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Abstract 11 

To estimate and update the reliability of deteriorating structural systems with inspection and 12 

monitoring results, we develop a modeling and computational framework based on dynamic 13 

Bayesian networks (DBNs). The framework accounts for dependence among deterioration at 14 

different system components and for the complex structural system behavior. It includes the 15 

effect of inspection and monitoring results, by computing the updated reliability of the system 16 

and its components based on information from the entire system. To efficiently model 17 

dependence among component deterioration states, a hierarchical structure is defined. This 18 

structure facilitates Bayesian model updating of the components in parallel. The performance 19 

of the updating algorithm is independent of the amount of included information, which is 20 

convenient for large structural systems with detailed inspection campaigns or extensive 21 

monitoring. The proposed model and algorithms are applicable to a wide variety of structures 22 

subject to deterioration processes such as corrosion and fatigue, including offshore platforms, 23 

bridges, ships, and aircraft structures. For illustration, a Daniels system and an offshore steel 24 

frame structure subjected to fatigue are investigated. For these applications, the computational 25 

efficiency of the proposed algorithm is compared with that of a standard Markov Chain Monte 26 

Carlo algorithm and found to be orders of magnitude higher.  27 
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1 Introduction 30 

Engineering structures are commonly subjected to deterioration processes, which can reduce 31 

their service life and affect the safety of the environment, people and the structure itself. For 32 

this reason, significant resources are invested to identify, model, quantify, mitigate and prevent 33 

deterioration processes in structures (Swanson 2001, Brownjohn 2007, Farrar and Worden 34 

2007). Structural deterioration, such as metal corrosion and fatigue, is mathematically 35 

represented using mostly empirical or semi-empirical models (e.g. Stephens 2001, Gardiner and 36 

Melchers 2003, Qin and Cui 2003, Wells and Melchers 2014). Because of their empirical nature, 37 

predictive deterioration models are typically associated with significant uncertainty. Hence 38 

deterioration is ideally modeled probabilistically (e.g. Madsen et al. 1985, Lin and Yang 1985, 39 

Melchers 1999, Frangopol et al. 2004).  40 

Probabilistic deterioration models are developed mainly at the structural component level. 41 

However, deterioration at different locations in a structural system is typically correlated, and 42 

system considerations should be made (Moan and Song 2000, Vrouwenvelder 2004, Straub and 43 

Faber 2005). Probabilistic models of deterioration in large structural systems have been 44 

proposed and applied to different types of structures and deterioration processes (e.g. Guedes 45 

Soares and Garbatov 1997, Kang and Song 2010, Straub 2011b, Luque et.al 2014, Schneider et 46 

al. 2015).  47 

Bayesian methods have been used to combine probabilistic deterioration models with 48 

inspection and monitoring outcomes (e.g., Tang 1973, Madsen et al. 1985, Maes et al. 2008, 49 

Straub 2009). They allow quantifying the impact of inspections and monitoring on the reliability 50 

of the structure, and so facilitate maintenance decisions and the planning of future inspections 51 

(e.g. Thoft-Christensen and Sørensen 1987, Faber et al. 2000, Moan 2005, Straub and Faber 52 

2005). Bayesian analysis is mainly performed at the component level, where the probability of 53 

failure of a structural component due to deterioration is updated with the inspection and 54 

monitoring outcomes. Only a few publications consider the updating of the reliability at the 55 

structural system level. Therein, the dependence among component deterioration states is 56 

modeled either through the correlation among the deterioration limit states (Moan and Song 57 

2000, Lee and Song 2014, Maljaars and Vrouwenvelder 2014) or through a hierarchical model 58 

(Mahadevan 2001, Faber et al. 2006, Maes and Dann 2007, Straub et al. 2009, Schneider et al., 59 

under review). More recently, a number of researchers have considered the planning and 60 

optimization of inspection and maintenance actions in structural systems with dependent 61 

component deterioration (Straub and Faber 2005, Qin and Faber 2012, Nielsen and Sørensen 62 

2014, Memarzadeh et al. 2014).  63 
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A challenge in Bayesian system reliability analysis is to keep the computation time at a feasible 64 

level. Methods belonging to classical structural reliability methods are efficient for estimating 65 

the probability of system failure, but do not facilitate Bayesian analysis or have computation 66 

times that increase exponentially with the number of observations. Recently, a class of methods 67 

has been proposed that efficiently combine structural reliability methods with Bayesian 68 

updating (Straub 2011a, Straub and Papaioannou 2015). Nevertheless, also this approach has 69 

the drawback that its performance is a function of the number of inspection and monitoring data, 70 

which can be considerable in structural systems.  71 

Bayesian Networks (BNs) have become popular in engineering risk analysis due to their 72 

intuitive nature and their ability to handle many dependent random variables in a Bayesian 73 

analysis (Jensen and Nielsen 2007, Straub and Der Kiureghian 2010, Weber et al. 2010). The 74 

graphical structure of the BN is formed by nodes and directed links. The nodes represent 75 

random variables or deterministic parameters, and the links the dependence among nodes. 76 

Ideally, the link between two nodes is based on a causal relation, but this is not necessary. As 77 

an example, if deterioration 𝐷 is modeled as a function of an external random load 𝑆 and a 78 

material parameter 𝑀, then a corresponding BN may look like the one in Figure 1. Here, an 79 

additional node 𝑍 is included, representing an outcome of an inspection. Since each random 80 

variable in the BN is specified by its conditional probability distribution given its parents, the 81 

inspection outcome is defined by 𝑝(𝑧|𝑑), i.e. the probability of the inspection outcome 𝑍 = 𝑧 82 

given the damage state 𝐷 = 𝑑. This is known as the likelihood function, and corresponds to 83 

classical models used for describing inspection or monitoring performance, such as Probability 84 

of Detection (POD). Generally, the BN is established using commonly available probabilistic 85 

models; it allows combining these in a consistent and (in most cases) intuitive manner. 86 

Using BNs it is possible to obtain the posterior distribution of a set of random variables given 87 

a set of observations. This task is called inference. For instance, if an inspection result is 88 

included in the previously presented example, i.e. if 𝑍 is given, then the (joint) probability 89 

distribution of the random variables 𝑆 , 𝑀  and 𝐷  conditional on the observed value of 𝑍  is 90 

calculated using inference algorithms. There are many algorithms available for inference in 91 

BNs (e.g. Hanea et al. 2006, Langseth 2009, Shenoy and West 2011). In this paper, the focus is 92 

on BN with discrete random variables, for which exact inference algorithms exist (e.g. Murphy 93 

2002, Jensen and Nielsen 2007).   94 
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 95 

Figure 1. BN deterioration model example. 96 

The links in the BN provide information on the dependence between random variables in the 97 

model. For example, in the BN of Figure 1, 𝑀 and 𝑆 are assumed to be independent a-priori, 98 

and hence no direct link between them is present. The link from 𝐷  to 𝑍  indicates that the 99 

inspection provides information on the damage state. It provides no direct information on 𝑆 and 100 

𝑀. However, it does so indirectly, because the information obtained on 𝐷 also updates the 101 

probability distribution of 𝑆 and 𝑀, as long as 𝐷 is not known with certainty. In this way, by 102 

observing one random variable, potentially all others are updated. However, for efficient 103 

computation, all BN inference algorithms make use of the graphical structure by performing 104 

computations locally, exploiting the conditional independence assumptions encoded in the 105 

graph. 106 

Modeling of deterioration often involves random processes, which can be represented in a 107 

discrete-time manner by dynamic Bayesian networks (DBN), as proposed in Straub (2009). For 108 

illustration, we extend the BN of Figure 1 to include a time-variant load 𝑆𝑡  and inspection 109 

results at multiple points in time 𝑡 = 1, … , 𝑇. The resulting DBN is shown in Figure 2. Each 110 

“slice” of the DBN represents a time step in the analysis. The random process {𝑆1, 𝑆2, … , 𝑆𝑇} is 111 

a Markov chain where each random variable is defined conditionally on the random variables 112 

of the previous time step. The deterioration 𝐷𝑡 at time 𝑡 is a stochastic function of the previous 113 

deterioration state 𝐷𝑡−1 and the current load 𝑆𝑡. The probability distributions of the material 114 

parameter 𝑀 , the loads {𝑆1, 𝑆2, … , 𝑆𝑇} , and the deterioration states {𝐷1, 𝐷2, … , 𝐷𝑇}  are all 115 

updated once inspection outcomes 𝑍1, …, 𝑍𝑇, or a subset thereof, are observed. 116 
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 117 

