

Ego- and object motion estimation

Masterarbeit zur Erlangung des Grades

M. Sc.

an der Fakultät für Maschinenwesen der Technischen Universität München

Aufgabensteller Univ.-Prof. Dr.-Ing. Markus Lienkamp

 Lehrstuhl für Fahrzeugtechnik

Betreuer Johannes Betz, M. Sc.

 Lehrstuhl für Fahrzeugtechnik

Eingereicht von Fabian Hanke, B. Sc.

 Matrikelnummer: 03631112

Ausgabe am 01.12.2017

Eingereicht am 01.06.2018

Lehrstuhl für Fahrzeugtechnik

Fakultät für Maschinenwesen
Technische Universität München

I

Aufgabenstellung

Eigen und Fremdbewegungsschätzung

Im Rahmen des Projektes Roborace wird vom Lehrstuhl für Fahrzeugtechnik die Software für

ein Fahrzeug entwickelt, welches an der ersten Rennserie für autonome Fahrzeuge teilnimmt.

Als Teil dieses Projektes soll die vorliegende Abschlussarbeit zur Entwicklung hochflexibler

künstlicher Algorithmen dienen.

Zur Hardwarenahen Erprobung der entwickelten Algorithmen steht dem Lehrstuhl für Fahr-

zeugtechnik ein 1:10 Elektro RC-Modellauto zur Verfügungen, welches über ähnliche Hard-

ware Komponenten wie das Roborace Fahrzeug verfügt (LIDAR, Kamera, Ultraschall, NVIDIA

embedded Computer). Im ersten Schritt sollen die Verfahren und Methoden zur Ermittlung der

Eigenbewegung ermittelt werden. Im Anschluss können mit Hilfe von realer Messtechnik die

Verfahren getestet und evaluiert werden. Im zweiten Schritt soll neben der Eigenbewegung

auch die Fremdbewegung gegnerischer Fahrzeuge ermittelt werden. Zum Abschluss soll die

beste ermittelte Methode in passende Software umgesetzt und in das RC-Fahrzeug imple-

mentiert werden.

Folgende Punkte sind zu bearbeiten:

• Einlesen in den Stand der Technik selbstfahrende Fahrzeuge

• Einarbeitung in den Stand der Technik
o Schätzung und Modellierung des Zustandes
o Multi-Rate Sensor Fusion
o Computer Vision

• Auswahl geeigneter Methoden zur Erkennung der Eigen-und Fremdbewegung:
o Schätzverfahren (z.B. Kalman Filter, Partikel Filter)
o Computer Vision Verfahren (z.B. Optical Flow, Visual Odometry)
o optional: Machine Learning Verfahren (z.B. Neuronale Netze)

• Begründete Auswahl eines Verfahrens

• Softwareseitige Implementierung des besten Verfahrens in einem Modellauto

• Durchführung von Fahrversuchen zur Evaluierung der eingesetzten Methode

Die Ausarbeitung soll die einzelnen Arbeitsschritte in übersichtlicher Form dokumentieren. Der

Kandidat verpflichtet sich, die Arbeit selbständig durchzuführen und die von ihm verwendeten

wissenschaftlichen Hilfsmittel anzugeben.

Die eingereichte Arbeit verbleibt als Unterlage im Eigentum des Lehrstuhls und darf Dritten

nur unter Zustimmung des Lehrstuhlinhabers zugänglich gemacht werden.

Prof. Dr.-Ing. M. Lienkamp Betreuer: Johannes Betz, M. Sc.

Ausgabe:________________ Abgabe:_______________

II

Lehrstuhl für Fahrzeugtechnik

Fakultät für Maschinenwesen
Technische Universität München

III

Geheimhaltungsverpflichtung

Herr/Frau: Hanke, Fabian

Im Rahmen der Angebotserstellung und der Bearbeitung von Forschungs- und Entwicklungs-

verträgen erhält der Lehrstuhl für Fahrzeugtechnik der Technischen Universität München re-

gelmäßig Zugang zu vertraulichen oder geheimen Unterlagen oder Sachverhalten industrieller

Kunden, wie z.B. Technologien, heutige oder zukünftige Produkte, insbesondere Prototypen,

Methoden und Verfahren, technische Spezifikationen oder auch organisatorische Sachver-

halte.

Der Unterzeichner verpflichtet sich, alle derartigen Informationen und Unterlagen, die ihm wäh-

rend seiner Tätigkeit am Lehrstuhl für Fahrzeugtechnik zugänglich werden, strikt vertraulich

zu behandeln.

Er verpflichtet sich insbesondere

• derartige Informationen betriebsintern zum Zwecke der Diskussion nur dann zu ver-
wenden, wenn ein ihm erteilter Auftrag dies erfordert,

• keine derartigen Informationen ohne die vorherige schriftliche Zustimmung des betref-
fenden Kunden an Dritte weiterzuleiten,

• keine Fotografien, Zeichnungen oder sonstige Darstellungen von Prototypen oder
technischen Unterlagen hierzu anzufertigen,

• auf Anforderung des Lehrstuhls für Fahrzeugtechnik oder unaufgefordert spätestens
bei seinem Ausscheiden aus dem Lehrstuhl für Fahrzeugtechnik alle Dokumente und
Datenträger, die derartige Informationen enthalten, an Lehrstuhl für Fahrzeugtechnik
zurückzugeben.

Eine besondere Sorgfalt gilt im Umgang mit digitalen Daten:

• Kein Dateiaustausch über Dropbox, Skydrive o.ä.

• Keine vertraulichen Informationen unverschlüsselt über Email versenden.

• Wenn geschäftliche Emails mit dem Handy synchronisiert werden, darf dieses nicht in
die Cloud (z.B. iCloud) synchronisiert werden, da sonst die Emails auf dem Server
des Anbieters liegen.

• Die Kommunikation sollte nach Möglichkeit über die (my)TUM-Mailadresse erfolgen.
Diese Emails dürfen nicht an Postfächer anderer Emailprovider (z.B.: gmail.com) wei-
tergeleitet werden.

Die Verpflichtung zur Geheimhaltung endet nicht mit dem Ausscheiden aus dem Lehrstuhl für

Fahrzeugtechnik, sondern bleibt 5 Jahre nach dem Zeitpunkt des Ausscheidens in vollem Um-

fang bestehen. Die eingereichte schriftliche Ausarbeitung darf der Unterzeichner nach Be-

kanntgabe der Note frei veröffentlichen.

Der Unterzeichner willigt ein, dass die Inhalte seiner Studienarbeit in darauf aufbauenden Stu-

dienarbeiten und Dissertationen mit der nötigen Kennzeichnung verwendet werden dürfen.

Datum: 01.12.2017

Unterschrift: ____________________________________

IV

Lehrstuhl für Fahrzeugtechnik

Fakultät für Maschinenwesen
Technische Universität München

V

Erklärung

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig

verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Garching, den 01.06.2018

Fabian Hanke, B. Sc.

VI

VII

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Delimitation of the work .. 3

1.3 Contents ... 3

2 State of the Art ... 3

2.1 Mathematical basics .. 5

2.1.1 Linear State estimation ... 5

2.1.2 Non-Linear State estimation ... 7

2.2 Ego-Motion estimation .. 8

2.2.1 Odometry & Dead Reckoning ... 8

2.2.2 Inertial Navigation Systems .. 9

2.2.3 Odometry based on range sensors ...11

2.2.4 Visual Odometry ..12

2.3 Object Motion estimation ...14

2.3.1 Object motion with range sensors ...14

2.3.2 Object motion with camera sensors ...15

2.4 Project description ...16

2.4.1 Hardware description ..16

2.4.2 Software description ..17

2.5 Similar projects ...18

2.5.1 MIT RACECAR and RACECAR/J..18

2.5.2 F1tenth ..20

2.5.3 TUM Phoenix Robotics ..21

2.6 Derivation of the problem statement ...24

3 Course of actions ..25

4 Implementation ..27

4.1 Implementation and Calibration of Sensors ...27

4.1.1 Wheel Encoder..27

4.1.2 IMU ...31

4.1.3 LiDAR ...35

VIII

4.1.4 Camera ...36

4.1.5 Summary ...39

4.2 Implementation of Ego-Motion ..41

4.2.1 Odometry & Dead Reckoning ..41

4.2.2 Inertial Navigation System ...43

4.2.3 LiDAR Odometry ...44

4.2.4 Visual Odometry ..48

4.2.5 Fused Odometry ...50

4.2.6 Summary ...54

4.3 Implementation of Object-Motion ..55

4.3.1 LiDAR Objects...55

4.3.2 Camera Objects ..56

4.3.3 Fused and tracked Objects..57

4.3.4 Summary ...59

5 Evaluation ..61

5.1 Ego-Motion Estimation ...61

5.1.1 Odometry & Dead Reckoning ..63

5.1.2 Inertial Navigation Systems ...65

5.1.3 LiDAR Odometry ...66

5.1.4 Visual Odometry ..68

5.1.5 Fused Odometry ...69

5.1.6 Summary ...70

5.2 Object Motion Estimation ...72

5.2.1 LiDAR Objects...72

5.2.2 Camera Objects ..74

5.2.3 Fused and tracked Objects..75

5.2.4 Summary ...76

6 Summary and conclusion ...77

6.1 Summary ...77

6.1.1 Ego-Motion estimation ...77

6.1.2 Object-Motion estimation ...78

6.2 Conclusion ..79

6.2.1 Ego-Motion Estimation ..79

6.2.2 Object-Motion Estimation ..79

IX

List of abbreviations

ADS Automated Driving Systems

AHRS Attitude Heading Reporting System

APD Avalanche Photodiode

BLDC Brushless DC-Motor

CCW Counter Clockwise

CNN Convolutional Neural Network

CSM Canonical Scan Matcher

CTRA Constant Turn Rate and Acceleration

CTRV Constant Turn Rate and Velocity

CW Clockwise

DARPA Defense Advanced Research Project Agency

DATMO Detection and tracking of objects

DC Direct Current

DMP Digital Motion Processor

EKF Extended Kalman Filter

ESC Electronic Speed Control

FAST Features from Accelerated Segment Test

GNSS Global Navigation Satellite System

GPGPU General Purpose Graphics Processing Unit

ICP Iterative Closest Point

IDE Integrated Development Environment

IMU Inertial Measurement Unit

INS Inertial Measurement System

k-d k-dimensional

KF Kalman Filter

LiDAR Light Detection and Ranging

MEMS Micro-Machined Electromechanical System

NDT Normal Distribution Transform

PSM Polar Scan Matching

PWM Pulse-Width Modulation

RANSAC Random Sample Consensus

RF2O Range Flow-based 2D Odometry

ROS Robot Operating System

SAE Society of Automotive Engineers

SDK Software Development Kit

SFM Structure from Motion

SIMD Single Instruction Multiple Data

SoC System on a Chip

SSE Streaming SIMD Extensions

X

SVD Singular Value Decomposition

SVO Semi-Direct Odometry

TPE Tree-of-Parzen Estimator

UMBmark University of Michigan Benchmark

VO Visual Odometry

YOLO You only look once

XI

List of symbols

Symbol Unit Description

𝑢⃗ 𝑡 - Input vector

𝑥 𝑡 - State vector

𝑦 𝑡 - Output vector

𝐺𝑡 - Jacobian of non-linear system

𝐻𝑡 - Jacobian of non-linear output

𝐾𝑡 - Kalman Gain

𝑄𝑡 - Measurement Noise

𝑅𝑡 - Process Noise

𝑉𝑡 - Jacobian of non-linear measurement noise

𝑊𝑡 - Jacobian of non-linear system noise

𝑡 m Translation vector

𝑣𝑡 - Non-linear measurement noise

𝑤𝑡 - Non-linear system noise

ℎ - Non-linear output

ℐ - IMU sensor coordinate system

ℒ - Laser sensor coordinate system

Δ s Delta

Θ rad Pitch angle

Φ rad Roll angle

ω rad/s Turn rate

𝐴 - System matrix

𝐵 - Input matrix

𝐶 - Output matrix

𝑅 - Rotation matrix

𝑇, 𝑡 s Time period or timestamp

𝑎 m/s² Acceleration

𝑏 m Track width

𝑐 - Correction factor

𝑒𝑟𝑟, 𝜖, 𝐸 - Error

𝑔 - Non-linear system

𝑙 m Wheel base

𝑛 - Number

𝑠, 𝑑, ℎ m Distance

𝑣 m/s Velocity

𝑣𝑎𝑟 - Variance

XII

𝑥 m x-position

𝑦 m y-position

𝑧 m z-position

𝒞 - Camera sensor coordinate system

𝒩 - Gaussian distribution

𝒪 - World fixed coordinate system

𝒱 - Vehicle fixed coordinate system

𝛴 - System covariance

𝛿 rad Steering angle

𝜇 - Mean value / expected value

𝜎 - Standard deviation

𝜓 rad Yaw angle

1

1 Introduction

1.1 Motivation

Autonomous Driving is one of the megatrends of today. Since the well-known DARPA chal-

lenges from 2004 to 2007, the hype of self-driving vehicles has not stopped. All major car

manufacturers and suppliers are working intensively on this subject and have announced prod-

uct launches for the next couple of years [1, p. 209]. There are many implications to think of.

CHAN [1, p. 211] gives a good overview and categorizes them into perspectives for vehicle

users, transportation operations and the society:

For the everyday vehicle user, the advantages are obvious. Most of the traffic accidents are

caused by human error (Figure 1). The main goal is to reduce this number significantly when

using more advanced driver assistance systems or fully autonomous vehicles. It will also help

elderly or disabled people to stay mobile and reduce the burden of traveling to friends and

family. Driving a vehicle can change from an unavoidable loss of time to an entertaining (e.g.

watching a movie) experience. The daily stressful commute will turn into productive working

hours when for example preparing the next business meeting while the vehicle drives itself.

From a transportation operation point of view, this technology is an enabler for many other

changes and positive implications. Intelligent and connected vehicles will reduce congestion

of streets due to smarter traffic flow management and fewer accidents. Dynamic routing and

navigation will be improved via better real-time traffic monitoring enhancing the efficiency of

infrastructure. New ride-sharing services of automated vehicles will make car sharing more

accessible and decrease the demand for individual ownership. This new mobility services will

reduce the number of on-road vehicles and diminish the required space wasted for parking.

41%

34%

10%

7%
8%

driver-related critical reasons

Recognition Error (845,000)

Decision Error (684,000)

Performance Error (210,000)

Non-Performance Error (145,000)

Other (162,000)

94%

2%
2% 2%

total critical reasons

Drivers (2,046,000)

Vehicles (44,000)

Environment (52,000)

Unknown (47,000)

Figure 1: Critical reasons for a pre-crash event broken down by total and driver-related reasons based on the
National Motor Vehicle Crash Causation Survey from 2005 to 2007 [144]

1 Introduction

2

Last but not least the rise of more autonomy in vehicles will also affect society as a whole.

From positive effects for the environment to a completely new thinking of mobility, there will be

many aspects influenced by this trend.

In the current public debate, there are many terms being used to describe this more advanced

automated systems which can be confusing and imprecise [1, p. 209]. However, there are also

clear definitions. For example, the SAE (Society of Automotive Engineers) refers to these sys-

tems as Automated Driving Systems (ADS). The term ADS is especially being utilized when

speaking of level 3, 4 or 5 systems, using the SAE levels of driving autonomy (Table 1-1).

Level Name

Steering and

accelerating

Monitoring

of driving

environment

Fallback when

automation

fails

Automated

system is

in control

0 No

Automation

No driving

modes

1 Driver

Assistance /

Some driving

modes

2 Partial

Automation

Some driving

modes

3 Conditional

Automation

Some driving

modes

4 High

Automation
Some driving

modes

5 Full

Automation
All driving

modes

 = human driver = automated system

However, the promises of ADS do not come cheap. Highly complex systems are needed to

tackle the technical problems that arise when dealing with unpredictable multifaceted real-

world environments. There are many challenges that still need to be solved today to allow true

autonomy for vehicles.

One of these challenges is the localization of the vehicle. The system must know where it is

located precisely. Typically, this is achieved with some prior generated environmental data.

The data comes in form of a map or other fixed reference marks. However, this kind of infor-

mation is not always available. Still, the vehicle must retain a way to cope with unknown envi-

ronmental situations. However, it is not only important to know the current pose (position and

orientation), but also the dynamic state (velocity, turn rate, …) precisely. This as a fundamental

building block for other algorithms. For example, it enables a vehicle to estimate its relative

position from where it started or generate a map itself based on sensor data. This information

is also a key element for many control system approaches. And finally knowing the position

and velocities of other road users is essential to cooperate with them in a safe manner.

These methods of self-contained ego- and object motion estimation can be based on different

sensor types. Unfortunately, there are no perfect sensors that can cope with all environments

and scenarios possible. Every measurement system has its limitations and drawbacks. There-

fore, it is preferable to collect data from different sensors and combine them in a clever way to

infer the information needed to estimate the motion of the ego vehicle or other dynamic objects.

This process is also called sensor fusion.

Table 1-1: SAE Level of Driving Autonomy [2]

1 Introduction

3

1.2 Delimitation of the work

This thesis is embedded in a project from the chair of automotive technology (FTM) which aims

to develop a software stack for autonomous model cars. This miniature version of real cars

can then be used in further research projects or for educational purposes. The hardware and

sensor setup are therefore already set and developed in another thesis [3].

The available software, due to its early stage, is still in progress and limited in functionality.

One missing component of the stack is the ego- and object motion estimation. Both parts are

essential building blocks for other software elements. The goal of this thesis is to compare

different ego and object motion technologies and find the best approach for this use case.

Given different sensor inputs, the implemented algorithm should generate motion estimates

for the ego vehicle as well as other dynamic objects. This data should be easily usable in

subsequent software parts (e.g. control systems, localization in a map, creating a map, …)

which are not subject of this thesis.

This work is limited to solutions assuming for the vehicle in unknown environments. Ap-

proaches based on preliminary environment information (e.g. map) are not considered. Also,

it is assumed that the model car only moves on planar grounds. Therefore, the environment

and movement can be described in two dimensions. Additionally, all testing is being conducted

in a building. This setting is being used as the target scenario in which the vehicle will operate.

1.3 Contents

This thesis is split up into the following chapters.

• Chapter 2 State of the Art: This chapter presents the typically used solutions to solve

the problem statement. It starts off by introducing some of the mathematical basics

needed for this thesis. Then it describes the available methods for ego- and object

motion estimation. Next, the available hard- and software of the project are being out-

lined. Further, similar projects are being presented and discussed. Lastly, a derivation

of the problem statement is being made.

• Chapter 3 Course of actions: This chapter gives a short introduction to the course of

actions being made to address the objective of this thesis.

• Chapter 4 Implementation: In this chapter the actual development and implementa-

tion of the various ego- and object motion methods is described. The approaches are

split up into ego-motion estimation techniques first and object motion estimation second.

• Chapter 5 Evaluation: This chapter evaluates the implemented methods based on so

some prior defined evaluation scheme. It has the same order as chapter 4.

• Chapter 6 Summary and Conclusion: Lastly, this chapter gives a summary of all

presented methods and their evaluation. In a subsequent conclusion step, further ac-

tions of improving the methods will be discussed.

1 Introduction

4

5

2 State of the Art

This chapter starts with an introduction to some of the mathematical basics required for this

thesis. It then gives an overview of the most common techniques for ego and object motion

estimation. After that, the project and available hard- and software are being elaborated. Lastly,

similar projects will be analyzed.

2.1 Mathematical basics

This section gives a brief introduction to some of the essential mathematical tools needed for

this thesis. It also defines the notation and literature being used for further reading. First off it

starts with state estimation and describes two popular state estimators being used in the field

(Kalman Filter and Extended Kalman Filter).

2.1.1 Linear State estimation

Dynamic systems can be described in the time domain using state vectors. These vectors

consist of variables representing the internal state of the system at a specific time instance t.

The state in the current time step 𝑥𝑡 can be easily computed using the old state vector 𝑥𝑡−1

and an optional system input u𝑡

𝑥𝑡 = 𝐴𝑥𝑡−1 +𝐵𝑢𝑡 . (2.1)

Also, the system output or measurement vector 𝑦𝑡 can be derived from 𝑥𝑡 with

𝑦𝑡 = 𝐶𝑥𝑡 . (2.2)

The matrices 𝐴, 𝐵, 𝐶 model the linear system behavior and are denoted system, input and

output matrix respectively [4, p. 7]. In real world systems it is, in most cases not possible to

determine the true value of a state variable. This could be due to noise, unobservability or lack

of model accuracy. In order to tackle this problem, a common approach is to use random var-

iables. This allows to model the uncertainty using probabilistic laws. Continuous random vari-

ables possess a specific probabilistic distribution, which is in robotic applications commonly

assumed to be normal or gaussian. Additionally, to the expected or mean value 𝜇𝑡 = 𝑥𝑡, nor-

mal distributed variables provide information about the variance. When using multiple state

variables, covariance matrices 𝛴 are being used to store the variances for each variable and

the variance between different state variables [5, p. 10]. The propagation of the expected val-

ues follows the rules of eq. (2.1) and (2.2). The variances follow the error propagation law [6,

p. 150], with additional noise 𝑅𝑡 from system input

𝛴𝑡 = 𝐴𝛴𝑡−1𝐴
𝑇 + 𝑅𝑡 . (2.3)

2 State of the Art

6

The goal of state estimation techniques is to approximate the state vector as good as possible

and provide the corresponding variances for each time step [5, p. 9].

Linear Kalman Filter (KF)

The Kalman Filter is popular for filtering noisy measurement data and predicting the system

states based on input data. It is designed for continuous systems and “is not applicable to

discrete or hybrid state spaces” [5, p. 34]. It computes a state estimate in each filter step, which

makes it very suitable for real-time applications [4, p. 3]. The filter design is recursive and very

efficient. It consists of two steps which form a feedback loop: The prediction step projects the

current state and covariance matrix one timestep forward using the underlying dynamic model

equations. The subsequent update or correction step incorporates the measured real output

of the system and updates the state estimate based on a comparison between predicted and

measured system output [7, p. 4]. The difference between both outputs is weighted by the

Kalman Gain 𝐾𝑡, which is being computed based on the previous step covariance 𝛴𝑡−1, pro-

cess noise 𝑅𝑡 and measurement noise 𝑄𝑡.

The linear Kalman filter is the base form. It is limited to linear system equations and assumes

values with a unimodal Gaussian distribution and zero-mean uncorrelated noise [4, p. 13].

Starting with an initial state 𝑥0 and initial covariance 𝛴0 the filter estimates the current state 𝑥t

and covariance 𝛴t recursively based on input data 𝑢𝑡, measurement data 𝑦𝑡, process noise 𝑅𝑡,

measurement noise 𝑄𝑡, the previous state 𝑥t−1 and the previous covariance 𝛴t−1 (Algorithm 1).

Algorithm 1: Linear Kalman Filter Algorithm [5, p. 36]

LinearKalmanFilter(𝑥𝑡−1, 𝛴𝑡−1, 𝑢𝑡 , 𝑦𝑡 , 𝑅𝑡 , 𝑄𝑡):

prediction step

𝑥𝑡 = 𝐴𝑥𝑡−1 +𝐵𝑢𝑡 (2.4)

Σ𝑡 = 𝐴Σ𝑡−1𝐴
𝑇 + 𝑅𝑡 (2.5)

update step

𝐾𝑡 = Σ𝑡𝐶
𝑇(𝐶Σ𝑡𝐶

𝑇 + 𝑄𝑡)
−1 (2.6)

𝑥𝑡 = 𝑥𝑡 + 𝐾𝑡(𝑦𝑡 − 𝐶𝑥𝑡) (2.7)

Σ𝑡 = (𝐼 − 𝐾𝑡𝐶)Σ𝑡 (2.8)

return 𝑥𝑡, Σ𝑡

The characteristics of the filter are determined by the choice of process and measurement

noise. Smaller measurement covariance values mean more trust on the measurement data

leading to a more dynamic filter which incorporates system output changes faster. In contrast,

smaller process covariances correspond to more faith in the accuracy of the system model

prompting an equalization of noisy measurement data [8]. Both covariance matrices can be

chosen static or dynamic. For the static approach, the “measurement noise covariance […] is

usually measured prior to operation of the filter”, while the process covariances are harder to

determine and often hand-tuned to achieve the desired behavior [7, p. 6]. More sophisticated

approaches dynamically estimate the two covariance matrices e.g. based on preceding Kal-

man Filters [4, p. 93].

2 State of the Art

7

2.1.2 Non-Linear State estimation

However, most systems include non-linear terms and cannot be transformed into a linear form.

These systems can be represented using the following equations

𝑥𝑡 = 𝑔(𝑢𝑡, 𝑥𝑡−1) (2.9)

𝑦𝑡 = ℎ(𝑥𝑡) . (2.10)

The non-linear functions 𝑔 and ℎ replace the matrices 𝐴, 𝐵, 𝐶 and model the system and out-

put behavior. They can be approximated in each time step using the first order Taylor expan-

sion which results in the Jacobians matrices 𝐺𝑡 and 𝐻𝑡. This corresponds to a linear tangent at

the non-linear functions and is being computed using the partial derivative (gradient) at the

current state value [5, p. 48]

𝐺𝑡 =
∂𝑔(𝑢𝑡 , 𝑥𝑡−1)

∂𝑥𝑡−1

(2.11)

𝐻𝑡 =
∂ℎ(𝑥𝑡)

∂𝑥𝑡
 . (2.12)

Again, the process is perturbated with some system and measurement noise which can be

represented by the random variables 𝑤𝑡 and 𝑣𝑡 respectively. Also, the random influences of

𝑤𝑡 and 𝑣𝑡 can be approximated with the Jacobian matrices [7, p. 8]

𝑊𝑡 =
∂𝑔(𝑢𝑡 , 𝑥𝑡−1)

∂𝑤𝑡

(2.13)

𝑉𝑡 =
∂ℎ(𝑥𝑡)

∂𝑣𝑡
 . (2.14)

Unfortunately, most non-linear functions destroy the Gaussian property of the distribution. To

keep this important characteristic, we use the approximated version of the system function 𝑔

utilizing the Jacobian matrices 𝐺𝑡 and 𝑊𝑡 for the error propagation [7, p. 10]

𝛴𝑡 = 𝐺𝑡 𝛴𝑡−1𝐺𝑡
𝑇 +𝑊𝑡𝑅𝑡𝑊𝑡

𝑇. (2.15)

Extended Kalman Filter (EKF)

The extended Kalman Filter extends the idea of the linear Kalman Filter to non-linear systems.

It uses the in eq. (2.15) presented approach of approximating the error propagation with the

Jacobian matrices to keep the Gaussian property. The final EKF algorithm (Algorithm 2) is

similar to the linear equivalent (Algorithm 1).

