
 

FEATURE ARTICLE: Automotive Computing 

h2ECU: A High-
Performance and 
Heterogeneous Electronic 
Control Unit for Automated 
Driving 

Massive amounts of multi-sensor information pose a 

huge computational challenge for the design of a real-

time automated driving module. The proposed h2ECU 

is a high-performance and heterogeneous electronic 

control unit (ECU) architecture for automated driving. 

By incorporating multiple multiprocessor SoCs 

(MPSoCs), general-purpose GPUs (GPGPUs), and 

FPGAs into one module, it can provide sufficient 

computing power while maintaining high scalability. The feasibility of h2ECU is 

demonstrated on a modified COTS vehicle, associated with a customized evaluation 

board and two typical advanced driver-assistance system (ADAS) applications. 

The electronic component count and associated wiring content within modern vehicles have sky-
rocketed as the automobile continues its transformation into an electronic computing system. 
Nowadays, a typical car contains dozens of ECUs, while the premium ones could have more than 
100 ECUs.1,2 This rapidly growing number of ECUs per vehicle has caused a paradigm shift in 
information and communication technology (ICT) architectures by reversing the growth trend of 
dedicated ECUs for specific functions towards integrating more and more disparate functions 
into one or a few control units. This is the so-called ECU consolidation. The trend is adding not 
only more ECUs but also more computing power. Such consolidated ECUs must provide not 
only multiple functionalities but also significantly more performance in terms of computational 
resources. 
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One of the functionalities that demands the most computing power is the ADAS, which is an 
auxiliary but essential part for autonomous driving. This system requires more and more compu-
tational resources as massive amounts of multi-sensor information need to be aggregated to as-
sist in-car and on-road safety control. In 2012, Continental rolled out a schedule for autonomous 
driving, sketching a roadmap for fully automatic driving at higher speeds and in complex driving 
situations to be ready for mass deployment by 2020 and 2025, respectively.3 Therefore, an ideal 
ECU module that demonstrates high performance but consumes low energy is imperative for au-
tomotive computing. 

Traditional ECUs are not able to meet the requirements of autonomous driving, and not merely 
due to the huge performance demand. Over the whole production period of a car model, not all 
of the originally chosen ECUs will remain available in the market. Some of them will no longer 
be produced and have to be replaced by newer counterparts due to discontinuation of an ECU’s 
specific technology.1 Particularly for a consolidated ECU, how to cope with this trend still re-
mains a pendent issue. Additionally, over the past 30 years, the amount of software has evolved 
from nearly zero to tens of millions of lines of code (LOC). A current premium car, for instance, 
implements about 270 functions deployed over about 70 embedded platforms. Altogether, the 
software amounts to about 100 Mbytes of binary code.1 The next generation of upper-class vehi-
cles is expected to run up to 1 Gbyte of software. The problem here is how to design an ECU to 
seamlessly cope with such a combination of mix-critical software as processor consolidation is 
closely aligned with the trend towards mixed criticality systems in which safety, security, and 
real-time critical components must coexist with fewer critical components. 

This article proposes h2ECU—a high-performance and heterogeneous ECU architecture for fu-
ture automated driving. h2ECU is a modular and reconfigurable architecture in which accelera-
tors can be flexibly embedded to achieve high computational power. Based on this architectural 
design, we implement a prototype evaluation board that incorporates state-of-art MPSoCs, 
GPGPUs, and FPGAs into a heterogeneous system. The board is designed in a modular manner, 
where multiple GPGPUs and FPGAs are connected through the PCI Express (PCIe) interface, 
depending on the required computational power. In this way, the next generation of GPGPUs 
and FPGAs can be used while the ECU architecture remains unchanged. To program the onboard 
software, we use open computing language (OpenCL) as the programming framework. Applica-
tions programmed with OpenCL can be seamlessly exploited on both GPGPU and FPGA de-
vices. Finally, we deploy two frequently used ADAS applications to demonstrate the use of the 
board in the real world. 

OVERVIEW 
Most of the traditional ECU products are for commercial use, and, consequently, companies 
scarcely release details about the technical implementations. At present, the industry is pushing 
ahead to the development of ADAS ECUs for large-scale deployment. At the CES consumer 
electronics convention in 2016, Qualcomm released its prototype product based on Snapdragon 
SoC 820A for next-generation automotive applications.4 Meanwhile, NXP unveiled the 
MPC577xK series microcontroller for ADAS and industrial radar applications.5 At CES 2017, 
Intel announced its GO automotive 5G platform6 that would incorporate Xeon Phi processors 
and Cyclone V SoC FPGA, while Nvidia continues its promotion of the Drive PX 2 platform7 
and DriveWorks software. 

