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Abstract  

Long term decisions, such as the design of infrastructure systems and buildings or the planning of 

risk mitigation measures, should be made in consideration of the uncertain future. The initial 

design of a system determines its flexibility, i.e. its ability to cope with potential future changes. 

Increasing flexibility is generally considered to be a good approach to dealing with future 

uncertainty, such as climate change uncertainty, but its effects have not been systematically 

investigated. We propose the use of Markov Decision Processes combined with Influence 

Diagrams to solve adaptation planning problems. This framework can identify the optimal system 

type and capacity and determine the value of flexibility. It is here applied to two numerical 

examples: Planning of a waste water treatment plant under uncertainty in future population 

growth and planning of a flood protection system under uncertain climate change scenarios. 

Based on these idealized examples, it is shown that for flexible systems a lower initial capacity of 

the system is recommendable, while for inflexible systems a conservative design (with high 

safety factors) should be applied. The value of flexibility is shown to be high when significant 

learning is expected in the future, i.e. if information gathered in the future significantly reduces 

uncertainty.   

Keywords  

Decision-making under uncertainty; infrastructure systems; Bayesian updating; Markov decision 
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1 Introduction 

Infrastructure systems typically have a lifetime of many decades and the future demand on their 

capacity is highly uncertain (Hall et al., 2014; Yzer et al., 2014). This is the case for water 

distribution and wastewater treatment, energy production and distribution, transportation and 

flood protection systems. Similarly, land use planning has long term implications, and buildings 
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have user requirements that can change rapidly and cannot be predicted with certainty. The 

design and planning of such systems should therefore address uncertainty on future climate, 

socioeconomic development, changing societal preferences and changing needs arising from new 

knowledge and information. An overview of example planning problems and related future 

uncertainties is given in Table 1.  

Table 1. Example infrastructure planning problems and their demand uncertainties 

Aim/problem Future uncertainties Demand parameter(s)  Observability 

full/partial 

(indicative) 

River flood 

protection 
Magnitude of flood events  

Flood 

discharge/volume 
P 

 Damage potential  
No. of inhabitants, 

monetary value 
F 

Storm surge  

protection 
Magnitude of flood events  

Water level, wave 

height 
P 

 Damage potential  
No. of inhabitants, 

monetary value 
F 

Waste water 

collection and 

treatment 

Volume of waste water to be treated 
Volume/population 

equivalent 
F 

 
Magnitude of extreme rainfall events, 

flash floods  

Rainfall intensity (short 

term) 
P 

Water resources Demand on water resources 

No. of inhabitants, 

economic/industrial 

descriptors 

F 

 
Availability of water resources 

(rainfall/drought characteristics) 

Precipitation volume 

(long-term) 
P 

Transport 

/power 

infrastructure 

design 

Demand on the infrastructure 

No.of inhabitants/users, 

economic/industrial 

descriptors 

F 

 
Environmental loads (temperature, 

precipitation, weather extremes) 

Design temperature 

and precipitation 
P 

Building design 
Utilization of the building, user 

requirements 

Building use 

characteristics 
F 

 
Environmental loads (temperature, 

weather extremes) 

Design temperature, 

design wind/snow load 
P 

Land use 

planning, urban 

planning 

Need of the land use categories,  

No. of inhabitants, 

economic/industrial 

descriptors 

F 

 Environmental loads (weather extremes, Design temperature, P 
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floods) flood hazard area 

 

Systematic approaches to deal with the uncertain future are often referred to as adaptation 

strategies, especially in the context of climate change uncertainty. Frankhauser et al. (1999) and 

Hallegatte (2009) summarize and qualitatively assess adaptation strategies from multiple sectors. 

In some problem settings, the best adaptation strategy is obvious, especially if the number of 

alternatives is limited. However, in most cases there exist a potentially large number of 

alternative solutions: the decision maker is not only choosing from different types of adaptation 

strategies (e.g. building a new water reservoir or reducing water losses), but can also decide about 

the dimensions/capacity of the proposed infrastructures (e.g. capacity of the water reservoir) and 

often about the flexibility of the system as well, i.e. its ability to be changed in the future without 

excessive costs, as defined later in Sec. 2. Decisions analysis can help identifying the best 

solution in these cases.  

Hallegatte et al. (2012) and Cox (2012) provide an overview of decisions support methodologies 

that have been used in research and practice for dealing with the uncertain future. The commonly 

used approach to account for future uncertainties and for evaluating the flexibility of engineering 

systems is the so-called Real Option (RO) analysis (Martins et al., 2015). The term was adopted 

from the field of finance. The original formulation, with quantities such as volatility, current and 

exercise price or expiration date, and the related models and evaluation methods, are not directly 

applicable to engineering questions. Nevertheless, the term RO analysis is today used for a broad 

spectrum of methods, which typically involve decision trees for representing the problem and 

Monte Carlo (MC) simulation and different optimization algorithms to evaluate them. For 

example, Neufville et al. (2006) propose to use RO for evaluating different designs of 

infrastructure and buildings with uncertain future number of users. Buurman et al. (2009) present 

the application of RO to design of maritime safety systems under uncertain future terrorism 

threats. Gersonius et al. (2012) and Woodward et al. (2014) use RO analysis for optimizing the 

water systems for urban drainage and flood defense, respectively, under climate change 

uncertainty. Marques et al. (2014) utilize RO analysis to find optimal design of water supply 

system under uncertain future demand. Martínez Ceseña et al. (2013) provide an overview of RO 

applications in the planning of energy generation projects under different types of uncertainty, 

including the uncertainty on future energy prices or uncertainty on the probabilistic model 

describing the resource characteristics (wind, water). Fawcett et al. (2014) use RO for highway 

design under traffic growth uncertainty. Further studies use the same methods without explicitly 

calling them RO analysis, e.g. (Basupi and Kapelan, 2014). For complex problems with many 

decision alternatives, the RO analysis using decision trees becomes intractable, the examples 

presented in the literature thus focus on rather simpler problems. Additionally, they mostly do not 

consider the fact that also the future decisions will be made under uncertainty, even if reduced.  

This paper proposes the use of (fully observable) Markov Decision Processes (MDPs) and 

Partially Observable Markov Decision Processes (POMDPs) for optimizing long-term adaptation 

strategies under uncertainty. The proposed approach is general enough to replace RO analysis 

with decision trees for most applications, and it offers additional possibilities and advantages: (1) 

Modeling of the uncertain demand as a Markov process increases the computational efficiency of 

the model and thus the ability to tackle complex problems. (2) The introduction of partial 

observability (i.e. use of POMDPs) allows explicit modeling of the fact that the demand on the 
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system will also be uncertain at the time of the future decisions. This is particularly relevant for 

problems where the system is designed for an extreme event, i.e. where the demand on the 

systems corresponds e.g. to a flood discharge, extreme precipitation or extreme wind speed. The 

estimates of frequency/magnitude of such extreme events are highly uncertain because they rely 

on limited historic data and imperfect models and the uncertainty thus remains also at the time of 

future decisions. (See Table 1 for an indication of partial/full observability and Section 3.3 for a 

more detailed discussion.) (3) Using influence diagrams for graphically representing the problem 

facilitates communication of the model and its assumptions. Influence diagrams are significantly 

more concise than classical decision trees, which is a major advantage when representing 

complex problems with many decision options and many decision points in time. A comparable 

approach has been proposed by (Nishijima, 2015) for the case of climate adaptation, but without 

considering partial observability of the processes. More recently, (Pozzi et al., under review) use 

hidden-model MDP for optimizing climate adaptation decisions and they investigate the effect of 

future observations and learning on the decisions. The flexibility of the systems is not included in 

any of these studies.  

The decision criterion is formulated in analogy to classical static Cost Benefit Analysis (CBA), 

which defines the optimum as the solution that maximizes the difference between expected 

benefits and expected costs. Risk, which is defined as expected damage, can be considered as an 

additional expected cost. The objective function in static CBA is formulated as (Špačková and 

Straub, 2015): 

𝒗𝑜𝑝𝑡 = argmax
𝒗

[𝑏(𝒗) − 𝑐(𝒗) −  𝑟(𝒗)] (1) 

where v are parameters characterizing the system such as height of flood protection dikes, 

capacity of a waste water treatment plant or the size of a restricted area in a land use plan. b(v) 

and c(v) are the expected net present values of benefits and costs, and r(v) is the net present value 

of risk.  

Unlike classical static CBA, the proposed framework uses a dynamic formulation, which 

explicitly models the future uncertainties in these quantities and the decisions that will be made 

in the future, conditionally on future observations (the preposterior principle). In the dynamic 

formulation, the objective function of Eq. (1) is modified as described in Sec. 3.1 (see Eq. (4). 

The future decisions are thus optimized jointly with the initial capacity. Also the optimal timing 

of future system adjustments is automatically identified.  

In the proposed dynamic formulation, the ability of the systems to be changed in the future is 

explicitly modeled. A quantitative measure of flexibility adapted from (Špačková et al., 2015) is 

proposed, which is a function of the costs for adjusting the system in the future when new needs 

arise. The decision model can be applied in two ways: (1) When the flexibility of the system is 

fixed, the optimal initial capacity of the system is selected taking into account its flexibility. (2) 

When the flexibility is an optimization parameter, the model can be used to answer the question, 

how much should one pay initially to make the system flexible.  
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2 Flexibility 

Flexibility describes the potential of a system to be changed in the future without excessive costs. 

