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Abstract

In this work, a class of optimal control problems under uncertainty constrained by semilinear,
elliptic partial differential equations is analyzed. An inexact trust-region algorithm with a
suitable error control procedure is presented to solve such problems adaptively. The state
and adjoint equations are formulated in a tensor Banach space and solved using low-rank
tensor methods. Numerical results show how the algorithms adapt to the problem data. The
dissertation is concluded by an outlook to alternative risk measures, which yield risk-averse
controls.

Zusammenfassung

In dieser Arbeit wird eine Klasse von Optimalsteuerungsproblemen unter Unsicherheit analy-
siert, die semilineare, elliptische partielle Differentialgleichungen als Nebenbedingung haben.
Ein inexaktes Trust-Region-Verfahren mit einer geeigneten Vorgehensweise zur Fehlerkon-
trolle wird vorgestellt, um solche Probleme adaptiv zu lösen. Die Zustands- und adjungierten
Gleichungen werden in einem Tensor-Banachraum formuliert und mit Niedrigrangtensor-
methoden gelöst. Numerische Ergebnisse zeigen, wie sich die Algorithmen an die Problem-
daten anpassen. Die Dissertation wird mit einem Ausblick auf alternative Risikomaße abge-
schlossen, die risikoaverse Steuerungen liefern.
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Notation

The following notation is used in this thesis:

Sets:

∅ empty set
|S| cardinality of the set S
2S power set of the set S
int(S) the topological interior of the set S

S
‖·‖

= cl(S) the topological closure of the set S w. r. t. the norm ‖ ·‖
S × T product set of the sets S and T
N natural numbers: N = {1, 2, 3, . . .}
N0 non-negative integers: N0 = {0, 1, 2, . . .}
[n] the first n ∈ N natural numbers: [n] = {1, 2, . . . , n}
R real numbers
C complex numbers
K general field
R>0, R≥0, R<0, R≤0 set of positive, non-negative, negative, non-positive real

numbers, respectively
R̄ extended real line R̄ = R ∪ {−∞,∞} = [−∞,∞]

(a, b), [a, b], [a, b), (a, b] open, closed, half-open intervals, respectively, with end-
points a, b ∈ R̄, a ≤ b, empty in the (half-)open case if
a = b

Vectors/matrices/tensors:

Sn set of column vectors with n ∈ N components from the
set S

Sm×n set of (m×n)-matrices with components from the set S
Sn1×···×nd set of tensors of order d ∈ N (d-dimensional arrays) with

dimensions n1, n2, . . . , nd ∈ N and entries from S

x(K1,K2, . . . ,Kd) indexing of a tensor x ∈ Sn1×···×nd : modes i ∈ [d] in-
dexed by a listKi with elements from [ni] remain, modes
indexed by a single index Ki ∈ [ni] are cut out

· shorthand for [ni] (the set/list of all indices) when in-
dexing a tensor
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x⊗ y, λ⊗ µ, Y ⊗ Z Kronecker/outer product of the vectors/matrices/ten-
sors x and y, product of the measures λ and µ, tensor
product of the Banach spaces Y and Z

x� y Hadamard (componentwise) product of the vectors/ma-
trices/tensors x and y

x� y componentwise quotient of the vectors/matrices/tensors
x and y

x.λ componentwise exponentiation of the vector/ma-
trix/tensor x with the exponent λ ∈ R

〈x, y〉s,t contraction of the tensors x and y along the modes s
and t

〈x, y〉 inner product of the tensors x and y of the same size
‖x‖F Frobenius norm of the tensor/matrix x: ‖x‖F =

√
〈x, x〉

1 the vector/matrix/tensor only containing ones or the
function which is constant one

I, I identity mapping, identity matrix
x> transpose of the vector or matrix x

Banach spaces and operators:

Rn Euclidean space equipped with the inner product
(x, y) = x>y and norm ‖ · ‖ ≡ ‖ · ‖2 (see below)

‖ · ‖p p-norm on Rn: ‖x‖p =
(∑n

k=1 |xk|p
)1/p

for p ∈ [1,∞),
‖x‖∞ = maxk∈[n] |xk|

Y , Y ∗, ‖ · ‖Y a general Banach space, its dual space, the norm on Y
〈·, ·〉Y ∗,Y dual pairing between Y ∗ and Y , i. e., 〈f, y〉Y ∗,Y = f(y)

〈·, ·〉Y,Y ∗ dual pairing between Y and Y ∗, i. e., 〈y, f〉Y,Y ∗ = f(y)

yk → y, yk ⇀ y, yk ⇀∗ y Convergence of the sequence (yk)k∈N ⊂ Y to y ∈ Y
w. r. t. the strong, weak, weak∗ topology, respectively,
as k → ∞. The weak∗ topology is defined if Y is the
dual space of a given normed space.

L(Y,Z) space of linear, bounded operators mapping from the
Banach space Y to the Banach space Z

‖ · ‖L(Y,Z) induced norm ‖A‖L(Y,Z) = sup‖y‖Y ≤1 ‖Ay‖Z
A : Y → Z linear, bounded operator A mapping from Y to Z
A∗ : Z∗ → Y ∗ adjoint operator A∗ mapping from the dual space Z∗ to

the dual space Y ∗

Y ↪→ Z continuous embedding of Banach spaces
Y ↪→↪→ Z compact embedding of Banach spaces
ι : Y ↪→ Z canonical embedding of Banach spaces Y ⊂ Z
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U , (·, ·)U a general Hilbert space, the inner product on U
‖ · ‖U norm induced by the inner product, i. e., ‖u‖U =√

(u, u)U

N : Y → Z a general function mapping from the Banach space Y
to the Banach space Z

N ′ : Y → L(Y,Z) its first derivative
Ny1 : Y → L(Y1, Z) partial derivative of N w. r. t. y1 for Y = Y1 × Y2

∂
∂y1

partial derivative of an expression w. r. t. y1

d
d y1

total derivative of an expression w. r. t. y1

N ′′ : Y → L(Y,L(Y, Z)) second derivative of N (etc.)
Ny2y1 : Y → L(Y2,L(Y1, Z)) partial second derivative for Y = Y1 × Y2 × Y3

J : U → R a general functional on the Hilbert space U
∇J : U → U its gradient (Riesz representative of J ′(u) ∈ U∗ ∼= U)
∇u1J : U → U1 partial gradient for U = U1 × U2

∇2J : U → L(U,U) Hessian of J (linearization of the gradient)
∇2
u2u1

J : U → L(U2, U1) partial Hessian of J for U = U1 × U2 × U3

Spatial domain and functions:

Ω, x spatial domain Ω ⊂ Rn, point x ∈ Ω

1Ω : Rn → R indicator function of the set Ω: 1Ω(x) = 1 if x ∈ Ω and
1Ω(x) = 0 if x /∈ Ω

∂Ω boundary of the domain Ω

λ Lebesgue measure on Ω

f : Ω→ Rm a function mapping from Ω ⊂ Rn to Rm

Djf : Ω→ Rm (weak) k-th partial derivative of f , where j ∈ Nn0 is a
multi-index

Probability:

(Ξ,F ,P), ξ probability space Ξ with σ-algebra F and probability
measure P, random value ξ ∈ Ξ

X : Ξ→ R a real-valued random variable
E expectation: E[X] :=

∫
ΞX(ξ) dP

Var variance: Var[X] := E[(X − E[X])2]

Cov covariance: Cov[X, X̃] = E[(X − E[X])(X̃ − E[X̃])]

CVaRβ conditional value-at-risk (expected shortfall) with quan-
tile parameter β ∈ (0, 1)
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Function spaces:

C(Ω) space of continuous functions on Ω

Ck(Ω) space of k-times continuously differentiable functions on
Ω, k ∈ {1, 2, . . . ,∞}

CkC(Ω) space of k-times continuously differentiable functions on
Ω with compact support

Lp(Ω) Banach space of equivalence classes of measurable, p-
integrable (p ∈ [1,∞)) or essentially bounded (p = ∞)
functions on Ω

‖ · ‖Lp(Ω) norm on Lp(Ω): ‖f‖Lp(Ω) =
(∫

Ω |f(x)|p dx
)1/p for p ∈

[1,∞), ‖f‖L∞(Ω) = ess supx∈Ω|f(x)|
(·, ·)L2(Ω) inner product on L2(Ω): (f, g)L2(Ω) =

∫
Ω f(x)g(x) dx

W k,p(Ω) Sobolev space of k-times weakly differentiable Lp(Ω)-
functions with Lp(Ω)-derivatives

‖ · ‖Wk,p(Ω) norm on W k,p(Ω): ‖f‖Wk,p(Ω) =(∑
|j|≤k ‖Djf‖pLp(Ω)

)1/p
for p ∈ [1,∞) and

‖f‖Wk,∞(Ω) =
∑
|j|≤k ‖Djf‖L∞(Ω)

Hk(Ω) shorthand for the Hilbert space W k,2(Ω)

(·, ·)Hk(Ω) inner product on Hk(Ω): (f, g)Hk(Ω) =∑
|j|≤k (Djf,Djg)L2(Ω)

H1
0 (Ω) = C∞C (Ω)

‖·‖H1(Ω) Hilbert space of H1(Ω)-functions with zero boundary
data in the sense of traces

(·, ·)H1
0 (Ω) inner product on H1

0 (Ω) defined by (f, g)H1
0 (Ω) =

(∇f,∇g)L2(Ω)n , inducing the norm ‖ · ‖H1
0 (Ω) on H1

0 (Ω)

and a seminorm on H1(Ω)

H−1(Ω) dual space of H1
0 (Ω): H−1(Ω) = H1

0 (Ω)∗

LpP(Ξ;Y ) Bochner space of strongly P-measurable, p-integrable
(p ∈ [1,∞)) or essentially bounded (p = ∞) functions
from Ξ to the Banach space Y

‖ · ‖LpP(Ξ;Y ) norm ‖y‖LpP(Ξ;Y ) =
(∫

Ξ ‖y(ξ)‖pY dP
)1/p for p ∈ [1,∞),

‖y‖L∞P (Ξ;Y ) = ess supξ∈Ξ‖y(ξ)‖Y
Pd̃(Ξ) space of polynomials of total degree at most d̃ ∈ N0 on

Ξ ⊂ Rm

Pd(Ξ) space of polynomials of coordinate degree at most d ∈
Nm0 on Ξ ⊂ Rm
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1. Introduction

Many phenomena in physics or engineering applications, such as the flight of an aircraft, the
distribution of temperature in a heated system, the diffusion of a liquid or a gas in a medium,
or a car crash, can be modeled mathematically by differential equations, in particular partial
differential equations (PDEs). If analytical solutions to these equations are not available,
numerical methods relying on, e. g., finite element (FE) or wavelet discretizations can be used
to simulate such systems. Based on these simulations, certain components of the system, for
instance, the shape of the wings of the aircraft, the applied heat distribution, the locations
of the points where the liquid is inserted into the medium, or the design of the car, can be
optimized to meet certain requirements or to minimize a cost functional. In the mentioned
examples, one could aim to maximize the lift of the aircraft while keeping the drag below a
given threshold, to attain a desired heat or liquid distribution, or to minimize the deformation
of the occupants’ space in the car while having a small enough deceleration to not injure
them heavily. The described problems can be formulated as optimal control problems or
optimization problems with PDE constraints. The mentioned goals appear in the objective
functions of them while further requirements may be posed as constraints.
Often, the input parameters of the simulations, such as the wind speed or material prop-

erties, are not known to high accuracy a priori or are uncertain by nature. Hence, they can
only be assumed to follow a given or estimated probability distribution or to belong to a set.
It can be important to investigate how this uncertainty influences output quantities of the
simulations. For instance, one could be interested in estimating the distribution of the lift
given the distribution of the wind speed or in computing a lower and an upper bound for
the heat distribution knowing bounds for the thermal conductivity and the specific heat ca-
pacity of the material. Uncertainty quantification has become an important field of research
in recent years, see, e. g., [106] for an overview or the SIAM/ASA Journal on Uncertainty
Quantification, which appeared in 2013 for the first time. A natural next step is to control
the systems under uncertain influences optimally, a field of research called optimal control
under uncertainty, which is the focus of this thesis.
In particular, we consider the problem of selecting a deterministic control for a system

described by a semilinear, elliptic PDE with uncertain input parameters, which follow given
probability distributions. We develop necessary theory for a class of such problems and inves-
tigate efficient numerical algorithms for solving them. The stochastic space is discretized by a
stochastic Galerkin method with a full tensor product basis, resulting in exponentially many
unknowns in the discretized system. For example, if we have m ∈ N uncertain parameters
and the dependence of a quantity on each of them is discretized using n ∈ N basis functions,
respectively, the full tensor product basis consists of nm functions. To overcome the curse of
dimensionality when having many parameters, the respective coefficients in tensor form, i. e.,
in form of a multi-dimensional array, are represented in a modern low-rank tensor format.
These formats can reduce the storage and computational complexity drastically as already

1



1. Introduction

observed in our previous work [46], which is the basis for some parts of this dissertation, but
they offer only a limited set of efficiently implementable operations. Therefore, it is a main
motivation of this thesis to investigate and develop algorithms which can be implemented
using low-rank tensors. The complexity of low-rank tensor arithmetics depends strongly on
the required tensor ranks. Truncation to smaller ranks is often necessary to make the algo-
rithms efficient. This yields rounding errors, which have to be controlled suitably during the
optimization process to achieve global convergence of the algorithm. Additionally, we control
the errors resulting from stochastic and FE discretization and balance all error contributions.
In recent years, the mentioned efficient low-rank tensor formats, namely the Tensor Train

format [88] and the hierarchical Tucker format [56], and numerical algorithms for them with
good complexity have been developed, see [54, 67, 51] for an overview. Similar ideas have
been used in quantum physics before, see, e. g., [83, 64] and the references therein. These
formats and algorithms are an important ingredient of the methods developed in this thesis.
For instance, they allow the numerical solution of PDEs with many random inputs in a
reasonable amount of time. A more detailed introduction and overview of low-rank tensor
methods and applications is given in Chapter 2.

General Problem Setting

For formulating a general problem setting of optimal control under uncertainty matching the
problems considered in this work, let (Ξ,F ,P) be a complete probability space. An element
ξ ∈ Ξ of this space stands for uncertain parameters. Let the control space U , the state space
Y , and the image space Z be a Banach spaces. The system to be controlled is under the
influence of uncertainty and is described by the state equation

E : Y × U × Ξ→ Z, E(y(ξ), u, ξ) = 0 for almost every (a. e.) ξ ∈ Ξ, (1.1)

where y(ξ) ∈ Y is the uncertain state. The control u ∈ U is deterministic, i. e., it does not
depend on the uncertain inputs and shall be chosen prior to the observation of the uncertainty.
Additionally, it is required to belong to a set of admissible controls Uad ⊂ U . We formulate
the optimal control problem

min
y(·)∈Y,u∈U

R[J1(y(·), u, ·)] + J2(u) s. t. E(y(ξ), u, ξ) = 0 for a. e. ξ ∈ Ξ, u ∈ Uad, (1.2)

where J1 : Y × U × Ξ → R is the state-dependent part of the objective function, e. g., a
tracking-type term, and J2 : U → R is a purely deterministic part used to, e. g., regularize
the control. We assume that J1(y(·), u, ·) is always measurable w. r. t. ξ and hence a random
variable with values in R. A risk measure R : X → R has to be applied to obtain a real-
valued objective function which can be minimized. The domain X ⊂ {f : Ξ → R} is a
suitable set of random variables, such as X = L1

P(Ξ). The risk measure R should return a
typical value of the random variable, e. g., the expectation or a quantile.
Provided that the state equation E(y(ξ), u, ξ) = 0 admits a unique solution y(u)(ξ) ∈ Y

for every u ∈ Uad and almost every ξ ∈ Ξ, (1.2) can be reduced to an optimization problem

2



over the deterministic control variable only:

min
u∈U
R[Ĵ1(u, ·)] + J2(u) s. t. u ∈ Uad, (1.3)

where Ĵ1(u, ξ) := J1(y(u)(ξ), u, ξ). An algorithm for solving problems of the form (1.3) is
presented and analyzed in Chapter 4. It can deal with inexact objective function and gradient
evaluations as well as an inexact projection onto the feasible set Uad.

Modeling Optimal Control under Uncertainty

We want to stress that the formulation (1.2) does clearly not cover all imaginable formulations
of optimal control problems under uncertainty. State constraints are excluded and the control
may not be chosen dependent on the concrete realization of ξ. For an overview of different
variants of modeling optimal control problems under uncertainty we refer to [4, Sec. 2]. The
setup (1.2) yields “robust deterministic controls”, cf. [4, Sec. 2], i. e., controls which are chosen
before observing the random inputs, but account for the uncertainty in the system. Further
works following this approach are [69, 70, 71] and our paper [46].

In contrast to that, optimal controls for specific realizations of the random parameters
ξ are considered in [25, 4]. Having computed the set of these controls in an offline phase
allows to quickly select the optimal control online after observing the concrete values of the
parameters. Alternatively, this can be understood as an uncertainty quantification task.
Knowing how the optimal control is computed, one can estimate its distribution from the
distribution of the parameters. Another alternative is to work with the distribution of the
uncertain state y(ξ) instead of only inserting it into a deterministic objective function. For
instance, in [108] the stochastic moments of the state are fit to desired values. Similarly, the
variance of the state is penalized in [20].

If we consider the formulation (1.2), an important modeling aspect is the choice of the risk
measure R. A natural choice is the expectation R ≡ E used in [24, 69, 70, 68], our work
[46], and in the main part of this thesis (Chapters 3, 5, 6, and 8). This approach is called
risk-neutral control, see [103, Sec. 6.4] and [3], and does not account for rare but possibly
harmful or costly events or the variability of the cost functional, but intends to have a small
cost on average.

More general risk measures allowing for risk-averse control, see [103, Chap. 6] and [71, 3, 72],
and the underlying theory are presented in Chapter 9. In particular, one can choose the
smooth mean-variance risk measure R ≡ E + λVar for some λ > 0 [3], which is discussed
in more detail in Section 9.2. Other risk-averse risk measures such as the conditional value-
at-risk (CVaR)—also called tail expectation—enjoy desirable theoretical properties which
the mean-variance risk measure lacks, but are nonsmooth. Hence, it is suitable to apply
smoothing techniques which retain important properties of the risk measure and enable the
use of gradient-based optimization methods [71]. An interior point solution technique for
such risk measures is discussed in Section 9.3.

3



1. Introduction

Numerical Solution of PDEs with Uncertain Inputs

A key ingredient of an algorithm for solving (1.2) is a suitable numerical solution method
for the state equation E(y(ξ), u, ξ) = 0, which is a PDE with uncertain inputs in our con-
text. Overviews over numerical methods for elliptic PDEs with random inputs are given in
[102, 53], where the equations are formulated in the Bochner space L2

P(Ξ;Y ), where Y is a
Hilbert space, and in [7], which describes stochastic collocation techniques for linear, elliptic
PDEs. In contrast to that, we consider the optimal control of semilinear, elliptic PDEs under
uncertainty, which requires a more sophisticated analysis. In particular, it is necessary to
consider the state space LpP(Ξ;Y ) with p > 3 in our setting, see Chapter 3.
One approach to discretize the parameter space is a sampling-based method. This means

that certain realizations of the random parameters ξ are inserted and the respective deter-
ministic PDE is solved. The ensemble of deterministic solutions is then used to approximate
the full solution, its distribution function, or stochastic moments. An advantage of such
methods is that they are often non-intrusive meaning that deterministic black-box solvers
can be reused for the computation. Monte Carlo-type methods, e. g., multilevel Monte Carlo
[16, 30, 107, 4] and quasi-Monte Carlo [84, 80], are very popular. They can be applied
under fairly general circumstances and feature a typically rather slow convergence speed,
which does not depend on the number of uncertain parameters. If the stochastic space Ξ has
tensor product structure, adaptive sparse grids can be used for quadrature or interpolation
[24, 25, 69, 68]. Under smoothness assumptions on the integrand, they feature exponential
convergence [86, 47], but often need a number of collocation points which increases exponen-
tially in the number of parameters [45]. This can lead to a high computational cost if systems
with many parameters shall be solved. Furthermore, some negative quadrature weights may
appear, which can make discretized optimization problems non-convex or ill-posed although
their continuous counterparts do not have these properties. Additionally, it is not possible
then to make a smooth reformulation of optimization problems with certain nonsmooth risk
measures such as the CVaR, where the nonsmoothness is moved to pointwise bound con-
straints. The solution of many similar deterministic PDEs in every collocation point can
be sped up by using reduced basis methods [42, 28], proper orthogonal decomposition [25],
or multigrid techniques [24]. The references [4, 24, 25, 69, 68, 28] indeed focus on optimal
control and not only on solution techniques for stochastic PDEs.
Another option is a stochastic Galerkin discretization of the PDE with uncertain inputs

[38, 39, 22, 23], where polynomials are chosen to discretize the dependence on the uncertain
parameters. To make this efficient, either one chooses a small enough, “sparse” polynomial
basis or a large basis with a data-sparse representation of the coefficients, e. g., a tensor
product basis with a low-rank tensor representation as in [40]. In the latter case, one can
benefit from the good complexity properties of modern low-rank tensor formats w. r. t. the
number of parameters, but has to take errors due to tensor truncation into account. The
papers [38, 39, 22, 23, 40] deal with adaptive solution techniques for linear, elliptic PDEs with
uncertain inputs based on a posteriori error estimates. In this work, we derive a mixture of
those, extend it to semilinear, elliptic PDEs, and apply it in the context of optimal control.
Hence, we do not focus on error estimates in the energy norm for example, but choose
a suitable reference norm, see Chapter 7. To simplify the discretization of the nonlinearity,
weighted Lagrange polynomials are chosen as bases of the spaces of polynomials instead of the
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usual basis of polynomials with increasing degree, cf. [44] and see Chapter 6. This is related
to a full-grid Gaussian quadrature formula, which provides high accuracy and only positive
weights. As pointed out in the discussion about negative quadrature weights appearing in
sparse grid quadrature formulas, the latter is helpful in an optimization context because
smooth reformulations of certain nonsmooth problems are possible in the discrete setting.
Stochastic Galerkin methods for control problems were already used in [63, 82, 78, 79, 46]. In
combination with low-rank tensors—the option we follow in this work—they were also applied
in [21], but no control constraints were posed and the paper puts more focus on efficient linear
algebra and works with a fixed discretization, whereas we select the discretization adaptively
during the optimization process.

Optimization Algorithms

In context of optimal control of PDEs, different inexact trust-region type algorithms have
been proposed to solve problems adaptively and control the appearing errors due to dis-
cretization or the inexact solution of equations in finite dimensions while guaranteeing global
convergence. In [119] deterministic PDE-constrained optimization problems are solved by an
inexact trust-region sequential quadratic programming (SQP) algorithm, which is applied to
the non-reduced optimal control problem, where the state equation is viewed as an equality
constraint, cf. (1.2). The sources of inexactness are an adaptive finite element discretiza-
tion and the inexact solution of the linearized state equation by a conjugate gradient (CG)
method. Error estimates are used to control the error which is required for the optimization
method to converge. The paper [118] extends this approach to control constraints using an
inexact projection onto the feasible set.
In [70] and its predecessor [69], a class of inexact trust-region algorithms formulated in

Hilbert space is presented and applied to solve optimal control problems of PDEs under
uncertainty. Since these algorithms are posed on the control space U , they aim for solving
the reduced optimal control problem (1.3). The algorithms in [69] allow for inexact gradient
evaluations. They are extended to inexact objective function evaluations in [70]. In the
application, the inexactness due to the adaptive discretization of the stochastic space by
sparse grids is controlled by the algorithm, but no further error sources are considered.
Furthermore, the proposed algorithms cannot handle control-constrained problems.
We extend [70] to the control-constrained case in Chapter 4 by using a possibly inexact

projection onto the feasible set as done in [118], but allow for arbitrary mappings approximat-
ing the exact projection instead of working with the exact projection on a discrete subspace.
We then apply it to the optimal control problem under uncertainty and control all appear-
ing errors simultaneously, namely the FE and the stochastic Galerkin discretization error as
well as the algebraic error coming from a low-rank tensor solver used to solve the discretized
stochastic PDE. In the paper [46], we applied a semismooth Newton method having fast local
convergence properties to solve such problems with a fixed discretization. This method does
not feature global convergence and the errors due to the used low-rank tensor arithmetics
were not controlled in [46]. Now, we use it as a solver for the trust-region subproblems. The
trust-region framework guarantees global convergence and controls all errors appropriately.
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1. Introduction

Outline of the Thesis

The rest of this thesis is structured as follows: An introduction to tensors including the used
notation, operations, low-rank formats, and available algorithms is given in Chapter 2, where
Section 2.1 focuses on finite-dimensional tensors. As already mentioned, one motivation and
central question of the dissertation is how low-rank tensor methods can be used to solve
optimal control problems under uncertainty. Therefore, we review tensor products of Hilbert
spaces and certain Banach spaces in Section 2.2.
This concept is important for the formulation of the class of stochastic PDEs considered

in Chapter 3 as well as its analysis and discretization in tensor form. We analyze semilinear,
elliptic PDEs with uncertain inputs ξ ∈ Ξ, where the nonlinearity is a superposition operator
induced by a C2-function ϕ : R → R fulfilling suitable growth conditions. Two formulations
are presented: Either a deterministic PDE can be solved for a. e. realization ξ ∈ Ξ or a weak
formulation w. r. t. the inputs ξ can be considered by integrating over the parameter space
Ξ. The latter formulation is essential to apply a stochastic Galerkin discretization. The
solution of the PDE is then represented as an element of a suitable Bochner space LpP(Ξ;Y )
with p ∈ (3,∞). This requirement on p is necessary for well-definedness and differentiability
properties of the appearing superposition operator. The connection between the Bochner
space LpP(Ξ;Y ) and a tensor product of Banach spaces is established to derive a discretization
in tensor form later. We show the equivalence of the pointwise and the weak formulation.
In fact, they both have the same unique solution. At this point, it is important to show
that the solution constructed pointwise for a. e. ξ is indeed measurable w. r. t. ξ and has the
required integrability properties due to a priori estimates, i. e., it is contained in the space
LpP(Ξ;Y ). We formulate a class of risk-neutral optimal control problems with a tracking-type
objective function and analyze it. The integrability properties of the state are used to apply
the dominated convergence theorem at some points, e. g., to show the existence of a solution
to the optimal control problem (Theorem 3.19) and the differentiability of the control-to-
state mapping (Theorem 3.26). An adjoint representation of the gradient and Hessian of the
reduced objective function is derived. The theory from, e. g., [60, Sec. 1.6] cannot be applied
at this point since the linearized state equation operator is not boundedly invertible as a
mapping from the state space LpP(Ξ;Y ) to its dual. It is shown that a pointwisely defined
adjoint state can be used to compute the gradient and a meaningful interpretation of the
adjoint equation in the space LpP(Ξ;Y ) is presented.
The reduced optimal control problem, which is an optimization problem formulated in a

Hilbert space U with a smooth objective function and a nonempty, closed, convex constraint
set Uad ⊂ U , shall be solved adaptively. Due to discretization errors and inexact state
and adjoint equation solves, the objective function and its gradient can only be evaluated
inexactly in many relevant cases. Possibly, additional errors appear if the projection onto
the feasible set Uad is computed inexactly. Tailored to this situation, an inexact trust-region
algorithm suitable for smooth problems with control constraints is formulated in Chapter 4.
It can deal with the mentioned inexact evaluations and features global convergence provided
the errors are controlled as demanded by the algorithm. The respective required error bounds
are up to fixed, but possibly unknown constants, which typically appear in error estimates
due to discretization. Global convergence is proven and it is discussed in detail how the
required error tolerances can be met and implemented. In particular, the computation of
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a generalized Cauchy point by a projected linesearch with an inexact, but suitably refined
projection is discussed. A semismooth Newton method in function space is proposed for the
solution of the trust-region subproblems.

The presented trust-region algorithm requires to evaluate the objective function, gradient,
and criticality measure of the reduced optimal control problem to a certain accuracy. In
Chapter 5, these error bounds are transferred to error bounds on the state, adjoint state,
and the projection onto the set of admissible controls. It turns out that—depending on the
problem data—the state and adjoint state errors need not be controlled in the LpP(Ξ;Y )-norm,
but a weaker norm such as the L2

P(Ξ;Y )-norm can be sufficient in certain cases.

Chapter 6 describes the discretization of the model problem presented in Chapter 3 and
in particular of the PDE with uncertain inputs. We use linear finite elements for the space
discretization and a stochastic Galerkin discretization with weighted Lagrange polynomials
in tensor product form for the parameter space. It is shown how the discretized equations
are formulated within the tensor calculus and how they can be solved by low-rank tensor
solvers. The choice of the trust-region model in the discrete setting and the implementation
of the semismooth Newton method for box constraints is explained in detail.

As derived in Chapter 5, error control in L2
P(Ξ;Y ) of the state and adjoint state can be

sufficient to obtain a globally convergent algorithm. Based on the presented discretization,
an a posteriori error estimate is discussed in Chapter 7. It splits into error contributions
stemming from the FE discretization error, the stochastic Galerkin error for each random
parameter and the algebraic error coming from the iterative low-rank tensor solver. The
implementation of the evaluation of this error estimate with low-rank tensors is described.
This is crucial because the solutions of the discretized PDEs are represented by low-rank
tensors, the full representation of which, i. e., a full array of real numbers should never be
computed explicitly due to efficiency reasons. Based on this, the PDEs with uncertain inputs
can be solved adaptively.

In Chapter 8, numerical results of the described solution technique are shown for different
setups. It can be seen how the algorithms adapt to the problem data, especially in terms
of mesh refinement and polynomial grades chosen for the discretization of each parameter.
Furthermore, we compare the optimal control obtained from deterministic optimization with
the robust one.

Chapter 9 shows how different, risk-averse risk measures can be incorporated into the
optimal control problem since the previous parts of the thesis deal with risk-neutral control.
A general introduction to risk measures is given. Then, including the mean-variance risk
measure into the objective function is discussed in theory. At the end, we investigate a
log-barrier reformulation for problems with risk-averse, nonsmooth risk measures which are
convex combinations of the mean and the CVaR. It is examined how solving the respective
barrier problem, which is an approximation of the original problem, affects the underlying
risk measure. At the end, numerical results of an implementation with a fixed discretization
and low-rank tensors are presented. It is observed that the control can be chosen such that
very large cost function values can be excluded with high probability.

The thesis is concluded in Chapter 10, where we also point out future research perspectives
and a few aspects not covered in this work.
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1. Introduction

Notation

In analogy to [46], the following notation is used throughout the thesis: Deterministic func-
tions, e. g., the control u, and the corresponding function spaces and operators are written
in italic font. If we want to emphasize that a function such as the state y belongs to some
Bochner space of the form LpP(Ξ;Y ), i. e., it also depends on the uncertain parameters ξ, we
use bold and italic font. Functions from finite-dimensional (discretized) spaces are written
in roman font (u and y), and the coefficients representing them, such as the vector u and the
tensor y, are in sans-serif font. The same holds for the respective operators.
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2. Tensors

One motivation of this work is the research on low-rank tensor methods carried out in the
numerical linear algebra community in the past years. Tracing back to, e. g., even the 1920s,
where one can find the roots of the canonical polyadic decomposition [61], low-rank tensor
methods recently got attention within the scientific computing community because of their
ability to break the curse of dimensionality. Especially new low-rank formats such as Tensor
Train (TT) [88] and Hierarchical Tucker (HT) [56] have the properties of providing stable
low-rank approximations and scaling well w. r. t. the tensor dimension. Older formats such
as the canonical polyadic decomposition (CP) [93] and the Tucker format [109] lack either the
first or the second property, respectively. Suitable numerical algorithms within the formats
have been developed during the last two decades, approximately.
In this chapter, we give an introduction to finite-dimensional tensors and low-rank formats,

which we will use in our numerical algorithms, and to tensor Hilbert spaces, which are suitable
for the formulation of parametric problems in function spaces. Certain examples of tensor
Banach spaces needed in Chapter 3 are also discussed.

2.1. Finite-Dimensional Tensors and Low-Rank Formats

After discretization, the state of the systems considered in this work can be represented
as a real tensor, i. e., a multi-dimensional array of real numbers. To avoid the curse of
dimensionality we will represent it in a low-rank format. Both—finite-dimensional tensors
and the corresponding low-rank formats—are the topic of this section, which is very similar
to the description in our paper [46].

2.1.1. Basics of Finite-Dimensional Tensors and Notation

In this thesis, we denote a d-dimensional array of numbers in the field R by a finite-
dimensional tensor x ∈ Rn1×···×nd , cf. [76, Sec. 1], where C is used as underlying field.
The array dimension d is called the order of the tensor and the numbers 1, . . . , d are the
modes. We denote the dimension of the i-th mode by ni and write x(k1, . . . , kd) for the
(k1, . . . , kd)-component of x for readability purposes instead of using a subscript notation,
where ki ∈ [ni] and i ∈ [d], writing [m] := {1, . . . ,m} here and throughout. The tensors of
all ones will be denoted by 1 if it is clear which space is used. Reshaping a tensor as a vector
in a certain order, e. g., reverse lexicographical as in [76], is denoted by vec(x) ∈ R

∏d
i=1 ni

and reshaping as a matrix by x(t) ∈ R(
∏
i∈t ni)×(

∏
j /∈t nj), where t ⊂ [d] is the set of modes

that become the rows of the resulting matrix. Analogously we write ten(x) for reshaping a
vector or matrix x back into a tensor, when the dimensions are clear. For the extraction of
parts of a tensor we also allow indexing with ordered lists and write “·” for all indices of a
dimension in ascending order: x(·, 4, (1, 5),·, . . . ,·) ∈ Rn1×2×n4×···×nd is obtained from x by
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2. Tensors

fixing the second index at 4 and taking the first and the fifth component of the third mode
and all components in the rest of the modes. Note that modes that are indexed by a single
index only are cut out in the result while modes indexed by a list remain. This is especially
relevant when indexing by a list containing only one index: x(2,·, . . . ,·) ∈ Rn2×···×nd , but
x((2),·, . . . ,·) ∈ R1×n2×···×nd . Sometimes, the notation becomes shorter if sets instead of lists
are used for indexing. The respective set then stands for the list containing all its elements
in ascending order. In the i-th mode of a tensor, one could replace “·” by “[ni]” for example.
For a compact notation, we also allow indexing by index vectors, i. e., x(k) = x(k1, . . . , kd)

for some k ∈×d
i=1 [ni].

As tensors form a vector space, all vector space operations are defined for tensors. Addi-
tionally, componentwise operations are useful, especially for function-related tensors: x � y
denotes multiplication, x� y division and x.λ exponentiation by a scalar λ ∈ R. The compo-
nentwise application of a function f : R→ R is written as f(x).

Definition 2.1 (i-mode matrix product). Let x ∈ Rn1×···×nd be a tensor, i ∈ [d] a mode and
A : Rni → Rm a linear operator or a matrix.
Then the i-mode matrix product A ◦i x ∈ Rn1×···×ni−1×m×ni+1×···×nd is defined by

(A ◦i x) (k1, . . . , kd) := (Ax(k1, . . . , ki−1,·, ki+1, . . . , kd)) (ki)

for all (k1, . . . , kd) ∈ [n1]× · · · × [ni−1]× [m]× [ni+1]× · · · × [nd].

Remark 2.2. Equivalently, the i-mode matrix product is given by A ◦i x = ten
(
Ax({i})), cf.

[76, Sec. 4.1], using reshaping and the standard product of matrices. The definition means
that we take all vectors that result from fixing all indices of the tensor x except the i-th one,
apply A and then use the resulting vectors to form A ◦i x.

We view tensors of order 1 as column vectors and order-2-tensors as matrices, where the
first index is for the rows. The contraction of two tensors is a further important operation.
It generalizes inner and outer products as well as matrix multiplication.

Definition 2.3 (tensor contraction). Let x ∈ Rn1×···×nd and z ∈ Rñ1×···×ñd̃ be tensors and
let s = (s1, . . . , sp), t = (t1, . . . , tp) with si ∈ [d], ti ∈ [d̃] be ordered lists of modes that shall
be contracted. We require nsi = ñti for all i ∈ [p]. Furthermore, let s̄i (i ∈ [d − p]) and t̄i
(i ∈ [d̃− p]) be the remaining, untouched modes in ascending order.
Then the contraction 〈x, z〉s,t ∈ R

ns̄1×···×ns̄d−p×ñt̄1×···×ñt̄d̃−p of x and z along the modes s and
t is defined as

〈x, z〉s,t(ks̄1 , . . . , ks̄d−p , `t̄1 , . . . , `t̄d̃−p) =

ns1 ,...,nsp∑
ks1 ,...,ksp=1

x(k1, . . . , kd)z(`1, . . . , `d̃)|`ti=ksi ∀ i∈[p]

componentwise for all indices ks̄i ∈ [ns̄i ] (i ∈ [d − p]) and `t̄j ∈ [ñt̄j ] (j ∈ [d̃ − p]). If s or t
are sets rather than ordered lists, they stand for the lists of elements in ascending order as
in the case of indexing.

Here, similar to a matrix product, a component of the resulting tensor is obtained by fixing
indices in the untouched modes and computing an inner product of the resulting tensors of
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2.1. Finite-Dimensional Tensors and Low-Rank Formats
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Figure 2.1.: Examples for tensor network diagrams: matrix-vector-product resulting in a vec-
tor (left), matrix-matrix-product resulting in a matrix (middle), two tensors of
order 3 contracted along one mode resulting in a tensor of order 4 (right)

same size. Tensor contraction can be nicely visualized by tensor network diagrams [76,
Sec. 5.1]. The resulting tensor of the contraction is represented by a network, where each
node stands for a tensor in the contraction and the edges connected to it are the tensor
modes. If two nodes are connected by an edge, the respective tensors are contracted along
the respective modes. The “free” edges indicate the modes of the resulting tensor. Some
simple examples of tensor networks are shown in Figure 2.1. Note that for a full description
of the tensor contraction one should, e. g., display the mode numbers next to the edges, which
we skip here as long as it is clear or not essential.
We sometimes need the following special cases of tensor contraction:

Definition 2.4 (special cases of tensor contraction). Let x, y ∈ Rn1×···×nd and z ∈ Rñ1×···×ñd̃

be tensors.

• The outer product1 x ⊗ z := 〈x, z〉∅,∅ ∈ Rn1×···×nd×ñ1×···×ñd̃ of the tensors x and z is
obtained as

(x⊗ z) (k1, . . . , kd, `1, . . . , `d̃) = x(k1, . . . , kd)z(`1, . . . , `d̃).

• An elementary tensor or rank-1-tensor
⊗d

i=1 ui ∈ Rn1×···×nd is an outer product of
vectors: ( d⊗

i=1

ui
)

(k1, . . . , kd) =

d∏
i=1

uiki ,

where uiki is the ki-th component of the vector ui ∈ Rni .

• The inner product 〈x, y〉 := 〈x, y〉[d],[d] ∈ R of two tensors of same size is

〈x, y〉 =

n1∑
k1=1

. . .

nd∑
kd=1

x(k1, . . . , kd)y(k1, . . . , kd).

• The Frobenius norm of a tensor x is ||x||F :=
√
〈x, x〉.

We conclude this section with the statement that the i-mode matrix product is also a
special case of contraction since the tensor A ◦i x is obtained as contraction of the second
order tensor A with the tensor x along the modes (2) and (i).

1Note that the vectorization/matricization of the outer product of two tensors coincides with the standard
Kronecker product (also denoted by "⊗") of vectorizations/matricizations of them.
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2. Tensors

2.1.2. Low-Rank Tensor Formats

As the amount of data of a full tensor is in general very high, namely of order O(ndmax)
with nmax := maxi∈[d] ni, it is important to find a representation or approximation of it that
requires substantially less memory. One approach is to approximate a tensor by one of low
rank. Different notions of tensor rank have been developed in the past. For instance, in the
canonical polyadic (CP) decomposition, cf. [54, Chap. 7], a rank-R-tensor x is written as the
sum of R elementary tensors:

x =
R∑
j=1

d⊗
i=1

ui,j with ui,j ∈ Rni for i ∈ [d], j ∈ [R].

This representation requires storage of order O(Rnmaxd). We note that this is linear in d
instead of exponential in the case of storing the full tensor. But one should take into account
that R can grow if a good approximation of a given tensor is desired. Furthermore, this
format has certain drawbacks as the possible ill-posedness of the best approximation of a
given tensor by a tensor of rank at most R [33]. Concretely, this means that there exists a
rank-3-tensor of order d ≥ 3, which can be approximated arbitrarily well by a rank-2-tensor
[54, Prop. 9.10].
A widely used approach for the matrix case d = 2 is a low rank approximation by a trun-

cated singular value decomposition (SVD). The quadratic error (squared Frobenius norm)
made by this approximation is bounded by the sum of the truncated, squared singular values
[54, Lem. 2.30] and can thus be estimated easily. The SVD approximation is optimal w. r. t.
this error in the set of matrices of a fixed maximum rank. A generalization of this approxima-
tion technique to d-dimensional tensors is therefore desirable, but cannot be available in the
CP format due to the ill-posedness of the approximation problem. Thus, a different approach
works with subspaces of the Rni , as done in the Tucker format or tensor subspace representa-
tion [54, Chap. 8]: Here, for representing a tensor x ∈

⊗d
i=1 Rni (more on this tensor product

of Hilbert spaces in Section 2.2), bases of ri-dimensional subspaces of the Rni are selected,
stored as matrices Ui ∈ Rni×ri and a basis

⊗d
i=1 Ui of the tensor product of subspaces is

formed. One can combine the basis elements linearly with coefficients stored in the so-called
core tensor c ∈ Rr1×···×rd to obtain the tensor x. Equivalently, this representation of x can
be written as a contraction of the tensors Ui and c w. r. t. a tensor network as depicted in
Figure 2.2. Actually, the CP format is a special case of this network with ri = R for all
i ∈ [d], Ui containing exactly the vectors ui,j and c ∈ RR×···×R being diagonal in the sense
that only the entries c(k1, . . . , kd) with k1 = . . . = kd are allowed to be non-zero. For the
Tucker format the HOSVD (higher order SVD, which uses the standard SVD in substeps)
is available for truncating a tensor to lower Tucker rank giving a quasi-optimal result2 and
offering error control similar to the one in standard SVD [81]. We give an impression of SVD
based tensor truncation in Subsection 2.1.3, using the example of conversion from TT to
HT tensors. Unfortunately, defining rmax := maxi∈[d] ri, the required storage for the Tucker
format is

∑d
i=1 niri +

∏d
i=1 ri = O(nmaxrmaxd+ rdmax) and grows exponentially in d.

2Best approximation in the Frobenius norm up to a factor that depends on the order d of the tensor (
√
d

for the Tucker format, see, e. g., [51]).
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Figure 2.2.: Tensor network representing the Tucker format in the case d = 6. The numbers
next to the edges are the respective mode dimensions.
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Figure 2.3.: Tensor network representing the Tensor Train format in the case d = 6 with the
dimensions of the modes displayed next to the edges

Two more recent low-rank tensor formats, meeting the requirement of having a storage
and arithmetic complexity scaling linearly in nmax and d, and for which a variant of a higher-
order SVD is available, are the hierarchical Tucker (HT) format [56], and the tensor train
(TT) format [88], also known as matrix product states (MPS) from the quantum physics
community [115]. The latter works as follows:
The TT rank of a tensor x ∈ Rn1×···×nd is a vector r := (r0, r1, . . . , rd) with r0 = rd = 1

and ri ∈ [ni] for i ∈ {2, . . . , d− 1}. In the TT format, x = TT (u) is represented by a d-tuple
u := (u1, . . . ,ud) ∈×d

i=1 R
ri−1×ni×ri of order-3-tensors:

x(k1, . . . , kd) = u1(·, k1,·)u2(·, k2,·) · · ·ud(·, kd,·) ∈ R1×1 ∼= R ∀ ki ∈ [ni], i ∈ [d].

Note that this is a simple product of matrices, resulting in a scalar value because the first and
the last matrix of the chain are a row and a column vector, respectively. The tensor x can
also be written as a contraction of the so-called core tensors ui as shown in Figure 2.3. The
storage requirement of a tensor in the TT format is exactly

∑d
i=1 ri−1niri = O(nmaxr

2
maxd)

with rmax := maxi∈{0,1,...,d} ri and scales linearly in nmax and d. As in the case of the Tucker
format, the low-rank approximation problem is well-posed for TT tensors and an SVD-based
truncation to smaller TT rank, the so-called TT-SVD, is available and gives a quasi-optimal
result up to the factor

√
d− 1 [88, Cor. 2.4]. An error control mechanism based on the

truncated singular values allows to choose the ranks such that a prescribed approximation
accuracy can be guaranteed.
In the related hierarchical Tucker (HT) decomposition [56], the idea of writing a tensor as

a contraction of smaller ones is generalized in a certain way: The contraction is performed
according to a more general, binary dimension tree T , which has one root node [d]. Each node
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2. Tensors

t ∈ T containing more than one index splits up into two children tl, tr 6= ∅ with t = tl ∪· tr,
where we assume w. l. o. g. that tl contains only smaller indices than the ones in tr. The
leaves of the tree are sets of only one index so that we have d leaves and 2d−1 nodes overall.
To simplify the notation we call the leaf nodes t1, . . . , td, the parent node of t1 and t2 would
be called t12 and the root node is t12...d. The tree tells us how to form a tensor starting with
subspaces of the Rni and recursively selecting subspaces of tensor products of subspaces. For
each leaf node ti (i ∈ [d]) a matrix Ui ∈ Rni×ri is stored, which contains vectors that span a
linear subspace Vi of Rni as in the Tucker format. One can use an orthogonal basis here for
example. Now, the full tensor is represented by these leaf matrices and additional transfer
matrices Bt ∈ Rrlrr×rt (rt ≤ rlrr, r[d] = 1) assigned to the non-leaf nodes t, as follows: For
computing the full tensor, which is normally never done explicitly, one would recursively go
through the tree from the leaves to the root. At each parent node t a generating system of
the tensor product of the two subspaces at the children tl and tr would be built combining all
vectors, i. e., the matrix Ur⊗Ul ∈ Rnlnr×rlrr would be computed. This can also be viewed as
a tensor; the Kronecker product is a possible matricization of it. Then, by multiplying with
the transfer matrix Bt, which can also be viewed as a three-dimensional tensor bt ∈ Rrl×rr×rt ,
a generating system of a subspace would be obtained. It can be represented by the matrix
Ut = (Ur ⊗ Ul) Bt ∈ Rnlnr×rt , which would contain vectors generating a subspace of

⊗
i∈t Vi.

Arriving at the root node one would obtain a R
∏d
i=1 ni-vectorization of the represented tensor.

On the other hand we can view the represented tensor to be a contraction of the leaf matrices
Ui and transfer tensors bt according to a tensor network defined by the tree T as shown in
Figure 2.4, where a typical balanced tree is used. The required storage for the hierarchical
Tucker representation is

• O(nmaxrmaxd) for the basis matrices Ui at each of the d leaf nodes and

• O(r3
maxd) for the transfer matrices Bt at the non-leaf nodes with rmax := maxt∈T rt,

and sums to O(nmaxrmaxd+ r3
maxd). This is linear in d, but again, for a good approximation

the hierarchical Tucker rank, i. e., the vector of ranks at the nodes of T , can be required to
be chosen dependent on d and nmax. Truncation to a lower rank is well-posed and can be
done by the SVD-based hierarchical SVD (HSVD) [50] with error control and quasi-optimal
approximation up to the factor

√
2d− 3.

2.1.3. Available Algorithms

Due to their good complexity, we want to use TT or HT tensors for all high-dimensional
computations. Many relevant algorithms are available within (Matlab) toolboxes, which we
present in the following. In addition, we discuss some iterative algorithms used for computing
quantities which cannot be computed directly with low-rank tensors in a reasonable amount
of time. For instance, the componentwise application of a function f : R→ R to a low-rank
tensor could in theory be computed by building the full array, applying f to its components
and truncating the result to obtain a low-rank tensor again. But this approach is highly
prohibitive because even the storage required for the full tensor could easily exceed any
available storage, at least if the order d is large enough and ni ≥ 2 for all i ∈ [d]. Therefore,
it is important to compute or approximate every tensor within a computation in a low-rank
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Figure 2.4.: Tensor network representing the Hierarchical Tucker format in the case d = 6
with a balanced tree. The dimensions of the modes are displayed next to the
edges.

format without ever forming a full tensor explicitly. If there are no direct algorithms available,
iterative algorithms operating on the low-rank tensor representation or inexact versions of
well-known iterative algorithms formulated on the tensor space Rn1×···×nd with truncation in
between should be chosen.

Toolboxes and Conversion between Formats

The TT-Toolbox [89] provides efficient implementations of TT tensors and important oper-
ations in Matlab and Python. These are, e. g., elementwise addition and multiplication,
extraction of elements of the tensor, implementations of linear operators, and truncation to
a lower rank by TT-SVD. Truncation is crucial in practice to avoid infeasible rank growth
because when using the standard implementations for summing or multiplying two TT ten-
sors elementwise, the ranks sum or multiply, respectively. Clearly, truncation comes with the
drawback of additional errors introduced in the computation. Therefore, it is an important
aspect of this thesis how those errors have to be controlled to obtain convergence of the final
algorithms, which use tensor computations in substeps.
Due to the similar structure, comparable algorithms are available for HT tensors. The

htucker toolbox [76] implements tensors in this format and—similarly to the TT-Toolbox—
efficient versions of the most important operations, e. g., extraction of parts of the tensor,
application of linear operators to the i-th mode, contraction, tensor orthogonalization and
truncation to a lower rank by HSVD [50]. For elementwise addition and multiplication, exact
and special, truncated versions are available such that the explosion of ranks can be avoided.
HT tensors can be orthogonalized such that the matrices Ut at all nodes t except for the
root node form an orthogonal basis of the respective tensor subspace. This procedure can
simplify certain computations and make some tensor algorithms more stable. All mentioned
operations can be performed in a reasonable amount of time, which is linear in nmax and d
and polynomial in rmax, in particular at most O(nmaxdr

2
max + dr4

max), but often less. The
same holds for tensors in TT format.
For the algorithms developed in this thesis, operations and subsolvers that currently are

not all available within a single format or toolbox are needed. Thus, we use HT tensors with
a linear, TT-like dimension tree as provided by htucker, see Figure 2.5.

15



2. Tensors

u
u

u
u u

u u
u u

u u
����

HHHH

��
��

HH
HH

�
���

H
HHH

����

HHHH

��
��

HH
HH

n1

n2

n3

n4

n5 n6

r1

r2

r3

r4

r5

r23456

r3456

r456

r56

r6

Figure 2.5.: Tensor network representing the Hierarchical Tucker format in the case d =
6 with a linear tree, which makes the conversion to TT tensors simple. By
performing the marked contractions, a TT network is obtained.

This allows to convert between the HT and TT formats, cf. [54, Sec. 12.2.2], so that
both the TT-Toolbox and the htucker toolbox can be used simultaneously. By performing
the marked contractions in Figure 2.5, a TT network is obtained. Conversely, the TT cores
u1, . . .ud−1 can be split into the basis matrices U1, . . .Ud−1 and the respective transfer tensors
in order to convert from the TT to the HT format: In fact, we aim for finding ri ∈ [ni],
Ui ∈ Rni×ri and bi,...,d ∈ Rri×ri+1,...,d×ri,...,d such that 〈Ui,bi,...,d〉2,1 = ũi ∈ Rni×ri+1,...,d×ri,...,d

holds, where ũi is a reshaped version of ui. Writing this in a matricized form, we have

Ui b
(ri)
i,...,d = ũ

(ni)
i ∈ Rni×ri+1,...,dri,...,d

with b
(ri)
i,...,d ∈ Rri×ri+1,...,dri,...,d . Clearly, one could choose ri = ni, Ui = Ini (identity matrix),

and bi,...,d = ũi to obtain the result, but this approach is not suitable due to the possibly
(for large ni) large ranks ri = ni so that the large matrices Ui ∈ Rni×ni have to be stored.
Low-rank tensor implementations use dense linear algebra because the representing small
tensors and matrices cannot be expected to be sparse so that one cannot benefit from the
sparsity of the matrix Ini here. A smaller rank ri can be obtained by using an SVD of
ũ

(ni)
i = ViΣiW

>
i , where Vi ∈ Rni×Ri and Wi ∈ Rri+1,...,dri,...,d×Ri are orthogonal matrices,

and Σ = diag((σi1, . . . , σ
i
Ri

)) ∈ RRi×Ri , where Ri = min{ni, ri+1,...,d ri,...,d}, i. e., we use the
economic variant of SVD or thin SVD [49, Sec. 2.5.4]. The singular values shall be ordered:
σi1 ≥ σi2 ≥ . . . ≥ σiRi . Truncating this decomposition to rank ri ≤ Ri, we set Ui := Vi(·, [ri])
and bi,...,d := ten(Σi([ri], [ri]) Wi(·, [ri])>) to obtain an approximate decomposition of the TT
core tensor ui. The accuracy of this approximation can be controlled easily since the squared
Frobenius error is given by the sum of the truncated, squared singular values.

Additional Arithmetic Operations

When designing optimization algorithms for constrained problems in tensor space, one often
needs more componentwise operations than only addition, subtraction, and multiplication.
Standard algorithms for constrained problems typically require the computation of special
componentwise functions such as penalty terms, projections, indicators, e. g., for a semi-
smooth Newton method, or the reciprocal x.−1, which is needed to compute the derivative of
a log-barrier term in an interior point method. One option is to approximate such quantities
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2.1. Finite-Dimensional Tensors and Low-Rank Formats

by applying Newton’s method to a suitable equation. In the case of the elementwise reciprocal
y = x.−1, one can consider the equation x− y.−1 = 0 and solve it for y, see also [43, Sec. 4.4].
The resulting Newton equation given the current iterate yk is yk.−2(yk+1−yk) = −x+yk.

−1,
giving the Newton update yk+1 = yk � (2 · 1 − x � yk). This iteration can be performed
with available operations within the low-rank format; especially no componentwise division
is needed. It can be shown to converge if one chooses the first iterate y0 such that sgn(y0) =
sgn(x) and |y0| ≤ |x|.−1 (componentwise). One can choose, e. g., 1

‖x‖2F
x for general x or 1

‖x‖F1

for x > 0. This iteration was already proposed to approximate the inverse of structured
matrices [55, Sec. 4.1] and is called Newton-Schulz method [101]. When implementing it
with low-rank tensors—as done in the example section of htucker—the ranks of the iterates
have to be bounded by truncation. This causes the implementation to be an inexact version
of Newton’s method, which could only be expected to converge if the error caused by the
truncation was controlled suitably, see [55, Sec. 2]. In practice, this approach is sometimes
unfeasible because the required ranks are too large. If truncation is performed always to a
fixed rank, one typically obtains only a solution of a certain accuracy, which can be quantified
by ‖1 − x � y‖F. In order to guarantee convergence of this truncated iteration for x > 0
one would have to ensure that all iterates fulfill yk > 0 elementwise. By error control
in the maximum norm ‖ · ‖∞ this goal could be achieved. Such a rounding procedure is
currently not available to our knowledge. Using the equivalence of norms in finite-dimensional
spaces is not suitable here because of the magnitude of the equivalence constant: We have
‖1‖F =

√
n1 · · ·nd for x ∈ Rn1×···×nd , whereas ‖1‖∞ = 1, but can only ensure ‖x‖∞ ≤ ‖x‖F

in general, i. e., it could be necessary to decrease the Frobenius norm of the error further
although the maximum norm is small enough already.
A similar iteration, namely yk+1 = 1

2yk � (3 · 1 − yk.
2 � x), can be employed to compute

x.−1/2 for x > 0. This gives then access to |x| ≈ x.2 � (x.2 + ε · 1).−1/2, where the addition
of ε · 1 with a small ε > 0 makes the algorithm more stable. Using the componentwise
absolute value, quantities such as quadratic penalty terms or projections onto boxes can be
approximated with low-rank tensors and used in an optimization algorithm.
In our experiments [46] it was found that the Newton-Schulz iteration performs often well

in practice, but does not give satisfying results sometimes if the entries of the positive tensor
x > 0 are too close to 0. Then we computed y = x.−1 by solving the linear system x� y = 1

by an iterative method working on the low-rank tensor representation, such as ALS, AMEn
or optimization on manifolds, see below.
The iterative methods for computing componentwise functions of low-rank tensors in a low-

rank format described above are all designed for a specific problem. This has the advantage
that they can be analyzed very well, but comes with the drawback that a separate algorithm
has to be designed for each function. A more general approach for computing componentwise
functions is given by sampling some entries of the resulting y, i. e., computing y(k) = f(x(k))

for some indices k in some index set K ⊂×d
i=1 [ni]. Then the full tensor in the low-rank

format is computed by some tensor completion method. Such methods aim to find a tensor of
a prescribed or adaptively selected low rank which contains the sampled entries, sometimes
at least approximately. Suitable algorithms are cross approximation [91, 15, 14] or tensor
completion using optimization algorithms such as ALS [62] or optimization on the manifold
of tensors of fixed TT or HT rank [73, 104, 32].
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u u u u u u
u u u u u u

Figure 2.6.: Product of a TT matrix (below) and a TT tensor/vector (above) represented as
a contraction. If the modes along which one contracts in the resulting network
are “vectorized", a TT network is obtained. The TT ranks of the result are thus
obtained by multiplying the TT ranks of the TT vector and the TT matrix. See
also [12].

Solution of Linear Equations

In many applications, the solution of linear systems involving low-rank tensors is a key tool.
They arise, e. g., when discretizing PDEs in high space or stochastic dimension. It is then
important that the corresponding linear operators can at least be applied efficiently to low-
rank tensors. For instance, they can be of the following forms:

• Linear operators in the CP format: Given d ∈ N and R ∈ N, let A
(j)
i : Rni → Rmi be

linear operators or matrices for i ∈ [d], j ∈ [R]. Consider the operator

A : Rn1×···×nd → Rm1×···×md , A =
R∑
j=1

m⊗
i=1

A
(j)
i , A(x1 ⊗ · · · ⊗ xm) =

R∑
j=1

m⊗
i=1

A
(j)
i xi,

defined by its action on elementary tensors. Operators of this type can be efficiently
applied to low-rank tensors of any type using i-mode matrix products and summation:

Ax =
R∑
j=1

A(j)
m ◦m · · ·A

(j)
1 ◦1 x.

• Linear operators in special low-rank formats, such as HTD for linear operators [76]
or tt_matrix [89]. Operators of this type can easily be applied to HT or TT tensors
giving HT or TT tensors as a result, respectively, essentially by performing a suitable
contraction. This is visualized in Figure 2.6 for the case of a product of a TT matrix
and a TT tensor (vector).

• Componentwise multiplication by a tensor y ∈ Rn1×···×nd : x 7→ y � x is linear and can
be computed by the respective algorithms.

In general, such linear operators between tensor spaces cannot be inverted easily except for
rank-1-operators: If the matrices Ai ∈ Rni×ni (i ∈ [d]) are invertible, it holds that

( m⊗
i=1

Ai
)−1

=

m⊗
i=1

A−1
i
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so that the inverse of a rank-1-operator can be applied to low-rank tensors via i-mode matrix
products. This fact can be used to construct good preconditioners for operators which are
perturbations of rank-1-operators. For general linear systems, however, iterative methods
have to be applied to compute the solution x ∈ Rn1×···×nd of Ax = b with b ∈ Rn1×···×nd and
A ∈ L(Rn1×···×nd ,Rn1×···×nd), which we assume to be a symmetric operator for simplicity.
There are several options to do this:

• Similarly to the Newton-Schulz method, one can apply standard iterative methods
such as the preconditioned conjugate gradient (PCG) method [75] formulated on the
space Rn1×···×nd but implemented with low-rank tensors only and round the iterates in
between to avoid infeasible rank growth. See also [11] for a review of such methods, and
[9, 10, 13] for concrete examples. To obtain provable convergence of such an inexact
scheme, the errors caused by truncation typically have to be controlled suitably so
that a guaranteed rank bound for the iterates of the method cannot be provided even
though the solution x of the system may have low rank. If a suitable soft thresholding
procedure is used for rounding to a fixed tensor rank, convergence results of fixed point
methods can be established [11].

• Alternative approaches guess the rank r of the solution x and formulate the equation
Ax = b as a least squares problem, which is then solved on the set of tensors of rank
at most r by optimization over the representing tensors. In the case of the TT format,
x = TT (u1, . . . ,ud) holds and one would solve

min
u

1
2‖A TT (u)− b‖2F.

Since the map u 7→ TT (u) is only multilinear and therefore nonlinear in u, this is a
general nonlinear and especially non-quadratic problem. It can be solved locally by
block-wise optimization over the TT cores for example. If all cores except ui are fixed,
a quadratic function in ui is obtained, a stationary point of which can be found by
solving a linear system. This is known as alternating linear scheme (ALS) [62, 98].
The idea of block-wise optimization can also be applied to more general, nonlinear
optimization problems in tensor space.

• When optimizing over the TT cores, the problem appears that the TT representation of
a rank-r-tensor is not unique. In fact, certain rescalings by orthogonal matrices do not
change the represented tensor [98]. Along those rescalings, the objective function will
be constant and its curvature will be zero so that typical convergence results requiring
second-order sufficient conditions cannot be applied. One way to overcome this issue is
to factor out the ambiguity of the representation and work on the manifold of tensors
of fixed rank r. Riemannian optimization algorithms on manifolds are well understood
[1] and were also developed especially for low-rank tensor manifolds [100, 73, 74, 104,
32, 113].

• Estimating the rank of a solution of a linear system is a very hard task in general.
Therefore, ALS or methods operating on a fixed manifold may not give accurate enough
results. Modifications of ALS such as MALS [62], DMRG [87, 90], or AMEn [36,
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35] allow the adaption of ranks by essentially optimizing over the contraction of two
“neighboring” TT cores at once and then splitting this optimized tensor into two cores
again as described above when discussing the conversion from TT to HT tensors. At
this point, a rank can be chosen such that, e. g., a prescribed accuracy is met.

Initially, we used the HT PCG method in our implementations with an adequate rank-1-
preconditioner, which is a viable approach. In numerical experiments we found that AMEn
yielded more accurate results with smaller ranks and better computing times [46]. One has
to mention that—to our knowledge—the convergence theory of this method is still limited,
but the method performs well in practice. In principle, it supports operators A in the
tt_matrix format and was extended to operators in the so-called {d, R}-format in [35],
which is essentially the CP format with sparse matrices. We extended it further to also have
componentwise multiplication operators3 and a rank-1-preconditioner in decomposed form,
i. e., a rank-1-operator T ≈ A−1, which has to be given in the form T =

⊗d
i=1 PiP

∗
i , where

Pi ∈ L(Rni ,Rni). There, we also allowed for function handles Ri so that also, e. g., inverses
of triangular matrices or certain linear transformations, such as the fast Fourier transform,
could be implemented efficiently.

Determination of Maximum/Minimum Entries

For determining stepsizes or feasibility in constrained optimization, it can be necessary to
compute or estimate the maximum or minimum entry of a given low-rank tensor. In [43] it is
proposed to use the fact that the linear mapping y 7→ x�y has exactly the components of x as
eigenvalues. A normed basis of eigenvectors is given by the tensors

⊗d
i=1 eiki (k ∈×m

i=1 [ni]),
where eiki ∈ Rni denotes the ki-th unit vector. The element of x with maximum absolute
value can thus be found by performing a power iteration with initial tensor y0 := 1√

n1···nd1.
The iterates are given by yj = 1

‖x.j‖F
x.j . Hence, the iteration can be sped up by squaring

each iterate so that only 1

‖x.2j ‖F
x.2

j is computed for each j ∈ N. This is implemented in
the example section of htucker. The maximum entry of x is approximated by the sequence

λj := 〈x�x.2j ,x.2j 〉
〈x.2j ,x.2j 〉

(Rayleigh quotient). It can be shown that |λj | ≤ maxk |x(k)| holds for
all j. Since the ranks square in each iteration, truncation is necessary. Therefore, one can
only expect to be able to compute a lower bound on the absolute value of the maximum
entry with this procedure. Therefore, we also experimented with an upper bound, which can
be obtained from this iteration: It holds ‖x‖∞ ≤ ‖x‖2j = 〈x.2j−1

, x.2
j−1〉2−j for all j ∈ N

and limj→∞ ‖x‖2j = ‖x‖∞. The approximation ‖x‖2j can be computed from the repeatedly
squared tensor if one handles arithmetic overflow suitably.
Numerical experiments [46] showed us that rounding can be a severe issue in this iteration

so that we did not obtain accurate enough results. For tensors describing a function on a
product set, we therefore chose the multilevel coordinate search (MCS) method [65] a non-
rigorous global optimization routine for box-constrained problems where only function values
are available, to optimize the represented function globally to approximate the maximum
element of the tensor. This approach yielded better results in practice but is limited to
function-related tensors.

3The implementation of this task was essentially done by Prof. Dr. Michael Ulbrich.
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2.2. Tensor Products of Hilbert and Banach Spaces

In this subsection we introduce the basic tools and results for tensor products of Hilbert
spaces, following [54] and [116, Sec. 3.4]. We will need this concept to formulate parametric
PDE problems. Note that we only collect the most important facts about tensor products
of Hilbert spaces and point out only a few generalizations to Banach spaces as far as it is
necessary for the functional analytic setting of the semilinear, elliptic PDE with uncertain
inputs discussed in Chapter 3.

