to be 35% and 30% [Raf16; Dub+14]. From this, the obtained proton trigger efficiency
can be validated by comparing to the measured spectrum of secondary electrons, relative
to the number of detected decay electrons. The model for secondary electron emission has
two parameters: The thickness of the carbon foil and the effective work function. Both
have similar influence on the total trigger efficiency 1 − (1 − 𝑇1)(1 − 𝑇2), but provide different
signatures in the secondary spectrum. A parameter variation of the work function and the
foil thickness while keeping the agreement with BOB measurement data yields the results
in Figure 3.15. All other parameters are fixed.

The resulting corrections from Figure 3.14b are stable under parameter variation of the
electron detector function. The corresponding uncertainties can be neglected compared to
the uncertainty of the secondary emission model. The corrections may change by 20% for
different possible selections of the carbon foil work function. Further uncertainties of the
Field Degrader voltage (5%) and the ratio of the edge effect of electrons and protons (10%)
add up to ≈ 25%. A more precise measurement of the SEY depending on foil thicknesses
with BOB might significantly reduce the current error in the near future – see Figure 3.13.

Wrong Proton Detection

One implication of the secondary electron diffusion described by equation (3.26) is electron
emission in backwards direction towards the source of proton emission. For the setup of
P III this implies a transport of secondary electrons to the opposite detector. It is
clear, that a correct measurement of the proton asymmetry may not allow transmission of
these electrons through the converter foil, since they could then be registered by the wrong
detector.

The arising question is: What is the minimum electron energy required to transmit the
converter foil? A quick spot at the measurement data in Figure 3.16a reveals, that 3 keV
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(b) Wrongly assigned proton events can be
identified by a clear peak in the time of
flight spectrum for backscattering events, i.e.
events with hits on both detectors for a sin-
gle proton. The effect is therefore excluded
for data sets with similar Field Degrader
voltages.

Figure 3.16: A possible systematic effect is the detection of secondary electrons from the
converter foil, traveling to the wrong electron detector. If these electrons could
transverse the opposite converter foil, they would be identified on the wrong
detector.

are sufficient: The measured asymmetry of the Lyon-sided Field Degrader is clearly smaller
for the late measurement set #8 with 12 kV, compared to the 15 kV measurements where the
Grenoble-sided Field Degrader was set to the same potential. Although this data set clearly
cannot be used for the determination of the proton asymmetry, further indications for this
effect may be identified, to exclude any possible implication for the clean data sets. Here, the
time of flight properties come into play. Electrons emitted backwards are accelerated to an
energy equivalent to the Field Degrader potential, travel almost parallel along the magnetic
field lines to the opposite Field Degrader and finally slow down to the potential difference
between both devices. If they traverse the foil, they are accelerated onto the wrong detector.
The time for this to happen is almost constant for every event and should show up as a
peak in the backscattering time of flight spectrum. The time difference to the initial event
on the primary detector is estimated to be

Δ𝑡 = 𝑡Backward − 𝑡Forward (3.33)

=

⎛
⎜⎜⎜⎜⎜⎝𝑙𝐹
􏽱

2𝑚
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⎛
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􏽱
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𝑈1

⎞
⎟⎟⎟⎟⎟⎠ (3.34)

=
1
𝑐

⎛
⎜⎜⎜⎝𝑙P

𝑒𝑈1 + 𝑚𝑐2

􏽮(𝑒𝑈1)2 + 2𝑚𝑐2𝑒𝑈1
+ 2𝑙𝐹√2𝑚𝑐2

√𝑈1 − √𝑈1 − 𝑈2
𝑈2

⎞
⎟⎟⎟⎠ (3.35)

from a reflectron setup, which includes acceleration, deceleration and the free flight path
𝑙P. 𝑙P is approximately 6.2m, plus an additional transversal component due to
slight gyration of the electron. The energy loss in the opposite converter foil is neglected.
The expected time difference between primary and secondary event then is Δ𝑡 ≳ 95ns for
𝑈1 = 15 kV and 𝑈2 = 12 kV, which matches perfectly with the peak in Figure 3.16b for the
data set #8. The absence of this peak in all other data sets with 𝑈1 − 𝑈2 < 0.4kV allows
to estimate the influence of the relative effect on the measured proton asymmetry to be
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Figure 3.17: A simulation with Casino [Dro+16] to study the probability for secondary elec-
tron transmission through the opposite converter foil shows a strong dependence
on the foil thickness. For the measurements with voltage difference Δ𝑈 < 0.4kV
no transmission is expected.

< 3 ⋅ 10−4. Here the number of observed electrons emitted backwards and the related change
of the measured asymmetry are taken into account:

Δ𝐶<0.4kV = 𝑁<0.4kV
Δ𝐶3 kV
𝑁3 kV

(3.36)
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Δ𝐶3 kV
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􏿶
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􏿹
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+ 􏿶
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􏿹
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+ 􏿶
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􏿹
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(3.37)

≈ 𝑁<0.4kV
Δ𝐶3 kV
𝑁3 kV

√0.22 + 0.012 + 12 (3.38)

≈ Δ𝑁<0.4kV
Δ𝐶3 kV
𝑁3 kV

= 20
0.05
4500

< 3 ⋅ 10−4. (3.39)

Another method is to consider data sets with only one detector being fully blocked by the
retardation voltage. No proton signal should be visible, except if secondary electrons reach
the blocked electron detector. Due to the strongly varying fraction of background events,
this method is less reliable and does not yield similar limits.

A theoretical estimate for the maximum allowed potential difference that excludes electron
transmission can also be acquired with the help of the simulation tool Casino [Dro+16]. It is
designed to simulate low-energetic non-relativistic electron beams, using a method described
in [Low96]. Although the specific energy loss is somehow uncertain and hence requires
a tuning parameter, it still may provide a good estimate. Considering the foil thickness
to be 20 µg/cm2 ± 10%, the representation in Figure 3.17 excludes any secondary electron
transmission for potential differences Δ𝑈 < 0.4kV. The data can be used however, to verify
the foil thickness of ≈ 20 µg/cm2, by comparing the required fraction of wrongly assigned
electrons to comply with the observed change in asymmetry for the Δ𝑈 = 3 kV data set:

𝐶3 kV =
𝛼𝑁↑ + 𝛼(1 − 𝛼)𝜖𝑁↓ − 𝛼𝑁↓ − 𝛼(1 − 𝛼)𝜖𝑁↑

𝛼𝑁↑ + 𝛼(1 − 𝛼)𝜖𝑁↓ + 𝛼𝑁↓ + 𝛼(1 − 𝛼)𝜖𝑁↑
(3.40)

=
𝑁↑ − 𝑁↓

𝑁↑ + 𝑁↓

1 − (1 − 𝛼)𝜖
1 + (1 − 𝛼)𝜖

(3.41)

𝐶3 kV
𝐶<0.4kV

=
1 − (1 − 𝛼)𝜖
1 + (1 − 𝛼)𝜖

. (3.42)
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For a proton detection efficiency of 𝛼 = 0.5 and a change in asymmetry of 20%, the
probability for electron transmission to the opposite detector must be on the order of 25%.
Reading off the thicknesses from Figure 3.17 and considering the involved uncertainties, the
values are in agreement.

