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Abstract 15 

An efficient approach to reliability analysis of deteriorating structural systems is presented, which 16 

considers stochastic dependence among element deterioration. Information on a deteriorating 17 

structure obtained through inspection or monitoring is included in the reliability assessment 18 

through Bayesian updating of the system deterioration model. The updated system reliability is 19 

then obtained through coupling the updated deterioration model with a probabilistic structural 20 

model. The underlying high-dimensional structural reliability problems are solved using subset 21 

simulation, which is an efficient and robust sampling-based algorithm suitable for such analyses. 22 

The approach is demonstrated in two case studies considering a steel frame structure and a Daniels 23 

system subjected to high-cycle fatigue. 24 

 25 
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1 Introduction 28 

Engineering structures are generally subjected to deterioration processes such as fatigue and 29 

corrosion, and their structural reliability may thus reduce over time. Predictions of the deterioration 30 

progress with quantitative models are uncertain due to the simplified representation of the actual 31 

deterioration phenomena, the inherent variability of the influencing parameters and limited 32 

information on those parameters. These uncertainties must be addressed when modeling 33 
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deterioration of structures (Lin and Yang 1985; Madsen et al. 1986; Melchers 1999a). Inspections 34 

and monitoring are effective means of obtaining information on the actual condition of 35 

deteriorating structures. This information should be utilized to reduce uncertainties in probabilistic 36 

models. A consistent framework for this task is provided by Bayesian analysis, in which prior 37 

probabilistic models are updated with inspection and monitoring outcomes (e.g. Tang 1973; 38 

Madsen 1987; Enright and Frangopol 1999). This approach facilitates the quantification of the 39 

effect of inspection and monitoring results on the structural reliability, and forms the basis for 40 

decisions on maintenance actions and future inspection efforts (e.g. Thoft-Christensen and 41 

Sørensen 1987; Faber et al. 2000; Moan 2005; Straub and Faber 2005). 42 

Deterioration processes are generally correlated among structural elements within a system due to 43 

common influencing factors, such as environmental conditions and material characteristics (e.g. 44 

Moan and Song 2000; Vrouwenvelder 2004; Straub and Faber 2005; Stewart and Mullard 2007). 45 

This leads to a correlation among deterioration failures of different elements whose effect on the 46 

system reliability has to be assessed as a function of structural redundancy (Straub and Der 47 

Kiureghian 2011). Correlation among element deterioration is especially relevant when inspection 48 

and monitoring outcomes are considered in the reliability assessment (Vrouwenvelder 2004). An 49 

observation at one location within a structure contains more indirect information on the 50 

deterioration progress at another location if the correlation among element deterioration is high. 51 

For these reasons, the reliability of deteriorating structures should be analyzed and updated 52 

considering the structure as a whole. 53 

A number of publications propose methods for computing the time-variant reliability of 54 

deteriorating structures, including works by Mori and Ellingwood (1993), Li (1995), Ciampoli 55 

(1998), Estes and Frangopol (1999), Stewart and Val (1999) and Li et al. (2015). They consider 56 

the time-dependent characteristics of both the load and resistance, but do not account for 57 

correlation among element deterioration. More recently, a number of researchers have considered 58 

modeling and updating the system deterioration state of structures, taking into account the aspect 59 

of spatial correlation among element deterioration (Moan and Song 2000; Li et al. 2004; Faber et 60 

al. 2006; Straub 2011b; Qin and Faber 2012; Maljaars and Vrouwenvelder 2014). Therein, the 61 

effect of inspections and monitoring results on the probability of either reinforcement corrosion in 62 

concrete structures or fatigue failures in steel structures is quantified using Bayesian analysis. 63 

However, the impact of deterioration on the structural reliability is not included in these works. 64 

Such integrated system reliability analyses are proposed in (Lee and Song 2014; Schneider et al. 65 

2015; Luque and Straub 2016). Lee and Song (2014) consider sequential fatigue failures taking 66 

into account the effect of stress redistribution within a structural system. They identify critical 67 

failure sequences through a branch-and-bound scheme and iteratively compute and update bounds 68 

on the system failure probability. Luque and Straub (2016) and Schneider et al. (2015) propose the 69 

use of hierarchical Dynamic Bayesian Network (DBN) models for probabilistically representing 70 

deterioration in structural systems and for updating deterioration probabilities as well as the system 71 
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reliability with inspection and monitoring results. While they can be powerful, DBN models are 72 

rather demanding in the implementation. 73 

To enable an integrated system reliability analysis of inspected and monitored deteriorating 74 

structures, which is computationally efficient and simple to implement, we here develop a 75 

framework using two coupled sub-models: a probabilistic system deterioration model, which 76 

considers stochastic dependence among element deterioration, and a probabilistic structural model 77 

for calculating the failure probability of the weakened system. Motivated by the work of Straub 78 

and Der Kiureghian (2011), the system deterioration state is assessed at discrete time intervals and 79 

is considered constant within each interval. Information on the deteriorating structure obtained 80 

through inspection or monitoring is included in the reliability assessment through Bayesian 81 

updating of the system deterioration model. The updated system reliability is then obtained through 82 

coupling this updated model with a probabilistic structural model. The resulting structural 83 

reliability problems are high-dimensional since they include all (correlated) deteriorating 84 

elements. To solve these problems, we apply subset simulation, which is a sampling-based 85 

algorithm that can robustly and efficiently handle problems involving a large number of random 86 

variables. The method is demonstrated in two case studies considering welded steel structures 87 

subjected to fatigue deterioration. 88 

2 System reliability analysis of deteriorating structures 89 

2.1 Deterioration modeling 90 

Deterioration is modeled at the element level at discrete time steps. An element may be a structural 91 

member, a welded connection or a segment of a continuous surface (Straub and Der Kiureghian 92 

2011). The state of deterioration of an element 𝑖 at time 𝑡 is represented by a random variable or 93 

random vector 𝐷𝑖,𝑡. For example, in the context of reinforcement corrosion in concrete structures, 94 

𝐷𝑖,𝑡 may represent the loss of reinforcement cross section. Deterioration of all elements is 95 

influenced by a set random variables 𝐗 = (𝑋1, … , 𝑋𝑛). The relationship between 𝐗 and 𝐷𝑖,𝑡 is 96 

described by a parametric deterioration model ℎ𝑖, which is written in generic form as: 97 

𝐷𝑖,𝑡 = ℎ𝑖(𝐗, 𝑡) (1) 

The joint probability density function (PDF) of 𝐗 is denoted by 𝑓𝐗(𝐱). Model uncertainties arising 98 

from a simplified representation of the actual deterioration phenomenon are included through 99 

additional random variables in 𝐗. 100 

All random variables describing the deterioration state of the individual elements at time 𝑡 are 101 

summarized in a vector 𝐃𝑡 = (𝐷1,𝑡, … , 𝐷𝑛𝐸,𝑡), where 𝑛𝐸  is the number of elements considered in 102 

the system reliability analysis. This vector represents the overall deterioration state of the structural 103 
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system at time 𝑡. The relationship between the system deterioration state 𝐃𝑡 and the deterioration 104 

model parameter 𝐗 is described by a function 𝐡 as: 105 

𝐃𝑡 = 𝐡(𝐗, 𝑡) = (ℎ1(𝐗, 𝑡), … , ℎ𝑛𝐸(𝐗, 𝑡)) (2) 

2.2 Modeling dependence among deterioration model parameters 106 

Deterioration of different elements of a structural system is generally interdependent due to the 107 

spatial correlation among the uncertain parameters 𝐗 influencing their condition. Such spatial 108 

dependencies are often due to geometrical proximity, but they mainly exist due to common factors 109 

influencing the element condition such as environmental conditions and material characteristics 110 

(Luque and Straub 2016). The aspect of spatial correlation of deterioration is especially relevant 111 

when inspection and monitoring outcomes are considered in the reliability assessment of 112 

deteriorating structures. The effect of such observations on the reliability strongly depends on the 113 

spatial correlation among the parameters 𝐗. An observation at one location contains more indirect 114 

information on the deterioration progress at another location if the correlation among the 115 

parameters 𝐗 is high. 116 

There is only limited information available on modeling statistical dependence of deterioration in 117 

structural systems (e.g. Vrouwenvelder 2004; Malioka 2009; Luque et al. 2016). For example, 118 

Vrouwenvelder (2004) estimated the correlation among uncertain parameters influencing fatigue 119 

crack growth in welded connections by comparing the scatter of the parameters within one 120 

production series to the scatter in the overall population. In most applications, however, correlation 121 

among the uncertain parameters 𝐗 has to be estimated based at least partially on engineering 122 

judgment. 123 

Hierarchical models and random field models are commonly applied to represent spatial 124 

dependence among the uncertain parameters 𝐗. The latter are suitable for representing parameters 125 

with inherent spatial variability (e.g. Hergenröder 1992; Stewart and Mullard 2007; Malioka 126 

2009). The random field approach models a spatially varying parameter 𝑋 as a random variable 127 

𝑋(𝑧) at each location 𝑧, and describes the correlation structure of the different random variables 128 

𝑋(𝑧) in terms of a suitable correlation function. Such random fields are typically discretized to 129 

enable their numerical representation (see, for example, Betz et al. 2014a). As a result, a random 130 

field of a spatially varying parameter is defined by a discrete set of correlated random variables, 131 

which are part of 𝐗. The joint distribution of the variables in a random field is commonly 132 

represented by the Nataf model, also known as the Gaussian copula (Liu and Der Kiureghian 133 

1986).  134 

Hierarchical models may be applied if common influencing factors can be modeled explicitly (e.g. 135 

Maes and Dann 2007; Luque et al. 2016). Such models represent correlation among random 136 

variables by defining different levels. The random variables within one level are linked through 137 
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common influencing factors, which are modeled as random variables at a higher level in the 138 

hierarchy. The random variables at the highest level are often called hyper-parameters (see, for 139 

example, Maes and Dann 2007). The additional random variables representing common influencing 140 

factors in a hierarchical model are included in 𝐗. The probability distributions of the random 141 

variables in each level are defined conditional on the random variables at the next higher level in 142 

the hierarchy. Such a hierarchical dependence structure among the variables in 𝐗 can be 143 

implemented through the Rosenblatt transformation (Hohenbichler and Rackwitz 1981). 144 

In many instances common influencing factors can, however, not be modeled explicitly. Instead, 145 

statistical dependence among the variables in 𝐗 is often represented by correlation coefficients. As 146 

an example, statistical dependence of fatigue deterioration among welded connections due to 147 

common fabrication quality may be modeled by defining a correlation coefficient between the 148 

initial crack sizes at different hotspots (Vrouwenvelder 2004). In this case, the Nataf model can be 149 

applied to model the joint distribution of the correlated deterioration model parameters. 150 

Parameters influencing deterioration can also be time variant. Such parameters are ideally modeled 151 

by stochastic processes (see, for example, Lin and Yang 1985; Straub and Faber 2007; Altamura 152 

and Straub 2014). Similar to a random field, a stochastic process represents a time-varying 153 

parameter 𝑋 as a random variable 𝑋(𝑡) at each time 𝑡, and describes the correlation among the 154 

random variables 𝑋(𝑡) through a suitable correlation function. Continuous-time stochastic 155 

processes are discretized to facilitate their numerical representation. The resulting set of correlated 156 

random variables is included in 𝐗. The joint distribution of the variables in a stochastic process 157 

may be represented by the Nataf model. In case a stochastic process has the Markov property, the 158 

Rosenblatt transformation may be applied (see, for example, Altamura and Straub 2014). 159 

2.3 Prior system failure probability 160 

The system failure probability is assessed conditional on the system deterioration state 𝐃𝑡. In 161 

agreement with Straub and Der Kiureghian (2011), the deterioration state of a structure is 162 

considered constant over a period Δ𝑡. The value of Δ𝑡 depends on how fast deterioration progresses 163 

and on the lifetime of the structure. In most applications, a good choice is Δ𝑡 = 1 year, which is 164 

short compared to the typical lifetime of structural systems. Conservatively, the system 165 

deterioration state in the period [𝑡 − Δ𝑡, 𝑡] is set equal to the state at time 𝑡, 𝐃𝑡. The relationship 166 

between the system deterioration state 𝐃𝑡 and the deterioration model parameters 𝐗 is described 167 

by Equation (2). Let 𝐹𝑡 denote the event of system failure in the period [𝑡 − Δ𝑡, 𝑡]. The probability 168 

of this event conditional on a realization of the deterioration model parameters 𝐱 is written as: 169 