Definition 2.5 (Algebraic and topological tensor product of vector spaces4). Let V and W
be vector spaces over a field K ∈ {R,C}. The algebraic tensor product space V ⊗a W of V
and W is defined as the quotient vector space

V ⊗aW := span{(v, w) : v ∈ V,w ∈W}/N

with

N := span
{ m∑
i=1

n∑
j=1

αiβj(vi, wj)−
( m∑
i=1

αivi,
n∑
j=1

βjwj
)

:

m,n ∈ N, αi, βj ∈ K, vi ∈ V,wj ∈W
}
,

where the span of the set is taken in the algebraic sense, meaning that it consists of finite
formal linear combinations of pairs (vi, wi). This first set of formal linear combinations is
normally referred to as the free vector space over the set V ×W . The equivalence class of a
pair (v, w) is denoted by v ⊗ w and called elementary tensor.
If a norm || · || is given on V ⊗a W , the topological tensor space is defined as the closure of
the algebraic tensor space with respect to this norm:

V ⊗||·||W := V ⊗aW
||·||
.

Proposition 2.6 (Characterization of equivalence classes5). Let V and W be vector spaces
over a field K and let v, ṽ ∈ V and w, w̃ ∈ W be given. Consider the algebraic tensor space
V ⊗a W . The pair (ṽ, w̃) belongs to the equivalence class v ⊗ w if and only if the following
holds:

(v = 0 ∨ w = 0) ∧ (ṽ = 0 ∨ w̃ = 0) (2.1)

or

(v 6= 0 ∧ w 6= 0) ∨ (ṽ 6= 0 ∧ w̃ 6= 0) and ∃ c ∈ K\{0} s. t. ṽ = cv and w = cw̃.

Case (2.1) holds exactly for pairs belonging to the equivalence class 0⊗ 0.

Proof. The proof of this proposition is given in the appendix (Proposition A.1).

4This definition follows [116, Sec. 3.4] and [54, Sec. 3.2.2].
5This proposition follows [116, Exercise 3.11].
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Remark 2.7. More basic facts and notations about tensor spaces are given in [54, Sec. 3.2].
We collect only some of them:

• Tensor spaces are again vector spaces [54, Def. 3.9].

• It holds that V ⊗aW = span{v ⊗ w : v ∈ V,w ∈W} [54, Eq. (3.11)].

• The tensor product of two finite-dimensional vector spaces V and W is again finite-
dimensional. We have V ⊗aW = V ⊗||·||W =: V ⊗W [54, Notation 3.8(a)].

• The map ⊗ : V ×W → V ⊗W is bilinear [54, Lem. 3.10].

• If B is a basis of V and C is a basis of W , then {b⊗ c : b ∈ B, c ∈ C} is a basis of
V ⊗aW . We obtain dim(V ⊗aW ) = dim(V ) dim(W ) [54, Lem. 3.11].

• If V , W and X are vector spaces over K and a bilinear map ⊗ : V ×W → X fulfills
that span{v ⊗ w : v ∈ V,w ∈ W} = X and that sets B ⊂ V and C ⊂ W of lin-
early independent vectors are mapped to a set {b⊗ c : b ∈ B, c ∈ C} ⊂ X of linearly
independent vectors, then X is isomorphic to V ⊗aW [54, Prop. 3.12].

Example 2.8. Let K ∈ {R,C} and let S and T be some suitable sets, e. g., [n] for some n ∈ N
to represent the vector space Kn, N to represent vector spaces of sequences or some set S ⊂ Rn
to represent more general function spaces. Let V ⊂ {v : S → K} and W ⊂ {w : T → K}
be vector spaces of K-valued functions on the given sets. Now we can consider the algebraic
tensor product space V ⊗aW and make the identification of elementary tensors v⊗w ∼= vw,
i. e., we say that the elementary tensor v ⊗ w is a pointwise product of functions. We
get an isomorphism between the sets X1 := V ⊗a W and X2 := span{vw, v ∈ V,w ∈
W} ⊂ {x : S × T → K} with the usual equality that x = y for x, y ∈ X2 if and only if
x(s, t) = y(s, t) for all s ∈ S and all t ∈ T . Therefore, we will frequently use the outer
product ⊗ : V ×W → V ⊗aW, (v⊗w)(s, t) := v(s)w(t) for function-related tensors, see also
[34, Chap. I, Sec. 2.4].
Analogously, if U is a Banach space over K and we consider U ⊗a V , we can identify u⊗ v ∼=
u v(·), i. e.,

U ⊗a V ∼= {y : S → U s. t. ∃n ∈ N, (uk, vk) ∈ U × V with y(s) =
n∑
k=1

vk(s)uk ∀ s ∈ S},

see [34, Chap. I, Sec. 2.4]). This means that we can identify elements of the tensor product
space U ⊗a V by U -valued functions on the set S.

We briefly discuss how linear maps from one tensor space to another can look like. It is
important to observe that linear maps are uniquely determined by their action on a basis, in
our case on certain elementary tensors. When having linear maps ϕ : V →W and ψ : Ṽ → W̃
between K-vector spaces V , Ṽ , W , and W̃ , the tensor product of these maps is defined by

(ϕ⊗ ψ)(v ⊗ ṽ) := ϕ(v)⊗ ψ(ṽ). (2.2)
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This tensor product is an elementary tensor in the space L(V,W )⊗a L(Ṽ, W̃ ). It holds that
L(V,W ) ⊗a L(Ṽ, W̃ ) ⊂ L(V ⊗a Ṽ,W ⊗a W̃ ) with equality if the spaces V and Ṽ are finite
dimensional [54, Prop. 3.49].
Let now V and W be Hilbert spaces over K ∈ {R,C} with the inner products (·, ·)V and

(·, ·)W , respectively. Elements of their algebraic tensor product Xa = V ⊗aW can be written
as finite linear combination x =

∑m
i=1 αi vi ⊗ wi of elementary tensors. Therefore, an inner

product on the algebraic tensor product space can be defined in a natural way [116, Sec. 3.4]:
For x =

∑m
i=1 αi vi ⊗ wi ∈ Xa and y =

∑n
j=1 βj ṽj ⊗ w̃j ∈ Xa the inner product is given by

(x, y)X :=

m∑
i=1

n∑
j=1

αiβj(vi, ṽj)V (wi, w̃j)W , (2.3)

where αi denotes the complex conjugate of αi. It can be shown that this is well-defined
meaning that the value of the inner product does not depend on the representation of x and
y and that this defines a scalar product, the so-called induced scalar product [54, Lem. 4.124].
The completion X of Xa with respect to the norm induced by this scalar product is called
the complete tensor product of the Hilbert spaces V and W and is itself a Hilbert space. We
denote it by V ⊗W .
We collect some facts about the complete tensor product V ⊗W of two Hilbert spaces V

and W and the induced inner product (·, ·)V⊗W :

• If B is an orthonormal basis of V and C is an orthonormal basis of W , the set
{b⊗ c : b ∈ B, c ∈ C} is an orthonormal basis of V ⊗W [116, Thm. 3.12(b)].

• The norm ||x||V⊗W :=
√

(x, x)V⊗W is a reasonable crossnorm [54, Def. 4.66, Lem. 4.67],
i. e., ||v ⊗ w||V⊗W = ||v||V ||w||W holds for all v ∈ V , w ∈ W and ||ϕ ⊗ ψ||(V⊗W )∗ =
||ϕ||V ∗ ||ψ||W ∗ holds for all ϕ ∈ V ∗, ψ ∈W ∗ [54, Prop. 4.127].

• As a Hilbert space, the space V ⊗W is reflexive. Its dual space is (V ⊗W )∗ = V ∗⊗W ∗
[54, Lem. 4.75].

• The norm || · ||V⊗W is a uniform crossnorm [54, Def. 4.77], i. e., for any operators
A ∈ L(V, V ) and B ∈ L(W,W ), the operator A⊗B belongs to L (V ⊗W,V ⊗W ) and
has the operator norm ||A⊗B||L(V⊗W,V⊗W ) = ||A||L(V,V )||B||L(W,W ) [54, Prop. 4.127].
The same holds for the norm || · ||(V⊗W )∗ , which is also a uniform and reasonable
crossnorm [54, Prop. 4.80].

Note that we can extend all statements in this section to tensor products
⊗m

i=1 Vi of m ∈ N
vector or Hilbert spaces Vi, since the tensor product is associative. ⊗ :×m

i=1 Vi →
⊗m

i=1 Vi is
then a multilinear map and the properties hold in an analogous sense, see also [54, Sec. 3.2.4].

Example 2.9 (Tensor product of L2-spaces). Let m ∈ N open sets Ξi ⊂ R (i ∈ [m]) be
given and equipped with the Borel σ-algebras and given probability measures Pi, respectively.
We consider the spaces L2

Pi(Ξi) of R-valued random variables with finite variance and their
tensor product

⊗m
i=1 L

2
Pi(Ξi). Equipped with the scalar product (v, ṽ)L2

Pi
(Ξi)

:=
∫

Ξi
vṽ dPi

these spaces are Hilbert spaces. According to Example 2.8 we identify elementary tensors
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2. Tensors

by the product of univariate functions: (v1⊗ v2⊗ . . .⊗ vm)(ξ) := v1(ξ1)v2(ξ2) · · · vm(ξm) for
every ξ ∈ Ξ :=×m

i=1 Ξi ⊂ Rm. We compute the inner product of two elementary tensors:

( m⊗
i=1

vi,
m⊗
i=1

ṽi
)⊗m

i=1L
2
Pi

(Ξi)
=

m∏
i=1

(
vi, ṽi

)
L2
Pi

(Ξi)
=

m∏
i=1

(∫
Ξi

viṽi dPi
)

=

∫
Ξ

m⊗
i=1

vi
m⊗
i=1

ṽi dP.

This holds due to Fubini’s theorem and P := ⊗mi=1Pi is the product measure of the measures
Pi (i ∈ [m]). Due to linearity we see that this scalar product is exactly the L2

P(Ξ)-inner
product (v, ṽ)L2

P(Ξ) =
∫

Ξ vṽ dP. Since any algebraic tensor has a finite norm in L2
P(Ξ), we

get
⊗m

i=1 L
2
Pi(Ξi) ⊂ L2

P(Ξ) with the used identification of the tensor product using that the
closure of a subset of a set is contained in its closure. We want to show that the sets are in
fact equal. Note that the simple functions on Ξ that are obtained as finite linear combinations
of tensor products of simple functions in one variable are dense in L2

P(Ξ). Since they are also
square integrable and therefore contained in the tensor product space a

⊗m
i=1 L

2
Pi(Ξi), this

algebraic tensor product is actually dense in L2
P(Ξ) and its closure therefore equal to L2

P(Ξ),
cf. [34, Chap. I, Sec. 7].

This example raises the question if it is generalizable to Lp-spaces with p ∈ [1,∞]. If it
comes to tensor products of general Banach spaces instead of Hilbert spaces, the construction
(2.3) is no longer valid since no inner product exists and a similar construction with norms is
not possible. Instead, one has to define a suitable norm on the algebraic tensor product and
complete it w. r. t. this norm. In general, one can always define the so-called projective norm
[54, Sec. 4.2.4], which is the strongest norm6 on V ⊗a W ensuring continuity of the tensor
product mapping V ×W 3 (v, w) 7→ v⊗w ∈ V ⊗aW , and the injective norm [54, Sec. 4.7.2],
which is the weakest norm on V ⊗a W yielding a dual norm on (V ⊗a W )∗ rendering the
tensor product mapping V ∗ ×W ∗ 3 (ϕ,ψ) 7→ ϕ⊗ ψ ∈ V ∗ ⊗aW ∗ ⊂ (V ⊗aW )∗ continuous.
However, in the case of Lp spaces, it is more suitable to work with the Lp norm on the
product set:

Example 2.10 (Tensor product of Lp-spaces).7 Let p ∈ [1,∞) and consider the spaces
LpPi(Ξi) of R-valued, p-integrable random variables and the algebraic tensor product space
a
⊗m

i=1 L
p
Pi(Ξi) in analogy to Example 2.9. Identifying functions in this space with functions

on Ξ, we equip a
⊗m

i=1 L
p
Pi(Ξi) with the LpP(Ξ) norm. Indeed, this norm is finite for any

algebraic tensor since it is finite for any elementary tensor:∥∥∥ m⊗
i=1

vi
∥∥∥p
LpP(Ξ)

=

∫
Ξ

∣∣∣ m∏
i=1

vi
∣∣∣p dP =

m∏
i=1

∫
Ξi

|vi|p dPi =

m∏
i=1

‖vi‖p
LpPi

(Ξi)
<∞.

Therefore, we can complete the algebraic tensor space w. r. t. to the LpP(Ξ) norm to obtain⊗m
i=1 L

p
Pi(Ξi) ⊂ L

p
P(Ξ). By the simple functions argument from Example 2.9 we even obtain

equality of the sets. Note that this does not work any longer for p = ∞ so that in general⊗m
i=1 L

∞
Pi (Ξi) ( L∞P (Ξ) holds, see [34, Chap. I, Exercise 7.2].

6See [54, Prop. 4.46] for the precise meaning of this statement.
7cf. [54, Example 4.40] and [34, Chap. I, Sec. 7]
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Switching back to Hilbert spaces, we introduce a space, which is typically used for the
functional analytic setting of linear, elliptic PDEs with uncertain coefficients.

Example 2.11 (An anisotropic Sobolev space). Let for some n ∈ N an open domain Ω ⊂ Rn
be given and consider the Sobolev space H1(Ω) of weakly differentiable L2(Ω) functions with
L2(Ω) derivatives. Moreover, let (Ξ,F ,P) be a probability space, cf. Example 2.9. Now we
consider the tensor product H1(Ω)⊗ L2

P(Ξ). Again, we compute the induced inner product
of two elementary tensors with v, ṽ ∈ H1(Ω), w, w̃ ∈ L2

P(Ξ):

(v ⊗ w, ṽ ⊗ w̃)H1(Ω)⊗L2(Ξ) =
(∫

Ω
v ṽ +∇v · ∇ṽ dx

)(∫
Ξ
ww̃ dP

)
=

=

∫
Ξ

∫
Ω

(v ⊗ w) (ṽ ⊗ w̃) +∇x(v ⊗ w) · ∇x(ṽ ⊗ w̃) dx dP

Similarly as above this extends to the whole space, which can also be characterized analo-
gously to an anisotropic Sobolev space [54, Sec. 4.2.3]. We identify H1(Ω) ⊗ L2

P(Ξ) = {y ∈
L2(Ω × Ξ) : ∂xiy ∈ L2(Ω × Ξ) ∀ i ∈ [n]}. The partial derivatives w. r. t. the space variables
are weak derivatives. This space is also isomorphic to the Bochner space L2

P(Ξ;H1(Ω)) of
H1(Ω)-valued random variables with finite variance [102, Thm.B.17], [34, Chap. 1, Sec. 7].

Again, we want to extend this example to Bochner spaces with general p ∈ [1,∞) to obtain
the space of choice for the semilinear, elliptic PDE with uncertain coefficients discussed in
Chapter 3. For a given Banach space Y and a measure space (Ω,A, µ), the Bochner space
Lpµ(Ω;Y ) (p ∈ [1,∞]) is the space of equivalence classes of strongly measurable functions
y : Ξ→ Y such that the norm

‖y‖LpP(Ξ;Y ) :=
(∫

Ω
‖y(ω)‖pY dµ(ω)

)1
p (p ∈ [1,∞)),

‖y‖L∞P (Ξ;Y ) := ess sup
ω∈Ω

‖y(ω)‖Y

is finite. If Y is a Hilbert space, L2
µ(Ω;Y ) is a Hilbert space with inner product

(y,v)L2
µ(Ω;Y ) :=

∫
Ω

(y(ω),v(ω))Y dµ(ω).

More information about Bochner spaces can be found in, e. g., [66, Chaps. 1 and 2].

Example 2.12 (Connection to Bochner spaces). Let Y be a Banach space, let (Ξ,F ,P) be
a probability space and let p ∈ [1,∞). Consider the algebraic tensor product Y ⊗a LpP(Ξ).
As seen in Example 2.8, we can identify an elementary tensor y⊗w with a Y -valued function
y on Ξ via y(ξ) = y w(ξ). Using this identification, the space Y ⊗a LpP(Ξ) can be endowed
with the LpP(Ξ;Y )-norm, which is finite on the algebraic tensor product:

‖y ⊗ w‖p
LpP(Ξ;Y )

=

∫
Ξ
‖y‖pY |w(ξ)|p dP = ‖y‖pY ‖w‖

p
LpP(Ξ)

<∞.

By the argument that simple functions of the form
∑n

k=1 yk 1Ak(·) with yk ∈ Y , Ak ∈ F
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2. Tensors

are dense in LpP(Ξ;Y ), see [34, Chap. I, Sec. 7.2], we obtain equality of the completion of the
algebraic tensor product and the Bochner space: Y ⊗ LpP(Ξ) ∼= LpP(Ξ;Y ).

We have seen in (2.2) that tensor products of linear maps ϕi ∈ L(Vi,Wi) are defined by
their action on elementary tensors. By linearity, this definition extends to the algebraic tensor
product space:

⊗m
i=1 ϕi : a

⊗m
i=1 Vi → a

⊗m
i=1Wi ⊂

⊗m
i=1Wi. If

⊗m
i=1 ϕi is bounded, it can

be uniquely extended to the space
⊗m

i=1 Vi as it is defined on a dense subset. Note that it
is important to know the norms on the tensor products of spaces to derive continuity of the
tensor product of operators even though each operator ϕi itself might be bounded.
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3. A Class of Optimal Control Problems
under Uncertainty

In this chapter, we present a class of risk-neutral optimal control problems under uncertainty
with a semilinear, elliptic PDE as state equation. A suitable functional analytic setting in a
Bochner space is developed such that all appearing functions are well-defined and the optimal
control problem admits a solution. The connection to tensor products of Banach spaces as
discussed in Example 2.12 is drawn. Furthermore, adjoint formulations of the derivatives of
the reduced objective function are derived to enable the efficient, gradient-based solution of
problems of this class.

3.1. Problem Formulation

Let ξ ∈ Rm be a vector of m ∈ N independently distributed, real-valued random variables.
Note that we do not consider a more general probability space here, but involve directly
the finite noise assumption as done in [70]. These finitely many random variables can also
originate from a truncated Karhunen-Loève expansion [106, Thm. 11.4] of some random field.
Then they are only uncorrelated, and independence has to be assumed or shown addition-
ally; for example, it follows from uncorrelatedness if they are Gaussian. They will act as
uncertain parameters in the systems we consider. For each parameter ξi (i ∈ [m]) we have
a corresponding sample space Ξi ⊂ R equipped with the Borel σ-algebra and a probability
measure Pi. Due to the independence of the random variables, the random vector ξ gives rise
to the product measure P :=

⊗m
i=1 Pi on Ξ :=×m

i=1 Ξi, cf. Example 2.9. We define the mean
as ξ̄ :=

∫
Ξ ξ dP. For a function υυυ : Ξ→ R, the expectation is defined by E[υυυ] :=

∫
Ξ υυυ dP.

Now let Y and U be Hilbert spaces of deterministic functions and denote by Y ∗ the dual
space of Y . We consider parametrized, nonlinear PDEs of the form

A(ξ)y(ξ) +N(y(ξ), ξ) = B(ξ)u+ b(ξ) (3.1)

with strongly measurable functions A : Γ → L(Y, Y ∗), N : Y × Ξ → Y ∗, B : Ξ → L(U, Y ∗)
and b : Ξ → Y ∗, cf. [70]. Moreover, y(ξ) ∈ Y is the parameter-dependent state and u ∈ U
the deterministic control. Writing

E(y, u, ξ) := A(ξ)y +N(y, ξ)−B(ξ)u− b(ξ)

we have a state equation of the form (1.1). We want to control the system prior to the
observation of the parameters, only knowing their distribution. Typically, one wants to
minimize an objective function depending on the state and the control, like the squared
deviation J1(y(ξ), u, ξ) = 1

2 ||Q(ξ)y(ξ) − q̂(ξ)||2H of the state from a desired state q̂(ξ) ∈ H,
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3. A Class of Optimal Control Problems under Uncertainty

skipping regularization of the control here, whereH is a Hilbert space and Q : Ξ→ L(Y,H) is
strongly measurable. This quantity is a random variable. Therefore, we have to incorporate
a risk measure into the objective function to handle the uncertainty in the system. This risk
measure can be the expectation or the conditional value-at-risk (CVaR) for example.
In [69, 70] the authors view all parameter-dependent quantities in (3.1) as Banach space-

valued random variables and formulate the problem in a suitable Bochner space. The state
is a function y : Ξ → Y , which is required to have finite variance, i. e., to be contained in
the Hilbert space L2

P(Ξ;Y ). They assume the continuous dependence of the solution y on
the parameters ξ to be able to use a stochastic collocation approach and to approximate
stochastic integrals with sparse grids. In contrast to that we formulate (3.1) in the Bochner
space LpP(Ξ;Y ) and apply a stochastic Galerkin discretization later, where p ∈ [2,∞) has to
be chosen appropriately, and with the identification y(x, ξ) = y(ξ)(x) as described in Section
2.2. The state space is Y := LpP(Ξ;Y ) and the image space is identified with Y ∗ = Lp

∗

P (Ξ;Y ∗)
with p∗ := p

p−1 ∈ (1, 2]. Then, for some b ∈ Y ∗, b(·, ξ) belongs to Y ∗ and b is applied to
y ∈ Y via 〈b,y〉Y ∗,Y =

∫
Ξ 〈b(·, ξ),y(·, ξ)〉Y ∗,Y dP. Problem (3.1) is formulated equivalently

as
Ay +N(y) = Bu+ b (3.2)

with y ∈ Y , A ∈ L(Y ,Y ∗), N : Y → Y ∗, B ∈ L(U,Y ∗) and b ∈ Y ∗:

(Ay)(·, ξ) := A(ξ)y(ξ), (N(y))(·, ξ) := N(y(ξ), ξ),

(Bu)(·, ξ) := B(ξ)u, b(·, ξ) := b(ξ).

The space of the desired state q̂ is H := L2
P(Ξ, H), q̂(·, ξ) = q̂(ξ), and the operator Q ∈

L(Y ,H) is the tensor version of Q, i. e., (Qy)(·, ξ) := Q(ξ)y(ξ).
Throughout, we assume that q̂ ∈ L2

P(Ξ;H) holds. If the operators A, B, the functional b
given after (3.1), and the operator Q are well-defined and in particular regular enough w. r. t.
the parameters, meaning that they are q-integrable with a large enough q ∈ [1,∞) or even
essentially bounded, the tensor operators A, B, Q, and the functional b are also well-defined:

Proposition 3.1. Let Y and Z be Banach spaces and let Ξ ⊂ Rm be measurable and equipped
with the probability measure P. Let pY , pZ ∈ [1,∞], pY ≥ pZ be given and define Y :=
LpYP (Ξ;Y ) and Z := LpZP (Ξ;Z)). Assume that A ∈ LrAP (Ξ,L(Y, Z)) holds for rA ∈ [1,∞] such
that 1

rA
+ 1

pY
= 1

pZ
, i. e.,

∫
Ξ ‖A(ξ)‖rAL(Y,Z) dP ≤ CrA < ∞ for rA < ∞ and ‖A(ξ)‖L(Y,Z) ≤ C

for P-a. e. ξ ∈ Ξ in the case rA =∞.
Then, the operator A defined by (Ay)(·, ξ) = A(ξ)y(ξ) for all ξ ∈ Ξ belongs to L(Y ,Z) and
in particular it holds that ‖Ay‖Z ≤ C‖y‖Y for all y ∈ Y .

Proof. This result is obtained by some standard estimates. In the case qZ <∞ we have

‖Ay‖pZZ =

∫
Ξ
‖(Ay)(·, ξ)‖pZZ dP =

∫
Ξ
‖A(ξ)y(ξ)‖pZZ dP

Hölder’s inequality
≤

∥∥∥‖A(·)‖pZL(Y,Z)

∥∥∥
L
rA/pZ
P (Ξ)

·
∥∥∥‖y(·)‖pZY

∥∥∥
L
pY /pZ
P (Ξ)

≤ CpZ‖y‖pZY
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3.2. A Class of Semilinear, Elliptic PDEs with Uncertain Coefficients

using pZ
rA

+ pZ
pY

= 1. In the case pZ =∞, it follows that pY =∞ and rA =∞. Thus,

‖Ay‖Z = ess sup
ξ∈Ξ

‖(Ay)(·, ξ)‖Z = ess sup
ξ∈Ξ

‖A(ξ)y(ξ)‖Z

≤
(
ess sup
ξ∈Ξ

‖A(ξ)‖L(Y,Z)

) (
ess sup
ξ∈Ξ

‖y(ξ)‖Y
)
≤ C‖y‖Y .

This proposition can be applied to the operator A from (3.2) by setting Z = Y ∗, pY =
p ∈ [2,∞), and pZ = p∗ = p

p−1 ∈ (1, 2]. We then need rA = p
p−2 to obtain a bounded linear

operator A ∈ L(Y ,Y ∗).

Remark 3.2.

• Note that in the case p = 2 we require the uniform boundedness of the operators A(ξ)
due to rA =∞; 2-integrability w. r. t. the parameters would not be sufficient.

• The same proposition applies in a similar manner to the operators B and Q and the
functional b. The operator Q, for example, must belong to L2p/(p−2)

P (Ξ;L(Y,H)) for
the operator Q ∈ L(Y ,H)) to be well-defined since we have pY = p ∈ [2,∞), pH = 2.

• For the nonlinear operator N , a similar estimation cannot be done; therefore it will be
part of the assumptions that it is well-defined.

Using the expectation as risk measure, we obtain the regularized optimal control problem

min
y∈Y ,u∈U

J(y, u) := 1
2 ||Qy − q̂||

2
H + γ

2 ||u||
2
U s. t. E(y, u) = 0, u ∈ Uad (3.3)

with the definition E(y, u) := Ay +N(y)−Bu− b and a nonempty, closed and convex set
of admissible controls Uad ⊂ U . Note that the H-inner product is the expectation of the
H-inner product: (q̂,v)H =

∫
Ξ (q̂(·, ξ),v(·, ξ))H dP. Hence, the objective function can be

written as the expectation of some deterministic objective function:

J(y, u) =

∫
Ξ
J [ξ](y(ξ), u) dP with J [ξ](y, u) := 1

2‖Q(ξ)y − q̂(ξ)‖2H + γ
2‖u‖

2
U . (3.4)

Having
J1(y, u, ξ) := 1

2‖Q(ξ)y − q̂(ξ)‖2H , J2(u) := γ
2‖u‖

2
U , (3.5)

and R ≡ E this fits into the general setting (1.2).

3.2. A Class of Semilinear, Elliptic PDEs with Uncertain
Coefficients

In this section, we concretize the model problem and discuss a class of parameter-dependent,
elliptic PDEs. For this purpose let Ω ⊂ Rn (n ∈ {2, 3}) be an open, bounded domain with
Lipschitz boundary ∂Ω. We choose Y := H1

0 (Ω) as state space, i. e., the Sobolev space of
weakly differentiable L2(Ω) functions with L2(Ω) derivatives and zero boundary data in the
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3. A Class of Optimal Control Problems under Uncertainty

sense of traces. In the light of Poincaré’s inequality [60, Thm. 1.13], we equip this space
with the inner product (v, ṽ)H1

0 (Ω) =
∫

Ω∇v · ∇ṽ dx, which is not the standard H1(Ω)-inner
product given by (v, ṽ)H1(Ω) =

∫
Ω v ṽ +∇v · ∇ṽ dx. U := L2(Ωu) shall be the control space,

where Ωu can be a measurable subset of Ω for example or—for finite-dimensional controls—
Ωu = [nu] for some nu ∈ N. The control will act as distributed control on the system via a
linear, bounded operator D ∈ L(L2(Ωu), L2(Ω)). Boundary control with, e. g., Ωu being a
subset of ∂Ω can also be handled by the algorithm presented later, but is not discussed here.
The parameter-dependence of the PDE is due to an uncertain, space-dependent function
κ ∈ L∞(Ω× Ξ) and due to a parameter-dependent right-hand side offset f(ξ) ∈ L2(Ω). The
considered semilinear, elliptic PDE is

−div (κ(·, ξ)∇y) + ϕ(y) = Du+ f(ξ) (in Ω), y = 0 (on ∂Ω), (3.6)

where ϕ : R→ R is possibly nonlinear.

Assumption 3.3. We require the following additional properties of the problem data:

• The function κ ∈ L∞(Ω × Ξ) is uniformly bounded and positive, i. e., there exist
constants κ, κ ∈ (0,∞), κ ≤ κ, such that κ ≤ κ(x, ξ) ≤ κ holds for almost every x ∈ Ω
and ξ ∈ Ξ, cf. [44].

• The function ϕ : R→ R is twice continuously differentiable and monotonically increas-
ing. Its second derivative fulfills the growth condition

|ϕ′′(t)| ≤ a′′ϕ′′ + c′′ϕ′′ |t|p−3 (3.7)

for all t ∈ R with constants a′′ϕ′′ , c
′′
ϕ′′ ≥ 0 and the exponent p ∈ (3,∞) if n = 2 and

p ∈ (3, 6] if n = 3.

• It holds that f ∈ LrfP (Ξ;L2(Ω)) for some rf ∈ [p,∞] with p from (3.7).

• D : U → L2(Ω) is linear and bounded.

Remark 3.4.

• The growth condition (3.7) implies similar conditions for the function ϕ itself and its
first derivative by Lemma A.10 with the exponents p− 1 and p− 2, respectively.

• An additional dependence of ϕ on the parameters ξ and the space variable x could be
included easily (see Section A.4), but is skipped here to keep the presentation compact.

• The assumption on ϕ is used to show that the induced Nemytskii operator is well-
defined and twice continuously differentiable.

The weak formulation of (3.6) is

(κ(·, ξ)∇y,∇v)L2(Ω)n +

∫
Ω
ϕ(y)v dx = (Du, v)L2(Ω) + (f(ξ), v)L2(Ω) ∀ v ∈ Y. (3.8)
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3.2. A Class of Semilinear, Elliptic PDEs with Uncertain Coefficients

Proposition 3.5. Under Assumption 3.3, the state equation (3.8) has a unique solution
y(ξ) = S[ξ](u) ∈ Y ∩ C(Ω). It satisfies the estimate

‖S[ξ](u)‖H1
0 (Ω) ≤

CΩ
κ ‖Du+ f(ξ)− ϕ(0)‖L2(Ω), (3.9)

where CΩ is the constant from Poincaré’s inequality depending only on Ω.

Proof. Existence is shown in, e. g., [60, Thm. 1.25, Remark 1.12]. The Sobolev embedding
H1(Ω) ↪→ Lp(Ω) implies that the nonlinear part of the equation is well-defined. The given
a priori estimate can be proven by inserting v = y into (3.8) and using (ϕ(y) − ϕ(0))y ≥ 0
because of the monotonicity of ϕ.

The map S[ξ] : U → Y is the parametrized control-to-state mapping. We want to empha-
size that the uncertain parameters enter only in the realization f(ξ) of the right-hand side
in the estimate (3.9).
With Y ∗ = H1

0 (Ω)∗ =: H−1(Ω) and the definitions

A(ξ) : Y → Y ∗, 〈A(ξ)y, v〉Y ∗,Y = (κ(·, ξ)∇y,∇v)L2(Ω)n ,

N : Y × Ξ→ Y ∗, 〈N(y, ξ), v〉Y ∗,Y =

∫
Ω
ϕ(y)v dx,

B(ξ) : U → Y ∗, 〈B(ξ)u, v〉Y ∗,Y = (Du, v)L2(Ω),

b(ξ) ∈ Y ∗, 〈b(ξ), v〉Y ∗,Y = (f(ξ), v)L2(Ω)

(3.10)

for every v ∈ H1
0 (Ω), (3.8) can be written in the form of (3.1). Parameter dependence of the

operator B can be handled, but we consider only this fixed form for simplicity reasons.
Now, writing y(·, ξ) = y(ξ)(·), we use the state space Y = LpP(Ξ;H1

0 (Ω)). We require p to
be chosen according to Assumption 3.3. Especially, if ϕ is a truly nonlinear function, p > 3
is required to get a twice continuously differentiable Nemytskii operator. In the linear case
ϕ ≡ 0, p = 2—as also allowed in Section 3.1—is sufficient and a better choice since Hilbert
space theory can be applied then, see, e. g., [46]. We write (3.10) as an equation in Y , in a
weak sense also w. r. t. the parameters: Ay +N(y) = Bu+ b as in (3.2), where

A : Y → Y ∗, 〈Ay,v〉Y ∗,Y =

∫
Ξ

(κ(·, ξ)∇xy(·, ξ),∇xv(·, ξ))L2(Ω)n dP,

N : Y → Y ∗, 〈N(y),v〉Y ∗,Y =

∫
Ξ

∫
Ω
ϕ(y(x, ξ))v(x, ξ) dx dP

B : U → Y ∗, 〈Bu,v〉Y ∗,Y =

∫
Ξ

(Du,v(·, ξ))L2(Ω) dP

b ∈ Y ∗, 〈b,v〉Y ∗,Y =

∫
Ξ

(f(ξ),v(·, ξ))L2(Ω) dP ∀ v ∈ Y .

(3.11)

This equation has a unique solution in Y , which we prove using the theory of monotone
operators and pointwise considerations. First note that the operators in (3.11) are well-
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3. A Class of Optimal Control Problems under Uncertainty

defined. For the linear operator A this follows from Proposition 3.1, because A belongs to
L∞P (Ξ;L(Y, Y ∗)) ⊂ Lp/(p−2)

P (Ξ;L(Y, Y ∗)):

‖A(ξ)‖L(Y,Y ∗) = sup
y,v∈Y,‖y‖Y =‖v‖Y =1

(κ(·, ξ)∇y,∇v)L2(Ω)n ≤ ‖κ(·, ξ)‖L∞(Ω) ≤ κ

holds for a. e. ξ ∈ Ξ by, e. g., Hölder’s inequality and the Cauchy-Schwarz inequality on Rn.
This gives that

∫
Ξ ‖A(ξ)‖p/(p−2)

L(Y,Y ∗) dP ≤ κp/(p−2) for any p ∈ [2,∞) and especially p ∈ (3,∞)

by Proposition A.2 and thus that A is bounded: ‖A‖L(Y ,Y ∗) ≤ κ. Similarly, we compute
bounds for the norms

‖B(ξ)‖L(U,Y ∗) = sup
u∈U,v∈Y,‖u‖U=1,‖v‖Y =1

(Du, v)L2(Ω) ≤ ‖D‖L(U,L2(Ω))

resulting in ‖B‖L(U,Y ∗) ≤ ‖D‖L(U,L2(Ω)), and

‖b(ξ)‖Y ∗ = sup
v∈Y,‖v‖Y =1

(f(ξ), v)L2(Ω) ≤ ‖f(ξ)‖L2(Ω)

implying ‖b‖Y ∗ ≤ ‖f‖Lp∗P (Ξ;L2(Ω))
as in Proposition 3.1. As long as rf ≥ p∗ holds, which

can be deduced from Assumption 3.3, this is bounded by Proposition A.2. Therefore, all
appearing linear operators are bounded and also twice continuously differentiable.

Proposition 3.6. Under the conditions on ϕ and p stated in Assumption 3.3, the nonlinear
superposition operator N : Y → Y ∗ as defined in (3.11) is well-defined, monotone and twice
continuously Fréchet-differentiable. The derivatives are given by

〈N ′(y)v, ṽ〉Y ∗,Y =

∫
Ξ

∫
Ω
ϕ′(y(x, ξ))v(x, ξ)ṽ(x, ξ) dx dP,

〈[N ′′(y)v]w, ṽ〉Y ∗,Y =

∫
Ξ

∫
Ω
ϕ′′(y(x, ξ))v(x, ξ)w(x, ξ)ṽ(x, ξ) dx dP.

Proof. This statement is proven in Section A.4. Note that Lemma A.10 shows that Assump-
tion A.11 is satisfied for the function ϕ.

For a discussion of the more concrete case ϕ(t) = t3 and p = 4 see Section A.5 in the
appendix.

Unique Solvability of the State Equation

Now we show that the equation

Ñ(y) := Ay +N(y) = b̃, y ∈ Y (3.12)

has a unique solution y ∈ Y for all b̃ ∈ Y ∗ with b̃ = Bu + b, where u ∈ U is given. For
this purpose we use the following theorem, which is obtained by combining Theorem 26.A,
Definition 25.2, and Definition 26.1 in [117]:
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Theorem 3.7 (Excerpt from the Minty-Browder theorem about monotone operators). Let
Y be a real, reflexive Banach space. Let Ñ : Y → Y ∗ be

• strictly monotone, i. e., 〈Ñ(y)− Ñ(ỹ), y − ỹ〉Y ∗,Y > 0 holds for all y 6= ỹ ∈ Y ,

• coercive, i. e., lim‖y‖Y→∞
〈Ñ(y),y〉Y ∗,Y
‖y‖Y =∞, and

• hemicontinuous, i. e., the real function t 7→ 〈Ñ(y + tỹ), v〉Y ∗,Y is continuous on [0, 1]
for all y, ỹ, v ∈ Y .

Then, the equation
Ñ(y) = b, y ∈ Y

has a unique solution y ∈ Y for all right-hand sides b ∈ Y ∗. The inverse operator Ñ−1 :
Y ∗ → Y exists and is strictly monotone, i. e., 〈Ñ−1(b) − Ñ−1(b̃), b − b̃〉Y,Y ∗ > 0 for all
b 6= b̃ ∈ Y ∗ and bounded. If Ñ is additionally

• strongly monotone, i. e., there exists c > 0 such that 〈Ñ(y) − Ñ(ỹ), y − ỹ〉Y ∗,Y ≥
c‖y − ỹ‖2Y holds for all y, ỹ ∈ Y ,

the inverse operator Ñ−1 is Lipschitz continuous with Lipschitz constant c−1.

Remark 3.8. Note that a strongly monotone operator Ñ is always

• monotone, i. e., 〈Ñ(y)− Ñ(ỹ), y − ỹ〉Y ∗,Y ≥ 0 for all y, ỹ ∈ Y ,

• coercive, and

• strictly monotone.

Corollary 3.9. Under Assumption 3.3, the state equation (3.8) has a unique solution y(ξ) =
S[ξ](u) ∈ Y for almost every ξ ∈ Ξ. The parametrized control-to-state mapping S[ξ] : U → Y

is Lipschitz continuous with constant
CΩ‖D‖L(U,L2(Ω))

κ .

Proof. The operator A(ξ) defined in (3.10) is strongly monotone on Y = H1
0 (Ω) with constant

κ for a. e. ξ ∈ Ξ. The nonlinear operator N is well-defined by the growth condition (3.7) and
the Sobolev embedding H1

0 (Ω) ↪→ Lp(Ω), which implies ϕ(y) ∈ Lp/(p−1)(Ω). It is monotone
due to (ϕ(y(x))− ϕ(ỹ(x)))(y(x)− ỹ(x)) ≥ 0 for all x ∈ Ω and arbitrary y, ỹ ∈ Y because of
the monotonicity of ϕ. Thus, the operator Ñ(ξ) ≡ A(ξ) +N : Y → Y ∗ is strongly monotone
with constant κ. It is continuous (and therefore hemicontinuous) because A(ξ) is bounded
and N is continuous as discussed in Section A.3. Hence, Theorem 3.7 can be applied to
deduce the statements.

Remark 3.10. Proposition 3.5 provides the same statement as Corollary 3.9 with the addi-
tional fact that the solution y(ξ) is continuous on Ω.

When trying to verify the prerequisites from Theorem 3.7 for (3.12) it turns out that strict
monotonicity and hemicontinuity of Ñ on Y = LpP(Ξ;H1

0 (Ω)) can be shown quite simply.
Hemicontinuity follows from well-definedness and continuity, and strict monotonicity follows
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3. A Class of Optimal Control Problems under Uncertainty

from the strict monotonicity of A and the monotonicity of N . Strict monotonicity of the
operator A is equivalent to 〈Ay,y〉Y ∗,Y > 0 for all y ∈ Y \ {0}. This is true due to

〈Ay,y〉Y ∗,Y =

∫
Ξ

(κ(·, ξ)∇xy(·, ξ),∇xy(·, ξ))L2(Ω)n dP

≥ κ
∫

Ξ
‖y(·, ξ)‖2H1

0 (Ω) dP ≥ 0.

The last term is 0 if and only if ‖y(·, ξ)‖H1
0 (Ω) = 0 for almost every ξ ∈ Ξ such that for

y 6= 0 we get strict positivity. But the operator Ñ is not coercive on Y . This issue can be
overcome by considering a larger space endowed with a weaker norm, see Section A.5 for a
concrete choice of such space in the case ϕ(t) = t3.
In the general case, we show existence and uniqueness of a solution by constructing it

pointwise for a. e. ξ ∈ Ξ.

Definition 3.11 (Control-to-state mapping). Let S : U → Y defined by S(u)(x, ξ) :=
S[ξ](u)(x) for almost every ξ ∈ Ξ, where S[ξ](u) is the weak solution of (3.8), i. e.,

〈A(ξ)S[ξ](u) +N(S[ξ](u), ξ)− b̃(ξ), v〉Y ∗,Y = 0 ∀ v ∈ Y (3.13)

with b̃(ξ) := B(ξ)u+ b(ξ).

We show that S is well-defined. Measurability of the weak solution S(u) w. r. t. ξ can be
shown using the following theorem:

Theorem 3.12. Let A : Ξ→ L(Y, Y ∗) be Bochner measurable and such that A(ξ) is strongly
monotone with constant κ > 0 (independent of ξ) for almost every ξ ∈ Ξ. Let b : Ξ→ Y ∗ also
be Bochner measurable and let N : Y → Y ∗ be a deterministic, monotone and continuous
operator.
Then, the function ξ 7→ y(ξ), which is defined almost everywhere on Ξ, where y(ξ) is the
unique solution of the equation A(ξ)y +N(y) = b(ξ), is also Bochner measurable.

Proof. W. l. o. g. we assume N(0) = 0. If this is not the case, we can subtract the value N(0)
from both sides of the equation without changing the required properties of the nonlinearity
and the right-hand side. For the rest of the proof, we consider only random vectors ξ ∈
Ξκ := {ξ ∈ Ξ : A(ξ) is strongly monotone with constant κ}. By assumption, the set Ξκ ⊂ Ξ
has measure 1. Observe that the equation A(ξ)y + N(y) = b(ξ) has a unique solution y(ξ)
fulfilling ‖y(ξ)‖Y ≤ 1

κ‖b(ξ)‖Y ∗ by Theorem 3.7 in analogy to Corollary 3.9 for every ξ ∈ Ξκ.
Due to the Bochner measurability, there exist sequences (An)n∈N, An : Ξ → L(Y, Y ∗)

and (bn)n∈N, bn : Ξ → Y ∗ of simple functions with limn→∞ ‖A(ξ)−An(ξ)‖L(Y,Y ∗) = 0
for every ξ ∈ ΞA ⊂ Ξ and limn→∞ ‖b(ξ)− bn(ξ)‖Y ∗ = 0 for every ξ ∈ Ξb ⊂ Ξ, where
P(ΞA) = 1 = P(Ξb). Overall, we obtain

lim
n→∞

‖A(ξ)−An(ξ)‖L(Y,Y ∗) + ‖b(ξ)− bn(ξ)‖Y ∗ = 0

for all ξ ∈ Ξκ ∩ ΞA ∩ Ξb, which is a set of measure 1. Due to convergence we can assume
w. l. o. g. that also An(ξ) is strongly monotone with constant κ

2 for all ξ ∈ Ξκ ∩ ΞA ∩ Ξb and
all n ∈ N by possibly restricting to a subsequence.
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Now define the sequence (yn)n∈N, yn : Ξ → Y , where yn(ξ) is the unique solution of the
equation An(ξ)y+N(y) = bn(ξ) for ξ ∈ Ξκ∩ΞA∩Ξb and yn(ξ) = 0 for ξ ∈ Ξ\(Ξκ∩ΞA∩Ξb).
The elements of this sequence fulfill ‖yn(ξ)‖Y ≤ 2

κ‖b(ξ)‖Y ∗ for all ξ ∈ Ξ. They are also simple
functions. If An takes NA <∞ many values on L(Y, Y ∗) and bn takes Nb <∞ many values
on Y ∗, then yn(ξ) admits at most NANb + 1 <∞ many values.
Now we show that indeed limn→∞ ‖yn(ξ)− y(ξ)‖Y = 0 holds for almost every ξ ∈ Ξ,

namely for all ξ ∈ Ξκ ∩ ΞA ∩ Ξb. By strong monotonicity of A(ξ) and monotonicity of N we
get, skipping the argument ξ:

0 ≤ κ‖y − yn‖2Y
≤ 〈A(y − yn), y − yn〉Y ∗,Y + 〈N(y)−N(yn), y − yn〉Y ∗,Y
= 〈Ay +N(y), y − yn〉Y ∗,Y − 〈Ayn, y − yn〉Y ∗,Y − 〈N(yn), y − yn〉Y ∗,Y
= 〈b, y − yn〉Y ∗,Y + 〈(An −A)yn, y − yn〉Y ∗,Y − 〈bn, y − yn〉Y ∗,Y
= 〈b− bn + (An −A)yn, y − yn〉Y ∗,Y
≤
(
‖b− bn‖Y ∗ + 2

κ‖An −A‖L(Y,Y ∗)‖b‖Y ∗
)
‖y − yn‖Y .

This results in

‖y(ξ)− yn(ξ)‖Y ≤ 1
κ‖b(ξ)− bn(ξ)‖Y ∗ + 2

κ2 ‖An(ξ)−A(ξ)‖L(Y,Y ∗)‖b(ξ)‖Y ∗

proving the limit limn→∞ ‖yn(ξ)− y(ξ)‖Y = 0 for all ξ ∈ Ξκ ∩ ΞA ∩ Ξb. Thus, the function
y : Ξ→ Y is Bochner measurable.

Remark 3.13. The proof of Theorem 3.12 shows that the solution y of the equation Ay +
N(y) = b depends continuously on the operator A and the right hand side b.

Corollary 3.14. The function ξ 7→ S[ξ](u) ∈ Y , where the parametrized control-to-state
mapping S[ξ] is implicitly defined by (3.13), is measurable.

Proof. Obviously, all prerequisites from Theorem 3.12 are fulfilled.

Corollary 3.15. Under Assumption 3.3, the control-to-state mapping from Definition 3.11 is
well-defined. It holds that S(u) ∈ Lrf (Ξ;Y ), i. e., S(u) inherits its ξ-regularity (integrability
or essential boundedness) from f(·).

Proof. By (3.9) we have the estimate

‖S(u)(·, ξ)‖H1
0 (D) ≤

CΩ

κ
‖Du+ f(ξ)− ϕ(0)‖L2(Ω) for a. e. ξ ∈ Ξ.

Since f ∈ L
rf
P (Ξ;L2(Ω)), this shows, together with the Bochner measurability (Corollary

3.14), that S(u) ∈ LrfP (Ξ;Y ) ⊂ LpP(Ξ;Y ) = Y . The inclusion of Bochner spaces holds true
by Proposition A.2 if rf ≥ p.

Note that this regularity can be reduced if the function ξ 7→ 1
κ(ξ) with a parameter-

dependent coercivity constant κ(ξ) > 0 for the operator A(ξ) does not belong to L∞P (Ξ). We
do not consider this case because we need the uniform coercivity for error estimation later.
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Proposition 3.16. Under Assumption 3.3, the function y = S(u) (Definition 3.11) is the
unique solution of the equation Ay +N(y) = Bu+ b as defined in (3.11) and (3.12).

Proof. The equation can be written as∫
Ξ
〈A(ξ)y(·, ξ) +N(y(·, ξ), ξ)− b̃(ξ),v(·, ξ)〉Y ∗,Y dP = 0 ∀ v ∈ Y .

The integrand vanishes for almost every ξ ∈ Ξ if y = S(u) is inserted. Hence, S(u) ∈
LpP(Ξ;H1

0 (Ω)) (Corollary 3.15) is a solution of the equation.
Uniqueness of the solution in Y can be proven as follows: Let y, ỹ ∈ Y both solve (3.12).

Then, subtracting the state equation for ỹ from the one with y and testing with y− ỹ yields

0 = 〈A(y − ỹ),y − ỹ〉Y ∗,Y + 〈N(y)−N(ỹ),y − ỹ〉Y ∗,Y ≥ κ‖y − ỹ‖2L2
P(Ξ;H1

0 (Ω)) ≥ 0,

giving y = ỹ almost everywhere.

Example 3.17. To be more concrete, let us consider a specific form of the coefficient function
κ. We define a mean function κ0(x) and some functions ηi(x) (i ∈ [m]) describing the amount
of influence of the parameter ξi over the domain Ω. We set

κ(x, ξ) := κ0(x)
(

1 +
m∑
i=1

ξiηi(x)
)
.

Defining κi(x) := κ0(x)ηi(x) we have κ(x, ξ) = κ0(x) +
∑n

i=1 ξiκi(x), which is the form for
random fields originating from a truncated Karhunen-Loève expansion. If we have κ0, ηi ∈
L∞(Ω) for all i ∈ [m], κ0 uniformly positive (0 < κ0 ≤ κ0(x) ≤ κ0 < ∞), bounded random
variables, i. e., ∃C > 0 s. t. P({ξ ∈ Ξ : |ξ| ≤ C}) = 1, and ηi also suitably bounded (e. g.,
|ηi(x)| ≤ ηi <

1
Cm for a. e. x ∈ Ω and all i ∈ [m]), then the prerequisites on κ from above

are fulfilled and we get an L2
P(Ξ;H1

0 (Ω))-elliptic operator A.

With κ having the specific form from Example 3.17, the operator A has a useful structure:

Lemma 3.18. The operator A defined in (3.11) with κ(x, ξ) = κ0(x)(1 +
∑m

i=1ξiηi(x)) as in
Example 3.17 can be written as

A = A0 ⊗
( m⊗
j=1

I
)

+

m∑
i=1

Ai ⊗
( m⊗
j=1

S̃ij

)
with the Kronecker product of operators as in Section 2.2, identifying Y ∗ = Y ∗ ⊗ Lp

∗

P1
(Ξ1)⊗

· · ·⊗Lp
∗

Pm(Ξm), and with A0, Ai ∈ L(Y, Y ∗) and S̃ij ∈ L(LpPj (Ξj), L
p∗

Pj (Ξj)) (i, j ∈ [m]) defined
by

〈A0y, v〉Y ∗,Y := (κ0∇y,∇v)L2(Ω)n , 〈Aiy, v〉Y ∗,Y := (ηi κ0∇y,∇v)L2(Ω)n ,

S̃ij = I for i, j ∈ [m], i 6= j, (S̃jjυj)(ξj) := ξj · υj(ξj) for j ∈ [m].
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Proof. At first, we split up the parametrized operator A(ξ) using the definitions of κ(·, ξ),
A0 and Ai:

〈A(ξ)y, v〉Y ∗,Y = (κ(·, ξ)∇y,∇v)L2(Ω)n

= (κ0∇y,∇v)L2(Ω)n +
m∑
i=1

ξi(κ0ηi∇y,∇v)L2(Ω)n

=
〈(
A0 +

m∑
i=1

ξiAi
)
y, v
〉
Y ∗,Y

Next we consider an elementary tensor y = y ⊗ υ1 ⊗ . . . ⊗ υm ∈ Y , i. e., y(x, ξ) = y(x) ·∏m
j=1 υj(ξj), and compute for fixed ξ:

A(ξ)y(·, ξ) =
(
A0 +

m∑
i=1

ξiAi

)(
y(·) ·

m∏
j=1

υj(ξj)
)

=

= A0y(·) ·
m∏
j=1

υj(ξj) +

m∑
i=1

Aiy(·) · ξi ·
m∏
j=1

υj(ξj) =

=
(

(A0y)⊗
( m⊗
j=1

υj
))

(·, ξ) +
m∑
i=1

(
(Aiy)⊗

( m⊗
j=1

S̃ijυj
))

(·, ξ).

Thus, we can write the operatorA asA = A0⊗
(⊗m

j=1 I
)

+
∑m

i=1Ai ⊗
(⊗m

j=1 S̃ij

)
. Because

of linearity and continuity this extends to algebraic and topological tensors y as seen at the
end of Section 2.2. The operator A is continuous from LpP(Ξ;Y ) to Lp

∗

P (Ξ;Y ∗) as already
noted.

The structure of the operator A provided in Lemma 3.18 uses the identification of the
state space Y with a tensor product of Banach spaces and is useful because it makes the
discrete version of the operator A easily applicable to tensors in low-rank formats that
implement i-mode matrix multiplication and componentwise sums. Formally, we can write
Ay = A0 ◦1 y +

∑m
i=1Ai ◦1 S̃ii ◦i+1 y using the application of a linear operator to a certain

mode of a tensor, which we have defined only for finite dimensional tensors so that this will
make more sense in the discretized setting (Example 6.5). In our work [46] it was already
demonstrated that also more difficult operators as resulting from domain parametrizations
can be efficiently handled with low-rank tensors. In this thesis we present an adaptive
approach and its convergence theory and base our numerical tests only on this example
since reliable a posteriori error estimates, which we use for the adaptive solution of the state
equation, can be derived in this setting, see Chapter 7.

3.3. Existence of a Solution to the Optimal Control Problem

A natural question is whether the optimal control problem (3.3) with the state equation
from Section 3.2 admits a solution. Typically, continuity under weak convergence is used in
existence proofs. In nonlinear cases, this is often done by means of compact embeddings,
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which yield strong convergence (w. r. t. a weaker norm) of weakly converging sequences.
In the Bochner space setting considered here, only the continuous embedding Lp ↪→ Lq is
available for p ≥ q (see Proposition A.2), but this embedding is not compact. Therefore,
pointwise considerations for a. e. ξ ∈ Ξ are used to prove the following existence theorem.

Theorem 3.19. Let Assumption 3.3 hold with p ∈ (3,∞) in the case n = 2 and p ∈ (3, 6)
in the case n = 3. Furthermore, let γ > 0, q̂ ∈ L2

P(Ξ;H), Q ∈ L
rQ
P (Ξ;L(Y,H)) with

1
rQ

+ 1
rf

= 1
2 , and let Q(ξ) : Y → H be a compact operator for a. e. ξ.

Then, Problem (3.3) with the state equation discussed in Section 3.2 has a solution.

Proof. The statement is proven analogously to [111, Lem. 9.4]. Let (yk, uk)k∈N be a feasible,
infimizing sequence, where yk = S(uk) is uniquely given due to Proposition 3.16. Because of
the regularization term in the objective function with γ > 0 and the non-negative tracking
term, the sequence (uk) is bounded in L2(Ωu) = U . By (3.9), we have for a. e. ξ ∈ Ξ that
the corresponding, pointwise states fulfill

‖yk(ξ)‖H1
0 (Ω) ≤

CΩ
κ

(
‖D‖L(U,L2(Ω)) ‖uk‖U + ‖f(ξ)− ϕ(0)‖L2(Ω)

)
. (3.14)

Note that for a. e. ξ ∈ Ξ the state equation has a unique solution for arbitrary u by Assump-
tion 3.3. By boundedness, and since Uad is a convex, closed subset of a reflexive Banach
space, we can extract subsequences for a. e. ξ ∈ Ξ, again denoted by (uk) and (yk(ξ)),
which converge weakly to some limits u ∈ Uad and y(ξ) ∈ H1

0 (Ω). The compact embedding
H1

0 (Ω) ↪→↪→ Lp(Ω) implies that the sequences (yk(ξ)) converge strongly in Lp(Ω) to y(ξ)
for a. e. ξ ∈ Ξ. The growth condition and the continuity of ϕ as well as the continuous
embedding Lp∗(Ω) ↪→ H−1(Ω) yield that ϕ(yk(ξ))→ ϕ(y(ξ)) strongly in H−1(Ω). It follows
that

A(ξ)yk(ξ) + ϕ(yk(ξ)) ⇀ A(ξ)y(ξ) + ϕ(y(ξ)) in H−1(Ω),

Duk + f(ξ) ⇀ Du+ f(ξ) in L2(Ω) ⊂ H−1(Ω)

so that y(ξ) solves (3.8) for a. e. ξ. Thus, we have that y = S(u) ∈ Lrf (Ξ;Y ) by Corollary
3.15 giving that (y, u) is feasible for (3.3). The regularization term of the objective function
(3.4) is convex and continuous under strong convergence in L2(Ωu), and thus weakly lower
semicontinuous. Furthermore, the tracking term converges: Since yk(ξ) ⇀ y(ξ) in Y and
Q(ξ) maps Y to H compactly, the sequence (Q(ξ)yk(ξ)) converges strongly to Q(ξ)y(ξ) in H
for a. e. ξ. By continuity, ‖Q(ξ)yk(ξ)− q̂(ξ)‖2H → ‖Q(ξ)y(ξ)− q̂(ξ)‖2H for a. e. ξ as k →∞.
Because of the boundedness of ‖uk‖U by some constant Cu > 0 and (3.14), we can bound

‖Q(ξ)yk(ξ)− q̂(ξ)‖2H ≤
(
‖Q(ξ)‖L(Y,H)

CΩ
κ

(
‖D‖L(U,L2(Ω))Cu+‖f(ξ)−ϕ(0)‖L2(Ω)

)
+‖q̂(ξ)‖H

)2

for every k. The ξ-regularities of Q(·), f(·) and q̂(·) are chosen exactly such that the estimate
on the right-hand side is integrable w. r. t. P. Therefore, the dominated convergence theorem
can be applied to conclude∫

Ξ
‖Q(ξ)yk(ξ)− q̂(ξ)‖2H dP −→

∫
Ξ
‖Q(ξ)y(ξ)− q̂(ξ)‖2H dP as k →∞.

It follows from the derived continuity properties of J that (y, u) solves (3.3).
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3.4. Derivatives of the Reduced Objective Function

We will apply an adaptive, inexact, gradient-based, nonlinear optimization method to solve
problems of type (3.3). This algorithm will be formulated in the function space to be able
to apply adaptive solution techniques. Therefore, we need expressions for the derivatives in
function space and make the following assumption:

Assumption 3.20. The state equation (3.2) has a unique weak solution y = S(u) for
every control u ∈ U . The nonlinear operator N : Y → Z is twice continuously Fréchet-
differentiable.

Then we can reduce problem (3.3) to the control and get

min
u∈U

Ĵ(u) := J(S(u), u) s. t. u ∈ Uad. (3.15)

We use the adjoint approach for the computation of the gradient of the reduced objective
function. The formal adjoint equation for the adjoint state z ∈ Y is

Ey(S(u), u)∗z = −Jy(S(u), u)

and more concretely

〈z,Av +N ′(S(u))v〉Y ,Y ∗ = −(QS(u)− q̂,Qv)H ∀ v ∈ Y .

Typically, one would assume that the partial derivative Ey(S(u), u) is boundedly invertible
for every u ∈ U . Then, the adjoint equation has a unique solution T (u), the control-to-state
mapping S : U → Y is continuously F-differentiable and the adjoint representation of the
first derivative of the reduced objective function is given by

Ĵ ′(u) = Eu(S(u), u)∗T (u) + Ju(y(u), u)

and in our concrete case

〈Ĵ ′(u), w〉U∗,U = 〈T (u),−Bw〉Y ,Y ∗ + γ(u,w)U ∀ w ∈ U

or in short notation ∇Ĵ(u) = −B∗T (u) + γu.
We will see that in our case the operator Ey(S(u), u) is not necessarily boundedly invert-

ible. Therefore, we will verify that a pointwisely defined adjoint state is sufficient for the
computation of the gradient and discuss this for the example presented beforehand.

3.4.1. Discussion of the Example

For the example from Section 3.2, Assumption 3.20 is fulfilled. We have proven that the
state equation has a unique weak solution for every control (Proposition 3.16) and that
the nonlinear operator is twice continuously differentiable (Proposition 3.6). Next, we show
that the formal adjoint equation admits a unique weak solution, which is also constructed
pointwise. Again, its regularity w. r. t. ξ is discussed using standard a priori estimates.
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3. A Class of Optimal Control Problems under Uncertainty

First note that the partial derivative Ey(S(u), u) = A + N ′(S(u)) does not necessarily
have a bounded inverse for every u. Assume that N ′(S(u)) ≡ 0, then Ey(S(u), u) = A.
This operator is indeed boundedly invertible from L2

P(Ξ;Y ) to L2
P(Ξ;Y ∗). For p > 2 we

have A(LpP(Ξ;Y )) = LpP(Ξ;Y ∗) ( Lp
∗

P (Ξ;Y ∗). The first equality follows from the fact that
A(ξ) : Y → Y ∗ is boundedly invertible and A(·) ∈ L∞P (Ξ;L(Y, Y ∗)) as well as A(·)−1 ∈
L∞P (Ξ;L(Y ∗, Y )). Hence, A : Y → Y ∗ is not surjective and thus not invertible if p > 2.
In the deterministic case, the standard adjoint approach [60, Sec. 1.6] can be applied since

the operator A(ξ) +Ny(y, ξ) is boundedly invertible for every y ∈ Y and almost every ξ ∈ Ξ.
This follows from Theorem 3.7 using the strong monotonicity of A(ξ) and the monotonicity
of Ny(y, ξ) (Lemma A.4). We can therefore conclude that the pointwise adjoint equation

A(ξ)z(ξ) +Ny(y(ξ), ξ)z(ξ) = −Q(ξ)∗(Q(ξ)y(ξ)− q̂(ξ)) for a. e. ξ ∈ Ξ (3.16)

with y(ξ) = S[ξ](u) has a unique solution z(ξ) = T [ξ](u) for a. e. ξ ∈ Ξ and that the
parametrized control-to-state mapping u 7→ S[ξ](u) is continuously differentiable by the
implicit function theorem. The derivative of the parametric reduced objective function
Ĵ [ξ](u) := J [ξ](S[ξ](u), u), see the definition of J [ξ] in (3.4), is then given by

〈Ĵ [ξ]′(u), w〉U∗,U = 〈T [ξ](u),−B(ξ)w〉Y ∗,Y + γ(u,w)U ∀ w ∈ U. (3.17)

For y ∈ Y , we now consider the formal adjoint equation

Az +N ′(y)z = −Q∗(Qy − q̂), (3.18)

where we use that the operators A and N ′(y) are self-adjoint in our example.

Definition 3.21. Let T : U → L
p/(p−1)
P (Ξ;Y ), T (u)(x, ξ) := T [ξ](u)(x) be defined for almost

every ξ ∈ Ξ, where T [ξ](u) is the weak solution of (3.16), i. e.,

〈A(ξ)T [ξ](u) +Ny(S[ξ](u), ξ)T [ξ](u)− b̃(ξ), v〉Y ∗,Y = 0 ∀ v ∈ Y (3.19)

with b̃(ξ) := −Q(ξ)∗(Q(ξ)S[ξ](u)− q̂(ξ)) and S[ξ] as in Definition 3.11.

Proposition 3.22. Assume that Assumption 3.3 holds true and Q ∈ L2p/(p−2)
P (Ξ;L(Y,H))

as well as q̂ ∈ L2
P(Ξ;H). Then, the operator T from Definition 3.21 is well-defined.

Proof. Since z 7→ Ny(y, ξ)z is monotone (Proposition A.4) and A(ξ) is strongly monotone
with constant κ, (3.19) has a unique solution T [ξ](u) for a. e. ξ ∈ Ξ due to Theorem 3.7.
The estimate

‖T (u)(·, ξ)‖Y ≤ 1
κ‖Q(ξ)∗(Q(ξ)S[ξ](u)− q̂(ξ))‖Y ∗

≤ 1
κ‖Q(ξ)‖L(Y,H)‖Q(ξ)S[ξ](u)− q̂(ξ)‖H

(3.20)

can be derived in analogy to (3.9). Therefore, the adjoint state inherits its regularity w. r. t. ξ
from the ξ-regularity of Q∗(·)(Q(·)S[·](u)− q̂(·)). Since S[·](u) ∈ LpP(Ξ;Y ) by Corollary 3.15,
Hölder’s inequality implies that Q(·)S[·](u) ∈ L2

P(Ξ;H), hence Q(·)∗(Q(·)S[·](u) − q̂(·)) ∈
L
p/(p−1)
P (Ξ;Y ∗).
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3.4. Derivatives of the Reduced Objective Function

The function ξ 7→ T [ξ](u) is measurable due to Theorem 3.12 as long as the mapping
ξ 7→ Ny(S[ξ](u), ξ) ∈ L(Y, Y ∗) is measurable. This is true because Ny is deterministic and
continuous and ξ 7→ S[ξ](u) is measurable by Corollary 3.14. Measurability and the regularity
estimate (3.20) yield T (u) ∈ Lp/(p−1)

P (Ξ;Y ).

Lemma 3.23. Let Assumption 3.3 hold and assume y ∈ L
rf
P (Ξ;Y ) for some rf ∈ [p,∞],

Q ∈ LrQP (Ξ;L(Y,H)) for some rQ ∈ [ 2p
p−2 ,∞], and q̂ ∈ Lrq̂P (Ξ;H) for some rq̂ ∈ [2,∞].

Then, T (u) ∈ LrzP (Ξ;Y ) (Definition 3.21) holds, where rz ∈ [ p
p−1 ,∞] depends on rf , rQ, and

rq̂ and is defined as in the column “Exponents” of Table 3.1.

Proof. In Proposition 3.22, T (u) ∈ L
p/(p−1)
P (Ξ;Y ) is shown. The regularity exponent is

deduced from (3.20). In the same way, the regularity exponents for Qy, Qy − q̂, and T (u)
depicted in Table 3.1 follow from Hölder’s inequality.

Proposition 3.24. Let Assumption 3.3 hold and assume y ∈ LrfP (Ξ;Y ) for some rf ∈ [p,∞],
Q ∈ L

rQ
P (Ξ;L(Y,H)) and q̂ ∈ L

rq̂
P (Ξ;H), where rQ ∈ [2p,∞] and rq̂ ∈ [p,∞] fulfill the

properties in columns “Estimation 1” and “Estimation 2” of Table 3.1, respectively.
Then, the formal adjoint equation (3.18) has the unique solution T (u) ∈ Y (Definition 3.21).

