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I 

Aufgabenstellung 

 

Eigen und Fremdbewegungsschätzung 

Im Rahmen des Projektes Roborace wird vom Lehrstuhl für Fahrzeugtechnik die Software für 

ein Fahrzeug entwickelt, welches an der ersten Rennserie für autonome Fahrzeuge teilnimmt. 

Als Teil dieses Projektes soll die vorliegende Abschlussarbeit zur Entwicklung hochflexibler 

künstlicher Algorithmen dienen.  

Zur Hardwarenahen Erprobung der entwickelten Algorithmen steht dem Lehrstuhl für Fahr-

zeugtechnik ein 1:10 Elektro RC-Modellauto zur Verfügungen, welches über ähnliche Hard-

ware Komponenten wie das Roborace Fahrzeug verfügt (LIDAR, Kamera, Ultraschall, NVIDIA 

embedded Computer). Im ersten Schritt sollen die Verfahren und Methoden zur Ermittlung der 

Eigenbewegung ermittelt werden. Im Anschluss können mit Hilfe von realer Messtechnik die 

Verfahren getestet und evaluiert werden. Im zweiten Schritt soll neben der Eigenbewegung 

auch die Fremdbewegung gegnerischer Fahrzeuge ermittelt werden. Zum Abschluss soll die 

beste ermittelte Methode in passende Software umgesetzt und in das RC-Fahrzeug imple-

mentiert werden.  

Folgende Punkte sind zu bearbeiten: 

• Einlesen in den Stand der Technik selbstfahrende Fahrzeuge 

• Einarbeitung in den Stand der Technik 
o Schätzung und Modellierung des Zustandes 
o Multi-Rate Sensor Fusion 
o Computer Vision 

• Auswahl geeigneter Methoden zur Erkennung der Eigen-und Fremdbewegung: 
o Schätzverfahren (z.B. Kalman Filter, Partikel Filter) 
o Computer Vision Verfahren (z.B. Optical Flow, Visual Odometry) 
o optional: Machine Learning Verfahren (z.B. Neuronale Netze) 

• Begründete Auswahl eines Verfahrens 

• Softwareseitige Implementierung des besten Verfahrens in einem Modellauto 

• Durchführung von Fahrversuchen zur Evaluierung der eingesetzten Methode 
 

Die Ausarbeitung soll die einzelnen Arbeitsschritte in übersichtlicher Form dokumentieren. Der 

Kandidat verpflichtet sich, die Arbeit selbständig durchzuführen und die von ihm verwendeten 

wissenschaftlichen Hilfsmittel anzugeben.  

Die eingereichte Arbeit verbleibt als Unterlage im Eigentum des Lehrstuhls und darf Dritten 

nur unter Zustimmung des Lehrstuhlinhabers zugänglich gemacht werden. 

 

Prof. Dr.-Ing. M. Lienkamp    Betreuer: Johannes Betz, M. Sc. 

Ausgabe:________________   Abgabe:_______________ 
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1 Introduction 

1.1 Motivation 

Autonomous Driving is one of the megatrends of today. Since the well-known DARPA chal-

lenges from 2004 to 2007, the hype of self-driving vehicles has not stopped. All major car 

manufacturers and suppliers are working intensively on this subject and have announced prod-

uct launches for the next couple of years [1, p. 209]. There are many implications to think of. 

CHAN [1, p. 211] gives a good overview and categorizes them into perspectives for vehicle 

users, transportation operations and the society: 

For the everyday vehicle user, the advantages are obvious. Most of the traffic accidents are 

caused by human error (Figure 1). The main goal is to reduce this number significantly when 

using more advanced driver assistance systems or fully autonomous vehicles. It will also help 

elderly or disabled people to stay mobile and reduce the burden of traveling to friends and 

family. Driving a vehicle can change from an unavoidable loss of time to an entertaining (e.g. 

watching a movie) experience. The daily stressful commute will turn into productive working 

hours when for example preparing the next business meeting while the vehicle drives itself.  

From a transportation operation point of view, this technology is an enabler for many other 

changes and positive implications. Intelligent and connected vehicles will reduce congestion 

of streets due to smarter traffic flow management and fewer accidents. Dynamic routing and 

navigation will be improved via better real-time traffic monitoring enhancing the efficiency of 

infrastructure. New ride-sharing services of automated vehicles will make car sharing more 

accessible and decrease the demand for individual ownership. This new mobility services will 

reduce the number of on-road vehicles and diminish the required space wasted for parking.  

 

41%

34%

10%

7%
8%

driver-related critical reasons

Recognition Error (845,000)

Decision Error (684,000)

Performance Error (210,000)

Non-Performance Error (145,000)

Other (162,000)

94%

2%
2% 2%

total critical reasons

Drivers (2,046,000)

Vehicles (44,000)

Environment (52,000)

Unknown (47,000)

Figure 1: Critical reasons for a pre-crash event broken down by total and driver-related reasons based on the 
National Motor Vehicle Crash Causation Survey from 2005 to 2007 [144]  
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Last but not least the rise of more autonomy in vehicles will also affect society as a whole. 

From positive effects for the environment to a completely new thinking of mobility, there will be 

many aspects influenced by this trend. 

In the current public debate, there are many terms being used to describe this more advanced 

automated systems which can be confusing and imprecise [1, p. 209]. However, there are also 

clear definitions. For example, the SAE (Society of Automotive Engineers) refers to these sys-

tems as Automated Driving Systems (ADS). The term ADS is especially being utilized when 

speaking of level 3, 4 or 5 systems, using the SAE levels of driving autonomy (Table 1-1). 

Level Name 

Steering and 

accelerating 

Monitoring  

of driving 

environment  

Fallback when 

automation  

fails 

Automated 

system is  

in control 

0 No  

Automation    

No driving 

modes 

1 Driver  

Assistance /    

Some driving 

modes 

2 Partial  

Automation    

Some driving 

modes 

3 Conditional 

Automation    

Some driving 

modes 

4 High  

Automation    
Some driving 

modes 

5 Full  

Automation    
All driving 

modes 

                                        = human driver      = automated system 

However, the promises of ADS do not come cheap. Highly complex systems are needed to 

tackle the technical problems that arise when dealing with unpredictable multifaceted real-

world environments. There are many challenges that still need to be solved today to allow true 

autonomy for vehicles.  

One of these challenges is the localization of the vehicle. The system must know where it is 

located precisely. Typically, this is achieved with some prior generated environmental data. 

The data comes in form of a map or other fixed reference marks. However, this kind of infor-

mation is not always available. Still, the vehicle must retain a way to cope with unknown envi-

ronmental situations. However, it is not only important to know the current pose (position and 

orientation), but also the dynamic state (velocity, turn rate, …) precisely. This as a fundamental 

building block for other algorithms. For example, it enables a vehicle to estimate its relative 

position from where it started or generate a map itself based on sensor data. This information 

is also a key element for many control system approaches. And finally knowing the position 

and velocities of other road users is essential to cooperate with them in a safe manner.  

These methods of self-contained ego- and object motion estimation can be based on different 

sensor types. Unfortunately, there are no perfect sensors that can cope with all environments 

and scenarios possible. Every measurement system has its limitations and drawbacks. There-

fore, it is preferable to collect data from different sensors and combine them in a clever way to 

infer the information needed to estimate the motion of the ego vehicle or other dynamic objects. 

This process is also called sensor fusion. 

Table 1-1: SAE Level of Driving Autonomy [2] 
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1.2 Delimitation of the work 

This thesis is embedded in a project from the chair of automotive technology (FTM) which aims 

to develop a software stack for autonomous model cars. This miniature version of real cars 

can then be used in further research projects or for educational purposes. The hardware and 

sensor setup are therefore already set and developed in another thesis [3]. 

The available software, due to its early stage, is still in progress and limited in functionality. 

One missing component of the stack is the ego- and object motion estimation. Both parts are 

essential building blocks for other software elements. The goal of this thesis is to compare 

different ego and object motion technologies and find the best approach for this use case. 

Given different sensor inputs, the implemented algorithm should generate motion estimates 

for the ego vehicle as well as other dynamic objects. This data should be easily usable in 

subsequent software parts (e.g. control systems, localization in a map, creating a map, …) 

which are not subject of this thesis.  

This work is limited to solutions assuming for the vehicle in unknown environments. Ap-

proaches based on preliminary environment information (e.g. map) are not considered. Also, 

it is assumed that the model car only moves on planar grounds. Therefore, the environment 

and movement can be described in two dimensions. Additionally, all testing is being conducted 

in a building. This setting is being used as the target scenario in which the vehicle will operate.  

1.3 Contents 

This thesis is split up into the following chapters.  

• Chapter 2 State of the Art: This chapter presents the typically used solutions to solve 

the problem statement. It starts off by introducing some of the mathematical basics 

needed for this thesis. Then it describes the available methods for ego- and object 

motion estimation. Next, the available hard- and software of the project are being out-

lined. Further, similar projects are being presented and discussed. Lastly, a derivation 

of the problem statement is being made. 

• Chapter 3 Course of actions: This chapter gives a short introduction to the course of 

actions being made to address the objective of this thesis. 

• Chapter 4 Implementation: In this chapter the actual development and implementa-

tion of the various ego- and object motion methods is described. The approaches are 

split up into ego-motion estimation techniques first and object motion estimation second. 

• Chapter 5 Evaluation: This chapter evaluates the implemented methods based on so 

some prior defined evaluation scheme. It has the same order as chapter 4. 

• Chapter 6 Summary and Conclusion: Lastly, this chapter gives a summary of all 

presented methods and their evaluation. In a subsequent conclusion step, further ac-

tions of improving the methods will be discussed. 
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2 State of the Art 

This chapter starts with an introduction to some of the mathematical basics required for this 

thesis. It then gives an overview of the most common techniques for ego and object motion 

estimation. After that, the project and available hard- and software are being elaborated. Lastly, 

similar projects will be analyzed. 

2.1 Mathematical basics 

This section gives a brief introduction to some of the essential mathematical tools needed for 

this thesis. It also defines the notation and literature being used for further reading. First off it 

starts with state estimation and describes two popular state estimators being used in the field 

(Kalman Filter and Extended Kalman Filter).  

2.1.1 Linear State estimation 

Dynamic systems can be described in the time domain using state vectors. These vectors 

consist of variables representing the internal state of the system at a specific time instance t. 

The state in the current time step 𝑥𝑡 can be easily computed using the old state vector 𝑥𝑡−1 

and an optional system input u𝑡 

𝑥𝑡 = 𝐴𝑥𝑡−1 +𝐵𝑢𝑡 . (2.1) 

Also, the system output or measurement vector 𝑦𝑡 can be derived from 𝑥𝑡 with 

𝑦𝑡 = 𝐶𝑥𝑡 . (2.2) 

The matrices 𝐴, 𝐵, 𝐶 model the linear system behavior and are denoted system, input and 

output matrix respectively [4, p. 7]. In real world systems it is, in most cases not possible to 

determine the true value of a state variable. This could be due to noise, unobservability or lack 

of model accuracy. In order to tackle this problem, a common approach is to use random var-

iables. This allows to model the uncertainty using probabilistic laws. Continuous random vari-

ables possess a specific probabilistic distribution, which is in robotic applications commonly 

assumed to be normal or gaussian. Additionally, to the expected or mean value 𝜇𝑡 = 𝑥𝑡, nor-

mal distributed variables provide information about the variance. When using multiple state 

variables, covariance matrices 𝛴 are being used to store the variances for each variable and 

the variance between different state variables [5, p. 10]. The propagation of the expected val-

ues follows the rules of eq. (2.1) and (2.2). The variances follow the error propagation law [6, 

p. 150], with additional noise 𝑅𝑡 from system input 

𝛴𝑡 = 𝐴𝛴𝑡−1𝐴
𝑇 + 𝑅𝑡 . (2.3) 
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The goal of state estimation techniques is to approximate the state vector as good as possible 

and provide the corresponding variances for each time step [5, p. 9]. 

Linear Kalman Filter (KF) 

The Kalman Filter is popular for filtering noisy measurement data and predicting the system 

states based on input data. It is designed for continuous systems and “is not applicable to 

discrete or hybrid state spaces” [5, p. 34]. It computes a state estimate in each filter step, which 

makes it very suitable for real-time applications [4, p. 3]. The filter design is recursive and very 

efficient. It consists of two steps which form a feedback loop: The prediction step projects the 

current state and covariance matrix one timestep forward using the underlying dynamic model 

equations. The subsequent update or correction step incorporates the measured real output 

of the system and updates the state estimate based on a comparison between predicted and 

measured system output [7, p. 4]. The difference between both outputs is weighted by the 

Kalman Gain 𝐾𝑡, which is being computed based on the previous step covariance 𝛴𝑡−1, pro-

cess noise 𝑅𝑡 and measurement noise 𝑄𝑡.  

The linear Kalman filter is the base form. It is limited to linear system equations and assumes 

values with a unimodal Gaussian distribution and zero-mean uncorrelated noise [4, p. 13]. 

Starting with an initial state 𝑥0 and initial covariance 𝛴0 the filter estimates the current state 𝑥t 

and covariance 𝛴t recursively based on input data 𝑢𝑡, measurement data 𝑦𝑡, process noise 𝑅𝑡, 

measurement noise 𝑄𝑡, the previous state 𝑥t−1 and the previous covariance 𝛴t−1 (Algorithm 1). 

Algorithm 1: Linear Kalman Filter Algorithm [5, p. 36] 

LinearKalmanFilter(𝑥𝑡−1, 𝛴𝑡−1, 𝑢𝑡 , 𝑦𝑡 , 𝑅𝑡 , 𝑄𝑡):  

# prediction step  

𝑥𝑡 = 𝐴𝑥𝑡−1 +𝐵𝑢𝑡 (2.4) 

Σ𝑡 = 𝐴Σ𝑡−1𝐴
𝑇 + 𝑅𝑡   (2.5) 

# update step  

𝐾𝑡 = Σ𝑡𝐶
𝑇(𝐶Σ𝑡𝐶

𝑇 + 𝑄𝑡)
−1 (2.6) 

𝑥𝑡 = 𝑥𝑡 + 𝐾𝑡(𝑦𝑡 − 𝐶𝑥𝑡) (2.7) 

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶)Σ𝑡 (2.8) 

return 𝑥𝑡, Σ𝑡  

 

The characteristics of the filter are determined by the choice of process and measurement 

noise. Smaller measurement covariance values mean more trust on the measurement data 

leading to a more dynamic filter which incorporates system output changes faster. In contrast, 

smaller process covariances correspond to more faith in the accuracy of the system model 

prompting an equalization of noisy measurement data [8]. Both covariance matrices can be 

chosen static or dynamic. For the static approach, the “measurement noise covariance […] is 

usually measured prior to operation of the filter”, while the process covariances are harder to 

determine and often hand-tuned to achieve the desired behavior [7, p. 6]. More sophisticated 

approaches dynamically estimate the two covariance matrices e.g. based on preceding Kal-

man Filters [4, p. 93]. 
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2.1.2 Non-Linear State estimation 

However, most systems include non-linear terms and cannot be transformed into a linear form. 

These systems can be represented using the following equations 

𝑥𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) (2.9) 

𝑦𝑡 = ℎ(𝑥𝑡) . (2.10) 

The non-linear functions 𝑔 and ℎ replace the matrices 𝐴, 𝐵, 𝐶 and model the system and out-

put behavior. They can be approximated in each time step using the first order Taylor expan-

sion which results in the Jacobians matrices 𝐺𝑡 and 𝐻𝑡. This corresponds to a linear tangent at 

the non-linear functions and is being computed using the partial derivative (gradient) at the 

current state value [5, p. 48] 

𝐺𝑡 =
∂𝑔(𝑢𝑡 , 𝑥𝑡−1)

∂𝑥𝑡−1
 

 

(2.11) 

𝐻𝑡 =
∂ℎ(𝑥𝑡)

∂𝑥𝑡
 . (2.12) 

Again, the process is perturbated with some system and measurement noise which can be 

represented by the random variables 𝑤𝑡 and 𝑣𝑡 respectively. Also, the random influences of 

𝑤𝑡 and 𝑣𝑡 can be approximated with the Jacobian matrices [7, p. 8] 

𝑊𝑡 =
∂𝑔(𝑢𝑡 , 𝑥𝑡−1)

∂𝑤𝑡
 

 

(2.13) 

𝑉𝑡 =
∂ℎ(𝑥𝑡)

∂𝑣𝑡
 . (2.14) 

Unfortunately, most non-linear functions destroy the Gaussian property of the distribution. To 

keep this important characteristic, we use the approximated version of the system function 𝑔 

utilizing the Jacobian matrices 𝐺𝑡 and 𝑊𝑡 for the error propagation [7, p. 10] 

𝛴𝑡 = 𝐺𝑡  𝛴𝑡−1𝐺𝑡
𝑇 +𝑊𝑡𝑅𝑡𝑊𝑡

𝑇. (2.15) 

Extended Kalman Filter (EKF) 

The extended Kalman Filter extends the idea of the linear Kalman Filter to non-linear systems. 

It uses the in eq. (2.15) presented approach of approximating the error propagation with the 

Jacobian matrices to keep the Gaussian property. The final EKF algorithm (Algorithm 2) is 

similar to the linear equivalent (Algorithm 1). 

 

Algorithm 2: Extended Kalman Filter Algorithm [5, p. 51] 

ExtendedKalmanFilter(𝑥𝑡−1, 𝛴𝑡−1, 𝑢𝑡, 𝑦𝑡 , 𝑅𝑡 , 𝑄𝑡):  

  # prediction step  

  𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑢𝑡) (2.16) 

  Σ𝑡 = Gt Σ𝑡−1Gt
𝑇 +𝑊𝑡𝑅𝑡𝑊𝑡

𝑇 (2.17) 

  # update step  

  𝐾𝑡 = 𝛴𝑡𝐻𝑡
𝑇(𝐻𝑡𝛴𝑡𝐻𝑡

𝑇 + 𝑉𝑡𝑄𝑡𝑉𝑡
𝑇)
−1

 (2.18) 

  𝑥𝑡 = 𝑥𝑡 + 𝐾𝑡(𝑦𝑡 − ℎ(𝑥𝑡)) (2.19) 
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  Σ𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)Σ𝑡 (2.20) 

return 𝑥𝑡, Σ𝑡  

 

The choice of both process and measurement noise covariances are analog to the linear coun-

terpart. Similarly, the EKF still assumes values with a unimodal Gaussian distribution and zero-

mean uncorrelated noise. However, “EKFs have been applied with great success to a number 

of state estimation problems that violate the underlying assumptions” [5, p. 53]. While the EKF 

is a very popular state estimator in robotics, it is important to remember that the approximation 

can be very poor for highly non-linear and/or multi-modal functions [5, p. 54]. 

2.2 Ego-Motion estimation 

The term “Ego-Motion” is typically being used in psychology and computer vision applications 

and refers to the motion of an optical sensor (e.g. camera) in 3D space. Many algorithms have 

been developed to deduce this information from a sequence of images [9, p. 16582]. However, 

it is also common in robotics representing the pose and velocity information of a vehicle at a 

specific time instance [10, p. 468]. This can be done with a variety of different sensors. In most 

cases, this data cannot be measured directly without noise. Therefore, estimation techniques 

(e.g. 2.1.1 Linear State estimation) can be used to infer the required knowledge about the 

current vehicle state, which coins the term “Ego-Motion Estimation”. In the following section, 

the most relevant methods will be presented shortly. 

2.2.1 Odometry & Dead Reckoning 

Odometry and dead reckoning are not completely differentiable. Often dead reckoning is de-

fined as an integration process of velocity and a known course (heading) to determine the 

current pose. Odometry typically refers to calculating the current pose from an “odometer” 

sensor, which could be for example the sum of the traveled path elements measured by an 

encoder [11, p. 13]. However, both terms are not clearly defined and often have different mean-

ings. In this thesis, odometry is referring to the process of calculating the pose via summation 

of delta path elements. Dead reckoning is referring to the process of calculating the pose via 

integration of velocity. Both approaches are very easy and common methods to obtain infor-

mation about the position and orientation of a robot [12, p. 2].  

Encoder Sensors 

A popular sensor choice is the use of encoders detecting the rotation of moving drivetrain parts 

(e.g. motors or wheels). Rotary encoders can be based on different physical working principles 

(optical, inductive, magnetic, capacitive) and detect the angular displacement or velocity. They 

can measure relative or absolute [13, p. 63]. The measured angle can be converted to the 

traveled distance of the robot using geometric properties of the vehicle (e.g. wheel diameter, 

gear ratio). 

While this approach is very cheap and easy to implement, there are some major error sources 

which can be categorized as non-systematic and systematic errors [14, p. 4]. Non-systematic 
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errors are caused by hard to reproduce effects like unpredictable environments (e.g. irregular-

ities of terrain, slippage) and sensor noise. They are very hard to test for and difficult to deter-

mine quantitative [14, p. 12]. Systematic errors, however, are easier to cope with. They emerge 

from inaccuracies in mechanical parts, lack of system understanding or approximation in sys-

tem models. They can be estimated and reduced using different calibration techniques.  