𝑝𝐹(𝐱, 𝑡) = Pr(𝐹𝑡|𝐗 = 𝐱) = Pr(𝐹𝑡|𝐃𝑡 = 𝐡(𝐱, 𝑡)) (3) 

To include the uncertainty in the deterioration model parameters, the total probability theorem is 170 

applied. The overall probability of system failure in the reference period [𝑡 − Δ𝑡, 𝑡] is: 171 
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Pr(𝐹𝑡) = ∫ Pr(𝐹𝑡|𝐗 = 𝐱)𝑓𝐗(𝐱) 𝑑𝐱
𝑫𝐗

= ∫ 𝑝𝐹(𝐱, 𝑡) 𝑓𝐗(𝐱) 𝑑𝐱
𝑫𝐗

 (4) 

where 𝑫𝐗 denotes the domain of definition of 𝐗. The total-probability-form of the structural 172 

reliability problem is advantageous when random variables not contained in 𝐗 also influence the 173 

event of system failure 𝐹𝑡 (Straub and Der Kiureghian 2010). Such random variables are 174 

considered in the computation of 𝑝𝐹(𝐱, 𝑡). By defining the problem in this form, the deterioration 175 

model is decoupled from the structural model. 176 

The conditional system failure probability 𝑝𝐹(𝐱, 𝑡) = Pr(𝐹𝑡|𝐃𝑡 = 𝐡(𝐱, 𝑡)) is computed by 177 

performing system reliability analyses of the damaged structure. To this end, the structural model 178 

is defined with element properties according to the system deterioration state 𝐃𝑡 = 𝐡(𝐱, 𝑡). 179 

Random variables influencing the system reliability which are not contained in 𝐗 are typically load 180 

and resistance parameters. While resistance parameters, such as material strengths and structural 181 

dimensions, are usually modeled as time-invariant random variables, load parameters are mostly 182 

stochastic processes. However, it is typically sufficient to represent the load process by its extreme 183 

value distribution for the reference period [𝑡 − Δ𝑡, 𝑡] (Melchers 1999b; Straub and Der Kiureghian 184 

2011). The computation of 𝑝𝐹(𝐱, 𝑡) then reduces to a time-invariant reliability analysis of the 185 

weakened system. This approach leads to an accurate solution if the load process is ergodic and 186 

the maximum loads in two different time periods are statistically independent of each other. This 187 

holds at least approximately for most relevant applications. 188 

Equation (4) can be transformed into a component reliability problem following Wen and Chen 189 

(1987). To this end, we introduce an auxiliary standard uniform random variable 𝑃 with PDF 190 

𝑓𝑃(𝑝) = 1 and cumulative distribution function (CDF) 𝐹𝑃(𝑝) = 𝑝. We now note that the following 191 

identity holds: 192 

𝑝𝐹(𝐱, 𝑡) = 𝐹𝑃(𝑝𝐹(𝐱, 𝑡)) = Pr(𝑃 ≤ 𝑝𝐹(𝐱, 𝑡)) (5) 

The right hand side of Equation (5) corresponds to a component reliability problem with limit-193 

state function: 194 

𝑔𝐹(𝐱, 𝑝, 𝑡) = 𝑝 − 𝑝𝐹(𝐱, 𝑡) (6) 

The limit-state function 𝑔𝐹(𝐱, 𝑝, 𝑡) describes a domain Ω𝐹(𝑡) in the augmented outcome space of 195 

𝐗 and 𝑃 as Ω𝐹(𝑡)  = {(𝐱, 𝑝) ∶ 𝑔𝐹(𝐱, 𝑝, 𝑡) ≤ 0}. The conditional probability 𝑝𝐹(𝐱, 𝑡) can now be 196 

expressed as: 197 

𝑝𝐹(𝐱, 𝑡) = ∫ 𝑓𝑃(𝑝) 𝑑𝑝
𝑝∈Ω𝐹(𝑡)

= ∫𝐼(𝑔𝐹(𝐱, 𝑝, 𝑡) ≤ 0)

1

0

𝑓𝑃(𝑝) 𝑑𝑝 (7) 
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where 𝐼(∙) is the indicator function: 𝐼(∙) = 1 if the condition (∙) is true and 𝐼(∙) = 0 otherwise. 198 

Inserting Equation (7) into Equation (4) gives: 199 

Pr(𝐹𝑡) = ∫ [∫ 𝐼(𝑔𝐹(𝐱, 𝑝, 𝑡) ≤ 0)

1

0

𝑓𝑃(𝑝) 𝑑𝑝] 𝑓𝐗(𝐱) 𝑑𝐱

𝑫𝐗

 

= ∫ ∫𝐼(𝑔𝐹(𝐱, 𝑝, 𝑡) ≤ 0)

1

0𝑫𝐗

𝑓𝐗(𝐱) 𝑓𝑃(𝑝) 𝑑𝐱 𝑑𝑝 

= ∫ 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) 𝑑𝐱 𝑑𝑝
(𝐱,𝑝)∈Ω𝐹(𝑡)

 

(8) 

Equation (8) can be solved using structural reliability methods (e.g. Ditlevsen and Madsen 1996). 200 

As discussed earlier, such a calculation requires the computation of the conditional system failure 201 

probability 𝑝𝐹(𝐱, 𝑡) = Pr(𝐹𝑡|𝐃𝑡 = 𝐡(𝐱, 𝑡)), which can be determined using system reliability 202 

analysis methods (see, for example, Hohenbichler and Rackwitz 1983; Ditlevsen and Bjerager 203 

1986; Thoft-Christensen and Murotsu 1986; Naess et al. 2009; Song and Kang 2009). If the 204 

number of distinct system deterioration states 𝐃𝑡 = 𝐝𝑡 is limited, Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) may be pre-205 

computed for all 𝐃𝑡 = 𝐝𝑡. If this is not possible, Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) has to be computed during the 206 

evaluation of Equation (8). The computation of Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) is discussed in more detail in 207 

Section 7. 208 

For the purpose of applying structural reliability methods, it is convenient to transform the 209 

reliability problem defined in Equation (8) to standard normal space. To this end, the auxiliary 210 

random variable 𝑃 and the deterioration model parameters 𝐗 are transformed to independent 211 

standard normal random variables 𝐔 = (𝑈0, 𝑈1, … , 𝑈𝑛). 𝑃 and 𝐗 are independent and can be 212 

transformed separately. The inverse transformation from 𝐔 to 𝑃 and 𝐗 is as follows (see also Straub 213 

and Papaioannou 2015b): 214 

𝑃 = Φ(𝑈0) (9) 

where Φ(∙) is the standard normal CDF, and  215 

𝐗 = 𝐓−1(𝑈1, … , 𝑈𝑛) (10) 

𝐓(∙) is a probability preserving one-to-one mapping from the original outcome space of 𝐗 to the 216 

standard normal space for which the Rosenblatt transformation (Hohenbichler and Rackwitz 1981) 217 

or the Nataf transformation (Liu and Der Kiureghian 1986) can be applied (see also Section 2.2). 218 

The limit-state function 𝑔𝐹 is now transformed to 𝐔-space as: 219 

𝐺𝐹(𝐮, 𝑡) = 𝑢0 −Φ
−1(𝑝𝐹(𝐓

−1(𝑢1, … , 𝑢𝑛), 𝑡)) (11) 
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𝐺𝐹 describes the domain Ω𝐹
𝑈(𝑡) in the transformed space as Ω𝐹

𝑈(𝑡)  = {𝐮 ∶ 𝐺𝐹(𝐮, 𝑡) ≤ 0}. 220 

Therefore, the system failure probability Pr(𝐹𝑡) can be expressed in 𝐔-space as: 221 

Pr(𝐹𝑡) = Pr(𝐺𝐹(𝐔, 𝑡) ≤ 0) = ∫ 𝜑𝑛+1(𝐮) 𝑑𝐮
𝐮∈Ω𝐹

𝑈(𝑡)
 (12) 

where 𝜑𝑛+1(𝐮) = ∏ 𝜑(𝑢𝑖)
𝑛
𝑖=0  is the (𝑛 + 1)-variate standard normal PDF and 𝜑(∙) is the standard 222 

normal PDF. 223 

3 System reliability updating of deteriorating structures 224 

3.1 Modeling observations with likelihood functions 225 

In the context of deteriorating structures, inspections and monitoring systems typically provide 226 

direct or indirect information on the uncertain deterioration model parameters 𝐗. This information 227 

is usually imperfect due to measurement uncertainties and random errors. Generally, parameters 228 

influencing the deterioration process, the deterioration state of the structure itself, and quantities 229 

indirectly related to the deterioration state of the structure can be observed. Examples of such 230 

observations are results from half-cell potential measurements that provide indirect information 231 

on corrosion initiation in reinforced concrete structures and measurements of fatigue cracks in 232 

welded steel structures. 233 

Mathematically, an inspection or monitoring outcome 𝑖 at time 𝑡 is an event, which is denoted by 234 

𝑍𝑖(𝑡) in the following. The relationship between 𝑍𝑖(𝑡) and the uncertain deterioration model 235 

parameters 𝐗 is modeled through a likelihood function 𝐿𝑖(𝐱, 𝑡), which is proportional to the 236 

conditional probability of observing 𝑍𝑖(𝑡) when the uncertain parameters 𝐗 take a value 𝐱: 237 

𝐿𝑖(𝐱, 𝑡) ∝ Pr(𝑍𝑖(𝑡)|𝐗 = 𝐱) (13) 

Generally, two types of observations can be distinguished: observations providing equality 238 

information and observations providing inequality information (Madsen et al. 1986; Straub 2011a). 239 

Observations providing equality information are observations that can be described by an 240 

observation event such as 𝑍𝑖(𝑡) = {𝑦𝑖(𝑡) = 𝑞𝑖(𝐗, 𝑡) + 𝛦𝑖}, where 𝑦𝑖(𝑡) is a measurement of a 241 

continuous quantity predicted by the model 𝑞𝑖(𝐗, 𝑡) and 𝐸𝑖 is an additive measurement error with 242 

PDF 𝑓𝐸𝑖(𝜖𝑖). The following equality holds 𝑌𝑖(𝑡) − 𝑞𝑖(𝐗, 𝑡) = 𝐸𝑖, where 𝑌𝑖(𝑡) is the uncertain 243 

measurement outcome. In this special but common case, the likelihood of observing 𝑌𝑖(𝑡) = 𝑦𝑖(𝑡) 244 

given 𝐗 = 𝐱 is equal to the probability density of the random measurement error 𝛦𝑖 taking the 245 

value 𝑦𝑖(𝑡) − 𝑞𝑖(𝐱, 𝑡). The corresponding likelihood function can be written as (Straub and 246 

Papaioannou 2015b): 247 

𝐿𝑖(𝐱, 𝑡) = 𝑓𝐸𝑖(𝑦𝑖(𝑡) − 𝑞𝑖(𝐱, 𝑡)) (14) 
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In the general case, the likelihood function of an observation 𝑍𝑖(𝑡) of the equality-type is defined 248 

as (Straub and Papaioannou 2015b): 249 

𝐿𝑖(𝐱. 𝑡) = 𝑓𝑌𝑖(𝑡)|𝐗(𝑦𝑖(𝑡)|𝐱) (15) 

where 𝑓𝑌𝑖(𝑡)|𝐗(𝑦𝑖(𝑡)|𝐱) is the conditional PDF of the uncertain measurement outcome 𝑌𝑖(𝑡) given 250 

