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Abstract

Repackaging is a technique that has been increasingly
adopted by authors of Android malware. The main prob-
lem facing the research community working on devising
techniques to detect this breed of malware is the lack
of ground truth that pinpoints the malicious segments
grafted within benign apps. Without this crucial knowl-
edge, it is difficult to train reliable classifiers able to ef-
fectively classify novel, out-of-sample repackaged mal-
ware. To circumvent this problem, we argue that reliable
classifiers can be trained to detect repackaged malware,
if they are allowed to request new, more accurate repre-
sentations of an app’s behavior. This learning technique
is referred to as active learning.

In this paper, we propose the usage of active learn-
ing to train classifiers able to cope with the ambiguous
nature of repackaged malware. We implemented an ar-
chitecture, Aion, that connects the processes of stimu-
lating and detecting repackaged malware using a feed-
back loop depicting active learning. Our evaluation of
a sample implementation of Aion using two malware
datasets (Malgenome and Piggybacking) shows that ac-
tive learning can outperform conventional detection tech-
niques and, hence, has great potential to detect Android
repackaged malware.

1 Introduction

Malware authors targeting Android have recently been
adopting a more sophisticated technique to develop and
distribute their malicious instances. In essence, they
leverage the ease of decompiling, modifying the source
code of, and recompiling Android applications (hereafter
apps) to repackage legtimate, trusted apps with malicious
payloads [29, 13, 17, 26, 35]. This breed of malware is
often referred to as either piggybacked apps [13, 14] or
repackaged malware [34, 35]. In this paper, we use the
two terms interchangeably to refer to the same type of

Android malware: legitimate apps that have been grafted
with malicious payloads.

Repackaged malware can be thought of as an evolu-
tion of Trojan horses. The two malware breeds differ
in one key aspect viz., the originality of the app’s be-
nign functionality. On one hand, Trojan horses usually
comprise benign functionalities that have been developed
from scratch by the malware author for the sole purpose
of presenting the app as a benign one. Furthermore, mal-
ware authors of Trojan horses seldom invest adequate
amounts of time and effort in developing such fake, be-
nign facade. The resulting benign segment is, therefore,
of low quality and limited functionality (e.g., a Sudoku
app with five puzzles). On the other hand, repackaged
malware comprise pre-existing legitimate apps (e.g., An-
gry Birds), that have been amalgamated with a newly in-
jected malicious payload (e.g., sending SMS messages
to premium rate numbers [9]). The primary threat that
repackaged malware poses is undermining user trust in
legitimate apps, their developers, and the app distribu-
tion infrastructure, which can potentially have devastat-
ing effects on the entire Android ecosystem. Unfortu-
nately, malware authors have been increasingly adopt-
ing repackaging particularly targeting third-party mar-
ketplaces as their distribution platform. In [35], Zhou
et al. studied 1260 Android malware instances, and con-
cluded that more than 86% of them were repackaged. In
2015, TrendMicro reported that 77% of the top free 50
apps on the Google Play marketplace had fake versions,
with a total of 890,482 fake apps being discovered 51%
of which were found to exhibit unwanted and/or mali-
cious behaviors [15]. More recently, Li et al. managed to
gather piggybacked versions of around 1,400 legitimate
apps [13].

Consequently, the research community has been work-
ing towards devising methods to detect Android repack-
aged malware. To the best of our knowledge, the major-
ity of such methods analyze, and perhaps execute, apps
belonging to a dataset (e.g., Malgenome [35]), to ex-
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tract numerical features used to train a machine learning
classifier. The trained classifier is used to classify out-
of-sample (hereafter test) apps as malicious and benign
[26, 17, 6]. One fundamental problem facing the research
community working on detecting repackaged malware is
the quality of the ground truth of the currently available
datasets.That is to say, a repackaged app is merely la-
beled as malicious without the knowledge of which paths
depict the grafted malicious behaviors, whether there
are triggers that control the execution of such behaviors,
and how sophisticated those triggers are. Lacking such
knowledge hinders training reliable classifiers based on
the apps’ dynamic behaviors, which is necessary given
that malware instances have increasingly been adopting
techniques (e.g., obfuscation, dynamic code loading, us-
age of triggers, etc.), to evade detection by conventional
static-based methods [29, 12, 18, 33].

We argue that, in essence, the problem of stimulating,
analyzing, and detecting Android repackaged malware is
a search problem. During the phase of training a clas-
sifier, we are in pursuit of the segments in the training
apps’ source code (e.g., paths in a CFG), that depict or
include the injected malicious code. Finding and execut-
ing those segments facilitates the extraction of features
that resemble their runtime behavior, and enables the
classifier to have a collective, accurate view of the ma-
licious behaviors exhibited by Android repackaged mal-
ware. Similarly, to reliably classify a test app, we need
to execute multiple paths to increase the probability of
finding (a representation of) the injected code prior to
deciding upon the app’s malignance.

Needless to say, the nature and locations of the grafted
malicious code in repackaged apps might vary. Given
that we lack such ground truth, the training and test pro-
cesses need to adopt a trial-and-error technique. In the
training phase, for example, if a feature vector (x̂i) repre-
senting the runtime behavior of a training app (ai) is mis-
classified, we assume that such feature vector represents
the execution path that does not reflect the app’s true na-
ture (i.e., malicious or benign). Thus, the app (ai) needs
to be re-executed to explore another path that yields a
feature vector (x̂′i) that might help the classifier assign the
app to its proper class. This process can be iterated until
the maximum training accuracy is achieved, which sig-
nals the best possible representation of benign and ma-
licious behaviors embedded in the training apps. The
number of iterations needed to achieve such maximum
accuracy depicts the number of times an app needs to
be executed in order to have a comprehensive overview
of its behavior. For repackaged malware, it can be in-
terpreted as the number of executions within which the
malicious code is likely to execute. The feature vectors
corresponding to the different executions can be used to
classify the app (e.g., using majority votes), as malicious

or benign.
Within the context of machine learning, the aforemen-

tioned trial and error technique is referred to as active
learning. In this paper, we propose, implement, and eval-
uate an active learning architecture, called Aion1 [?], to
stimulate, analyze, and detect Android repackaged mal-
ware.

Our findings show that–even with primitive stimula-
tion and classification techniques–training a classifier us-
ing active learning improves the performance of conven-
tional dynamic-based detection methods on test datasets
and can outperform their static-based counterpars. Fur-
thermore, the conducted experiments helped us answer
questions about the number of iterations needed to train
the best performing classifier, the most suitable kind of
features, and the type of the best performing classifier
(i.e., Random Trees, K-Nearest Neighbors, Ensemble,
etc.). We believe that our experiments provide insights
on how to stimulate and detect Android repackaged mal-
ware using active learning, and a benchmark against
which further enhancements of the architecture (e.g., via
using more sophisticated stimulation techniques) can be
compared.