Algorithm 2: Extended Kalman Filter Algorithm [5, p. 51]

ExtendedKalmanFilter(𝑥𝑡−1, 𝛴𝑡−1, 𝑢𝑡, 𝑦𝑡 , 𝑅𝑡 , 𝑄𝑡):

 # prediction step

 𝑥𝑡 = 𝑔(𝑥𝑡−1, 𝑢𝑡) (2.16)

 Σ𝑡 = Gt Σ𝑡−1Gt
𝑇 +𝑊𝑡𝑅𝑡𝑊𝑡

𝑇 (2.17)

 # update step

 𝐾𝑡 = 𝛴𝑡𝐻𝑡
𝑇(𝐻𝑡𝛴𝑡𝐻𝑡

𝑇 + 𝑉𝑡𝑄𝑡𝑉𝑡
𝑇)
−1

 (2.18)

 𝑥𝑡 = 𝑥𝑡 + 𝐾𝑡(𝑦𝑡 − ℎ(𝑥𝑡)) (2.19)

2 State of the Art

8

 Σ𝑡 = (𝐼 − 𝐾𝑡𝐻𝑡)Σ𝑡 (2.20)

return 𝑥𝑡, Σ𝑡

The choice of both process and measurement noise covariances are analog to the linear coun-

terpart. Similarly, the EKF still assumes values with a unimodal Gaussian distribution and zero-

mean uncorrelated noise. However, “EKFs have been applied with great success to a number

of state estimation problems that violate the underlying assumptions” [5, p. 53]. While the EKF

is a very popular state estimator in robotics, it is important to remember that the approximation

can be very poor for highly non-linear and/or multi-modal functions [5, p. 54].

2.2 Ego-Motion estimation

The term “Ego-Motion” is typically being used in psychology and computer vision applications

and refers to the motion of an optical sensor (e.g. camera) in 3D space. Many algorithms have

been developed to deduce this information from a sequence of images [9, p. 16582]. However,

it is also common in robotics representing the pose and velocity information of a vehicle at a

specific time instance [10, p. 468]. This can be done with a variety of different sensors. In most

cases, this data cannot be measured directly without noise. Therefore, estimation techniques

(e.g. 2.1.1 Linear State estimation) can be used to infer the required knowledge about the

current vehicle state, which coins the term “Ego-Motion Estimation”. In the following section,

the most relevant methods will be presented shortly.

2.2.1 Odometry & Dead Reckoning

Odometry and dead reckoning are not completely differentiable. Often dead reckoning is de-

fined as an integration process of velocity and a known course (heading) to determine the

current pose. Odometry typically refers to calculating the current pose from an “odometer”

sensor, which could be for example the sum of the traveled path elements measured by an

encoder [11, p. 13]. However, both terms are not clearly defined and often have different mean-

ings. In this thesis, odometry is referring to the process of calculating the pose via summation

of delta path elements. Dead reckoning is referring to the process of calculating the pose via

integration of velocity. Both approaches are very easy and common methods to obtain infor-

mation about the position and orientation of a robot [12, p. 2].

Encoder Sensors

A popular sensor choice is the use of encoders detecting the rotation of moving drivetrain parts

(e.g. motors or wheels). Rotary encoders can be based on different physical working principles

(optical, inductive, magnetic, capacitive) and detect the angular displacement or velocity. They

can measure relative or absolute [13, p. 63]. The measured angle can be converted to the

traveled distance of the robot using geometric properties of the vehicle (e.g. wheel diameter,

gear ratio).

While this approach is very cheap and easy to implement, there are some major error sources

which can be categorized as non-systematic and systematic errors [14, p. 4]. Non-systematic

2 State of the Art

9

errors are caused by hard to reproduce effects like unpredictable environments (e.g. irregular-

ities of terrain, slippage) and sensor noise. They are very hard to test for and difficult to deter-

mine quantitative [14, p. 12]. Systematic errors, however, are easier to cope with. They emerge

from inaccuracies in mechanical parts, lack of system understanding or approximation in sys-

tem models. They can be estimated and reduced using different calibration techniques.

Optical Speed Sensors

Another type of motion detection technique uses optical sensors and image processing to di-

rectly infer the speed over ground information in two dimensions. This kind of sensor comes

usually as a ready-made package with the necessary image processing algorithms baked in a

chip. From there the raw movement information can be obtained easily. The advantage is the

contactless measurement independent of mechanical inaccuracies or slip. There are two main

groups of sensors using this working principle. On the one hand, there are low-cost optical

motion sensors typically being used in computer mice. They come in small packages, need

only some Milli-Watt of power and can detect up to 10 m/s [15]. However, there are some major

drawbacks which include a “cooperative” surface, calibration for each particular surface and a

very small fixed ground distance [16, p. 408]. On the other hand, there are high-performance

solutions used as reference systems for vehicle dynamics research [17]. While these sensors

are very accurate in dry environments on a plane surface, they are very expensive and rather

big [18, p. 9] [19].

2.2.2 Inertial Navigation Systems

Similarly to dead reckoning, inertial navigation systems (INS) provide pose information by in-

tegration of sensor data [21, p. 27]. However, instead of velocity integration, INS systems lev-

erage the property of inertia. Inertial sensors (e.g. IMUs) provide measurements of

acceleration and angular velocity. To obtain the pose information the acceleration data needs

to be integrated twice in combination with a single integration of the angular velocity [22, p. 19].

Therefore, an INS can be defined as a sensor combined with a computing unit to perform the

filtering and integration. Compared to odometry or dead reckoning, INS are a relatively new

trend in ground robots due to the lack of precise and cheap sensors some years ago [11, p.

147].

Figure 2: computer mouse sensor structure (left) and working principle (right) [20, Figs. 1, 2]

2 State of the Art

10

Inertial Measurement Unit

A common sensor is an inertial measurement unit (IMU) which is being used to measure an-

gular velocities using rate-gyroscopes and accelerations in all three dimensions. IMUs can be

built in micro-machined electromechanical systems (MEMS) which are cheap, small, rugged,

low power and available in high quantities [23, p. 3]. They are typically rigidly mounted on the

robot and therefore also called strapdown systems. These sensors measure the change in

velocity and orientation with respect to a global coordinate system [23, p. 7]. In order to track

the current pose, an INS first integrates the angular rate to perceive the orientation. Based on

this, the acceleration measurements can be transformed to the global reference system and

influences from gravity can be removed. Finally, the corrected acceleration data can be inte-

grated twice to obtain the position (Figure 3).

One big advantage of IMUs is that they are self-contained and do not rely on any external

environment or hardware. The data is measured directly and therefore can be outputted at a

high rate. This is especially important for aggressive movements in highly dynamic environ-

ments. The main disadvantage is the unbounded error emerging from various error sources

(Table 2-1). This is of course also true for odometry, dead reckoning and any other system

that does not rely on external references. However, due to the nature of double integration of

the accelerometer data even slightly offsets can accumulate to big errors. This makes pose

information solely based on IMUs particularly inaccurate over a longer period of time [11, p.

146]. This acceleration offsets can also be induced by an erroneous orientation state, causing

the gravity correction to not completely remove the gravitational acceleration. Therefore the

overall accuracy is mainly limited by the exactness of the gyroscope [23, p. 35]. One feasible

way to reduce the drift is to fuse the IMU data with measurements from other sensors (e.g.

magnetometer or GNSS). Very popular techniques to achieve this are Kalman or particle filters

[23, p. 33].

Error Type Description Effect on Gyroscope

measurement

(single integration)

Effect on Accelerometer

measurement

(double integration)

Bias constant bias ϵ linear growing angular er-

ror

quadratically growing position-

ing error

White Noise White noise with

some standard de-

viation σ

An angular random walk,

whose standard deviation

grows with the square

root of time

A second-order random walk,

whose standard deviation

grows as

Figure 3: Strapdown inertial navigation algorithm [23, Fig. 4]

Table 2-1: Overview of Error Types in MEMS Gyroscopes and Accelerometers [23, pp. 13, 17]

2 State of the Art

11

Temperature

Effects

Temperature-

dependent residual

bias

Any residual bias is inte-

grated into the orientation,

causing an orientation er-

ror which grows linearly

with time

Any residual bias causes an

error in a position which grows

quadratically with time

Calibration Deterministic errors

in scale factors,

alignments and lin-

earities

Orientation drift propor-

tional to the rate and du-

ration of motion

Position drift proportional to

the squared rate and duration

of acceleration

Bias Instability Bias fluctuations

(usually modeled

as a bias random

walk)

A second-order random

walk

A third-order random walk

2.2.3 Odometry based on range sensors

The current pose can also be estimated using diverse types of range sensors. In an unknown

environment, the differences between measurements can be used to infer the relative move-

ment in each step recursively [24, p. 1]. Integration over all relative steps with a known initial

position will provide an approximation of the current robot position and orientation. Depending

on the utilized sensor set the inference of the relative change in position can be different.

Ultrasonic and IR sensors

A lot of robots are already equipped with IR or ultrasonic range sensors. IR sensors measure

range distances using infrared light beams and triangulation [25]. Ultrasonic sensors measure

the time of a sonic wave echo and deduce the range information with speed of sound [26].

Both types of sensors are inexpensive and typically being used for obstacle avoidance [27, p.

517]. However, they can also be employed for self-localization and navigation [24] [27] [28]

[29]. Both Ultrasonic and IR sensors only provide a one-dimensional range measurement. This

is not sufficient for a complete 2D or 3D position estimation. Therefore arrays of sensors [29]

or sensors on motors [24] are being proposed. However, both sensors have their weaknesses.

IR sensors are very much depending on the environmental lighting conditions [27, p. 517].

Ultrasonic sensors have a limited angular resolution and unfavorable targets can cause failure

or double detections [30, p. 654].

LiDAR

Light Detection and Ranging (LiDAR) sensors offer accurate range measurements, typically

using a rotating laser beam employing time-of-flight or phase difference to determine the dis-

tance (Figure 4). Despite their high accuracy and invariance to environment illuminance, Li-

DAR sensors suffer from some other disadvantages. Currently available sensors are very

costly and have a relatively low update rate when compared to other sensors [31, p. 1]. Typi-

cally they offer a high vertical, but a poor horizontal resolution because of their working princi-

ple [32, p. 151].

Lidar-based motion estimation techniques have been well explored. They work on the principle

of comparing successive scans (point set registration). Point set registration methods can be

divided into the two categories of local and global approaches [33, p. 6]. Local techniques

2 State of the Art

12

assign point correspondences directly by the measured distances. The most common ap-

proaches are based on some variant of the Iterative Closest Point (ICP) or Normal Distribution

Transform (NDT) algorithm [33, p. 7]. In general, they are robust against small amounts of

noise. However, they require only little displacement between successive scans to avoid get-

ting stuck in local minima [33, p. 7]. The global point set registration techniques try to overcome

this issue and achieve global optimality [33, p. 9]. They are based for example on genetic

algorithms, particle swarm optimization, particle filtering, random sample consensus, simulated

annealing or feature descriptors [33, p. 9]. These methods are in general more robust against

noise and higher displacements between scans. But they require more complex parameter

tuning and are computationally more expensive. Also, a combination of both techniques is

possible.

In all methods, the estimation typically degrades in repetitive environments (e.g. a long floor).

Also, biases can appear in lidar based motion estimation [34, p. 1].

2.2.4 Visual Odometry

“Visual odometry (VO) is the process of estimating the ego-motion of an agent (e.g., vehicle,

human, and robot) using only the input of a single or multiple cameras attached to it” [36, p.

80]. VO is a special case of the broader Structure from Motion (SFM) algorithms, which ad-

dress the problem of recovering relative camera poses and three-dimensional structure from

a set of camera images. While SFM includes offline optimization steps, VO algorithms are

typically designed to work incrementally on each new image arriving in a more or less real-

time environment [36, p. 81]. They can be divided into feature-based or direct methods, which

are different approaches to gather the differences in consecutive images [37, p. 6049].

Feature-based approaches work only on sparse image details (e.g. points, lines). These fea-

tures need to be extracted from one image and then matched to the same elements in succes-

sive frames. Based on the offset of the feature pairs the movement of the robot can be

reconstructed [38, p. 1]. A major challenge in feature-based approaches is to robustly find

correspondences and remove outliers. Nonetheless, the majority of visual odometry imple-

mentations use feature-based approaches, also due to the wide availability of feature detectors.

In contrast, direct methods estimate motion directly using local intensity gradient magnitudes

and directions of the images. They can be superior in environments with little texture or out of

laser

diode

ob ect

transmitted wave

received wave

phase difference

length

Figure 4: Distance measurement principle based on phase difference using a Laser as an emitter
and a diode as receiver [35, Fig. 2]

2 State of the Art

13

focus images [38, p. 1]. In general, they are less accurate and require higher expenses in

computation [36, p. 84]. Another important factor is that direct methods are in general more

affected by errors coming from cameras with a rolling shutter [39, p. 1]. Further techniques use

hybrid approaches [38] or are based on optical flow methods [40, p. 295].

Visual odometry can be more accurate than traditional odometry in some situations (e.g. high

amount of wheel slip) [41, p. 13]. However, it still suffers from drift errors [40, p. 290]. Also,

there are some prerequisites like a good illumination, an overall static scene and enough tex-

ture. There is no ideal VO solution that works best for all environments. Rather for each

application, the best fitting trade-off between robustness, accuracy and computational com-

plexity must be selected. Depending on the number of pixels which must be processed, VO

algorithms can be quite expensive computationally [36, pp. 80–81]. This results in low framer-

ates or the need for hardware accelerators.

Monocular Camera

Monocular cameras entail only a single imager chip (typically CCD or CMOS). In most cases,

they can be modeled using the perspective camera model assuming a pinhole projection sys-

tem (Figure 5). Several parameters are needed to do transformations between the world and

image coordinate system. They can be categorized into extrinsic and intrinsic parameters. Ex-

trinsic parameters depict the transformation between a fixed reference coordinate system and

the camera coordinate system. They are determined by the camera mounting position and are

independent of the camera system being used. In contrast, intrinsic camera parameters are

very much depended on the camera system and do not rely on the camera position. They

consist of lens parameters (e.g. focal length, distortion parameters) and imager parameters

(e.g. scaling factors of pixels) [42]. The parameters can be approximated using camera cali-

bration techniques.

Monocular vision cannot provide depth information without prior knowledge of the scene. That

is why a major problem of monocular visual odometry is the scale ambiguity problem. Features

and other image elements cannot be obtained in a correct global scale matching the world

coordinate system. Additional information from other sensors (e.g. encoder, IMU) or some prior

knowledge about the scene can help to overcome this issue [40, p. 294].

(,)

Figure 5: Pinhole camera model [43, Fig. 3a]

2 State of the Art

14

Stereo Camera

Stereo vision systems consist of two separate image chips and optical systems. Therefore,

they have twice as many parameters. Additionally, there are parameters needed to describe

the transformation between left and right image. The distance between the cameras is referred

to as baseline [44, p. 370]. For each baseline, the stereo camera system performs best at a

specific distance. “In general, shorter baseline distances performed better at shorter distances,

whereas longer baseline distances tend to perform better at longer distances” [45, p. 7]. There

are additional calibration steps needed to determine the transformation between left and right

camera.

A calibrated stereo camera system enables the direct inference of 3D information via triangu-

lation from both the left and right image [40, p. 294]. This allows running stereo visual odometry

independently from any other sensors or environmental knowledge. Disadvantages of stereo

vision systems are the bigger expenses in computation, cost and package size.

2.3 Object Motion estimation

In the literature, object motion estimation is typically referred to as tracking of objects over a

longer time period [46]. In order to be able to track objects, they must be detected first. There-

fore, these kinds of methods are called detection and tracking of moving objects (DATMO).

This can be done with several types of sensors. Since none of the sensors deliver accurate

information of an object, its state can only be estimated to a certain extent. In the following

section, the most common methods will be summarized briefly.

Throughout this thesis, the term object and obstacle will be used interchangeably referring to

a moving or static entity which needs to be avoided.

2.3.1 Object motion with range sensors

Using range sensors is the most obvious choice to detect objects. There are several types of

sensors working on various physical principles. In the area of robotics most prominent are

Ultrasonic, IR and LiDAR sensors which were already introduced in section 2.2.3. While the

first two sensors fall short in terms of environmental conditions and resolution, LiDAR systems

are a popular choice for DATMO.

LiDAR

MERTZ et. al. provide a good, but a bit outdated overview of various DATMO approaches using

laser scanners in [47, p. 18]. They separate between approaches with 2D, 2D+ and 3D sys-

tems, where 2D+ refers to laser scanners with four scanning planes. In general LiDAR DATMO

methods are composed of four steps: point clustering, segmentation, data-association and

track update [48, p. 746]. The clustering and segmentation step puts data points from each

measurement into groups based on specific metrics (e.g. Euclidean distance, intensity). The

data association step then joins the newly obtained groups with already existing data from

previously tracked objects (tracks). Lastly, the tracks are updated and predicted until the next

measurement, which is typically being achieved with a Kalman filter. DEWAN et. al. also distin-

guishes between model-based and model-free methods [49, p. 4508]. Model-based variants

2 State of the Art

15

are preferable if all object types can be detected and modeled appropriately. Model-free ver-

sions are based on motion cues. They allow to track arbitrary objects without prior information.

To achieve that, they build a static map and try to detect dynamic objects in it [49, p. 4509].

However, this only works for objects that are actually moving.

2.3.2 Object motion with camera sensors

Another category of DATMO is based on camera sensors. Especially in the vehicle detection

and tracking field, camera-based solutions have been an active research area [50, p. 1773].

In general, it can be differentiated between traditional computer vision approaches and the

recently upcoming methods based on machine learning.

Computer vision techniques can be split up into the three basic steps detection, classification

and tracking [51, p. 2970]. The detection step tries to recognize all relevant parts of a scene

and clusters the pixels accordingly. Classification is being done to determine the type of the

cluster. Finally, the tracking of objects estimates the movement over multiple measurements

[51, p. 2971]. For each of the steps several approaches are available (Figure 7). Although

these methods are well studied, there are many challenges when working with traditional com-

puter vision techniques only. Particularly the detection and classification steps are challenging

with diverse illumination, background and contents of a scene [50, p. 1776].

Newer machine learning methods have shown impressive results in this area, especially in the

detection and classification steps. They typically employ specially designed convolutional neu-

ral networks (CNN) [52, p. 11]. These networks consist of many so-called neurons which are

connected and arranged in layers (network architecture). Each layer retrieves data from the

previous layer, computes the data and passes it on to the next layer. The output of each neuron

is dependent on the underlying function, the input and the respective parameters (weights). In

order to let the network achieve reasonable results, it must be trained to adapt the weights for

the given use case. This can be done with a process called backpropagation which requires a

lot of training data with known results (supervised learning) [52, p. 15]. Once the network is

trained, it can be used to mimic the same operation on unknown data. While the training re-

quires massive amounts of computational resources, the operation on newly data (inference)

is considerably cheaper. However, depending on the network size it may still require the use

of accelerators (e.g. GPGPU, vector processors) to achieve a usable framerate.

Figure 6: Example scene of a LiDAR detection and motion estimation approach [49, Fig. 3]

2 State of the Art

16

Monocular Camera

The detection and classification can be done on a single image. The image does not provide

direct 3D depth information which must be inferenced via the camera parameters (2.2.4 Visual

Odometry). Therefore, objects are usually detected, classified and even tracked in the camera

plane using pixel coordinates [50, p. 1781].

Object detection with a CNN is typically being done with general purpose detector architectures

[53, p. 1]. These can be utilized for a variety of different use cases and therefore are designed

to work mainly with monocular camera data.

Stereo Camera

When using two images with a known baseline, it is possible to calculate the disparity map and

inference 3D information from the stereo camera system (2.2.4 Visual Odometry). This 3D

data can provide motion characteristics and direct measurements of the objects physical prop-

erties [50, p. 1780].

2.4 Project description

The following chapter describes the hard- and software which are the basis for this thesis. The

available computational resources and sensor setup defines the range of feasible approaches

of ego- and object motion estimation.

2.4.1 Hardware description

The vehicle is based on a 1/10 scale Ford Fiesta® ST Rally kit from Traxxas [54]. It has an all-

wheel drivetrain and a single front steering (Figure 8, left). A DC- and servo motor are being

used for the actuation. The car can be controlled via remote control or an additional Arduino

Object
Detection

Frame
Differencing

Optical Flow
Background
Subtraction

Object
Tracking

Point-
based

Kalman Filter

Particle Filter

Multiple
Hypothesis
Tracking

Kernel-
based

Simple
Template
Matching

Mean Shift
Method

Support
Vector

Machine

Layering
Based

Tracking

Silhouette-
based

Contour
Mathing

Shape
Matching

Object
Classification

Shape-
based

Motion-
based

Color-
based

Texture-
based

Figure 7: Basic building blocks of traditional computer vision DATMO approach
[51, Fig. 1] [51, Fig. 2]

2 State of the Art

17

Mega generating the corresponding PWM signals. Further electronic parts were added in a

separate term project [3]. To have a satisfactory sensor setup, an extra IMU, LiDAR system

and stereo camera were mounted on the chassis (Figure 8, right). Six ultrasonic sensors are

present, however, will not be used in this thesis due to the late integration, missing software

support and low sensor performance for this application. All components are connected to a

central processing unit which consists of an NVIDIA Jetson TX2 developer board (Figure 9).

The board integrates the Tegra T186 system on a chip (SoC) which consists of a hex-core

ARM CPU, 256-core NVIDIA Pascal GPU and 8GB of shared memory [55]. It is a low-power

embedded platform specially designed as an edge device running even computational inten-

sive AI approaches directly on the vehicle itself [55].

2.4.2 Software description

All high-level algorithms and data processing is being done on the Jetson developer board. It

runs the Linux for Tegra (L4T) operating system which is a modified Ubuntu version with drivers

for the board. As a software development framework ROS (Robot Operating System) will be

used. It is a popular open-source prototyping platform for robotic software in both academia

and industry. Many official and third-party packages are available from the huge community.

The automatic control of the vehicle using the Arduino is still very fundamental. Although there

is an interface available in ROS for driving and steering, both require the raw PWM signals as

inputs. These are then directly forwarded by the Arduino to the proprietary motor controller and

servo motor. Also, the velocity is depending on the battery state and no underlying proper

control system is available. Therefore, all required driving for this thesis is being done manually

using the remote.

Figure 8: raw chassis & drivetrain (left) [56] and vehicle equipped with additional parts (right) [3]

2 State of the Art

18

2.5 Similar projects

In the following section, exemplary projects using a similar approach will be presented.

2.5.1 MIT RACECAR and RACECAR/J

“The MIT RACECAR is an open-source powerful platform for robotics research and education”

[57]. It is designed, developed and utilized by multiple departments for robotic courses or

hackathons. RACECAR/J uses similar hardware derived from the MIT RACECAR, which can

also be bought as a kit [58]. Both designs share a similar hardware setup. As a chassis and

drivetrain, a 1/10 scale rally car platform is being used. It is electrically propelled by a servo

Figure 9: Overview of electronic components [3]

2 State of the Art

19

motor for steering and a brushless DC-motor (BLDC) for propulsion. The BLDC motor is con-

trolled via an open-source electronic speed control (ESC), which also provides the capability

to determine the absolute motor angle and speed using encoders or similar. The RACECAR

platform also includes multiple sensor systems. It is being equipped with a scanning single-

beam LiDAR, a stereo camera and an IMU. All parts are connected to a central computing unit

which runs a standard Linux with the Robot Operating System (ROS) as software development

framework installed.

The ego-motion estimation is based on a dead reckoning (2.2.1 Odometry & Dead Reckoning)

approach. The current position (𝑥new , 𝑦new) and orientation 𝜓𝑛𝑒𝑤 is deduced from the ESC

speed measurement 𝑣ESC and the steering angle send to the servo motor 𝛿cmd (Algorithm 3).

Additional gains (𝑣gain , 𝛿gain) and offsets (𝑣offset , 𝛿offset) scale the input values correctly. 𝑙 de-

fines the wheelbase of the vehicle. The implementation lacks a dynamic error model. Positional

uncertainty values are hardcoded. Velocity uncertainty is currently not implemented.

Algorithm 3: Ego-motion estimation on MIT RACECAR [60]

EgoMotionEstimator(𝑣ESC , 𝛿cmd):

𝑣t = (𝑣ESC − 𝑣offset)/𝑣gain (2.21)

𝛿t = (𝛿cmd − 𝛿offset)/𝛿gain (2.22)

𝜓̇ = 𝑣t ⋅ 𝑡𝑎𝑛(𝛿t) /𝑙 (2.23)

𝑥̇𝑡 = 𝑣t ⋅ 𝑐𝑜𝑠(𝜓t-1) (2.24)

𝑦̇𝑡 = 𝑣t ⋅ 𝑠𝑖𝑛(𝜓t-1) (2.25)

𝑥t = 𝑥t-1 + 𝑣t ⋅ 𝑑𝑇 (2.26)

𝑦t = 𝑦t-1 + 𝑣t ⋅ 𝑑𝑇 (2.27)

𝜓𝑡 = 𝜓t-1 + 𝜓̇ ⋅ 𝑑𝑇 (2.28)

return 𝑥𝑡, 𝑦t , 𝜓𝑡

This approach relies on the correct measurements of speed in the motor controller. However,

the true velocity can deviate when slippage occurs. Furthermore, the set value of the servo

motor can be different from the true value e.g. when calibration is not perfect or the value

exceeds the maximum physically possible value. An additional particle filter based on ray cast-

ing was developed, which uses the pose information from dead reckoning and laser scan

measurements to localize the vehicle in a known map [61]. This approach requires preliminary

knowledge of the environment.

Figure 10: RACECAR/J hardware platform [59]

2 State of the Art

20

Furthermore, there is some work done on object estimation. WIESER et. al. developed a cone

detection for a simple object following and avoidance use case with the MIT RACECAR [62].

The detection is based on the color of the cone in the camera image. Using the camera pa-

rameters, the detected cone is being transferred in world coordinates. No tracking or motion

estimation of the cone is being done.

2.5.2 F1tenth

The F1tenth project is also designed for educational purposes. It is being used as a reference

hardware platform for autonomous racing competitions and developed by the University of

Virginia, the University of Pennsylvania and the University of Modena and Reggio Emilia [63].

Like the MIT RACECAR, it also builds upon a ready-made chassis enhanced with custom

electronics, sensors and computing power. The sensor setup is quite similar, because it also

uses a scanning single-beam LiDAR, a stereo camera and an IMU. Also, all components are

connected to a central processing unit, which runs Linux and ROS for software development.

The only difference is that instead of replacing the ESC, the first version of the F1tenth refer-

ence platform utilizes the standard drivetrain. Therefore it does not include any type of encoder

or speed sensors, which are only planned for the second version of the hardware revision [64].

Because of the lacking sensors for position or velocity measurement, the project utilizes the

LiDAR data for localization (2.2.3 Odometry based on range sensors). Laser measurements

from successive scans are compared and matched. The change in pose and orientation is

computed based on a minimization problem to achieve the best overlap of the scans. However,

in order to achieve good results, some requirements must be satisfied. First, it needs objects

which can be detected by the sensor and have heterogeneous features. Also, the differences

in subsequent LiDAR measurements should only be small to have sufficient overlap. This limits

the possible speed based on the scan rate of the sensor [65]. Additional more advanced local-

ization techniques (adaptive Monte Carlo Localization) are also discussed, however again they

depend on prior environmental information.

Since the cars drive separately by themselves on the track, there is currently no obstacle de-

tection or motion estimation available.