Figure 2. DBN deterioration model example. 118 

In this paper, the DBN model for structural deterioration from Straub (2009) is extended from 119 

the component to the system level, based on work presented by the authors in Luque and Straub 120 

(2015). An efficient algorithm is developed, which assesses the reliability of a deteriorating 121 

system when partial observations of its condition are available. The deterioration factors of the 122 

system components are interrelated using a hierarchical structure and a set of hyperparameters, 123 

which model the correlation structure among components. In the following section, the concept 124 

of dynamic Bayesian networks and its application to efficiently model component deterioration 125 

are presented. Thereafter, in Section 3, the model is extended to represent the complete 126 

structural system. Sections 4.1 and 4.2 present two case studies where the model and algorithm 127 

are applied and compared to other methods for estimating the system probability of failure. To 128 

demonstrate the advantages of the proposed algorithm, the number of system components is 129 

increased to a point where classical MCMC algorithms are no longer efficient for estimating 130 

the system reliability. 131 

2 Dynamic Bayesian network for assessing component deterioration 132 

2.1 DBN model of a single component 133 

The DBN model framework developed in Straub (2009) is used to represent the deterioration 134 

of components. This model includes the following elements: 135 

 Time-invariant model parameters 𝛉, which are constant in time. 136 

 Time-variant model parameters 𝛚𝑡, which vary with time steps 𝑡 = 0, … , 𝑇. 137 

 Deterioration model: A parametric function ℎ  for describing the deterioration 𝐷  as a 138 

function of 𝑡, 𝛉, 𝛚0, . . . , 𝛚𝑡 and the deterioration level at the previous time step 𝐷𝑡−1, i.e. 139 
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𝐷𝑡 = 𝐷(𝑡) = ℎ(𝑡, 𝐷𝑡−1, 𝛉, 𝛚1, . . . , 𝛚𝑡),    𝑡 = 1, … , 𝑇 (1) 

 Observations: At any time step 𝑡, information on the condition of a model parameter or the 140 

deterioration 𝐷𝑡  may be available from inspections, monitoring systems, recordings of 141 

environmental parameters or other measurements, which are related to the model 142 

parameters. These observations are denoted by 𝑍𝛉,𝑡 , 𝑍𝛚,𝑡 , and 𝑍𝐷,𝑡 , depending on the 143 

random variables to which they relate. 144 

Figure 3 depicts the generic DBN deterioration model for a single component, where vectors 145 

𝛉1, … , 𝛉𝑇 are added in order to have a repetitive sub-BN for each time step. These vectors are 146 

deterministically defined as 𝛉𝑡 = 𝛉𝑡−1 = 𝛉0  for all 𝑡 = 1, … , 𝑇. The DBN model illustrates 147 

how the parameters and the deterioration of a single component are related in time. Each set 148 

{𝛉𝑡 , 𝛚𝑡 , 𝐷𝑡 , 𝑍𝛉,𝑡 , 𝑍𝛚,𝑡 , 𝑍𝐷,𝑡} represents a time step 𝑡 in the DBN. 149 

 150 

Figure 3. Generic DBN of the deterioration model at the component level (following Straub 2009). 151 

2.2 Computation of the posterior distribution 152 

DBN models can be evaluated using exact or approximate inference algorithms. Most 153 

approximate methods are sampling-based; the most popular among these belong to the family 154 

of Markov Chain Monte Carlo (MCMC) methods. MCMC using Gibb’s sampler is particularly 155 

effective, as it exploits the conditional independence properties of the BN (Gamerman and 156 

Lopes 2006). Nevertheless, the computational cost of MCMC increases considerably as the 157 

number of observations included in the model increases and/or the probability of failure of 158 

interest decreases. This motivates the use of exact inference algorithms with discretized random 159 

variables, whose performance does not deteriorate with increasing amount of observation and 160 

is independent of the magnitude of the probabilities of interest.  161 
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For DBN models consisting exclusively of discrete random variables, exact inference 162 

algorithms exist. In particular the forward-backward algorithm (Murphy 2002, Russell and 163 

Norvig 2003) is effective for DBN. In Straub (2009), a variant of the forward-backward 164 

algorithm is proposed, which is tailored towards evaluating the generic DBN for deterioration 165 

modeling shown in Figure 3.  166 

2.3 Discretization of continuous random variables 167 

With the exception of some special cases, exact inference algorithms can be applied only to 168 

DBNs with exclusively discrete random variables. However, most deterioration models include 169 

continuous random variables. To apply the exact inference algorithms, these must be discretized. 170 

To this end, the original continuous domain of each random variable is partitioned into discrete 171 

intervals and the probability of each interval is computed from the conditional or the marginal 172 

PDF of the random variable. Even though these algorithms are exact for a given discretization, 173 

the discretization itself does introduce an error. The number and location of the discrete 174 

intervals have an impact on the computation time and accuracy of the approximation. Several 175 

algorithms have been developed to obtain optimal intervals based on a specific estimation, 176 

typically the probability of failure (Chang and Chen 2005, Neil et al. 2007, Marquez et al. 2010, 177 

Zwirglmaier and Straub under review).  178 

Here the heuristic principles presented in Straub (2009) to define the discretization scheme are 179 

used. To keep the model simple, the discretization scheme, and hence the conditional 180 

probabilities, are the same in all time steps, resulting in a homogenous DBN. The discretization 181 

scheme of the random variables 𝛉 and 𝛚𝑡  is chosen so that after applying the deterioration 182 

model ℎ, they result in approximately equally spaced intervals in 𝐷. This method is simple to 183 

implement and has proven to be effective. For more details on discretization approach, the 184 

reader is referred to Straub (2009). 185 

3 Bayesian network model of system deterioration 186 

One challenging aspect of modeling deteriorating structural systems is the representation of the 187 

interrelation among the system components and the common factors that affect their condition. 188 

Only a limited number of investigations of the dependence among component deterioration 189 

states can be found in the literature (e.g. Hergenröder and Rackwitz 1992, Vrouwenvelder 2004, 190 

Maes et al. 2008, Malioka 2009, Luque et.al 2014). The two most common mathematical 191 

representations of such dependence are hierarchical models and random field models. The latter 192 



Reliability assessment of monitored deteriorating systems with DBNs 8/36 

are suitable for systems where dependence among component deterioration is a function of the 193 

geometrical location (Maes 2003, Stewart and Mullard 2006). Hierarchical models are suitable 194 

where the dependence among component deterioration depends on common features and 195 

common influencing factors (Maes and Dann 2007, Maes et al. 2008, Banerjee et al. 2015). 196 

They have computational advantages over random fields, in particular in the context of DBN 197 

modeling.  198 

In the DBN model, care is required to correctly represent the statistical dependence among the 199 

random variables without increasing the complexity and computational cost of the inference. 200 

For general statistical dependence among components, most DBN models of systems rapidly 201 

become computationally intractable when the number of components in the system or the 202 

number of random variables increases. Strategies for reducing the computational efforts when 203 

representing random fields in the BN have been proposed (Bensi et al. 2011), but their 204 

applicability is still limited. In the proposed approach, the dependence structure is modeled by 205 

hierarchical models. Hierarchical models can capture the dependence structure of deterioration 206 

in most structural systems quite adequately, because the dependence is typically caused mainly 207 

by common influencing factors rather than geometrical proximity.  208 

3.1 Hierarchical models 209 

Hierarchical models are an effective way of representing systems whose characteristics can be 210 

grouped using multiple levels (Raudenbush and Bryk 2008). The random variables within a 211 

level are interrelated through common influencing parameters, which are modeled at a higher 212 

level in the hierarchy. The random variables at the highest level are called hyperparameters. As 213 

a simple example, Figure 4 shows a BN representing a set of random variables {𝑉1, 𝑉2, … , 𝑉𝑛} 214 

with common mean value 𝛼. As long as the value of 𝛼 is uncertain, the random variables 215 