Optical Speed Sensors 

Another type of motion detection technique uses optical sensors and image processing to di-

rectly infer the speed over ground information in two dimensions. This kind of sensor comes 

usually as a ready-made package with the necessary image processing algorithms baked in a 

chip. From there the raw movement information can be obtained easily. The advantage is the 

contactless measurement independent of mechanical inaccuracies or slip. There are two main 

groups of sensors using this working principle. On the one hand, there are low-cost optical 

motion sensors typically being used in computer mice. They come in small packages, need 

only some Milli-Watt of power and can detect up to 10 m/s [15]. However, there are some major 

drawbacks which include a “cooperative” surface, calibration for each particular surface and a 

very small fixed ground distance [16, p. 408]. On the other hand, there are high-performance 

solutions used as reference systems for vehicle dynamics research [17]. While these sensors 

are very accurate in dry environments on a plane surface, they are very expensive and rather 

big [18, p. 9] [19]. 

 

2.2.2 Inertial Navigation Systems 

Similarly to dead reckoning, inertial navigation systems (INS) provide pose information by in-

tegration of sensor data [21, p. 27]. However, instead of velocity integration, INS systems lev-

erage the property of inertia. Inertial sensors (e.g. IMUs) provide measurements of 

acceleration and angular velocity. To obtain the pose information the acceleration data needs 

to be integrated twice in combination with a single integration of the angular velocity [22, p. 19]. 

Therefore, an INS can be defined as a sensor combined with a computing unit to perform the 

filtering and integration. Compared to odometry or dead reckoning, INS are a relatively new 

trend in ground robots due to the lack of precise and cheap sensors some years ago [11, p. 

147]. 

Figure 2: computer mouse sensor structure (left) and working principle (right) [20, Figs. 1, 2]  
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Inertial Measurement Unit 

A common sensor is an inertial measurement unit (IMU) which is being used to measure an-

gular velocities using rate-gyroscopes and accelerations in all three dimensions. IMUs can be 

built in micro-machined electromechanical systems (MEMS) which are cheap, small, rugged, 

low power and available in high quantities [23, p. 3]. They are typically rigidly mounted on the 

robot and therefore also called strapdown systems. These sensors measure the change in 

velocity and orientation with respect to a global coordinate system [23, p. 7]. In order to track 

the current pose, an INS first integrates the angular rate to perceive the orientation. Based on 

this, the acceleration measurements can be transformed to the global reference system and 

influences from gravity can be removed. Finally, the corrected acceleration data can be inte-

grated twice to obtain the position (Figure 3). 

 

One big advantage of IMUs is that they are self-contained and do not rely on any external 

environment or hardware. The data is measured directly and therefore can be outputted at a 

high rate. This is especially important for aggressive movements in highly dynamic environ-

ments. The main disadvantage is the unbounded error emerging from various error sources 

(Table 2-1). This is of course also true for odometry, dead reckoning and any other system 

that does not rely on external references. However, due to the nature of double integration of 

the accelerometer data even slightly offsets can accumulate to big errors. This makes pose 

information solely based on IMUs particularly inaccurate over a longer period of time [11, p. 

146]. This acceleration offsets can also be induced by an erroneous orientation state, causing 

the gravity correction to not completely remove the gravitational acceleration. Therefore the 

overall accuracy is mainly limited by the exactness of the gyroscope [23, p. 35]. One feasible 

way to reduce the drift is to fuse the IMU data with measurements from other sensors (e.g. 

magnetometer or GNSS). Very popular techniques to achieve this are Kalman or particle filters 

[23, p. 33]. 

Error Type Description Effect on Gyroscope 

measurement  

(single integration) 

Effect on Accelerometer  

measurement  

(double integration) 

Bias constant bias ϵ linear growing angular er-

ror 

quadratically growing position-

ing error 

White Noise White noise with 

some standard de-

viation σ 

An angular random walk, 

whose standard deviation 

grows with the square 

root of time 

A second-order random walk, 

whose standard deviation 

grows as 

Figure 3: Strapdown inertial navigation algorithm [23, Fig. 4] 

Table 2-1: Overview of Error Types in MEMS Gyroscopes and Accelerometers [23, pp. 13, 17] 
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Temperature 

Effects 

Temperature-

dependent residual 

bias 

Any residual bias is inte-

grated into the orientation, 

causing an orientation er-

ror which grows linearly 

with time 

Any residual bias causes an 

error in a position which grows 

quadratically with time 

Calibration Deterministic errors 

in scale factors, 

alignments and lin-

earities 

Orientation drift propor-

tional to the rate and du-

ration of motion 

Position drift proportional to 

the squared rate and duration 

of acceleration 

Bias Instability Bias fluctuations 

(usually modeled 

as a bias random 

walk) 

A second-order random 

walk 

A third-order random walk 

2.2.3 Odometry based on range sensors 

The current pose can also be estimated using diverse types of range sensors. In an unknown 

environment, the differences between measurements can be used to infer the relative move-

ment in each step recursively [24, p. 1]. Integration over all relative steps with a known initial 

position will provide an approximation of the current robot position and orientation. Depending 

on the utilized sensor set the inference of the relative change in position can be different.  

Ultrasonic and IR sensors 

A lot of robots are already equipped with IR or ultrasonic range sensors. IR sensors measure 

range distances using infrared light beams and triangulation [25]. Ultrasonic sensors measure 

the time of a sonic wave echo and deduce the range information with speed of sound [26]. 

Both types of sensors are inexpensive and typically being used for obstacle avoidance [27, p. 

517]. However, they can also be employed for self-localization and navigation [24] [27] [28] 

[29]. Both Ultrasonic and IR sensors only provide a one-dimensional range measurement. This 

is not sufficient for a complete 2D or 3D position estimation. Therefore arrays of sensors [29] 

or sensors on motors [24] are being proposed. However, both sensors have their weaknesses. 

IR sensors are very much depending on the environmental lighting conditions [27, p. 517]. 

Ultrasonic sensors have a limited angular resolution and unfavorable targets can cause failure 

or double detections [30, p. 654]. 

LiDAR 

Light Detection and Ranging (LiDAR) sensors offer accurate range measurements, typically 

using a rotating laser beam employing time-of-flight or phase difference to determine the dis-

tance (Figure 4). Despite their high accuracy and invariance to environment illuminance, Li-

DAR sensors suffer from some other disadvantages. Currently available sensors are very 

costly and have a relatively low update rate when compared to other sensors [31, p. 1].  Typi-

cally they offer a high vertical, but a poor horizontal resolution because of their working princi-

ple [32, p. 151]. 

Lidar-based motion estimation techniques have been well explored. They work on the principle 

of comparing successive scans (point set registration). Point set registration methods can be 

divided into the two categories of local and global approaches [33, p. 6]. Local techniques 
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assign point correspondences directly by the measured distances. The most common ap-

proaches are based on some variant of the Iterative Closest Point (ICP) or Normal Distribution 

Transform (NDT) algorithm [33, p. 7]. In general, they are robust against small amounts of 

noise. However, they require only little displacement between successive scans to avoid get-

ting stuck in local minima [33, p. 7]. The global point set registration techniques try to overcome 

this issue and achieve global optimality [33, p. 9]. They are based for example on genetic 

algorithms, particle swarm optimization, particle filtering, random sample consensus, simulated 

annealing or feature descriptors [33, p. 9]. These methods are in general more robust against 

noise and higher displacements between scans. But they require more complex parameter 

tuning and are computationally more expensive. Also, a combination of both techniques is 

possible.  

In all methods, the estimation typically degrades in repetitive environments (e.g. a long floor). 

Also, biases can appear in lidar based motion estimation [34, p. 1]. 

 

2.2.4 Visual Odometry 

“Visual odometry (VO) is the process of estimating the ego-motion of an agent (e.g., vehicle, 

human, and robot) using only the input of a single or multiple cameras attached to it” [36, p. 

80]. VO is a special case of the broader Structure from Motion (SFM) algorithms, which ad-

dress the problem of recovering relative camera poses and three-dimensional structure from 

a set of camera images. While SFM includes offline optimization steps, VO algorithms are 

typically designed to work incrementally on each new image arriving in a more or less real-

time environment [36, p. 81]. They can be divided into feature-based or direct methods, which 

are different approaches to gather the differences in consecutive images [37, p. 6049].  

Feature-based approaches work only on sparse image details (e.g. points, lines). These fea-

tures need to be extracted from one image and then matched to the same elements in succes-

sive frames. Based on the offset of the feature pairs the movement of the robot can be 

reconstructed [38, p. 1]. A major challenge in feature-based approaches is to robustly find 

correspondences and remove outliers. Nonetheless, the majority of visual odometry imple-

mentations use feature-based approaches, also due to the wide availability of feature detectors.  

In contrast, direct methods estimate motion directly using local intensity gradient magnitudes 

and directions of the images. They can be superior in environments with little texture or out of 

laser

diode

ob ect

transmitted wave

received wave

phase difference

length

Figure 4: Distance measurement principle based on phase difference using a Laser as an emitter  
and a diode as receiver [35, Fig. 2] 
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focus images [38, p. 1]. In general, they are less accurate and require higher expenses in 

computation [36, p. 84]. Another important factor is that direct methods are in general more 

affected by errors coming from cameras with a rolling shutter [39, p. 1]. Further techniques use 

hybrid approaches [38] or are based on optical flow methods [40, p. 295]. 

Visual odometry can be more accurate than traditional odometry in some situations (e.g. high 

amount of wheel slip) [41, p. 13]. However, it still suffers from drift errors [40, p. 290]. Also, 

there are some prerequisites like a good illumination, an overall static scene and enough tex-

ture. There is no ideal VO solution that works best for all environments. Rather for each 

application, the best fitting trade-off between robustness, accuracy and computational com-

plexity must be selected. Depending on the number of pixels which must be processed, VO 

algorithms can be quite expensive computationally [36, pp. 80–81]. This results in low framer-

ates or the need for hardware accelerators. 

Monocular Camera 

Monocular cameras entail only a single imager chip (typically CCD or CMOS). In most cases, 

they can be modeled using the perspective camera model assuming a pinhole projection sys-

tem (Figure 5). Several parameters are needed to do transformations between the world and 

image coordinate system. They can be categorized into extrinsic and intrinsic parameters. Ex-

trinsic parameters depict the transformation between a fixed reference coordinate system and 

the camera coordinate system. They are determined by the camera mounting position and are 

independent of the camera system being used. In contrast, intrinsic camera parameters are 

very much depended on the camera system and do not rely on the camera position. They 

consist of lens parameters (e.g. focal length, distortion parameters) and imager parameters 

(e.g. scaling factors of pixels) [42]. The parameters can be approximated using camera cali-

bration techniques. 

Monocular vision cannot provide depth information without prior knowledge of the scene. That 

is why a major problem of monocular visual odometry is the scale ambiguity problem. Features 

and other image elements cannot be obtained in a correct global scale matching the world 

coordinate system. Additional information from other sensors (e.g. encoder, IMU) or some prior 

knowledge about the scene can help to overcome this issue [40, p. 294].  

 

(  ,   )  

  

 

 

 

 

 

Figure 5: Pinhole camera model [43, Fig. 3a] 
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Stereo Camera 

Stereo vision systems consist of two separate image chips and optical systems. Therefore, 

they have twice as many parameters. Additionally, there are parameters needed to describe 

the transformation between left and right image. The distance between the cameras is referred 

to as baseline [44, p. 370]. For each baseline, the stereo camera system performs best at a 

specific distance. “In general, shorter baseline distances performed better at shorter distances, 

whereas longer baseline distances tend to perform better at longer distances” [45, p. 7]. There 

are additional calibration steps needed to determine the transformation between left and right 

camera. 

A calibrated stereo camera system enables the direct inference of 3D information via triangu-

lation from both the left and right image [40, p. 294]. This allows running stereo visual odometry 

independently from any other sensors or environmental knowledge. Disadvantages of stereo 

vision systems are the bigger expenses in computation, cost and package size. 

2.3 Object Motion estimation 

In the literature, object motion estimation is typically referred to as tracking of objects over a 

longer time period [46]. In order to be able to track objects, they must be detected first. There-

fore, these kinds of methods are called detection and tracking of moving objects (DATMO). 

This can be done with several types of sensors. Since none of the sensors deliver accurate 

information of an object, its state can only be estimated to a certain extent. In the following 

section, the most common methods will be summarized briefly. 

Throughout this thesis, the term object and obstacle will be used interchangeably referring to 

a moving or static entity which needs to be avoided. 

2.3.1 Object motion with range sensors 

Using range sensors is the most obvious choice to detect objects. There are several types of 

sensors working on various physical principles. In the area of robotics most prominent are 

Ultrasonic, IR and LiDAR sensors which were already introduced in section 2.2.3. While the 

first two sensors fall short in terms of environmental conditions and resolution, LiDAR systems 

are a popular choice for DATMO.  

LiDAR 

MERTZ et. al. provide a good, but a bit outdated overview of various DATMO approaches using 

laser scanners in [47, p. 18]. They separate between approaches with 2D, 2D+ and 3D sys-

tems, where 2D+ refers to laser scanners with four scanning planes. In general LiDAR DATMO 

methods are composed of four steps: point clustering, segmentation, data-association and 

track update [48, p. 746]. The clustering and segmentation step puts data points from each 

measurement into groups based on specific metrics (e.g. Euclidean distance, intensity). The 

data association step then joins the newly obtained groups with already existing data from 

previously tracked objects (tracks). Lastly, the tracks are updated and predicted until the next 

measurement, which is typically being achieved with a Kalman filter. DEWAN et. al. also distin-

guishes between model-based and model-free methods [49, p. 4508]. Model-based variants 



2 State of the Art 

 
 

 
15 

are preferable if all object types can be detected and modeled appropriately. Model-free ver-

sions are based on motion cues. They allow to track arbitrary objects without prior information. 

To achieve that, they build a static map and try to detect dynamic objects in it [49, p. 4509]. 

However, this only works for objects that are actually moving. 

 

2.3.2 Object motion with camera sensors 

Another category of DATMO is based on camera sensors. Especially in the vehicle detection 

and tracking field, camera-based solutions have been an active research area [50, p. 1773]. 

In general, it can be differentiated between traditional computer vision approaches and the 

recently upcoming methods based on machine learning.  

Computer vision techniques can be split up into the three basic steps detection, classification 

and tracking [51, p. 2970]. The detection step tries to recognize all relevant parts of a scene 

and clusters the pixels accordingly. Classification is being done to determine the type of the 

cluster. Finally, the tracking of objects estimates the movement over multiple measurements 

[51, p. 2971]. For each of the steps several approaches are available (Figure 7). Although 

these methods are well studied, there are many challenges when working with traditional com-

puter vision techniques only. Particularly the detection and classification steps are challenging 

with diverse illumination, background and contents of a scene [50, p. 1776].  

Newer machine learning methods have shown impressive results in this area, especially in the 

detection and classification steps. They typically employ specially designed convolutional neu-

ral networks (CNN) [52, p. 11]. These networks consist of many so-called neurons which are 

connected and arranged in layers (network architecture). Each layer retrieves data from the 

previous layer, computes the data and passes it on to the next layer. The output of each neuron 

is dependent on the underlying function, the input and the respective parameters (weights). In 

order to let the network achieve reasonable results, it must be trained to adapt the weights for 

the given use case. This can be done with a process called backpropagation which requires a 

lot of training data with known results (supervised learning) [52, p. 15]. Once the network is 

trained, it can be used to mimic the same operation on unknown data. While the training re-

quires massive amounts of computational resources, the operation on newly data (inference) 

is considerably cheaper. However, depending on the network size it may still require the use 

of accelerators (e.g. GPGPU, vector processors) to achieve a usable framerate. 

Figure 6: Example scene of a LiDAR detection and motion estimation approach [49, Fig. 3] 
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Monocular Camera 

The detection and classification can be done on a single image. The image does not provide 

direct 3D depth information which must be inferenced via the camera parameters (2.2.4 Visual 

Odometry). Therefore, objects are usually detected, classified and even tracked in the camera 

plane using pixel coordinates [50, p. 1781].  

Object detection with a CNN is typically being done with general purpose detector architectures 

[53, p. 1]. These can be utilized for a variety of different use cases and therefore are designed 

to work mainly with monocular camera data. 

Stereo Camera 

When using two images with a known baseline, it is possible to calculate the disparity map and 

inference 3D information from the stereo camera system (2.2.4 Visual Odometry). This 3D 

data can provide motion characteristics and direct measurements of the objects physical prop-

erties [50, p. 1780]. 

      

 

 

2.4 Project description 

The following chapter describes the hard- and software which are the basis for this thesis. The 

available computational resources and sensor setup defines the range of feasible approaches 

of ego- and object motion estimation.  

2.4.1 Hardware description 

The vehicle is based on a 1/10 scale Ford Fiesta® ST Rally kit from Traxxas [54]. It has an all-

wheel drivetrain and a single front steering (Figure 8, left). A DC- and servo motor are being 

used for the actuation. The car can be controlled via remote control or an additional Arduino 
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Figure 7: Basic building blocks of traditional computer vision DATMO approach  
[51, Fig. 1] [51, Fig. 2] 
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Mega generating the corresponding PWM signals. Further electronic parts were added in a 

separate term project [3]. To have a satisfactory sensor setup, an extra IMU, LiDAR system 

and stereo camera were mounted on the chassis (Figure 8, right). Six ultrasonic sensors are 

present, however, will not be used in this thesis due to the late integration, missing software 

support and low sensor performance for this application. All components are connected to a 

central processing unit which consists of an NVIDIA Jetson TX2 developer board (Figure 9). 

The board integrates the Tegra T186 system on a chip (SoC) which consists of a hex-core 

ARM CPU, 256-core NVIDIA Pascal GPU and 8GB of shared memory [55]. It is a low-power 

embedded platform specially designed as an edge device running even computational inten-

sive AI approaches directly on the vehicle itself [55]. 

  

2.4.2 Software description 

All high-level algorithms and data processing is being done on the Jetson developer board. It 

runs the Linux for Tegra (L4T) operating system which is a modified Ubuntu version with drivers 

for the board. As a software development framework ROS (Robot Operating System) will be 

used. It is a popular open-source prototyping platform for robotic software in both academia 

and industry. Many official and third-party packages are available from the huge community.  

The automatic control of the vehicle using the Arduino is still very fundamental. Although there 

is an interface available in ROS for driving and steering, both require the raw PWM signals as 

inputs. These are then directly forwarded by the Arduino to the proprietary motor controller and 

servo motor. Also, the velocity is depending on the battery state and no underlying proper 

control system is available. Therefore, all required driving for this thesis is being done manually 

using the remote. 

 

Figure 8: raw chassis & drivetrain (left) [56] and vehicle equipped with additional parts (right) [3]  



2 State of the Art 

 
 

 
18 

 

2.5 Similar projects 

In the following section, exemplary projects using a similar approach will be presented. 

2.5.1 MIT RACECAR and RACECAR/J 

“The MIT RACECAR is an open-source powerful platform for robotics research and education” 

[57]. It is designed, developed and utilized by multiple departments for robotic courses or 

hackathons. RACECAR/J uses similar hardware derived from the MIT RACECAR, which can 

also be bought as a kit [58]. Both designs share a similar hardware setup. As a chassis and 

drivetrain, a 1/10 scale rally car platform is being used. It is electrically propelled by a servo 

Figure 9: Overview of electronic components [3] 
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motor for steering and a brushless DC-motor (BLDC) for propulsion. The BLDC motor is con-

trolled via an open-source electronic speed control (ESC), which also provides the capability 

to determine the absolute motor angle and speed using encoders or similar. The RACECAR 

platform also includes multiple sensor systems. It is being equipped with a scanning single-

beam LiDAR, a stereo camera and an IMU. All parts are connected to a central computing unit 

which runs a standard Linux with the Robot Operating System (ROS) as software development 

framework installed. 

 

 

The ego-motion estimation is based on a dead reckoning (2.2.1 Odometry & Dead Reckoning) 

approach. The current position (𝑥new , 𝑦new) and orientation 𝜓𝑛𝑒𝑤 is deduced from the ESC 

speed measurement 𝑣ESC and the steering angle send to the servo motor 𝛿cmd (Algorithm 3). 

Additional gains (𝑣gain , 𝛿gain) and offsets (𝑣offset , 𝛿offset) scale the input values correctly. 𝑙 de-

fines the wheelbase of the vehicle. The implementation lacks a dynamic error model. Positional 

uncertainty values are hardcoded. Velocity uncertainty is currently not implemented. 

Algorithm 3: Ego-motion estimation on MIT RACECAR [60] 

EgoMotionEstimator(𝑣ESC , 𝛿cmd):  

𝑣t = (𝑣ESC − 𝑣offset)/𝑣gain (2.21) 

𝛿t = (𝛿cmd − 𝛿offset)/𝛿gain (2.22) 

𝜓̇ = 𝑣t ⋅ 𝑡𝑎𝑛(𝛿t) /𝑙 (2.23) 

𝑥̇𝑡 = 𝑣t ⋅ 𝑐𝑜𝑠(𝜓t-1) (2.24) 

𝑦̇𝑡 = 𝑣t ⋅ 𝑠𝑖𝑛(𝜓t-1) (2.25) 

𝑥t = 𝑥t-1 + 𝑣t ⋅ 𝑑𝑇 (2.26) 

𝑦t = 𝑦t-1 + 𝑣t ⋅ 𝑑𝑇 (2.27) 

𝜓𝑡 = 𝜓t-1 + 𝜓̇ ⋅ 𝑑𝑇 (2.28) 

return 𝑥𝑡, 𝑦t , 𝜓𝑡  

 

This approach relies on the correct measurements of speed in the motor controller. However, 

the true velocity can deviate when slippage occurs. Furthermore, the set value of the servo 

motor can be different from the true value e.g. when calibration is not perfect or the value 

exceeds the maximum physically possible value. An additional particle filter based on ray cast-

ing was developed, which uses the pose information from dead reckoning and laser scan 

measurements to localize the vehicle in a known map [61]. This approach requires preliminary 

knowledge of the environment. 