To completely avoid possible electron backward emission in future experiments, the con-
verter foil may simply be put behind the maximum of the electric potential, towards the
electron detector. A few volts difference are sufficient to make secondary electrons in back-
wards emission turn around and hit the foil again. This feature is considered for a possible
Field Degrader design for PERC which will be described in the following.

3.3.2 A Proton-to-Electron Converter for PERC

The experience made with the experimental setup for P III and test measurements at
BOB allows to integrate many improvements into a new high voltage setup for PERC. The
main features which are addressed by the new design are:

1. suitability for ultra-high vacuum

2. simplified mechanical converter foil installation

3. high voltage operation at low background

4. no backward secondary emission

All of these points are already improved by the smaller size of the instrument: If the
converter is operated at 1 T, particles emitted inside the neutron guide of a cross section
of up to 7 cm × 6 cm arrive at the converter within 8.5 cm × 8.5 cm. Therefore, a foil size
of 10 cm × 10 cm is sufficient to detect all particles, still allowing a slight misalignment of
the Field Degrader. In order to improve the vacuum suitability, surfaces are reduced and
openings chosen large enough to allow efficient evacuation. Furthermore, resistors for the
voltage divider are clamped instead of soldered. The resulting contact resistance can be
neglected compared to the overall resistance of the voltage divider. For the measurements
at BOB from section 3.3.1 this approach proved to have no visible side effects. A sketch
in Figure 3.18a illustrates the insertion of the converter foil from the top, which prevents
its error prone installation from the inside and omits sharp clamps required to keep the
foil in place. Before installation, the foil holder is covered by a thicker electrode insert
which avoids bending of the holder and subsequent foil damage. Adapting an idea by
Michael Klopf, the overall insulation to the outer vessel is provided by four polyether
ether ketone (PEEK) plates in Figure 3.18b, a material with excellent insulation properties
at very low outgassing rates. Dimensional accuracy for the milled plates is maintained by
outer reinforcing aluminum grids. The electrodes which define the inner potential are shut
inside the insulator plates and do not require any kind of further fixation. The new device
is small enough to be tested at BOB before employment in the real experiment.

3.4 Background

A major systematic advantage of P III over P II is the use of a pulsed neutron
beam. A mechanical disk chopper allows slicing the neutron beam into pulses at several
tens of Hz and allows a clean subtraction of background events with a time scale > 20ms.
The decreased average number of decays is compensated by the longer decay volume. Con-
sequently a measurement is separated by the neutron flight time into a signal window,
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(a) Foil insertion will be done from the top
again, as it was done for P II. This
eases the last step of the delicate foil pro-
duction and transport.

(b) The new device after production by the me-
chanical workshop1of the Physics Depart-
ment, TUM. The top insulator is installed
after the foil is put in place.

Figure 3.18: A new Field Degrader design foresees easier foil installation, is suitable for
ultra high vacuum, can be operated at high voltages and suppresses backward
emission of secondary electrons.

when neutron decay products are transported to the detectors, a beam stop peak, when the
neutron pulse is absorbed by the beam stop and the background window, when no decay
takes place in the central volume, but the background level is the same as during the signal
window.

Experimental asymmetries are then obtained by subtracting spectra 𝐵 in the background
window from spectra 𝑁 in the signal window:

𝐴exp =
(𝑁↑ − 𝐵↑) − (𝑁↓ − 𝐵↓)
(𝑁↑ − 𝐵↑) + (𝑁↓ − 𝐵↓)

(3.43)

or for the differential proton asymmetry (3.10):

𝐶exp =
(𝑁↑

𝑝 − 𝐵↑𝑝) − (𝑁↑
𝑒 − 𝐵↑𝑒 ) − (𝑁↓

𝑝 − 𝐵↓𝑝) + (𝑁↓
𝑒 − 𝐵↓𝑒 )

(𝑁↑
𝑝 − 𝐵↑𝑝) − (𝑁↑

𝑒 − 𝐵↑𝑒 ) + (𝑁↓
𝑝 − 𝐵↓𝑝) − (𝑁↓

𝑒 − 𝐵↓𝑒 )
(3.44)

The switch between 𝑁↑ and 𝑁↓ is performed by an adiabatic fast passage spin flipper,
which flips the neutron polarization with 100% efficiency before the neutrons enter the
instrument. Switching of the flipper state is performed every ≈ 10 s, the time period which
defines one measurement cycle. The influence of linear changes in the background, neutron
flux or detector drifts can be canceled by selecting a special spin flip pattern: 01101001 or
10010110 (1 - spin flipper on, 0 - spin flipper off). Choosing this pattern and assuming the
background to be spin independent and only drifting on larger time scales, the difference
spectrum, namely the numerator of the experimental asymmetry (3.43), can be simplified to

(𝑁↑ − 𝐵↑) − (𝑁↓ − 𝐵↓) 𝐵
↑=𝐵↓⟶ 𝑁↑ − 𝑁↓. (3.45)

1Thanks to A. Kienle and T. Fechter for their diligent work.
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Unfortunately, the assumption of slowly varying background levels does not hold for the
measurement of the proton asymmetry and background subtraction must be performed as
soon as possible after the signal measurement even in the difference spectrum. Therefore
the complete equation (3.10) must be applied. The additional background contribution related
to high voltage which is not present for a pure electron measurement is covered in the
following section.

The necessity for a complete background subtraction can be tested by calculating the
asymmetry of the background part

𝐶bg
exp =

𝐵↑𝑝 − 𝐵↑𝑒 − 𝐵↓𝑝 + 𝐵↓𝑒
(𝑁↑

𝑝 − 𝐵↑𝑝) − (𝑁↑
𝑒 − 𝐵↑𝑒 ) + (𝑁↓

𝑝 − 𝐵↓𝑝) − (𝑁↓
𝑒 − 𝐵↓𝑒 )

, (3.46)

which results in non-negligible contributions of 𝐶bg
exp = 0.011(20) for the Grenoble and

𝐶bg
exp = 0.037(30) for the Lyon detector to the measured asymmetry.