{𝑉1, 𝑉2, … , 𝑉𝑛} are statistically dependent. The correlation between 𝑉𝑖 and 𝑉𝑗 will depend on the 216 

distribution parameters. If the random variables 𝑉𝑖 conditional on 𝛼 all have standard deviation 217 

𝜎𝑉, and 𝛼 has standard deviation 𝜎0, then the linear correlation between any pair 𝑉𝑖 and 𝑉𝑗, 𝑖 ≠218 

𝑗, is 219 

𝜌(𝑉𝑖 , 𝑉𝑗) =
𝜎0

2

𝜎0
2 + 𝜎𝑉

2 (2) 
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 220 

Figure 4. Hierarchical BN with a hyperparameter 𝛼. 221 

3.2 Hierarchical model based on correlation models 222 

In many instances, influencing parameters are not modeled explicitly, as in the example above, 223 

but instead models of the correlation among components are available. In this section, we 224 

describe how such correlation models are translated into a BN. To simplify the presentation, 225 

we consider an equi-correlated set of random variables 𝐕 = [𝑉1, … , 𝑉𝑛]𝑇 , for which the 226 

correlation between any two components is 𝜌𝑉. All 𝑉𝑖’s have identical marginal distribution, 227 

described by the cumulative distribution function (CDF), 𝐹𝑉. The extension to more general 228 

cases is outlined afterwards. The presentation is limited to the (commonly implied) case that 229 

the joint distribution of 𝐕 follows a Gaussian copula, i.e. the Nataf transformation can be used 230 

for transforming the 𝐕 to equivalent standard normal random variables (Liu and Der Kiureghian 231 

1986).  232 

Following the principle of the Nataf transformation, the 𝑉𝑖 are related to corresponding standard 233 

normal distributed 𝑌𝑖 through the following marginal transformation: 234 

𝑉𝑖 = 𝐹𝑉
−1[Φ(𝑌𝑖)] (3) 

where 𝐹𝑉
−1 is the inverse CDF of 𝑉𝑖 and Φ is the standard normal CDF.  235 

The 𝑌𝑖 are jointly normal distributed with correlation coefficient 𝜌𝑌, which is the equivalent 236 

correlation in standard normal space and is a function of 𝜌𝑉 and 𝐹𝑉. Its value is such that, after 237 

applying the transformation 𝐹𝑉
−1[Φ(∙)] , the resulting random variables 𝑉1, … , 𝑉𝑛  have 238 

correlation 𝜌𝑉. 𝜌𝑌 can be found numerically or from the approximate expressions provided in 239 

(Liu and Der Kiureghian 1986). 240 

The dependence among the equi-correlated standard normal random variables 𝑌1, … , 𝑌𝑛 can be 241 

defined through a hierarchical structure. To this end, a standard normal hyperparameter 𝛼 is 242 

introduced, as shown in Figure 5. The 𝑌𝑖 are defined as normal random variables conditional on 243 

𝛼  with mean √𝜌𝑌 ∙ 𝛼  and standard deviation √1 − 𝜌𝑌 . The unconditional 𝑌1, … , 𝑌𝑛  are then 244 

standard normal random variables with mutual correlation coefficient 𝜌𝑌. 245 

V1 V2 V3 … 
Vn 
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 246 

Figure 5. Hierarchical BN of equally correlated random variables. 247 

To reduce the number of random variables in the BN, the auxiliary random variables 𝑌𝑖 can be 248 

eliminated and replaced by a direct link between 𝛼 and the 𝑉𝑖. The resulting BN is the one in 249 

Figure 4. The corresponding conditional distribution of 𝑉𝑖 given 𝛼 is: 250 

𝐹𝑉|𝛼(𝑣) = Φ (
Φ−1(𝐹𝑉(𝑣)) − √𝜌𝑌 ∙ 𝛼

√1 − 𝜌𝑌

) 
(4) 

The conditional CDF of the random variables 𝑉𝑖 of Eq. (4) is used to generate the conditional 251 

probability table (CPT) of 𝑉𝑖 in the DBN system deterioration model.  252 

The above model approach can be extended to random variables 𝑉1, … , 𝑉𝑛  with different 253 

marginal distributions and varying mutual correlation coefficients. As long as the pairwise 254 

correlation coefficients 𝜌𝑌,𝑖𝑗 of the underlying standard normal 𝑌𝑖′𝑠 are of the Dunnett-Sobel 255 

class (see e.g. Thoft-Christensen and Murotsu 1986, Kang and Song 2009), the BN structures 256 

of Figure 4 and Figure 5 still hold. No additional computational efforts are necessary in these 257 

cases. 258 

3.3 DBN model of the system 259 

The hierarchical DBN modeling approach is applied to model dependence among component 260 

deterioration in structures. To extend the component DBN model of section 2.1 to a model of 261 

the structural system, a set of hyperparameters 𝛂 = [𝛼𝛉, 𝛼𝛚, 𝛼𝐷0
]

𝑇
 are defined.  In the system 262 

model, all components are connected through these hyperparameters 𝛂 (Figure 6). All random 263 

variables in the DBN are now indexed by the component number 𝑖 = 1, … , 𝑁 and the time step 264 

𝑡 = 0, … , 𝑇, i.e. 𝐷3,10 is the damage of component 3 at time step 10. 265 

The 𝛂 parameters may be determined from known correlation among components, following 266 

Section 3.2, or derived from common influencing factors. In many cases, they will represent 267 

Y1 Y2 Y3 … 
Yn 

V1 V2 V3 … 
Vn 
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model uncertainties, which are typically shared among similar components within a system. In 268 

this case, the corresponding 𝛂 parameters can be obtained by first estimating the magnitude of 269 

common model uncertainties relative to component-specific uncertainties, then determining the 270 

corresponding correlations through Eq. (2) and from those the 𝛂 parameters following Section 271 

3.2. 272 

 273 

Figure 6. DBN model of the structural system deterioration. 274 

In the full system model DBN of Figure 6, the binary random variable 𝐸𝐶,𝑖,𝑡  represents the 275 

condition (i.e. 𝐸𝐶,𝑖,𝑡 = 0: not failed, 𝐸𝐶,𝑖,𝑡 = 1: failed) of component 𝑖 at time step 𝑡. 𝐸𝐶,𝑖,𝑡 is a 276 

(possibly probabilistic) function of the deterioration state 𝐷𝑖,𝑡. The binary random variable 𝐸𝑆,𝑡 277 

represents the system condition (i.e. 𝐸𝑆,𝑡 = 0: not failed, 𝐸𝑆,𝑡 = 1: failed) as a function of all 278 

component conditions. 𝐸𝐶,𝑖,𝑡 and 𝐸𝑆,𝑡 can be extended to multi-state random variables, if a more 279 

detailed description of the components and system condition is desirable. The relation between 280 

the system condition 𝐸𝑆,𝑡 and the condition of its components 𝐸𝐶,𝑖,𝑡, 𝑖 = 1, … , 𝑁, is quantified 281 

by the probability of system failure given the conditions of its components. To obtain these 282 

conditional probabilities, a probabilistic model of the structural system is necessary and 283 

structural reliability computations must be performed in a pre-processing step.  284 

For many real structural systems, the number of system components subject to deterioration is 285 

large, and hence there is a prohibitively large number of combinations of component 286 

deterioration states in the system, as discussed in Straub and Der Kiureghian (2011). In the 287 

DBN model of Figure 6, this is reflected by the number of links pointing from the component 288 
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condition nodes 𝐸𝐶,𝑖,𝑡, 𝑖 = 1, … , 𝑁 to the system condition node 𝐸𝑆,𝑡. For each combination of 289 

possible element conditions, a system configuration 𝚿𝑡  is defined. A total of 2𝑁  different 290 

system configurations must be examined, which rapidly becomes intractable as the number of 291 

components increases, because a system reliability analysis must be carried out for each 292 

configuration to determine Pr(𝐸𝑆,𝑡 = 1|𝚿𝑡 = 𝛙𝑡). In specific applications of the framework, it 293 

is therefore necessary to use a more efficient representation of structural system behavior. For 294 

this purpose, the convergent connection from the 𝐸𝐶,𝑖,𝑡 to 𝐸𝑆,𝑡 may be replaced by an alternative 295 

dependence structure. Different techniques can be used to this end, in function of the considered 296 

system. One possible alternative is to reduce the number of system configurations to consider 297 

based on their contribution to the probability of failure (Kim et al. 2013). Alternatively, in many 298 

systems one can exploit the fact that some components are (approximately) exchangeable with 299 

respect to their static function. In this case, it is sufficient to consider the number of component 300 

failures in the group (Straub and Der Kiureghian 2011). In the numerical investigations 301 

presented later, we consider a Daniels system to demonstrate the DBN modeling in such cases. 302 

