
1 INTRODUCTION  

The performance of most engineering systems is 
associated with uncertainties and risk. In many 
domains, these are addressed by a probabilistic risk 
assessment. In such an assessment, domain experts 
in the specific disciplines and probability experts 
have to work closely together. A well-suited 
modeling framework for this purpose is the BN, 
which on the one hand is flexible enough to 
represent a wide variety of probabilistic 
dependencies, and on the other hand allows non-
probability experts to understand the basic 
dependence structure encoded in the models through 
the BNs graphical form.  

BNs have been successfully applied as a tool for 
reasoning under uncertainty in various fields 
including machine learning (Bishop, 2006), 
medicine (Lucas, 2001), law (Fenton and Neil, 
2000), environmental modeling (Aguilera et al., 
2011) environmental and resource management 
(Barton et al., 2012), reliability (Langseth and 
Portinale, 2007, Weber et al., 2012).  

BNs consist of a qualitative part, the dependence 
structure represented by a directed acyclic graph 
(DAG), and a quantitative part, the local conditional 
probability distributions (CPDs). For discrete BNs 
the latter are given in the form of conditional 
probability tables (CPTs). The derivation of the 
general dependence structure requires a profound 

understanding of the problem as well as an 
understanding of the modeling tool. Once the 
general structure is developed, the probability expert 
knows what CPDs need to be elicited through data, 
expert estimates or a combination of both.   

In the field of engineering risk and reliability 
analysis, the structure elicitation process by itself 
has received little attention. Langseth and Portinale 
(2007) explain application of BNs to reliability 
including quantitative and qualitative model building 
and inference. They give some suggestions on BN 
elicitation based on domain experts and explain how 
BNs can replace fault trees (FTs).  (Fenton and Neil, 
2012) propose idioms intended for supporting BN 
experts in model building. (Kjaerulff and Madsen, 
2013) distinguish between different types of 
variables and describe generic high-level 
dependence structures between these types of 
variables. Finally (Conrady and Jouffe, 2015) give 
some insight into how BN structures can be elicited. 

Based on an extensive literature review, we 
distinguish four approaches for BN structure 
elicitation, namely: (1) transformation from existing 
probabilistic models such as fault trees, event trees; 
(2) derivation from existing physical or empirical 
models; (3) structure elicitation based on data; (4) 
structure elicitation based on domain expert 
knowledge. Each of these four approaches is 
presented in the following sections together with a 
small application from the field of engineering risk 
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analysis. In the final discussion, typical challenges 
associated with the approaches are discussed.  

2 BN STRUCTURES BASED ON OTHER 
PROBABILISTIC MODELS 

In many industries, probabilistic models like fault 
trees (FTs) or event trees (ETs) have become 
popular due to their simplicity and the possibility to 
standardize their elicitation. Since BNs are more 
flexible, they are increasingly replacing or 
enhancing these models. In such a process, as a first 
step, a BN is derived from existing FTs, ETs or 
other probabilistic models.  

The mapping of FTs and ETs to BNs is 
considered in the following. This process is rather 
intuitive and straightforward. 

2.1 Fault trees (FTs) 
FTs are typically used to break down system failure 
events into their constituent basic events. Boolean 
operators (gates) are used to link one level of events 
to the next. The most basic operators are the AND 
and the OR gate – other gate types are available e.g. 
(Vesely et al., 1981, Villemeur, 1992). Both AND 
and OR gates can be represented in a BN through a 
converging structure (Fig. 1), the CPTs of the child 
node are as shown in Fig. 1d and e. Transformation 
of FTs to BNs has been described by many authors, 
including (Bobbio et al., 2001, Mahadevan et al., 
2001). 

2.2 Event trees (ETs) 

While FTs model the occurrence of a top (failure) 
event starting from several initiating events, ETs 
model the paths from the top event to the possible 
final states (represented by the random variable 𝑌 in 
Fig. 2). Often FTs and ETs are used in combination 
in so-called bow-tie models, where the top event 
from the FT represents the initiating event of the ET 
(Andersen et al., 2004). Transformation of ETs to 
BNs has been described e.g. in (Bearfield and 
Marsh, 2005). An ET is shown in Fig. 2a. The 
ordering of events from left to right typically follows 
the causal direction, which is evident in the 
corresponding BN shown in Fig. 2b. Whether a link 
between any two nodes is actually present can be 
inferred from the ET, which includes the complete 
joint probability distribution.  