Flexibility has been recognized as an important quality in engineering design (Fricke and Schulz, 

2005; Ross et al., 2008; Saleh et al., 2009). Alternatively, the terms adaptability, reversibility or 

changeability are used in the same context, with slightly different meanings. Examples of flexible 

systems in infrastructure planning include: 

 flood protection systems whose possible future upgrades are facilitated by reserving land 

for future construction of additional dikes or extension of existing ones (Vrijling et al., 

2009); 

 an urban drainage system where the backbone parts are overdesigned to allow extension 

of the system in the future or which enables cheap adjustment of the retention capacity in 

the future (Radhakrishnan et al., 2014); 

 a motorway that is built broader so that additional lanes can be established in the future 

without the need for extensive changes to the road structure (Lamb et al., 2011); 

 a building design enabling cheap future conversion, e.g. dividing large apartments into 

smaller ones, turning an office building into a block of flats or expanding a building 

(Allahaim and Alfaris, 2010; Boehland, 2003). 

We propose a measure of flexibility following (Špačková et al., 2015), which expresses how 

costly it is to adjust the capacity 𝑣 of a system in the future, relative to the initial investment at 

time 𝑡0. The flexibility 𝜑 is defined as 

𝜑 =
𝑐0(𝑣𝑎𝑑) − 𝑐A(𝑣𝑜𝑟 , 𝑣𝑎𝑑) 

𝑐0(𝑣𝑜𝑟)
, (2) 

where 𝑐0(𝑣) is the cost of implementing a system with capacity 𝑣 initially; 𝑐𝐴(𝑣𝑜𝑟 , 𝑣𝑎𝑑) is the 

undiscounted cost of a future adjustment of the system capacity from 𝑣𝑜𝑟 to 𝑣𝑎𝑑.  

Flexibility 𝜑 = 0 corresponds to an inflexible system and 𝜑 = 1 to a fully flexible system. For 

fully flexible systems with 𝜑 = 1, the cost of increasing the capacity from 𝑣𝑜𝑟 to 𝑣𝑎𝑑 equals the 

difference between building to these capacities initially, 𝑐𝐴(𝑣𝑜𝑟 , 𝑣𝑎𝑑  ) = 𝑐0(𝑣𝑎𝑑) − 𝑐0(𝑣𝑜𝑟). For 

such systems, the number of steps to reach the final capacity is irrelevant; the total costs are the 

same if one builds to the final capacity at once or if one adjusts the capacity at every time step. 

For inflexible systems with 𝜑 = 0, the cost of increasing the capacity to 𝑣𝑎𝑑 is equal to cost of 

building to this capacity initially, irrespective of the existing capacity 𝑣𝑜𝑟, therefore 𝑐0(𝑣𝑎𝑑) =
𝑐A(𝑣𝑜𝑟, 𝑣𝑎𝑑). When the capacity of an inflexible system is changed, the existing system cannot be 

used, the system has to be built completely anew. Flexibility can also take negative values, which 

occur if the original system must be fully replaced and removal costs are invoked in addition to 

the cost of the new system. The flexibility of an irreversible system is −∞ , because its 

adjustment costs are infinite.  

Because this measure of flexibility is defined in function of costs, it is suitable to be utilized in a 

quantitative optimization. This is in contrast to previously proposed measures of flexibility (e g.  

Kumar, 1987; Ross et al., 2008; Sönmez and Koç, 2015), which primarily focus on quantifying 

the number of ways the system can be changed. In these measures, costs are included only as a 

constraint for accepting/rejecting the options, if at all.  
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For optimizing infrastructure planning, one requires the adjustment cost relative to the initial cost. 

It follows from Eq. 1 that the cost of changing the capacity from 𝑣𝑜𝑟 to 𝑣𝑎𝑑 is 

𝑐𝐴(𝜑, 𝑣𝑎𝑑  , 𝑣𝑜𝑟) = 𝑐0(𝑣𝑎𝑑 , 𝜑) − 𝜑 ∙ 𝑐0(𝑣𝑜𝑟 , 𝜑). (3) 

The difference in costs for systems with different flexibility is illustrated in Figure 1. Note that in 

this figure we assume that the initial costs independent of flexibility 𝜑 (unlike in Eq. (3)). 

 

 

Figure 1: Illustration of the costs for a fully flexible vs. an inflexible system. (a) Initial costs when the 
system is first implemented; (b) adjustment costs for adapting the system to new needs in the future, when 
the original capacity is 𝑣𝑜𝑟. Adapted from (Špačková et al., 2015). 

The proposed definition of flexibility is kept simple on purpose. In most infrastructure planning 

problems, the flexibility cannot be computed exactly, nor is it a constant value. It varies in 

function of the initial capacity 𝑣𝑜𝑟 . Furthermore, typically only a discrete set of the planning 

alternatives are evaluated, and the flexibility can thus be quantified only for those. Nevertheless, 

the value of flexibility can be determined approximately based on simple considerations, and the 

concept then enables general statements and conclusion. If a more detailed model is desired, the 

flexibility can be expressed in function of 𝑣𝑜𝑟 and 𝑣𝑎𝑑.  

In this paper, the capacity 𝛾 is expressed as a single scalar value defined on a continuous scale. It 

can be extended to the multidimensional case, i.e. a vector of capacity values, if a single value is 

not sufficient to express the system performance. 

3 The planning problem 

The aim is to optimize the capacity 𝑣 of an infrastructure system with given flexibility over the 

system lifetime. In this section, different formulations of this decision problem are proposed, 

which should be selected depending on the characteristics of the problem. We first introduce the 

variables that are used in the model and formulate the objective of the optimization (Sec 3.1). In 

section 3.2, the value of flexibility is defined, which allows to quantify the gain from establishing 

a flexible system as compared to an inflexible one. Section 3.3 discusses the difference between 
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fully and partially observable random processes. Finally, solution strategies and algorithms for 

the proposed models are presented in Sec. 3.4. 

3.1 Modelling framework 

The system demand is determining the design of the infrastructure system. Examples of demand 

variables are given in the 3
rd

 column of Table 1. The uncertain evolution of the demand in the 

future is modeled through a discrete-time Markov process {𝛩𝑖, 𝑖 ∈ 𝐓}, where 𝐓 = {1,2, … , 𝑁} are 

the discrete time steps (e.g. years), as illustrated in Figure 2. This process is commonly called the 

“core process”. It is described by the transition probability 𝑝(𝜃𝑖+1|𝜃𝑖, 𝑣𝑖), i.e. the probability of 

the demand being in state 𝜃𝑖+1 at time 𝑖 + 1 given that it was in state 𝜃𝑖 at time 𝑖 and capacity 𝑣𝑖 
was selected.  

In many real applications, a direct modeling of the demand as a Markov process is not possible, 

because the Markov independence property, i.e. the assumption that the future of the system is 

independent on the past given the present, is not fulfilled. However, even non-Markovian 

processes can be transformed to Markovian processes through augmentation of the state space 

with additional variables (Rachelson et al., 2008). In such cases, the variable 𝛩𝑖 in each step is 

replaced with a set of variables 𝚯𝑖. This approach is demonstrated in the numerical example in 

Sec. 5 on optimizing flood protection, where uncertainty on future extreme rainfall events is 

modeled using 2 variables: one variable representing the climate scenario and the related trend 

(i.e. a “memory” in the stochastic process) and a second variable representing the annual 

maximum rainfall in each year. 

 

Figure 2: Influence diagrams of the planning problem: (a) Fully observable Markov Decision Process 
(MDP) (b) Partially Observable Markov Decision Process (POMDP). Circles denote the random 
variables, squares the decision nodes and diamonds the utility (benefit/costs) nodes. The arrows represent 
the dependence structure and the availability of information for making decisions. An arrow pointing 
towards a decision indicates that the corresponding parent node is known at the time of making the 
decision. The semantics of these influence diagrams follow those of (Jensen and Nielsen, 2007).  

If the core process is not directly observable, i.e. if the demand 𝛩𝑖 cannot be determined with 

certainty even at time 𝑖 , a random variable 𝑍𝑖  representing the observation at time step 𝑖  is 

included in the model (Figure 2b). Observation 𝑍𝑖  provides indirect information about the 
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demand 𝛩𝑖 . The relationship between 𝛩𝑖  and 𝑍𝑖  is described by the conditional probability 

𝑝(𝑧𝑖|𝜃𝑖) , which corresponds to the likelihood function. The stochastic process {𝑍𝑖 , 𝑖 ∈ 𝐓}  is 

called the “observation process”. 

Decisions on the capacity 𝑣 are (potentially) made at times 𝑡0, 𝑡1, … , 𝑡𝑁. At 𝑡0, the initial capacity 

𝑣0 is selected, at future time steps 𝑡1, … . 𝑡𝑁 the capacity can be adjusted based on the current state 

of knowledge. In Figure 2, decisions are made at each time step (e.g. every year). In many 

applications, such frequent adjustment decisions are not possible or reasonable. Decisions are 

then considered only every 𝛥𝑡-th time step, as discussed in Sec. 3.4.  

The system demand and capacity determine the benefits (expected gains) and risks (expected 

losses) throughout the lifetime of the system. Let 𝑏(𝛩𝑖 , 𝑣𝑖−1) denote the benefits and 𝑟(𝛩𝑖, 𝑣𝑖−1) 
the risk in the 𝑖th time step. They are functions of the demand 𝛩𝑖 and the capacity 𝑣𝑖−1, which is 

selected at time 𝑡𝑖−1.  𝑐𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1) is the cost of adjusting the system capacity from 𝑣𝑖−1 to 𝑣𝑖 
according to Eq. (3).  