Furthermore, in some systems it is possible to pursue a hierarchical modeling approach also for 303 

the static functions. Such a strategy is utilized in the second numerical example presented later. 304 

3.4 Inference algorithm 305 

To perform inference with the system DBN, i.e. to compute the probability of component and 306 

system failure given inspection and monitoring results, the forward-backward algorithm 307 

presented in Straub (2009) for exact inference is extended to the system level. The algorithm 308 

presented here is limited to the forward operation, which is used to solve the filtering problem, 309 

i.e. to compute the posterior distribution of the random variables 𝛂, 𝛉𝑖, 𝛚𝑖,𝑡, 𝐷𝑖,𝑡, 𝐸𝐶,𝑖,𝑡 and 𝐸𝑆,𝑡 310 

for all 𝑖 = 1, … , 𝑁  given the observations up to time 𝑡 . The algorithm is formulated in a 311 

recursive manner for each time step and exploits the property of the hierarchical model that all 312 

components are statistically independent for given hyperparameters. 313 

3.4.1 Component partial updating (forward operation) 314 

This first part of the algorithm is applied to each component separately. The conditional joint 315 

probability mass function (PMF) of deterioration state 𝐷𝑖,𝑡, the time-variant parameters 𝛚𝑖,𝑡, 316 

and the time-invariant parameters 𝛉𝑖 are computed conditionally on the hyperparameters 𝛂 and 317 

on all observations of the component up to time step 𝑡. The latter are denoted by 𝐙𝑖,0:𝑡, and 318 

include all observations of the damage state 𝑍𝐷,𝑖,0:𝑡 , time-variant 𝑍𝛚,𝑖,0:𝑡  and time-invariant 319 
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parameters 𝑍𝛉,𝑖,0:𝑡, i.e. 𝐙𝑖,0:𝑡 = [𝑍𝐷,𝑖,0:𝑡 , 𝑍𝛚,𝑖,0:𝑡 , 𝑍𝛉,𝑖,0:𝑡]
𝑇
. From application of Bayes’ rule, and 320 

accounting for the independence properties encoded in the DBN structure, it follows: 321 

𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡|𝛂, 𝐳𝑖,0:𝑡) 

∝ 𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡|𝛂, 𝐳𝑖,0:𝑡−1) 𝑝(𝑧𝐷,𝑖,𝑡|𝑑𝑖,𝑡)𝑝(𝑧𝛚,𝑖,𝑡|𝛚𝑖,𝑡)𝑝(𝑧𝛉,𝑖,𝑡|𝛉𝑖,𝑡) (5) 

where 𝑖 = 1, … , 𝑁 , 𝑡 = 1, … , 𝑇 . The proportionality constant is found by normalization: 322 

∑ ∑ ∑ 𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡|𝛂, 𝐳𝑖,0:𝑡)𝛉𝑖,𝑡𝛚𝑖,𝑡𝑑𝑖,𝑡
= 1. The first term on the right hand side of Eq. (5) is 323 

calculated from the joint probability at the previous time step 𝑝(𝑑𝑖,𝑡−1, 𝛚𝑖,𝑡−1, 𝛉𝑖,𝑡−1|𝛂, 𝐳𝑖,0:𝑡−1) 324 

through: 325 

𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡|𝛂, 𝐳𝑖,0:𝑡−1) 

= ∑ 𝑝(𝑑𝑖,𝑡|𝑑𝑖,𝑡−1, 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡)

𝑑𝑖,𝑡−1

∑ 𝑝(𝛚𝑖,𝑡|𝑑𝑖,𝑡−1, 𝛚𝑖,𝑡−1, 𝛉𝑖,𝑡)

𝛚𝑖,𝑡−1

 

× ∑ 𝑝(𝛉𝑖,𝑡|𝛉𝑖,𝑡−1)

𝛉𝑖,𝑡−1

𝑝(𝑑𝑖,𝑡−1, 𝛚𝑖,𝑡−1, 𝛉𝑖,𝑡−1|𝛂, 𝐳𝑖,0:𝑡−1) 

(6) 

The algorithm is applied recursively, starting at 𝑡 = 0, for which the joint probability is 326 

𝑝(𝑑𝑖,0, 𝛚𝑖,0, 𝛉𝑖,0|𝛂, 𝐳𝑖,0) 

∝ 𝑝(𝑧𝐷,𝑖,0|𝑑𝑖,0 )𝑝(𝑧𝛚,𝑖,0|𝛚𝑖,0)𝑝(𝑧𝛉,𝑖,0|𝛉𝑖,0)𝑝(𝑑𝑖,0|𝛂)𝑝(𝛚𝑖,0|𝛂)𝑝(𝛉𝑖,0|𝛂) (7) 

Note that all conditional probabilities required in Eqs. (5-7) are available from the definition of 327 

the BN. 328 

3.4.2 Hyperparameter updating 329 

Observations of each component have an indirect effect on the posterior distribution of the 330 

remaining components. These distributions are updated through the hyperparameters. For this 331 

reason, the second step is updating the hyperparameters given the observations from all random 332 
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variables up to time 𝑡, i.e. 𝑝(𝛂|𝐳1:𝑁,0:𝑡). This is calculated recursively with respect to 𝑖 (i.e. 333 

component by component) as: 334 

𝑝(𝛂|𝐳1:𝑖,0:𝑡) ∝ 𝑝(𝛂|𝐳1:𝑖−1,0:𝑡) ∏ 𝑝(𝐳𝑖,𝑗|𝛂)

𝑡

𝑗=0

 

(8) 

for 𝑖 = 2, … , 𝑁, and 335 

𝑝(𝛂|𝐳1,0:𝑡) ∝ 𝑝(𝛂) ∏ 𝑝(𝐳1,𝑗|𝛂)

𝑡

𝑗=0

 (9) 

where 𝑝(𝛂|𝐳1:𝑖,0:𝑡) is the conditional probability of the hyperparameters given all observations 336 

in components 1, … , 𝑖 up to time 𝑡 and 𝑝(𝛂) is the prior probability of the hyperperameters (i.e. 337 

before observations). 𝑝(𝐳𝑖,𝑡|𝛂)  is the inverse of the normalizing constant of Eq. (5), for 338 

component 𝑖 and time step 𝑡. Equation (8) can also be expressed as a product over the index 𝑖, 339 

but it is expressed in recursive form here to indicate that the conditional probability of the 340 

hyperparameters given the observations can be partially calculated after each component is 341 

updated.  342 

3.4.3 Posterior distributions  343 

The next step in the algorithm is the computation of the joint posterior probability 344 

𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡 , 𝛂|𝐳1:𝑁,0:𝑡), the updated component state probability given the observations 345 

from all components up to time 𝑡: 346 

𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡 , 𝛂|𝐳1:𝑁,0:𝑡) = 𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡|𝛂, 𝐳𝑖,0:𝑡)𝑝(𝛂|𝐳{1:𝑁}∖{𝑖},0:𝑡) (10) 

where 𝐳{1:𝑁}∖{𝑖},0:𝑡 are the observations of all components excluding those of component 𝑖. Any 347 

marginal posterior distribution can be computed from these results. As an example, the posterior 348 

distribution of the damage in component 𝑖 at time 𝑡 is: 349 

𝑝(𝑑𝑖,𝑡| 𝐳1:𝑁,0:𝑡) = ∑ ∑ ∑ 𝑝(𝑑𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡 , 𝛂| 𝐳1:𝑁,0:𝑡)

𝛂𝛉𝑖,𝑡𝛚𝑖,𝑡

 (11) 
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3.4.4 Posterior reliability of components and system  350 

