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Abstract
The acoustic wave equation describes the propagation of mechanical waves in gases and liquids,
for example audible sound signals traveling through air or ultrasound propagating in the human
body during a medical examination. Furthermore, it is used to predict room acoustics for con-
struction projects or to optimize urban acoustics in terms of traffic noise. Numerical solution
strategies are used to obtain approximate solutions of the acoustic wave equation that enable an
accurate prediction of reflection patterns and volume levels. From a computational perspective,
hyperbolic partial differential equations, i.e., equations describing wave propagation phenomena,
are especially challenging since all physical characteristics like dispersion, diffraction, propaga-
tion at finite speed, and many more, must be represented within one numerical framework.

This thesis is divided into two parts, where the first part addresses the development of a
highly efficient solver for the acoustic wave equation. The solver relies on a spatial discretization
with the hybridizable discontinuous Galerkin method and temporal discretization with explicit
Runge–Kutta schemes or arbitrary derivative time integration. The discretization methods al-
low for high orders of accuracy and yield optimal convergence as well as superconvergence in
the L2 errors of the primary fields. The algorithm utilizes matrix-free operator evaluation with
fast quadrature and sum-factorization kernels, which exploits modern hardware efficiently. A
high arithmetic density is reached by trading data movement from main memory for element-
local operations that are closer to the arithmetic performance limit. Studies on the numerical
properties in terms of convergence, temporal stability limits, and dispersion errors as well as
on the computational properties in terms of computational timings, throughput, and scalability
are presented. The applicability of the derived solver to urban acoustics and room acoustics is
demonstrated based on a village and a cathedral, respectively.

The second part of this thesis addresses an inverse problem for which the efficient solution of
the acoustic wave equation is a subproblem. Optoacoustic tomography is a comparably young
medical imaging technique with applications ranging from small animal imaging to breast cancer
detection. An object is illuminated with a laser pulse. The light transforms to heat, which in turn
induces thermal expansion and thereby causes local pressure rises. The pressure propagates as ul-
trasonic wave through the object and is measured. To obtain images from the measurement data,
an image reconstruction procedure is carried out. Commonly, the main contrast in the images is
the optical absorption. Either the optical absorption coefficient itself or the absorbed energy is
reconstructed. In this work, an image reconstruction method is developed that reconstructs the
optical absorption and diffusion coefficients as well as the speed of sound and the mass den-
sity by exploitation and modeling of all relevant physical phenomena. Increasing the number
of reconstruction variables worsens the conditioning of the inverse problem and two methods
are developed to oppose the ill-conditioning. The methods are transferable to a wide range of
inverse problems. The image reconstruction method is complemented by approaches to reduce
the size of the computational domain in order to minimize computational expenses. Validation
is carried out based on numerical examples and experimental data obtained with phantoms and
in-vivo measurements of a mouse brain.
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Zusammenfassung

Die akustische Wellengleichung beschreibt die Ausbreitung von mechanischen Wellen in Gasen
und Flüssigkeiten, zum Beispiel die Ausbreitung von hörbarem Schall in Luft oder von Ul-
traschall im menschlichen Körper bei medizinischen Untersuchungen. Sie wird auch verwen-
det um die Raumakustik bei Bauvorhaben vorherzusagen oder die Städteplanung bezüglich
Verkehrslärm zu verbessern. Näherungslösungen der akustischen Wellengleichung werden mit-
tels numerischer Lösungsverfahren bestimmt, um Reflektionsmuster und Lautstärkepegel akku-
rat vorherzusagen. Hyperbolische partielle Differentialgleichungen, d.h. Gleichungen, die Wel-
lenausbreitungsphänomene beschreiben, sind numerisch gesehen eine Herausforderung, da alle
physikalischen Charakteristiken, wie Dispersion, Diffraktion, Ausbreitung bei endlicher Ge-
schwindigkeit und viele andere, vom numerischen Verfahren abgebildet werden müssen.

Diese Arbeit ist in zwei Teile gegliedert. Der erste Teil adressiert die Entwicklung von einem
hoch effizienten Lösungsverfahren für die akustische Wellengleichung. Es basiert auf räumlicher
Diskretisierung mittels der hybridisierbaren diskontinuierlichen Galerkin Methode und zeitlich-
er Diskretisierung mittles expliziten Runge-Kutta-Verfahren oder arbitrary derivative Zeitinte-
gration. Diese Methoden ermöglichen hohe Genauigkeitsordnungen und liefern optimale Kon-
vergenz und Superkonvergenz in den L2 Fehlern der Primärfelder. Der Algorithmus verwendet
matrixfreie Operatorauswertungen mit schneller Quadratur und Summenfaktoriserungsroutinen,
wodurch moderne Hardware effizient ausgenutzt wird. Eine hohe arithmetische Intensität wird
dadurch erreicht, dass statt Datenbewegungen über den Arbeitsspeicher elementlokale Oper-
ationen durchgeführt werden, die näher an der arithmetischen Leistungsgrenze liegen. Studi-
en der numerischen Eigenschaften bezüglich Konvergenz, Zeitschrittstabilität und Dispersions-
fehler sowie der Recheneigenschaften bezüglich Rechenzeiten, Durchsatz und Skalierung wer-
den präsentiert. Die Anwendbarkeit der entwickelten Methode auf urbane Akustik und Rau-
makustik wird anhand von einem Dorf und einer Kathedrale demonstriert.

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit einem inversen Problem, für
welches die effiziente Lösung der akustischen Wellengleichung ein Teilproblem ist. Optoakustis-
che Tomographie ist ein vergleichsweise junges medizinisches Bildgebungsverfahren mit An-
wendungen von der Bildgebung an Kleintieren bis zur Brustkrebserkennung. Ein Objekt wird
mit Laserlicht bestrahlt. Das Licht wird in Wärme umgewandelt, was wiederum zu einer Aus-
dehnung führt und dadurch lokale Druckanstiege verursacht. Der Druck propagiert als Ultra-
schallwelle durch das Objekt und wird gemessen. Um Bilder aus den Messdaten zu erhal-
ten, muss ein Bildrekonstrutionsprozess durchgeführt werden. Üblicherweise ist der Hauptkon-
trast in den Bildern die optische Absorption, weshalb entweder der optische Absorptionskoef-
fizient oder die absorbierte Energie rekonstruiert werden. In dieser Arbeit wird ein Bildrekon-
struktionsalgorithmus entwickelt, der durch die Ausnutzung und Modellierung aller relevanten
physikalischen Phänomene neben den optischen Absorptions- und Diffusionskoeffizienten auch
die Schallgeschwindigkeit und die Massendichte rekonstruiert. Durch die größere Anzahl von
Rekonstruktionsvariablen verschlechtert sich die Konditionierung des inversen Problems und
zwei Methoden, welche schlechter Konditionierung entgegenwirken, werden vorgestellt. Die
Methoden sind auf eine große Bandbreite von inversen Problem übertragbar. Die Rechenzeit
wird durch eine künstliche Verkleinerung des Berechnungsgebiets reduziert. Eine Validierung
erfolgt mittels numerischer Beispiele sowie experimentellen Studien anhand von Phantomen
und in-vivo Messungen an einem Mäusehirn.
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1 Introduction

In 1880, the photoacoustic effect converting light into acoustic signals has been discovered by
Alexander Graham Bell [13], but only in the last three decades, a biomedical imaging modality,
namely photoacoustic imaging (or equivalently optoacoustic imaging), emerged. In optoacoustic
imaging, an object is illuminated by a short pulsed or intensity-modulated laser. The light dis-
tributes in the object according to its optical properties and is partly absorbed. The absorbed light
transforms to a local pressure rise via thermal expansion. The pressure propagates through the
object according to its mechanical properties and is eventually detected as ultrasound signal from
which a two- or three-dimensional image of the object is reconstructed. Figure 1.1 summarizes
the course of action of optoacoustic imaging.

In this work, the image reconstruction is going to be in the focus, i.e., the step that converts
the detected acoustical signals to an image representing tissue properties. Since several physi-
cal effects are part of the image formation, the acoustic signals contain information of optical,
thermodynamic, as well as mechanical tissue properties. Commonly, the main contrast in optoa-
coustic images is caused by the optical absorption: a pressure rise is generated in regions where
light arrives and the tissue is optically absorbing. Therefore, optoacoustic images typically rep-
resent the optical absorption coefficient or the absorbed energy map.

Generally speaking, image reconstruction is an inverse problem. In a standard forward prob-
lem, the cause is known and the effect is determined, e.g., by simulation. In an inverse problem,
however, the effect or a part of the effect is measured while the determination of the cause is at-
tempted. If an optoacoustic image displays the absorbed energy map, the corresponding inverse
problem is a source problem: from pressure measurements, the initial pressure field shall be de-
termined. If the optoacoustic image displays the optical absorption coefficient, the corresponding
inverse problem is a parameter problem: from pressure measurements, material parameters shall

Figure 1.1: The optoacoustic imaging procedure: from laser light excitation to a medical image.
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Figure 1.2: General trade-off between costs and benefits for optoacoustic imaging.

be determined. For both types of inverse problems, various solution strategies exist. In general,
there is a trade-off between consideration and modeling of relevant physical phenomena on the
one hand, versus simplifying assumptions on the other hand, which manifests in terms of image
accuracy versus computational time, see Figure 1.2. Often, the assumption of spatially constant
acoustical material parameters is made, i.e., speed of sound and mass density are equal in the
entire body. This assumption is oversimplifying in several applications but eases the image re-
construction process. If the body is of spatially constant mechanical character, the induced pres-
sure will propagate as circular, spherical, or cylindrical wave and an analytic description of the
sound propagation and real-time imaging are possible [159]. If the body however has variations
in its mechanical properties, the sound waves will reflect, diffract, refract, and scatter and nu-
merical implementations to find an approximate solution of the acoustic wave equation must be
employed in order to accurately predict the sound propagation. In this case, image reconstruction
is usually based on an iterative procedure starting from an initial guess of the material properties
and repeated evaluations of the forward problem. These algorithms need longer computational
times but avoid image artifacts stemming from simplifications.

In this work, an optoacoustic image reconstruction algorithm is derived that is located on the
left end of the spectrum shown in Figure 1.2 using a numerical implementation to solve the
acoustic wave equation. From the relevant physical phenomena of light propagation, photoa-
coustic effect, and sound propagation, the sound propagation is numerically the most elaborate
and hence the most expensive in terms of computational time. Therefore, an efficient solver for
the acoustic wave equation is needed, which is the second main part of this work.

The acoustic wave equation is a hyperbolic partial differential equation that describes sound
propagation in general heterogeneous tissues. It is based on the conservation of mass and lin-
ear momentum. Absorption due to viscous effects is neglected and only compressible waves are
considered. Numerical methods are employed to find an approximate solution to the wave equa-
tion to a given level of accuracy and a numerical method is considered especially advantageous
the faster the approximate solution is obtained. The acoustic wave equation has already been
addressed by many numerical methods. Chronologically, the finite difference method was the
first representative in the field of numerical schemes to find an approximate solution to the tran-
sient equation. However, with the advancement in computational resources and methodology,
the finite element method emerged as a competitive tool applicable also to complex geometries
and strongly varying material parameters. In the last two decades, discontinuous Galerkin (DG)
methods have become highly popular for the discretization of transport phenomena as they offer
good accuracy and are yet more robust than continuous finite elements at a similar computational
complexity [74]. DG methods for the wave equation are the basis for the methods to be proposed
in this thesis.
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1.1 Objectives and Achievements

This thesis makes two major contributions: the development of an optoacoustic image recon-
struction algorithm considering all relevant physical phenomena and the development of an
acoustical solver that is flexible in terms of geometry, mesh, and material coefficients while
it achieves high levels of performance. Thereby, the high performance acoustical solver is ab-
solutely necessary to solve the optoacoustic inverse problem in a reasonable time. Furthermore,
the acoustical solver is not only a subproblem of the image reconstruction algorithm but it is
developed as a general acoustics solver with applications to various purely acoustic problems
like urban and room acoustics. The two main contributions are addressed individually in more
detail in the following.