Figure 11: F1tenth hardware platform [63]

2 State of the Art

21

2.5.3 TUM Phoenix Robotics

TUM Phoenix Robotics is a student research group at the chair of automatic control at the

Technische Universität München. It consists of students from different institutes and takes part

in a competition, the CaroloCup [66], against teams from all over Europe. In the competition,

a model car must find its way autonomously on an unknown track [67]. Like the previous

projects, some mechanical parts are off the shelf. However, the same custom open source

ESC as in the MIT RACECAR project is being used. With Hall-sensors measuring the current

BLDC motor position, this setup allows to monitor the absolute motor angle and deduce the

current speed of the vehicle. Additional sensors include an industrial grade mono camera, a

scanning single beam lidar system and an IMU. A central computing unit with a Linux system

and a custom-made software framework (“Lightweight Modular System” [68]) was being used

until 2018. Currently the team transitions all software packages to ROS to achieve better main-

tainability.

The first approach to determine the ego-motion of the vehicle is a sensor fusion of IMU and

velocity data using an extended Kalman Filter (2.1.2 Non-Linear State estimation) [70]. In com-

bination with the project, a C++ header only Kalman Filter library was being developed [71].

The filter is based on a constant turn rate and acceleration (CTRA) model [72, p. 535]. The

model [73] has no inputs and can be defined as a non-linear state estimation problem

𝑥𝑡+𝑇⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ =

(

𝑥𝑡+𝑇
𝑦𝑡+𝑇
𝜓𝑡+𝑇
𝑣𝑡+𝑇
𝑎𝑡+𝑇
𝜓̇𝑡+𝑇)

= 𝑥𝑡⃗⃗ ⃗ +

(

Δ𝑥𝑡
Δ𝑦𝑡
𝜓̇𝑡 𝑇
𝑎𝑡 𝑇
0
0)

 . (2.29)

with:

Δ𝑥𝑡 =
1

𝜓̇𝑡
2 [(𝑣𝑡𝜓̇𝑡 + 𝑎𝑡𝜓̇𝑡𝑇)s𝜓 − 𝑣𝑡𝜓̇𝑡 sin(𝜓𝑡) + 𝑎𝑡c𝜓 − 𝑎𝑡 cos(𝜓𝑡)] (2.30)

Δ𝑦𝑡 =
1

𝜓̇𝑡
2 [−(vt𝜓̇𝑡 + 𝑎𝑡𝜓̇𝑡T)c𝜓 + vt𝜓̇ cos(𝜓t) + 𝑎𝑡s𝜓 − 𝑎𝑡 sin(𝜓t)] (2.31)

Figure 12: Phoenix car being used in CaroloCup 2017 and 2018 [69]

2 State of the Art

22

c𝜓 = cos(𝜓t + 𝜓̇𝑡T) and s𝜓 = sin(𝜓t + 𝜓̇𝑡T) .

The measurement vector consists of the velocity from the ESC 𝑣ESC, the acceleration 𝑎x,IMU,

𝑎y,IMU and the turn rate 𝜓̇IMU data from the IMU

(

𝑣ESC
𝑎x,IMU
𝑎y,IMU

𝜓̇IMU

) = (

𝑣𝑡+𝑇
𝑎𝑡+𝑇

𝜓̇𝑡+𝑇 𝑣𝑡+𝑇
𝜓̇𝑡+𝑇

) .

(2.32)

This approach works well when the covariances are tuned correctly and the vehicle is driving

on a smooth ground. It is computationally inexpensive and comes with a fully covered error

estimation. However, this method cannot cope with slippage or uneven ground. Also, the

model must be simplified for 𝜓̇𝑡 → 0 to avoid unbounded outputs.

Additionally, the team implemented a second approach to estimate the ego-motion of the ve-

hicle using visual odometry (2.2.4 Visual Odometry) [74]. The algorithm utilizes the mono cam-

era image and uses a feature-based detection method. Firstly, features are extracted using

the Features from Accelerated Segment Test (FAST [75]) to detect edge points in a certain

region of the image. In the subsequent frame, these features are tracked using the Lucas-

Kanade optical flow algorithm [76]. If enough feature pairs in two consecutive images were

found, both lists of image points are transformed to world coordinates. This can be done as-

suming all feature points are located on the ground plane (planar assumption) using a prior

calibrated homography transformation between the camera and the floor. Both world point lists

𝑃𝑎,𝑛(𝑥, 𝑦) and 𝑃𝑏,𝑛(𝑥, 𝑦) are then being used to determine the transformation parameter

(𝛥𝑥, 𝛥𝑦, 𝜓) between both pairs [77]. Because of the planar assumption this is, being done by

solving a system of linear equations (2.33) using singular value decomposition (SVD).

(

𝑃𝑎1𝑥 −𝑃𝑎1𝑦 1 0

𝑃𝑎1𝑦 𝑃𝑎1𝑥 0 1

𝑃𝑎2𝑥 −𝑃𝑎2𝑦 1 0

𝑃𝑎2𝑦 𝑃𝑎2𝑥 0 1
… … … …
𝑃𝑎𝑁𝑥 −𝑃𝑎𝑁𝑦 1 0

𝑃𝑎𝑁𝑦 𝑃𝑎𝑁𝑥 0 1)

⋅ (

𝑐𝑜𝑠(𝜓)

𝑠𝑖𝑛(𝜓)
𝛥𝑥
𝛥𝑦

) =

(

𝑃𝑏1𝑥
𝑃𝑏1𝑦
𝑃𝑏2𝑥
𝑃𝑏2𝑦
…
𝑃𝑏𝑁𝑥
𝑃𝑏𝑁𝑦)

 (2.33)

This approach is simple and computationally light. However, it requires stable features on the

ground, like lane markings or other patterns. In a more generic environment, this can be prob-

lematic. Even though there are many different descriptors available, most of them detect fea-

tures on non-ground elements of the image (Figure 13). Therefore, this simple technique is not

suitable for this project.

For object detection, the team uses both the camera and LiDAR sensor. The point cloud data

from the laser measurements are segmented into multiple objects. If the objects have enough

points they are assigned with a fixed width, initial trust value and added to the environment

object list. Similarly, the lower objects edges are detected in the camera image using gradient

differences. This assumes the coarse location of the object is already known and that there is

always a high image gradient between the floor and object. The detected edge points are then

transformed from image to world coordinates. The width of the object is calculated from the

distance between the points. An initial trust value is being added and the object is saved in the

2 State of the Art

23

environmental object list. A separate object fusion module merges all new and old objects

based on the positional coordinates. The trust value is updated via some heuristic rules and

thresholds. If an old object is not found in the new measurements its trust value is gradually

reduced. An object tracker based on a Kalman Filter is available, however not being used.

KA E ORB

AKA E FAST

BRISK MSER

SIFT S RF

Figure 13: Example scene with feature detections from different OpenCV descriptors using default settings

2 State of the Art

24

2.6 Derivation of the problem statement

RC cars have many advantages compared to utilizing real-world vehicles for ADS research

and education. They are cheaper in terms of expense for parts, maintenance and operation.

This allows building a vehicle even with a low budget. They also reduce the burden of safety

and security measures dramatically, allowing easy prototyping of software components on real

hardware in preliminary stages. This makes them ideal for fundamental research and educa-

tional purposes. Of course, there are also a few shortcomings. The most obvious reason is

that the vehicle dynamics are different from the dynamics of real world cars. Typically, they

have a different drivetrain concept, different tire types and simplified suspensions. This makes

it difficult to use traditional methods, because of the unknown parameters and different hard-

ware. Also, there is a vast variety of different sensor setups in each project. The available

sensors and computational resources define the feasibility of each ego- or object motion ap-

proach. Therefore, there is not one off-the-shelf solution fitting best in all situations. Rather

there are many possible ways, each with its unique advantages and disadvantages depending

on the circumstances.

The goal of this thesis is to evaluate, implement and compare different approaches in order to

find the optimal solution for this use case and hardware setup. The implementation should fit

into the overall project and interface with the rest of the software stack. The software packages

should be modular and encourage reusability. Therefore, standard interfaces are preferred

when available. All software implementation is being done in C++ or Python with ROS as the

underlying framework.

25

3 Course of actions

In a first step, the sensors for each ego and object motion estimation method must be prepared.

There are currently no encoders available. Therefore, they need to be embedded into the ve-

hicle and a stable connection to the central processing unit must be ensured. Furthermore, the

software for each sensor has to be integrated. Fortunately for most sensors already available

ROS drivers exist and may only be adapted to the project's environment. Each sensor must

be calibrated with an appropriate method. Thereafter the sensor measurements will be ana-

lyzed, and additional filters may need to be developed to improve the signal for further pro-

cessing.

In the next step, different implementations of ego and object motion estimation will be devel-

oped. They have to be analyzed and implemented in the available software stack. For some

approaches, a custom software package has to be programmed, while for others already ex-

isting packages must be adapted, tested and integrated. The selection of approaches will cover

all presented state of the art methods. Therefore, diverse approaches in terms of used sensor

type and/or underlying working principle will be tested. Finally, the parameters need to be ex-

amined and tuned to tweak performance.

In a subsequent evaluation step, the different methods will be compared and the results are

being analyzed. This will be done on a basis of metrics derived from the testing environment

and outline of this thesis. There is no ground truth available for both parts (ego- and object

motion) of this thesis. Therefore, alternative methods to estimate the quality and performance

of the implemented approaches will be developed.

Last but not least, a summary of the whole thesis and the presented approaches will be given

at the end. An additional conclusion will discuss the achieved results and show room for im-

provement in further research.

3 Course of actions

26

27

4 Implementation

In this chapter, the actual implementation is developed based on the existing hardware and

problem statement. It first starts with the sensor implementation and calibration which is a

fundamental building block for the subsequent steps. Then various ego and object-motion

techniques will be developed and implemented based on the previously presented methods.

4.1 Implementation and Calibration of Sensors

The following section describes the integration process of each sensor type. This process

heavily depends on the existing hardware and software stack. To achieve accurate measure-

ments, extra calibration steps may be needed. Also, additional signal processing to remove

noise or transform the data into the correct system of reference might be required.

4.1.1 Wheel Encoder

Implementation

To make use of odometry or dead reckoning approaches (2.2.1 Odometry & Dead Reckoning),

additional sensors are integrated into the existing hardware design to measure motion incre-

ments. While optical sensors promise benefits in highly dynamic driving situations with a sig-

nificant amount of slippage, the advantages of easier and inexpensive rotary encoders

predominate for this particular use case. Therefore, a sensor solution based on magnets and

hall-sensors is being implemented for each wheel. The mounts for both the magnets and the

hall-sensor are custom designed and 3D printed to fit perfectly into the existing hardware setup

(Figure 14).

Figure 14: CAD design of sensor mount and magnet ring (left),
3D printed sensor mount (middle),

3D printed magnet ring (right)

4 Implementation

28

All four hall-encoder sensors are connected to rising-edge enabled interrupt pins of the already

available Arduino board. The total distance driven 𝑠t is incremented by the distance between

two magnets Δ𝑠 on each new interrupt event

𝑠t = 𝑠 t-1 + Δ𝑠 = 𝑠 t-1 +
𝑑wheel ⋅ π

𝑛magnets
 . (4.1)

The resolution is only 10 magnets per revolution. Therefore, a velocity calculation based on

the number of interrupts divided by cycle-time would lead to inaccurate values suffering from

discretization errors. This is especially true when using high update rates. Accordingly, a ve-

locity estimation based on the time difference Δt between two successive interrupt events is

being developed. When no magnet detection occurred in the last cycle, an additional stopping

counter nstop is increased. Hence it reduces the speed linearly when the vehicle is stopped.

The velocity 𝑣t is set to zero if it drops below a certain threshold 𝑣thres (4.2).

𝑣t = {

Δ𝑠

Δ𝑡 ⋅ 𝑛stop
 , 𝑣t ≥ 𝑣thres

0 , 𝑣t < 𝑣thres

 (4.2)

Both the traveled distance and velocity are sent to the main computing platform via a serial

interface utilizing a high-level ROS compatible protocol [78] and a custom defined message

type (Table 6-3).

Next, the distance and velocity calculations will be tested. While the distance measurement

can be checked in the calibration process, the velocity is measured during external excitation

with a motor using a known constant rotation speed (Table 4-1).

external motor

speed in m/s

average speed

measurement in m/s

standard deviation of

speed measurement

variance of speed

measurement

Error in

%

0.673 0.672 0.01040 0.00012 0.247

0.748 0.747 0.01364 0.00019 0.134

0.898 0.895 0.01528 0.00023 0.264

The results show that the speed measurements are very exact with a low error. Therefore, no

further action or calibration is being conducted for the velocity generation. The variance of the

fastest speed test will be used as a constant variance parameter 𝑣𝑎𝑟𝑣 for all velocity measure-

ments and wheels

𝑣𝑎𝑟𝑣 = 0.00023
m2

s2
 . (4.3)

Calibration

Inaccuracies introduced by systematic errors can be reduced using calibration techniques.

First, it is important to differentiate between several types of systematic errors. BORENSTEIN

and FENG describe the most important systematic errors as [14, p. 5]:

• average wheel diameters
𝑑right+𝑑left

2
 differ from nominal diameter 𝑑nominal

Table 4-1: comparison of externally applied and measured speed

4 Implementation

29

𝑒𝑟𝑟𝑠 =
𝑑right + 𝑑left

2 ⋅ 𝑑nominal
 (4.4)

• inequality of wheel diameters between the left 𝑑left and right 𝑑right wheel

𝑒𝑟𝑟𝑑 =
𝑑right

𝑑left
 (4.5)

• discrepancy between actual 𝑏actual and nominal 𝑏nominal track width

𝑒𝑟𝑟𝑏 =
bactual
bnominal

 (4.6)

The scaling error 𝑒𝑟𝑟𝑠 can easily be ascertained through driving a straight line with a known

distance. The error results from the in reality driven distance divided by the average measure-

ment (Table 4-2). The data also shows that the average displacement caused by systematic

errors is a lot higher than the standard deviation caused by non-systematic errors.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Average Std. Dev. 𝑒𝑟𝑟𝑠

Front-Left 20.42 20.45 20.39 20.39 20.42 20.41 0.025 0.980

Front-Right 20.58 20.45 20.51 20.45 20.51 20.50 0.054 0.976

Rear-Left 20.48 20.48 20.48 20.45 20.51 20.48 0.021 0.977

Rear-Right 20.39 20.45 20.39 20.39 20.42 20.41 0.027 0.980

Average 20.47 20.46 20.44 20.42 20.47 20.45 0.032 0.978

Further the positional variance per square meter 𝑣𝑎𝑟𝑝𝑝𝑚² of the wheel encoder measurements

can be calculated from the average standard deviation 𝜎̅ divided by the test distance 𝑑 via

𝑣𝑎𝑟𝑝𝑝𝑚² = (
𝜎̅

𝑑
)
2

= (
0.032 m

20 m
)
2

= 2.56 ⋅ 10−6 . (4.7)

Both the error caused by the inequality of wheel diameters 𝑒𝑟𝑟𝑑 and unknown effective track

width 𝑒𝑟𝑟𝑏 are more difficult to estimate. There are many variants of calibration techniques

which focus on two wheeled [14][79][80] or car like mobile robots [81][82][83]. The car like

approaches typically are based on a measurable steering angle, which was not available in

this project (2.4.2 Software description). Therefore, the widely cited UMBmark method by

BORENSTEIN and FENG [14], using only the front wheel encoders, is being utilized for the fol-

lowing calibration of 𝑒𝑟𝑟𝑑 and 𝑒𝑟𝑟𝑏. While this approach is mainly meant for differential drive

robots, it can also be used for other types of robots [14, p. 1].

The test is conducted on a plain ground with uncalibrated parameters (b = bactual = bnominal

and dright = dleft). The vehicle travels in a square pattern with a known edge length 𝐿 in clock-

wise (CW) and counterclockwise (CCW) direction. According to the original procedure, the

vehicle automatically drives itself based on its own odometry calculation to achieve a perfect

square and return to the start position. The displacement to the actual real-world position is

then used as eran ror for later calibration. However, since our vehicle is not able to drive itself

precisely, a perfect square is driven manually with the remote. After that, the odometry is cal-

culated based on the implemented algorithm (4.2.1 Odometry). The offsets between starting

and end positions (ϵ𝑥i, CW, ϵ𝑥i, CCW, ϵ𝑦i, CW, ϵ𝑦i, CCW) are then being used as errors instead. The

sign of the measured values is flipped to account for the change in perspective. To minimize

Table 4-2: Measurements and scaling error after driving a 20 m straight line in multiple trials

4 Implementation

30

influences of non-systematic errors, 𝑛 = 𝑛𝐶𝐶𝑊 + 𝑛𝐶𝑊 test runs are conducted and the center

of gravity (𝑥c.g., CW, 𝑥c.g., CCW, 𝑦c.g., CW, 𝑦c.g., CCW) is calculated (eq. (4.8) - (4.9)).

𝑥c.g., CW =
1

𝑛𝐶𝑊
∑ −ϵ𝑥i, CW
𝑛𝐶𝑊
𝑖=1 𝑥c.g., CCW =

1

𝑛𝐶𝐶𝑊
∑ −ϵ𝑥i, CCW
𝑛𝐶𝐶𝑊
𝑖=1 (4.8)

𝑦c.g., CW =
1

𝑛𝐶𝑊
∑ −ϵ𝑦i, CW
𝑛𝐶𝑊
𝑖=1 𝑦c.g., CCW =

1

𝑛𝐶𝐶𝑊
∑ −ϵ𝑦i, CCW
𝑛𝐶𝐶𝑊
𝑖=1 (4.9)

The average errors can then be used to calculate the errors 𝑒𝑟𝑟𝑑 and 𝑒𝑟𝑟𝑏 with the intermedi-

ate variables 𝛼, 𝛽 and 𝑅 [14, pp. 29–35]. 𝛼 and 𝛽 can be calculated from either the 𝑥 or 𝑦 val-

ues. Similarly to [80, p. 7] the average of both options is being used (eq. (4.10) - (4.14)).

𝛼 = (
𝑥c.g., CW + 𝑥c.g., CCW

−4 ⋅ 𝐿
+
𝑦c.g., CW − 𝑦c.g., CCW

−4 ⋅ 𝐿
) ⋅
1

2
 (4.10)

𝛽 = (
𝑥c.g., CW − 𝑥c.g., CCW

−4 ⋅ 𝐿
+
𝑦c.g., CW + 𝑦c.g., CCW

−4 ⋅ 𝐿
) ⋅
1

2
 (4.11)

𝑅 =
𝐿/2

𝑠𝑖𝑛(𝛽/2)
 (4.12)

𝑒𝑟𝑟𝑑 =
𝑅 + 𝑏/2

𝑅 − 𝑏/2
 (4.13)

𝑒𝑟𝑟𝑏 =
𝜋/2

𝜋/2 − 𝛼
 (4.14)

The correction factors 𝑐left, 𝑐right and the actual track width 𝑏actual can then be calculated based

on these errors (eq. (4.15) - (4.17)).

𝑐left = 𝑒𝑟𝑟𝑠 ⋅
2

𝐸𝑑 + 1
 (4.15)

𝑐𝑟𝑖𝑔ℎ𝑡 = 𝑒𝑟𝑟𝑠 ⋅
2

(1/𝐸𝑑) + 1
 (4.16)

𝑏actual = 𝑒𝑟𝑟𝑏 ⋅ 𝑏nominal (4.17)

A second approach is being developed to find values of 𝑒𝑟𝑟𝑑 and 𝑏actual. This method is based

on the hyperparameter optimization framework Hyperopt [84]. The framework is based on py-

thon and allows to search for a close to optimal solution of a multidimensional problem using

various search algorithms. Currently, it supports random search and Tree-of-Parzen estima-

tors (TPE) [84, p. 14]. The possible parameters are described in the search space which can

be modeled with various distributions [84, p. 15]. For our problem, we use the TPE algorithm

and define the search space uniformly (Table 4-3).

parameter distribution min value max value

𝑒𝑟𝑟𝑑 uniform 0.19 0.23

𝑏actual uniform 0.99 1.01

The next step is to implement an objective function which will be executed once per trial and

returns a loss. The goal of the algorithm is to find a parameter set in the search space that

reduces the loss to a minimum. To achieve this, the objective function is being executed many

Table 4-3: search space parameter being used

4 Implementation

31

times using different parameter sets. The function in our problem calculates a loss for each

CW or CCW round based on the displacement between the start and end position. This also

includes a rotational offset. To weight positional and rotational errors (ϵ𝑥i, ϵ𝑦i, ϵ𝜓i) differently,

they are normalized by empirically chosen acceptable errors (ϵ𝑥norm, ϵ𝑦norm, ϵ𝜓norm) (4.18).

The total loss for this parameter set is calculated from the average losses for each round (4.20).

𝑙𝑜𝑠𝑠𝑖 = √(
ϵ𝑥i

ϵ𝑥norm
)
2

+ (
ϵ𝑦i
ϵ𝑦norm

)
2

+ (
ϵ𝜓i
ϵ𝜓norm

)
2

 (4.18)

𝑛total = 𝑛𝐶𝑊 + 𝑛𝐶𝐶𝑊 (4.19)

𝑙𝑜𝑠𝑠total =
1

𝑛total
∑ 𝑙𝑜𝑠𝑠𝑖

𝑛total

𝑖=0

 (4.20)

The objective function is then executed many times in parallel using multiple workers. The

results are stored in a database and can be analyzed afterward.

4.1.2 IMU

Implementation

An IMU board (Figure 15) containing a three-axis sensor and an additional microcontroller is

already mounted on the vehicle and connected via serial (USB) to the Jetson. The sensor

consists of an accelerometer, gyroscope and magnetometer in each direction (9 dimensions

of freedom). It combines high-performance measurements with a low price tag and small foot-

print [85]. The extra microcontroller interfaces the sensor, allows preprocessing of the raw

measurements and forwards the data via serial. It is Arduino compatible and can be pro-

grammed with the standard Arduino IDE with the help of some extra libraries.

The board is already supported by a firmware including an Attitude Heading Reporting System

(AHRS) and a ROS compatible interface [86], which publishes IMU messages (Table 6-4). The

AHRS algorithm [87], running on the separate microcontroller, fuses the measurements from

different sensors to remove gyroscope drift, take care of other sensor noise and numerical

errors [86]. Alternatively, the IMU sensor itself has a built-in digital motion processor (DMP)

which provides some proprietary motion processing algorithms like the integration of gyro-

scope and accelerometer measurements [88]. Although the DMP allows processing at a faster

rate (200 Hz [88, p. 4]), the AHRS algorithm is chosen for this project, because it provides

more functionality and is open source. The firmware also provides easy to use parameter

changes to configure the sensor itself (for example the sample rate, inbuild low-pass filter and

sensor sensitivities [89, p. 22]).

One drawback of the IMU is, that the z-axis of the magnetometer measurement always points

towards the longitudinal axis of the vehicle, instead of pointing towards a fixed cardinal point

(e.g. north pole). This is probably due to the close proximity to the motor (hard iron effects) or

other magnetic disturbances (soft iron effects) [90, p. 27]. Therefore, it cannot be used for the

yaw angle estimation (Figure 16) and drift correction utilizing magnetometer data is turned off.

Accordingly, magnetometer data is not being considered any further in this thesis.

4 Implementation

32

Calibration

Table 2-1 lists the possible error sources. Some of them can be addressed with the calibration

techniques which are already included in the firmware. Scaling and bias errors for the accel-

erometer can be reduced by rotating the device slowly around all axis. The maximum and

minimum measurements for each axis are recorded in a parameter file. These values can then

be utilized to calculate the true acceleration by using the gravity as a reference for the min and

max value. For the gyroscope only a constant bias removal is possible. To calculate the offset,

the device is untouched lying still on the ground. Gyroscope measurements are taken over a

period of time and the average of these measurements is being used as constant offset, which

is subtracted on future measurement [86].

An additional IMU filter package is being developed to address the problems of temperature

drift and alignment errors. First, the temperature drift can be found in the sensor specification

(Table 4-4). While the accelerometer measurements are negligibly affected by different tem-

peratures, the gyroscope data can show significant offsets for zero rate output. For this project,

it is assumed that the temperature conditions stay the same while driving and have no effects

a) aw from wheel encoder
b) aw from gyroscope
c) aw from AHRS fusion

measurements

ya
w

 a
n
g
le

 i
n
 r
a
d
ia

n
ts

Figure 15: 9DoF Razor IMU board from Sparkfun Electronics comprising of an MPU-9250 sensor
(smaller chip) and Atmel SAMD21 microprocessor (bigger chip) [91]

Figure 16: Comparison of yaw angle calculation using different techniques:
a) integration of yaw rate from front wheel encoders (4.2.1)

b) integration of yaw rate from gyroscope sensor around the z-axis (4.2.2)
c) yaw orientation output from the AHRS fusion algorithm with drift compensation utilizing

magnetometer measurements enabled

4 Implementation

33

on the measurements. However, an autocalibration of gyroscope offsets, like the previously

described bias removal, was implemented when no motion for a longer time is detected.

Parameter Typical Units

Gyroscope Zero Rate Output Variation Over Temperature ±30 °/s

Accelerometer Zero-G Level Change vs. Temperature ±1.5 mg/°C

A second issue is the rotational alignment of the sensor coordinate system. It is difficult to

perfectly align the sensor axis with regards to the earth gravitational system in a way that the

roll and pitch angle are zero when standing still. This can be due to a not perfect mounting

position, different loading conditions of the vehicle or a slightly crooked floor. A non-zero pitch

or roll angle lead to parasitic accelerations from gravity in the x or y-direction. To reduce this

problem an additional autocalibration mechanism was developed in the IMU filter package.

Like the gyroscope offset autocalibration, the average values for each acceleration axis (𝑎̅𝑥, 𝑎̅𝑦,

𝑎̅𝑧) are computed when no motion is detected. The pitch Θ and roll Φ angles are then calcu-

lated [90, p. 42] with

Θ = asin (
𝑎̅𝑥

9.81 m/s2
) (4.21)

Φ = −atan(
𝑎̅𝑦

𝑎̅𝑧
) (4.22)

Both angle offsets are used to calculate a rotation matrix 𝑅(−Φ,−Θ, 0). The rotational matrix

and the mounting position t 𝒱 of the sensor transform the IMU message with

𝜔⃗⃗ 𝒱 = 𝑅(−Φ,−Θ, 0) ⋅ 𝜔⃗⃗ ℐ (4.23)

𝑎 𝒱 = 𝑅(−𝛷,−𝛩, 0) ⋅ 𝑎 ℐ + 𝜔⃗⃗ 𝒱 × 𝜔⃗⃗ 𝒱 × 𝑡 𝒱 (4.24)

from the sensor coordinate system ℐ to the vehicle coordinate system 𝒱 to eliminate the biases.

It is assumed that the z-axis of 𝒱 is perfectly aligned with the gravity vector in all times (planar

assumption). The yaw angle is not being altered.