Figure 10: RACECAR/J hardware platform [59] 
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Furthermore, there is some work done on object estimation. WIESER et. al. developed a cone 

detection for a simple object following and avoidance use case with the MIT RACECAR [62]. 

The detection is based on the color of the cone in the camera image. Using the camera pa-

rameters, the detected cone is being transferred in world coordinates. No tracking or motion 

estimation of the cone is being done. 

2.5.2 F1tenth 

The F1tenth project is also designed for educational purposes. It is being used as a reference 

hardware platform for autonomous racing competitions and developed by the University of 

Virginia, the University of Pennsylvania and the University of Modena and Reggio Emilia [63]. 

Like the MIT RACECAR, it also builds upon a ready-made chassis enhanced with custom 

electronics, sensors and computing power. The sensor setup is quite similar, because it also 

uses a scanning single-beam LiDAR, a stereo camera and an IMU. Also, all components are 

connected to a central processing unit, which runs Linux and ROS for software development. 

The only difference is that instead of replacing the ESC, the first version of the F1tenth refer-

ence platform utilizes the standard drivetrain. Therefore it does not include any type of encoder 

or speed sensors, which are only planned for the second version of the hardware revision [64].  

 

Because of the lacking sensors for position or velocity measurement, the project utilizes the 

LiDAR data for localization (2.2.3 Odometry based on range sensors). Laser measurements 

from successive scans are compared and matched. The change in pose and orientation is 

computed based on a minimization problem to achieve the best overlap of the scans. However, 

in order to achieve good results, some requirements must be satisfied. First, it needs objects 

which can be detected by the sensor and have heterogeneous features. Also, the differences 

in subsequent LiDAR measurements should only be small to have sufficient overlap. This limits 

the possible speed based on the scan rate of the sensor [65]. Additional more advanced local-

ization techniques (adaptive Monte Carlo Localization) are also discussed, however again they 

depend on prior environmental information. 

Since the cars drive separately by themselves on the track, there is currently no obstacle de-

tection or motion estimation available.  

Figure 11: F1tenth hardware platform [63] 
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2.5.3 TUM Phoenix Robotics 

TUM Phoenix Robotics is a student research group at the chair of automatic control at the 

Technische Universität München. It consists of students from different institutes and takes part 

in a competition, the CaroloCup [66], against teams from all over Europe. In the competition, 

a model car must find its way autonomously on an unknown track [67]. Like the previous 

projects, some mechanical parts are off the shelf. However, the same custom open source 

ESC as in the MIT RACECAR project is being used. With Hall-sensors measuring the current 

BLDC motor position, this setup allows to monitor the absolute motor angle and deduce the 

current speed of the vehicle. Additional sensors include an industrial grade mono camera, a 

scanning single beam lidar system and an IMU. A central computing unit with a Linux system 

and a custom-made software framework (“Lightweight Modular System” [68]) was being used 

until 2018. Currently the team transitions all software packages to ROS to achieve better main-

tainability.  

 

The first approach to determine the ego-motion of the vehicle is a sensor fusion of IMU and 

velocity data using an extended Kalman Filter (2.1.2 Non-Linear State estimation) [70]. In com-

bination with the project, a C++ header only Kalman Filter library was being developed [71]. 

The filter is based on a constant turn rate and acceleration (CTRA) model [72, p. 535]. The 

model [73] has no inputs and can be defined as a non-linear state estimation problem 

𝑥𝑡+𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

(

 
 
 

𝑥𝑡+𝑇
𝑦𝑡+𝑇
𝜓𝑡+𝑇
𝑣𝑡+𝑇
𝑎𝑡+𝑇
𝜓̇𝑡+𝑇)

 
 
 
= 𝑥𝑡⃗⃗  ⃗ +

(

 
 
 

Δ𝑥𝑡
Δ𝑦𝑡
𝜓̇𝑡 𝑇
𝑎𝑡  𝑇
0
0 )

 
 
 

 . (2.29) 

with:   

Δ𝑥𝑡 =
1

𝜓̇𝑡
2 [(𝑣𝑡𝜓̇𝑡 + 𝑎𝑡𝜓̇𝑡𝑇)s𝜓 − 𝑣𝑡𝜓̇𝑡 sin(𝜓𝑡) + 𝑎𝑡c𝜓 − 𝑎𝑡 cos(𝜓𝑡)] (2.30) 

Δ𝑦𝑡 =
1

𝜓̇𝑡
2 [−(vt𝜓̇𝑡 + 𝑎𝑡𝜓̇𝑡T)c𝜓 + vt𝜓̇ cos(𝜓t) + 𝑎𝑡s𝜓 − 𝑎𝑡 sin(𝜓t)] (2.31) 

Figure 12: Phoenix car being used in CaroloCup 2017 and 2018 [69] 
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c𝜓 = cos(𝜓t + 𝜓̇𝑡T) and s𝜓 = sin(𝜓t + 𝜓̇𝑡T) .  

 

The measurement vector consists of the velocity from the ESC 𝑣ESC, the acceleration 𝑎x,IMU, 

𝑎y,IMU and the turn rate 𝜓̇IMU data from the IMU  

(

𝑣ESC
𝑎x,IMU
𝑎y,IMU

𝜓̇IMU

) = (

𝑣𝑡+𝑇
𝑎𝑡+𝑇

𝜓̇𝑡+𝑇 𝑣𝑡+𝑇
𝜓̇𝑡+𝑇

) . 

 

(2.32) 

This approach works well when the covariances are tuned correctly and the vehicle is driving 

on a smooth ground. It is computationally inexpensive and comes with a fully covered error 

estimation. However, this method cannot cope with slippage or uneven ground. Also, the 

model must be simplified for 𝜓̇𝑡 → 0 to avoid unbounded outputs.  

Additionally, the team implemented a second approach to estimate the ego-motion of the ve-

hicle using visual odometry (2.2.4 Visual Odometry) [74]. The algorithm utilizes the mono cam-

era image and uses a feature-based detection method. Firstly, features are extracted using 

the Features from Accelerated Segment Test (FAST [75]) to detect edge points in a certain 

region of the image. In the subsequent frame, these features are tracked using the Lucas-

Kanade optical flow algorithm [76]. If enough feature pairs in two consecutive images were 

found, both lists of image points are transformed to world coordinates. This can be done as-

suming all feature points are located on the ground plane (planar assumption) using a prior 

calibrated homography transformation between the camera and the floor. Both world point lists 

𝑃𝑎,𝑛(𝑥, 𝑦)  and 𝑃𝑏,𝑛(𝑥, 𝑦)  are then being used to determine the transformation parameter 

(𝛥𝑥, 𝛥𝑦, 𝜓) between both pairs [77]. Because of the planar assumption this is, being done by 

solving a system of linear equations (2.33) using singular value decomposition (SVD). 

(

 
 
 
 
 

𝑃𝑎1𝑥 −𝑃𝑎1𝑦 1 0

𝑃𝑎1𝑦 𝑃𝑎1𝑥 0 1

𝑃𝑎2𝑥 −𝑃𝑎2𝑦 1 0

𝑃𝑎2𝑦 𝑃𝑎2𝑥 0 1
… … … …
𝑃𝑎𝑁𝑥 −𝑃𝑎𝑁𝑦 1 0

𝑃𝑎𝑁𝑦 𝑃𝑎𝑁𝑥 0 1)

 
 
 
 
 

⋅ (

𝑐𝑜𝑠(𝜓)

𝑠𝑖𝑛(𝜓)
𝛥𝑥
𝛥𝑦

) =

(

 
 
 
 

𝑃𝑏1𝑥
𝑃𝑏1𝑦
𝑃𝑏2𝑥
𝑃𝑏2𝑦
…
𝑃𝑏𝑁𝑥
𝑃𝑏𝑁𝑦)

 
 
 
 

 (2.33) 

This approach is simple and computationally light. However, it requires stable features on the 

ground, like lane markings or other patterns. In a more generic environment, this can be prob-

lematic. Even though there are many different descriptors available, most of them detect fea-

tures on non-ground elements of the image (Figure 13). Therefore, this simple technique is not 

suitable for this project. 

For object detection, the team uses both the camera and LiDAR sensor. The point cloud data 

from the laser measurements are segmented into multiple objects. If the objects have enough 

points they are assigned with a fixed width, initial trust value and added to the environment 

object list. Similarly, the lower objects edges are detected in the camera image using gradient 

differences. This assumes the coarse location of the object is already known and that there is 

always a high image gradient between the floor and object. The detected edge points are then 

transformed from image to world coordinates. The width of the object is calculated from the 

distance between the points. An initial trust value is being added and the object is saved in the 
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environmental object list. A separate object fusion module merges all new and old objects 

based on the positional coordinates. The trust value is updated via some heuristic rules and 

thresholds. If an old object is not found in the new measurements its trust value is gradually 

reduced. An object tracker based on a Kalman Filter is available, however not being used.  

 

 

KA E ORB

AKA E FAST

BRISK MSER

SIFT S RF

Figure 13: Example scene with feature detections from different OpenCV descriptors using default settings 
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2.6 Derivation of the problem statement 

RC cars have many advantages compared to utilizing real-world vehicles for ADS research 

and education. They are cheaper in terms of expense for parts, maintenance and operation. 

This allows building a vehicle even with a low budget. They also reduce the burden of safety 

and security measures dramatically, allowing easy prototyping of software components on real 

hardware in preliminary stages. This makes them ideal for fundamental research and educa-

tional purposes. Of course, there are also a few shortcomings. The most obvious reason is 

that the vehicle dynamics are different from the dynamics of real world cars. Typically, they 

have a different drivetrain concept, different tire types and simplified suspensions. This makes 

it difficult to use traditional methods, because of the unknown parameters and different hard-

ware. Also, there is a vast variety of different sensor setups in each project. The available 

sensors and computational resources define the feasibility of each ego- or object motion ap-

proach. Therefore, there is not one off-the-shelf solution fitting best in all situations. Rather 

there are many possible ways, each with its unique advantages and disadvantages depending 

on the circumstances. 

The goal of this thesis is to evaluate, implement and compare different approaches in order to 

find the optimal solution for this use case and hardware setup. The implementation should fit 

into the overall project and interface with the rest of the software stack. The software packages 

should be modular and encourage reusability. Therefore, standard interfaces are preferred 

when available. All software implementation is being done in C++ or Python with ROS as the 

underlying framework. 
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3 Course of actions 

In a first step, the sensors for each ego and object motion estimation method must be prepared. 

There are currently no encoders available. Therefore, they need to be embedded into the ve-

hicle and a stable connection to the central processing unit must be ensured. Furthermore, the 

software for each sensor has to be integrated. Fortunately for most sensors already available 

ROS drivers exist and may only be adapted to the project's environment. Each sensor must 

be calibrated with an appropriate method. Thereafter the sensor measurements will be ana-

lyzed, and additional filters may need to be developed to improve the signal for further pro-

cessing. 

In the next step, different implementations of ego and object motion estimation will be devel-

oped. They have to be analyzed and implemented in the available software stack. For some 

approaches, a custom software package has to be programmed, while for others already ex-

isting packages must be adapted, tested and integrated. The selection of approaches will cover 

all presented state of the art methods. Therefore, diverse approaches in terms of used sensor 

type and/or underlying working principle will be tested. Finally, the parameters need to be ex-

amined and tuned to tweak performance. 

In a subsequent evaluation step, the different methods will be compared and the results are 

being analyzed. This will be done on a basis of metrics derived from the testing environment 

and outline of this thesis. There is no ground truth available for both parts (ego- and object 

motion) of this thesis. Therefore, alternative methods to estimate the quality and performance 

of the implemented approaches will be developed.  

Last but not least, a summary of the whole thesis and the presented approaches will be given 

at the end. An additional conclusion will discuss the achieved results and show room for im-

provement in further research. 
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4 Implementation 

In this chapter, the actual implementation is developed based on the existing hardware and 

problem statement. It first starts with the sensor implementation and calibration which is a 

fundamental building block for the subsequent steps. Then various ego and object-motion 

techniques will be developed and implemented based on the previously presented methods. 

4.1 Implementation and Calibration of Sensors 

The following section describes the integration process of each sensor type. This process 

heavily depends on the existing hardware and software stack. To achieve accurate measure-

ments, extra calibration steps may be needed. Also, additional signal processing to remove 

noise or transform the data into the correct system of reference might be required. 

4.1.1 Wheel Encoder 

Implementation 

To make use of odometry or dead reckoning approaches (2.2.1 Odometry & Dead Reckoning), 

additional sensors are integrated into the existing hardware design to measure motion incre-

ments. While optical sensors promise benefits in highly dynamic driving situations with a sig-

nificant amount of slippage, the advantages of easier and inexpensive rotary encoders 

predominate for this particular use case. Therefore, a sensor solution based on magnets and 

hall-sensors is being implemented for each wheel. The mounts for both the magnets and the 

hall-sensor are custom designed and 3D printed to fit perfectly into the existing hardware setup 

(Figure 14).  

     

Figure 14: CAD design of sensor mount and magnet ring (left),  
3D printed sensor mount (middle),  

3D printed magnet ring (right) 



4 Implementation 

 
 

 
28 

All four hall-encoder sensors are connected to rising-edge enabled interrupt pins of the already 

available Arduino board. The total distance driven 𝑠t is incremented by the distance between 

two magnets Δ𝑠 on each new interrupt event  

𝑠t = 𝑠 t-1 + Δ𝑠 = 𝑠 t-1 +
𝑑wheel ⋅ π

𝑛magnets
   . (4.1) 

The resolution is only 10 magnets per revolution. Therefore, a velocity calculation based on 

the number of interrupts divided by cycle-time would lead to inaccurate values suffering from 

discretization errors. This is especially true when using high update rates. Accordingly, a ve-

locity estimation based on the time difference Δt between two successive interrupt events is 

being developed. When no magnet detection occurred in the last cycle, an additional stopping 

counter nstop is increased. Hence it reduces the speed linearly when the vehicle is stopped. 

The velocity 𝑣t is set to zero if it drops below a certain threshold 𝑣thres (4.2).  

𝑣t = {

Δ𝑠

Δ𝑡 ⋅ 𝑛stop
 ,    𝑣t ≥ 𝑣thres 

0               ,     𝑣t < 𝑣thres

 (4.2) 

Both the traveled distance and velocity are sent to the main computing platform via a serial 

interface utilizing a high-level ROS compatible protocol [78] and a custom defined message 

type (Table 6-3).  

Next, the distance and velocity calculations will be tested. While the distance measurement 

can be checked in the calibration process, the velocity is measured during external excitation 

with a motor using a known constant rotation speed (Table 4-1).  

external motor 

speed in m/s 

average speed  

measurement in m/s 

standard deviation of 

speed measurement 

variance of speed 

measurement 

Error in 

% 

0.673 0.672 0.01040 0.00012 0.247 

0.748 0.747 0.01364 0.00019 0.134 

0.898 0.895 0.01528 0.00023 0.264 

 

The results show that the speed measurements are very exact with a low error. Therefore, no 

further action or calibration is being conducted for the velocity generation. The variance of the 

fastest speed test will be used as a constant variance parameter 𝑣𝑎𝑟𝑣 for all velocity measure-

ments and wheels 

𝑣𝑎𝑟𝑣 = 0.00023 
m2

s2
 . (4.3) 

Calibration 

Inaccuracies introduced by systematic errors can be reduced using calibration techniques. 

First, it is important to differentiate between several types of systematic errors. BORENSTEIN 

and FENG describe the most important systematic errors as [14, p. 5]: 

• average wheel diameters 
𝑑right+𝑑left

2
 differ from nominal diameter 𝑑nominal  

Table 4-1: comparison of externally applied and measured speed 
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𝑒𝑟𝑟𝑠 =
𝑑right + 𝑑left

2 ⋅ 𝑑nominal
 (4.4) 

• inequality of wheel diameters between the left 𝑑left and right 𝑑right wheel  

𝑒𝑟𝑟𝑑 =
𝑑right

𝑑left
 (4.5) 

• discrepancy between actual 𝑏actual and nominal 𝑏nominal  track width 

𝑒𝑟𝑟𝑏 =
bactual
bnominal

 (4.6) 

The scaling error 𝑒𝑟𝑟𝑠 can easily be ascertained through driving a straight line with a known 

distance. The error results from the in reality driven distance divided by the average measure-

ment (Table 4-2). The data also shows that the average displacement caused by systematic 

errors is a lot higher than the standard deviation caused by non-systematic errors.  

 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average Std. Dev. 𝑒𝑟𝑟𝑠 

Front-Left 20.42 20.45 20.39 20.39 20.42 20.41 0.025 0.980 

Front-Right 20.58 20.45 20.51 20.45 20.51 20.50 0.054 0.976 

Rear-Left 20.48 20.48 20.48 20.45 20.51 20.48 0.021 0.977 

Rear-Right 20.39 20.45 20.39 20.39 20.42 20.41 0.027 0.980 

Average 20.47 20.46 20.44 20.42 20.47 20.45 0.032 0.978 

 

Further the positional variance per square meter 𝑣𝑎𝑟𝑝𝑝𝑚² of the wheel encoder measurements 

can be calculated from the average standard deviation 𝜎̅ divided by the test distance 𝑑 via 

𝑣𝑎𝑟𝑝𝑝𝑚² = (
𝜎̅

𝑑
)
2

= (
0.032 m

20 m
)
2

= 2.56 ⋅ 10−6 . (4.7) 

Both the error caused by the inequality of wheel diameters 𝑒𝑟𝑟𝑑 and unknown effective track 

width 𝑒𝑟𝑟𝑏 are more difficult to estimate. There are many variants of calibration techniques 

which focus on two wheeled [14][79][80] or car like mobile robots [81][82][83]. The car like 

approaches typically are based on a measurable steering angle, which was not available in 

this project (2.4.2 Software description). Therefore, the widely cited UMBmark method by 

BORENSTEIN and FENG [14], using only the front wheel encoders, is being utilized for the fol-

lowing calibration of 𝑒𝑟𝑟𝑑 and 𝑒𝑟𝑟𝑏. While this approach is mainly meant for differential drive 

robots, it can also be used for other types of robots [14, p. 1]. 

The test is conducted on a plain ground with uncalibrated parameters (b = bactual = bnominal 

and dright = dleft). The vehicle travels in a square pattern with a known edge length 𝐿 in clock-

wise (CW) and counterclockwise (CCW) direction. According to the original procedure, the 

vehicle automatically drives itself based on its own odometry calculation to achieve a perfect 

square and return to the start position. The displacement to the actual real-world position is 

then used as eran ror for later calibration. However, since our vehicle is not able to drive itself 

precisely, a perfect square is driven manually with the remote. After that, the odometry is cal-

culated based on the implemented algorithm (4.2.1 Odometry). The offsets between starting 

and end positions (ϵ𝑥i, CW, ϵ𝑥i, CCW, ϵ𝑦i, CW, ϵ𝑦i, CCW) are then being used as errors instead. The 

sign of the measured values is flipped to account for the change in perspective. To minimize 

Table 4-2: Measurements and scaling error after driving a 20 m straight line in multiple trials 



4 Implementation 

 
 

 
30 

influences of non-systematic errors, 𝑛 = 𝑛𝐶𝐶𝑊 + 𝑛𝐶𝑊 test runs are conducted and the center 

of gravity (𝑥c.g., CW, 𝑥c.g., CCW, 𝑦c.g., CW, 𝑦c.g., CCW) is calculated (eq. (4.8) - (4.9)). 

𝑥c.g., CW =
1

𝑛𝐶𝑊
∑ −ϵ𝑥i, CW
𝑛𝐶𝑊
𝑖=1              𝑥c.g., CCW =

1

𝑛𝐶𝐶𝑊
∑ −ϵ𝑥i, CCW
𝑛𝐶𝐶𝑊
𝑖=1  (4.8) 

𝑦c.g., CW =
1

𝑛𝐶𝑊
∑ −ϵ𝑦i, CW
𝑛𝐶𝑊
𝑖=1           𝑦c.g., CCW =

1

𝑛𝐶𝐶𝑊
∑ −ϵ𝑦i, CCW
𝑛𝐶𝐶𝑊
𝑖=1  (4.9) 

The average errors can then be used to calculate the errors 𝑒𝑟𝑟𝑑 and 𝑒𝑟𝑟𝑏 with the intermedi-

ate variables 𝛼, 𝛽 and 𝑅 [14, pp. 29–35]. 𝛼 and 𝛽 can be calculated from either the 𝑥 or 𝑦 val-

ues. Similarly to [80, p. 7] the average of both options is being used (eq. (4.10) - (4.14)).  