The contributions of this paper are:

• We propose a novel architecture and approach to
stimulate, analyze, and detect Android repackaged
malware using active learning and investigate its ap-
plicability and performance.

• We implemented a framework that utilizes the pro-
posed architecture, and made the source code, the
data (i.e., gathered during evaluation), and a multi-
tude of interactive figures plotting our results avail-
able online [?].

• We evaluate Aion on the recently analyzed and re-
leased Piggybacking dataset instead of its obsolete
Malgenome counterpart, and use the former to set
a classification benchmark of 72%, similar to Zhou
et al.’s 79.6% benchmark on the latter in November
2011.

Organization The rest of the paper is organized as fol-
lows. In section 2, we briefly discuss fundamental
concepts on which our research is built. In section 3
the methodology adopted during the implementation of
Aion, its architecture, and internal structure are intro-
duced. In section 4, we discuss how Aion was evaluated
by introducing the datasets we used and the experiments
conducted, and discuss the observed results in section 5.

1Aion is a Greek deity associated with eternity and everlasting time.
His orb, depicting repetition, resembles the behavior of our proposed
active learning approach, where a feedback loop closes a circle between
the processes of stimulation and detection of Android repackaged mal-
ware.

2



Research efforts related to our work are enumerated in
section 6. Lastly, section 7 concludes the paper.

2 Background

In this section, we briefly discuss concepts fundamental
to follow the remainder of the paper. We discuss our
definition of repackaged malware and what it comprises,
and introduce the notion of active learning and relate it
to our work.

2.1 Repackaged Malware
Android apps can be easily disassembled, reverse engi-
neered, modified, and reassembled [7]. Consequently,
repackaging benign apps with malicious code segments
is a straightforward process that typically involves the
following activities. Firstly, a reverse engineering tool,
such as Apktool [1], is used to disassemble an app into a
readable, intermediate representation (i.e., Smali). Sec-
ondly, a segment of Smali code that delivers some mali-
cious functionality is added and merged with the original
Smali code. Lastly, the app is reassembled, re-signed,
and uploaded to an app marketplace, possibly with a dif-
ferent name.

The malicious code segments injected into benign
apps usually comprise two parts viz., a malicious pay-
load and a trigger (or a hook [13]). The former part de-
picts the malicious intents of the malware author (e.g.,
sending SMS messages to premium numbers, deleting
the user’s contacts, leaking the current user’s GPS loca-
tion, etc.). In [9], Fratantonio et al. argue that a malicious
payload need not be disconnected from the original app
logic; it can distort the actual app functionality, in what
they refered to as logic bombs.

The trigger is meant to transfer control to the grafted
malicious payload. We can define the trigger as a
set of (boolean) conditions that need to hold in order
for the malicious payload to execute. For authors of
repackaged malware, designing a trigger is a compro-
mise between the likelihood of execution and stealth-
iness of the injected malicious payload [13]. On one
hand, some malware authors may elect to maximize
the likelihood of the malicious payload being executed
by unconditionally calling/branching to the malicious
code (e.g., deployed in a separate method or compo-
nent) [13]. In this case, the trigger is a null condi-
tion. On the other hand, some authors may give stealth-
iness more priority, and develop more complex trig-
gers that activate the grafted malicious functionality de-
pending on specific system properties (e.g., date, time,
GPS location, etc.), app/system intents and notifica-
tions (e.g., android.intent.action.BOOT COMPLETED),
custom values forwarded to the app via its authors

(e.g., via SMS messages [19]), or app logic (e.g.,
i f (sum o f calculation == 50)). This trend of schedul-
ing the triggering of malicious segments has been found
to be adopted by the majority of Android malware [29].

2.2 Active Learning

To the best of our knowledge, the majority of Android
malware detection techniques adopt the following pro-
cess. Firstly, a dataset of benign and malicious apps are
gathered. Secondly, the apps in the dataset are analyzed
to extract numerical features from each app. That is to
say, each app is represented by a vector of features (xi)
and a label (yi) depicting its nature (i.e., malicious or be-
nign). The extracted feature vectors, often organized in
a matrix representation (X), are used to train a machine
learning classifier (C) (e.g., a support vector machine).
Given a feature vector of an app (x∗) that has not been
used during the training phase (i.e., test app), the classi-
fier (C), attempts to predict its corresponding label (y∗)
effectively classifying it as malicious or benign. To asses
the prediction capability of a classifier, the original labels
of the test apps, known as ground truth, are compared
to those predicted by the classifier. The percentage of
correctly predicted labels is known as the classification
accuracy.

Needless to say, a number of the test apps’ labels are
incorrectly predicted (i.e., the corresponding app is mis-
classified), which negatively affects the classification ac-
curacy. If the classification accuracy is inplausible, other
classifiers can be probed, the existing features extracted
from the apps are further processed (e.g., to eliminate
noisy, irrelevant features), a new method of feature ex-
traction is adopted, or a combination of those methods.
This setting is referred to as passive learning [28]. The
passiveness dwells in the inability of the trained classifier
to ask for more accurate representations of the misclassi-
fied apps in the form of different feature vectors.

In an active learning setting, the classifier is allowed to
query the sources from whence the feature vectors have
been extracted for alternative representations of the same
entities [28]. Within the context of Android malware de-
tection, if a feature vector of a test app (x∗) is misclas-
sified, the classifier (C) is allowed to instruct the feature
extraction mechanism to generate another feature vectors
(x∗new) for the same app. This process can be repeated un-
til either the misclassified app is correctly classified, or
the overall classification accuracy of (C) has converged
to a maximum value.
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3 Design and Implementation

3.1 Overview

The typical malware detection process introduced in the
previous section can be grouped into two main sub pro-
cesses viz., Data Generation and Data Inference, as seen
in figure 1 which depicts our proposed architecture Aion.

The former process commences with the acquisition of
a dataset of malicious and benign Android apps. Using a
Stimulation method, the collected apps are analyzed stat-
ically and executed within a controlled, virtualized en-
vironment to gather information about the apps’ runtime
behavior. Within the domain of malware analysis, there
are different non-/invasive approaches to stimulating an
app [31]. For example, Abraham et al. [4] implemented
an approach meant to force the execution of particular
branches within an app that contain suspicious API calls,
whereas Rasthofer et al. [18] utilized symbolic execution
to devise environments (i.e., a set of values) required to
execute branches containing specific type of API calls.
The monitoring component depicted in the figure is re-
sponsible for recording the the stimulated behavior for
further analysis. It can be deployed on a remote server,
on the environment within which an app is executed, em-
bedded within the app itself (e.g., as logging statements),
or a combination of those techniques. Lastly, the moni-
tored behavior may need to be further processed to repre-
sent it in a parseable, understandable format. For exam-
ple, the API calls issued by an app during runtime are
usually reorganized in the format of comma-separated
strings (i.e., traces).