However, not all error sources listed in Table 2-1 can be treated with calibration measures. For

example, the noise caused by vibrations of the chassis and drivetrain parts produce a random

walk which cannot be fully compensated. Although the IMU already provides a low pass filter

[89, pp. 8–9], it is not sufficient to remove all major noise components in the acceleration

measurements. Therefore, an additional moving average filter was directly added to the IMU

firmware (Figure 17).

Table 4-4: Temperature sensitivity specification for the MPU-9250 sensor in operating conditions
 [89, pp. 8–9]

4 Implementation

34

Of course, there remains some noise that cannot be easily removed without sacrificing the

dynamic properties of the sensor measurements. To at least quantify the noise level, various

measurements at constant speeds are recorded. The variance of acceleration and gyroscope

measurements increase with higher velocities (Figure 18 & Figure 19). A second order poly-

nomic curve is fitted through the calculated variances at different speeds to model this behavior.

acceleration raw
acceleration filtered

measurements

a
c
c
e
le

ra
ti
o
n
 i
n
 m

 s

Figure 17: Comparison of raw and filtered (moving average with size 20) x acceleration
during a test drive

Figure 18: Acceleration variances for different velocities

4 Implementation

35

Based on this polynomial relation, the variances of the output IMU message (Table 6-4) can

be adapted dynamically with the current velocity information.

4.1.3 LiDAR

Implementation

The vehicle is equipped with one LiDAR sensor which is mounted in the front of the vehicle.

The sensor provides a scan angle of 270° with an angular resolution of 0,25° with a 40 Hz

frequency [92, p. 2]. It measures distances of up to 60 m with an accuracy of ±40 mm [92, p.

3]. It is connected to the Jetson via Ethernet and uses the SCIP communication protocol [93].

There already exists a ROS driver package to interface the sensor [94] and output a laser scan

message (Table 6-5) for each measurement.

 . . .

velocitiy in m s

 .

 .

 .

 .

 .

 .

 .

 .

 .

g
yr

o
s
c
o
p
e
 v

a
ri
a
n
c
e
 r
a
d

 s

variance

fitted curve

variance y

fitted curve y

variance z

fitted curve z

 ens
 aser

Mirror (transmit)

Optical Guide lane

Mirror (receive)

 hotodiode

Scanner

Spinndle Motor

Control Curcuit

 mm

m

m

Figure 19: Gyroscope variances for different velocities

Figure 20: Hardware architecture of a prototype LiDAR sensor from the Hokuyo "URG" series which is
similar to the sensor being used in the project (UST-20Lx) [35, Fig. 1]

4 Implementation

36

Calibration

The ROS driver implementation [94] provides a time calibration functionality. This allows

determining the communication delay through the exchange of a series of messages. When

enabled this is done on each startup of the node [95].

The measurements take place in the laser coordinate system ℒ. The transformation parame-

ters between ℒ and 𝒱 need to be found, in order to obtain the data in the vehicle coordinate

system 𝒱. The translational mounting position of the sensor is measured with a tape and ruler.

The pitch angle is determined more precisely, because it can lead to large deviations in the z

coordinate when measuring distances far away. Although the laser is not visible with the hu-

man eye, it can be observed with a special camera. This can be used to measure the height ℎ

of the laser beam from different distances 𝑑 and calculate the pitch displacement using a trivial

trigonometric relation (4.25).

Θ = atan (
ℎ1 − ℎ2
𝑑1 − 𝑑2

) (4.25)

Because the measured angle is negligibly small (Figure 21), it is assumed that the pitch angle

has no influence on the ego-motion estimation. It is therefore set to zero (no displacement with

respect to 𝒱). This assumption is also being made for the yaw and roll angle.

4.1.4 Camera

Implementation

A stereo vision camera is mounted on the vehicle [96]. It supports various resolutions with

different available framerates (Table 4-5). Both camera sensors use an electronically synchro-

nized rolling shutter with a f/2.0 aperture and wide angle all-glass lenses with reduced distor-

tion [96]. The device is connected to the Jetson via USB 3.0 and a ROS driver package is

already available [97]. For this thesis, the camera SDK version 2.2 is being used [98]. It pro-

vides a lot of built-in functionality such as depth image generation and visual odometry. Some

of the computational exercises is being off-loaded to the Jetson GPU (2.4.1 Hardware descrip-

tion).

Figure 21: Camera image of the horizontally moving laser beam at different distances:
Left: 35cm distance and 12,5cm height
Right: 245cm distance and 17cm height

Resulting in a Θ = 1,23° displacement of the pitch angle

4 Implementation

37

Video Mode
Total Output

Resolution (Pixel)

Available

Frame Rates (Hz)
Field of View

2.2K 4416x1242 15 Wide

1080p 3840x1080 30,15 Wide

720p 2560x720 60,30,15 Extra Wide

WVGA 1344x376 100,60,30,15 Extra Wide

Unfortunately, the default camera coordinate systems orientation do not comply [100] with the

ROS standard for optical frames (Figure 22), therefore a code patch [101] is applied to fix this

orientational mismatch.

Most Visual Odometry approaches are designed to track 3D movements. Even though the

vehicle travels on the ground and most motion should be detected in the x or y-direction, there

may also be some movement in the z-direction due to noise. This erroneous drift in z violates

the planar assumption, which is being made in this thesis. To overcome this issue, an addi-

tional filter is being developed, which projects the deficient motion estimation output on the

ground plane and publishes the corrected data output. Both input and output message are of

ROS Odometry type (Table 6-7). The projection is being done by rotating the estimate in the

negative roll and pitch angle direction to correct the rotational displacement. Additionally, the

transformed z component is being subtracted to compensate for the linear offset to the ground

plane. The transformation parameter for the rotation (Φ𝑝, Θ𝑝, 𝜓𝑝) and translation (𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

can be calculated with

[

Φ𝑝
Θ𝑝
𝜓𝑝

] = 𝑅(Φ, Θ, 𝜓) ∙ [
−Φ
−Θ
0
] (4.26)

[

𝑥𝑝
𝑦𝑝
𝑧𝑝
] = [

0 0 0
0 0 0
0 0 −1

] ∙ 𝑅(Φ𝑝, Θ𝑝, 𝜓𝑝) ∙ [
𝑥
𝑦
𝑧
] . (4.27)

To obtain the corrected pose (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , Φ𝑐 , Θ𝑐 , 𝜓𝑐) the transformation parameter need to be

applied to the original deficient data output

[

Φ𝑐
Θ𝑐
𝜓𝑐

] = 𝑅(Φ𝑝, Θ𝑝, 𝜓𝑝) ∙ [
Φ
Θ
𝜓
] (4.28)

[

𝑥𝑐
𝑦𝑐
𝑧𝑐
] = 𝑅(Φ𝑝, Θ𝑝, 𝜓𝑝) ∙ [

𝑥
𝑦
𝑧
] + [

𝑥𝑝
𝑦𝑝
𝑧𝑝
] . (4.29)

right

camera

optical

left

camera

optical

y

y

z

z

Table 4-5: Available video modes [99]

Figure 22: ROS coordinate frame orientation convention for stereo images [102]

4 Implementation

38

Calibration

Like the other sensors, the camera also requires several calibration steps. The parameters of

both optical systems (left and right) are available in an online database and automatically in-

stalled during the setup process [103]. Therefore, no intrinsic camera calibration is required

and both raw and rectified images are provided by the camera driver. The camera parameters

for both cameras are automatically published in ROS camera info messages [104] when sub-

scribing to the respective image topic.

The extrinsic translational parameters are measured by hand. To comply with the ROS stand-

ard for optical camera coordinate systems (Figure 22), the yaw angle is rotated by -90 degrees

and then the roll angle by -90 degrees with respect to the vehicle coordinate system 𝒱. More-

over, the angle offset determined in the extrinsic laser calibration (4.1.3 LiDAR) is added. By

default, the left camera is defined as the base camera coordinate system 𝒞.

Additionally, to the extrinsic and intrinsic, a homography calibration between the camera and

ground plane can be helpful. This enables the transformation from image points (in pixel) to

camera coordinates 𝒞 (“world”) and vice versa. An easy to use homography calibration tool

[105] estimates the transformation matrices for the “world” to image and image to “world” pa-

rameters using the rectified image (Figure 24 & Figure 25).

Figure 23: Example ego-motion estimation output of the ZED camera without (light blue) and with
(dark blue) projection onto the ground plane

Figure 24: Rectified image showing a calibration pattern

4 Implementation

39

4.1.5 Summary

Figure 26 shows an overview of all software packages and the interfaces discussed so far.

Further, Table 4-6 provides a summary of all coordinate systems of the software system.

Name Parent Frame Chap-

ter

Let-

ter

Description

odom - - 𝒪 Fixed world coordinate system which

does not move.
rear_axis_

middle_ground

odom 4.2.1 -

4.2.5

𝒱 Vehicle fixed coordinate system. The

root is (as the name suggests) in the

middle (y-Position) of the rear axis (x-

Position) on the ground (z-Axis). All

axes are parallel to the principal axes.
wheel_front_left,

wheel_front_right,

wheel_rear_left,

wheel_rear_right

rear_axis_

middle_ground
4.1.1 - The root of the coordinate system is

the point of contact between wheel

and road. It is "fixed" and does not ro-

tate with the wheel. It is assumed that

the axes are parallel to the parent co-

ordinate system.
imu_link rear_axis_

middle_ground
4.1.2 ℐ Coordinate system of the IMU sensor.

The root of the coordinate system de-

pends on the assembly position of the

sensor. Translational displacements

Figure 25: Image pixel transformed in world coordinates (bird's eye view)

Table 4-6: Overview of all coordinate systems

4 Implementation

40

are measured by hand. Rotation an-

gles are determined by the auto-

calibration of the developed IMU filter.
laser_frame rear_axis_

middle_ground
4.1.3 ℒ Coordinate system of the Hokuyo lidar.

The root of the coordinate system de-

pends on the assembly position of the

sensor. Translation displacement is

measured by hand. It is assumed that

there is no rotational displacement to

the parent frame.
left_optical,

right_optical

rear_axis_

middle_ground
4.1.4 𝒞 Optical coordinate systems of the cam-

era. Translation parameters are meas-

ured by hand. Both systems are

rotated around the x and z-axis by -90°

with respect to the parent coordinate

system.

 Arduino Sketch
drive train

(. .)

 Arduino Sketch
Razor AHRS

(. .)

 ROS package
imu filter

(. .)

 ROS package
zed wrapper

(. .)

 ROS package
urg node

(. .)

 ROS package
razor imu dof

(. .)

 ROS package
rosserial python

(. .)

serial

serial vehicle encoder

IM

 aserScan

Odometry

Image

IM

 ROS package
pro ect to plane

(. .)

Odometry

Figure 26: sensor package overview with the respective chapter number

4 Implementation

41

4.2 Implementation of Ego-Motion

In the following section, various ego-motion estimation techniques will be developed. The ap-

proaches are based on different principles and sensor sources.

4.2.1 Odometry & Dead Reckoning

Odometry

The first approach for ego-motion estimation is based on odometry calculation utilizing the

wheel encoders (2.2.1 Odometry & Dead Reckoning). A system model is required to calculate

the current vehicle state with the encoder measurements. There are many different models to

describe the motion of a vehicle [106] [72]. They depend on the drive train, sensor setup,

complexity and computational resources available. In this project the vehicle is a car like robot

which consists of an Ackermann steered front and fixed rear axis. Unfortunately, the steering

angle cannot be directly sensed. The only drivetrain related measurements are conducted from

the encoders which provide the traveled distance and velocity of each wheel (4.1.1 Wheel

Encoder). Some parameters of the vehicle may change during the project (e.g. weight, the

center of gravity, …) and therefore a simple model without any specific vehicle parameters is

preferable. Based on these constraints a differential drive model based on the front wheel

encoders is being chosen. In the following section, the model and error propagation elaborated

in SIEGWART and NOURBAKHSH [6, pp. 186–190] will be described and is utilized for the odom-

etry calculation in this thesis.

The system resembles a non-linear state estimation problem (2.1.2 Non-Linear State estima-

tion). The state vector is defined as the current position 𝑥 = [𝑥 𝑦 𝜓]𝑇. As the vehicle moves,

the incremental average distance Δs of the right and left front wheel encoder Δsl, Δsr (4.31) is

integrated and projected in the moving direction (4.30). This represents the non-linear system

equation (2.9). The moving direction is determined from integration of differences in left and

right measurements divided by the actual track width 𝑏actual (4.32) which was estimated in

(4.17). The correction factors 𝑐left, 𝑐right determined in (4.15) and (4.16) account for the effects

of systematic errors. Additional moving average (i.e. lowpass) filter smooth the input signal and

suppress effects of the discretized encoder data at low speeds.

𝑥 𝑡 = 𝑔(𝑥𝑡−1, 𝑦𝑡−1, 𝜓𝑡−1⏟
𝑥 𝑡−1

, Δsl, Δsr⏟
𝑢⃗⃗ 𝑡

) = [

𝑥𝑡−1
𝑦𝑡−1
𝜓𝑡−1

] + [

Δ𝑠𝑡 𝑐𝑜𝑠(𝜓t−1 + Δ𝜓t/2)

Δ𝑠𝑡 𝑠𝑖𝑛(𝜓t−1 + Δ𝜓t/2)
Δ𝜓t

] (4.30)

𝛥𝑠𝑡 =
𝑐right ⋅ 𝛥𝑠𝑟 + 𝑐left ⋅ 𝛥𝑠𝑙

2
 (4.31)

𝛥𝜓𝑡 =
𝑐right ⋅ 𝛥𝑠𝑟 − 𝑐left ⋅ 𝛥𝑠𝑙

𝑏actual
 (4.32)

Non-systematic errors can be represented by uncertainty i.e. system noise 𝑤⃗⃗ 𝑡 (4.34). It is as-

sumed that the errors are caused by the encoders, which are not correlated [6, p. 188]. Further

SIEGWART and NOURBAKHSH consider a proportional relation between the system noise input

𝑅𝑡 and the distances traveled in a time step Δsl, Δsr [6, p. 188]. However, similar to [107] it is

rather assumed that a proportional relation between the standard deviation and the distance

4 Implementation

42

traveled exist. The proportionality can be described using the in equation (4.7) estimated vari-

ance per square meter 𝑣𝑎𝑟𝑝𝑝𝑚², which yields to the final system noise matrix

𝑅𝑡 = [
𝑣𝑎𝑟𝑝𝑝𝑚2 ⋅ (𝑐right ⋅ 𝛥𝑠𝑟)

2 0

0 𝑣𝑎𝑟𝑝𝑝𝑚2 ⋅ (𝑐left ⋅ 𝛥𝑠𝑙)
2]. (4.33)

𝑤⃗⃗ 𝑡 ~𝒩(0, 𝑅𝑡) (4.34)

The current covariances matrix 𝛴𝑡 can be calculated utilizing the error propagation law (2.15)

with the Jacobians 𝐺𝑡, 𝑊𝑡. Because the noise is induced by the encoders i.e. input, the corre-

sponding Jacobian matrix is equal to the gradient of the inputs (4.36).

𝐺𝑡 =
𝜕𝑔(𝑢⃗ 𝑡 , 𝑥 𝑡−1)

𝜕𝑥 𝑡−1
 = [

1 0 − 𝛥𝑠𝑡 𝑠𝜓
0 1 𝛥𝑠𝑡 𝑐𝜓
0 0 1

] (4.35)

𝑊𝑡 =
𝜕𝑔(𝑢⃗ 𝑡 , 𝑥 𝑡−1)

𝜕𝑤⃗⃗ 𝑡
=
𝜕𝑔(𝑢⃗ 𝑡, 𝑥 𝑡−1)

𝜕𝑢⃗ 𝑡
 =

[

1

2
𝑐𝜓 −

𝛥𝑠𝑡
2𝑏actual

𝑠𝜓
1

2
𝑐𝜓 +

𝛥𝑠𝑡
2𝑏actual

𝑠𝜓

1

2
 𝑠𝜓 +

𝛥𝑠𝑡
2𝑏actual

𝑐𝜓
1

2
 𝑠𝜓 −

𝛥𝑠𝑡
2𝑏actual

𝑐𝜓

1

𝑏actual
−

1

𝑏actual]

 (4.36)

with: c𝜓 = 𝑐𝑜𝑠(𝜓t−1 + Δ𝜓t/2) and s𝜓 = 𝑠𝑖𝑛(𝜓t−1 + Δ𝜓t/2)

The developed model does not provide any velocity information. The current position (𝑥𝑡 , 𝑦𝑡),

yaw angle (𝜓𝑡) and variances are stored in an Odometry message (Table 6-7) which is pub-

lished.

Dead Reckoning

Dead reckoning is pretty similar to the odometry calculation. Instead of adding the delta path

elements in each time step, it integrates the velocity in the time interval between two measure-

ments. The yaw rate can be estimated from the difference in the left and right velocity divided

by the actual track width [108, p. 42]. Integration of the yaw rate leads to the current orientation

of the vehicle. Also, the parameters are the same as in the odometry approach consisting of

the average wheel diameter, inequality of wheel diameters and the actual track width (4.1.1

Wheel Encoder).

Since there is not much difference between these two methods, it can be assumed that dead

reckoning will lead to comparable results when calibrated correctly. Since both variants are

depended on the same sensor (wheel encoders) they have similar strength and weaknesses.

Therefore, only a simple velocity implementation is realized in equations (4.37) to (4.39) to add

the velocity information and uncertainty to the output Odometry message.

[
𝑣𝑥,𝑡
𝑣𝑦,𝑡

] = [

𝑣𝑙,𝑡 + 𝑣𝑟,𝑡
2

∙ 𝑐𝑜𝑠(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

𝑣𝑙,𝑡 + 𝑣𝑟,𝑡
2

∙ 𝑠𝑖𝑛(𝜓𝑡−1 + 𝛥𝜓𝑡/2)
] (4.37)

𝑊𝑡 = [

1

2
∙ 𝑐𝑜𝑠(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

1

2
∙ 𝑐𝑜𝑠(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

1

2
∙ 𝑠𝑖𝑛(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

1

2
∙ 𝑠𝑖𝑛(𝜓𝑡−1 + 𝛥𝜓𝑡/2)

] (4.38)

4 Implementation

43

𝛴𝑣,𝑡 = 𝑊𝑡 ⋅ [
𝑣𝑎𝑟𝑣,𝑟 0

0 𝑣𝑎𝑟𝑣,𝑙
] ⋅ 𝑊𝑡

𝑇 (4.39)

4.2.2 Inertial Navigation System

Another feasible approach is purely based on IMU data. Strapdown Inertial Navigation algo-

rithms (2.2.2 Inertial Navigation Systems) typically compute the velocity and position from the

IMU measurements with the help of fused reference data (e.g. GNSS or Magnetometer [23, p.

33]). Also, there are some attempts to include further kinematic constraints for land-based

vehicles (e.g. [109][110][111]). These measures can help in reducing the effects of IMU errors

and noise (Table 2-1).

Unfortunately, this reference sensors are not available in this project and therefore a rather

simple implementation of a strapdown inertial navigation algorithm based on a planar assump-

tion (2D movement only) is developed in the next section. The autocalibration of the IMU filter

(4.1.2 IMU) transforms the measurements into the vehicle coordinate system. This makes sure

that the pitch and roll angle are zero at all times. Therefore, only the angular velocity 𝜔𝑧,𝑡

around the z-axis needs to be integrated to obtain the yaw angle. Also, the acceleration of the

z-axis is assumed to be equal to the gravitational acceleration for all times. That is why only

the x- and y-components are utilized. The accelerations 𝑎𝑥,𝑡
𝒱 , 𝑎𝑦,𝑡

𝒱 and the angular velocity 𝜔𝑧,𝑡

determine the input vector 𝑢⃗ 𝑡 of a non-linear state estimation problem (2.1.2 Non-Linear State

estimation). The acceleration inputs are transformed into the fixed 𝒪 coordinate system with

the current yaw angle 𝜓t . The rest of the system model 𝑔 computes the current position

(𝑥𝑡
𝒪, 𝑦𝑡

𝒪) and velocity (𝑣𝑥,𝑡
𝒪 , 𝑣𝑦,𝑡

𝒪) in the fixed coordinate system 𝒪 from the inputs (4.40).

𝑥 𝑡 =

[

𝑥𝑡
𝒪

𝑦𝑡
𝒪

𝑣𝑥,𝑡
𝒪

𝑣𝑦,𝑡
𝒪

𝜓𝑡]

=

[

1
0
0
0
0

0
1
0
0
0

𝑇
0
1
0
0

0
𝑇
0
1
0

0
0
0
0
1]

[

𝑥𝑡−1
𝒪

𝑦𝑡−1
𝒪

𝑣𝑥,𝑡−1
𝒪

𝑣𝑦,𝑡−1
𝒪

𝜓𝑡−1]

+

[

c𝜓 ∙ 𝑇2 2⁄ s𝜓 ∙ 𝑇2 2⁄ 0

s𝜓 ∙ 𝑇2 2⁄ c𝜓 ∙ 𝑇2 2⁄ 0
c𝜓 ∙ 𝑇 s𝜓 ∙ 𝑇 0
s𝜓 ∙ 𝑇 c𝜓 ∙ 𝑇 0
0 0 𝑇]

[

𝑎𝑥,𝑡
𝒱

𝑎𝑦,𝑡
𝒱

𝜔𝑧,𝑡

]

⏟
𝑢⃗⃗ 𝑡⏟

𝑔(𝑢⃗⃗ 𝑡,𝑥 𝑡−1)

(4.40)

with: c𝜓 = 𝑐𝑜𝑠(𝜔𝑧,𝑡 ∙ 𝑇 + 𝜓𝑡−1) and s𝜓 = 𝑠𝑖𝑛(𝜔𝑧,𝑡 ∙ 𝑇 + 𝜓𝑡−1)

The current uncertainty state can be computed utilizing the error propagation law (2.15). The

noise is assumed to be only caused by the input variables without correlation between each

other. The in chapter 4.1.2 calculated velocity dependent variances are used as system noise

input (4.41).

𝑅𝑡 = [

𝑣𝑎𝑟𝑎,𝑥 0 0

0 𝑣𝑎𝑟𝑎,𝑦 0

0 0 𝑣𝑎𝑟𝜔,𝑧

] (4.41)

𝑤⃗⃗ 𝑡 ~𝒩(0, 𝑅𝑡) (4.42)

The Jacobians can then be derived as

4 Implementation

44

Gt =
∂g(𝑢⃗ 𝑡, 𝑥 𝑡−1)

∂𝑥 𝑡−1
=

[

1 0 𝑇 0 (𝑇2 ∙ (𝑎𝑦,𝑡

𝒱 ∙ 𝑐𝜓 − 𝑎𝑥,𝑡
𝒱 ∙ 𝑠𝜓))/2

0 1 0 𝑇 (𝑇2 ∙ (𝑎𝑥,𝑡
𝒱 ∙ 𝑐𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ 𝑠𝜓))/2

0 0 1 0 𝑇 ∙ (𝑎𝑦,𝑡
𝒱 ∙ 𝑐𝜓 − 𝑎𝑥,𝑡

𝒱 ∙ 𝑠𝜓)

0 0 0 1 𝑇 ∙ (𝑎𝑥,𝑡
𝒱 ∙ 𝑐𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ 𝑠𝜓)

0 0 0 0 1]

(4.43)

Wt =
∂g(𝑢⃗⃗ 𝑡,𝑥 𝑡−1)

∂𝑤⃗⃗ 𝑡
=
∂g(𝑢⃗⃗ 𝑡,𝑥 𝑡−1)

∂𝑢⃗⃗ 𝑡
 =

[

c𝜓 ∙ 𝑇2 2⁄ s𝜓 ∙ 𝑇2 2⁄ (𝑇3 ∙ (𝑎𝑦,𝑡

𝒱 ∙ c𝜓 − 𝑎𝑥,𝑡
𝒱 ∙ s𝜓))/2

s𝜓 ∙ 𝑇2 2⁄ c𝜓 ∙ 𝑇2 2⁄ (𝑇3 ∙ (𝑎𝑥,𝑡
𝒱 ∙ c𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ s𝜓))/2

c𝜓 ∙ 𝑇 s𝜓 ∙ 𝑇 𝑇2 ∙ (𝑎𝑦,𝑡
𝒱 ∙ c𝜓 − 𝑎𝑥,𝑡

𝒱 ∙ s𝜓)

s𝜓 ∙ 𝑇 c𝜓 ∙ 𝑇 𝑇2 ∙ (𝑎𝑥,𝑡
𝒱 ∙ c𝜓 − 𝑎𝑦,𝑡

𝒱 ∙ s𝜓)

0 0 𝑇]

 .
(4.44)

The current position (𝑥𝑡
𝒪, 𝑦𝑡

𝒪), velocities (𝑣𝑥,𝑡
𝒪 , 𝑣𝑦,𝑡

𝒪), yaw angle (𝜓𝑡) and variances are published

as an Odometry message (Table 6-7).

4.2.3 LiDAR Odometry

Yet another ego-motion technique is based on data from distance sensors (2.2.3 Odometry

based on range sensors). For this method, the LiDAR sensor is particularly suited. Due to the

high scan rate of the sensor, only small displacements between successive measurements

can be expected. Also, the computational complexity should be as small as possible to com-

pute the current ego-motion state in a reasonable amount of time. Therefore, the LiDAR odom-

etry approaches using local point cloud registration techniques (2.2.3 Odometry based on

range sensors) are clearly favorable in this use case. Unfortunately, there are still too many

possibilities for local registration algorithms [112]. To limit the number of choices, this thesis

focuses on the publicly available packages from DERAY [113]. The implementations are based

on a ROS pluginlib [114] structure. They consist of a base package which provides the inter-

face to ROS, overridable function definitions and the execution path (Figure 28). Additional

plugin packages can then act as a wrapper for already available non-ROS implementations of

laser scan matching algorithms. They override the functions of the base plugin:

• initialize(LaserScan msg): This function is only executed on first message arrival.

• preProcessing(): Allows some preprocessing before actual matching.

• getIncrementPrior(): Returns an increment prior based on the last cycle which can be
used as a prediction initial guess

• processImpl(LaserScan msg, Transform prediction): May apply the prediction as the
initial guess. Then calls the actual laser scan matching algorithm. Saves the estimated
increment for this step in a member variable. Returns true if this processing step was
successful.

• posePlusIncrement(bool processed): If the processing was successful this function
applies the increment to the current pose (transforms increment in the correct coordi-
nate system and integrates pose). It is implemented in the base class and not over-
ridable.

• isKeyFrame(Transform increment): Checks if the increment is valid and should become
the new referent for the next matching.

4 Implementation

45

• isKeyFrame(): If the increment is valid this function is being called. It should save the
current laser scan for the next matching.

• isNotKeyFrame(): If increment is not valid this function is being called. It should discard
the current laser scan and may use the previous laser message instead.

• postProcessing(): Allows to do some postprocessing at the end.

In the original execution path, the estimated increment is always applied to current pose even

though it may not be a valid keyframe. This results in a noisy motion estimation output. There-

fore, the execution of the base class is altered in a way that the estimated increment is only

applied to the pose when it is a valid keyframe (Figure 28). If a valid keyframe is present, then

the current pose and covariances are published as a ROS odometry message (Table 6-7).