𝐗 = 𝐱, which is typically defined in terms of the PDF of the associated measurement error 𝐸𝑖. The 251 

likelihood function defined in Equation (15) includes the evaluation of the model predicting the 252 

measured quantity as in Equation (14). 253 

Observations providing inequality information are observations such as “corrosion progress is 254 

larger than a limit” or “no fatigue crack detected”. An observation 𝑍𝑖(𝑡) of the inequality type is 255 

modeled through a function 𝑞𝑖(𝐗, 𝑡) as follows (Madsen et al. 1986): 256 

𝑍𝑖(𝑡) = {𝑞𝑖(𝐗, 𝑡) ≤ 0} (16) 

A function 𝑞𝑖(𝐗, 𝑡) of this type can be interpreted as a limit-state function. The corresponding 257 

likelihood function is written as (Straub and Papaioannou 2015b): 258 

𝐿𝑖(𝐱, 𝑡) = Pr(𝑍𝑖(𝑡)|𝐗 = 𝐱) = 𝐼(𝑞𝑖(𝐱, 𝑡) ≤ 0) (17) 

The value of such a likelihood function is either 0 or 1. 259 

All observations obtained in the period [0, 𝑡] are expressed by a combined event 𝑍0:𝑡 as follows: 260 

𝑍0:𝑡 = ⋂ (⋂𝑍𝑖(𝑡𝑗)

𝑖∈𝑆𝑗

)

𝑛𝑍(𝑡) 

𝑗=1

 (18) 

where 𝑛𝑍(𝑡) is the number of times at which inspections or measurements are performed in the 261 

period [0, 𝑡] and 𝑆𝑗 is an index set containing the indices of all observations at time 𝑡𝑗. The 262 

likelihood function describing the relationship between 𝑍0:𝑡 and the uncertain deterioration model 263 

parameters 𝐗 is defined as: 264 

𝐿(𝐱, 𝑡) ∝ Pr(𝑍0:𝑡|𝐗 = 𝐱) (19) 

Under the common assumption that all individual observations are statistically independent given 265 

the deterioration model parameters 𝐗 = 𝐱, 𝐿(𝐱, 𝑡) is computed as: 266 

𝐿(𝐱, 𝑡) = ∏ (∏𝐿𝑖(𝐱, 𝑡𝑗)

𝑖∈𝑆𝑗

)

𝑛𝑍(𝑡)

𝑗=1

 (20) 
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In the case of statistically dependent observations, the combined likelihood has to be formulated 267 

as a function of the joint distribution of all measurement errors. Straub and Papaioannou (2015a) 268 

provide further details on how to model observations with likelihood functions. 269 

3.2 Posterior system failure probability 270 

The goal here is to assess the effect of inspection and monitoring outcomes on the failure 271 

probability of deteriorating structural systems. In Bayesian analysis, this is achieved by computing 272 

the conditional probability of the failure event 𝐹𝑡 given the observation event 𝑍0:𝑡, which is defined 273 

as follows: 274 

Pr(𝐹𝑡|𝑍0:𝑡) =
Pr(𝐹𝑡 ∩ 𝑍0:𝑡)

Pr(𝑍0:𝑡)
 (21) 

We make the fundamental assumption that the system failure event 𝐹𝑡 and the observation event 275 

𝑍0:𝑡 are conditionally independent given the deterioration model parameters 𝐗 = 𝐱. The joint 276 

probability of the events 𝐹𝑡 and 𝑍0:𝑡 can therefore be written as: 277 

Pr(𝐹𝑡 ∩ 𝑍0:𝑡) = ∫ Pr(𝐹𝑡|𝐗 = 𝐱) Pr(𝑍0:𝑡|𝐗 = 𝐱)𝑓𝐗(𝐱) 𝑑𝐱
𝑫𝐗

 (22) 

The probability of the observation outcome event can also be expressed in the total-probability-278 

form: 279 

Pr(𝑍0:𝑡) = ∫ Pr(𝑍0:𝑡|𝐗 = 𝐱) 𝑓𝐗(𝐱) 𝑑𝐱
𝑫𝐗

 (23) 

Following Straub (2011a), the integrals in Equations (22) and (23) are transformed such that they 280 

can be solved using structural reliability methods. This method follows the same principles as 281 

presented in Section 2.3 for the computation of Pr(𝐹𝑡).  282 

For the purpose of transforming Equations (23), an auxiliary standard normal random variable 𝑃 283 

is again introduced. In addition, let 𝑐 be a positive constant that ensures 0 ≤ 𝑐𝐿(𝐱, 𝑡) ≤ 1 for all 284 

𝐱. In this case, the following relationship holds: 285 

𝑐𝐿(𝐱, 𝑡) = 𝐹𝑃(𝑐𝐿(𝐱, 𝑡)) = Pr(𝑃 ≤ 𝑐𝐿(𝐱, 𝑡)) (24) 

The right hand side of Equation (24) corresponds to a component reliability problem with limit-286 

state function: 287 

𝑔𝑍𝑒(𝐱, 𝑝, 𝑡) = 𝑝 − 𝑐𝐿(𝐱, 𝑡) (25) 

The limit-state function 𝑔𝑍𝑒(𝐱, 𝑝, 𝑡) defines a domain Ω𝑍𝑒(𝑡) in the augmented outcome space of 288 

𝐗 and 𝑃 as Ω𝑍𝑒(𝑡)  = {(𝐱, 𝑝) ∶ 𝑔𝑍𝑒(𝐱, 𝑝, 𝑡) ≤ 0}. The quantity c𝐿(𝐱, 𝑡) can be interpreted as the 289 
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conditional probability of 𝑃 taking a value in Ω𝑍𝑒(𝑡) given 𝐗 = 𝐱. It can thus be computed by 290 

integrating 𝑓𝑃(𝑝) over the failure domain Ω𝑍𝑒(𝑡) when 𝐗 take a value 𝐱: 291 

𝑐𝐿(𝐱, 𝑡) = ∫ 𝑓𝑃(𝑝) 𝑑𝑝
𝑝∈Ω𝑍𝑒(𝑡)

= ∫𝐼(𝑔𝑍𝑒(𝐱, 𝑝, 𝑡) ≤ 0)

1

0

𝑓𝑃(𝑝) 𝑑𝑝 (26) 

Consequently, the likelihood function 𝐿(𝐱, 𝑡) can be written as: 292 

𝐿(𝐱, 𝑡) =
1

𝑐
∫ 𝐼(𝑔𝑍𝑒(𝐱, 𝑝, 𝑡) ≤ 0)

1

0

𝑓𝑃(𝑝) 𝑑𝑝 (27) 

Let 𝑎 denote the proportionality constant in the likelihood definition given in Equation (19). It 293 

follows that: 294 

Pr(𝑍0:𝑡|𝐗 = 𝐱) = 𝑎𝐿(𝐱, 𝑡) =
𝑎

𝑐
∫ 𝐼(𝑔𝑍𝑒 (𝐱, 𝑝, 𝑡) ≤ 0)

1

0

𝑓𝑃(𝑝) 𝑑𝑝 (28) 

Inserting Equation (28) into Equation (23) gives: 295 

Pr(𝑍0:𝑡) =
𝑎

𝑐
∫ [∫ 𝐼(𝑔𝑍𝑒(𝐱, 𝑝, 𝑡) ≤ 0)

1

0

𝑓𝑃(𝑝) 𝑑𝑝] 𝑓𝐗(𝐱) 𝑑𝐱

𝑫𝐗

 

=
𝑎

𝑐
∫ 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) 𝑑𝐱 𝑑𝑝
(𝐱,𝑝)∈Ω𝑍𝑒(𝑡)

 

(29) 

Similarly, it can be shown that the probability of the joint event 𝐹𝑡 ∩ 𝑍0:𝑡 can be written as: 296 

Pr(𝐹𝑡 ∩ 𝑍0:𝑡) =
𝑎

𝑐
∫ 𝑓𝐗(𝐱) 𝑓𝑃(𝑝) 𝑑𝐱 𝑑𝑝
(𝐱,𝑝)∈Ω𝐹∩𝑍𝑒(𝑡)

 (30) 

where the domain Ω𝐹∩𝑍𝑒(𝑡) is defined in the augmented outcome space of 𝐗 and 𝑃 in terms of the 297 

limit-state function: 298 

𝑔𝐹∩𝑍𝑒(𝐱, 𝑝, 𝑡) = 𝑝 − 𝑝𝐹(𝐱, 𝑡) ∙ 𝑐𝐿(𝐱, 𝑡) (31) 

as Ω𝐹∩𝑍𝑒(𝑡) = {(𝐱, 𝑝) ∶ 𝑔𝐹∩𝑍𝑒(𝐱, 𝑝, 𝑡) ≤ 0}.  299 

Inserting Equation (29) and Equation (30) into Equation (21) gives: 300 

Pr(𝐹𝑡|𝑍0:𝑡) =
∫ 𝑓𝐗(𝐱)𝑓𝑃(𝑝) 𝑑𝐱 𝑑𝑝(𝐱;𝑝)∈Ω𝐹∩𝑍𝑒(𝑡)

∫ 𝑓𝐗(𝐱)𝑓𝑃(𝑝) 𝑑𝐱 𝑑𝑝(𝐱;𝑝)∈Ω𝑍𝑒(𝑡)

=
Pr(𝑔𝐹∩𝑍𝑒(𝐗, 𝑃, 𝑡) ≤ 0)

Pr(𝑔𝑍𝑒(𝐗, 𝑃, 𝑡) ≤ 0)
 (32) 
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Note that the proportionality constant 𝑎 vanishes. The numerator and the denominator in Equation 301 

(32) correspond to component reliability problems, which can be solved using structural reliability 302 

methods.  303 

The solution given in Equation (32) can be interpreted as follows. The denominator in Equation 304 

(32) corresponds to the probability of an inequality observation event 𝑍𝑒,0:𝑡 = {𝑔𝑍𝑒(𝐗, 𝑃, 𝑡) ≤ 0} 305 

and the numerator is equal to the probability of the joint event 𝐹𝑡 ∩ 𝑍𝑒,0:𝑡 = {𝑔𝐹∩𝑍𝑒(𝐗, 𝑃, 𝑡) ≤ 0}. 306 

In the context of Bayesian updating, the event 𝑍𝑒,0:𝑡 is equivalent to the original observation event 307 

𝑍0:𝑡 in the sense that: 308 

Pr(𝐹𝑡|𝑍0:𝑡) = Pr(𝐹𝑡|𝑍𝑒,0:𝑡) =
Pr(𝐹𝑡 ∩ 𝑍𝑒,0:𝑡)

Pr(𝑍𝑒,0:𝑡)
 (33) 

For applying structural reliability methods, the component reliability problems defined in Equation 309 

(32) are also transformed to standard normal space following Section 2.3. The corresponding limit-310 

state functions 𝐺𝐹∩𝑍𝑒  and 𝐺𝑍𝑒 in 𝐔-space are: 311 

𝐺𝐹∩𝑍𝑒(𝐮, 𝑡) = 𝑢0 −Φ
−1(𝑝𝐹(𝐓

−1(𝑢1, … , 𝑢𝑛), 𝑡) ∙ 𝑐𝐿(𝐓
−1(𝑢1, … , 𝑢𝑛), 𝑡)) (34) 

and 312 

𝐺𝑍𝑒(𝐮, 𝑡) = 𝑢0 −Φ
−1(𝑐𝐿(𝐓−1(𝑢1, … , 𝑢𝑛), 𝑡)) (35) 

These limit-state functions respectively describe the domains Ω𝐹∩𝑍𝑒
𝑈 (𝑡)  = {𝐮 ∶ 𝐺𝐹∩𝑍𝑒(𝐮, 𝑡) ≤ 0} 313 

and Ω𝑍𝑒
𝑈 (𝑡)  = {𝐮 ∶ 𝐺𝑍𝑒(𝐮, 𝑡) ≤ 0} in the transformed space. Consequently, the probabilities 314 

Pr(𝐹𝑡 ∩ 𝑍𝑒,0:𝑡) and  Pr(𝑍𝑒,0:𝑡) can be computed as: 315 

Pr(𝐹𝑡 ∩ 𝑍𝑒,0:𝑡) = Pr(𝐺𝐹∩𝑍𝑒(𝐔, 𝑡) ≤ 0) = ∫ 𝜑𝑛+1(𝐮) 𝑑𝐮
𝐮∈Ω𝐹∩𝑍

𝑈
𝑒
(𝑡)