Finally, the updated probability of the component condition 𝐸𝐶,𝑖,𝑡  is obtained by simple 351 

application of the total probability theorem: 352 

𝑝(𝑒𝐶,𝑖,𝑡|𝐳1:𝑁,0:𝑡) = ∑ 𝑝(𝑒𝐶,𝑖,𝑡|𝑑𝑖,𝑡) 𝑝(𝑑𝑖,𝑡|𝐳1:𝑁,0:𝑡)

𝑑𝑖,𝑡

 (12) 

where 𝑒𝐶,𝑖,𝑡 is a realization of the random variable 𝐸𝐶,𝑖,𝑡. The updated probability distribution 353 

of the system condition is: 354 

𝑝(𝑒𝑆,𝑡|𝐳1:𝑁,0:𝑡) 

= ∑ 𝑝(𝑒𝑆,𝑡|𝐞𝐶,1:𝑁,𝑡) ∑ 𝑝(𝐞𝐶,1:𝑁,𝑡|𝛂, 𝐳1:𝑁,0:𝑡) 𝑝(𝛂|𝐳1:𝑁,0:𝑡)

𝛂𝑒𝐶,1,𝑡,…,𝑒𝐶,𝑁,𝑡

= ∑ 𝑝(𝑒𝑆,𝑡|𝐞𝐶,1:𝑁,𝑡) ∑ 𝑝(𝛂|𝐳1:𝑁,0:𝑡) ∏ 𝑝(𝑒𝐶,𝑖,𝑡|𝛂, 𝐳1:𝑁,0:𝑡)

𝑖𝛂𝑒𝐶,1,𝑡,…,𝑒𝐶,𝑁,𝑡

 

(13) 

where 𝐞𝐶,1:𝑁,𝑡 = [𝑒𝐶,1,𝑡 , … , 𝑒𝐶,𝑁,𝑡]
𝑇
 is a realization of 𝐄𝐶,1:𝑁,𝑡 = [𝐸𝐶,1,𝑡 , … , 𝐸𝐶,𝑁,𝑡]

𝑇
. 355 

3.5 Computational complexity of the algorithm 356 

The computational complexity of the forward operation for a single component is 357 

𝑂[𝑚𝜃(𝑡 + 1)(𝑚𝐷
2 𝑚𝜔 + 𝑚𝐷𝑚𝜔

2 )] , where 𝑚𝐷 , 𝑚𝜔 , 𝑚𝜃  are the number of states of the 358 

discretized random variables 𝐷𝑖,𝑡, 𝛉𝑖,𝑡, 𝛚𝑖,𝑡 (see Straub 2009). In analogy, the complexity of the 359 

algorithm described in section 3.4.1 for updating all components with their respective 360 

observations is 𝑂[𝑚𝜃𝑚𝛼𝑁(𝑡 + 1)(𝑚𝐷
2 𝑚𝜔 + 𝑚𝐷𝑚𝜔

2 )], where 𝑚𝛼 is the number of states of the 361 

hyperparameters. The complexity of the hyperparameter updating step of section 3.4.2 is 362 

𝑂[𝑚𝐷𝑚𝜔𝑚𝜃𝑚𝛼𝑁]. The complexity of updating the condition of all components is 𝑂[𝑚𝐶𝑚𝐷𝑁] 363 

and that of updating the system reliability is 𝑂 [[(𝑁 + 1)𝑚𝛼 + 1]𝑚𝐸𝑆
𝑚𝐸𝐶

𝑁 ] in the general case 364 

(section 3.4.3). 365 

With the exception of the updating of the system condition 𝐸𝑆, the complexity of the algorithm 366 

is proportional to the number of components and time steps and it is independent of the number 367 

of observations included in the analysis. However, updating of 𝐸𝑆  can quickly become 368 

intractable as the number of components increases, unless a more efficient system 369 

representation than the convergent connection (Figure 6) can be found. Such strategies were 370 

already discussed in section 3.3. Alternatively, if such alternative system representations are 371 
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not possible or not convenient, the conditional system reliability may be evaluated using 372 

sampling-based structural reliability methods. This could be achieved by employing the 373 

conditional probability distributions computed with the DBN algorithm to generate samples 374 

from the posterior. 375 

A second important aspect of computational performance is the necessary memory allocation. 376 

This is strongly influenced by the size of the largest joint PMF used in the procedure, which 377 

can be either 𝑝(𝐷𝑖,𝑡 , 𝛚𝑖,𝑡 , 𝛉𝑖,𝑡|𝛂) or 𝑝(𝛚𝑖,𝑡|𝐷𝑖,𝑡−1, 𝛚𝑖,𝑡−1, 𝛉𝑖,𝑡). Memory allocation as well as 378 

computational complexity are therefore a direct function of the discretization scheme, which 379 

must be defined carefully to find an optimal trade-off between accuracy and computational cost. 380 

4 Numerical investigation 381 

The following numerical examples serve to investigate and illustrate the workings of the 382 

proposed model and inference algorithm. For validation purposes, the results obtained with the 383 

exact inference algorithm are compared to those obtained with two alternative methods: 1) 384 

Monte Carlo simulation (MCS) for the case without observations, and 2) MCMC for cases with 385 

and without observations. The MCMC computations are implemented with OpenBUGS (Lunn 386 

et.al 2009). 387 

4.1 Daniels system 388 

For illustration purposes, we consider a Daniels system (Daniels 1945, Gollwitzer and Rackwitz 389 

1990), which consists of a set of 𝑁  elements with independent and identically distributed 390 

capacities 𝑅𝑖 for 𝑖 = 1, … , 𝑁. The elements have ideally brittle material behavior. The system 391 

is subject to a load 𝐿 (Figure 7).  392 

 393 

Figure 7. Daniels system. 394 

EI =  

L 

R1 R2 R3 … RN 
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Prior to the application of the load, each component in the system is in one of two possible 395 

states: a) full capacity, or b) zero capacity due to a fatigue failure. For a discussion of this model 396 

see Straub and Der Kiureghian (2011). 397 

4.1.1 Deterioration model 398 

The system components are subject to fatigue deterioration, which - for illustration purposes - 399 

is modeled by simple fracture-mechanics-based crack growth model (e.g. Ditlevsen and 400 

Madsen 1996). It uses Paris' law to describe the growth of the crack depth 𝐷𝑖 at component 𝑖: 401 

d𝐷𝑖(𝑛)

d𝑛
= 𝐶𝑖 [∆𝑆𝑒,𝑖√𝜋𝐷𝑖(𝑛)]

𝑀𝑖
 

(14) 

where 𝑛 = number of stress cycles; ∆𝑆𝑒,𝑖 = (E[∆𝑆𝑖
𝑀])

1

𝑀 = equivalent stress range per cycle 402 

with E[∙] being the expectation operator; ∆𝑆𝑖 = stress range per cycle; 𝐶𝑖 , 𝑀𝑖 = empirically 403 

determined material parameters.  404 

The long-term distribution of the fatigue stress range ∆𝑆𝑖 is described by a Weibull distribution 405 

with scale and shape parameters 𝐾𝑖 and 𝜆𝑖. ∆𝑆𝑒,𝑖 is then given by (Madsen 1997): 406 

∆𝑆𝑒,𝑖 = 𝐾𝑖Γ (1 +
𝑀𝑖

𝜆𝑖
)

1
𝑀𝑖

 (15) 

where Γ(∙) is the Gamma function. Using the initial condition 𝐷𝑖(𝑛 = 0) = 𝐷𝑖,0, the following 407 

analytical solution for the crack depth after 𝑛 stress cycles can be obtained from Eq. (14): 408 

𝐷𝑖(𝑛) = [(1 −
𝑀𝑖

2
) 𝐶𝑖∆𝑆𝑒,𝑖

𝑀𝑖𝜋𝑀𝑖 2⁄ 𝑛 + 𝐷𝑖,0
1−𝑀𝑖 2⁄

]
(1−𝑀𝑖 2⁄ )−1

 
(16) 

4.1.2 Observations and probability of detection 409 

In this example, we only consider observations of the deterioration state through inspections, 410 

e.g. visual inspections or non-destructive evaluation of the fatigue hot spots. The observation 411 

𝑍𝐷,𝑖,𝑡 is a binary random variable with possible states “no crack detection” (i.e. 𝑍𝐷,𝑖,𝑡 = 0), and 412 