Figure 27: Simplified class structure of the implementation

4 Implementation

46

In the following section, all currently available plugins and the underlying algorithms are pre-

sented in short.

Canonical Scan Matcher (CSM)

The LaserOdometryCsm plugin is a wrapper for the canonical scan matcher implementation

by CENSI [116]. The implementation is based on an ICP variant using a point-to-line metric

[117] and several approaches to estimate the uncertainty of the scan matching process [118]

[119] [120]. The ICP algorithm provides quadratic convergence in a finite number of steps. The

correspondence search speeds up using a smart algorithm consisting of “many little tricks”

[117, p. 6]. The plugin provides the ability to change various parameters in order to tweak the

output. They control the keyframe rejection (e.g. max. angular and linear allowed distance in

each iteration), ICP algorithm itself (e.g. max. iterations, thresholds for stopping) and further

Figure 28: Simplified execution path of the original (left) and modified (right) base package [115]

4 Implementation

47

parameters of the actual implementation (e.g. restart ICP when an error is too big, use smart

correspondence search, adaptive outlier removal).

Two smaller changes to the parameters are made to improve the output stability. The maxi-

mum allowed linear keyframe displacement is being split up in a parameter for the x and y-

direction to account for the Ackermann geometry. An additional parameter to enable or disable

the use of the prediction as an initial guess is being added. A thorough analysis of all param-

eters would far exceed this section and therefore they are manually tuned by hand.

Pointmatcher

The LaserOdometryLibPointMatcher plugin provides a wrapper for the Pointmatcher library

developed by POMERLEAU and MAGNENAT [121]. The library has a modular design with several

steps forming an ICP chain [122, Fig. 2]. At every step, there are several modules available

which can be concatenated to process the data [122, p. 137]. The chain configuration for this

project is described in the following:

First, the reference and current reading data are being filtered. A minimum distance and bound-

ing box filter remove erroneous measurements at low ranges and unstable measurements at

high ranges. The default k-d tree algorithm is used for the matching of both point clouds. The

outlier removal step is handled by a trimmed distance filter. The next step is the actual trans-

formation estimation (error minimizer). A point-to-plane error minimizer would increase perfor-

mance. However, since the available data is only in 2D, the point to plane minimization process

always results in identity as transformation output. Therefore, the point-to-point error minimizer

is being chosen. Lastly, the transformation checker step consists of a maximum iteration count

and differential transformation checker. All the specific parameters for each module are hand-

tuned.

Polar Scan Matching (PSM)

The LaserOdometryPolar plugin implements a wrapper for the Polar Scan Matching (PSM)

algorithm by DIOSI and KLEEMAN [123]. This approach is specifically being developed for rotat-

ing laser scanners with a single intersection point in the center of all laser rays. It works with a

polar coordinate system and uses the measurement directions instead of point correspond-

ences for scan matching [123, p. 2]. The first step of the algorithm consists of scan prepro-

cessing to remove outliers and smaller objects. It also divides the measurement into segments

to enable future tracking. The second step projects the filtered scan data into a possible posi-

tion via interpolation of the last estimated movements. The next step consists of the actual

translation estimation process using a linearized squared error minimization. It requires multi-

ple iterations and the position error may drift in long featureless floors. The orientation is esti-

mated by a left or right shift of the range measurements in the polar coordinate system. The

last step consists of a heuristical error model to calculate the uncertainty.

The plugin exposes some parameters for the plugin itself and the algorithm which were again

modified and tuned by hand.

4 Implementation

48

Range Flow-based 2D Odometry (RF2O)

Last but not least the LaserOdometryRf2o plugin allows the use of a range flow-based ap-

proach developed by JAIMEZ et. al. [124]. This technique relies on constructing a range flow

constraint in terms of the sensor velocity for every point. Instead of searching for point corre-

spondences, it matches the scans via the scan gradients (similar to direct visual odometry

approaches). Based on these constraints a minimization problem is being formulated and ro-

bustly solved. To handle even large displacements, the problem is computed in a coarse-to-

fine scheme. An additional smooth filter based on the estimated covariance is utilized to im-

prove uncertainty in difficult gradient-less scenes (e.g. corridor). The authors also provide a

comparison of their approach to the point-to-line technique by CENSI (Canonical Scan Matcher

(CSM)) and the Polar Matcher by DIOSI and KLEEMAN [124, p. 4]. Their presented range flow-

based variant is superior in simulated and real environments in terms of translational and ro-

tational error and runtime.

The output of the implementation is already stable and filtered. Therefore, no extra keyframe

rejection is needed. Also, in contrast to the previously presented methods, the LaserOdome-

tryRf2o plugin does not provide any parameters. There are some hardcoded parameters in the

source code though. However, they are fewer in number and cannot be changed by default.

4.2.4 Visual Odometry

The next ego-motion approach is based on camera images only (2.2.4 Visual Odometry).

These methods are widely used and therefore many different algorithms exist [125]. Similarly,

to the previous section (4.2.3 LiDAR Odometry) a non-representative list of already available

ROS compatible packages will be analyzed in the following section. Although many SLAM

algorithms also provide visual odometry calculation as a byproduct, the focus in this thesis is

clearly on localization (without the mapping part) and therefore only pure visual odometry pack-

ages are considered.

For this applications, it is especially important that successive images have enough overlap

[36, p. 80]. Also, with a higher resolution, the processing time increases. Therefore, a high

framerate with low resolution (WVGA) is chosen (Table 4-5). The exposure and gain settings

are set to automatic so that the camera does not need to be adjusted for different lighting

conditions.

ZED Visual Odometry

The first method of ego-motion by Visual Odometry is provided by the ZED camera software

itself (4.1.4 Camera). The SDK gives the ability to get the current pose estimate of the camera

in a static reference frame [98]. This pose information is retrieved in the ROS wrapper and

transformed from the camera frame 𝒞 to the vehicle coordinate system 𝒱. A current velocity or

error state is not available from the SDK. Therefore, only the position and orientation are

fetched. Additional static covariances may be added to the output. This data is then published

as a ROS odometry message (Table 6-7).

The provided implementation is closed source and therefore no further comments can be made

about the underlying algorithm or methods used. There are no parameters provided to tweak

the position estimation output. However, it can be observed that the pose estimation only pro-

duces correct results when the depth map generation is enabled. Therefore, it can be assumed

4 Implementation

49

that the visual odometry algorithms are based on a method using depth information from the

stereo images.

Viso2

Another visual odometry solution for ROS is the viso2 package [126]. It makes use of the

libviso2 library developed by the Autonomous Vision Group [127]. The library is based on the

approach proposed by GEIGER, ZIEGLER and STILLER in [128]. This original version works with

feature detection in stereo images. It consists of 4 steps: sparse feature matching, ego-motion

estimation, dense stereo matching and 3D reconstruction [128, p. 964]. At first, the image is

filtered to retrieve the right amount (not too many and not too less) of stable features using a

computationally light descriptor. The features are matched in the current and previous image

sets in a circular mechanism (current left → previous left → previous right → current right →

current left). If the last matched feature corresponds to the first feature, it is assumed to be

valid. All valid features are then being used to calculate the incremental motion parameters by

minimizing the sum of reprojection errors. An additional RANSAC and Kalman filter utilizing a

generic constant acceleration model are being used [128, p. 965].

Although the original approach is based on stereo images only (stereo-odometer), the libviso2

library also provides an experimental monocular motion estimator (mono-odometer). In order

to overcome the scale ambiguity problem (2.2.4 Visual Odometry), the implementation is only

valid for constrained motions on a plane with a fixed camera angle [127]. Fortunately, this

motion restriction is not a problem in this project. Therefore, both approaches can be evaluated.

The stereo- and mono-odometer rely on the ROS coordinate conventions using optical frames

(Figure 22), to transform the motion from the camera frame 𝒞 to the vehicle coordinate system

𝒱. To estimate the scale factor, the mono-odometer requires the correct camera height and

pitch, which were estimated in the extrinsic camera calibration (4.1.4 Camera). The stereo-

odometer does not need any geometric parameters. For both methods, many other parameters

can be adjusted to tune the algorithm [126].

To increase the computing speed, the algorithm is specially designed to leverage speed ups

using Single Instruction Multiple Data (SIMD) operations. Therefore, the implementation

makes use of Intel’s Streaming SIMD E tensions (SSE) [128, p. 965], which are only available

in the x86 architecture. Unfortunately, in our project, the computing platforms CPU has an ARM

architecture (2.4.1 Hardware description). Therefore, the vector operations must be converted

from SSE to NEON operations, which are the corresponding ARM SIMD instructions [129].

SVO

Yet another visual odometry technique is developed at the Robotics and Perception Group at

the University of Zurich [130]. In contrast to the previous approach, this method is not com-

pletely feature-based, but includes some elements of direct approaches (2.2.4 Visual Odome-

try) and is therefore called Semi-Direct Odometry (SVO). While the first version was specifically

designed for downward-looking cameras in flying drones [38], the second version also sup-

ports forward-looking cameras among other improvements [131].

Unfortunately, rolling shutter cameras, as used in this project (4.1.4 Camera), degrade the

performance of direct methods significantly (2.2.4 Visual Odometry). Another major obstacle

4 Implementation

50

is that the source code of the actual core algorithm is not publicly available. The authors pro-

vide only binaries which can be used with a ROS interface package [132]. Although they also

released binaries for ARM processors, they are not compatible with the computing platform

used in this project at the time of writing [133]. Therefore, this method cannot be evaluated

further.

4.2.5 Fused Odometry

Lastly, a hybrid approach based on multiple ego-motion estimation variants is developed.

There are many possibilities to combine the previously described techniques. It is preferable

to merge the data in such a way that the strengths of the methods are combined and weak-

nesses are diminished. A popular choice for this kind of fusion is a Kalman Filter (2.1 Mathe-

matical basics). There are existing fusion packages of different localization approaches

available [134][135]. However, they do not allow to change the underlying model equations

easily. There are many models which can be used in the Kalman filter to describe the vehicle

motion especially for Ackermann steered car-like robots, though. That is why a new implemen-

tation of an odometry fusion package is designed to support multiple models, which can be

easily chosen via a parameter on startup. The Kalman library developed by HERB [71] is being

used for the actual C++ implementation of the filter. The package consists of a base wrapper

containing all the interfaces specific to the ROS environment. It is assumed that the data, which

is to be fused, can fit into one odometry (Table 6-7) and/or IMU (Table 6-4) message. The

package supports setting up subscribers for either of the message types or both. In the latter

case, a message synchronizer [136] with approximate time policy [137] is being used to com-

bine the messages. To allow for even more flexibility both prediction and correction step can

have separate data sources (Figure 29). Each model defines which data is necessary and

needs to be fed into the corresponding filter step. Since both data sources for the prediction

and correction step are independent of each other, they run at the rate defined by the respec-

tive sources. Before each correction step, it is checked whether a prediction step happened

since the last correction (Figure 31).

Another functionality of the base wrapper is to process the timestamp of incoming messages.

In order to predict and correct the filter state, the time interval Δ between two successive mes-

sages is required. ROS is not a real-time environment. Therefore, messages can arrive out of

order or may not arrive at all (e.g. because of a restarting source node). The delta time between

such faulty messages is below zero, equal to zero or exceeds a predefined Δthres. To prevent

the filter state from getting corrupted, the current 𝑇𝑡 and last 𝑇𝑡−1 timestamp are being checked

in the base wrapper before the time delta Δ𝑡 is handed to the actual filter (Algorithm 4).

Prediction Data

only IMU only Odometry
IMU and Odom

(sync)

Correction Data

only IMU only Odometry
IMU and Odom

(sync)

Figure 29: Possible data sources (ROS message types) for the developed fusion package

4 Implementation

51

Algorithm 4: Processing the Timestamp

processTimestamp(𝑇𝑡, 𝑇𝑡−1, Δ𝑡, Δ𝑡−1):

 if 𝑇𝑡 == 0 # check if current timestamp is non-zero (e.g. broken source msg)
 return false # abort

 endif

 if 𝑇𝑡−1 == 0 # check if last timestamp is non-zero (e.g. initial loop after reset)

 Δ𝑡 = Δthres/5 # set delta to some value below threshold (e.g. 1/5th of 𝛥𝑡ℎ𝑟𝑒𝑠)

 𝑇𝑡−1 = 𝑇𝑡 − Δ𝑡 # set last time accordingly

 else

 Δ𝑡 = 𝑇𝑡 − 𝑇𝑡−1 # calculate current delta from current and last time

 endif

 if Δ𝑡 > Δthres # check if delta is below the threshold

 return false # abort

 elseif Δ𝑡 ≤ 0 # check if jumping backing or same time

 𝑇𝑡 = 𝑇𝑡−1 # use last timestamp instead

 Δ𝑡 = Δ𝑡−1 # use last delta instead

 else # everything is ok
 𝑇𝑡−1 = 𝑇𝑡 # save the current timestamp

 Δ𝑡−1 = Δ𝑡 # save the current delta

 endif
return true # success

The base wrapper class is being extended by model wrapper classes which implement the

actual model equations. They overwrite the filter initialization, prediction, correction and output

functions (Figure 30). Lastly, a reset function clears the current state variables of the filter and

sets the whole package in a known starting condition. It is being called every time a fusion step

fails (Figure 31). Additionally, it can also be called externally via a ROS service. If the prediction

step does not fail, the current output is being extracted from the model and published as ROS

odometry message (Table 6-7).

Figure 30: Simplified class structure of the fusion package

4 Implementation

52

In the next section, two example implementations of model wrappers are presented and the

underlying model equations will be discussed. It is important to choose which data is being

used as input and which as a measurement for the correction step.

CTRV Model

The available data can be categorized into two groups. The Laser (2.2.3 Odometry based on

range sensors) and Visual odometry (2.2.4 Visual Odometry) algorithms directly compute the

incremental pose (position and orientation increments) in each execution cycle. They typically

do not provide velocity output, which would need to be differentiated introducing noise and

discontinuity. Because of the lower sensor framerates, higher resolutions and computationally

more complex algorithms, these methods have a slower update rate. On the other hand, the

data provided by wheel encoder odometry, dead reckoning (2.2.1 Odometry & Dead Reckon-

ing) or inertial navigation (2.2.2 Inertial Navigation Systems) have high update rates and are

cheap to compute. While the wheel encoder can also provide a positional output, these meth-

ods typically deliver higher-order pose information (velocity or acceleration).

The data from the latter category is more suitable as the input of the Kalman filter. It enables

to run the prediction at the same frequency and therefore update the current state continuously.

With this approach, the filter can deliver a pose estimate at a high rate while sacrificing only

little amount of computational cost. The underlying state model of the filter computes the new

position and orientation in each prediction step. However, when only using velocity and accel-

eration data the pose information is unobservable. The uncertainty would be unbounded and

grow indefinite over time. To overcome this problem a correction step can be introduced to

compare the current pose estimate with additional position and orientation measurements.

These measurements can be generated from the former ego-motion estimation group (lidar or

Figure 31: Execution paths of the base wrapper class

4 Implementation

53

visual odometry). This step can be run at a slower rate meeting the requirements of these

methods. It only corrects the current state when new measurement data is available.

An adapted version of the constant turn rate and velocity (CTRV) [72, p. 535] model is chosen

to describe the kinematic relations (4.45). The state vector only consists of the current pose

𝑥 𝑡 = [𝑥𝑡 𝑦𝑡 𝜓𝑡]
𝑇. The input vector ut⃗⃗ ⃗ is made of data from the previously discussed latter

category (dead reckoning, INS) and consists of the vehicle turn rate 𝜔𝑡 and velocity 𝑣𝑡 =

√𝑣𝑥
2 + 𝑣𝑦

2.

[

𝑥𝑡
𝑦𝑡
𝜓𝑡
]

⏟
𝑥 𝑡

= [

𝑥𝑡−1
𝑦𝑡−1
𝜓𝑡−1

] +

[

𝑣𝑡
𝜔𝑡
[𝑠𝑖𝑛(𝜓𝑡−1 +𝜔𝑡 Δ𝑡) − 𝑠𝑖𝑛(𝜓𝑡−1)]

𝑣𝑡
𝜔𝑡
[𝑐𝑜𝑠(𝜓𝑡−1) − 𝑐𝑜𝑠(𝜓𝑡−1 +𝜔𝑡 Δ𝑡)]

𝜔𝑡 Δ𝑡]

⏟
𝑔(𝑥 𝑡,𝑢⃗⃗ 𝑡)

(4.45)

The measurement vector is defined by the pose data from the first category (visual or laser

odometry) 𝑦 𝑘 = [𝑥𝑘 𝑦𝑘 𝜓𝑘]
𝑇. To emphasize that the correction step runs at a lower rate and

does not equal the prediction timestamps, the subscript k is used to denote the timestamps of

the correction instead. Further, the measurement vector can drift over time and create big

offsets to the state vector. Therefore, differential values are being used in the measurement

equation instead of the absolute poses (4.46). Because the output covariance matrices for

most lidar or visual approaches are static, they can directly be used as measurement covari-

ances.

[

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
𝑦⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟
𝑦⃗ 𝑘−1

= [

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
x⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟
𝑥 𝑘−1

(4.46)

As parameters, the model requires the initial filter covariances Σ0 and process covariances 𝑅𝑡.

CTRA Model

However, the pose data from lidar or visual odometry is not always available or sometimes too

costly to compute. Therefore, an alternative lighter model making use of only encoder and IMU

data is described in this section. It is based on an adaption of the constant turn rate and accel-

eration (CTRA) [72, p. 535] model. The state vector is 𝑥 𝑡 = [𝑥𝑡 𝑦𝑡 𝜓𝑡]
𝑇. The input vector

ut⃗⃗ ⃗ consists of the wheel encoder velocity 𝑣𝑡 = √𝑣𝑥
2 + 𝑣𝑦

2, measured acceleration in the x-di-

rection 𝑎𝑥 and yaw rate 𝜔𝑡 of the vehicle.

[

𝑥𝑡
𝑦𝑡
𝜓𝑡
]

⏟
𝑥 𝑡

= [

𝑥𝑡−1
𝑦𝑡−1
𝜓𝑡−1

] +

[

1

𝜔𝑡
2
[(𝑣𝑡𝜔𝑡 + 𝑎𝑥𝜔𝑡𝛥𝑡)𝑠𝜓 − 𝑣𝑡𝜔𝑡𝑠𝜓𝑡−1 + 𝑎𝑥𝑐𝜓 − 𝑎𝑥𝑐𝜓𝑡−1]

1

𝜔𝑡
2
[−(𝑣𝑡𝜔𝑡 + 𝑎𝑥𝜔𝑡𝛥𝑡)𝑐𝜓 − 𝑣𝑡𝜔𝑡𝑐𝜓𝑡−1 + 𝑎𝑥𝑠𝜓 − 𝑎𝑥𝑠𝜓𝑡−1]

𝜔𝑡 𝛥𝑡]

⏟
𝑔(𝑥 𝑡,𝑢⃗⃗ 𝑡)

(4.47)

with: s𝜓 = 𝑠𝑖𝑛(𝜓𝑡−1 +𝜔𝑡 Δ𝑡) and c𝜓 = 𝑐𝑜𝑠(𝜓𝑡−1 +𝜔𝑡 Δ𝑡)

and s𝜓𝑡−1 = 𝑠𝑖𝑛(𝜓𝑡−1) and c𝜓𝑡−1 = 𝑐𝑜𝑠(𝜓𝑡−1)

4 Implementation

54

Similar to the previous CTRV approach, the measurement vector consists of a differential pose

estimate. However, instead of using visual or lidar techniques the data is gathered from the

wheel odometry. Since the odometry uncertainty grows over time, only the relative change is

being used for the measurement covariance matrix (4.48).

[

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
𝑦⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟
𝑦⃗ 𝑘−1

= [

𝑥𝑘
𝑦𝑘
𝜓𝑘
]

⏟
x⃗ 𝑘

− [

𝑥𝑘−1
𝑦𝑘−1
𝜓𝑘−1

]
⏟
𝑥 𝑘−1

(4.48)

Similarly, to the previously described model it requires the initial filter covariances Σ0 and pro-

cess covariances 𝑅𝑡 as parameters.

4.2.6 Summary

Figure 32 extends the package overview with the additional software modules introduced in

the ego-motion chapter.

 Arduino Sketch
drive train

(. .)

 Arduino Sketch
Razor AHRS

(. .)

 ROS package
imu filter

(. .)

 ROS package
zed wrapper

(. .) (. .)

 ROS package
urg node

(. .)

 ROS package
razor imu dof

(. .)

 ROS package
rosserial python

(. .)

 ROS package
wheel odometry

(. .)

 ROS package
laser odometry

(. .)

 ROS package
viso ros

(. .)

 ROS package
fused odometry

(. .)

serial

serial vehicle encoder

IM

 aserScan

Odometry

Image

Odometry

Odometry

Odometry

Odometry

IM

 ROS package
pro ect to plane

(. .)

 ROS package
pro ect to plane

(. .)

Odometry

Odometry

Corr. Odom.

 red. Odom.

Corr. IM

 red. IM

Odometry

 ROS package
inertial navigation

(. .)

Odometry

Figure 32: sensor and ego-motion package overview with the respective chapter number

4 Implementation

55

4.3 Implementation of Object-Motion

In the following section, three object detection and motion techniques will be developed. While

the first two approaches are based on sensor data and do not include tracking functionality,

the third method fuses both data sources and tracks the objects with a motion model.

4.3.1 LiDAR Objects

The LiDAR provides range measurements which can be used to detect and track objects (2.3.1

Object motion with range sensors). In this section, the point clustering and segmentation will

be done. Since a model-free variant is not viable for the use case of detecting a standing object,

a model-based variant consisting of a bounding box and a centroid point for each obstacle is

being utilized.

For the implementation, an already existing package [138] is being used and extended

(Algorithm 5). Firstly, the package transforms the 2D laser scan message into a 3D point cloud

using the ROS laser geometry package [139]. From this input point cloud, a KD-tree is gener-

ated to speed up the following computations. A Euclidean cluster extraction method segments

the input point cloud into the future obstacles [140]. Each obstacle cluster is being checked for

dimensions and the centroid point (mean value) is calculated. If everything is ok, the objects

are being published using the custom ROS Obstacle message type (Table 6-8).

Algorithm 5: Generate Obstacle from Lidar Message

laserscan callback(𝑠𝑐𝑎𝑛):

 project laser scan to point cloud

 create KdTree from point cloud

 create euclidean cluster extraction object

 set parameters of extraction object

 extract clusters from point cloud

 𝐟𝐨𝐫 all clusters 𝐝𝐨

 𝐟𝐨𝐫 points in cluster 𝐝𝐨

 save point in obstacle
 max𝑥,𝑦,𝑧 = 𝑚𝑎𝑥(max𝑥,𝑦,𝑧 , 𝑝𝑜𝑖𝑛𝑡) # added

 min𝑥,𝑦,𝑧 = 𝑚𝑖𝑛(min𝑥,𝑦,𝑧 , 𝑝𝑜𝑖𝑛𝑡) # added

 add point to centroid object # added

 𝐞𝐧𝐝

 dimensions = max𝑥,𝑦,𝑧 − min𝑥,𝑦,𝑧 # added

 𝐢𝐟 dimensions exceed threshold 𝐝𝐨 # added

 skip cluster # added

 𝐞𝐧𝐝 # added

 save center point from centroid object in obstacle # added

 set dimension, obstacle type and initial trust value

 publish obstacle

 end
return true

4 Implementation

56

4.3.2 Camera Objects

Another category of object detection techniques is based on camera images (2.3.2 Object

motion with camera sensors). There are many ways to detect and classify obstacles. Since the

traditional computer vision approaches work only well for non-generic environments, a modern

machine learning method is being used instead. It consists of the detection and a subsequent

transformation step.

The detection step locates the obstacle in the image. This is being achieved using the object

detection network trained by THALER [52]. THALER employs a popular pretrained model based

on YOLOv2 [141] and trained it further to improve it for the use case of vehicle detection. The

resulting YOLO_50 network [52, p. 62] can only detect vehicles. Firstly, a ROS interface is

being developed. The darkflow framework [142] is being utilized to load the model. The inter-

face simply forwards the image to the network and outputs the results using a custom ROS

BoundingBox message definition (Table 6-9). The interface also allows determining the GPU

utilization. This is important because the target hardware only has a shared memory between

CPU and GPU. Therefore, the model cannot use the whole available memory. Another issue

is the prediction speed of the model. The configuration from THALER using the darkflow frame-

work only runs at 1-2 Hz on the target hardware, although it uses the GPU as an accelerator.

The easiest way to lower the computational effort is to decrease the resolution of the input data

size which YOLO automatically uses to scale the provided image accordingly. This improves

the framerate, however, it comes with the cost of a lower detection quality and unprecise

bounding boxes (Figure 34).

Figure 33: Overlay on camera image of
laser scan in red (top) and

 detected laser scan & obstacles in yellow (bottom)

4 Implementation

57

Another way of increasing the output rate is to choose a different framework or model alto-

gether. Instead of darkflow, the original YOLO framework darknet [143] can be used to boost

the computation speed significantly. However, YOLO_50 is not directly compatible with darknet

and must be adapted. Both options (updating the YOLO_50 configuration and using a different

pretrained model) lead to worse detection qualities, without proper adjustments to this use

case. Therefore, instead of running the system in real time, the detection is being executed at

a slower rate with an input size of 640x640 for the evaluation. Lastly, setting the exposure and

gain of the camera to empirically obtained values and using the highest possible output reso-

lution (Table 4-5) additionally increases the detection quality.

The second step is the transformation of the bounding box points into the camera coordinate

system 𝒞. This can be done with the in the camera calibration (4.1.4 Camera) estimated

homography parameters. It is assumed that both the lower left and right bounding box points

correspond to real word coordinates of the vehicle edges. These points constitute the obstacle

width and the center of both points is being used as the obstacles centroid. The confidence

associated with the respective bounding box is being used as the trust value of the obstacle.

The final Obstacle list is then forwarded using the custom ROS Obstacle message type (Table

6-8).

4.3.3 Fused and tracked Objects

The previously developed approaches only detect obstacles without any specific motion esti-

mation model. They provide the current pose based on the latest measurement of the respec-

tive sensor. In order to estimate the object state more precisely, both obstacle sources can be

fused and tracked over a longer period of time. This allows the use of a motion model. In the

following section, this fusion and tracking module will be developed.

A central object list (track management) is being maintained to store and merge all incoming

objects into the list. Firstly, all objects are converted into the vehicle coordinate system 𝒱. It is

then checked if the object already exists based on a nearest neighbor search and a minimum

required threshold distance. If no existing object meets this criterion, a new object is created

based on the incoming obstacle and added to the central object list (Algorithm 6).

Similar to the ego-motion fusion (4.2.5 Fused Odometry) a Kalman filter is being utilized to

fuse the data from both sources (camera and LiDAR objects). Again, the Kalman library devel-

oped by HERB [71] is being chosen for the actual C++ implementation of the filter. None of the

previous object detection techniques provide information about the orientation of the obstacle.

Therefore, a simple constant velocity model is being chosen (4.49).