The general use of autonomous driving vehicles is still not yet mature, and the majority of work 
lies in academia. Earlier studies about on-vehicle autonomous driving modules mainly focus on 
the ADAS implementation (whether autonomous driving tasks can be fulfilled by virtue of 
COTS components). In this case, portability, thermal constraint, and power consumption issues 
are entirely overlooked. The well-known Google driverless car does not publicly reveal any in-
formation about its computing system. However, the predecessor of the Google car, the Stanford 
Junior,8 which won second place at the DARPA Urban Challenge 2007, is embedded with two 
Intel quad-core workstations. The winner of the same race, the Carnegie Mellon University 
(CMU) Boss,9 is equipped with ten 2.16-GHz Core2 Duo processors. As can be observed, such 
heavy-computing functional components will become standard equipment for future vehicles. 
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Autonomous driving components should and must cooperatively work with off-the-shelf auto-
motive ECUs and microcontrollers.10,11 It has been a consensus that the functionalities of con-
ventional on-vehicle ECUs have to remain unchanged to guarantee the hard real-time control of 
the vehicle, while new modules should be introduced to handle computing-power demanding 
automatic driving workloads. From this point of view, due to the advantage of high performance 
and scalability, hardware accelerators such as GPGPUs and FPGAs tend to be more important 
for future autonomous driving systems, because this solution can meet both the portability and 
real-time requirements of the autonomous driving module. 

Following the above-mentioned trend, this article proposes a new ECU architecture for future 
automated driving. By integrating multiple GPGPUs and FPGAs into an embedded platform, the 
execution of automated driving tasks is effectively accelerated, while the whole system can be 
reconfigured to tune the performance demand. 

ARCHITECTURE DESIGN 
In general, an autonomous driving module is used to execute ADAS applications and then trans-
late the results to trigger the launch of lower-level hardware execution units. These applications 
have diverse functionalities that implicate different criticality levels, such as lane detection, pe-
destrian detection, vehicle identification, traffic-sign recognition, and so on. 

Figure 1 reveals the sketch overview of the h2ECU architecture. The system consists of a fixed 
module where fundamental runtime infrastructures (host scheduler, runtime environment, OS 
support, I/O management, and so on) are rooted, as well as a reconfigurable module that enables 
computational power tuning by utilizing flexible hardware accelerators. As an abstraction, each 
ADAS application is treated as a stand-alone task that would be executed on a certain reconfigu-
rable processing core, subject to the task scheduling on the host. The host scheduler allocates 
computational tasks to appropriate processing units according to both the scheduling policy and 
the working status of the processors. The reconfigurable processors are potentially high-perfor-
mance accelerators that contain hundreds of parallel cores. Normally, the host CPU behaves as 
the scheduler while the processors are GPGPUs, FPGAs, or CPUs, as well. 

 

Figure 1. Sketch overview of h2ECU. The components within the red dashed line are fixed, while 
the components within the blue dashed line are reconfigurable. 

To coordinate the computing of these heterogeneous processors, we chose OpenCL as the 
runtime environment (RTE). By defining a high-level abstraction layer for low-level hardware 
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instructions, OpenCL enables cross-platform execution from general-purpose processors to mas-
sively parallel devices. In this way, autonomous driving tasks programmed with OpenCL can be 
seamlessly scaled and executed on a bundle of devices without any source code modification. 
Additionally, general-purpose operation system can be used to support the RTE and maintain the 
I/O communication of each component. With this design, adding new functionalities is cost-free, 
in terms of computing resources, as long as the RTE compatibility is met. 

The benefit of this architectural design is multifold. Firstly, the spatial redundancy of the compu-
ting resources allows the coexistence of both safety- and non-safety-critical applications, thus 
providing appropriate partitioning mechanisms. Secondly, this modular design shows high flexi-
bility, as multiple GPGPUs and FPGAs can be tuned depending on the required computing 
power. In this manner, next-generation GPGPUs and FPGAs can be used, while the ECU archi-
tecture can remain unchanged. Lastly, by virtue of high performance accelerators, the execution 
of automated driving tasks is effectively accelerated to guarantee the real-time constraint. 