𝛼 = (
𝑥c.g., CW + 𝑥c.g., CCW

−4 ⋅ 𝐿
+
𝑦c.g., CW − 𝑦c.g., CCW

−4 ⋅ 𝐿
) ⋅
1

2
 (4.10) 

𝛽 = (
𝑥c.g., CW − 𝑥c.g., CCW

−4 ⋅ 𝐿
+
𝑦c.g., CW + 𝑦c.g., CCW

−4 ⋅ 𝐿
) ⋅
1

2
 (4.11) 

𝑅 =
𝐿/2

𝑠𝑖𝑛(𝛽/2)
 (4.12) 

𝑒𝑟𝑟𝑑 =
𝑅 + 𝑏/2

𝑅 − 𝑏/2
 (4.13) 

𝑒𝑟𝑟𝑏 =
𝜋/2

𝜋/2 − 𝛼
 (4.14) 

The correction factors 𝑐left, 𝑐right and the actual track width 𝑏actual can then be calculated based 

on these errors (eq. (4.15) - (4.17)).  

𝑐left = 𝑒𝑟𝑟𝑠 ⋅
2

𝐸𝑑 + 1
 (4.15) 

𝑐𝑟𝑖𝑔ℎ𝑡 = 𝑒𝑟𝑟𝑠 ⋅
2

(1/𝐸𝑑) + 1
 (4.16) 

𝑏actual = 𝑒𝑟𝑟𝑏 ⋅ 𝑏nominal (4.17) 

 

A second approach is being developed to find values of 𝑒𝑟𝑟𝑑 and 𝑏actual. This method is based 

on the hyperparameter optimization framework Hyperopt [84]. The framework is based on py-

thon and allows to search for a close to optimal solution of a multidimensional problem using 

various search algorithms. Currently, it supports random search and Tree-of-Parzen estima-

tors (TPE) [84, p. 14]. The possible parameters are described in the search space which can 

be modeled with various distributions [84, p. 15]. For our problem, we use the TPE algorithm 

and define the search space uniformly (Table 4-3). 

parameter distribution min value max value 

𝑒𝑟𝑟𝑑 uniform 0.19 0.23 

𝑏actual uniform 0.99 1.01 

 

The next step is to implement an objective function which will be executed once per trial and 

returns a loss. The goal of the algorithm is to find a parameter set in the search space that 

reduces the loss to a minimum. To achieve this, the objective function is being executed many 

Table 4-3: search space parameter being used 
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times using different parameter sets. The function in our problem calculates a loss for each 

CW or CCW round based on the displacement between the start and end position. This also 

includes a rotational offset. To weight positional and rotational errors (ϵ𝑥i, ϵ𝑦i, ϵ𝜓i) differently, 

they are normalized by empirically chosen acceptable errors (ϵ𝑥norm, ϵ𝑦norm, ϵ𝜓norm) (4.18). 

The total loss for this parameter set is calculated from the average losses for each round (4.20).  

𝑙𝑜𝑠𝑠𝑖 = √(
ϵ𝑥i

ϵ𝑥norm
)
2

+ (
ϵ𝑦i
ϵ𝑦norm

)
2

+ (
ϵ𝜓i
ϵ𝜓norm

)
2

  (4.18) 

𝑛total = 𝑛𝐶𝑊 + 𝑛𝐶𝐶𝑊 (4.19) 

𝑙𝑜𝑠𝑠total =
1

𝑛total
∑ 𝑙𝑜𝑠𝑠𝑖

𝑛total

𝑖=0

 (4.20) 

The objective function is then executed many times in parallel using multiple workers. The 

results are stored in a database and can be analyzed afterward.  

4.1.2 IMU 

Implementation 

An IMU board (Figure 15) containing a three-axis sensor and an additional microcontroller is 

already mounted on the vehicle and connected via serial (USB) to the Jetson. The sensor 

consists of an accelerometer, gyroscope and magnetometer in each direction (9 dimensions 

of freedom). It combines high-performance measurements with a low price tag and small foot-

print [85]. The extra microcontroller interfaces the sensor, allows preprocessing of the raw 

measurements and forwards the data via serial. It is Arduino compatible and can be pro-

grammed with the standard Arduino IDE with the help of some extra libraries.  

The board is already supported by a firmware including an Attitude Heading Reporting System 

(AHRS) and a ROS compatible interface [86], which publishes IMU messages (Table 6-4). The 

AHRS algorithm [87], running on the separate microcontroller, fuses the measurements from 

different sensors to remove gyroscope drift, take care of other sensor noise and numerical 

errors [86]. Alternatively, the IMU sensor itself has a built-in digital motion processor (DMP) 

which provides some proprietary motion processing algorithms like the integration of gyro-

scope and accelerometer measurements [88]. Although the DMP allows processing at a faster 

rate (200 Hz [88, p. 4]), the AHRS algorithm is chosen for this project, because it provides 

more functionality and is open source. The firmware also provides easy to use parameter 

changes to configure the sensor itself (for example the sample rate, inbuild low-pass filter and 

sensor sensitivities [89, p. 22]).  

One drawback of the IMU is, that the z-axis of the magnetometer measurement always points 

towards the longitudinal axis of the vehicle, instead of pointing towards a fixed cardinal point 

(e.g. north pole). This is probably due to the close proximity to the motor (hard iron effects) or 

other magnetic disturbances (soft iron effects) [90, p. 27]. Therefore, it cannot be used for the 

yaw angle estimation (Figure 16) and drift correction utilizing magnetometer data is turned off. 

Accordingly, magnetometer data is not being considered any further in this thesis. 
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Calibration 

Table 2-1 lists the possible error sources. Some of them can be addressed with the calibration 

techniques which are already included in the firmware. Scaling and bias errors for the accel-

erometer can be reduced by rotating the device slowly around all axis. The maximum and 

minimum measurements for each axis are recorded in a parameter file. These values can then 

be utilized to calculate the true acceleration by using the gravity as a reference for the min and 

max value. For the gyroscope only a constant bias removal is possible. To calculate the offset, 

the device is untouched lying still on the ground. Gyroscope measurements are taken over a 

period of time and the average of these measurements is being used as constant offset, which 

is subtracted on future measurement [86].   

An additional IMU filter package is being developed to address the problems of temperature 

drift and alignment errors. First, the temperature drift can be found in the sensor specification 

(Table 4-4). While the accelerometer measurements are negligibly affected by different tem-

peratures, the gyroscope data can show significant offsets for zero rate output. For this project, 

it is assumed that the temperature conditions stay the same while driving and have no effects 

a)  aw from wheel encoder
b)  aw from gyroscope
c)  aw from AHRS fusion
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Figure 15: 9DoF Razor IMU board from Sparkfun Electronics comprising of an MPU-9250 sensor 
(smaller chip) and Atmel SAMD21 microprocessor (bigger chip) [91] 

Figure 16: Comparison of yaw angle calculation using different techniques:  
a) integration of yaw rate from front wheel encoders (4.2.1) 

b) integration of yaw rate from gyroscope sensor around the z-axis (4.2.2) 
c) yaw orientation output from the AHRS fusion algorithm with drift compensation utilizing 

magnetometer measurements enabled 
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on the measurements. However, an autocalibration of gyroscope offsets, like the previously 

described bias removal, was implemented when no motion for a longer time is detected.  

Parameter Typical Units 

Gyroscope Zero Rate Output Variation Over Temperature ±30 °/s 

Accelerometer Zero-G Level Change vs. Temperature ±1.5 mg/°C 

 

A second issue is the rotational alignment of the sensor coordinate system. It is difficult to 

perfectly align the sensor axis with regards to the earth gravitational system in a way that the 

roll and pitch angle are zero when standing still. This can be due to a not perfect mounting 

position, different loading conditions of the vehicle or a slightly crooked floor. A non-zero pitch 

or roll angle lead to parasitic accelerations from gravity in the x or y-direction. To reduce this 

problem an additional autocalibration mechanism was developed in the IMU filter package. 

Like the gyroscope offset autocalibration, the average values for each acceleration axis (𝑎̅𝑥, 𝑎̅𝑦, 

𝑎̅𝑧) are computed when no motion is detected. The pitch Θ and roll Φ angles are then calcu-

lated [90, p. 42] with  

Θ = asin (
𝑎̅𝑥

9.81 m/s2
) (4.21) 

Φ = −atan(
𝑎̅𝑦

𝑎̅𝑧
) (4.22) 

Both angle offsets are used to calculate a rotation matrix 𝑅(−Φ,−Θ, 0). The rotational matrix 

and the mounting position t 𝒱 of the sensor transform the IMU message with  

𝜔⃗⃗ 𝒱 = 𝑅(−Φ,−Θ, 0) ⋅ 𝜔⃗⃗ ℐ (4.23) 

𝑎 𝒱 = 𝑅(−𝛷,−𝛩, 0) ⋅ 𝑎 ℐ + 𝜔⃗⃗ 𝒱 × 𝜔⃗⃗ 𝒱 × 𝑡 𝒱  (4.24) 

from the sensor coordinate system ℐ to the vehicle coordinate system 𝒱 to eliminate the biases. 

It is assumed that the z-axis of 𝒱 is perfectly aligned with the gravity vector in all times (planar 

assumption). The yaw angle is not being altered. 

However, not all error sources listed in Table 2-1 can be treated with calibration measures. For 

example, the noise caused by vibrations of the chassis and drivetrain parts produce a random 

walk which cannot be fully compensated. Although the IMU already provides a low pass filter 

[89, pp. 8–9], it is not sufficient to remove all major noise components in the acceleration 

measurements. Therefore, an additional moving average filter was directly added to the IMU 

firmware (Figure 17). 

Table 4-4: Temperature sensitivity specification for the MPU-9250 sensor in operating conditions  
 [89, pp. 8–9] 
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Of course, there remains some noise that cannot be easily removed without sacrificing the 

dynamic properties of the sensor measurements. To at least quantify the noise level, various 

measurements at constant speeds are recorded. The variance of acceleration and gyroscope 

measurements increase with higher velocities (Figure 18 & Figure 19). A second order poly-

nomic curve is fitted through the calculated variances at different speeds to model this behavior.  
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Figure 17: Comparison of raw and filtered (moving average with size 20) x acceleration  
during a test drive  

Figure 18: Acceleration variances for different velocities  
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Based on this polynomial relation, the variances of the output IMU message (Table 6-4) can 

be adapted dynamically with the current velocity information.  

4.1.3 LiDAR 

Implementation  

The vehicle is equipped with one LiDAR sensor which is mounted in the front of the vehicle. 

The sensor provides a scan angle of 270° with an angular resolution of 0,25° with a 40 Hz 

frequency [92, p. 2]. It measures distances of up to 60 m with an accuracy of ±40 mm [92, p. 

3]. It is connected to the Jetson via Ethernet and uses the SCIP communication protocol [93]. 

There already exists a ROS driver package to interface the sensor [94] and output a laser scan 

message (Table 6-5) for each measurement. 
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Figure 19: Gyroscope variances for different velocities 

Figure 20: Hardware architecture of a prototype LiDAR sensor from the Hokuyo "URG" series which is 
similar to the sensor being used in the project (UST-20Lx) [35, Fig. 1] 
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Calibration 

The ROS driver implementation [94] provides a time calibration functionality. This allows 

determining the communication delay through the exchange of a series of messages. When 

enabled this is done on each startup of the node [95].  

The measurements take place in the laser coordinate system ℒ. The transformation parame-

ters between ℒ and 𝒱 need to be found, in order to obtain the data in the vehicle coordinate 

system 𝒱. The translational mounting position of the sensor is measured with a tape and ruler. 

The pitch angle is determined more precisely, because it can lead to large deviations in the z 

coordinate when measuring distances far away. Although the laser is not visible with the hu-

man eye, it can be observed with a special camera. This can be used to measure the height ℎ 

of the laser beam from different distances 𝑑 and calculate the pitch displacement using a trivial 

trigonometric relation (4.25).  

Θ = atan (
ℎ1 − ℎ2
𝑑1 − 𝑑2

) (4.25) 

 

  

Because the measured angle is negligibly small (Figure 21), it is assumed that the pitch angle 

has no influence on the ego-motion estimation. It is therefore set to zero (no displacement with 

respect to 𝒱). This assumption is also being made for the yaw and roll angle. 

4.1.4 Camera 

Implementation 

A stereo vision camera is mounted on the vehicle [96]. It supports various resolutions with 

different available framerates (Table 4-5). Both camera sensors use an electronically synchro-

nized rolling shutter with a f/2.0 aperture and wide angle all-glass lenses with reduced distor-

tion [96]. The device is connected to the Jetson via USB 3.0 and a ROS driver package is 

already available [97]. For this thesis, the camera SDK version 2.2 is being used [98]. It pro-

vides a lot of built-in functionality such as depth image generation and visual odometry. Some 

of the computational exercises is being off-loaded to the Jetson GPU (2.4.1 Hardware descrip-

tion).  

Figure 21: Camera image of the horizontally moving laser beam at different distances: 
Left: 35cm distance and 12,5cm height  
Right: 245cm distance and 17cm height 

Resulting in a Θ = 1,23° displacement of the pitch angle  
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Video Mode 
Total Output  

Resolution (Pixel) 

Available  

Frame Rates (Hz) 
Field of View 

2.2K 4416x1242 15 Wide 

1080p 3840x1080 30,15 Wide 

720p 2560x720 60,30,15 Extra Wide 

WVGA 1344x376 100,60,30,15 Extra Wide 

Unfortunately, the default camera coordinate systems orientation do not comply [100] with the 

ROS standard for optical frames (Figure 22), therefore a code patch [101] is applied to fix this 

orientational mismatch.  

 

Most Visual Odometry approaches are designed to track 3D movements. Even though the 

vehicle travels on the ground and most motion should be detected in the x or y-direction, there 

may also be some movement in the z-direction due to noise. This erroneous drift in z violates 

the planar assumption, which is being made in this thesis. To overcome this issue, an addi-

tional filter is being developed, which projects the deficient motion estimation output on the 

ground plane and publishes the corrected data output. Both input and output message are of 

ROS Odometry type (Table 6-7). The projection is being done by rotating the estimate in the 

negative roll and pitch angle direction to correct the rotational displacement. Additionally, the 

transformed z component is being subtracted to compensate for the linear offset to the ground 

plane. The transformation parameter for the rotation (Φ𝑝, Θ𝑝, 𝜓𝑝) and translation (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) 

can be calculated with 

[

Φ𝑝
Θ𝑝
𝜓𝑝

] = 𝑅(Φ, Θ, 𝜓) ∙ [
−Φ
−Θ
0
] (4.26) 

[

𝑥𝑝
𝑦𝑝
𝑧𝑝
] = [

0 0 0
0 0 0
0 0 −1

] ∙ 𝑅(Φ𝑝, Θ𝑝, 𝜓𝑝) ∙ [
𝑥
𝑦
𝑧
] . (4.27) 

To obtain the corrected pose (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , Φ𝑐 , Θ𝑐 , 𝜓𝑐) the transformation parameter need to be 

applied to the original deficient data output 

[

Φ𝑐
Θ𝑐
𝜓𝑐

] = 𝑅(Φ𝑝, Θ𝑝, 𝜓𝑝) ∙ [
Φ
Θ
𝜓
] (4.28) 

[

𝑥𝑐
𝑦𝑐
𝑧𝑐
] = 𝑅(Φ𝑝, Θ𝑝, 𝜓𝑝) ∙ [

𝑥
𝑦
𝑧
] + [

𝑥𝑝
𝑦𝑝
𝑧𝑝
] . (4.29) 

right

camera

optical

left

camera

optical

 

 

y

y

z

z

Table 4-5: Available video modes [99] 

Figure 22: ROS coordinate frame orientation convention for stereo images [102] 
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Calibration 

Like the other sensors, the camera also requires several calibration steps. The parameters of 

both optical systems (left and right) are available in an online database and automatically in-

stalled during the setup process [103]. Therefore, no intrinsic camera calibration is required 

and both raw and rectified images are provided by the camera driver. The camera parameters 

for both cameras are automatically published in ROS camera info messages [104] when sub-

scribing to the respective image topic. 

The extrinsic translational parameters are measured by hand. To comply with the ROS stand-

ard for optical camera coordinate systems (Figure 22), the yaw angle is rotated by -90 degrees 

and then the roll angle by -90 degrees with respect to the vehicle coordinate system 𝒱. More-

over, the angle offset determined in the extrinsic laser calibration (4.1.3 LiDAR) is added. By 

default, the left camera is defined as the base camera coordinate system 𝒞. 

Additionally, to the extrinsic and intrinsic, a homography calibration between the camera and 

ground plane can be helpful. This enables the transformation from image points (in pixel) to 

camera coordinates 𝒞 (“world”) and vice versa. An easy to use homography calibration tool 

[105] estimates the transformation matrices for the “world” to image and image to “world” pa-

rameters using the rectified image (Figure 24 & Figure 25). 

 

 

Figure 23: Example ego-motion estimation output of the ZED camera without (light blue) and with 
(dark blue) projection onto the ground plane 

Figure 24: Rectified image showing a calibration pattern 
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4.1.5 Summary 

Figure 26 shows an overview of all software packages and the interfaces discussed so far. 

Further, Table 4-6 provides a summary of all coordinate systems of the software system. 

 

Name Parent Frame Chap-

ter 

Let-

ter 

Description 

odom - - 𝒪 Fixed world coordinate system which 

does not move. 
rear_axis_ 

middle_ground 

odom 4.2.1 -

4.2.5 

𝒱 Vehicle fixed coordinate system. The 

root is (as the name suggests) in the 

middle (y-Position) of the rear axis (x-

Position) on the ground (z-Axis). All 

axes are parallel to the principal axes. 
wheel_front_left,  

wheel_front_right, 

wheel_rear_left, 

wheel_rear_right 

rear_axis_ 

middle_ground 
4.1.1 - The root of the coordinate system is 

the point of contact between wheel 

and road. It is "fixed" and does not ro-

tate with the wheel. It is assumed that 

the axes are parallel to the parent co-

ordinate system. 
imu_link rear_axis_ 

middle_ground 
4.1.2 ℐ Coordinate system of the IMU sensor. 

The root of the coordinate system de-

pends on the assembly position of the 

sensor. Translational displacements 

Figure 25: Image pixel transformed in world coordinates (bird's eye view) 

Table 4-6: Overview of all coordinate systems 
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are measured by hand. Rotation an-

gles are determined by the auto-

calibration of the developed IMU filter. 
laser_frame rear_axis_ 

middle_ground 
4.1.3 ℒ Coordinate system of the Hokuyo lidar. 

The root of the coordinate system de-

pends on the assembly position of the 

sensor. Translation displacement is 

measured by hand. It is assumed that 

there is no rotational displacement to 

the parent frame. 
left_optical, 

right_optical 

rear_axis_ 

middle_ground 
4.1.4 𝒞 Optical coordinate systems of the cam-

era. Translation parameters are meas-

ured by hand. Both systems are 

rotated around the x and z-axis by -90° 

with respect to the parent coordinate 

system.  
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Figure 26: sensor package overview with the respective chapter number 
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4.2 Implementation of Ego-Motion 

In the following section, various ego-motion estimation techniques will be developed. The ap-

proaches are based on different principles and sensor sources.  

4.2.1 Odometry & Dead Reckoning 

Odometry 

The first approach for ego-motion estimation is based on odometry calculation utilizing the 

wheel encoders (2.2.1 Odometry & Dead Reckoning). A system model is required to calculate 

the current vehicle state with the encoder measurements. There are many different models to 

describe the motion of a vehicle [106] [72]. They depend on the drive train, sensor setup, 

complexity and computational resources available. In this project the vehicle is a car like robot 

which consists of an Ackermann steered front and fixed rear axis. Unfortunately, the steering 

angle cannot be directly sensed. The only drivetrain related measurements are conducted from 

the encoders which provide the traveled distance and velocity of each wheel (4.1.1 Wheel 

Encoder). Some parameters of the vehicle may change during the project (e.g. weight, the 

center of gravity, …) and therefore a simple model without any specific vehicle parameters is 

preferable. Based on these constraints a differential drive model based on the front wheel 

encoders is being chosen. In the following section, the model and error propagation elaborated 

in SIEGWART and NOURBAKHSH [6, pp. 186–190] will be described and is utilized for the odom-

etry calculation in this thesis. 

The system resembles a non-linear state estimation problem (2.1.2 Non-Linear State estima-

tion). The state vector is defined as the current position 𝑥  =  [𝑥 𝑦 𝜓]𝑇. As the vehicle moves, 

the incremental average distance Δs of the right and left front wheel encoder Δsl, Δsr (4.31) is 

integrated and projected in the moving direction (4.30). This represents the non-linear system 

equation (2.9). The moving direction is determined from integration of differences in left and 

right measurements divided by the actual track width 𝑏actual (4.32) which was estimated in 

(4.17). The correction factors 𝑐left, 𝑐right determined in (4.15) and (4.16) account for the effects 

of systematic errors. Additional moving average (i.e. lowpass) filter smooth the input signal and 

suppress effects of the discretized encoder data at low speeds. 