The stimulated, monitored, and reconstructed repre-
sentations of the apps’ behaviors are usually raw, and
need to be further processed before they are used for
training a classifier. Data Inference is concerned with in-
ferring relevant information from the raw data received
from its Data Generation counterpart that might facili-
tate segregating the two classes of apps. The Projection
component is reponsible for processing the raw data and
projecting it into a different representation or dimension-
ality. For example, a trace of API calls can be processed
to omit those calls that do not manipulate sensitive sys-
tem resources (e.g., camera) or extract numerical features
(e.g., counts of different API calls). To further remove
noise from projected data, the Inference component at-
tempts to extract patterns and information that might fa-
cilitate the classification of apps. Depending on the for-
mat of the projected data, this component can either ap-
ply feature selection techniques to rule out irrelevant fea-
tures, or infer rules that depict characteristics unique to
a class of apps. For instance, by studying the API call
traces of apps, a rule can be inferred that malicious apps
usually use a particular set/sequence of API calls. Lastly,

1.2 Stimulation

1.3 Monitoring

1.4 Reconstruction

1. Data Generation

2. Data Inference

2.1 Projection

2.2 Inference

2.3 Training

Raw/Noisy Data

Training Gaps

1.1 Collection

Figure 1: An architecture that uses active learning to
stimulate, analyze, and detect Android repackaged mal-
ware.

the Training component handles training a classifier us-
ing the processed raw data, validates the results (e.g., via
a test dataset), and reports classification results.

The two dashed arrows looping out of and into the
two processes imply that the operations within such pro-
cesses can be perfomed multiple times before the process
reports its final output. For example, the Data Genera-
tion process can continue to add new apps to its repos-
itory, stimulate them multiple times, monitor their run-
time behaviors, and report an augmented version of the
different stimulation sessions. Similarly, the Data Infer-
ence process is allowed to consult various combinations
of projection, inference, and classification techniques in
pursuit of the best classification accuracy.

Lastly, the dashed arrow extending from the Data In-
ference process to its Data Generation counterpart de-
picts the active learning aspect of our proposed approach.
We illustrate the functionality and significance of such
mechanism using the control flow graph (CFG) in fig-
ure 2. Consider such CFG as that of a benign app (ai)
that has been injected with malicious segments (colored
blocks). Regardless of the technique it employs to tar-
get and execute specific branches, the stimulation com-
ponent should devise test cases that execute the path (P2)
which includes the malicious segments. The feature vec-
tors extracted from the representation of (P2) (e.g., API
call trace) should depict the malicious behavior grafted
into the benign app and, in turn, help the trained classi-
fier assign this app to the malicious class. Nevertheless,
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P3P1 P2

Figure 2: An example of a repackaged malware’s control
flow graph (CFG). The colored segment depicts the ma-
licious payload injected into the app, whereas the dashed
arrows represent different paths through the CFG.

since the location of the injected malicious payload is
unknown, and since the malicious payload is assumed to
be smaller than the original benign code, the stimulation
component is likely to target other branches/statements
within the CFG, effectively executing other paths (i.e., P1
or P3). Feature vectors extracted from such paths are ex-
pected to represent benign behaviors, leading to the mis-
classification of the app. The feedback mechanism re-
ports misclassification of (ai) to the Data Generation pro-
cess, particularly the stimulation component. Using this
information, the latter attempts to target different branch-
es/statements to execute different paths within the app’s
CFG, and forward the reconstructed behaviors of such
newly-executed paths to the Data Generation process for
re-training. In theory, (ai) will continue to be misclas-
sified until (P2) is executed, which is expected to help
the trained classifier deem the app as malicious. Con-
sequently, the feedback mechanism will continue to in-
struct the stimulation component to target different code
segments until such path is executed.

Given a dataset of training apps, the feedback mech-
anism is meant to provide the Data Generation mod-
ule with the best representation of each app that re-
sembles its nature (i.e., malicious or benign). A clas-
sifier trained with such representations is expected to
possess a comprehensive view of the malicious and be-
nign behaviors exhibited by the apps within the training
dataset.However, the large combination of different lo-
cations of the injected malicious payloads, their contents
and behaviors, and their triggers significantly impedes

the process of executing multiple paths per app. In other
words, it can take an unforeseeable amount of time to
find the best representation of each app in the training
dataset. Furthermore, achieving a perfect training accu-
racy is unlikely, especially since the behaviors of some
apps can mimick those of apps belonging to the other
class. That is to say, classification errors are inevitable.
In this context, we design the feedback process to termi-
nate once the best possible training accuracy is achieved,
which is subject to two constraints. Firstly, the feedback
process continues as long as the performance of the clas-
sifier is increases across two iterations or decreases by
a small percentage (e.g., 1%). Secondly, we specify a
maximum number of iterations, after which the training
process is terminated.

3.2 Implementation

The exact methods, techniques, and algorithms used by
different components in the two processes of Data Gen-
eration and Data Inference can vary. In other words,
the proposed architecture is completely agnostic to spe-
cific methods utilized by different components. How-
ever, the use of different stimulation approaches might
affect the implementation of the Data Inference compo-
nents and the feedback mechanism. In this paper, we
focus on demonstrating the proposed architecture and
investigating the applicability of active learning to the
problem at hand. Consequently, we adopt an example
in which we use basic techniques for stimulation, detec-
tion, and feedback mechanisms, and leave the utilization
of more sophisticated stimulation/detection methods for
future work.

The stimulation technique used in this paper is based
on a non-invasive, UI-based tool, called Droidutan [2],
which is designed to emulate the user-app interaction.
The tool starts the main activity of an app, retrieves its UI
elements, chooses a random element out of the retrieved
ones, and interactes with it. The interaction hinges on
the class of the chosen UI element. For example, if the
UI element is a Button, Droidutan will tap it, if it is
a TextField, a random text will be typed into it, and so
forth. The tool replicates the same behavior with any
activity that may start during the stimulation period. To
simulate the occurrence of system notifications or inter-
app communication, the tool randomly broadcasts intents
declared and registered to by the app in its manifest file.

Interacting with an app generates a runtime behavior
that we define in terms of API calls. We use droidmon as
our monitoring component to intercept and record a par-
ticular set of API calls that interact with system resources
such as the device’s camera, the user’s contacts, the pack-
age installer, the GPS module, etc. The tool records the
intercepted calls along with their arguments and return
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results, and writes them to the system log. For each app,
we retrieve the API calls from the log and represent the
app’s behavior as a series of calls, each having the format
[package.module.class].[method].

The APK archives of the apps under test and their
corresponding traces retrieved from droidmon’s output
are used to extract static and dynamic features, respec-
tively. After surveying the literature, we concluded that
static features can be categorized into basic metadata fea-
tures extracted from the AndroidManifest.xml file [21],
features related to the permissions required by the app
[20, 11], and features related to the API calls found
within the app’s code [30]. For each app, we extract
static features depicting the aforementioned three cate-
gories. We refer to those features as basic, permission,
and api features, and we list them in appendix A. The dy-
namic features extracted from each app’s API calls trace
is a feature vector of 37 attributes, each of which depicts
the number of times a method belonging to one of the
API packages hooked by droidmon, listed in appendix
B, has been encountered in the trace.