3.4.1 High-Voltage Background

Typically, background events as well as decay events follow a Poisson distribution in time.
That means, the probability for the next event to happen within time Δ𝑡 is expressed by

𝑝(𝑡 < Δ𝑡) = 􏾙
Δ𝑡

0

1
𝜏
e−𝑡/𝜏d𝑡 = 1 − e−Δ𝑡/𝜏, (3.47)

for an average time 𝜏 between two events. The timing distribution of measurements with
P III does not follow this law, however. In the case of the electron asymmetry
measurement, afterpulsing of the PMTs – see section 3.4.2 – would only be completely
suppressed by introduction of an artificial additional dead time of 10 µs [Mes11]. For the
proton asymmetry measurement, there is a further component, which cannot be related to
afterpulsing. A large number of events – compare signal and background rates in Figure
3.20 – have a small energy deposition in the scintillator and occur in short succession.
These bursts are clearly related to the high voltage applied to the Field Degraders and
require special attention in the data analysis.

Trapped Particles

P III in combination with the electric fields acts as a large Penning trap. Negatively
charged particles are trapped between the Field Degraders, while positively charged particles
could remain between the blocking electrodes. The latter is exploited to suppress potential
neutron beam related background by only measuring the asymmetry at blocking voltages
> 10V. This trap is emptied every five minutes, following the measurement scheme. The
larger trap between the Field Degraders cannot be emptied at similar frequencies, since in
contrast to the blocking electrodes, ramping up of the high voltage can only be done within
hours to prevent the destruction of the carbon foil by strong discharges.

Wire Grid as Background Absorber

Initially it was foreseen to operate the blocking electrodes without a wire grid to eliminate
scattering of decay particles on the wire. Tests with both Field Degraders being ramped up
synchronously with the magnetic field switched on showed immediately, that an absorber
for charged particles is required: The electric system broke down even at low voltages of
≈ 1 kV. Impurities of the Field Degrader electrodes probably led to field emission, constantly
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Figure 3.19: Trigger rates in the background time window of the downstream Lyon detector
are strongly varying from cycle to cycle. Still, big “jumps” in the mean back-
ground rate are visible. The high rates forced a reduction of the proton accel-
eration voltage from 16 kV to 15.5 kV and 15 kV. Trigger rates at the upstream
Grenoble detector are not affected. Numbers identifying the data sets head the
figure.

filling the trap with low-energetic electrons. These quickly build up a plasma, which leads to
a short circuit between electrodes. With insertion of a wire grid, even a very coarse one, the
charge-up could be avoided and symmetric operation was possible. A detailed study [Frä+14]
of undesired effects related to Penning traps was done for the KATRIN experiment. Therein,
photons from small plasma discharges are identified as source for background events.

Surface Effects

Furthermore, rough electrode surfaces may induce field emission as a consequence of strong
local electric fields. Impure tips and edges may create small plasmas which finally decharge
by charge transport and light emission. Studies of high voltage breakdowns in vacuum were
performed by [KS11] for CLIC, a linear TeV-collider. According to this work, a typical
voltage breakdown has a short and intense ignition peak for ≈ 10 ns and subsequently
emits light for a period of ≈ 3 to 4µs. For P III a similar behavior is observed, with
time constants increased by a factor of ten; the following section will cover this in more
detail. Also, voltage breakdowns be a source of further surface deterioration. This might
be a reason for a sudden rise of the mean background rate. The rate could be reduced
by reducing the proton acceleration voltage from 16 kV to 15.5 kV and later even 15 kV,
visible in Figure 3.19. The hypothesis of background being related to photons can further
be confirmed by using the position reconstruction of electron events from section 2.4.5. The
positioning of background events does not hint to ions being converted in the carbon foil,
but points to a light source in one of the upper corners of the Field Degrader.

Whether the background stems from photons from penning traps or high voltage break-
downs or detected ions emerging from plasmas, cannot ultimately be resolved. In any case,
the strongly varying background level must be dealt with. It does not explicitly introduce a
spin dependent background component, but still requires the background subtraction to be
performed on much smaller time scales than the spin flip changes.
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3.4.2 Dead Time Correction

As a consequence of the short, but intense background bursts, the number of background
events can largely be reduced by introducing an artificial dead time, ignoring all events
which occur within less than 𝑡dead after the previous event. This kind of dead time is
called extendible, as it resets with each new event, in contrast to the electronics dead time
which does not reset. After applying this cut, the real number of events must be extrapo-
lated to make proton measurements, electron measurements and background measurements
comparable.

The actual event rate 𝜏−1 depending on the measured event rate 𝜏−1measured with extendible
dead time 𝑡dead can be calculated with the help of equation (3.47):

𝑁run =
𝑡run

𝜏measured
=
𝑡run
𝜏

e−𝑡dead/𝜏 ⇒ 𝜏 = −
𝑡dead

𝑊􏿵− 𝑡dead
𝜏measured

􏿸
, (3.48)

where the Lambert-𝑊 function which solves the equation 𝑧 = 𝑊(𝑧e𝑧) is used. Equation
(3.48) may be applied, if none of the events are correlated. In combination with a non-
extendible electronics dead time, voltage breakdown bursts, afterpulsing and a correlated
proton ToF, the applicability must be checked, however. Especially for the last point, care
must be taken to not extend the artificial dead time over the minimum proton time of flight,
which is ≳ 5 µs. In the following a model for the time distribution of background events
is developed, verified by data and finally used to estimate the error which is introduced by
applying the dead time correction (3.48).

Background Simulation

A Monte-Carlo simulation is used to estimate the error introduced by applying the simplified
dead time correction (3.48). Three independent processes are involved which yield the
complete event rate:

1. neutron decay

2. environmental background

3. high voltage bursts

Additionally, PMT afterpulsing plays a role: Residual gas inside the PMT gets ionized by
the electron avalanche and leads to delayed pulses, emitted by the slowly propagating ions
[Ham07]. These pulses occur within several hundred ns to µs and may be registered as
independent events. Probability and amplitude of afterpulsing depend on the primary signal
and therefore increase for larger signals. Afterpulsing may occur for all three event types.
A short component by electron backscattering from the mesh electrodes does not play a role
with respect to correlated events.

Environmental background due to fast neutrons from the reactor and the beam line or 𝛾-
radiation from neighbouring experiments is considered to be the only source of uncorrelated
events. Fast neutrons or Compton electrons may create light in both detectors, but the time
difference has an electron backscattering signature and are not registered as multiple events.

Neutron decay events consist of a fast electron with flight times of ∼ 10 to 100ns and
a delayed proton which arrives at the detector at least 5 µs after the related electron. The
relation of the momenta of both particles does not permit a fast proton and a slow electron
at the same time. The timing distribution is modeled by a Landau distribution with a steep
cut at 5 µs in the simulation, which fits simulated flight time spectra sufficiently well.
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(a) By limiting event sequence probabilities
(3.49) to > 10−4, the related events of the
high voltage background, but also afterpuls-
ing, are suppressed by excluding the data in
yellow.
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(b) The same effect can be obtained by intro-
ducing an artificial dead time of 5 µs. The
corresponding uncertainty of the correction
can be determined more reliably. Remaining
bursts (yellow) can be neglected.