Figure 34: Detected bounding boxes using an input size of 160x160 (left) vs 640x640 (right)

4 Implementation

58

Algorithm 6: Merging obstacle into the obstacle list

mergeObject(𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡):

 𝐟𝐨𝐫 object in objectlist 𝐝𝐨

 calculate euclidean distance to centroid of incoming object

 𝐢𝐟 distance is smaller then threshold

 𝐚𝐧𝐝 distance is smaller than smallest distance 𝐝𝐨

 save as smallest distance

 save as output object

 𝐞𝐧𝐝

 𝐞𝐧𝐝

 𝐢𝐟 output object not found 𝐝𝐨

 create new object from incoming object

 add new object to objectlist

 save new object as output object

 𝐞𝐧𝐝

return output object

The input of the model consists of the centroid velocity which is generated from the displace-

ments Δ𝑥 , Δ𝑦 in the x and y direction divided by Δ𝑡. The displacements are obtained from the

difference of the current (𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡, 𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡) and the previous centroid position (𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡−1 ,

𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡−1) of an obstacle coming from one data source. Additional moving average filter (i.e.

low pass filter) smooth the input to suppress noise coming from this differentiation step.

[

𝑥𝑡
𝑦𝑡
𝑣𝑥,𝑡
𝑣𝑦,𝑡

]

⏟
𝑥 𝑡

= [

𝑥𝑡−1 + 𝑣𝑥,𝑡−1 ∙ Δ𝑡
𝑦𝑡−1 + 𝑣𝑦,𝑡−1 ∙ Δ𝑡

0
0

] + [

0
0

Δ𝑥/Δ𝑡
Δ𝑦/Δ𝑡

]

⏟
𝑔(𝑥 𝑡,𝑢⃗⃗ 𝑡)

(4.49)

with Δ𝑥 = 𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡 − 𝑥𝑐,𝑝𝑟𝑒𝑑,𝑡−1 and Δ𝑦 = 𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡 − 𝑦𝑐,𝑝𝑟𝑒𝑑,𝑡−1 (4.50)

The other data source is being used in the correction step. The measurement vector 𝑦 𝑡 simply

consists of the current centroid position of the correction object (𝑥𝑐,𝑐𝑜𝑟𝑟,𝑡 , 𝑦𝑐,𝑐𝑜𝑟𝑟,𝑡).

[
𝑥𝑐,𝑐𝑜𝑟𝑟,𝑡
𝑦𝑐,𝑐𝑜𝑟𝑟,𝑡

]
⏟

𝑦⃗ 𝑡

= [
𝑥𝑡
𝑦𝑡
]

(4.51)

A trust value helps to distinguish between objects that come solely from the prediction source

and the corrected (i.e. actually fused) obstacles. It can be between zero (no trust) and one

(maximum trust). Trust is added in both the prediction and correction step using the respective

input trust. Therefore, objects that are corrected have an additional amount of trust (higher

trust value). To forget old obstacles, trust is iteratively being removed for each object in each

prediction step by a fixed amount. If it reaches zero, the obstacle is being removed from the

object list.

After prediction, the current object list is being published as ROS Obstacle message type

(Table 6-8).

4 Implementation

59

4.3.4 Summary

Figure 35 shows an overview of all packages developed for the obstacle motion estimation.

 ROS package
zed wrapper

(. .) (. .)

 ROS package
urg node

(. .)

 ROS package
obstacle fusion

(. .)

 aserScan

Odometry

Image

Obstacles

Correction

 rediction

 ROS package
laserscan obstacle

(. .)

 ROS package
darkflow ob ect det

(. .)

 ROS package
bb to obstacle

(. .)

BoundingBo

Obstacles

Obstacles

Figure 35: sensor and object motion structure with respective chapter numbers

4 Implementation

60

61

5 Evaluation

In this chapter, the previously developed implementations are being tested and evaluated. It

starts with the evaluation of the ego-motion techniques and then covers the object motion

methods.

5.1 Ego-Motion Estimation

The following section evaluates the in chapter 4.2 implemented ego-motion algorithms. The

evaluation will contain quantitative and qualitative parts. The quantitative evaluation will be

based on the following measures:

• Pose Error: Achieving a high positional and oriental correctness is a fundamental re-

quirement. Each method has some error sources and therefore will deviate from the

true value. The goal is to come as close as possible. It is not easy to determine this

ground truth itself, though. Typically, high precision GNSS or external tracking methods

are being used as ground truth data sources. However, both sensor setups are not

available in this project. Therefore, instead of evaluating the whole path traveled incre-

mentally step by step, only the end positions are being used. When driving a closed

loop and stopping at the starting position, the end and start pose should match. The

error is then determined by the offset from the end pose (vehicle fixed coordinate sys-

tem 𝒱) to the starting pose (world fixed coordinate system 𝒪). On startup, both coordi-

nate systems coincide by default. Therefore, the error is easily determined by the

values of 𝒱 after finishing the whole circle.

• Pose Uncertainty: For a full probabilistic description of the current state not only the

expected value is relevant but also the uncertainty, i.e. covariance matrix of the output

message. It describes how certain the ego-motion is about the current value and should

be as low as possible. The effort spent on the error model is very diverse. Some meth-

ods provide a thought-out error model. Some choose the variances based on heuristi-

cal rules. Some may only use some manually picked values for the covariance matrix.

• Computation Time: Another crucial factor is the computational complexity. All meth-

ods will be tested on the target hardware (2.4.1 Hardware description). They run only

on the CPU, except for the ZED Visual Odometry which cannot be used for perfor-

mance analysis due to the closed sources anyway. Also, the number of cores involved

is provided, because some methods run in multiple threads to speed up computation.

The computation time is defined as the duration from the arrival of a new sensor mes-

sage in the respective ego-motion estimation approach until the output message is

constructed and ready to be published.

5 Evaluation

62

• Parameter Count: Lastly the number of parameters will be used as an additional metric.

From a technical point of view, this value may not be interesting and does not provide

any information about the performance of the approach. However, it can be valuable

when implementing and more importantly tune the approach. While in general, a large

number of parameters can mean that the implementation can be adapted and fine-

tuned to more diverse environments, it comes with the cost of more complexity and a

larger parameter space.

For the evaluation, a test track in a machine hall is being chosen. It has a flat floor and therefore

meets the planar assumption. Further, it contains different environmental situations with low

and high-level feature scenes (Figure 36 & Figure 37). The illumination environment changes

during the track, however a sufficient lightning of the scene is always present. The test track

is in a shape of a rectangle and has the dimensions of about 21x47m. The length of one closed

loop drive depends on the actual path driven (how curvy it is) and is typically around 138m in

total. To account for errors that appear only in one turning direction, the track will be passed

consecutively in both clockwise (CW) and counterclockwise (CCW) direction in two separate

measurements. When completing a round (vehicle returned to start position) the measurement

is stopped.

Figure 36: Camera image of two scenes of the test track with a low (left) and high (right) amount of
features

Figure 37: LiDAR point cloud of the same scenes as in Figure 36

5 Evaluation

63

Throughout the following sections a common way of presenting the pose errors and uncertain-

ties will be used. The diagrams will show pairs of data points (one for CW and one for CCW)

to compare different methods and visualize the respective results. Figure 38 explains the ele-

ments being used to visualize the properties of each data point.

5.1.1 Odometry & Dead Reckoning

The Arduino provides wheel encoder updates at a rate between 100-105 Hz. Due to the light-

weight design, the odometry computation has no problem processing the sensor data at this

rate and publishing ego-motion estimates at the same frequency. To reduce effects from sys-

tematic errors three parameters can be tuned, using either the UMBmark or Hyperopt calibra-

tion method (4.1.1 Wheel Encoder).

The UMBmark calibration method is carried out with multiple recordings at a nearby basketball

field using a 13x13m square. After applying the corrections factors, it can be seen, that the

error in CW rounds reduces significantly. However, the positional error for the CCW direction

does not improve. Figure 39 shows the positional errors for both the CW, CCW and the cor-

rected CW, CCW rounds with the respective center of gravities similar to [14, Fig. 6.5].

The same data is being used for the wheel encoder calibration using the Hyperopt calibration

method. It can be seen that both the parameters of 𝑒𝑟𝑟𝑑 and 𝑏actual converge to an optimal

value with minimal loss (Figure 40). The optimal parameter set reduces the errors for CCW

and CW rounds significantly (Figure 41).

method

method

method

The outer ring shows the positional uncertainty

and is defined by the standard deviation in the

 and y direction (sometimes too big or too

small to be visible).

The cone shows the rotational uncertainty

and is defined by the yaw standard deviation.

It is pointing towards the true value of the

yaw error (true value lies in the center of the

cone). o rotational error e ists when the

true value points towards the positive a is.

The cross shows the true value of the

positional error in and y direction .

Figure 38: Evaluation diagram with explanation

5 Evaluation

64

b actual

to
ta

l
lo

s
s

error d

to
ta

l
lo

s
s

Figure 39: Odometry calculation results for a 13x13m square pattern using uncalibrated and corrected
errors estimated with the UMBmark method [14, Fig. 6.5]

Figure 40: The 100 out of 15000 best parameters for 𝑏actual and 𝑒𝑟𝑟𝑑 with lowest total loss on multiple
CCW and CW recordings of a 13x13m square pattern

Figure 41: Odometry calculation results for a 13x13m square pattern with uncalibrated and corrected
errors using the best parameters estimated with the Hyperopt framework [14, Fig. 6.5]

5 Evaluation

65

Table 5-1 gives an overview of the estimated parameters using different calibration methods.

Although the parameters only vary little from the uncalibrated case, the resulting error can be

reduced notably. Due to the nature of integration even small deviations from the optimal pa-

rameter set can build up significant errors over time. Especially the orientational correctness

suffers from imperfect parameters. A mismatch in orientation also affects the positional error

greatly when moving in a deviated direction. Therefore, a precise and robust calibration

method is particularly important to achieve a good correctness and accuracy when using an

odometry based ego-motion estimation. The Hyperopt calibration technique clearly outper-

forms the UMBmark calibration (Figure 42). However, it is still not perfect and a substantial

amount of positional and orientational error still remains.

The uncertainty is based on the in chapter 4.1.1 estimated variances and the underlying error

model (4.2.1 Odometry & Dead Reckoning). It is unbounded and grows over time. However,

when compared to the error in position, it is still relatively small.

Calibration Method 𝑒𝑟𝑟𝑠 𝑒𝑟𝑟𝑑 bactual

No Calibration 0.978 1.0 0.20

UMBmark 0.978 0.9985 0.2066

Hyperopt 0.978 0.9971 0.2148

The evaluation data is recorded at walking speed. Therefore, the discretization effect of the

wheel encoders is less dominant. The moving average filter size for the input data is being

chosen as 15 to avoid reducing the dynamic properties too much. However, when driving at a

slower pace, the moving average filter size must be increased appropriately.

5.1.2 Inertial Navigation Systems

The IMU is being calibrated and multiple filters are applied to improve the accelerometer data

(4.1.2 IMU). Nevertheless, the acceleration measurements are still very noisy (Figure 17) and

far away from resembling the real overall vehicle acceleration. This is probably due to the high

amount of vibrations introduced by the drivetrain and chassis of the model vehicle. The noise

is integrated twice in the strapdown INS algorithm (5.1.2 Inertial Navigation Systems) and

Table 5-1: Overview of the calibration methods and the determined parameters

Figure 42: Positional errors and rotational errors for the different calibration methods
(uncertainty is too small to be visible)

5 Evaluation

66

makes the positional ego-motion estimation output unusable (Figure 43). The positional error

far exceeds any acceptable limits and the uncertainty reflect the uselessness of this estimate.

In contrast, the orientational estimate shows results comparable to the wheel odometry cali-

brated with the Hyperopt method. It achieves similar performance in terms of correctness of

the true value and uncertainty. It is purely based on the integrated angular velocity of the IMUs

gyroscope, which is more robust against noise than the accelerometer.

Due to this simple implementation of a strapdown INS, there are no algorithm-specific param-

eters which would need to be tuned. The microprocessor chip running on the IMU board deliv-

ers sensor updates at 110Hz. This can easily be handled by the strapdown INS algorithm

which outputs vehicle estimations at the same rate.

5.1.3 LiDAR Odometry

While the previous approaches had no problem handling the data at the sensor rate, LiDAR

odometry techniques require more computational resources. The Hokuyo sensor outputs

range measurements at 40 Hz. However, some methods are not able to compute the ego-

motion estimate at the same rate. Running nodes at different frequencies is in general not a

problem due to the asynchronous nature of ROS. In this case, the LiDAR odometry node only

processes every n-th laser message and outputs the ego estimates at the fastest computa-

tionally possible rate. However, this makes the evaluation a lot trickier. Missing laser messages

can degrade the performance of the approach. Changing some parameter which would intui-

tively diminish the estimate (e.g. lowering number of ICP iterations), could, in fact, increase it

because of a faster computation time and less missed messages. To account for this problem

an evaluation without and one with computational constraints is being made. For the first case,

the scan messages from the test track are directly injected into the node one after another.

This way no message is missed and the node has all the time it needs to compute the output.

Therefore, this should resemble the optimal conditions. In the second evaluation step, the ap-

proaches are run on the target hardware with the respective computational constraints.

Figure 44 shows the results of the in chapter 4.2.3 presented techniques without any timing

constraints. The CSM and RF2O approaches achieve the best performance. While the RF2O

implementation is better in positional correctness, CSM has a superior rotational estimate.

Figure 43: Pose estimate using the strapdown INS algorithm

5 Evaluation

67

In contrast Figure 45 shows the ego-motion estimates when running the LiDAR odometry im-

plementations directly on the target hardware replaying the test data at true speed. It can be

seen that all performances degrade except for the PointMatcher approach. PointMatcher is the

only implementation that makes use of multiple cores (multi-threading). Further, especially the

CSM rotational error deteriorates drastically. Therefore, the RF2O method can be seen as the

overall LiDAR odometry implementation with the best performance.

RF2O also sticks out in the parameter space. While all other approaches typically give the

ability to tune with an algorithm with more than 10 parameters, the RF2O implementation does

not provide any parameter. It has some internal hardcoded parameters, however far less than

the counterparts.

Further to the quantitative evaluation, it can be seen qualitatively that the algorithms perform

very differently on different sections of the test track. In general, the performance degrades in

featureless regions, while it stays stable in other feature-rich environments (Figure 37). This

behavior not only depends on the chosen algorithms but also very much on the time constraints.

Figure 44: Evaluation results for the different LiDAR Odometry approaches without time constraints

Figure 45: Evaluation results for the different LiDAR Odometry approaches with time constraints

5 Evaluation

68

5.1.4 Visual Odometry

Similar to the previously discussed category, visual odometry approaches also require higher

amounts of computational resources. Although the camera promises to provide 100 Hz at a

WVGA resolution, the real output rate is less than that. Nevertheless, an evaluation with a far

lower image rate is being conducted to simulate optimal environments and prevent restrictions

from the available processing power. The visual odometry from the ZED camera cannot be

analyzed at a slower rate, due to its closed source and direct integration in the camera driver.

Also, the Viso2 Mono is not included in the results of the evaluation without timing constraints

(Figure 46), because it shows far worse results compared to the run on the target hardware in

real time. The SVO approach is generally excluded from the evaluation due to the lacking

software binaries. Hence the only available implementation left to be evaluated without timing

constraints is the Viso2 stereo approach. Figure 46 shows that the rotational and translational

ego-motion performance is quite good, when compared to the previous methods. For the un-

certainty results, it must be noted, that there is no proper error model to compute them. Rather

the output covariance matrix is hardcoded to have either one set of standard parameters or a

set of parameters for the case of failure.

In a second evaluation step all available methods are run on the target hardware at real time

(Figure 47). While the Viso2 stereo implementation at least provides a static covariance matrix,

the other two approaches do not output any uncertainty information at all. Although the Viso2

stereo results are degraded due to the timing restrictions, it is still the best technique out of the

three.

Figure 46: Evaluation results for the Viso2 stereo approach without time constraints

5 Evaluation

69

Qualitatively, it can be seen that the visual odometry approaches also suffer in low feature

regions. Although the Viso2 mono approach tries to overcome the scale ambiguity problem, it

still can be observed, when looking at the whole estimated path.

5.1.5 Fused Odometry

Last but not least the fused odometry approach is being evaluated. The presented models

(CTRV and CTRA) have different inputs and measurement vectors. They require specific pre-

requisite nodes to run.

The CTRV method combines data from wheel encoders and gyroscope with measurements

from visual or lidar odometry. Therefore, the corrected IMU data and the output of the odometry

/ dead reckoning is needed for the prediction step. Both data sources run at a similar rate (100-

110 Hz) and can accordingly be synchronized without losing too much data in the synchroni-

zation process. This enables the filter to predict and output the current state at a high frequency

(around 100 Hz). For the correction step, another ROS odometry type input is required to pro-

vide direct pose measurements. Based on the previous evolution so far, the Viso2 stereo

odometer achieves the best results and is being used as data source. Figure 48 shows the

final package overview when using the CTRV model in the fused odometry package.

For the Kalman filter, the following parameters for the process covariance and initial system

covariance matrix are identified by hand and being used

 Arduino Sketch
drive train

(. .)

 Arduino Sketch

Razor AHRS
(. .)

 ROS package

imu filter
(. .)

 ROS package
zed wrapper

(. .) (. .)

 ROS package
razor imu dof

(. .)

 ROS package
rosserial python

(. .)

 ROS package
wheel odometry

(. .)

 ROS package
viso ros stereo

(. .)

 ROS package
fused odometry

CTRV model
(. .)

serial

vehicle
encoder

IM

Odometry

Image

Odometry

Odometry

Odometry

IM

 ROS package
pro ect to plane

(. .)

Odometry

Corr. Odom.

 red. Odom.

Corr. IM

 red. IM

serial

Figure 47: Evaluation results for the different Visual Odometry approaches with time constraints

Figure 48: Software architecture being used for the CRTV model

5 Evaluation

70

𝑅𝑡,𝐶𝑇𝑅𝑉 = [
0.001 0 0
0 0.001 0
0 0 0.001

] and 𝛴0,𝐶𝑇𝑅𝑉 = [
0.01 0 0
0 0.01 0
0 0 0.01

]. (5.1)

For the CTRA model however it is assumed that only the wheel odometry and IMU data is

available. The corrected IMU output is being plugged into the fusion as prediction and the

wheel odometry is being used as measurements in the correction step (Figure 49). Again, this

allows running the filter at a high frequency (100Hz). For this variant also the correction is

being executed at approximately the same rate.

Again, the parameters for the CTRA model are estimated empirically

𝑅𝑡,𝐶𝑇𝑅𝐴 = [
0.001 0 0
0 0.001 0
0 0 0.0001

] and 𝛴0,𝐶𝑇𝑅𝐴 = [
0.01 0 0
0 0.01 0
0 0 0.01

]. (5.2)

Figure 50 shows that both approaches perform better than the individual fusion sources. The

CTRA model achieves a slightly better correctness in the pose, however, this could be due to

not perfectly tuned parameters. The uncertainties for both methods are bounded.

5.1.6 Summary

Table 5-2 and Figure 51 provide an overview of all results evaluated so far.

 Arduino Sketch
Razor AHRS

(. .)

 ROS package
imu filter

(. .)

 ROS package
razor imu dof

(. .) ROS package
fused odometry

CTRA model
(. .)

serial
IM

Odometry

IM

Corr. Odom.

 red. Odom.

Corr. IM

 red. IM

 Arduino Sketch
drive train

(. .)

 ROS package
rosserial python

(. .)

 ROS package
wheel odometry

(. .)

vehicle
encoder Odometry

serial

Figure 49: Software being used for the CTRA model

Figure 50: Evaluation results for the fused odometry approaches

5 Evaluation

71

Method translational error*

√𝝐𝒙
𝟐 + 𝝐𝒚

𝟐

rotational error*

𝝐𝝍

velocity

output?

cpu time* parameter

count**

CW CCW CW CCW

Wheel Odom.

(Hyperopt)

6.12m

± 0.54m

1.00m

± 0.57m

-7.97°

± 1.23°

8.05°

± 1.24°

yes 0.443ms

± 0.109ms

4

In. Navigation

System

583m

± 106m

640m

± 96m

22.00°

± 2.84°

7.83°

± 2.92°

yes 0.640ms

± 0.188ms

0

LiDAR Odom.

CSM

8.74m

± 3.19m

9.58m

± 3.06m

26.29°

± 7.45°

-23.09°

± 7.59°

no 239.0ms

± 188.2ms

>10

LiDAR Odom.

Pointmatcher

34.09m

± 2.46m

37.29m

± 2.85m

-175.19°

± 6.10°

139.61°

± 6.34°

no 10.75ms

± 2.936ms

>10

LiDAR Odom.

Polar Matcher

17.17m

± 3.20m

39.37m

± 3.18m

-99.76°

± 7.45°

87.46°

± 7.74°

no 87.90ms

± 17.65ms

>10

LiDAR Odom.

RF2O

8.62m

± 1.81m

3.36m

± 2.35m

45.71°

± 6.31°

-41.56°

± 6.48°

no 53.07ms

± 11.45ms

0

Visual Odom.

ZED

2.61m

undef.

11.93m

undef.

-12.75°

undef.

34.26°

undef.

no unknown

0

Visual Odom.

Viso2 Mono

21.47m

undef.

12.88m

undef.

-16.90°

undef.

-17.39°

undef.

yes 223.4ms

± 14.91ms

>10

Visual Odom.

Viso2 Stereo

2.99m

± 0.45m

2.51m

± 0.45m

-0.51°

± 23.62°

10.95°

± 23.62°

yes 103.6ms

± 8.638ms

>10

Fused Odom.

CTRV

1.27m

± 0.21m

2.82m

± 0.21m

1.92°

± 9.87°

5.75°

± 9.73°

no 0.136ms

± 0.029ms

3

Fused Odom.

CTRA

1.22m

± 0.14m

1.80m

± 0.74m

4.24°

± 0.78°

8.21°

± 0.74°

no 0.436ms

± 0.035ms

3

* <expected value> ± <standard deviation>

** only includes algorithm-specific parameter. Does not include:

• ROS specific parameter

• Initial parameter (e.g. initial position or covariances)

• hardcoded parameters or magic numbers in the code

Table 5-2: Overview of all presented ego-motion estimation results running on the target hardware

Figure 51: Comparison of the best ego-motion estimation techniques from each category

5 Evaluation

72

5.2 Object Motion Estimation

In this section, the in chapter 4.3 implemented object detection and motion approaches will be

evaluated. The evaluation is based on a test setup involving a model car body “parking” in front

of the vehicle. The vehicle first waits and then slowly moves towards the object. To enable a

long object detection time frame, the lowest possible velocity is being driven. The motion of

the detected object is then compared to the ego-motion estimate. In an optimal scenario, the

inverted ego-motion should resemble the detected motion of the object. The wheel odometry

method (4.2.1 Odometry & Dead Reckoning) is being used to generate this ego-motion. To

avoid discretization errors from the wheel encoders at such a low speed, the input moving

average size is set to 150. Because of the slower rate for the detection via CNN (4.3.2 Camera

Objects) all evaluation is being done offline. Therefore, no execution time for the implementa-

tions is being considered.

5.2.1 LiDAR Objects

The developed LiDAR object detection (4.3.1 LiDAR Objects) provides obstacles at the rate of

the incoming laser message (40 Hz). It is assumed that the uncertainty of the centroid pose

corresponds to the laser uncertainty (4.1.3 LiDAR). Since it is not able to classify vehicles, all

objects meeting the clustering criteria (Table 5-3) and dimension constraints (Table 5-4) are

published.

Cluster Tolerance Minimum Cluster Size Maximum Cluster Size

0.1 10 500

Maximum Width Maximum Length

0.5 0.8

Figure 52: camera image while approaching the obstacle at 10s, 15s, 20s, 25s

Table 5-3: clustering parameter [140]

Table 5-4: dimension constraints

5 Evaluation

73

This results in many outgoing obstacles which can be partly tracked over a longer period of

time or just appear randomly as noise (Figure 54). To account for this unreliability, a constant

trust value for each obstacle is set to the low value of 0.075.

Although most of the obstacle tracks do not resemble the inverted ego motion, some tracks

are similar. An extra filtering step is needed to classify and find the correct objects. For a solid

obstacle the centroid position is mostly stable, however, when approaching the object its shape

detected by the laser can change. This results in discontinuities in the centroid position, i.e.

the obstacle position jumps in time.

Since the lidar obstacle generation does not include velocity information, this cannot be eval-

uated.

Figure 53: LiDAR detections at time t=1s; grid size is 1m; black = laser scan points;
dark blue = centroids; light blue = constructed bounding boxes;

upper coordinate system = ℒ; lower coordinate system = 𝒱

Figure 54: LiDAR obstacle detections in the lidar coordinate system ℒ compared to ego-motion

5 Evaluation

74

5.2.2 Camera Objects

With all the optimal settings described in section 4.3.2, the employed network YOLO_50

achieves reliable results in detecting the object in almost all frames. However, it must be noted

that the detection quality is considerably worse when not using these advantageous environ-

mental settings. With the lower clock rate, the network achieves to output predictions at the

same frequency as the camera image rate. For the used resolution (2.2K) this corresponds to

a stable value of 15 Hz (Table 4-5). Still, on the real hardware, the output frequency is a lot

more unsteady. The confidence of the CNN prediction increases when coming closer to the

object (Figure 55). Beginning at around t=25s the vehicle is only partly visible in the image

(Figure 52) and therefore the confidence decreases again.

Since the homography transformation only needs to be done for two points (lower points of the

bounding box), the computational cost is negligible. Figure 56 shows the resulting obstacle

output. Although the trend is correct, the absolute values are off by around 50cm from the

object detected by the laser. This could be due to a non-perfect estimation of the homography

parameters. Also, the angle of the camera to the ground plane could have changed after the

calibration, because of the light suspension.

Figure 55: Confidence output of YOLO_50 during the test

Figure 56: camera obstacle detections in the camera coordinate system 𝒞 compared to ego motion

5 Evaluation

75

5.2.3 Fused and tracked Objects

Last but not least the developed obstacle fusion and tracking package (4.3.3 Fused and

tracked Objects) is being evaluated. The obstacles generated from the LiDAR measurements

achieve good positional accuracy, however, they suffer from position discontinuities (5.2.1 Li-

DAR Objects). Therefore, they are being used as correction source to update the internal ob-

ject state pose based on the precise LiDAR data (Figure 57). On the other hand, the camera

obstacles do not have a good position estimate, but the detection of the desired object is more

stable. Accordingly, they are better suited as prediction source. Due to the continuity, the gen-

erated obstacle velocity has less noise after the differentiation. Still, the moving average filter

size for the velocity is being set to 20 and the following covariances are being used

𝑅𝑡 = [
0.1 0
0 0.1

] and 𝛴0 = [
0.5 0
0 0.5

]. (5.3)

The final fused positional estimate is similar to the one provided by the laser obstacles for the

target object (Figure 58). However, it is more stable and has less noise when approaching the

obstacle (from t=20s to t=25s). The generated object velocity provides a good estimate but is

still very noisy and deviates from the recorded ego-motion velocity partly (Figure 59).