 (36) 

and 316 

Pr(𝑍𝑒,0:𝑡) = Pr(𝐺𝑍𝑒(𝐔, 𝑡) ≤ 0) = ∫ 𝜑𝑛+1(𝐮) 𝑑𝐮
𝐮∈Ω𝑍𝑒

𝑈 (𝑡)
 (37) 

The computation of the integrals in Equations (36) and (37) requires the selection of the constant 317 

𝑐. A discussion on how to select 𝑐 is provided in (Betz et al. 2014b; Au et al. 2015; Straub and 318 

Papaioannou 2015b). In the general case, the optimal choice is 𝑐 = 1/ sup(𝐿(𝐱, 𝑡)) where sup(∙) 319 

is the supremum of the expression (∙). In some cases, sup(𝐿(𝐱, 𝑡)) can be readily selected. For 320 

instance, in the special case of a single measurement with measurement error 𝐸, the supremum of 321 

the likelihood function is sup(𝐿(𝐱, 𝑡)) = max(𝑓𝐸(𝜖)) where 𝑓𝐸(𝜖) is the PDF of 𝐸.  322 
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4 Computing system failure probabilities with subset simulation 323 

Subset simulation, originally proposed by Au and Beck (2001), is an adaptive Monte Carlo method 324 

particularly suitable for evaluating the high-dimensional reliability problems defined in Equations 325 

(12), (36) and (37). The method is robust and computationally efficient, and it can be implemented 326 

relatively easily. The algorithm is here implemented following Papaioannou et al. (2015).  327 

First, consider the computation of the prior system failure probability Pr(𝐹𝑡) =  Pr(𝐺𝐹(𝐔, 𝑡) ≤ 0). 328 

The basic idea of subset simulation is to express the event 𝐹𝑡 as an intersection of 𝑀 intermediate 329 

events: 330 

𝐹𝑡 = 𝐸1 ∩ 𝐸2 ∩ …∩ 𝐸𝑀 (38) 

The intermediate events are nested, i.e. 𝐸1 ⊃ 𝐸2 ⊃ ⋯ ⊃ 𝐸𝑀 = 𝐹𝑡. Consequently, the probability 331 

of the event 𝐹𝑡 can be computed by a product of conditional probabilities: 332 

Pr(𝐹𝑡) = Pr(𝐸1 ∩ 𝐸2 ∩ …∩ 𝐸𝑀) =∏ Pr(𝐸𝑖|𝐸𝑖−1)
𝑀

𝑖=1
 (39) 

In this formulation, the event 𝐸0 is the certain event. The intermediate events are selected such that 333 

the conditional probabilities Pr(𝐸𝑖|𝐸𝑖−1), 𝑖 = 1,… ,𝑀 are much larger than Pr(𝐹𝑡). In this way, 334 

the original problem of evaluating the small probability of the rare event 𝐹𝑡 reduces to computing 335 

a sequence of 𝑀 larger conditional probabilities. 336 

The intermediate events 𝐸𝑖, 𝑖 = 1,… ,𝑀 are defined as 𝐸𝑖 = {𝐺𝐹(𝐔, 𝑡) ≤ 𝑏𝑖} where 𝑏1 > 𝑏2 >337 

⋯ > 𝑏𝑀 = 0. The values of 𝑏𝑖 are selected adaptively such that the conditional probabilities are 338 

equal to a chosen value 𝑝0. For this purpose, 𝑁 samples of 𝐔 are simulated at each subset level 𝑖, 339 

conditional on the previous intermediate event 𝐸𝑖−1. For each generated sample, the limit-state 340 

function 𝐺𝐹(𝐮, 𝑡) is evaluated and 𝑏𝑖 is set equal to the 𝑝0-percentile of the 𝑁 resulting values of 341 

𝐺𝐹(𝐮, 𝑡). This procedure is repeated until the 𝑝0-percentile becomes negative. At this stage, the 342 

failure event 𝐸𝑀 = 𝐹𝑡 is reached, for which 𝑏𝑀 = 0. The samples conditional on the event 𝐸0 are 343 

obtained by crude Monte Carlo sampling. The samples conditional on the events 𝐸𝑖, 𝑖 = 1,… ,𝑀 −344 

1 are generated by simulating states of Markov chains starting from the samples conditional on 345 

𝐸𝑖−1, for which 𝐺𝐹(𝐮, 𝑡) ≤ 𝑏𝑖. This is achieved by application of Markov Chain Monte Carlo 346 

(MCMC) sampling. An estimator 𝑃̂𝑆𝑢𝑆 of the prior system failure probability Pr(𝐹𝑡) can now be 347 

written as: 348 

Pr(𝐹𝑡) ≈ 𝑃̂𝑆𝑢𝑆 = 𝑝0
𝑀−1𝑃̂𝑀 (40) 

𝑃̂𝑀 is the estimate of the conditional probability Pr(𝐸𝑀|𝐸𝑀−1), which is given by the ratio of the 349 

number of samples for which 𝐺𝐹(𝐮, 𝑡) ≤ 0 over the number of samples 𝑁 simulated conditional 350 

on 𝐸𝑀−1. 351 
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Note that the MCMC samples are generally not statistically independent. Their correlation has an 352 

effect on the efficiency and accuracy of subset simulation (see, for example, Au and Beck 2001; 353 

Schuëller and Pradlwarter 2007; Papaioannou et al. 2015). It is important to adopt an MCMC 354 

sampling algorithm that produces samples with low correlation such that the conditional 355 

probabilities Pr(𝐸𝑖|𝐸𝑖−1) can be estimated with a minimum number of samples. We adopt the 356 

adaptive MCMC sampling algorithm of Papaioannou et al. (2015). 357 

The value 𝑝0 of the conditional probabilities and the number of simulated samples 𝑁 at each subset 358 

level can be chosen freely. A value of 𝑝0 = 0.1 is a suitable choice. 𝑁 should be selected large 359 

enough to give accurate estimates of 𝑝0. Note that the total number of required samples for 360 

estimating Pr(𝐹𝑡) increases linearly with − log10(Pr(𝐹𝑡)) when using subset simulation instead 361 

of with 1/ Pr(𝐹𝑡) when using crude Monte Carlo simulation (Au and Beck 2001). 362 

The probabilities Pr(𝐹𝑡 ∩ 𝑍𝑒,0:𝑡) = Pr(𝐺𝐹∩𝑍𝑒(𝐔, 𝑡) ≤ 0) and Pr(𝑍𝑒,0:𝑡) = Pr(𝐺𝑍𝑒(𝐔, 𝑡) ≤ 0) are 363 

calculated accordingly. The posterior system failure probability Pr(𝐹𝑡|𝑍0:𝑡) is then computed using 364 

Equation (21). Alternatively, the conditional probability Pr(𝐹𝑡|𝑍0:𝑡) = Pr(𝐹𝑡|𝑍𝑒,0:𝑡) can be 365 

estimated directly with a new subset simulation run following the estimation of Pr(𝑍𝑒,0:𝑡) (see also 366 

Schneider et al. 2013; Straub et al. 2016). For this purpose, a set of nested intermediate events 367 

𝐸0 ⊃ 𝐸1 ⊃ ⋯ ⊃ 𝐸𝑀 is defined where 𝐸0 = 𝑍𝑒,0:𝑡, 𝐸𝑖 = {𝐺𝐹∩𝑍𝑒(𝐔, 𝑡) ≤ 𝑏𝑖}, 𝑖 = 1,… ,𝑀 and 𝑏1 >368 

𝑏2 > ⋯ > 𝑏𝑀 = 0. The conditional probability Pr(𝐹𝑡|𝑍0:𝑡) can now be expressed as: 369 

Pr(𝐹𝑡|𝑍0:𝑡) = Pr(𝐸1 ∩ 𝐸2 ∩ …∩ 𝐸𝑀|𝐸0) =∏ Pr(𝐸𝑖|𝐸𝑖−1)
𝑀

𝑖=1
 (41) 

The first threshold 𝑏1 defining the intermediate event 𝐸1 = {𝐺𝐹∩𝑍𝑒(𝐔, 𝑡) ≤ 𝑏1} is determined from 370 

the samples conditional on 𝐸0 = 𝑍𝑒,0:𝑡, which are obtained as a by-product of estimating Pr(𝑍𝑒,0:𝑡) 371 

with subset simulation. The remaining thresholds 𝑏𝑖, 𝑖 = 2,… ,𝑀 − 1 are determined following 372 

the original subset simulation procedure. When applying this approach, the estimator 𝑃̂𝑆𝑢𝑆 defined 373 

in Equation (40) provides an estimate of the conditional probability Pr(𝐹𝑡|𝑍0:𝑡). 374 

5 Application a: Zayas frame subjected to fatigue deterioration 375 

We consider the two-dimensional welded steel frame shown in Figure 1, which is known as Zayas 376 

frame (Zayas et al. 1980). The critical load scenario is an environmental load 𝐿. In addition, the 377 

frame is subjected to fatigue loads throughout its service life of 𝑇 = 50 years. The effect of 378 

inspections on the fatigue reliability of the elements and on the reliability of the complete structural 379 

system is studied. 380 
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Figure 1. Zayas frame (Zayas et al. 1980). OD is the outer diameter and WT is the wall thickness of the 381 

tubular steel members. 382 

5.1 System model 383 

The Zayas frame consists of tubular steel elements with welded connections. The state of fatigue 384 

deterioration of any element 𝑖 depends on the condition of the associated welded connections. 385 

Fatigue cracks usually develop at locations with local stress concentrations; welded connections 386 

are especially vulnerable due to material inhomogeneities, imperfections, high stress 387 

concentrations and residual stresses (Fricke 2003). Locations where fatigue cracks may develop 388 

are called hotspots. A welded connection may contain multiple hotspots. 389 

Fatigue crack growth reduces the capacity of welded connections. In the current example, we 390 

assume that fatigue deterioration occurs at the welds connecting the braces with the legs and with 391 

the upper horizontal element as well as at the welds at the intersection of the X-braces. 392 

Furthermore, we assume that each deteriorating welded connection contains only one critical 393 

hotspot. Thus, there are 𝑛𝐸 = 13 deteriorating elements and 𝑛𝐻 = 22 hotspots as indicated in 394 

Figure 1. 395 

The approach of Straub and Der Kiureghian (2011) is adopted to determine the reliability of the 396 

welded steel structure subjected to fatigue. At system level, no gradual degradation of weld 397 

capacities is considered. At a given time 𝑡, a welded connection has either its full capacity or it has 398 

completely lost its capacity because of fatigue crack growth. In the current example, we assume 399 

that a welded connection loses its capacity if a fatigue crack at any of the associated hotspots grows 400 

beyond a critical size (e.g. Madsen 1997). Thus, the deterioration state of any hotspot 𝑗 at time 𝑡 401 
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is modeled by a binary random variable 𝐷𝐻,𝑗,𝑡, where {𝐷𝐻,𝑗,𝑡 = 1} is the hotspot fatigue damage 402 

event and {𝐷𝐻,𝑗,𝑡 = 0} is the compliment. The event of fatigue damage of hotspot 𝑗 at time 𝑡 is 403 

defined by a limit-state function 𝑔𝐻,𝑗(𝐱, 𝑡) as {𝐷𝐻,𝑗,𝑡 = 1} = {𝑔𝐻,𝑗(𝐗, 𝑡) ≤ 0} where 𝐗 denotes the 404 

vector of all uncertain parameters that describe fatigue deterioration of all hotspots considered in 405 

the system reliability analysis. 𝑔𝐻,𝑗(𝐱, 𝑡) is written as: 406 

𝑔𝐻,𝑗(𝐱, 𝑡) = 𝑎𝑐,𝑗 − 𝑎𝑗(𝐱, 𝑡) (42) 

where 𝑎𝑐,𝑗 is the critical crack size and 𝑎𝑗(𝐱, 𝑡) is the fatigue crack size at hotspot 𝑗 at time 𝑡. 407 

𝑎𝑗(𝐱, 𝑡) is computed by means of a probabilistic fatigue crack growth model presented in Section 408 