The static and dynamic feature vectors extracted from
the apps’ APK’s and their traces are used to train a major-
ity vote classifier (i.e., Ensemble classifier), using a total
of 12 classifiers. The classifiers used to train the En-
semble classifier are K-Nearest Neighbors (KNN) with
values of K = {10,25,50,100,250,500}, random forests
with values of Estimators (E) = {10,25,50,75,100},
and a Support Vector Machine (SVM) with the linear ker-
nel.

We assess the performance of different classifiers ac-
cording to two metrics viz., F1 score and specificity. The
first metric is defined as F1= 2× precision×recall

precision+recall such that
precision = T P

T P+FP and recall = T P
T P+FN . True positives

(TP) denote malicious apps correctly classified as mali-
cious, false positives (FP) denote benign apps mistakenly
classified as malicious, and false negatives (FN) denote
malicious apps mistakenly classified as benign. Thus,
the F1 score is meant to assess the ability of a classi-
fier to recognize malicious apps and correctly classify
them. We also keep track of the classifier’s performance
on benign apps (i.e., whether it classifies them correctly
as benign), via specificity = T N

T N+FP where (TN) stands
for true negatives: benign apps correctly classified as
benign. We keep track of these two metrics to assess
whether a classifier is biased towards one class in favor
of the other. For example, if a classifier scores high F1
and low specificity scores, this signals its bias towards
classifying the majority of apps as malicious. Detect-
ing a classifier bias can be used to amend the methods
adopted to train a classifier (e.g., the type of extracted
features).

The apps misclassified by the Ensemble classifier
should be, according to our proposed approach, re-

stimulated to execute different segments within their
code yielding different paths, different traces of API calls
and, consquently, different feature vectors. Given that
Droidutan is a random-based testing tool, each run of
an app is likely to execute a different path. Consequently,
the feedback mechanism in this implementation of Aion
comprises merely re-running an app. To ensure that ran-
dom stimulation results into the execution of different
paths, we kept track of the API traces recorded by droid-
mon for each app. We averaged the number of API calls
that change in an apps trace across two consecutive stim-
ulations, and found out that an average of 60 API calls
(disregarding their arguments and return values) change
with every stimulation.

4 Evaluation

In this section, we evaluate the proposed active learning
based approach using two datasets of real world Android
malware. The main hypothesis of this paper is that active
learning enhances the performance of classifiers trained
to effectively detect Android repackaged malware. Con-
sequently, we aspire to answer the following research
questions:
Q1: How effective and efficient are the classifiers
trained using active learning in comparison to conven-
tional analysis and detection techniques?
Q2: How reliable are the results achieved by such
classifiers?
Q3: How well do active learning classifiers generalize
on test datasets?
Q4: What is the type of features (e.g., static versus
dynamic) and classifiers that yield the best detection
accuracies on test datasets?

4.1 Datasets
We used two datasets of malicious and benign Android
apps to evaluate our approach. The malicious and benign
apps of the first dataset were gathered separately. The
malicious apps of such dataset belong to the Malgenome
dataset [35]. Malgenome originally comprised of more
than 1200 malicious apps, almost 86% of which were
found to be repackaged malware instances. Prior to be-
ing discontinued in 2015, Malgenome was considered
the de facto dataset of Android repackaged malware.
Fortunately, the repackaged malware belonging to this
dataset continue to exist within the Drebin dataset [5],
from whence we acquired them. To complement the
first dataset with benign apps, we randomly selected and
downloaded 1800 apps from Google Play store in De-
cember 2016. Consequently, we refer to this dataset as
Malgenome+GPlay in the following sections.
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The second dataset, Piggybacking [13], is more recent
and comprises around 1300 pairs of original apps along
with their repackaged versions. The process of gather-
ing the apps, labeling them as malicious and benign, and
matching apps to their repackaged counterparts has been
carried out between 2014 and 2017. The dataset we used
contains 1355 original, benign apps and 1399 repack-
aged, malicious apps. The reason behind such imbalance
is that some original apps have more than one repackaged
version.

Lastly, the two datasets were used separately during
evaluation. Consequently, some of the experiments we
conducted have two variants (i.e., one for each dataset).

4.2 Experiments

To answer the aforementioned research questions, we de-
signed two sets of experiments. The first set of experi-
ments is meant to decide upon the datasets to use in eval-
uating the proposed active learning approach, and to set a
performance benchmark against which the proposed ap-
proach is to be compared. The benchmark is set using re-
sults achieved from conventional analysis and detection
methods that have been previously utilized to detect An-
droid (repackaged) malware. We refer to this set of ex-
periments as preliminary experiments. The second set of
experiments evaluates the performance of our proposed
active learning approach.

Both experiment sets share a common workflow, seen
in figure 3. All experiments commence with randomly
splitting a dataset of APK’s into a training dataset (TR)
comprising two thirds of the total number of APK’s and
a test dataset (TE ) comprising the remaining one third.
The second stage initializes different variables including
an initial F1 score of −1 and a variable to keep track of
the current iteration’s number (i.e., t). The third stage
is responsible for extracting a vector of numerical fea-
tures (x̂i) for each APK (ai) in both the training and test
datasets (TR ∪TE ). The method used to extract such nu-
merical features hinges on the type of the experiment
run. That is to say, if the experiment is dynamic, then
the APK’s will be installed on an Android Virtual De-
vice (AVD), run using Droidutan, and monitored us-
ing droidmon. However, if the experiment is static,
the APK’s will be statically analyzed using androguard.
Note that for dynamic experiments, droidmon may fail
to produce API traces for an unforeseeable number of
APK’s due to either (a) the app crashing during runtime,
or (b) the app not using any of the API calls monitored
by the tool. The third phase concludes with produc-
ing feature vectors of numerical features for the APK’s
in (TR) and (TE ). The feature vectors are stored in two
datasets (|XR| ≤ |TR|) and (|XE | ≤ |TE |). Stage four uses
the feature vectors in (XR) to train a majority vote classi-

(TR)

Training
Dataset

(TE)

Test
Dataset

Test Feature Vectors

XE = {(x̂1, y1), . . . (x̂m, ym)}
Training Feature Vectors

XR = {(x̂1, y1), . . . (x̂n, yn)}

Dataset D

+

∀x̂i ∈ XR, if x̂i is misclassified,

gather API calls using droidmon
+

extract numerical features x̂′
i

+
re-run app ai corresponding to x̂i

Exit

(1)

(F1Et)

Test
F1 Score F1 Score

Training

(F1Rt)

Initialize parameters
e.g. iteration (t) = 1

Store Results

using x̂i ∈ TR

classifier Et

Train Ensemble

True

False

it
er
a
ti
o
n
t
=

t
+
1t ≤ tMAX

|F1Rt − F1Rt−1 | ≤ E

(2)