𝑥 𝑡 = 𝑔(𝑥𝑡−1, 𝑦𝑡−1, 𝜓𝑡−1⏟          
𝑥 𝑡−1

, Δsl, Δsr⏟    
𝑢⃗⃗ 𝑡

) = [

𝑥𝑡−1
𝑦𝑡−1
𝜓𝑡−1

] + [

Δ𝑠𝑡 𝑐𝑜𝑠(𝜓t−1 + Δ𝜓t/2)

Δ𝑠𝑡 𝑠𝑖𝑛(𝜓t−1 + Δ𝜓t/2)
Δ𝜓t

] (4.30) 

𝛥𝑠𝑡 =
𝑐right ⋅ 𝛥𝑠𝑟 + 𝑐left ⋅ 𝛥𝑠𝑙

2
 (4.31) 

𝛥𝜓𝑡 =
𝑐right ⋅ 𝛥𝑠𝑟 − 𝑐left ⋅ 𝛥𝑠𝑙

𝑏actual
 (4.32) 

Non-systematic errors can be represented by uncertainty i.e. system noise 𝑤⃗⃗ 𝑡 (4.34). It is as-

sumed that the errors are caused by the encoders, which are not correlated [6, p. 188]. Further 

SIEGWART and NOURBAKHSH consider a proportional relation between the system noise input 

𝑅𝑡 and the distances traveled in a time step Δsl, Δsr [6, p. 188]. However, similar to [107] it is 

rather assumed that a proportional relation between the standard deviation and the distance 
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traveled exist. The proportionality can be described using the in equation (4.7) estimated vari-

ance per square meter 𝑣𝑎𝑟𝑝𝑝𝑚², which yields to the final system noise matrix 

𝑅𝑡 = [
𝑣𝑎𝑟𝑝𝑝𝑚2 ⋅ (𝑐right ⋅ 𝛥𝑠𝑟)

2 0

0 𝑣𝑎𝑟𝑝𝑝𝑚2 ⋅ (𝑐left ⋅ 𝛥𝑠𝑙)
2]. (4.33) 

𝑤⃗⃗ 𝑡  ~𝒩(0, 𝑅𝑡) (4.34) 

The current covariances matrix 𝛴𝑡 can be calculated utilizing the error propagation law (2.15) 

with the Jacobians 𝐺𝑡, 𝑊𝑡. Because the noise is induced by the encoders i.e. input, the corre-

sponding Jacobian matrix is equal to the gradient of the inputs (4.36). 

𝐺𝑡 =
𝜕𝑔(𝑢⃗ 𝑡 , 𝑥 𝑡−1)

𝜕𝑥 𝑡−1
 =  [

1 0 − 𝛥𝑠𝑡 𝑠𝜓
0 1  𝛥𝑠𝑡 𝑐𝜓
0 0 1

] (4.35) 

𝑊𝑡 =
𝜕𝑔(𝑢⃗ 𝑡 , 𝑥 𝑡−1)

𝜕𝑤⃗⃗ 𝑡
=
𝜕𝑔(𝑢⃗ 𝑡, 𝑥 𝑡−1)

𝜕𝑢⃗ 𝑡
 =

[
 
 
 
 
 
 
1

2
𝑐𝜓 −

𝛥𝑠𝑡
2𝑏actual

𝑠𝜓
1

2
𝑐𝜓 +

𝛥𝑠𝑡
2𝑏actual

𝑠𝜓

1

2
 𝑠𝜓 +

𝛥𝑠𝑡
2𝑏actual

𝑐𝜓
1

2
 𝑠𝜓 −

𝛥𝑠𝑡
2𝑏actual

𝑐𝜓

1

𝑏actual
−

1

𝑏actual ]
 
 
 
 
 
 

 (4.36) 

with: c𝜓 = 𝑐𝑜𝑠(𝜓t−1 + Δ𝜓t/2) and s𝜓 = 𝑠𝑖𝑛(𝜓t−1 + Δ𝜓t/2)  

The developed model does not provide any velocity information. The current position (𝑥𝑡 , 𝑦𝑡), 

yaw angle (𝜓𝑡) and variances are stored in an Odometry message (Table 6-7) which is pub-

lished.  

Dead Reckoning 

Dead reckoning is pretty similar to the odometry calculation. Instead of adding the delta path 

elements in each time step, it integrates the velocity in the time interval between two measure-

ments. The yaw rate can be estimated from the difference in the left and right velocity divided 

by the actual track width [108, p. 42]. Integration of the yaw rate leads to the current orientation 

of the vehicle. Also, the parameters are the same as in the odometry approach consisting of 

the average wheel diameter, inequality of wheel diameters and the actual track width (4.1.1 

Wheel Encoder). 

Since there is not much difference between these two methods, it can be assumed that dead 

reckoning will lead to comparable results when calibrated correctly. Since both variants are 

depended on the same sensor (wheel encoders) they have similar strength and weaknesses. 

Therefore, only a simple velocity implementation is realized in equations (4.37) to (4.39) to add 

the velocity information and uncertainty to the output Odometry message.  

[
𝑣𝑥,𝑡
𝑣𝑦,𝑡

] = [

𝑣𝑙,𝑡 + 𝑣𝑟,𝑡
2

∙ 𝑐𝑜𝑠(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

𝑣𝑙,𝑡 + 𝑣𝑟,𝑡
2

∙ 𝑠𝑖𝑛(𝜓𝑡−1 + 𝛥𝜓𝑡/2)
] (4.37) 

𝑊𝑡  = [ 

1

2
∙ 𝑐𝑜𝑠(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

1

2
∙ 𝑐𝑜𝑠(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

1

2
∙ 𝑠𝑖𝑛(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

1

2
∙ 𝑠𝑖𝑛(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

] (4.38) 
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𝛴𝑣,𝑡 = 𝑊𝑡 ⋅ [
𝑣𝑎𝑟𝑣,𝑟 0

0 𝑣𝑎𝑟𝑣,𝑙
] ⋅ 𝑊𝑡

𝑇 (4.39) 

4.2.2 Inertial Navigation System 

Another feasible approach is purely based on IMU data. Strapdown Inertial Navigation algo-

rithms (2.2.2 Inertial Navigation Systems) typically compute the velocity and position from the 

IMU measurements with the help of fused reference data (e.g. GNSS or Magnetometer [23, p. 

33]). Also, there are some attempts to include further kinematic constraints for land-based 

vehicles (e.g. [109][110][111]). These measures can help in reducing the effects of IMU errors 

and noise (Table 2-1).  

Unfortunately, this reference sensors are not available in this project and therefore a rather 

simple implementation of a strapdown inertial navigation algorithm based on a planar assump-

tion (2D movement only) is developed in the next section. The autocalibration of the IMU filter 

(4.1.2 IMU) transforms the measurements into the vehicle coordinate system. This makes sure 

that the pitch and roll angle are zero at all times. Therefore, only the angular velocity 𝜔𝑧,𝑡 

around the z-axis needs to be integrated to obtain the yaw angle. Also, the acceleration of the 

z-axis is assumed to be equal to the gravitational acceleration for all times. That is why only 

the x- and y-components are utilized. The accelerations 𝑎𝑥,𝑡
𝒱 , 𝑎𝑦,𝑡

𝒱   and the angular velocity 𝜔𝑧,𝑡 

determine the input vector 𝑢⃗ 𝑡 of a non-linear state estimation problem (2.1.2 Non-Linear State 

estimation). The acceleration inputs are transformed into the fixed 𝒪 coordinate system with 

the current yaw angle 𝜓t . The rest of the system model 𝑔  computes the current position 

(𝑥𝑡
𝒪, 𝑦𝑡

𝒪) and velocity (𝑣𝑥,𝑡
𝒪 , 𝑣𝑦,𝑡

𝒪 ) in the fixed coordinate system 𝒪 from the inputs (4.40). 

𝑥 𝑡 =

[
 
 
 
 
 
𝑥𝑡
𝒪

𝑦𝑡
𝒪

𝑣𝑥,𝑡
𝒪

𝑣𝑦,𝑡
𝒪

𝜓𝑡 ]
 
 
 
 
 

=

[
 
 
 
 
1
0
0
0
0

0
1
0
0
0

𝑇
0
1
0
0

0
𝑇
0
1
0

0
0
0
0
1]
 
 
 
 

[
 
 
 
 
 
𝑥𝑡−1
𝒪

𝑦𝑡−1
𝒪

𝑣𝑥,𝑡−1
𝒪

𝑣𝑦,𝑡−1
𝒪

𝜓𝑡−1 ]
 
 
 
 
 

+

[
 
 
 
 
c𝜓 ∙ 𝑇2 2⁄ s𝜓 ∙ 𝑇2 2⁄ 0

s𝜓 ∙ 𝑇2 2⁄ c𝜓 ∙ 𝑇2 2⁄ 0
c𝜓 ∙ 𝑇 s𝜓 ∙ 𝑇 0
s𝜓 ∙ 𝑇 c𝜓 ∙ 𝑇 0
0 0 𝑇]

 
 
 
 

[

𝑎𝑥,𝑡
𝒱

𝑎𝑦,𝑡
𝒱

𝜔𝑧,𝑡

]

⏟  
𝑢⃗⃗ 𝑡⏟                                        

𝑔(𝑢⃗⃗ 𝑡,𝑥 𝑡−1)

 
(4.40) 

with: c𝜓 = 𝑐𝑜𝑠(𝜔𝑧,𝑡 ∙ 𝑇 + 𝜓𝑡−1) and s𝜓 = 𝑠𝑖𝑛(𝜔𝑧,𝑡 ∙ 𝑇 + 𝜓𝑡−1)  

The current uncertainty state can be computed utilizing the error propagation law (2.15). The 

noise is assumed to be only caused by the input variables without correlation between each 

other. The in chapter 4.1.2 calculated velocity dependent variances are used as system noise 

input (4.41). 

𝑅𝑡  =  [

𝑣𝑎𝑟𝑎,𝑥 0 0

0 𝑣𝑎𝑟𝑎,𝑦 0

0 0 𝑣𝑎𝑟𝜔,𝑧

] (4.41) 

𝑤⃗⃗ 𝑡  ~𝒩(0, 𝑅𝑡) (4.42) 

The Jacobians can then be derived as 
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Gt =
∂g(𝑢⃗ 𝑡, 𝑥 𝑡−1)

∂𝑥 𝑡−1
=

[
 
 
 
 
 
1 0 𝑇 0 (𝑇2 ∙ (𝑎𝑦,𝑡

𝒱 ∙ 𝑐𝜓 − 𝑎𝑥,𝑡
𝒱 ∙ 𝑠𝜓))/2

0 1 0 𝑇 (𝑇2 ∙ (𝑎𝑥,𝑡
𝒱 ∙ 𝑐𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ 𝑠𝜓))/2

0 0 1 0 𝑇 ∙ (𝑎𝑦,𝑡
𝒱 ∙ 𝑐𝜓 − 𝑎𝑥,𝑡

𝒱 ∙ 𝑠𝜓)

0 0 0 1 𝑇 ∙ (𝑎𝑥,𝑡
𝒱 ∙ 𝑐𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ 𝑠𝜓)

0 0 0 0 1 ]
 
 
 
 
 

 

 

(4.43) 

Wt =
∂g(𝑢⃗⃗ 𝑡,𝑥 𝑡−1)

∂𝑤⃗⃗ 𝑡
=
∂g(𝑢⃗⃗ 𝑡,𝑥 𝑡−1)

∂𝑢⃗⃗ 𝑡
  =

[
 
 
 
 
 
c𝜓 ∙ 𝑇2 2⁄ s𝜓 ∙ 𝑇2 2⁄ (𝑇3 ∙ (𝑎𝑦,𝑡

𝒱 ∙ c𝜓 − 𝑎𝑥,𝑡
𝒱 ∙ s𝜓))/2

s𝜓 ∙ 𝑇2 2⁄ c𝜓 ∙ 𝑇2 2⁄ (𝑇3 ∙ (𝑎𝑥,𝑡
𝒱 ∙ c𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ s𝜓))/2

c𝜓 ∙ 𝑇 s𝜓 ∙ 𝑇 𝑇2 ∙ (𝑎𝑦,𝑡
𝒱 ∙ c𝜓 − 𝑎𝑥,𝑡

𝒱 ∙ s𝜓)

s𝜓 ∙ 𝑇 c𝜓 ∙ 𝑇 𝑇2 ∙ (𝑎𝑥,𝑡
𝒱 ∙ c𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ s𝜓)

0 0 𝑇 ]
 
 
 
 
 

 . 
(4.44) 

The current position (𝑥𝑡
𝒪, 𝑦𝑡

𝒪), velocities (𝑣𝑥,𝑡
𝒪 , 𝑣𝑦,𝑡

𝒪 ), yaw angle (𝜓𝑡) and variances are published 

as an Odometry message (Table 6-7).  

4.2.3 LiDAR Odometry 

Yet another ego-motion technique is based on data from distance sensors (2.2.3 Odometry 

based on range sensors). For this method, the LiDAR sensor is particularly suited. Due to the 

high scan rate of the sensor, only small displacements between successive measurements 

can be expected. Also, the computational complexity should be as small as possible to com-

pute the current ego-motion state in a reasonable amount of time. Therefore, the LiDAR odom-

etry approaches using local point cloud registration techniques (2.2.3 Odometry based on 

range sensors) are clearly favorable in this use case. Unfortunately, there are still too many 

possibilities for local registration algorithms [112]. To limit the number of choices, this thesis 

focuses on the publicly available packages from DERAY [113]. The implementations are based 

on a ROS pluginlib [114] structure. They consist of a base package which provides the inter-

face to ROS, overridable function definitions and the execution path (Figure 28). Additional 

plugin packages can then act as a wrapper for already available non-ROS implementations of 

laser scan matching algorithms. They override the functions of the base plugin: 

• initialize(LaserScan msg): This function is only executed on first message arrival. 

• preProcessing(): Allows some preprocessing before actual matching. 

• getIncrementPrior(): Returns an increment prior based on the last cycle which can be 
used as a prediction initial guess 

• processImpl(LaserScan msg, Transform prediction): May apply the prediction as the 
initial guess. Then calls the actual laser scan matching algorithm. Saves the estimated 
increment for this step in a member variable. Returns true if this processing step was 
successful.  

• posePlusIncrement(bool processed): If the processing was successful this function 
applies the increment to the current pose (transforms increment in the correct coordi-
nate system and integrates pose). It is implemented in the base class and not over-
ridable.  

• isKeyFrame(Transform increment): Checks if the increment is valid and should become 
the new referent for the next matching.  
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• isKeyFrame(): If the increment is valid this function is being called. It should save the 
current laser scan for the next matching. 

• isNotKeyFrame(): If increment is not valid this function is being called. It should discard 
the current laser scan and may use the previous laser message instead. 

• postProcessing(): Allows to do some postprocessing at the end. 

 

 

In the original execution path, the estimated increment is always applied to current pose even 

though it may not be a valid keyframe. This results in a noisy motion estimation output. There-

fore, the execution of the base class is altered in a way that the estimated increment is only 

applied to the pose when it is a valid keyframe (Figure 28). If a valid keyframe is present, then 

the current pose and covariances are published as a ROS odometry message (Table 6-7). 

                 

                                 

                       

                                

                                                        

                                         

                                       

                    

                       

                        

                                                                               

Figure 27: Simplified class structure of the implementation 
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In the following section, all currently available plugins and the underlying algorithms are pre-

sented in short. 

Canonical Scan Matcher (CSM) 

The LaserOdometryCsm plugin is a wrapper for the canonical scan matcher implementation 

by CENSI [116]. The implementation is based on an ICP variant using a point-to-line metric 

[117] and several approaches to estimate the uncertainty of the scan matching process [118] 

[119] [120]. The ICP algorithm provides quadratic convergence in a finite number of steps. The 

correspondence search speeds up using a smart algorithm consisting of “many little tricks” 

[117, p. 6]. The plugin provides the ability to change various parameters in order to tweak the 

output. They control the keyframe rejection (e.g. max. angular and linear allowed distance in 

each iteration), ICP algorithm itself (e.g. max. iterations, thresholds for stopping) and further 

                  

                      

            
                 

               

                   

                       

                   

                     

                           

                          

                

                  

                      

            
                 

               

                   

                       

                     

                           

                          

                

                   

Figure 28: Simplified execution path of the original (left) and modified (right) base package [115] 
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parameters of the actual implementation (e.g. restart ICP when an error is too big, use smart 

correspondence search, adaptive outlier removal).  

Two smaller changes to the parameters are made to improve the output stability. The maxi-

mum allowed linear keyframe displacement is being split up in a parameter for the x and y-

direction to account for the Ackermann geometry. An additional parameter to enable or disable 

the use of the prediction as an initial guess is being added. A thorough analysis of all param-

eters would far exceed this section and therefore they are manually tuned by hand. 

Pointmatcher 

The LaserOdometryLibPointMatcher plugin provides a wrapper for the Pointmatcher library 

developed by POMERLEAU and MAGNENAT [121]. The library has a modular design with several 

steps forming an ICP chain [122, Fig. 2]. At every step, there are several modules available 

which can be concatenated to process the data [122, p. 137]. The chain configuration for this 

project is described in the following:  

First, the reference and current reading data are being filtered. A minimum distance and bound-

ing box filter remove erroneous measurements at low ranges and unstable measurements at 

high ranges. The default k-d tree algorithm is used for the matching of both point clouds. The 

outlier removal step is handled by a trimmed distance filter. The next step is the actual trans-

formation estimation (error minimizer). A point-to-plane error minimizer would increase perfor-

mance. However, since the available data is only in 2D, the point to plane minimization process 

always results in identity as transformation output. Therefore, the point-to-point error minimizer 

is being chosen. Lastly, the transformation checker step consists of a maximum iteration count 

and differential transformation checker. All the specific parameters for each module are hand-

tuned. 

Polar Scan Matching (PSM) 

The LaserOdometryPolar plugin implements a wrapper for the Polar Scan Matching (PSM) 

algorithm by DIOSI and KLEEMAN [123]. This approach is specifically being developed for rotat-

ing laser scanners with a single intersection point in the center of all laser rays. It works with a 

polar coordinate system and uses the measurement directions instead of point correspond-

ences for scan matching [123, p. 2]. The first step of the algorithm consists of scan prepro-

cessing to remove outliers and smaller objects. It also divides the measurement into segments 

to enable future tracking. The second step projects the filtered scan data into a possible posi-

tion via interpolation of the last estimated movements. The next step consists of the actual 

translation estimation process using a linearized squared error minimization. It requires multi-

ple iterations and the position error may drift in long featureless floors. The orientation is esti-

mated by a left or right shift of the range measurements in the polar coordinate system. The 

last step consists of a heuristical error model to calculate the uncertainty.  

The plugin exposes some parameters for the plugin itself and the algorithm which were again 

modified and tuned by hand.  
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Range Flow-based 2D Odometry (RF2O) 

Last but not least the LaserOdometryRf2o plugin allows the use of a range flow-based ap-

proach developed by JAIMEZ et. al. [124]. This technique relies on constructing a range flow 

constraint in terms of the sensor velocity for every point. Instead of searching for point corre-

spondences, it matches the scans via the scan gradients (similar to direct visual odometry 

approaches). Based on these constraints a minimization problem is being formulated and ro-

bustly solved. To handle even large displacements, the problem is computed in a coarse-to-

fine scheme. An additional smooth filter based on the estimated covariance is utilized to im-

prove uncertainty in difficult gradient-less scenes (e.g. corridor). The authors also provide a 

comparison of their approach to the point-to-line technique by CENSI (Canonical Scan Matcher 

(CSM)) and the Polar Matcher by DIOSI and KLEEMAN [124, p. 4]. Their presented range flow-

based variant is superior in simulated and real environments in terms of translational and ro-

tational error and runtime.  

The output of the implementation is already stable and filtered. Therefore, no extra keyframe 

rejection is needed. Also, in contrast to the previously presented methods, the LaserOdome-

tryRf2o plugin does not provide any parameters. There are some hardcoded parameters in the 

source code though. However, they are fewer in number and cannot be changed by default.  

4.2.4 Visual Odometry 

The next ego-motion approach is based on camera images only (2.2.4 Visual Odometry). 

These methods are widely used and therefore many different algorithms exist [125]. Similarly, 

to the previous section (4.2.3 LiDAR Odometry) a non-representative list of already available 

ROS compatible packages will be analyzed in the following section. Although many SLAM 

algorithms also provide visual odometry calculation as a byproduct, the focus in this thesis is 

clearly on localization (without the mapping part) and therefore only pure visual odometry pack-

ages are considered. 

For this applications, it is especially important that successive images have enough overlap 

[36, p. 80]. Also, with a higher resolution, the processing time increases. Therefore, a high 

framerate with low resolution (WVGA) is chosen (Table 4-5). The exposure and gain settings 

are set to automatic so that the camera does not need to be adjusted for different lighting 

conditions. 

ZED Visual Odometry 

The first method of ego-motion by Visual Odometry is provided by the ZED camera software 

itself (4.1.4 Camera). The SDK gives the ability to get the current pose estimate of the camera 

in a static reference frame [98]. This pose information is retrieved in the ROS wrapper and 

transformed from the camera frame 𝒞 to the vehicle coordinate system 𝒱. A current velocity or 

error state is not available from the SDK. Therefore, only the position and orientation are 

fetched. Additional static covariances may be added to the output. This data is then published 

as a ROS odometry message (Table 6-7).  