Benefits minus costs and risk is the reward 𝑊. The goal of the optimization is finding the optimal 

initial capacity that maximizes the expected value of the discounted life-time reward for given 

flexibility:  

𝑣0,𝑜𝑝𝑡(𝜑) = argmax
𝑣0

𝑊0(𝜑, 𝑣𝑜), (4) 

where 𝑊0(𝜑, 𝑣𝑜) is the expected reward for given flexibility and initial capacity: 

𝑐0(𝜑, 𝑣0) are the initial investment costs, and E[. ] is the expected value over all future demands, 

obtained with the future optimal decisions 𝑣1, … , 𝜈𝑁. This is a sequential decision problem, in 

which the optimal initial capacity 𝜈0 can only be determined by simultaneously optimizing all 

future capacities (Kochenderfer et al., 2015).  

In some cases, the aim can additionally be to select the optimal flexibility of the system: 

𝜑𝑜𝑝𝑡 = argmax
𝜑

𝑊0 (𝜑, 𝑣0,𝑜𝑝𝑡(𝜑)). (6) 

3.2 Value of flexibility 

The value of flexibility is the additional cost that a decision maker should be willing to spend for 

a flexible system relative to an inflexible one. It can be determined as  

𝑉(𝜑) = 𝑊0
∗ (𝜑, 𝑣0,𝑜𝑝𝑡(𝜑)) −𝑊0 (𝜑 = 0, 𝑣0,𝑜𝑝𝑡(𝜑 = 0)), (7) 

where 𝑊0
∗ (𝜑, 𝑣0,𝑜𝑝𝑡(𝜑)) is computed according to Eq. (5) under the premise that flexibility is 

for free, i.e. that the initial cost 𝑐0(𝜑, 𝑣0) is the same for all flexibilities 𝜑 (as in Figure 1). 

𝑊0(𝜑, 𝑣𝑜) = −𝑐0(𝜑, 𝑣0) + E [∑ [𝑏𝑖(𝛩𝑖, 𝑣𝑖−1) − 𝑟𝑖(𝛩𝑖, 𝑣𝑖−1) − 𝑐𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1)]
𝑁

𝑖=1
]. (5) 
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3.3 Fully or partially observable demands 

If the system demand is fully observable, its current value is known at the time of making the 

decision; it is only the uncertainty about its future development that remains. In practice, there is 

always some uncertainty in observations of the demand, but in many applications this uncertainty 

is negligible compared to other uncertainties in the model. The problem then can be modeled as a 

fully observable Markov Decision Process (MDP), shown in Figure 2a. If significant uncertainty 

about the state of demand at the times of the decisions exists, the problem must be modeled as 

Partially Observable Markov Decision Process (POMDP) shown in Figure 2b.  

To give examples, the number of inhabitants and the built area of a city, which determine the 

demand on the sewerage system, can typically be observed with high accuracy. If these are the 

only variables representing the future demand, the process can be considered as fully observable 

and modeled as MDP. In contrast, values of assets at risk (buildings, infrastructure) and their 

vulnerability to a natural hazard are only indirectly deducible from socioeconomic data and 

available damage models. Significant uncertainty therefore remains in estimating the 

consequences of a hazard event. Similarly, discharge measurements provide limited information 

about the full probabilistic distribution of the discharge maxima needed for the design of flood 

protection. The parameters of the probabilistic distribution of the annual maximum discharge 

process are thus only partially observable. In these cases, POMDP should be used to model the 

decision problem. 

Table 1 summarizes the observability of demand parameters in selected systems. This list is only 

indicative and should not be understood as fixed rules on the modeling approach. The ultimate 

selection of the model type is application-specific and depends on the data availability. 

3.4 Evaluation of the decision processes 

A number of algorithms for solving MDPs and POMDPs has been developed in the last decades, 

and this continues to be an active field of research (Monahan, 1982; Kaelbling et al., 1998; 

Braziunas, 2003; Poupart, 2005, Kochenderfer et al., 2015). Applications of MDPs and POMDPs 

can be found in different sectors, including planning of inspections in engineering systems (Ellis 

et al., 1995; Corotis et al., 2005; Robelin and Madanat, 2007; Luque and Straub, 2013; 

Memarzadeh and Pozzi, 2015), autonomous driving (Brechtel et al., 2014), medical treatment 

(Alagoz et al., 2009), personal assistance (Hoey et al., 2010) or natural resource management 

(Williams, 2011).  

This section summarizes the solution of MDPs and POMDPs that should help the reader in 

understanding the principles of the model. The notation utilized here differs partly from 

conventions found in the classical literature on Markovian decision processes, which is mainly 

rooted in artificial intelligence applications. The notation utilized in this paper is based on the 

conventions used in the field of Bayesian networks and decision models; graphical models are 

used as part of the explanation. We focus on the solution of finite horizon models, where a 

bounded time interval (e.g. 100 years) is considered. For this purpose, the principle of backward 

induction can be applied, in which the model is evaluated backwards from the last decision to the 

initial one. We furthermore restrict the presentation to discrete-state processes; continuous 

demand parameters are discretized. The computational time needed for solving the decision 

models depends on the definition of the action and state spaces. It increases with the space of the 

variables in the core process, with the number of possible actions (possible capacity values), and 
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with the number of decision time instances. Unfortunately, utilization of existing MDP/POMDP 

softwares for solution of the proposed models is not straightforward because of time-dependent 

risk and cost in the proposed model. The algorithms utilized for the proposed model are described 

in Table 2 and Table 3, they were implemented in Matlab.  

3.4.1 Markovian Decision Process (MDP) 

The MDP model is depicted in Figure 2a. Its evaluation proceeds backwards starting from the last 

decision at time 𝑡𝑁−1  and ending at 𝑡0 . The algorithm of the evaluation is described in the 

following text and summarized in Table 2. 

The optimal capacity at time 𝑡𝑖 is found conditionally on flexibility 𝜑, previous capacity 𝑣𝑖−1 and 

demand 𝜃𝑖 as 

𝑣𝑖,𝑜𝑝𝑡(𝜑, 𝑣𝑖−1, 𝜃𝑖) = argmax
𝑣𝑖

𝑊𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1, 𝜃𝑖). (8) 

𝑊𝑖(𝜑, 𝑣𝑖, 𝑣𝑖−1, 𝜃𝑖) is the expected reward from all time steps following the decision 𝑣𝑖:  

where Λ𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1, 𝜃𝑖) is the expected immediate reward in time step 𝑖 + 1 and Ωi(𝜑, 𝑣𝑖 , 𝜃𝑖) is 

the expected sum of future rewards following the next decision 𝑣𝑖+1.  

The expected immediate reward is calculated as
1
 

where 𝑏𝑖+1(𝑣𝑖, 𝜃𝑖+1) and 𝑟𝑖+1(𝑣𝑖, 𝜃𝑖+1) are the benefits and risk in time step 𝑖 + 1. 𝑐𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1) 
is the adjustment cost associated with the decision at time step 𝑖,  it is equal to 𝑐𝐴(𝜑, 𝑣𝑖 , 𝑣𝑖−1) of 

Eq. (3). 𝑝(𝜃𝑖+1|𝜃𝑖 , 𝑣𝑖)  is the transition probability characterizing the Markov process as 

introduced in Sec. 3.1.  𝑑(. ) is a discount factor which is calculated as 

                                                 

1
 We use a discrete representation of the random variables (the demand 𝜃𝑖 ). However, the framework can be 

extended to continuous RVs. In such case, the summation over the states of 𝜃𝑖+1 is replaced by an integral over the 

domain of 𝜃𝑖+1 and the probability mass functions 𝑝(𝜃𝑖+1|𝜃𝑖 , 𝑣𝑖) and  𝑝(𝜃1) are replaced with probability density 

functions 𝑓(𝜃𝑖+1|𝜃𝑖 , 𝑣𝑖) and 𝑓(𝜃1).  

𝑊𝑖(𝜑, 𝑣𝑖, 𝑣𝑖−1, 𝜃𝑖)  = Λ𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1, 𝜃𝑖) + Ωi(𝜑, 𝑣𝑖 , 𝜃𝑖), (9) 

Λ𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1, 𝜃𝑖)

= −𝑑(𝑡𝑖) ∙ 𝑐𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−1)

+∑ 𝑑(𝑡𝑖+1) ∙ [𝑏𝑖+1(𝑣𝑖, 𝜃𝑖+1) − 𝑟𝑖+1(𝑣𝑖, 𝜃𝑖+1)] 𝑝(𝜃𝑖+1|𝜃𝑖, 𝑣𝑖)
𝜃𝑖+1

 

(10) 

𝑑(𝑡𝑖) =
1

(1 + ρ )𝑡𝑖 
 (11) 
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where ρ is the annual discount rate and 𝑡𝑖 is expressed in years. 

The expected sum of future rewards Ωi(𝜑, 𝑣𝑖, 𝜃𝑖) is  

where 𝑊𝑖+1(𝜑, 𝑣𝑖+1,𝑜𝑝𝑡, 𝑣𝑖 , 𝜃𝑖+1) is the expected reward associated with the optimal decision at 

time 𝑡𝑖+1, which in the MDP terminology is called the (𝑁 − 𝑖)-step value function. Its value is 

known from the previous evaluation step since the evaluation proceeds backwards. For the 

second-last time step (when the last decision is made), it is ΩN−1(𝜑, 𝑣𝑁−1, 𝜃𝑁−1) = 0, and the 

optimal capacity 𝑣𝑁−1 is thus selected based only on the immediate reward.  