5.2. 𝑎𝑐,𝑗 may be defined such that failure modes such as plastic collapse or unstable crack growth 409 

are approximately accounted for. 410 

A structural element loses its capacity if any of the associated welded connections loses its 411 

capacity. It follows that an element fails as soon as any of the associated hotspots fails due to 412 

fatigue deterioration; this corresponds to a series system. The deterioration state of any element 𝑖 413 

at time 𝑡 is, therefore, also modeled by a binary random variable 𝐷𝑖,𝑡 where {𝐷𝑖,𝑡 = 1} is the event 414 

of element fatigue failure and {𝐷𝑖,𝑡 = 0} is the compliment. From system reliability theory it 415 

follows that the event of fatigue failure of element 𝑖 can be written as: 416 

{𝐷𝑖,𝑡 = 1} = ⋃{𝐷𝐻,𝑗,𝑡 = 1}

𝑗∈𝐶𝑖

 (43) 

where 𝐶𝑖 is an index set containing the indices of all hotspots associated with element 𝑖. The event 417 

of fatigue failure of element 𝑖 can also be expressed by a limit-state function 𝑔𝑖(𝐱, 𝑡) such that 418 

{𝐷𝑖,𝑡 = 1} = {𝑔𝑖(𝐗, 𝑡) ≤ 0}. 𝑔𝑖(𝐱, 𝑡) is defined as a combination of the individual hotspot limit-419 

state functions 𝑔𝐻,𝑗(𝐱, 𝑡), ∀𝑗 ∈ 𝐶𝑖 as: 420 

𝑔𝑖(𝐱, 𝑡) = min
𝑗∈𝐶𝑖

𝑔𝐻,𝑗(𝐱, 𝑡) (44) 

The function ℎ𝑖 defining the relationship between the fatigue model parameters 𝐗 and the element 421 

deterioration state 𝐷𝑖,𝑡 can now be written as: 422 

𝐷𝑖,𝑡 = ℎ𝑖(𝐗, 𝑡) = 𝐼(𝑔𝑖(𝐗, 𝑡) ≤ 0) (45) 

Using Equation (2), the system deterioration state 𝐃𝑡 = (𝐷1,𝑡, … , 𝐷𝑛𝐸,𝑡) of the Zayas frame can 423 

subsequently be calculated as a function of the uncertain fatigue model parameters 𝐗. In the current 424 

example, 𝐃𝑡 is a binary random vector with 2𝑛𝐸 states. 425 

The Zayas frame is subjected to a time-variant horizontal load whose annual maximum 𝐿 has the 426 

Gumbel distribution with a coefficient of variation (c.o.v.) 𝛿𝐿 = 0.35. The CDF of 𝐿 is denoted by 427 
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𝐹𝐿(𝑙). Material and geometry properties are modeled as deterministic parameters as listed in Figure 428 

1. This simplification is reasonable since the uncertainties associated with these quantities are 429 

small compared to the uncertainties associated with the system deterioration state and the load 𝐿. 430 

It is thus possible to determine a deterministic ultimate horizontal capacity 𝑟(𝐝𝑡) of the damaged 431 

Zayas frame for any realization of the system deterioration state 𝐃𝑡 = 𝐝𝑡. Consequently, the 432 

conditional probability of system failure 𝑝𝐹(𝐱, 𝑡) of the Zayas frame corresponds to the probability 433 

that the annual maximum load 𝐿 exceeds the ultimate capacity 𝑟(𝐝𝑡): 434 

Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) = Pr(𝑟(𝐝𝑡) ≤ 𝐿) = 1 − 𝐹𝐿(𝑟(𝐝𝑡)) (46) 

The mean of 𝐿 is selected such that the undamaged Zayas frame has an annual probability of 435 

system failure Pr(𝐹𝑡|𝐃𝑡 = 𝟎) = 1.3 × 10−6, leading to 𝜇𝐿 = 62 kN. 436 

In the current example, 𝑟(𝐝𝑡) is computed by performing pushover analysis of the structure with 437 

all elements damaged according to 𝐃𝑡 = 𝐝𝑡, i.e. all elements with fatigue failure are removed from 438 

the model used in the pushover analysis. Through such analyses the ultimate capacity of framed 439 

steel structures can be quantified. Non-linear effects associated with non-linear material behavior, 440 

imperfections, large displacements and deformations (large strains) are modelled explicitly. The 441 

analysis captures load redistribution within the structural system resulting from local stiffness 442 

changes. It simulates the collapse process of the structural system including initial yielding, 443 

formation of plastic hinges, member buckling as well as formation of a global system collapse 444 

mechanism (see e.g. Ultiguide 1999; Skallerud and Amdahl 2002). 445 

In the current study, 213 = 8192 pushover analyses are carried out using USFOS (2014) to pre-446 

calculate the maximum resistance 𝑟(𝐝𝑡) for all possible realizations of the system deterioration 447 

state 𝐃𝑡. The corresponding conditional system failure probabilities Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) are computed 448 

according to Equation (46). These failure probabilities have a reference period Δ𝑡 = 1 year but are 449 

independent of time. In the subsequent reliability analysis of the deteriorating Zayas frame, the 450 

computation of 𝑝𝐹(𝐱, 𝑡) is thus reduced to a lookup operation in which a realization of the fatigue 451 

model parameters 𝐱 is matched to a pre-calculated conditional system failure probability 452 

Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) at time 𝑡 by means of Equation (3), i.e. 𝐝𝑡 = 𝐡(𝐱, 𝑡). 453 

The influence of individual element failure on the reliability of the Zayas frame depends on the 454 

structural importance of the failed element. Following Straub and Der Kiureghian (2011), the 455 

structural importance of an element 𝑖 is quantified in terms of the single-element importance 456 

measure SEI𝑖, which is defined as the difference in the failure probability of the undamaged system 457 

and the failure probability of the system in which only element 𝑖 has failed due to fatigue 458 

deterioration. 459 

SEI𝑖 = Pr(𝐹𝑡|𝐷1,𝑡 = 0,… , 𝐷𝑖−1,𝑡 = 0,𝐷𝑖,𝑡 = 1,𝐷𝑖+1,𝑡 = 0,… , 𝐷𝑛𝐸,𝑡 = 0) − 

              Pr(𝐹𝑡|𝐃𝑡 = 𝟎) 
(47) 
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Table 1 summarizes the single-element importance measures for all deteriorating elements 460 

considered in the system reliability analysis of the Zayas frame. 461 

Table 1. Single-element importance (SEI) measure and structural importance category of all deteriorating 462 

elements of the Zayas frame. 463 

Element 𝑖 SEI𝑖 Structural importance category 

1, 3 1.14 × 10−5 Medium 

2, 4 1.06 × 10−5 Medium 

5, 7 1.99 × 10−3 High 

6, 8 2.00 × 10−3 High 

9, 10 7.25 × 10−7 Low 

11 8.26 × 10−8 Low 

12 6.31 × 10−7 Low 

13 2.27 × 10−7 Low 

 464 

The lower X-braces (elements 5 to 8) are the most important elements followed by the X-braces 465 

at the level above (elements 1 to 4). The top braces (elements 9 and 10) and the horizontal braces 466 

(elements 11 to 13) are the least important elements. 467 

5.2 Fatigue model 468 

In the current example, we adopt the widely used Paris’ law (Paris and Erdogan 1963) to describe 469 

fatigue crack growth at a given hotspot. For illustration purposes, we consider a through-thickness 470 

fatigue crack in an infinite plate subjected to fluctuating stresses in the plane of the plate and 471 

orthogonal to the crack. In this case, the fatigue crack is fully characterized by its length 2𝑎 and 472 

Paris’ law is written as: 473 

𝑑𝑎(𝑛)

𝑑𝑛
= 𝐶 (Δ𝑆(𝑛)√𝜋𝑎(𝑛))

𝑚

 (48) 

𝑑𝑎(𝑛) 𝑑𝑛⁄  is the crack growth rate, 𝑛 is the number of applied fatigue stress cycles, 𝐶 and 𝑚 are 474 

empirical material parameters and Δ𝑆(𝑛) is the varying far-field fatigue stress range. The quantity 475 

Δ𝐾 = Δ𝑆(𝑛)√𝜋𝑎(𝑛) is the stress intensity factor (SIF) range. This model can be extended to 476 

account for more complex fatigue crack and hotspot geometries as well as more complex fatigue 477 

stress distributions (Straub 2004). If desired, the model can be replaced altogether with a more 478 

advanced crack growth model (e.g. Altamura and Straub 2014). This will not affect the method as 479 

described in the remainder of the paper. 480 

Fatigue loads are generally random and the load sequence Δ𝑆(𝑛) is ideally modeled by a stochastic 481 

process (Altamura and Straub 2014). Under the condition that the fatigue stress process is 482 
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stationary, ergodic and sufficiently mixing, a simplified approach can be adopted where the crack 483 

growth rate 𝑑𝑎(𝑛) 𝑑𝑛⁄  given by Equations (48) is approximated by its expected value with respect 484 

to Δ𝑆: 485 

𝑑𝑎(𝑛)

𝑑𝑛
≈ 𝐸Δ𝑆 [𝐶 (Δ𝑆(𝑛)√𝜋𝑎(𝑛))

𝑚

] = 𝐶(√𝜋𝑎(𝑛))
𝑚
𝐸Δ𝑆[Δ𝑆(𝑛)

𝑚] (49) 

The fatigue stress process is described by its stationary distribution 𝑓Δ𝑆(Δ𝑆) and an annual stress 486 

cycle rate 𝜈 (e.g. Madsen et al. 1986). The quantity Δ𝑆𝑒 = (𝐸Δ𝑆[Δ𝑆(𝑛)
𝑚])1/𝑚 is interpreted as an 487 

equivalent stress range. In the current example, we assume that the stationary distribution of the 488 

fatigue stress ranges 𝑓Δ𝑆(Δ𝑆) can be modeled by a Weibull distribution. The equivalent stress range 489 

is hence given by: 490 

Δ𝑆𝑒 = (𝐸Δ𝑆[Δ𝑆(𝑛)
𝑚])1/𝑚 = 𝑘Γ (1 +

𝑚

𝜆
)
1/𝑚

 (50) 

Γ(∙) denotes the Gamma function and 𝑘 and 𝜆 are the Weibull scale and shape parameters. 𝑘 is 491 

modeled as a lognormal random variable to model statistical uncertainties in the calculation of 492 

Δ𝑆𝑒; 𝜆 is assumed to be deterministic. 493 

The parameters 𝐶 and 𝑚 of Paris’ law are modeled as time-invariant random variables to capture 494 

uncertainties due to the variability of the material properties and material inhomogeneities. Proper 495 

attention has to be paid to modeling the correlation among 𝐶 and 𝑚. They are empirical parameters 496 

generally derived from the same experiments and are therefore strongly correlated. To model the 497 

dependence among the Paris’ law parameters, the linear relationship between ln 𝐶 and 𝑚 given in 498 

(Gurney 1978) is adopted: 499 

ln 𝐶 = −15.84 − 3.34𝑚 (51) 

Equation (51) is valid if stresses are given in N/mm2 and the crack growth rate is given in m/cycle. 500 

In the following, 𝐶 is modeled as a lognormally distributed random variable. 𝑚 is thus normal 501 

distributed due to the linear relationship between ln 𝐶 and 𝑚. 502 

To capture uncertainties in the fabrication quality, the initial crack size 𝑎0 is modeled as a random 503 

variable with exponential distribution. Uncertainties in the calculation of the hotspot stress and in 504 

the calculation of the SIF range are captured by introducing lognormal random bias factors 𝐵Δ𝑆 505 

and 𝐵𝑆𝐼𝐹, which are multiplied with the calculated equivalent stress range Δ𝑆𝑒. The one-506 

dimensional crack growth model given in Equation (48) is rewritten as: 507 

𝑑𝑎(𝑛)

𝑑𝑛
= 𝐶 (𝐵𝑆𝐼𝐹𝐵Δ𝑆Δ𝑆𝑒√𝜋𝑎(𝑛))