For the development of an optoacoustic image reconstruction method, the following achieve-
ments are stated:
• The developed algorithm is the first method proposed in literature to model all relevant

physical phenomena, namely diffusive light propagation with variable diffusion and ab-
sorption coefficient, the photoacoustic effect, and acoustic sound propagation with variable
speed of sound and mass density.
• State of the art numerical concepts are used to discretize each of the problems efficiently,

i.e., continuous finite elements for the optical problem, a mapping for the photoacoustic
effect, and explicit hybridizable DG methods for the acoustical problem.
• The adjoint concept is utilized to derive parameter gradients and thereby, this algorithm

is the first that allows for the optimization of absorption coefficient, diffusion coefficient,
speed of sound, and mass density in one general framework without algorithmic restric-
tions on illumination and detector setup.
• The developed model allows to run simulations of the optoacoustic imaging process as

forward problem and hence allows to visualize and gain insights into the signal formation
process.
• Two approaches to counter ill-conditioning in inverse problems are proposed. One is based

on a material identification for objects of known material composition. The other adapts
the basis functions for the parameter fields during the iterative optimization. Thereby, dis-
tinct material patches are segmented and additionally, information of the body constitution
can be transported from the most sensitive parameter to less sensitive parameters. Both
methods are not only applicable to optoacoustics but to a variety of inverse problems.

For the development of a high performance acoustical solver, the following achievements
are stated:
• The high-performance acoustical solver is based on hybridizable DG spatial discretization

and explicit Runge–Kutta or arbitrary derivative (ADER) time integration preserving the
superconvergence property that is typical for hybridizable DG. The ADER time integration
also allows for local time stepping.
• An implementation is proposed that uses matrix-free operator evaluations with sum factor-

ization reaching very high throughput on modern hardware. For ADER time integration,

3
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a flexible basis change and a basis reduction are proposed that increase throughput and
reduce operation counts.
• The developed solver is not only applicable for optoacoustic imaging but also to a large

variety of real world problems, which is demonstrated for urban acoustics and room acous-
tics.
• A new perfectly matched layer formulation minimizing the number of auxiliary variables

and allowing for complex geometries is proposed.

1.2 Outline
The thesis is organized in two parts with Part I addressing the high performance acoustical solver
and Part II addressing the optoacoustic image reconstruction algorithm.

In Chapter 2, the acoustic wave equation is presented and a literature overview of numerical
solution strategies is given. The spatial discretization of the acoustic wave equation with the hy-
bridizable DG method is introduced and time discretization with implicit Runge–Kutta methods,
explicit Runge–Kutta methods, and explicit ADER time integration are derived. An extension of
the global ADER time integration to local time stepping is given. Convergence properties and the
preservation of the superconvergence property typical for hybridizable DG methods are studied
theoretically. Last, a numerical characterization in terms of convergence, temporal stability lim-
its, and dispersion and dissipation error is presented. In Chapter 3, the implementation aspects
of the high performance acoustic solver are developed. The procedures of basis change and basis
reduction for ADER are presented, operation counts are derived and computational performance
is measured in terms of solution time, throughput, the roofline performance model, and scala-
bility. The novel perfectly matched layer formulation is given in Chapter 4. First, the complex
coordinate stretching for arbitrary problem geometries is derived. After that, the formulation is
studied in terms of stability and absorption functions. The spatial and temporal discretizations
are presented and numerical examples demonstrate basic properties and give rules for the dimen-
sioning of perfectly matched layers. Applications of the acoustical solver to urban acoustics and
room acoustics are presented in Chapter 5.

Part II starts with an introduction to the functional principle and reconstruction methods for
optoacoustic imaging in Chapter 6. In Chapter 7, the physical and numerical models are de-
rived. The objective function is introduced and the parameter gradients are calculated using the
adjoint concept. The solution algorithm is explained including a line search and a checkpointing
approach. A proof of concept and numerical examples are given. In Chapter 8, a method to re-
duce the computational domain for tomographs with large void areas is presented. The full view
and the limited view scenario are studied. The two approaches opposing the ill-conditioning,
namely the variable basis function adaption and the material identification, are described in
Chapter 9. Applications of the derived image reconstruction algorithm to experimentally ob-
tained signals are presented in Chapter 10.

Finally, the conclusion of this work in Chapter 11 summarizes the results and accomplish-
ments and points out the directions for future developments for the acoustical solver and the
optoacoustic image reconstruction method.
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2 The Acoustic Wave Equation and its
Discretization

Sound propagation is the transport of kinetic and potential energy through a continuum. In fric-
tionless continua, the potential energy takes form of compression, otherwise, e.g. in solid con-
tinua, the potential energy can also take form of displacement strains. Physical processes in
continua generally obey the conservation of mass, linear momentum, and energy. The following
explications show how the conservation laws are stated in the context of acoustics.

The conservation of mass is given by

∂ρ

∂t
+∇ · (ρv) = 0,

with the mass density ρ and the particle velocity v. The conservation of linear momentum is
written as

∂ρv

∂t
+ v · ∇(ρv) +∇p−∇ · τ = 0,

with the pressure p and the stress tensor τ . If sound propagation in a frictionless fluid is consid-
ered, the stress tensor becomes zero τ = 0. For viscous fluids or solids supporting shear waves,
the stress tensor can be given as τ = µ∇v with the dynamic viscosity µ. In this derivation only
compressional waves are considered and hence τ = 0.

Thermodynamic considerations on sound propagation reveal that the entropy s is conserved
under the assumption that there is no friction and no heat flow,

∂s

∂t
+ v · ∇s = 0.

Additionally, thermodynamics provide the general equation of state for the pressure in relation
to the current mass density and entropy

p = p(ρ, s).

Under the assumption of no heat flow, the thermodynamic equation of state for the pressure
reduces to

p = p(ρ).

In the context of acoustics, it is common to split the variable fields p, ρ,v, s into a tempo-
rally constant and a fluctuating part. For the velocity, the reference value is assumed to be zero,

7
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i.e., sound propagation in a non-moving fluid is considered:

p = pref + p′

ρ = ρref + ρ′

v = v′

s = sref + s′

In the following, the fluctuation share is assumed to be small compared to the reference share.
The equation of state is linearized in terms of the pressure and density fluctuations

p′ = c2ρ′,

with the speed of sound c. Introducing this relation and the split of the fields by means of refer-
ence and fluctuation shares into the conservation of mass and linear momentum gives

∂p′

∂t
+ c2ρref∇ · v′ = 0, (2.1)

∂v′

∂t
+

1

ρref
∇p′ = 0, (2.2)

using the linearizing assumption that products of fluctuations are negligible.
Differentiating equation (2.1) with respect to time and subsequently inserting equation (2.2)

for the partial time derivative of the velocity yields the acoustic wave equation for heterogeneous
frictionless fluids:

∂2p′

∂t2
− c2ρref∇ ·

(
1

ρref
∇p′
)

= 0

In case of a spatially constant density, the equation simplifies to

∂2p′

∂t2
− c2∇ · ∇p′ = 0.

In the remainder of the work, the fluctuation and reference share will not be explicitly specified
and for the sake of convenience and readability, the acoustic wave equation will be written as:

∂2p

∂t2
− c2ρ∇ ·

(
1

ρ
∇p
)

= 0 (2.3)

In summary, the acoustic wave equation is derived from the Navier–Stokes equations by neglect
of viscosity yielding the Euler equations and a subsequent linearization.

The acoustic wave equation is a hyperbolic partial differential equation of second order. In
contrast to elliptic equations, it describes the propagation of information at finite speed c and
in contrast to parabolic equations, it allows for the transport of discontinuities. The literature
on the acoustic wave equation is wide, however the original publication on the one-dimensional
wave equation [42], an essay of Stokes on fluids in motion [157], Feynman’s lecture on acous-
tics [58], and a standard text book by Pierce [128] shall be mentioned explicitly. For simple
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setups, e.g. spatially constant material properties c, ρ and simple geometries or in one dimen-
sion, analytic solutions are available, otherwise numerical solution strategies must be used.

In the derivation of the acoustic wave equation, an infinite medium is assumed. For a multi-
tude of numerical methods, the restriction to a finite domain with boundaries and correspondent
boundary conditions is required. Boundaries can be a soft walls, a hard walls, walls with specific
acoustic characteristics, or boundaries mimicking an infinite domain. They will be introduced in
the following chapters. In order to solve the wave equation, initial conditions must be specified
for the pressure and the first time derivative of the pressure (in case the wave equation in its
standard form is considered) or for the pressure and the velocity (in case the first order system
of equations is considered).

2.1 Numerical Solution Strategies in the Literature

Analytical solutions of the acoustic wave equation (2.3) are only available on simple domains
and constant or artificial material parameters. In applications, numerical solution strategies need
to be employed in order to quantitatively predict the sound propagation. Since computational re-
sources are sufficiently available and accessible by elementary coding approaches, a huge variety
of numerical schemes evolved to supply approximate solutions to the acoustic wave equation and
also other hyperbolic problems, like the elastic wave equation or Maxwell’s equations. Their
high relevance is based on the wide variety of applications, e.g., seismology, room acoustics,
electromagnetics, and medicine.

For several decades, wave equations were solved in the frequency domain considering the
Helmholtz equation rather than in the time domain, which reduces the problem complexity and
hence the computational cost significantly. The Helmholtz equation is derived from the acoustic
wave equation assuming that the pressure solution can be separated into a time dependent func-
tion pt(t) and a space dependent function px(x) as product p(x, t) = px(x) · pt(t). Insertion of
this expression into the wave equation (2.3) and rearranging yields

1

pt

∂2pt

∂t2
= c2ρ

∇ ·
(

1
ρ
px
)

px ,

where the left side depends only on the time while the right side depends only on the spatial
coordinate. Hence, both sides must equal a constant, which results in an ordinary differential
equation in time for pt and the Helmholtz equation for px. The temporal solutions pt are generally
superpositions of sine and cosine functions. The Helmholtz equation can be solved analytically
for simple geometries and boundary conditions. Otherwise, direct numerical solution strategies
like finite differences, finite elements, or semi-analytic concepts e.g. using Green’s functions, or
even geometrical approximations are required. The concepts are similar as for the time domain
wave equation.

In the time domain, the accurate simulation of high frequency waves is very elaborate because
high frequencies do not only require high spatial resolution but also high temporal resolution.
One group of solution techniques circumventing the induced difficulties are geometric meth-
ods based on ray-tracing. They are applicable to room acoustics but they are not sufficiently
accurate for low-frequencies and diffraction [153]. Another approach is to assume that acoustic
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waves propagate diffusely in rooms after a sufficient number of reflections and a diffusion equa-
tion model is solved, see e.g. [55]. The accurate prediction of sound propagation over a wide
frequency range however requires to solve the acoustic wave equation, either with direct numer-
ical schemes with a sufficiently fine discretization or semi-analytic schemes using fundamental
solutions of the wave equation.