Because of the high offset between LiDAR and camera estimates for the target object a mini-

mum distance threshold for the merging criterion is set to 0.9m. The constant trust deduction

in each prediction is set slightly higher than the initial trust value of the incoming LiDAR objects.

Therefore, they are all filtered out when no merge with a camera obstacle is possible. This

results in only the target object being published as fused obstacle output.

 ROS package
zed wrapper

(. .) (. .)

 ROS package
urg node

(. .)

 ROS package
obstacle fusion

(. .)

 aserScan

Odometry

Image

Obstacles

Correction

 rediction

 ROS package
laserscan obstacle

(. .)

 ROS package
darkflow ob ect det

(. .)

 ROS package
bb to obstacle

(. .)

BoundingBo

Obstacles

Obstacles

Figure 57: Overview of the final object prediction pipeline

Figure 58: fused obstacle position in the vehicle frame 𝒱 compared to ego motion

5 Evaluation

76

5.2.4 Summary

Figure 60 compares the results of the developed object estimation methods.

Figure 59: fused obstacle velocity in the vehicle frame 𝒱 compared to ego motion

Figure 60: comparison of all presented obstacle position estimation techniques and ego-motion

77

6 Summary and conclusion

6.1 Summary

ADS have a lot of potential, but there are still many challenges unsolved. Model cars can help

to address these challenges, especially in research and education. They are cheaper and eas-

ier to build. Also, they require less effort in the areas of safety and security. Two of the chal-

lenges for ADS are the ego- and object-motion estimation. There are many different solutions,

which all have their strength and weaknesses.

The objective of this thesis was to give an overview of all available methods and analyze them

with regard to this application of a self-driving model car. Firstly, the state of the art was exam-

ined to find all common approaches which are feasible for this project. In a second step, similar

projects were analyzed in terms of ego- and object motion estimation techniques. In the main

part of this thesis, various approaches were implemented and evaluated.

6.1.1 Ego-Motion estimation

The first developed approach of ego-motion estimation was based on wheel odometry. It con-

sisted of a simple differential drive model with a complete analytically derived uncertainty

model. An additional low pass filter for the yaw angle helped to reduce discretization errors

from the encoder inputs. The computation was extremely fast and only a few parameters were

required. These parameters were derived from the systematic errors of the model: scaling error

of wheel diameter, inequality of wheel diameter and difference between actual and nominal

track width. Two approaches (Hyperopt and UMBmark) were evaluated to calibrate these pa-

rameters.

In a second approach, data from the IMU sensor was being used to calculate the ego-motion.

This method was based on a simple physical model with a complete analytically derived un-

certainty model. Although the accelerometer measurements were filtered in multiple steps,

they were still very disturbed by influences from noise which made them almost unusable. Due

to the double integration, this added up to a huge error in the position estimate. The gyroscope

data, on the other hand, showed a satisfactory estimate for the orientation after integration.

The presented LiDAR and visual odometry approaches used feature matching or direct meth-

ods to compute the motion estimate between successive measurements. These methods re-

quired more computational resources than the target hardware could deliver at the provided

sensor rates. Therefore, the estimates degraded when running online. Most methods had a

high number of parameters to tweak and tune the algorithm (except for RF2O). This meant a

lot of tuning in the huge parameter space and several smaller modifications were needed.

Lastly, both approaches showed satisfactory results when good environmental conditions were

6 Summary and conclusion

78

present. For the visual odometry method, this was usually the case, due to the automatic cam-

era gain and exposure setting. However, the LiDAR odometry more frequently decreased in

performance due to repetitive environments.

Another developed approach was using a Kalman filter-based fusion of various input sources.

The module was implemented to be very generic and to have several types of sources for the

prediction and correction step. Both steps were designed to be independent and executed

based on the source frequency (multi-rate fusion). Two exemplary models were implemented

with diverse sources (the choice of model was not related to the choice of sources). The first

model (CTRV) fused the data from the wheel odometry and IMU (prediction) with the estimates

from the Viso2 stereo odometer (correction). The second model (CTRA) fused the data from

the IMU (prediction) with data from wheel odometry (correction). Both resulted in a better esti-

mate than the sources individually. However, the fusion module also increased the complexity

and number of parameters to be tuned. The fusion itself only required a little amount of com-

putation time.

6.1.2 Object-Motion estimation

The first object detection approach developed was based on LiDAR scan data. An available

package was analyzed and extended for this particular use case. Obstacles were generated

from a cluster extraction algorithm based on the Euclidean distances between points. Since

the objects were generated from LiDAR data, their positional estimate was very precise. How-

ever, the centroid point of the objects sometimes jumped because of the changing shape de-

tected by the laser. The obstacles are checked for correct dimensions, but no further

classification was being implemented. This resulted in multiple detected obstacles being pub-

lished.

A second approach based on camera data was implemented. It made use of an already exist-

ing pretrained convolutional neural network to detect the vehicles. The network only run at a

slow rate and performed better when the camera settings were tweaked (e.g. higher gain). It

was very suitable for the detection and classification of vehicles. An interface to ROS was

developed to forward the results via a bounding box message. This bounding box was trans-

formed to camera coordinates using homography parameters. The resulting positional esti-

mate was not as precise as the one from the LiDAR obstacles. However, the centroid of the

object was more continuous and only the target object was being published.

Both previous object detection methods did not include velocity information for the object.

Therefore, a third fusion approach based on a multi-rate Kalman filter was being developed.

The filter used a constant velocity model for each object and tracks them over time, i.e. main-

tains an object list. While the camera obstacles were being used in the prediction step, the

LiDAR estimates were utilized for the correction. This improved the precision of the fused ob-

stacles and removed jumps or discontinuities. Trust values helped to assure that an object is

trustworthy and to delete old obstacles.

6 Summary and conclusion

79

6.2 Conclusion

6.2.1 Ego-Motion Estimation

Under the given environmental assumptions wheel odometry and dead reckoning methods

provide a good estimate with the only little amount of computational cost. However, this is only

achieved if the calibration is performed well. Also, it does not mean that they are always supe-

rior in all situations. Further tests must be made if the road surface is less optimal (e.g. uneven

ground, high amount of slip).

LiDAR and visual odometry, on the other hand, can provide satisfactory results independent

of the road surface if enough computing time is available. Unfortunately, both methods are

computationally expensive. This increases the temporal difference between the measure-

ments and the performance degrades. The same symptom will also occur when the vehicle

drives with a high velocity with a lot of change between the images. Therefore, additional re-

search is needed in order to reduce the computation time for example by using accelerator

hardware (e.g. GPGPU). Also, these methods typically do not provide velocity information and

the uncertainty model is only static or based on some heuristics.

Fused ego-motion approaches can improve the estimates compared to the individual results.

Even better results can be expected when fusing the ego-motion with localization data from a

map. This can easily be achieved, for example, by replacing the correction input of the pre-

sented CTRV model with a localizer estimate. In doing so, this would make the fused output

error bounded and longer drives with a precise motion state would be possible.

6.2.2 Object-Motion Estimation

Obstacle detection methods using a CNN can achieve quite reliable results. However, the re-

quired processing power is still too high. Further investigations must be made in order to in-

crease the estimation output rate on the target hardware. Several steps can be done to reduce

the computational cost (smaller network, faster framework, …). However, this requires an es

sential change of the underlying model. Also, the homography transformation output lacks in

precision. Further investigations could include redoing the calibration or using the intrinsic cam-

era parameters for the estimation.

The LiDAR obstacle generation is very precise. However, there is still room for improvement

when it comes to the clustering process. Also, an orientation estimate would be useful. But

before that, the final shape of the target objects must be defined first.

The obstacle fusion successfully removes some of the flaws from the previous methods. The

obstacle merging process is still simple and works well in low complex environments. When

adding more obstacles to the scene, this may also require a more sophisticated matching of

obstacles. Also, more complex models could be used when orientation estimates from the

sources are available.

6 Summary and conclusion

80

i

List of Figures

Figure 1: Critical reasons for a pre-crash event broken down by total and driver-related

reasons based on the National Motor Vehicle Crash Causation Survey from 2005

to 2007 [144] .. 1

Figure 2: computer mouse sensor structure (left) and working principle (right) [20, Figs. 1, 2] 9

Figure 3: Strapdown inertial navigation algorithm [23, Fig. 4] ...10

Figure 4: Distance measurement principle based on phase difference using a Laser as an

emitter and a diode as receiver [35, Fig. 2] ..12

Figure 5: Pinhole camera model [43, Fig. 3a] ...13

Figure 6: Example scene of a LiDAR detection and motion estimation approach

[49, Fig. 3] ...15

Figure 7: Basic building blocks of traditional computer vision DATMO approach [51, Fig. 1]

[51, Fig. 2] ...16

Figure 8: raw chassis & drivetrain (left) [56] and vehicle equipped with additional parts (right)

[3] ...17

Figure 9: Overview of electronic components [3] ..18

Figure 10: RACECAR/J hardware platform [59] ..19

Figure 11: F1tenth hardware platform [63] ..20

Figure 12: Phoenix car being used in CaroloCup 2017 and 2018 [69]21

Figure 13: Example scene with feature detections from different OpenCV descriptors using

default settings ..23

Figure 14: CAD design of sensor mount and magnet ring (left), 3D printed sensor mount

(middle), 3D printed magnet ring (right) ..27

Figure 15: 9DoF Razor IMU board from Sparkfun Electronics comprising of an MPU-9250

sensor (smaller chip) and Atmel SAMD21 microprocessor (bigger chip) [91]32

Figure 16: Comparison of yaw angle calculation using different techniques: a) integration of

yaw rate from front wheel encoders (4.2.1) b) integration of yaw rate from

gyroscope sensor around the z-axis (4.2.2) c) yaw orientation output from the

AHRS fusion algorithm with drift compensation utilizing magnetometer

measurements enabled ..32

Figure 17: Comparison of raw and filtered (moving average with size 20) x acceleration

during a test drive ...34

Figure 18: Acceleration variances for different velocities ..34

Figure 19: Gyroscope variances for different velocities...35

Figure 20: Hardware architecture of a prototype LiDAR sensor from the Hokuyo "URG" series

which is similar to the sensor being used in the project (UST-20Lx) [35, Fig. 1]35

Figure 21: Camera image of the horizontally moving laser beam at different distances: Left:

35cm distance and 12,5cm height Right: 245cm distance and 17cm height

Resulting in a Θ = 1,23° displacement of the pitch angle36

Figure 22: ROS coordinate frame orientation convention for stereo images [102]37

file://///VBOXSVR/fabianhanke/ownCloud/MASTERARBEIT/MA%20Fabian%20Hanke_v10.docx%23_Toc517634406
file://///VBOXSVR/fabianhanke/ownCloud/MASTERARBEIT/MA%20Fabian%20Hanke_v10.docx%23_Toc517634406
file://///VBOXSVR/fabianhanke/ownCloud/MASTERARBEIT/MA%20Fabian%20Hanke_v10.docx%23_Toc517634406

ii

Figure 23: Example ego-motion estimation output of the ZED camera without (light blue) and

with (dark blue) projection onto the ground plane ..38

Figure 24: Rectified image showing a calibration pattern ..38

Figure 25: Image pixel transformed in world coordinates (bird's eye view)39

Figure 26: sensor package overview with the respective chapter number40

Figure 27: Simplified class structure of the implementation ..45

Figure 28: Simplified execution path of the original (left) and modified (right) base package

[115] ...46

Figure 29: Possible data sources (ROS message types) for the developed

fusion package ..50

Figure 30: Simplified class structure of the fusion package ..51

Figure 31: Execution paths of the base wrapper class ..52

Figure 32: sensor and ego-motion package overview with the respective chapter number ...54

Figure 33: Overlay on camera image of laser scan in red (top) and detected laser scan &

obstacles in yellow (bottom) ..56

Figure 34: Detected bounding boxes using an input size of 160x160 (left) vs 640x640 (right)

 ...57

Figure 35: sensor and object motion structure with respective chapter numbers59

Figure 36: Camera image of two scenes of the test track with a low (left) and high (right)

amount of features ..62

Figure 37: LiDAR point cloud of the same scenes as in Figure 36 ..62

Figure 38: Evaluation diagram with explanation ...63

Figure 39: Odometry calculation results for a 13x13m square pattern using uncalibrated and

corrected errors estimated with the UMBmark method [14, Fig. 6.5]64

Figure 40: The 100 out of 15000 best parameters for 𝑏actual and 𝑒𝑟𝑟𝑑 with lowest total loss

on multiple CCW and CW recordings of a 13x13m square pattern64

Figure 41: Odometry calculation results for a 13x13m square pattern with uncalibrated and

corrected errors using the best parameters estimated with the Hyperopt framework

[14, Fig. 6.5] ..64

Figure 42: Positional errors and rotational errors for the different calibration methods

(uncertainty is too small to be visible)..65

Figure 43: Pose estimate using the strapdown INS algorithm ...66

Figure 44: Evaluation results for the different LiDAR Odometry approaches without time

constraints ..67

Figure 45: Evaluation results for the different LiDAR Odometry approaches with time

constraints ..67

Figure 46: Evaluation results for the Viso2 stereo approach without time constraints68

Figure 47: Evaluation results for the different Visual Odometry approaches with time

constraints ..69

Figure 48: Software architecture being used for the CRTV model ..69

Figure 49: Software being used for the CTRA model ..70

Figure 50: Evaluation results for the fused odometry approaches ..70

Figure 51: Comparison of the best ego-motion estimation techniques from each category ...71

Figure 52: camera image while approaching the obstacle at 10s, 15s, 20s, 25s72

Figure 53: LiDAR detections at time t=1s; grid size is 1m; black = laser scan points; dark

blue = centroids; light blue = constructed bounding boxes; upper coordinate

system = ℒ; lower coordinate system = 𝒱 ...73

iii

Figure 54: LiDAR obstacle detections in the lidar coordinate system ℒ compared to ego-

motion ...73

Figure 55: Confidence output of YOLO_50 during the test ...74

Figure 56: camera obstacle detections in the camera coordinate system 𝒞 compared to ego

motion ...74

Figure 57: Overview of the final object prediction pipeline ..75

Figure 58: fused obstacle position in the vehicle frame 𝒱 compared to ego motion75

Figure 59: fused obstacle velocity in the vehicle frame 𝒱 compared to ego motion76

Figure 60: comparison of all presented obstacle position estimation techniques and ego-

motion ...76

iv

v

List of Tables

Table 1-1: SAE Level of Driving Autonomy [2] ... 2

Table 2-1: Overview of Error Types in MEMS Gyroscopes and Accelerometers [23, pp. 13,

17] ...10

Table 4-1: comparison of externally applied and measured speed28

Table 4-2: Measurements and scaling error after driving a 20 m straight line in multiple trials

..29

Table 4-3: search space parameter being used ..30

Table 4-4: Temperature sensitivity specification for the MPU-9250 sensor in operating

conditions [89, pp. 8–9] ...33

Table 4-5: Available video modes [99] ..37

Table 4-6: Overview of all coordinate systems ...39

Table 5-1: Overview of the calibration methods and the determined parameters65

Table 5-2: Overview of all presented ego-motion estimation results running on the target

hardware ...71

Table 5-3: clustering parameter [140] ...72

Table 5-4: dimension constraints ..72

Table 11-1: ROS Header message definition ... xvii

Table 11-2: ROS Encoder Linear message definition ... xvii

Table 6-3: ROS Vehicle encoder message definition .. xvii

Table 6-4: ROS IMU message definition .. xvii

Table 6-5: ROS LaserScan message definition .. xvii

Table 11-6: ROS Image message definition ... xviii

Table 6-7: ROS Odometry message definition ... xviii

Table 6-8: ROS Obstacle message definition ... xviii

Table 6-9: ROS Bounding Box message definition ... xviii

Table 11-15: list of software packages being developed and used in this thesis xix

vi

vii

List of Algorithms

Algorithm 1: Linear Kalman Filter Algorithm [5, p. 36] .. 6

Algorithm 2: Extended Kalman Filter Algorithm [5, p. 51] ... 7

Algorithm 3: Ego-motion estimation on MIT RACECAR [60] ...19

Algorithm 4: Processing the Timestamp ...51

Algorithm 5: Generate Obstacle from Lidar Message ...55

Algorithm 6: Merging obstacle into the obstacle list ..58

viii

ix

Bibliography

[1] C.- . Chan, “Advancements, prospects, and impacts of automated driving systems,”
Int. J. Transp. Sci. Technol., vol. 6, no. 3, pp. 208–216, 2017.

[2] D. Roberts, “The Department of Transportation ust issued a comprehensive policy on
self-driving cars,” vox.com, 2016. [Online]. Available:
https://www.vox.com/2016/9/19/12966680/department-of-transportation-automated-
vehicles. [Accessed: 16-Apr-2018].

[3] A. Wigand, “Design and Implementation of an Autonomous Model Car,” Technische
Universität München, 2018.

[4] R. Marchthaler and S. Dingler, Kalman-Filter. 2017.

[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, Early draf. 2000.

[6] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots.
Massachusetts Institute of Technology, 2004.

[7] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” In Pract., vol. 7, no. 1,
pp. 1–16, 2006.

[8] . Balzer, “Das Kalman Filter einfach erklärt [Teil],” . [Online]. Available:
http://www.cbcity.de/das-kalman-filter-einfach-erklaert-teil-2. [Accessed: 27-Mar-2018].

[9] . H. Khan and A. Adnan, “Ego-motion estimation concepts, algorithms and
challenges: an overview,” Multimed. Tools Appl., vol. 76, no. 15, pp. 16581–16603,
2017.

[10] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Handbuch Fahrerassistenzsysteme, 3.
Auflage. Springer Vieweg, 2015.

[11] J. Borenstein, H. R. Everett, and L. Feng, Where am I? Sensors and methods for
mobile robot positioning. 1996.

[12] M. O. A. Aqel, M. H. Marhaban, M. I. Saripan, and . B. Ismail, “Review of visual
odometry: types, approaches, challenges, and applications,” Springerplus, vol. 5, no.
1, p. 26, 2016.

[13] K. Reif, Sensoren im Kraftfahrzeug, 2. ergänzt. Springer Vieweg, 2012.

[14] J. Borenstein and . Feng, “ MBmark - A Method for Measuring, Comparing, and
Correcting Dead-reckoning Errors in Mobile Robots,” .

[15] i Art Imaging Inc, “ roduct Spec. Optical avigation > Gaming.” [Online]. Available:
http://www.pixart.com.tw/product_data_table.asp?ToPage=1&productclassify_id=1&pr
oductclassify2_id=3&productclassify_name=Optical
Navigation&productclassify2_name=Gaming. [Accessed: 02-Apr-2018].

[16] . Minoni and A. Signorini, “ ow-cost optical motion sensors: An experimental
characterization,” Sensors Actuators, A Phys., vol. 128, no. 2, pp. 402–408, 2006.

[17] Kistler Group, “Complete Systems from Kistler for Vehicle Dynamics Testing.” [Online].
Available: https://www.kistler.com/en/applications/automotive-research-test/vehicle-
dynamics-durability/dynamics-testing/. [Accessed: 02-Apr-2018].

[18] B. Wohner, “Aufbau einer echtzeitfähigen Geschwindigkeitsschätzung für die
Schlupfregelung eines Formula Student Elektrorennwagens mit Vierradantrieb,”
Technische Universität München, 2016.

[19] S. Heidrich, “Von der Theorie auf die Rennstrecke: Kalman-Filter für die

x

Antriebsschlupfregelung,” . [Online]. Available: http://www.cbcity.de/von-der-
theorie-auf-die-rennstrecke-kalman-filter-fuer-antriebsschlupfregelung. [Accessed: 29-
Mar-2018].

[20] C. iu, . Xu, J. G. iu, H. Sun, and R. M. Kennel, “Rotational Speed Measurement
Based on aser Mouse Sensors,” 18. GMA/ITG-Fachtagung Sensoren und Messsyst.
2016, pp. 540–545, 2016.

[21] J. Wendel, Integrierte Navigationssysteme, 1st ed. München: Oldenbourg
Wissenschaftsverlag GmbH, 2007.

[22] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning Systems, Inertial
Navigation, and Integration, 2nd Editio., vol. 2. Hoboken, New Jersey: John Wiley &
Sons, 2007.

[23] O. J. Woodman, “An introduction to inertial navigation,” Cambridge, .

[24] S. Lee and J. Song, “Mobile robot localization using range sensors: consecutive
scanning and cooperative scanning,” Int. J. Control. Autom. Syst., vol. 3, no. 1, pp. 1–
14, 2005.

[25] Eprolabs, “IR Distance Sensor G OA K,” 6. [Online]. Available:
https://wiki.eprolabs.com/index.php?title=IR_Distance_Sensor_GP2YOA21YK.
[Accessed: 11-Apr-2018].

[26] Generation Robots, “ ltraschallsensoren für Kollisionvermeidung,” . [Online].
Available: https://www.generationrobots.com/blog/de/2017/03/ultraschallsensoren-fur-
kollisionvermeidung/. [Accessed: 11-Apr-2018].

[27] S. Baek, H. ark, and S. ee, “Range sensor data filtering for mobile robot
localization,” in Conference on Advanced Intelligent Mechatronics, 2005, pp. 516–521.

[28] J. Kim, R. A. Pearce, and N. M. Amato, “Robust geometric-based localization in indoor
environments using sonar range sensors,” IEEERSJ Int. Conf. Intell. Robot. Syst., vol.
1, no. October 2001, pp. 2039–2044, 2002.

[29] Z. Feng-ji, G. Hai- iao, and K. Abe, “A Mobile Robot ocalization sing Ultrasonic
Sensors in Indoor Enviroment,” in IEEE International Workshop on Robot and Human
Communication, 1997, pp. 52–57.

[30] R. Gutierrez-Osuna, J. A. Janet, and R. C. uo, “Modeling of ultrasonic range sensors
for localization of autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 45, no.
4, pp. 654–662, 1998.

[31] H. e and M. iu, “ iDAR and Inertial Fusion for ose Estimation by on-linear
Optimization,” .

[32] T. Miyasaka, . Ohama, and . inomiya, “Ego-motion estimation and moving object
tracking using multi-layer IDAR,” 2009 IEEE Intell. Veh. Symp., pp. 151–156, 2009.

[33] D. . u, “Vision-Enhanced idar Odometry and Mapping,” Carnegie Mellon niversity,
2016.

[34] T. . Tang, D. J. oon, F. omerleau, and T. D. Barfoot, “ earning a Bias Correction
for Lidar-only Motion Estimation,” 8.

[35] H. Kawata, A. Ohya, S. uta, W. Santosh, and T. Mori, “Development of ultra-small
lightweight optical range sensor system,” in 2005 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS, 2005, pp. 3277–3282.

[36] D. Scaramuzza and F. Fraundorfer, “Tutorial: Visual odometry,” IEEE Robot. Autom.
Mag., vol. 18, no. 4, pp. 80–92, 2011.

[37] Mo Shan, ingcai Bi, Hailong Qin, Jia in i, hi Gao, Feng in, and B. M. Chen, “A

xi

brief survey of visual odometry for micro aerial vehicles,” IECON 2016 - 42nd Annu.
Conf. IEEE Ind. Electron. Soc., pp. 6049–6054, 2016.

[38] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular visual
odometry,” Proc. - IEEE Int. Conf. Robot. Autom., 2014.

[39] . ang, R. Wang, X. Gao, and D. Cremers, “Challenges in Monocular Visual
Odometry: Photometric Calibration, Motion Bias and Rolling Shutter Effect,” .

[40] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, “An Overview to Visual Odometry
and Visual S AM: Applications to Mobile Robotics,” Intell. Ind. Syst., vol. 1, pp. 289–
311, 2015.

[41] D. M. Helmick, Y. Cheng, D. S. Clouse, L. H. Matthies, and Stergios I Roumeliotis,
“ ath Following using Visual Odometry for a Mars Rover in High-Slip Environments,”
in IEEE Aerospace Conference Proceedings, 2004, pp. 772–789.

[42] . Oyamada, “Survey on Camera calibration.” Keio University; Technische Universität
München, pp. 1–44, 2012.

[43] B. D. Scaramuzza and F. Fraundorfer, “Visual Odometry,” IEEE ROBOTICS &
AUTOMATIONMAGAZINE, no. June, pp. 80–92, 2011.

[44] R. Szeliski, Computer vision: algorithms and applications. Springer, 2010.

[45] W. Boonsuk, “Investigating Effects of Stereo Baseline Distance on Accuracy of D
 ro ection for Industrial Robotic Applications,” in Proceedings of The 2016 IAJC-ISAM
International Conference, 2016.

[46] S. S. Blackman and R. Popoli, Design and analysis of modern tracking systems.
Boston: Artech House, 1999.

[47] C. Mertz, L. E. Navarro-Serment, R. MacLachlan, P. Rybski, A. Steinfeld, A. Suppe, C.
 rmson, . Vandapel, M. Hebert, C. Thorpe, D. Duggins, and J. Growdy, “Moving
Object Detection with Laser Scanners,” J. F. Robot., vol. 30, no. 1, pp. 17–43, 2013.

[48] V. Magnier, D. Gruyer, and J. Godelle, “Automotive IDAR ob ects Detection and
Classification Algorithm sing the Belief Theory,” no. Iv, .

[49] A. Dewan, T. Caselitz, G. D. Tipaldi, and W. Burgard, “Motion-based detection and
tracking in D iDAR scans,” 2016 IEEE Int. Conf. Robot. Autom., pp. 4508–4513,
2016.

[50] S. Sivaraman and M. M. Trivedi, “ ooking at Vehicles on the Road: A Survey of
Vision-Based Vehicle Detection, Tracking, and Behavior Analysis,” IEEE Trans. Intell.
Transp. Syst., vol. 14, no. 4, pp. 1773–1795, 2013.

[51] . K. J. Himani S. arekh, Darshak G. Thakore, “A Survey on Ob ect Detection and
Tracking Methods,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 2, no. 2, pp.
2970–2978, 2014.

[52] S. Thaler, “Visuelle Detektion und Verfolgung von Fahrzeugen mit neuronalen
 etzen,” Technische niversität München, 8.

[53] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y.
Song, S. Guadarrama, and K. Murphy, “Speed accuracy trade-offs for modern
convolutional ob ect detectors,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern
Recognition, CVPR 2017, vol. 2017–Janua, pp. 3296–3305, 2017.

[54] Tra as, “ Scale Ford Fiesta® ST Rally.” [Online]. Available:
https://traxxas.com/products/models/electric/ford-fiesta-st-rally?t=overview. [Accessed:
22-Apr-2018].

[55] D. Franklin, “ VIDIA Jetson TX Delivers Twice the Intelligence to the Edge,” .
[Online]. Available: https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-

xii

edge/. [Accessed: 22-Apr-2018].

[56] Tra as, “Ford Fiesta® ST Rally Specs.” [Online]. Available:
https://traxxas.com/products/models/electric/ford-fiesta-st-rally?t=specs. [Accessed:
22-Apr-2018].

[57] MIT RACECAR, “RACECAR,” . [Online]. Available: https: mit-racecar.github.io.
[Accessed: 18-Apr-2018].