𝑚

 (52) 
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With 𝑎𝑗(𝑛 = 0) = 𝑎0,𝑗 as initial condition, the differential equation given by Equation (52) is 508 

solved for the fatigue crack size 𝑎𝑗 at hotspot 𝑗 as a function of time 𝑡 (Madsen et al. 1986): 509 

𝑎𝑗(𝐗, 𝑡) =

{
 
 

 
 

[(1 −
𝑚𝑗

2
 ) 𝐶𝑗𝐵𝑆𝐼𝐹,𝑗

𝑚𝑗 𝐵
Δ𝑆,𝑗

𝑚𝑗 𝛥𝑆
𝑒,𝑗 

𝑚𝑗𝜋
𝑚𝑗

2 𝜈𝑗𝑡 + 𝑎0,𝑗 
(1−

𝑚𝑗

2
)
]

(1−
𝑚𝑗

2
)
−1

, 𝑚𝑗 ≠ 2

𝑎0,𝑗 exp(𝐶𝑗𝐵𝑆𝐼𝐹,𝑗
2 𝐵Δ𝑆,𝑗

2 𝛥𝑆𝑒,𝑗
2 𝜋𝜈𝑗𝑡) , 𝑚𝑗 = 2

 (53) 

where 𝑡 is the time in years, 𝜈𝑗 is the annual stress cycle rate and 𝜈𝑗𝑡 is the total number of stress 510 

cycles in the period [0, 𝑡]. Δ𝑆𝑒,𝑗 is computed as a function of 𝑘𝑗, 𝜆𝑗 and 𝑚𝑗 according to Equation 511 

(50). The vector of all uncertain parameters describing fatigue deterioration of all hotspots 512 

considered in the system reliability analysis is defined as: 513 

𝐗 = (𝐶1, 𝑚1, 𝑎0,1, 𝐵𝑆𝐼𝐹,1, 𝐵Δ𝑆,1, 𝑘1, … , 𝐶𝑛𝐻 , 𝑚𝑛𝐻 , 𝑎0,𝑛𝐻 , 𝐵𝑆𝐼𝐹,𝑛𝐻 , 𝐵Δ𝑆,𝑛𝐻 , 𝑘𝑛𝐻) (54) 

The same probabilistic models are applied to describe the crack growth model parameters for all 514 

hotspots 𝑗 = 1,… , 𝑛𝐻. They are summarized in Table 2. 515 

Table 2. Probabilistic models of the fatigue crack growth parameters for all hotspots 𝑗 = 1,… , 𝑛𝐻. 516 

Parameter Dimension Distribution Mean Standard deviation 

ln 𝑘𝑗 corresponding to N/mm2 normal 2.0 0.275 

𝜆𝑗 - deterministic 0.8 - 

𝜈𝑗 yr-1 deterministic 5106 - 

𝑎0,𝑗 mm exponential 0.11 0.11 

𝑎𝑐,𝑗 mm deterministic 20 - 

ln 𝐶𝑗 corresponding to N and mm normal -29.97 0.514 

𝑚𝑗 - normal calculated from ln 𝐶𝑗 = −15.84 − 3.34𝑚𝑗 

𝐵Δ𝑆,𝑗 - lognormal 1.0 0.1 

𝐵𝑆𝐼𝐹,𝑗 - lognormal 1.0 0.1 

 517 

The mean and standard deviation of the equivalent stress range Δ𝑆𝑒,𝑗 are a function of the 518 

distributions of ln 𝑘𝑗 and ln 𝐶𝑗  through Equations (50) and (51). They are 𝜇Δ𝑆𝑒,𝑗 = 20.1 N/mm2 519 

and 𝜎Δ𝑆𝑒,𝑗 = 5.65 N/mm2. 520 

Statistical dependence among hotspot fatigue behavior is modeled through correlation coefficients 521 

among the fatigue model parameters. In the current example, the fatigue model parameters 𝑎0,𝑗, 522 

𝐶𝑗, 𝑘𝑗, 𝐵Δ𝑆,𝑗 and 𝐵𝑆𝐼𝐹,𝑗 are equi-correlated among all hotspots 𝑗 = 1,… , 𝑛𝐻 with correlation 523 

coefficients 𝜌𝑎0 , 𝜌ln𝐶, 𝜌ln𝑘, 𝜌𝐵Δ𝑆  and 𝜌𝐵𝑆𝐼𝐹. The correlation coefficient 𝜌𝑎0 represents the 524 

statistical dependence due to common fabrication quality; 𝜌ln𝐶 reflects the statistical dependence 525 
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due to common material characteristics; 𝜌ln𝑘 models the statistical dependence due to common 526 

loading characteristics; and 𝜌𝐵Δ𝑆  and 𝜌𝐵𝑆𝐼𝐹  describe statistical dependence due to common 527 

uncertainties in the calculation of hotspot fatigue stress ranges and SIF ranges. The joint 528 

distribution of all fatigue model parameters in 𝐗 is subsequently modeled through a Gaussian 529 

copula (Nataf) model (Liu and Der Kiureghian 1986). 530 

To study the influence of different levels of statistical dependence among hotspot fatigue behavior, 531 

three different dependence cases are considered (low, medium, high), which are defined in terms 532 

of the correlation coefficients 𝜌𝑎0, 𝜌ln𝐶, 𝜌ln𝑘, 𝜌𝐵Δ𝑆  and 𝜌𝐵𝑆𝐼𝐹  as listed in Table 3.  533 

Table 3. Correlation coefficients among the fatigue crack growth parameters. 534 

 low dependence medium  dependence high dependence 

𝜌𝑎0 0.2 0.5 0.8 

𝜌ln 𝐶 0.2 0.5 0.8 

𝜌𝑙𝑛𝑘 0.2 0.5 0.8 

𝜌𝐵Δ𝑆  0.2 0.5 0.8 

𝜌𝐵𝑆𝐼𝐹  0.2 0.5 0.8 

5.3 Inspection model 535 

In the context of fatigue deterioration, relevant inspection outcomes are (a) no detection, (b) 536 

detection but no measurement, and (c) detection and measurement of a fatigue crack. These 537 

inspection outcomes are directly related to the crack size 𝑎𝑗(𝐗, 𝑡) predicted for a given hotspot 𝑗 538 

at inspection time 𝑡. In the current study, we consider inspection outcomes of the type (a) and (b). 539 

The ability of an inspection method to detect a fatigue crack with a certain size 𝐴 = 𝑎 is commonly 540 

described by a probability of detection curve 𝜋(𝑎), which is defined as: 541 

𝜋(𝑎) = Pr(detection of a fatigue crack|𝐴 = 𝑎) (55) 

Such a probability of detection curve describes the performance of the applied inspection method; 542 

it accounts for uncertain factors such as measurement errors, inspector performance and 543 

environmental conditions (Straub 2004). In the current case study, an exponential probability of 544 

detection curve is applied: 545 

𝜋(𝑎) = 1 − exp(−𝑎/𝜆𝐷) (56) 

with 𝜆𝐷 = 1.95 mm. This probability of detection model is representative of magnetic particle 546 

inspection (Moan et al. 2000). 547 

The likelihood function describing the inspection outcome 𝑍𝑖(𝑡) = {fatigue crack detected at 548 

hotpot 𝑗 at time 𝑡} is thus equal to the probability of detection: 549 
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𝐿𝑖(𝐱, 𝑡) = 𝜋 (𝑎𝑗(𝐱, 𝑡)) (57) 

The likelihood function of the complementary inspection outcome 𝑍𝑖(𝑡) = {no fatigue crack 550 

detected at hotpot 𝑗 at time 𝑡} is: 551 

𝐿𝑖(𝐱, 𝑡) = 1 − 𝜋 (𝑎𝑗(𝐱, 𝑡)) (58) 

Under the common assumption that individual inspection outcomes are statistically independent 552 

given the crack sizes 𝑎𝑗(𝐱, 𝑡), 𝑗 = 1,… , 𝑛𝐻, the combined likelihood function 𝐿(𝐱, 𝑡) of all 553 

inspection outcomes 𝑍0:𝑡 in the time period [0, 𝑡] is given by Equation (20). If individual 554 

inspections are not statistically independent due to, for example, common influencing factors such 555 

as environmental conditions and inspector characteristics, the combined likelihood has to be 556 

formulated such that this aspect is captured. Approaches to modeling dependence among 557 

inspection outcomes are, for example, presented in (Straub and Faber 2003)(Maljaars and 558 

Vrouwenvelder 2014). 559 

Since detection/no-detection events provide inequality information, the constant 𝑐 that ensures 0 ≤560 

𝑐𝐿(𝐱, 𝑡) ≤ 1 for all 𝐱 can be chosen as 𝑐 = 1 (see also Section 3.1). 561 

5.4 Prior system reliability analysis 562 

The prior annual system failure probability Pr(𝐹𝑡) of the Zayas frame is computed for each degree 563 

of dependence among hotspot fatigue behavior according to Equation (12). The results are shown 564 

in Figure 2. The problem is solved using subset simulation as described in Section 4 with 565 

conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. The statistics of the 566 

system failure probability are determined from 500 independent simulation runs. This approach is 567 

applied in all subsequent analyses presented in this paper.  568 



Reliability analysis and updating of deteriorating systems with subset simulation 23/42 

  

  

Figure 2. Median and 95% credible interval of the prior annual system failure probability Pr(𝐹𝑡) of the 569 

Zayas frame as a function of different degrees of dependence among hotspot fatigue behavior. 570 

Computations are performed with subset simulation as summarized in Section 4 with conditional 571 

probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. (d) compares the respective medians of the 572 

prior annual system failure probability. 573 

As expected, the annual system failure probability Pr(𝐹𝑡) increases with time 𝑡, due to fatigue 574 

deterioration. Furthermore, Figure 2(d) indicates that a higher dependence among hotspot fatigue 575 

behavior leads to a larger system failure probability due to an increase in the probability of joint 576 

occurrence of several element fatigue failures. This result is expected for a redundant structural 577 

system (Straub and Der Kiureghian 2011). 578 

The width of the 95% credible interval indicates the accuracy of the employed subset simulation. 579 

The interval has 0.95 probability of containing the true value of the system failure probability 580 

(within the confines of the model). From Figure 2(a) to (c) it can be seen that the accuracy of the 581 

computation varies with time 𝑡 since the number of samples per subset level used in the simulation 582 

is the same for all years. Results are less accurate for low values of 𝑡, because of the associated 583 

smaller system failure probability. Note, however, that the variability of the simulated failure 584 

probabilities at the beginning of the structure’s service life (𝑡 < 5yr) is small. In this period, the 585 

probability of fatigue failures is very small, and they have little effect on the system failure 586 

probability (the failure probability of the undamaged Zayas frame is Pr(𝐹𝑡|𝐃𝑡 = 𝟎) = 1.3 ∙ 10−6). 587 
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5.5 Posterior system reliability analysis  588 

In this section, different inspection scenarios in terms of inspection times, coverage and outcomes 589 

are considered to study their effect on the reliability of the Zayas frame. Firstly, hotspots 590 

{5, 6, 13, 14, 21, 22} are inspected at time 𝑡 = 10 years. These hotspots are associated with the 591 

least important braces of the Zayas frame (see Figure 1 and Table 1). No fatigue cracks are detected 592 

during the inspection. The posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡), 𝑡 = 1, … ,50 are 593 

computed for each degree of dependence among hotspot fatigue behavior with subset simulation 594 

as described in Section 4 with conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset 595 

level. The results are shown in Figure 3. 596 

  

  

Figure 3. Median and 95% credible interval of the posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) 597 

of the Zayas frame as a function of different degrees of dependence among hotspot fatigue behavior. 598 

Hotspots {5, 6, 13, 14, 21, 22} are inspected at time 𝑡 = 10 years. No fatigue cracks are detected. 599 

Computations are performed with subset simulation as summarized in Section 4 with conditional 600 

probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. (d) compares the respective medians of the 601 

posterior annual system failure probability. 602 

When considering the posterior medians of the estimated posterior system failure probabilities 603 

shown in Figure 3 (a) to (c), it can be seen that the system failure probability reduces after the 604 

inspection due to the positive inspection result. The effect increases with increasing degree of 605 

dependence among hotspot deterioration behavior. 606 
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Table 4 lists the probabilities Pr(𝑍𝑒,0:𝑡) and Pr(𝐹𝑡|𝑍0:𝑡) computed at time 𝑡 = 10 years. The subset 607 

simulation (SuS) results are presented together with those from additional Monte Carlo simulations 608 