Proof. This can be proven analogously to Proposition 3.16.
Equation (3.18) can be written as∫

Ξ
〈A(ξ)z(·, ξ) +Ny(y(·, ξ), ξ)z(·, ξ)− b̃(ξ),v(·, ξ)〉Y ∗,Y dP = 0 ∀ v ∈ Y .

It is well-posed in Y since Hölder’s inequality and the growth of ϕ′ (Lemma A.10) yield
Az ∈ LpP(Ξ;Y ∗) with p ≥ p∗, ϕ′(y) ∈ L

rf/(p−2)
P (Ξ;Lp/(p−2)(Ω)), N ′(y)z ∈ L

rN′z
P (Ξ;Y ∗)

with rN ′z =
prf

rf+p(p−2) ≥
p
p−1 = p∗ if rf < ∞ and rN ′z = p if rf = ∞, and b̃(·) =

−Q(·)∗(Q(·)S[·](u) − q̂(·)) ∈ LpP(Ξ;Y ∗) for z ∈ Y and the assumed ξ-regularities of y,
Q, and q̂. The integrand vanishes for almost every ξ ∈ Ξ if z = T (u) is inserted. Hence,
T (u) ∈ LpP(Ξ;H1

0 (Ω)) = Y is a solution of the equation. Lemma 3.23 provides the additional
ξ-regularity.
Since N ′(y) is monotone by Proposition A.4, the operator A+N ′(y) is strictly monotone

on Y . This proves uniqueness of a solution as in Proposition 3.16.

Table 3.1 shows how the ξ-regularity of y, Q, and q̂ affects the ξ-regularity of the adjoint
state z as deduced from (3.20). The column “Exponents” depicts the minimum requirement
on the exponents for every function in (3.3) to be well-defined. Then, Lp/(p−1)

P -regularity
of the adjoint state can be shown (Proposition 3.22). In the columns “Estimation 1” and
“Estimation 2” it is listed which values of the exponent rQ and rq̂ are required for the adjoint
state to belong to Y = LpP(Ξ, Y ) if y ∈ LrfP (Ξ;Y ) holds (e. g., by Corollary 3.15). In the case
rQ = ∞ and rq̂ ≥ rf (column “Example”), we get z ∈ LrfP (Ξ;Y ), i. e., the adjoint state has
the same ξ-regularity as the state itself. In the following, we will restrict the discussion to
this case, i. e., Q ∈ L∞P (Ξ;L(Y,H)) and q̂ ∈ LrfP (Ξ;L2(Ω)), since then the state, the desired
state, and the adjoint state all enjoy LrfP -regularity.
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3. A Class of Optimal Control Problems under Uncertainty

Function and space Exponents Estimation 1 Estimation 2 Example

y ∈ LrfP (Ξ;Y ) rf ≥ p ∈ (3,∞) rf ∈ [p,∞) rf =∞ rf ≥ p

Q ∈ LrQP (Ξ;L(Y,H)) rQ ≥ 2p
p−2 rQ ≥

2prf
rf−p rQ ≥ 2p rQ =∞

q̂ ∈ Lrq̂P (Ξ;H) rq̂ ≥ 2 rq̂ ≥
2prf
rf+p rq̂ ≥ rQ rq̂ ≥ rf

Qy ∈ LrQyP (Ξ;H) 1
rQy

= 1
rQ

+ 1
rf
, rQy ≥ 2 rQy ≥

2prf
rf+p rQy = rQ rQy = rf

Qy − q̂ ∈ Lr̂P(Ξ;H) r̂ = min{rQy, rq̂} ≥ 2 r̂ ≥ 2prf
rf+p r̂ = rQ r̂ = rf

z ∈ LrzP (Ξ;Y ) 1
rz

= 1
r̂ + 1

rQ
, rz ≥ p

p−1 rz ≥ p rz =
rQ
2 ≥ p rz = rf

Table 3.1.: Overview of the integrability inheritance

Remark 3.25. The adjoint equation can be well-defined in a larger space than Y . If, e. g.,
y ∈ L∞P (Ξ;H1

0 (Ω) ∩ L∞(Ω)) (rf = ∞), we have ϕ′(y) ∈ L∞λ⊗P(Ω × Ξ) by the continuity of
ϕ′. Note that L∞P (Ξ;L∞(Ω)) ⊂ L∞λ⊗P(Ω× Ξ). It follows that

ϕ′(y)v ∈ L2
λ⊗P(Ω× Ξ) ∼= L2

P(Ξ;L2(Ω))

and thus by Y ∗ ⊂ L2(Ω) ⊂ Y that N ′(y) ∈ L(L2
P(Ξ;Y ), L2

P(Ξ;Y ∗)). The adjoint equation
is then even well-posed in L2

P(Ξ;Y ) ⊃ Y .
From y ∈ LrfP (Ξ;H1

0 (Ω) ∩ Lrf (Ω)) with rf ∈ [p,∞) we can conclude that

ϕ′(y) ∈ Lrf/(p−2)
P (Ξ;Lrf/(p−2)(Ω))

and that N ′(y) ∈ L(Lr̃P(Ξ;Y ), Lr̃
∗

P (Ξ;Y ∗)) holds with r̃ =
2rf

rf−p+2 ≤ p by Proposition 3.1.
The adjoint equation is then even well-defined in Lr̃P(Ξ;Y ) ⊃ Y .

Now we use that the derivative of the parametric, reduced objective function is given by

Ĵ [ξ]′(u) = −B(ξ)∗T [ξ](u) + γ(u, ·)U . (3.21)

It is measurable as a composition of measurable functions and has the same ξ-regularity as
the adjoint state because B(·) ∈ L∞P (Ξ;L(U, Y ∗)), especially ‖Ĵ [·]′(u)‖U∗ ∈ Lp/(p−1)

P (Ξ) ⊂
L1
P(Ξ) by Propositions 3.22 and A.2. Furthermore, the function ξ 7→ Ĵ [ξ](u) belongs to

L
p/2
P (Ξ) ⊂ L1

P(Ξ) if Q ∈ L∞P (Ξ;L(Y,H)). Therefore, we can apply the chain rule and get

d

du
Ĵ(u) =

d

du

∫
Ξ
Ĵ [ξ](u) dP =

∫
Ξ
Ĵ [ξ]′(u) dP = −B∗T (u) + γ(u, ·)U

since E : L1
P(Ξ)→ R is linear and bounded. The pointwise adjoint state can thus be used for

the computation of the gradient of the reduced objective function Ĵ .
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3.4.2. Differentiability of the Control-to-State Mapping

By the argumentation above, we see that Ĵ is continuously differentiable, but have not used
differentiability properties of the control-to-state mapping S (Definition 3.11) in a concrete
way. As discussed in Corollary 3.15, the control-to-state mapping S is well-defined. It is
even continuously differentiable:

Theorem 3.26. Under Assumption 3.3 and using the Definitions (3.10), the control-to-state
mapping S (Definition 3.11) is continuously differentiable with the derivative S′ : U →
L(U,Y ), [S′(u)w](·, ξ) := S[ξ]′(u)w.

Proof. The pointwise derivative applied to w ∈ U is the solution of

[A(ξ) +Ny(S[ξ](u), ξ)](S[ξ]′(u)w) = −B(ξ)w.

In analogy to the discussion of the adjoint state in the proof of Proposition 3.22 we conclude
that S[ξ]′(u)w admits the same ξ-regularity as B(·) by

‖S[ξ]′(u)w‖Y ≤ 1
κ‖B(ξ)w‖Y ∗ ≤ 1

κ‖B(ξ)‖L(U,Y ∗)‖w‖U (3.22)

giving ‖S[ξ]′(u)‖L(U,Y ) ≤ 1
κ‖B(ξ)‖L(U,Y ∗). In our case B is constant and thus it holds that

B ∈ L∞P (Ξ;L(U, Y ∗)) and therefore S[ξ]′(u) ∈ L∞P (Ξ;L(U, Y )) ⊂ Y . Linearity w. r. t. w is
obvious; the given operator S′ is well-defined. Since S[ξ] is F-differentiable for a. e. ξ by the
implicit function theorem, we have that

lim
‖w‖U→0

‖S[ξ](u+ w)− S[ξ](u)− S[ξ]′(u)w‖Y
‖w‖U

= 0

for a. e. ξ ∈ Ξ.
Next, the following holds true, cf. the proof of [111, Prop.A.11]:

lim
‖w‖U→0

‖S(u+ w)− S(u)− S′(u)w‖Y
‖w‖U

= lim
‖w‖U→0

(∫
Ξ ‖S[ξ](u+ w)− S[ξ](u)− S[ξ]′(u)w‖pY dP

)1/p

‖w‖U

=
(

lim
‖w‖U→0

∫
Ξ

‖S[ξ](u+ w)− S[ξ](u)− S[ξ]′(u)w‖pY
‖w‖pU

dP
)1/p

.

=
(

lim
‖w‖U→0

∫
Ξ

‖
∫ 1

0 [S[ξ]′(u+ τw)− S[ξ]′(u)]w dτ‖pY
‖w‖pU

dP
)1/p

= 0.

This limit is zero by the dominated convergence theorem because the integrand can be
bounded by

sup
τ∈[0,1]

‖S[ξ]′(u+ τw)− S[ξ]′(u)‖pL(U,Y ) ≤
2p

κp ‖B(ξ)‖pL(U,Y ∗),

where the upper bound is an L1
P(Ξ)-function w. r. t. ξ for all w ∈ U . We obtain that S is

F-differentiable with the given derivative.
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3. A Class of Optimal Control Problems under Uncertainty

Continuity of S′ can be shown as follows: We know that S[ξ]′ is continuous for a. e. ξ ∈ Ξ.
Moreover, we have ‖S[ξ]′(u)‖L(U,Y ) ≤ 1

κ‖B(ξ)‖L(U,Y ∗) independently of u ∈ U by (3.22). For
u, ũ, w ∈ U it holds that

‖(S′(u)− S′(ũ))w‖pY =

∫
Ξ
‖(S[ξ]′(u)− S[ξ]′(ũ))w‖pY dP

≤
∫

Ξ
‖S[ξ]′(u)− S[ξ]′(ũ)‖pL(U,Y ) dP · ‖w‖pU ,

giving

0 ≤ ‖(S′(u)− S′(ũ))‖pL(U,Y ) ≤
∫

Ξ
‖S[ξ]′(u)− S[ξ]′(ũ)‖pL(U,Y ) dP −→ 0 as ũ

U−→ u.

This limit is obtained because the integrand converges to zero almost everywhere and can be
bounded by 2p

κp ‖B(·)‖pL(U,Y ∗), which is an L1
P(Ξ)-function if at least B ∈ LpP(Ξ;L(U, Y ∗)).

Overall, we have shown that the control-to-state mapping S is well-defined and continu-
ously differentiable. Therefore, using the chain rule and the boundedness and linearity of
the expectation operator, we obtain that the reduced objective function Ĵ is well-defined
and continuously differentiable with the given derivative. Other risk measures can also be
included as long as they are at least once continuously differentiable, cf. Section 9.2.

3.4.3. Second Derivatives

We can follow a similar strategy as in Subsection 3.4.1 to derive an expression for the second
derivative of the reduced objective function applied to a given direction s ∈ U . Following
[60, Sec. 1.6.5], we see that

∇2Ĵ [ξ](u)s = ι B(ξ)∗h(ξ) + γs ∈ U, (3.23)

where h(ξ) ∈ Y solves

[A(ξ) +Ny(S[ξ](u), ξ)]∗h(ξ) = Q(ξ)∗Q(ξ)δ(ξ) + 〈T [ξ](u), [Nyy(S[ξ](u), ξ)δ(ξ)] ·〉Y,Y ∗ (3.24)

with δ(ξ) = S[ξ]′(u)s ∈ Y solving

[A(ξ) +Ny(S[ξ](u), ξ)]δ(ξ) = B(ξ)s. (3.25)

The mapping ι : U∗ → U is the Riesz representation operator. It is used that N is twice
continuously differentiable w. r. t. y. Both δ(ξ) and h(ξ) are unique as discussed in Subsection
3.4.1. Since A(ξ) and Ny(S[ξ](u), ξ) are self-adjoint, the results for the adjoint equation are
also applicable to the linearized state equation. As in Proposition 3.22 we have

‖δ(ξ)‖Y ≤ 1
κ‖B(ξ)‖L(U,Y ∗)‖s‖U ≤ ‖D‖L(U,L2(Ω))‖s‖U

and therefore δ ∈ L∞P (Ξ;Y ). In analogy to (3.20), it follows that

‖h(ξ)‖Y ≤ 1
κ

(
‖Q(ξ)‖L(Y,H)‖Q(ξ)δ(ξ)‖H + ‖T [ξ](u)‖Y ‖Nyy(S[ξ](u), ξ)δ(ξ)‖L(Y,Y ∗)

)
(3.26)
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and thus h ∈ LrhP (Ξ;Y ) with rh = min{ rQ2 , (
1
rz

+ p−3
rf

)−1} ≥ p
p−2 > 1 with the prerequisites

and notation from Proposition 3.24, especially rz ≥ p. We obtain ∇2Ĵ [·](u)s ∈ LrhP (Ξ;U) ⊂
L1
P(Ξ;U).
Again, the parametrized linearized state equation and adjoint equation can be written in

weak form also w. r. t. the parameters. As in the case of the first derivative, the regularity
estimates and measurability yield

∇2Ĵ(u)s =

∫
Ξ
∇2Ĵ [ξ](u)s dP.
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4. An Inexact Trust-Region Algorithm for
the Solution of Optimal Control Problems
with Control Constraints

We present and discuss an inexact and projection-based trust-region algorithm, which can
be used for the solution of optimal control problems of the form

min
(y,u)∈Y×U

J(y, u) s. t. E(y, u) = 0, u ∈ Uad. (4.1)

We want to use this algorithm later to solve problem (3.3) adaptively and to control all arising
errors caused by discretization, inexact solution of linear systems and tensor truncation during
this procedure.
One possible solution algorithm would be an an inexact, trust-region-based SQP algorithm

such as [118], which extends [119, 57] to the case of control constraints handled by projections
onto Uad. Here it is necessary to minimize the residual of the linearized state equation
approximately. If the space Z of the residual is not a Hilbert space as in the example from
Section 3.2, this is possibly a nonsmooth problem so that this approach is not preferable in
our setting. To circumvent this difficulty, we can work with the reduced problem (4.3) and
use an extension of the algorithm presented in [70], which is based on [69]. The algorithm
in [70] can handle inexact gradients as well as inexact objective function evaluations. Earlier
versions of inexact trust-region algorithms formulated in Hilbert space [26, 27] have the
disadvantage that the relative errors in the gradient and the objective function evaluation
have to be bounded by fixed, prescribed constants of a certain magnitude, whereas [70]
allows for fixed, but possibly unknown and arbitrarily large constants. This fits very well
to PDE applications, where error estimates often contain unknown multiplicative constants.
We extend [70, Algorithm 4.1] to the case of control constraints using an inexact projection
(inspired by [118]) and present our version in the following.

Assumption 4.1. We make the following assumptions on problem (4.1):

• The space U is a Hilbert space; Y , Z are reflexive Banach spaces.

• The feasible control set Uad ⊂ U is nonempty, convex and closed.

• For each control u ∈ Ũ ⊂ U , where Ũ ⊃ Uad is an open set, there exists a unique state
y = S(u) fulfilling E(S(u), u) = 0. S : Ũ → Y is the control-to-state mapping.

• The control-to-state mapping S : Ũ → Y and the objective function J : Y × Ũ →
R are such that the reduced objective function Ĵ : Ũ → R in (4.3) is continuously
differentiable.
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If Assumption 4.1 is fulfilled, Problem (4.1) can be reduced to the control:

min
u∈U

Ĵ(u) := J(S(u), u) s. t. u ∈ Uad. (4.2)

This motivates that we describe an inexact trust-region algorithm for the solution of general
problems of the form

min
u∈U

Ĵ(u) s. t. u ∈ Uad. (4.3)

in this chapter and prove its convergence. Later, in Chapter 5, we return to the original
problem (4.2), where the objective function Ĵ is of reduced form.
Using parts of Assumption 4.1, we make the following assumption for problem (4.3):

Assumption 4.2.

• U is a Hilbert space.

• The feasible set Uad ⊂ U is nonempty, closed and convex.

• The objective function Ĵ : Ũ → R is continuously differentiable on an open set Ũ ,
Uad ⊂ Ũ ⊂ U , and bounded from below on Uad. The Fréchet approximation condition
holds uniformly on every level set, i. e.,

sup
u∈Uad:Ĵ(u)≤Ĵ(ũ)

|Ĵ(u+ s)− Ĵ(u)− (∇Ĵ(u), s)U | = o(‖s‖U ) (s→ 0), (4.4)

for every ũ ∈ Uad.

4.1. Formulation of the Algorithm

For a comprehensive introduction to trust-region algorithms we refer to [31]. In the algorithm
presented here, we use a typically, but not necessarily quadratic model mk(s) of Ĵ(uk + s)−
Ĵ(uk) with the current control uk for the computation of the current step sk ∈ U . The step
computation approximately solves

min
s∈U

mk(s) s. t. uk + s ∈ Uad, ‖s‖U ≤ ∆k (4.5)

with the current trust region radius ∆k > 0. For the acceptance of the step, we allow for
inexact evaluations of Ĵ by using an approximation Ĵk instead of Ĵ . We define the actual,
computed (as introduced in [26]), and predicted reduction, respectively, as

aredk := Ĵ(uk)− Ĵ(uk + sk), (4.6a)

credk := Ĵk(u
k)− Ĵk(uk + sk), (4.6b)

predk := mk(0)−mk(s
k). (4.6c)

Furthermore, we define a criticality measure for the original problem (4.3), namely

χ : Ũ → R≥0, χ(u) := ‖u− PUad
(u− τ∇Ĵ(u))‖U (4.7)
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with a fixed parameter τ > 0 and the projection PUad
onto the feasible set. The function

χ is continuous, and χ(ū) = 0 holds if and only if ū is a first order critical point for (4.3).
In addition, a criticality measure for problem (4.5) without the trust-region constraint is
defined:

χ̃k : U → R≥0, χ̃k(s) := ‖uk + s− PUad
(uk + s− τ∇mk(s))‖U .

The condition χ̃k(s̄) = 0 holds if and only if s̄ is first order critical for the problem

min
s∈U

mk(s) s. t. uk + s ∈ Uad. (4.8)

Typically, the projection is also not computed exactly. Therefore, we introduce the approxi-
mate criticality measure for problem (4.8),

χk : U → R≥0, χk(s) := ‖uk + s− P̂Uad
(uk + s− τ∇mk(s))‖U , (4.9)

now with an approximate projection P̂Uad
: U → Uad onto the feasible set. This can be

any mapping approximating the exact projection. Especially, it does not have to fulfill the
variational inequality defining the projection on some discrete subspace U ⊂ U . In contrast
to that, the properties of the discrete projection are used in [118, Lem. 5.3, Lem. 5.5] when
proving the Cauchy decrease condition although an approximate version is used in the final
implementation there [118, Sec. 5.2].

Remark 4.3. Consider the case that U = L2(Ω). The gradient of the reduced objective
function at u ∈ U (discrete subspace of U) is, e. g., of the form ∇Ĵ(u) = −B∗z + γu with
B∗ ≡ ι : H1

0 (Ω) ↪→ L2(Ω) (canonical embedding). An approximation of it is obtained using an
approximate adjoint state z ∈ Y, computed, e. g., by a finite element method with piecewise
linear, continuous ansatz functions. The function B∗z ∈ U then belongs to in the finite
element space Y. To avoid further approximations, it makes sense that the current control
u belongs to the space U of linear FE functions (not necessarily with zero boundary data).
Then, the approximate gradient and any control obtained by a linesearch in its direction
are also in U. This means that we do not explicitly discretize the control space, cf. the
variational discretization concept of optimal control problems [59], but its discretization is
implied by the one of the adjoint state.
In general, one could equip the discrete space U of linear FE functions with the inner product
induced by the lumped mass matrix. The obtained discrete projection onto a box-constrained
feasible set Uad∩U can then be computed node-wise. As described, this is not possible in our
case since the algorithm uses the exact inner product of U . The resulting discrete projection
would have to be computed by solving a high-dimensional quadratic program with box-
constraints. In order to use the node-wise projection instead as in [118, Sec. 5.2], we have to
allow for an inexact projection and cannot use any projection properties of it.
Alternatively, one could use piecewise constant functions for the control. Then, the exact
L2-projection onto a box (with constant bounds) can be computed simply, but an additional
error in the approximate gradient occurs since the operator B∗ cannot be applied exactly
then.
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To ensure global convergence of the algorithm we have to control the following quantities:

• The inexactness of the model gradient:

‖∇mk(0)−∇Ĵ(uk)‖U ≤ %g(∆k), (4.10)

where %g : R>0 → R≥0 is a function satisfying limt→0+ %g(t) = 0, e. g., %g(t) = cgt,
cg > 0.

• The inexactness of the approximate criticality measure:

|χk(0)− χ(uk)| ≤ %c(χk(0)), (4.11)

where %c : R≥0 → R≥0 is a function satisfying limt→0+ %c(t) = 0 and %c(0) = 0, e. g.,
%c(t) = cct, cc > 0. Note that we do not have to use the exact criticality measure for
the model problem here since it is not required in the convergence proof. It will only
be used for the control of the inexactness.

• The quality of the computed reduction:

|aredk − credk| ≤ %r(η3 min{predk, rk}), (4.12)

with η3 < min{η1, 1 − η2}, where 0 < η1 < η2 < 1 are a priori chosen parameters for
assessing the quality of the model, and with a forcing sequence (rk)k∈N0 ⊂ R>0 fulfilling
limk→∞ rk = 0 and a function %r : R>0 → R≥0 fulfilling %r(t) ≤ t for all t ∈ (0, t̄] with
some fixed t̄ > 0, e. g., %r(t) = crt

er , cr > 0, er > 1. Note that %r(t) = t would also be
possible, but then it is not sufficient to know the error in (4.12) up to an unknown,
multiplicative constant.

A trial step sk ∈ Uad − uk, ‖sk‖U ≤ ∆k, has to fulfill the decrease condition

predk = mk(0)−mk(s
k) ≥ %t1(χk(0)) ·min{%t2(χk(0)),∆k} (4.13)

with monotonically increasing functions %t1, %t2 : R>0 → R>0. These functions must be
chosen such that (4.13) is satisfiable by, e. g., the generalized Cauchy point, see Section 4.3.
A possible example is %t1(t) = ct1t, %t1(t) = ct2t with ct1, ct2 > 0.
The complete method is listed in Algorithm 1. Note that all iterates uk belong to Uad since

sk ∈ Uad−uk is required for all trial steps. Therefore, it is sufficient to assume differentiability
of Ĵ only in an open neighborhood Ũ of Uad, see Assumption 4.2.

Remark 4.4. In case of an unsuccessful step, the formulation of Algorithm 1 allows to choose
∆k+1 ∈ (0, ν1‖sk‖U ] ⊂ (0, ν1∆k] if ‖sk‖U > 0, which is a suitable strategy to avoid that sk is
feasible for the trust-region subproblem in the next iteration.

4.2. Convergence Proof

Provided all conditions in Algorithm 1 can be satisfied, we prove its convergence. This
means that we assume for now that an adequate model, approximate projection, trial step,
and inexact objective function exist in each iteration. We prove this in Section 4.3.
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Algorithm 1: Inexact Trust-Region Method for Solving Problem (4.3)
Input: Initial iterate u0 ∈ Uad

Parameters : τ > 0, error control functions %c, %g, %t1, %t2, %r,
forcing sequence (rk)k∈N0

⊂ R>0, limk→∞ rk = 0.
∆max ∈ (0,∞], ∆0 ∈ R>0 s. t. ∆0 ≤ ∆max,
0 < η1 < η2 < 1 and 0 < η3 ≤ min{η1, 1− η2},
0 < ν1 < 1 ≤ ν2 < ν3.

Output: Sequences (uk)k∈N0 ⊂ Uad, (∆k)k∈N0 ⊂ R>0, (χk(0))k∈N0 ⊂ R≥0

for k := 0, 1, 2, . . . do
Choose a model mk : U → R and an approximate projection P̂Uad

: U → Uad such that
(4.10) and (4.11) hold. Compute χk(0) using mk and P̂Uad

.

if χk(0) = 0, then
Set u` := uk, ∆` := ∆k, and χ`(0) = 0 for all ` ≥ k + 1 and STOP.

end
Compute a trial step sk ∈ Uad − uk, ‖sk‖U ≤ ∆k, fulfilling (4.13) with the computed χk(0),
see Section 4.3.

Compute predk by (4.6c) and credk by (4.6b) with Ĵk such that (4.12) holds.

if credk

predk
< η1 (unsuccessful step), then
uk+1 := uk, choose ∆k+1 ∈ (0, ν1∆k].

else if credk

predk
∈ [η1, η2) (successful step), then

uk+1 := uk + sk, choose ∆k+1 ∈ [ν1∆k,min{ν2∆k,∆max}].
else if credk

predk
≥ η2 (very successful step), then

uk+1 := uk + sk, choose ∆k+1 ∈ [min{ν2∆k,∆max},min{ν3∆k,∆max}].
end

end

We require the following assumption in addition to Assumption 4.2 to prove the conver-
gence result given in Theorem 4.6.

Assumption 4.5. Each model mk : U → R is continuously differentiable. The Fréchet
approximation condition holds uniformly over all models:

sup
k∈N0

|mk(s)−mk(0)− (∇mk(0), s)U | = o(‖s‖) (s→ 0). (4.14)

The model gradients are Lipschitz continuous on the sets of feasible search directions, i. e.,

‖∇mk(s)−∇mk(ŝ)‖U ≤ cmk‖s− ŝ‖U

holds for all s, ŝ ∈ Uad − uk, ‖s‖U ≤ ∆k, ‖ŝ‖U ≤ ∆k with some cmk > 0. The Lipschitz
constants shall be bounded uniformly: cmk ≤ cm for some cm > 0 and all k ∈ N0.

Theorem 4.6. Let Assumptions 4.2 and 4.5 hold and let the sequence (uk)k∈N0 ⊂ U be
generated by Algorithm 1. Then,

lim inf
k→∞

χ(uk) = 0

holds with the criticality measure χ defined in (4.7).
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We apply the following two lemmas to prove Theorem 4.6:

Lemma 4.7. Let Assumptions 4.2 and 4.5 hold and let the sequence of inexact criticality
measures (as defined in (4.9)) generated by Algorithm 1 satisfy

χk(0) ≥ ε > 0 for all k ≥ K1 ∈ N0 (4.15)

for some fixed ε > 0.
Then, limk→∞∆k = 0 holds for the sequence of corresponding trust-region radii.

Proof. First observe that the termination criterion “χk(0) = 0” in the algorithm is not met
for any k ∈ N0 by assumption, because χk(0) = 0 for some k ∈ N0 would yield χ`(0) = 0 for
all ` ≥ k, which contradicts (4.15). Moreover, predk > 0 holds for all k ∈ N0 due to (4.13),
the positivity property of %t1 and %t2, and χk(0) > 0, ∆k > 0.
Due to limk→∞ rk = 0 and %r(t) ≤ t for small enough t, it holds that

%r(η3 min{predk, rk}) ≤ η3predk for all k ≥ K2 ∈ N0

with some K2 ≥ K1. By (4.12) we thus get

|aredk − credk| ≤ η3predk for all k ≥ K2.

This implies

aredk = credk + aredk − credk ≥ credk − η3predk =
(

credk
predk

− η3

)
predk (4.16)

for all k ≥ K2. This is well-defined due to predk > 0.
Now we show that

∑∞
k=0 ∆k <∞ follows from (4.15).

For all unsuccessful steps k ∈ Iu ⊂ N0 we have ∆k+1 ≤ ν1∆k with the parameter ν1 ∈
(0, 1). Thus, if there are only finitely many (very) successful steps, the sequence (∆k)k∈N0 is
summable since then ∆k ≤ ν1

k−K3∆K3 for all k ≥ K3 for some K3 ∈ N0. In the following,
we consider the case of infinitely many (very) successful steps.
For a (very) successful step k ∈ Is = N0 \ Iu, i. e.,

credk
predk

≥ η1 and ∆k+1 ≤ min{ν3∆k,∆max} ≤ ν3∆k,

we deduce from (4.16) and (4.13):

aredk ≥
(

credk
predk

− η3

)
predk ≥ (η1 − η3)predk

≥ (η1 − η3) · %t1(χk(0)) ·min{%t2(χk(0)),∆k}
≥ (η1 − η3) · %t1(ε) ·min{%t2(ε),∆k} > 0,

(4.17)

for all k ∈ Is, k ≥ K2, where we used in the last estimate that %t1 and %t2 are increasing.
Since the sequence (Ĵ(uk))k∈Is is bounded from below by Assumption 4.2, we get

0 ≤
∑

k∈Is,k≥K2

aredk =
∑

k∈Is,k≥K2

(
Ĵ(uk)− Ĵ(uk+1)

)
=

∞∑
k=K2

(
Ĵ(uk)− Ĵ(uk+1)

)
<∞ (4.18)
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using that uk+1 = uk + sk in the case of a (very) successful step and uk+1 = uk in the case
of an unsuccessful step. Due to η1 > η3, %t1(ε) > 0, %t2(ε) > 0 and limIs3k→∞ aredk = 0
(by (4.18)), it follows from (4.17) that ∆k ≤ aredk

(η1−η3)·%t1(ε) for all k ∈ Is, k ≥ K4, with some
sufficiently large K4 ∈ N0, K4 ≥ K2, and thus

0 ≤
∑
k∈Is

∆k <∞ (4.19)

by (4.18).
Now we consider two (very) successful steps k̃, k̂ ∈ Is, k̂ ≥ k̃+2 with only unsuccessful steps

k ∈ {k̃ + 1, . . . , k̂ − 1} in between. Hence, we have ∆k ≤ ν3ν1
k−k̃−1∆k̃ for k̃ + 1 ≤ k ≤ k̂ − 1

and thus (using the geometric series with ν1 ∈ (0, 1))

Σ(k̃) :=
k̂−1∑
k=k̃

∆k ≤ ∆k̃

(
1 + ν3

k̂−k̃−2∑
`=0

ν1
`
)
≤ ∆k̃

(
1 + ν3

1−ν1

)
.

Additionally, for k̃ ∈ Is such that k̃ + 1 ∈ Is we set Σ(k̃) = ∆k̃ and in the case 0 /∈ Is we set
and estimate

Σ(0) :=

k̂−1∑
k=0

∆k ≤ ∆0

(k̂−1∑
`=0

ν1
`
)
≤ ∆0 · 1

1−ν1
,

where k̂ = min Is. Therefore,

0 ≤
∞∑
k=0

∆k =
∑

k̃∈Is∪{0}

Σ(k̃) ≤
(

1 + ν3
1−ν1

)
·
∑

k̃∈Is∪{0}

∆k̃ <∞

follows with Σ(k̃) ≤ ∆k̃

(
1 + ν3

1−ν1

)
for all k̃ ∈ Is ∪{0} (using ν3 ≥ 1) and (4.19). We see that

(∆k)k∈N0 is summable and thus limk→∞∆k = 0.

Lemma 4.8. Under Assumptions 4.2 and 4.5

lim inf
k→∞

χk(0) = 0 (4.20)

holds true for every sequence generated by Algorithm 1, where the inexact criticality measure
χk is defined as in (4.9).

Proof. For a proof by contradiction, assume that (4.20) is false, giving that (4.15) is true for
some fixed ε > 0. By Lemma 4.7 we have that limk→∞∆k = 0 and thus limk→∞ ‖sk‖U = 0.
In analogy to (4.16), we can estimate

credk ≥ aredk − |aredk − credk| ≥ aredk − η3predk (4.21)

for all k ≥ K2 ≥ K1.
As in (4.17) we infer

predk ≥ %t1(ε) ·∆k
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for all k ≥ K5 with some sufficiently largeK5 ∈ N0,K5 ≥ K2, due to (4.13) and limk→∞∆k =
0, i. e., ∆k ≤ %t2(ε) for all k ≥ K5 because %t2(ε) > 0. Thus, we can bound

|o(∆k)| ≤ (1− η3 − η2)predk (4.22)

for all k ≥ K6 with K6 ≥ K5 ≥ K2 sufficiently large, since (1− η3 − η2) > 0. Using this and
the bounds indicated below, we estimate for k ≥ K6 and using sk → 0:

credk
(4.21)
≥ aredk − η3predk

(4.4)
≥ −(∇Ĵ(uk), sk)U − η3predk − |o(‖sk‖)|

(4.14)
≥ predk + (∇mk(0), sk)U − (∇J(uk), sk)U − η3predk − |o(‖sk‖)|

≥ (1− η3)predk − ‖∇mk(0)−∇Ĵ(uk)‖U‖sk‖U − |o(‖sk‖)|

(4.10),
‖sk‖U≤∆k

≥ (1− η3)predk − %g(∆k)∆k − |o(∆k)|

%g(t)→0
(t→0+)

≥ (1− η3)predk − |o(∆k)|

(4.22)
≥ (1− η3)predk − (1− η3 − η2)predk = η2predk

Note that uk ∈ {u ∈ Uad : Ĵ(u) ≤ Ĵ(uK2)} holds for all k ≥ K2 due to (4.17) so that (4.4) is
applicable. In fact, the objective function values (Ĵ(uk))k≥K2 are non-increasing since (4.17)
holds for (very) successful steps and the function values do not change for unsuccessful steps.
Using predk > 0 as in the proof of Lemma 4.7, it follows that credk

predk
≥ η2 for all k ≥ K6, i. e.,

all steps k ≥ K6 are successful giving ∆k+1 ≥ min{ν2∆k,∆max} ≥ ∆k > 0 due to ν2 ≥ 1.
This contradicts limk→∞∆k = 0, proving (4.20).

Using Lemma 4.8, the proof of Theorem 4.6 is very short:

Proof of Theorem 4.6. Due to (4.11) we have

χ(uk) ≤ χk(0) + |χk(0)− χ(uk)| ≤ χk(0) + %c(χk(0)).

This is also true if the algorithm is stopped due to χk(0) = 0, because then χ(uk) = 0 follows
from (4.11). Therefore, χ(u`) = χ(uk) = 0 = χ`(0) for all ` ≥ k. The bound on χ(uk) and
limt→0+ %c(t) = 0 as well as %c(0) = 0 show

0 ≤ lim inf
k→∞

χ(uk) ≤ lim inf
k→∞

χk(0) + %c(χk(0)) = 0.

�

4.3. Satisfying the Conditions Required by the Algorithm

We show that Algorithm 1 is realizable, i. e., that all conditions can be satisfied under certain
assumptions. This includes the computation of a generalized Cauchy point satisfying (4.13).
In addition to Assumptions 4.2 and 4.5 we require:
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Assumption 4.9.

• For every iterate uk ∈ Uad, one can compute ∇mk(0) ∈ U such that

‖∇mk(0)−∇Ĵ(uk)‖U ≤ cgεg (4.23)

holds with some fixed but possibly unknown constant cg > 0 and a still to be specified
εg > 0.

• For every wk(t) := uk − t∇mk(0) ∈ U with the values of t > 0 specified later, one can
compute P̂Uad

(wk(t)) ∈ Uad such that

‖PUad
(wk(t))− P̂Uad

(wk(t))‖U ≤ cpεp (4.24)

holds with some fixed but possibly unknown constant cp > 0 and a still to be specified
εp > 0.

• For every iterate uk ∈ Uad and every trial step sk ∈ U , one can compute Ĵk(u) ∈ R
such that

|Ĵk(u)− Ĵ(u)| ≤ coεo

holds with some fixed but possibly unknown constant co > 0 and a still to be specified
εo > 0, where u ∈ {uk, uk + sk}.

Remark 4.10. It is necessary to require (4.24) not only for t = τ because an Armijo type
linesearch, which tests different values of t, is employed for computing the generalized Cauchy
point later.

Model and Approximate Projection

To ensure (4.10) and (4.11), the following result is helpful:

Proposition 4.11. Let cs ∈ [0, 1] be given and let the following be fulfilled:

‖∇mk(0)−∇Ĵ(uk)‖U ≤ min{1−cs
τ %c(χk(0)), %g(∆k)}, (4.25)

‖[PUad
− P̂Uad

](uk − τ∇mk(0))‖U ≤ cs%c(χk(0)). (4.26)

Then, (4.10) and (4.11) hold, where χ and χk are defined as in (4.7) and (4.9), respectively.

Proof. The estimate (4.10) follows directly from (4.25). Using the definitions (4.7) and (4.9),
we estimate

|χk(0)− χ(uk)| ≤ |χk(0)− χ̃k(0)|+ |χ̃k(0)− χ(uk)|
≤ ‖PUad

(uk − τ∇mk(0))− P̂Uad
(uk − τ∇mk(0))‖U

+ ‖PUad
(uk − τ∇Ĵ(uk))− PUad

(uk − τ∇mk(0))‖U
≤ ‖[PUad

− P̂Uad
](uk − τ∇mk(0))‖U + τ‖∇mk(0)−∇Ĵ(uk)‖U

≤ cs%c(χk(0)) + (1− cs)%c(χk(0)) = %c(χk(0)),
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where the second inequality is established using
∣∣‖u‖U − ‖w‖U ∣∣ ≤ ‖u − w‖U for any u,w ∈

U and the last one follows from (4.26) and (4.25). This proves that condition (4.11) is
satisfied.

The two conditions (4.25) and (4.26) can be satisfied as follows:

Lemma 4.12. Let (4.23) and (4.24) with t = τ be fulfilled with εg and εp such that

(1 + (1− cs)cc)cgεg + 1−cs
τ cccpεp ≤ 1−cs

τ cc · χ(uk), (4.27a)
cgεg ≤ cg ·∆k, (4.27b)

csccτcgεg + (1 + cscc)cpεp ≤ cscc · χ(uk) (4.27c)

hold with some constants cc, cg > 0.
Then, the estimates (4.25) and (4.26) hold true with the choices %c(t) = cct and %g(t) = cgt.

Proof. From

|χk(0)− χ(uk)| ≤ ‖[PUad
− P̂Uad

](uk − τ∇mk(0))‖U + τ‖∇mk(0)−∇Ĵ(uk)‖U

(see the proof of Proposition 4.11), (4.23), and (4.24) it follows that

χk(0) ≥ χ(uk)− cpεp − τcgεg

holds. Computing ∇mk(0), P̂Uad
(uk − τ∇mk(0)), and χk(0) (in this order) according to

Assumption 4.9, with εg and εp as in (4.27), we get

‖∇mk(0)−∇Ĵ(uk)‖U ≤ cgεg

(4.27a)
≤ 1−cs

τ cc
(
χ(uk)− cpεp − τcgεg

)
≤ 1−cs

τ cc · χk(0),

‖∇mk(0)−∇Ĵ(uk)‖U ≤ cgεg

(4.27b)
≤ cg ·∆k,

and

‖[PUad
− P̂Uad

](uk − τ∇mk(0))‖U ≤ cpεp

(4.27c)
≤ cscc

(
χ(uk)− cpεp − τcgεg

)
≤ cscc · χk(0).

The choices %c(t) = cct and %g(t) = cgt yield (4.25) and (4.26).

We see that (4.27) can always be fulfilled by choosing εg and εp small enough: Given some
parameters a1, a2 ∈ [0, 1], we require

εg ≤ min
{ a1(1−cs)cc
τcg(1+(1−cs)cc)χ(uk),

cg
cg

∆k,
a2
τcg
χ(uk)

}
(4.28)

as well as
εp ≤ min

{
1−a1
cp

χ(uk), (1−a2)cscc
(1+cscc)cp

χ(uk)
}

(4.29)
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to fulfill (4.27).

If we choose a1 := 1+(1−cs)cc
1+cc

∈ (0, 1] and a2 := (1−cs)cc
1+cc

∈ [0, 1), the bound (4.28) becomes

εg ≤ min
{

(1− cs)
cc

1+cc
· χ(uk)
τcg

,
cg
cg

∆k

}
and the bound (4.29) becomes

εp ≤ cs
cc

1+cc
· χ(uk)

cp
,

i. e., we balance the bounds involving χ(uk) by this choice.

As long as χ(uk) > 0 and cs ∈ (0, 1), the respective bounds on εg and εp are positive. From
εg > 0 and εp > 0 it then follows that χk(0) > 0 must hold at the end of the refinement
procedure by (4.25) and (4.26).

In the case χ(uk) = 0 it could happen that an adaptive algorithm for computing ∇mk(0)
and the projection keeps increasing the accuracy, i. e., decreasing εg and εp towards 0, without
being able to fulfill (4.25) and (4.26). For theoretical considerations, we assume then, e. g.,
that the exact gradient and projection are used in this case. In a practical implementation,
the refinement procedure should be stopped if χk(0) ≤ cχεtol, εg ≤ εtol

τ , and εp ≤ εtol holds
for some tolerance εtol > 0 and a constant cχ > 0, because then

χ(uk) ≤ χk(0) + |χ(uk)− χk(0)| ≤ cχεtol + cpεp + τcgεg

≤ (cχ + cp + cg)εtol.

Exact computation of the projection: When we consider a box-constrained problem in
L2(Ωu) and a discretization of the control space by linear finite elements for example, we
have to evaluate the exact projection to compute the error in P̂Uad

. Therefore, it makes
sense to compute the inexact criticality measure directly with the exact projection, i. e.,
χk(0) = χ̃k(0), but not to refine the U -grid in the following to save computational costs. The
bound (4.26) is then always satisfied and it remains to fulfill (4.25) with χk ≡ χ̃k and cs = 0.
By setting εp = 0, we arrive at the bound

εg ≤ min
{

cc
cc+1 ·

χ(uk)
τcg

,
cg
cg

∆k

}
for εg, which yields that (4.25) holds with cs = 0. Again, the bound cc

cc+1 ·
χ(uk)
τcg

on εg cannot
be computed explicitly, but is positive as long as uk is not stationary. If the model gradient
is not computed exactly, χk(0) > 0 holds at the end of the refinement procedure.

Often, we do not have access to the constant cg in (4.23), but only can compute the error
estimate εg. Therefore, we set cc := cgτ c̃c and cg := cgc̃g for two constants c̃c, c̃g > 0 and
require

εg ≤ min
{
c̃cχk(0), c̃g∆k

}
to ensure (4.25) with cs = 0, %c(t) = cct, and %g(t) = cgt.
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Generalized Cauchy Point

Condition (4.13) will be satisfied by a generalized Cauchy point skC ∈ Uad−uk, ‖skC‖U ≤ ∆k,
which is computed by some type of linesearch with an inexact, and possibly refined projection
P̂Uad

. It is very important to permit an inexact projection in this procedure because then
U -grid refinement may not be necessary in every iteration. In this way, computational cost
can be saved and the quality of the FE grid can be preserved by a suitable refinement method
instead of adapting the refinement exactly to the projection which has to be computed. Based
on the generalized Cauchy point, the decrease condition (4.13) can be evaluated for improved
trial steps. One can use an Armijo type linesearch on a line segment or a projected linesearch
for example. We describe the latter here, following [118].

Lemma 4.13. Given uk ∈ Uad, ∇mk(0) ∈ U and t > 0, the direction

pk = pk(t) := P̂Uad
(wk(t))− uk

with wk = wk(t) := uk − t∇mk(0) is a descent direction for mk in 0 in the sense that
(∇mk(0), pk)U ≤ − ci

t ‖p
k‖2U , provided the inexact projection P̂Uad

satisfies(
P̂Uad

(wk(t))− wk(t), P̂Uad
(wk(t))− uk

)
U
≤ (1− ci)‖pk(t)‖2U (4.30)

for some arbitrary, but fixed constant ci ∈ (0, 1] and ‖pk‖U > 0.

Proof. We estimate

t
(
∇mk(0), pk

)
U

=
(
uk − wk, P̂Uad

(wk)− uk
)
U

= −‖pk‖2U +
(
P̂Uad

(wk)− wk, P̂Uad
(wk)− uk

)
U
≤ −ci‖pk‖2U .

Due to t > 0, ci > 0 and ‖pk‖ > 0, pk is a descent direction for mk in 0.

Remark 4.14. This lemma is essentially different from [118, Lem. 5.3] in the sense that
we do not use any projection property of P̂Uad

. If the discrete projection is used, (4.30) is
trivially fulfilled.

Lemma 4.15. Let P̂Uad
(wk) ∈ Uad be computed such that (4.24) holds with wk(t) = wk and

with εp fulfilling(
cicpεp + ‖2ciPUad

(wk)− wk + (1− 2ci)u
k‖U

)
cpεp ≤ (1− ci)‖PUad

(wk)− uk‖2U . (4.31)

Then, (4.30) holds.

Proof. With the choice of εp and writing P = PUad
(wk), P̂ = P̂Uad

(wk), w = wk, u = uk we
estimate (

P̂Uad
(wk)− wk, P̂Uad

(wk)− uk
)
U

=
(
P̂− w, P̂− u

)
U

=
(
P̂− P + P − w, P̂− P + P − u

)
U

=
∥∥P̂− P

∥∥2

U
+
(
P̂− P, 2P − w − u

)
U

+
(
P − w,P − u

)
U

58



4.3. Satisfying the Conditions Required by the Algorithm

= (1− ci)
[∥∥P̂− P

∥∥2

U
+
(
P̂− P, 2P − 2u

)
U

+
∥∥P − u∥∥2

U

]
+ ci

∥∥P̂− P
∥∥2

U

+
(
P̂− P, 2ciP − w + (1− 2ci)u

)
U

+
(
ciP − w + (1− ci)u, P − u

)
U

= (1− ci)
(
P̂− P + P − u, P̂− P + P − u

)
U

+ ci
∥∥P̂− P

∥∥2

U

+
(
P̂− P, 2ciP − w + (1− 2ci)u

)
U

+
(
P − w,P − u

)
U
−(1− ci)

(
P − u, P − u

)
U

≤ (1− ci)
∥∥pk∥∥2

U
+ ci

∥∥P̂− P
∥∥2

U
+
∥∥P̂− P

∥∥
U
· ‖2ciP − w + (1− 2ci)u

∥∥
U

− (1− ci)
∥∥P − u∥∥2

U

(4.24)
≤ (1− ci)

∥∥pk∥∥2

U
+ cic

2
pε

2
p + cpεp · ‖2ciP − w + (1− 2ci)u

∥∥
U

− (1− ci)
∥∥P − u∥∥2

U

(4.31)
≤ (1− ci)

∥∥pk∥∥2

U
.

For the first estimate we have used the variational inequality property of the exact projection
and the Cauchy-Schwarz inequality.

Remark 4.16. If χ̃k(0) > 0, then ‖PUad
(wk(t)) − uk‖U > 0 holds for every t > 0: If there

existed t > 0 such that ‖PUad
(wk(t))− uk‖U = 0, then 0 ∈ U would be first-order stationary

for problem (4.8), which would yield χ̃k(0) = 0. Therefore, the bound on the right hand
side of (4.31) can be satisfied by taking εp small enough. If we use the exact projection to
compute χk(0) = χ̃k(0), χ̃k(0) > 0 is ensured when performing the linesearch by the stopping
criterion in Algorithm 1.

Definition 4.17 (Armijo condition). Choose the largest tk ∈ {ca,k · cjf , j ∈ N0} such that

mk(p
k(tk)) ≤ mk(0)− cice

tk
‖pk(tk)‖2U , (4.32a)

‖pk(tk)‖U ≤ ∆k (4.32b)

with two fixed parameters cf , ce ∈ (0, 1) are satisfied. Here, ca,k ∈ R are constants satisfying
ca ≤ ca,k ≤ τ for all k ∈ N0 with some ca ∈ (0, τ ].

Remark 4.18. Note that

− cice
tk
‖pk(tk)‖2U ≥ ce(∇mk(0), pk(tk))U

holds by Lemma 4.13 if P̂Uad
satisfies (4.30). Then, condition (4.32a) is implied by

mk(p
k(tk)) ≤ mk(0) + ce(∇mk(0), pk(tk))U .

Lemma 4.19. If Assumption 4.5 holds and if pk(tk) is computed according to Lemma 4.13,
condition (4.32a) is satisfied for all tk ∈

(
0, 2(1−ce)ci

cmk

]
, where cmk > 0 is the Lipschitz constant

of the model gradient ∇mk.
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Proof. We estimate using the fundamental theorem of calculus:

mk(p
k(tk))−mk(0) =

∫ 1

0

(
∇mk(σp

k(tk)), p
k(tk)

)
U

dσ

≤
(
∇mk(0), pk(tk)

)
U

+

∫ 1

0

∥∥∇mk(σp
k(tk))−∇mk(0)

∥∥
U
·
∥∥pk(tk)∥∥U dσ

≤ − ci
tk
‖pk(tk)‖2U +

cmk
2 ‖p

k(tk)‖2U =
(
− ci
tk

+
cmk

2

)
‖pk(tk)‖2U .

In the last estimate we have used Lemma 4.13 and the Lipschitz continuity of ∇mk. With
the given choice of tk, (4.32a) follows.

Lemma 4.20. Let Assumption 4.5 hold and let tk be computed according to the Armijo
condition (Definition 4.17), where the inexact projection P̂Uad

satisfies (4.30) and additionally

‖PUad
(wk(t))− P̂Uad

(wk(t))‖U ≤ 1−cl1
cl1
‖P̂Uad

(wk(t))− uk‖U (4.33)

as well as
‖PUad

(wk(t))− P̂Uad
(wk(t))‖U ≤ 1−cl2

cl2
‖PUad

(wk(t))− uk‖U (4.34)

for every t = tk tested during the Armijo linesearch with some constants cl1, cl2 ∈ (0, 1], cf.
[118, Eq. (3.24)].
Then, the trial step skC := pk(tk) fulfills condition (4.13) with

%t1(t) :=
cic

2
l1cl2cecf
τ t, %t2(t) := 1

cl2τ
·min

{2(1−ce)ci
cm

, cacf

}
t,

and χk(0) = χ̃k(0).

Proof. From (4.33) we get that

cl1‖PUad
(wk(t))− uk‖U

≤ cl1‖PUad
(wk(t))− P̂Uad

(wk(t))‖U + cl1‖P̂Uad
(wk(t))− uk‖U

≤ (1− cl1)‖P̂Uad
(wk(t))− uk‖U + cl1‖P̂Uad

(wk(t))− uk‖U
= ‖P̂Uad

(wk(t))− uk‖U = ‖pk(t)‖U

(4.35)

for every tested t = tk. Using

1
t ‖PUad

(wk(t))− uk‖U ≥ 1
τ χ̃k(0) (4.36)

for t ≤ τ by [60, Lem. 1.10 (e)], which states that the function φ(t) := 1
t ‖PUad

(uk−t∇mk(0))−
uk‖U (t > 0) is non-increasing, and (4.32a) as well as (4.35), we conclude that

predk = mk(0)−mk(p
k(tk)) ≥ cice

tk
‖pk(tk)‖2U

≥ cicecl1 · 1
tk
‖PUad

(wk(tk))− uk‖U · ‖pk(tk)‖U
≥ cicecl1 · 1

τ χ̃k(0) · ‖pk(tk)‖U

(4.37)

holds by tk ≤ ca,k ≤ τ .
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Now consider the case that tk found by the standard projected Armijo linesearch for (4.32a)
already satisfies (4.32b). Thus, Lemma 4.19 can be applied and tk ≥ min

{2(1−ce)cicf
cmk

, ca,k
}

holds. From (4.37), (4.35), and (4.36) it now follows that

predk ≥ cicecl1
τ χ̃k(0) · cl1tkτ χ̃k(0)

≥ cicecl1
τ χ̃k(0) ·min

{2(1−ce)cicf
cmk

, ca,k
}
· cl1τ χ̃k(0)

=
cic

2
l1cl2cecf
τ χ̃k(0) · 1

cl2τ
·min

{2(1−ce)ci
cm

, cacf

}
χ̃k(0)

= %t1(χ̃k(0)) · %t2(χ̃k(0)) ≥ %t1(χ̃k(0)) ·min{%t2(χ̃k(0)),∆k}.

In the case that the standard search for (4.32a) does not yield tk satisfying (4.32b), tk has
to be decreased further. It follows that

∥∥pk( tkcf )∥∥U > ∆k.
In analogy to (4.35) we can conclude from (4.34) that

cl2‖pk(t)‖U = cl2‖P̂Uad
(wk(t))− uk‖U ≤ ‖PUad

(wk(t))− uk‖U (4.38)

for every tested t = tk. With (4.35), [60, Lem. 1.10 (e)], and (4.38) we obtain

‖pk(tk)‖U ≥ cl1‖PUad
(wk(tk))− uk‖U

≥ cl1cf‖PUad
(wk( tkcf ))− uk‖U

≥ cl1cl2cf‖pk( tkcf )‖U > cl1cl2cf∆k.

(4.39)

Hence, by (4.37), we get

predk ≥ cicecl1
τ χ̃k(0) · ‖pk(tk)‖U

> cicecl1
τ χ̃k(0) · cl1cl2cf∆k

= %t1(χ̃k(0)) ·∆k ≥ %t1(χ̃k(0)) ·min{%t2(χ̃k(0)),∆k}.

Therefore, in both cases, (4.13) is satisfied with χk(0) = χ̃k(0).

Remark 4.21.

• If (4.33) holds with cl1 ∈ (1
2 , 1], (4.34) follows if we choose cl2 = 2cl1−1

cl1
∈ (0, 1]: From

(4.33), we obtain

‖PUad
(wk(t))− P̂Uad

(wk(t))‖U
≤ 1−cl1

cl1
‖P̂Uad

(wk(t))− uk‖U

≤ 1−cl1
cl1

(
‖P̂Uad

(wk(t))− PUad
(wk(t))‖U + ‖PUad

(wk(t))− uk‖U
)
.

This is equivalent to

2cl1−1
cl1
‖PUad

(wk(t))− P̂Uad
(wk(t))‖U ≤ 1−cl1

cl1
‖PUad

(wk(t))− uk‖U ,

which yields (4.34) with the given value of cl2.
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• The prerequisite (4.34) in Lemma 4.20 can be dropped if the discrete projection P̂Uad

onto Uad ∩U is used (cf. [118]) since then

‖pk(tk)‖U ≥ cf‖pk( tkcf )‖U

holds by the projection property of P̂Uad
, which we do not assume in general, and then

replaces (4.39). The constants in %t1 and %t2 change accordingly.

• Instead of (4.33) and (4.34) one can directly assume (4.35) and (4.38) in Lemma 4.20,
but these conditions can be more difficult to evaluate than (4.33) and (4.34). In partic-
ular, the verification of condition (4.35) only requires the estimation of the projection
error and the evaluation of the inexact projection.

• Given ca ∈ (0, τ ], it makes sense to choose

ca,k := max{ca,min{τ, cl2∆k
‖∇mk(0)‖U }} (4.40)

in the Armijo condition because with tk ≤ cl2∆k
‖∇mk(0)‖U , which is not always ensured by

(4.40), and (4.38) we obtain

‖pk(tk)‖U ≤ 1
cl2
‖PUad

(uk − tk∇mk(0))− uk‖U
= 1

cl2
‖PUad

(uk − tk∇mk(0))− PUad
(uk)‖U

≤ tk
cl2
‖∇mk(0)‖U ≤ ∆k,

which is exactly (4.32b). Note that this choice of tk is not necessary (only sufficient) for
(4.32b). This observation yields together with Lemma 4.19 that the projected Armijo
linesearch terminates after finitely many times decreasing tk.

Lemma 4.22. Let t ≤ τ and let P̂Uad
(wk(t)) ∈ Uad be computed such that (4.24) holds with

εp fulfilling
εp ≤ (1−cl1)t

cpτ
χ̃k(0). (4.41)

Then, (4.33) holds.

Proof. We write P̂ = P̂Uad
(wk(t)), P = PUad

(wk(t)), and u = uk and get

1−cl1
cl1
‖P̂− u‖U ≥ 1−cl1

cl1

(
‖P − u‖U − ‖P − P̂‖U

)
≥ 1−cl1

cl1

(
t
τ χ̃k(0)− cpεp

) (4.41)
≥ cp

cl1
εp − 1−cl1

cl1
cpεp

= cpεp

(4.24)
≥ ‖P̂− P‖U ,

which proves (4.33). In the second estimate we have used (4.24) and (4.36).

Remark 4.23. In the same way, we obtain that (4.34) is satisfied if

εp ≤ (1−cl2)t
cl2cpτ

χ̃k(0).

62



4.3. Satisfying the Conditions Required by the Algorithm

Having computed the generalized Cauchy point skC yields a simple criterion for (4.13):

Lemma 4.24 (Fraction of generalized Cauchy decrease). Let skC be computed according to
Lemma 4.20 and let sk ∈ Uad − uk satisfy

mk(0)−mk(s
k) ≥ cd(mk(0)−mk(s

k
C))

with some cd ∈ (0, 1].
Then, sk satisfies (4.13) with χk(0) = χ̃k(0) and

%t1(t) :=
cdcic

2
l1cl2cecf
τ t, %t2(t) := 1

cl2τ
·min

{2(1−ce)ci
cm

, cacf

}
t.

Proof. From Lemma 4.20 we know that skC satisfies (4.13) with

%t1(t) :=
cic

2
l1cl2cecf
τ t, %t2(t) := 1

cl2τ
·min

{2(1−ce)ci
cm

, cacf

}
t,

and χk(0) = χ̃k(0). The stated result follows immediately.

Computed Reduction

The computed reduction is only evaluated as long as χk(0) is positive, which is ensured by
the stopping criterion of Algorithm 1. Then the predicted reduction predk is positive by
(4.13). The inequality (4.12) can be reduced to a bound on the inexact objective function
evaluation:

Lemma 4.25. Let
|Ĵ(u)− Ĵk(u)| ≤ 1

2%r(η3 min{predk, rk})

hold for all u ∈ {uk, uk + sk} ⊂ U . Then, condition (4.12) is fulfilled.

Proof. Using the definitions (4.6a) and (4.6b), we estimate

|aredk − credk| ≤ |Ĵ(uk)− Ĵk(uk)|+ |Ĵk(uk + sk)− Ĵ(uk + sk)| ≤ %r(η3 min{predk, rk}),

which is (4.12).

Choosing εo ≤ c̃o ·(η3 min{predk, rk})eo > 0 with some constant c̃o > 0 and %r(t) = 2coc̃ot
eo ,

the condition given in Lemma 4.25 can be fulfilled by Assumption 4.9.

Update of the Trust-Region Radius

Due to predk > 0, the quantity credk
predk

is well-defined. Since we have 0 < ∆k ≤ ∆max and
0 < ν1 < 1 ≤ ν2 < ν3, the intervals from which the new radius ∆k+1 is chosen are always
nonempty.
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4.4. Solution of Subproblems by a Semismooth Newton
Method

To obtain fast convergence of the algorithm, it is necessary to apply a more sophisticated
solver to the trust-region subproblem (4.5). Since a semismooth Newton method [92, 110,
58, 111] gave very good results previously [46] and also in different contexts involvings PDEs
[60, 111], we want to apply it here also. As it is difficult to handle, e. g., box constraints
and an additional trust-region constraint at the same time, we replace the latter in (4.5) by
quadratic regularization and obtain

min
s∈U

mk(s) +
cn,k
2∆k
‖s‖2U s. t. uk + s ∈ Uad (4.42)

with some constant cn,k > 0. A solution of this problem is not necessarily feasible for (4.5).
Still, there is a connection between the two problems:

Lemma 4.26. Let s̄ ∈ U be a global solution of (4.42) with ‖s̄‖U = ∆k. Then, s̄ solves (4.5).

Proof. It holds thatmk(s̄)+
cn,k
2∆k
‖s̄‖2U ≤ mk(s)+

cn,k
2∆k
‖s‖2U for all s ∈ U such that uk+s ∈ Uad.

Thus, mk(s̄) ≤ mk(s) +
cn,k
2∆k

(
‖s‖2U −‖s̄‖2U

)
≤ mk(s) for all s ∈ U such that uk + s ∈ Uad and

‖s‖2U ≤ ∆2
k.

For the application of semismooth Newton we follow [60, Chap. 2] and [111]. A necessary
optimality condition for (4.42) is given by

R(s̄) := s̄− PUad−uk
(
s̄− τn,k(∇mk(s̄) +

cn,k
∆k
s̄)
)

= 0 (4.43)

with an arbitrary τn,k > 0. We consider the case of a quadratic model

mk(s) = mk(0) + (∇mk(0), s)U + 1
2(∇2mk(0)s, s)U

with gradient ∇mk(s) = ∇mk(0) + ∇2mk(0)s. In our application we have ∇mk(0) =
−B∗T̃ (uk) + γuk =: Ĝ(uk) + γuk, where T̃ (uk) is the inexact adjoint state. The Hessian
of the model can be a positive multiple of the identity or a better approximation of the true
Hessian. The Hessian is often of the form

∇2mk(0)s = Ĥ(uk)s+ γs, (4.44)

cf. (3.23), with Ĥ(uk) ∈ L(U,U). The operator Ĥ(uk) need not necessarily correspond to
the exact Hessian as derived in (3.23), but is only required to fulfill certain properties to
establish semismoothness.
Choosing τn,k := (γ +

cn,k
∆k

)−1, (4.43) becomes

R(s̄) = s̄− PUad−uk
(
s̄− τn,k(∇mk(s̄) +

cn,k
∆k
s̄)
)

= s̄− PUad−uk
(
s̄− τn,k(∇mk(0) +∇2mk(0)s̄+

cn,k
∆k
s̄)
)

=

= s̄− PUad−uk
(
−τn,k(∇mk(0) + Ĥ(uk)s̄)

)
= s̄+ uk − PUad

(
uk − τn,k∇mk(0)− τn,kĤ(uk)s̄

)
= 0.

(4.45)
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Now, assume that uk ∈ Lq(Ωu) and ∇mk(0) ∈ Lq(Ωu) holds with some q ≥ 2,8 which can
be ensured by uk ∈ Uad ⊂ Lq(Ωu) and Ĝ(uk) ∈ Lq(Ωu) for example, as well as Ĥ(uk) ∈
L(L2(Ωu), Lq(Ωu)). Then,

f1 : L2(Ωu)→ Lq(Ωu), s 7→ f1(s) := uk − τn,k∇mk(0)− τn,kĤ(uk)s

is affine, bounded and thus {−τn,kĤ(uk)}-semismooth by [111, Prop. 3.4]. If addition-
ally PUad

: Lq(Ωu) → L2(Ωu) is ∂PUad
-semismooth and bounded near f1(s), we can ap-

ply the chain rule [111, Prop. 3.8] to show that R is ∂R-semismooth at s with ∂R(s) =
{I + τn,kMP Ĥ(uk) : MP ∈ ∂PUad

(f1(s))}.
Given a current iterate sk,` and MP ∈ ∂PUad

(f1(sk,`)), the semismooth Newton equation
for an update d̃k,` reads

d̃k,` + τn,kMP Ĥ(uk)d̃k,` = −R(sk,`).

Having computed a solution of it (approximately), we set sk,`+1 := sk,` + d̃k,`.

Remark 4.27. To prove superlinear convergence of the semismooth Newton method, a
regularity condition is required. Such a condition can be derived depending on the concrete
choice of Uad and the solution of (4.42), see [111, Sec. 9.1].

In contrast to the projected linesearch developed in Section 4.3, the (approximate) solution
found by applying semismooth Newton to (4.42) may not be feasible for (4.5). Thus, we set
skSSN := P{s∈U :‖s‖U≤∆k}

(
PUad−uk(ŝk)

)
, where ŝk is an (approximate) solution of (4.42).

Lemma 4.28. Given ŝ ∈ U , u ∈ U and ∆k > 0, s := P{s∈U :‖s‖U≤∆k}
(
PUad−u(ŝ)

)
is feasible

for (4.5), where
P{s∈U :‖s‖U≤∆k}(s) = ∆k

max{‖s‖U ,∆k}s.

Proof. It is obvious that ‖ŝ‖U ≤ ∆k holds. Moreover, by ∆k
max{‖s‖U ,∆k} ≤ 1 for all s ∈ U and

the convexity of Uad, we have

u+ s = u+ ∆k

max{‖PUad−u(ŝ)‖U ,∆k}PUad−u(ŝ)

= ∆k

max{‖PUad−u(ŝ)‖U ,∆k}
(
u+ PUad−u(ŝ)︸ ︷︷ ︸

∈Uad

)
+
(
1− ∆k

max{‖PUad−u(ŝ)‖U ,∆k}
)
u ∈ Uad.

8Often, depending on the concrete choice of Uad, we need q > 2 to establish semismoothness.
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5. Realization of the Required Error
Estimates for the Model Problem

We want to apply Algorithm 1 to the example from Section 3.2. To ensure global convergence
we have to control the following quantities, see Chapter 4:

• The inexactness of the model gradient:

‖∇mk(0)−∇Ĵ(uk)‖U ≤ %g(∆k), (5.1)

where %g : R>0 → R≥0 is a function satisfying limt→0+ %g(t) = 0, e. g., %g(t) = cgt,
cg > 0.

• The inexactness of the approximate criticality measure:

|χk(0)− χ(uk)| ≤ %c(χk(0)), (5.2)

where %c : R≥0 → R≥0 is a function satisfying limt→0+ %c(t) = 0 and %c(0) = 0, e. g.,
%c(t) = cct, cc > 0.

• The quality of the computed reduction:

|aredk − credk| ≤ %r(η3 min{predk, rk}), (5.3)

with η3 < min{η1, 1−η2}, where 0 < η1 < η2 < 1 are chosen a priori, and with a forcing
sequence (rk)k∈N0 ⊂ R>0 fulfilling limk→∞ rk = 0 and a function %r : R>0 → R≥0

fulfilling %r(t) ≤ t for all t ∈ (0, t̄] with some fixed t̄ > 0, e. g., %r(t) = crt
er , cr > 0,

er > 1.

In this chapter, we discuss how the required error estimates (5.1), (5.2), and (5.3) can be
ensured for the example from Section 3.2, but several estimates will hold in a more general
setting.