(3)

(4)
(5.1)(5.2)

(6)

(7)

Preliminary Experiments

Extract

features x̂i

numerical

static
∀ai ∈ TR ∪ TE

using droidmon
Gather API calls
Run ai on AVD +

dynamic

+
replace x̂i with x̂′

i

Figure 3: The workflow of our experiments. Ellipses de-
pict inputs and outputs, rectangles depict operations per-
formed on such inputs and outputs, and rhombi depict
boolean decisions. The edges between different nodes
indicate the directionality of data flow. Lastly, the blue
numbers are used as references to different stages of the
experiment. Preliminary experiments, whether static or
dynamic, conclude after stage (5) and are, hence, high-
lighted using the dashed gray box.
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fier (Et : Ensemble classifier trained at iteration t), as dis-
cussed in section 3.2. In stage five, the trained classifier
is validated using the vectors from (XR) and tested using
the vectors from (XE ) yielding corresponding training F1
score (F1Rt ) and test F1 score (F1Et ).

Preliminary experiments conclude after stage five,
storing the results into a SQLite database for future study.
Active learning experiments compare the training ac-
curacy (F1Rt ) scored at the current iteration (t) to that
scored at the previous iteration (F1Rt−1 ). Test accura-
cies are not used in such comparison to prevent the test
dataset (i.e., containing out-of-sample apps), from affect-
ing the training process. This comparison always evalu-
ates to true after the first iteration, especially since the
training F1 score is initialized to −1. For values of
(t > 1), if the absolute difference between (F1Rt ) and
(F1Rt−1 ) is less than or equal to a threshold percentage
(E) (default is 1%), the misclassified feature vectors will
be re-run in a manner similar to stage three. Intuitively,
we continue running the experiment as long as the cur-
rent training F1 score (F1Rt ) is increasing. In other
words, there is a potential for achieving better training,
and perhaps test, scores. Furthermore, in order to accom-
modate for fluctuations in training accuracies, we allow
the current training F1 score (F1Rt ) to drop for a maxi-
mum of (E). This means, however, that the experiment
could go on for a prolonged period of time. To avoid this
behavior, we set an upper bound (tMAX ) for the number
of iterations the training phase is allowed to run. In eval-
uating our approach, we use the values of 10 and 1% for
(tMAX ) and (E), respectively.

Regardless of the experiment set, a dataset is randomly
split into training and test datasets at the beginning of
each experiment. The training and test datasets persist
throughout the experiment (i.e., through all iterations).
Consequently, we run all experiments at least 25 times
to increase the likelihood of different segments of the
datasets being used as, both, training and test samples.
Throughout implementing and evaluating Aion, we gen-
erated a multitude of figures, which we could not include
in this paper. We host and make available all our (inter-
active) figures, data, and source code on [?].

4.2.1 Preliminary Static Experiments

In this set of experiments, only the three categories of
static features, introduced in section 3.2, are used to clas-
sify apps as malicious and benign. That is to say, each
app is represented by three feature vectors depicting such
categories. Moreover, we combine the three feature vec-
tors to come up with a fourth category of static features
that we refer to as All.

The scores in figure 4 depict the median F1 scores
recorded by different classifiers using all four categories

of static features on the Malgenome+GPlay dataset and
its more recent counterpart Piggybacking. To preserve
space for more thorough discussion, we opted to move
the specificity scores to appendix C. We speculated that
solely using static features to classify repackaged mal-
ware would yield mediocre classification accuracies, es-
pecially since repackaged malware usually poses as be-
nign apps. Nevertheless, as seen in figure 4a, most clas-
sifiers perform well on the Malgenome+Play using static
features, apart from permission-based features, which
apparently are not informative enough to separate ma-
licious and benign apps in this dataset. We noticed,
however, that the classifiers comparably underperform in
terms of, both, the F1 and specificity scores upon apply-
ing the same method to classify apps in the Piggybacking
dataset.

We believe there are two reasons behind such notice-
able difference. Firstly, the malicious apps in our hy-
brid Malgenome+GPlay dataset have been gathered be-
tween August 2010 and October 2011 [35], whereas their
benign counterparts were gathered in December 2016.
Given that the Android ecosystem is continuously evolv-
ing, any two apps developed 5 years apart might look
very different courtesy of newly-introduced technolo-
gies, programming interfaces, or even hardware capabili-
ties. In fact, we noticed that there is a large difference be-
tween the sizes of APK archives belonging to apps in the
Malgenome dataset (average size: 1.25MB) and those
belonging to the benign apps we gathered from Google
Play (average size: 16.35MB). This difference implies,
we believe, the existence of more components (e.g., ac-
tivities and their classes) in recent Android apps. Static
features are built on counts and ratios of those compo-
nents, the permissions they request, and the API calls
they issue. Needless to say, the feature vectors extracted
from apps developed in 2011 would look entirely differ-
ent from those extracted from apps developed in 2015
or 2016, effectively facilitating segregating them in two
classes which happen to be malicious and benign.

Secondly, despite being defined as repackaged mal-
ware, the malicious apps in Malgenome do not com-
ply with the more recent definition of repackaged/piggy-
backed apps. In other words, we believe that the 86% of
apps comprising repackaged malware in the Malgenome
dataset are, in fact, closer to being classic Trojan horses
than being repackaged malware. The malicious apps in
the Piggybacking dataset, however, comply with the def-
inition of repackaged malware (i.e., standalone benign
apps grafted with malicious payloads [13]). To empiri-
cally verify this claim, we used a compiler fingerprinting
tool, APKiD, to identify the compilers used to compile
the apps in both datasets Malgenome+GPlay and Piggy-
backing along with a dataset of malicious apps called
Drebin [5]. The distribution of compilers utilized by
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Figure 4: The median (after 25 runs) F1 scores (Y-axis) recorded by 13 classifiers (X-axis) using static features on the
test datasets. The specificity scores are plotted in appendix C.

Table 1: Percentages of compilers used to compile
APK’s in different malicious/benign datasets as finger-
printed by APKiD. The dexmerge compiler is used by
IDE’s after dx for incremental builds.

Dataset dx dexmerge dexlib 1.X/2.X Total
Drebin 84% – 16% 4326

Malgenome 52% – 48% 1234
Google Play 61% 34% 5% 1882

Piggybacking
(malicious)

22% 6% 72% 1399

Piggybacking
(original)

61% 22% 17% 1355

apps in such datasets is tabulated in table 1. Using the
list of compilers, we rely on the following hypothesis,
originally made in [25]: if the compiler used to compile
an APK is not the standard Android SDK compiler (dx)
but rather a compiler used by reverse engineering tools
(e.g., Apktool) such as (dexlib), then an app is probably
repackaged by a party other than the legitimate develop-
ers in possession of the app’s original source code.