The optimal initial capacity at time 𝑡0 can be found using Eq. (4). Using the results from the 

previous step of the backwards induction, the expected reward is calculated as  

where Λ0(𝜑, 𝑣0) is the expected immediate reward and Ω0(𝜑, 𝑣0) is the expected sum of future 

rewards following the decision at time 𝑡1. The expected immediate reward equals 

𝑐0(𝜑, 𝑣0) is the initial cost for implementing the system with capacity 𝑣0 and flexibility 𝜑.  

The expected sum of future rewards is  

The MDP evaluation procedure is summarized in the algorithm of Table 2. 

Ωi(𝜑, 𝑣𝑖, 𝜃𝑖) =∑ 𝑊𝑖+1(𝜑, 𝑣𝑖+1,𝑜𝑝𝑡, 𝑣𝑖 , 𝜃𝑖+1)𝑝(𝜃𝑖+1|𝜃𝑖, 𝑣𝑖)
𝜃𝑖+1

 (12) 

𝑊0(𝜑, 𝑣𝑜) = Λ0(𝜑, 𝑣0) + Ω0(𝜑, 𝑣0), (13) 

Λ0(𝜑, 𝑣0) = −𝑐0(𝜑, 𝑣0) +∑ 𝑑(𝑡1) ∙ [𝑏1(𝑣0, 𝜃1) − 𝑟1(𝑣0, 𝜃1)]𝑝(𝜃1|𝑣0)
𝜃1

, (14) 

Ω0(𝜑, 𝑣0) =∑ 𝑊1(𝜑, 𝑣1,𝑜𝑝𝑡, 𝑣0, 𝜃1)𝑝(𝜃1|𝑣0)
𝜃1

. (15) 
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Table 2: Algorithm for evaluating the MDP.  

1. Discount all values of benefits, costs and risk to a selected time point, typically 𝑡0. 

Loop over all possible values of flexibility 𝜑 

Perform the evaluation of the sequential decision process: 

2. Optimize capacity 𝑣𝑁−1 at the last decision time 𝑡𝑁−1 conditionally on previous capacity 
𝑣𝑁−2 and actual demand 𝜃𝑁−1, i.e. find 𝑣𝑁−1,𝑜𝑝𝑡(𝜑, 𝑣𝑁−2, 𝜃𝑁−1) following Eqs. (8)-(10), 
with future rewards ΩN−1(𝜑, 𝑣𝑁−1, 𝜃𝑁−1) in Eq. (9) being equal to 0. 

3. Store the value function 𝑊𝑁−1(𝜑, 𝑣𝑁−1,𝑜𝑝𝑡, 𝑣𝑁−2, 𝜃𝑁−1) to be used in the next step. 

Loop starting with 𝑖 = 𝑁 − 2 and continuing backwards to 𝑖 = 1: 

a. optimize capacity 𝑣𝑖 at time 𝑡𝑖, , conditionally on previous capacity 𝑣𝑖−1 and 
actual demand 𝜃𝑖, i.e. find 𝑣𝑖,𝑜𝑝𝑡(𝜑, 𝑣𝑖−1, 𝜃𝑖) following Eqs. (8)-(12). 

b. Store the value function 𝑊𝑖(𝜑, 𝑣𝑖,𝑜𝑝𝑡, 𝑣𝑖−1, 𝜃𝑖) to be used in the next step. 

End loop 

4. Find the initial optimal capacity 𝑣0,𝑜𝑝𝑡(𝜑) following Eqs. (4) and (13)-(15). 

5. Store the value function 𝑊0(𝜑, 𝑣0,𝑜𝑝𝑡)  

End loop 

6. If applicable, find the optimal flexibility 𝜑 following Eq. (6). 

 

In many applications, time intervals 𝛥𝑡 between planning decisions are large. (The design of a 

sewerage system is not reassessed every year.) This is included in the analysis by considering 

possible changes of capacity 𝑣𝑖  only at time steps 𝑖 = 𝛥𝑡, (2 ∙ 𝛥𝑡), … . (𝑚 ∙ 𝛥𝑡). The evaluation 

proceeds according to Eqs. (8) and (9), wherein 𝑣𝑖−1  is replaced with 𝑣𝑖−𝛥𝑡 . The immediate 

expected reward is the sum of benefits, risk and costs until the next decision, and Eq. (10) is 

replaced with 

The calculation of the future expected reward in Eq. (12) is replaced with 

Λ𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−𝛥𝑡, 𝜃𝑖)

= −𝑑(𝑡𝑖) ∙ 𝑐𝑖(𝜑, 𝑣𝑖 , 𝑣𝑖−𝛥𝑡)

+∑ ∑ 𝑑(𝑡𝑗) ∙ [𝑏𝑗(𝑣𝑖 , 𝜃𝑗) − 𝑟𝑗(𝑣𝑖 , 𝜃𝑗)]𝑝(𝜃𝑗|𝜃𝑖 , 𝑣𝑖)
𝜃𝑗

𝑗=𝑖+𝛥𝑡

𝑗=𝑖+1
, 

(16) 

Ωi(𝜑, 𝑣𝑖 , 𝜃𝑖) =∑ 𝑊𝑖+𝛥𝑡(𝜑, 𝑣𝑖+𝛥𝑡,𝑜𝑝𝑡, 𝑣𝑖 , 𝜃𝑖+𝛥𝑡)𝑝(𝜃𝑖+𝛥𝑡|𝜃𝑖, 𝑣𝑖)
𝜃𝑖+𝛥𝑡

. (17) 
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The conditional probability of the future demand 𝜃𝑖+𝑘  for 𝑘 = 𝑗 in Eq. (16) and 𝑘 = 𝛥𝑡 in Eq. 

(17) is calculated as  

Finally, the optimal initial capacity is evaluated using Eqs. (4) and (13). Eqs. (14) and (15) are 

adjusted in the same way as Eqs. (10) and (12), see Eqs. (16) and (17). 

3.4.2 Partially Observable Markovian Decision Process (POMDP)  

The POMDP model is depicted in Figure 2b. The true demand 𝜃𝑖 is unknown when making a 

decision, but an observation 𝑍𝑖  is available, which is related to the demand through the 

conditional probability 𝑝(𝑧𝑖|𝜃𝑖), the likelihood.  

Because the true demand is not known, the past is not independent of the future given the present 

knowledge, and the Markov property of the process {𝜃} cannot be directly exploited as in MDPs. 

To overcome this, PMODPs are solved by introducing a so-called belief state 𝛽𝑖 , which 

represents a probability distribution over the uncertain demand: 

𝛽𝑖(𝜃𝑖) = 𝑝(𝜃𝑖) (19) 

The belief state 𝛽𝑖  is what is available to the planner when deciding upon 𝑣𝑖 , it represent his 

knowledge of the demand. It summarizes the past history, or more technically: it is a sufficient 

statistic of past observations. For a given 𝛽𝑖, the future is independent of past observations. A 

POMDP can thus be transformed to a MDP, in which the model of the demand is replaced by the 

model of the belief state on the demand. This procedure does however lead to a significant 

increase of the state space and hence computational costs. 

The process of transforming the POMDP to a MDP with belief states is illustrated in Figure 3 in 

graphical form. In Figure 3a, nodes 𝛽𝑖 representing the belief state are added, the demands 𝜃𝑖 are 

now defined conditionally on the belief state 𝛽𝑖. Because the belief state is a sufficient statistic, 

the variables 𝜃𝑖 and 𝜃𝑖+1 become independent for given 𝛽𝑖 and no arc between them is necessary. 

The core and observation process, i.e. nodes 𝜃𝑖 and 𝑧𝑖 can now be eliminated (removed) from the 

chart following the procedure described in Shachter (1986), see also Straub and Der Kiureghian 

(2010) and Špačková (2012). The final influence diagram is shown in Figure 3b. Note that the 

resulting influence diagram corresponds to a fully observable MDP such as the one of Figure 2a, 

in which the variables representing the demand are replaced with the variables representing the 

belief state.  

The solution of the MDP in Figure 3b therefore follows the procedure described in Section 3.4.1, 

Eqs. (8)-(15), where the variables 𝜃𝑖 are replaced with 𝛽𝑖 for 𝑖 = 1,…𝑁.  

𝑝(𝜃𝑖+𝑘|𝜃𝑖 , 𝑣𝑖) = ∑ …𝜃𝑖+𝑘−1
[∑ [∑ 𝑝(𝜃𝑖+1|𝜃𝑖 , 𝑣𝑖) ∙ 𝑝(𝜃𝑖+2|𝜃𝑖+1, 𝑣𝑖)𝜃𝑖+1

] ∙𝜃𝑖+2

𝑝(𝜃𝑖+3|𝜃𝑖+2, 𝑣𝑖)]…∙ 𝑝(𝜃𝑖+𝑘|𝜃𝑖+𝑘−1, 𝑣𝑖) = ∑ …𝜃𝑖+1
∑ ∏ 𝑝(𝜃𝑗|𝜃𝑗−1,𝑣𝑖)

𝑖+𝑘
𝑗=𝑖+1𝜃𝑖+𝑘−1

 

(18) 
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Figure 3: Solving the POMDP: (a) introducing belief states, (b) decision graph after elimination of 
variables representing the state of nature and observation that can be solved as a fully observable MDP.  