Figure 3.20: Two methods are considered to suppress bursts and afterpulsing to significantly
improve the signal to background ratio. Both methods require a subsequent
correction of the event rate to compensate for excluded false positives. The
figures show raw data in red and filtered data in green.

Burst Filter

More detail is required to find a model for the bursts. Events from a burst are highly
correlated and may be identified by evaluating the probability for a sequential occurrance
of a number of uncorrelated events:

𝑝𝑛(𝑡𝑛 − 𝑡0 < Δ𝑡) =
1
𝜏𝑛

𝑡0+Δ𝑡

􏾙
𝑡0

e−(𝑡𝑛−𝑡𝑛−1)/𝜏d𝑡𝑛⋯
𝑡3

􏾙
𝑡0

e−(𝑡2−𝑡1)/𝜏d𝑡2
𝑡2

􏾙
𝑡0

e−(𝑡1−𝑡0)/𝜏d𝑡1 =
Γ (𝑛, Δ𝑡)
Γ(𝑛)

. (3.49)

By defining a burst to be a set of at least 𝑛 events to occur at a probability of at most
𝑝max < 10−4, bursts can be found reliably with only a small number of false positives.
An identified burst iteratively is extended to 𝑚 events while 𝑝𝑚(𝑡𝑚 − 𝑡0) < 𝑝𝑚−1(𝑡𝑚−1 − 𝑡0).
Figure 3.20a shows how dropping identified bursts with 𝑛 > 3 from further data analysis
can improve the signal to background ratio significantly. On the other hand it is difficult
to estimate a corresponding uncertainty for the application of the burst filter. An artificial
extendible dead time of 5 µs has the same effect, shown in Figure 3.20b, and simplifies the
determination of the uncertainty of the correction.

Burst Model

The filter is now used to collect information about burst events. It turns out that there is
a short component, decaying with a life time of 𝜏short ≈ 1.5 µs and a delayed component,
lasting for up to 50 µs. The corresponding probability distribution for events belonging to a
burst, relative to the time of ignition, is approximated to

d𝑝time
d𝑡

=
1

𝜏short + 𝑐long𝜏long
􏿰exp 􏿶−

𝑡
𝜏short

􏿹 + 𝑐long
𝑡

𝜏long
exp 􏿶−

𝑡
𝜏long

􏿹􏿳 . (3.50)
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Figure 3.21: The model of the event distribution (3.50) in a burst is tested by a simulation
which takes into account the electronics dead time – the source for the oscilla-
tory structure up to 5 µs of the distribution.

The parameters are optimized to obtain a fit to filtered data in Figure 3.21. The number of
events per burst is distributed by

d𝑝count
d𝑁

=
1
⟨𝑁⟩

exp 􏿶−
𝑁
⟨𝑁⟩􏿹

, (3.51)

with mean number of detectable events per burst ⟨𝑁⟩ ≈ 6. The actual number of bursts is
varying strongly, as Figure 3.19 testifies. The accuracy of the dead time correction must
therefore be tested over a wide range of burst rates. Three different cases are considered:

1. signal window with protons and electrons

2. signal window with electrons

3. background window

To validate the dead time corrected number of events

𝑁𝐶(𝑁measured, 𝑡run, 𝑡dead) = −
𝑡run
𝑡dead

𝑊􏿶−
𝑡dead𝑁measured

𝑡run
􏿹 , (3.52)

electronics dead time and artificial dead time are applied to simulated data. When sub-
tracting a corrected number of events 𝑁𝐶 from one time window from a corrected number
of events from another, the remaining events should match the initially simulated number
of unblocked events. The uncertainty 𝛿𝑒𝑝 (3.56) for the determination of the asymmetry is
obtained by comparing the number of corrected proton events to the number of completely
randomly distributed electron events. 𝑁𝑝, 𝑁𝑒, 𝑁bg and 𝑁burst denote the actual number of
protons, electrons, uncorrelated background and burst events in the detector, while 𝑁dead
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(a) Up to 5 µs dead time, the corrected overall
number of detected protons is wrong at the
permille level. For 6 µs, which is above the
minimum proton ToF, the correction cannot
be applied.
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(b) The corrected number of electrons coincides
with the number of protons. No jump for
larger dead times is observed, since the elec-
tron events are not related to any other de-
tector event.

Figure 3.22: The correction (3.52) for the dead time leads to an underestimation of the
absolute number of electron and proton events in the simulation. The important
quantity, namely the relative difference between electron and proton events is
< 2 × 10−4, however.

are the number of events which are considered in the data analysis after dead time effects.

{𝑁𝑝, 𝑁𝑒,𝑁bg, 𝑁burst} ⟶ {𝑁dead
𝑝 , 𝑁dead

𝑒 , 𝑁dead
bg , 𝑁dead

burst}
{𝑁𝑒,𝑁bg, 𝑁burst} ⟶ {𝑁dead

𝑒 , 𝑁dead
bg , 𝑁dead

burst}
{𝑁bg, 𝑁burst} ⟶ {𝑁dead

bg , 𝑁dead
burst}

(3.53)

𝛿𝑒 = 1−
𝑁𝐶(𝑁dead

𝑒 + 𝑁dead
bg + 𝑁dead

burst) − 𝑁𝐶(𝑁dead
bg + 𝑁dead

burst)
𝑁𝑒

(3.54)

𝛿𝑝 = 1−
𝑁𝐶(𝑁dead

𝑝 + 𝑁dead
𝑒 + 𝑁dead

bg + 𝑁dead
burst) − 𝑁𝐶(𝑁dead

𝑒 + 𝑁dead
bg + 𝑁dead

burst)
𝑁𝑝

(3.55)

𝛿𝑒𝑝 = 1−
𝑁𝐶(𝑁dead

𝑝 + 𝑁dead
𝑒 + 𝑁dead

bg + 𝑁dead
burst) − 𝑁𝐶(𝑁dead

𝑒 + 𝑁dead
bg + 𝑁dead

burst)
𝑁𝐶(𝑁dead

𝑒 + 𝑁dead
bg + 𝑁dead

burst) − 𝑁𝐶(𝑁dead
bg + 𝑁dead

burst)
. (3.56)

The individual errors 𝛿𝑒 and 𝛿𝑝 of the correction in equations (3.54) and (3.55), namely the
deviation from the actual number of electrons or protons after background subtraction, is
< 4 × 10−3 as Figure 3.22 shows. It is a relative error of 15% on the correction of the order
of 1%. The relative particle related error 𝛿𝑒𝑝 is < 2 × 10−4 however and limits the relative
uncertainty of the measured asymmetry to 8 × 10−4.