HARDWARE IMPLEMENTATION 
We implemented the h2ECU architecture on a prototype evaluation board. The board is a porta-
ble embedded platform where multiple MPSoCs, GPGPUs, and FPGAs can be assembled to-
gether. Figure 2 gives the top and side views of our third-generation prototype product. The 
board is a modular design so that as many components as possible can be reused in case of tech-
nology update and product upgrade. At runtime, the evaluation board is connected to another 
controller area network (CAN) bus communication board, which directly interacts with the auxil-
iary controllers within a vehicle. 

 

Figure 2. Hardware layout of the h2ECU-based evaluation board. (a) Top view of the board: Part 1 
is the power interface, Part 2 shows two PCIe slots, and Part 3 is the peripheral interface. (b) Side 
view of the board; the listed peripheral interfaces are (1) mini-HDMI, (2) HDMI, (3) audio port, (4) 
USB 3.0 and 2.0 ports, (5) Ethernet port, and (6) CAN-bus interface. 

Our prototype product has five main components: 

• Power supply. The power interface consists of two TPS54386 dual 3-A non-synchro-
nous converters to ensure the stable and adequate dual power supply. 
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• Host scheduler. In the current generation, the board employs an Intel CoreTM i5-3360M 
processor to schedule the ADAS applications. Although this power consumption is not 
suitable for practical use, we believe it is sufficient for prototype development. 

• Processing unit. The h2ECU architecture supports a vast number of PCIe-based acceler-
ators, and, at present, we use several low-energy-cost GPGPUs and FPGAs to handle 
the parallel computing tasks. 

• RTE. To aggregate different devices, an installable client driver (ICD) loader is con-
structed and acts as a proxy between the user program and the actual implementations. 
In this way, OpenCL implementations of different vendors can be smoothly invoked 
without any conflicts. 

• Data communication. The standard end-to-end PCIe data transfer protocol is used to 
facilitate the I/O interaction between the host CPU and computation devices. 

Considering the component placement and space limit, the evaluation board consists of a 165-
mm×165-mm mainboard, a thermal module, and extra PCIe accelerators. The mainboard pro-
vides a power interface, which consumes external power supply, and several peripheral ports 
used to connect external sensors. In the current generation, the mainboard contains two 16× PCIe 
slots, which support major state-of-art COTS accelerators. The platform is equipped with a 128-
Gbyte SSD used for disk storage and an 8-Gbyte DDR3 RAM used for internal storage. The host 
processor is located on the other side of the mainboard (not visible in Figure 2), due to the need 
for heat dissipation. The heat of the CPU is both actively and passively dissipated by the thermal 
module, which is made up of an aluminum heat sink and a cooling fan (not shown in Figure 2). 

ON-VEHICLE CONNECTION 
We refitted the COTS sport utility vehicle DFM AX7 to support our use of the evaluation board. 
Figure 3 gives the logic layout of this testbed vehicle. The testbed contains mainly four layers: 

• The upper layer consists of a series of external sensors, such as ultrasound sensor, lidar 
sensor, stereo camera, and so on. In this layer, the sensors capture the environmental 
information around the vehicle for further processing. 

• The h2ECU-based platform is used to handle ADAS tasks in real time and gives re-
sponse signals to the next layer. 

• The middle layer includes an array of auxiliary controllers aiming at the engine manage-
ment system (EMS), electric power steering (EPS), electronic speed control (ESC), and 
so on. These sub-controllers receive the command signals from the h2ECU-based plat-
form and transmit them to the microcontrollers and hardware components. 

• The lower layer is made up of (1) microcontrollers that correspond to the sub-controllers 
in the middle layer and (2) lower-level execution units such as engine, steering motor, 
brake solenoid valve, and so on. This layer controls the actual driving of the vehicle. 

In the upper layer, the sensors acquire the environmental information and then transmit the data 
to the h2ECU-based platform. The ECU performs a series of ADAS algorithms and outputs the 
result, in form of command signals, to the middle layer. Afterwards, each auxiliary controller 
invokes a specific execution unit in the lower layer to control the driving of the vehicle. For in-
stance, in Figure 3, the EMS controller receives throttle commands from the EMS sub-control 
and then regulates the engine. Then, the consequent torque and position signals generated by the 
steering wheel and pedal are received by the EPS and ESC controller, respectively. Subse-
quently, the EPS and ESC controller drive the steering motor and brake solenoid valve, together 
with the steering and braking commands from the EPS and ESC sub-controllers. The connection 
protocols between the upper sensors and the h2ECU-based platform are miscellaneous, while the 
communication between the ECU and the auxiliary controllers is through CAN bus. 