To establish the MDP of Figure 3b, the belief state transition function 𝑝(𝛽𝑖+1|𝛽𝑖, 𝑣𝑖) must be 

determined by summing 𝑝(𝑧𝑖|𝛽𝑖) over all values of 𝑧𝑖 that lead to a specific value of 𝛽𝑖+1: 

𝑝(𝛽𝑖+1|𝛽𝑖, 𝑣𝑖) =∑ 𝑝(𝛽𝑖+1|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖)𝑝(𝑧𝑖|𝛽𝑖)
𝑍𝑖

 

=∑ 𝐼[𝛽𝑖+1 = 𝑝(𝜃𝑖+1|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖)] ∙∑ 𝑝(𝑧𝑖|𝜃𝑖)𝛽𝑖(𝜃𝑖)
𝛩𝑖𝑍𝑖

, 
(20) 

where 𝐼[𝛽𝑖+1 = 𝑝(𝜃𝑖+1|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖)] is the indicator function: 

𝐼[𝛽𝑖+1 = 𝑝(𝜃𝑖+1|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖)]  = {
1, 𝛽𝑖+1 = 𝑝(𝜃𝑖+1|𝛽𝑖, 𝑣𝑖, 𝑧𝑖)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 
(21) 

The probability distribution of 𝜃𝑖+1 conditional on 𝛽𝑖, 𝑣𝑖 , 𝑧𝑖 is computed by  

𝑝(𝜃𝑖+1|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖) ∝∑ 𝑝(𝜃𝑖+1|𝜃𝑖 , 𝑣𝑖)𝑝(𝑧𝑖|𝜃𝑖)𝛽𝑖(𝜃𝑖)
Θ𝑖

 (22) 

Eq. (22) describes a sequential Bayesian updating of the process, since the belief state 𝛽𝑖(𝜃𝑖) 
includes all information available up to 𝑧𝑖−1.  

A procedure for numerically solving Eq. (20) via Monte Carlo sampling is summarized in Table 

3.   
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Table 3: Algorithm for determining the conditional probability distributions of belief states using MC 
sampling. 

1. Generate 𝑁𝑆,1 samples of the demand 𝛩1 from the prior probability distribution 𝑝(𝜃1) = 𝛽1, 
which represents the “true” demand.  

2. For each sample of 𝛩1, sample an observation 𝑍1 from the distribution 𝑝(𝑧1|𝜃1). 
3. For each sample of 𝑍1, update the probability distribution of 𝛩2 with 𝑍1 following Eq. (22), 

to determine a corresponding sample of the belief state 𝛽2. 
4. Using the samples, estimate the transition probability of the belief state 𝑝(𝛽2|𝛽1, 𝑣1). 

Loop over 𝑖 = 2 :𝑁 − 1 

   Loop over 𝑗 = 1:𝑁𝑆,𝑖−1 (the samples from the previous cycle) 

5. Sample  𝑁𝑆,𝑖 ≤ 𝑁𝑆,𝑖−1 samples of the demand 𝛩𝑖 using the 𝑗-th sample of belief state 
𝛽𝑖. 

6. For each sample of 𝛩𝑖, sample the observation 𝑍𝑖 from the distribution 𝑝(𝑧𝑖|𝜃𝑖). 
7. Update the probability distribution of 𝛩𝑖+1 with the sampled observation 𝑍𝑖 following 

Eq. (22), to determine a sample of the belief state 𝛽𝑖+1 conditional on the 𝑗-th sample 
of the belief state 𝛽𝑖. 

8. Using 𝑁𝑆,𝑖 samples, estimate the transition probability of belief state 𝑝(𝛽𝑖+1|𝛽𝑖, 𝑣𝑖). 

        Endloop 

9. Estimate the transition probability of belief state 𝑝(𝛽𝑖+1|𝛽𝑖, 𝑣𝑖)  from the 𝑁𝑆,𝑖 ×𝑁𝑆,𝑖−1 
samples of 𝛽𝑖+1 conditinoal on 𝛽𝑖. 

Endloop 

 

To formulate the reduced MDP of Figure 3b, it further necessary to express the benefit and risk 

from Eqs. (10) and (14) as a function of the belief state: 

If decisions are made only in intervals of length 𝛥𝑡, i.e. at times 𝑡 = 𝛥𝑡, (2 ∙ 𝛥𝑡), … . (𝑚 ∙ 𝛥𝑡), the 

procedure described in Eqs. (16)-(18) is used, whereby the demand 𝜃𝑖 is replaced with the belief 

state 𝛽𝑖. Eq. (20) for computing the transition probability of belief states is replaced with  

  

𝑝(𝛽𝑖+𝛥𝑡|𝛽𝑖, 𝑣𝑖) 

=∑ …∑ 𝐼 [𝛽𝑖+𝛥𝑡 = 𝑝(𝜃𝑖+𝛥𝑡|𝛽𝑖, 𝑣𝑖, 𝑧𝑖, … , 𝑧𝑖+𝛥𝑡−1)] ∙ 𝑝(𝑧𝑖 , … , 𝑧𝑖+𝛥𝑡−1|𝛽𝑖)
𝑧𝑖+𝛥𝑡−1

,
𝑍𝑖

 (25) 

 where 𝐼 [𝛽𝑖+𝛥𝑡 = 𝑝(𝜃𝑖+𝛥𝑡|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖, … , 𝑧𝑖+𝛥𝑡−1)]  is the indicator function: 

𝑏𝑖+1(𝑣𝑖 , 𝛽𝑖+1) =∑ 𝑏𝑖+1(𝑣𝑖, 𝜃𝑖+1)
𝛩𝑖+1

𝛽𝑖+1(𝜃𝑖+1)  (23) 

𝑟𝑖+1(𝑣𝑖 , 𝛽𝑖+1) =∑ 𝑟𝑖+1(𝑣𝑖, 𝜃𝑖+1)
𝛩𝑖+1

𝛽𝑖+1(𝜃𝑖+1)  (24) 
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𝐼 [𝛽𝑖+𝛥𝑡 = 𝑝(𝜃𝑖+𝛥𝑡|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖 , … , 𝑧𝑖+𝛥𝑡−1)]

= {
1     if   𝛽𝑖+𝛥𝑡 = 𝑝(𝜃𝑖+𝛥𝑡|𝛽𝑖, 𝑣𝑖 , 𝑧𝑖, … , 𝑧𝑖+𝛥𝑡−1)

0   otherwise
 (26) 

and 

𝑝(𝑧𝑖, … , 𝑧𝑖+𝛥𝑡−1|𝛽𝑖) ∝∑ 𝑝(𝑧𝑖|𝜃𝑖)𝛽𝑖(𝜃𝑖)∑ 𝑝(𝑧𝑖+1|𝜃𝑖+1)𝑝(𝜃𝑖+1|𝜃𝑖)
𝜃𝑖+1𝛩𝑖

… 

∑ 𝑝(𝑧𝑖+𝛥𝑡−1|𝜃𝑖+𝛥𝑡−1)𝑝(𝜃𝑖+𝛥𝑡−1|𝜃𝑖+𝛥𝑡−2)
𝜃𝑖+𝛥𝑡−1

 

(27) 

Eqs. (25) and (27) are evaluated using sampling methods, in analogy to the algorithm of Table 3. 

4 Application to the optimization of a waste water treatment plant design 

In a Waste Water Treatment Plant (WWTP) design, the goal is to select the optimal capacity to 

which the WWTP should be built, taking into account the uncertainty in future demand, 

associated with population, economic and technological developments. Both the demand and the 

capacity of the WWTP are expressed in the Population Equivalent (PE) units (Gillot et al., 1999; 

Benedetti et al., 2006).  

It is assumed that decisions on possible extension of the WWTP will be carried out every 15 

years; the overall planning horizon is 90 years. The annual discount rate is 0.02. At the time of 

the future decisions, the actual demand (in PE) at that time will be known, the process is thus 

fully observable.   

The model is summarized in Figure 4. The uncertain demand in [PE] is modeled as a 

homogeneous Markov process, where the conditional probability distribution of the demand 𝛩𝑖 in 

year 𝑖, 𝑓(𝜃𝑖|𝜃𝑖−1), is normal distributed with time dependent mean 𝜇𝑖 = 𝜃𝑖−1 + 𝑘 and standard 

deviation 𝜎, which is assumed to be constant over time. The initial demand is 𝜃0 = 40 × 103 

[PE], the trend representing the mean annual increase of the demand is 𝑘 = 0.5 × 103 [PE] and 

the standard deviation describing random fluctuations is 𝜎 = 2 × 103 [PE].  At the end of the 

planning horizon, the expected demand is 85 × 103 [PE] and its standard deviation is close to 

20 × 103  [PE]. This model of population growth is hypothetical, but it is straightforward to 

replace it with another model for a specific area if such is available. Principles of forecasting the 

demographic changes can be found for example in Keyfitz and Caswell (2005). 
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Figure 4: Influence diagram of the WWTP design problem. 𝛩𝑖 is the demand in year 𝑖, 𝑣𝑗 is decision on 
capacity at time 𝑡𝑗, 𝑐𝑗 is the cost associated with this decision, 𝜑 is flexibility and 𝑟𝑖 is the risk (i.e. the 
expected costs of not having the waste water treated) 

The cost of building to capacity 𝑣0 initially is  

𝑐0(𝜑, 𝑣0) = 𝛾(𝜑) ∙ 𝜉 ∙ √
𝑣0
1000

[× 106 Euro] (28) 

where 𝜉 = 0.7  is a scaling constant and 𝛾(𝜑)  is a coefficient representing the price of the 

flexibility. For zero flexibility  𝛾(0) = 1 , for partial flexibility 𝛾(0.5) = 1.2  and for full 

flexibility 𝛾(1) = 1.5. Similarly shaped cost functions were found by (Gillot et al., 1999).  