3.4.3 Beam Related Background

A major concern of the measurement are so-called beam related background events which
are related to the number of neutrons inside the instrument. This kind of background would
induce a different number of background events in the signal time window, than in the
background time window for decay times on the order of ms. One possible source could be
residual gas ionization by trapped protons. Another source of beam related ionized particles
are 𝛼 particles, Lithium ions or Compton electrons emerging from the beam stop. They may
be released by neutrons captured by Boron.
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(a) To measure the neutron polarization,
the downstream Lyon detector coils are
switched off, which allows adiabatic pas-
sage of the neutrons to the polarization an-
alyzer. When the latter is replaced by a
beam stop, emerging 𝛼-particles (yellow, up
to 20 keV) and Compton-electrons (blue, full
energy range) may be transported to the
Grenoble detector.
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(b) When the beam stop is magnetically con-
nected to the Grenoble detector, charged par-
ticles related to neutron capturing are de-
tected. A 𝛽-like spectrum then adds to the
usual 𝛾-background while neutrons are hit-
ting the beam stop. The spectrum is most
likely related to electrons which are released
by Compton scattering inside the beam stop.

Figure 3.23: A measurement with the Lyon detector coils switched off, reveiled the large
number of charged particles escapting the beam stop. In the normal magnetic
configuration these particles may not reach the detectors, but might still be
responsible for residual gas ionization.

In the course of polarization measurements before the final beam time, only the Grenoble
(upstream) and the central coils were switched on to allow adiabatic passage of polarized
neutrons to the 3He analyzer. Electron measurements performed during that period revealed
an unusually large number of events on the Grenoble detector when the neutron beam hit the
beam stop. In the normal configuration, neutrons arriving at the beam stop are detected by
the Lyon (downstream) detector due to gammas traversing the lead shielding. Apparently
the magnetic connection between Grenoble detector and beam stop shown in Figure 3.23a
allows transport of charged particles released at the beam stop. The large number of the
detected particles in Figure 3.23b certainly coming from the beam stop, resulted in covering
the beam stop plate with an aluminum foil to stop all highly ionizing ions and also reduce
the number of emerging electrons. While these particles themselves may not reach the main
flux tube, they can ionize residual gas which then can be detected in any of both detectors. A
small number of ions may still escape from the uncovered neutron backscattering absorber.

To allay remaining concerns, the last hours of the beam time were dedicated to a mea-
surement with a chopper frequency of 6Hz at equal neutron wavelength distribution. This
configuration provides 13 times as many neutrons as usual in one pulse and leaves enough
time to observe a potential decaying background component. Beam stop events and neutron
decay events cannot be disentangled however, making this mode unsuitable for asymme-
try measurements. Figure 3.24a shows a corresponding neutron ToF spectrum, zoomed to
the background signals. For the Grenoble detector, an oscillating structure is apparent af-
ter the beam stop peak. This structure is related to neutrons being stopped by LiF chopper
tiles of different quality which emit fast neutrons and gammas. A small fraction of the fast
neutrons is detected by the close electron detector [Wer09]. No particular structure can be
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(a) A measurement with a chopper frequency
of 6Hz is used to estimate time constants
of varying background rates. The fit is per-
formed after the signal and beam stop peak
and can be described by an exponential func-
tion (3.59).
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(b) The obtained background decay constant can
be translated into the ToF spectrum of the
actual measurement. Two possible back-
ground sources are illustrated: Decay vol-
ume or beam stop. The time dependent ef-
fect is exaggerated for illustration.

Figure 3.24: Background subtraction in P III is performed under the assumption, that
background remains equal in signal and background time window. There are
possible sources of beam related background however which could break this
assumption. This is checked for by performing a measurement at slow chopper
frequencies.

observed on the Lyon detector. The structure is only related to the chopper rotation angle
and therefore cancels by subtracting the pure electron measurements – with protons blocked
– from proton measurements.

Assuming that the time dependent background rate piles up linearly within a certain time
window 𝑡0 and 𝑡1 – either while the neutron pulse is in the decay volume or it is hitting the
beam stop – the time dependent background rate can be expressed as

𝑟BG(𝑡) ≈
min(𝑡1,𝑡)

􏾙
min(𝑡0,𝑡)

𝑐BG exp 􏿶−
𝑡 + 𝑡′

𝜏 􏿹d𝑡′ +
∞
􏾜
𝑛=1

𝑡1+𝑛⋅𝑡𝐶

􏾙
𝑡0+𝑛⋅𝑡𝐶

𝑐BG exp 􏿶
−(𝑡 + 𝑡′)

𝜏 􏿹d𝑡′ (3.57)

= 𝜏𝑐BG exp 􏿵−
𝑡
𝜏
􏿸

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp 􏿶−

min(𝑡0, 𝑡)
𝜏 􏿹 − exp 􏿶−

min(𝑡1, 𝑡)
𝜏 􏿹 +

exp 􏿵− 𝑡0𝜏 􏿸 − exp 􏿵− 𝑡1𝜏 􏿸

exp 􏿵 𝑡𝐶𝜏 􏿸 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.58)

𝑡>𝑡1= 𝜏𝑐BG exp 􏿵−
𝑡
𝜏
􏿸
exp 􏿵− 𝑡0𝜏 􏿸 − exp 􏿵− 𝑡1𝜏 􏿸

1 − exp 􏿵− 𝑡𝐶𝜏 􏿸
≡ 𝑐′BG exp 􏿵−

𝑡
𝜏
􏿸 , (3.59)

with a constant 𝑐BG and the time 𝑡𝐶 for one chopper turn. The time constant 𝜏 can be
extracted from a fit of equation (3.59) to the ToF dependent background rate of the slow
chopper data. In this fit, a constant background rate 𝐶𝐶 must be included and can be related
to the time dependent background rate by the ratio 𝑅 = (𝜏𝑐BG)/𝐶𝐶.

Equation (3.58) can now be used to calculate the contribution of the time dependent
background rate 𝑆BG in the signal window and 𝐵BG in the background window to the
measured events by integrating 𝑟BG(𝑡) over the signal window [𝑡𝑆0 ∶ 𝑡𝑆1] and the background
window [𝑡𝐵0 ∶ 𝑡𝐵1]:
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1. background rate piles up when neutrons are in the decay volume: 𝑡0 = 𝑡𝑆0, 𝑡1 = 𝑡𝑆1

𝑆BG − 𝐵BG = 𝑅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡𝑆1

􏾙
𝑡𝑆0

exp 􏿵−
𝑡
𝜏
􏿸

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
exp 􏿶−

𝑡𝑆0
𝜏 􏿹

− exp 􏿵−
𝑡
𝜏
􏿸 +

exp 􏿵−
𝑡𝑆0
𝜏
􏿸 − exp 􏿵−

𝑡𝑆1
𝜏
􏿸

exp 􏿵 𝑡𝐶𝜏 􏿸 − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
𝑡𝐵1

􏾙
𝑡𝐵0

exp 􏿵−
𝑡
𝜏
􏿸
exp 􏿵−

𝑡𝑆0
𝜏
􏿸 − exp 􏿵−

𝑡𝑆1
𝜏
􏿸

1 − exp 􏿵− 𝑡𝐶𝜏 􏿸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.60)