5.1. Realization of the Error Estimates in the Deterministic
Case

First, we focus on the deterministic case with fixed ξ ∈ Ξ, where the objective function

J [ξ](y, u) = 1
2‖Q(ξ)y − q̂(ξ)‖2H + γ

2‖u‖
2
U (5.4)
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is of tracking type with a real Hilbert space H, a desired state q̂(ξ) ∈ H, Q(ξ) ∈ L(Y,H),
and γ > 0 as in (3.4) and the state equation is

E[ξ](y, u) = A(ξ)y +N(y)−B(ξ)u− b(ξ) = 0 (5.5)

with a strongly monotone (with constant κ), linear, bounded operator A(ξ) : Y → Y ∗, a
monotone and continuously differentiable operator N : Y → Y ∗, B(ξ) ∈ L(U, Y ∗), and
b(ξ) ∈ Y ∗, cf. (3.10) and Assumption 3.3. In the following, we will skip the dependence on
ξ because it is fixed. Still, all derived results are valid for almost every ξ ∈ Ξ. Furthermore,
we skip the index k denoting the iteration number in the algorithm for readability purposes
in this section as far as possible.
In the following, we describe the procedure which is employed to realize the error control

in the deterministic case.

Model Gradient Error

The model gradient is computed by the (formal) adjoint approach with inexact solutions ỹ
and z̃ of the state and (formal) adjoint equation, respectively. Let y = S(u) ∈ Y be the exact
state solving E(S(u), u) = 0 and let ỹ ∈ Y be an inexact solution. The perturbed adjoint
equation reads

Ey(ỹ, u)∗ẑ = −Jy(ỹ, u). (5.6)

Its exact solution is denoted by ẑ and its inexact solution by z̃, whereas z is the exact adjoint
state solving

Ey(y, u)∗z = −Jy(y, u). (5.7)

Theorem 5.1. Let J : Y ×U → R be defined as in (5.4), let E : Y ×U → Y ∗ be as in (5.5),
and let u ∈ U and ỹ, z̃ ∈ Y be given. Moreover, let y ∈ Y be the exact solution of E(y, u) = 0
and let z ∈ Y and ẑ ∈ Y be the exact solutions of (5.7) and (5.6), respectively.
Choosing m such that m′(0) = Eu(ỹ, u)∗z̃ + Ju(ỹ, u), it then holds that

‖m′(0)− Ĵ ′(u)‖U∗ ≤ ‖B∗(ẑ − z̃)‖U∗ + 1
κ‖B‖L(U,Y ∗)‖Q‖L(Y,H)

(
‖Q(y − ỹ)‖H

+ 1
κ‖N

′(ỹ)−N ′(y)‖L(Y,Y ∗)(‖Qỹ − q̂‖H + ‖Q(y − ỹ)‖H)
)
.

(5.8)

Proof. From the choice of m′(0) and (5.7) we obtain using that Eu ≡ −B and that Ju is
independent of y:

‖m′(0)− Ĵ ′(u)‖U∗ = ‖Eu(ỹ, u)∗z̃ − Eu(y, u)∗z + Ju(ỹ, u)− Ju(y, u)‖U∗
= ‖B∗(z − z̃)‖U∗ ≤ ‖B∗(z − ẑ)‖U∗ + ‖B∗(ẑ − z̃)‖U∗ .

(5.9)

Since both equations (5.6) and (5.7) are uniquely solvable because of the strong mono-
tonicity of A∗ +N ′(y)∗ for every y ∈ Y by Proposition A.4, we can compute

ẑ − z = − Ey(ỹ, u)−∗Jy(ỹ, u) + Ey(y, u)−∗Jy(y, u)

= Ey(ỹ, u)−∗(Jy(y, u)− Jy(ỹ, u)) + (Ey(y, u)−∗ − Ey(ỹ, u)−∗)Jy(ỹ, u)

+ (Ey(y, u)−∗ − Ey(ỹ, u)−∗)(Jy(y, u)− Jy(ỹ, u)).

(5.10)
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With (5.4) and (5.5), the perturbed adjoint equation (5.6) reads

Ey(ỹ, u)∗z = A∗z +N ′(ỹ)∗z = −Q∗(Qỹ − q̂) = −Jy(ỹ, u).

Compared to the exact adjoint equation (5.7), the error in the right-hand side is

Jy(y, u)− Jy(ỹ, u) = Q∗Q(y − ỹ). (5.11)

For the estimation of the error caused by the approximate left-hand side operator, we
introduce for b̃ ∈ Y ∗ the unique solutions v, ṽ ∈ Y of the equations

A∗v +N ′(y)∗v = b̃,

A∗ṽ +N ′(ỹ)∗ṽ = b̃,

respectively. We have v − ṽ = (Ey(y, u)−∗ − Ey(ỹ, u)−∗)b̃. Using the monotonicity of N ′(y)
(Proposition A.4) and the strong monotonicity of A with constant κ, we estimate:

κ‖v − ṽ‖2Y ≤ 〈v − ṽ, A(v − ṽ)〉Y,Y ∗ ≤ 〈v − ṽ, (A+N ′(y))(v − ṽ)〉Y,Y ∗

= 〈A∗v −A∗ṽ +N ′(y)∗v −N ′(y)∗ṽ, v − ṽ〉Y ∗,Y

= 〈b̃−A∗ṽ −N ′(ỹ)∗ṽ +N ′(ỹ)∗ṽ −N ′(y)∗ṽ, v − ṽ〉Y ∗,Y

= 〈(N ′(ỹ)−N ′(y))∗ṽ, v − ṽ〉Y ∗,Y ≤ ‖(N ′(ỹ)−N ′(y))∗ṽ‖Y ∗‖v − ṽ‖Y ,

cf. the proof of Theorem 3.12. This results in

‖(Ey(y, u)−∗ − Ey(ỹ, u)−∗)b̃‖Y ≤ 1
κ‖(N

′(ỹ)−N ′(y))∗ṽ‖Y ∗

≤ 1
κ2 ‖N ′(ỹ)−N ′(y)‖L(Y,Y ∗)‖b̃‖Y ∗ ,

(5.12)

where the last estimate is due to the strong monotonicity of A∗ + N ′(ỹ)∗. Inserting (5.11)
into (5.10) and using (5.12), we obtain (again using strong monotonicity):

‖ẑ − z‖Y ≤ 1
κ‖Q

∗Q(y − ỹ)‖Y ∗

+ 1
κ2 ‖N ′(ỹ)−N ′(y)‖L(Y,Y ∗)

(
‖Q∗(Qỹ − q̂)‖Y ∗ + ‖Q∗Q(y − ỹ)‖Y ∗

)
.

(5.13)

Combining this and (5.9) results in (5.8).

To bound the gradient error, we therefore have to control the error ‖B∗(ẑ − z̃)‖U∗ caused
by the inexact solution of the perturbed adjoint equation (5.6). If, e. g., B ≡ ι : L2(Ω) ↪→
H−1(Ω), it is sufficient to control the adjoint state error in the L2(Ω)-norm. This is no longer
true if a boundary control problem is considered. We will therefore estimate ‖B∗(ẑ− z̃)‖U∗ ≤
‖B‖L(U,Y ∗)‖ẑ − z̃‖Y and control the error in the Y -norm. Another reason for this is that a
posteriori error estimation techniques to estimate the L2(Ω)-error require the PDE solution
to have H2(Ω)-regularity, see, e. g., [2, Sec. 2.4]. This cannot be guaranteed if the coefficient
function κ(·, ξ) in the definition (3.10) of the operator A(ξ) is only L∞(Ω)-regular, i. e., it
can contain jumps along edges for example, or if the domain Ω is non-convex.
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Moreover, we have to control the errors ‖Q(y − ỹ)‖H or even ‖Q∗Q(y − ỹ)‖Y ∗ , see (5.13),
and ‖N ′(ỹ)−N ′(y)‖L(Y,Y ∗) introduced by the inexact solution of the state equation. Again,
if, e. g., Q ≡ ι : H1

0 (Ω) ↪→ L2(Ω), it is sufficient to control the state error in the L2(Ω)-norm,
which is no longer true if we have a problem with, e. g., boundary observation. Furthermore,
we will see that an error estimate possibly in a stronger norm than the L2(Ω)-norm is required
to bound ‖N ′(ỹ)−N ′(y)‖L(Y,Y ∗).
The error in the computed state and adjoint state can be controlled by standard a posteriori

techniques for elliptic PDEs. If N ′ is locally Lipschitz continuous w. r. t. y, bounding the
error ‖N ′(ỹ) − N ′(y)‖L(Y,Y ∗) reduces to the estimation of the local Lipschitz constant cN ′
due to ‖N ′(y, u)−N ′(ỹ, u)‖L(Y,Y ∗) ≤ cN ′‖ỹ − y‖Y . But then, the state error in the possibly
stronger Y -norm has to be estimated. For the example from Section 3.2, this local Lipschitz
constant can be bounded as follows:

Lemma 5.2. Let N : Y → Y ∗ be defined as in (3.10) (skipping the dependence on ξ) and let
ϕ : R→ R fulfill the respective conditions in Assumption 3.3.
Then it holds that

‖N ′(ỹ)−N ′(y)‖L(Y,Y ∗) ≤ c3
p

(
a′′ϕ′′ λ(Ω)(p−3)/p + c′′ϕ′′c

p−3
p

(
‖ỹ‖Y + ‖y − ỹ‖Y

)p−3
)
‖y − ỹ‖Y ,

(5.14)
where λ is the Lebesgue measure on Ω and cp > 0 is the Sobolev constant such that ‖y‖Lp(Ω) ≤
cp‖y‖H1

0 (Ω) holds for every y ∈ Y .

Proof. We have that 〈N ′(y)v, ṽ〉Y ∗,Y =
∫

Ω ϕ
′(y)vṽ dx for y, v, ṽ ∈ Y and that ϕ : R → R

is a twice continuously differentiable, increasing function, which fulfills the growth condition
(3.7), i. e., |ϕ′′(t)| ≤ a′′ϕ′′ + c′′ϕ′′ |t|p−3 with a′′ϕ′′ , c

′′
ϕ′′ ≥ 0 and p ∈ (3,∞) for n = 2 and p ∈ (3, 6]

for n = 3. Thus, we can estimate with ri ∈ [1,∞] (i ∈ {1, 2, 3, 4, 5}), 1
r1

+ 1
r2

+ 1
r3

= 1,
1
r4

+ 1
r5

= 1
r1
, and r4(p− 3) ≥ 1 (to be specified later):

|〈(N ′(y)−N ′(ỹ))v, ṽ〉Y ∗,Y |

≤ ‖ϕ′(y)− ϕ′(ỹ)‖Lr1 (Ω)‖v‖Lr2 (Ω)‖ṽ‖Lr3 (Ω)

≤
∫ 1

0 ‖ϕ
′′(ỹ + τ(y − ỹ))(y − ỹ)‖Lr1 (Ω) dτ · ‖v‖Lr2 (Ω)‖ṽ‖Lr3 (Ω)

≤
(
a′′ϕ′′ · λ(Ω)1/r4 + c′′ϕ′′ · sup

τ∈[0,1]
‖ỹ + τ(y − ỹ)‖p−3

Lr4(p−3)(Ω)

)
· ‖y − ỹ‖Lr5 (Ω)‖v‖Lr2 (Ω)‖ṽ‖Lr3 (Ω)

≤ cr2cr3

(
a′′ϕ′′ · λ(Ω)1/r4 + c′′ϕ′′ ·

(
max{‖y‖Lr4(p−3)(Ω), ‖ỹ‖Lr4(p−3)(Ω)}

)p−3
)

· ‖y − ỹ‖Lr5 (Ω)‖v‖H1
0 (Ω)‖ṽ‖H1

0 (Ω),

(5.15)

where cr̂ is the constant from the Sobolev embedding Y = H1
0 (Ω) ↪→ Lr̂(Ω) with adequately

chosen r̂ ∈ [1,∞) or r̂ ∈ [1, 6] dependent on n. Choosing r2 = r3 = r̃ with r̃ ∈ (2,∞) for
n = 2 and r̃ ∈ (2, 6] for n = 3, r5 = r̃(p−2)

r̃−2 = p−2+ 2(p−2)
r̃−2 > p−2 > 1, and r4 = r5

p−3 > 1+ 1
p−3 ,

70



5.1. Realization of the Error Estimates in the Deterministic Case

this gives

‖N ′(y)−N ′(ỹ)‖L(Y,Y ∗)

≤ c2
r̃

(
a′′ϕ′′ · λ(Ω)(p−3)/r5 + c′′ϕ′′

(
max{‖y‖Lr5 (Ω), ‖ỹ‖Lr5 (Ω)}

)p−3
)
‖y − ỹ‖Lr5 (Ω).

(5.16)

The concrete choice r̃ = p in (5.16) (giving r5 = p, r4 = p
p−3) and the Sobolev embedding

Y ↪→ Lp(Ω) yield (5.14).

Remark 5.3. From (5.16) we see that it is enough to control the Lr5(Ω)-error in the com-
puted state. For n = 2 we can choose r̃ arbitrarily large, but not r̃ =∞, giving that r5 can
be arbitrarily close to p− 2.

Criticality Measure Error

By Proposition 4.11, ensuring

‖∇mk(0)−∇Ĵ(uk)‖U ≤ min{1−cs
τ %c(χk(0)), %g(∆k)}

as well as
‖[PUad

− P̂Uad
](uk − τ∇mk(0))‖U ≤ cs%c(χk(0))

for some constant cs ∈ [0, 1] yields (4.10) and (4.11).
Thus, if we can control the error in the model gradient as discussed in Theorem 5.1, it

remains to control the inexactness in the projection.

Remark 5.4. In certain cases, the difference between the exact and the approximate pro-
jection can be computed exactly:

• If U = Rnu is finite dimensional and Uad is a convex set for which the projection can
be computed simply, e. g., a box or an ellipsoid, there is no need for introducing an
approximate projection, i. e., PUad

− P̂Uad
≡ 0.

• If U = L2(Ωu) with Ωu being a measurable subset of Ω or ∂Ω and the discretization
allows for the exact computation of norms, the projection onto a ball Uad := {u ∈ U :
‖u‖U ≤ %} with % > 0 can also be computed exactly.

• The same holds true for U = L2(Ωu) and Uad := {u ∈ U : ul ≤ u ≤ uu a. e.} with
ul < uu ∈ R and a discretization by piecewise constant functions.

• Assume that U = L2(Ωu) with Ωu being a subset of the domain Ω or its boundary
∂Ω, and that continuous, linear finite elements with nodal bases are used for its dis-
cretization. Let Uad be described by pointwise bound constraints with continuous,
piecewise linear functions as bounds, which can be represented exactly in the current
discretization. Then, the approximate projection is typically computed by pointwisely
projecting the nodal function values onto the box. In [118] a method for computing the
error exactly is presented. It is used that the L2-projection on the continuous level can
be written in a pointwise fashion. The error is computed on each element of the FE
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Figure 5.1.: Exact and inexact L2-projection onto a box in 1D.

discretization separately and can be reduced by refining the elements with the largest
error contribution. In Figure 5.1, the exact and the inexact projection of a linear FE
function u onto a box with constant upper bound in 1D is depicted. It can be recog-
nized that the error in the node-wise projection occurs exactly on two elements, namely
the ones where the function u crosses the upper bound. This error can be computed
exactly. The elements with the largest error contribution can be refined uniformly if a
higher accuracy of the node-wise projection is required.

• If the projection is computed by solving

p̄ := PUad
(u) = arg min

p∈Uad

1
2‖u− p‖

2
U

approximately, the distance of an ε-solution p̂ ∈ Uad to p̄ ∈ Uad can be estimated as
‖p̂− p̄‖U ≤

√
2ε due to

2ε ≥ ‖u− p̂‖2U − ‖u− p̄‖2U = ‖u− p̄+ p̄− p̂‖2U − ‖u− p̄‖2U
= 2 (u− p̄, p̄− p̂)U︸ ︷︷ ︸

≥0

+‖p̂− p̄‖2U .

Note that in all cases where the projection can be computed exactly, we can set cP = 0 in
Proposition 4.11.

Objective Function Evaluation Error

We assume that the inexact reduced objective function Ĵk is evaluated using an inexact
solution ỹ ∈ Y of the state equation, i. e., Ĵ(u) = J(S(u), u) and Ĵk(u) = J(ỹ, u) for some
ỹ ∈ Y . By Lemma 4.25, (5.3) holds if

|Ĵ(u)− Ĵk(u)| ≤ 1

2
%r(η3 min{predk, rk}) for all u ∈ {uk, uk + sk} ⊂ U.

Thus, it is enough to control the error |Ĵ(u)− Ĵk(u)| = |J(y, u)− J(ỹ, u)| for u ∈ U , where
y = S(u) is the exact solution of the state equation. If J is locally Lipschitz continuous
w. r. t. y, it holds that |J(y, u)− J(ỹ, u)| ≤ cJ‖y − ỹ‖Y , and for error estimation we have to
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estimate the error in the computed state and possibly the local Lipschitz constant cJ . For a
tracking-type objective function, we have a more explicit estimate:

Proposition 5.5. Let J : Y ×U → R be of tracking type form (5.4) and let y, ỹ ∈ Y , u ∈ U
be given. Then the following estimate holds true:

|J(y, u)− J(ỹ, u)| ≤ 1
2‖Q(y − ỹ)‖2H + ‖Qỹ − q̂‖H‖Q(y − ỹ)‖H . (5.17)

Proof. We compute

J(y, u)− J(ỹ, u) = 1
2‖Qy −Qỹ +Qỹ − q̂‖2H − 1

2‖Qỹ − q̂‖
2
H

= 1
2‖Q(y − ỹ)‖2H + (Q(y − ỹ), Qỹ − q̂)H .

This shows (5.17).

Combining Lemma 4.25 and Proposition 5.5, we see that we have to estimate the error
‖Q(y − ỹ)‖H ≤ ‖Q‖L(Y,H)‖y − ỹ‖Y , which again reduces to the question of error estimation
for the computed state. An alternative to the estimate given in Proposition 5.5 would be
the dual-weighted-residual method [18], which is well-suited for the estimation of the error
in the objective function of an optimal control problem. We do not employ it here having
our stochastic application in mind. We want to rely on already established error estimation
techniques for PDEs with uncertain inputs, which can be implemented with low-rank tensors.
In conclusion, we only have to control a few errors to ensure (5.1), (5.2), and (5.3):

• The error ‖Q(y − ỹ)‖H of the computed state observation. This error controls the
accuracy of the objective function evaluation and the right-hand side in the perturbed
adjoint equation. For the adjoint equation it would even be enough to control ‖Q∗Q(y−
ỹ)‖Y ∗ .

• The error ‖B∗(ẑ − z̃)‖U∗ introduced by the computed adjoint state. This influences
the error in the computed gradient (together with the perturbation error of the adjoint
equation). The accuracy of the computed gradient is also relevant for the accuracy of
the computed criticality measure.

• The error ‖N ′(y, u) − N ′(ỹ, u)‖L(Y,Y ∗), which is relevant for the perturbed adjoint
equation. A concrete estimator reducing to estimating ‖y− ỹ‖Y is given in Lemma 5.2.

• The error made by the discrete projection in the U -norm. In certain cases this error
can be computed exactly and the U -grid can be refined appropriately.

Overall, everything can be reduced to estimating the errors in the inexact state and adjoint
state as well as the error caused by the inexact projection. An overview of the error estimation
procedure is given in Figure 5.2, where everything highlighted in orange corresponds to the
deterministic case.
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Inexact computed
reduction (5.3)

Inexact model
gradient (5.1)

Inexact criticality
measure (5.2)

Prop. 4.11

Inexact objective
function evaluation

Lemma 4.25

‖Q(y − ỹ)‖H
‖Q(y − ỹ)‖H

‖N ′(ỹ)−N ′(y)‖L(Y,Y ∗)

‖ϕ′(ỹ)− ϕ′(y)‖L2
P(Ξ,Lp/(p−2)(Ω))

‖B∗(ẑ − z̃)‖U∗
‖B∗(ẑ − z̃)‖U∗

Prop. 5.5/5.11

‖y − ỹ‖Y
‖y − ỹ‖L2

P(Ξ;Y )

‖ẑ − z̃‖Y
‖ẑ − z̃‖L2

P(Ξ;Y )
‖[PUad

− P̂Uad
](·)‖U

‖B‖L(U,Y ∗)

(Lemma 5.7)
‖Q‖L(Y,H)

Lemma 5.12
Lemma 5.2/5.10

Prop. 4.11
Thm. 5.1/5.8

Thm. 5.1/5.8

Thm. 5.1/5.8

Additionally, the following quantities have to be computed or estimated:
‖Qỹ − q̂‖H (Theorem 5.1), ‖ỹ‖Y (Lemma 5.2),
‖Qỹ − q̂‖L2

P(Ξ,H) (Theorem 5.8), ‖y‖L∞P (Ξ;Y ) and ‖ỹ‖L∞P (Ξ;Y ) (Lemma 5.10).

Figure 5.2.: Overview of the error estimation procedure for the deterministic problem and
for the stochastic problem in the case rf =∞. Everything highlighted in orange
corresponds to the deterministic case, whereas blue stands for the stochastic case.

5.2. Realization of the Error Estimates in the Stochastic Case

We now extend the considerations from Section 5.1 to the stochastic case, for the example
from Section 3.2 with

E : Y × U → Y ∗, E(y, u) = Ay +N(y)−Bu− b

defined in (3.11) and

J : Y × U → R, J(y, u) =

∫
Ξ
J [ξ](y(ξ), u) dP (5.18)

from (3.4) and J [ξ] from (5.4). In Section 3.4 we have already discussed that the adjoint state
can be used to compute the gradient ∇Ĵ(u) of the reduced objective function, see (3.15).
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Assumption 5.6. In this section we require the following ξ-regularities:

• f ∈ LrfP (Ξ;L2(Ω)), q̂ ∈ LrfP (Ξ;H) for some rf ∈ [p,∞] with p from Assumption 3.3,

• Q ∈ L∞P (Ξ;L(Y,H)), and

• B is constant and defined as in (3.11).

Then we can ensure y, z ∈ L
rf
P (Ξ;Y ) by Corollary 3.15 and Lemma 3.23 and have the

a priori bounds (3.9) and (3.20) on the state and the adjoint state. These estimates yield
bounds for the respective LrfP (Ξ;Y )-norm, which is at least as strong as the Y -norm by
Proposition A.2 because rf ≥ p.

Model Gradient Error

The model gradient is computed as described in Section 3.4, but with inexact solutions of
the respective state and adjoint equations.
Quantities of the form ‖B∗(z − z̃)‖U∗ can be estimated as follows:

Lemma 5.7. Let B : U → Y ∗ be defined by

〈Bu,v〉Y ∗,Y =

∫
Ξ
〈Bu,v(·, ξ)〉Y ∗,Y dP

for some operator B ∈ L(U, Y ∗) (cf. (3.11)) and let z, z̃ ∈ Y be given.
Then it holds that

‖B∗(z − z̃)‖U∗ ≤ ‖B‖L(U,Y ∗) · ‖z̃ − z‖L1
P(Ξ;Y ) ≤ ‖B‖L(U,Y ∗) · ‖z̃ − z‖L2

P(Ξ;Y ).

Proof. For v ∈ Y we have

〈Bu,v〉Y ∗,Y =

∫
Ξ
〈Bu,v(·, ξ)〉Y ∗,Y dP = 〈u,B∗

(∫
Ξ v(·, ξ) dP

)
〉U,U∗ = 〈u,B∗v〉U,U∗ .

We compute

‖B∗(z − z̃)‖U∗ =
∥∥B∗(∫Ξ z̃(·, ξ)− z(·, ξ) dP

)∥∥
U∗

≤ ‖B‖L(U,Y ∗) ·
∫

Ξ
‖(z̃(·, ξ)− z(·, ξ))‖Y dP

≤ ‖B‖L(U,Y ∗) · ‖z̃ − z‖L2
P(Ξ;Y ),

where the last inequality follows from Proposition A.2.

Theorem 5.8. Given Assumptions 3.3 and 5.6 and a control u ∈ U , let y = S(u) ∈
L
rf
P (Ξ;Y ) be the exact state (cf. Corollary 3.15) and let ỹ ∈ L

rf
P (Ξ;Y ). Furthermore, let

z = T (u) ∈ LrfP (Ξ;Y ) be the exact adjoint state (cf. Lemma 3.23), let ẑ ∈ LrfP (Ξ;Y ) be the
unique solution (cf. Proposition 3.24) of the perturbed adjoint equation

Az +N ′(ỹ)z = −Q∗(Qỹ − q̂)H ,

cf. (3.18) and (5.6), and let z̃ ∈ LrfP (Ξ;Y ).
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5. Realization of the Required Error Estimates for the Model Problem

Assume that J : Y × U → R is defined as in (5.18), and that Ĵ : U → R is defined as in
(3.15), and set m′(0) := −B∗z̃ + Ju(ỹ, u). Suppose that r̃ ∈ (2,∞) (for n = 2) or even
r̃ ∈ (2, 6] (for n = 3) and let cr̃ be the Sobolev constant such that ‖y‖Lr̃(Ω) ≤ cr̃‖y‖Y holds
for every y ∈ Y . Let p1 ∈ [1,

rf
p−2 ], p2 ∈ [1, rf ] such that 1

p1
+ 1

p2
= 1.

Then the following estimate holds true:

‖m′(0)− Ĵ ′(u)‖U∗ ≤ (5.19)

‖B∗(z̃ − ẑ)‖U∗ + 1
κ‖B‖L(U,Y ∗)‖Q‖L∞P (Ξ;L(Y,H))

(
‖Q(y − ỹ)‖L1

P(Ξ,H)

+ 1
κc

2
r̃‖ϕ′(ỹ)− ϕ′(y)‖Lp1P (Ξ,Lr̃/(r̃−2)(Ω))

(
‖Qỹ − q̂‖Lp2P (Ξ,H) + ‖Q(y − ỹ)‖Lp2P (Ξ,H)

))
.

Proof. Analogously to (5.9), it holds that

‖m′(0)− Ĵ ′(u)‖U∗ ≤ ‖B∗(ẑ − z̃)‖U∗ + ‖B∗(z − ẑ)‖U∗ .

The second summand is estimated by Lemma 5.7: ‖B∗(z−ẑ)‖U∗ ≤ ‖B‖L(U,Y ∗)‖z−ẑ‖L1
P(Ξ;Y ).

Since z and ẑ are defined pointwise (almost everywhere), the estimate (5.13) yields

‖z − ẑ‖L1
P(Ξ;Y ) ≤ 1

κ‖Q
∗Q(y − ỹ)‖L1

P(Ξ;Y ∗) + 1
κ2 ‖N ′(ỹ)−N ′(y)‖Lp1P (Ξ;L(Y,Y ∗))

·
(
‖Q∗(Qỹ − q̂)‖Lp2P (Ξ;Y ∗) + ‖Q∗Q(y − ỹ)‖Lp2P (Ξ;Y ∗)

)
.

with p1, p2 ∈ [1,∞], 1
p1

+ 1
p2

= 1. Using ‖N ′(y)−N ′(y)‖L(Y,Y ∗) ≤ c2
r̃‖ϕ′(y)−ϕ′(ỹ)‖Lr̃/(r̃−2)(Ω)

(cf. (5.15)) results in (5.19). The admissible values of p1 and p2 ensure together with the
regularity of y, ỹ and the growth of ϕ′ that every appearing quantity in (5.19) is finite.

Remark 5.9. The parameters p1 and p2 in Theorem 5.8 make different estimates involving
‖Q(y− ỹ)‖Lp2P (Ξ;H) with 2 ≤ p2 ≤ rf possible. For larger p2, a weaker norm w. r. t. ξ can be
used to estimate the error in N ′(ỹ).

We see that in general it is sufficient to control the adjoint state error in the L2
P(Ξ;Y )-norm

or even the L1
P(Ξ;Y )-norm. Error control in a weaker norm can be sufficient depending on

the example: For the concrete definition (3.11) of B it holds that

‖B∗(z − z̃)‖U∗ = ‖D∗
(∫

Ξ z̃(·, ξ)− z(·, ξ) dP
)
‖L2(Ωu),

identifying L2(Ωu)∗ = L2(Ωu). If, e. g., D ≡ I : L2(Ω) → L2(Ω), it would be sufficient to
control the L1

P(Ξ;L2(Ω))-error. This is no longer true if we consider, e. g., a boundary control
problem. Thus, we will control the L2

P(Ξ;Y )-error in the adjoint state to keep our algorithm
flexible. Furthermore, this enables us to use the fact that the operatorA is strongly monotone
with constant κ on L2

P(Ξ;Y ) (but not strongly monotone on LpP(Ξ;Y ) for p > 2).
We will see that, in certain cases, it can be sufficient to control the L2

P(Ξ;Y )-error in
the computed state in order to bound the error caused by ỹ entering the perturbed adjoint
equation. Again, we need an estimate of the form

‖ϕ′(ỹ)− ϕ′(y)‖Lp1P (Ξ;Lr̃/(r̃−2)(Ω)) ≤ Cϕ′‖ỹ − y‖Lp3P (Ξ;Y )

with a local Lipschitz constant Cϕ′ .
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5.2. Realization of the Error Estimates in the Stochastic Case

Lemma 5.10. Let ϕ : R → R fulfill the respective conditions in Assumption 3.3, let N :
Y → Y ∗ be defined as in (3.11), and let y, ỹ ∈ Y be given. Let p1 be as in Theorem 5.8 and
let p3, p4 ∈ [1,∞] such that 1

p3
+ 1

p4
= 1

p1
.

Then it holds that

‖ϕ′(ỹ)− ϕ′(y)‖Lp1P (Ξ;Lp/(p−2)(Ω)) ≤ (5.20)

cp‖ỹ − y‖Lp3P (Ξ;Y )

(
a′′ϕ′′ λ(Ω)(p−3)/p + c′′ϕ′′c

p−3
p max

{
‖y‖

L
p4(p−3)
P (Ξ;Y )

, ‖ỹ‖
L
p4(p−3)
P (Ξ;Y )

}p−3
)
.

Proof. As in the proof of Lemma 5.2 we estimate

‖ϕ′(ỹ)− ϕ′(y)‖Lp1P (Ξ;Lr̃/(r̃−2)(Ω))

=
∥∥∫ 1

0
ϕ′′(y + τ(ỹ − y))(ỹ − y) dτ

∥∥
L
p1
P (Ξ;Lr̃/(r̃−2)(Ω))

≤ ‖ỹ − y‖Lp3P (Ξ;Lr̃(Ω)) · sup
τ∈[0,1]

‖ϕ′′(y + τ(ỹ − y))‖Lp4P (Ξ;Lr̃/(r̃−3)(Ω))

for some r̃ ∈ (3,∞), using 1
p3

+ 1
p4

= 1
p1
. The second factor can be estimated as

sup
τ∈[0,1]

‖ϕ′′(y + τ(ỹ − y))‖Lp4P (Ξ;Lr̃/(r̃−3)(Ω))

≤ sup
τ∈[0,1]

‖a′′ϕ′′ + c′′ϕ′′ |y + τ(ỹ − y)|p−3‖Lp4P (Ξ;Lr̃/(r̃−3)(Ω))

= a′′ϕ′′ · λ(Ω)(r̃−3)/r̃ + c′′ϕ′′ ·max
{
‖y‖

L
p4(p−3)
P (Ξ;Lr5 (Ω))

, ‖ỹ‖
L
p4(p−3)
P (Ξ;Lr5 (Ω))

}p−3

with r5 = r̃(p−3)
r̃−3 by |ϕ′′(t)| ≤ a′′ϕ′′ + c′′ϕ′′ |t|p−3 with c′′ϕ′′ ≥ 0 and p > 3. If we choose r̃ = p

and use H1
0 (Ω) ⊂ Lp(Ω), we obtain (5.20).

Combining Theorem 5.8 and Lemma 5.10 and choosing p2 = p3, we see that we have to
estimate the error ‖ỹ−y‖Lp2P (Ξ;Y ), compute the norm ‖ỹ‖

L
p4(p−3)
P (Ξ;Y )

or bound it from above,

and bound the norm ‖y‖
L
p4(p−3)
P (Ξ;Y )

, e. g., by the a priori estimate (3.9).

For rf = ∞ we can choose p2 = p3 = 2 and p4 = ∞. Then it is enough to estimate
the error in the inexact state in the L2

P(Ξ;Y )-norm as long as we can compute or bound
‖ỹ‖L∞P (Ξ;Y ) and ‖y‖L∞P (Ξ;Y ).

For rf < ∞, we have to choose p4 ∈ [
rf
rf−2 ,

rf
p−3 ] and p2 = p3 = 2p4

p4−1 ∈ [
2rf

rf−p+3 , rf ].9

Observe that p1 = 2p4

p4+1 ≤
2rf

rf+p−3 ≤
rf
p− 3

2

follows then. On the one hand, for rf = p we

can take p4 = p
p−2 . Then we have p2 = p3 = p and the error in the computed state has to

be estimated in the Y -norm. On the other hand, for increasing rf and using p4 =
rf
p−3 , the

exponents p2 and p3 get close to 2. Then it is enough to estimate the error in the computed
state in a weaker norm than the Y -norm, but bounds on the exact and the inexact state
have to be computed in a stronger norm.

9Note that 1 <
rf
rf−2

≤ rf
rf−3

≤ rf
p−3

and 2 <
2rf

rf−p+3
≤ 2

3
rf hold for p ∈ (3,∞), rf ∈ [p,∞).
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5. Realization of the Required Error Estimates for the Model Problem

Criticality Measure Error

By Proposition 4.11, the control of the error in the approximate criticality measure reduces
to controlling the inexactness of the approximate projection and the model gradient.

Objective Function Evaluation Error

Proposition 5.11. Let J : Y × U → R be defined as in (3.4) and let y, ỹ ∈ Y , u ∈ U be
given. Then it holds that

|J(y, u)− J(ỹ, u)| ≤ 1
2‖Q(y − ỹ)‖2L2

P(Ξ;H) + ‖Qỹ − q̂‖L2
P(Ξ;H)‖Q(y − ỹ)‖L2

P(Ξ;H).

Proof. The estimate (5.17) (Proposition 5.5) and Hölder’s inequality yield

|J(y, u)− J(ỹ, u)| =
∣∣∣∫

Ξ
J [ξ](y(ξ), u)− J [ξ](ỹ(ξ), u) dP

∣∣∣
≤
∫

Ξ

1
2‖Q(ξ)(y(ξ)− ỹ(ξ))‖2H + ‖Q(ξ)ỹ(ξ)− q̂(ξ)‖H‖Q(ξ)(y(ξ)− ỹ(ξ))‖H dP

≤ 1
2‖Q(y − ỹ)‖2L2

P(Ξ;H) + ‖Qỹ − q̂‖L2
P(Ξ;H)‖Q(y − ỹ)‖L2

P(Ξ;H).

We see that we have to compute or bound the L2
P(Ξ;H)-norm of Qỹ − q̂ and have to

estimate ‖Q(y − ỹ)‖L2
P(Ξ;H). If, e. g., Q(ξ) ≡ ι : H1

0 (Ω) ↪→ L2(Ω) = H, it is enough
to estimate the L2

P(Ξ;L2(Ω))-norm of y − ỹ. This is not true anymore if we consider a
problem with boundary observation. Again, to have a flexible algorithm and to use strong
monotonicity of A, we estimate the L2

P(Ξ;Y )-error and use:

Lemma 5.12. Under Assumption 5.6,

‖Q(y − ỹ)‖L2
P(Ξ;H) ≤ ‖Q‖L∞P (Ξ;L(Y,H))‖y − ỹ‖L2

P(Ξ;Y )

holds for all y, ỹ ∈ Y .

Proof. This is a simple consequence of Hölder’s inequality, cf. Proposition 3.1. It is important
that Q has a higher regularity w. r. t. ξ than required for the operator Q : Y → H to be
well-defined.

How the error in the computed state and adjoint state can be measured up to fixed,
but possibly unknown constant factors, is discussed in the Chapter 7 for the example of a
semilinear, elliptic PDE with stochastic coefficients from Section 3.2.
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6. Discretization of the Model Problem

After discussing the functional analytic setting of the problem, a solution algorithm formu-
lated in a Hilbert space, and the realization of the error estimates based on the error in
the approximate solution of the state and the adjoint equation, it remains to discretize and
adaptively solve the problem and the corresponding equations. The discretization is carried
out almost exactly as in our paper [46], i. e., we use conforming finite element discretizations
for the deterministic state and control spaces and polynomials for the spaces of random vari-
ables. Then the full tensor product of the respective finite-dimensional subspaces is built and
used for a conforming stochastic Galerkin discretization. We use weighted Lagrange poly-
nomials w. r. t. the Gaussian quadrature nodes as bases instead of the typical orthonormal
polynomials with increasing degree. This has some useful consequences:

• These Lagrange polynomials are orthogonal and can be weighted such that they are
orthonormal.

• A connection to stochastic collocation methods can be established, see [44, 46].

• Pointwise state constraints or certain nonsmooth risk measures can be handled by
posing the constraint in every quadrature node in the discrete setting.

• Nonlinear dependence on the parameters and nonlinear operators can be approximated
nicely. This was already done in [46, Example 3.6] and is used in this thesis for the
discretization of the nonlinearity.

In [46], the discretization was fixed, but will now be adaptive. Hence, we will use sequences of
nested discrete spaces with their respective bases and linear maps prolongating the coefficients
in a coarser space to those in a finer space. For completeness, we review the discretization
procedure described in [46] here, add some details about the discretization of all appearing
nonlinearities, and point out necessary changes. The concrete adaptive approach is described
in Chapter 7. Since constructing a finer space and prolongating the coefficients to it is a simple
task for the considered FE and polynomial spaces, we describe only a fixed discretization in
this chapter, having in mind that the mesh size and the degrees of the polynomials are
parameters which will be adapted in the final implementation.

6.1. Space Discretization: Finite Elements

Assumption 6.1. For the discretization of the deterministic function spaces we assume that

• the open, bounded Lipschitz domain Ω ⊂ R2 is polygonal and that

• the restriction DU : U→ L2(Ω) of the given operator D to any used discrete subspace
U ⊂ U can be evaluated exactly.
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6. Discretization of the Model Problem

Remark 6.2. We exclude the case Ω ⊂ R3 here, which leads to a more compact presentation
of a posteriori error estimates in Chapter 7. It is possible to generalize many results to the
3D case. The polygonal domain Ω ⊂ R2 can be covered by a finite element triangulation so
that we do not have to care about variational crimes caused by domain approximation.

The domain Ω is partitioned into a finite element mesh yielding a triangulation T . Let
Y ⊂ Y denote the discrete subspace of piecewise linear, globally continuous finite element
functions with zero boundary data. Generalizations of this would be possible, but are skipped
here for the ease of presentation and implementation. The nodal FE basis of the discrete,
deterministic state space is {φk0}

d0
k0=1 ⊂ Y ⊂ Y = H1

0 (Ω) and the basis of discrete control
space U ⊂ U = L2(Ωu) is denoted by {ψ`}du`=1. This can also be a nodal FE basis if Ωu is
a subset of Ω with positive measure or—for finite-dimensional controls—the standard basis
of Rdu = L2([du]). In the latter case, no discretization is required. The basis functions shall
sum to one, i. e.,

∑d0
k0=1 φk0(x) = 1 and

∑du
ku=1 ψku(x̃) = 1 for all x ∈ Ω, x̃ ∈ Ωu to perform

mass lumping in a meaningful way later.
In addition to assuming that DU : L2(Ωu)→ L2(Ω) can be evaluated exactly (Assumption

6.1), we match the discretizations of the state and the control space, i. e., we use the same
grid on Ω and Ωu if Ωu is a subset of Ω with positive measure. This makes the computation
of the gradient of the reduced objective function easier since typically Ĵ ′(u) = B∗z+γ(u, ·)U .
Then it is desirable that B∗z and u share the same grid. This is also important to be able
to perform gradient-based updates of the control in an optimization method.
We define the following matrices:

• the stiffness matrix K ∈ Rd0×d0 for Y: Kk0l0 := (∇φk0 ,∇φl0)L2(Ω)n ,

• the mass matrix M ∈ Rd0×d0 for Y: Mk0l0 := (φk0 , φl0)L2(Ω),

• the lumped mass matrix ML ∈ Rd0×d0 for Y: (ML)k0k0 :=
∑d0

l0=1 Mk0l0 =
∫

Ω φk0 dx and
(ML)k0l0 = 0 for k0 6= l0,

• the mass matrix M̃ ∈ Rdu×du for U: M̃kulu := (ψku , ψlu)L2(Ωu),

• the lumped mass matrix M̃L ∈ Rdu×du for U: (M̃L)kuku :=
∑du

lu=1 M̃kulu =
∫

Ωu
ψku dx̃

and (M̃L)kulu = 0 for ku 6= lu.

Let y ∈ Rd0 and u ∈ Rdu be the coefficients, representing the discrete state y and control u,
respectively. Inserting y(x) =

∑d0
k0=1 yk0φk0(x) and u(x) =

∑du
ku=1 ukuψku(x) into (3.8), and

testing with v ≡ φk0 for k0 ∈ [d0], the discrete version of the deterministic state equation
reads

A(ξ)y + N(y) = Bu + b(ξ) (6.1)

with

A(ξ) ∈ Rd0×d0 , Ak0l0(ξ) = (κ(·, ξ)∇φl0 ,∇φk0)L2(Ω)n ,

N : Rd0 → Rd0 , N(y) = MLϕ(y),

B ∈ Rd0×du , Bk0lu = (Dψlu , φk0)L2(Ω),

b(ξ) ∈ Rd0 , bk0(ξ) = (f(ξ), φk0)L2(Ω).

(6.2)
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6.1. Space Discretization: Finite Elements

We will refer to A(ξ) as the system matrix in contrast to the stiffness matrix, which is induced
by the H1

0 (Ω)-norm. Due to the ease of implementation and interpolation, a quadrature
error is allowed to occur in the discretization of the nonlinearity which is connected to mass
lumping: The integral

∫
Ω ϕ(y)φk0 dx is evaluated inexactly by a quadrature formula, the

nodes of which are the finite element grid nodes and the weights of which are the respective
entries of the lumped mass matrix. This quadrature formula is exact for integrals over a
single linear finite element function. We obtain∫

Ω
ϕ(y)φk0 dx ≈ ϕ(yk0)(ML)k0k0 . (6.3)

Since the trust-region algorithm (Algorithm 1) is formulated in the infinite-dimensional
space U , it is desirable to not make additional errors by mass lumping in the objective
function, but to evaluate the U - and H-inner product exactly. Let H be discretized such
that Q(ξ)Y can be evaluated exactly and such that q̂(ξ) can be represented exactly. The
discrete subspace H of H is isomorphic to RdH (dH ∈ N) equipped with the inner product
induced by the symmetric, positive definite matrix MH ∈ RdH×dH . Let Q(ξ) ∈ RdH×d0 and
q̂(ξ) ∈ RdH be the discrete versions of Q(ξ) and q̂(ξ), respectively. Then, the discretized
objective function from (3.4) reads

J[ξ](y, u) = 1
2‖Q(ξ)y − q̂(ξ)‖2MH

+ γ
2 u>M̃u. (6.4)

We note that under the stated assumptions, the evaluation of the objective function is exact
so that the error in the reduced objective function depends only on the error in the discretized
state and Proposition 5.5 can be applied. The discrete version of the deterministic adjoint
equation (3.16) is

A(ξ)z(ξ) + ML(ϕ′(y(ξ))� z(ξ)) = −Q(ξ)>MH(Q(ξ)y(ξ)− q̂(ξ)), (6.5)

where again the quadrature formula using the finite element nodes has been applied. In
fact, N′(y)z = ML(ϕ′(y) � z) holds also in the discrete setting and we can identify N′(y) =
ML diag(ϕ′(y)). The gradient of the reduced, deterministic, discretized objective function is
then given by

∇Ĵ[ξ](u) = −M̃−1B>z(ξ) + γu, (6.6)

cf. (3.21). Note that in typical situations it is not necessary to invert the mass matrix M̃ to
compute the reduced gradient: If, e. g., Ωu ⊂ Ω is a subset of positive measure, B∗ : H1

0 (Ω)→
L2(Ωu), z 7→ zΩu is the canonical embedding ι : H1

0 (Ω) ↪→ L2(Ω) combined with restriction
of the function to Ωu, and the grids on Ω and Ωu match, the application of M̃−1B consists of
a simple extraction of components of the vector z(ξ) and/or adding zero components for the
nodes on ∂Ω. Such situations are favorable because the error in the discrete gradient then
only depends on the error in the discrete adjoint state and it is sufficient to apply the error
estimate from Theorem 5.1.

Once the equations (3.25) and (3.24) are discretized, the application of the Hessian operator
to a direction can be computed via (3.23). For this purpose, it only remains to discretize
the term in (3.24) involving the second derivative Nyy, which is again done by using the
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6. Discretization of the Model Problem

FE nodes based quadrature. Then, if s ∈ Rdu represents a direction s ∈ U, and y(ξ), z(ξ)
represent the current state and adjoint state, respectively, the application of the Hessian to
this direction reads

∇2Ĵ[ξ](u)s = M̃−1B>h(ξ) + γs, (6.7)

where h(ξ) solves

[A(ξ) + N′(y(ξ))]h(ξ) = Q(ξ)>MHQ(ξ)d(ξ) + ML

(
z(ξ)� ϕ′′(y(ξ))� d(ξ)

)
with d(ξ) = [A(ξ) + N′(y(ξ))]−1Bs.

6.2. Stochastic Discretization: Polynomial Chaos

We proceed with the discretization of the space LpP(Ξ) of vectors of independent random
variables distributed on Ξ :=×m

i=1 Ξi with the probability measure P :=
⊗m

i=1 Pi.

Assumption 6.3. For the discretization of these spaces we assume the following:

• The sets Ξi ⊂ R are open and bounded10 intervals for all i ∈ [m].

• Each probability measure Pi does not consist of finitely many atoms such that dis-
cretization is really necessary.

For i ∈ {1, . . . ,m} and a fixed d ∈ Nm, the spaces LpPi(Ξi) are discretized by polynomials
of degree di−1. By Assumption 6.3, all polynomials of arbitrary degree defined on Ξi are Pi-
integrable and the space of polynomials is dense in LpP(Ξi), see [106, Chap. 8]. Furthermore,
there exist sets

{
β

(i)
ki

}∞
ki=1

⊂ L2
Pi(Ξi) of orthonormal polynomials w. r. t. the L2

Pi(Ξi)-inner

product, where β(i)
ki

has degree ki − 1 by [106, Thm. 8.5]. These sets are Hilbert bases of
L2
Pi(Ξi), respectively, and can be constructed by applying the Grad-Schmidt process to the

monomial basis {1, ξi, ξ2
i , . . .} for example. We want to mention that some papers [40, 8]

dealing with uncertainty quantification restrict the discussion to certain probability distribu-
tions, for which the “classical” orthonormal polynomials of increasing degree are well-known.
Important examples are the Legendre polynomials for the uniform distribution, the Hermite
polynomials for the normal distribution and the Jacobi polynomials for the beta distribution
[106, Example 8.2]. In order to have a more general setting, we only assume that the or-
thonormal polynomials can be constructed and evaluated, e. g., by the three-term recurrence
relation [106, Sec. 8.2]. In particular, we do not assume a purely continuous [44, 108, 28, 68]
or a symmetric [38] distribution. Defining βk(ξ) :=

∏m
i=1 β

(i)
ki

(ξi) we obtain a set {βk}k∈Nm
of orthonormal polynomials which form a Hilbert basis of L2

P(Ξ), see [116, Thm. 3.12(b)] and
Section 2.2. Note that k is an index vector.
Let {a(i)

li
}dili=1 ⊂ Ξi be the di pairwise distinct roots of the polynomial β(i)

di+1 in ascending
order, respectively. They exist and have the mentioned properties due to [106, Thm. 8.16] and
are known as Gaussian quadrature nodes. Let {w(i)

li
}dili=1 be the positive Gaussian quadrature

10Boundedness of the intervals is assumed because then the set of polynomials of arbitrary degree is a dense
subset of LpPi(Ξi). This condition can possibly be relaxed, cf. [106, Chap. 8].
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6.2. Stochastic Discretization: Polynomial Chaos

weights associated to the nodes {a(i)
li
}dili=1 for i ∈ [m] and li ∈ [di] defined by integration over

the respective Lagrange polynomials, see also [106, Def. 9.2]. We use the Gaussian quadrature
nodes to define weighted Lagrange polynomials

{
θ

(i)
ki

}di
ki=1

, which fulfill θ(i)
ki

(
a

(i)
li

)
= δkili ·ω

(i)
ki

for some weights ω(i)
ki
> 0. If we choose ω(i)

ki
= (w

(i)
ki

)−1/2 for ki ∈ {1, . . . , di}, it follows from
the exactness of Gaussian quadrature, that these weighted Lagrange polynomials are also
orthonormal:∫

Ξi

θ
(i)
ki
θ

(i)
li

dPi =

di∑
ˆ̀
i=1

w
(i)
ˆ̀
i
θ

(i)
ki

(
a

(i)
ˆ̀
i

)
θ

(i)
li

(
a

(i)
ˆ̀
i

)
=

di∑
ˆ̀
i=1

w
(i)
ˆ̀
i
δki ˆ̀i(w

(i)
ki

)−1/2δli ˆ̀i(w
(i)
li

)−1/2 = δkili .

The product of two Lagrange polynomials has degree 2di − 2 and is integrated exactly by
Gaussian quadrature, which is exact up to degree 2di−1 [106, Thm. 9.9]. Defining θ(i)

ki
:≡ β(i)

ki

for ki ≥ di+1, we get that
{
θ

(i)
ki

}∞
ki=1

is also a Hilbert basis of L2
Pi(Ξi). As before, the Hilbert

basis {θk}k∈Nm with θk(ξ) :=
∏m
i=1 θ

(i)
ki

(ξi) can be defined. Writing al :=
(
a

(1)
l1
, . . . , a

(m)
lm

)>
and ωl :=

∏m
i=1ω

(i)
li
, it holds that θk(al) = δkl ·ωl for k ≤ d componentwise.

The state space Y = LpP(Ξ;Y ) ∼= Y ⊗ LpP1
(Ξ1) ⊗ · · · ⊗ LpPm(Ξm) is discretized by the full

tensor product of the respective finite-dimensional subspaces with the basis

{φk0 ⊗ θ
(1)
k1
⊗ · · · ⊗ θ(m)

km
, ki ∈ [di], i ∈ {0, . . . ,m}}.

This is a basis due to [54, Lem. 3.11], see Remark 2.7. A function y ∈ Y belonging to the
finite-dimensional space is represented by a coefficient tensor y ∈ Rd0×···×dm corresponding to
weighted values of the function y since nodal FE ansatz functions and Lagrange polynomials
are used. This means that

y(x, ξ1, . . . , ξm) =

d0∑
k0=1

d1∑
k1=1

. . .

dm∑
km=1

y(k0, k1, . . . , km)φk0(x)θ
(1)
k1

(ξ1) · · · θ(m)
km

(ξm) (6.8)

and in particular

y(x, a
(1)
k1
, . . . , a

(m)
km

) =

d0∑
k0=1

y(
◦
k)φk0(x)ω(k1, . . . , km), (6.9)

where we abbreviate
◦
k = (k0, k1, . . . , km) here, as well as

◦
l = (l0, l1, . . . , lm) and (

◦
k,
◦
l) =

(k0, k1, . . . , km, l0, l1, . . . , lm) etc. in the following in contrast to l = (l1, . . . , lm) etc. The
weight tensors ω,w ∈ Rn1×···×nd are defined by ω(k) :=

∏m
i=1ω

(i)
ki

and w(k) :=
∏m
i=1 w

(i)
ki

and obviously have rank 1.

The discretization of the space LpP1
(Ξ1)⊗ · · · ⊗ LpPm(Ξm) is obtained from the above con-

siderations by setting Y = R, d0 = 1 and φ1 = 1. Let p be a polynomial of coordinate degree
d− 1 belonging to the finite-dimensional subspace Pd−1(Ξ) ⊂ LpP(Ξ), i. e., p is a polynomial
of degree di − 1 in the variable ξi for all i ∈ [d]. We want to emphasize that this function is
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6. Discretization of the Model Problem

represented by a tensor p ∈ Rd1×···×dm given by

p(k1, . . . , km) = p(a
(1)
k1
, . . . , a

(m)
km

)ω(k1, . . . , km).−1 (6.10)

due to (6.9). The standard L2
P(Ξ)-inner product of two functions p, p̃ is discretized by

applying Gaussian quadrature:

(p, p̃)L2
P(Ξ) =

∫
Ξ
p p̃dP =

d1∑
k1=1

. . .

dm∑
km=1

w(k1, . . . , km)p(a
(1)
k1
, . . . , a

(m)
km

) p̃(a
(1)
k1
, . . . , a

(m)
km

)

= 〈w �ω� p,ω� p̃〉 =: 〈p, p̃〉w�ω.2 .
(6.11)

We see that for the special choice of orthonormal polynomials with ω = w.−1/2 the inner
product of two functions is computed by a simple Frobenius inner product of tensors. A
special case is the expectation of a function p, computed as an inner product with the
function 1, which is constant one and represented by the tensor ω.−1.

We now discretize the operators defined in (3.11) by testing with v ∈ Y represented by
v ∈ Rd0×···×dm and using the discretized deterministic operators (6.2), see [46]. This gives

〈Bu,v〉Y ∗,Y =

∫
Ξ

(Du,v(·, ξ))L2(Ω) dP

=

d0,...,dm∑
k0,...,km=1

v(k0, . . . , km)(Du, φk0)L2(Ω)

∫
Ξ

m∏
i=1

θ
(i)
ki

(ξi) dP

= 〈(Bu)⊗ (w �ω), v〉 =: 〈Bu, v〉1⊗(w�ω.2)

with Bu = (Bu)⊗ω.−1 and

〈b,v〉Y ∗,Y =

∫
Ξ

(f(ξ),v(·, ξ))L2(Ω) dP

=

d0,...,dm∑
k0,...,km=1

v(k0, . . . , km)

∫
Ξ

bk0(ξ)
m∏
i=1

θ
(i)
ki

(ξi) dP =: 〈b, v〉1⊗(w�ω.2)

with

b(
◦
k) =

1∏m
i=1 w

(i)
ki

(ω
(i)
ki

)2

(∫
Ξ

bk0(ξ)
m∏
i=1

θ
(i)
ki

(ξi) dP

)
.

We assume that this tensor can be constructed and has sufficiently small rank. In particular,
if bk0(·) are polynomials of total degree at most d, Gaussian quadrature, which is exact up
to coordinate degree 2d− 1, can be applied to compute∫

Ξ
bk0(ξ)

m∏
i=1

θ
(i)
ki

(ξi) dP =

d1,...,dm∑
l1,...,lm=1

w(l)bk0(al)
m∏
i=1

θ
(i)
ki

(a
(i)
li

) = w(k)ω(k)bk0(ak) (6.12)
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6.2. Stochastic Discretization: Polynomial Chaos

so that b(·, k) = ω(k).−1b(ak) holds. Furthermore,

〈Ay,v〉Y ∗,Y =

∫
Ξ

(κ(·, ξ)∇xy(·, ξ),∇xv(·, ξ))L2(Ω)n dP

=

d0,...,dm∑
k0,...,km=1

d0,...,dm∑
l0,...,lm=1

y(
◦
l)v(

◦
k)

∫
Ξ

(A(ξ))k0l0

m∏
i=1

θ
(i)
li

(ξi)θ
(i)
ki

(ξi) dP

= 〈〈ã, y〉(m+2,...,2m+2),[m+1], v〉1⊗(w�ω.2) =: 〈Ay, v〉1⊗(w�ω.2) (6.13)

holds with the tensor ã ∈ Rd0×d1×···×dm×d0×d1×···×dm defined by

ã(
◦
k,
◦
l) :=

1∏m
i=1 w

(i)
ki

(ω
(i)
ki

)2

(∫
Ξ

(A(ξ))k0l0

m∏
i=1

θ
(i)
li

(ξi)θ
(i)
ki

(ξi) dP

)
. (6.14)

The nonlinear part of the equation is approximated by Gaussian quadrature/interpolation
to simplify the implementation. We will see later that this relates the whole approach to
stochastic collocation.

〈N(y),v〉Y ∗,Y =

∫
Ξ

∫
Ω
ϕ(y(x, ξ))v(x, ξ) dx dP

=

d0,...,dm∑
k0,...,km=1

v(k0, . . . , km)

∫
Ξ

∫
Ω
ϕ(y(x, ξ))φk0(x) dx

m∏
i=1

θ
(i)
ki

(ξi) dP

≈
d0,...,dm∑
k0,...,km=1

v(
◦
k)

d1,...,dm∑
l1,...,lm=1

w(l)

∫
Ω
ϕ(y(x, al))φk0(x) dx

m∏
i=1

θ
(i)
ki

(a
(i)
li

)

=

d0,...,dm∑
k0,...,km=1

v(
◦
k)w(k)ω(k)

∫
Ω
ϕ
( d0∑
l0=1

y(l0, k1, . . . , km)φl0(x)ω(k)
)
φk0(x) dx

≈
d0,...,dm∑
k0,...,km=1

v(
◦
k)w(k)ω(k)ϕ

(
y(
◦
k)ω(k)

)
(ML)k0k0

= 〈(1⊗ω.−1)� (ML ◦1 ϕ((1⊗ω)� y)), v〉1⊗(w�ω.2)

= 〈ω̂.−1 � (ML ◦1 ϕ(ω̂� y)), v〉1⊗(w�ω.2) =: 〈N(y), v〉1⊗(w�ω.2),

(6.15)

where the first approximate equality is due to Gaussian quadrature in the parameter space
and the second one is due to the FE nodes based quadrature, which is related to mass
lumping, see (6.3). We define the rank-1-tensor ω̂ := 1⊗ω for readability purposes. Here
we see the importance of using mass lumping and weighted Lagrange polynomials: It yields
that the nonlinear function ϕ : R → R can be applied componentwise to a tensor in the
discrete setting (6.15).

The discrete state equation reads

Ay + N(y) = Bu + b. (6.16)
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6. Discretization of the Model Problem

Assumption 6.4. In order to be able to evaluate the objective function (3.4) on the finite-
dimensional subspace exactly in a simple way, we need the following additional assumptions:

• The operator Q(ξ) = Q is constant.

• The desired state q̂(·) is a polynomial of coordinate degree at most d− 1.

The discrete version of the objective function is

J(y, u) :=

∫
Ξ

J[ξ]
( d1,...,dm∑
k1,...,km=1

y(·, k1, . . . , km)θ
(1)
k1

(ξ1) · · · θ(m)
km

(ξm), u
)

dP

=

∫
Ξ

1
2

∥∥ d1,...,dm∑
k1,...,km=1

Q(ξ)y(·, k1, . . . , km)θ
(1)
k1

(ξ1) · · · θ(m)
km

(ξm)− q̂(ξ)
∥∥2

MH
dP + γ

2 u>M̃u,

(6.17)

cf. (6.4). Since Q(ξ) = Q is constant and q̂(·) is a polynomial of coordinate degree at most
d−1 (Assumption 6.4), the integrand in (6.17) has degree at most 2d−2 ·1 and the integral
can be evaluated exactly by Gaussian quadrature. This gives

J(y, u) =

d1,...,dm∑
l1,...,lm

w(l) 1
2

∥∥ω(l) (Q y(·, l1, . . . , lm))− q̂(al)
∥∥2

MH
+ γ

2 u>M̃u

=: 〈MH(Qy − q̂),Qy − q̂〉+ γ
2 u>M̃u

(6.18)

with Qy = Q ◦1 y, q̂ ∈ RdH×d1×···×dm defined by q̂(·, l) = q̂(al)ω(l)−1, and

MH : RdH×d1×···×dm → RdH×d1×···×dm , MH q̂ := (1⊗ (w �ω.2))� (MH ◦1 q̂). (6.19)

Again, this evaluation is exact on the discrete subspace and the objective function evaluation
error can be estimated using Proposition 5.11.
For the computation of the gradient of the reduced objective function, it remains to dis-

cretize the adjoint equation (3.18). The adjoint state z is represented by the tensor z analo-
gously to the state. We have

〈N ′(y)z,v〉Y ∗,Y =

∫
Ξ

∫
Ω
ϕ′(y(x, ξ))z(x, ξ)v(x, ξ) dx dP

≈
d0,...,dm∑
k0,...,km=1

v(
◦
k)

d1,...,dm∑
l1,...,lm=1

w(l)

∫
Ω
ϕ′(y(x, al))z(x, al)φk0(x) dx

m∏
i=1

θ
(i)
ki

(a
(i)
li

)

≈
d0,...,dm∑
k0,...,km=1

v(
◦
k)w(k)ω(k)ϕ′

(
y(
◦
k)ω(k)

)
z(
◦
k)ω(k)(ML)k0k0

=
〈
ω̂.−1 �

(
ML ◦1

(
ϕ′(ω̂� y)� (ω̂� z)

))
, v
〉
1⊗(w�ω.2)

= 〈N′(y)z, v〉1⊗(w�ω.2),
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6.2. Stochastic Discretization: Polynomial Chaos

cf. (6.15), where N′ is exactly the derivative of the discretized operator N. Furthermore, the
right-hand side is

〈−Q∗(Qy − q̂),v〉Y ∗,Y

=

d1,...,dm∑
k1,...,km=1

v(·, k)>
∫

Ξ

(
−Q>MH

( d1,...,dm∑
l1,...,lm=1

Q y(·, l)
m∏
i=1

θ
(i)
li

(ξi)− q̂(ξ)
)) m∏

i=1

θ
(i)
ki

(ξi) dP

=

d1,...,dm∑
k1,...,km=1

v(·, k)>w(k)ω(k)
(
−Q>MH

(
Q y(·, k)ω(k)− q̂(ak)

))
= 〈−(Q>MH) ◦1 (Qy − q̂), v〉1⊗(w�ω.2), (6.20)

cf. (6.5). Given the solution z of the discretized adjoint equation

Az + N′(y)z = −(Q>MH) ◦1 (Qy − q̂), (6.21)

the gradient of the reduced, discretized objective function reads

∇Ĵ(u) = −(M̃−1B>)〈z,w �ω〉[m]+1,[m] + γu, (6.22)

cf. (6.6). Due to w �ω = (w �ω.2) �ω.−1, the term 〈z,w �ω〉[m]+1,[m] corresponds to
computing the L2

P(Ξ)-inner product (induced by w�ω.2) of z and the function 1 (represented
by ω.−1), i. e., computing the expectation of z, see also (6.11) and the paragraph below this
equation. In [46] we used differently scaled formulations of (6.21) and (6.22), which coincide
to the ones given here in the case w = ω.−1/2 (orthonormal polynomials). Here the form
(6.21) of the adjoint equation is closer to the continuous setting as derived in (6.20). As in
(6.6), the matrix (M̃−1B>) can often be applied without inverting the mass matrix M̃ so that
Theorem 5.8 can be applied to estimate the gradient error.

In analogy to (6.7), we obtain the discrete Hessian

∇2Ĵ(u)s = (M̃−1B>)〈h,w �ω〉[m]+1,[m] + γs, (6.23)

where h ∈ Rd0×···×dm solves

[A+N′(y)]h = (Q>MH) ◦1 (Qd) + ω̂.−1�
(
ML ◦1

(
(ω̂� z)�ϕ′′(ω̂� y)� (ω̂� d)

))
(6.24)

with d = [A+N′(y)]−1Bs and the current state y and adjoint state z. The second summand
at the right hand side of (6.24) is exactly the derivative N′′(y) applied to z and d. In
(6.24) we could get rid of the componentwise multiplication by ω̂.−1 by, e. g., dropping
the multiplication of d by ω̂. But we want to emphasize that this approach is related to
interpolation: The tensor ω̂ � y for example contains exactly the function values of the
state at the FE nodes and Gaussian quadrature grid points. Therefore, pointwise operations,
such as the application of ϕ′′ or the multiplication of functions, carry over to componentwise
operations on tensors in the discrete setting. Multiplying a tensor of functions values by
ω̂.−1 again transforms it back to the representation with weighted Lagrange polynomials.
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6. Discretization of the Model Problem

Application of the Operators to Low-Rank Tensors

To make the solution of the state and the adjoint equation and further computations efficient,
we represent all tensors, such as y and z, in a low-rank format (TT or HT, see Subsection
2.1.2). As already noted in [40], this is related to reduced basis methods [29, 28]. Let for
example y ∈ Rd0×···×dm be given in the HT format. Then each leaf matrix Ui ∈ Rdi×ri
(see Subsection 2.1.2) contains a generating system of a lower-dimensional subspace of Rdi ,
typically even a basis of an ri-dimensional subspace. These bases can be interpreted as bases
of subspaces of the discrete spaces Y, Pd1−1(Ξ1), . . . , Pdm−1(Ξm), respectively.