The adjustment cost of a future extension from 𝑣𝑖−1 to 𝑣𝑖 is  

𝑐𝐴(𝜑, 𝑣𝑖 , 𝑣𝑖−1) = 𝛾(𝜑) ∙ 𝑏 ∙ [√
𝑣𝑖
1000

− 𝜑√
𝑣𝑖−1
1000

] [× 106 Euro] (29) 

The cost functions are illustrated in Figure 5.  
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Figure 5: Investment cost for WWTP with different flexibilities 𝜑 as a function of the capacity: (a) initial 
costs 𝑐0(𝜑, 𝑣0) at time 𝑡0 = 0, (b) adjustment costs 𝑐𝐴(𝜑, 𝑣𝑎𝑑𝑗 , 𝑣𝑜𝑟) at future time step when the original 
capacity is 𝑣𝑜𝑟 = 40 × 10

3  PE. 

Insufficient capacity of the WWTP leads to costs that correspond to fines for exceeding the 

effluent standards and/or to the costs of assuring alternative treatment of the waste water. The 

expected value of these costs (in our model denoted as risk) in year 𝑖 is a function of the actual 

capacity 𝑣𝑗  of the WWTP and of the demand 𝛩𝑖: 

𝑟𝑖 = 0 𝑓𝑜𝑟 𝛩𝑖 ≤ 𝑣𝑗  

𝑟𝑖 = (𝛩𝑖 − 𝑣𝑗) ∗ 𝛽 = −𝛥𝑖 ∗ 𝛽 [× 10
6 Euro],   for  𝛩𝑖 > 𝑣𝑗 , 

(30) 

where 𝛽 = 50 is a scaling constant,  𝛥𝑖 is the reserve 𝛥𝑖 = 𝑣𝑗 − 𝛩𝑖. This simple model assumes 

that the risk is zero when the demand is smaller than the actual capacity and linearly increasing 

otherwise.  

4.1 Results and discussion  

The model in Figure 4 is evaluated following the procedure described in Sec. 3.4.1. In this 

example, the benefits are constant with respect to 𝑣 and 𝜑, hence only cost and risk are taken into 

account. 

Figure 6 shows the main result of the decision model, i.e. the optimal initial capacity of the 

WWTP, which minimizes the total expected life-time reward (objective function) that is plotted 

with the solid line, for systems with different flexibilities. For the inflexible system (Figure 6a), 

the optimal initial capacity equals 69 × 103  PE, for the fully flexible system (Figure 6c) the 

optimal initial capacity is significantly lower at 56 × 103 PE. As expected, a more conservative 

design with larger reserve is recommendable for an inflexible system, because future adjustments 

of the system are more expansive. However, even for the inflexible system, the optimal initial 
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capacity is lower than the mean demand of 85 × 103 PE expected at the end of the life-time. The 

reason for such an under-design being optimal is the effect of discounting that favors delaying 

investments, in combination with the uncertainty that allows for the possibility that the mean 

demand at the end of service life will be lower. Figure 6 also shows the contribution of the 

immediate risk and costs computed with Eq. (10), which are associated with the first decision 

period of 15 years, and of the sum of future expected rewards computed with Eq. (12). It can be 

seen that due to the discounting, the effect of the future reward is relatively small compared to the 

immediate reward.  

 

Figure 6: Optimization of the initial capacity of WWTP for different flexibilities. 

For illustration purposes, Figure 7 shows three randomly selected scenarios of the demand over 

the lifetime of the WWTP and the corresponding optimal decisions on capacity for WWTPs with 

different flexibilities. The optimal initial capacity at time 𝑡 = 0 corresponds to the one found in 

Figure 6. Every 15 years it is decided whether the capacity is kept or increased, depending on 

actual demand. To further illustrate the decision process, Figure 8 shows the conditional 

optimization of capacities at time 𝑡 = 75yr for the demand scenario from Figure 7a. Because this 

is the last decision before the end of service life, it is based entirely only the immediate reward, 

which represents the risk and costs for years 75 to 90.  

The scenario in Figure 7a represents a future where the demand growth approximately follows 

the predicted mean growth (shown by the dotted line line). For this scenario, the inflexible 

system with 𝜑 = 0  (dashed line with circles) is never adjusted, even if the actual demand in the 

second half of the planning period reaches or even exceeds the capacity of the WWTP. The 

exceedance of the capacity is not sufficiently large to justify the high cost associated with the 

adjustment of the system capacity, as can be seen from Figure 8a: the risk is not large enough to 

outweigh the immediate costs for increasing the capacity from 69 × 103 PE to any higher value. 

It can, however, also be observed that the objective function (i.e. solid line in the figure) has two 

local minima and the second local minimum at capacity 82 × 103 PE is not significantly higher 

than the global minimum at capacity 69 × 103 PE. This indicates that the optimal decision is 

sensitive to the model assumptions. In contrast, the flexible system with 𝜑 = 1 is adjusted at 

almost every decision point under the scenario of Figure 7a. The optimization of the last decision 
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is shown in Figure 8c. It can be observed that the objective function for the flexible system has 

only one global minimum. The reason is the fact that there is no jump in the adjustment cost 

function, as can also be observed from Figure 5b. Therefore if the observed demand is larger than 

the one predicted at the last decision time, it is always better to adjust the system, because the 

adjustment costs are significantly lower than in the case of non- or partly flexible systems.  

In the scenario of Figure 7b, the demand first decreases and then slightly grows in the second half 

of the planning time. In such a scenario, the partly and inflexible systems (dashed line with 

circles and dashed line with crosses) should never be adjusted as the initially selected capacity is 

sufficient over the whole life time. The fully flexible system (dashed line with stars) should only 

be adjusted once at time 𝑡 = 60yr, when the demand exceeds the initial demand at time 𝑡 = 0. 

In the scenario of Figure 7c, the demand increases faster than the mean prediction, especially in 

the second half of the lifetime. In such a scenario, the partly and non-flexible systems (dashed 

line with circles and dashed line with crosses) are adjusted at time  𝑡 = 60yr after the observed 

demand exceeds the WWTP capacity. The fully flexible system (dashed line with stars) is 

adjusted every 15 years and it thus keeps an unused capacity (reserve) during the whole lifetime.  

  

 

Figure 7: Alternative scenarios of future demand and the resulting optimal decisions on capacity of 
WWTP for different flexibilities: (a) scenario where demand oscillates around the predicted mean growth, 
(b) scenario where demand grows significantly slower than expected, (c) scenario where demand grows 
faster than expected. 
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Figure 8: Optimization of future decisions at time 𝑡 = 75 years for systems with different flexibility, 
conditionally on original capacity 𝑣0 and demand  𝐷75 observed at the time of the decision, which 
corresponds to the scenario shown in Figure 7a.  

4.1.1 Value of flexibility for WWTP 

The value of flexibility is determined following Section 3.2. The optimization is repeated with 

free flexibility, i.e. the coefficients 𝛾(𝜑) representing the price of flexibility in Eqs. (28) and (29) 

are set equal to 1 for all values of 𝜑. The corresponding optimal initial capacity for varying 

flexibilities is shown in Table 4. The value of flexibility is then obtained as the difference 

between the expected cost associated with the optimal strategy for 𝜑 = 0 and that associated with 

larger values of 𝜑. 

Table 4: Resulting optimal capacity of WWTP for different flexibilities 

 𝜑 = 0 𝜑 = 0.5 𝜑 = 1 

Optimal capacity 𝑣𝑜,𝑜𝑝𝑡 69 × 103 PE 68 × 103 PE 57 × 103 PE 

Expected reward 𝑊0(𝜑, 𝑣𝑜,𝑜𝑝𝑡) 6.0 × 106 Euro 6.0 × 106 Euro 5.7 × 106 Euro 

 

The relative value of flexibility with respect to the initial investment costs is shown in Figure 9. 

The value of the fully flexible system is approximately 6% of the initial costs of building to the 

optimal protection level. Overall, the value of flexibility increases non-linearly with flexibility, 

and a large degree of flexibility is necessary to lead to noticeable benefits. 
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Figure 9: Relative value of flexibility of the WWTP with respect to the initial costs.  

5 Application to risk-based optimization of flood protection measures 

In many regions, climate change is now considered when designing flood protection systems. For 

example, the state of Bavaria requires a 15% increase in the design flood capacity to account for 

effects of climate change (LfU Bayern, 2005). Considering the significant associated 

uncertainties, such decisions should ideally take into account the flexibility of the protection 

strategies.  

Here, we consider the implementation of a new river flood defense at time 𝑡0 = 0 , whose 

capacity may be adjusted in the future at times  𝑡 = 30 and 𝑡 = 60 years, the total planning 

horizon is 90 years. The annual discount rate is 0.02. The assumptions made in the example are 

based on realistic case studies previously analyzed at our institute (Ellinger, 2015; Perosa, 2016). 

However, direct transfer of the results to other catchments is not straightforward because the risk, 

cost as well as the impact of climate are site specific.  

An influence diagram for the decision problem is shown in Figure 4. The decision problem is 

modeled by a POMDP. The uncertainty in the future demand is modeled using two random 

variables: climate scenario 𝑆𝑖 representing the uncertainty in future climate and annual maximum 

discharge 𝐷𝑖 . The probability distribution of the annual maximum discharge is defined 

conditional on the climate scenario.  