(MCS). The number of model evaluations is also provided for each simulation of Pr(𝐹𝑡|𝑍0:𝑡) to 609 

indicate the computational efforts, since the accuracy can always be improved by increasing the 610 

number of samples. The results in Table 4 show that the probability of the inspection outcome is 611 

large. This is because the initial defects at each hotspot considered in the current case study are 612 

small, and hence the fatigue cracks are unlikely to grow to a detectable size within the first 10 613 

years of the structure’s service life. 614 

Table 4 Probability of the inspection outcome Pr(𝑍𝑒,0:𝑡) and the posterior system failure probability 615 

Pr(𝐹𝑡|𝑍0:𝑡) at time 𝑡 = 10 years. Subset simulation (SuS) is performed as summarized in Section 4 with 616 

conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. Results in square brackets 617 

represent the 95% credible interval. MCS is performed with 107 samples. Results are shown as 95% 618 

confidence interval. The total number of model runs are provided for the computation of Pr(𝑍𝑒,0:𝑡) and 619 

Pr(𝐹𝑡|𝑍0:𝑡). 620 

Case Method Pr(𝑍𝑒,0:𝑡) Pr(𝐹𝑡|𝑍0:𝑡) # model runs 

Low dependence SuS [0.642; 0.7] [0.0467; 2.3] ∙ 10−4 5.9 ∙ 103 

 MCS [0.671; 0.6716] [7.08; 8.49] ∙ 10−5 107 

Medium dependence SuS [0.659; 0.717] [0.0267; 3.11] ∙ 10−4 5.9 ∙ 103 

 MCS [0.6875; 0.688] [0.864; 1.01] ∙ 10−4 107 

High dependence SuS [0.673; 0.734] [0.00758; 1.08] ∙ 10−4 6.8 ∙ 103 

 MCS [0.7042; 0.7048] [2.94; 3.79] ∙ 10−5 107 

 621 

In the second example, hotspots {15,16,17,18,19,20} are inspected at time 𝑡 = 10 years. These 622 

hotspots are associated with the most important structural members of the Zayas frame (see Figure 623 

1 and Table 1). We assume again that each inspection results in a no-detection event. The posterior 624 

annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) is shown for all three dependence cases in Figure 4. 625 

In contrast to the first scenario, an inspection of the most important structural elements has a 626 

significant effect on the system reliability regardless of the degree of dependence among element 627 

deterioration. 628 

 629 
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Figure 4. Median and 95% credible interval of the posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) 630 

of the Zayas frame as a function of different degrees of dependence among hotspot fatigue behavior. 631 

Hotspots {15,16,17,18,19,20} are inspected at time 𝑡 = 10 years. No fatigue cracks are detected. 632 

Computations are performed with subset simulation as summarized in Section 4 with conditional 633 

probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. (d) compares the respective medians of the 634 

posterior annual system failure probability. 635 

The probability of the inspection outcome Pr(𝑍𝑒,0:𝑡) and the posterior system failure probability 636 

Pr(𝐹𝑡|𝑍0:𝑡) at year 10 are summarized in Table 5 for each dependence case. The computed 637 

probabilities Pr(𝑍𝑒,0:𝑡) are the same as in the first scenario (see Table 4) because the applied 638 

probabilistic models of the crack growth parameters are identical for all hotspots (see Table 2). 639 

Comparing the bounds of the SuS and MCS results for Pr(𝐹𝑡|𝑍0:𝑡), it is seen that their accuracy is 640 

similar even though the number of samples in the SuS is only 𝑁 = 1000 samples per subset level.  641 
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Table 5. Probability of the inspection outcome Pr(𝑍𝑒,0:𝑡) and the posterior system failure probability 642 

Pr(𝐹𝑡|𝑍0:𝑡) at time 𝑡 = 10 years. Subset simulation is performed as summarized in Section 4 with 643 

conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. Results represent the 95% 644 

credible interval. MCS is performed with 107 samples. Results represent the 95% confidence interval. 645 

Case Method Pr(𝑍𝑒,0:𝑡) Pr(𝐹𝑡|𝑍0:𝑡) # model runs 

Low dependence SuS [0.642; 0.701] [0.635; 3.15] ∙ 10−6 6.8 ∙ 103 

 MCS [0.671; 0.6716] [1.22; 3.54] ∙ 10−6 107 

Medium dependence SuS [0.656; 0.715] [0.543; 3.12] ∙ 10−6 6.8 ∙ 103 

 MCS [0.6876; 0.6882] [1.89; 4.53] ∙ 10−6 107 

High dependence SuS [0.673; 0.73] [0.55; 2.77] ∙ 10−6 6.8 ∙ 103 

 MCS [0.7042; 0.7048] [1.06; 3.2] ∙ 10−6 107 

 646 

In the third scenario, hotspots {15,16,17,18,19,20} are again inspected in year 10. No fatigue 647 

cracks are detected at hotspots {15,16,17,18} whereas defects are detected at hotspots {19,20}. 648 

The corresponding posterior annual system failure probabilities are shown for all three dependence 649 

cases in Figure 5. The system failure probability increases after the inspection since fatigue cracks 650 

are detected in welds connecting two of the most important braces with the legs (see Figure 1 and 651 

Table 1). The effect is most pronounced in the low dependence case.  652 

 653 
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Figure 5. Median and 95% credible interval of the posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) 654 

of the Zayas frame as a function of different degrees of dependence among hotspot fatigue behavior. 655 

Hotspots {15,16,17,18,19,20} are inspected in year 10. No fatigue cracks are detected at hotspots 656 

{15,16,17,18} whereas defects are detected at hotspots {19,20}. Computations are performed with subset 657 

simulation as summarized in Section 4 with conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per 658 

subset level. (d) compares the respective medians of the posterior annual system failure probability. 659 

Table 6 shows that the current inspection outcome is approximately two orders of magnitude less 660 

probable than the no-detection outcomes in the previous scenarios (see Table 4 and Table 5). When 661 

comparing the subset simulation results in Table 5 and Table 6, it can also be seen that the number 662 

of model evaluations are similar in both examples although the posterior system failure 663 

probabilities Pr(𝐹𝑡|𝑍0:𝑡) are multiple orders of magnitude larger in the current example. The 664 

reason is that the simulations of the smaller probabilities of the observation event Pr(𝑍𝑒,0:𝑡) require 665 

here more model evaluations. 666 
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Table 6. Probability of the inspection outcome Pr(𝑍𝑒,0:𝑡) and the posterior system failure probability 667 

Pr(𝐹𝑡|𝑍0:𝑡) at time 𝑡 = 10 years. Subset simulation is performed as summarized in Section 4 with 668 

conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. Results represent the 95% 669 

credible interval. MCS is performed with 107 samples. Results represent the 95% confidence interval. 670 

Case Method Pr(𝑍𝑒,0:𝑡) Pr(𝐹𝑡|𝑍0:𝑡) # model runs 

Low dependence SuS [2.45; 5.18] ∙ 10−3 [0.00429; 1.02] ∙ 10−2 7.1 ∙ 103 

 MCS [3.66; 3.74] ∙ 10−3 [2.64; 3.79] ∙ 10−3 107 

Medium dependence SuS [2.66; 5.71] ∙ 10−3 [0.0121; 1.67] ∙ 10−2 6.2 ∙ 103 

 MCS [3.82; 3.9] ∙ 10−3 [6.14; 7.79] ∙ 10−3 107 

High dependence SuS [2.57; 5.78] ∙ 10−3 [0.0319; 9.84] ∙ 10−3 7.0 ∙ 103 

 MCS [3.86; 3.93] ∙ 10−3 [2.96; 4.13] ∙ 10−3 107 

 671 

In the last scenario, regular inspections are performed at 10 year intervals. Hotspots associated 672 

with elements of each importance category are inspected at each inspection apart from the last 673 

inspection where only hotspots associated with the upper braces (low importance category) are 674 

inspected (see Figure 1 and Table 1). This inspection strategy ensures that each hotspot is inspected 675 

at least once throughout the service life of the structure. The inspection strategy is as follows: 676 

hotspots {15,16,7,8,5,6} are inspected at time 𝑡 = 10 years, hotspots {17,18,9,10,13,14} are 677 

inspected at time 𝑡 = 20 years, hotspots {19,20,11,12,21,22} are inspected at time 𝑡 = 30 years 678 

and hotspots {1,2,3,4} are inspected at time 𝑡 = 40 years. Each inspection results in a no-detection 679 

events. The results are shown in Figure 6. As expected, the positive inspection outcome causes a 680 

reduction in the annual system failure probability after each inspection. This effect increases with 681 

increasing degree of dependence among hotspot fatigue behavior. 682 



Reliability analysis and updating of deteriorating systems with subset simulation 30/42 

  

  

Figure 6. Median and 95% credible interval of the posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) 683 

of the Zayas frame as a function of different degrees of dependence among hotspot fatigue behavior. 684 

Hotspots {15,16,7,8,5,6} are inspected at time 𝑡 = 10 years, hotspots {17,18,9,10,13,14} are inspected at 685 

time 𝑡 = 20 years, hotspots {19,20,11,12,21,22} are inspected at time 𝑡 = 30 years and hotspots {1,2,3,4} 686 

are inspected at time 𝑡 = 40 years. No fatigue cracks are detected. Computations are performed with subset 687 

simulation as summarized in Section 4 with conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per 688 

subset level. (d) compares the respective medians of the posterior annual system failure probability. 689 

Table 7 summarizes the median probability of the inspection outcome Pr(𝑍𝑒,0:𝑡) after each 690 

inspection. Each additional inspection provides more information on the actual condition of the 691 

structure. With increasing amount of information, the probability of the inspection outcome 692 

Pr(𝑍𝑒,0:𝑡) decreases. It also decreases with decreasing degree of dependence among hotspot 693 

fatigue behavior. 694 
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Table 7. Median of the probability of the inspection outcome Pr(𝑍𝑒,0:𝑡) as a function of the number of 695 

inspections and the degree of dependence among hotspot fatigue behavior. 696 

Year 𝑡 low dependence medium  dependence high dependence 

10 0.67 0.69 0.70 

20 0.42 0.47 0.52 

30 0.25 0.33 0.40 

40 0.17 0.26 0.34 

6 Application b: Daniels system subjected to fatigue deterioration 697 

We apply the proposed approach to the idealized structural system shown in Figure 7, known as 698 

Daniels system (Daniels 1945). We here assume that the Daniels system consists of welded steel 699 

members, which are subjected to fatigue deterioration throughout the structure’s service life of 700 

𝑇 = 50 years. The properties of the Daniels system, in particular the exchangeability of the 701 

elements, facilitate numerical investigations.  702 

 703 

 

Figure 7. Daniels system with 𝑛𝐸 elements. 704 

6.1 System model 705 

The considered Daniels system consists of 𝑛𝐸 = 100 elements with independent and identically 706 

distributed (i.i.d.) capacities 𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸 . The applied load is shared equally among all 707 

elements; its annual maximum is denoted by 𝐿. In the current example, we assume that each 708 

element is associated with one welded connection. Furthermore, we assume that each welded 709 

connection contains only one critical hotspot, i.e. 𝑛𝐻 = 𝑛𝐸 = 100. 710 

The same deterioration model presented in Section 5 is applied to model fatigue deterioration of 711 

the Daniels system. At any time 𝑡 there are 𝑁𝐹,𝑡 failed elements and 𝑛𝐸 −𝑁𝐹,𝑡 elements are 712 

available to resist the applied loads. Because of the exchangeability of its elements, 𝑁𝐹,𝑡 represents 713 

the deterioration state of the Daniels system at time 𝑡. 𝑁𝐹,𝑡 is computed as a function ℎ of the 714 

deterioration model parameters 𝐗 as:  715 
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𝑁𝐹,𝑡 = ℎ(𝐗, 𝑡) =∑𝐼(𝑔𝑖(𝐗, 𝑡) ≤ 0)