  

 

Figure 1. Transformation of an AND resp. OR gate from a FT 
to a BN. 

2.3 Application example 

A simple ET for determining the probability of 
fatalities as a consequence of a ship accident is 
shown in Fig. 3, adapted from IMO (2010). The 
random variables in the ET, namely operational 
state, damage extend and fatalities are represented 
through nodes in the BN. Potentially all nodes in the 
BN can be connected. Since the order of variables in 
the ET from left to right is causal, the directions of 
the potential links are predetermined. Whether two 
nodes are actually connected can be derived from 
the probabilities in the ET. Based on the probability 
distributions in the ET there exists a link from 
Operational state to Damage extent as well as from 
Damage extent to Fatalities. No link is present 
between Operational state and Fatalities, because 
these are independent conditional on knowing the 
state of Damage extent, i.e. 
𝑝 Fatalities Op. state,Damage extent =  
𝑝 Fatalities  Damage extent . 
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Figure 2. Transformation of an ET to a BN. 
 
 

 
 

Figure 3. Transformation of an ET for determining the 
consequences of a ship accident to a BN. 

3 BN STRUCTURES BASED ON PHYSICAL 
AND EMPIRICAL MODELS 

Often physical or empirical models exist of the 
processes leading to failure and risk. In combination 
with a stochastic model of its input parameters, such 
models can be used in a probabilistic risk analysis. 
To enable a fast updating of the model with new 
information or to extend the model, it may be 
desirable to represent the model in a BN (Straub and 
Der Kiureghian, 2010). 

3.1 Representation in a BN 

A model 𝑦 = 𝑔 𝐱  with independent random 
variables 𝐗 = X!,… ,𝑋!  can be represented in a 
BN as shown in Fig. 4.  Dependence between the 
random variables in 𝐗  can be modeled through 
directed links between pairs of them or through 
common parents. The model 𝑔 can be analytical or 
numerical. 

 

 
Figure 4. BN representation of a physical/empirical model. 

 
For models with many basic random variables 𝐗, 

it can be computationally unfeasible to include all 
random variables 𝐗 explicitly in the BN. In such 
cases, some of the random variables can be 
considered implicitly in the BN (Zwirglmaier and 
Straub, 2015b). This corresponds to integrating 𝑔 𝐗  
over the random variables 𝐗!"#  (with 𝐗!"# ⊂ 𝐗 ) 
that are to be modeled implicitly.  

3.2 Application example 

Following (Drees and Holzapfel, 2012) the landing 
distance required by a landing aircraft can be 
determined from variables such as approach speed 
deviation, head wind, landing weight and multiple 
other parameters through a numerical model 𝑔. In 
flight these parameters are not known with certainty 
and are thus modeled by random variables, 𝐗.  

The model is transformed to a BN following 
(Zwirglmaier and Straub, 2015b). The resulting BN 
is shown in Fig. 5. Only approach speed deviation, 
head wind, landing weight are modeled explicitly 
and all other random variables are treated as implicit 
uncertainties, since they are either not important or 
not observable at the required point of time. The 
model structure can be extended e.g. based on 

p(X1= x1
1)

p(X2= x2
1|X1= x1

1)

p(Y= y1|X1= x1
1, X2= x2

1)

p(Y= y2|X1= x1
1, X2= x2

1)

p(X2= x2
2|X1= x1

1)

p(X2= x2
1|X1= x1

2)

p(X2= x2
2|X1= x1

2)

p(X2= x2
1|X1= x1

3)

p(X2= x2
2|X1= x1

3)

p(X1= x1
2)

p(X1= x1
3)

X1

X2

a) Event tree with two intermediate random variables
X={X1, X2 } and a final random variable Y

X1 X2 Y

Y

b) BN representation of the event tree

p(open sea| acc.)
= 0.1

p(small| open sea, acc.)
= 0.6

p(severe| open sea, acc.)
= 0.3

p(harbour| acc.) 
= 0.9

Operational
state

Damage
extent

Fatalities

p(loss| open sea, acc.)
= 0.1

p(no| open sea, small, acc.) = 0.98

p(yes| open sea, small, acc.) = 0.02

p(no| open sea, severe, acc.) = 0.96

p(yes| open sea, severe, acc.) = 0.04

p(no| open sea, severe, acc.) = 0.5

p(yes| open sea, severe, acc.) = 0.5

p(small| harbour, acc.)
= 0.6

p(severe| harbour, acc.)
= 0.37

p(loss| harbour, acc.)
= 0.03

p(no| open sea, small, acc.) = 0.98

p(yes| open sea, small, acc.) = 0.02

p(no| open sea, severe, acc.) = 0.96

p(yes| open sea, severe, acc.) = 0.04

p(no| open sea, severe, acc.) = 0.5

p(yes| open sea, severe, acc.) = 0.5

acc.