Boundary element methods (BEM) can be understood as semi-analytic schemes. They employ
Green’s functions, which are solutions to the wave equation or Helmholtz equation with a point
source. Together with Kirchhoff’s integral theorem (also known as Green’s second theorem),
Green’s functions are used to relate the solution in a domain to the solution on an enclosing
surface, i.e., its boundary. Discretization of the boundary and the integral equation then yields
a matrix system to obtain approximate solutions on the enclosing surface. The domain solution
is found in a postprocessing step using Green’s second theorem once more. One advantage of
BEMs is that only the boundary needs discretization with low storage requirements and simple
meshing. Thereby, exterior and interior problems are of the same complexity. Disadvantages of
the BEM are the difficult mathematical analysis and the treatment of singularities in corners and
edges. Also, they are only applicable to problems for which Green’s functions are known and
calculatable. See [39] for early findings on boundary element methods or [140] for a more recent
overview.

Straightforward finite difference time domain (FDTD) methods are representatives for di-
rect numerical schemes and were widely used for lower frequencies [19]. The application to
higher frequencies is restricted by the available computational resources. The Yee scheme [179]
is a well-known FDTD method, which has been and still is successfully applied to hyperbolic
equations and in particular to Maxwell’s equations. Finite difference methods naturally com-
prise diagonal mass matrices. Their drawbacks are the limited applicability to complex geome-
tries, heterogeneous materials, and restrictions in combination with adaptivity. More recently,
adaptive rectangular decomposition was proposed, which is a domain decomposition technique
relying on the analytic solution of the wave equation in rectangles and additional interface han-
dling [116, 132]. It is for now limited to homogeneous sound speed distributions. Finite element
methods (FEM) do not suffer from the drawbacks of FDTD and the adaptive rectangluar de-
composition approach. The mass matrix, however, is generally sparse but not diagonal, which
motivated the subsequent developments. One approach is the mass lumping introduced in [37]
for the one-dimensional wave equation with numerical quadrature and shape functions based on
Gauss-Lobatto points, later also called spectral elements, yielding diagonal mass matrices. The
other popular approach is the discontinuous Galerkin method (DG) yielding block-diagonal mass
matrices as first proposed in [133] and further developed in e.g. [32, 35]. An overview on DG
methods is given in [74]. By overcoming the drawbacks of finite difference methods and main-
taining the beneficial property of easily inverted mass matrices, DG is by now a favored method
to solve hyperbolic problems in the time domain. In the last decades, several contributions fur-
ther improved DG in terms of computational time and numerical properties. DG can be applied
to the spatial coordinates only [66], to the time coordinate only (which is rather uncommon), or
to both [127]. If only the spatial coordinate is discretized using DG, the temporal dependency
can be discretized e.g. with Runge–Kutta or linear multistep methods. In [118], nodal DG is used
for the spatial coordinates while the temporal dependency is discretized using a pseudospectral
Fourier method for the linear Euler equations.
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Due to the hyperbolicity of the wave equation, the spatial as well as the temporal discretization
require high resolution to minimize dissipation and dispersion errors. To fulfill this resolution
requirement, high order schemes are suitable, since they generally outperform linear elements
in terms of time to solution for given accuracy in the presence of the mentioned numerical
challenges. A fair comparison, however, is difficult, even though several treatises addressed the
issue [83, 106] or [1] predicting orders 2k + 3 and 2k + 2 for dispersion and dissipation error,
respectively, based on analysis of the symbol of the discretized differential error. The effect of
integration accuracy in the context of spectral elements is studied in [60] revealing a high impact
of underintegration on dispersion and dissipation errors.

Another controversially discussed development is the hybridizable discontinuous Galerkin
method (HDG), which introduces a new set of trace degrees of freedom on element faces. The
fluxes underlying the HDG method enable more accurate solutions than previously known DG
methods. For polynomials of degree k, HDG yields optimal convergence rates of order k + 1 in
the mesh size for both pressure and velocity solutions. By means of an element-wise postpro-
cessing step, a k+2 superconvergent pressure solution can be recovered on general meshes. The
theoretical fundamentals for the superconvergence property of HDG are given in [34] and specif-
ically for acoustics in [31]. In combination with implicit Runge–Kutta schemes, HDG yields
a linear system of equations only for the trace degrees of freedom; for explicit Runge–Kutta
schemes, no global system has to be solved and the formulation resembles previously established
DG implementations that merely differs in the definition of the numerical flux [97, 120, 155].
In [91, 176], implicit HDG is compared to continuous FEM, showing that their performance
is competitive or HDG outperforms continuous FEM. Especially in 3D and for time dependent
problems with effective preconditioning, HDG is beneficial. In [97], implicit and explicit Runge–
Kutta HDG methods are compared, revealing a clear benefit for explicit time integration with a
speed up of a factor between 10 and 1000. Runge–Kutta methods are often used for time integra-
tion because they are profoundly understood and easy to implement by a combination of several
evalutions of the right hand side. One drawback however is the Butcher barrier stating that the
number of stages and thus function evaluations to achieve a given order of accuracy increases
overproportionally after order four. Hence, the efficiency of Runge–Kutta time integrators is
debatable in combination with high order spatial discretizations. In [36], time integration by
Stormer-Numerov schemes in combination with HDG is proposed, which yields an energy con-
serving method. The computational properties, however, are disadvantageous. An explicit time
integration approach overcoming these drawbacks is the arbitrary derivative (ADER) approach
presented in [47, 50, 149, 150]. It is based on a truncated Taylor expansion of the solution field in
time, where time derivatives are replaced by spatial derivatives using the Cauchy–Kowalevski (or
Lax–Wendroff) procedure. ADER allows for arbitrary high order discretization in time since the
Taylor series can be truncated at any term. The publications [149, 150] presented the ADER time
integration in the context of finite volume spatial discretizations. In those studies, the required
higher spatial derivatives are obtained from the cell averages by a reconstruction procedure. An
extensive study of the numerical properties of the ADER finite volume scheme can be found
in [48]. In [47], the ADER time integration was extended to DG to solve the elastic wave equa-
tion. The application to a set of unified first order hyperbolic systems was recently published
in [50] using both finite volumes and DG. In [68], ADER time integration is combined with DG
and convergence rates of 2k + 1 are claimed due to a specific postprocessing based on convo-
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lution with a B-spline kernel. Their method is applied to one-dimensional hyperbolic problems
and requires translation invariant meshes though.

For explicit time integrators, the time step size is restricted by the Courant–Friedrichs–Lewy
(CFL) condition [40]. Especially for meshes with strongly varying mesh sizes or variations in
the speed of sound, this is a clear drawback. Local time stepping (LTS) addresses this issue
by advancing each element in time with its optimal time step, thus decreasing the number of
element updates. Furthermore, dispersion and dissipation errors are reduced with LTS since large
elements are not forced to use a time step much lower than their optimal time step, which is
computational expensive and known to introduce dispersion errors [45]. In literature, several LTS
schemes for DG have been proposed: In [170], LTS based on Adams–Bashforth time integration
was used and combined with a spectral DG method, achieving spectral accuracy in space as
well as in time. Runge–Kutta schemes with LTS were proposed in e.g. [61, 65, 129]. For ADER
time integration, LTS was proposed in [49] in the context of geophysics and elastic waves. An
approach to circumvent strict CFL restrictions on adaptive meshes is given in [126], which is
based on a subspace projection step.

Here, the spatial discretization of the wave equation using HDG is described in Section 2.2.
Implicit Runge–Kutta time integration as a review of the historical developments is given in
Section 2.3.1 followed by the presentation of explicit Runge–Kutta time integration and ADER
time integration in Sections 2.3.2 and 2.3.3, respectively. The extension of ADER to LTS is
given in Section 2.3.4. After that, the convergence properties of the ADER HDG discretization
are examined in Section 2.5.1 and last, numerical examples are given in Section 2.5.

2.2 Spatial Discretization with the Hybridizable
Discontinuous Galerkin Method

Starting point for the spatial discretization of the acoustic wave equation (2.3) is the first order
formulation in terms of the pressure p and the velocity v on a bounded d-dimensional domain
ΩA and the time interval [0, T ] with final time T :

∂v

∂t
+

1

ρ
∇p = 0 in ΩA × [0, T ], (2.4)

∂p

∂t
+ c2ρ∇ · v = 0 in ΩA × [0, T ]. (2.5)

It is complemented by boundary conditions on the boundary of the domain ΓA = ∂ΩA with the
parts Γdir

A ∪ Γneu
A ∪ Γabc

A = ΓA

p = pD on Γdir
A × [0, T ], (2.6)

v · n = 0 on Γneu
A × [0, T ], (2.7)

v · n− 1

cρ
p = 0 on Γabc

A × [0, T ], (2.8)

and initial conditions

p(t = 0) = p0 in ΩA, (2.9)
v(t = 0) = v0 in ΩA. (2.10)
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Equations (2.6) and (2.7) are a Dirichlet boundary condition for the pressure and a Neumann
boundary condition in terms of the velocity, respectively. Condition (2.8) is an absorbing bound-
ary condition (ABC) of first order [53]. It is a simple approximation of the Sommerfeld radiation
condition to mimic an infinite medium. Waves impinging normal to the boundary are perfectly
absorbed and no spurious reflections are generated by the artificial boundary. Non-normal waves
however can generate reflections with up to 17% amplitude of the original wave [53]. If the sim-
ulation is sensitive to reflections at boundaries, higher order approximations to the Sommerfield
condition or perfectly matched layers (PMLs) can be utilized. PMLs are addressed in Chap-
ter 4 of this work. For the following derivation of a spatial discretization for the wave equation,
boundary conditions are however restricted to the three types mentioned in equations (2.6)–(2.8).

For convenience, the following abbreviations are introduced for vector valued functions a, b ∈
(L2(D))d and scalar valued functions a, b ∈ L2(D) on a domain D in d space dimensions and
on a domain E in d− 1 space dimensions∫

D

a · b dD = (a, b)D ,

∫
D

ab dD = (a, b)D ,∫
E

a · b dE = 〈a, b〉E ,
∫
E

ab dE = 〈a, b〉E .

The computational domain ΩA is tesselated into a triangulation T hA of ne
A elements K. In two

dimensions, the elements are quadrilaterals or triangles with straight or curved edges; in three
dimensions, they are hexahedra or tetrahedra with straight or curved surfaces. The boundary of
the tesselation ∂T hA is the set of all element boundaries ∂K and hence contains inner faces twice
and boundary faces once. In contrast, the set of all faces Eh contains every face only once. It can
be split into the set containing all inner faces E0

h and the set containing all boundary faces E∂h ,
which is further divided into the sets containing all faces on the Dirichlet boundary, all faces on
the Neumann boundary, and all faces on the absorbing boundary E∂,dir

h , E∂,neu
h , E∂,abc

h , respectively,
with E∂,dir

h ∪ E∂,neu
h ∪ E∂,abc

h = E∂h .
In order to derive the HDG spatial discretization for the acoustic wave equation, equations (2.4)–

(2.5) are multiplied with test functionsw, q and integrated over all elements K of the tesselation
T hA , (

w,
∂v

∂t

)
K

+

(
w,

1

ρ
∇p
)
K

= 0,(
q,
∂p

∂t

)
K

+
(
q, c2ρ∇ · v

)
K

= 0.

Next, integration by parts is performed assuming elementwise constant material properties(
w,

∂v

∂t

)
K

−
(
∇ ·w, 1

ρ
p

)
K

+

〈
w · n, 1

ρ
p

〉
∂K

= 0,(
q,
∂p

∂t

)
K

−
(
∇q, c2ρv

)
K

+
〈
q, c2ρv · n

〉
∂K

= 0.
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As in every DG method, the primary quantities evaluated at the element boundaries are replaced
by new variables p̂, v̂ for the pressure and the velocity, respectively,(

w,
∂v

∂t

)
K

−
(
∇ ·w, 1

ρ
p

)
K

+

〈
w · n, 1

ρ
p̂

〉
∂K

= 0,(
q,
∂p

∂t

)
K

−
(
∇q, c2ρv

)
K

+
〈
q, c2ρv̂ · n

〉
∂K

= 0.