The provided implementation is closed source and therefore no further comments can be made 

about the underlying algorithm or methods used. There are no parameters provided to tweak 

the position estimation output. However, it can be observed that the pose estimation only pro-

duces correct results when the depth map generation is enabled. Therefore, it can be assumed 
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that the visual odometry algorithms are based on a method using depth information from the 

stereo images. 

Viso2 

Another visual odometry solution for ROS is the viso2 package [126]. It makes use of the 

libviso2 library developed by the Autonomous Vision Group [127]. The library is based on the 

approach proposed by GEIGER, ZIEGLER and STILLER in [128]. This original version works with 

feature detection in stereo images. It consists of 4 steps: sparse feature matching, ego-motion 

estimation, dense stereo matching and 3D reconstruction [128, p. 964]. At first, the image is 

filtered to retrieve the right amount (not too many and not too less) of stable features using a 

computationally light descriptor. The features are matched in the current and previous image 

sets in a circular mechanism (current left → previous left → previous right → current right → 

current left). If the last matched feature corresponds to the first feature, it is assumed to be 

valid. All valid features are then being used to calculate the incremental motion parameters by 

minimizing the sum of reprojection errors. An additional RANSAC and Kalman filter utilizing a 

generic constant acceleration model are being used [128, p. 965].  

Although the original approach is based on stereo images only (stereo-odometer), the libviso2 

library also provides an experimental monocular motion estimator (mono-odometer). In order 

to overcome the scale ambiguity problem (2.2.4 Visual Odometry), the implementation is only 

valid for constrained motions on a plane with a fixed camera angle [127]. Fortunately, this 

motion restriction is not a problem in this project. Therefore, both approaches can be evaluated. 

The stereo- and mono-odometer rely on the ROS coordinate conventions using optical frames 

(Figure 22), to transform the motion from the camera frame 𝒞 to the vehicle coordinate system 

𝒱. To estimate the scale factor, the mono-odometer requires the correct camera height and 

pitch, which were estimated in the extrinsic camera calibration (4.1.4 Camera). The stereo-

odometer does not need any geometric parameters. For both methods, many other parameters 

can be adjusted to tune the algorithm [126].  

To increase the computing speed, the algorithm is specially designed to leverage speed ups 

using Single Instruction Multiple Data (SIMD) operations. Therefore, the implementation 

makes use of Intel’s Streaming SIMD E tensions (SSE) [128, p. 965], which are only available 

in the x86 architecture. Unfortunately, in our project, the computing platforms CPU has an ARM 

architecture (2.4.1 Hardware description). Therefore, the vector operations must be converted 

from SSE to NEON operations, which are the corresponding ARM SIMD instructions [129]. 

SVO 

Yet another visual odometry technique is developed at the Robotics and Perception Group at 

the University of Zurich [130]. In contrast to the previous approach, this method is not com-

pletely feature-based, but includes some elements of direct approaches (2.2.4 Visual Odome-

try) and is therefore called Semi-Direct Odometry (SVO). While the first version was specifically 

designed for downward-looking cameras in flying drones [38], the second version also sup-

ports forward-looking cameras among other improvements [131].  

Unfortunately, rolling shutter cameras, as used in this project (4.1.4 Camera), degrade the 

performance of direct methods significantly (2.2.4 Visual Odometry). Another major obstacle 
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is that the source code of the actual core algorithm is not publicly available. The authors pro-

vide only binaries which can be used with a ROS interface package [132]. Although they also 

released binaries for ARM processors, they are not compatible with the computing platform 

used in this project at the time of writing [133]. Therefore, this method cannot be evaluated 

further.  

4.2.5 Fused Odometry 

Lastly, a hybrid approach based on multiple ego-motion estimation variants is developed. 

There are many possibilities to combine the previously described techniques. It is preferable 

to merge the data in such a way that the strengths of the methods are combined and weak-

nesses are diminished. A popular choice for this kind of fusion is a Kalman Filter (2.1 Mathe-

matical basics). There are existing fusion packages of different localization approaches 

available [134][135]. However, they do not allow to change the underlying model equations 

easily. There are many models which can be used in the Kalman filter to describe the vehicle 

motion especially for Ackermann steered car-like robots, though. That is why a new implemen-

tation of an odometry fusion package is designed to support multiple models, which can be 

easily chosen via a parameter on startup. The Kalman library developed by HERB [71] is being 

used for the actual C++ implementation of the filter. The package consists of a base wrapper 

containing all the interfaces specific to the ROS environment. It is assumed that the data, which 

is to be fused, can fit into one odometry (Table 6-7) and/or IMU (Table 6-4) message. The 

package supports setting up subscribers for either of the message types or both. In the latter 

case, a message synchronizer [136] with approximate time policy [137] is being used to com-

bine the messages. To allow for even more flexibility both prediction and correction step can 

have separate data sources (Figure 29). Each model defines which data is necessary and 

needs to be fed into the corresponding filter step. Since both data sources for the prediction 

and correction step are independent of each other, they run at the rate defined by the respec-

tive sources. Before each correction step, it is checked whether a prediction step happened 

since the last correction (Figure 31).  

 

Another functionality of the base wrapper is to process the timestamp of incoming messages. 

In order to predict and correct the filter state, the time interval Δ between two successive mes-

sages is required. ROS is not a real-time environment. Therefore, messages can arrive out of 

order or may not arrive at all (e.g. because of a restarting source node). The delta time between 

such faulty messages is below zero, equal to zero or exceeds a predefined Δthres. To prevent 

the filter state from getting corrupted, the current 𝑇𝑡 and last 𝑇𝑡−1 timestamp are being checked 

in the base wrapper before the time delta Δ𝑡 is handed to the actual filter (Algorithm 4).  

 

 

Prediction Data

only IMU only Odometry
IMU and Odom

(sync)

Correction Data

only IMU only Odometry
IMU and Odom

(sync)

Figure 29: Possible data sources (ROS message types) for the developed fusion package 
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Algorithm 4: Processing the Timestamp 

processTimestamp(𝑇𝑡, 𝑇𝑡−1, Δ𝑡, Δ𝑡−1): 

  if  𝑇𝑡  ==  0            # check if current timestamp is non-zero (e.g. broken source msg) 
    return false               # abort 

  endif 

  if 𝑇𝑡−1  ==  0       # check if last timestamp is non-zero (e.g. initial loop after reset) 

    Δ𝑡  =  Δthres/5        # set delta to some value below threshold (e.g. 1/5th of 𝛥𝑡ℎ𝑟𝑒𝑠) 

    𝑇𝑡−1 = 𝑇𝑡 − Δ𝑡       # set last time accordingly 

  else  

    Δ𝑡  =  𝑇𝑡 − 𝑇𝑡−1     # calculate current delta from current and last time 

  endif 

  if Δ𝑡 > Δthres      # check if delta is below the threshold 

    return false              # abort 

  elseif Δ𝑡 ≤ 0         # check if jumping backing or same time 

    𝑇𝑡 =  𝑇𝑡−1                 # use last timestamp instead 

    Δ𝑡  =  Δ𝑡−1                 # use last delta instead 

  else                         # everything is ok 
    𝑇𝑡−1 =  𝑇𝑡                  # save the current timestamp 

    Δ𝑡−1  =  Δ𝑡                 # save the current delta 

  endif 
return true              # success 

 

The base wrapper class is being extended by model wrapper classes which implement the 

actual model equations. They overwrite the filter initialization, prediction, correction and output 

functions (Figure 30). Lastly, a reset function clears the current state variables of the filter and 

sets the whole package in a known starting condition. It is being called every time a fusion step 

fails (Figure 31). Additionally, it can also be called externally via a ROS service. If the prediction 

step does not fail, the current output is being extracted from the model and published as ROS 

odometry message (Table 6-7). 

 

            

                         

                                      

                                     

                           

               

                                        

                             

                                                   

                                                   

                        

Figure 30: Simplified class structure of the fusion package 
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In the next section, two example implementations of model wrappers are presented and the 

underlying model equations will be discussed. It is important to choose which data is being 

used as input and which as a measurement for the correction step.  

CTRV Model 

The available data can be categorized into two groups. The Laser (2.2.3 Odometry based on 

range sensors) and Visual odometry (2.2.4 Visual Odometry) algorithms directly compute the 

incremental pose (position and orientation increments) in each execution cycle. They typically 

do not provide velocity output, which would need to be differentiated introducing noise and 

discontinuity. Because of the lower sensor framerates, higher resolutions and computationally 

more complex algorithms, these methods have a slower update rate. On the other hand, the 

data provided by wheel encoder odometry, dead reckoning (2.2.1 Odometry & Dead Reckon-

ing) or inertial navigation (2.2.2 Inertial Navigation Systems) have high update rates and are 

cheap to compute. While the wheel encoder can also provide a positional output, these meth-

ods typically deliver higher-order pose information (velocity or acceleration). 

The data from the latter category is more suitable as the input of the Kalman filter. It enables 

to run the prediction at the same frequency and therefore update the current state continuously. 

With this approach, the filter can deliver a pose estimate at a high rate while sacrificing only 

little amount of computational cost. The underlying state model of the filter computes the new 

position and orientation in each prediction step. However, when only using velocity and accel-

eration data the pose information is unobservable. The uncertainty would be unbounded and 

grow indefinite over time. To overcome this problem a correction step can be introduced to 

compare the current pose estimate with additional position and orientation measurements. 

These measurements can be generated from the former ego-motion estimation group (lidar or 

            

         

                       

                 

                 

                  

                         

                

                    

                       

                 

                 

                  

                         

                   

               

    

       

                

               

    

    

       

       

         

Figure 31: Execution paths of the base wrapper class 
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visual odometry). This step can be run at a slower rate meeting the requirements of these 

methods. It only corrects the current state when new measurement data is available.  

An adapted version of the constant turn rate and velocity (CTRV) [72, p. 535] model is chosen 

to describe the kinematic relations (4.45). The state vector only consists of the current pose 

𝑥 𝑡  =  [𝑥𝑡 𝑦𝑡 𝜓𝑡]
𝑇. The input vector ut⃗⃗  ⃗ is made of data from the previously discussed latter 

category (dead reckoning, INS) and consists of the vehicle turn rate 𝜔𝑡  and velocity 𝑣𝑡 =

√𝑣𝑥
2 + 𝑣𝑦

2. 

[

𝑥𝑡
𝑦𝑡
𝜓𝑡
]

⏟
𝑥 𝑡

= [

𝑥𝑡−1
𝑦𝑡−1
𝜓𝑡−1

] +

[
 
 
 
 
𝑣𝑡
𝜔𝑡
[𝑠𝑖𝑛(𝜓𝑡−1 +𝜔𝑡 Δ𝑡) − 𝑠𝑖𝑛(𝜓𝑡−1)]

𝑣𝑡
𝜔𝑡
[𝑐𝑜𝑠(𝜓𝑡−1) − 𝑐𝑜𝑠(𝜓𝑡−1 +𝜔𝑡 Δ𝑡)]

𝜔𝑡  Δ𝑡 ]
 
 
 
 

⏟                              
𝑔(𝑥 𝑡,𝑢⃗⃗ 𝑡)

 
(4.45) 

The measurement vector is defined by the pose data from the first category (visual or laser 

odometry) 𝑦 𝑘 = [𝑥𝑘 𝑦𝑘 𝜓𝑘]
𝑇. To emphasize that the correction step runs at a lower rate and 

does not equal the prediction timestamps, the subscript k is used to denote the timestamps of 

the correction instead. Further, the measurement vector can drift over time and create big 

offsets to the state vector. Therefore, differential values are being used in the measurement 

equation instead of the absolute poses (4.46). Because the output covariance matrices for 

most lidar or visual approaches are static, they can directly be used as measurement covari-

ances. 

[

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
𝑦⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟    
𝑦⃗ 𝑘−1

= [

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
x⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟    
𝑥 𝑘−1

 
(4.46) 

As parameters, the model requires the initial filter covariances Σ0 and process covariances 𝑅𝑡. 

CTRA Model 

However, the pose data from lidar or visual odometry is not always available or sometimes too 

costly to compute. Therefore, an alternative lighter model making use of only encoder and IMU 

data is described in this section. It is based on an adaption of the constant turn rate and accel-

eration (CTRA) [72, p. 535] model. The state vector is 𝑥 𝑡  =  [𝑥𝑡 𝑦𝑡 𝜓𝑡]
𝑇. The input vector 

ut⃗⃗  ⃗ consists of the wheel encoder velocity 𝑣𝑡 = √𝑣𝑥
2 + 𝑣𝑦

2, measured acceleration in the x-di-

rection 𝑎𝑥 and yaw rate 𝜔𝑡 of the vehicle.  

[

𝑥𝑡
𝑦𝑡
𝜓𝑡
]

⏟
𝑥 𝑡

= [

𝑥𝑡−1
𝑦𝑡−1
𝜓𝑡−1

] +

[
 
 
 
 
 
1

𝜔𝑡
2
[(𝑣𝑡𝜔𝑡 + 𝑎𝑥𝜔𝑡𝛥𝑡)𝑠𝜓 − 𝑣𝑡𝜔𝑡𝑠𝜓𝑡−1 + 𝑎𝑥𝑐𝜓 − 𝑎𝑥𝑐𝜓𝑡−1]

1

𝜔𝑡
2
[−(𝑣𝑡𝜔𝑡 + 𝑎𝑥𝜔𝑡𝛥𝑡)𝑐𝜓 − 𝑣𝑡𝜔𝑡𝑐𝜓𝑡−1 + 𝑎𝑥𝑠𝜓 − 𝑎𝑥𝑠𝜓𝑡−1]

𝜔𝑡 𝛥𝑡 ]
 
 
 
 
 

⏟                                              
𝑔(𝑥 𝑡,𝑢⃗⃗ 𝑡)

 
(4.47) 

with: s𝜓 = 𝑠𝑖𝑛(𝜓𝑡−1 +𝜔𝑡  Δ𝑡)  and c𝜓 = 𝑐𝑜𝑠(𝜓𝑡−1 +𝜔𝑡 Δ𝑡)  

and s𝜓𝑡−1  = 𝑠𝑖𝑛(𝜓𝑡−1)  and c𝜓𝑡−1  = 𝑐𝑜𝑠(𝜓𝑡−1) 
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Similar to the previous CTRV approach, the measurement vector consists of a differential pose 

estimate. However, instead of using visual or lidar techniques the data is gathered from the 

wheel odometry. Since the odometry uncertainty grows over time, only the relative change is 

being used for the measurement covariance matrix (4.48).  

[

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
𝑦⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟    
𝑦⃗ 𝑘−1

= [

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
x⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟    
𝑥 𝑘−1

 
(4.48) 

Similarly, to the previously described model it requires the initial filter covariances Σ0 and pro-

cess covariances 𝑅𝑡 as parameters. 

4.2.6 Summary 

Figure 32 extends the package overview with the additional software modules introduced in 

the ego-motion chapter.  
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Figure 32: sensor and ego-motion package overview with the respective chapter number 
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4.3 Implementation of Object-Motion 

In the following section, three object detection and motion techniques will be developed. While 

the first two approaches are based on sensor data and do not include tracking functionality, 

the third method fuses both data sources and tracks the objects with a motion model.  

4.3.1 LiDAR Objects 

The LiDAR provides range measurements which can be used to detect and track objects (2.3.1 

Object motion with range sensors). In this section, the point clustering and segmentation will 

be done. Since a model-free variant is not viable for the use case of detecting a standing object, 

a model-based variant consisting of a bounding box and a centroid point for each obstacle is 

being utilized.  

For the implementation, an already existing package [138] is being used and extended 

(Algorithm 5). Firstly, the package transforms the 2D laser scan message into a 3D point cloud 

using the ROS laser geometry package [139]. From this input point cloud, a KD-tree is gener-

ated to speed up the following computations. A Euclidean cluster extraction method segments 

the input point cloud into the future obstacles [140]. Each obstacle cluster is being checked for 

dimensions and the centroid point (mean value) is calculated. If everything is ok, the objects 

are being published using the custom ROS Obstacle message type (Table 6-8). 

Algorithm 5: Generate Obstacle from Lidar Message 

laserscan callback(𝑠𝑐𝑎𝑛): 

    project laser scan to point cloud  

    create KdTree from point cloud 

    create euclidean cluster extraction object 

    set parameters of extraction object 

    extract clusters from point cloud 

    𝐟𝐨𝐫 all clusters 𝐝𝐨 

         𝐟𝐨𝐫 points in cluster 𝐝𝐨 

             save point in obstacle 
             max𝑥,𝑦,𝑧 = 𝑚𝑎𝑥(max𝑥,𝑦,𝑧 , 𝑝𝑜𝑖𝑛𝑡)                                     # added 

             min𝑥,𝑦,𝑧 = 𝑚𝑖𝑛(min𝑥,𝑦,𝑧 , 𝑝𝑜𝑖𝑛𝑡)                                       # added 

             add point to centroid object                                              # added 

         𝐞𝐧𝐝 

         dimensions = max𝑥,𝑦,𝑧  −  min𝑥,𝑦,𝑧                                     # added 

         𝐢𝐟 dimensions exceed threshold 𝐝𝐨                                     # added 

             skip cluster                                                                      # added 

         𝐞𝐧𝐝                                                                                               # added 

         save center point from centroid object in obstacle        # added 

         set dimension, obstacle type and initial trust value  

         publish obstacle 

    end 
return true               

 



4 Implementation 

 
 

 
56 

 

4.3.2 Camera Objects 

Another category of object detection techniques is based on camera images (2.3.2 Object 

motion with camera sensors). There are many ways to detect and classify obstacles. Since the 

traditional computer vision approaches work only well for non-generic environments, a modern 

machine learning method is being used instead. It consists of the detection and a subsequent 

transformation step.  

The detection step locates the obstacle in the image. This is being achieved using the object 

detection network trained by THALER [52]. THALER employs a popular pretrained model based 

on YOLOv2 [141] and trained it further to improve it for the use case of vehicle detection. The 

resulting YOLO_50 network [52, p. 62] can only detect vehicles. Firstly, a ROS interface is 

being developed. The darkflow framework [142] is being utilized to load the model. The inter-

face simply forwards the image to the network and outputs the results using a custom ROS 

BoundingBox message definition (Table 6-9). The interface also allows determining the GPU 

utilization. This is important because the target hardware only has a shared memory between 

CPU and GPU. Therefore, the model cannot use the whole available memory. Another issue 

is the prediction speed of the model. The configuration from THALER using the darkflow frame-

work only runs at 1-2 Hz on the target hardware, although it uses the GPU as an accelerator. 

The easiest way to lower the computational effort is to decrease the resolution of the input data 

size which YOLO automatically uses to scale the provided image accordingly. This improves 

the framerate, however, it comes with the cost of a lower detection quality and unprecise 

bounding boxes (Figure 34). 

 

Figure 33: Overlay on camera image of  
laser scan in red (top) and  

 detected laser scan & obstacles in yellow (bottom)  
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Another way of increasing the output rate is to choose a different framework or model alto-

gether. Instead of darkflow, the original YOLO framework darknet [143] can be used to boost 

the computation speed significantly. However, YOLO_50 is not directly compatible with darknet 

and must be adapted. Both options (updating the YOLO_50 configuration and using a different 

pretrained model) lead to worse detection qualities, without proper adjustments to this use 

case. Therefore, instead of running the system in real time, the detection is being executed at 

a slower rate with an input size of 640x640 for the evaluation. Lastly, setting the exposure and 

gain of the camera to empirically obtained values and using the highest possible output reso-

lution (Table 4-5) additionally increases the detection quality.  

The second step is the transformation of the bounding box points into the camera coordinate 

system 𝒞. This can be done with the in the camera calibration (4.1.4 Camera) estimated 

homography parameters. It is assumed that both the lower left and right bounding box points 

correspond to real word coordinates of the vehicle edges. These points constitute the obstacle 

width and the center of both points is being used as the obstacles centroid. The confidence 

associated with the respective bounding box is being used as the trust value of the obstacle. 

The final Obstacle list is then forwarded using the custom ROS Obstacle message type (Table 

6-8). 

4.3.3 Fused and tracked Objects 

The previously developed approaches only detect obstacles without any specific motion esti-

mation model. They provide the current pose based on the latest measurement of the respec-

tive sensor. In order to estimate the object state more precisely, both obstacle sources can be 

fused and tracked over a longer period of time. This allows the use of a motion model. In the 

following section, this fusion and tracking module will be developed. 

A central object list (track management) is being maintained to store and merge all incoming 

objects into the list. Firstly, all objects are converted into the vehicle coordinate system 𝒱. It is 

then checked if the object already exists based on a nearest neighbor search and a minimum 

required threshold distance. If no existing object meets this criterion, a new object is created 

based on the incoming obstacle and added to the central object list (Algorithm 6). 

Similar to the ego-motion fusion (4.2.5 Fused Odometry) a Kalman filter is being utilized to 

fuse the data from both sources (camera and LiDAR objects). Again, the Kalman library devel-

oped by HERB [71] is being chosen for the actual C++ implementation of the filter. None of the 

previous object detection techniques provide information about the orientation of the obstacle. 

Therefore, a simple constant velocity model is being chosen (4.49). 