As seen in table 1, the majority benign apps gathered
from Google Play and the original apps in the Piggyback-
ing dataset have been compiled using a compiler usu-
ally used within IDE’s. This implies that the develop-
ers were likely in possession of the apps’ source code.
The same applies to the Drebin dataset which mainly
comprises of malicious apps developed from scratch.
However, the datasets that presumably comprise repack-
aged malware indicate a major difference. More than
a half of the Malgenome dataset comprises apps that–

according to the definitions in sections 1 and 2–are Tro-
jans, whereas the majority of malicious apps in the Pig-
gybacking dataset comply with the notion of a benign
app being grafted with malicious payload and recom-
piled using non-standard compilers.

Such findings led us to deem the Malgenome dataset
as obsolete and inaccurate. In fact, during their analysis
of a dataset of 24,650 Android malware samples, Wei et
al. also deemed the Malgenome dataset outdated and not
representative of the current Android malware landscape
[29]. Thus, devising methods to analyze and detect ma-
licious apps in the Malgenome dataset has little benefit
to the community. Consequently, we opted to conduct
the remainder of our experiments on the Piggybacking
dataset, and only consider the static scores recorded on
such dataset as our benchmark.

4.2.2 Preliminary Dynamic Experiments

The preliminary dynamic experiments are meant to re-
semble conventional dynamic approaches to stimulating
and detecting Android repackaged malware. That is to
say, apps are stimulated once prior to being processed
for feature extraction and classification. In essence, such
experiments depict the first iteration of our active learn-
ing experiments (i.e., without the feedback loop). The
features used during such experiments are the dynamic
features introduced in section 3.2 along with a combina-
tion of the All static and dynamic features that we refer
to as hybrid features.

Figure 5 depicts the median F1 scores achieved by dif-
ferent classifiers on the Piggybacking dataset after 25

9



K10 K25 K50

K10
0

K25
0

K50
0

SVM
T10 T25 T50 T75

T10
0 En

0.55

0.60

0.65

0.70

0.75

Dynamic F1 Score

Hybrid F1 Score

Static F1 Score

Figure 5: The median (after 25 runs) F1 scores (Y-axis)
recorded by 13 classifiers (X-axis) using dynamic and
hybrid features versus the best scoring static features
(permission-based) on the test datasets of Piggybacking.
The specificity scores are plotted in appendix C.

runs using dynamic and hybrid features. As a refer-
ence to the performance of static features, we also plot
the scores achieved by such classifiers using permission-
based static features, which achieved the highest scores
on the Piggbacking dataset. In figure 5, dynamic fea-
tures appear to be incapable of matching the detection
ability of static features. One can also speculate that
combining dynamic features with static features (i.e., hy-
brid features) decreases the latter’s detection capability.
Nevertheless, dynamic features perform better or slightly
worse than other features in correctly classifying benign
apps. To conclude, the dynamic preliminary experiments
imply that dynamic features extracted after running the
apps only once are initially biased towards classifying
all apps as benign. We argue that stimulating a repack-
aged malware once is unlikely to execute the paths un-
der which the grafted malicious payload resides, ulti-
mately leading to the misclassification of such app. In the
next set of experiments, we attempt to verify whether re-
stimulating the misclassified apps yields different paths
that enhance the performance of the detection module
and its classifiers.

4.2.3 Active Learning Experiments

Using the Piggybacking dataset, we ran at total of 25 ac-
tive learning experiments, during which 4 AVD’s were
simultaneously used to stimulate apps using Droidutan
each for 60 seconds. The misclassified apps were al-
lowed to be re-stimulated until either the difference in the
F1 score of the Ensemble classifier drops for more than

a threshold of 1% between two iterations, or an upper
bound of re-stimulations is reached. We experimented
with such upper bound, and found that with 10 iterations,
an experiment takes on average 26 hours to complete.
Given that increasing such number did not have a notice-
able effect on the achieved scores, and that it substan-
tially increased the time taken to complete one run of the
experiment, we adopted an upper bound of 10 iterations.

The scores of the lowest scoring classifier, 500-
Nearest Neighbors, the highest scoring classifier, Ran-
dom forest of 100 trees, and the Ensemble classifier are
plotted in figure 6. As seen in the preliminary dynamic
experiments, the figures depict the median F1 and speci-
ficity scores achieved using dynamic, hybrid, and static
permission-based features achieved by the classifiers at
every iteration. The static scores are plotted as straight
lines, because static experiments did not comprise any
iterations. Thus, the scores achieved by a classifier per-
sist across all iterations.

We made the following observations from the plotted
figures. Firstly, regardless of the used classifier, dynamic
features fail to match or overperform their static counter-
parts. However, combining static and dynamic features
boosts the performance of the latter by around 7%. In
other words, dynamic features are incapable of matching
static features on their own.

Secondly, the iteration on which the maximum F1
score is achieved depends on the utilized classifier and
features type. Furthermore, both the F1 and specificity
scores fluctuate across iterations, and do not maintain
any specific ascending or descending pattern.

Lastly, regardless of the utilized feature type, some
classifiers maintain more stable performance on both the
benign and malicious apps than others. For example, for
the majority of iterations, the difference between the F1
and specificity scores achieved by the K-Nearest Neigh-
bors classifier in figure 6a is around 20% and 25% for the
dynamic and hybrid features, respectively. This behavior
indicates bias towards one class in favor of the other. The
Ensemble and Random Forest classifiers maintain more
balanced performances on malicious and benign apps,
which manifests in closer scores across different itera-
tions.

5 Discussion

In this section, we attempt to draw conclusions from the
conducted experiments to answer the research questions
posed earlier.

With regard to research question Q1, we define the
effectiveness of an active learning classifier in terms of
the F1 and specificity scores it achieves using dynamic
and hybrid features on the training datasets in compari-
son to the scores achieved by the same classifier during
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Figure 6: The median (after 25 runs) F1 and specificity scores (Y-axis) recorded by 13 classifiers (X-axis) for each
iteration using dynamic and hybrid features versus the best scoring static features (permission-based) on the test
datasets of Piggybacking.

the static and dynamic preliminary experiments. We also
consider the classifier’s ability to avoid bias towards a
specific class as a measure of its effectiveness. We no-
ticed that the aforementioned scores differ from one clas-
sifier to another. For example, using dynamic features,
the active learning trained 500-Nearest Neighbor classi-
fier scored F1 and specificty scores significantly lower
than what it scored during the static preliminary exper-
iments. Furthermore, it was biased towards classifying
training apps as benign, which is noticeable via its speci-
ficity score in comparison to the F1 score. However,
the Ensemble and Random Forest classifiers managed to
record F1 and specificity scores that are (a) greater than
the scores they recorded during the static and dynamic
preliminary experiments, and (b) show low bias given
how close both scores are. The scores achieved by all
classifiers during different types of experiments can be
found on Aion’s website [?].