2. background rate piles up when neutrons hit the beam stop from 𝑡𝐷0 to 𝑡𝐷1

𝑆BG − 𝐵BG = 𝑅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡𝑆1

􏾙
𝑡𝑆0

exp 􏿵−
𝑡
𝜏
􏿸
exp 􏿵−

𝑡𝐷0
𝜏
􏿸 − exp 􏿵−

𝑡𝐷1
𝜏
􏿸

exp 􏿵 𝑡𝐶𝜏 􏿸 − 1
−

𝑡𝐵1

􏾙
𝑡𝐵0

exp 􏿵−
𝑡
𝜏
􏿸
exp 􏿵−

𝑡𝐷0
𝜏
􏿸 − exp 􏿵−

𝑡𝐷1
𝜏
􏿸

1 − exp 􏿵− 𝑡𝐶𝜏 􏿸

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.61)

Contributions from pile-up in the decay volume (3.60) underestimate the background con-
tribution (𝑆BG ≳ 𝐵BG) but are almost canceling, while for background rate pile-up from beam
stop interaction (3.61) the background contribution is overestimated (𝑆BG < 𝐵BG). Assuming,
that the time dependent effect scales with the number of neutrons and that the constant
background rate 𝐶𝐶 does not depend on the chopper frequency, the ratio 𝑅 must be scaled
by 6Hz/76Hz. The difference in the number of events is finally obtained by scaling with
the signal to background ratio (𝑆 − 𝐵)/𝐵 ≈ 0.8. Relative uncertainties for the relevant con-
tributions on the Grenoble detector are listed in the following table. Uncertainties for the
Lyon detector can be neglected since the measurement with slow chopper does not reveal
any time dependent signature.

Retardation Voltage Uncertainty (10−3)
10V +0.2, −0.7
20V +0.2, −0.8
50V +0.1, −0.4
850V +0.0, −0.1

Negative values increase the measured asymmetry. From slow chopper measurements it
cannot be concluded what the source of the time dependent background contribution is.
Therefore only uncertainties and no correction is deduced.

3.5 Results

The final analysis of proton asymmetry data is performed with the tool p3reduce, which
is initiated and mainly implemented by Heiko Saul [Sau18]. The tool reduces the raw data
compiled by the data acquisition software pudel – see section 2.8.4 – in several steps,
which results in the final asymmetry histograms per data set. p3reduce is a framework
around ROOT [BR97]. Each analysis step is defined in a configuration file, which allows
to reproduce the analysis later on. The data reduction includes the following steps:

1. extraction of QDC pedestals – width and channel number of zero amplitude – from
raw data
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(a) The upstream Grenoble detector only was af-
fected indirectly by the background issues
and therefore has smaller statistical errors.
The proton acceleration voltage was set to
16 kV for the first two data sets and later
decreased to 15 kV.
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(b) The statistical error for the downstream
Lyon detector is dominated by background
events. The eighth data set cannot be used,
since the acceleration voltage was signifi-
cantly below the one of the opposite detec-
tor. For the final result, a dead time cut 4µs
is used.

Figure 3.25: The raw measured asymmetries are split into several data sets with different
setup parameters, such as retardation settings and converter acceleration volt-
age. The asymmetry shown is scaled by a blinding factor. The results are
correlated with other retardation modes due to the way the background is sub-
tracted. Therefore the scattering of data points is smaller than the statistical
error bars are suggesting. Different data sets in these figures represent different
timing cuts in order to test the influence of artificial dead times. Data set #6
only includes systematic tests and does not contribute to the average.

2. creation of 2D histograms depending on neutron ToF and QDC signal
• application of artificial dead time
• application of burst filter on request
• rescaling of PMT signals to reduce spatial dependence of the detector signal

3. project 2D histograms to one dimensional histograms of the QDC signal for signal
and background time window

• dead time correction is applied to the number of events per time window

4. assign pure electron measurements to proton measurements according to section 3.1.2

5. combine related histograms from the last step

6. add up all spectra of one data set and calculate average histograms

Since the secondary electron spectra do not provide enough about the proton energy except
for a cross-check for the trigger efficiency, the integrals of difference and sum spectra are
used to obtain the proton asymmetry. Figure 3.25 shows the obtained asymmetries at 10V
retardation voltage with different dead time cuts. To keep the remaining analysis unbiased,
the results are scaled by a blinding factor 𝒪 ≈ −1 ± 𝜖.

A cross-check for measurements of the retardation voltage and magnetic field is done by
comparing the expected change of number of proton counts depending on the retardation
voltage in Figure 3.26. This method is comparable to the measurement of the proton
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Figure 3.26: The number of detected protons relative to the number of detected electrons
can be used to verify measurements and calculations of the magnetic field
[Mos16] and electric potentials [Klo18]. The influence of the proton energy on
the trigger efficiency from section 3.3.1 is only a small correction here.

spectrum with 𝑎SPECT and therefore depends on the electron-antineutrino-correlation 𝑎(𝜆).
The influence of the experimental uncertainty of 𝑎 is negligible for the proton asymmetry
measurement. The exact transmission function – the probability for protons of a certain
momentum to overcome the electric barrier – is evaluated in [Klo18] and its effects on the
determination of 𝐶 may be estimated with precision better than 0.5‰.

For the first time, the energy dependent proton asymmetry can be evaluated in Figure
3.27. The combined representation of all measurements agrees well with the expectation.

It remains to evaluate a few systematic contributions. The most important correction
will be the neutron polarization which is linearly related to the proton asymmetry. The
depolarization of a few percent can be determined to a precision of better than 2‰. The
most important correction is related to the size of the carbon foils and will contribute the
largest systematic error despite an optimistic estimation in [Raf16]. Drifts in the retardation
region such as in Figure 3.5a, as well as an 𝐸⃗ × 𝐵⃗-component in the acceleration region
of the Field Degraders play an important role here and are investigated in [Klo18]. The
uncertainty due to this effect will be smaller than 5‰. This analysis and an investigation
of the magnetic mirror effect requires good knowledge about the magnetic field, which is
investigated by Daniel Moser [Mos16].

As the final result, the uncertainty for the proton asymmetry will be smaller than 1% and
improve the so far only measurement with P II. Table 3.2 lists all error contributions
and the final relative uncertainty.
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(a) Measured proton asymmetry on the Greno-
ble detector. The 2𝜎-band of the statistical
errors is shown as well.
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(b) Measured proton asymmetry on the Lyon de-
tector. The statistical error is twice as large
as for the Grenoble detector due to the large
background rate.

Figure 3.27: For the first time, the proton asymmetry is measured as a function of the proton
recoil energy. Because of the way the beta spectrum is subtracted – see section
3.1.2 – values do not scatter according to their statistical error bars. Several
corrections which are evaluated in [Klo18], as well as the neutron polarization,
are not yet included in these results.