Figure 34: Detected bounding boxes using an input size of 160x160 (left) vs 640x640 (right) 
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Algorithm 6: Merging obstacle into the obstacle list 

mergeObject(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡): 

    𝐟𝐨𝐫 object in objectlist 𝐝𝐨  

         calculate euclidean distance to centroid of incoming object 

         𝐢𝐟 distance is smaller then threshold  

         𝐚𝐧𝐝 distance is smaller than smallest distance 𝐝𝐨 

             save as smallest distance 

             save as output object 

         𝐞𝐧𝐝 

      𝐞𝐧𝐝 

      𝐢𝐟 output object not found 𝐝𝐨 

           create new object from incoming object 

           add new object to objectlist 

           save new object as output object 

      𝐞𝐧𝐝 

return output object               

 

The input of the model consists of the centroid velocity which is generated from the displace-

ments Δ𝑥 , Δ𝑦 in the x and y direction divided by Δ𝑡. The displacements are obtained from the 

difference of the current (𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡, 𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡) and the previous centroid position (𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡−1 , 

𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡−1) of an obstacle coming from one data source. Additional moving average filter (i.e. 

low pass filter) smooth the input to suppress noise coming from this differentiation step. 

[

𝑥𝑡
𝑦𝑡
𝑣𝑥,𝑡
𝑣𝑦,𝑡

]

⏟  
𝑥 𝑡

= [

𝑥𝑡−1 + 𝑣𝑥,𝑡−1 ∙ Δ𝑡
𝑦𝑡−1 + 𝑣𝑦,𝑡−1 ∙ Δ𝑡

0
0

] + [

0
0

Δ𝑥/Δ𝑡
Δ𝑦/Δ𝑡

]

⏟                    
𝑔(𝑥 𝑡,𝑢⃗⃗ 𝑡)

 
(4.49) 

with Δ𝑥 = 𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡 − 𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡−1    and     Δ𝑦 = 𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡 − 𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡−1 (4.50) 

The other data source is being used in the correction step. The measurement vector 𝑦 𝑡 simply 

consists of the current centroid position of the correction object (𝑥𝑐,𝑐𝑜𝑟𝑟,𝑡 , 𝑦𝑐,𝑐𝑜𝑟𝑟,𝑡). 

[
𝑥𝑐,𝑐𝑜𝑟𝑟,𝑡
𝑦𝑐,𝑐𝑜𝑟𝑟,𝑡

]
⏟      

𝑦⃗ 𝑡

= [
𝑥𝑡
𝑦𝑡
] 

(4.51) 

A trust value helps to distinguish between objects that come solely from the prediction source 

and the corrected (i.e. actually fused) obstacles. It can be between zero (no trust) and one 

(maximum trust). Trust is added in both the prediction and correction step using the respective 

input trust. Therefore, objects that are corrected have an additional amount of trust (higher 

trust value). To forget old obstacles, trust is iteratively being removed for each object in each 

prediction step by a fixed amount. If it reaches zero, the obstacle is being removed from the 

object list.  

After prediction, the current object list is being published as ROS Obstacle message type 

(Table 6-8). 
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4.3.4 Summary 

Figure 35 shows an overview of all packages developed for the obstacle motion estimation. 
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Figure 35: sensor and object motion structure with respective chapter numbers  
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5 Evaluation 

In this chapter, the previously developed implementations are being tested and evaluated. It 

starts with the evaluation of the ego-motion techniques and then covers the object motion 

methods. 

5.1 Ego-Motion Estimation 

The following section evaluates the in chapter 4.2 implemented ego-motion algorithms. The 

evaluation will contain quantitative and qualitative parts. The quantitative evaluation will be 

based on the following measures: 

• Pose Error: Achieving a high positional and oriental correctness is a fundamental re-

quirement. Each method has some error sources and therefore will deviate from the 

true value. The goal is to come as close as possible. It is not easy to determine this 

ground truth itself, though. Typically, high precision GNSS or external tracking methods 

are being used as ground truth data sources. However, both sensor setups are not 

available in this project. Therefore, instead of evaluating the whole path traveled incre-

mentally step by step, only the end positions are being used. When driving a closed 

loop and stopping at the starting position, the end and start pose should match. The 

error is then determined by the offset from the end pose (vehicle fixed coordinate sys-

tem 𝒱) to the starting pose (world fixed coordinate system 𝒪). On startup, both coordi-

nate systems coincide by default. Therefore, the error is easily determined by the 

values of 𝒱 after finishing the whole circle.  

• Pose Uncertainty: For a full probabilistic description of the current state not only the 

expected value is relevant but also the uncertainty, i.e. covariance matrix of the output 

message. It describes how certain the ego-motion is about the current value and should 

be as low as possible. The effort spent on the error model is very diverse. Some meth-

ods provide a thought-out error model. Some choose the variances based on heuristi-

cal rules. Some may only use some manually picked values for the covariance matrix. 

• Computation Time: Another crucial factor is the computational complexity. All meth-

ods will be tested on the target hardware (2.4.1 Hardware description). They run only 

on the CPU, except for the ZED Visual Odometry which cannot be used for perfor-

mance analysis due to the closed sources anyway. Also, the number of cores involved 

is provided, because some methods run in multiple threads to speed up computation. 

The computation time is defined as the duration from the arrival of a new sensor mes-

sage in the respective ego-motion estimation approach until the output message is 

constructed and ready to be published.  
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• Parameter Count: Lastly the number of parameters will be used as an additional metric. 

From a technical point of view, this value may not be interesting and does not provide 

any information about the performance of the approach. However, it can be valuable 

when implementing and more importantly tune the approach. While in general, a large 

number of parameters can mean that the implementation can be adapted and fine-

tuned to more diverse environments, it comes with the cost of more complexity and a 

larger parameter space.  

For the evaluation, a test track in a machine hall is being chosen. It has a flat floor and therefore 

meets the planar assumption. Further, it contains different environmental situations with low 

and high-level feature scenes (Figure 36 & Figure 37). The illumination environment changes 

during the track, however a sufficient lightning of the scene is always present. The test track 

is in a shape of a rectangle and has the dimensions of about 21x47m. The length of one closed 

loop drive depends on the actual path driven (how curvy it is) and is typically around 138m in 

total. To account for errors that appear only in one turning direction, the track will be passed 

consecutively in both clockwise (CW) and counterclockwise (CCW) direction in two separate 

measurements. When completing a round (vehicle returned to start position) the measurement 

is stopped. 

   

     

Figure 36: Camera image of two scenes of the test track with a low (left) and high (right) amount of 
features 

Figure 37: LiDAR point cloud of the same scenes as in Figure 36 
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Throughout the following sections a common way of presenting the pose errors and uncertain-

ties will be used. The diagrams will show pairs of data points (one for CW and one for CCW) 

to compare different methods and visualize the respective results. Figure 38 explains the ele-

ments being used to visualize the properties of each data point.  

 

 

5.1.1 Odometry & Dead Reckoning 

The Arduino provides wheel encoder updates at a rate between 100-105 Hz. Due to the light-

weight design, the odometry computation has no problem processing the sensor data at this 

rate and publishing ego-motion estimates at the same frequency. To reduce effects from sys-

tematic errors three parameters can be tuned, using either the UMBmark or Hyperopt calibra-

tion method (4.1.1 Wheel Encoder). 

The UMBmark calibration method is carried out with multiple recordings at a nearby basketball 

field using a 13x13m square. After applying the corrections factors, it can be seen, that the 

error in CW rounds reduces significantly. However, the positional error for the CCW direction 

does not improve. Figure 39 shows the positional errors for both the CW, CCW and the cor-

rected CW, CCW rounds with the respective center of gravities similar to [14, Fig. 6.5].  

The same data is being used for the wheel encoder calibration using the Hyperopt calibration 

method. It can be seen that both the parameters of 𝑒𝑟𝑟𝑑 and 𝑏actual converge to an optimal 

value with minimal loss (Figure 40). The optimal parameter set reduces the errors for CCW 

and CW rounds significantly (Figure 41). 

 

method  

method  

method  

The outer ring shows the positional uncertainty

and is defined by the standard deviation in the

  and y direction (sometimes too big or too

small to be visible).

The cone shows the rotational uncertainty

and is defined by the yaw standard deviation.

It is pointing towards the true value of the

yaw error (true value lies in the center of the

cone).  o rotational error e ists when the

true value points towards the positive   a is.

The cross shows the true value of the

positional error in   and y direction .

Figure 38: Evaluation diagram with explanation 
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Figure 39: Odometry calculation results for a 13x13m square pattern using uncalibrated and corrected 
errors estimated with the UMBmark method [14, Fig. 6.5] 

Figure 40: The 100 out of 15000 best parameters for 𝑏actual and 𝑒𝑟𝑟𝑑 with lowest total loss on multiple 
CCW and CW recordings of a 13x13m square pattern 

Figure 41: Odometry calculation results for a 13x13m square pattern with uncalibrated and corrected 
errors using the best parameters estimated with the Hyperopt framework [14, Fig. 6.5]  
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Table 5-1 gives an overview of the estimated parameters using different calibration methods. 

Although the parameters only vary little from the uncalibrated case, the resulting error can be 

reduced notably. Due to the nature of integration even small deviations from the optimal pa-

rameter set can build up significant errors over time. Especially the orientational correctness 

suffers from imperfect parameters. A mismatch in orientation also affects the positional error 

greatly when moving in a deviated direction. Therefore, a precise and robust calibration 

method is particularly important to achieve a good correctness and accuracy when using an 

odometry based ego-motion estimation. The Hyperopt calibration technique clearly outper-

forms the UMBmark calibration (Figure 42). However, it is still not perfect and a substantial 

amount of positional and orientational error still remains.  

The uncertainty is based on the in chapter 4.1.1 estimated variances and the underlying error 

model (4.2.1 Odometry & Dead Reckoning). It is unbounded and grows over time. However, 

when compared to the error in position, it is still relatively small.  

Calibration Method 𝑒𝑟𝑟𝑠 𝑒𝑟𝑟𝑑  bactual 

No Calibration 0.978 1.0 0.20 

UMBmark 0.978 0.9985 0.2066 

Hyperopt 0.978 0.9971 0.2148 

 

 

The evaluation data is recorded at walking speed. Therefore, the discretization effect of the 

wheel encoders is less dominant. The moving average filter size for the input data is being 

chosen as 15 to avoid reducing the dynamic properties too much. However, when driving at a 

slower pace, the moving average filter size must be increased appropriately. 

5.1.2 Inertial Navigation Systems 

The IMU is being calibrated and multiple filters are applied to improve the accelerometer data 

(4.1.2 IMU). Nevertheless, the acceleration measurements are still very noisy (Figure 17) and 

far away from resembling the real overall vehicle acceleration. This is probably due to the high 

amount of vibrations introduced by the drivetrain and chassis of the model vehicle. The noise 

is integrated twice in the strapdown INS algorithm (5.1.2 Inertial Navigation Systems) and 

Table 5-1: Overview of the calibration methods and the determined parameters 

Figure 42: Positional errors and rotational errors for the different calibration methods 
(uncertainty is too small to be visible) 
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makes the positional ego-motion estimation output unusable (Figure 43). The positional error 

far exceeds any acceptable limits and the uncertainty reflect the uselessness of this estimate.  

In contrast, the orientational estimate shows results comparable to the wheel odometry cali-

brated with the Hyperopt method. It achieves similar performance in terms of correctness of 

the true value and uncertainty. It is purely based on the integrated angular velocity of the IMUs 

gyroscope, which is more robust against noise than the accelerometer.  

Due to this simple implementation of a strapdown INS, there are no algorithm-specific param-

eters which would need to be tuned. The microprocessor chip running on the IMU board deliv-

ers sensor updates at 110Hz. This can easily be handled by the strapdown INS algorithm 

which outputs vehicle estimations at the same rate.  

 

5.1.3 LiDAR Odometry 

While the previous approaches had no problem handling the data at the sensor rate, LiDAR 

odometry techniques require more computational resources. The Hokuyo sensor outputs 

range measurements at 40 Hz. However, some methods are not able to compute the ego-

motion estimate at the same rate. Running nodes at different frequencies is in general not a 

problem due to the asynchronous nature of ROS. In this case, the LiDAR odometry node only 

processes every n-th laser message and outputs the ego estimates at the fastest computa-

tionally possible rate. However, this makes the evaluation a lot trickier. Missing laser messages 

can degrade the performance of the approach. Changing some parameter which would intui-

tively diminish the estimate (e.g. lowering number of ICP iterations), could, in fact, increase it 

because of a faster computation time and less missed messages. To account for this problem 

an evaluation without and one with computational constraints is being made. For the first case, 

the scan messages from the test track are directly injected into the node one after another. 

This way no message is missed and the node has all the time it needs to compute the output. 

Therefore, this should resemble the optimal conditions. In the second evaluation step, the ap-

proaches are run on the target hardware with the respective computational constraints. 

Figure 44 shows the results of the in chapter 4.2.3 presented techniques without any timing 

constraints. The CSM and RF2O approaches achieve the best performance. While the RF2O 

implementation is better in positional correctness, CSM has a superior rotational estimate. 

Figure 43: Pose estimate using the strapdown INS algorithm 
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In contrast Figure 45 shows the ego-motion estimates when running the LiDAR odometry im-

plementations directly on the target hardware replaying the test data at true speed. It can be 

seen that all performances degrade except for the PointMatcher approach. PointMatcher is the 

only implementation that makes use of multiple cores (multi-threading). Further, especially the 

CSM rotational error deteriorates drastically. Therefore, the RF2O method can be seen as the 

overall LiDAR odometry implementation with the best performance.  

RF2O also sticks out in the parameter space. While all other approaches typically give the 

ability to tune with an algorithm with more than 10 parameters, the RF2O implementation does 

not provide any parameter. It has some internal hardcoded parameters, however far less than 

the counterparts. 

 

Further to the quantitative evaluation, it can be seen qualitatively that the algorithms perform 

very differently on different sections of the test track. In general, the performance degrades in 

featureless regions, while it stays stable in other feature-rich environments (Figure 37). This 

behavior not only depends on the chosen algorithms but also very much on the time constraints.  

Figure 44: Evaluation results for the different LiDAR Odometry approaches without time constraints 

Figure 45: Evaluation results for the different LiDAR Odometry approaches with time constraints 
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5.1.4 Visual Odometry 

Similar to the previously discussed category, visual odometry approaches also require higher 

amounts of computational resources. Although the camera promises to provide 100 Hz at a 

WVGA resolution, the real output rate is less than that. Nevertheless, an evaluation with a far 

lower image rate is being conducted to simulate optimal environments and prevent restrictions 

from the available processing power. The visual odometry from the ZED camera cannot be 

analyzed at a slower rate, due to its closed source and direct integration in the camera driver. 

Also, the Viso2 Mono is not included in the results of the evaluation without timing constraints 

(Figure 46), because it shows far worse results compared to the run on the target hardware in 

real time. The SVO approach is generally excluded from the evaluation due to the lacking 

software binaries. Hence the only available implementation left to be evaluated without timing 

constraints is the Viso2 stereo approach. Figure 46 shows that the rotational and translational 

ego-motion performance is quite good, when compared to the previous methods. For the un-

certainty results, it must be noted, that there is no proper error model to compute them. Rather 

the output covariance matrix is hardcoded to have either one set of standard parameters or a 

set of parameters for the case of failure.  

In a second evaluation step all available methods are run on the target hardware at real time 

(Figure 47). While the Viso2 stereo implementation at least provides a static covariance matrix, 

the other two approaches do not output any uncertainty information at all. Although the Viso2 

stereo results are degraded due to the timing restrictions, it is still the best technique out of the 

three.  

 

 

Figure 46: Evaluation results for the Viso2 stereo approach without time constraints 
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Qualitatively, it can be seen that the visual odometry approaches also suffer in low feature 

regions. Although the Viso2 mono approach tries to overcome the scale ambiguity problem, it 

still can be observed, when looking at the whole estimated path. 

5.1.5 Fused Odometry 

Last but not least the fused odometry approach is being evaluated. The presented models 

(CTRV and CTRA) have different inputs and measurement vectors. They require specific pre-

requisite nodes to run. 

The CTRV method combines data from wheel encoders and gyroscope with measurements 

from visual or lidar odometry. Therefore, the corrected IMU data and the output of the odometry 

/ dead reckoning is needed for the prediction step. Both data sources run at a similar rate (100-

110 Hz) and can accordingly be synchronized without losing too much data in the synchroni-

zation process. This enables the filter to predict and output the current state at a high frequency 

(around 100 Hz). For the correction step, another ROS odometry type input is required to pro-

vide direct pose measurements. Based on the previous evolution so far, the Viso2 stereo 

odometer achieves the best results and is being used as data source. Figure 48 shows the 

final package overview when using the CTRV model in the fused odometry package.  

 

For the Kalman filter, the following parameters for the process covariance and initial system 

covariance matrix are identified by hand and being used 
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Figure 47: Evaluation results for the different Visual Odometry approaches with time constraints 

Figure 48: Software architecture being used for the CRTV model 
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𝑅𝑡,𝐶𝑇𝑅𝑉 = [
0.001 0 0
0 0.001 0
0 0 0.001

]   and   𝛴0,𝐶𝑇𝑅𝑉 = [
0.01 0 0
0 0.01 0
0 0 0.01

]. (5.1) 

 

For the CTRA model however it is assumed that only the wheel odometry and IMU data is 

available. The corrected IMU output is being plugged into the fusion as prediction and the 

wheel odometry is being used as measurements in the correction step (Figure 49). Again, this 

allows running the filter at a high frequency (100Hz). For this variant also the correction is 

being executed at approximately the same rate.  

 

Again, the parameters for the CTRA model are estimated empirically 

𝑅𝑡,𝐶𝑇𝑅𝐴 = [
0.001 0 0
0 0.001 0
0 0 0.0001

]   and   𝛴0,𝐶𝑇𝑅𝐴 = [
0.01 0 0
0 0.01 0
0 0 0.01

]. (5.2) 

 

Figure 50 shows that both approaches perform better than the individual fusion sources. The 

CTRA model achieves a slightly better correctness in the pose, however, this could be due to 

not perfectly tuned parameters. The uncertainties for both methods are bounded.  

 

5.1.6 Summary 

Table 5-2 and Figure 51 provide an overview of all results evaluated so far. 
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Figure 49: Software being used for the CTRA model 

Figure 50: Evaluation results for the fused odometry approaches  
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Method translational error* 

√𝝐𝒙
𝟐 + 𝝐𝒚

𝟐 

rotational error*  

𝝐𝝍 

velocity 

output? 

cpu time*  parameter 

count** 

CW CCW CW CCW 

Wheel Odom. 

(Hyperopt) 

6.12m 

± 0.54m 

1.00m 

± 0.57m 

-7.97° 

± 1.23° 

8.05° 

± 1.24° 

yes 0.443ms 

± 0.109ms 

4 

In. Navigation 

System 

583m 

± 106m 

640m  

± 96m 

22.00° 

± 2.84° 

7.83° 

± 2.92° 

yes 0.640ms 

± 0.188ms 

0 

LiDAR Odom. 

CSM 

8.74m 

± 3.19m 

9.58m 

± 3.06m 

26.29° 

± 7.45° 

-23.09° 

± 7.59° 

no 239.0ms 

± 188.2ms 

>10 

LiDAR Odom. 

Pointmatcher 

34.09m 

± 2.46m 

37.29m 

± 2.85m 

-175.19° 

± 6.10° 

139.61° 

± 6.34° 

no 10.75ms 

± 2.936ms 

>10 

LiDAR Odom. 

Polar Matcher 

17.17m 

± 3.20m 

39.37m 

± 3.18m 

-99.76° 

± 7.45° 

87.46° 

± 7.74° 

no 87.90ms 

± 17.65ms 

>10 

LiDAR Odom. 

RF2O 

8.62m 

± 1.81m 

3.36m 

± 2.35m 

45.71° 

± 6.31° 

-41.56° 

± 6.48° 

no 53.07ms 

± 11.45ms 

0 

Visual Odom. 

ZED 

2.61m 

undef. 

11.93m 

undef. 

-12.75° 

undef. 

34.26° 

undef. 

no unknown 

 

0 

Visual Odom. 

Viso2 Mono 

21.47m 

undef. 

12.88m 

undef. 

-16.90° 

undef. 

-17.39° 

undef. 

yes 223.4ms 

± 14.91ms 

>10 

Visual Odom. 

Viso2 Stereo 

2.99m 

± 0.45m 

2.51m 

± 0.45m 

-0.51° 

± 23.62° 

10.95° 

± 23.62° 

yes 103.6ms 

± 8.638ms 

>10 

Fused Odom. 

CTRV 

1.27m 

± 0.21m 

2.82m 

± 0.21m 

1.92° 

± 9.87° 

5.75° 

± 9.73° 

no 0.136ms 

± 0.029ms 

3 

Fused Odom. 