Scenario 𝑆𝑖 is in this example modeled as a discrete random variable. Only three scenarios are 

considered: (A) no change in the extreme flood discharge distribution, (B) moderate increase of 

extreme discharge, where the mean annual maximum discharge as well as the magnitude of a 

100-year event increase by 16% in 100 years and (C) significant increase of extreme discharge,  

where the mean annual maximum discharge as well as the magnitude of a 100-year event 

increase by 32% in 100 years. This simple model is selected for illustrative purposes, as it 

facilitates an understanding of model principles and the interpretation of the results. For real 

applications, an ensemble of climate scenarios can be used or the parameters of the discharge 

distribution may be modeled as continuous random process variables. In the model, the random 
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variable scenario 𝑆𝑖 has three states and its transition probability matrix is the 3x3 unit matrix. All 

scenarios are a-priori considered to be equally probable, i.e. Pr(𝑆1 = 𝐴) = Pr(𝑆1 = 𝐵) =
Pr(𝑆1 = 𝐶) = 1/3.  

The annual maximum discharge 𝐷𝑖  is described by a Gumbel distribution with mean 𝜇(𝑖) and 

standard deviation 𝜎(𝑖) conditional on the climate scenario as shown in Table 1. Both 𝜇(𝑖) and 

𝜎(𝑖) are assumed to be linearly increasing with time; the c.o.v. is 0.8 at all times. We consider 

that the observed discharges can be used to update the probability of the different scenarios, as 

indicated by the links from the 𝐷𝑖 to the observation variables 𝑍𝑖. We neglect measurement errors, 

and the observed discharge 𝑍𝑖  equals the true discharge 𝐷𝑖 . Nevertheless, because one only 

observes the annual discharge maxima and indirectly learns on the climate scenario, the Markov 

process is a partially observable one. The climate scenario 𝑆𝑖 is not directly observed here.   

 

Figure 10: Influence diagram for the example decision problem for optimization of the flood protection 
system.   

Table 5: Mean and standard deviation of the annual maximum discharge 𝐷𝑖 [m
3
/s] for different climate 

scenarios 

Scenario S Mean 𝜇(𝑖) St.dev.𝜎(𝑖) 
(A) no change 1200 960 

(B) moderate incr. 1200+2*i 960+1.6*i 

(C) significant incr. 1200+4*i 960+3.2*i 

 

The belief state is the probability distribution over the possible demand states. Here, the demand 

is represented by the scenario 𝑆𝑖, which then determines the distribution of extreme discharges. 

Since scenario 𝑆𝑖  is a discrete random variable with three states in this example, its full 

probability distribution 𝑝(𝑠𝑖) is determined by 2 parameters 𝑝𝐴 = Pr(𝑆𝑖 = 𝐴) and 𝑝𝐵 = Pr (𝑆𝑖 =
𝐵), which form the belief state. 
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Risk (expected damage) in the 𝑖th time step for given scenario 𝑆𝑖 and for given capacity 𝑣𝑖 equals 

where 𝑒 = 9 × 108  Euro is the exposure, 𝑓𝐷𝑖|𝑆𝑖(𝑑) is the conditional Gumbel PDF of annual 

maximum rainfall (demand) for a given scenario and 𝜅𝑣𝑖(𝑑) is the vulnerability (relative damage) 

for given capacity of the protection system 𝑣𝑖: 

The damage function (the product of vulnerability and exposure 𝑒 ∙ 𝜅𝑣𝑖(𝑑)) is shown in Figure 11. 

The vulnerability is zero for discharges smaller than the capacity of the flood defense system, 

neglecting the possibility that the flood defense fails at discharges below the design discharge. 

Without a flood defense, the first damages occur at discharge 𝑑0 = 3200  m3/s, which 

corresponds to a 26-year event under current climate conditions.  The maximum vulnerability of 

1 is reached at discharge 𝑑𝑚𝑎𝑥 = 6000 m3/s, which corresponds to a 1100-year event under 

current climate conditions. For higher discharges it is assumed that all exposed objects are 

flooded and the maximum damage of 9 × 108 Euro is incurred. Between 𝑑0/𝑣𝑖  and 𝑑𝑚𝑎𝑥 , the 

vulnerability increases linearly. 

 

Figure 11: Idealized damage functions for the case without any protection measures (solid line) and for 
case where the area is fully protected against a 100-year event under current climate conditions (dashed 
line). Return periods correspond to current climate conditions (scenario A). 

𝑟(𝑆𝑖, 𝑣𝑖)  = ∫𝑒 ∙ 𝜅
𝑣𝑖(𝑑) ∙ 𝑓𝐷𝑖|𝑆𝑖(𝑑) d𝑑 (31) 

𝜅𝑣𝑖(𝑑) =

{
 

 
0, 𝑑 ≤ max[𝑑0, 𝑣𝑖]

1

𝑑𝑚𝑎𝑥 − 𝑑0
∙ (𝑑 − 𝑑0), max[𝑑0, 𝑣𝑖] < 𝑑 < 𝑑𝑚𝑎𝑥

1, 𝑑 ≥ 𝑑𝑚𝑎𝑥

 (32) 
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Three different levels of flexibility are considered: full flexibility 𝜑 = 1, intermediate flexibility 

𝜑 = 0.5 and zero flexibility 𝜑 = 0. The initial and adjustment costs for the different capacities 

grow linearly with the capacity as shown in Figure 12. They are defined as 

where 𝑏 = 1.3 ∙ 105 Euro is a scaling constant and 𝛾(𝜑) is a coefficient representing the price of 

the flexibility: 𝛾(0) = 1, 𝛾(0.5) = 1.05 and 𝛾(1) = 1.1. 

 

Figure 12: Costs of flood protection systems with different flexibilities 𝑎 as a function of the capacity 
(design discharge in m

3
/s) of the system: (a) initial costs 𝑐0(𝜑, 𝑣0) at time 𝑡0 = 0, (b) adjustment costs 

𝑐𝐴(𝜑, 𝑣𝑖 , 𝑣𝑖−1) assuming that the original capacity selected at the previous time step is 4500 m
3
/s. Return 

periods correspond to current climate conditions (scenario A). 

5.1 Classical optimization without consideration of future changes in demand 

The optimal capacity of the system is first determined using the traditional static approach, where 

future uncertainties are not accounted for. It is assumed that there is no trend in the mean annual 

maximum discharge. The optimum is determined using Eq. (1). Since the benefits are disregarded 

in this example, Eq. (1) can be reformulated to a minimization of the sum of discounted risk and 

cost over the whole planning horizon. The results of the optimization are shown in Figure 13. The 

optimal capacity equals 4800 m
3
/s, which corresponds to a 219-year event.  

 

 

𝑐0(𝜑, 𝑣0) = 𝛾(𝜑) ∙ 𝑏 ∙ (𝑣0 − 𝑑0), (33) 

𝑐𝐴(𝜑, 𝑣𝑖  , 𝑣𝑖−1 ) = 𝛾(𝜑) ∙ 𝑏 ∙ [(𝑣𝑖 − 𝑑0) − 𝜑 ∙ (𝑣𝑖−1 − 𝑑0)], (34) 
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Figure 13: Static optimization of the capacity of the flood protection system, without accounting for 
system flexibility and assuming that there is no change in the mean annual maximum discharge 
(corresponding to scenario A).  

5.2 Full decision model  

The model in Figure 10 is evaluated using the procedure described in Sec. 3.4.2. Figure 14 shows 

boxplots of updated probabilities of scenarios after 30 years of rainfall observations, 

conditionally on the true scenario. These results show that the data is only mildly informative. 

For example, it can be seen from Figure 14a that if scenario A is the underlying true one, the 

posterior probability of A based on the rainfall observations is 0.35, for B it is 0.33 and for C it is 

0.31. The spread of posterior probabilities is, however, significant, which means that the extreme 

rainfall observations gathered during the first 30 year can lead to erroneous conclusions. The 

reason for this is the fact that the differences among the scenarios are not pronounced in the first 

30 years, and that trends in extremes are generally difficult to observe (Tebaldi et al., 2006).   
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Figure 14: Boxplot of posterior probabilities of climate scenarios 𝑃𝑟 (𝑆|𝑍1, … 𝑍30) updated with 30 years 
of annual maximum rainfall observations, conditional on a true scenario.  

Figure 15 shows the probability distribution of the belief state at the decision time 𝑡 = 30 years. 

A belief state here corresponds to a combination of Pr(𝑆 = 𝐴) and Pr(𝑆 = 𝐵). In agreement with 

the results in Figure 14, it can be observed that the spread in Pr(𝑆 = 𝐵) is significantly lower 

than in Pr(𝑆 = 𝐴).  

 

 

Figure 15: Probability distribution over the belief states after 30 years of annual maximum rainfall 
observations, 𝑝(𝛽30).  

Figure 16 shows the conditional probability of belief states at time 𝑡 = 60yr (when the second 

future decision is to be made), given that the belief state at time 𝑡 = 30yr (when the first future 
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decision is to be made) is Pr(S = A|Z1, … Z30) = Pr(S = B|Z1, … Z30) = 0.34. A similar pattern 

can be observed as in Figure 15, but the variability in the belief states is higher. It is not unlikely 

that scenario A has a posterior probability close to zero or one after collecting data for 60 years. 

 

 

Figure 16:  Conditional probability distribution over the belief states after 60 years of annual maximum 
rainfall observations, 𝑝(𝛽60|𝛽30), for a belief state 𝛽30 at 30yr corresponding to 𝑃𝑟(𝑆 = 𝐴|𝑍1, … 𝑍30) =
𝑃𝑟(𝑆 = 𝐵|𝑍1, … 𝑍30) = 0.34 .  