Equations (6.16) and (6.21) will be solved by a low-rank tensor solver such as AMEn,
which chooses the tensor rank adaptively. In particular, the basis U0 for the subspace of the
deterministic discrete state space Y may be adapted by the low-rank tensor solver during
the solution process and it may even change its size. This is in contrast to the standard
reduced basis method, where the basis is chosen a priori based on solution snapshots. A
second difference is that also reduced bases for the polynomial spaces Pdi−1(Ξi) appear in
the low-rank tensor.
In order to be able to apply such a low-rank tensor solver, it is important that all operators

are efficiently applicable to low-rank tensors. This shall be discussed in the following. We
see that the nonlinear function N as well as its derivatives N′, N′′ can be applied to low-
rank tensors as long as the elementwise application of the functions ϕ, ϕ′, and ϕ′′ can be
implemented efficiently because the rest of the computations consists of multiplications with
rank-1-tensors, i-mode matrix multiplications, and componentwise multiplications to apply
N′(y) and N′′(y). In particular, the componentwise multiplication by a rank-1-tensor can be
written as i-mode multiplications with diagonal matrices. In our case, it holds that

N(y) = ML ◦1 diag(ω(1).−1) ◦2 · · · diag(ω(m).−1) ◦m+1 ϕ(diag(ω(1)) ◦2 · · · diag(ω(m)) ◦m+1 y).
(6.25)

Analogously, the operator MH defined in (6.19) can be implemented efficiently using i-mode
matrix products only. More i-mode matrix products, outer and inner products appear in
form of the operator Q used in (6.18) and (6.21), the operator B, and in (6.20), (6.22), and
(6.23). There, the contraction with a rank-1-tensor can be carried out by

〈z,w �ω〉[m]+1,[m] =
(
(w(1) �ω(1))> ◦2 . . . (w(m) �ω(m))> ◦m+1 z

)
(·, 1, . . . , 1),

where the indexing at the end is done to remove the tensor modes of dimension one. It
only remains to investigate the application of the operator A to low-rank tensors. Then all
operations in (6.16), (6.21), (6.22), and (6.23) can be realized in an efficient way.
By (6.13), the application of the operator A can be performed as contraction with the

tensor ã defined in (6.14). If this tensor can be represented or approximated in the used low-
rank format, this contraction can be computed easily. More concretely, it can also represent
a TT matrix as described in Subsection 2.1.3. The contraction 〈ã, y〉(m+2,...,2m+2),[m+1] is
exactly the application of a TT matrix to a TT tensor as depicted in Figure 2.6. Another
favorable option is having the operator A of small CP rank. We can achieve this by using
additional structure.
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6.2. Stochastic Discretization: Polynomial Chaos

Example 6.5 ([46, Example 3.3, Example 3.6]). In light of Example 3.17 and Lemma 3.18,
we consider the specific form κ(x, ξ) = κ0(x)(1+

∑m
i=1ξiηi(x)) of the coefficient function. The

definitions of the operators A0, Ai ∈ L(Y, Y ∗) from Lemma 3.18 carry over to the discrete
setting via

A0 ∈ Rd0×d0 , (A0)k0l0 := (κ0∇φl0 ,∇φk0)L2(Ω)n ,

Ai ∈ Rd0×d0 , (Ai)k0l0 := (ηiκ0∇φl0 ,∇φk0)L2(Ω)n ,

cf. (6.2), and it holds that A(ξ) = A0 +
∑m

i=1 ξiAi. Writing θ(j)
lj
θ

(j)
kj

= θ
(j)
lj

(ξj)θ
(j)
kj

(ξj) for
brevity, we obtain∫

Ξ
(A(ξ))k0l0

m∏
j=1

θ
(j)
lj

(ξj)θ
(j)
kj

(ξj) dP

= (A0)k0l0

m∏
j=1

∫
Ξj

θ
(j)
lj
θ

(j)
kj

dPj +

m∑
i=1

(Ai)k0l0

∫
Ξi

ξiθ
(i)
li
θ

(i)
ki

dPi
∏
j 6=i

∫
Ξj

θ
(j)
lj
θ

(j)
kj

dPj

= (A0)k0l0

m∏
j=1

w
(j)
lj

(ω
(j)
lj

)2δljkj +

m∑
i=1

(Ai)k0l0a
(i)
li

w
(i)
li

(ω
(i)
li

)2δliki
∏
j 6=i

w
(j)
lj

(ω
(j)
lj

)2δljkj

=
m∏
j=1

w
(j)
lj

(ω
(j)
lj

)2
(

(A0)k0l0 +
m∑
i=1

(Ai)k0l0a
(i)
li

) m∏
j=1

δljkj

using that Gaussian quadrature is exact up to degree 2di − 1. Therefore, (6.14) becomes

ã(
◦
k,
◦
l) =

(
(A0)k0l0 +

m∑
i=1

(Ai)k0l0a
(i)
li

) m∏
j=1

δljkj .

This gives

Ay = 〈ã, y〉(m+2,...,2m+2),[m+1] =

d0,...,dm∑
l0,...,lm=1

ã(
◦
k,
◦
l)y(

◦
l)

=

d0∑
l0=1

(
(A0)k0l0 +

m∑
i=1

(Ai)k0l0a
(i)
ki

)
y(l0, k1, . . . , km)

= A0 ◦1 y +

m∑
i=1

Ai ◦1 S̃i ◦i+1 y

with S̃i = diag(a(i)) in analogy to Lemma 3.18. We see that the operator A admits CP rank
m+ 1 and can be implemented using simple i-mode matrix multiplications and summation.

In [46] an additional example is given, where a similar structure is derived for an operator
with additional domain parametrizations via interpolation. As mentioned at the end of
Section 3.2, we skip this example in this thesis because the a posteriori error estimator derived
in Chapter 7 will also rely on the structure of the coefficient function used in Example 6.5.
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Relation to Stochastic Collocation

With the structure of the operator A from Example 6.5 and the approximation of the non-
linearity (6.15) and the right-hand side (6.12) by Gaussian quadrature, we obtain that the
described stochastic Galerkin discretization of the state equation (6.16) yields in fact a com-
pletely decoupled system, one nonlinear equation for each combination (a

(1)
k1
, . . . , a

(m)
km

) of
parameter realizations:

(Ay)(·, k) = (A0 +

m∑
i=1

a
(i)
ki

Ai)y(·, k) = ω(k)−1 A(a
(i)
ki

)(ω(k)y(·, k)),

(N(y))(·, k) = (ω̂.−1 � (ML ◦1 ϕ(ω̂� y)))(·, k) = ω(k)−1 ML ϕ(ω(k)y(·, k)),

(Bu)(·, k) = ((Bu)⊗ω.−1)(·, k) = ω(k)−1 Bu,

b(·, k) = ω(k).−1b(ak).

The vector ω(k)y(·, k) represents the FE function y(·, a(1)
k1
, . . . , a

(m)
km

), see (6.9). This relates
the approach to stochastic collocation, cf. [44], where one would have ω(k) = 1 for all k
and then get the same weight 1 for all equations obtained by inserting the collocation points
into (6.1). Taking orthonormal polynomials as basis, these single equations are weighted
differently, namely by ω(k)−1 = w(k)1/2, in the tensor version.

6.3. Choice of the Trust-Region Model

We describe the choice of the trust-region model in the stochastic setting only because the
deterministic setting works analogously. The main difference is that the stochastic setting
requires further approximations of the Hessian to have efficient computations. Let U ⊂ U be
the current discrete subspace and let uk ∈ U be the current iterate, represented by the vector
uk ∈ Rdu . The tensor ỹk shall solve the state equation (6.16) with u = uk approximately and
let z̃k be an approximate solution of the adjoint equation (6.21) with y = ỹk. We have to
keep in mind that we apply iterative low-rank tensor solvers to these equations so that we
cannot expect to obtain exact solutions.
In order to be able to apply the error estimates from Chapter 5, we choose a quadratic

trust-region model mk for any direction s ∈ U represented by the vector s as follows:

mk(s) = mk(s) := ∇mk(0)>M̃s + 1
2s>M̃∇2mk(0)s

The space Rdu is equipped with the inner product induced by the mass matrix M̃ and deriva-
tives, such as ∇mk, are computed w. r. t. this inner product. To approximate the true
gradient sufficiently well, we choose

∇mk(0) = −(M̃−1B>)〈z̃k,w �ω〉[m]+1,[m] + γuk

in light of (6.22) and Theorem 5.8. In principle, we could choose ∇2mk(0) to be computed as
in (6.23), but this evaluation requires two stochastic PDE solves, which is on the one hand
costly and on the other hand inexact due to the low-rank tensor solver so that the Hessian
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model would be noisy. To overcome this issue, we approximate the operator A + N′(ỹk) by
an operator of CP rank 1, which can be inverted easily. We do this by using a reference
operator acting only on the space mode.
To approximate the operator A, we can choose Aref := A(ξ̄), where ξ̄ =

∫
Ξ ξ dP, or Aref :=

E[A(·)] for example. If A : Ξ→ Rd0×d0 is affine as in Example 6.5, the two choices coincide.
We can approximate

A ≈ Aref := Aref ⊗ I · · · ⊗ I

and have A−1
ref = A−1

ref ⊗ I · · · ⊗ I, i. e., the inverse can be applied to low-rank tensors by
computing a simple i-mode matrix product. In Chapter 7, it will be shown that it makes
sense to use the operator Aref as a preconditioner for the solution of equations of the form
(6.16) and (6.21). Then, the operator A−1

ref has to be applied many times so that it is suitable
to increase efficiency by, e. g., computing a sparse Cholesky decomposition of Aref once so
that applying the inverse A−1

ref to a vector consists only of permutations as well as forward
and backward substitutions.
For the approximation of the operator N′(y) we introduce the parameter dependent vector

ỹ(ξ) :=

d1∑
k1=1

. . .

dm∑
km=1

ỹ(·, k1, . . . , km)θ
(1)
k1

(ξ1) · · · θ(m)
km

(ξm)

cf. (6.8), and propose three options:

• Firstly, we can take N′ref(ỹ) := N′(〈ỹ,w �ω〉[m]+1,[m]), i. e., we evaluate N′ at the ex-
pected value E[ỹ(·)] of the current state. This is the option we use in the implementa-
tion because after having computed the expected value, the code from the deterministic
setting can be reused.

• Secondly, and similarly, N′ref(ỹ) := N′(〈ỹ,θ(ξ̄)〉[m]+1,[m]) can be taken, where θ(ξ̄)(k) =∏m
i=1 θ

(i)
ki

(ξ̄i) meaning that N′ is evaluated at the “reference state” ỹ(ξ̄).

• A third option would be to define N′ref(ỹ) := ML diag(〈ϕ̃′,w〉[m]+1,[m]) ≈ E[N′(ỹ(·))]
with ϕ̃′ ≈ ϕ′(ω̂ � ỹ). This option seems to be costly because the nonlinear function
ϕ′ has to be evaluated on the full tensor ỹ, but the quantity can be reused from the
solution of the adjoint equation.

Using one of these options, the the final rank-1-approximation of the stochastic, linearized
PDE operator is given by

A + N′(ỹk) ≈ (Aref + N′ref(ỹ
k))⊗ I⊗ · · · ⊗ I =: Aref + N′ref(ỹ

k).

With this approximation, the tensor d from (6.24) is inexactly computed via

d ≈ d̃k := (Aref + N′ref(ỹ
k))−1Bs = ((Aref + N′ref(ỹ

k))−1Bs)⊗ω.−1.

Given this rank-1-tensor, the tensor h from (6.24) can be approximated via

h ≈ h̃k := (Aref + N′ref(ỹ
k))−1

[
(Q>MHQ) ◦1 d̃k + ML ◦1

(
ζ̃k � d̃k

)]
,
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6. Discretization of the Model Problem

where ζ̃k ≈ ω̂ � z̃k � ϕ′′(ω̂ � ỹk). Using this approximation in (6.23) defines the model
Hessian, applied to a direction s:

∇2mk(0)s = (M̃−1B>)〈h̃k,w �ω〉[m]+1,[m] + γs (6.26)

= (M̃−1B>)(Ã
(k)
ref )−1

[
(Q>MHQ) + ML diag(〈ζ̃k,w〉[m]+1,[m])

]
(Ã

(k)
ref )−1Bs + γs

using 〈ω.−1,w�ω〉 = 1 (sum of quadrature weights) and with Ã
(k)
ref := Aref + N′ref(ỹ

k). This
Hessian operator is symmetric on Rdu w. r. t. the inner product induced by M̃. In contrast to
[46], we use the concrete rank-1-property of all involved operators here to derive that after
forming 〈ζ̃k,w〉[m]+1,[m], the application of the model Hessian can be done by pure matrix
calculus. In our implementation we choose

〈ζ̃k,w〉[m]+1,[m] = 〈z̃k,w �ω〉[m]+1,[m] � ϕ′′(〈ỹk,w �ω〉[m]+1,[m])

for simplicity, i. e., we work with the expected state and adjoint state and reuse the deter-
ministic Hessian computation.

6.4. Solution of the Discrete Semismooth Newton System

As pointed out in Section 4.4, a semismooth Newton method can be applied to improve the
step found by a linesearch. In this section, we describe how this method is implemented in the
discrete setting for the special choice Uad := {u ∈ U : ul(x) ≤ u(x) ≤ uu(x) for a. e. x ∈ Ωu},
where ul, uu ∈ U ⊂ L∞(Ωu) are functions living in the finite-dimensional subspace and
fulfilling ul(x) ≤ uu(x) for (almost) every x ∈ Ωu. This description follows our work [46].
The exact projection onto the feasible set is given by

PUad
: U → Uad, (PUad

(u))(x) = min{max{ul(x), u(x)}, uu(x)}. (6.27)

It is known [111] that this superposition operator is semismooth as a mapping from Lq(Ωu)
to L2(Ωu) for any q > 2. Since uk ∈ Uad ⊂ L∞(Ωu) ⊂ Lq(Ωu) and if ιB∗ maps Y into
Lq(Ωu) continuously, where ι : L2(Ωu)∗ → L2(Ωu) denotes the Riesz representation operator,
the residual R defined in (4.45) is semismooth w. r. t. the direction s̄ as noted in Section
4.4. In our concrete case with B from (3.11), i. e., ιB∗v = D∗

∫
Ξ v(·, ξ) dP, the requirement

on ιB∗ is met if D∗ ∈ L(L2(Ω), L2(Ωu)) (using Riesz representatives) maps Y ⊂ L2(Ω)
continuously into Lq(Ωu). If, e. g., Ωu = Ω and D ≡ I : L2(Ωu) → L2(Ω) one can use the
Sobolev embedding H1

0 (Ω) ↪→ Lp(Ω) and q ≤ p to show this property.
In the flavor of (6.27), it is desirable to have a componentwise formulation of the projection

also on the discrete subspace so that it can be computed efficiently. If we equip Rdu with the
inner product induced by the lumped mass matrix M̃L, this holds true because this matrix
is diagonal with positive entries. Let ul,uu be represented by the vectors ul, uu ∈ Rdu which
fulfill equivalently ul ≤ uu componentwise and define Uad := {u ∈ Rdu : ul ≤ u ≤ uu}. The
projection onto this box w. r. t. the M̃L-inner product then reads

PUad
: Rdu → Uad, (PUad

(u))j = min{max{(ul)j , uj}, (uu)j} for every j ∈ [du]. (6.28)
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Given discrete versions uk and ∇mk(0) of the current control and the model gradient,
respectively, we formulate the discrete version of (4.45) w. r. t. the M̃L-inner product. This
means that we use the discrete projection (6.28) and a discrete version ∇̃2mk(0) of the model
Hessian w. r. t. the M̃L-inner product, which is obtained by replacing the mass matrix M̃ by
the lumped mass matrix M̃L in (6.26). This leads to a favorable structure in the semismooth
Newton system as we will see later. In analogy to (4.44), we define

Ĥ(uk) := B>(Ã
(k)
ref )−1

[
(Q>MHQ) + ML diag(〈ζ̃k,w〉[m]+1,[m])

]
(Ã

(k)
ref )−1B,

where Ã
(k)
ref and ζ̃k are computed from uk as in Section 6.3. Then the alternative Hessian is

given by ∇̃2mk(0)s = M̃−1
L Ĥ(uk)s + γs. Inverting the diagonal matrix M̃L is cheap compared

to the inversion of M̃. With these definitions, (4.45) becomes

R(̄s) := s̄ + uk − PUad

(
uk − τn,k∇mk(0)− τn,kM̃−1

L Ĥ(uk )̄s
)

= 0. (6.29)

with τn,k := (γ+
cn,k
∆k

)−1 > 0. The discrete residual R is also semismooth w. r. t. the direction
s. We choose

DPUad
(u) ∈ Rdu×du diagonal, (DPUad

(u))jj =


0 if uj < (ul)j ,
1 if (ul)j ≤ uj ≤ (uu)j ,
0 if (uu)j < uj

as an element of the generalized Jacobian of PUad
. Note that if uj ∈ {(ul)j , (uu)j}, we are

in principle free to take (DPUad
(u))jj ∈ [0, 1], but choosing this value from {0, 1} will make

a block elimination possible. With this choice, the discrete semismooth Newton system for
the iterative solution of (6.29) is

(s`+1 − s`) + τn,k DPUad

(
uk − τn,k∇mk(0)− τn,kM̃−1

L Ĥ(uk)s`
)

M̃−1
L Ĥ(uk)(s`+1 − s`) = −R(s`),

(6.30)
where s` is the current approximation of the solution s̄ of (6.29) and s`+1 − s` is the semis-
mooth Newton step. Since the typically large and dense matrix Ĥ(uk) should never be formed
explicitly, we have to apply an iterative method such as GMRES or CG working with the
application of the matrix only to solve (6.30). This method should be formulated on the
function space equivalent, i. e., work on Rdu equipped with the M̃L-inner product. Analo-
gously and in favor of a simple implementation, we can multiply (6.30) by M̃L from the right
and use the fact that diagonal matrices commute to obtain the equivalent, preconditioned
system

M̃L(s`+1− s`) + τn,k DPUad

(
uk− τn,k∇mk(0)− τn,kM̃−1

L Ĥ(uk)s`
)

Ĥ(uk)(s`+1− s`) = −M̃L R(s`),
(6.31)

which can be solved by iterative methods formulated on Rdu equipped with the standard
Euclidean inner product. In particular, to apply the CG method successfully we symmetrize
(6.31) by a block elimination. For this purpose, the index sets

I = Ik(s`) :=
{
j ∈ [Ñ ] : (DPUad

(
uk − τn,k∇mk(0)− τn,kM̃−1

L Ĥ(uk)s`
)
)jj = 0

}
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6. Discretization of the Model Problem

and A = Ak(s`) := [du] \ Ik(s`) are distinguished to define the partial solution (s`+1− s`)I =
−R(s`)I of (6.30) or equivalently (6.31). We insert it into (6.31) to obtain the smaller system(

(M̃L)AA + τn,kĤ(uk)AA
)
(s`+1 − s`)A = τn,kĤ(uk)AIR(s`)I − (M̃L)AAR(s`)A. (6.32)

The matrix (M̃L)AA + τn,kĤ(uk)AA is always symmetric w. r. t. the Euclidean inner product
and positive definite if e. g., the entries of the vector 〈ζ̃k,w〉[m]+1,[m] are large enough to make
the matrix

(Q>MHQ) + ML diag(〈ζ̃k,w〉[m]+1,[m])

(see (6.26)) positive definite. In practice, we do not experience a problem when applying CG
to the system (6.32). In general, one would have to apply an adequate iterative solver such
as MINRES if CG fails to compute an accurate enough solution. The matrix Ĥ(uk)AA should
not be computed explicitly, but should be applied to a direction sA using the application of
the full operator Ĥ(uk) as follows:

Ĥ(uk)AAsA =
(

Ĥ(uk)AA Ĥ(uk)AI

)(sA
0

)
=
(

Ĥ(uk)

(
sA
0

))
A
.
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7. A Posteriori Error Estimation and
Adaptive Solution of a Class of Parametric
PDEs Using Low-Rank Tensors

Following [22, 23, 38, 39, 40] we consider the parametric, elliptic, nonlinear operator equation

A(ξ)y(ξ) +N(y(ξ)) = b(ξ), (7.1)

where ξ is a vector of independent random variables distributed on Ξ :=×m
i=1 Ξi with the

probability measure P :=
⊗m

i=1 Pi as in Section 6.2. Assumption 6.3 shall still be valid. The
right-hand side b(ξ) ∈ Y ∗ is given and strongly measurable w. r. t. ξ. Let A(ξ) : Y → Y ∗

be a linear, self-adjoint, and bounded operator between a Hilbert space and its dual for
almost every ξ and let N : Y → Y ∗ be well-defined, continuous and monotone, but possibly
nonlinear. We assume that ξ 7→ A(ξ) is also strongly measurable and that A(ξ) is uniformly
bounded and boundedly invertible:

‖A(ξ)‖L(Y,Y ∗) ≤ cmax, ‖A(ξ)−1‖L(Y ∗,Y ) ≤ c−1
min.

This ensures, together with measurability, that A ∈ L∞P (Ξ;L(Y, Y ∗)) and thusA ∈ L(Y ,Y ∗)
by Proposition 3.1 for the operator

〈Ay,v〉Y ∗,Y :=

∫
Ξ
〈A(ξ)y(·, ξ),v(·, ξ)〉Y ∗,Y dP (7.2)

and the spaces Y := LpP(Ξ;Y ), Y ∗ := Lp
∗

P (Ξ;Y ∗) with adequately chosen p > 3. The
operator Â ∈ L(Ŷ , Ŷ ∗) defined exactly as A but with Ŷ := L2

P(Ξ;Y ) and Ŷ ∗ := L2
P(Ξ;Y ∗)

is also well-defined and even boundedly invertible.
The ellipticity of the operator A(ξ) gives rise to the inner product

(y, v)A(ξ) := 〈A(ξ)y, v〉Y ∗,Y

and the corresponding energy norm ‖y‖A(ξ) =
√

(y, y)A(ξ).

For error estimation, we consider a linear, self-adjoint and elliptic “reference” operator
Aref ∈ L(Y, Y ∗). This can be the nominal operator Aref = A(ξ̄), where ξ̄ :=

∫
Ξ ξ dP,

or any other norm-inducing operator, such as Aref = −∆ for the H1
0 (Ω)-norm. Then,

(y, v)Aref
:= 〈Arefy, v〉Y ∗,Y defines an alternative inner product on the space Y and the

equivalence estimate

λ〈A(ξ)v, v〉Y ∗,Y ≤ 〈Arefv, v〉Y ∗,Y ≤ Λ〈A(ξ)v, v〉Y ∗,Y (7.3)
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7. A Posteriori Error Estimation for a Class of Parametric PDEs

holds for a. e. ξ ∈ Ξ, every v ∈ Y and some constants λ,Λ ∈ (0,∞), λ ≤ Λ, due to the
uniform ellipticity of A(ξ). We define the alternative norm ‖y‖Aref

:=
√
〈Arefy, y〉Y ∗,Y on Y

which is equivalent to the usual norm ‖ · ‖Y . Analogously defining the inner products and
norms on Y ∗ induced by the operators A(ξ)−1 and A−1

ref , we get the inverse estimates

1
Λ‖b̂‖

2
A(ξ)−1 ≤ 〈b̂, A−1

ref b̂〉Y ∗,Y = ‖b̂‖2
A−1

ref

≤ 1
λ‖b̂‖

2
A(ξ)−1 (7.4)

for every b̂ ∈ Y ∗ by Proposition A.3.
Now let y(ξ) ∈ Y be the unique and exact solution of (7.1), and let ỹ(ξ) ∈ Y ⊂ Y be an

inexact solution living in a subspace Y of Y (e. g., a finite element subspace), fulfilling

A(ξ)ỹ(ξ) +N(ỹ(ξ))− b(ξ) =: r(ξ), (7.5)

where r(ξ) ∈ Y ∗ is the residual. We assume that this residual can be evaluated exactly
in the sense that 〈r(ξ), v+〉Y ∗,Y can be evaluated for every given v+ ∈ Y+ ⊃ Y in some
finite-dimensional (e. g., FE) subspace Y+ ⊂ Y .

Lemma 7.1. Let y(ξ) ∈ Y be the solution of (7.1) and let ỹ(ξ) ∈ Y. Under the standing
assumptions, it holds that

‖ỹ(ξ)− y(ξ)‖Aref
≤ Λ‖r(ξ)‖A−1

ref
(7.6)

with r(ξ) defined as in (7.5).

Proof. We can estimate using the monotonicity of N :

‖ỹ(ξ)− y(ξ)‖2A(ξ)

≤ 〈A(ξ)(ỹ(ξ)− y(ξ)), ỹ(ξ)− y(ξ)〉Y ∗,Y + 〈N(ỹ(ξ))−N(y(ξ)), ỹ(ξ)− y(ξ)〉Y ∗,Y
= 〈r(ξ), ỹ(ξ)− y(ξ)〉Y ∗,Y = 〈A(ξ)A(ξ)−1r(ξ), ỹ(ξ)− y(ξ)〉Y ∗,Y
= (A(ξ)−1r(ξ), ỹ(ξ)− y(ξ))A(ξ) ≤ ‖A(ξ)−1r(ξ)‖A(ξ)‖ỹ(ξ)− y(ξ)‖A(ξ).

This gives ‖ỹ(ξ)− y(ξ)‖A(ξ) ≤ ‖r(ξ)‖A(ξ)−1 and

1√
Λ
‖ỹ(ξ)− y(ξ)‖Aref

≤ ‖ỹ(ξ)− y(ξ)‖A(ξ) ≤ ‖r(ξ)‖A(ξ)−1 ≤
√

Λ‖r(ξ)‖A−1
ref

by the norm estimates (7.3) and (7.4), which yields the result.

Remark 7.2. In the case N ≡ 0, we even have ỹ(ξ)− y(ξ) = A(ξ)−1r(ξ) and thus ‖ỹ(ξ)−
y(ξ)‖A(ξ) = ‖r(ξ)‖A(ξ)−1 . Then the lower bound

√
λ‖r(ξ)‖A−1

0
≤ ‖r(ξ)‖A(ξ)−1 is useful.

For the computation of ‖r(ξ)‖A−1
ref

we define w(ξ) ∈ Y to be the unique solution of the
equation Arefw(ξ) = r(ξ). Then it holds that

‖r(ξ)‖2
A−1

ref

= 〈r(ξ), A−1
ref r(ξ)〉Y ∗,Y = 〈Arefw(ξ), w(ξ)〉Y ∗,Y = ‖w(ξ)‖2Aref

. (7.7)

We compute a discrete solution w(ξ) ∈ Y fulfilling

〈Arefw(ξ), v〉Y ∗,Y = 〈r(ξ), v〉Y ∗,Y for all v ∈ Y, (7.8)
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i. e., w(ξ) = A−1
ref r(ξ), where Aref : Y → Y ∗ is the restriction of the operator Aref onto the

space Y and its inverse is defined in the sense of (7.8). We assume that this equation is solved
exactly having our application in mind. If this it not the case, the algebraic error caused by
the inexact solution of the discrete equation has to be incorporated additionally.

Lemma 7.3. Let y(ξ), ỹ(ξ), r(ξ) be as in Lemma 7.1, and let w(ξ) = A−1
ref r(ξ) and w(ξ) ∈ Y

defined by (7.8). Then, under the standing assumptions,

‖ỹ(ξ)− y(ξ)‖2Aref
≤ Λ2

(
‖w(ξ)‖2Aref

+ ‖w(ξ)− w(ξ)‖2Aref

)
(7.9)

holds.

Proof. Combining (7.6) and (7.7) results in

‖ỹ(ξ)− y(ξ)‖2Aref
≤ Λ2

(
‖w(ξ) + w(ξ)− w(ξ)‖2Aref

)
= Λ2

(
‖w(ξ)‖2Aref

+ ‖w(ξ)− w(ξ)‖2Aref

)
,

where the last equality is due to (7.8) and w(ξ) ∈ Y, cf. the proof of [38, Thm. 5.1].

The first summand in (7.9) turns out to be the purely algebraic error contribution caused
by solving a discretized version of (7.1) inexactly:

‖w(ξ)‖2Aref
= 〈r(ξ),A−1

ref r(ξ)〉Y ∗,Y
= 〈A(ξ)ỹ(ξ) +N(ỹ(ξ))− b(ξ),A−1

ref (A(ξ)ỹ(ξ) +N(ỹ(ξ))− b(ξ))〉Y ∗,Y .

The second summand will be estimated by standard a posteriori error estimates for (7.8).

7.1. Realization of the Deterministic a Posteriori Error
Estimator

We discuss the realization of a deterministic a posteriori error estimator for the estimation
of the term ‖w(ξ)− w(ξ)‖Aref

for the example from Section 3.2 with the deterministic state
equation (3.8) and the adjoint equation (3.16). This is an adaption of the ideas presented in
[114, Chap. 1] and [2, Chap. 2] to our setting.
We define in analogy to (3.10), but with slight differences:

〈A(ξ)y(ξ), v〉Y ∗,Y :=

∫
Ω
κ(·, ξ)∇y(ξ) · ∇v + χ(·, ξ)y(ξ)v dx,

〈N(y(ξ)), v〉Y ∗,Y :=

∫
Ω
ϕ̂(y(ξ))v dx,

〈b(ξ), v〉Y ∗,Y :=

∫
Ω
f̂(ξ)v dx,

〈Arefy(ξ), v〉Y ∗,Y :=

∫
Ω
κref∇y(ξ) · ∇v + χrefy(ξ)v dx

(7.10)

with χ ∈ L∞λ⊗P(Ω × Ξ), χ(x, ξ) ≥ 0 for a. e. (x, ξ) ∈ Ω × Ξ and the deterministic reference
coefficients κref (uniformly positive) and χref (nonnegative). The functions ϕ̂ ∈ C2(R,R) and
f̂(ξ) ∈ L2(Ω) shall fulfill the same properties as ϕ and f in Assumption 3.3.
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Remark 7.4. The setting covers all important equations and operators:

• For χ ≡ 0, ϕ̂ ≡ ϕ, and f̂(ξ) = Du+ f(ξ) we get the state equation (3.8).

• If, e. g., Q(ξ) ≡ ι : H1
0 (Ω) ↪→ L2(Ω), we get the adjoint equation (3.16) for χ(·, ξ) =

ϕ′(ỹ(ξ)), ϕ̂ ≡ 0 and f̂(ξ) = −(Q(ξ)ỹ(ξ)− q̂(ξ)).

• For κref(x) = κ(x, ξ̄) and χref ≡ 0, we obtain the nominal operator A(ξ̄). For κref ≡ 1
and χref ≡ 0 we get the H1

0 (Ω)-norm inducing operator. Changing to χref ≡ 1, the
H1(Ω)-norm is induced.

Assumption 7.5.

• We consider a two-dimensional, polygonal domain Ω ⊂ R2, cf. Assumption 6.1.

• As described in Section 6.1 we discretize the space Y = H1
0 (Ω) by linear finite elements

(continuous on Ω) on a triangulation T . The discrete subspace is denoted by Y ⊂ Y .

• The coefficient functions κ(·, ξ) and κref are assumed to be piecewise constant on the
triangles.

Remark 7.6. These assumptions are only made to simplify the explanations and results
in this section. Quadrilateral elements, cf. [2], higher order FE functions, or not piece-
wise constant coefficient functions could be included quite simply, but would result in more
complicated formulas or distinctions of cases.

With v ∈ Y we get

(w(ξ)− w(ξ), v)Aref
= 〈r(ξ)−Arefw(ξ), v〉Y ∗,Y =

=
∑
T∈T

(∫
T
κ(·, ξ)∇ỹ(ξ) · ∇v + χ(·, ξ)ỹ(ξ)v + ϕ̂(ỹ(ξ))v − f̂(ξ)v

− κref∇w(ξ) · ∇v − χrefw(ξ)v dx
)

=
∑
T∈T

(∫
T
−div(κ(·, ξ)∇ỹ(ξ))v + div(κref∇w(ξ))v

+
(
χ(·, ξ)ỹ(ξ) + ϕ̂(ỹ(ξ))− f̂(ξ)− χrefw(ξ)

)
v dx

+

∫
∂T

(
κ(·, ξ)∇ỹ(ξ)− κref∇w(ξ)

)
· νT v dS

)
,

where νT is the outer unit normal of the triangle T . Since κ(·, ξ) and κref are piecewise
constant on the triangles and we use piecewise linear ansatz functions (Assumption 7.5),
div(κref∇w(ξ)) ≡ 0 ≡ div(κ(·, ξ)∇ỹ(ξ)) holds true on each element T . Therefore, using
(w(ξ)− w(ξ), v)Aref

= 0, we get

(w(ξ)− w(ξ), v)Aref
= (w(ξ)− w(ξ), v − v)Aref

=
∑
T∈T

(∫
T

(
χ(·, ξ)ỹ(ξ) + ϕ̂(ỹ(ξ))− f̂(ξ)− χrefw(ξ)

)
(v − v) dx

+

∫
∂T

(
κ(·, ξ) ∂

∂νT
ỹ(ξ)− κref

∂
∂νT

w(ξ)
)
(v − v) dS

) (7.11)
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for arbitrary v ∈ Y. Since ỹ is bounded and continuous on Ω and ϕ̂ : R → R is continuous,
ϕ̂(ỹ(ξ)) belongs to L2(Ω). Due to χ(·, ξ), χref ∈ L∞(Ω), we also have χ(·, ξ)ỹ(ξ), χrefw(ξ) ∈
L2(Ω). The integrals over the triangle boundaries ∂T are considered edge-wise: If an edge E
belongs to ∂Ω, this part of the integral vanishes. Interior edges also appear in the integral over
the boundary of a neighboring triangle. Thus, the sum over all triangle boundary integrals
can be collected to integrals over all interior edges E ∈ E0, denoting by E the set of all
edges and by E0 the set of all interior edges. There, the normal jumps involving the discrete
solutions ỹ and w appear:

JφKE(x) := lim
t→0+

φ(x+ tνE)− lim
t→0+

φ(x− tνE),

where νE is a unit normal vector corresponding to E, cf. [114, Sec. 1.1].
We estimate

(w(ξ)− w(ξ), v)Aref
≤
∑
T∈T
‖χ(·, ξ)ỹ(ξ) + ϕ̂(ỹ(ξ))− f̂(ξ)− χrefw(ξ)‖L2(T )‖v − v‖L2(T )

+
∑
E∈E0

‖J(κ(·, ξ)∇ỹ − κref∇w(ξ)) · νEKE‖L2(E)‖v − v‖L2(E)

(7.12)

If we insert the Clément interpolant v ∈ Y of v and use that (w−w, v)Aref
≤ c ·η(w) · ‖v‖Aref

for all v ∈ Y yields ‖w − w‖Aref
≤ c · η(w), a similar estimation as in [114, Sec. 1.2] or [2,

Sec. 2.2] can be performed, giving

‖w(ξ)− w(ξ)‖Aref
≤ cT cAref

(∑
T∈T

ηT (ỹ(ξ))2 +
∑
E∈E0

ηE(ỹ(ξ))2
)1/2

(7.13)

with
ηT (ỹ(ξ)) := hT ‖χ(·, ξ)ỹ(ξ) + ϕ̂(ỹ(ξ))− f̂(ξ)− χrefw(ξ)‖L2(T ) (7.14)

and
ηE(ỹ(ξ)) := h

1/2
E ‖J(κ(·, ξ)∇ỹ(ξ)− κref∇w(ξ)) · νEKE‖L2(E). (7.15)

The constant cT > 0 depends only on the smallest angle in the triangulation T and the
coercivity constant cAref

> 0 is chosen such that ‖y‖H1(Ω) ≤ cAref
‖y‖Aref

holds for all y ∈ Y .
The diameters of the triangles and edges are denoted by hT and hE , respectively.

Remark 7.7. This estimate can possibly be refined if the local properties of the interpola-
tion operator are considered more carefully by including the coefficient function. Then the
constant cAref

could be improved.

The overall error estimator looks as follows:

Theorem 7.8. Let ỹ(ξ) ∈ Y be given and let y(ξ) ∈ Y be the exact solution of (7.1), where
the respective operators are defined as in (7.10). Furthermore, let Assumption 7.5 hold and
define w(ξ) by (7.8) and (7.5).
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Then,

‖ỹ(ξ)− y(ξ)‖2Aref
≤ Λ2‖w(ξ)‖2Aref

+ Λ2c2
T c

2
Aref

(∑
T∈T

ηT (ỹ(ξ))2 +
∑
E∈E0

ηE(ỹ(ξ))2
)

(7.16)

holds with Λ from (7.3), cT and cAref
from (7.13), and ηT (ỹ(ξ)) and ηE(ỹ(ξ)) as in (7.14),

(7.15).

Proof. Combining (7.9) and (7.13) yields the desired result.

7.2. A Posteriori Error Estimation in L2
P(Ξ)

In this subsection we discuss an a posteriori error estimator for Y = R and ϕ̂ ≡ 0, i. e., a
linear equation on R, discretized by a stochastic Galerkin approach. This is only a simple
model problem. The essential ideas will be used later to combine both error estimators to
one for the PDE with stochastic coefficients.
Let A(ξ) : R→ R be a linear, uniformly coercive and bounded operator mapping from R to

R, i. e., we identify A(ξ) ∈ [κ, κ] ⊂ R>0, and let b ∈ L2
P(Ξ). We want to solve A(ξ)y(ξ) = b(ξ)

by a stochastic Galerkin method with polynomial chaos. Let y ∈ L2
P(Ξ) be the unique weak

solution fulfilling
(Ay, v)L2

P(Ξ) = (b, v)L2
P(Ξ) for all v ∈ L2

P(Ξ),

i. e., y(ξ) = b(ξ)
A(ξ) almost surely. We choose polynomials of degree at most di − 1 ∈ N0 as

discretization subspace Pdi−1(Ξi) ⊂ L2
P(Ξi) and take the full tensor product

Pd−1(Ξ) :=

m⊗
i=1

Pdi−1(Ξi) ⊂
m⊗
i=1

L2
Pi(Ξi) = L2

P(Ξ),

where d ∈ Nm is a vector, cf. Section 6.2. Let y ∈ Pd−1(Ξ) be the Galerkin solution fulfilling

(Ay, v)L2
P(Ξ) = (b, v)L2

P(Ξ) for all v ∈ Pd−1(Ξ).

Let
{
β

(i)
ki

}∞
ki=1

⊂ L2
Pi(Ξi) be sets of orthonormal polynomials w. r. t. the L2

Pi(Ξi) inner prod-

uct, where β(i)
ki

has degree ki− 1, and let {βk}k∈Nm be the corresponding orthonormal tensor
product polynomials which form a Hilbert basis of L2

P(Ξ), see Section 6.2. Then, for every
v ∈ L2

P(Ξ) there exist unique coefficients (µk)k ∈ `2(Nm) such that v(ξ) =
∑

k∈Nm µkβk(ξ)
holds almost surely and the series converges in the L2

P(Ξ) sense.
We have(

A(y − y), v
)
L2
P(Ξ)

=
(
b−Ay,

∑
k∈Nm µkβk

)
L2
P(Ξ)

=
∑
k 6≤d

µk
(
b−Ay, βk

)
L2
P(Ξ)

.

The summands for k ≤ d (componentwise) cancel out due to Galerkin orthogonality. This
corresponds to testing with v(ξ) :=

∑
k≤d µkβk(ξ). Note that we write k 6≤ d and not k > d

since we compare index vectors here.
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Now we use an approximation Ã ∈ Pd̃(Ξ) of A with d̃ ∈ Nm0 and an approximation
b̃ ∈ Pd+d̃−1(Ξ) of b and compute(

b−Ay, v
)
L2
P(Ξ)

=
(
b̃− Ãy, v

)
L2
P(Ξ)

+
(
(Ã−A)y, v

)
L2
P(Ξ)

+
(
b− b̃, v

)
L2
P(Ξ)

.

Since b̃− Ãy ∈ Pd+d̃−1(Ξ), we have

∑
k 6≤d

µk
(
b̃− Ãy, βk

)
L2
P(Ξ)

=

k≤d+d̃∑
k 6≤d

µk
(
b̃− Ãy, βk

)
L2
P(Ξ)

≤
(∑k≤d+d̃

k 6≤d µ2
k

)1/2(∑k≤d+d̃
k 6≤d

(
b̃− Ãy, βk

)2
L2
P(Ξ)

)1/2

due to orthogonality. The sum
∑k≤d+d̃

k 6≤d
(
b̃− Ãy, βk

)2
L2
P(Ξ)

is finite and can be evaluated
simply, e. g., by using a quadrature formula of high enough order or analytically. Inserting
v = y − y and using ‖(µk)k‖`2(N)m = ‖v‖L2

P(Ξ) gives

‖y − y‖2A =
(
b̃− Ãy, y − y

)
L2
P(Ξ)

+
(
(Ã−A)y, y − y

)
L2
P(Ξ)

+
(
b− b̃, y − y

)
L2
P(Ξ)
≤((∑k≤d+d̃

k 6≤d
(
b̃− Ãy, βk

)2
L2
P(Ξ)

)1/2
+ ‖(Ã−A)y‖L2

P(Ξ) + ‖b− b̃‖L2
P(Ξ)

)
‖y − y‖L2

P(Ξ).

By ‖v‖L2
P(Ξ) ≤ 1√

κ‖v‖A we get

‖y − y‖A ≤
1
√
κ

((∑k≤d+d̃
k 6≤d

(
b̃− Ãy, βk

)2
L2
P(Ξ)

)1/2
+ ‖(Ã−A)y‖L2

P(Ξ) + ‖b− b̃‖L2
P(Ξ)

)
.

We see that even for d̃ = 1 there are 2m−1 different basis functions βk to test with. Therefore,
it is convenient to use further structure of the involved polynomials. If, e. g., y ∈ Pd−1(Ξ),
b̃ ∈ Pd−1(Ξ) and Ã is affine, i. e., Ã(ξ) = Ã0 +

∑m
i=1 ξiÃi, we obtain for k 6≤ d, k ≤ d+ 1:

(
b̃− Ãy, βk

)
L2
P(Ξ)

= −
( m∑
i=1

ξiÃiy(ξ), βk
)
L2
P(Ξ)

=

{
−
(
ξiÃiy(ξ), βk

)
L2
P(Ξ)

if k = d+ ei,

0 otherwise.

This gives
k≤d+1∑
k 6≤d

(
b̃− Ãy, βk

)2
L2
P(Ξ)

=

m∑
i=1

(
ξiÃiy(ξ), βd+ei

)2
L2
P(Ξ)

,

which can be interpreted as a decomposition of the error into contributions for each param-
eter.
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7.3. Combination of Both Error Estimators

We combine the deterministic FE a posteriori error estimator (Section 7.1) with the one for
the polynomial discretization of L2

P(Ξ) (Section 7.2) to obtain an overall error estimator for
the solution of the weak formulation of (7.1). For this purpose, we return to the notation
from Section 7.1.
We consider the weak formulation of (7.1) w. r. t. the parameters:

〈Ay +N(y),v〉Y ∗,Y = 〈b,v〉Y ∗,Y for all v ∈ Y . (7.17)

The operator A is defined in (7.2). Analogously, we have

〈N(y),v〉Y ∗,Y :=

∫
Ξ
〈N(y(·, ξ)),v(·, ξ)〉Y ∗,Y dP and

〈b,v〉Y ∗,Y :=

∫
Ξ
〈b(ξ),v(·, ξ)〉Y ∗,Y dP for all v ∈ Y .

The exact solution y of (7.17) is contained in Y = LpP(Ξ;Y ) with p ∈ (3,∞), which we
require for the weak formulation to be well-defined and for the nonlinear operator N to be
twice continuously differentiable, but we will provide only error estimation in Ŷ = L2

P(Ξ;Y ),
because we want to make use of (Galerkin) orthogonality.
Analogously to (7.2) we define the reference operator Aref ∈ L(Y ,Y ∗) by

〈Arefy,v〉Y ∗,Y :=

∫
Ξ
〈Arefy(·, ξ),v(·, ξ)〉Y ∗,Y dP

and its version Âref ∈ L(Ŷ , Ŷ ∗). The operators Â, Âref , and their inverses induce inner
products and respective norms on Ŷ and Ŷ ∗, respectively. The estimates (7.3) and (7.4)
carry over to this setting.
For every ỹ ∈ Y ⊂ Y we can conclude

‖ỹ − y‖Âref
≤ Λ‖r‖Â−1

ref
(7.18)

in analogy to Lemma 7.1 with r = Aỹ + N(ỹ) − b. Note that estimating the error in
L2 enables us to use the coercivity of the operators Â and Âref . We need r ∈ L2

P(Ξ;Y ∗),
which can be concluded using integrability properties of ỹ and the regularity of the data,
see Sections 3.2 and 3.4, and thus w = Â−1

refr ∈ Ŷ . For the estimation of the total error we
compute ‖w‖2

Âref
and have to estimate ‖w −w‖2

Âref
, cf. Lemma 7.3. Thus, it makes sense

to minimize the error term ‖w‖2
Âref

by an iterative solver used for the discretized equation.
We have that w ∈ Y ⊗ Pd−1(Ξ) ⊂ L2

P(Ξ;Y ) solves

〈Ârefw,v〉Ŷ ∗,Ŷ = 〈r,v〉
Ŷ
∗
,Ŷ

for all v ∈ Y ⊗ Pd−1(Ξ). (7.19)

We write an arbitrary test function in the form v(x, ξ) =
∑

k∈Nm v
∗
k(x)ϑk(ξ) with some
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Hilbert basis {ϑk}k∈Nm ⊂ L2
P(Ξ) and v∗k ∈ Y for all k. We have

〈Âref(w −w),v〉L2
P(Ξ;Y ∗),L2

P(Ξ;Y )

= 〈r − Ârefw,
∑

k∈Nm v
∗
kϑk〉Ŷ ∗,Ŷ

=
∑
k∈Nm

〈r − Ârefw, v
∗
kϑk〉Ŷ ∗,Ŷ

=
∑
k≤d
〈r − Ârefw, (v

∗
k − v∗k)ϑk〉Ŷ ∗,Ŷ +

∑
k 6≤d
〈r − Ârefw, v

∗
kϑk〉Ŷ ∗,Ŷ

(7.20)

with v∗k ∈ Y.

Assumption 7.9. We need the following prerequisites in addition to Assumption 7.5:

• The coefficient function is affine in ξ, i. e., κ(x, ξ) = κ0(x)+
∑m

i=1 ξiκi(x). This form can
originate in a truncated Karhunen-Loève expansion. The functions κi (i ∈ {0, . . . ,m})
are assumed to be piecewise constant on the triangles. We define 〈Aiy, v〉Y ∗,Y :=∫

Ω κi∇y · ∇v dx for i ∈ {0, . . . ,m}.

• Let ỹ ∈ Y ⊗ Pd−1(Ξ). We assume that the nonlinear part ϕ̂(ỹ) of the residual can be
approximated sufficiently well by a function ϕ̃ ∈ L2(Ω) ⊗ Pd−1(Ξ), e. g., by interpo-
lation. Moreover, we assume that the function χ · ỹ can be approximated sufficiently
well by a function χ̃ ∈ L2(Ω)⊗ Pd−1(Ξ).

• The right-hand side b can be identified with a function f̂ ∈ L2(Ω)⊗ Pd−1(Ξ).

Again, one can include the interpolation error as follows:

〈r − Ârefw,v〉Ŷ ∗,Ŷ =∫
Ξ

∫
Ω
κ∇xỹ · ∇xv + χ · ỹ · v + ϕ(ỹ) · v − f̂ · v − κref ∇xw̃ · ∇xv dx dP =∫

Ξ

∫
Ω
κ∇xỹ · ∇xv + χ̃ · v + ϕ̃ · v − f̂ · v − κref ∇xw̃ · ∇xv dx dP

+

∫
Ξ

∫
Ω

(χ · ỹ − χ̃+ ϕ(ỹ)− ϕ̃) · v dx dP.

(7.21)

In the following, we will neglect χ · ỹ− χ̃ and ϕ(ỹ)−ϕ̃ for the ease of presentation and imple-
mentation. Moreover, we allow for different orthonormal polynomial bases in the derivation
of the error estimates.

Conversion between Polynomial Basis Representations

To discretize the space L2
Pi(Ξi), we choose orthonormal polynomials in tensor product form,

as already described in Section 6.2 and used in Section 7.2. Typically, the orthonormal basis{
β

(i)
ki

}∞
ki=1

, where β(i)
ki

has degree ki − 1, and the tensor product basis {βk}k∈Nm of L2
P(Ξ) is

used. Alternatively, we have the Hilbert basis {θk}k∈Nm , which results from replacing the
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first di univariate polynomials in
{
β

(i)
ki

}∞
ki=1

by weighted, orthonormal Lagrange polynomials
w. r. t. the Gaussian quadrature nodes.
Now consider a function w ∈ Y ⊗ Pd(Ξ) written as

w(x, ξ) =
∑
k≤d

w∗k(x)βk(ξ) =
∑
k≤d

wk(x)θk(ξ), (7.22)

where w∗k,wk ∈ Y are the coefficients. On the one hand, inserting ξ = al (Gaussian nodes)
yields

wl(x) = ω−1
l ·

∑
k≤d

w∗k(x)βk(al).

On the other hand, testing (7.22) with βl gives

w∗l (x) =
∑
k≤d

(
wk(x)

(
θk, βl

)
L2
P(Ξ)

)
=
∑
k≤d

(
wk(x)

m∏
i=1

(
θ

(i)
ki
, β

(i)
li

)
L2
Pi

(Ξi)

)
.

Defining the orthonormal matrices Q(i) ∈ Rdi+1×di+1 by Q
(i)
kili

=
(
θ

(i)
ki
, β

(i)
li

)
L2
Pi

(Ξi)
, we see that

the coefficients w∗l (l ≤ d) of one orthonormal basis in tensor product form can be computed
by applying an orthonormal rank-1-operator Q(1) ⊗ · · · ⊗Q(m) to the coefficients wk (k ≤ d)
of another orthonormal tensor product basis.

Discretization with Lagrange Polynomials

For a simpler approximation of the nonlinearity, it is beneficial to use the Lagrange basis
{θk}k∈Nm0 , as seen in Section 6.2. Still, we can convert the coefficients to representations in
other bases if necessary. Furthermore, many results in this subsection still hold for arbitrary
orthonormal polynomials. We will point out where we use special properties of the chosen
Lagrange basis.
The polynomial basis representations of ỹ and w shall be

ỹ(x, ξ) =
∑
l≤d

ỹl(x)θl(ξ), w(x, ξ) =
∑
l≤d

wl(x)θl(ξ)

with ỹl,wl ∈ Y. Be aware of the fact that these sums are actually large since l is an index
vector. Analogously, we write f̂ , ϕ̃, and χ̃ with the deterministic functions fl, ϕ̃l, χ̃l ∈ L2(Ω)
and an arbitrary test function v ∈ Ŷ as v(x, ξ) =

∑
k∈Nm vk(x)θk(ξ).

Moreover, we will use transformed representations ỹ(x, ξ) =
∑

l≤d ỹ∗l (x)ϑl(ξ) as well as

v(x, ξ) =
∑

k∈Nm v
∗
k(x)ϑk(ξ), where

{
ϑ

(i)
ki

}∞
ki=1

are alternative, still to be specified orthonor-

mal bases of L2
Pi(Ξi) with ϑ

(i)
ki
≡ θ

(i)
ki
≡ β

(i)
ki

for ki ≥ di + 1 and ỹ∗l ∈ Y, v∗k ∈ Y . These
coefficients can simply be computed from ỹl and vk by an orthonormal transformation. Es-
pecially for v, we split up the representation into

v(x, ξ) =
∑
k≤d

vk(x)θk(ξ) +
∑
k 6≤d

v∗k(x)ϑk(ξ).
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For k ≤ d, we obtain

〈r − Ârefw, vkθk〉L2
P(Ξ;Y ∗),L2

P(Ξ;Y )

=

∫
Ξ
〈A(ξ)ỹ(·, ξ) +N(ỹ(·, ξ))− b(ξ)−Arefw(·, ξ), vk〉Y ∗,Y θk(ξ) dP

≈
∑
l≤d

∫
Ξ

(∫
Ω

(κ0 + ξ1κ1 + . . .+ ξmκm)∇ỹl · ∇vk + χ̃lvk + ϕ̃lvk

− flvk − κref∇wl · ∇vk − χrefwlvk dx
)
θl(ξ)θk(ξ) dP

=
∑
l≤d

(∫
Ω
κ0∇ỹl · ∇vk + χ̃lvk + ϕ̃lvk

− flvk − κref∇wl · ∇vk − χrefwlvk dx
)(∫

Ξ
θl(ξ)θk(ξ) dP

)
+
∑
l≤d

m∑
i=1

(∫
Ω
κi∇ỹl · ∇vk dx

)(∫
Ξ
ξiθl(ξ)θk(ξ) dP

)
=

∫
Ω

(κ0 + a
(1)
k1
κ1 + . . .+ a

(m)
km

κm)∇ỹk · ∇vk + χ̃kvk (7.23)

+ ϕ̃kvk − fkvk − κref∇wk · ∇vk − χrefwkvk dx.

This is due to orthogonality of the polynomials
{
θk
}
k∈Nm and the fact∫

Ξ
ξiθl(ξ)θk(ξ) dP =

∫
Ξ
ξi

m∏
j=1

θ
(j)
lj

(ξj)θ
(j)
kj

(ξj) dP

=

∫
Ξi

ξiθ
(i)
li

(ξi)θ
(i)
ki

(ξi) dPi ·
m∏

j=1,j 6=i
δljkj

=

{
a

(i)
ki

if k = l,

0 otherwise.

Recall that {a(i)
ki
}diki=1 ⊂ Ξi are the Gaussian quadrature nodes w. r. t. Pi. For a different

polynomial basis we would obtain different values here and possibly no decoupling of the
deterministic equations which we have to solve.

For k 6≤ d (yielding k 6= l) we get

〈r − Ârefw, v
∗
kϑk〉L2

P(Ξ;Y ∗),L2
P(Ξ;Y )

≈
∑
l≤d

m∑
i=1

(∫
Ω
κi∇ỹ∗l · ∇v∗k dx

)(∫
Ξ
ξiϑl(ξ)ϑk(ξ) dP

)

=


∑di

li=1 c
(i)
li

∫
Ω κi∇ỹ∗k1,...,li,...,km

· ∇v∗k dx if
{
ki = di + 1 for an i ∈ [m],
kj ≤ dj for j ∈ [m] \ {i},

0 otherwise.
(7.24)
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In this computation we used the following properties of any orthonormal polynomial basis
{ϑl}l∈Nm in tensor product from, where ϑ(i)

li
⊥ Pli−2(Ξi) for all li ≥ di + 1:∫

Ξ
ξiϑl(ξ)ϑk(ξ) dP =

∫
Ξi

ξiϑ
(i)
li

(ξi)ϑ
(i)
ki

(ξi) dPi ·
m∏

j=1,j 6=i
δljkj

=

{
c

(i)
li

if ki = di + 1 and kj = lj for all j ∈ [m] \ {i}
0 otherwise

with c
(i)
li

:=
∫

Ξi
ξiϑ

(i)
li

(ξi)ϑ
(i)
di+1(ξi) dPi holds for any l ≤ d and k 6≤ d.

Example 7.10. For ϑ(i)
li
≡ β(i)

li
it even holds c

(i)
li

= 0 for all li ≤ di − 1. Then we get

di∑
li=1

c
(i)
li

∫
Ω
κi∇ỹ∗k1,...,li,...,km

· ∇v∗k dx = c
(i)
di

∫
Ω
κi∇ỹ∗k1,...,di,...,km

· ∇v∗k dx

in (7.24).

From (7.20), (7.23), and (7.24) we get

〈Âref(w −w),v〉Ŷ ∗,Ŷ
=
∑
k≤d
〈r − Ârefw, (vk − vk)θk〉Ŷ ∗,Ŷ +

∑
k 6≤d
〈r − Ârefw, v

∗
kϑk〉Ŷ ∗,Ŷ

≈
∑
k≤d

∫
Ω

(
κ(·, ak)∇ỹk − κref∇wk

)
· ∇(vk − vk) +

(
χ̃k + ϕ̃k − fk − χrefwk

)
(vk − vk) dx

+

m∑
i=1

∑
k≤d

c
(i)
ki

∫
Ω
κi∇ỹ∗k · ∇v∗k1,...,di+1,...,dm dx. (7.25)

Recall that we write ak :=
(
a

(1)
k1
, . . . , a

(m)
km

)>.
We see that the first term at the end of (7.25) can be treated as in Section 7.1 and consti-

tutes the deterministic part of the error. The second term can be viewed as the stochastic
part of the error, where the i-th summand corresponds to the discretization error of L2

Pi(Ξi).
The first term in (7.25) is estimated as in (7.11), (7.12) and is bounded as in (7.13) using

the Clément interpolant vk of vk:∑
k≤d

∫
Ω

(
κ(·, ak)∇ỹk − κref∇wk

)
· ∇(vk − vk) +

(
χ̃k + ϕ̃k − fk − χrefwk

)
(vk − vk) dx

=
∑
k≤d

∑
T∈T

(∫
T

(
χ̃k + ϕ̃k − fk − χrefwk

)
(vk − vk) dx

+

∫
∂T

(
κ(·, ak) ∂

∂νT
ỹk − κref

∂
∂νT

wk

)
(vk − vk) dS

)
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≤
∑
T∈T

∑
k≤d
‖χ̃k + ϕ̃k − fk − χrefwk‖L2(T )‖vk − vk‖L2(T )

+
∑
E∈E0

∑
k≤d
‖Jκ(·, ak)∇ỹk − κref∇wk) · νEKE‖L2(E)‖vk − vk‖L2(E)

≤ cT cAref

(∑
T∈T

h2
T

∑
k≤d
‖χ̃k + ϕ̃k − fk − χrefwk‖2L2(T ) (7.26)

+
∑
E∈E0

hE
∑
k≤d
‖J(κ(·, ak)∇ỹk − κref∇wk) · νEKE‖2L2(E)

) 1
2(∑

k≤d
‖vk‖2Aref

) 1
2

= cT cAref

(∑
T∈T

ηT (ỹ)2 +
∑
E∈E0

ηE(ỹ)2

) 1
2(∑

k≤d
‖vk‖2Aref

) 1
2

with

ηT (ỹ) := hT

(∑
k≤d
‖χ̃k + ϕ̃k − fk − χrefwk‖2L2(T )

) 1
2 (7.27)

and

ηE(ỹ) := h
1/2
E

(∑
k≤d
‖J(κ(·, ak)∇ỹk − κref∇wk) · νEKE‖2L2(E)

) 1
2
. (7.28)

Note that ỹ enters in these definitions via wk and ỹk, and indirectly via χ̃k and ϕ̃k.

The second term in (7.25) can be treated as follows:

m∑
i=1

∑
k≤d

c
(i)
ki

∫
Ω
κi∇ỹ∗k · ∇v∗k1,...,di+1,...,km dx

=
m∑
i=1

∑
k≤d

c
(i)
ki
〈Aiỹ∗k, v∗k1,...,di+1,...,km〉Y ∗,Y

≤
m∑
i=1

∑
kj≤dj ,j 6=i

∥∥∥∑
ki≤di

(c
(i)
ki
·Aiỹ∗k)

∥∥∥
A−1

ref

· ‖v∗k1,...,di+1,...,km‖Aref
(7.29)

≤
( m∑
i=1

∑
kj≤dj ,j 6=i

∥∥∥Ai ∑
ki≤di

(c
(i)
ki

ỹ∗k)
∥∥∥2

A−1
ref

) 1
2
( m∑
i=1

∑
kj≤dj ,j 6=i

‖v∗k1,...,di+1,...,km‖
2
Aref

) 1
2
.

Example 7.11. For ϑk ≡ βk we have c
(i)
ki

= 0 for all ki ≤ di − 1, and the estimate (7.29)
becomes

m∑
i=1

∑
k≤d

c
(i)
ki

∫
Ω
κi∇ỹ∗k · ∇v∗k1,...,di+1,...,km dx ≤

( m∑
i=1

∑
kj≤dj ,j 6=i

(c
(i)
di

)2‖Aiỹ∗k1,...,di,...,km
‖2
A−1

ref

) 1
2
( m∑
i=1

∑
kj≤dj ,j 6=i

‖v∗k1,...,di+1,...,km‖
2
Aref

) 1
2
.
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For general ϑk, we focus on the term
∑

ki≤di (c
(i)
ki

ỹ∗k) =: ỹ∗k,i. It holds that∑
ki≤di

(c
(i)
ki

ỹ∗k) =

∫
Ξi

ξiβ
(i)
di+1(ξi)

∑
ki≤di

ϑ
(i)
ki

(ξi)ỹ
∗
k dPi

due to ϑ(i)
di+1 ≡ β

(i)
di+1, where the appearing integral is in the sense of Bochner. The term∑

ki≤di ϑ
(i)
ki

(ξi)ỹ
∗
k is independent of the concrete choice of the basis {ϑ(i)

ki
}ki∈N.

It still remains to compute

‖Aiỹ∗k,i‖2A−1
ref

= 〈A−1
refAiỹ

∗
k,i, Aiỹ

∗
k,i〉Y,Y ∗ = 〈ŷ∗k,i, Aiỹ∗k,i〉Y,Y ∗ =

∫
Ω
κi∇ỹ∗k,i · ∇ŷ∗k,i dx

where we define ŷ∗k,i := A−1
refAiỹk,i, i. e.,∫

Ω
κref∇ŷ∗k,i · ∇v + χref ŷ

∗
k,iv dx =

∫
Ω
κi∇ỹ∗k,i · ∇v dx

holds for all v ∈ Y . One could now compute a discrete version ŷ∗k,i of ŷ
∗
k,i and additionally

estimate the error ‖ŷ∗k,i − ŷ∗k,i‖Aref
with the techniques from Section 7.1. Alternatively, we

can estimate∫
Ω
κi∇ỹ∗k,i · ∇ŷ∗k,i dx

≤
(∫

Ω
|κi|∇ỹ∗k,i · ∇ỹ∗k,i dx

) 1
2 ·
(∫

Ω
|κi|∇ŷ∗k,i · ∇ŷ∗k,i dx

) 1
2

≤
(∫

Ω
|κi|∇ỹ∗k,i · ∇ỹ∗k,i dx

) 1
2 · ‖ κi

κref
‖

1
2

L∞(Ω) ·
(∫

Ω
κref∇ŷ∗k,i · ∇ŷ∗k,i dx

) 1
2

≤
(∫

Ω
|κi|∇ỹ∗k,i · ∇ỹ∗k,i dx

) 1
2 · ‖ κi

κref
‖

1
2

L∞(Ω) ·
(∫

Ω
κref∇ŷ∗k,i · ∇ŷ∗k,i + χref(ŷ

∗
k,i)

2 dx
) 1

2

=
(∫

Ω
|κi|∇ỹ∗k,i · ∇ỹ∗k,i dx

) 1
2 · ‖ κi

κref
‖

1
2

L∞(Ω) ·
(∫

Ω
κi∇ỹ∗k,i · ∇ŷ∗k,i dx

) 1
2
.

It follows that

‖Aiỹ∗k,i‖2A−1
ref

=

∫
Ω
κi∇ỹ∗k,i · ∇ŷ∗k,i dx ≤ ‖ κi

κref
‖L∞(Ω)

(∫
Ω
|κi|∇ỹ∗k,i · ∇ỹ∗k,i dx

)
. (7.30)

Thus, we define

ζi(ỹ) := ‖ κi
κref
‖1/2L∞(Ω)

( ∑
kj≤dj ,j 6=i

(∫
Ω
|κi|
(∑
ki≤di

c
(i)
ki
∇ỹ∗k

)
·
(∑
ki≤di

c
(i)
ki
∇ỹ∗k

)
dx
)) 1

2 (7.31)

in order to formulate the following error estimation theorem.
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Theorem 7.12. Let ỹ ∈ Y ⊗ Pd(Ξ) be given such that r = Aỹ +N(ỹ) − b ∈ L2
P(Ξ;Y ∗).

Suppose that Assumptions 7.5 and 7.9 are satisfied with the definitions (7.10).
Then,

‖ỹ − y‖2
Âref
≤ Λ2

(
cT cAref

(∑
T∈T

ηT (ỹ)2 +
∑
E∈E0

ηE(ỹ)2
) 1

2
+
( m∑
i=1

ζi(ỹ)2
) 1

2

+
∥∥∥(χ · ỹ − χ̃+ ϕ(ỹ)− ϕ̃, ·

)
L2
P(Ξ;L2(Ω))

∥∥∥
Â−1

ref

)2

+ Λ2‖w‖2
Âref

,

(7.32)

where w is defined by (7.19), ηT , ηE are defined by (7.27), (7.28), and ζi is defined in (7.31).

Proof. From (7.18) and with w = Â−1
refr ∈ Ŷ and w defined by (7.19) we conclude

‖ỹ − y‖2
Âref
≤ Λ2

(
‖w −w‖2

Âref
+ ‖w‖2

Âref

)
(7.33)

due to Galerkin orthogonality.
For an arbitrary v ∈ Ŷ , v(x, ξ) =

∑
k∈Nm vk(x)θk(ξ) =

∑
k∈Nm v

∗
k(x)ϑk(ξ) with vk, v∗k ∈ Y

for all k, we have that

‖v‖2
Âref

=

∫
Ξ

〈
Aref

∑
k∈Nm

vk(·)θk(ξ),
∑
l∈Nm

vl(x)θl(ξ)
〉
Y ∗,Y

dP =
∑
k∈Nm

‖vk‖2Aref

and ‖v‖2
Âref

=
∑

k∈Nm ‖v∗k‖2Aref
because the polynomials {θk}k, {ϑk}k are orthonormal.

Combining (7.21), (7.25), (7.26), (7.29), (7.30) and the fact that

〈Âref(w −w),v〉Ŷ ∗,Ŷ =
(
w −w,v

)
Âref
≤ c · η(w) · ‖v‖Âref

for all v ∈ Ŷ

yields ‖w −w‖Âref
≤ c · η(w), gives

‖w −w‖Âref
≤ cT cAref

(∑
T∈T

ηT (ỹ)2 +
∑
E∈E0

ηE(ỹ)2
) 1

2
+
( m∑
i=1

ζi(ỹ)2
) 1

2

+
∥∥∥(χ · ỹ − χ̃+ ϕ(ỹ)− ϕ̃, ·

)
L2
P(Ξ;L2(Ω))

∥∥∥
Â−1

ref

,

which yields the result together with (7.33).

Theorem 7.12 provides a nice split of the error into different contributions. The last term
in (7.32) is exactly the algebraic error due to the inexact solution of the discrete system by,
e. g., a low-rank tensor solver. The first term consists of

• a term related to the FE discretization error, which can itself be split into error con-
tributions for each element,

• the error contribution due to the discretization of the stochastic space, which consists
of terms for each stochastic parameter, and

• the interpolation error coming from the approximation of the nonlinear terms in the
equation.
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Remark 7.13. It remains to discuss the condition r ∈ L2
P(Ξ, Y ∗) for the state and adjoint

equation from Section 3.2, cf. Remark 7.4, provided Q(ξ) ≡ ι : H1
0 (Ω) ↪→ L2(Ω).