In contrast to standard DG methods, HDG introduces a new variable λ, called trace variable, to
replace the pressure at element boundaries p̂. The velocity v̂ at element boundaries is replaced
by the velocity itself plus a stabilization term penalizing the difference between the pressure and
the trace field

v̂ · n = v · n+ τ(p− λ).

The stabilization parameter τ must be positive to ensure stability (see Section 2.5 in [120]) and
is generally chosen as

τ =
1

cρ
.

Introducing these definitions for the quantities v̂, p̂ gives(
w,

∂v

∂t

)
K

−
(
∇ ·w, 1

ρ
p

)
K

+

〈
w · n, 1

ρ
λ

〉
∂K

= 0,(
q,
∂p

∂t

)
K

+
(
q, c2ρ∇ · v

)
K

+
〈
q, c2ρτ(p− λ)

〉
∂K

= 0.

Since the trace variable λ is an additional variable, an additional equation must be stated to close
the problem. The system of equations is completed by weakly enforcing the continuity of the
normal component of the velocity across element boundaries with test function µ

〈µ,v · n〉∂K + 〈µ, τ(p− λ)〉∂K = 0.

Element boundaries coinciding with the domain boundary have to take into account the given
boundary conditions. Summation over all elements yields the final weak form(

w,
∂v

∂t

)
T h

A

−
(
∇ ·w, 1

ρ
p

)
T h

A

+

〈
w · n, 1

ρ
λ

〉
∂T h

A

= 0,(
q,
∂p

∂t

)
T h

A

+
(
q, c2ρ∇ · v

)
T h

A
+
〈
q, c2ρτ(p− λ)

〉
∂T h

A
= 0,

〈µ,v · n〉∂T h
A

+ 〈µ, τ(p− λ)〉∂T h
A
−
〈

1

cρ
λ, µ

〉
Γabc

A

= 0.

The homogeneous Neumann condition is naturally fulfilled by the third equation, the absorbing
boundary condition contributes with an additional term on the relevant faces, and the Dirichlet

14



2.2 Spatial Discretization with the Hybridizable Discontinuous Galerkin Method

boundary conditions for the pressure will be weakly fulfilled by enforcing them on the trace field
as explained below.

For the discretized counterparts vh, ph of the continuous velocity and pressure fields, v, p the
function spaces Vh and Ph are defined

Vh =
{
vh ∈ (L2(Ω))d : vh|K ∈ (Pk(K))d

}
,

Ph = {ph ∈ L2(Ω) : ph|K ∈ Pk(K)} .
In each element K, polynomials Pk of degree k are utilized. Over element boundaries, no con-
tinuity is imposed, making the global function space discontinuous. The function space for the
trace field is defined as

Lh = {λh ∈ L2(Eh) : λh|F ∈ Pk(F ),∀F ∈ Eh} ,
which generally gives discontinuities between faces. To incorporate the Dirichlet boundary con-
dition (2.6), the space is restricted to

Lh(pD) =
{
λh ∈ Lh : λh = PpD on Γdir

A

}
.

The operator P denotes the L2 projection. Thereby, the Dirichlet boundary condition on the
pressure is weakly enforced employing the trace variable. Figure 2.1 displays node locations
representing the degrees of freedom in the typical HDG setup on a two-dimensional mesh of two
elements with quadratic polynomials. The approximation of the weighting functions follows the

Figure 2.1: Nodes of an HDG discretization consisting of two quadrilateral elements. Blue dots
represent the nodes for pressure and velocity while green dots label trace nodes.
Taken from [148].

same approach as for the solution fields, i.e.,wh ∈ Vh, qh ∈ Ph, and µh ∈ Lh(0), except that the
weighting function for the trace field fulfills the homogeneous Dirichlet boundary conditions.
With these definitions, the problem statement reads: Find ph ∈ Ph,vh ∈ Vh, λh ∈ Lh(pD) such
that for all qh ∈ Ph,wh ∈ Vh, µh ∈ Lh(0)(

wh,
∂vh
∂t

)
T h

A

−
(
∇ ·wh,

1

ρ
ph

)
T h

A

+

〈
wh · n,

1

ρ
λh

〉
∂T h

A

= 0, (2.11)(
qh,

∂ph
∂t

)
T h

A

+
(
qh, c

2ρ∇ · vh
)
T h

A
+
〈
qh, c

2ρτ(ph − λh)
〉
∂T h

A
= 0, (2.12)

〈µh,vh · n〉∂T h
A

+ 〈µh, τ(ph − λh)〉∂T h
A
−
〈

1

cρ
λh, µh

〉
Γabc

A

= 0. (2.13)
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2 The Acoustic Wave Equation and its Discretization

The correspondent matrix form reads[
A 0
0 M

] [
V̇

Ṗ

]
+

[
0 B
H D

] [
V
P

]
+

[
C
E

]
Λ =

[
0
0

]
, (2.14)

IV + JP + GΛ = 0. (2.15)

The vectors V ,P ,Λ contain the values for the time-dependent degrees of freedom while the
matrices A,B,C,D,E,G,H, I, J result from the element and face integrals as shown in equa-
tions (2.11)–(2.13).

2.3 Time Discretization
For combined spatial and temporal discretization of the acoustic wave equation, the Courant
number Cr is a crucial indicator to balance temporal and spatial resolution

Cr =
c∆tk

h

in terms of the time step size ∆t, the polynomial degree of shape functions k, and the character-
istic element size h. It was initially introduced in the context of the Courant–Friedrichs–Lewy
stability criterion for finite difference schemes [40]. For higher order finite element schemes, pre-
vious work has relied on a quadratic dependence of the critical time step on the element degree,
∆t ∼ k2/h (see e.g. [74]). In [88] the authors show that the growth rate of the maximum eigen-
value is bounded by the quadratic power and their results (Figures 6.11 and 6.18 in [88]) suggest
that the dependence is approximately ∆t ∼ k1.5/h for moderate polynomial degrees k < 10.
Therefore, the following definition of the Courant number will be used throughout this work

Cr =
c∆tk1.5

h
. (2.16)

Many time integration schemes, especially explicit schemes, are generally subject to a stability
limit and the discretization parameters must be chosen such that the Courant number is below a
method specific critical Courant number

Cr ≤ Crcrit.

For unconditional stable schemes, a choice of discretization parameters such that

Cr� 1 or Cr� 1

is nonetheless disadvantageous since the relation between information transport in space and
time would not be in the physical regime, which can yield spurious oscillations [45]. Addition-
ally, discretization errors in space and time should be of similar magnitude considering effec-
tiveness.

The combination of HDG with diagonally-implicit Runge–Kutta methods for the discretiza-
tion of the acoustic wave equation was proposed in [120] in 2011 and will be briefly explained
in Section 2.3.1. In Sections 2.3.2 and 2.3.3, HDG in combination with explicit Runge–Kutta
schemes (as proposed in 2016 by [97, 120] and first ideas from 2014 [117]) and with explicit
arbitrary derivative schemes (as published in [145] in 2018) are introduced.
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2.3 Time Discretization

2.3.1 Implicit Runge–Kutta Time Integration

The application of implicit Runge–Kutta schemes to discretize the space-discrete equations (2.14)
and (2.15) in time is exemplarily shown for the backward Euler method with the abbreviation
pti = p(t = i ·∆t) for evaluation at a given time step i

1

∆t
A B C

H
1

∆t
M + D E

I J G


 Vti+1

Pti+1

Λti+1

 =


1

∆t
AVti

1

∆t
MPti
0

 .
The application of the Schur complement to the system matrix reads

Kimpl = G−
[
I J

]  1

∆t
A B

H
1

∆t
M + D


−1 [

C
E

]
. (2.17)

This Schur complement is cheaply evaluated because the matrices A,M and D are block diagonal
and matrices B and H are of rectangular blocks due to the discontinuous ansatz spaces for the
velocity and pressure field. Hence, equation (2.17) can be understood as a global equation but it
can also be understood as an element-wise equation. Subsequently, the inversion is comparably
cheap and even cheaper considering that A consists of d blocks resembling M. The element-
wise inversion in equation (2.17) is carried out by an element-internal Schur complement further
reducing computational expense, i.e., instead of inverting the matrix as in equation (2.17) at
once, the inversion is evaluated according to 1

∆t
A B

H
1

∆t
M + D


−1

=

[
Id −

(
1

∆t
A
)−1 B

0 Id

]

·

 ( 1
∆t
A
)−1

0

0

(
1

∆t
M + D−H

(
1

∆t
A
)−1 B

)−1

 · [ Id 0

−H
(

1
∆t
A
)−1 Id

]
,

with Id representing identity matrices of appropriate size. Therein, the inverse of matrix A is
required, which is of size d · (k + 1)d but with d equal blocks. Also, the inverse of a (k + 1)d

matrix (bottom right entry of the middle matrix in the above equation) is required. Hence, the
computational cost is reduced from the inversion of one (d + 1) · (k + 1)d sized matrix to two
(k + 1)d sized matrices.

The right hand side for the linear system of equations is calculated according to

Rti+1
= −

[
I J

]  1

∆t
A B

H
1

∆t
M + D


−1  1

∆t
AVti

1

∆t
MPti

 ,
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2 The Acoustic Wave Equation and its Discretization

again making use of the Schur complement as explained above. After assembly of K and Rti+1
,

the global system

KimplΛti+1
= Rti+1

(2.18)

is solved for the new trace variable Λti+1
, and velocity and pressure are updated according to

[
Vti+1

Pti+1

]
=

 1

∆t
A B

H
1

∆t
M + D


−1

 1

∆t
AVti

1

∆t
MPti

− [ C
E

]
Λti+1

 .

This update formula can again be understood as a global or an element-wise equation. The
highest computational effort is imposed by the solution of the global system (2.18). The system
size depends on the number of element faces and the polynomial degree of the shape functions.

For higher order discretizations, diagonally implicit Runge–Kutta (DIRK) schemes are em-
ployed rather than the backward Euler method, see [3, 26, 120]. A general Butcher tableau for a
q-stage Runge–Kutta scheme is given by:

c1 a11 ... a1q
...

... . . . ...
cq aq1 ... aqq

b1 ... bq

For implicit schemes, all coefficients aij can be non-zero. For DIRK schemes, however, the
entries aij with j > i are zero and the diagonal entries aii are all equal. The size of the system
to be solved at each stage of the DIRK scheme is only the original size since sequential stages
can be solved one after another and are not coupled in between. Additionally, the system matrix
K (2.17) is the same for each stage and must only be assembled once. Also, the preconditioner
must only be applied to the original system and not a larger one or one with changing coefficients.
Thereby, the computational effort is significantly reduced by choosing DIRK schemes rather than
other implicit Runge–Kutta time integrators.