CTRA 

1.22m 

± 0.14m 

1.80m 

± 0.74m 

4.24° 

± 0.78° 

8.21° 

± 0.74° 

no 0.436ms 

± 0.035ms 

3 

 

* <expected value> ± <standard deviation> 

** only includes algorithm-specific parameter. Does not include: 

• ROS specific parameter 

• Initial parameter (e.g. initial position or covariances) 

• hardcoded parameters or magic numbers in the code 

 

Table 5-2: Overview of all presented ego-motion estimation results running on the target hardware 

Figure 51: Comparison of the best ego-motion estimation techniques from each category 
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5.2 Object Motion Estimation 

In this section, the in chapter 4.3 implemented object detection and motion approaches will be 

evaluated. The evaluation is based on a test setup involving a model car body “parking” in front 

of the vehicle. The vehicle first waits and then slowly moves towards the object. To enable a 

long object detection time frame, the lowest possible velocity is being driven. The motion of 

the detected object is then compared to the ego-motion estimate. In an optimal scenario, the 

inverted ego-motion should resemble the detected motion of the object. The wheel odometry 

method (4.2.1 Odometry & Dead Reckoning) is being used to generate this ego-motion. To 

avoid discretization errors from the wheel encoders at such a low speed, the input moving 

average size is set to 150. Because of the slower rate for the detection via CNN (4.3.2 Camera 

Objects) all evaluation is being done offline. Therefore, no execution time for the implementa-

tions is being considered.  

  

  

5.2.1 LiDAR Objects 

The developed LiDAR object detection (4.3.1 LiDAR Objects) provides obstacles at the rate of 

the incoming laser message (40 Hz). It is assumed that the uncertainty of the centroid pose 

corresponds to the laser uncertainty (4.1.3 LiDAR). Since it is not able to classify vehicles, all 

objects meeting the clustering criteria (Table 5-3) and dimension constraints (Table 5-4) are 

published.  

Cluster Tolerance Minimum Cluster Size Maximum Cluster Size 

0.1 10 500 

 

Maximum Width Maximum Length 

0.5 0.8 

 

Figure 52: camera image while approaching the obstacle at 10s, 15s, 20s, 25s  

Table 5-3: clustering parameter [140] 

Table 5-4: dimension constraints 



5 Evaluation 

 
 

 
73 

 

This results in many outgoing obstacles which can be partly tracked over a longer period of 

time or just appear randomly as noise (Figure 54). To account for this unreliability, a constant 

trust value for each obstacle is set to the low value of 0.075. 

  

Although most of the obstacle tracks do not resemble the inverted ego motion, some tracks 

are similar. An extra filtering step is needed to classify and find the correct objects. For a solid 

obstacle the centroid position is mostly stable, however, when approaching the object its shape 

detected by the laser can change. This results in discontinuities in the centroid position, i.e. 

the obstacle position jumps in time. 

Since the lidar obstacle generation does not include velocity information, this cannot be eval-

uated. 

Figure 53: LiDAR detections at time t=1s; grid size is 1m; black = laser scan points;  
dark blue = centroids; light blue = constructed bounding boxes;  

upper coordinate system = ℒ; lower coordinate system = 𝒱  

Figure 54: LiDAR obstacle detections in the lidar coordinate system ℒ compared to ego-motion 
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5.2.2 Camera Objects 

With all the optimal settings described in section 4.3.2, the employed network YOLO_50 

achieves reliable results in detecting the object in almost all frames. However, it must be noted 

that the detection quality is considerably worse when not using these advantageous environ-

mental settings. With the lower clock rate, the network achieves to output predictions at the 

same frequency as the camera image rate. For the used resolution (2.2K) this corresponds to 

a stable value of 15 Hz (Table 4-5). Still, on the real hardware, the output frequency is a lot 

more unsteady. The confidence of the CNN prediction increases when coming closer to the 

object (Figure 55). Beginning at around t=25s the vehicle is only partly visible in the image 

(Figure 52) and therefore the confidence decreases again. 

 

Since the homography transformation only needs to be done for two points (lower points of the 

bounding box), the computational cost is negligible. Figure 56 shows the resulting obstacle 

output. Although the trend is correct, the absolute values are off by around 50cm from the 

object detected by the laser. This could be due to a non-perfect estimation of the homography 

parameters. Also, the angle of the camera to the ground plane could have changed after the 

calibration, because of the light suspension. 

  

Figure 55: Confidence output of YOLO_50 during the test 

Figure 56: camera obstacle detections in the camera coordinate system 𝒞 compared to ego motion 
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5.2.3 Fused and tracked Objects 

Last but not least the developed obstacle fusion and tracking package (4.3.3 Fused and 

tracked Objects) is being evaluated. The obstacles generated from the LiDAR measurements 

achieve good positional accuracy, however, they suffer from position discontinuities (5.2.1 Li-

DAR Objects). Therefore, they are being used as correction source to update the internal ob-

ject state pose based on the precise LiDAR data (Figure 57). On the other hand, the camera 

obstacles do not have a good position estimate, but the detection of the desired object is more 

stable. Accordingly, they are better suited as prediction source. Due to the continuity, the gen-

erated obstacle velocity has less noise after the differentiation. Still, the moving average filter 

size for the velocity is being set to 20 and the following covariances are being used 

𝑅𝑡 = [
0.1 0
0 0.1

]   and   𝛴0 = [
0.5 0
0 0.5

]. (5.3) 

  

 

The final fused positional estimate is similar to the one provided by the laser obstacles for the 

target object (Figure 58). However, it is more stable and has less noise when approaching the 

obstacle (from t=20s to t=25s). The generated object velocity provides a good estimate but is 

still very noisy and deviates from the recorded ego-motion velocity partly (Figure 59). 

Because of the high offset between LiDAR and camera estimates for the target object a mini-

mum distance threshold for the merging criterion is set to 0.9m. The constant trust deduction 

in each prediction is set slightly higher than the initial trust value of the incoming LiDAR objects. 

Therefore, they are all filtered out when no merge with a camera obstacle is possible. This 

results in only the target object being published as fused obstacle output.  
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Figure 57: Overview of the final object prediction pipeline 

Figure 58: fused obstacle position in the vehicle frame 𝒱 compared to ego motion 
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5.2.4 Summary 

Figure 60 compares the results of the developed object estimation methods. 

 

 

Figure 59: fused obstacle velocity in the vehicle frame 𝒱 compared to ego motion 

Figure 60: comparison of all presented obstacle position estimation techniques and ego-motion 
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6 Summary and conclusion 

6.1 Summary 

ADS have a lot of potential, but there are still many challenges unsolved. Model cars can help 

to address these challenges, especially in research and education. They are cheaper and eas-

ier to build. Also, they require less effort in the areas of safety and security. Two of the chal-

lenges for ADS are the ego- and object-motion estimation. There are many different solutions, 

which all have their strength and weaknesses. 

The objective of this thesis was to give an overview of all available methods and analyze them 

with regard to this application of a self-driving model car. Firstly, the state of the art was exam-

ined to find all common approaches which are feasible for this project. In a second step, similar 

projects were analyzed in terms of ego- and object motion estimation techniques. In the main 

part of this thesis, various approaches were implemented and evaluated. 

6.1.1 Ego-Motion estimation 

The first developed approach of ego-motion estimation was based on wheel odometry. It con-

sisted of a simple differential drive model with a complete analytically derived uncertainty 

model. An additional low pass filter for the yaw angle helped to reduce discretization errors 

from the encoder inputs. The computation was extremely fast and only a few parameters were 

required. These parameters were derived from the systematic errors of the model: scaling error 

of wheel diameter, inequality of wheel diameter and difference between actual and nominal 

track width. Two approaches (Hyperopt and UMBmark) were evaluated to calibrate these pa-

rameters. 

In a second approach, data from the IMU sensor was being used to calculate the ego-motion. 

This method was based on a simple physical model with a complete analytically derived un-

certainty model. Although the accelerometer measurements were filtered in multiple steps, 

they were still very disturbed by influences from noise which made them almost unusable. Due 

to the double integration, this added up to a huge error in the position estimate. The gyroscope 

data, on the other hand, showed a satisfactory estimate for the orientation after integration. 

The presented LiDAR and visual odometry approaches used feature matching or direct meth-

ods to compute the motion estimate between successive measurements. These methods re-

quired more computational resources than the target hardware could deliver at the provided 

sensor rates. Therefore, the estimates degraded when running online. Most methods had a 

high number of parameters to tweak and tune the algorithm (except for RF2O). This meant a 

lot of tuning in the huge parameter space and several smaller modifications were needed. 

Lastly, both approaches showed satisfactory results when good environmental conditions were 
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present. For the visual odometry method, this was usually the case, due to the automatic cam-

era gain and exposure setting. However, the LiDAR odometry more frequently decreased in 

performance due to repetitive environments. 

Another developed approach was using a Kalman filter-based fusion of various input sources. 

The module was implemented to be very generic and to have several types of sources for the 

prediction and correction step. Both steps were designed to be independent and executed 

based on the source frequency (multi-rate fusion). Two exemplary models were implemented 

with diverse sources (the choice of model was not related to the choice of sources). The first 

model (CTRV) fused the data from the wheel odometry and IMU (prediction) with the estimates 

from the Viso2 stereo odometer (correction). The second model (CTRA) fused the data from 

the IMU (prediction) with data from wheel odometry (correction). Both resulted in a better esti-

mate than the sources individually. However, the fusion module also increased the complexity 

and number of parameters to be tuned. The fusion itself only required a little amount of com-

putation time. 

6.1.2 Object-Motion estimation 

The first object detection approach developed was based on LiDAR scan data. An available 

package was analyzed and extended for this particular use case. Obstacles were generated 

from a cluster extraction algorithm based on the Euclidean distances between points. Since 

the objects were generated from LiDAR data, their positional estimate was very precise. How-

ever, the centroid point of the objects sometimes jumped because of the changing shape de-

tected by the laser. The obstacles are checked for correct dimensions, but no further 

classification was being implemented. This resulted in multiple detected obstacles being pub-

lished. 

A second approach based on camera data was implemented. It made use of an already exist-

ing pretrained convolutional neural network to detect the vehicles. The network only run at a 

slow rate and performed better when the camera settings were tweaked (e.g. higher gain). It 

was very suitable for the detection and classification of vehicles. An interface to ROS was 

developed to forward the results via a bounding box message. This bounding box was trans-

formed to camera coordinates using homography parameters. The resulting positional esti-

mate was not as precise as the one from the LiDAR obstacles. However, the centroid of the 

object was more continuous and only the target object was being published. 

Both previous object detection methods did not include velocity information for the object. 

Therefore, a third fusion approach based on a multi-rate Kalman filter was being developed. 

The filter used a constant velocity model for each object and tracks them over time, i.e. main-

tains an object list. While the camera obstacles were being used in the prediction step, the 

LiDAR estimates were utilized for the correction. This improved the precision of the fused ob-

stacles and removed jumps or discontinuities. Trust values helped to assure that an object is 

trustworthy and to delete old obstacles.  
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6.2 Conclusion 

6.2.1 Ego-Motion Estimation 

Under the given environmental assumptions wheel odometry and dead reckoning methods 

provide a good estimate with the only little amount of computational cost. However, this is only 

achieved if the calibration is performed well. Also, it does not mean that they are always supe-

rior in all situations. Further tests must be made if the road surface is less optimal (e.g. uneven 

ground, high amount of slip). 

LiDAR and visual odometry, on the other hand, can provide satisfactory results independent 

of the road surface if enough computing time is available. Unfortunately, both methods are 

computationally expensive. This increases the temporal difference between the measure-

ments and the performance degrades. The same symptom will also occur when the vehicle 

drives with a high velocity with a lot of change between the images. Therefore, additional re-

search is needed in order to reduce the computation time for example by using accelerator 

hardware (e.g. GPGPU). Also, these methods typically do not provide velocity information and 

the uncertainty model is only static or based on some heuristics. 

Fused ego-motion approaches can improve the estimates compared to the individual results. 

Even better results can be expected when fusing the ego-motion with localization data from a 

map. This can easily be achieved, for example, by replacing the correction input of the pre-

sented CTRV model with a localizer estimate. In doing so, this would make the fused output 

error bounded and longer drives with a precise motion state would be possible.  

6.2.2 Object-Motion Estimation 

Obstacle detection methods using a CNN can achieve quite reliable results. However, the re-

quired processing power is still too high. Further investigations must be made in order to in-

crease the estimation output rate on the target hardware. Several steps can be done to reduce 

the computational cost (smaller network, faster framework, …). However, this requires an es 

sential change of the underlying model. Also, the homography transformation output lacks in 

precision. Further investigations could include redoing the calibration or using the intrinsic cam-

era parameters for the estimation. 

The LiDAR obstacle generation is very precise. However, there is still room for improvement 

when it comes to the clustering process. Also, an orientation estimate would be useful. But 

before that, the final shape of the target objects must be defined first. 

The obstacle fusion successfully removes some of the flaws from the previous methods. The 

obstacle merging process is still simple and works well in low complex environments. When 

adding more obstacles to the scene, this may also require a more sophisticated matching of 

obstacles. Also, more complex models could be used when orientation estimates from the 

sources are available. 
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Attachment 

A – ROS Message Definitions 

Type Name Description 

uint32 seq sequence ID: consecutively increasing ID 

time stamp two-integer timestamp 

string frame_id frame this data is associated with 

 

Type Name Description 

Header header ROS header (Table 6-1) 

float32 pos_abs Absolute driven length since startup in m 

float32 pos_abs_var Absolute driven length since startup variance in m² 

float32 pos_rel Relative driven length since last message in m 

float32 pos_rel_var Relative driven length since last message variance in m² 

float32 vel Current velocity in m/s 

float32 vel_var Current velocity variance in m²/s² 

 

Type Name Description 

Header header ROS header (Table 6-1) 

EncoderLinear[4] encoder array of linear encoders (Table 6-2) for each wheel: 

• Front wheel left = 0 

• Front wheel right = 1 

• Rear wheel left = 2 

• Rear wheel right = 3 

 

Type Name Description 

Header header ROS header (Table 6-1) 

Quaternion orientation Orientation (w,x,y,z) of the IMU sensor as quaternion 

float64[9] orientation_ 

covariance 

Covariance matrix of the orientation 

Vector3 angular_velocity Rotational velocity (x,y,z) of the IMU sensor in rad/s 

float64[9] angular_velocity_ 

covariance 

Covariance matrix of the angular velocity 

Vector3 linear_ 

acceleration 

Linear acceleration (x,y,z) of the IMU sensor in m/s² 

float64[9] linear_ 

acceleration_ 

covariance 

Covariance matrix of the linear acceleration 

 

Type Name Description 

Header header ROS header (Table 6-1) 

float32 angle_min Start angle of the scan in rad 

Table 6-1: ROS Header message definition 

Table 6-2: ROS Encoder Linear message definition 

Table 6-3: ROS Vehicle encoder message definition 

Table 6-4: ROS IMU message definition 

Table 6-5: ROS LaserScan message definition 
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float32 angle_max End angle of the scan in rad 

float32 angle_increment Angular distance between measurements in rad 

float32 time_increment Time between measurements in seconds 

float32 scan_time Time between scans in seconds 

float32 range_min minimum range value in m 

float32 range_max maximum range value in m 

float32[ ] ranges range data in m 

float32[ ] intensities intensity data 

 

Type Name Description 

Header header ROS header (Table 6-1) 

uint32 height Image height, that is, number of rows 

uint32 width Image width, that is, number of columns 

string encoding Encoding of pixels – channel meaning, ordering, size 

uint8 is_bigendian Is this data big endian? 

uint32 step Full row length in bytes 

uint8[ ] data Actual matrix data, size is (step * rows) 

 

Type Name Description 

Header header ROS header (Table 6-1) 

string child_frame_id Frame ID of the child frame 

PoseWith- 

Covariance 

pose Current odometry pose. The pose in this message should 

be specified in the coordinate frame given in the header. 

TwistWith- 

Covarinace 

twist Current odometry twist. The twist in this message should 

be specified in the coordinate frame given in the header. 

 

Type Name Description 

Header header ROS header (Table 6-1) 

uint8 obstacle_type Type of the obstacle. Can be: 

• TYPE_GENERIC = 0 

• TYPE_CAMERA = 1 

• TYPE_LIDAR = 2 

Polygon polygon points belonging to the obstacle 

PoseWith- 

Covariance 

centroid_pose Pose of the centroid. 

TwistWith- 

Covariance 

centroid_twist Twist of the centroid 

float32 length Length of the obstacle (zero if unknown) 

float32 width Width of the obstacle (zero if unknown) 

float32 height Height of the obstacle (zero if unknown) 

float32 trust trust value associated with the obstacle 

 

Type Name Description 

Header header ROS header (Table 6-1) 

float64 confidence Confidence of the detection result 

string label label or ID of the detection 

Table 6-6: ROS Image message definition 

Table 6-7: ROS Odometry message definition 

Table 6-8: ROS Obstacle message definition 

Table 6-9: ROS Bounding Box message definition 
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uint16  x1, y1, x2, y2 bounding box in pixel coordinates (OpenCV coordinate 

conventions) 

• (x1, y1) top left 

• (x2, y2) bottom right 

B – List of Software Packages 

package name remote URL last commit chap-

ter 

license 

ARD_arduinorccar https://gitlab.lrz.de/roborace/modules/ARD_arduinorccar 9ee2d86b 4.1.1 MIT 

IMU_imurccar https://gitlab.lrz.de/roborace/modules/IMU_imurccar 2ed25dda 4.1.2 GPLv3 

csm https://github.com/clearpathrobotics/csm 55186278 4.2.3 GPLv3 

darkflow_vehi-

cle_detection 

https://github.com/fabolhak/darkflow_object_detection c561521f 4.3.2 MIT 

drive_ros_bb_to_ob-

stacle 

https://github.com/tum-phoenix/drive_ros_bb_to_obstacle e7e6dcf6 4.3.2 MIT 

drive_ros_cam-

era_homography 

https://github.com/tum-phoenix/drive_ros_camera_homogra-

phy 

f8be6240 4.1.4 MIT 

drive_ros_env_viz https://github.com/tum-phoenix/drive_ros_env_viz 3ea517d1 4.3 MIT 

drive_ros_im-

age_recognition 

https://github.com/tum-phoenix/drive_ros_image_recognition 250b4cff 4.3.2 MIT 

drive_ros_imu_filter https://github.com/tum-phoenix/drive_ros_imu_filter ea3174fa 4.1.2 MIT 

drive_ros_la-

serscan_obsta-

cle_generator 

https://github.com/tum-phoenix/drive_ros_laserscan_obsta-

cle_generator 

8ef4928e 4.3.1 MIT 

drive_ros_local-

ize_inertial_naviga-

tion_system 

https://github.com/tum-phoenix/drive_ros_localize_iner-

tial_navigation_system 

2c287166 4.2.2 MIT 

drive_ros_local-

ize_odom_fusion 

https://github.com/tum-phoenix/drive_ros_localize_odom_fu-

sion 

9280ca78 4.2.5 MIT 

drive_ros_local-

ize_visual_odometry 

https://github.com/tum-phoenix/drive_ros_localize_vis-

ual_odometry 

14854ca7 2.5.3 MIT 

drive_ros_local-

ize_wheel_odometry 

https://github.com/tum-phoenix/drive_ros_local-

ize_wheel_odometry 

029f8ef9 4.2.1 MIT 

drive_ros_msgs https://github.com/tum-phoenix/drive_ros_msgs 117465d0 - MIT 

drive_ros_obsta-

cle_fusion 

https://github.com/tum-phoenix/drive_ros_obstacle_fusion d34b678a 4.3.3 MIT 

homography_pub-

lisher 

https://gitlab.lrz.de/fabian/homography_publisher d3c7db58 4.3.2 MIT 

kalman https://github.com/tum-phoenix/kalman abc2a8e6 - MIT 

laser_odometry https://github.com/fabolhak/laser_odometry 340e5854 4.2.3 Apache-2.0 

laser_odometry_csm https://github.com/fabolhak/laser_odometry_csm 0c68834c 4.2.3 Apache-2.0 

laser_odome-

try_libpointmatcher 

https://github.com/fabolhak/laser_odometry_libpointmatcher f6fa4099 4.2.3 Apache-2.0 

laser_odometry_po-

lar 

https://github.com/fabolhak/laser_odometry_polar 0d3ca8ab 4.2.3 Apache-2.0 

laser_odometry_rf2o https://github.com/fabolhak/laser_odometry_rf2o 44ba79d7 4.2.3 Apache-2.0 

laser_proc https://github.com/ros-perception/laser_proc dbb8c88b 4.1.3 - 

pro-

ject_odom_to_plane 

https://github.com/fabolhak/project_odom_to_plane 269b94fa 4.1.4 MIT 

rccar_sw https://gitlab.lrz.de/roborace/rccar_sw 01511aa6 - - 

rf2o_laser_odometry https://github.com/fabolhak/rf2o_laser_odometry 4ec6db7c 4.2.3 GPLv3 

scan_tools https://github.com/fabolhak/scan_tools 6f41a93c 4.2.3 - 

urg_c https://github.com/ros-drivers/urg_c 0c1d366a 4.1.3 - 

urg_node https://github.com/ros-drivers/urg_node 8cb4b6aa 4.1.3 - 

viso2arm https://github.com/fabolhak/viso2 3c3c71dd 4.2.4 GPLv2 

zed-ros-wrapper https://github.com/fabolhak/zed-ros-wrapper 57e4f2f1 4.1.4 BSD-3 

 

Table 6-10: list of software packages being developed and used in this thesis 

https://github.com/tum-phoenix/drive_ros_laserscan_obstacle_generator
https://github.com/tum-phoenix/drive_ros_laserscan_obstacle_generator
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