EXPERIMENTS 
We integrated several low-end GPGPUs and FPGAs into the evaluation board to ensure suffi-
cient computing performance with rather low energy cost. In particular, we used Nvidia Quadro 
K600, Nvidia Quadro K620, and Nallatech PCIe-385N FPGA as test PCIe accelerators. To 
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demonstrate the proposed h2ECU architecture and the use of our evaluation board, we employed 
two commonly used ADAS applications on our prototype product. 

 

Figure 3. Abstraction of the layout of the testbed vehicle. The upper layer counts as the input for 
the h2ECU-based platform. The ECU platform performs data processing and generates outputs to 
the middle layer, which drives the concrete execution units in the lower layer. 

Road lane detection (RLD) 

This application is used to detect the lane markings while the car is driving on the road. The al-
gorithm processes a video stream captured by a camera on a moving vehicle and highlights the 
positions of the lanes in the output stream. First, the image frames are pre-processed and trans-
formed into gray-scale format so that the pixel intensity can be calculated. Then, by calculating 
the pixel weights of the lines from a randomly sampled line set, each of the lane markers is de-
tected by selecting the line with the highest pixel weight. Afterwards, the lanes are tracked by 
applying a particle filter over the candidate lines from the previous frame, to predict the positions 
of lanes in the current frame. See our previous report12 for more details about this algorithm. 

In this application, the lane markings in each frame are either detected by the pixel weight rank-
ing of the candidate lines or tracked by virtue of the particle filter, which predicts the positions of 
the lanes based on the position information of the previous detected frame. This functionality is 
implemented by an OpenCL kernel that can be computed across the different accelerators. 

A series of videos recorded in different scenarios is used to reveal real-life road conditions. Ta-
ble 1 gives detailed information about the test videos. These videos represent various road situa-
tions, including in day and night, with heavy traffic, with blurred and broken lanes, on the 
highway, and in urban and rural areas. To demonstrate the modular and heterogeneous features 
of h2ECU, we conducted the experiment with different configurations where either GPGPU, 
FPGA, or both are used to consume the kernel task. For the GPGPU-FPGA heterogeneous exe-
cutions, we used a dynamic workload balance policy13 to automatically accelerate the computa-
tion. 

Traffic-sign recognition (TSR) 

This application is used to detect and recognize the traffic signs that appear in the images rec-
orded through the in-car camera. For the detection, based on the Haar-like features extracted 
from the image, a stage classifier is established and used to judge whether the content of a scaled 
scanning window within the image is a traffic sign. By performing a series of stage classifiers at 
different hierarchies, an AdaBoost cascade classifier is subsequently generated to collect the 
classification results of each stage classifier. In this case, the target image window is deemed a 
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traffic sign only if all the stage classifiers give a positive value. As for the traffic-sign recogni-
tion, first, a Gabor filter is adopted to extract features from the detected image windows. Then, 
these Gabor features are rarefied through principle component analysis (PCA) of the feature di-
mensions. Finally, the traffic signs are distinguished by means of linear discrimination analysis 
and template matching. 

Table 1. Detailed information about the test videos for RLD. 

Video Resolution Total Frames Scenario 

1 480×320 2,287 Broken lane 

2 480×360 4,601 Crossing lane 

3 640×360 899 Darkness 

4 640×360 1,289 Rural area 

5 640×480 232 Blurred lane 

6 640×480 250 Bus view 

7 640×480 337 Street shade 

8 640×480 406 Blurred lane 

9 640×480 1,718 Highway 

10 640×480 1,897 Broken lane 

11 640×480 2,654 Heavy traffic 

12 640×480 2,799 Night highway 

13 640×480 3,056 Street road 

14 640×480 4,944 Light disturbance 

15 640×480 4,992 Night 

16 1,920×1,080 1,871 Highway 

 

Haar-like feature extraction is observed as a performance bottleneck that can be parallelized to 
decrease execution latency. To demonstrate the high performance of our h2ECU-based platform, 
we designed an OpenCL kernel for Haar-like feature object detection. As a comparison, a normal 
implementation of traffic-sign recognition through Haar-like feature extraction is customized as 
the baseline and another implementation using OpenCV API function cvHaarDetectObjects is 
proposed to showcase the speedup. 