Similarly, the efficiency of active learning classifiers
differed from one classifier to another. We define effi-
ciency in terms of the number of iterations it takes a clas-
sifier to record its highest F1 and specificity scores on the
training dataset. The 500-Nearest neighbors classifier,
for instance, achieved its highest scores at the ninth it-
eration, whereas the Ensemble and Random Forest (with
100 Trees) classifiers recorded their highest scores at the
second and third iterations, respectively. We averaged
this number across all classifiers, and noticed that it takes
around five iterations for an active learning classifier to
achieve its maximum training accuracy. As discussed
earlier, we consider this number as the number of iter-
ations required by a classifier to have a comprehensive
view of the malicious and benign behaviors within the
training dataset.

The reliability of the training scores achieved by active
learning classifiers, which is the concern of Q2, refers to
the quality of the training data used to train such clas-

sifiers. In other words, we want to make sure that the
classifiers are being trained using traces and features that
reflect the malicious and benign behaviors exhibited by
current Android repackaged malware and apps, respec-
tively. Otherwise, the classifiers will be trained using
inaccurate data that might yield misleading results.

To illustrate this concern, consider the CFG in fig-
ure 2. We discussed that, ideally, a repackaged mal-
ware (ai) should be classified as malicious if and only
if the malicious path (P2) was executed. With this re-
search question, we reason about whether the high F1
scores achieved by classifiers such as Random Trees dur-
ing training honor this condition. In other words, how
likely is it that a classifier deems the app (ai) as benign,
given that a path other than (P2) has executed. Unfortu-
nately, as discussed earlier, we do not possess any ground
truth about the paths that reveal the malicious behav-
iors injected within apps labeled as repackaged malware.
Consequently, we can only speculate about the reliability
of the results. However, we reasoned about the scenar-
ios under which this behavior could be observed (i.e., ai
is classified as malicious based on benign paths, such as
P1). Firstly, and presumably less likely, the original la-
bels of the apps in the dataset may turn out to be wrong
(i.e., ai is a benign or a harmless app being mistakenly la-
beled as malicious). Secondly, (P1) could in fact turn out
to be a malicious behavior that we were not aware of and
assert as benign. Thirdly, within (ai), the path (P1) could
be benign; however, it may have been utilized within a
malicious context in other apps in the training dataset,
which obliges a classifier to deem it as malicious. In the
fourth scenario, the path (P1) could be a benign path that
is rarely used by benign apps (i.e., anomalous), which
encourages the classifier to deem it as malicious as well.
Lastly, there is the possibility of utilizing poor classifiers,
features, or learning processes, which yields mediocre,
unreliable classification results.
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Considering an extreme scenario, assume that all
repackaged malware instances in a training dataset have
been correctly classified despite the fact that none of their
malicious paths has executed. For this condition to hold,
we need to assume that all the benign paths deemed mali-
cious by a classifier are anomalous (i.e., seldom encoun-
tered in benign apps), which is highly unlikely given
the limited number of methods a task (e.g., sending a
text message), can be achieved. Moreover, if a classifier
mistakenly deems the majority of benign paths as ma-
licious, this behavior should be traceable via the speci-
ficity scores which should plumet to minimum values.

To empirically complement the assumptions above,
we manually went through the repackaged malware test
traces generated by droidmon during the 25th run of the
active learning experiments. Around 75% of such test
traces were correctly classified using the Random Forest
(T=100) classifier trained using active learning. During
our analysis, we found evidence that the majority of be-
haviors based on which the apps were classified as ma-
licious are, in fact, intrinsically malicious. For exam-
ple, we found that a repackaged version of a simulation
gaming app (i.e., com.happylabs.happymall), was classi-
fied as malicious based on a trace that included retrieving
the device’s IMEI, IMSI, and network operator. Further-
more, such trace included the decryption of a URL that
pointed to http://csapi.adfeiwo.com:9999. Needless to
say, such behavior is not expected from a gaming app.

We also examined traces of repackaged malware
misclassified as benign apps. We found that the ma-
jority of such misclassified traces exhibited benign
behaviors. The trained classifier, thus, reasonably
assigned them to the benign class. This observation
is expected, given that the test apps were stimulated
using the primitive tool Droidutan, which is unlikely
to execute the malicious behaviors within repackaged
malware after one execution. Nevertheless, upon
submitting the hashes of the apps corresponding to the
examined traces to VirusTotal [3], we noticed that a
noticeable number of the malicious apps classified as
benign were also deemed as benign by the majority of
antiviral software. For example, the repackaged apps
com.sojunsoju.go.launcherex.theme.greenlantern and
com.gametowin.save monster Google were labeled as
potentially unwanted by only two out of more than
50 antiviral software, whereas a repackaged version
of com.gccstudio.DiamondCaveLite was labeled as
benign by all antiviral software on VirusTotal. The latter
observation raises the question about the accuracy of the
labels in current Android repackaged malware datasets,
as discussed earlier.

In absence of the ground truth necessary to verify the
reliability of the achieved scores, and based on our previ-
ous discussion and observations, our answer to question

Q2 is that we believe that the scores achieved by the ac-
tive learning classifiers are likely to be reliable.

The active learning process we adopt to train classi-
fiers might lead to overfitting. In other words, the trained
classifier would not be able to correctly classify a large
number of test apps (i.e., apps not used during the train-
ing phase). Research question Q3 focuses on this is-
sue. Similar to the training phase, we noticed that some
classifiers underperform in comparison to conventional
training methods, while others can match and outper-
form them. For example, using hybrid features, Random
Forest classifiers trained using active learning manage to
outperform conventional training methods using static,
dynamic, and hybrid features. Furthermore, it avoids
bias towards a certain class by maintaining a good bal-
ance between the F1 and specificty scores. Observing
the performances of different active learning classifiers,
we conclude that Random Forest classifiers are able to
achieve the best F1 and specificty scores during, both,
training and test phases specifically using hybrid fea-
tures, which is the answer to Q4.

6 Related Work

To the best of our knowledge, there are no research ef-
forts that attempt to apply active learning to the prob-
lem of stimulating and detecting Android repackaged
malware. However, there are indeed efforts that study
repackaged malware/piggybacked apps and attempt to
stimulate and detect it. Moreover, we managed to iden-
tify research efforts that apply active learning to detect-
ing Android malware in general. Consequently, we di-
vide our related work section into two sub sections that
discuss those two dimensions.

6.1 Repackaged Malware Analysis and De-
tection

There are different efforts that attempt to detect repack-
aging in Android apps including [23, 10, 34, 8]. Repack-
aged apps need not necessarily be malicious, however.
An app could be repackaged for the sole purpose of in-
jecting advertisement modules or translation purposes.
In this paper, we focus on detecting repackaged malware,
or piggybacked apps, that conform with Li et al.’s defi-
nition: benign apps that has been grafted with malicious
payloads that are possible protected with trigger condi-
tions [13].