Operat.
state

Damage
extent

Fatalities

Transformation
to BN

X2X1 Xn-k Xn

Y



domain expert knowledge. This is indicated through 
the grey nodes airport and aircraft-type in Fig. 5. 
These nodes causally influence the basic random 
variables of the physical model.  

 

 
 

Figure 5. BN derived from a physical model RWO =
𝑔 𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ 𝑠𝑝𝑒𝑒𝑑 𝑑𝑒𝑣. ,𝐻𝑒𝑎𝑑 𝑤𝑖𝑛𝑑, 𝐿𝑎𝑛𝑑𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡,…   
(Zwirglmaier and Straub, 2015a).  

4 BN STRUCTURES BASED ON DOMAIN 
EXPERT KNOWLEDGE 

For problems, for which neither another probabilistic 
models nor a physical/empirical model exist, or the 
existing models do not meet the modeler’s 
requirements, a BN structure can be elicited directly 
from domain expert knowledge.  

4.1 Modeling approach 

The procedure for eliciting BNs from domain expert 
can be structured into the following three steps:  
1. Problem clarification and identification of 

relevant parameters  
2. Modeling of relevant dependencies 
3. Handling unquantifiable variables 

4.1.1 Problem clarification and identification of 
relevant variables 

Before building the model, the relevant variables 
have to be determined. These are the variables of 
interest (the problem variables in the notation of 
Kjaerulff and Madsen (2013)), the information 
variables (the observable parameters) and the 
mediating variables, which are not observable but 
help in representing the dependencies between 
information variables and the problem variables. 
This identification of the relevant variables typically 
cannot be treated independently from the 
dependence structure. Each of the relevant variables 
should be clearly defined including its type, support 
and temporal and spatial reference.   

Methods such as organized interviews (Hanea 
and Ale, 2009), failure mode and effect analysis 

(FMEA) (Suddle, 2009, Weber and Jouffe, 2006, De 
Carlo et al., 2013), methods from system 
engineering like structured analysis and design 
technique (SADT) (Trucco et al., 2008, Weber and 
Jouffe, 2006, De Carlo et al., 2013) can be used to 
support the identification of relevant variables and 
their dependencies. 

4.1.2 Modeling of relevant dependencies 
The dependence structure among the relevant 
parameters has to be introduced through directed 
links. Though not required by BN theory, the 
dependencies ideally represent causality, since this 
typically leads to more efficient and better traceable 
models. A simple example for causality is a result 
from a structural monitoring that indicates a poor 
condition of the structure. There are two possible 
ways for orienting the link between the two 
variables. 

I) From monitoring result to condition of 
the structure: This is referred to as the 
diagnostic direction i.e. by looking at the 
monitoring result one concludes that the 
condition of the structure is poor. 

II) From condition of the structure to 
monitoring result: This is referred to as 
the causal direction i.e. the condition of 
the structure determines the monitoring 
result. 

Option I is often chosen intuitively, but option II is 
preferable for modelling and computation purposes. 
Often the causal direction of the link may be 
assessed from the temporal order; following (Pearl, 
2009), “a later event can never be the cause of an 
earlier event”. To facilitate causal BN structure 
elicitation (Neil et al., 2000, Fenton and Neil, 2012) 
propose the use of (four) idioms. Kjaerulff and 
Madsen (2013) propose general dependence 
structures that represent how the types of variables 
(i.e. problem, information and mediating random 
variables) are typically connected. 

4.1.3 Unquantifiable variables 
The qualitative BN model can contain 
unquantifiable variables. These should be dealt with 
separately. Unquantifiable variables are those for 
which no reasonable probability estimates can be 
obtained from experts or data. Note that having no 
data on a particular node does not necessarily imply 
that it cannot be quantified. The EM algorithm  may 
under certain circumstances allow estimating the 
CPDs of nodes with no data (Lauritzen, 1995).   