“crack detection” (i.e. 𝑍𝐷,𝑖,𝑡 = 1 ). The inspection quality is described by an exponential 413 

probability of detection (POD) model with parameter 𝜉, in function of the crack depth 𝑑: 414 
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Pr(𝑍 = 1|𝐷 = 𝑑) = POD(𝑑) = 1 − exp (−
𝑑

𝜉
) 

(17) 

4.1.3 Relation between component and system conditions  415 

Failure of the 𝑖-th component after 𝑡 time steps (equivalent to 𝑛 = 𝑛(𝑡) stress cycles) occurs 416 

when the crack depth exceeds the critical value 𝑑𝑐 , i.e. {𝐸𝐶,𝑖,𝑡 = 1} = {𝐷𝑖,𝑡 ≥ 𝑑𝑐} . If the 417 

component has not failed, it is assumed to have its full capacity.  418 

In a Daniels system, due to the exchangeability of the components, the probability of having a 419 

system failure at time step 𝑡 is a function only of the total number of component failures. 420 

Following section 3.3, to avoid a convergent connection between the 𝐸𝐶,𝑖,𝑡  and 𝐸𝑆,𝑡 , the 421 

cumulative number of component failures up to component 𝑖, 𝑁𝑓,1:𝑖,𝑡, is defined as follows: 422 

𝑁𝑓,1:𝑖,𝑡 = ∑ 𝐸𝐶,𝑗,𝑡

𝑖

𝑗=1

= 𝐸𝐶,𝑖,𝑡 + 𝑁𝑓,1:𝑖−1,𝑡 (18) 

The relation between the component conditions 𝐸𝐶,𝑖,𝑡 , 𝑖 = 1, … , 𝑁 and the system condition 423 

𝐸𝑆,𝑡 defined in the general model of Figure 6 can be replaced by the network depicted in Figure 424 

8. The complete DBN of the Daniels system is presented in Figure 9. 425 

 426 

Figure 8. DBN model of the Daniels system condition. 𝑁𝑓,1:𝑖,𝑡 is the total number of component failures 427 

among the first 𝑖 components at time 𝑡. 428 

D1,t D2,t D3,t 
… DN,t 

EC,1,t EC,2,t EC,3,t … 
EC,N,t 

ES,t 

Nf,1,t Nf,1:2,t Nf,1:3,t … 
Nf,1:N,t 
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 429 

Figure 9. DBN of the Daniels system. 430 

A Daniels system with 𝑁 = 10  components and 𝑇 = 100  time steps is investigated. The 431 

parameters of the fatigue deterioration model are summarized in Table 1 and the corresponding 432 

discretization scheme is presented in Table 2. Each time step corresponds to Δ𝑛 = 5 ∙ 106 433 

fatigue stress cycles. The correlation of fatigue parameters among components are 𝜌𝐷0
= 0.5, 434 

𝜌𝑀 = 0.6, and 𝜌𝐾 = 0.8.  435 

Table 1. Parameters of the fatigue deterioration model. 436 

Random variable Distribution Mean  Std. deviation 

𝛼𝐷0
 Normal 0 1 

𝛼𝐾 Normal 0 1 

𝛼𝑀 Normal 0 1 

𝐷0,𝑖 (mm) Exponential 1 1 

𝑀0,𝑖 Normal 3.5 0.3 

𝑀𝑡,𝑖 𝑀𝑡,𝑖 = 𝑀𝑡−1,𝑖   

𝑙𝑛 𝐶𝑡,𝑖 ln 𝐶𝑡,𝑖 = −3.34𝑀𝑡,𝑖 − 15.84 

𝐾0,𝑖 Lognormal 1.6 0.22 

𝐾𝑡,𝑖 𝐾𝑡,𝑖 = 𝐾𝑡−1,𝑖   

𝜆𝑖 Deterministic 0.8  

𝑑𝐶 (mm) Deterministic 50  

𝜉 (mm) Deterministic 10  

 437 

M 

K 

D 
 

k0,1 

m0,1 

d0,1 d1,1 

Ec,1,1 

Zc,1,1 

m1,1 

k1,1 

d2,1 

Zc,2,1 

m2, 1 

k2,1 

… 

… 

… 

dT,1 

Ec,T,1 

Zc,T,1 

mT,1 

kT,1 

Ec,2,1 

Nf,1,1 Nf,2,1 Nf,T,1 

M2, 1 

K0,1 

M0,1 

D0,1 D1,1 

Ec,1,1 

Zc,1,1 

M1,1 

K1,1 

D2,1 

Zc,2,1 

K2,1 

… 

… 

… 

DT,1 

Ec,T,1 

Zc,T,1 

MT,1 

KT,1 

Ec,2,1 

Nf,1,1 Nf,2,1 Nf,T,1 

ES,2 ES,T ES,1 

KN,0 

MN,0 

DN,0 DN,1 

EC,N,1 

ZC,N,1 

MN,1 

KN,1 

DN,2 

ZC,N,2 

MN,2 

KN,2 

… 

… 

… 

DN,T 

EC,N,T 

ZC,N,T 

MN,T 

KN,T 

EC,N,2 

Nf,1:N,1 Nf,1:N,2 Nf,1:N,T 
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Table 2. Discretization scheme. 438 

Random variable Number of states Final interval boundaries 

𝛼𝐷0
, 𝛼𝑀, 𝛼𝐾 5 Φ−1(0: 0.2: 1) 

𝐷 (mm) 80 0, exp{ln(0.01) : [ln(50) − ln(0.01)] 78⁄ : ln(50)} , ∞ 

𝑀 20 0, ln{exp(2.2) : [exp(4.8) − exp(2.2)] 18⁄ : exp(4.8)} , ∞ 

𝐾 20 0, {0.86 ∶ (2.83 − 0.86) 18⁄ : 2.83} , ∞ 

 439 

The load 𝐿 is lognormal distributed with coefficient of variation 𝛿𝐿 = 0.25, the capacities 𝑅𝑖, 440 

𝑖 = 1, … ,10, are independent and normal distributed with 𝛿𝑅 = 0.15 and the mean safety factor 441 

is 𝑛𝜇𝑅𝑖
𝜇𝐿⁄ = 2.9 . The conditional probability of failure of the system given 𝑗  failed 442 

components is computed according to Eq. (19) and is presented in Figure 10. 443 

Pr(𝐸𝑆,𝑡 = 1|𝑁𝑓,1:𝑁,𝑡 = 𝑗) = Pr (∑ 𝑅𝑖

𝑛−𝑗

𝑖=1

− 𝐿 ≤ 0) 

(19) 

 444 

Figure 10. Probability of failure of the Daniels system conditional on the number of components with 445 
fatigue failures. 446 

4.1.4 Results 447 

For the unconditional case (i.e. without observations), the reliability index 𝛽 calculated with 448 

the proposed inference algorithm is compared to the results obtained using MCS and MCMC 449 

for a single component (Figure 11) and the system (Figure 12). The reliability index is defined 450 

as 𝛽 = −Φ−1[Pr(𝐸 = 𝑓𝑎𝑖𝑙)], with Φ−1 being the inverse standard normal CDF.  451 

A good agreement among the three methods is observed at the component level. At the system 452 

level, the difference between the probability estimates from the proposed DBN model and the 453 
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Monte Carlo methods is due to the discretization of the hyperparameters 𝛂 in the DBN. The 454 

relatively coarse discretization of 𝛼𝐷0
, 𝛼𝑀 , and 𝛼𝐾  using 𝑚𝛼𝐷0

= 𝑚𝛼𝑀
= 𝑚𝛼𝐾

= 5 discrete 455 

states each (Table 2) leads to an underestimation of the correlation in the fatigue performance 456 

among components. This in turn leads to an overestimation of the system reliability in a 457 

redundant system, such as the Daniels system. The effect can be mitigated by increasing the 458 

number of discrete states for each hyperparameter, with an associated increase in computation 459 

time. Following Section 3.5, the computation time is linear with respect to 𝑚𝛼, the total number 460 

of states of the hyperparameters. Here it is 𝑚𝛼 = 𝑚𝛼𝐷0
∙ 𝑚𝛼𝑀

∙ 𝑚𝛼𝐾
, and doubling the number 461 

of states of all hyperparameters would lead to an 8-fold increase in computation time. As shown 462 