𝑛𝐸

𝑖=1

 (59) 

where 𝑔𝑖(𝐗, 𝑡) is the limit-state function defining the event of fatigue failure of element 𝑖; see 716 

Equation (44). The system failure probability of the Daniels system in the reference period [𝑡 −717 

Δ𝑡, 𝑡] conditional on a realization of the fatigue model parameters 𝐗 = 𝐱 can now be written as: 718 

𝑝𝐹(𝐱, 𝑡) = Pr (𝐹𝑡|𝑁𝐹,𝑡 = ℎ(𝐱, 𝑡)) (60) 

For given probability distributions of the component capacities 𝑅𝑖 and the annual maximum load 719 

𝐿, the conditional system failure probability Pr(𝐹𝑡|𝑁𝐹,𝑡 = 𝑘), 𝑘 = 0, … , 𝑛𝐸  is readily determined 720 

from Daniels system formulation. This failure probability has a reference period Δ𝑡 = 1 year but 721 

it is independent of time 𝑡. For ductile element behavior (steel elements), the solution is given by 722 

(Gollwitzer and Rackwitz 1990): 723 

Pr(𝐹𝑡|𝑁𝐹,𝑡 = 𝑘) = Pr(∑ 𝑅𝑖

𝑛𝐸−𝑘

𝑖=1

≤ 𝐿) (61) 

The right hand side of Equation (61) corresponds to a component reliability problem, which can 724 

be solved using structural reliability methods. 725 

In the current example, the component capacities 𝑅𝑖, 𝑖 = 1,… , 𝑛𝐸 are modeled as i.i.d. normal 726 

random variables with c.o.v. 𝛿𝑅 = 0.15. The annual maximum of the applied load 𝐿 is modeled as 727 

a lognormal random variable with c.o.v. 𝛿𝐿 = 0.25. The ratio of the mean values of 𝑛𝐸𝑅𝑖 and 𝐿 is 728 

selected such that the undamaged Daniels system has a probability of failure Pr(𝐹𝑡|𝑁𝐹,𝑡 = 0) =729 

1.3 × 10−6. The resulting ratio is 𝑛𝐸𝜇𝑅𝑖/𝜇𝐿 = 3.09. Pr(𝐹𝑡|𝑁𝐹,𝑡 = 𝑘), 𝑘 = 0,… , 𝑛𝐸  is pre-730 

calculated for each realization of the system deterioration state by solving Equation (61) using the 731 

first-order reliability method (FORM). The results are illustrated in Figure 8. In the subsequent 732 

reliability analysis of the deteriorating Daniels system, the computation of 𝑝𝐹(𝐱, 𝑡) is again 733 

reduced to a lookup operation. 734 
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Figure 8. Failure probability of the Daniels system as a function of the number of elements failed due to 735 

fatigue. 736 

Each element of the Daniels system is equally important due to the perfect load sharing among the 737 

structural elements. The single element importance measure of an individual element 𝑖 of the 738 

Daniels system is SEI𝑖 = Pr(𝐹𝑡|𝑁𝐹,𝑡 = 1) − Pr(𝐹𝑡|𝑁𝐹,𝑡 = 0) = 2.9 × 10−7. The Daniels system 739 

is highly redundant with respect to single element failure when compared to the Zayas frame 740 

studied in Section 5 where failure of elements of the highest importance category lead to a 741 

significant reduction in system reliability, see Table 1. 742 

6.2 Prior system reliability analysis 743 

The computed prior annual system failure probability Pr(𝐹𝑡) of the Daniels system is shown in 744 

Figure 9 for each degree of dependence among hotspot fatigue. Computations are performed with 745 

subset simulation as summarized in Section 4 with conditional probabilities 𝑝0 = 0.1 and 𝑁 =746 

1000 samples per subset level. 747 
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Figure 9. Median and 95% credible interval of the prior annual system failure probability Pr(𝐹𝑡) of the 748 

Daniels system as a function of different degrees of dependence among hotspot fatigue behavior. 749 

Computations are performed with subset simulation as summarized in Section 4 with conditional 750 

probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per subset level. (d) compares the respective medians of the 751 

prior annual system failure probability. 752 

In general, a large dependence among element deterioration behavior increases the probability of 753 

joint occurrence of more than one element deterioration failures. Figure 9 shows that this behavior 754 

has a significant influence on the reliability of the Daniels system. This outcome is expected for a 755 

structural system with a large redundancy. In contrast, the results computed for the Zayas frame 756 

show that the influence of correlation among element deterioration failures is less pronounced for 757 

structural systems with limited or no redundancy (see Figure 2). 758 

6.3 Posterior system reliability analysis 759 

To study the effect of inspections on the reliability of the Daniels system, different inspection 760 

scenarios in terms of inspection times and coverage are considered. Each inspection is assumed to 761 

result in a no detection event. The same inspection model as presented in Section 5.3 is applied.  762 

In the first scenario, hotspots {1 to 10} are inspected at time 𝑡 = 10 years. The updated annual 763 

system failure probabilities Pr(𝐹𝑡|𝑍0:𝑡) of the Daniels system are shown in Figure 10 for each 764 

degree of dependence among hotspot fatigue behavior. In all three dependence cases, the system 765 
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failure probability decreases after the inspection due to the positive inspection outcome. After the 766 

inspection, the system failure probability is reduced to its lower limit, which corresponds to the 767 

reliability of the undamaged structure at the beginning of its service live. The subsequent increase 768 

in the annual system failure probability is most pronounced in the high-dependence case. 769 

  

  

Figure 10. Median and 95% credible interval of the posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) 770 

of the Daniels system as a function of different degrees of dependence among hotspot fatigue behavior. 771 

hotspots {1 to 10} are inspected in year 10. No fatigue cracks are detected. Computations are performed 772 

with subset simulation as summarized in Section 4 with conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 773 

samples per subset level. (d) compares the respective medians of the posterior annual system failure 774 

probability. 775 

In the second scenario, different sets of hotspots are inspected at 10 year intervals. The inspection 776 

strategy is as follows: hotspots {1 to 10} are inspected at time 𝑡 = 10 years, hotspots {11 to 20} 777 

are inspected at time 𝑡 = 20 years, hotspots {21 to 30} are inspected at time 𝑡 = 30 years and 778 

hotspots {31 to 40} are inspected at time 𝑡 = 40 years. The results are shown in Figure 11. In all 779 

three dependence cases, the posterior annual system failure probability is close the annual failure 780 

probability of the undamaged structures after all inspections are performed. 781 
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Figure 11. Median and 95% credible interval of the posterior annual system failure probability Pr(𝐹𝑡|𝑍0:𝑡) 782 

of the Daniels system as a function of different degrees of dependence among hotspot fatigue behavior. 783 

Hotspots {1 to 10} are inspected at time 𝑡 = 10 years, hotspots {11 to 20} are inspected at time 𝑡 =784 

20 years, hotspots {21 to 30} are inspected at time 𝑡 = 30 years and hotspots {31 to 40} are inspected at 785 

time 40 years. Each inspection results in a no-detection event. Computations are performed with subset 786 

simulation as summarized in Section 4 with conditional probabilities 𝑝0 = 0.1 and 𝑁 = 1000 samples per 787 

subset level. (d) compares the respective medians of the posterior annual system failure probability. 788 

7 Discussion 789 

We propose a modeling and computational framework for analyzing the reliability of deteriorating 790 

structural systems and updating it with inspection and monitoring data. It enables an integral 791 

assessment of deterioration at the element level together with the structural system performance 792 

and structural condition information. The interdependences among the element deterioration states 793 

are included. Only few previous works have addressed such an integral system analysis (e.g. Lee 794 

and Song 2014; Schneider et al. 2015; Luque and Straub 2016). In contrast to these approaches, 795 

the main advantage of the proposed framework is the fact that it can be implemented easily through 796 

the use of subset simulation. It is computationally robust since it provides reasonably accurate 797 

solutions without a need for tailoring the algorithm to specific applications. It is also 798 

computationally efficient for many applications, as discussed further below.  799 
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The results in the paper demonstrate the importance of considering dependence among element 800 

deterioration when evaluating the structural system reliability. For the considered redundant 801 

systems, the dependence leads to a decrease in the prior (unconditional) system reliability. This 802 

effect is more pronounced as the system redundancy increases (from the Zayas frame to the Daniels 803 

system). When including inspection results, dependence among element deterioration means that 804 

the state of non-inspected elements can be inferred from the inspection results. As long as 805 

inspections do not indicate serious problems, this additional learning leads to a reduction of 806 

uncertainty and hence to an increase in the overall system reliability. In the considered case studies, 807 

the posterior (conditional) reliability after the inspections is fairly similar for the different degrees 808 

of dependence. However, this is not expected to occur if inspections do indicate larger damage.  809 

The framework can handle any type of information on the deterioration state of the structure, as 810 

long as a corresponding likelihood function is formulated. In particular, the framework can also 811 

include information from monitoring systems. For monitoring systems, which provide potentially 812 

large amount of data, it might be beneficial to pre-process the data. In such a pre-processing step 813 

(e.g. a system identification), the probability of the observed data given the deterioration states of 814 

the structure is determined. This probability is the likelihood function that is inputted into 815 

Equations (34) and (35). Such an approach is similar to a two-stage Bayesian analysis for system 816 

identification (see Au and Zhang 2015). 817 

The use of subset simulation is computationally rather efficient, as demonstrated in the case 818 

studies. Here, no attempt was made to optimize the efficiency of subset simulation. The number 819 

of samples per subset level was chosen such that the results have a reasonable accuracy. Their 820 

accuracies can always be improved or reduced by increasing or decreasing the number of samples 821 

per subset level. It should be noted, however, that the number of required subsets increases with 822 

increasing amount of information, i.e. with decreasing Pr(𝑍𝑒,0:𝑡).  823 

The proposed framework relies on the separation of the computation of the system deterioration 824 

state 𝐃𝑡 and structural system reliability conditional on 𝐃𝑡 = 𝐝𝑡. Here, two situations must be 825 

distinguished: Applications, in which the conditional probability Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) can be pre-826 

computed, and those in which it cannot. The former occurs if the numbers of distinct states in 𝐃𝑡 827 

is limited. If the structural system reliability analysis is demanding, it might take some computation 828 

time for establishing a database with all values of Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡), but this is typically not critical, 829 

as this computation must be carried out only once and the database can be used for all subsequent 830 

reliability updating calculations. If the number of states in 𝐃𝑡 is too large to enable pre-831 

computation, because there are too many elements or because continuous damage states are 832 

considered, Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) must be computed on the fly. If such calculations are inexpensive (e.g. 833 

through a FORM analysis), the separation of the system deterioration state and structural system 834 

reliability is still computationally beneficial. In cases where pre-computation of Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡) 835 

is not an option, and in which it is expensive to compute it on the fly, there are two possible 836 

strategies: (a) One can investigate the possibility of developing a response surface for 837 
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Pr(𝐹𝑡|𝐃𝑡 = 𝐝𝑡). Since 𝐃𝑡 is typically discrete, many of the classical response surface techniques 838 

used in structural reliability will not be suitable. This is an area of future research. (b) Alternatively, 839 

the proposed framework can be modified to solve the system deterioration updating and the system 840 

reliability jointly. In this case, however, the advantages of the de-coupling are lost.  841 

Potentials for further developments are seen in integrating the presented method into the 842 

framework of pre-posterior decision analysis to identify optimal inspection, monitoring and 843 

maintenance strategies for engineering structures (e.g. Straub and Faber 2005; Thöns and Faber 844 

2013; Straub 2014). 845 

8 Conclusions 846 

We propose a novel approach to modeling and analyzing the system reliability of deteriorating 847 

structural systems in conjunction with structural condition information, which considers stochastic 848 

interdependence among the deterioration states of the structural elements. The approach provides 849 

the means to consistently utilize inspection and monitoring information on the deterioration state 850 

of structures to update the system failure probability. Through the application of subset simulation, 851 

the approach can be implemented relatively easily and is considerably more efficient than crude 852 

Monte Carlo simulation. 853 
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