In [17], Pan et al. developed a program analysis tech-
nique that decides whether an app witholds hidden sen-
sitive operations (HSO) (i.e., malicious payloads), effec-
tively deeming it as repackaged malware. Their tech-
nique, called HSOMiner, gathers static features from the
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app’s source code that capture the code segments’ re-
lationship with their surrounding segments, the type of
inputs they tend to check, and the operations they usu-
ally perform. The extracted features are used to train and
validate a SVM that decides whether an app contains a
HSO. Needless to say, if an app contains HSO, it proba-
bly is malicious. Tian et al. implemented another static
approach to detect Android repackaged malware based
on code heterogeneity analysis [27]. The approach is
based on extract features that depict the dependence of a
code segments on one another. In essence, injected code
segments should exhibit more heterogeneity to the rest
of the segments. That is to say, the malicious payloads
injected into benign apps should be logically and seman-
tically independent of the original app portions. Similar
to our approach, they used the extracted features to train
and compare the performance of four different classifiers
viz., K-Nearest Neighbors, Support Vector Machine, De-
cision Tree, and Random Forest. Lastly, Shahriar et al.
use a metric called Kullback-Leibler Divergence (KLD)
to detect Android repackaged malware [22]. KLD is a
metric depicting the difference between two probabil-
ity distributions. In their paper, Shahriar et al. analyzed
the Smali code of benign and malicious apps, from the
Malgenome dataset, to build probability distributions of
different Smali instructions. Their detection approach is
based on the assumption that repackaged malware would
have different distributions for different instructions than
its benign counterpart.

6.2 Detection with Active Learning

Active learning has been applied to the problem of mal-
ware detection on the Windows operating system [16]
and within the network intrusion detection [24] domain.
In [32], Zhao et al. attempt to apply the same technique
to the problem of Android malware detection. Despite
adopting a similar architecture that comprises a charac-
teristic (monitoring and extraction) module and a detec-
tion module, their work differs from ours in two main
aspects. Firstly, Zhao et al. do not consider repackaged
malware, rather Android malware in general. Secondly,
and more importantly, their definition and utilization of
active learning is different from ours. In [32], active
learning is defined as a technique to reduce the size of
the training samples used to train a SVM classifier that
deem an Android app, represented by a behavioral signa-
ture (i.e., API call trace), malicious or benign. This re-
duction is carried out as follows. A pool of pre-generated
and labeled behavioral signatures is built as a source for
training data. Given an unlabeled, out-of-sample signa-
ture, a classifier is trained using the subset of the train-
ing pool that guarantees maximum classification accu-
racy. The main difference between this method and ours

is that the classification accuracy in [32] solely depends
on the combination of the training samples, whereas ours
depends on the content of such samples, especially since
the training vectors usually differ from one iteration to
another. Furthermore, this approach to active learning
is very likely to yield small training datasets that hinder
the trained classifiers from achieving good classification
accuracies on test datasets (i.e., generalization).

7 Conclusion

The lack of ground truth about the nature and location
of malicious payloads injected into benign apps contin-
ues to hinder the development of effective methods to
stimulate, analyze, and detect Android repackaged mal-
ware. We argue that training an effective classifier can
be achieved if the classifier is allowed to request better
representations of the training apps (i.e., via active learn-
ing).

Using a sample implementation of our proposed active
learning architecture Aion, we used active learning to
stimulate, analyze, and detect Android repackaged mal-
ware. In [34], Zhou et al. managed to detect malware
in the Malgenome dataset with a best case of 79.6% ac-
curacy [34], highlighting the difficulty of detecting such
breed of malware. In this paper, our active learning clas-
sifiers managed to achieve test F1 scores of 72% using
the more recent dataset Piggybacking [13], which we
consider a benchmark for future comparison.

We consider this effort as the first step towards de-
signing better app stimulation, analysis, and detection
techniques that focus on Android repackaged malware,
which continues to pose a serious threat [29]. Our future
plan to enhance Aion has three dimensions. Firstly, we
plan on using the number of iterations it takes to train a
classifier, and verify whether it transfers to the number
of executions needed to effectively classify a test app.
Secondly, we plan to use more sophisticated stimulation
engines and compare their effect on the training and test
scores compared to the random, primitive technique used
in this paper. Thirdly, we plan to utilize features and clas-
sifiers that capture the semantics of the runtime behaviors
exhibited by under test.
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Appendix: Features

A A: Static Features
In this section, we list the categories of static features
extracted from the apps’ APK’s, and utilized in, both,
preliminary and active learning experiments

Table 2: The static features used during the preliminary
static experiments.

Category Feature

basic

Min. SDK version
Max. SDK version
Total # of activities
Total # of services

Total # of broadcast
receivers

Total # of content
providers

permission

Total requested
permissions

Android permissions
÷

Total permissions
Custom permissions

÷
Total permissions

Dangerous permissions
÷

Total permissions

API
Counts of API categories

listed in here.
(Total: 27)

B B: Dynamic Features
The following table lists the API categories used to ex-
tract dynamic features. The total number of API methods
hooked is 71 methods, which makes them difficult to be
listed in this paper. The exact list of API methods we
hook can be found here.

C C: Figures
This section contains the plots of specificity scores
achieved by various classifiers during the static and dy-
namic variations of the preliminary experiments.

API Category Total Hooked
android.accounts.AccountManager 2

android.app.Activity 1
android.app.ActivityManager 1
android.app.ActivityThread 1

android.app.ApplicationPackageManager 2
android.app.ContextImpl 1

android.app.NotificationManager 1
android.app.SharedPreferencesImpl$EditorImpl 5

android.content.BroadcastReceiver 1
android.content.ContentResolver 4
android.content.ContentValues 1

android.location.Location 2
android.media.AudioRecord 1

android.media.MediaRecorder 1
android.net.ConnectivityManager 1

android.net.wifi.WifiInfo 1
android.os.Debug 1
android.os.Process 1

android.os.SystemProperties 1
android.telephony.SmsManager 2

android.telephony.TelephonyManager 11
android.util.Base64 3

android.system.BaseDexClassLoader 3
android.system.DexClassLoader 3

android.system.DexFile 2
android.system.PathClassLoader 3

java.io.FileInputStream 1
java.io.FileOutputStream 1
java.lang.ProcessBuilder 1

java.lang.Runtime 1
java.lang.reflect.Method 1

java.net.URL 1
javax.crypto.Cipher 1
javax.crypto.Mac 1

javax.crypto.spec.SecretKeySpec 5
libcore.io.IoBridge 1

org.apache.http.impl.client.AbstractHttpClient 1

Table 3: The API categories that comprise the dynamic
features used in the preliminary dynamic and active
learning experiments.
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Figure 7: The median (after 25 runs) specificity scores (Y-axis) recorded by 13 classifiers (X-axis) using static features
on the test datasets.
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Figure 8: The median (after 25 runs) specificity scores
(Y-axis) recorded by 13 classifiers (X-axis) using dy-
namic and hybrid features versus the best scoring static
features (permission-based) on the test datasets of Piggy-
backing.
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