later, the performance of the present discretization scheme in the case with observation is much 463 

better, and the accuracy is thus deemed acceptable.  464 

 465 

Figure 11. Reliability index of a single component. 466 

 467 

Figure 12. Reliability index of the Daniels system 468 
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To better understand the dependence among component deterioration, the correlation among 469 

crack depths 𝐷𝑖  and 𝐷𝑗  and among component failure events 𝐸𝐶,𝑖 = 1  and 𝐸𝐶,𝑗 = 1  is 470 

computed. These are obtained directly from the DBN or the Monte Carlo samples. Figure 13 471 

shows the correlation between the crack depth of two components 𝐷𝑖,𝑡  and 𝐷𝑗,𝑡  using the 472 

proposed algorithm for DBNs, MCS and MCMC. As expected, the correlation is slightly 473 

underestimated by the DBN algorithm. 474 

The dependence in fatigue performance among components is here due to inter-correlation of 475 

three parameters: a) the material parameter 𝑀, b) the stress parameter 𝐾, and c) the initial crack 476 

depth 𝐷0. The correlation between the crack depths in two components at the beginning of the 477 

service life is dominated by the correlation in the initial crack depth 𝐷0 . The effect of the 478 

correlation in the material and stress parameters, 𝑀 and 𝐾, increases with time.  479 

The correlation between component failure events is shown in Figure 14. The correlation is low 480 

at the beginning of the service life, due to overall low probabilities of failure. In agreement with 481 

the above results, the DBN slightly underestimates the correlation.  482 

 483 

Figure 13 Correlation between the crack depths of two system components as a function of time, 484 
estimated using the DBN algorithm, MCS and MCMC.  485 
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 486 

Figure 14. Correlation between the condition states 𝐸𝐶  (i.e. failed/not failed) of two system components 487 
as a function of time, estimated using the DBN algorithm and MCS. 488 

The relevant case for the DBN model is the conditional case, i.e. with the inclusion of 489 

inspections results. It is assumed that one component is inspected every 5 ∙ 107 cycles, i.e. after 490 

every 10 time steps, without detecting any crack. The updated reliability index of the inspected 491 

component is considerably larger than in the unconditional case, due to the no-detection 492 

observation (Figure 15). This observation also affects the non-inspected components, due to the 493 

correlation defined by the hyperparameters (Figure 16). The reliability of the system is affected 494 

by the reliability of both the inspected and the non-inspected components (Figure 17). By 495 

inspection only one component every 10 time steps, and assuming that the inspections always 496 

result in a no-detection, the system reliability index at the end of the service life increases from 497 

1.1 to 2.1. 498 

 499 

Figure 15. Reliability index of the inspected component after no detection of a crack at inspections 500 
every 10 time steps. 501 
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 502 

Figure 16. Reliability index of a non-inspected component given the no-detection outcome of the 503 
inspected component. 504 

 505 

Figure 17. Reliability index of the system after no detection of a crack in all inspection times. 506 

In Figures 15-17, the results of the DBN model are compared with results obtained by MCMC 507 

for verification. The results from the two algorithms match very well, and the slight differences 508 

observed in the unconditional case (Figure 12) are not seen here. 509 

It is pointed out that the necessary computation time for the solution of the system DBN is 510 

orders of magnitudes lower than that for the applied standard MCMC algorithm. Additionally, 511 

the computation time of the forward-backward algorithm is not affected by the number of 512 

observations or the order of magnitude of the probability of failure, which is not the case of 513 

MCMC. If the number of system components increases, the computation time in both the 514 

forward-backward algorithm and MCMC increases linearly with number of components.  515 

To demonstrate the efficiency of the DBN algorithm as the number of components and 516 
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components are specified in Table 3. The probability of failure of the system using the forward-519 

backward algorithm is shown in Figure 18. Since the inspection resulted in detection of multiple 520 

cracks, and no repairs are considered, the system reliability is lower after including the 521 

inspections. MCMC results are not computed for this case, due to the associated large 522 

computation times. 523 

 524 

Figure 18. Reliability index of the Daniels system with 100 components for cases with and without 525 
inspections.  526 

Table 3. Inspection outcomes of the Daniels system with 100 components. 527 

 Inspection time step 

Component  10 20 30 40 50 60 70 80 90 

1          

2          

3          

4          

5          

: Detection;    : No detection 528 

4.2 Steel frame 529 

The Zayas steel frame shown in Figure 19 is commonly used as a benchmark in structural 530 

analysis of steel offshore structures (Zayas et al. 1980). It consists of 23 tubular members with 531 

welded connections. The fatigue hotspots are located at the welded connections of the 13 532 

horizontal and diagonal members. There are 𝑁 = 22 fatigue hotspots, which represent the 533 

system components in the DBN model. The structure is loaded in horizontal direction by a 534 

concentrated force 𝐿 at the upper left node of the structure and by gravity load. The details of 535 

the geometrical and material properties of the structure are described in (Schneider et al., under 536 

review). 537 

0.0 

2.0 

4.0 

6.0 

0 20 40 60 80 100 

S
y
st

em
 r

el
ia

b
il

it
y

 i
n
d

ex
 

Time step, t 

With inspections 

Without inspections 



Reliability assessment of monitored deteriorating systems with DBNs 26/36 

 538 

Figure 19. Zayas steel frame structure with 22 fatigue hotspots in 13 tubular members (a – m). 539 

4.2.1 Deterioration model 540 

For ease of presentation, fatigue deterioration in all hotspots of the Zayas frame structure is 541 

represented by the same model as used in section 4.1.1 with the parameters listed in Table 1. In 542 

a real structure, fatigue stresses will vary among hotspots. However, this has no impact on the 543 

computational demand and the accuracy of the reliability computations and the updating. As in 544 

example 1, a redistribution of fatigue stresses when some system components fail is neglected, 545 

i.e. 𝐾𝑖,𝑡 is modeled as a time-invariant parameter. 546 

4.2.2 Crack measurements as observations 547 

In this example, measurements of crack sizes at the hot spots are included. To this end, the 548 

observation 𝑍𝑖,𝑡 conditional on 𝐷𝑖,𝑡 is defined as  549 

Pr(𝑍𝑖,𝑡 = 𝑧|𝐷𝑖,𝑡 = 𝑑) = 𝑓𝜖(𝑧 − 𝑑) 550 

where 𝑓𝜖 is the normal probability distribution of the measurement error with zero mean and 551 

standard deviation 𝜎𝑒 = 0.1mm. The observation 𝑍𝑖,𝑡 is discretized with the same scheme as 552 

the crack depth 𝐷𝑖,𝑡 , with one additional state representing no detection. Note that the 553 

discretization of 𝑍𝑖,𝑡 has no effect on the computational demand.  554 

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18

19 20

21 22

a

1

3

8

1 0

2

2 2

b

c

d

e

f

g

h

ji

k

l

m

L 



Reliability assessment of monitored deteriorating systems with DBNs 27/36 

4.2.3 Relation between hotspots, structural elements and system condition 555 

To each of the structural elements, one or two fatigue hotspots are associated (Figure 19). The 556 

condition of hotspots and elements is modeled through the random variables 𝐸ℎ  and 𝐸𝑒 , 557 

respectively. It is assumed that an element fails if any of its hotspots fails, where a hotspot 558 

failure is defined according to section 4.1.3. Considering the number of structural members 559 

included in the Zayas frame, the total number of possible system configurations is 213 = 8192, 560 

which is still manageable. To estimate the probability of failure of the system, the ultimate 561 

capacity of the structure is obtained for each possible system configuration through a pushover 562 

analysis. The ultimate capacity of the structure when all components are intact is 2.8 ∙ 105N. 563 

The condition of the system 𝐸𝑆,𝑡 is defined as a child node of the system configuration and the 564 

extreme load 𝐿𝑡  observed during time step 𝑡. The load 𝐿 affecting the structure is assumed 565 

lognormal distributed with mean 4 ∙ 103N and standard deviation 2 ∙ 104N. The complete DBN 566 

model is shown in Figure 20. 567 

 568 

 569 

Figure 20. DBN of the Zayas frame. 570 
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4.2.4 Results 571 