(Hanea et al., 2006, Hanea and Ale, 2009) 
propose to replace unquantifiable variables by proxy 
variables that are quantifiable. In cases where it is 
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expected that data or expert knowledge for 
quantifying the unquantifiable variable will become 
available in the near future it may be sufficient to 
use dummy parameters for the preliminary 
quantification. However if this information is not 
expected to be available, these variables should be 
eliminated from the network to make the BN 
applicable in practice. In (Zwirglmaier et al., 2015) 
we use node removal algorithms for this purpose, as 
proposed in (Shachter, 1988). Straub and Der 
Kiureghian (2010) applied these algorithms to 
remove continuous variables in their enhanced BN 
framework.  

Node reduction algorithm (Shachter, 1988): 

• Barren nodes, i.e. the ones which have no 
children and which have not received 
evidence can be removed from the network. 

• To make nodes barren, arcs can be reversed. 
In order to revers an arc between two nodes 
𝑋!  and 𝑋! , both nodes must inherit each 
others parents, without making the directed 
graph cyclic.  

The presented node reduction algorithm ensures 
that the (in-)dependence properties between the 
remaining random variables are not altered. It should 
be noted that the reduced structure depends on the 
order of node removals. Furthermore node reduction 
algorithms may lead to nodes having more parents 
than in the original (qualitative) network.  

4.2 Application example 

The misperception of critical data in the control 
room of a nuclear power plant can have severe 
consequences. Attention degradation is a possible 
cause of such misperception, as described in the 
literature on cognitive psychology (Whaley et al., 
2012, Xing et al., 2013).  

Attention degradation may come from crew 
members having biased expectations or prioritizing 
falsely. Both issues can be influenced through 
missing or faulty training. Prioritization is 
furthermore influenced by the perception of urgency 
of the crew. Finally, attention degradation can be 
fostered by high workloads. 

The resulting relevant parameters and the 
dependence structure are summarized in the BN of 
Fig. 6 (adapted from Zwirglmaier et al. (2015)). 
Some of the parameters are not quantifiable with 
feasible effort. These nodes are marked in white in 
Fig. 6. Shachter’s node reduction algorithm is 
applied to remove them from the BN. The resulting 
BN structure is shown in Fig. 6. 

 

 

Figure 6. BN structure for critical data misperceived 
(Zwirglmaier et al., 2015). The unquantifiable (white) nodes 
are removed from the network. 

5 DATA BASED STRUCTURE LEARNING 

If sufficient data on the parameters of interest are 
available, the BN structure can be directly learned 
from the data.  

5.1 Modeling approach 
There are two approaches for structure learning 
based on data. Constraint-based approaches make 
use of statistical independence tests to derive a set of 
independence statements from a dataset. From these 
independence statements, a BN structure is 
constructed. Examples of constrained-based 
algorithms are the SGS (Spirtes et al., 1989), the PC 
(Spirtes et al., 2001) and the NPC algorithm (Steck, 
2001).  
In the score-based approach, a number of candidate 
structures are derived and tested using a scoring 
function.  Since the number of possible BN 
structures grows faster than exponentially with the 
number of nodes (Robinson, 1977), an exhaustive 
search is infeasible and efficient search heuristics 
have to be applied. Examples of scoring functions 
are the Akaike information criterion (AIC) by 
Akaike (1974), the closely related Bayesian 
information criterion (BIC) by Schwarz (1978), the 
Bayesian Dirichlet (BD) scores (Heckerman et al., 
1995) or the maximum a posteriori (MAP BN) 
criterion (Riggelsen, 2008). Examples of search 
approaches are greedy search algorithms such as the 
repeated covered arc reversal algorithm (Castelo and 
Kocka, 2003), the search over equivalent BN classes 
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(Chickering, 2002) or a search over node orderings 
(Teyssier and Koller, 2012).  

One distinguishes unsupervised and supervised 
structure learning. Unsupervised approaches aim at 
finding the BN model that represents the learning-
dataset best. Supervised approaches aim at finding a 
model that is best suited for predicting one or more 
pre-selected target variables. BNs for which 
additionally only the state of the target variable with 
the highest posterior-probability is of interest are 
referred to as classifiers (Friedman et al., 1997). For 
classification tasks, structures are not learned (or 
only partly learned), since predefined structures such 
as Naïve Bayesian classifiers (NBCs) or Tree 
Augmented Naïve BNs (TANs) have shown to be 
efficient (Zhang, 2004). However, classification is of 
limited interest in risk analysis, where typically the 
entire posterior distribution is of relevance. 