For this algorithm, the GPGPU is used as the accelerator, because the OpenCL SDK for Altera 
FPGA v13.1 does not support images. We test the algorithm with images under different resolu-
tions, ranging from 160×120 to 1,920×1,080. 

Performance results 

We evaluate the performance of the RLD application in terms of input video resolutions. Figure 
4 summarizes the performance results. As shown, in all resolutions, the executions on the evalu-
ation board can achieve real-time performance. Even for high-definition 1,920×1,080 videos, the 
worst-case performance is observed as 37.7275 fps, when the tasks are consumed by the single 
PCIe-385N FPGA card. The results reveal that our h2ECU-based platform is able to handle the 
RLD application in real time in a robust way. 
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Figure 4. Performance of the RLD application in different video resolutions. 

Another interesting phenomenon shown in Figure 4 is the heterogeneity of h2ECU. That is, the 
best performance does not always lie on the single-accelerator execution. The Quadro K620 
GPU outperforms all other configurations in most cases when processing videos with 480×320, 
640×360, and 640×480 resolutions. However, the heterogeneous execution (Quadro K620 + 
PCIe-385N FPGA) turns out to be the best solution when processing 1,920×1,080 videos. This is 
extremely important, as state-of-art ADAS requires 1,920×1,080 definition. This means that fu-
ture ADAS applications would favor reconfigurable architecture, such as h2ECU, when the sin-
gle homogeneous processing core cannot address the performance demand, not to mention the 
power and energy constraint. 

Table 2 gives the execution time of our OpenCL-version TSR application on the evaluation 
board. All the executions can be completed in seconds, for different image resolutions. Although 
this application cannot fulfill the real-time requirement, the results are justified because the pro-
cedure and data manipulations of TSR are far more complex than RLD. Consequently, the com-
putation task load of this algorithm is far larger than RLD, because a total of 14 stage classifiers 
are pipelined to do the calculation. 

Table 2. Execution time of the TSR application using OpenCL kernels. 

Image Resolution 
Execution Time (ms) 

Quadro K600 Quadro K620 

160×120 26.68965 34.29279 

320×240 67.53467 60.93644 

640×480 237.8679 168.7996 

720×480 266.0748 186.1955 

1,280×720 699.5103 420.9746 

1,920×1,080 1,612.417 921.8685 

 

To better illustrate the high performance of the h2ECU-based platform, we compared the perfor-
mance of both the OpenCV- and OpenCL-based implementation of the TSR algorithm over the 
customized baseline. Figure 5 gives the experimental result. From the figure, we can see that the 
speedup of the OpenCV implementation over the baseline is within 3×, which is rather stable 
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across all image resolutions. However, the OpenCL implementation accelerates the application 
to a much larger extent, and this speedup ratio becomes greater when the image resolution in-
creases. Specifically for 1,920×1,080 images, the algorithm can gain 11.38× and 19.90× speedup 
on Quadro K600 and K620, respectively. This reveals a huge potentiality for utilizing the 
h2ECU-based platform to accelerate future ADAS algorithms. 

 

Figure 5. Speedup of the TSR application over customized baseline in different video resolutions. 

DISCUSSION 
Conventional ECUs for ADAS usually incorporate integrated SoCs to deal with real-time work-
loads. This is, however, hard to scale across different platforms due to technique upgrade and the 
consequent tedious software maintenance. By using reconfigurable architecture, the proposed 
h2ECU in this article is able to leverage between the tradeoffs of performance demand and scala-
bility design. Although it is hard to use state-of-art ADAS ECUs to test the pros and cons of our 
platform, the experimental study depicted in this article shines light on the future ADAS blue-
print. The RLD application shows the performance benefit of heterogeneous architecture over its 
state-of-art homogeneous counterpart, while the TSR application reveals the huge potentiality to 
accelerate automated driving tasks through COTS accelerators. 

The current generation of the evaluation board is not yet mature and still has some drawbacks. 
The biggest issue lies in the power consumption of the platform. In the future, we would like to 
adopt more energy-saving techniques and components to address the power constraint. 
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