2.3.2 Explicit Runge–Kutta Time Integration

For temporal discretization of equations (2.14)–(2.15) with explicit Runge–Kutta schemes, the
explicit Euler is chosen for demonstration and the update rule reads[

Vti+1

Pti+1

]
=

[
Vti
Pti

]
−∆t

[
A 0
0 M

]−1([
0 B
H D

] [
Vti
Pti

]
+

[
C
E

]
Λti

)
,

with the trace variable resulting from

IVti + JPti + GΛti = 0. (2.19)
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2.3 Time Discretization

The expression (2.19) can be written in terms of the element-wise or face-wise continuous fields

λh,ti =



1

2τ

(
v+
h,ti
− v−h,ti

)
· n+ +

1

2

(
p+
h,ti

+ p−h,ti
)
∀F ∈ E0

h,

PpD,ti ∀F ∈ E∂,dir
h ,

1

τ
vh,ti · n+ ph,ti ∀F ∈ E∂,neu

h ,

1

τ + 1
cρ

vh,ti · n+
τ

τ + 1
cρ

ph,ti ∀F ∈ E∂,abc
h ,

(2.20)

with the plus and minus sign indicating the two limits from both adjacent elements for evaluation
of discontinuous fields at interior faces. These expressions result from a point-wise interpretation
of equation (2.13). If numerical integration to obtain equation (2.15) from equation (2.13) is
exact, equations (2.15) and (2.20) are equivalent. This notation allows the interpretation of HDG
in combination with explicit Runge–Kutta time discretization as DG scheme with a specific flux
function.

The extension to an s-stage Runge–Kutta scheme is straightforward[
Vti+1

Pti+1

]
=

[
Vti
Pti

]
+ ∆t

s∑
j=1

bjKj and Kj = −Q−1K

([
Vti
Pti

]
+ ∆t

j−1∑
l=1

ajlKl

)
,

with the coefficients ajl and bj from the Butcher tableau of the respective scheme and the abbre-
viations K and Q for the full stiffness and mass matrix

K =

[
0 B
H D

]
−
[
C
E

]
G−1

[
I J

]
, Q =

[
A 0
0 M

]
. (2.21)

For explicit Runge–Kutta schemes, the coefficients ajl are zero for j ≥ l. The low-storage
schemes reducing memory consumption and memory transfer [90] are computationally appeal-
ing, but also strong stability preserving Runge–Kutta schemes as in [101]. The computational
aspects are studied in detail in Chapter 3.

2.3.3 Explicit Arbitrary Derivative Time Integration
The explicit arbitrary derivative (ADER) time integration has been proposed in [47, 50, 149, 150]
for linear hyperbolic problems. The basic steps for the derivation are a Taylor expansion in time
and a Cauchy–Kowalevski procedure to express time derivatives in terms of space derivatives.
In the following, the ADER time discretization is combined with the HDG space discretization
for the acoustic wave equation. The derivation is similar to the work [47], where ADER is used
for the elastic wave equation in combination with a standard DG approach. It will be shown that
the HDG characteristic property to yield superconvergent pressure solutions is lost by straight-
forward application of ADER. In Section 2.4.1, a further development is shown to retain the
superconvergence. This entire section is written following [145] and parts are quoted literally.

The space-discretized but time-continuous matrix system (2.14)–(2.15) is rewritten by elimi-
nation of Λ[

A 0
0 M

] [
V̇

Ṗ

]
+

([
0 B
H D

]
−
[
C
E

]
G−1

[
I J

]) [ V
P

]
=

[
0
0

]
,
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2 The Acoustic Wave Equation and its Discretization

or analogously with the abbreviations K and Q for the full stiffness and mass matrix from equa-
tion (2.21) and the symbolic inversion of the mass matrix as[

V̇

Ṗ

]
+ Q−1K

[
V
P

]
=

[
0
0

]
.

Time integration of this equation on the interval t ∈ [ti, ti+1] yields[
Vti+1

Pti+1

]
=

[
Vti
Pti

]
−Q−1K

∫ ti+1

ti

[
V
P

]
dt. (2.22)

A common approach, which was also used in the previous sections, is to replace the time integral
by evaluations at the start or the end of the interval (yielding the forward or backward Euler
schemes, respectively) or by evaluations at several time points in the given interval (yielding
Runge–Kutta schemes with several stages). The ADER approach offers another possibility with
the beneficial property to overcome the Butcher barriers known for Runge–Kutta schemes, which
imply that the number of stages to obtain a desired order grows nonlinearly [25]. Also, the ADER
approach has beneficial computational properties compared to Runge–Kutta schemes, which will
be explained in detail in Chapter 3.

Starting point to derive an expression for the time integral in equation (2.22) is the temporal
Taylor expansion of the velocity and pressure fields at the time instant ti up to order k[

v
p

]
=

k∑
j=0

(t− ti)j
j!

∂j

∂tj

[
vti
pti

]
. (2.23)

The acoustic wave equation as given in equations (2.4)–(2.5) is equivalently written as

∂

∂t

[
v
p

]
= −

 0
1

ρ
∇

c2ρ∇· 0

[ v
p

]
.

Taking the derivative in time and reintroducing this definition reads

∂2

∂t2

[
v
p

]
= −

 0
1

ρ
∇

c2ρ∇· 0

 ∂

∂t

[
v
p

]
=

 0
1

ρ
∇

c2ρ∇· 0

2 [
v
p

]
.

This step is repeatable. By induction, the j-th time derivative of velocity and pressure fields is
expressed by space derivatives

∂j

∂tj

[
v
p

]
= (−1)j

 0
1

ρ
∇

c2ρ∇· 0

j [ v
p

]
.

This is the Cauchy–Kowalevski procedure, which is used to replace the time derivatives in the
Taylor expansion (2.23),[

v
p

]
=

k∑
j=0

(t− ti)j
j!

(−1)j

 0
1

ρ
∇

c2ρ∇· 0

j [ vti
pti

]
:=

k∑
j=0

(t− ti)j
j!

(−1)jSj
[
vti
pti

]
.

(2.24)
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2.3 Time Discretization

The only time dependent quantity on the right hand side of this equation is the time t itself. For
brevity, the derivative operator S is introduced

S =

 0
1

ρ
∇

c2ρ∇· 0

 . (2.25)

With the matrix N holding the shape functions of polynomial degree k such that the discretized
velocity and pressure field are expressed as[

vh
ph

]
= N

[
Vti
Pti

]
, (2.26)

the equation (2.24) is projected onto the degrees of freedom[
V
P

]
= Q−1

k∑
j=0

(t− ti)j
j!

(−1)j
∫
K

NTSjNdK

[
Vti
Pti

]
.

The final step to derive the time and space discretized ADER HDG method is to introduce this
expression into equation (2.22) and evaluate the time integral. The final method is given by[

Vti+1

Pti+1

]
=

[
Vti
Pti

]
−Q−1KQ−1

k∑
j=0

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NTSjNdK

[
Vti
Pti

]
. (2.27)

By construction, equation (2.27) represents an explicit single step scheme.

2.3.4 Local Time Stepping

The Courant number plays a crucial role in the context of numerical solution strategies for hy-
perbolic problems [40]. Explicit schemes are subject to a stability criterion: the scheme is only
stable up to a maximal Courant number. This is often understood as a restriction on the time step
size

∆t ≤ Crmaxh

ck1.5
,

with a characteristic element size h, the speed of sound c, and the polynomial degree of the shape
functions k, according to the definition of the Courant number in equation (2.16). Especially
in scenarios with high variations in the speed of sound or the mesh size, this criterion is too
restrictive for most of the elements, which is disadvantageous from a computational perspective
but also from a numerical perspective since causality implies that information travels in space as
fast as in time scaled with the speed of sound. Using a time step size with Cr� 1 induces severe
computational overhead and can cause spurious oscillations or conditioning problems [45]. This
the classical motivation to utilize local time stepping (LTS) methods. The ADER global time
integration is easily extended to LTS as shown in [49] in the context of the elastic wave equation.
In the following, ADER HDG LTS is presented with reference to [134, 145].
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2 The Acoustic Wave Equation and its Discretization

Each elementKe operates with its own time step size ∆te, which is determined by the element
size, the polynomial degree, and the speed of sound. Starting point for the derivation of ADER
HDG LTS is the global time stepping scheme given by equation (2.27) with the system matrices
as in equations (2.21). The information exchange between elements is the crucial step in LTS. As
can be seen from (2.21), the information is passed from one element to the next by application
of G−1 on element faces processing information from both adjacent elements. This expression
must be generalized such that it works for adjacent elements operating with different time steps
and at different time states. For convenience, the element matrices B,D,H are split into terms
stemming from element integrals and from element face integrals[

0 B
H D

]
=

[
0 BK
HK 0

]
+

[
0 0

H∂K D∂K

]
with B = BK ,H = HK + H∂K , and D = D∂K .

An element Ke is updated from its current time level te to the next time level te+∆te if it fulfills
the update criterion

te + ∆te ≤ min (ten + ∆ten) ∀ neighbor elements Ken .

Elements are updated once there are no neighbors that could advance to an earlier point in time.
The procedure to update element Ke fulfilling the update criterion is as follows:

1. For each attached face (looping n), the time interval for the flux evaluation is determined
according to

[t1, t2] = [max (te, ten) ,min (te + ∆te, ten + ∆ten)] .

a) In element Ke and the neighbor Ken , the time integrals of V and P in the given
interval [t1, t2] are evaluated as

Ψe = Q−1

k∑
j=0

(t2 − te)j+1 − (t1 − te)j+1

(j + 1)!
(−1)j

∫
Ke

NTSjNdK

[
Vti
Pti

]
,

Ψen = Q−1

k∑
j=0

(t2 − ten)j+1 − (t1 − ten)j+1

(j + 1)!
(−1)j

∫
Ken

NTSjNdK

[
Vti
Pti

]
.

b) The inverse of the trace mass matrix is applied to the fluxes Ψe,Ψen , all face integrals
are evaluated and summed into Φe and into the flux memory variable Men of the
neighbor

{Φe,Men} ← {Φe,Men}+

([
0 0

H∂K D∂K

]
−
[
C
E

]
G−1

[
I J

])
{Ψe,Ψen} .

2. The time integrals of V and P are evaluated in the considered element Ke for the entire
time step and are as well summed into Φe

Φe ← Φe +

[
0 BK
HK 0

]
Q−1

k∑
j=0

(∆te)j+1

(j + 1)!
(−1)j

∫
Ke

NTSjNdK

[
Vti
Pti

]
.
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Figure 2.2: One-dimensional example of the ADER LTS update scheme.

3. The update of the state variables is performed[
Vti+1

Pti+1

]
=

[
Vti
Pti

]
−Q−1 (Φe +Me) ,

where potentially non-zero entries in the element’s memory variable are considered.

4. The element time is updated and its flux memory variable is set to zero

te ← te + ∆te,

Me ← 0.

The flux memory variableMe is crucial for the information transport between elements and re-
duces the number of required evaluations through storage of previously evaluated contributions.
An element with a small time step will be evaluated several times before a neighboring element
with a much larger time step is updated. Each evaluation sums contributions to the flux memory
variable of elements with larger time steps.

In order to clarify the mode of operation, consider the problem given in Figure 2.2. The exam-
ple is one-dimensional and consists of four elements of different size, which all have different
time step sizes. All elements start at the same time level t0 and shall advance to the final time
T . The procedure is as follows. In each cycle, the elements are looped and their update criterion
is checked. In the first cycle, the update criterion is only true for element K3. It is updated, ad-
vances to its next time level and adds contributions to the flux memory variables of elements K2

and K4. In the next cycle, elements K2, K3, and K4 are updated: K2 updates considering the
flux contribution from K3 from the previous cycle and subsequently sets its memory variable
to zero, K3 updates and contributes to the memory variable of K2 and K4, and finally, K4 up-
dates. Note that even thoughK2 was active in this cycle, its memory variable is already non-zero
again. In cycle 3, element K1 updates for the first time. Elements K2 and K3 update to the same
time level, a special case correctly treated by the scheme without additional adjustments. In the
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2 The Acoustic Wave Equation and its Discretization

given ordering of the elements,K2 updates first, writes into the flux memory variable ofK3, and
subsequently element K3 updates taking the flux contribution from element K2 into account. If
K3 was updated first, K3 would have contributed to the flux memory variable of K2 and K2

could have updated accordingly. Elements K3 and K4 are updated in cycle 4. In cycle 5, the first
elements reach the final time level T . It might happen (e.g. for element K4) that the last time
step is smaller than the actual time step size. This is easily treated by setting the element time
step size for this last step to the remainder. As long as the remainder is not negligibly small, this
case is not critical. In the last cycle, K1 and K2 reach the final time level and all elements finish
their calculation. In total, fourteen element updates were performed. If all elements had had the
small time step size of element K3, twenty updates would have been necessary. Please note that
a different numbering of the elements generally yields a different chronology of updates.