5.2 Application example 
The BN in Fig. 7a represents a model for the daily 
avalanche probability in a specific area. Indicators 
used for the prediction are the season (spring, 
summer, fall and winter), the vegetation (dense 
trees, no dense trees), the slope of the terrain 
( < 30°, 30°− 45°,> 45° ). The avalanche 
probability in summer as well as for slopes < 30° or 
> 45° is assumed to be 0. The maximal avalanche 
probability of 0.15 corresponds to terrains between 
30°− 45° with no dense tree vegetation in winter. 
The avalanche probabilities in fall (winter) are two 
(five) times higher than in spring and dense trees 
decrease avalanche probabilities by a factor of three. 
The probability distributions of the nodes slope and 
season are uniform; the one of vegetation is defined 
conditional on slope, the probability of having dense 
tree vegetation is 0.3,0.5,0  for slopes of 
< 30°, 30°− 45°,> 45° .  

 
From the BN in Fig. 7a, 500 samples are 

generated. These are used in a score based structure 
learning approach, implemented as a greedy search 
strategy with the BIC scoring function. From these 
samples the influence of season and slope on 
avalanche probability is identified correctly, but not 
the influence of vegetation. The dependence 
between slope and vegetation is also identified from 
the data, but in the non-causal direction. However, 
the implied (in-)dependence criteria are correct, and 
it is therefore not possible to identify the direction of 
this link based on data alone. Also, the direction of 
this link does not affect predictions.  

 

Figure 7. (a) Original BN for predicting avalanche probability. 
(b) BN learnt with 500 samples using a score based structure 
learning approach. 

6 DISCUSSION 

Approaches to BN structure elicitation have been 
categorized in four classes. Each of these approaches 
comes with own challenges, which are outlined 
briefly in this section.  

The derivation of a BN structure from another 
probabilistic model is typically straightforward. For 
certain standardized settings, software exists for this 
task.  

The derivation of an initial BN structure from a 
physical or empirical model is trivial. The main 
challenge is typically computational feasibility, in 
particular if the model has a larger number of 
uncertain input parameters 𝐗. Strategies to address 
these issues include:  

• Treating some of the random variables in 
𝐗  as implicit uncertainty in the BN 
(section 3.1). 

• Applying more efficient BN structure 
representations e.g. (Heckerman and 
Breese, 1994, Bensi et al., 2013). 

• Compression of CPTs to save memory 
space e.g. (Tien and Der Kiureghian, 
2015). 

• The use of sampling-based instead of 
exact inference algorithms. 

For BNs based on domain expert knowledge, 
computational issues may arise e.g. if experts model 
a node with too many parents. This should be 
avoided in the model building process. If the 
parameters of a BN are to be elicited from experts or 
a small dataset, large CPTs are critical. To ensure 
that the assumed (in-)dependence assumptions are 
correctly represented by the BN graph, it is 
advisable to orient the links strictly according to 
their causal directions.  

In BNs that are learnt from data the links do 
typically not follow the causal directions. On the one 
hand this makes reviewing the validity of the (in-
)dependence assumptions in  the BN on the other 
hand extending of the BN challenging.  
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Although the four structure elicitation approaches 
were presented individually, medium sized to large 
BNs are typically not developed solely through on 
one approach, but are based on a combination of 
them. Domain expert knowledge can be used to 
introduce additional parameters and dependencies to 
models that are based on physical/empirical models 
or on other probabilistic models. Separate model 
parts derived with different approaches can be 
combined to estimate the overall risk. The 
modularity of the BN facilitates such an integration. 
However, if not all model parts are causal BNs, such 
an integration requires great care to ensure that the 
d-separation properties are accurately represented.   

7 CONCLUSION 

BNs are a probabilistic modeling framework that is 
flexible enough to represent various types of 
dependencies while also facilitating the 
communication with non-probability experts. In this 
paper, we categorize approaches for BN structure 
elicitation into four classes, which are reviewed. 
Applications from the field of engineering risk 
analysis are presented and the challenges typically 
encountered in such applications are briefly 
discussed. 
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