Correction Uncert. Correction Uncert.
Contribution Section Grenoble (10−3) Lyon (10−3)
Polarization & Spin Flip§ blind < 2 blind < 2
Doppler Effect† 3.1.3 −3.3 0.3 +3.3 0.3
Magnetic Mirror Effect* blind < 1 blind < 1
Edge Effect* 3.2.2 blind < 5 blind < 5
Transmission Function* blind < 0.5 blind < 0.5
Grid Effect* 3.2.4 ≈ 3 ≈ 1 ≈ 3 ≈ 1
Theory+ 3.1.3 ≈ 1.7 0.3 ≈ 1.7 0.3
Detection Efficiency 3.3.1 −8.3 2.1 −3.4 0.9
Wrong Detector Assignment 3.3.1 0.3 0.3
Dead Time Correction 3.4.2 0.8 0.8
Background ToF Variation 3.4.3 +0.1 − 0.7 0.1
Systematic Uncertainties 6.1 5.7
Statistical Uncertainty 8.8 18.1
Total Uncertainty 10.5 18.7

Table 3.2: The error budget yields a combined relative error of at most 9.5 ⋅10−3, where some
of the uncertainties apply for both detectors simultaneously. All values in the
table are relative to the measured proton asymmetry. Doppler and magnetic mirror
effects actually cancel to some extent in the combined result of both detectors.
§Measured and analyzed by Wilfried Mach and Heiko Saul; *evaluated in [Klo18];
†verified against [Raf16]; +theoretical corrections depend on 𝜆.
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4 Summary
In the course of this work significant process in the understanding of particle detection
in neutron beta decay has been achieved. Neutron decays are used to determine the ratio
between axial-vector and vector couplings in semi-leptonic decays. It allows tests of the
Standard Model of particle physics by searches for scalar and tensor couplings.

Using the electron asymmetry measurement with the instrument P III, the major
effects of electron detection with plastic scintillators are identified and modeled. The studies
allow a fourfold improvement on the leading systematic uncertainty of the currently most
precise measurement of the electron asymmetry with P II and finally lead to the
determination of a new value for the ratio of axial-vector to vector couplings

𝜆 = −1.27641(56) [Sau18],

which improves the precision of the current world average by a factor of four.
The first step towards a better understanding of the measured electron spectra is a reeval-

uated and refined description of beta decay and electron capture source spectra. The latter
is particularly challenging due to the large number of coincidentally emitted electrons. The
impact of energy loss of electrons in thin films on measured calibration spectra is evaluated.
A discretized representation of the point spread function of magnetically guided particles
which describes the spatial distribution of electrons coming from a pointlike source is im-
plemented. This function is applied to spatially dependent detector response functions to
correct for shifts in the electron energy response. Detector response functions are deduced
from calculations of the scintillation light distribution onto coupled light guides and photo-
multiplier tubes. A new method to simulate quenching of scintillation light – a major source
of nonlinearity effects in scintillation detectors – is proposed. An experiment to calibrate de-
tectors by using the electron time-of-flight information is realized and opens up a new way
of calibrating detectors. The trigger function of the electron detector is described for the
first time with detector light distribution and photomultiplier response function taken into
account. It is used to identify and correct for the important systematic effect of undetected
backscattering on the determination of the electron asymmetry. The combination of these
complex models is implemented in a new fit program and now even allows the preliminary
determination of the Fierz term from the beta asymmetry to

𝑏 = 0.017(21) [Sau18]

and in the near future even from the beta decay spectrum to higher precision. The limits
can be used to test the Standard Model for “new physics“, i.e. test for hypothetical scalar
and tensor interactions.

The second major part of this work is the preparation, realization and analysis of a
measurement of the proton asymmetry parameter 𝐶 with P III. It is a complementary
correlation coefficient to the electron asymmetry parameter 𝐴 and may disentangle the
connection between scalar and tensor couplings. In combination with [Raf16; Klo18] the
first and so far only measurement with P II, where a different measurement scheme
was used, will be improved to a relative precision

Δ𝐶/𝐶 < 1%.
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4 Summary

For the first time, the energy dependence of the proton asymmetry is tested. The kinetic
energy of the proton is three orders of magnitude smaller than the one of the electron and
requires different techniques to allow proton detection. Studied effects in this work include
the Doppler effect due to the moving neutron, the interaction with wire grids, which are
required for energy resolution, the energy dependence of the efficiency of proton detection
and the influence of high background rates on the background subtraction.

Both parts also are preparatory work to new measurements with the upcoming instru-
ment PERC. The major systematic uncertainties which are identified in the measurements
with P III – such as detector drift and nonlinearity for electron measurements and
edge effect, grid effect and detection efficiency for proton measurements – can be reduced
for PERC, which will further improve the precision of future correlation coefficient mea-
surements in neutron beta decay.
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Appendix

A.1 Formulas for the Pixelized Point Spread Function

In section 2.2.3 a point spread function (PSF) covering a number of pixels is divided into
different shapes to enable an exact calculation of the coverage in every pixel. The different
formulas for the required shapes are given here.

The radial symmetry of 𝑓(𝑅) makes the calculation of an integral 𝐹Sec over a circular
sector trivial, as long as the normalization 𝐹N of 𝑓 is known, like in the case of the PSF:

𝐹Sec(𝜙0, 𝜙1) = 𝐹N
𝜙1 − 𝜙0
2𝜋

(A.1)

The isosceles triangle integral 𝐹I can actually be obtained from two right triangles. Since
the apex is lying in the center of the disk, the formula can be heavily simplified however
and it makes sense to explicitly implement this special case. The cathetus connected to the
center of the circle (𝑥0 = 0, 𝑦0 = 0) is assumed to lie on the axis at 𝑥 = 𝑥0, which can always
be achieved by rotation.
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= 𝑦1 log

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
􏽯𝑥

2
1 + 𝑦21 + 𝑥1
𝑦1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (A.3)

where (𝑥1, 𝑦1) identifies the other end of the hypotenuse. A circular segment is calculated
by subtracting 𝐹I from 𝐹Sec.

The most often required value for large circles is the rectangle 𝐹R, defined by the points
(𝑥1, 𝑦1) and (𝑥2, 𝑦2).
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=
2
􏾜
𝑖=1

2
􏾜
𝑗=1
(2𝛿𝑖𝑗 − 1) 􏿵𝑥𝑖 log 􏿵𝑦𝑗 +􏽯𝑥
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No dependence on 𝑟0 appears in the formula for 𝐹R except for the normalization factor
(4𝜋𝑟0)−1, which makes the integration over a full pixel predestined for caching of results,
which is an excellent way of optimization, since 𝑟0 depends on the particle energy, and
requires to calculate multiple PSFs over the whole spectrum. The calculation itself can be
optimized by using vectorization: Sufficient numerical precision can be achieved by using
64 bit floating point numbers. However, modern CPUs allow floating point operations
with 256 bits or more. This means, the same operation can be applied to four different
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Appendix

numbers in the same register and therefore at the same time, without requiring additional
CPUs. This speeds up the calculation by a factor of four less overhead for data alignment.
Furthermore individual summands can be reused in neighbouring pixels. This would add
further overhead to the vectorization though.