If ỹ ∈ LrfP (Ξ;Y ) (rf ≥ p) is an inexact solution of the state equation, the residual r belongs
to Lrf/(p−1)

P (Ξ;Y ∗) due to the growth condition (3.7) on the nonlinearity ϕ. Thus, we need
rf ≥ 2p−2 to have r ∈ L2

P(Ξ, Y ∗). Under the regularity assumption in the “Example” column
of Table 3.1, i. e., rQ = ∞ and rq̂ ≥ rf , it is realistic that z̃ ∈ LrfP (Ξ;Y ) holds, because the
exact adjoint state z has exactly this regularity. The residual of the adjoint equation then
also belongs to Lrf/(p−1)

P (Ξ;Y ∗) which is a subset of L2
P(Ξ;Y ∗) by rf ≥ 2p− 2.

The error estimate given in Theorem 7.12 uses a deterministic reference operator as the
one discussed in [22, 23]. The results in these papers rely on a saturation assumption, which
we do not make here, but derive an error estimate similar to the one presented in [38] and
used in [39, 40]. All mentioned papers present error estimates for linear equations whereas we
consider a class of semilinear equations with a monotone nonlinearity, but have used a linear
reference equation to derive the error estimate. In the linear case, it makes sense to discuss
the efficiency of the estimator using a lower bound as indicated in Remark 7.2. Furthermore,
the convergence of the adaptive solution technique should be investigated. Since it is already
discussed in the linear case for a very similar estimator in [39], we skip this topic at this
point.
For the case ϕ̂ ≡ 0 and χ ≡ 0, i. e., we have a linear equation and no interpolation error, we

briefly compare our Theorem 7.12 to [38, Thm. 6.2]: There, an additional discrete error term
(analog of ‖w‖Âref

) appears as an additional summand in the “large bracket” in (7.32). We do
not get this term because we make use of the exact solution of the reference equation (7.19),
which is realistic when we work with low-rank tensors, where the discrete rank-1-operator
A−1

ref = A−1
ref ⊗ I · · · ⊗ I can be applied by an i-mode matrix product so that it can be used as

a typically very good preconditioner, see below.

7.4. Realization with Low-Rank Tensors

In order to implement an adaptive solver for (7.17) based on the estimate (7.32) with low-
rank tensors, we have to apply an iterative low-rank tensor solver such as truncated PCG
[75], ALS [62], or AMEn [36] to the discretized system

Ay + N(y)− b = 0, (7.34)

cf. (6.16) and (6.21). In addition, we have to implement the evaluation of the error indicators
ηT (ỹ), ηE(ỹ), and ζi(ỹ) from the low-rank solution in an efficient manner. Based on the
value of these error indicators, the discrete subspace with the largest error contribution is
refined, provided the algebraic error ‖w‖Âref

does not dominate. In the latter case, additional
iterations of the low-rank tensor solver have to be performed.

Solution of the Discrete System

Let us set N ≡ 0 for a moment. As pointed out in Subsection 2.1.3, iterative solvers working
with the low-rank tensor representation such as ALS or AMEn aim for solving the linear
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system Ay = b by minimizing the squared Frobenius norm ‖Ay − b‖2F of the residual. This
problem can be badly conditioned and as indicated by (7.32), we are in fact interested in
minimizing

‖w‖2
Âref

= 〈r,w〉
Ŷ
∗
,Ŷ

= 〈r, Â−1
ref r〉 =: ‖r‖2

Â−1
ref

,

where (7.19) translates to Ârefw = r = Ay−b in the discrete tensor space. Let the symmetric,
positive definite operator Âref now be decomposed as Âref = R̂∗refR̂ref , where R̂∗ref is the adjoint
operator of R̂ref : Rn0×···×nm → Rn0×···×nm w. r. t. the Frobenius inner product. Then,

arg min
y
||Ay − b||2

Â−1
ref

= arg min
y
〈Ay − b, Â−1

ref (Ay − b)〉

= arg min
y
||R̂−∗ref (Ay − b)||2F

= R̂−1
ref arg min

ŷ
||R̂−∗refAR̂

−1
ref ŷ − R−∗refb||

2
F.

(7.35)

This means that the preconditioned, symmetric system R̂−∗refAR̂
−1
ref ŷ = R̂−∗refb can be solved by a

standard implementation of, e. g., AMEn and its (approximate) solution ŷ can be transformed
to the (approximate) solution y = R̂−1

ref ŷ of the original system Ay = b. In particular, we
can use the tensor product form Âref = Âref ⊗ I⊗ · · · ⊗ I with the positive definite, quadratic
matrix Âref , and compute, e. g., a sparse Cholesky decomposition Âref = R̂>ref R̂ref , where R̂ref

is the product of a triangular and a permutation matrix. Then, with R̂ref := R̂ref ⊗ I⊗ · · · ⊗ I
we obtain a decomposition of Âref as desired because R̂∗refR̂ref = (R̂>ref R̂ref)⊗ I⊗ · · · ⊗ I. It is
then algorithmically relevant that R̂−1

ref = R̂−1
ref ⊗ I⊗· · ·⊗ I, i. e., the inverse can be applied very

efficiently to low-rank tensors. For our concrete implementation, we have extended the AMEn
algorithm to be able to handle preconditioners of canonical rank 1 given in decomposed form.
Since, e. g., the inverse Cholesky factor R̂−1

ref should never be formed explicitly, but can be
applied to vectors efficiently by backward substitution and permutation, we have extended
the {d, R}-format [35], which is essentially a collection of sparse matrices, each of which
acts on one mode of the tensor, to function handles. We want to remark that it would be
even more desirable to have a preconditioned version of AMEn which does only require the
application of the preconditioner Â−1

ref itself and not a decomposition of it (similar to the
PCG method). But investigating and implementing such an algorithm is out of the scope
of this thesis. Additionally, the operator Â−1

ref is needed more frequently in the algorithm,
e. g., to evaluate the norm of the residual of the nonlinear equation. Since Âref is symmetric,
positive definite, and sparse, the application of its inverse is computed by the mentioned
sparse Cholesky decomposition in Matlab so that this can be precomputed and used in
AMEn.

A similar idea can be used to truncate a given tensor y to smaller rank w. r. t. the M-
norm, where M : Rn0×···×nm → Rn0×···×nm induces some inner product and is decomposed
as M = R̃∗R̃ w. r. t. the Frobenius inner product. In fact, SVD-based truncation would
quasi-minimize the function ‖z − y‖2F w. r. t. z, see Subsection 2.1.2. Instead, we can use
the transformation (7.35) and approximate the tensor R̃y by standard truncation w. r. t. the
Frobenius norm to obtain the tensor ẑ. Then, R̃−1ẑ is the respective approximation of y
w. r. t. the M-norm.
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If N 6≡ 0 is nonlinear, we solve the system (7.34) by Newton’s method, where each Newton
step is computed approximately by the preconditioned AMEn solver. Especially in the last
iterations of the trust-region algorithm, the state and the adjoint state do not change very
much. Then it is often enough to take one inexact Newton step, which is computed by one
AMEn sweep, to decrease the residual of the nonlinear equation sufficiently.

Evaluation of the Error Indicators

The discretization error indicators can be implemented as follows: If, e. g.,

ỹ(x, ξ) =
∑
k≤d

ỹk(x)θk(ξ)

is represented by the tensor ỹ analogously to (6.8),

ỹk(x) =

d0∑
k0=1

ỹ(k0, k)φk0(x),

holds, i. e., the function ỹk is represented by the vector ỹ(·, k).
Knowing that, we establish the evaluation of the triangle error contribution (7.27). Let

x1, x2, x3 ∈ Ω be the three vertices of the triangle T and let the function f̃ be affine on T .
Then,

‖f̃‖2L2(T ) =

∫
T

f̃(x)2 dx = aT
6

(
f̃(x1)2 + f̃(x2)2 + f̃(x3)2 + f̃(x1)f̃(x2) + f̃(x1)f̃(x3) + f̃(x2)f̃(x3)

)
= aT

6

3∑
j=1

3∑
l=j

f̃(xj)f̃(xl),

where aT is the area of T . We approximate each χ̃k + ϕ̃k−fk−χrefwk ≈ f̃k by interpolation,
where f̃k are linear finite element functions for all k. These functions are represented alto-
gether by a single tensor f̃ ∈ Rd̃×d1×···×dm of values at the FE nodes. Note that d̃ > d0 is the
number of all FE nodes whereas d0 counts only the interior nodes. Let k(1)

0 , k
(2)
0 , k

(3)
0 ∈ [d̃] be

the indices corresponding to the vertices x1, x2, x3, respectively, so that f̃(k
(j)
0 , k) = f̃k(x

j)
for all j and all k. We obtain

ηT (ỹ)2 ≈ h2
T

∑
k≤d
‖f̃k‖2L2(T ) = h2

T
aT
6

∑
k≤d

( 3∑
j=1

3∑
l=j

f̃(k
(j)
0 , k)f̃(k

(l)
0 , k)

)

= h2
T
aT
6

3∑
j=1

3∑
l=j

〈1, f̃(k(j)
0 ,·)� f̃(k

(l)
0 ,·)〉.

The advantage of this formulation is that it can be vectorized using the tensors of evaluations
at all first, second, and third triangle vertices, respectively, to evaluate the error indicator
for all triangles T simultaneously. Then, only componentwise multiplication and contraction
with the rank-1-tensor 1 are needed.
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To compute the edge error contribution (7.28), one first computes the values of the partial
derivatives ∂x1 ỹk and ∂x2 ỹk on the elements. These values are contained in the tensors G1◦1 ỹ
and G2 ◦1 ỹ, where G1,G2 ∈ R|T |×d0 are sparse matrices mapping a vector of function values
on the FE nodes to a vector of derivative values on the triangles numbered from 1 to |T |.
Analogously, we obtain the tensors G1 ◦1 w and G2 ◦1 w containing the values of ∂x1wk and
∂x2wk. Furthermore, we create the tensors κref = κref⊗1 ∈ R|T |×d1×···×dm , where κref ∈ R|T |
contains the values of κref on the triangles, and κ ∈ R|T |×d1×···×dm such that κ(·, k) contains
the respective values of κ(·, ak). Let now νj,1 ∈ R|T | contain the first components of the
outwards-pointing, normal vectors corresponding to the j-th edge of the triangles T , and
let νj,2 ∈ R|T | contain the second components for j ∈ {1, 2, 3}. This means that if T is
the `-th triangle, the outer normal vector νT,j corresponding to its j-th edge is given by
νT,j =

(
ν
j,1
` ν

j,2
`

)>. Then, the values of

κ(·, ak)∇ỹk · νT,j

for all T are given by the single tensor

κ�
(
diag(νj,1) ◦1 G1 ◦1 ỹ + diag(νj,2) ◦1 G2 ◦1 ỹ

)
= κ�

(
(diag(νj,1)G1 + diag(νj,2)G2) ◦1 ỹ

)
.

With an analogous consideration we get that the values of

(κ(·, ak)∇ỹk − κref∇wk) · νT,j

are contained in the tensor

g̃j := κ�
(
(diag(νj,1)G1 + diag(νj,2)G2) ◦1 ỹ

)
− κref �

(
(diag(νj,1)G1 + diag(νj,2)G2) ◦1 w

)
,

which can be computed using standard low-rank tensor arithmetics, namely i-mode matrix
products as well as componentwise multiplication and subtraction. In a next step, we number
the interior edges E ∈ E0 from 1 to |E0| and create sparse matrices Hj ∈ {0, 1}|E0|×|T |
(j ∈ {1, 2, 3}) mapping vectors of values on the triangles to vectors of values on the respective
j-th triangle edges in the correct order, provided they are interior edges. Then the tensor of
jumps over the interior edges is given by

h̃ :=
3∑
j=1

Hj ◦1 g̃j ∈ R|E0|×d1×···×dm . (7.36)

It is correct to sum here because the outer unit normals of two neighboring triangle point in
the opposite direction. Using the presented definitions, the edge error indicator is given by

ηE(ỹ)2 = hE
∑
k≤d
‖J(κ(·, ak)∇ỹk − κref∇wk) · νEKE‖2L2(E) = h2

E〈1, h̃(l,·).2〉,
where l ∈ {1, . . . , |E0|} is the number of the edge E. As before, this procedure can be
vectorized to compute the error contributions of all interior edges simultaneously. Finally,
we assign half of the error to each of the two neighboring triangles. Based on that, we mark all
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triangles with the largest error contributions which constitute a certain amount ϑη ∈ (0, 1)
of the total error, see [38, Sec. 7.1], a so-called Dörfler strategy [37]. These triangles are
refined regularly, i. e., divided into four triangles of the same shape. To avoid hanging nodes,
additional triangles have to be divided into two new ones possibly.
To evaluate ζi(ỹ) (see (7.31)) based on the tensor ỹ representing the function ỹ, one first

computes the values c
(i)
li

=
∫

Ξi
ξiϑ

(i)
li

(ξi)ϑ
(i)
di+1(ξi) dPi by a quadrature formula of high enough

order, e. g., by Gaussian quadrature with di + 1 nodes if ϑ(i)
li

has degree di− 1 and ϑ(i)
di+1 has

degree di, or analytically and writes them as one vector c(i) ∈ Rdi . Furthermore, the matrix
Āi ∈ Rd0×d0 given by

(Āi)k0l0 := (|κi|∇φl0 ,∇φk0)L2(Ω)n ,

cf. Example 6.5, is assembled. Then we have∫
Ω
|κi|
(∑
ki≤di

c
(i)
ki
∇ỹ∗k

)
·
(∑
ki≤di

c
(i)
ki
∇ỹ∗k

)
dx =

((c(i)> ◦i+1 ỹ)(·, k1, . . . , ki−1, ki+1, . . . , km))>Āi((c(i)> ◦i+1 ỹ)(·, k1, . . . , ki−1, ki+1, . . . , km)).

Summing these values over all kj ∈ {1, . . . , dj} (j 6= i) can be implemented as an inner
product of tensors giving

ζi(ỹ)2 = ‖ κi
κref
‖L∞(Ω)〈c(i)> ◦i+1 ỹ, Āi ◦1 c(i)> ◦i+1 ỹ〉.

If this is the largest contribution to the total error (7.32), we increase the respective polyno-
mial degree di − 1 by 1.

Interpolation to a Finer Subspace

Lifting the current solution tensor ỹ representing the function ỹ ∈ Y to a tensor representing
the same function as an element of a finer subspace is easy: For the refinement of the linear
FE space Y, a sparse interpolation matrix can be constructed. Its upper block is the identity
matrix because the coefficients belonging to the retained FE nodes are not changed. The
coefficients of new nodes inserted on an edge are computed as a convex combination of the
coefficients of the edge endpoints. Lifting the tensor ỹ to a finer FE space then consists of
applying the sparse interpolation matrix to the first tensor mode. The interpolation matrices
of the polynomial spaces Pdi−1(Ξi) with the weighted Lagrangian bases can be constructed
by, e. g., evaluating the Lagrange polynomials of the coarse space at the Gaussian quadrature
nodes of the finer space. Analogously, these dense but typically small interpolation matrices
can be applied to the (i+ 1)-st mode of ỹ.
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The inexact trust-region method (Algorithm 1) is implemented in Matlab to solve different
instances of the model problem presented in Chapter 3. In order to solve the arising PDEs
with uncertain inputs, the adaptive solution technique described in Chapter 7 is used. The
objective function evaluation and gradient error are estimated as derived in Chapter 5.
For this purpose, we consider the following concrete setup for the model problem (3.3)

with state equation (3.8) and objective function (3.4):

• We choose uniformly distributed parameters, meaning that Ξi = (−1, 1) and Pi = 1
2λ

for all i ∈ [m], where λ is the Lebesgue measure on (−1, 1). Assumption 6.3 is satisfied
by this choice.

• The domain Ω := (−1, 1)2 \ (−1, 0]2 ⊂ R2 is the polygonal (cf. Assumptions 6.1 and
7.5) L-shaped domain, frequently used to test adaptive FE codes. It is divided into
m = 6 subdomains Ω1, . . . ,Ω6 as depicted in Figure 8.1. The initial FE mesh, which
contains 113 nodes, and thus all refined meshes respect this partition of the domain,
meaning that each element T ∈ T is contained in exactly one subdomain Ωi, see also
Figure 8.1.

• The coefficient function is chosen to be κ(x, ξ) = κ0(x)
(
1+
∑m

i=1 ξiηi(x)
)
(cf. Example

3.17) with κ0 ≡ 1 and ηi(x) = σi 1Ωi(x), where the vector σ ∈ [0, 1)m describing the
amounts of influence of the uncertain parameters is chosen differently for different
tests. The reference coefficient is κref ≡ 1. Thus, Assumption 7.5 and the first part
of Assumption 7.9 with κi = κ0ηi hold true. Furthermore, ‖ · ‖Aref

≡ ‖ · ‖H1
0 (Ω) and

the constant cAref
introduced in (7.13) comes from the Poincaré inequality ‖ · ‖H1(Ω) ≤

cAref
‖ · ‖H1

0 (Ω).

• We use U = L2(Ω), i. e., Ωu = Ω, D ≡ I : L2(Ω) → L2(Ω), giving that the second
part of Assumption 6.1 is satisfied, f(·) ≡ 0, and ϕ(t) := t3. The reason for the latter
choice is that this nonlinearity and its derivative can be evaluated simply with low-rank
tensors because only componentwise multiplication is needed.

Overall, Assumption 3.3 is fulfilled with κ = 1 −maxi∈[m] σi, κ = 1 + maxi∈[m] σi, a′′ϕ′′ = 0,
c′′ϕ′′ = 6, p = 4, rf =∞. Additionally, (7.3) holds with λ = κ and Λ = κ.

• The observation space is H = L2(Ω) and Q(·) ≡ ι : H1
0 (Ω) ↪→↪→ L2(Ω) is constant.

• The desired state q̂(·) ≡ q̂ ∈ L2(Ω) is constant and chosen differently for different tests.

Hence, we have the integrability exponents rQ =∞ and rq̂ =∞ and thus rQy =∞, r̂ =∞,
and rz = ∞ (see Table 3.1). Assumption 5.6 holds true and the error estimation scheme
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Figure 8.1.: The used physical domain Ω, its partition into subdomains Ωi, and the intial
finite element mesh.

given in Figure 5.2 can be applied. Assumption 6.1 is satisfied for arbitrary degree vectors
d ∈ Nm. Additionally, the right-hand sides of the state and adjoint equation are polynomials
of coordinate degree at most d− 1 if the current approximate state ỹ is such a polynomial,
see Assumption 7.9 and also Remark 7.4.

• We take γ = 10−3 and the set of admissible controls shall be Uad := {u ∈ L2(Ω) : u(x) ≤
14 for a. e. x ∈ Ω}, where the upper bound is chosen such that it becomes active, but
the optimal state is in the order of magnitude of the desired state. Therefore, the
prerequisites of Theorem 3.19 as well as Assumption 4.2 are fulfilled and we can apply
the exact and the inexact projection formula given in Section 6.4. The constant upper
bound makes it possible to evaluate the error due to the “node-wise” projection for any
FE mesh (Remark 5.4). In all tests, we initialize the algorithm with u0 = 0.

The constants required for error estimation are set as follows: In Theorem 5.8 and in
Lemma 5.10, we choose the Sobolev constant cr̃ = cp = c4 = 0.5 because we estimated
c2 ≈ 0.3 numerically. The norm ‖y‖L∞P (Ξ;Y ) in (5.20) is estimated by (3.9) with the Poincaré
constant set to CΩ = 1. Additionally, we assume that ‖ỹ‖L∞P (Ξ;Y ) is approximately of the
same size as ‖y‖L∞P (Ξ;Y ) and neglect this term in (5.20). For a more rigorous implementation
it could be estimated by a method for tensor maximum estimation as described in Subsection
2.1.3, but we skip this step for efficiency reasons. We also ignore the interpolation error in
(7.12) and set cT cAref

= 10−3 in this estimate to have all error contributions in the same
order of magnitude. Even if the real, unknown constants are underestimated by the described
choices, the algorithm still works because we need to know the error only up to a fixed, but
possibly unknown multiplicative constant. In fact, an unrealistic choice of constants can be
compensated by the choice of the error functions in the trust-region algorithm.
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8.1. Implementation Details

The implementation is done in Matlab R2017b because the use of various toolboxes facil-
itates it. The Partial Differential Equation Toolbox in Matlab is used for basic FE tasks,
such as mesh generation and refinement, or assembling matrices. Some finite element related
code, such as the FE error estimator or the exact L2-projection onto a box, is not available
within this toolbox and has to be written additionally. Since the FE error estimator has
to be applied to low-rank tensors, we need to create suitable sparse matrices, see (7.36) for
example. The exact projection with the suitable grid refinement has to be vectorized in order
to have an efficient Matlab code. This is not a trivial task because many decisions such as
which triangles have to be divided into how many new ones and how these new triangles are
chosen have to be encoded as vectors. We use the htucker toolbox 1.2 [76] for computations
with hierarchical Tucker tensors and choose a “TT-like” dimension tree, the TT-Toolbox 2.2
[89] for Tensor Train tensors and an own implementation for the conversion between the two
formats, see Subsection 2.1.3. This has the advantage that we can benefit from algorithms in
both toolboxes. AMEn [36] including operators in the {d, R}-format from the tamen-package
[35] is used for the rank-adaptive solution of linear systems. Componentwise multiplication
operators and a preconditioner are implemented as described in Subsection 2.1.3. These ex-
tensions of AMEn are needed due to the nonlinear term in the PDE and for minimizing the
Â−1

ref -norm of the residual, see Theorem 7.12.
Algorithm 1 is implemented such that it can work with “Hilbert space objects”, i. e., Mat-

lab objects for which the usual vector space operations are defined and an inner product is
given. Additionally, we pay attention to the fact that the algorithm shall be used for opti-
mal control applications. Therefore, the objective function and gradient evaluations accept
initializations for the state and the adjoint state, a refined version of which is returned and
used for further computations. All relevant functions, such as the control, the state, and
the adjoint state are kept on matched grids to facilitate the computation. We keep all grid
refinements stemming from the gradient computation and the projected linesearch for further
iterations. In the concrete application it is found that sometimes it is necessary to evaluate
the objective function up to high accuracy so that the state needs to be computed on a very
fine FE mesh and/or with a high polynomial degree. Keeping this fine FE and polynomial
spaces for further iterations would make the algorithm slow so that it turns out that it is
better to discard them. We only reuse grids and polynomial degrees in the stochastic case for
the objective function evaluation at the possible next iterate. To find a possibly better step
than the generalized Cauchy step found by the projected Armijo linesearch with suitably
refined projection, our implementation of Algorithm 1 requires an “advanced solver” for the
trust-region subproblem. Here we apply a semismooth Newton method as outlined in Section
6.4 with the generalized Cauchy point as initial iterate. We perform at most 5 semismooth
Newton steps and stop the iteration earlier if the discrete L2-norm of the residual (6.29)
is smaller than 10−6. For computing the semismooth Newton direction, at most 20 CG it-
erations are performed until the relative CG-residual is smaller than 0.1. If CG performs
20 iterations without reaching this tolerance and the relative CG-residual is in fact larger
than 0.5, the algorithm stops and returns the iterate with the smallest semismooth Newton
residual. Otherwise it checks whether the step computed by CG is capable of reducing the
semismooth Newton residual. If this is not the case, the semismooth Newton iteration stops.
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Note that for the performance of the overall algorithm, the semismooth Newton solver is
not a bottleneck because it works on a fixed, discrete subspace of U . Compared to it, grid
refinement and the solution of the stochastic PDE with low-rank tensors is costly. That is
the reason why we use more than one semismooth Newton iteration. With this approach
we can expect to obtain a larger model decrease predk. This allows then to evaluate the
objective function less exactly, see Lemma 4.25, so that typically more computing time can
be saved than by taking less semismooth Newton iterations.
To track the mesh refinement, we writeMatlab classes for FE functions carrying, e. g., the

mesh, the respective assembled matrices, the coefficients, and functions for grid refinement.
Vector space operations are overloaded such that the trust-region algorithm can work with
these objects. For the state and the adjoint state we need an additional Matlab class of
functions of the form (6.8) with one FE space mode andm ∈ N polynomial parameter modes.
The coefficients are represented by an HT tensor and we implement functions for FE and
polynomial refinement, pointwise evaluations and computing the expectation etc.
To make sure that all required error bounds in Algorithm 1 can be satisfied, we use the

error functions proposed in Section 4.3. The parameter settings for the trust-region algorithm
as well as the inexact projection and the projected linesearch are listed in Table 8.1.

Algorithm 1, see Sections 4.1 and 4.3:

τ τ = 1
γ = 103

%c %c(t) = cct with cc = cgτ c̃c, where c̃c > 0 is chosen problem-specific
%g %g(t) = cgt with cg = cgc̃g, where c̃g > 0 is chosen problem-specific
%t1 %t1(t) = ct1t with ct1 =

cic
2
l1cl2cecf
τ , see Lemma 4.20

%t2 %t1(t) = ct2t with ct2 = 1
cl2τ
·min

{2(1−ce)ci
cm

, cacf

}
, see Lemma 4.20

%r %r(t) = 2coc̃ot
eo with c̃o > 0 chosen problem-specific and eo = 1.1

(rk)k∈N0 rk = 1000
k+1

∆ ∆max = 104, ∆0 = 1
ηi η1 = 0.3, η2 = 0.7, η3 = 0.2
νi ν1 = 0.5, ν2 = 1.0, ν3 = 2.0
cχεtol cχεtol = 10−4 (deterministic problems), cχεtol = 10−3 (stochastic problems)

Inexact projection and projected linesearch, see Section 4.3:

cs cs = 0 (exact projection used for computing the inexact criticality measure)
ci ci = 0.5
cf , ce, ca cf = 0.5, ce = 10−2, ca = 10−3

ca,k ca,k = max{ca,min{τ, cl2∆k
‖∇mk(0)‖U }}, see (4.40)

cl1 cl1 = 0.7

cl2 cl2 = 2cl1−1
cl1

= 4
7 , see Remark 4.21

cd cd = 10−2

Semismooth Newton, see Sections 4.4 and 6.4:

cn,k cn,k = cn (constant over all iterations), problem-specific

Table 8.1.: Parameters used in Algorithm 1
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In particular, we stop the algorithm if χk(0) < 10−4 or χk(0) < 10−3 holds in the de-
terministic or in the stochastic case, respectively. Note that in the unconstrained case this
would correspond to having ‖∇mk(0)‖ < 10−7 or ‖∇mk(0)‖ < 10−6 because τ = 103 is
chosen, cf. (4.9). Almost all parameters have the same value over all tests, but the error
bound parameters c̃c > 0, c̃g > 0, and c̃o > 0 for the criticality measure, the gradient, and the
objective function evaluation, respectively, are chosen problem-specific because they reflect
how good the applied error estimators are or compensate unknown constants. This makes
some experimentation necessary. On the one hand, one should not choose the parameters c̃c
and c̃g too small because grid refinement happens early then and makes the algorithm slow.
On the other hand, if c̃c and c̃g are too large, the trust-region model is not accurate enough to
compute a direction of objective function decrease. Then, unsuccessful iterations happen and
the trust-region radius is decreased until the gradient is accurate enough. This can take some
time and should be avoided. A similar situation appears when choosing c̃o. If it is too large,
a very inexact objective function evaluation can cause an unsuccessful iteration. Conversely,
if it is too small, too much time is spent on the objective function evaluations. Additionally,
we sometimes adapt the regularization parameter cn,k appearing in the semismooth Newton
problem (4.42), but choose it constant over all iterations. For example, it can be increased to
have a better condition number and typically better convergence of the semismooth Newton
iteration, but should not be too large because then the computed steps are too small.
The adaptive solution of the deterministic PDE (Section 7.1) is implemented as follows:

The discretized PDE is always solved by Newton’s method until the residual norm is below
10−6. Often, we only need one Newton step to fulfill this criterion. This tolerance is chosen
such that the FE error dominates in Theorem 7.8 during the whole computation. The
triangles contributing 30% of the error are refined. The procedure is repeated until the error
estimate given in Theorem 7.8 is small enough. To avoid an infeasible number of FE nodes
and unknowns, the refinement is stopped if 2 · 105 FE nodes would be exceeded.

The stochastic PDE is solved adaptively based on Theorem 7.12. We start with the coarse
FE mesh shown in Figure 8.1 and with the polynomial degrees d = 1, and refine iteratively.
Depending on the highest error contribution in (7.32), one of the following tasks is pursued:

• If the algebraic error dominates, one inexact Newton step is computed by performing
one AMEn sweep on the Newton equation. To avoid rank growth, the updated tensor
is truncated to rank at most 100 w. r. t. to the Âref -norm as described in Section 7.4.

• If the polynomial discretization error is the largest one, the polynomial degree of one
parameter, namely the one with the largest error contribution, is increased by 1.

• If the FE error dominates, the triangles contributing 30% of the error are refined. To
make the evaluation of the FE error efficient, we have to round the componentwisely
multiplied tensors to avoid too large tensor ranks.

The refinement is programmed such that the last iteration is always an AMEn sweep to have
a meaningful solution on the current discrete subspace. Again, the number of FE nodes is
bounded by 2 · 105 in order to avoid complexity issues so that the algorithm adapts to the
semi-discrete solution using the finest FE mesh at the end. In some cases, AMEn stagnates
and does not manage to compute a solution with small enough algebraic error in the last
iterations of Algorithm 1. Then the adaptive solution procedure is stopped.
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The projection onto the box Uad is computed adaptively by computing the exact projection
and the corresponding refined grid first. Then the exact error made by the node-wise projec-
tion can be evaluated on each element. If the node-wise projection does not meet one of the
exactness requirements, the triangles contributing 30% of the projection error are refined.
We use uniform refinement to not destroy the quality of the mesh, which is important to
uniformly bound the constants cT in (7.16) and (7.32), which depend on the smallest angle
in the triangulations. The refinement is repeated until the inexact projection is accurate
enough.
All computations are run on a Linux cluster with 1 TB RAM and 4 Intel Xeon E7-8857

processors, each of which has 12 kernels and a base frequency of 3.00 GHz. However, only
serial but vectorized implementations are used in Matlab because current toolboxes do not
offer, e. g., parallel computations with low-rank tensors or parallel FE codes.

8.2. Results for the Deterministic Problem

First, we implement the deterministic problem, i. e., the optimal control problem with the
objective function J [ξ] (3.4) and the state equation (3.8), where the reference coefficient
ξ = ξ̄ = 0 is inserted. Equivalently, we could solve the stochastic problem with σ = 0. We do
this in order to test the error estimates from Sections 5.1 and 7.1, to visualize the adaptivity
of the FE grid and to have reference solutions for the problem under uncertainty.
Since the discretized PDE is often solved to good accuracy by only one Newton step, there

is no need to balance the errors in Theorem 7.8. Therefore, we choose cT cAref
= 1 in (7.13)

and adapt the error estimation parameters adequately.
The first setup uses the desired state q̂ ≡ 1. Here we choose the parameters c̃c = 200,

c̃g = 200, c̃o = 108, and cn = 0.1. The high value for c̃o is needed to avoid too severe grid
refinement due to inexact objective function evaluation. This value comes also from the fact
that we overestimate the error given in Proposition 5.5, because we measure the state error in
the H1

0 (Ω)-norm although the L2(Ω)-error would be sufficient. The computed optimal state
and and the control are depicted in Figure 8.2. It can be observed that the optimal state
is in the order of magnitude of the desired state. Furthermore, the three active sets of the
control and the symmetry of the problem can be recognized. The FE mesh obtained in the
final iteration of the algorithm is shown in Figure 8.3. Around the corner x = 0, the mesh
is refined locally due to the adaptive solution of the PDE. Furthermore, the boundary of the
active set of the control is resolved by the mesh due to the refined projection.
The convergence is shown in Figure 8.4. This is the typical convergence behavior so that

we do not show convergence plots for the other deterministic setups. The number of FE
nodes increases until it reaches the allowed upper bound. The criticality measure decreases
in general until the desired tolerance is reached. But by refining the mesh the inexactness
of the computed criticality measure is recognized sometimes. Then the computed criticality
measure on the refined mesh is larger than the one on the coarser grid. We have to mention
that it is not worth counting iterations in this setting. Typically, the first iterations run
very fast within some seconds. For instance, the first 16 iterations needed to decrease the
computed optimality measure from 23.2 to 3.09 · 10−2 take about 19 seconds in total. Only
the last iterations required to obtain the desired high accuracy last increasingly longer so that
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Figure 8.2.: Optimal state (top) and optimal control (bottom) for the deterministic problem
with q̂ ≡ 1.
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Figure 8.3.: Final mesh (with details at the bottom) for the deterministic problem with q̂ ≡ 1.
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Figure 8.4.: Convergence and refinement plot for the deterministic problem with q̂ ≡ 1.

the total computing time is around 22 minutes. The last three iterations, during which the
computed criticality measure is decreased from 1.23 · 10−3 to 0.98 · 10−4, take approximately
13 minutes. Often, the grid refinement due to the projection errors is done to more extent
during the last iterations. Figure 8.5 shows the grid 5 iterations before the last one. It has
approximately half the number of FE nodes compared to the one shown in Figure 8.3 and
the resolution of the active sets is still missing.
As a second setup, we change the desired state to the polynomial q̂(x) = 9(x3

1−x1)(x3
2−x2).

This is a smooth function fulfilling the zero boundary conditions on Ω. Additionally, it is
very smooth around the corner point x = 0. We do not change the parameters compared
to the first setup. The computed optimal state and control are depicted in Figure 8.6. The
active set of the control is also nicely resolved in the final mesh (Figure 8.7). Around the
corner x = 0, the mesh is not locally refined as before because of the smoothness of the
optimal state around this point.
In the third setup, the desired state is q̂ ≡ 1{x∈Ω:x2>0.5}. Here, it is necessary to choose

the parameters c̃c = 20, c̃g = 20, c̃o = 108, and cn = 1.0. The gradient is computed more
exactly by this choice so that that the algorithm does not run into unsuccessful iterations.
The larger regularization parameter for semismooth Newton yields a more robust iteration.
In this case, the optimal state is almost zero for x2 < 0, see Figure 8.8, and also the optimal
control has very small values in this area. By the first-order optimality condition, the adjoint
state is also small there. This yields that the final mesh is quite coarse for x2 < 0 except
for the area around the corner x = 0, see Figure 8.9. This can be explained by taking a
look at the error estimates (7.14) and (7.15). They become small on the triangles and their
respective edges if the solution ỹ and the jump in its gradient, the residual w and the jump
in its gradient, and the right-hand side f̂ are small. This is true for both the state and the
adjoint equation. Again, the active set of the control is resolved nicely, cf. Figures 8.8 and
8.9.
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Figure 8.5.: Mesh from iteration 22 (of 27) for the deterministic problem with q̂ ≡ 1.
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Figure 8.6.: Optimal state (top) and optimal control (bottom) for the deterministic problem
with q̂(x) = 9(x3

1 − x1)(x3
2 − x2).
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Figure 8.7.: Final mesh (with details at the bottom) for the deterministic problem with q̂(x) =
9(x3

1 − x1)(x3
2 − x2).
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Figure 8.8.: Optimal state (top) and optimal control (bottom) for the deterministic problem
with q̂ ≡ 1{x∈Ω:x2>0.5}.
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Figure 8.9.: Final mesh for the deterministic problem with q̂ ≡ 1{x∈Ω:x2>0.5}.

128



8.3. Results for the Problem with Uncertainties

8.3. Results for the Problem with Uncertainties

Now we consider the stochastic problem (3.3) with the state equation defined in (3.11) and
vary the problem data to see how the algorithm adapts to the situation. As already noted,
we choose cT cAref

= 10−3 to balance the error contributions coming from the FE and the
polynomial chaos discretization. This makes different choices of the error control constants
necessary.

Again, we start with the desired state q̂ ≡ 1 and with the vector of influence amounts
σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>, i. e., the coefficient function varies ±25% equally on
each subdomain independently and each parameter has the same influence on it. We choose
c̃c = 0.05, c̃g = 0.05, c̃o = 103, and cn = 0.01. The obtained optimal control and the expected
optimal state are quite similar to the ones from the deterministic setup, see Figure 8.10, but
the active sets are a bit smaller so that the smallest one almost disappears. The final mesh
(Figure 8.11) is very similar to the one obtained before. Grid refinements due to the active
sets can be recognized, but are not as pronounced as in the deterministic case because the
iteration is already stopped when χk(0) < 10−3 instead of χk(0) < 10−4. The reason for
this is that the high fidelity PDE solves in the last iterations become quite expensive. The
algorithm takes about 42 hours to compute this solution, where 37 hours are spent for the
last two iterations decreasing the computed criticality measure from 1.39 ·10−2 to 5.82 ·10−4.
In practice, one would probably refrain from performing the last two iterations because less
accurate solutions are sufficient if, e. g., the problem data or the parameter distribution is
not known exactly. The convergence and refinement behavior is shown in Figure 8.12.
We see that the computed criticality measure decreases monotonically and the algorithm
stops in iteration 13, whereas a criticality measure smaller than 10−3 is obtained in iteration
25 in the deterministic case, see Figure 8.4. This is because the error control constants
c̃c and c̃g = 0.05 are chosen a bit smaller even if we take account of the smaller constant
cT cAref

so that better steps are computed. The number of FE nodes grows until it reaches
its upper bound. Furthermore, the polynomial degrees for each parameter increase almost
equally during all iterations because the parameters have roughly the same influence on the
optimal uncertain state. Figure 8.14 shows the difference between the deterministic and the
robust control. We see the symmetry of the problem and can recognize the boundaries of the
parameter influence sets Ωi. The difference between the controls is zero where their active
sets coincide.

The situation changes if we keep the desired state q̂ ≡ 1, but choose the influence amounts
σ = (0.05, 0.10, 0.20, 0.30, 0.40, 0.45)>. The average influence of each uncertain parameter is
still 25%, but now it is increasing clockwise, i. e., parameter 1 has the smallest influence of
5% on the coefficient function, whereas parameter 6 has the largest influence of 45%. The
convergence plot (Figure 8.13) is changed by this choice in the sense that higher polynomial
degrees are needed for the parameters with more influence on the system. This becomes clear
if we review the stochastic error indicator (7.31), which becomes smaller if the coefficient
function κi is smaller. Additionally, it can be seen in Figure 8.15 that the difference between
the deterministic and the robust control is larger in areas where the variation of the coefficient
function is larger. Clearly, the problem is not symmetric anymore and one can recognize the
size change of the active sets, especially the one on the bottom right.
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Figure 8.10.: Optimal control (bottom) and expected optimal state (top) for the stochastic
problem with q̂ ≡ 1 and σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>.
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Figure 8.11.: Final mesh (with details at the bottom) for the stochastic problem with q̂ ≡ 1
and σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>.
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Figure 8.12.: Convergence and refinement plot for the stochastic problem with q̂ ≡ 1 and
σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>.

Figure 8.13.: Convergence plot and refinement for the stochastic problem with q̂ ≡ 1 and
σ = (0.05, 0.10, 0.20, 0.30, 0.40, 0.45)>.
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8.3. Results for the Problem with Uncertainties

Figure 8.14.: Difference between the deterministic and the robust control for q̂ ≡ 1 and
σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>.

Figure 8.15.: Difference between the deterministic and the robust control for q̂ ≡ 1 and
σ = (0.05, 0.10, 0.20, 0.30, 0.40, 0.45)>.
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8. Implementation and Numerical Results

Figure 8.16.: Convergence and refinement plot for the stochastic problem with q̂ ≡
1{x∈Ω:x2>0.5} and σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>.

As a last setup, we consider the desired state q̂ ≡ 1{x∈Ω:x2>0.5} with equal influence
σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>. We choose the parameters c̃c = 0.01, c̃g = 0.01,
c̃o = 103, and cn = 0.1 in analogy to the choice in the deterministic setup. Again, we obtain
a similar optimal control and expected state. The convergence and refinement plot in Figure
8.16 reveals that smaller polynomial degrees are chosen especially for parameters 5 and 6,
which act in the area where the optimal state and its gradient are almost zero. Because of
this fact, the stochastic error indicator (7.31) becomes smaller for these parameters since it
depends on the size of the state gradient in the area where the coefficient κi is not small.
The difference to the deterministic control is larger in the subdomains Ω1, . . . ,Ω4, see Figure
8.17, which is another indicator for the fact that parameters 5 and 6 do not influence the
solution as much as parameters 1 to 4.
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Figure 8.17.: Difference between the deterministic and the robust control for q̂ ≡
1{x∈Ω:x2>0.5} and σ = (0.25, 0.25, 0.25, 0.25, 0.25, 0.25)>.
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9. Alternative Risk Measures

Until now, all considerations in this thesis have referred to the expectation as risk measure,
i. e., R ≡ E in (1.2). This means that we want the controlled system to perform well on
average. On the one hand, this is a viable approach if, e. g., the objective function stands for
a cost one has to pay and this cost shall be small averaged over a long time horizon during
which the uncertain parameters may change their value according to their distribution. On
the other hand, in certain engineering applications, such as aeronautics or nuclear reactors,
a high cost function value can correspond to a system fail, meaning that the plane crashes
or the reactor core melts for example. Such situations should clearly be avoided with high
probability. This is not taken into account if R ≡ E is used as a risk measure because those
scenarios are typically unlikely to occur so that they do not influence the expected value
very much. Analogously, the expectation might not be the risk measure of choice if the
randomness is only observed once and the probability of having a high cost shall be small.
In this chapter, we give an introduction to risk measures, which are functionals rating

the probability distribution of a random variable, and their properties. Furthermore, we
provide two examples which we discuss in the context of optimal control. Both lead to
risk-averse choices of the optimal control instead of the risk-neutral controls computed with
R ≡ E. The mean-variance risk measure R ≡ E + λVar with λ > 0 (Section 9.2) is smooth
so that the trust-region algorithm (Algorithm 1) can be applied to solve optimal control
problems involving it. We discuss this in theory and show how the corresponding required
error estimates (cf. Chapter 5) change in this case. The conditional value-at-risk (CVaR,
Section 9.3) is a risk measure with better theoretical properties than the mean-variance risk
measure and is used frequently in financial mathematics [94, 95, 77, 103]. For instance, in the
example control problem from the previous chapters the mean-variance risk measure would
penalize upward and downward deviations of the cost term from its mean equally although
downwards deviations lead to a probably desired smaller cost. In contrast, the CVaR is
computed based on large deviations from the desired state only since it is the expectation
of the upper tail of the considered random variable. Since CVaR is nonsmooth, different
solution techniques have to be applied for solving optimal control problems involving it.
We discuss the application of a primal interior-point method and its implementation with
low-rank tensors.

9.1. Definition and Properties of Risk Measures

Definition 9.1. Let (Ξ,F ,P) be a complete probability space. A risk measure R is a
functional R : LpP(Ξ)→ R ∪ {∞}, where p ∈ [1,∞].

Remark 9.2. Instead of LpP(Ξ), we could also consider more general spaces or sets of random
variables. Furthermore, the value −∞ could be incorporated, see [103, Sec. 6.3].
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9. Alternative Risk Measures

Example 9.3. Prominent examples for risk measures are (see also [96, Sec. 2])

• the expectation R ≡ E, which is well-defined and always finite on L1
P(Ξ),

• the mean-variance risk measure R[X] = E[X] + λVar[X] for some λ > 0, which is
well-defined on L2

P(Ξ),

• the risk measure R[X] = E[X] + λσ[X] with σ[X] =
√

Var[X], which is well-defined
on L2

P(Ξ), and

• the β-quantile or value-at-risk R[X] = VaRβ[X] for some confidence level β ∈ (0, 1),
which is defined by

VaRβ[X] := min{t ∈ R : FX(t) ≥ β}

[95, Def. 1] with the distribution function FX(t) := P(X ≤ t). Note that VaRβ is
well-defined since FX is non-decreasing and right-continuous. Lastly, we have

• the conditional value-at-risk R[X] = CVaRβ[X] defined by

CVaRβ[X] := “mean of the β-tail distribution of X”,

i. e., the mean of a random variable with distribution function F βX(t) := 1
1−β (FX(t) −

β) 1{t≥VaRβ [X]}(t) [95, Def. 3]. We will see how the CVaR can be computed.

Definition 9.4. Let R be a risk measure. It may have the following properties (see [96]):

P1. Convexity : R[(1− τ)X + τY ] ≤ (1− τ)R[X] + τR[Y ] for all τ ∈ [0, 1] and all X,Y ∈
LpP(Ξ).

P2. Positive homogeneity : R[0] = 0 and R[λX] = λR[X] for all λ ∈ (0,∞) and all X ∈
LpP(Ξ).

P3. Subadditivity : R[X + Y ] ≤ R[X] +R[Y ] for all X,Y ∈ LpP(Ξ).

P4. Monotonicity : R[X] ≤ R[Y ] for all X,Y ∈ LpP(Ξ) such that X ≤ Y almost surely
(a. s.)

P5. Translation equivariance: R[X + c] = R[X] + c for all X ∈ LpP(Ξ) and all c ∈ R.

P6. Closedness: The set {X ∈ LpP(Ξ) : R[X] ≤ c} ⊂ LpP(Ξ) is closed for all c ∈ R.

P7. Aversity to risk : R[X] > E[X] for all non-constant X ∈ LpP(Ξ).

Some of these properties are used in the definition of other classes of risk measures:

Definition 9.5. A proper, convex, positively homogeneous, monotonic, and translation-
equivariant risk measure R : LpP(Ξ)→ R ∪ {∞} is called coherent [103, Sec. 6.3].

Remark 9.6. By [17, Prop. 10.3], a coherent risk measure is automatically subadditive
because it is convex and positively homogeneous. Moreover, in the original definition [6,
Def. 2.4], it is not explicitly mentioned that the risk measure has to be proper because only
finite risk measures are considered. As noted in [96], a finite, convex and monotonic risk
measure is automatically continuous and subdifferentiable on LpP(Ξ) by [99, Prop. 3.1].
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9.2. Mean-Variance Risk Measure

Definition 9.7. A risk measure R : LpP(Ξ) → R ∪ {∞} is called regular [96] if it is closed
convex, risk averse, and fulfills R[C] = C for all C ∈ R.

Example 9.8.

• R ≡ E : LpP(Ξ)→ R (p ≥ 1) fulfills properties P1, P2, P3, P4, P5, and P6, but not P7.

• R ≡ E + λVar : LpP(Ξ)→ R (λ > 0, p ≥ 2) is regular and fulfills property P5, but not
P2, P3, and P4.

• R ≡ E + λσ : LpP(Ξ) → R (λ > 0, p ≥ 2) is regular and fulfills properties P2, P3, and
P5, but not P4.

For the last two risk measures, convexity and closedness can be observed by Var[X] =
‖X −E[X]‖2

L2
P(Ξ)

and σ[X] = ‖X −E[X]‖L2
P(Ξ), i. e., they both are a composition of a closed,

convex and a linear, bounded function. In addition, E + λσ is subadditive, because it is
convex and positively homogeneous, see Remark 9.6. But E + λVar is not subadditive:
Consider a random variable X with positive variance. Then, E[X + X] + λVar[X + X] =
2E[X] + 4λVar[X] > 2 (E[X] + λVar[X]).
The lacking monotonicity for both E+λVar and E+λσ is one of the less obvious properties:

Consider, e. g., a random variable X such that X = d < 0 with probability p ∈ (0, 1) and
X = 0 with probability 1− p ∈ (0, 1). Furthermore, consider Y ≡ 0. Then, X ≤ Y a. s.,

E[X] = pd, Var[X] = pd2 − (pd)2 = p(1− p)d2,

E[Y ] = 0, and Var[Y ] = 0. Thus,

0 = E[Y ] + λVar[Y ] < E[X] + λVar[X] = pd+ λ p(1− p)d2 = pd(1 + λ(1− p)d)

if and only if d ∈ (− 1
(1−p)λ , 0). Analogously, 0 < E[X] + λσ[X] = pd− λ

√
p(1− p)d if and

only if p ∈ (0, λ2

1+λ2 ).

Furthermore, VaRβ is not subadditive in general [6], but CVaRβ fulfills all properties given
in Definition 9.4 as shown later.

9.2. Mean-Variance Risk Measure

We consider the reduced form (1.3) of an optimal control problem with the risk measure
E + λVar for some λ > 0 as done in, e. g., [3]. This gives the problem

min
u∈U

Ĵ(u) := E[Ĵ1(u, ·)] + λVar[Ĵ1(u, ·)] + J2(u) s. t. u ∈ Uad. (9.1)

Compared to the risk-neutral case, this approach shall additionally reduce the variability
(measured by the variance) of the tracking term Ĵ1(u, ·). But it should be mentioned that
the objective function Ĵ may be non-convex even though the functions Ĵ1(·, ξ) and Ĵ2(·) are
convex for almost every ξ ∈ Ξ and the variance itself is a convex functional. Hence, it is
possible that only a local minimizer is computed by a local optimization algorithm, such as
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9. Alternative Risk Measures

the proposed trust-region method (Algorithm 1). The basic assumptions from Chapter 1 are
not enough to discuss this problem. We require:

Assumption 9.9.

• (Ξ,F ,P) is a complete probability space.

• U is a Hilbert space.

• Uad ⊂ U is nonempty, closed and convex.

• J2 : U → R is twice continuously differentiable.

• Ĵ1 : U × Ξ → R is such that Ĵ1(u, ·) =: Ĵ1[·](u) ∈ Lpfun
P (Ξ) for all u ∈ U with some

pfun ∈ [1,∞].

• The function Ĵ1[·] : U → Lpfun
P (Ξ) is continuously differentiable. Its first derivative

Ĵ1[·]′(u) ∈ L(U,Lpfun(Ξ)) can be identified with the partial gradient ∇uĴ1(u, ·) ∈
Lpfun
P (Ξ;U) via

Ĵ1[·]′(u)w = (∇uĴ1(u, ·), w)U .

Here, the U -inner product is taken separately for almost every ξ ∈ Ξ.

• The function Ĵ1[·] : U → Lpfun
P (Ξ) is twice continuously differentiable. Its second

derivative Ĵ1[·]′′(u) ∈ L(U,L(U,Lpfun(Ξ))) can be identified with the partial Hessian
∇2
uuĴ1(u, ·) ∈ Lpfun

P (Ξ;L(U,U)) via

[Ĵ1[·]′′(u)s]w = (∇2
uuĴ1(u, ·)s, w)U .

In particular, we need pfun ∈ [2,∞] for the mean-variance risk measure to be finite. As-
sumption 9.9 allows to apply the chain rule to compute the derivative of the objective function
Ĵ . We note that due to

E : Lpfun
P (Ξ)→ R, E[X] =

∫
Ξ
1 ·X dP

we can identify the derivative E′[X] = 1 ∈ Lp
∗
fun

P (Ξ) for all X ∈ Lpfun
P (Ξ), where pfun ∈ [1,∞]

and 1
pfun

+ 1
p∗fun

= 1. Furthermore, it holds that

Var : Lpfun
P (Ξ)→ R, Var[X] = ‖X − E[X] · 1‖2L2

P(Ξ) = ‖X‖2L2
P(Ξ) − E[X]2

and therefore Var′[X] = 2X − 2E[X] · 1 ∈ Lp
∗
fun

P (Ξ) with pfun ∈ [2,∞]. Note that we embed
Lpfun
P (Ξ) ↪→ L2

P(Ξ) and use also the adjoint embedding L2
P(Ξ) ↪→ L

p∗fun
P (Ξ) to compute this

Fréchet derivative involving the derivative of the squared L2
P(Ξ)-norm. In general, L∞P (Ξ)∗

contains also functionals which cannot be identified with L1
P(Ξ) functions, but all respective

objects are indeed in L1
P(Ξ) for pfun = ∞. The second derivative of Var is Var′′[X]Y =

2Y − 2E[Y ] · 1 ∈ Lp
∗
fun

P (Ξ) for Y ∈ Lpfun
P (Ξ).
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9.2. Mean-Variance Risk Measure

By the chain rule, we obtain the gradient of Ĵ as

∇Ĵ(u) = E[∇uĴ1(u, ·)] + 2λ

∫
Ξ

(
Ĵ1(u, ·)− E[Ĵ1(u, ·)] · 1

)
∇uĴ1(u, ·) dP +∇J2(u)

= (1− 2λE[Ĵ1(u, ·)])E[∇uĴ1(u, ·)] + 2λ

∫
Ξ
Ĵ1(u, ·)∇uĴ1(u, ·) dP +∇J2(u)

= E[∇uĴ1(u, ·)] + 2λCov[Ĵ1(u, ·),∇uĴ1(u, ·)] +∇J2(u)

(9.2)

and the Hessian

∇2Ĵ(u)s = E[∇2
uuĴ1(u, ·)s] + λ

〈
Var′′[Ĵ1(u, ·)](∇uJ1(u, ·), s)U ,∇uJ1(u, ·)

〉
L
p∗
fun

P (Ξ),L
pfun
P (Ξ)

+ λ
〈
Var′[Ĵ1(u, ·)],∇2

uuJ1(u, ·)s
〉
L
p∗
fun

P (Ξ),L
pfun
P (Ξ)

+∇2J2(u)s

= E[∇2
uuĴ1(u, ·)s] + 2λ

∫
Ξ

(
(∇uJ1(u, ·), s)U − E[(∇uJ1(u, ·), s)U ] · 1

)
∇uĴ1(u, ·) dP

+ 2λ

∫
Ξ

(
Ĵ1(u, ·)− E[Ĵ1(u, ·)] · 1

)
∇2
uuĴ1(u, ·)sdP +∇2J2(u)s

= E[∇2
uuĴ1(u, ·)s] + 2λCov[(∇uJ1(u, ·), s)U ,∇uĴ1(u, ·)]

+ 2λCov[
(
Ĵ1(u, ·),∇2

uuĴ1(u, ·)s] +∇2J2(u)s.

The advantage of these derivative formulations is that they use the partial derivatives w. r. t.
u of the parameter-dependent reduced objective function. Often, the computation of these
derivatives is already implemented by the adjoint approach and can be reused for an imple-
mentation of the mean-variance risk measure. Overall, we do not have to define an alternative
adjoint state or adjoint equation for the objective function involving the variance term.

9.2.1. Discussion of the Example

We discuss under which conditions Assumption 9.9 is satisfied for the example from Chapter
3, i. e., we have

Ĵ [ξ](u) = J1[ξ](S[ξ](u), u, ξ) + J2(u) = 1
2‖Q(ξ)S[ξ](u)− q̂(ξ)‖2H + γ

2‖u‖
2
U ,

see (3.5). According to (3.17), the derivatives are given by

Ĵ1[ξ]′(u) = −B(ξ)∗T [ξ](u) and ∇J2(u) = γu,

where Ĵ1[ξ](u) = J1[ξ](S[ξ](u), u, ξ). Due to Corollary 3.15 it holds that S[·](u) ∈ Lrf (Ξ;Y )
and Lemma 3.23 yields T [·](u) ∈ LrzP (Ξ;Y ) with rz depending on the integrability exponents
rf , rQ, and rq̂ of the state, the state-to-observation map Q(·), and the desired state q̂(·),
respectively. Especially, the functions ξ 7→ Ĵ1[ξ](u) and ξ 7→ Ĵ1[ξ]′(u) are measurable and
one obtains the integrability exponents

Ĵ1[·](u) ∈ Lr̂/2P (Ξ) and Ĵ1[·]′(u) ∈ LrzP (Ξ;U∗)
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with r̂ from Table 3.1 and because B(·) ∈ L∞P (Ξ;L(U, Y ∗)). If r̂ ≥ 2pfun and rz ≥ pfun, the
objective function and the gradient are both pfun-integrable with pfun ≥ 2. In the “Example”
column of Table 3.1 this would correspond to having rf ≥ max{p, 4}, rQ =∞, and rq̂ ≥ rf .
The differentiability assumption on Ĵ1[·] can be proven using a priori estimates on the

adjoint state and the same techniques as in the proof of Theorem 3.26. For this purpose, let
the regularity exponents rQ, rf , rq̂ ∈ [1,∞] be such that 2

rQ
+ 1

rf
≤ 1

pfun
and 1

rQ
+ 1

rq̂
≤ 1

pfun

hold. One computes for w ∈ U \ {0}:

0 ≤ lim
‖w‖U→0

∥∥Ĵ1(u+ w, ·)− Ĵ1(u, ·)− (∇uĴ1(u, ·), w)U
∥∥
L
pfun
P (Ξ)

‖w‖U

= lim
‖w‖U→0

∥∥∫ 1
0 (∇uĴ1(u+ τw, ·)−∇uĴ1(u, ·), w)U dτ

∥∥
L
pfun
P (Ξ)

‖w‖U

≤ lim
‖w‖U→0

∥∥∥∫ 1

0
‖∇uĴ1(u+ τw, ·)−∇uĴ1(u, ·)‖U dτ

∥∥∥
L
pfun
P (Ξ)

≤ lim
‖w‖U→0

∥∥∥ sup
τ∈[0,1]

‖∇uĴ1(u+ τw, ·)−∇uĴ1(u, ·)‖U
∥∥∥
L
pfun
P (Ξ)

= 0.

In the following we argue why this limit is indeed zero.
For pfun ∈ [1,∞), this follows from the dominated convergence theorem because

sup
τ∈[0,1]

‖∇uĴ1(u+ τw, ξ)−∇uĴ1(u, ξ)‖U −→ 0 as ‖w‖U → 0

for almost every ξ ∈ Ξ due to the continuity of u 7→ ∇uĴ1(u, ξ). Additionally, we have

sup
τ∈[0,1]

‖∇uĴ1(u+ τw, ξ)−∇uĴ1(u, ξ)‖U = sup
τ∈[0,1]

‖ −B(ξ)∗(T [ξ](u+ τw)− T [ξ](u))‖U∗

≤ ‖B(ξ)‖L(U,Y ∗)

(
sup
τ∈[0,1]

‖T [ξ](u+ τw)‖Y + ‖T [ξ](u))‖Y
)

≤ CΩ
κ2 ‖B(ξ)‖L(U,Y ∗)‖Q(ξ)‖2L(Y,H)

(
‖D‖L(U,L2(Ω))(2‖u‖U + 1) + ‖f(ξ)− ϕ(0)‖L2(Ω)

)
+ 1

κ‖B(ξ)‖L(U,Y ∗)‖Q(ξ)‖L(Y,H)‖q̂(ξ)‖H

for ‖w‖U ≤ 1. The upper bound is due to the a priori estimate

‖T [ξ](u)‖Y ≤ 1
κ‖Q(ξ)‖L(Y,H)‖(Q(ξ)S[ξ](u)− q̂(ξ))‖H

≤ 1
κ‖Q(ξ)‖L(Y,H)

(
‖Q(ξ)‖L(Y,H)‖S[ξ](u)‖Y + ‖q̂(ξ))‖H

)
≤ CΩ

κ2 ‖Q(ξ)‖2L(Y,H)

(
‖D‖L(U,L2(Ω))‖u‖U + ‖f(ξ)− ϕ(0)‖L2(Ω)

)
+ 1

κ‖Q(ξ)‖L(Y,H)‖q̂(ξ)‖H

on the adjoint state T [ξ](u), which is obtained by combining (3.20) and (3.9). It is an
Lpfun
P (Ξ)-function w. r. t. ξ because 2

rQ
+ 1

rf
≤ 1

pfun
, 1
rQ

+ 1
rq̂
≤ 1

pfun
, and B(·) is essentially

bounded w. r. t. ξ.
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9.2. Mean-Variance Risk Measure

For pfun =∞, the uniform Lipschitz continuity of the gradient is used to show the result.
In analogy to (3.9), one can estimate

‖S[ξ](u+ w)− S[ξ](u)‖Y ≤ CΩ
κ ‖Dw‖L2(Ω)

independently of ξ. Using the derivations in the proofs of Theorem 5.1 and Lemma 5.2 with
y = S[ξ](u), ỹ = S[ξ](u+ w), z = T [ξ](u), ẑ = T [ξ](u+ w) as well as (3.9), this yields

‖T [ξ](u+ w)− T [ξ](u)‖Y
≤ 1

κ‖Q(ξ)‖2L(Y,H)‖S[ξ](u)− S[ξ](u+ w)‖Y
+ 1

κ2 ‖N ′(S[ξ](u+ w))−N ′(S[ξ](u))‖L(Y,Y ∗)‖Q(ξ)∗(Q(ξ)S[ξ](u)− q̂(ξ))‖Y ∗

≤ CΩ
κ2 ‖Q(ξ)‖2L(Y,H)‖Dw‖L2(Ω)

+ 1
κ2 c

3
p

(
a′′ϕ′′ · λ(Ω)(p−3)/p + c′′ϕ′′c

p−3
p ·

(
CΩ
κ (‖Du+ f(ξ)− ϕ(0)‖L2(Ω) + ‖Dw‖L2(Ω))

)p−3
)

· CΩ
κ ‖Dw‖L2(Ω)‖Q(ξ)‖L(Y,H)

(
‖Q(ξ)‖L(Y,H)‖Du+ f(ξ)− ϕ(0)‖L2(Ω) + ‖q̂(ξ)‖H

)
,

cf. (3.20). Since rQ = rq̂ = rf = ∞, this bound converges to zero in L∞P (Ξ) as ‖w‖U → 0.
Hence,

0 ≤
∥∥∥ sup
τ∈[0,1]

‖∇uĴ1(u+ τw, ·)−∇uĴ1(u, ·)‖U
∥∥∥
L∞P (Ξ)

≤
∥∥∥‖B(·)‖L(U,Y ∗)

∥∥∥
L∞P (Ξ)

∥∥∥ sup
τ∈[0,1]

‖T [ξ](u+ τw)− T [ξ](u)‖Y
∥∥∥
L∞P (Ξ)

−→ 0 as ‖w‖U → 0

can be concluded since B(·) is essentially bounded w. r. t. ξ.
The considerations show the Fréchet approximation condition for the first derivative. For

the second derivative, it can be proven analogously using the a priori bound (3.26). Continuity
of the second derivative can also be shown with similar arguments, i. e., using pointwise
convergence and the dominated convergence theorem for pfun ∈ [1,∞) or refined bounds in
the case pfun =∞.

9.2.2. Possible Error Estimates for Reduced Objective Function and
Gradient

In the following, we investigate how the required error estimates from Section 5.2 change in
the mean-variance case.

Objective Function Evaluation Error

We assume that the function Ĵ1(u, ·) in (9.1) is evaluated inexactly due to an inexact state
computation, giving the inexact version J̃1(u, ·), whereas J2 is evaluated exactly. Altogether,
we obtain the inexact version J̃ of the objective function Ĵ . In the proof of Proposition 5.11,
the error in J̃ is derived from the error in J̃1 by means of

|Ĵ(u)− J̃(u)| = |E[Ĵ1(u, ·)− J̃1(u, ·)]| ≤ ‖Ĵ1(u, ·)− J̃1(u, ·)‖L1
P(Ξ),
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which leads to an error bound based on the L2
P(Ξ)-error ‖Q(ỹ − y)‖L2

P(Ξ;H) in the inexact
state. In the mean-variance case, we have

|Ĵ(u)− J̃(u)| =
∣∣∣E[Ĵ1(u, ·)− J̃1(u, ·)] + λ

(
Var[Ĵ1(u, ·)]−Var[J̃1(u, ·)]

)∣∣∣
=
∣∣E[Ĵ1(u, ·)− J̃1(u, ·)] + λE[(Ĵ1(u, ·)− J̃1(u, ·))(Ĵ1(u, ·) + J̃1(u, ·))]

+ λE[J̃1(u, ·)− Ĵ1(u, ·)]E[Ĵ1(u, ·) + J̃1(u, ·)]
∣∣

=
∣∣E[1− λĴ1(u, ·)− λJ̃1(u, ·)]E[Ĵ1(u, ·)− J̃1(u, ·)]

+ λE[(Ĵ1(u, ·)− J̃1(u, ·))(Ĵ1(u, ·) + J̃1(u, ·))]
∣∣

≤ ‖1− λĴ1(u, ·)− λJ̃1(u, ·)‖L1
P(Ξ)‖Ĵ1(u, ·)− J̃1(u, ·)‖L1

P(Ξ)

+ λ‖Ĵ1(u, ·)− J̃1(u, ·)‖L1
P(Ξ)‖Ĵ1(u, ·) + J̃1(u, ·)‖L∞P (Ξ).

The estimate requires pfun =∞ for both the function Ĵ1 and its inexact version J̃1. In Table
3.1, we would therefore need rf = ∞, rQ = ∞ and rq̂ = ∞ to be able to apply it. But
this is the only way to obtain an estimate which depends on the L1

P(Ξ)-error in Ĵ1 so that
an L2

P(Ξ)-error estimate for the inexact state is sufficient. For the more natural choice that
‖Ĵ1(u, ·)− J̃1(u, ·)‖L2

P(Ξ) has to be controlled, the L4
P(Ξ)-error in the state would have to be

estimated, see the proof of Proposition 5.11.