To reach better computational efficiency, the algorithmic setup does not allow for arbitrary
time steps but only multiples of the smallest time step size, which is called clustering, as ex-
plained in [146, 148]. The first cluster works with the minimal time step size ∆tmin. The i-th
cluster works with multiples ((i − 1) · δ + 1) ·∆tmin, where δ is a user defined input parameter
to control the difference of time steps between neighboring clusters. An additional restriction
during the setup of the clustering is that cluster i is only allowed to be neighbored by clusters
i− 1 and i+ 1 and that a cluster is at least of two elements thickness, i.e., an element of cluster
i can only have one different cluster as neighbor.

2.4 Optimal Convergence and Superconvergence
The HDG spatial discretization yields errors converging with order O(hk+1) in the L2-norm for
the pressure as well as the velocity field and hence the convergence is optimal [33, 34, 120].

In [120], a local postprocessing procedure is proposed to reconstruct a pressure field p∗h with
order O(hk+2) superconvergence. The postprocessing is element-local and does not advance the
solution in time. Using the trace field, an improved pressure gradient gh ∈ Vh is calculated
according to

(wh, gh)K = − (∇ ·wh, ph)K + 〈wh · n, λh〉∂K (2.28)

or analogous in matrix notation

G = A−1 (BP + CΛ)

= A−1
(
−CG−1IV +

(
B− CG−1J

)
P
)
.

By usage of the trace field instead of the pressure on the element boundary, the pressure gradient
is of order O(hk+1). The superconvergent pressure field p∗h ∈ Pk+1(K) is obtained by solving
for all q∗h ∈ Pk+1(K)

(∇q∗h,∇p∗h)K = (∇q∗h, gh)K , (2.29)
(1, p∗h)K = (1, p∗h)K . (2.30)

Equation (2.29) requires the gradient of the superconvergent pressure field to weakly equal the
improved pressure gradient. Equation (2.30) enforces the equality of the pressure averages. The
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2.4 Optimal Convergence and Superconvergence

postprocessing step can also be understood as a least squares fit of the pressure gradients under
the constraint of equal pressure averages, which can be shown by variational techniques to have
the minimum given by equations (2.29)–(2.30).

Mathematical proof for the superconvergence property of HDG spatial discretization in the
context of acoustic wave propagation is given in [31]. Therein, an a priori error analysis for the
time continuous case is presented based on a duality argument in combination with a projection-
based technique. It is an extension of the derivations for elliptic problems [34] to the hyperbolic
acoustic wave equation. Premises for the proof are time continuity, simplices, C1(ΩA) contin-
uous material properties, and initial conditions imposed by special projections more elaborate
than the L2 projection. The results in [120] indicate, however, that superconvergence is already
observed for L2 projected fields. Theoretical basis and numerical evidence for superconvergence
are available for hexahedra in [34, 176], respectively.

In summary it can be said that HDG generally gives optimalO(hk+1) convergence for the pri-
mary fields and superconvergence O(hk+2) for the postprocessed quantity. For time discretized
problems, the error due to time discretization must not dominate to observe the superconver-
gence.

2.4.1 Reconstruction for Superconvergence
Application of the local postprocessing (2.29)–(2.30) to the ADER HDG scheme given by equa-
tion (2.27) does not yield a superconvergent pressure solution p∗h. This is due to the fact that
time and space discretization are strongly interlinked and the time discretization in this scheme
is not of order O(∆tk+2) but only O(∆tk+1). Simply increasing the upper bound of summation
in equation (2.27) from k to k+1 does not overcome this issue. To recover the desired supercon-
vergence property, a reconstruction procedure is proposed. The idea is to use the HDG specific
trace field to recover derivatives of higher accuracy and reuse them for higher spatial derivatives.

Analogous to the improved pressure gradient gh in equation (2.28), an improved velocity
divergence dh is calculated according to(

c2ρdh, q
)
K

= −
(
c2ρvh,∇q

)
K

+
〈
c2ρvh · n, q

〉
∂K

+
〈
c2ρτ(ph − λh), q

〉
∂K
.

In terms of the values of the degrees of freedom at a time instance ti, the calculation in matrix
form reads [

Gti

Dti

]
= Q−1K

[
Vti
Pti

]
.

The ADER HDG scheme (2.27) is repeated but the first term of the sum is split for clarity of the
following derivation[

Vti+1

Pti+1

]
=

[
Vti
Pti

]
−Q−1K(ti+1 − ti)

[
Vti
Pti

]
−Q−1KQ−1

k∑
j=1

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NTSjNdK

[
Vti
Pti

]
.

Application of the derivative operator S to the velocity and pressure field corresponds to the
determination of the pressure gradient and velocity divergence (as can be seen from the definition
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2 The Acoustic Wave Equation and its Discretization

of S in equation (2.25)). But rather than using these quantities, the improved quantities Gti and
Dti shall be used:

S
[
vh
ph

]
=

 1

ρ
∇ph

c2ρ∇ · vh

 is replaced by

 1

ρ
gh

c2ρdh

 .
Higher spatial derivatives are based on the improved quantities as well, i.e.,

Sj
[
vh
ph

]
is replaced by Sj−1

 1

ρ
gh

c2ρdh

 .
The resulting ADER HDG scheme with reconstruction is given by[

Vti+1

Pti+1

]
=

[
Vti
Pti

]
−Q−1K(ti+1 − ti)

[
Vti
Pti

]
−Q−1KQ−1

(
k+1∑
j=1

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NTSj−1NdK

)
Q−1K

[
Vti
Pti

]
. (2.31)

The essential ingredient for the reconstruction procedure is to replace the continuous but element-
local derivative operator S by the discrete derivative operator Q−1K with its HDG characteristics.
In contrast to the scheme without reconstruction (2.27), the upper bound of the sum is k + 1.
Obviously, an element-local derivative evaluation is traded for the application of a global deriva-
tive operator. Through the mixture of face and element-blocks in K, the operator corresponds to
a sparsely populated global operator without block structure.

A logical further step is to exchange all applications of the continuous derivative operator by
the discrete derivative operator Q−1K resulting in the following scheme

[
Vti+1

Pti+1

]
=

[
Vti
Pti

]
−

k+1∑
j=1

(ti+1 − ti)j+1

(j + 1)!
(−1)j

(
Q−1K

)j+1
[
Vti
Pti

]
. (2.32)

This is a scheme with the capability to yield superconvergent pressure solutions p∗h by means
of the local postprocessing as well. Compared to (2.31) it has however disadvantageous com-
putational properties as will be explained in Section 3. The original ADER methods that were
applied in the context of finite volume methods were more similar to this setup whereas the
element-local scheme was introduced later in [47, 89] in the context of DG methods.

For the LTS variant of ADER HDG, the reconstruction must also be employed to obtain su-
perconvergence. However, the evaluation is slightly more elaborate since one element requires
data from its element faces and by means of the trace variable from its adjacent elements. Those,
however, are generally on a different time level. To evaluate the face contributions for one ele-
ment to be updated, the neighboring elements must artificially be brought to the required time
level. A dramatic increase of the computational expenses is avoided by the clustering of elements
with each cluster operating on the same time step as explained in Section 2.3.4.
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2.4 Optimal Convergence and Superconvergence

2.4.2 Adjoint Consistency

As already mentioned in Section 2.4, the mathematical proof for the superconvergence property
of HDG is restricted to the time continuous scenario and other premises. Several reported nu-
merical experiments however indicate that not all of the premises of the proof are necessary to
actually obtain superconvergence. One rather crucual premise is the adjoint consistency of the
discretization. The adjoint consistency will be studied for the ADER HDG discretization with-
out reconstruction as in equation (2.27), with reconstruction as in equation (2.31), and with the
discrete derivative operator replacing all derivative operators as in equation (2.32). The adjoint
of the discretized problem will be compared to the discretization of the adjoint problem. For an
adjoint consistent scheme, both approaches result in the same expression [72].

The continuous adjoint wave equation with initial and boundary conditions is given by

∂w

∂t
+ c2ρ∇q = 0 in ΩA × [0, T ], (2.33)

∂q

∂t
+

1

ρ
∇ ·w = 0 in ΩA × [0, T ], (2.34)

w(x, t = T ) = 0 in ΩA, (2.35)
q(x, t = T ) = 0 in ΩA, (2.36)
1

ρ
w · n = 0 on Γneu

A × [0, T ], (2.37)

q = 0 on Γdir
A × [0, T ], (2.38)

in terms of the testing velocity w and the testing pressure q. For convenience, the absorbing
boundary condition is dropped. This adjoint wave equation in first order form results from the
wave equation (2.4)–(2.10) by application of Gauss’ divergence theorem and integration by parts
to spatial as well as temporal derivatives. The boundary evaluation of the temporal derivative
terms causes the ‘initial conditions’ at t = T for the testing velocity and pressure. The solution
of the adjoint wave equation requires an integration backwards in time from t = T to t = 0. The
adjoint problem has no source term which is due to its artificial nature. For an inverse problem,
the mismatch between measurements and simulation would be the source term, see for example
Section 7.4.

Spatial discretization of (2.33)–(2.38) with HDG yields the following matrix system for the
degrees of freedom of the test functionsW ,Q,M of the testing fields w, q, µ, respectively

[
A 0
0 M

] [
Ẇ

Q̇

]
+

 0 c2ρ2B
1

c2ρ2
H

1

c2ρ2
D∗

[ W
Q

]
+

 c2ρ2C
1

c2ρ2
E∗

M =

[
0
0

]
, (2.39)

IW + J∗Q+ G∗M = 0. (2.40)

Differences in contrast to equations (2.14)–(2.15) are the prefactors stemming from different po-
sitions of the material coefficients and matrices D∗,E∗, J∗,G∗ instead of D,E, J,G. The asterisk
indicates the dependence of the matrices on the stabilization parameter τ ∗ instead of τ in the
adjoint problem. Stability analysis reveals that the stabilization parameter τ ∗ must be negative in
order to ensure stability.
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2 The Acoustic Wave Equation and its Discretization

Proposition. If the stabilization parameter τ ∗ is negative, the HDG discretization for the adjoint
wave equation (2.33)–(2.38) is stable.

Proof. The space-discrete, time-continuous version of the adjoint wave equation is similar to
equations (2.11)–(2.13) except for the coefficients. Inserting the solution functions for the test
functions vh = wh, ph = c2ρ2qh, λh = −c2ρ2µh, gives the following equations:(

∂wh

∂t
,wh

)
Th
−
(
c2ρqh,∇ ·wh

)
Th +

〈
c2ρµh,wh · n

〉
∂Th = 0,(

c2ρ2∂qh
∂t

, qh

)
Th

+
(
c2ρ∇ ·wh, qh

)
Th +

〈
c2ρτ ∗(qh − µh), qh

〉
∂Th = 0,

−
〈
c2ρwh · n, µh

〉
∂Th −

〈
c2ρτ ∗(qh − µh), µh

〉
∂Th = 0.