The most complex calculation has to be done for a right triangle 𝐹T with points (𝑥1, 𝑦1),
(𝑥1, 𝑦2) and (𝑥2, 𝑦1). Here no caching can be used, since it is required for the calculation of
cut pixels which change for every 𝑟0.
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(A.8)

A.2 p3fit: Bins and Bunches

Every step of the model calculation in p3fit takes an input spectrum and applies a con-
volution to generate an output spectrum. Since closed form expressions are usually not
available, every spectrum is represented as a histogram, a collection of bins. For instance,
the energy input spectra are binned in steps of 0.5 keV, which is more precise than the res-
olution of single scintillation events. Nevertheless, for line spectra, bins are included using
interpolation such that the mean energy translated into the histogram is conserved, adding
an additional but negligible smearing.

A typical operation which has to be performed is the convolution of two spectra, for the
evaluation of the total energy of multi-electron events of section 2.1.3 or the sum of all PMT
signals of section 2.6.2 for instance. For simplicity, a histograms with linear binning and
the zeroth bin with center at zero is considered:

Bin𝐴∗𝐵𝑖 =
𝑛bins−1
􏾜
𝑘=0

Bin𝐴𝑘 Bin
𝐵
𝑖−𝑘 (A.9)

To obtain the complete histogram 𝐴 ∗ 𝐵, 𝑛2bins multiplications and additions, generally very
cheap operations, but also the same amount of memory accesses, would be required. Fig-
ure A.1 shows how equation (A.9) can be efficiently implemented, using vectorization and
parallelization for contiguous aligned bin data. A typical histogram in the course of model
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A.3 p3fit: Abstract Detection Unit

Array CPU 0 Array CPU 1 Array CPU 2 Array CPU 3

Histogram A 0 1 2 3 4 5 6 7 x 0 1 2 3 4 5 6 x x 0 1 2 3 4 5 x x x 0 1 2 3 4
*

Histogram B 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Temporary A*B 0 2 4 6 8 10 12 14 x 1 3 5 7 9 11 13 x x 2 4 6 8 10 12 x x x 3 5 7 9 11

Histogram A*B 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure A.1: Vectorization and parallelization can be used to quickly convolute two his-
tograms of the same type, energy spectra for instance. The contiguous bin data
of one of the histograms is temporarily copied into 𝑛 arrays, the alignment of
each array being shifted by one value for each new copy. The thick frames show
the vector alignment for each array, the numbers indicate bin indices. The num-
ber of copies is defined by the size of a vector register 𝑛. Assuming that 𝑛 CPUs
are available, this way, 𝑛2 multiplications and additions can be performed in
the same time. The resulting data later have to be added up to one histogram,
adding some overhead of complexity 𝑛bins × 𝑛.

calculation is not completely filled however, wasting computational time and memory by
including bins without content in the calculation. In the case of very few bins, a tree
structure to store bin contents including the corresponding bin position can be used, which
allows easy insertion of new bin contents and saves memory. This approach does not allow
quick convolution calculations however, as the data is fragmented in the memory.

The typical use case of histograms in p3fit is either the continuous filling of raw spectra,
the convolution of histograms of the same type or continuous reading of contents to apply a
model or to export the final histogram. Random access usually is not required. To combine
the advantages of contiguous and tree storage, bunches of data are introduced. A bunch is
defined as a set of contiguous bins and a set of bunches makes up a histogram. The data
of bunches is stored in arrays, while the location of the bunches in memory is stored in
a sorted list. This way, optimized operations on the histogram can be performed without
giving away memory and computing time to empty bins. Additional effort has to be made
to merge overlapping bunches in the course of random insertion or after the convolution of
two histograms.

A.3 p3fit: Abstract Detection Unit

In the former productive version of the detection model, each part has its own specific
implementation, depending on the former detection step and defining a hard-coded interface
to the next detection unit. The new class layout is based on an abstract detection unit
which allows a general use of models at any stage of the detection process. All used classes
of the following example are children of the same base class and therefore interchangeable.

NuclearData nd("Cs"); // select Cs-137 data
ElecDistSpec espec; // create multielectron spectrum
PSFSpec psf(x, y, Bsource, Bdet, beamsize , asymmetry); // PSF at x, y
PixelDetector detector("detector.tiff"); // load detector function from TIFF image
PMTResponseHist pmt(2.4, "pmt.cache"); // set PMT gain per stage to 2.4
LightConvolutionSpec convolution(detector , pmt, 12.); // create 12 photons/keV

auto raw_spec = espec * nd; // calculate spectrum at source
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No Additional Layer
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Figure A.2: The scintillator surface needs to be covered with a conductive coating to define
the potential difference between conversion foil and detector surface. Aluminum
or a different metallic coating is not applied since light absorption is dominant
for the number of reflections required. Test measurements with ITO coated
and uncoated scintillator samples [Raf15] show no significant differences in
light conduction. The coating could therefore be applied to the surface of the
electron detector.

auto light_spec = convolution * raw_spec; // calculate spectrum after PMTs

Inserting a nonlinearity model before the light distribution now is as easy as switching the
last lines to

NonlinSpec nl(nonlin_birks , 6, 120.); // Birks model implementation 6

auto raw_spec = espec * nd; // calculate spectrum at source
auto light_spec = convolution * (nl * raw_spec); // calculate spectrum after PMTs

In this case, the nonlinearity model simply shrinks the bin borders of the input spectrum
according to Birks’ quenching model, effectively reducing the detected energy. More details
about the nonlinearity implementations can be found in [Sau18].

A.4 Conductive Layer

Polyvinyltoluene as a base material for the scintillator is an insulator and therefore has an
undefined surface potential. This requires a conductive coating which allows grounding of
the detector surface to define the potential difference between conversion foil and scintillator
and also to eliminate charging up by incoming electrons and high voltage bursts. As the light
transport relies on total reflection, a metallic coating, such as aluminum is not optimal: An
absorption coefficient of > 10% [Raf16] would significantly reduce the light yield. Instead,
a transparent conductive coating of ITO, a material used for touch screens and anti-glare
coatings, is used. To prove its suitability Lukas Raffelt performed tests with 420nm LED
pulses which were transferred through samples of coated and uncoated scintillator in Figure
A.2. A small thickness of 15 nm ± 20% is sufficient – only very small currents are expected
– and is required to minimize the impact on the detected energy of incident electrons.
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