Model gradient error

The gradient (9.2) is computed inexactly due to an inexact objective function evaluation
J̃(u, ·) and an inexact gradient, denoted by ∇̃uĴ(u, ·) ≈ ∇uĴ(u, ·). This yields the inexact
gradient ∇̃Ĵ(u), the error in which shall be estimated in the following.∥∥∇Ĵ(u)− ∇̃Ĵ(u)

∥∥
U

=
∥∥∥E[∇uĴ1(u, ·)] + 2λ

∫
Ξ

(
Ĵ1(u, ·)− E[Ĵ1(u, ·)] · 1

)
∇uĴ1(u, ·) dP

− E[∇uJ̃1(u, ·)]− 2λ

∫
Ξ

(
J̃1(u, ·)− E[J̃1(u, ·)] · 1

)
∇̃uĴ1(u, ·) dP

∥∥∥
U

≤ E
[
‖∇uĴ1(u, ·)−∇uJ̃1(u, ·)‖U

]
+ 2λ

∥∥∥∫
Ξ

(
Ĵ1(u, ·)− E[Ĵ1(u, ·)] · 1

)
∇uĴ1(u, ·)−

(
J̃1(u, ·)− E[J̃1(u, ·)] · 1

)
∇̃uĴ1(u, ·) dP

∥∥∥
U

≤ ‖∇uĴ1(u, ·)−∇uJ̃1(u, ·)‖L1
P(Ξ;U)

+ 2λ
∥∥Ĵ1(u, ·)− J̃1(u, ·) + E[J̃1(u, ·)− Ĵ1(u, ·)] · 1

∥∥
Lr̃P(Ξ)

∥∥∇uĴ1(u, ·)− ∇̃uĴ1(u, ·)
∥∥
Lr̃
∗

P (Ξ;U)

+ 2λ
∥∥J̃1(u, ·)− E[J̃1(u, ·)] · 1

∥∥
Lr̃P(Ξ)

∥∥∇uĴ1(u, ·)− ∇̃uĴ1(u, ·)
∥∥
Lr̃
∗

P (Ξ;U)

+ 2λ
∥∥Ĵ1(u, ·)− J̃1(u, ·) + E[J̃1(u, ·)− Ĵ1(u, ·)] · 1

∥∥
Lr̃P(Ξ)

∥∥∇̃uĴ1(u, ·)
∥∥
Lr̃
∗

P (Ξ;U)

with r̃, r̃∗ ∈ [1,∞], 1
r̃ + 1

r̃∗ = 1 and provided the respective quantities enjoy the required
integrability properties. Controlling the objective function evaluation in the Lr̃P(Ξ)-norm
requires to estimate the L2r̃

P (Ξ)-error in the state. Even if the state equation is linear, i. e., ϕ′
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is constant, the Lr̃∗P (Ξ)-error in the state and adjoint state is needed to estimate the gradient
error in the Lr̃∗P (Ξ;U)-norm, cf. Theorem 5.8. The “best” choice of r̃, which demands the
weakest integrability properties of the state, is therefore r̃ = 3

2 , which yields that the L3
P(Ξ)-

error in the state has to be controlled because 2r̃ = 3 = r̃∗.
Overall, we see that the risk-neutral implementation can be extended to the mean-variance

case by only changing the evaluation of the reduced objective function, its gradient and its
Hessian based on the already derived (linearized) state and adjoint state computation. In
addition, the error estimation would have to be changed accordingly. Here, the issue arises
that it becomes necessary to control the error in the state at least in the L3

P(Ξ)-norm even
for rf = ∞ and a linear state equation. This is not a simple task and would require a
new error estimation procedure. We leave this for future research. Additionally, we want
to mention again that the mean-variance risk measure is not monotonic. This means that
we could have a control for which the tracking term is larger than the one for a different
control almost surely although the corresponding risk measured by E + λVar is smaller. We
therefore refrain from presenting a numerical implementation and results here and consider
a class of risk measures with better theoretical properties.

9.3. Convex Combination of Mean and Conditional
Value-at-Risk

In this section, we introduce a class of risk measures, which are convex combinations of the
expected value and the conditional value-at-risk CVaRβ , and derive the respective properties
for them. These risk measures are nonsmooth, but minimizing them can be reformulated
introducing a pointwisely constrained auxiliary variable. We propose solving this problem
by an interior-point method. The introduced barrier term leads to a smoothed version of the
original risk measure. It is investigated which properties of it are retained by the smoothing
procedure. Optimal control problems with this smoothed risk measure are investigated in
theory and numerical results of an implementation with low-rank tensors are presented.

9.3.1. Definition and Derivation of the Properties

In [95] it is shown that the conditional value-at-risk of an L1
P(Ξ) random variable X can be

computed as follows:
CVaRβ[X] = inf

t∈R
t+ 1

1−βE[(X − t)+]

with (s)+ := max{0, s}. This gives rise to considering risk measures of the form

Rv : LpP(Ξ)→ R ∪ {∞}, Rv[X] = inf
t∈R

t+ E[v(X − t)], (9.3)

where v : R→ R is a given function. Risk measures of this kind correspond to the expectation
quadrangle presented in [96]. In the following, we say that the risk measure Rv is induced
by the function v. Two examples are the expectation E for v(s) = s and the conditional
value-at-risk CVaRβ for v(s) = 1

1−β (s)+.
The risk measure Rv inherits several properties from the function v as shown in the fol-

lowing.
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Lemma 9.10. The risk measure Rv is proper, i. e., Rv[X] > −∞ for all X and Rv[X̃] <∞
for some X̃ if and only if there exists c ∈ R such that v(s) ≥ s+ c holds for all s ∈ R.

Proof. For the “if” part observe that from v(s) ≥ s+ c it follows that t+v(X− t) ≥ t+ (X−
t + c) = X + c. Therefore, Rv[X] = inft∈R E[t+ v(X − t)] ≥ inft∈R E[X + c] = E[X] + c >
−∞ holds because the expectation is finite on LpP(Ξ) for all p ∈ [1,∞]. Furthermore, for
any constant random variable X̃ ≡ d ∈ R and some given t̂ ∈ R we have that Rv[X̃] =
inft∈R t+ E[v(X̃ − t)] = inft∈R t+ v(d− t) ≤ t̂+ v(d− t̂) <∞.
Now we consider the “only if” part: Assume that there does not exist any c ∈ R such that

v(s) ≥ s + c holds for all s ∈ R, i. e., for every c ∈ R there exists s̃ ∈ R with v(s̃) < s̃ + c.
Now let (ck) ⊂ R be a sequence diverging to −∞, e. g., ck = −k, and let X ≡ d ∈ R. Then
there exists (tk) ⊂ R such that tk + v(X − tk) < d + ck holds for all k ∈ N. It follows that
inft∈R t+ E[v(X − t)] = −∞ for all constant X.

Corollary 9.11. If v is convex and there exists s̃ ∈ R such that 1 ∈ ∂v(s̃) (convex subdiffer-
ential), the risk measure Rv is proper.

Proof. Lemma 9.10 can be applied because v(s) ≥ v(s̃) + 1 · (s − s̃) = s + c holds with
c = v(s̃)− s̃.

Lemma 9.12. If there exist c, d ∈ R such that |v(s)| ≤ c|s|p + d holds for all s ∈ R, we have
Rv[X] <∞ for all X ∈ LpP(Ξ).

Proof. We have E[v(X)] ≤ E[|v(X)|] ≤ E[c |X|p] + d = c ||X||p
LpP(Ξ)

+ d <∞. Therefore, the
argument in the infimum defining Rv is finite for t = 0.

Lemma 9.13. The risk measure Rv is always translation-equivariant.

Proof. The statement follows from

Rv[X + c] = inf
t∈R

t+ E[v(X + c− t)] t̃=t−c= inf
t̃∈R

t̃+ c+ E[v(X − t̃)] = Rv[X] + c.

Lemma 9.14. If the function v is convex, the risk measure Rv is convex.

For the proof of this statement, we use the following general result:

Proposition 9.15. Let U and W be convex subsets of R-vector spaces and let f : U ×W →
(−∞,∞] be a convex function. Then the function g : U → [−∞,∞], g(u) := infw∈W f(u,w)
is convex.

Proof. This claim follows as in the proof of [17, Prop. 8.26].

Proof of Lemma 9.14. The result follows by applying Proposition 9.15 with W = R,
U = LpP(Ξ) and f(u,w) := w + E[v(u− w)]. �

Lemma 9.16. If v is positively homogeneous and inft∈R v(t)− t = 0, the risk measure Rv is
positively homogeneous.
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Proof. We use that v(λs) = λv(s) holds for all x ∈ R and all λ > 0. Let X ∈ LpP(Ξ) be a
random variable and λ > 0. Then:

Rv[λX] = inf
τ∈R

τ + E[v(λX − τ)]
v pos. hom.

= inf
τ∈R

τ + E[λ v(X − τ
λ)]

τ=λt
= inf

t∈R
λt+ λE[v(X − t)] λ>0

= λRv[X].

Furthermore, Rv[0] = infτ∈R τ + E[v(0− τ)]
t=−τ

= inft∈R v(t)− t = 0.

Lemma 9.17. If v is subadditive, the risk measure Rv is subadditive.

Proof. We use that v(s+ s̃) ≤ v(s)+v(s̃) holds for all s, s̃ ∈ R. Let X, X̃ ∈ LpP(Ξ) be random
variables. Then:

Rv[X + X̃] = inf
τ∈R

τ + E[v(X + X̃ − τ)]
τ=t+t̃

= inf
t,t̃∈R

t+ t̃+ E[v(X + X̃ − t− t̃)]

v subadditive
≤ inf

t,t̃∈R
t+ t̃+ E[v(X − t) + v(X̃ − t̃)]

= inf
t∈R

t+ E[v(X − t)] + inf
t̃∈R

t̃+ E[v(X̃ − t̃)] = Rv[X] +Rv[X̃].

Lemma 9.18. If v is increasing, the risk measure Rv is monotonic.

Proof. Let X ≤ Y a. s. Then, v(X − t) ≤ v(Y − t) a. s. for all t ∈ R because v is increasing.
Using the monotonicity of the expectation it follows that

Rv[X] = inf
t∈R

t+ E[v(X − t)] ≤ inf
t∈R

t+ E[v(Y − t)] = Rv[Y ].

Lemma 9.19. Let some constant d ∈ R be given. Then the function v̂ : R → R, v̂(s) :=
v(s+ d)− d induces the risk measure Rv, i. e., Rv̂ ≡ Rv.

Proof. For any random variable X we have

Rv̂[X] = inf
t∈R

t+ E[v(X − t+ d)− d]
t̃=t−d

= inf
t̃∈R

t̃+ E[v(X − t̃)] = Rv[X].

Theorem 9.20. If v : R → R is closed convex with v(0) = 0 and v(s) > s for all s 6= 0,
we obtain a regular risk measure Rv by the construction (9.3). It is coherent if and only if it
holds v(s) = max{a1s, a2s} with (w. l. o. g.) a1 ∈ [0, 1) and a2 ∈ (1,∞), i. e., v(s) = a1s for
s < 0, v(0) = 0 and v(s) = a2s for s > 0.

Proof. This result is an excerpt of the “Expectation Theorem” in [96]. Note that the function
v is convex, monotonically increasing, and positively homogeneous.

It follows that CVaRβ with β ∈ (0, 1) is a coherent and regular risk measure since it belongs
to the mentioned class with a1 = 0 and a2 = 1

1−β .
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9.3.2. Smoothing by a Log-Barrier Approach

Motivated by Theorem 9.20, we consider regular, coherent risk measures by choosing a1 ∈
[0, 1) and a2 ∈ (1,∞) and defining

R : LpP(Ξ)→ R, R[X] := inf
t∈R

t+ E[max{a1(X − t), a2(X − t)}], (9.4)

i. e., we have R ≡ Rv with v(s) = max{a1s, a2s}. In fact, as noted in [72, Sec. 2.4.1], this
class of risk measures consists exactly of convex combinations of the expectation and the
CVaRβ for every quantile parameter β ∈ (0, 1) and every combination parameter λ ∈ (0, 1]:

λCVaRβ[X] + (1− λ)E[X] = inf
t∈R

λ t+ λE[ 1
1−β (X − t)+] + (1− λ)E[X]

= inf
t∈R

t+ E[ λ
1−β (X − t)+ + (1− λ)(X − t)] (9.5)

= inf
t∈R

t+ E[max{(1− λ)(X − t), (1− λ+ λ
1−β )(X − t)}],

which fits into the setting (9.4) with a1 = 1 − λ ∈ [0, 1) and a2 = 1 + β
1−βλ ∈ (1,∞).

Conversely, λ = 1 − a1 and β = a2−1
a2−a1

can be computed. Due to the max-term in (9.4) one
has to solve a nonsmooth optimization problem over t ∈ R to compute the risk measure R.
Furthermore, R itself is nonsmooth, see, e. g., [71]. Thus, we typically need a smoothing
procedure that will allow us to develop derivative-based optimization methods. In [71] it
is suggested to smooth CVaR using a suitable, smooth approximation of the (·)+-function
so that many properties of the risk measure, such as convexity and monotonicity, can be
preserved. Another advantage of this approach is the improved accuracy of quadrature
formulas for the evaluation of the expectation. The convergence of sparse grid quadrature,
for example, depends strongly on the smoothness of the integrand, see, e. g., [86, 47].
Alternatively, we can reformulate problem (9.4) and solve

inf
W∈LpP(Ξ),t∈R

t+ E[W ] s. t. W ≥ a1(X − t) a. s., W ≥ a2(X − t) a. s., (9.6)

which is a linear optimization problem. Solving such a problem also requires the discretization
of the space of random variables LpP(Ξ) to be able to optimize over W .
In [46], a problem with similar constraints as in (9.6), namely a stochastic obstacle prob-

lem, was solved successfully using a stochastic Galerkin discretization with a low-rank tensor
representation of the coefficients, cf. Chapter 6, and a primal interior-point method imple-
mented with low-rank tensors. Thus, we want to follow a similar approach here and replace
the inequality constraints in (9.6) by a log-barrier term with a barrier parameter µ > 0, see
also [85, Sec. 19.6]. We obtain

inf
W∈LpP(Ξ),t∈R

t+ E[W ]− µE[ln(W − a1(X − t))]− µE[ln(W − a2(X − t))] + ζ(µ) (9.7)

or equivalently infW∈LpP(Ξ),t∈R Fµ(X, t,W ) with

Fµ(X, t,W ) := E[t+W − µ ln(W − a1(X − t))− µ ln(W − a2(X − t)) + ζ(µ)],
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where ζ(µ) := µ
(
ln(a2−a1

a2−1 µ) + ln(a2−a1
1−a1

µ) − 2
)
∈ R is a constant shift. This shift is chosen

such that problem (9.7) has exactly the minimal value C ∈ R whenever X ≡ C.
In the numerical experiments in [46] it was observed that the pointwise reciprocals of the

functions W − ai(X − t), which appear in the barrier Newton system, cannot be represented
sufficiently well by a low-rank tensor if the functions are too close to zero. Therefore, it
would be beneficial to not push the barrier parameter µ arbitrarily close towards zero during
the algorithm but to keep it on a fixed, positive level instead. Then it can be expected that
the functions W − ai(X − t) are far enough away from zero during the iteration. We give a
theoretical verification of this claim in (9.17).
Keeping the parameter µ bounded away from zero means that we solve a perturbed prob-

lem and obtain an approximation of the original risk measure. In the following, we want to
investigate the properties of this approximate risk measure. Note that the goal of this pro-
cedure is not to construct new risk measures, but to provide an efficient solution algorithm
based on low-rank tensor methods for, e. g., optimal control problems under uncertainty
where risk-averse solutions are desired. Since this algorithm changes the properties of the
underlying risk measure, which could have a great effect on the resulting solution, we analyze
which properties are preserved by the log-barrier smoothing.

Proposition 9.21. It holds that

inf
W∈LpP(Ξ),t∈R

Fµ(X, t,W ) = inf
t∈R

E[ inf
w∈R

fµ(X(·), t, w)]

with fµ : R× R× R→ (−∞,+∞],

fµ(x, t, w) = t+ w − µ ln(w − a1(x− t))− µ ln(w − a2(x− t)) + ζ(µ), (9.8)

where we set −µ ln(s) = +∞ for every µ > 0 and every s ≤ 0.

Proof. 11 Observe that

inf
W∈LpP(Ξ),t∈R

Fµ(X, t,W ) = inf
t∈R

inf
W∈LpP(Ξ)

E[fµ(X(·), t,W (·))] (9.9)

holds. The space LpP(Ξ) is decomposable in the sense of [97, Def. 14.59], the measure P is
σ-finite, and the integrand f̂µ : Ξ× R → R̄, f̂µ(ξ, w) := fµ(X(ξ), t, w) with fixed t ∈ R and
fixed X is a normal integrand in the sense of [97, Def. 14.27], which we show in the following:
Firstly, the function (w, x) 7→ fµ(x, t, w) is lower semicontinuous and convex for all ξ ∈ Ξ
because it is independent of ξ. Secondly, the interior of its domain is nonempty for all ξ.
Thirdly, the function ξ 7→ fµ(x, t, w) is measurable for all w ∈ R since it is constant w. r. t.
ξ. These properties yield that the function (ξ, w, x) 7→ fµ(x, t, w) is a normal integrand
by [97, Prop. 14.39]. The composition rule [97, Prop. 14.45(c)] now shows that the function
f̂µ is a normal integrand. Using this and having that there exists W̃ ∈ LpP(Ξ) such that∫

Ξ f̂µ(ξ, W̃ (ξ)) dP < ∞, we can apply the “interchangeability theorem” [97, Thm. 14.60] to

11The essential content of this proof with the reference to [97] was provided by Prof. Dr. Thomas M.
Surowiec.
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derive

inf
W∈LpP(Ξ)

E[fµ(X(·), t,W (·))] = inf
W∈LpP(Ξ)

∫
Ξ
f̂µ(ξ,W (ξ)) dP

=

∫
Ξ

inf
w∈R

f̂µ(ξ, w) dP = E[ inf
w∈R

fµ(X(·), t, w)],

which shows the desired result together with (9.9).

In light of Proposition 9.21, we consider for each t ∈ R, ξ ∈ Ξ, and x = X(ξ) the one-
dimensional problem

min
w∈R

fµ(x, t, w),

where the unknown w stands for W (ξ).

Proposition 9.22. The function w 7→ fµ(x, t, w) with fµ defined in (9.8) has the unique
minimizer

w̄ = wµ(x− t) := µ+
(a1 + a2)(x− t) +

√
(a1 − a2)2(x− t)2 + 4µ2

2
(9.10)

for every x, t ∈ R.

Proof. The function fµ is finite for w > ai(x− t) (i ∈ {1, 2}) and convex w. r. t. w. Further-
more, it is continuously differentiable w. r. t. w on the set {(w, x, t) : w > ai(x − t) for i ∈
{1, 2}} and has the partial derivative

∂
∂wfµ(x, t, w) = 1− µ

w−a1(x−t) −
µ

w−a2(x−t) ,

which is zero only at the given stationary point w̄. Therefore, this is the unique minimizer.
The concrete computation of w̄ can be found in Section A.6 in the appendix.

By Propositions 9.21 and 9.22 we can define the partial solution of problem (9.7) given X
and t as

W̄X,t(ξ) := µ+ 1
2

(
(a1 + a2)(X(ξ)− t) +

√
(a1 − a2)2(X(ξ)− t)2 + 4µ2

)
.

Inserting this into Fµ gives the reduced problem

inf
t∈R

Fµ(X, t, W̄X,t) = inf
t∈R

t+ E[vµ(X − t)] (9.11)

which is similar to the initial problem and therefore defines a risk measure Rµ ≡ Rvµ induced
by the function

vµ(s) := wµ(s)− µ ln(wµ(s)− a1s)− µ ln(wµ(s)− a2s) + ζ(µ)

having wµ defined in (9.10). It remains to discuss and prove interesting properties of the
corresponding risk measure Rµ[X] := inft∈R t+ E[vµ(X − t)], which we call the log-barrier
risk measure.
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Theorem 9.23. The log-barrier risk measure Rµ : L1
P(Ξ) → R is well-defined, translation-

equivariant, monotonic, and regular.

Proof. The function vµ is twice continuously differentiable with derivatives

v′µ(s) = w′µ(s)− µ
w′µ(s)− a1

wµ(s)− a1s
− µ

w′µ(s)− a2

wµ(s)− a2s
,

v′′µ(s) =
µ(a2 − a1)2

2µ
√

(a2 − a1)2s2 + 4µ2 + (a2 − a1)2s2 + 4µ2
,

where wµ(s) = µ+
(a1+a2)s+

√
(a1−a2)2s2+4µ2

2 and w′µ(s) = a1+a2
2 + (a1−a2)2s

2
√

(a1−a2)2s2+4µ2
. For the

computation of the derivatives see Section A.6.

• Translation equivariance follows directly from Lemma 9.13.

• We have that lims→−∞ v
′
µ(s) = a1 and lims→+∞ v

′
µ(s) = a2, see Section A.6. Since

v′µ is strictly increasing (v′′µ(s) > 0), v′µ(R) = (a1, a2) ⊂ (0,∞) follows. Therefore, the
function vµ itself is strictly increasing. Lemma 9.18 yields that Rµ is monotonic.

• Since v′′µ(s) > 0 holds for all s ∈ R, the function vµ is strictly convex. Now, we choose
d := 2−a1−a2

(1−a1)(a2−1)µ ∈ R. By Lemma 9.19, it holds that Rµ is also induced by the
function v̂µ(s) = vµ(s+ d)− d, which is also strictly convex. One can compute

v̂µ(0) = vµ(d)− d = µ (2− ln(a2−a1
a2−1 µ)− ln(a2−a1

1−a1
µ)) + ζ(µ) = 0 (9.12)

and v̂′µ(0) = v′µ(d) = 1, see Section A.6. This yields—together with strict convexity—
that v̂µ(s) > s for all s ∈ R \ {0}. From Theorem 9.20 we get that Rµ is regular.
Equation (9.12) again motivates the choice of the shift ζ(µ).

• Corollary 9.11 yields that the log-barrier risk measure is proper. Due to Lemma 9.12
it is always finite on L1

P(Ξ):

|vµ(s)| =
∣∣∣∫ s

0
v′µ(s) ds+ vµ(0)

∣∣∣ ≤ a2 |s|+ |vµ(0)|

holds for all s ∈ R due to the computed range of v′µ.

The function v̂µ defined in the proof of Theorem Theorem 9.23 is plotted in Figure 9.1 two
different values of a1 = 1−λ, a2 = 1 + β

1−βλ, and µ. The properties v̂µ(0) = 0 and v̂′µ(0) = 1
are clearly visible and the approximation quality depending on the log-barrier parameter µ
is depicted.

Remark 9.24. For µ > 0 and any choice of a1 ∈ [0, 1) and a2 ∈ (1,∞), the log-barrier
risk measure is not a coherent measure of risk by Theorem 9.20 since vµ is clearly not the
maximum of two linear functions.
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Figure 9.1.: Plots of the function v̂µ inducing the risk measure Rµ for different values of
a1 = 1−λ, a2 = 1 + β

1−βλ, and µ. The green line corresponds to v(t) = t, which
induces the risk measure Rv ≡ E.

9.3.3. Application to Optimal Control under Uncertainty

Consider now the setting from Section 9.2 and let Assumption 9.9 hold with pfun ∈ [1,∞].
Furthermore, we define Ĵ : U × Ξ → R, Ĵ(u, ξ) := Ĵ1(u, ξ) + J2(u) and set Uad = U for
simplicity. We have that Ĵ(u, ·) ∈ Lpfun

P (Ξ) for all u ∈ U . We consider the optimization
problem under uncertainty

min
u∈U
Rµ[Ĵ(u, ·)] (9.13)

with the derived log-barrier risk measure. Since Rµ is translation-equivariant and J2 does
not depend on ξ, this corresponds to the general setting (1.3) with Uad ≡ U . Clearly, (9.13)
is an approximation of an original problem with the nonsmooth risk measure R, e. g., an
optimal control problem with the conditional value-at-risk.
As derived before, we can write (9.13) as

min
u∈U,t∈R,W∈LpP(Ξ)

F̂µ(u, t,W ) s. t. W − ai(Ĵ(u, ·)− t)) ≥ 0 a. s. for i ∈ {1, 2}, (9.14)

with

F̂µ(u, t,W ) := E[t+W − µ
2∑
i=1

ln(W − ai(Ĵ(u, ·)− t))] + ζ(µ), (9.15)

a1 ∈ [0, 1), a2 ∈ (1,∞), µ > 0, and ζ(µ) = µ(ln(a2−a1
a2−1 µ) + ln(a2−a1

1−a1
µ)− 2).
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Lemma 9.25. The function F̂µ defined in (9.15) is convex if the function u 7→ Ĵ(u, ξ) is
convex for a. e. ξ ∈ Ξ.

Proof. Let λ ∈ [0, 1], u1, u2 ∈ U , t1, t2 ∈ R, W1,W2 ∈ LpP(Ξ). Clearly, the affine part of the
function F̂µ is convex. Since µ > 0, it remains to show that

(u, t,W ) 7→ E[− ln(W − aiĴ(u, ·) + ait)]

is convex for i ∈ {1, 2}. Due to convexity, Ĵ(λu1 + (1−λ)u2, ξ) ≤ λĴ(u1, ξ) + (1−λ)Ĵ(u2, ξ)
holds for a. e. ξ ∈ Ξ. It follows that

λW1(ξ) + (1− λ)W2(ξ)− aiĴ(λu1 + (1− λ)u2, ξ) + aiλt1 + ai(1− λ)t2

≥ λ(W1(ξ)− aiĴ(u1, ξ) + ait1) + (1− λ)(W2(ξ)− aiĴ(u2, ξ) + ait2)

for a. e. ξ ∈ Ξ. Applying the negative logarithm, which is decreasing and convex, on both
sides yields

− ln
(
λW1(ξ) + (1− λ)W2(ξ)− aiĴ(λu1 + (1− λ)u2, ξ) + aiλt1 + ai(1− λ)t2

)
≤ − λ ln

(
W1(ξ)− aiĴ(u1, ξ) + ait1

)
+ (1− λ) ln

(
W2(ξ)− aiĴ(u2, ξ) + ait2

)
for a. e. ξ ∈ Ξ. The monotonicity of the expectation establishes the convexity of F̂µ.

Example 9.26. If ϕ′ ≡ 0 in the example from Chapter 3, we have a linear state equation
and thus a convex reduced objective function u 7→ Ĵ(u, ξ) for a. e. ξ ∈ Ξ.

Given u ∈ U , t ∈ R, we consider the partial problem

min
W∈LpP(Ξ)

F̂µ(u, t,W ) s. t. W ≥ ai(Ĵ(u, ·)− t)) a. s. for i ∈ {1, 2}.

We have already proven that this problem has the unique global solution W̄u,t ∈ LpP(Ξ) given
by

W̄u,t(ξ) := µ+ a1+a2
2 (Ĵ(u, ξ)− t) + 1

2

√
(a1 − a2)2(Ĵ(u, ξ)− t)2 + 4µ2. (9.16)

This partial solution fulfills

W̄u,t−ai(Ĵ(u, ·)−t)) = µ± a2−a1
2 (Ĵ(u, ξ)−t)+ 1

2

√
(a1 − a2)2(Ĵ(u, ξ)− t)2 + 4µ2 ≥ µ, (9.17)

i. e., if (9.14) has a solution (ū, t̄, W̄ ), the constraints are uniformly inactive in an L∞ sense
there. Therefore, we can restrict (9.14) to

min
u∈U,t∈R,W∈LpP(Ξ)

F̂µ(u, t,W ) s. t. W − ai(Ĵ(u, ·)− t) ≥ µ a. s. for i ∈ {1, 2} (9.18)

without changing its global solution, provided it exists. We see that the objective function
is finite on the feasible set.
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Existence of a Solution

We derive conditions for the existence of a solution of (9.14) or, equivalently, (9.18). For this
purpose, we first bound the auxiliary function fµ:

Lemma 9.27. For any d ∈ (a1, a2) and all x,w, t ∈ R it holds that

fµ(x, t, w) ≥ dx+ (1− d)t+ ζ̃d(µ) (9.19)

with the function fµ defined in (9.8), and with ζ̃d(µ) := µ
(
ln(a2−d

a2−1) + ln(d−a1
1−a1

)
)
.

Proof. We use the fact that −µ ln(s) ≥ −µ ln(b)−µ ln′(b)(s− b) = −µ
b s+µ−µ ln(b) holds

for all s, b ∈ (0,∞) due to convexity of the negative logarithm and µ > 0. Now with b1 = c1µ
and b2 = c2µ, c1, c2 > 0, we obtain

fµ(x, t, w) = t+ w +

2∑
i=1

(
−µ ln(w − ai(x− t))

)
+ ζ(µ) ≥

t+ w +

2∑
i=1

(
− 1
ci

(w − ai(x− t)) + µ− µ ln(ciµ)
)

+ ζ(µ) =(
a1
c1

+ a2
c2

)
x+

(
1− a1

c1
− a2

c2

)
t+

(
1− 1

c1
− 1

c2

)
w + µ(2− ln(c1µ)− ln(c2µ)) + ζ(µ).

(9.20)

Choosing c1 = a2−a1
a2−d > 0 and c2 = a2−a1

d−a1
> 0 (giving 1

c1
+ 1

c2
= 1 and a1

c1
+ a2

c2
= d) in (9.20)

yields
fµ(x, t, w) ≥ dx+ (1− d)t+ µ(2− ln(a2−a1

a2−d µ)− ln(a2−a1
d−a1

µ)) + ζ(µ)

= dx+ (1− d)t+ ζ̃d(µ).

Corollary 9.28. It holds that

F̂µ(u, t,W ) = E[fµ(Ĵ(u, ·), t,W (·))] ≥ E[Ĵ(u, ·)]

for all (u, t,W ) ∈ U × R× LpP(Ξ) with F̂µ defined in (9.15).

Proof. Choosing d = 1 ∈ (a1, a2) in (9.19) results in fµ(x, t, w) ≥ x for all x, t, w ∈ R, which
shows the result.

Thus, if the function u 7→ E[Ĵ(u, ·)] is bounded from below on U , the function F̂µ is
bounded from below on U ×R×LpP(Ξ). To prove existence of a solution, we restrict problem
(9.18) to a bounded, closed, convex feasible set. Since the partial solution W̄u,t is given for
any u ∈ U , t ∈ R, we bound the feasible set for u and t.

Lemma 9.29. Let (ũ, t̃, W̃ ) and (u∗, t∗,W ∗) be feasible points12 of (9.18) such that

F̂µ(u∗, t∗,W ∗) ≤ F̂µ(ũ, t̃, W̃ ),

and let u 7→ E[Ĵ(u, ·)] be bounded from below on U .
12A feasible point can be constructed simply: Given some ũ ∈ U , t̃ = 0, we choose, e. g., W̃ (ξ) =

maxi∈{1,2} ai(Ĵ(ũ, ξ)) + µ.
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Then it holds that

E[Ĵ(u∗, ·)] ≤ F̂µ(ũ, t̃, W̃ ), and

t∗ ∈ [t̃2, t̃1], t̃i := 1
1−di

(
F̂µ(ũ, t̃, W̃ )− di inf

û∈U
E[Ĵ(û, ·)]− ζ̃di(µ)

)
(i ∈ {1, 2})

with any fixed d1 ∈ (a1, 1), d2 ∈ (1, a2), and ζ̃d(µ) = µ
(
ln(a2−d

a2−1) + ln(d−a1
1−a1

)
)
.

Proof. With the feasible point (ũ, t̃, W̃ ) and with u 7→ E[Ĵ(u, ·)] being bounded from below
on U , we can bound u∗ and t∗ as follows: Observe that F̂µ(u∗, t∗,W ∗) ≤ F̂µ(ũ, t̃, W̃ ) implies

dE[Ĵ(u∗, ·)] + (1− d)t∗ + ζ̃d(µ) ≤ F̂µ(ũ, t̃, W̃ ) for all d ∈ (a1, a2)

by Lemma 9.27. Choosing d0 = 1 as in the proof of Corollary 9.28, d1 ∈ (a1, 1) and d2 ∈
(1, a2), this gives

E[Ĵ(u∗, ·)] ≤ F̂µ(ũ, t̃, W̃ ),

t∗ ≤ 1
1−d1

(
F̂µ(ũ, t̃, W̃ )− d1 E[Ĵ(u∗, ·)]− ζ̃d1(µ)

)
,

t∗ ≥ 1
1−d2

(
F̂µ(ũ, t̃, W̃ )− d2 E[Ĵ(u∗, ·)]− ζ̃d2(µ)

)
and thus

E[Ĵ(u∗, ·)] ≤ F̂µ(ũ, t̃, W̃ ),

t∗ ≤ 1
1−d1

(
F̂µ(ũ, t̃, W̃ )− d1 inf

û∈U
E[Ĵ(û, ·)]− ζ̃d1(µ)

)
,

t∗ ≥ 1
1−d2

(
F̂µ(ũ, t̃, W̃ )− d2 inf

û∈U
E[Ĵ(û, ·)]− ζ̃d2(µ)

)
,

which shows the result. Note that − d1
1−d1

< 0 whereas − d2
1−d2

> 0.

We see that, if u 7→ E[Ĵ(u, ·)] is coercive, i. e., lim‖u‖U→∞ E[Ĵ(u, ·)] = ∞, we can restrict
the variable u in problem (9.14) to a nonempty, convex, closed, bounded set Uad ⊂ U with

Ũad := {u : E[Ĵ(u, ·)] ≤ F̂µ(ũ, t̃, W̃ )} ⊂ Uad

and the variable t to the compact interval given in Lemma 9.29 without changing the global
solution of problem (9.18), provided it exists. Note that the set Ũad is bounded.

Remark 9.30. Alternatively, the theory would also work if the constraint u ∈ Uad with a
nonempty, bounded, closed, convex set Uad ⊂ U was already posed in (9.14) and if u 7→
E[Ĵ(u, ·)] was bounded from below on this set, but not necessarily coercive on U .

Moreover, the optimal partial solution W̄u,t given (u, t) can be inserted. This yields the
problem

min
u∈U,t∈R,W∈LpP(Ξ)

F̂µ(u, t,W )

s. t.
E[Ĵ(u, ·)] ≤ F̂µ(ũ, t̃, W̃ ), t̃2 ≤ t ≤ t̃1,
W (·) = µ+ a1+a2

2 (Ĵ(u, ·)− t) + 1
2

√
(a1 − a2)2(Ĵ(u, ·)− t)2 + 4µ2 a. s.

(9.21)
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Based on (9.21), we derive an existence result, which can be applied to convex problems.
For a more general framework for risk-averse, PDE-constrained optimization including exis-
tence and optimality conditions we refer to [72].

Proposition 9.31. Let the function (u, t) 7→ F̂µ(u, t, W̄u,t) ∈ R with W̄u,t defined in (9.16)
be sequentially weakly lower semicontinuous. Furthermore, let the function u 7→ E[Ĵ(u, ·)] be
coercive on U . Then, problem (9.14) has a solution.

Proof. Since u 7→ E[Ĵ(u, ·)] is coercive on U , it is bounded from below and problem (9.14) is
equivalent to problem (9.21). As derived, this is equivalent to

min
u∈U,t∈R

F̂µ(u, t, W̄u,t) s. t. u ∈ Uad, t ∈ [t̃2, t̃1].

Now, a feasible, infimizing sequence for this problem is bounded and, therefore, it has a
weakly convergent subsequence with limit (ū, t̄) ∈ U × R because U is reflexive and Uad is
closed, convex, bounded. Sequential lower semicontinuity of the objective function w. r. t. the
weak topology yields that (ū, t̄) solves the problem. Moreover, (ū, t̄, W̄ū,t̄) solves (9.14).

Lemma 9.32. Let the function u 7→ Ĵ(u, ξ) ∈ R be convex and strongly continuous for
a. e. ξ ∈ Ξ and let the function u 7→ Ĵ(u, ·) ∈ L1

P(Ξ) be such that for every u ∈ U there
exist εu > 0 and a function gu ∈ L1

P(Ξ) such that |Ĵ(ũ, ξ)| ≤ gu(ξ) holds for every ũ with
‖ũ−u‖U < εu and a. e. ξ ∈ Ξ. Then, the function (u, t) 7→ F̂µ(u, t, W̄u,t) ∈ R is weakly lower
semicontinuous.

Proof. We observe that F̂µ(u, t, W̄u,t) = t+E[vµ(Ĵ(u, ·)− t)] holds, see (9.11). The convexity
and the monotonicity of the function vµ as well as the monotonicity of the expectation
yield that (u, t) 7→ F̂µ(u, t, W̄u,t) is convex, cf. Lemma 9.25. Now let (uk, tk)k∈N ⊂ U × R
be a sequence converging strongly to some (u, t) ∈ U × R. W. l. o. g. we assume that
‖uk − u‖U < εu holds for every k. Then we have that Ĵ(uk, ξ) − tk → Ĵ(u, ξ) − t and
thus vµ(Ĵ(uk, ξ) − tk) → vµ(Ĵ(u, ξ) − t) for a. e. ξ ∈ Ξ. Furthermore, |vµ(Ĵ(uk, ξ) − tk)| ≤
a2(gu(ξ) + supk∈N |tk|) + |vµ(0)| holds for every k and a. e. ξ ∈ Ξ, cf. the proof of Theorem
9.23. As supk∈N |tk| <∞, this bound is an L1

P(Ξ)-function and independent of k. Hence, the
dominated convergence theorem yields that tk + E[vµ(Ĵ(uk, ξ)− tk)]→ t+ E[vµ(Ĵ(u, ·)− t)]
as k → ∞. This proves continuity of (u, t) 7→ F̂µ(u, t, W̄u,t) w. r. t. strong convergence.
Together with convexity, this yields lower semicontinuity w. r. t. the weak topology.

Example 9.33. In the example from Chapter 3, the function u 7→ E[Ĵ(u, ·)] is coercive
because it consists of a non-negative tracking term and the coercive regularization term
γ
2‖u‖

2
U . The function u 7→ Ĵ(u, ξ) is strongly continuous for a. e. ξ ∈ Ξ and we have

|Ĵ(ũ, ξ)| ≤ 1
2

(
‖Q(ξ)‖L(Y,H)‖S[ξ](ũ)‖Y + ‖q̂(ξ)‖H

)2
+ γ

2‖ũ‖
2
U ≤

1
2

(
CΩ
κ ‖Q(ξ)‖L(Y,H)(‖D‖L(U,L2(Ω))‖ũ‖U + ‖f(ξ)− ϕ(0)‖L2(Ω)) + ‖q̂(ξ)‖H

)2
+ γ

2‖ũ‖
2
U ≤

1
2

(
CΩ
κ ‖Q(ξ)‖L(Y,H)(‖D‖L(U,L2(Ω))(‖u‖U + εu) + ‖f(ξ)− ϕ(0)‖L2(Ω)) + ‖q̂(ξ)‖H

)2

+ γ
2 (‖u‖U + εu)2,
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for all u, ũ ∈ U and εu > 0 with ‖ũ− u‖U < εu, cf. the discussion in Subsection 9.2.1. The
derived bound is an Lr̂P(Ξ)-function w. r. t. ξ with r̂ from Table 3.1 and hence an L1

P(Ξ)-
function. Furthermore, if ϕ′ ≡ 0, the function u 7→ Ĵ(u, ξ) is convex for a. e. ξ ∈ Ξ,
cf. Example 9.26. We therefore can apply Lemma 9.32 and Proposition 9.31 to derive the
existence of a solution.

Differentiability Properties of the Function F̂µ

For deriving first-order optimality conditions, we restrict the discussion to the case p = ∞.
Then, the feasible set of (9.18) has interior points and Fréchet differentiability can be proven.
In contrast to that, the case p <∞ requires more sophisticated concepts, see [112].
We consider the function

F̃µ : {(X, t,W ) ∈ L∞P (Ξ)× R× L∞P (Ξ) : W ≥ ai(X − t) + cµµ a. s. for i ∈ {1, 2}} → R,
F̃µ(X, t,W ) := E[t+W − µ ln(W − a1(X − t))− µ ln(W − a2(X − t)) + ζ(µ)] (9.22)

with some cµ ∈ (0, 1). This function is well-defined on the given feasible set. We have
enlarged the latter compared to the feasible set of (9.18) to prove differentiability properties
on an L∞-neighborhood.

Proposition 9.34. The function F̃µ defined in (9.22) is twice continuously differentiable on
the given feasible set with the F-derivatives

∇X F̃µ(X, t,W ) = µ
2∑
i=1

ai
W−ai(X−t) ∈ L

1
P(Ξ),

∇tF̃µ(X, t,W ) = 1− µ
2∑
i=1

E
[

ai
W−ai(X−t)

]
∈ R,

∇W F̃µ(X, t,W ) = 1− µ
2∑
i=1

1
W−ai(X−t) ∈ L

1
P(Ξ),

∇2
XX F̃µ(X, t,W )S = µ

2∑
i=1

a2
iS

(W−ai(X−t))2 ∈ L1
P(Ξ),

∇2
tX F̃µ(X, t,W )τ = −µ

2∑
i=1

a2
i

(W−ai(X−t))2 τ ∈ L1
P(Ξ),

∇2
WX F̃µ(X, t,W )S = −µ

2∑
i=1

aiS
(W−ai(X−t))2 ∈ L1

P(Ξ),

∇2
XtF̃µ(X, t,W )S = −µ

2∑
i=1

a2
iS

(W−ai(X−t))2 ∈ L1
P(Ξ),

∇2
ttF̃µ(X, t,W )τ = µ

2∑
i=1

E
[ a2

i
(W−ai(X−t))2

]
τ ∈ R,
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∇2
WtF̃µ(X, t,W )S = µ

2∑
i=1

aiS
(W−ai(X−t))2 ∈ L1

P(Ξ),

∇2
XW F̃µ(X, t,W )S = −µ

2∑
i=1

aiS
(W−ai(X−t))2 ∈ L1

P(Ξ),

∇2
tW F̃µ(X, t,W )τ = µ

2∑
i=1

ai
(W−ai(X−t))2 τ ∈ L1

P(Ξ),

∇2
WW F̃µ(X, t,W )S = µ

2∑
i=1

S
(W−ai(X−t))2 ∈ L1

P(Ξ),

where S ∈ L∞P (Ξ) and τ ∈ R. We write ∇X F̃µ(X, t,W ) ∈ L1
P(Ξ) for the representative of the

partial derivative (F̃µ)X(X, t,W ) ∈ L∞P (Ξ)∗ etc.

Proof. Clearly, the linear part (X, t,W ) 7→ t+E[W ]+ζ(µ) is bounded and twice continuously
differentiable. Therefore, we consider only (X, t,W ) 7→ E[ln(W−ai(X−t))]. Let (X, t,W ) ∈
L∞P (Ξ) × R × L∞P (Ξ) be such that W ≥ ai(X − t) + cµµ holds a. s. Consider a sequence
(Sk)k∈N ⊂ L∞P (Ξ) such that 0 < ‖Sk‖L∞P (Ξ) ≤

cµµ
2 for all k ∈ N and ‖Sk‖L∞P (Ξ) → 0 as

k →∞. We have
1

‖Sk‖L∞P (Ξ)

∣∣∣E[ln(W + Sk − ai(X − t)
)
− ln

(
W − ai(X − t)

)
− Sk

W−ai(X−t)
]∣∣∣

≤ E
[∫ 1

0

∣∣ 1
W+σSk−ai(X−t) −

1
W−ai(X−t)

∣∣ dσ]
= E

[∫ 1

0

σ|Sk|
|(W+σSk−ai(X−t))(W−ai(X−t))| dσ

]
≤ E

[∫ 1

0

σ
|(W+σSk−ai(X−t))(W−ai(X−t))| dσ

]
‖Sk‖L∞P (Ξ) ≤ 2

c2µµ
2 ‖Sk‖L∞P (Ξ).

Note that all appearing functions are L∞-functions due to

W + σSk − ai(X − t) ∈
[ (2−σ)cµµ

2 , ‖W‖L∞P (Ξ) +
σcµµ

2 + ai‖X − t‖L∞P (Ξ)

]
a. s.

for all σ ∈ [0, 1] etc. The estimation proves F-differentiability w. r. t. W with the given
derivative. Analogously, the function F̃µ is F-differentiable w. r. t. X and t.
Similarly to the estimation above, we have

1

‖Sk‖L∞P (Ξ)

∥∥∥ 1
W+Sk−ai(X−t) −

1
W−ai(X−t) + Sk

(W−ai(X−t))2

∥∥∥
L1
P(Ξ)

≤
∥∥∥∥∫ 1

0

∣∣− 1
(W+σSk−ai(X−t))2 + 1

(W−ai(X−t))2

∣∣ dσ∥∥∥∥
L1
P(Ξ)

≤
∥∥∥∥∫ 1

0

|2σW+σ2Sk−2aiσ(X−t)|
(W+σSk−ai(X−t))2(W−ai(X−t))2 dσ

∥∥∥∥
L1
P(Ξ)

‖Sk‖L∞P (Ξ)

≤ 4
c4µµ

4

(
2‖W‖L∞P (Ξ) +

cµµ
2 + 2ai‖X − t‖L∞P (Ξ)

)
‖Sk‖L∞P (Ξ)
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with 0 < ‖Sk‖L∞P (Ξ) ≤
cµµ

2 , which shows that the first derivative∇W F̃µ is F-differentiable and
thus continuous w. r. t. W at (X, t,W ). Again, the remaining second derivatives are shown
to be F-derivatives in an analogous way. Continuity of them follows very similarly.

First-Order Necessary Optimality Conditions

If the function U 3 u 7→ Ĵ(u, ·) ∈ L∞P (Ξ) is F-differentiable, cf. Assumption 9.9, we can
apply the chain rule to compute the first F-derivative of the function F̂µ given in (9.15) and
obtain

∇uF̂µ(u, t,W ) = µ

2∑
i=1

ai E
[ ∇uĴ(u,·)
W−ai(Ĵ(u,·)−t)

]
,

∇tF̂µ(u, t,W ) = 1− µ
2∑
i=1

ai E
[

1
W−ai(Ĵ(u,·)−t)

]
,

∇W F̂µ(u, t,W ) = 1− µ
2∑
i=1

1
W−ai(Ĵ(u,·)−t)

∈ L1
P(Ξ).

(9.23)

Again, we write ∇W F̂µ(u, t,W ) ∈ L1
P(Ξ) for the representative of (F̂µ)W (u, t,W ) ∈ L∞P (Ξ)∗.

Having computed this function as well as ∇uĴ(u, ·), the rest of the evaluation of ∇F̂µ consists
of pointwise multiplications, computing expectations and vector space operations.
The first order necessary conditions for problem (9.18) are given by

∇uF̂µ(ū, t̄, W̄ ) = 0, ∇tF̂µ(ū, t̄, W̄ ) = 0, ∇W F̂µ(ū, t̄, W̄ ) = 0. (9.24)

By Lemma 9.25 they are even sufficient if the function u 7→ Ĵ(u, ξ) is convex for a. e. ξ.

Barrier-Newton System

To solve (9.24), we apply Newton’s method. This is a suitable approach if the function U 3
u 7→ Ĵ(u, ·) ∈ L∞P (Ξ) is twice continuously differentiable, cf. Assumption 9.9, because this
property carries over to the function F̂µ by Proposition 9.34. Let (u, t,W ) ∈ U ×R×L∞P (Ξ)
be the current iterates fulfilling

W − ai(Ĵ(u, ·)− t) ≥ cµµ̃ a. s. for i ∈ {1, 2} (9.25)

with cµ ∈ (0, 1) as in (9.22) and µ̃ = µ. We say that a triple (u, t,W ) satisfying (9.25) is
approximately feasible for (9.18) w. r. t. cµ and µ̃ ∈ (0,∞). Then, the Newton directions
(s, τ, S) ∈ U × R× L∞P (Ξ) are given as a solution of the following barrier-Newton system:∇2

uuF̂µ ∇2
tuF̂µ ∇2

WuF̂µ
∇2
utF̂µ ∇2

ttF̂µ ∇2
WtF̂µ

∇2
uW F̂µ ∇2

tW F̂µ ∇2
WW F̂µ

sτ
S

 =

−∇uF̂µ−∇tF̂µ
−∇W F̂µ

 , (9.26)

where we skip the arguments (u, t,W ) for the sake of brevity.
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We compute the derivatives by the chain rule:

∇2
uuF̂µ(u, t,W )s = µ

2∑
i=1

(
ai E

[ ∇2
uuĴ(u,·)s

(W−ai(Ĵ(u,·)−t))

]
+ a2

i E
[ (∇uĴ(u,·),s)U∇uĴ(u,·)

(W−ai(Ĵ(u,·)−t))2

])
∇2
tuF̂µ(u, t,W )τ = −µ

2∑
i=1

a2
i E
[ ∇uĴ(u,·)

(W−ai(Ĵ(u,·)−t))2

]
τ

∇2
WuF̂µ(u, t,W )S = −µ

2∑
i=1

ai E
[ ∇uĴ(u,·)S

(W−ai(Ĵ(u,·)−t))2

]
∇2
utF̂µ(u, t,W )s = −µ

2∑
i=1

a2
i E
[ (∇uĴ(u,·),s)U

(W−ai(Ĵ(u,·)−t))2

]
∇2
ttF̂µ(u, t,W )τ = µ

2∑
i=1

a2
i E
[

1
(W−ai(Ĵ(u,·)−t))2

]
τ

∇2
WtF̂µ(u, t,W )S = µ

2∑
i=1

ai E
[

S
(W−ai(Ĵ(u,·)−t))2

]
∇2
uW F̂µ(u, t,W )s = −µ

2∑
i=1

ai
(∇uĴ(u,·),s)U

(W−ai(Ĵ(u,·)−t))2

∇2
tW F̂µ(u, t,W )τ = µ

2∑
i=1

ai
1

(W−ai(Ĵ(u,·)−t))2
τ

∇2
WW F̂µ(u, t,W )S = µ

2∑
i=1

1
(W−ai(Ĵ(u,·)−t))2

S.

Note that 1
(W−ai(Ĵ(u,·)−t))2

∈ L∞P (Ξ).

We solve (9.26) inexactly by applying a forward-backward block Gauss-Seidel iteration.
This has the advantage that we can apply a standard low-rank tensor solver to compute the
direction S approximately. We select (s0, τ0, S0) = (0, 0, 0) as intial guess for the solution
of the barrier-Newton system. Let (s`, τ`, S`) with ` ∈ N0 be the current iterate. The next
iterate (s`+1, τ`+1, S`+1) is computed as follows:

In the forward solve, a solution update (s̃`+1, τ̃`+1, S̃`+1) for (9.26) is computed based on
the current residual and by replacing the exact Hessian by its lower block triangle. This
means that we solve

∇2
uuF̂µ (s̃`+1 − s`) = −∇uF̂µ −∇2

uuF̂µ s
` −∇2

tuF̂µ τ` −∇2
WuF̂µ S`. (9.27)

to compute s̃`+1. Again, we neglect the argument (u, t,W ) here and in the following. Equa-
tion (9.27) is rewritten as

∇2
uuF̂µ s̃

`+1 = −∇uF̂µ −∇2
tuF̂µ τ` −∇2

WuF̂µ S` (9.28)
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and an iterative solver for it, e. g., a PCG method, is initialized with s`. Then we compute
τ̃`+1 by solving

∇2
ttF̂µ (τ̃`+1 − τ`) = −∇tF̂µ −∇2

utF̂µ s
` −∇2

ttF̂µ τ` −∇2
WtF̂µ S` −∇2

utF̂µ (s̃`+1 − s`),

which is
∇2
ttF̂µ τ̃`+1 = −∇tF̂µ −∇2

utF̂µ s̃
`+1 −∇2

WtF̂µ S`. (9.29)

Since τ̃`+1 is a scalar, this equation can be solved directly. Analogously, S̃`+1 is computed
by solving

∇2
WW F̂µ S̃`+1 = −∇W F̂µ −∇2

uW F̂µ s̃
`+1 −∇2

tW F̂µ τ̃`+1. (9.30)

An iterative tensor solver for this equation is initialized with S`.
In the backward solve, the solution update and next iterate (s`+1, τ`+1, S`+1) is computed

by solving the system with the upper block triangle and the new residual on the right-hand
side. In fact, S`+1 would be computed via

∇2
WW F̂µ (S`+1 − S̃`+1) = −∇W F̂µ −∇2

uW F̂µ s̃
`+1 −∇2

tW F̂µ τ̃`+1 −∇2
WW F̂µ S̃`+1.

This system has the solution S`+1 = S̃`+1 so that it does not have to be solved numerically.
Next, τ`+1 is computed by

∇2
ttF̂µ τ`+1 = −∇tF̂µ −∇2

utF̂µ s̃
`+1 −∇2

WtF̂µ S`+1. (9.31)

and s`+1 is given as the solution of

∇2
uuF̂µ s

`+1 = −∇uF̂µ −∇2
tuF̂µ τ`+1 −∇2

WuF̂µ S`+1. (9.32)

The iterative solver for this equation is initialized with s̃`+1. In the next iteration, we have
s̃`+2 = s`+1 so that (9.28) does not have to be solved numerically.

9.3.4. Implementation and Numerical Results

Using the above considerations and ideas from our paper [46], we implement a Newton-type
method for the log-barrier problem (9.14) or equivalently (9.18) with the reduced objective
function taken from the example from Chapter 3, where we choose ϕ ≡ 0 to have convexity.
Then the Hessian operator in (9.26) is at least positive semidefinite since we are solving a
convex problem due to Lemma 9.25. We work with a fixed discretization using low-rank
tensors as described in Chapter 6, i. e., we use linear FE functions to discretize H1

0 (Ω) and
L2(Ω) and represent each random variable by its values at the Gaussian quadrature nodes
or—equivalently—a multivariate polynomial. In particular, the FE function u ∈ U ⊂ U
is represented by a vector u ∈ Rdu and the polynomial W ∈ Pd(Ξ) is represented by a
tensor W ∈ Rd1×···×dm of weighted function values. Since the weights are positive, pointwise
constraints such as (9.25) translate to componentwise constraints on the tensor W. The
setup is the same as in Chapter 8 with the following exceptions: The domain is chosen to
be the square Ω = (−1, 1)2. It is divided into m = 4 strips Ωi as shown in Figure 9.2,
where also the used FE mesh consisting of 16641 nodes is drawn. We use the coefficient
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Figure 9.2.: The physical domain Ω, its partition into subdomains Ωi, and the used finite
element mesh

deviations σ = (0.3, 0.4, 0.5, 0.6)> and discretize each parameter with polynomials of degree
di − 1 = 4i+ 12. A high resolution of the stochastic space is chosen because we want to be
able to compute quantiles with high accuracy and generate meaningful plots of distribution
functions. As mentioned, the “nonlinearity” is set to ϕ ≡ 0. The desired state is q̂ ≡ 1 and
we have the set of admissible controls Uad = U = L2(Ω).

Algorithm 2 describes the implemented procedure. It is a Newton-type log-barrier method
with stopping criteria stemming from practical experience with low-rank tensor implemen-
tations. As observed in [46], the approximate componentwise reciprocals computed by an
iterative low-rank tensor method can become too inexact, especially during the last iterations
of the log-barrier method. Then, the error in, e. g., the computed gradient of F̂µ is too large
so that a stopping criterion based on its norm is not reliable anymore. Therefore, we also
stop the algorithm if the error in the computed reciprocals is too large or if the stepsizes for
retaining approximate feasibility become too small, which is a sign for not accurately enough
computed Newton steps. Instead of working with a fixed value µk = µ, we use continuation
and start with µ0 ≥ µ and decrease this value in each iteration by a factor µfac ∈ (0, 1)
until µk = µ is reached. The algorithm is formulated such that the iterates (uk, tk,Wk) are
approximately feasible for (9.18) w. r. t. cµ and µk. We give some more details about the
substeps in the following.
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Algorithm 2: Log-Barrier Method for Solving Problem (9.14)
Parameters : µ0 ≥ µ, µfac ∈ (0, 1), cµ ∈ (0, 1), εgrad > 0

Input: Initial iterates u0 ∈ U, t0 ∈ R, W0 ∈ Pd(Ξ) s. t. (u0, t0,W0) is approximately feasible
for (9.18) w. r. t. cµ and µ0.

Output: ū ∈ U, t̄ ∈ R, W̄ ∈ Pd(Ξ)

for k := 0, 1, 2, . . . do
Compute the tensors corresponding to Ĵ(uk, ·) and ∇uĴ(uk, ·).
Compute the tensors representing Yk,i := Wk − ai(Ĵ(uk, ·)− tk) and Zk,i = Y −1

k,i , i ∈ {1, 2}.
if the tensors for Zk,i cannot be computed exactly enough, then

STOP and return (ū, t̄, W̄) = (uk, tk,Wk).
end
Compute representations of the partial gradients ∇uF̂ kµk

= ∇uF̂µk
(uk, tk,Wk),

∇tF̂ kµk
= ∇tF̂µk

(uk, tk,Wk), and ∇W F̂ kµk
= ∇W F̂µk

(uk, tk,Wk), see (9.23).

if µk = µ and ‖∇uF̂ kµk
‖2U + |∇tF̂ kµk

|2 + ‖∇W F̂ kµk
‖2
L2

P(Ξ)
< ε2

grad, then
STOP and return (ū, t̄, W̄) = (uk, tk,Wk).

end

Compute the tensors corresponding to Y 2
k,i and to Z2

k,i.

To compute the update direction (sk, τk,Sk) ∈ U× R× Pd(Ξ), solve the barrier-Newton
system (9.26) with (u, t,W ) = (uk, tk,Wk) and µ = µk approximately by applying a
forward-backward block Gauss-Seidel iteration.
Set µk+1 := max{µ, µfac · µk}.
Compute stepsizes σku, σkt , σkW ∈ (0, 1] such that (uk + σku sk, tk + σkt τk,Wk + σkW Sk) is
approximately feasible for (9.18) w. r. t. cµ and µk+1.
if such stepsizes cannot be computed or are too small, then

STOP and return (ū, t̄, W̄) = (uk, tk,Wk).
end
Set uk+1 := uk + σku sk, tk+1 := tk + σkt τk, and Wk+1 := Wk + σkW Sk.

end

The object uk ∈ U is a finite element function represented by a vector uk ∈ Rdu . When
computing the tensors corresponding to Ĵ(uk, ·) and ∇uĴ(uk, ·), we solve the discretized
state and adjoint equation by AMEn and store the low-rank tensors yk, zk ∈ Rd0×···×dm

representing the discrete state and adjoint state, respectively, to initialize AMEn in the next
iteration. The Rd1×···×dm-tensor representing Ĵ(uk, ·) is(
1
> ◦1 [(MH ◦1 (Qyk − q̂))� (1⊗ω)� (Qyk − q̂)]

)
(1,·, . . . ,·) +

(γ
2 (uk)>M̃uk

)
ω.−1, (9.33)

with 1 ∈ RdH , cf. (6.18), and the one representing ∇uĴ(uk, ·) is given by

−(M̃−1B>) ◦1 zk + γuk ⊗ω.−1 ∈ Rdu×d1×···×dm ,

cf. (6.22). In (9.33) and in the following we use interpolation, i. e., we construct a tensor of
function evaluations in the Gaussian quadrature nodes al multiplied by the weights ω(l)−1.
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The tensors Yk,i ∈ Rd1×···×dm and Zk,i ∈ Rd1×···×dm shall represent the functions Yk,i
and Zk,i, cf. (6.10). To compute Zk,i ≈ ω.−1 � (ω � Yk,i).

−1, we first apply the Newton-
Schulz method, see Subsection 2.1.3. If the relative error ‖(ω�Zk,i)�(ω�Yk,i)−1‖F

‖1‖F is greater
than 10−4, we perform additional AMEn iterations to compute the elementwise reciprocal,
cf. [46]. Algorithm 2 is stopped if the relative error in the elementwise reciprocal exceeds
0.1. Note that in theory we have Yk,i(ξ) ≥ cµµk for a. e. ξ ∈ Ξ because (uk, tk,Wk) is
approximately feasible for (9.18) w. r. t. cµ and µk. Therefore, the functions Zk,i ∈ L∞P (Ξ)
are well-defined and fulfill Zk,i(·) ∈ (0, 1

cµµk
] almost surely.

The evaluation of the gradient (9.23) becomes

∇uF̂µk(uk, tk,Wk) = µk

2∑
i=1

ai E
[
∇uĴ(uk, ·)Zk,i

]
∇tF̂µk(uk, tk,Wk) = 1− µk

2∑
i=1

ai E
[
Zk,i

]
∇W F̂µk(uk, tk,Wk) = 1− µk

2∑
i=1

Zk,i.

The expectations can be evaluated using tensor contractions. To evaluate the gradient norm,
we use the discrete L2

P(Ξ)-norm because it is also given as a tensor contraction.

The tensors corresponding to Y 2
k,i are Yk,i � (ω � Yk,i) and are computed by truncated

componentwise multiplication and i-mode matrix products, cf. (6.25). Analogously, we
compute the tensors corresponding to Z2

k,i.

To solve the barrier-Newton system (9.26) approximately, we perform at most 5 itera-
tions of the described forward-backward block Gauss-Seidel method. We stop this itera-
tion earlier if the relative residual is smaller than 0.1. In (9.28), we use an approximation
∇̃2
uuF̂µk(uk, tk,Wk) of the Hessian involving a constant (w. r. t. ξ) approximation ∇̃2

uuĴ(uk)
of the Hessian ∇2

uuĴ(uk, ·), cf. (6.26). This leads to

µk

2∑
i=1

(
ai E

[
Zk,i

]
∇̃2
uuĴ(uk)s̃k,`+1 + a2

i E
[
(∇uĴ(uk, ·), s̃k,`+1)U∇uĴ(uk, ·)Z2

k,i

])
=

− µk
2∑
i=1

ai E
[
∇uĴ(uk, ·)Zk,i

]
+ µkτk,`

2∑
i=1

a2
iE[∇uĴ(uk, ·)Z2

k,i]

+ µ

2∑
i=1

a2
iE[∇uĴ(uk, ·) Sk,` Z

2
k,i].

A PCG method is used to solve this equation because the discrete reference Hessian ∇̃2
uuĴ(uk)

can only be applied efficiently, but should not be formed as an explicit, typically dense
matrix. The expectation E

[
Zk,i

]
and the right-hand side are precomputed before solving

w. r. t. s̃k,`+1. Expected values are computed by tensor contractions and componentwise
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multiplication. (9.32) is solved analogously. Equation (9.29) becomes

τ̃k,`+1 =
−∇tF̂µk(uk, tk,Wk)−∇2

utF̂µk(uk, tk,Wk)s̃
k,`+1 −∇2

WtF̂µk(uk, tk,Wk)Sk,`

∇2
ttF̂µk(uk, tk,Wk)

=
(
µk

2∑
i=1

a2
i E
[
Z2
k,i

])−1(
−1 + µk

2∑
i=1

ai E
[
Zk,i

]
+ µk

2∑
i=1

a2
i E[(∇uĴ(uk, ·), s̃k,`+1)U Z

2
k,i]− µk

2∑
i=1

aiE[Z2
k,i Sk,`]

)
and (9.31) is formulated analogously. We transform (9.30) to

S̃k,`+1 := ∇2
WW F̂µk(uk, tk,Wk)

−1
(
−∇W F̂µk(uk, tk,Wk)

−∇2
uW F̂µk(uk, tk,Wk)s̃

k,`+1 −∇2
tW F̂µk(uk, tk,Wk)τ̃k,`+1

)
= 1

µk
(Z2

k,1 + Z2
k,2)−1

(
−1 + µk(Zk,1 + Zk,2)

+ µk(a1Z
2
k,1 + a2Z

2
k,2)(∇uĴ(uk, ·), s̃k,`+1)U − µkτ̃k,`+1(a1Z

2
k,1 + a2Z

2
k,2)
)

= 1
µk

(Y 2
k,2 + Y 2

k,1)−1
(
−Y 2

k,1Y
2
k,2 + µk(Yk,1Y

2
k,2 + Y 2

k,1Yk,2)

+ µk(a1Y
2
k,2 + a2Y

2
k,1)(∇uĴ(uk, ·), s̃k,`+1)U − µτ̃k,`+1(a1Y

2
k,2 + a2Y

2
k,1)
)
.

The advantage of the latter formulation is that is does not depend on the possibly inexactly
computed Zk,i. The tensor representing S̃k,`+1 is computed by AMEn with componentwise
multiplication operators.
We propose a stepsize selection strategy, which uses the fact that (9.25) is a box constraint

w. r. t. W and t and that it can be rewritten as

ess inf
ξ∈Ξ

W (ξ)− ai(Ĵ(u, ξ)− t) ≥ cµµ̃ for i ∈ {1, 2}.

It tries to avoid too many evaluations of the random variable objective function Ĵ(u, ·) for
different u and works as follows:

S1. Choose factors σfac,u ∈ (0, 1), σ̂fac ∈ (0, 1], and initial stepsizes σu, σ̂ ∈ (0, 1].

S2. Compute the tensor corresponding to Ĵ(uk + σusk, ·) ∈ L∞P (Ξ) and store this quantity
and the corresponding state for the next iteration.

S3. Compute δk,i := minξ∈Ξ Wk(ξ) + σ̂ Sk(ξ)− aiĴ(uk + σusk, ξ) for i ∈ {1, 2}. This is
done by the multilevel coordinate search (MCS) method [65], a non-rigorous global
optimization routine, which works with evaluations of the respective polynomial only,
see Subsection 2.1.3.

S4. If δk,i ≥ cµµk+1 − σ̂aiτk − aitk for i ∈ {1, 2}, choose σku = σu and σkt = σkW = σ̂ and
STOP. The new iterate (uk+σkusk, tk+σkt τk,Wk+σkWSk) is then approximately feasible
for (9.18) w. r. t. cµ and µk+1.
Otherwise, compute νk,i := minξ∈Ξ Wk(ξ)− aiĴ(uk + σusk, ξ) for i ∈ {1, 2} by MCS.
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S5. If νk,i < cµµk+1 − aitk for some i ∈ {1, 2}, decrease σu by the factor σfac,u and go to
S2 because (uk + σusk, tk,Wk) is not approximately feasible.
Otherwise, i. e., νk,i ≥ cµµk+1 − aitk for all i ∈ {1, 2} and cµµk+1 − aitk > δk,i + σ̂aiτk
for at least one i ∈ {1, 2} giving νk,i > δk,i + σ̂aiτk for at least one i ∈ {1, 2}, compute

σk := min
i : νk,i>δk,i+σ̂aiτk

cµµk+1 − νk,i − aitk
−νk,i

σ̂ +
δk,i
σ̂ + aiτk

.

This stepsize is non-negative because the denominator is negative and the numerator
is non-positive.