Summation of all equations results in:(
∂wh

∂t
,wh

)
Th

+

(
∂qh
∂t

, c2ρ2qh

)
Th

+
〈
c2ρτ ∗(qh − µh), (qh − µh)

〉
∂Th ,

which is equivalent to

1

2

∂

∂t
‖wh‖2 +

1

2

∂

∂t
‖cρqh‖2 = −

〈
c2ρτ ∗(qh − µh), (qh − µh)

〉
∂Th .

Since the adjoint equation runs backward in time, the energy is non-increasing if the expression
on the right hand side is positive. This is the case for τ ∗ < 0 and exactly the opposite as when
going forward in time. �

With the choice

τ ∗ = −ρc, (2.41)

the matrices depending on the stabilization parameter fulfill the following conversions

D∗ = −c2ρ2D, E∗ = −c2ρ2E, J∗ = −c2ρ2J, G∗ = −c2ρ2G.

The adjoint stiffness matrix K∗ is

K∗ =

[
0 c2ρ2B

1
c2ρ2

H −D

]
−
[
c2ρ2C
−E

]
(−c2ρ2G)−1

[
I −c2ρ2J

]
. (2.42)

Proposition. With the stabilization parameter τ ∗ = −ρc, the stiffness matrices K and K∗ ac-
cording to equations (2.21) and (2.42) fulfill the condition

KT = −K∗.

Proof. Expanding equation (2.21) in terms of the face matrices and using H = −c2ρ2BT, I =
ρCT, J = − 1

c2ρ
ET results in

K =

[
0 B

−c2ρ2BT D

]
−
[
ρCG−1CT − 1

c2ρ
CG−1ET

ρEG−1CT − 1
c2ρ

EG−1ET

]
.
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2.4 Optimal Convergence and Superconvergence

The matrix K∗ given through equation (2.42) with τ ∗ = −c2ρ2τ can be expanded by introducing
the above mentioned relations to the form

K∗ =

[
0 c2ρ2B
−BT −D

]
−
[−ρCG−1CT −ρCG−1ET

1
c2ρ

EG−1CT 1
c2ρ

EG−1ET

]
.

Comparing these two matrices shows the assertion. �

From the two previous propositions, the following conclusion is drawn:

Proposition. Since KT = −K∗, the discrete adjoint in the forward Euler HDG discretization is
a consistent discretization of the adjoint wave equation (2.33)–(2.38).

The adjoint consistency for the three different types of ADER time discretization will be
shown in the following sections.

ADER HDG without Reconstruction
Temporal discretization of the semidiscrete matrix form of the adjoint wave equation (2.39)–
(2.40) using ADER without reconstruction yields (adjoin-then-discretize)[

Wti

Qti

]
=

[
Wti+1

Qti+1

]
+(ti+1 − ti)Q−1K∗

[
Wti+1

Qti+1

]
−Q−1K∗Q−1

k+1∑
j=1

(ti − ti+1)j+1

(j + 1)!
(−1)j

∫
K

NTS∗jNdK

[
Wti+1

Qti+1

]
.

(2.43)

Therein, the operator S∗ is the derivative operator used for the Cauchy–Kowalevski procedure of
the adjoint wave equation

S∗ =

[
0 c2ρ∇

1
ρ
∇· 0

]
.

Contrary, deriving the adjoint of the space and time discrete ADER HDG method (2.27) basically
by transposition results in (discretize-then-adjoin)[

Wti

Qti

]
=

[
Wti+1

Qti+1

]
−(ti+1 − ti)Q−1KT

[
Wti+1

Qti+1

]
−Q−1

(
k+1∑
j=1

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NT
(
ST
)jNdK

)
Q−1KT

[
Wti+1

Qti+1

]
.

(2.44)

ADER HDG with Reconstruction
Analogous to the previous two expressions, the fully discretized problem of the adjoint wave
equation using ADER HDG with reconstruction is derived (adjoin-then-discretize)[

Wti

Qti

]
=

[
Wti+1

Qti+1

]
+(ti+1 − ti)Q−1K∗

[
Wti+1

Qti+1

]
+

(ti − ti+1)2

2
Q−1K∗Q−1K∗

[
Wti+1

Qti+1

]
−Q−1K∗Q−1

(
k+1∑
j=2

(ti − ti+1)j+1

(j + 1)!
(−1)j

∫
K

NT (S∗)j−1 NdK

)
Q−1K∗

[
Wti+1

Qti+1

]
.

(2.45)
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The adjoint of the fully discrete ADER HDG scheme with reconstruction given by equation (2.31)
reads (discretize-then-adjoin)[

Wti

Qti

]
=

[
Wti+1

Qti+1

]
− (ti+1 − ti)Q−1KT

[
Wti+1

Qti+1

]
+

(ti+1 − ti)2

2
Q−1KTQ−1KT

[
Wti+1

Qti+1

]
−Q−1KTQ−1

(
k+1∑
j=2

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NT
(
ST
)j−1 NdK

)
Q−1KT

[
Wti+1

Qti+1

]
.

(2.46)

ADER HDG with only the Discrete Operator
The fully discretized problem of the adjoint wave equation using ADER HDG and replacing
every application of the derivative operator S∗ by the space discrete counterpart Q−1K∗ results
in (adjoin-then-discretize)[

Wti

Qti

]
=

[
Wti+1

Qti+1

]
−

k+1∑
j=0

(ti − ti+1)j+1

(j + 1)!
(−1)j

(
Q−1K∗

)j+1
[
Wti+1

Qti+1

]
. (2.47)

In contrast, the adjoint of the fully discrete scheme (2.32) is (discretize-then-adjoin)[
Wti

Qti

]
=

[
Wti+1

Qti+1

]
−

k+1∑
j=0

(ti+1 − ti)j+1

(j + 1)!
(−1)j

(
Q−1KT

)j+1
[
Wti+1

Qti+1

]
. (2.48)

Discussion
The scheme (2.32) solely using the discrete derivative operator is adjoint consistent. Equa-
tions (2.47) and (2.48) are exactly the same considering that K = −(K∗)T. This was expected,
since the scheme’s structure is similar to that of explicit Runge–Kutta methods, which are known
to be adjoint consistent.

Comparison of the two equations (2.43) and (2.44) to advanceW andQ backwards in time for
the ADER HDG scheme without reconstruction shows that the k = 0 term is adjoint consistent,
i.e., the term representing the forward Euler. The remaining terms are not equal because the
derivative matrix appears in front of the sum if discretization is carried out after adjoining and
after the sum if discretization is carried out first.

The adjoint formulations (2.45) and (2.46) resulting from the ADER HDG scheme with re-
construction (2.31) reveal that the same change of position appears for k ≥ 2 as for the scheme
without reconstruction. In the scheme without reconstruction this however already appears for
k = 1. The term stemming from k = 1 is adjoint consistent when the reconstruction is used. Ad-
joint consistency is taken to the next higher contribution, which appears to be enough to receive
superconvergent pressure solutions. Numerical evidence will be given in Section 2.5.

2.5 Numerical Characterization
The numerical characterization of the proposed methods is carried out in terms of a convergence
analysis in two and three space dimensions in Section 2.5.1 demonstrating optimal k+ 1 conver-
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gence and k + 2 superconvergence for explicit Runge–Kutta schemes, ADER, and ADER LTS.
After that, temporal stability limits are presented in Section 2.5.2. Last, amplitude and phase
errors are evaluated in a comparative study based on a one-dimensional problem with periodic
boundary conditions in Section 2.5.3.

2.5.1 Numerical Convergence Analysis
In this section, a convergence analysis for all presented methods is carried out. The test case is a
vibrating membrane. The analytic solution for the pressure field is

p = cos(mπ
√
dt) ·

d∏
i=1

sin(mπxi),

in two and three dimensions. The variable m denotes the number of vibrational modes in the
membrane. The computational domain is ΩA = [0, 1]d and pD = 0 is prescribed on the boundary.

The mesh is not Cartesian but transformed as shown in Figure 2.3 by moving the nodes of the
elements in x1 direction according to

x1 ← x1 + 0.2 ·
d∏
i=1

sin(πxi).

The representative element size h indicated in the following figures and tables is the element
extent in x2 direction. In order to receive error values in a reasonable range, i.e., noticeably
below the solution norm and above the machine accuracy, the number of membrane modes m
is set to the used polynomial degree k and the coarsest mesh for polynomial degrees k = 1 to
k = 4 is h = 0.2 while it is h = 0.5 for higher polynomial degrees k ≥ 5. All simulations
are run with a Courant number Cr = 0.1 and the error is evaluated in L2 norm at the final time
T = 1.

Figure 2.3: Mesh for convergence study.

Results in two dimensions are shown in Figure 2.4 for Runge–Kutta time discretization using
a low-storage scheme with five stages of order four as in [90], denoted LSRK4(5), and ADER
time integration. Results in three dimensions are plotted in Figure 2.5. As can be seen from
the figures, the methods yield optimal k + 1 convergence for the pressure field ph and k + 2
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Figure 0.1: Convergence study in two dimensions for time integration with a low-storage Runge–
Kutta scheme of order five LS-RK4(5) in the left panel and ADER in the right panel.

1

Figure 2.4: Convergence study in two dimensions for time integration with a low-storage Runge–
Kutta scheme of order four LSRK4(5) in the left panel and ADER according to (2.31)
in the right panel.

superconvergence for the postprocessed pressure field p∗h for all polynomial degrees. LSRK4(5)
and ADER perform very similarly for the tests from k = 1 to k = 8. For k = 9 and k = 10
differences are observed for the two finest discretizations. The errors are already close to machine
accuracy but between 10−10 and 10−12 differences occur, which are traced back to a different
phenomenon. The Runge–Kutta time discretization with LSRK4(5) is of order four. Even though
Runge–Kutta time integrators have a low error constant, the time error dominates over the spatial
error within this range. Rerunning the simulation with k = 10 and h = 0.0625 but with Courant
number Cr = 0.01 instead of 0.1 yields an error of 9.30 · 10−11 (for Cr = 0.1, the error is
1.86 ·10−10) confirming the dominance of the time error. Figure 2.5 shows corresponding results
for a three-dimensional setup. The same tests are carried out for ADER LTS and results are
presented in Figure 2.6 confirming optimal convergence in ph and superconvergence in p∗h for all
used polynomial degrees k = 1, ..., 12.
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Figure 0.1: Convergence study in three dimensions for time integration with a low-storage
Runge–Kutta scheme of order five LS-RK4(5) in the left panel and ADER in the
right panel.

0.1 PMLs

1

Figure 2.5: Convergence study in three dimensions for time integration with a low-storage
Runge–Kutta scheme of order four LSRK4(5) in the left panel and ADER according
to (2.31) in the right panel.
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Figure 0.1: Convergence study in two and three dimensions for time integration with ADER
LTS.
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Figure 2.6: Convergence study in two and three dimensions for time integration with ADER
LTS.
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2.5 Numerical Characterization

Numerical Evidence for Adjoint Consistency

To put the gain of the reconstruction procedure into perspective, numerical results on the con-
vergence of the average pressure are presented. As mentioned in [72], adjoint consistency yields
order doubling in a target functional. With the average pressure being the target functional, con-
vergence of order 2k is expected for the adjoint consistent scheme (2.32) (in the following de-
noted as ADER adcon full), rate k for the scheme without reconstruction, and something in
between for the reconstruction. All integrals are evaluated with quadrature rules enabling exact
integration. The numerical example is the same as in the preceding section. The results for the
convergence of the average pressure for k = 2, 3, 4 and time discretization with the three variants
of ADER HDG are presented in Figure 2.7. For comparison, the results for the aforementioned
low-storage Runge–Kutta scheme LSRK4(5) of order four with five stages, which is well known
to be adjoint consistent, are also shown. Polynomial degrees k = 2, 3 are shown for one mode
(m = 1) and k = 3, 4 are shown for two modes (m = 2) since the simulation accuracy quickly
reaches the level of roundoff errors.