Figure 17 shows the results of the optimization of the initial capacity 𝑣0 for different system 

flexibilities. For an inflexible flood protection system with 𝜑 = 0 , the optimal capacity is 

𝑣0,𝑜𝑝𝑡 = 5240 m
3
/s, corresponding to a 400-year rainfall event under current climate. For a fully 

flexible system with 𝜑 = 1, a slightly lower capacity 𝑣0,𝑜𝑝𝑡 = 5090 m
3
/s is optimal (a 320-year 

rainfall event in current climate), because the capacity can be adjusted in the future without 

incurring extra costs. A comparison with the static optimization results in Table 6 shows that 

considering future climate change leads to higher optimal design capacities. In the case of an 

inflexible system, the increase is in the order of 10%, for a fully flexible system the increase is 

reduced to about 6%.   

Table 6: Resulting optimal designs 

 Static optimization Sequential optimization 

 𝜑 = 0 𝜑 = 0 𝜑 = 0.5 𝜑 = 1 

Design discharge 4800m
3
/s 5240m

3
/s 5180m

3
/s 5090m

3
/s 

Design return period 220yr 400yr 360yr 320yr 

 

A comparison of the expected rewards 𝑊0 associated with the three values of flexibility and the 

corresponding optimal design shows that the optimum is achieved for 𝜑 = 0. The additional cost 

of flexibility is higher than its benefit, and it is more economical to select inflexible systems 

together with a conservative design (higher initial capacity) of the flood protection system.  
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Figure 17: Results of the optimization of initial capacity for different flexibilities. 𝑣0,𝑜𝑝𝑡 is the optimal 
initial capacity in m

3
/s and 𝑝𝑒𝑥𝑐 is the exceedance probability of the capacity based on the current PDF of 

maximum annual rainfall. 

To further investigate the characteristics of the decision problem, Figure 18 shows two randomly 

selected realizations of future annual maximum discharge observations and the related optimal 

system capacities. The optimal initial capacity at time 𝑡 = 0 corresponds to the capacity found in 

Figure 17. Figure 19 shows the conditional optimization of future capacities at time 𝑡 = 30 years 

for the demand realization from Figure 18a.  

 

 

Figure 18: Alternative realizations of future discharge observations and the resulting optimal decisions 
on capacity of the flood defense system for different flexibilities: (a) realization where scenario C , i.e. 
strong increase, becomes most likely, (b) realization where all scenarios remain approximately equally 
likely. 
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Figure 19: Optimization of future decisions at time 𝑡 = 30 conditionally on original capacity 𝑣0 and  
observed demand corresponding to the realization shown in Figure 18a.  

In both realizations of Figure 18, the capacities of the inflexible and partly flexible system are 

kept constant. The costs of adjusting the capacity of these systems is so high that it does not 

outweigh the possible increase in the predicted risk due to a higher frequency of flood events. 

This can be observed in Figure 19, which shows the sudden jump in the cost function.  

The capacity of the fully flexible system is changed at time 𝑡30  in Figure 18a, when the 

observations indicate an increase in the likelihood of scenario C.  Figure 19c shows the 

corresponding optimization, where the objective function is minimized for capacity 𝑣30,𝑜𝑝𝑡 =

5190 m
3
/s. For the realization in Figure 18b, the fully flexible system is not changed throughout 

the lifetime.  

5.3 Value of flexibility for flood risk mitigation measures 

The value of flexibility is determined following the procedure described in Section 3.2. The 

optimization is repeated with free flexibility, i.e. the coefficients 𝛾(𝜑) representing the price of 

flexibility in Eqs. (28) and (29) are set equal to 1 for all values of 𝜑. The corresponding optimal 

initial capacity for varying flexibilities is shown in Table 7. 

Table 7: Optimal designs assuming that the flexibility is for free. 

 Static optimization Sequential optimization 

 𝜑 = 0 𝜑 = 0 𝜑 = 0.5 𝜑 = 1 

Design discharge 4800m
3
/s 5240m

3
/s 5240m

3
/s 5220m

3
/s 

Design return period 220yr 400yr 400yr 380yr 
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The value of flexibility is presented in Figure 20. The value of partial flexibility (0.1 ≤ 𝜑 ≤ 0.9) 

is equal to zero, i.e. it is not worth to implement partly flexible systems if they are more costly 

than the inflexible ones. The fully flexible system is beneficial as compared to the non-flexible 

but the benefit is less than 0.1% of the initial costs. 

 

 

Figure 20: Relative value of flexibility of the flood protection system.  

6 Discussion 

We present a quantitative decision model, which can improve the design and planning of long-

life systems that face future uncertainties. The two numerical examples of Sections 4 and 5 

demonstrate the applicability of the proposed decision models to the optimization of the 

capacities of a Waste Water Treatment Plant (WWTP) and a flood protection system. The results 

show that the optimal design is influenced by the flexibility of the system, i.e. its ability to be 

modified in the future. By neglecting the flexibility, the planning can lead to suboptimal 

decisions. In both investigated examples, the associated objective functions are quite flat and 

sometimes have multiple local minima. As a result, the optimum is rather robust with respect to 

model assumptions. This facilitates a generalization of the results obtained from the case studies.    

In both examples, the value of flexibility is found to be limited. In the WTTP example, it is up to 

6% of the initial design costs, in the flood protection example, it is less than 0.1% of the initial 

design costs. The latter value is arguably an underestimation, because the amount of information 

used for learning the likelihood of climate scenarios was very limited. In practice, it can be 

expected that one will learn significantly more through improved climate models and additional 

data. Nevertheless, it can be concluded that the value of flexibility is limited because of (a) the 

effect of discounting and (b) the fact that increasing capacity is a no-regret strategy, in particular 

in the second example. In both examples, the real effect of the flexibility would come at later 

times in the service life, but because of discounting, the present value of the benefit associated 

with late changes is small. Increasing capacity is a no-regret strategy, because of the inherent 

uncertainty associated with extreme events. Adding additional capacity will always lead to a 

further reduction of risk, therefore the net cost of an overdesign is limited. However, this effect 
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may not be present in other applications. For example, an overdesign of a transportation system, 

of which parts remain unused later, has no benefits and is thus not a no-regret strategy.  

A comparison of the results from the WWTP example, a fully observable Markov Decision 

Process (MDP), with the flood risk example, a Partially Observable Markov Decision Process 

(POMDP), provides insights of the effect of the learning process on the optimal decisions. The 

more informative future observations are, the higher is the value of flexibility and the more 

significant adjustments are likely to be made to the system. In the WWTP example, the demand 

parameter is fully observable and future observations thus significantly reduce uncertainty. As a 

consequence, the capacity of the WWTP is likely to be changed several times during its lifetime 

and the value of flexibility is higher. On the contrary, the flood risk example represents a case 

where the future observations bring only a very limited knowledge on the true state of nature (the 

parameters of the extreme discharge distribution) and the learning effect is very low. As a 

consequence, no significant changes of the system are likely in the future and the value of 

flexibility is low.  

For the purpose of illustration, some of the assumptions made in the examples (e.g. the low 

number of scenarios utilized in the modeling of the climate change uncertainty in the flood risk 

example) are simplifying reality. For real applications, the uncertainty in the distribution of the 

extreme events (due to climate or due to limited historic records) should ideally be modeled with 

a continuous model of the parameters of probabilistic distribution as shown for example in 

(Dittes et al., 2016). 

In this paper, the capacity of the system was modeled as a continuous variable. In practical 

applications, determining the costs and benefits (risks) associated with each possible capacity is 

often infeasible. For example, in flood mitigation planning , a large variety of different measures, 

and combinations thereof, can be implemented (e.g., dykes combined with retention areas, mobile 

flood barriers, warning systems) and each measure has one or more parameters to be optimized 

(height of a dyke, volume of the retention, type of the mobile barriers, etc.). In such cases it is 

only realistic to evaluate a limited number of combinations of these measures. The continuous 

optimization presented in this paper would thus be replaced with a discrete optimization, 

similarly to the approach presented in (Špačková and Straub, 2015). The discrete formulation 

would reduce computational cost of the proposed decision model. 

7 Conclusions 

We propose the use of (Partially Observable) Markov Decision processes for planning of long-

term adaptation strategies for civil infrastructure and structures. The approach is applicable to a 

wide range of systems that have relevant uncertainty in the demand on the system, both at present 

and in the future. The approach allows identifying the optimal system design taking into account 

the flexibility of the system, i.e. its ability to be changed in the future without excessive costs. 

For this purpose, we define a quantitative measure of flexibility, based on costs for the initial 

construction and adjustments. The approach can also help identifying the optimal timing for 

changing the system as well as the value of flexibility, i.e. the additional costs that a decision 

maker should be willing to pay for increasing system flexibility. It explicitly includes the fact that 

also future decisions will be made under uncertainty, even if reduced through additional 
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information. The use of an influence diagrams for graphical representation of the decision 

process helps communicating the model assumptions.  

The approach is illustrated with two examples considering an optimization of the design of a 

Waste Water Treatment Plant (WWTP) under uncertain future population growth and the 

planning a of a flood protection system under climate change uncertainty. In both examples, the 

value of system flexibility is shown to be limited, because of the fact that changes are likely to be 

made in the farther future and the associated net present value is small because of discounting. 

Additionally, increasing the system capacity is a no-regret strategy in both applications, hence an 

overdesign of the systems still leads to an additional reduction in system risk, even if it is sub-

optimal. These conditions are, however, not found in all application cases. At present, we 

therefore have only limited knowledge on the value of flexibility in different adaptation planning 

problems. Future work should include a systematic study of the value of flexibility under 

different system characteristics and under different types of uncertainty. The models proposed in 

this paper can be used for such investigations to derive generalized planning recommendations.  
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