[58] RACECAR J, “Build Instructions.” [Online]. Available: racecar .com pages build-
instructions. [Accessed: 18-Apr-2018].

[59] JetsonHacks, “RACECAR J.” [Online]. Available: jetsonhacks.com/racecar-j.
[Accessed: 18-Apr-2018].

[60] M. Boulet, “vesc to odom.cpp,” 6. [Online]. Available: https: github.com mit-
racecar/vesc/blob/master/vesc_ackermann/src/vesc_to_odom.cpp. [Accessed: 28-
May-2018].

[61] C. Walsh and S. Karaman, “CDDT: Fast Appro imate D Ray Casting for Accelerated
 ocalization,” .

[62] E. Wieser, E. Ho, M. Steele, S.-K. Xue, S. Homberg, and W. Guerra, “Team : Tokyo
Drift.” [Online]. Available: https: docs.google.com presentation d AIF aqSJT-
fPrvG_RfsXmefTlcpt-c8BFZLEIvi1tQ/export/pdf?id=1AIFN7aqSJT-
fPrvG_RfsXmefTlcpt-c8BFZLEIvi1tQ. [Accessed: 31-May-2018].

[63] F , “F Autonomous Racing Competition.” [Online]. Available: f tenth.org.
[Accessed: 19-Apr-2018].

[64] Madhur Behl, “ 8 F Autonomous Racing Competition - Pre-Season Webinar,”
2018. [Online]. Available: https://youtu.be/gIBZVFRCVXk?t=2652. [Accessed: 19-Apr-
2018].

[65] H. Abbas, “ ractice Session ,” 6. [Online]. Available: f tenth.org session .
[Accessed: 19-Apr-2018].

[66] TU Braunschweig, “CaroloCup,” 8. [Online]. Available: https: wiki.ifr.ing.tu-
bs.de/carolocup/. [Accessed: 19-Apr-2018].

[67] T M hoeni Robotics, “Autonomous Drive,” 8. [Online]. Available:
http://www.phoenix.tum.de/index.php?id=19. [Accessed: 19-Apr-2018].

[68] MS Team, “ ightweight Modular System,” 6. [Online]. Available:
https://github.com/lms-org/lms. [Accessed: 21-Apr-2018].

[69] T M hoeni Robotics, “Overview of our CaroloCup vehicles,” 8. [Online].
Available: http://www.phoenix.tum.de/index.php?id=23. [Accessed: 19-Apr-2018].

[70] T M hoeni Robotics, “Simple Kalman Ego-Estimator.” [Online]. Available:
https://github.com/lms-org/ego_estimator. [Accessed: 19-Apr-2018].

[71] Markus Herb, “Kalman Filter ibrary,” . [Online]. Available:
https://github.com/mherb/kalman.

[72] R. Schubert, C. Adam, M. Obst, . Mattern, V. eonhardt, and G. Wanielik, “Empirical
evaluation of vehicular models for ego motion estimation,” IEEE Intell. Veh. Symp.
Proc., no. Iv, pp. 534–539, 2011.

[73] TUM Phoeni Robotics, “Constant Turn Rate and Acceleration Model (CTRA),” 6.
[Online]. Available: https://raw.githubusercontent.com/lms-
org/ego_estimator/master/resources/models/CTRA.pdf. [Accessed: 21-Apr-2018].

[74] T M hoeni Robotics, “Simple Visual Odometry,” 6. [Online]. Available:
https://github.com/lms-org/visual_odometry_from_road. [Accessed: 21-Apr-2018].

xiii

[75] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 3951 LNCS, pp. 430–443, 2006.

[76] R. Ro as, “ ucas-Kanade in a utsheel,” Berlin.

[77] R. Freak, “Finding Transformation matri between two D coordinate frames [i el
 lane to World Coordinate lane],” . [Online]. Available:
https://math.stackexchange.com/questions/77462/finding-transformation-matrix-
between-two-2d-coordinate-frames-pixel-plane-to. [Accessed: 28-May-2018].

[78] M. Ferguson, “rosserial.” [Online]. Available: http: wiki.ros.org rosserial. [Accessed:
26-Apr-2018].

[79] K. ee, C. Jung, and W. Chung, “Accurate calibration of kinematic parameters for two
wheel differential mobile robots,” J. Mech. Sci. Technol., vol. 25, no. 6, pp. 1603–1611,
2011.

[80] Kok Seng Chong and . Kleeman, “Accurate odometry and error modelling for a
mobile robot,” Proc. Int. Conf. Robot. Autom., vol. 4, pp. 2783–2788, 1996.

[81] K. Bohlmann, H. Marks, and A. ell, “Automated odometry self-calibration for car-like
robots with four-wheel-steering,” 2012 IEEE Int. Symp. Robot. Sensors Environ.
ROSE 2012 - Proc., pp. 168–173, 2012.

[82] B. Xuying, . Xueliang, and G. Wenyan, “Calibration of Systematic Errors for Wheeled
Mobile Robots,” Int. J. Sci. Eng. Sci., vol. 1, no. 9, pp. 14–16, 2017.

[83] K. Lee, W. Chung, and K. Yoo, “Kinematic parameter calibration of a car-like mobile
robot to improve odometry accuracy,” Mechatronics, vol. 20, no. 5, pp. 582–595, 2010.

[84] J. Bergstra, D. amins, and D. D. Co , “Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms,” 12th PYTHON Sci. CONF. (SCIPY
2013), no. Scipy, pp. 13–20, 2013.

[85] K. Winer, “ DoF Motion Sensor Bakeoff,” . [Online]. Available:
https://github.com/kriswiner/MPU6050/wiki/9-DoF-Motion-Sensor-Bakeoff. [Accessed:
02-May-2018].

[86] T. T. ew, K. Robot, . Bouchier, and . Bartz, “razor imu dof ackage Summary,”
2018. [Online]. Available: http://wiki.ros.org/razor_imu_9dof. [Accessed: 02-May-
2018].

[87] W. remerlani and . Bizard, “Direction cosine matri imu: Theory,” .

[88] InvenSense Inc., “Motion Driver 6. – Features ser Guide.” InvenSense Inc.,
Sunnyvale, pp. 1–6, 2015.

[89] InvenSense Inc., “M - roduct Specification Revision . ,” Product
Specification. InvenSense Inc., San Jose, 2016.

[90] M. Eser, “Sensordatenfusion zur Bestimmung der Einbaulage von Smartphones,”
Technische Universität München, 2016.

[91] Sparkfun Electronics, “SparkFun DoF Razor IM M .” [Online]. Available:
https://www.sparkfun.com/products/14001. [Accessed: 02-May-2018].

[92] Hokuyo Automatic CO TD, “Scanning aser Range Finder Smart-URG mini UST-
 X (ST) Specification.” .

[93] Hokuyo Automatic CO TD, “Communication rotocol Specification For ST Series
 X X.” pp. –13, 2014.

[94] C. Rockey and M. O’Driscoll, “urg node ackage Summary.” [Online]. Available:
http://wiki.ros.org/urg_node. [Accessed: 07-May-2018].

xiv

[95] C. Rockey, “RE 8 - LaserScan Common Topics, Parameters, and Diagnostic
Keys,” . [Online]. Available: http: www.ros.org reps rep-0138.html.

[96] Stereolabs Inc., “Meet ED,” 8. [Online]. Available:
https://www.stereolabs.com/zed/. [Accessed: 08-May-2018].

[97] Stereolabs Inc., “Stereolabs ED Camera - ROS Integration.” [Online]. Available:
https://github.com/stereolabs/zed-ros-wrapper. [Accessed: 08-May-2018].

[98] Stereolabs Inc., “SDK Introduction,” . [Online]. Available:
https://www.stereolabs.com/developers/documentation/API/v2.2.0/index.html.
[Accessed: 08-May-2018].

[99] Stereolabs Inc., “Video - Introduction,” 8. [Online]. Available:
https://docs.stereolabs.com/overview/video/introduction/. [Accessed: 08-May-2018].

[100] ep luís egre, “Are ED TFs following the ROS standards? # ,” . [Online].
Available: https://github.com/stereolabs/zed-ros-wrapper/issues/170. [Accessed: 08-
May-2018].

[101] A. Du ardin, “WI # prototype TF refactoring,” 8. [Online]. Available:
https://github.com/adujardin/zed-ros-
wrapper/commit/9e5b5183c17854579e98989f6adbbacf0aa183ac. [Accessed: 08-May-
2018].

[102] P. Mihelich, K. Konolige, and J. Leibs, “stereo image proc package summary,” 6.
[Online]. Available: http://wiki.ros.org/stereo_image_proc?distro=lunar. [Accessed: 08-
May-2018].

[103] Stereolabs Inc., “ roblem with factory reset of the ED calibration.” [Online]. Available:
https://support.stereolabs.com/hc/en-us/articles/207622145-Problem-with-factory-
reset-of-the-ZED-calibration. [Accessed: 08-May-2018].

[104] ROS, “image pipeline CameraInfo.” [Online]. Available:
http://wiki.ros.org/image_pipeline/CameraInfo. [Accessed: 30-May-2018].

[105] T M hoeni Robotics, “Camera Homography Estimator.” [Online]. Available:
https://github.com/tum-phoenix/drive_ros_camera_homography. [Accessed: 31-May-
2018].

[106] M. Althoff, “CommonRoad : Vehicle Models.” Technische niversität München,
Garching, pp. 1–25.

[107] R. Wing, “Introduction to Robotics, ab #8: Error ropagation,” . [Online].
Available: http://correll.cs.colorado.edu/?p=1307. [Accessed: 12-May-2018].

[108] C. R. Carlson, “Estimation with Applications for Automobile Dead Reckoning and
Control,” Standford niversity, .

[109] R. Stančić and S. Graovac, “ and Vehicle avigation System Based on the Integration
of Strap-Down I S and G S,” Electronics, vol. 15, no. 1, pp. 54–61, 2011.

[110] B. Aleksandr and J. F. Gardner, “Constrained navigation algorithms for strapdown
inertial navigation systems with reduced set of sensors,” in Proceedings of the
American Control Conference, 1998, vol. 3, no. June, pp. 1848–1852.

[111] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. Durrant-Whyte, “The aiding of a low-
cost strapdown inertial measurement unit using vehicle model constraints for land
vehicle applications,” IEEE Trans. Robot. Autom., vol. 17, no. 5, pp. 731–747, 2001.

[112] F. omerleau and M. Wild, “Recent Development of the Iterative Closest Point (ICP)
Algorithm,” students.asl.ethz.ch, 2010.

[113] J. Deray, “laser odometry.” [Online]. Available:

xv

https://github.com/artivis/laser_odometry. [Accessed: 21-May-2018].

[114] E. Marder-Eppstein, T. Foote, D. Thomas, and M. Shah, “pluginlib - Package
Summary.” [Online]. Available: http: wiki.ros.org pluginlib. [Accessed: -May-2018].

[115] J. Deray, “Overall e ecution pseudo code,” . [Online]. Available:
https://github.com/artivis/laser_odometry/wiki/Overall-execution-pseudo-code.
[Accessed: 21-May-2018].

[116] A. Censi, “CSM,” . [Online]. Available: purl.org censi csm. [Accessed: -
May-2018].

[117] A. Censi, “An IC variant using a point-to-line metric,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2008.

[118] A. Censi, “On achievable accuracy for pose tracking,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2009.

[119] A. Censi, “An accurate closed-form estimate of IC ’S covariance,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), 2007, pp.
3167–3172.

[120] A. Censi, “On achievable accuracy for range-finder localization,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 4170–
4175.

[121] F. omerleau and S. Magnenat, “ ointmatcher.” [Online]. Available:
https://github.com/ethz-asl/libpointmatcher. [Accessed: 22-May-2018].

[122] F. omerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing IC variants on
real-world data sets: Open-source library and e perimental protocol,” Auton. Robots,
vol. 34, no. 3, pp. 133–148, 2013.

[123] A. Diosi and . Kleeman, “ aser Scan Matching in Polar Coordinates with Application
to S AM,” pp. –6.

[124] M. Jaimez, J. G. Monroy, and J. Gonzalez- imenez, “ lanar Odometry from a Radial
Laser Scanner. A Range Flow-based Approach Mariano,” in IEEE International
Conference on Robotics and Automation 2016, 2016.

[125] A. Geiger, . enz, and R. rtasun, “Are we ready for Autonomous Driving? The KITTI
Vision Benchmark Suite,” . [Online]. Available:
http://www.cvlibs.net/datasets/kitti/eval_odometry.php. [Accessed: 25-May-2018].

[126] S. Wirth, “viso ros - ackage summary,” . [Online]. Available:
http://wiki.ros.org/viso2_ros. [Accessed: 26-May-2018].

[127] A. Geiger, “ IBVISO : C++ ibrary for Visual Odometry .” [Online]. Available:
http://www.cvlibs.net/software/libviso/. [Accessed: 26-May-2018].

[128] A. Geiger, J. iegler, and C. Stiller, “StereoScan: Dense d reconstruction in real-
time,” IEEE Intell. Veh. Symp. Proc., no. Iv, pp. 963–968, 2011.

[129] Fangthu, “unrecognized command line option ‘-msse ’ # .” [Online]. Available:
https://github.com/srv/viso2/issues/35. [Accessed: 27-May-2018].

[130] Robotics and erception Group, “SVO . : Fast Semi-Direct Visual Odometry for
Monocular, Wide Angle, and Multi-camera Systems,” . [Online]. Available:
http://rpg.ifi.uzh.ch/svo2.html. [Accessed: 27-May-2018].

[131] C. Forster, . hang, M. Gassner, M. Werlberger, and D. Scaramuzza, “SVO : Semi-
Direct Visual Odometry for Monocular and Multi-Camera Systems,” pp. –18.

[132] Robotics and erception Group, “rpg svo e ample.” [Online]. Available:
https://github.com/uzh-rpg/rpg_svo_example. [Accessed: 27-May-2018].

xvi

[133] BirBikram, “TX Installation # ,” 8. [Online]. Available: https: github.com uzh-
rpg/rpg_svo_example/issues/40. [Accessed: 27-May-2018].

[134] W. Meeussen, “robot pose ekf - package summary.” [Online]. Available:
http://wiki.ros.org/robot_pose_ekf. [Accessed: 10-Jun-2018].

[135] T. Moore and D. Stouch, “A generalized e tended Kalman filter implementation for the
robot operating system,” Adv. Intell. Syst. Comput., vol. 302, pp. 335–348, 2016.

[136] J. Faust and V. radeep, “message filters - package summary.” [Online]. Available:
http://wiki.ros.org/message_filters. [Accessed: 01-Jun-2018].

[137] J. Faust and V. radeep, “message filters::sync::Appro imateTime.” [Online].
Available: http://wiki.ros.org/message_filters/ApproximateTime. [Accessed: 01-Jun-
2018].

[138] T M hoeni Robotics, “drive ros laserscan obstacle generator.” [Online].
Available: https://github.com/tum-
phoenix/drive_ros_laserscan_obstacle_generator/tree/de53947df147066d31f316d70d
3b0e7b54e64319. [Accessed: 31-May-2018].

[139] T. Foote and R. B. Rusu, “laser geometry - package summary.” [Online]. Available:
http://wiki.ros.org/laser_geometry. [Accessed: 31-May-2018].

[140] ointClouds.org, “Euclidean Cluster E traction.” [Online]. Available:
http://www.pointclouds.org/documentation/tutorials/cluster_extraction.php. [Accessed:
31-May-2018].

[141] J. Redmon and A. Farhadi, “ O O : Better, Faster, Stronger.” 6.

[142] Thtrieu, “darkflow.” [Online]. Available: https: github.com/thtrieu/darkflow. [Accessed:
31-May-2018].

[143] J. Redmon, “Darknet: Open Source eural etworks in C.” .

[144] S. Singh, “Critical reasons for crashes investigated in the ational Motor Vehicle
Crash Causation Survey,” Natl. Highw. Traffic Saf. Adm., no. February, pp. 1–2, 2015.

xvii

Attachment

A – ROS Message Definitions

Type Name Description

uint32 seq sequence ID: consecutively increasing ID

time stamp two-integer timestamp

string frame_id frame this data is associated with

Type Name Description

Header header ROS header (Table 6-1)

float32 pos_abs Absolute driven length since startup in m

float32 pos_abs_var Absolute driven length since startup variance in m²

float32 pos_rel Relative driven length since last message in m

float32 pos_rel_var Relative driven length since last message variance in m²

float32 vel Current velocity in m/s

float32 vel_var Current velocity variance in m²/s²

Type Name Description

Header header ROS header (Table 6-1)

EncoderLinear[4] encoder array of linear encoders (Table 6-2) for each wheel:

• Front wheel left = 0

• Front wheel right = 1

• Rear wheel left = 2

• Rear wheel right = 3

Type Name Description

Header header ROS header (Table 6-1)

Quaternion orientation Orientation (w,x,y,z) of the IMU sensor as quaternion

float64[9] orientation_

covariance

Covariance matrix of the orientation

Vector3 angular_velocity Rotational velocity (x,y,z) of the IMU sensor in rad/s

float64[9] angular_velocity_

covariance

Covariance matrix of the angular velocity

Vector3 linear_

acceleration

Linear acceleration (x,y,z) of the IMU sensor in m/s²

float64[9] linear_

acceleration_

covariance

Covariance matrix of the linear acceleration

Type Name Description

Header header ROS header (Table 6-1)

float32 angle_min Start angle of the scan in rad

Table 6-1: ROS Header message definition

Table 6-2: ROS Encoder Linear message definition

Table 6-3: ROS Vehicle encoder message definition

Table 6-4: ROS IMU message definition

Table 6-5: ROS LaserScan message definition

xviii

float32 angle_max End angle of the scan in rad

float32 angle_increment Angular distance between measurements in rad

float32 time_increment Time between measurements in seconds

float32 scan_time Time between scans in seconds

float32 range_min minimum range value in m

float32 range_max maximum range value in m

float32[] ranges range data in m

float32[] intensities intensity data

Type Name Description

Header header ROS header (Table 6-1)

uint32 height Image height, that is, number of rows

uint32 width Image width, that is, number of columns

string encoding Encoding of pixels – channel meaning, ordering, size

uint8 is_bigendian Is this data big endian?

uint32 step Full row length in bytes

uint8[] data Actual matrix data, size is (step * rows)

Type Name Description

Header header ROS header (Table 6-1)

string child_frame_id Frame ID of the child frame

PoseWith-

Covariance

pose Current odometry pose. The pose in this message should

be specified in the coordinate frame given in the header.

TwistWith-

Covarinace

twist Current odometry twist. The twist in this message should

be specified in the coordinate frame given in the header.

Type Name Description

Header header ROS header (Table 6-1)

uint8 obstacle_type Type of the obstacle. Can be:

• TYPE_GENERIC = 0

• TYPE_CAMERA = 1

• TYPE_LIDAR = 2

Polygon polygon points belonging to the obstacle

PoseWith-

Covariance

centroid_pose Pose of the centroid.

TwistWith-

Covariance

centroid_twist Twist of the centroid

float32 length Length of the obstacle (zero if unknown)

float32 width Width of the obstacle (zero if unknown)

float32 height Height of the obstacle (zero if unknown)

float32 trust trust value associated with the obstacle

Type Name Description

Header header ROS header (Table 6-1)

float64 confidence Confidence of the detection result

string label label or ID of the detection

Table 6-6: ROS Image message definition

Table 6-7: ROS Odometry message definition

Table 6-8: ROS Obstacle message definition

Table 6-9: ROS Bounding Box message definition

xix

uint16 x1, y1, x2, y2 bounding box in pixel coordinates (OpenCV coordinate

conventions)

• (x1, y1) top left

• (x2, y2) bottom right

B – List of Software Packages

package name remote URL last commit chap-

ter

license

ARD_arduinorccar https://gitlab.lrz.de/roborace/modules/ARD_arduinorccar 9ee2d86b 4.1.1 MIT

IMU_imurccar https://gitlab.lrz.de/roborace/modules/IMU_imurccar 2ed25dda 4.1.2 GPLv3

csm https://github.com/clearpathrobotics/csm 55186278 4.2.3 GPLv3

darkflow_vehi-

cle_detection

https://github.com/fabolhak/darkflow_object_detection c561521f 4.3.2 MIT

drive_ros_bb_to_ob-

stacle

https://github.com/tum-phoenix/drive_ros_bb_to_obstacle e7e6dcf6 4.3.2 MIT

drive_ros_cam-

era_homography

https://github.com/tum-phoenix/drive_ros_camera_homogra-

phy

f8be6240 4.1.4 MIT

drive_ros_env_viz https://github.com/tum-phoenix/drive_ros_env_viz 3ea517d1 4.3 MIT

drive_ros_im-

age_recognition

https://github.com/tum-phoenix/drive_ros_image_recognition 250b4cff 4.3.2 MIT

drive_ros_imu_filter https://github.com/tum-phoenix/drive_ros_imu_filter ea3174fa 4.1.2 MIT

drive_ros_la-

serscan_obsta-

cle_generator

https://github.com/tum-phoenix/drive_ros_laserscan_obsta-

cle_generator

8ef4928e 4.3.1 MIT

drive_ros_local-

ize_inertial_naviga-

tion_system

https://github.com/tum-phoenix/drive_ros_localize_iner-

tial_navigation_system

2c287166 4.2.2 MIT

drive_ros_local-

ize_odom_fusion

https://github.com/tum-phoenix/drive_ros_localize_odom_fu-

sion

9280ca78 4.2.5 MIT

drive_ros_local-

ize_visual_odometry

https://github.com/tum-phoenix/drive_ros_localize_vis-

ual_odometry

14854ca7 2.5.3 MIT

drive_ros_local-

ize_wheel_odometry

https://github.com/tum-phoenix/drive_ros_local-

ize_wheel_odometry

029f8ef9 4.2.1 MIT

drive_ros_msgs https://github.com/tum-phoenix/drive_ros_msgs 117465d0 - MIT

drive_ros_obsta-

cle_fusion

https://github.com/tum-phoenix/drive_ros_obstacle_fusion d34b678a 4.3.3 MIT

homography_pub-

lisher

https://gitlab.lrz.de/fabian/homography_publisher d3c7db58 4.3.2 MIT

kalman https://github.com/tum-phoenix/kalman abc2a8e6 - MIT

laser_odometry https://github.com/fabolhak/laser_odometry 340e5854 4.2.3 Apache-2.0

laser_odometry_csm https://github.com/fabolhak/laser_odometry_csm 0c68834c 4.2.3 Apache-2.0

laser_odome-

try_libpointmatcher

https://github.com/fabolhak/laser_odometry_libpointmatcher f6fa4099 4.2.3 Apache-2.0

laser_odometry_po-

lar

https://github.com/fabolhak/laser_odometry_polar 0d3ca8ab 4.2.3 Apache-2.0

laser_odometry_rf2o https://github.com/fabolhak/laser_odometry_rf2o 44ba79d7 4.2.3 Apache-2.0

laser_proc https://github.com/ros-perception/laser_proc dbb8c88b 4.1.3 -

pro-

ject_odom_to_plane

https://github.com/fabolhak/project_odom_to_plane 269b94fa 4.1.4 MIT

rccar_sw https://gitlab.lrz.de/roborace/rccar_sw 01511aa6 - -

rf2o_laser_odometry https://github.com/fabolhak/rf2o_laser_odometry 4ec6db7c 4.2.3 GPLv3

scan_tools https://github.com/fabolhak/scan_tools 6f41a93c 4.2.3 -

urg_c https://github.com/ros-drivers/urg_c 0c1d366a 4.1.3 -

urg_node https://github.com/ros-drivers/urg_node 8cb4b6aa 4.1.3 -

viso2arm https://github.com/fabolhak/viso2 3c3c71dd 4.2.4 GPLv2

zed-ros-wrapper https://github.com/fabolhak/zed-ros-wrapper 57e4f2f1 4.1.4 BSD-3

Table 6-10: list of software packages being developed and used in this thesis

https://github.com/tum-phoenix/drive_ros_laserscan_obstacle_generator
https://github.com/tum-phoenix/drive_ros_laserscan_obstacle_generator

	Table of Contents
	List of abbreviations
	List of symbols
	1 Introduction
	1.1 Motivation
	1.2 Delimitation of the work
	1.3 Contents

	2 State of the Art
	2.1 Mathematical basics
	2.1.1 Linear State estimation
	Linear Kalman Filter (KF)

	2.1.2 Non-Linear State estimation
	Extended Kalman Filter (EKF)

	2.2 Ego-Motion estimation
	2.2.1 Odometry & Dead Reckoning
	Encoder Sensors
	Optical Speed Sensors

	2.2.2 Inertial Navigation Systems
	Inertial Measurement Unit

	2.2.3 Odometry based on range sensors
	Ultrasonic and IR sensors
	LiDAR

	2.2.4 Visual Odometry
	Monocular Camera
	Stereo Camera

	2.3 Object Motion estimation
	2.3.1 Object motion with range sensors
	LiDAR

	2.3.2 Object motion with camera sensors
	Monocular Camera
	Stereo Camera

	2.4 Project description
	2.4.1 Hardware description
	2.4.2 Software description

	2.5 Similar projects
	2.5.1 MIT RACECAR and RACECAR/J
	2.5.2 F1tenth
	2.5.3 TUM Phoenix Robotics

	2.6 Derivation of the problem statement

	3 Course of actions
	4 Implementation
	4.1 Implementation and Calibration of Sensors
	4.1.1 Wheel Encoder
	Implementation
	Calibration

	4.1.2 IMU
	Implementation
	Calibration

	4.1.3 LiDAR
	Implementation
	Calibration

	4.1.4 Camera
	Implementation
	Calibration

	4.1.5 Summary

	4.2 Implementation of Ego-Motion
	4.2.1 Odometry & Dead Reckoning
	Odometry
	Dead Reckoning

	4.2.2 Inertial Navigation System
	4.2.3 LiDAR Odometry
	Canonical Scan Matcher (CSM)
	Pointmatcher
	Polar Scan Matching (PSM)
	Range Flow-based 2D Odometry (RF2O)

	4.2.4 Visual Odometry
	ZED Visual Odometry
	Viso2
	SVO

	4.2.5 Fused Odometry
	CTRV Model
	CTRA Model

	4.2.6 Summary

	4.3 Implementation of Object-Motion
	4.3.1 LiDAR Objects
	4.3.2 Camera Objects
	4.3.3 Fused and tracked Objects
	4.3.4 Summary

	5 Evaluation
	5.1 Ego-Motion Estimation
	5.1.1 Odometry & Dead Reckoning
	5.1.2 Inertial Navigation Systems
	5.1.3 LiDAR Odometry
	5.1.4 Visual Odometry
	5.1.5 Fused Odometry
	5.1.6 Summary

	5.2 Object Motion Estimation
	5.2.1 LiDAR Objects
	5.2.2 Camera Objects
	5.2.3 Fused and tracked Objects
	5.2.4 Summary

	6 Summary and conclusion
	6.1 Summary
	6.1.1 Ego-Motion estimation
	6.1.2 Object-Motion estimation

	6.2 Conclusion
	6.2.1 Ego-Motion Estimation
	6.2.2 Object-Motion Estimation

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Attachment
	A – ROS Message Definitions
	B – List of Software Packages