S6. If σk < σ̂fac σu, decrease σu by the factor σfac,u and go to S2 to have stepsizes of
approximately the same magnitude.
Otherwise, choose σku = σu and σkt = σkW = σk and STOP. The new iterate (uk +
σkusk, tk + σkt τk,Wk + σkWSk) is approximately feasible:

Wk(·) + σkSk(·)− aiĴ(uk + σkusk, ·) + aitk + aiσ
kτk

= (1− σk

σ̂ )
(
Wk(·)− aiĴ(uk + σkusk, ·)

)
+ σk

σ̂

(
Wk(·) + σ̂Sk(·)− aiĴ(uk + σusk, ·)

)
+ aitk + σkaiτk

≥ (1− σk

σ̂ )νk,i + σk

σ̂ δk,i + aitk + σkaiτk

= σk(−νk,i
σ̂ +

δk,i
σ̂ + aiτk) + νk,i + aitk.

If −νk,i
σ̂ +

δk,i
σ̂ + aiτk < 0, we have

σk(−νk,i
σ̂ +

δk,i
σ̂ + aiτk) + νk,i + aitk ≥ cµµk+1 − νk,i − aiτk + νk,i + aitk = cµµk+1

by the definition of σk. Otherwise, we estimate

σk(−νk,i
σ̂ +

δk,i
σ̂ + aiτk)︸ ︷︷ ︸

≥0

+νk,i + aitk ≥ νk,i + aitk ≥ cµµk+1.

Algorithm 2 is stopped if the stepsize σu becomes smaller than 10−3 during the iteration. In
the numerical tests, we choose µ0 = 10, µfac = 0.8, cµ = 0.1, εgrad = 0.01, σu = σ̂ = 0.7,
σfac,u = σ̂fac = 0.5, and bound all appearing tensor ranks by 200. This rank bound is chosen
quite large to be able to obtain accurate results for difficult setups. In easier cases such as
β = 0.5, λ = 1.00, µ = 0.10, see below, the largest used rank for the elementwise reciprocals
Zk,i is 57 and the largest rank for the steps Sk is 83, i. e., the rank bound is not restrictive.
The initial control u0 is chosen to be the deterministic control and we take t0 = 0 and
W0(·) := a2Ĵ(u0, ·) + µ0. Since Ĵ(u0, ·) ≥ 0 and a2 > a1 ≥ 0, this yields that (u0, t0,W0) is
approximately feasible.
Clearly, Algorithm 2 is not as rigorous as, e. g., Algorithm 1 and the implementation pre-

sented in Chapter 8. The stopping criteria based on the quality of the elementwise reciprocal
and the computed stepsize, for instance, come from practical experience with low-rank tensor
implementations. In theory, developing a convergence theory for such an algorithm based
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on results on inexact Newton methods [41] or inexact interior point methods [19] would be
possible. But it is questionable if the requirements of such convergence results can be met in
practice. Even a very small relative error in the tensor Yk,i measured in a norm induced by
an inner product can cause the reciprocal tensor Zk,i to be not well-defined anymore because,
e. g., one entry of Yk,i could become zero, cf. the discussion in Subsection 2.1.3. Furthermore,
the discretization relies on interpolation in the multivariate Gaussian quadrature nodes. As
noted at the end of Section 6.2, this can be interpreted as a discretization based on samples in
the quadrature nodes. This is a suitable interpretation in this case because the polynomials
of arbitrary degree do not form a dense subset of L∞P (Ξ) in general so that a discretization
by polynomials is not appropriate.
In the following, we present results for different combinations of the quantile parameter

β ∈ {0.5, 0.9} in CVaRβ , the convex combination parameter λ ∈ {1.00, 0.75, 0.50}, see (9.5),
and the log-barrier parameter µ ∈ {0.1, 0.05, 0.02}. The results are summed up in Table 9.1.

β λ µ number of achieved computing time
iterations gradient norm (hours)

0.9 1.00 0.05 24 0.3012 3.83

0.9 1.00 0.10 25 0.0062 4.38

0.9 0.75 0.05 26 0.2869 1.97

0.9 0.50 0.05 28 0.0067 2.69

0.5 1.00 0.02 34 0.0071 5.56

0.5 1.00 0.05 28 0.0010 1.02

0.5 1.00 0.10 25 0.0083 0.62

0.5 0.75 0.02 33 0.0072 3.77

0.5 0.50 0.02 34 0.0068 2.51

Table 9.1.: Results of the implemented log-barrier method.

If the achieved gradient norm is greater than 0.01, the algorithm has stopped because the
error in the elementwise reciprocal is too large. Stopping due to too small stepsizes has never
been occurred although the full stepsize is not always taken, especially in the last iterations.
In general, it can be observed that it is easier to solve problems which are less risk-averse

in the sense that smaller values of β or λ, or larger values of µ are chosen. In two cases,
namely β = 0.9, µ = 0.05, and λ ∈ {0.75, 1.00}, it is not possible to obtain a gradient norm
smaller than 0.01. Nevertheless, we will see that the obtained solutions yield a smaller CVaR
than the ones with with λ = 0.50 or µ = 0.10, for which a better accuracy is achieved.
In contrast to the case β = 0.9, the algorithm computes a solution with a small gradient
for β = 0.5 even with µ = 0.02. The variability in the computing times is due to various
influences: Depending on the obtained residual, possibly more Gauss-Seidel iterations have
to be performed, especially for ill-conditioned systems. Furthermore, we use costly direct
solves with full linear algebra in AMEn subproblems if the computation of the elementwise
reciprocal with an iterative subsolver does not yield satisfactory results. The ranks needed to
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compute, e. g., the reciprocal tensor accurately enough can vary depending on the problem
data. Subsequent computations with this tensor are then more costly.
An interesting result, where the controls differ relatively much from each other, is obtained

for β = 0.5, λ = 1.00, and µ = 0.02, i. e., for minimization of the smoothed CVaR0.5

with a rather small value of the barrier parameter µ. Figure 9.3 shows the distribution
function of the “random variable objective function” [72] Ĵ(u, ·) for the deterministic, the
risk-neutral, and the respective risk-averse control. In all distribution function plots, the
expected value E[Ĵ(u, ·)] of the respective random variable is marked by “×+”. CVaR0.5[Ĵ(u, ·)]
and CVaR0.9[Ĵ(u, ·)] are marked by “+” and “×”, respectively. As depicted in Figure 9.3,
the risk-neutral control reduces the expectation as well as the CVaR0.5 and the CVaR0.9 of
the random variable objective function compared to the values achieved by the deterministic
control. Using the risk-averse approach, it is possible to decrease the CVaR0.5 further while
the expectation increases only a bit. Even the CVaR0.9 is decreased in this setting although it
is not minimized explicitly. The obtained controls and their differences are plotted in Figure
9.4. Especially the difference plots show that the uncertainty in the system is increasing from
left to right. Additionally, the strips Ωi can be recognized in these plots.

Figure 9.3.: Distribution function of the random variable objective function for the determin-
istic, the risk-neutral, and the risk-averse control with β = 0.5, λ = 1.00, and
µ = 0.02, details at the bottom
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Figure 9.4.: Plots of the deterministic, the risk-neutral, and the risk-averse control (from top
left to bottom left) for β = 0., λ = 1.00, and µ = 0.02. Differences between the
deterministic and the risk-neutral, the deterministic and the risk-averse, and the
risk-neutral and the risk-averse control (from top right to bottom right).
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In the following, we investigate how the choice of one of the parameters β, λ, µ influences
the result. Sometimes, the differences between the distribution functions are small so that
we show regions of interest in the respective plots.
We start with the role of the log-barrier parameter µ. Figure 9.5 shows the distribution

function of the random variable objective function for the risk-neutral and the risk-averse
controls with β = 0.5 and λ = 1.00, i. e., we aim for minimizing smoothed versions of
CVaR0.5. The log-barrier parameter is decreased from 0.10 to 0.02. This setup is chosen
because the algorithm is capable of computing a solution with small gradient, see Table 9.1,
which is not the case for β = 0.9. We see that the CVaR0.5[Ĵ(u, ·)] increases and approaches
the value achieved by the risk-neutral control for larger values of µ while the expected value
decreases slightly. This becomes clear by taking a look at Figure 9.1. For larger values of µ,
the function v̂µ gets locally closer to the identity v(t) = t, which induces Rv = E.

Figure 9.5.: Distribution function of the random variable objective function for the risk-
neutral and the risk-averse controls with µ ∈ {0.10, 0.05, 0.02}, β = 0.5, λ = 1.00

Figures 9.6 and 9.6 show the distribution functions as the combination parameter λ varies.
Here we have two different setups, namely (β, µ) = (0.5, 0.02) and (β, µ) = (0.9, 0.05).
As expected, the respective CVaRβ is smaller for larger values of λ and the expectation
increases. It is remarkable that we make this observation also in the case β = 0.9 although
the algorithm has to stop with a gradient norm of about 0.3 for λ = 1.00 and λ = 0.75
because the componentwise reciprocal cannot be computed accurately enough, see Table 9.1.
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Figure 9.6.: Distribution function of the random variable objective function for the risk-
neutral and the risk-averse controls with λ ∈ {1.00, 0.75, 0.50} and (β, µ) =
(0.5, 0.02)

Figure 9.7.: Distribution function of the random variable objective function for the risk-
neutral and the risk-averse controls with λ ∈ {1.00, 0.75, 0.50} and (β, µ) =
(0.9, 0.05)
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In Figure 9.8 we show the distribution function for different quantile parameters β ∈
{0.5, 0.9} with λ = 1.00, i. e., we minimize a smoothed version of CVaRβ with µ = 0.10
and µ = 0.05, respectively. In both cases, the control resulting from a minimization of
the smoothed CVaR0.9 yields a smaller CVaR0.9, but a larger CVaR0.5 than the one which
minimizes the the smoothed CVaR0.5. Both are more risk-averse in terms of CVaR0.5 and
CVaR0.9 than the risk-neutral control. In the case β = 0.9, µ = 0.05 this behavior can be
observed although the gradient norm is rather large in the computed solution. This solution
achieves a smaller CVaR0.9 than the one computed with β = 0.9 and µ = 0.10.

Figure 9.8.: Distribution function of the random variable objective function for the risk-
neutral and the risk-averse controls with β ∈ {0.5, 0.9}, λ = 1.00, µ = 0.10
(top), µ = 0.05 (bottom)

In conclusion, we have proposed a log-barrier method implemented with low-rank tensors
for solving risk-averse optimal control problems under uncertainty with a convex combination
of the mean and the CVaR as risk measure. We have shown that keeping the barrier param-
eter µ > 0 on a fixed level results in the minimization of a smoothed, monotonic, regular risk
measure. We have formulated an existence result for convex problems as well as an optimal-
ity condition and the barrier-Newton equation in function space. The numerical results have
shown that this is a hard problem class if implemented with low-rank tensors as already ob-
served in [46]. Nevertheless, we are capable of computing risk-averse controls by this method,
which yield a random variable objective with smaller CVaR than the risk-neutral control.
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In this thesis, we have discussed optimal control problems of semilinear, elliptic PDEs with
uncertain inputs and different risk measures. We have provided the necessary theory to for-
mulate the PDEs in weak form in a tensor Banach space and have derived adjoint-based
expressions for the derivatives of the reduced objective function in the risk-neutral and in the
mean-variance case. A trust-region framework allowing for inexact objective function, gradi-
ent, and criticality measure evaluations has been established. It features global convergence
while error bounds up to unknown multiplicative constants are sufficient. In the risk-neutral
and in the mean variance case, we have investigated how the required error tolerances can be
fulfilled based on the error in the state, in the adjoint state, and in the inexact projection onto
the set of admissible controls. If the risk measure is the expected value and the problem data
is essentially bounded w. r. t. the random parameters, error control of the state and adjoint
state in the L2

P(Ξ;H1
0 (Ω))-norm is sufficient. We have derived an a posteriori estimator for

this error based on a stochastic Galerkin discretization with polynomials in tensor product
form. It has been discussed how the PDEs with uncertain inputs can be solved adaptively
using low-rank tensor calculus and methods. This is necessary to make the computation
efficient. Numerical results have shown the adaptivity of the proposed approach to differ-
ent problem data in the sense that the constructed FE mesh resolves the PDE solution and
the active set well and the polynomial grades are chosen dependent on the influence of the
respective uncertain parameter on the controlled system.
The error estimation theory is rigorous such that global convergence of the algorithm can

be established, but the practical implementation lacks this property at some points. We have
used the AMEn method to solve tensor equations because of its efficiency in practice although
its convergence theory is still limited to our knowledge. Additionally, it is not clear a priori if
approximate solutions to the respective equations with moderate tensor ranks exist and can
be computed by AMEn. In our experiments, the required small error tolerance has not been
met by AMEn sometimes in the last iterations of the trust-region algorithm. Furthermore,
we have bounded the number of used FE nodes due to efficiency reasons. Some terms in
the error estimation—appearing only in the case that a nonlinear PDE is considered—have
been neglected, namely the interpolation error and the L∞P (Ξ;H1

0 (Ω))-norm of the computed
state.
In addition to the mentioned smooth risk measures, we also have discussed risk measures

which are convex combinations of the mean and the conditional value-at-risk. They have
many favorable properties, but are nonsmooth. We have proposed to apply a log-barrier
method to a smooth reformulation of optimal control problems involving such risk measures
and have investigated how this procedure affects the underlying risk measures if the barrier
parameter is not driven to zero, but kept on a fixed level. In fact, useful properties, such as
convexity and monotonicity, are preserved. Numerical results of a low-rank tensor implemen-
tation of this method working on a fixed discretization have been shown. The barrier-Newton
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system has been solved approximately by a forward-backward block Gauss-Seidel method,
which makes use of the structure of the system. The results reveal how the distribution func-
tion of the random variable objective function of the optimal control problem can be shaped
by this procedure. Although the convergence of Newton’s method in the proposed function
space setting is well-known, it is hard to derive a practically relevant convergence result for a
low-rank tensor implementation of it. Even very small perturbations due to truncation may
cause the barrier terms to be not well-defined anymore so that iterative solvers for computing
them may fail to converge.
Based on this work, several directions of future research can be pursued. The proposed

approach for the analysis (Chapter 3) and the error estimation (Chapters 5 and 7) can be
adapted to different settings of optimal control problems with semilinear, elliptic PDEs such
as boundary control or different boundary conditions. Furthermore, low-rank methods are
also suitable for time-dependent PDEs [105], where the time yields an additional tensor
mode. The a posteriori error estimation procedure from Chapter 7 can be generalized to
the 3D case and to more general coefficient functions. Additionally, the convergence of the
discretization for the considered class of semilinear PDEs should be analyzed. Regarding the
mean-variance risk measure, the question arises whether error estimation in LqP(Ξ;H1

0 (Ω))
with q > 2 is possible. For the ease of implementation, we have bounded all errors based
on the L2

P(Ξ;H1
0 (Ω))-error in the state and adjoint state. By this procedure, we certainly

overestimate the error in some cases. As discussed, weaker error control can be sufficient,
for instance, an L2

P(Ξ;L2(Ω))-error bound for the adjoint state to control the gradient error.
In addition, alternative a posteriori error estimation techniques, such as the dual-weighted-
residual method [18] for the objective function evaluation, can be employed, but have to be
adapted to the stochastic setting.
In our numerical experiments, we have refrained from testing the scaling of the proposed

algorithms w. r. t. to the number of the parameters because such tests can be found in [46]
and our tests have been dedicated to adaptivity, which itself has required to run different
setups. Regarding computing time and exactness of the obtained results, a comprehensive
comparison to different treatments of the stochasticity, such as the use of adaptive sparse
grids or multilevel Monte Carlo methods, would be interesting. For a fair comparison, one
should find a setup for which the exact solution can be constructed, and the sample-based
methods should also use adaptive grid refinement. Since they can benefit from parallelization,
parallel codes for low-rank tensors, which are investigated currently [52], should be applied.
Based on the derived barrier-Newton system from Section 9.3 or a similar primal-dual

system, one can derive an interior-point method for such problems. As shown, the necessary
derivatives are Fréchet derivatives if L∞P (Ξ) is considered as underlying function space. If
one wants to design an adaptive algorithm for such problems, this space would have to be
discretized suitably, which is a hard task because, e. g., the set of polynomials of arbitrary
degree is not dense in L∞P (Ξ). To overcome this issue, the space of continuous functions could
be used alternatively.
To sum up, it shall be mentioned that many different methods and concepts from, e. g.,

multilinear algebra, functional analysis and PDE theory, numerical optimization and opti-
mization in Banach spaces, numerical analysis and approximation theory as well as probabil-
ity theory and uncertainty quantification, have been used in this dissertation. The interplay
of them makes the topic very interesting and motivates future research in various directions.
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A. Appendix

A.1. Tensor Spaces

We give the proof of Proposition 2.6 here since it does not contribute to the main content of
the thesis.

Proposition A.1 (Characterization of equivalence classes). Let V and W be vector spaces
over a field K and let v, ṽ ∈ V and w, w̃ ∈ W be given. Consider the algebraic tensor space
V ⊗a W . The pair (ṽ, w̃) belongs to the equivalence class v ⊗ w if and only if the following
holds:

(v = 0 ∨ w = 0) ∧ (ṽ = 0 ∨ w̃ = 0) (A.1)

or

(v 6= 0 ∧ w 6= 0) ∨ (ṽ 6= 0 ∧ w̃ 6= 0) and ∃ c ∈ K\{0} s. t. ṽ = cv and w = cw̃. (A.2)

Case (A.1) holds exactly for pairs belonging to the equivalence class 0⊗ 0.

Proof. First we show that (A.1) holds if and only if both tensors v⊗w and ṽ⊗ w̃ are in fact
zero, i. e., they belong to the equivalence class 0 ⊗ 0: For some v ∈ V we have (v, 0) ∈ N
with N defined as in Definition 2.5 taking m = n = 1, α1 = 1, β1 = 0, v1 = v, and w1 = 0,
and multiplying the resulting tensor by −1. Analogously we get (0, w) ∈ N for any w ∈W .
Now we prove that the condition v = 0 ∨ w = 0, cf. (A.1), is also necessary for a pair

(v, w) to belong to 0 ⊗ 0 = N . First observe that it is enough to allow only vectors from
given bases B ⊂ V and C ⊂W in the definition of the set N : We have N = Ñ with

Ñ := span
{ m∑
i=1

n∑
j=1

αiβj(vi, wj)−
( m∑
i=1

αivi,
n∑
j=1

βjwj

)
:

m,n ∈ N, αi, βj ∈ K, vi ∈ B,wj ∈ C
}

We only show that linear combinations of pairs of the form

m∑
i=1

n∑
j=1

αiβj(vi, wj)−
( m∑
i=1

αivi,

n∑
j=1

βjwj

)
with general vi ∈ V and wi ∈W belong to the set Ñ because the inclusion Ñ ⊂ N is obvious.
We insert the representations vi =

∑
v∈B λ

i
vv and wj =

∑
w∈C µ

j
ww, which are in fact finite
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sums, into the formula and compute
m∑
i=1

n∑
j=1

αiβj(vi, wj)−
( m∑
i=1

αivi,

n∑
j=1

βjwj

)
=

m∑
i=1

n∑
j=1

αiβj
(∑
v∈B

λivv,
∑
w∈C

µjww
)
−
( m∑
i=1

αi
∑
v∈B

λivv,

n∑
j=1

βj
∑
w∈C

µjww
)

=
m∑
i=1

n∑
j=1

αiβj

(∑
v∈B

λivv,
∑
w∈C

µjww
)
−

m∑
i=1

n∑
j=1

∑
v∈B

∑
w∈C

αiβjλ
i
vµ

j
w(v, w)

+
m∑
i=1

n∑
j=1

∑
v∈B

∑
w∈C

αiβjλ
i
vµ

j
w(v, w)−

( m∑
i=1

∑
v∈B

αiλ
i
vv,

n∑
j=1

∑
w∈C

βjµ
j
ww
)
.

This is a linear combination belonging to the set Ñ . Now let (v, w) ∈ N , i. e.,

(v, w) =

K∑
k=1

γk

( m∑
i=1

n∑
j=1

αki β
k
j (vki , w

k
j )−

( m∑
i=1

αki v
k
i ,

n∑
j=1

βkjw
k
j

))

=
K∑
k=1

m∑
i=1

n∑
j=1

γkα
k
i β

k
j (vki , w

k
j )−

K∑
k=1

γk

( m∑
i=1

αki v
k
i ,

n∑
j=1

βkjw
k
j

)
(A.3)

for some m,n,K ∈ N, αki , βkj , γk ∈ K, vki ∈ B, wkj ∈ C. We assume that v 6= 0 and w 6= 0
holds. Thus, we can take the bases B and C such that v ∈ B and w ∈ C. Furthermore, we
take the shortest possible representation, i. e., K to be minimal. That gives us that γk 6= 0
and that αk and βk cannot both be unit vectors for all k because both cases would lead
to a zero summand and the sum could be shortened. Therefore, (v, w) is not contained in
the second sum over k in (A.3), which yields (v, w) =

∑K
k=1

∑m
i=1

∑n
j=1 γkα

k
i β

k
j (vki , w

k
j ) and∑K

k=1 γk

(∑m
i=1 α

k
i v
k
i ,
∑n

j=1 β
k
jw

k
j

)
= 0. Now assume that a non-zero pair is contained in the

second sum. Since γk 6= 0, it has to be contained again at least once, such that it cancels
out. Because of the unique basis representation the respective terms would also cancel in the
first sum over k, which is a contradiction to the minimality of K. Therefore we have K = 1

and w. l. o. g. γ1 = 1. This gives
(∑m

i=1 α
k
i v
k
i ,
∑n

j=1 β
k
jw

k
j

)
= 0 and thus

∑m
i=1 α

1
i v

1
i = 0 and∑n

j=1 β
1
jw

1
j = 0 and therefore α1 = 0 and β1 = 0 due to the linear independence. We obtain

(v, w) = 0, which is a contradiction to the assumption that v 6= 0 and w 6= 0.
In the second case (A.2) we have that (v, w) − (ṽ, w̃) = (v, cw̃) − (cv, w̃) ∈ N by taking

m = n = 1, α1 = c, β1 = c−1, v1 = v and w1 = cw̃.
It remains to prove the “only if” part. Let (ṽ, w̃) ∈ v⊗w, i. e., (v, w)−(ṽ, w̃) ∈ N . Assume

that (A.1) does not hold meaning that the first part of (A.2) holds and we have to show the
second part. If v = ṽ and w = w̃, we can take c = 1 and are done; now we assume c /∈ {0, 1}.

First observe that if ṽ = cv holds, we get w = cw̃: Represent (v, w)− (cv, w̃) as a shortest
linear combination of the form (A.3) with v ∈ B, w ∈ C. Since cv /∈ B we can argue as
above that (v, w) is contained in the first part and (cv, w̃) is contained in the second part.
Assuming that other pairs than (cv, w̃) are contained in the second sum, we see again that
the terms containing these would cancel in both sums and that we can take K = 1 and
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γ1 = 1. We have (cv, w̃) =
(∑m

i=1 α
1
i v

1
i ,
∑n

j=1 β
1
jw

1
j

)
and thus α1 = ce1 if we take w. l. o. g.

v1
1 = v, where ei is the i-th unit vector. Since (v, w) is contained in the first part, we get

(v, w) =
∑n

j=1 cβj(v, w
1
j ) and therefore β1 = c−1e1 if w1

1 = w. This gives us finally that
(cv, w̃) = (cv, c−1w) and hence w = cw̃. Analogously it follows from (v, w)− (ṽ, w̃) ∈ N and
w = cw̃ that ṽ = cv.
Now we assume that the second part of (A.2) does not hold. That means that w. l. o. g.

v and ṽ are linearly independent. We get from the considerations above that also w and
w̃ are linearly independent. In the representation of (v, w) − (ṽ, w̃) as in (A.3) we can
take bases B and C containing both vectors, respectively: v, ṽ ∈ B, w, w̃ ∈ C. Again we
argue that (v, w) − (ṽ, w̃) is contained in the first sum and that we get K = 1 and γ1 = 1

leading to 0 =
(∑m

i=1 α
1
i v

1
i ,
∑n

j=1 β
1
jw

1
j

)
. From that we obtain α1 = 0 and β1 = 0, which

gives (v, w) − (ṽ, w̃) = (0, 0), which contradicts the assumption that v and ṽ are linearly
independent. Since v and ṽ are linearly dependent and both non-zero, there exists a constant
c ∈ K\{0} such that ṽ = cv holds. As shown above, we get that w = cw̃ is also true.

A.2. General Lp Spaces and Operator Theory

We discuss some general results about embeddings and interpolation of Lp spaces, which
are used frequently for error and regularity estimates. Additionally, we state some results
on operators between Banach spaces used for existence theory and error estimation of the
considered PDEs.

Proposition A.2 (Estimating Lp-norms on finite measure spaces). Let (Ω,A, µ) be a mea-
sure space with 0 < µ(Ω) < ∞. Let p ∈ [1,∞] and q ∈ [1, p] be given and let υ ∈ Lpµ(Ω).
Then, υ ∈ Lqµ(Ω) and we have the estimate

‖υ‖Lqµ(Ω) ≤ C‖υ‖Lpµ(Ω)

with C = µ(Ω)1/q−1/p. In case that µ is a probability measure, ‖υ‖Lqµ(Ω) ≤ ‖υ‖Lpµ(Ω) holds.

Proof. By Hölder’s inequality we get

‖υ‖q
Lqµ(Ω)

= ‖1 · |υ|q‖L1
µ(Ω) ≤ ‖1‖L(1−q/p)−1

µ (Ω)
· ‖|υ|q‖

L
p/q
µ (Ω)

= µ(Ω)1−q/p · ‖υ‖q
Lpµ(Ω)

and therefore the desired result. As usual, we define 0−1 = ∞ in the case q = p and get
‖1‖L∞µ (Ω) = 1 = µ(Ω)0. If µ is a probability measure, µ(Ω) = 1 and thus C = 1 holds.

Proposition A.3. Let A,A0 : Y → Y ∗ be bounded, self-adjoint and boundedly invertible
linear operators between a Hilbert space Y and its dual space. We define the inner product
(y, v)A := 〈Ay, v〉Y ∗,Y and norm ‖y‖A :=

√
(y, y)A for y, v ∈ Y , and analogously the inner

products induced by A0 on Y and by A−1, A−1
0 on Y ∗. The norms induced by A and A0 shall

be equivalent with the constants
√
λ and

√
Λ for 0 < λ ≤ Λ, i. e.,

λ‖y‖2A ≤ ‖y‖2A0
≤ Λ‖y‖2A (A.4)

holds for every y ∈ Y .
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Then, the estimate
1
Λ‖b‖

2
A−1 ≤ ‖b‖2A−1

0
≤ 1

λ‖b‖
2
A−1 (A.5)

holds for every b ∈ Y ∗.

Proof. From the first inequality in (A.4), it follows that

λ‖y‖2A ≤ 〈A0y, y〉Y ∗,Y = 〈AA−1A0y, y〉Y ∗,Y ≤ ‖A−1A0y‖A‖y‖A = ‖A0y‖A−1‖y‖A

and therefore ‖y‖A ≤ 1
λ‖A0y‖A−1 holds for all y ∈ Y . This induces with b = A0y, that

‖b‖2
A−1

0

= ‖y‖2A0
≤ 1

λ‖A0y‖2A−1 = 1
λ‖b‖

2
A−1 holds for every b ∈ Y ∗, which is the second

inequality in (A.5). We have used the Cauchy-Schwarz inequality and that the operators A
and A0 are invertible. The rest of the prerequisites is only needed to make sure that the
respective operators induce inner products and that (A.4) holds.
In the same fashion, the second inequality in (A.4), written as 1

Λ‖y‖
2
A0
≤ ‖y‖2A, induces

the estimate ‖b‖2A−1 ≤ Λ‖b‖2
A−1

0

, which is equivalent to the first inequality in (A.5).

Proposition A.4. Let N : Y → Y ∗ be a monotone operator between a real, reflexive Banach
space Y and its dual space. Let N be Gâteaux-differentiable at y ∈ Y . Then, the derivative
N ′(y) : Y → Y ∗ is also a monotone operator.

Proof. Since N ′(y) is linear, it is sufficient to prove that 〈N ′(y)v, v〉Y ∗,Y ≥ 0 holds for all
v ∈ Y . By the definition of the Gâteaux derivative and the continuity of N ′(y), we have

〈N ′(y)v, v〉Y ∗,Y = lim
t→0+

1
t 〈N(y + tv)−N(y), v〉Y ∗,Y

= lim
t→0+

1
t2
〈N(y + tv)−N(y), y + tv − y〉Y ∗,Y︸ ︷︷ ︸

≥0

≥ 0,

which is non-negative because of the monotonicity of N .

A.3. Superposition Operators between Lp Spaces

In this section, we discuss the properties of nonlinear superposition operators between general
Lp spaces. We use this theory later to show required properties of the superposition operators
between the state space LpP(Ξ;H1

0 (Ω)) and its dual.

Theorem A.5 (Well-definedness and continuity of superposition operators between Lp

spaces). Let (Ω,A, µ) be a measure space with a σ-finite measure µ and let p, q ∈ [1,∞).
Let ϕ : Ω×R→ R be a Carathéodory function, i. e., the function ϕ(·, t) is measurable for all
t ∈ R and the function ϕ(ω, ·) is continuous for a. e. ω ∈ Ω. Furthermore, let ϕ fulfill the
growth condition

|ϕ(ω, t)| ≤ cq(ω) + cϕ|t|p/q for all t ∈ R and a. e. ω ∈ Ω

with some function cq ∈ Lqµ(Ω) and a constant cϕ ≥ 0.
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Then, the superposition operator

N : Lpµ(Ω)→ Lqµ(Ω), N(y)(ω) := ϕ(ω, y(ω))

is well-defined and continuous.

Proof. The theorem is a consequence of [5, Thm. 3.1, Lem. 1.5, Thm. 1.1, Thm. 3.7]. [5,
Thm. 3.1] provides a necessary and sufficient condition for the operator N to be well-defined.
We use only the sufficient part and tighten the conditions a bit by requiring the growth
conditions for (almost) every ω, t and using the Carathéodory property of ϕ and [5, Lem. 1.5,
Thm. 1.1]. [5, Thm. 3.7] provides the continuity of the operator (and also some equivalence
relation in a more general framework).

Remark A.6. Note that [5] is a suitable reference for this quite known statement although it
covers the topic in a very general setting so that it is necessary to combine various theorems
and lemmas from this book. Other references such as [48] restrict the discussion to domains
equipped with the Lebesgue measure so that, e. g., the atomic part of the probability measure
P is not taken into account. This is especially important when providing necessary conditions
for, e. g., boundedness, which can be seen in the following theorem, whose analog [48, Thm. 3]
lacks this generality.

Theorem A.7 (Boundedness of superposition operators between Lp spaces). Let (Ω,A, µ)
be a measure space with a σ-finite measure µ and let p, q ∈ [1,∞). Let ϕ : Ω × R → R
be a sup-measurable function and let N : Lpµ(Ω) → Lqµ(Ω) (defined as in Theorem A.5) be
well-defined.
Then, N is locally bounded if and only if the function ϕ(ω, ·) is bounded for each ω ∈ Ωd,
where Ωd ⊂ Ω is the purely atomic part of the measure µ.

Proof. See [5, Thm. 3.2].

Remark A.8.

• If ϕ : Ω× R→ R is a Carathéodory function, it is sup-measurable [5, Thm. 1.1].

• The fact that N is locally bounded means that lim supv→y ‖N(v)‖Lqµ(Ω) <∞ holds for
all y ∈ Lpµ(Ω).

• If µ is non-atomic, Theorem A.7 gives that the superposition operator N is automati-
cally locally bounded if it is well-defined.

Theorem A.9 (Differentiability of superposition operators between Lp spaces). Let (Ω,A, µ)
be a measure space with a σ-finite measure µ and let p, q ∈ [1,∞) with p > q. Let ϕ : Ω×R→
R be a Carathéodory function (see Theorem A.7) and let the restriction ϕ(ω, ·) be continuously
differentiable for a. e. ω ∈ Ω. Let the function ϕ fulfill the growth condition

|ϕ(ω, t)| ≤ cq(ω) + cϕ|t|p/q for all t ∈ R and a. e. ω ∈ Ω (A.6)
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with some function cq ∈ Lqµ(Ω) and a constant cϕ ≥ 0. Furthermore, let the partial derivative
ϕt : Ω× R→ R fulfill the growth condition

|ϕt(ω, t)| ≤ c′pq/(p−q)(ω) + c′ϕt |t|
(p−q)/q for all t ∈ R and a. e. ω ∈ Ω (A.7)

with some function c′pq/(p−q) ∈ L
pq/(p−q)
µ (Ω) and a constant c′ϕt ≥ 0.

Then, the superposition operator N : Lpµ(Ω) → Lqµ(Ω) induced by ϕ (defined as in Theorem
A.5) is continuously Fréchet-differentiable with derivative

[N ′(y)v](ω) = ϕt(ω, y(ω))v(ω).

Proof. We adapt the proof from the very similar Proposition A.11 in [111].
Since ϕ is a Carathéodory function and condition (A.6) holds, the operator N is well-

defined and continuous by Theorem A.5.
Moreover, ϕt is a Carathéodory function: Since ϕ(ω, ·) is continuously differentiable for

a. e. ω ∈ Ω, the partial derivative ϕt(ω, ·) is continuous for a. e. ω ∈ Ω. By definition,
ϕt(ω, t) = limh→0

1
h(ϕ(ω, t+ h)− ϕ(ω, t)) holds. Now, for a sequence (hn)n∈N ⊂ R \ {0}

converging to zero, we have that the difference quotient ϕ(n)
t (ω, t) := 1

hn
(ϕ(ω, t+hn)−ϕ(ω, t))

is measurable w. r. t. ω for all t ∈ R as sum of measurable functions. The pointwise limit
ϕt(·, t) of these measurable functions is thus also measurable.
Due to the Carathéodory property and condition (A.7), the superposition operator Nϕt :

Lpµ(Ω)→ L
pq/(p−q)
µ (Ω) generated by ϕt is also well-defined and continuous by Theorem A.5.

Note that the identification L(Lpµ(Ω), Lqµ(Ω)) ∼= L
pq/(p−q)
µ (Ω) can be made by the Riesz

representation theorem and Hölder’s inequality. This gives N ′(y) ∼= Nϕt(y) and that the
derivative N ′ : Lpµ(Ω) → L(Lpµ(Ω), Lqµ(Ω)) as defined in the theorem is well-defined and
continuous, cf. the proof of [111, Prop.A.11] for more details.
Moreover,

‖N(y + v)−N(y)−N ′(y)v‖Lqµ(Ω)

= ‖ϕ(·, y(·) + v(·))− ϕ(·, y(·))− ϕt(·, y(·))v(·)‖Lqµ(Ω)

=
∥∥∥∫ 1

0
[ϕt(·, y(·) + σv(·))− ϕt(·, y(·))]v(·) dσ

∥∥∥
Lqµ(Ω)

≤
∫ 1

0
‖[ϕt(·, y(·) + σv(·))− ϕt(·, y(·))]v(·)‖Lqµ(Ω) dσ

≤
(∫ 1

0
‖ϕt(·, y(·) + σv(·))− ϕt(·, y(·))‖

L
pq/(p−q)
µ (Ω)

dσ
)
‖v(·)‖Lpµ(Ω)

≤
(

sup
σ∈[0,1]

‖ϕt(·, y(·) + σv(·))− ϕt(·, y(·))‖
L
pq/(p−q)
µ (Ω)

)
‖v(·)‖Lpµ(Ω)

= o(‖v‖Lpµ(Ω)) as ‖v‖Lpµ(Ω) → 0

follows from Hölder’s inequality and the fact that Nϕt is continuous. This shows that N is
Fréchet-differentiable with the given derivative N ′.

Alternatively, if µ is a finite measure, it is sufficient to require ϕ(·, 0) ∈ Lqµ(Ω) and a
suitable growth condition only on ϕt(ω, ·). Then, condition (A.6) follows directly:
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Lemma A.10. Let (Ω,A, µ) be a measure space with µ(Ω) < ∞ and let p, q ∈ [1,∞) with
p > q. Let ϕ : Ω×R→ R be a Carathéodory function, see Theorem A.7, and let the restriction
ϕ(ω, ·) be continuously differentiable for a. e. ω ∈ Ω. Furthermore, let the partial derivative
ϕt : Ω× R→ R fulfill the ω-independent growth condition

|ϕt(ω, t)| ≤ a′ϕt + c′ϕt |t|
(p−q)/q for all t ∈ R and a. e. ω ∈ Ω,

with two constants a′ϕt , c
′
ϕt ≥ 0 and let ϕ(·, 0) ∈ Lqµ(Ω).

Then, the function ϕ(ω, ·) fulfills

|ϕ(ω, t)| ≤ cq(ω) + cϕ|t|p/q

for a. e. ω ∈ Ω with cq ∈ Lq(Ω) and a constant cϕ ∈ R ≥ 0.

Proof. We use a part of the proof of [111, Prop.A.11]. For a. e. ω ∈ Ω, we have

|ϕ(ω, t)| ≤ |ϕ(ω, 0)|+
∫ 1

0
|ϕt(ω, σt)t| dσ

≤ |ϕ(ω, 0)|+ |t|
∫ 1

0
a′ϕt + c′ϕt |σt|

(p−q)/q dσ

≤ |ϕ(ω, 0)|+ a′ϕt |t|+
qc′ϕt
p |t|

p/q ≤ cq(ω) + cϕ|t|p/q

with some cϕ ≥ 0 and cq ∈ Lqµ(Ω) because ϕ(·, 0) ∈ Lq(Ω) and constant functions belong to
every Lqµ(Ω) since µ is finite.

A.4. Superposition Operators from LpP(Ξ;H1
0(Ω)) to Its Dual

For an open, bounded Lipschitz domain Ω ⊂ Rn (n ∈ {2, 3}) equipped with the Lebesgue
measure λ, we define the deterministic state space Y := H1

0 (Ω) and its dual Y ∗ = H−1(Ω).
Furthermore, let Ξ ⊂ Rm be measurable and equipped with the probability measure P. For
p ∈ [2,∞) (if n = 2) and p ∈ [2, 6] (if n = 3) we define the Bochner space Y := LpP(Ξ;Y ).
We have the Sobolev embedding H1

0 (Ω) ↪→ Lq(Ω), i. e., ‖y‖Lq(Ω) ≤ Cq‖y‖H1
0 (Ω) with some

constant Cq > 0 for q ∈ [1,∞) if n = 2 and q ∈ [1, 6] if n = 3. Now, for p = q we can embed
the space Y ↪→ LpP(Ξ;Lp(Ω)) ∼= Lpλ⊗P(Ω×Ξ) and then use existing Lp-theory. The respective
dual spaces are identified with Lp∗λ⊗P(Ω×Ξ) ∼= Lp

∗

P (Ξ;Lp
∗
(Ω)) ↪→ Lp

∗

P (Ξ;H−1(Ω)) = Y ∗ with
the conjugate exponent p∗ = p

p−1 ∈ (1, 2] if n = 2 and p∗ ∈ [1
6 , 1] if n = 3.

Now we consider a function ϕ : Ω× Ξ× R→ R with some of the following properties:

Assumption A.11.

1. ϕ satisfies the Carathéodory property, i. e., ϕ(·, ·, t) is measurable for all t ∈ R and
ϕ(x, ξ, ·) is continuous for a. e. x ∈ Ω, ξ ∈ Ξ.

2. ϕ satisfies the growth condition |ϕ(x, ξ, t)| ≤ cp∗(x, ξ) + cϕ|t|p−1 for all t ∈ R and a. e.
x ∈ Ω, ξ ∈ Ξ with some constant cϕ ≥ 0 and a function cp∗ ∈ Lp

∗

λ⊗P(Ω× Ξ).
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3. The function ϕ(x, ξ, ·) is monotonically increasing for a. e. x ∈ Ω, ξ ∈ Ξ.

4. For a. e. x ∈ Ω, ξ ∈ Ξ, the function ϕ(x, ξ, ·) is continuously differentiable with partial
derivative ϕt : Ω× Ξ× R→ R.

5. It holds that p > 2 and the first partial derivative satisfies the growth condition

|ϕt(x, ξ, t)| ≤ c′p/(p−2)(x, ξ) + c′ϕt |t|
p−2 for all t ∈ R and a. e. x ∈ Ω, ξ ∈ Ξ

with some constant c′ϕt ≥ 0 and a function c′p/(p−2) ∈ L
p/(p−2)
λ⊗P (Ω× Ξ).

6. For a. e. x ∈ Ω, ξ ∈ Ξ, the function ϕ(x, ξ, ·) is twice continuously differentiable with
first partial derivative ϕt : Ω×Ξ×R→ R and second partial derivative ϕtt : Ω×Ξ×R→
R.

7. It holds that p > 3 and the second partial derivative satisfies the growth condition

|ϕtt(x, ξ, t)| ≤ c′′p/(p−3)(x, ξ) + c′′ϕtt |t|
p−3 for all t ∈ R and a. e. x ∈ Ω, ξ ∈ Ξ

with some constant c′′ϕtt ≥ 0 and a function c′′p/(p−3) ∈ L
p/(p−3)
λ⊗P (Ω× Ξ).

Using ϕ, we define the nonlinear operator

N : Y → Y ∗, 〈N(y),v〉Y ∗,Y :=

∫
Ξ

∫
Ω
ϕ(x, ξ,y(x, ξ))v(x, ξ) dx dP ∀y,v ∈ Y .

We investigate its properties:

Proposition A.12. Under Assumption A.11:1-2, the operator N : Y → Y ∗ is well-defined
and continuous.

Proof. We have that N is well-defined and continuous as an operator from Lpλ⊗P(Ω× Ξ) to
Lp
∗

λ⊗P(Ω × Ξ) by Theorem A.5. Using the continuous embeddings Y ↪→ Lpλ⊗P(Ω × Ξ) and
Y ∗ ←↩ Lp

∗

λ⊗P(Ω × Ξ) as described above, we get that it is also well-defined and continuous
from Y to Y ∗.

Proposition A.13. Given Assumption A.11:1-3, the operator N : Y → Y ∗ is monotone.

Proof. By Proposition A.12, the operator N is well-defined. Since ϕ(x, ξ, ·) is increasing for
a. e. x, ξ by Assumption A.11:3, ϕ(x, ξ, t) ≤ ϕ(x, ξ, t̃) holds if t ≤ t̃. This gives ϕ(x, ξ, t̃) −
ϕ(x, ξ, t) ≥ 0 if t̃ − t ≥ 0 and ϕ(x, ξ, t) − ϕ(x, ξ, t̃) ≤ 0 of t − t̃ ≤ 0, giving (ϕ(x, ξ, t) −
ϕ(x, ξ, t̃))(t− t̃) ≥ 0 for all t, t̃ ∈ R and a. e. x, ξ. Hence, we get

〈N(y)−N(ỹ),y − ỹ〉Y ∗,Y =∫
Ξ

∫
Ω

(ϕ(x, ξ,y(x, ξ))− ϕ(x, ξ, ỹ(x, ξ)))(y(x, ξ)− ỹ(x, ξ)) dx dP ≥ 0

for all y, ỹ ∈ Y , showing the monotonicity of N .
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Proposition A.14. Under Assumption A.11:1-2,4-5, the operator N : Y → Y ∗ is continu-
ously Fréchet-differentiable with derivative

[N ′(y)v](x, ξ) = ϕt(x, ξ,y(x, ξ))v(x, ξ).

Proof. We have that N is continuously Fréchet-differentiable with the given derivative as an
operator from Lpλ⊗P(Ω×Ξ) to Lp

∗

λ⊗P(Ω×Ξ) by Theorem A.9, having q = p∗ = p
p−1 , and thus

pq
p−q = p

p−2 and p−q
q = p − 2. Note that we require p > p∗ which is fulfilled if and only if

p > 2. Again, the continuous embeddings Y ↪→ Lpλ⊗P(Ω × Ξ) and Lp
∗

λ⊗P(Ω × Ξ) ↪→ Y ∗ and
the chain rule yield continuous F-differentiability from Y to Y ∗.

Remark A.15. For p = 2 we can consider the subspace of L2
P(Ξ;Y ) of functions of the

form y(x, ξ) = y(x)υ(ξ) with some fixed y ∈ Y with ‖y‖Y = 1 and arbitrary υ ∈ L2
P(Ξ).

This subspace is isomorphic to L2
P(Ξ). [5, Thm. 3.13] states that if a Carathéodory function

ϕ : Ξ× R → R generates a well-defined, F-differentiable superposition operator acting from
L2
P(Ξ) into itself, the function ϕ has the form ϕ(ξ, t) = a(ξ) + b(ξ)t for a. e. ξ ∈ Ξc with

a ∈ L2
P(Ξ) and b ∈ L∞P (Ξ). Ξc ⊂ Ξ is the non-atomic part of the probability measure P.

Hence, we need to require p > 2 if we want to work with “true” nonlinearities.

Proposition A.16. Under Assumption A.11:1-2,5-7, the operator N : Y → Y ∗ is twice
continuously Fréchet-differentiable with second derivative

[[N ′′(y)v]ṽ](x, ξ) = ϕtt(x, ξ,y(x, ξ))v(x, ξ)ṽ(x, ξ).

Proof. It follows from Proposition A.14 that N is continuously F-differentiable. We show
that N ′ is again continuously F-differentiable with the given derivative. For this purpose we
identify L(Lp, Lp

∗
) ∼= Lp/(p−2) and consider the continuously F-differentiable superposition

operator Nϕt : Lpλ⊗P(Ω × Ξ) → L
p/(p−2)
λ⊗P (Ω × Ξ) induced by the Carathéodory function

ϕt : Ω × Ξ × R → R, cf. the proof of Theorem A.9. It is well-defined and continuous, see
Proposition A.12. Assumption A.11:6-7 and Theorem A.9 yield that it is even continuously
F-differentiable. There we use q = p

p−2 and thus p > q if and only if p > 3, p
q = p − 2,

pq
p−q = p

p−3 , and
p−q
q = p− 3. Its derivative is [N ′ϕt(y)v](x, ξ) = ϕtt(x, ξ,y(x, ξ))v(x, ξ). It is

identified with the derivative given above.

A.5. Alternative Approach for the Discussion of the
Semilinear, Elliptic PDE

We present an alternative approach for the existence of a unique solution of the PDE discussed
in Section 3.2 for the more concrete case ϕ(t) = ϕ̂(x, ξ, t) = t3 and the choice p = 4. Recall
that the state space is Y = L4

P(Ξ;H1
0 (Ω)). Since ϕ̂ fulfills Assumption A.11 with cp∗ ≡ 0,

cϕ = 1, c′p/(p−2) ≡ 0, c′ϕt = 3, c′′p/(p−3) ≡ 0, c′′ϕtt = 6, the superposition operator N : Y → Y ∗

is twice continuously differentiable and monotone by the considerations in Section A.4. It
follows that the operator Ñ ≡ A+N : Y → Y ∗ is a strictly monotone and twice continuously
differentiable.
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Unfortunately, the operator Ñ is not coercive in Y in the sense of Theorem 3.7: For
a counterexample we choose Ω := (0, 1)2 ⊂ R2 and Ξ := (0, 1) ⊂ R with the uniform
distribution. For x ∈ Ω we define

yε(x) :=


εqx1, x1 ≤ x2 ≤ 2ε− x1,
εqx2, x2 < x1 and x2 ≤ 2ε− x1,
−εqx1 + 2εq+1, 2ε− x1 < x2 ≤ x1 and x1 < 2ε,
−εqx2 + 2εq+1, x1 < x2 < 2ε and 2ε− x1 < x2,
0, otherwise

for ε ∈ (0, 1
2) and q ∈ (−5

4 ,−
3
4), e. g., q = −1. Note that yε is continuous and belongs to

H1
0 (Ω). In fact it is a multiple of a finite element ansatz function defined on triangles of equal

area ε2. The weak derivative is, up to sets of measure zero,

∇yε(x) :=


(εq, 0)>, x1 ≤ x2 ≤ 2ε− x1,
(0, εq)>, x2 < x1 and x2 ≤ 2ε− x1,
(−εq, 0)>, 2ε− x1 < x2 ≤ x1 and x1 < 2ε,
(0,−εq)>, x1 < x2 < 2ε and 2ε− x1 < x2,
(0, 0)>, otherwise.

This yields
‖yε‖2H1

0 (Ω) =

∫
Ω
‖∇yε(x)‖2L2(Ω)2 dx = 4ε2q+2

and

‖yε‖4L4(Ω) =

∫
Ω
yε(x)4 dx = 4

∫ ε

0

∫ 2ε−x1

x1

ε4qx4
1 dx2 dx1

= 8ε4q

∫ ε

0
x4

1(ε− x1) dx1 = 4
15ε

4q+6.

Furthermore, we define υε(ξ) := ξ−1/2+ε and get ‖υε‖L1
P(Ξ) =

∫ 1
0 ξ
−1/2+ε dξ = 2

1+2ε as well as

‖υε‖2L2
P(Ξ)

=
∫ 1

0 ξ
−1+2ε dξ = 1

2ε . For yε(x, ξ) := yε(x) υε(ξ)
1/2 we obtain

‖yε‖2L2
P(Ξ;H1

0 (Ω)) =

∫ 1

0
υε(ξ)‖yε‖2H1

0 (Ω) dξ = 8ε2q+2

1+2ε ,

‖yε‖4L4
P(Ξ;H1

0 (Ω)) =

∫ 1

0
υε(ξ)

2‖yε‖4H1
0 (Ω) dξ = 8ε4q+3,

‖yε‖4L4
P(Ξ;L4(Ω)) =

∫ 1

0
υε(ξ)

2‖yε‖4L4(Ω) dξ = 2
15ε

4q+5.

This gives

〈Ayε +N(yε),yε〉Y ∗,Y
‖yε‖Y

≤
κ‖yε‖2L2

P(Ξ;H1
0 (Ω))

+ ‖yε‖4L4
P(Ξ;L4(Ω))

‖yε‖L4
P(Ξ;H1

0 (Ω))

=
κ8ε2q+2

1+2ε + 2
15ε

4q+5

81/4εq+3/4
= 83/4κ

1+2ε ε
q+5/4 + 21/4

15 ε
3q+17/4.
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By q + 3
4 < 0 we have ‖yε‖L4

P(Ξ;H1
0 (Ω)) = 81/4εq+3/4 ε→0+−→ ∞, but

0 ≤
〈Ayε +N(yε),yε〉Y ∗,Y

‖yε‖Y
≤ 83/4κ

1+2ε ε
q+5/4 + 21/4

15 ε
3(q+17/12) ε→0+−→ 0

holds by q+ 5
4 > 0 and q+ 17

12 > q+ 15
12 > 0. Therefore, the operator Ñ is not coercive on Y .

To be able to apply Theorem 3.7 we show coercivity and the other prerequisites on a larger
space Ỹ ⊃ Y , namely Ỹ := L2

P(Ξ;H1
0 (Ω)) ∩ L4

P(Ξ;L4(Ω)), to infer that (3.12) has a unique
solution in Ỹ . After that, we will see that this solution actually belongs to Y . The space
Ỹ is equipped with the norm ‖y‖Ỹ := ‖y‖L2

P(Ξ;H1
0 (Ω)) + ‖y‖L4

P(Ξ;L4(Ω)). By L4
P(Ξ) ↪→ L2

P(Ξ)

(Proposition A.2) and H1
0 (Ω) ↪→ L4(Ω) (Sobolev embedding) we have Y ⊂ Ỹ .

The operator A : Ŷ := L2
P(Ξ;H1

0 (Ω)) → L2
P(Ξ;H−1(Ω)) = Ŷ ∗ is well-defined since A ∈

L∞P (Ξ;L(Y, Y ∗)), see Proposition 3.1, and thus also as an operator from Ỹ to Ỹ ∗: Since
Ỹ ⊂ Ŷ , meaning that ‖y‖Ŷ ≤ c‖y‖Ỹ for all y ∈ Ỹ (here with constant c = 1), we get

‖A‖L(Ỹ ,Ỹ ∗) = sup
y,v∈Ỹ ,

‖y‖Ỹ ≤1,‖v‖Ỹ ≤1

〈Ay,v〉Ỹ ∗,Ỹ ≤ sup
y,v∈Ŷ ,

‖y‖Ŷ ≤c,‖v‖Ŷ ≤c

〈Ay,v〉Ŷ ∗,Ŷ = c2‖A‖L(Ŷ ,Ŷ ∗).

From the Theorem A.5 we have that N : L4
P(Ξ;L4(Ω)) → L

4/3
P (Ξ;L4/3(Ω)) is well-defined

and continuous and thus also well-defined and continuous as an operator from Ỹ to Ỹ ∗ by the
same argument. This proves that Ñ : Ỹ → Ỹ ∗ is well-defined and continuous, in particular,
hemicontinuous. Strict monotonicity of Ñ is shown exactly as in Proposition A.13.

Now we prove coercivity. For ‖y‖L2
P(Ξ;H1

0 (Ω)) + ‖y‖L4
P(Ξ;L4(Ω)) →∞ we have

〈Ay +N(y),y〉Ỹ ∗,Ỹ
‖y‖Ỹ

≥
κ‖y‖2

L2
P(Ξ;H1

0 (Ω))
+ ‖y‖4

L4
P(Ξ;L4(Ω))

‖y‖L2
P(Ξ;H1

0 (Ω)) + ‖y‖L4
P(Ξ;L4(Ω))

−→∞.

This can be shown as follows: Let (an)n∈N ⊂ R≥0 and (bn)n∈N ⊂ R≥0 be two sequences such
that an + bn > 0 for all n, an + bn

n→∞−→ ∞ and let c > 0. Then, if an ≥ bn, giving an > 0, we
have

dn := ca2
n+b4n

an+bn
≥ ca2

n
2an

= can
2 ≥

c
4(an + bn),

and if an ≤ bn, giving bn > 0, we have

dn = ca2
n+b4n

an+bn
≥ b4n

2bn
= b3n

2 ≥
1
16(an + bn)3.

Overall, this gives

dn ≥ min{ c4(an + bn), 1
16(an + bn)3} ≥ min{ c4 ,

1
16}(an + bn)

as long as an + bn ≥ 1. The assumption an + bn
n→∞−→ ∞ yields dn

n→∞−→ ∞.

Overall, we can apply Theorem 3.7 to deduce that (3.12) has a unique solution y ∈ Ỹ =
L2
P(Ξ;H1

0 (Ω))∩L4
P(Ξ;L4(Ω)). By constructing and analyzing y more explicitly as in Section

3.2, we see that this solution even belongs to L4
P(Ξ;H1

0 (Ω)) if rf ≥ 4.
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A.6. Concrete Computations for Section 9.3

In Section 9.3 we use some concretely computed results, which are presented in the following.

Computation of the Unique Stationary Point for Proposition 9.22

Let

∂
∂wfµ(x, w̄, t) = 1− µ

w̄−a1(x−t) −
µ

w̄−a2(x−t) = 0, w̄ > ai(x− t) (i ∈ {1, 2}).

For s1 := a1(x − t), s2 := a2(x − t), i. e., w̄ > s1 and w̄ > s2, we perform the following
equivalent transformations:

1− µ
w̄−s1 −

µ
w̄−s2 = 0, w̄ > s1, w̄ > s2

⇔ (w̄ − s1)(w̄ − s2)− µ(w̄ − s2)− µ(w̄ − s1) = 0, w̄ > s1, w̄ > s2

⇔ w̄2 − (s1 + s2 + 2µ)w̄ + s1s2 + µ(s1 + s2) = 0, w̄ > s1, w̄ > s2

⇔ w̄ =
s1 + s2 + 2µ±

√
(s1 + s2 + 2µ)2 − 4(s1s2 + µ(s1 + s2))

2
, w̄ > s1, w̄ > s2

⇔ w̄ = µ+
s1 + s2 +

√
(s1 − s2)2 + 4µ2

2
.

In the last expression, taking “−” in front of the square root would result in w̄ − s2 =
s1−s2+2µ−

√
(s1−s2)2+4µ2

2 ≤ s1−s2
2 and in the same manner w̄−s1 ≤ s2−s1

2 . This gives that one
of the two conditions w̄ > s1 and w̄ > s2 would be violated then which is why it is necessary
to take “+”.

Computation of the Derivatives of vµ

We compute the derivatives of the function vµ, needed in the proof of Theorem 9.23. Recall
that

vµ(s) = wµ(s)− µ ln(wµ(s)− a1s)− µ ln(wµ(s)− a2s) + ζ(µ)

holds with wµ(s) = µ+
(a1+a2)s+

√
(a1−a2)2s2+4µ2

2 . Clearly, by the chain rule,

v′µ(s) = w′µ(s)− µ
w′µ(s)− a1

wµ(s)− a1s
− µ

w′µ(s)− a2

wµ(s)− a2s

with w′µ(s) = a1+a2
2 + (a1−a2)2s

2
√

(a1−a2)2s2+4µ2
. Indeed, the function wµ is twice continuously differ-

entiable on R with the second derivative

w′′µ(s) =
2
√

(a1 − a2)2s2 + 4µ2(a1 − a2)2 − (a1 − a2)2s 2(a1−a2)2s√
(a1−a2)2s2+4µ2

4((a1 − a2)2s2 + 4µ2)

=

4µ2(a1−a2)2√
(a1−a2)2s2+4µ2

2(a1 − a2)2s2 + 8µ2
=

2µ2(a1 − a2)2

((a1 − a2)2s2 + 4µ2)3/2
> 0 ∀ s ∈ R.
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With this expression, the second derivative of vµ can be computed defining β := a2−a1 > 0

and γ(s) :=
√
β2s2 + 4µ2 ≥ 2µ:

ṽ′′µ(s) = w′′µ(s)− µ (wµ(s)−a1s)w′′µ(s)−(w′µ(s)−a1)2

(wµ(s)−a1s)2 − µ (wµ(s)−a2s)w′′µ(s)−(w′µ(s)−a2)2

(wµ(s)−a2s)2

= 2µ2β2

γ3(s)
− µ

(µ+
βs
2 +

γ(s)
2 ) 2µ2β2

γ3(s)
−(

β
2 +

β2s
2γ(s) )2

(µ+
βs
2 +

γ(s)
2 )2

− µ
(µ−βs2 +

γ(s)
2 ) 2µ2β2

γ3(s)
−(−β2 +

β2s
2γ(s) )2

(µ−βs2 +
γ(s)

2 )2

= µβ2

γ3(s)(µ+
βs
2 +

γ(s)
2 )2(µ−βs2 +

γ(s)
2 )2

(
2µ(µ+ βs

2 + γ(s)
2 )2(µ− βs

2 + γ(s)
2 )2

− 2µ2(µ+ βs
2 + γ(s)

2 )(µ− βs
2 + γ(s)

2 )2 + γ(s)(γ(s)
2 + βs

2 )2(µ− βs
2 + γ(s)

2 )2

− 2µ2(µ− βs
2 + γ(s)

2 )(µ+ βs
2 + γ(s)

2 )2 + γ(s)(−γ(s)
2 + βs

2 )2(µ+ βs
2 + γ(s)

2 )2
)
.

The first factor is always positive and well-defined by ±βs+γ(s)
2 > ±βs+β|s|

2 ≥ 0. Defining
α+(s) := βs+γ(s)

2 > 0 and α−(s) := −βs+γ(s)
2 > 0, the second factor can be transformed to

2µ(µ+ α+(s))2(µ+ α−(s))2 − 2µ2[(µ+ α+(s))(µ+ α−(s))2 + (µ+ α−(s))(µ+ α+(s))2]

+ γ(s)[α+(s)2(µ+ α−(s))2 + α−(s)2(µ+ α+(s))2]

= 2µ(µ+ α+(s))(µ+ α−(s)) [(µ+ α+(s))(µ+ α−(s))− µ(µ+ α−(s))− µ(µ+ α+(s))]

+ γ(s)[µ2(β2s2 + 2µ2) + 2µ3γ(s) + 2µ4]

= 2µ(µ+ α+(s))(µ+ α−(s)) [α+(s)(µ+ α−(s))− µ2 − µα+(s)]︸ ︷︷ ︸
=0

+ γ(s)µ2[β2s2 + 2µγ(s) + 4µ2]

= γ(s)µ2[γ(s)2 + 2µγ(s)] = γ(s)2µ2(γ(s) + 2µ) ≥ 16µ5 > 0

using α+(s)+α−(s) = γ(s), α+(s)2 +α−(s)2 = β2s2 +2µ2 and α+(s)α−(s) = µ2. We obtain
a simplified version of the second derivative with (µ+α+(s))2(µ+α−(s))2 = µ2(2µ+γ(s))2:

v′′µ(s) =
µβ2

γ(s)(2µ+ γ(s))
=

µ(a2 − a1)2

2µ
√

(a2 − a1)2s2 + 4µ2 + (a2 − a1)2s2 + 4µ2
.

Computation of Limits

For the proof of Theorem 9.23, we compute the limits lims→−∞ v
′
µ(s) and lims→+∞ v

′
µ(s).

First, observe that

lim
s→−∞

w′µ(s) =
a1 + a2

2
− |a2 − a1|

2
= a1 and lim

s→+∞
w′µ(s) =

a1 + a2

2
+
|a2 − a1|

2
= a2

holds (a2 > a1). Moreover,

w′µ(s)− a1

wµ(s)− a1s
=

a2−a1
2 + (a2−a1)2s

2
√

(a2−a1)2s2+4µ2

µ+ (a2−a1)s
2 +

√
(a2−a1)2s2+4µ2

2

−→ 0 as s→ ±∞.

189



A. Appendix

As s→ +∞, the numerator tends to a2−a1, but the denominator goes to +∞. For s→ −∞,
the numerator becomes 0 and the denominator tends to µ. An analogous argumentation for
the term w′µ(s)−a2

wµ(s)−a2s
yields the limits

lim
s→−∞

v′µ(s) = a1 and lim
s→+∞

v′µ(s) = a2.

Computation of v̂µ(0) and v̂′µ(0) for Theorem 9.23

In the proof of Theorem 9.23, d := 2−a1−a2
(1−a1)(a2−1)µ = 1

a2−1µ−
1

1−a1
µ and v̂µ(s) = vµ(s+ d)− d

are defined. We compute

v̂µ(0) = vµ(d)− d = wµ(d)− µ ln(wµ(d)− a1d)− µ ln(wµ(d)− a2d) + ζ(µ)− d
= a2

a2−1µ−
a1

1−a1
µ− µ

(
ln(a2−a1

a2−1 µ) + ln(a2−a1
1−a1

µ)
)

+ µ
(
ln(a2−a1

a2−1 µ) + ln(a2−a1
1−a1

µ)− 2
)
− 1

a2−1µ+ 1
1−a1

µ

= a2
a2−1µ−

a1
1−a1

µ− 2µ− 1
a2−1µ+ 1

1−a1
µ = 0

using

2
µ wµ(d) = 2 +

(a1+a2)d+
√

(a1−a2)2d2+4µ2

µ

= 2 + (a1+a2)(2−a1−a2)
(1−a1)(a2−1) +

√
(a1−a2)2(2−a1−a2)2

(1−a1)2(a2−1)2 + 4

= 2(1−a1)(a2−1)+(a1+a2)(2−a1−a2)
(1−a1)(a2−1) +

√
(a2−a1)2(2−a1−a2)2+4(1−a1)2(a2−1)2

(1−a1)(a2−1)

= 2(1−a1)(a2−1+a1+a2)+(a2−1)(1−a1−a1−a2)
(1−a1)(a2−1)

+

√
((1−a1)+(a2−1))2((1−a1)−(a2−1))2+4(1−a1)2(a2−1)2

(1−a1)(a2−1)

=
−(1−a1)2+2a2(1−a1)−(a2−1)2−2a1(a2−1)+

√
((1−a1)2+(a2−1)2)2

(1−a1)(a2−1)

= 2a2(1−a1)−2a1(a2−1)
(1−a1)(a2−1) = 2a2

a2−1 −
2a1

1−a1

and wµ(d) − aid =
(
a2−ai
a2−1 −

a1−ai
1−a1

)
µ. We see that the shift ζ(µ) is defined such that the

shifted function v̂µ has value 0 at s = 0.

Furthermore,

v̂′µ(0) = v′µ(d) = w′µ(d)− µ
w′µ(d)− a1

wµ(d)− a1d
− µ

w′µ(d)− a2

wµ(d)− a2d

= a2
(a2−1)2 + a1

(1−a1)2 − µ
a2

(a2−1)2 + a1
(1−a1)2 − a1

a2−a1
a2−1 µ

− µ
a2

(a2−1)2 + a1
(1−a1)2 − a2

a2−a1
1−a1

µ

=
(

a2
(a2−1)2 + a1

(1−a1)2

) (a2−a1−(a2−1)−(1−a1)
a2−a1

)
+ a1(a2−1)

a2−a1
+ a2(1−a1)

a2−a1
= 1
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is computed using

w′µ(d) = a1+a2
2 + (a1−a2)2d

2
√

(a1−a2)2d2+4µ2
= a1+a2

2 +

(a2−a1)2(2−a1−a2)
(1−a1)(a2−1)

2 (1−a1)2+(a2−1)2

(1−a1)(a2−1)

= a1+a2
2 + (a2−a1)2((1−a1)−(a2−1))

2((1−a1)2+(a2−1)2)
= a1+a2

2 + (a2−a1)((1−a1)2−(a2−1)2)
2((1−a1)2+(a2−1)2)

= a2(1−a1)2+a1(a2−1)2

(1−a1)2+(a2−1)2 = a2
(a2−1)2 + a1

(1−a1)2 .

Now, we see what has been the idea behind the definition of the shift ζ(µ) and the value
of d: First, d ∈ R is chosen as the unique point where v′µ(d) = 1 holds. Then, the shift ζ(µ)
is defined such that Rµ[0] = 0 holds, which is provided by v̂µ(0) = 0 and v̂′µ(0) = 1.
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