The accuracy of the proposed algorithm is compared to MCMC and MCS results. In the 572 

unconditional case, the three methods give consistent results for a single hotspot (Figure 21) 573 

and the system (Figure 22). 574 

 575 

Figure 21. Reliability index of a single hotspot for the unconditional case (i.e. without inspection). 576 

 577 

Figure 22. Reliability index of the system for the unconditional case (i.e. without inspection). 578 

For the conditional case, it is assumed that hotspot 1 (in structural element 1) is inspected at 579 

time step 𝑡 = 10. A crack of depth 𝑍𝐷,1,10 = 3mm is measured, which should be compared to 580 

the expected crack depth before the observation of E[𝐷1,10] = 1.2mm. Results are obtained 581 

using the algorithm described in Section 3.4 for the inspected hotspot (Figure 23), a non-582 

inspected hotspot (Figure 24), and the system (Figure 25). When including crack measurements, 583 

MCMC using OpenBUGS has convergence issues and no reliability estimates are obtained.  584 

0 

1 

2 

3 

4 

5 

6 

0 5 10 15 20 

H
o

ts
p

o
t 

re
li

ab
il

it
y
 i

n
d

ex
 

Time step, t 

DBN 

MCMC 

MCS, 95% credible interval 

3.1 

3.15 

3.2 

3.25 

3.3 

0 5 10 15 20 

S
y

st
em

 r
el

ia
b

il
it

y
 i

n
d
ex

 

Time step, t 

DBN 

MCMC 

MCS, 95% credible interval 



Reliability assessment of monitored deteriorating systems with DBNs 29/36 

 585 

Figure 23. Reliability index of the inspected hotspot. 586 

 587 

Figure 24. Reliability index of a non-inspected hotspot for the conditional case (i.e. with inspection). 588 

 589 

Figure 25. Reliability index of the system for the conditional case (i.e. with inspection). 590 

Although the measured crack is larger than the expected crack depth for that hotspot, the 591 

reliability of the inspected hotspot increases after the inspection due to the combination of two 592 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 5 10 15 20 

In
sp

ec
te

d
 h

o
ts

p
o

t 
re

li
ab

il
it

y
 i

n
d

ex
 

Time step, t 

Without inspections 

With Inspections/measurements 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 5 10 15 20 

N
o

n
-i

n
sp

ec
te

d
 h

o
ts

p
o

t 
 

re
li

ab
il

it
y
 i

n
d

ex
 

Time step, t 

Without inspections 

With inspections/measurements 

3.1 

3.15 

3.2 

3.25 

3.3 

0 5 10 15 20 

S
y
st

em
 r

el
ia

b
il

it
y

 i
n
d

ex
 

Time step, t 

Without inspections 

With inspections/measurements 



Reliability assessment of monitored deteriorating systems with DBNs 30/36 

factors: 1) the measurement of 3mm is considerably smaller than the critical crack length 50mm, 593 

2) the measurement error is small, and the overall uncertainty on the crack length is reduced. 594 

However, because the measured crack is larger than the expected, the reliability indexes of the 595 

other components are reduced, and this leads to a reduction in the estimate of system reliability. 596 

As stated earlier, increasing the number of observations does not affect the computation time 597 

of the proposed algorithm. To include an example with more inspection results, Figure 26 598 

presents the reliability index of the system given multiple observations at hotspots 1 to 4 and 599 

time steps 10, 20, 30, and 40.  600 

 601 

Figure 26. Reliability index of the system for the conditional case (i.e. with inspection) with 602 
observations from hotspots 1 to 4 at time steps 10, 20, 30 and 40. A measurement ND represents a no-603 
detection case. 604 

5 Discussion 605 
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monitoring results are available. We also introduce an efficient algorithm for evaluating the 608 
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inference algorithm is its fast and robust computational performance. With the exception of the 610 
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components. Importantly, the computation time is not affected by the number of inspection and 613 

monitoring outcomes included in the model. In addition, due to the hierarchical definition of 614 

the model, the proposed inference algorithm can be run in parallel for each component before 615 

and after the hyperparameters are updated. This part of the algorithm represents a considerable 616 

percentage of the total computation time, e.g. more than 90% for the Daniels system and 80% 617 

for the Zayas frame examples investigated in this paper.  618 

For the last step, the updating of the system condition, a direct modeling of the structural system 619 

is in most cases prohibitively expensive for realistic structural systems, as this entails 620 

considering 2𝑁  system configurations, with 𝑁  being the number of affected components. 621 

Different application-specific modeling strategies for dealing with this issue are available. In 622 

some cases, as demonstrated in the numerical investigations, components can be grouped and 623 

it is sufficient to consider their cumulative effect on the system reliability. The DBN model of 624 

the system behavior can accommodate such a modeling. Alternatively, approximate models of 625 

system behavior may be applied, such as the model proposed in Straub and Der Kiureghian 626 

(2011), which requires only the marginal effect of component failure on the system reliability 627 

as an input. Finally, one might combine the proposed exact algorithm with sampling-based 628 

methods to be used in the last step. Samples of the correlated component behavior can be 629 

generated from the posterior distribution of the component states obtained with the DBN 630 

algorithm. This has not been investigated in this paper and further work is needed on finding 631 

efficient representation of structural system behavior with component deterioration failures. 632 

However, it is important to realize that the challenges associated with the system representation 633 

are independent of the algorithm used for performing the Bayesian updating of the system 634 

reliability. 635 

The investigated examples demonstrate the advantages of the proposed inference algorithm 636 

over a standard MCMC algorithm. The former leads to computation times that are orders of 637 

magnitude lower. Although a direct comparison of computation time has only a limited value 638 

due to the difference in software used for their implementation, the difference in computational 639 

complexity is noticeable. In particular, the performance of MCMC deteriorates when increasing 640 

the amount and accuracy of inspection and monitoring results. With tailor-made MCMC 641 

algorithms, its performance could be significantly increased, but it will always vary with the 642 

data. In addition, current simulation-based methods (e.g. MCMC) are not well suited to estimate 643 

small probabilities of failure, even if recent developments are improving this (e.g. Straub and 644 

Papaioannou 2015, Schneider et al., under review).   645 
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The limitations of the proposed approach are related to the discretization of the continuous 646 

random variables. More specifically, the computational complexity is a linear or quadratic 647 

function of the number of states used for discretizing the random variables (Section 3.5). 648 

Therefore, the number of random variables that can be included explicitly in the DBN model is 649 

limited. While the deterioration model considered in this paper includes only four random 650 

variables, published state of the art models often include more random variables. Nevertheless, 651 

the problem is less critical as it may seem at first glance. The number of random variables can 652 

often be reduced by combining multiple random variables to a single random variable, as 653 

exemplarily shown in Straub (2009). In addition, in models with many random variables it is 654 

often possible to consider some as deterministic with limited loss of accuracy. Besides the need 655 

to limit the number of random variables, the second drawback of the proposed algorithm is the 656 

increased effort in pre-processing. The choice of the discretization scheme and its 657 

implementation lead to an increased effort by the analyst. For this reason, the DBN framework 658 

is mainly of use when computations have to be performed repetitively (e.g. multiple function 659 

evaluations to solve an optimization problem) and/or included in software. This is e.g., the case 660 

when analyzing portfolios of structures, or in the operational planning of inspections, 661 

monitoring, maintenance activities, and in near-real-time situations.  662 

6 Conclusions 663 

A hierarchical dynamic Bayesian to model the deterioration process in structural systems is 664 

proposed. The model includes the dependence among system components when assessing the 665 

effect of (partial) observations of system components on the probability of system failure. An 666 

efficient algorithm for performing Bayesian updating at the system level is provided, which 667 

operates recursively among components and time steps. The hierarchical definition of the 668 

components facilitates parallelizing the code to further reduce computation time. The accuracy 669 

and performance of the model is tested through two case studies. A comparison with Markov 670 

Chin Monte Carlo (MCMC) shows good agreement in the updated probabilities, with 671 

computation times that are orders of magnitude lower. A particular advantage is that the 672 

computational cost of the proposed algorithm is independent of the number of included 673 

inspection and monitoring results and of the magnitude of the probability of failure. This 674 

efficiency and robustness make the proposed algorithm suitable for integral planning and 675 

optimization of monitoring, inspection and maintenance activities in structural systems.  676 
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