ADER without reconstruction yields pressure average errors of order k + 1 in all setups. For
k = 2 all other schemes converge with order 5 = 2k + 1. For k = 3, 4 the error decline with
refinement is not as regular. For k = 3, m = 1, starting from large h and going to smaller h, the
error order starts from 5 and increases to about 16. After that, the error decreases more slowly
with orders of about 5 with reconstruction and of about 5 or 6 with the fully adjoint consistent
schemes. For small h, the computational roundoff error is reached which is why k = 3 is also
tested for the next mode m = 2. The convergence behavior is similar as for m = 1. The error
order increases with decreasing h, a kink occurs in the convergence plot and then the order is
about 7 = 2k + 1. The error is slightly higher for ADER HDG with reconstruction compared to
ADER adcon full and Runge–Kutta, at a rate of 4 to 5 in the lower part. For k = 4 and m = 2,
all schemes (except the one without reconstruction) perform very similarly. The estimated order
is between 6 and 7.

To summarize, the scheme without reconstruction reliably yields order k + 1 for the average
pressure for all k. For k = 2, all other schemes yield errors of order 2k+1. For k = 3, 4, the aver-
age pressure does not converge with order 2k but clearly better than k+1. It is remarkable that the
fully adjoint consistent ADER HDG discretization and the Runge–Kutta discretization perform
almost equally, showing that the same spatial errors dominate in both cases. ADER HDG with
reconstruction comes very close, except for k = 3, where slight differences are noted. During
these numerical experiments, the L2 error for the postprocessed pressure p∗h was also monitored
and for all schemes except ADER without reconstruction, it showed k + 2 convergence.

2.5.2 Temporal Stability Limits
In terms of time to solution, the maximal stable time step size is of crucial relevance. Generally,
the critical Courant Crcrit number is known for a numerical method and the time step size is set
according to

∆t ≤ Crcrit
h

ck1.5
.

Here, the critical Courant numbers are measured for representative Runge–Kutta time discretiza-
tions, namely the aforementioned low-storage Runge–Kutta scheme LSRK4(5) with five stages
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Figure 2.7: Convergence of the average pressure.
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2.5 Numerical Characterization

of order four with two registers and the classical Runge–Kutta scheme of four stages of order
four, denoted clRK4. Additionally, ADER time discretization is examined with reconstruction
according to equation (2.31) and also in the fully adjoint consistent version according to equa-
tion (2.32) (denoted ADER adcon full).

The setup is as in the previous chapter, except that the grid is fully Cartesian without interior
deformation. In 2D 102 = 100 elements are used. In 3D, 63 = 216 elements are used. The
number of membrane modes is set to m = 2k.

The critical Courant number is determined iteratively according to the procedure described
in [146] starting from an initial Courant number of Cr = 0.5 in twelve iterations. Therein, sim-
ulations are run and a stability criterion is tested: if the L2 pressure error at the final time is
smaller than 100 times the initial L2 error of the pressure and if the L2 pressure error at the
final time is smaller than the pressure magnitude at the initial time, a simulation is considered as
stable, otherwise as unstable. The results are given in Figure 2.8 for LSRK4(5), clrk4, ADER,
and the fully adjoint consistent ADER scheme. Comparison of LSRK4(5) and ADER shows that
both require smaller Courant numbers for higher polynomial degrees and that the LSRK4(5)
can work with a twice as large time step, with slightly decreasing benefit for increasing polyno-
mial degree. The fully adjoint consistent ADER scheme shows a different qualitative behavior.
The critical Courant number increases for increasing polynomial degree. For k = 1, the criti-
cal Courant number is the same as for the standard ADER scheme, because the reconstruction
scheme applies to the k = 1 term and both schemes are equal. For k = 3, ADER adcon full
has the same critical Courant number as the clRK4 scheme because they have the same stability
function for this polynomial degree. The trend of the curve indicates that the definition of the
Courant number as in (2.16) with the dependency on the polynomial degree k1.5 is not suitable
for the fully adjoint consistent scheme. Figure 2.9 plots the critical Courant number for an al-
ternative definition with linear dependence on the polynomial degree, i.e., C̃r = c∆tk/h, yielding
almost constant values.

In general, the LSRK4(5) has weaker restrictions on the time step size compared to ADER.
The time step can be chosen between 2.36 and 1.65 times larger than for ADER. In terms of
computational expense, this is a benefit for LSRK4(5), if it is reasonable to run the simulation
with the maximal allowed time step size. The fully adjoint consistent ADER scheme allows for
a larger time steps size than LSRK4(5) for very high polynomial degrees of the shape functions
k ≥ 9.

CFL Stability Limit for ADER LTS

For ADER LTS, the formulation of the time step stability limit is more complex, since the time
step differs from element to element. To determine the dependence of the stability limit on the pa-
rameter δ controlling the difference of the time step between neighboring clusters, a non-uniform
mesh with large variations in the characteristic element size h is used, see Figure 2.10. The mesh
is deformed starting from a Cartesian mesh by moving vertices in x1 direction according to

x1 ← x1 + 0.3 ·
d∏
i=1

sin(πxi).

The characteristic element size h is determined as the minimal vertex distance and differs by a
factor of about 20 in the mesh correlating to optimal time step sizes between ∆tmin and 20·∆tmin.
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Figure 2.8: Critical Courant number Crcrit in two and three dimensions comparing low-storage
Runge–Kutta of order four with five stages LSRK4(5), standard ADER, and fully
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(a) δ = 1 (b) δ = 3 (c) δ = 7

(d) δ = 1 (e) δ = 3 (f) δ = 7

Figure 2.10: Mesh for CFL stability analysis for ADER LTS. (a)–(c) show time step size distri-
butions while (d)–(f) show the cluster setup.

Exemplary cluster distributions and time step size distributions for δ = 1, 3, 7 are shown in
Figure 2.10. As can be seen from the figure, elements are potentially operated on smaller than
their optimal time steps.

The critical Courant number Crcrit for various polynomial degrees of the shape functions and
for different parameters δ is determined by the iterative procedure mentioned above. The critical
Courant number is also determined for the global ADER time stepping for comparison. The
reference with the global ADER time stepping can also be understood as ADER LTS with δ = 0.
The results from Figure 2.8 are not directly transferable because there, uniform meshes are used
and here, elements are strongly distorted. Note that the characteristic element size h as minimum
vertex distance is not necessarily the best measure to compare distorted elements to elements of
a Cartesian mesh. Figure 2.11 plots the critical Courant numbers and minimal time step sizes for
k = 1, 4.

The critical Courant number and the time step size vary slightly with the allowed cluster dif-
ference δ. Only for δ = 0 representing the results obtained with the global ADER time stepping,
the critical Courant number and time step size are significantly higher. This yields the conclu-
sion that the stability critical elements are neither the smallest nor the largest elements, which
is due to the fact that the characteristic element size is determined as minimum vertex distance
and this quantity does not represent the stability properties of distorted elements accurately. The
variations in the critical time steps between δ = 1 and δ = 10 are due to the cluster distributions
as shown in Figure 2.10 and if the most critical elements are downcast or closer to their stability
limit.
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Figure 2.11: Critical Courant number Crcrit in two and three dimensions for ADER LTS (and
global ADER for reference as δ = 0).

2.5.3 Amplitude and Phase Error

ADER time discretization in combination with finite volume space discretization is well known
for its beneficial dispersion and dissipation behavior [149]. The numerical results from [149]
indicate that dispersion errors are partly rectified by dissipation errors because waves traveling
with inaccurate wave speed are damped. The work [48] complements the numerical findings
with analytic derivations of dispersion and dissipation coefficients.

Here, a simple one-dimensional example is studied to reveal the principal dispersion and dis-
sipation properties of the presented method. This numerical example is based on [149, 177] and
is analogously published in [145]. A line of length L = 2 is meshed with ne elements of poly-
nomial degree k. The left and right end are connected with a periodic boundary condition. The
speed of sound is set to c = 1 as well as the mass density ρ = 1. The analytic solution for this
problem is chosen to be

p0 = sin(π(x− t)),
v0 = sin(π(x− t)),

and the initial conditions are set accordingly. The end time is set to T = 1000, which means that
the initial wave traverses the computational domain 500 times. The amplitude error is defined as

eA = max(p0(x))−max(ph(x, t = T )). (2.49)

For the numerical tests, it is evaluated as the L∞ norm of the pressure field using a sufficiently
dense sampling of the solution. The phase error eP is defined as the position of the root of
the pressure distribution, which was initially located at x = 0. It is evaluated using a linear
interpolation between the points of a sufficiently dense sampling of the solution.

To get a first insight into the dispersion and dissipation behavior of the method at hand, Fig-
ure 2.12 shows the solutions at the final time T for quadratic and cubic shape functions on a mesh
with eight and four elements, respectively. The time step size was chosen such that Cr = 0.1. In
Figure 2.12(a), the dissipation error is visualized for the two numerical schemes: the amplitude is
decreased in contrast to the analytic solution. In the zoom to the zero-crossing in Figure 2.12(b),
the shift of the curves according to the phase error is displayed. Plotting the amplitude and phase
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Figure 2.12: Analytic and numerical solution at final time T .

errors over time shows linear growth in time. Despite this theoretically unbounded error increase,
no long-time instabilities were observed for any simulation setup.

Figures 2.13 and 2.14 show the amplitude and phase errors in dependence on the number
of points per wavelength for the described setup for different discretizations. Results for ADER
time integration with polynomials of degrees k = 1, 2, 3, 4, 6, 8 are presented for a Courant num-
ber of Cr = 0.1 with and without reconstruction in panels (a) of Figures 2.13 and 2.14. Addition-
ally, ADER HDG is compared to low-storage Runge–Kutta scheme LSRK3(3) and LSRK4(5)
of third and fourth order [90] in panels (b) of Figures 2.13 and 2.14. The qualitative error be-
havior appears similar to the one presented in [149]. Comparison of ADER with and without
reconstruction reveals the improvement of the reconstruction scheme in terms of amplitude and
phase errors. With reconstruction, ADER mostly performs better than Runge–Kutta time inte-
gration; without reconstruction, the ADER results are worse. An interesting difference is that
the phase errors are negative (waves propagate too slowly) without reconstruction but mostly
positive with reconstruction and for Runge–Kutta. Even though the Taylor truncation error is not
altered between the full method with and without reconstruction, the reconstruction has a signif-
icant influence on the amplitude and phase errors. As can be seen from Figure 2.13(a), k = 3
with reconstruction gives smaller amplitude errors than k = 4 without reconstruction.

The errors decrease for increasing polynomial degree k. The decrease is not as smooth as for
the L2 errors reported in Section 2.5.1 but general trends can be observed. For k = 1, 2, 3, 4, 6, 8,
the amplitude error seems to converge with orders 2, 4..5, 6..8, 7..9, 8..11, 8..12. For the absolute
phase error it is 4, 4, 6, 7..8, 8..9, 10..11. In [1], orders of 2k + 3 and 2k + 2 are predicted for
dispersion and dissipation error, but they are based on analysis of the symbol of the discretized
differential operator: for the dispersion error, the real part of the true and the numerical wave
number are compared, while the imaginary part of the numerical wave number is considered for
the dissipative error.
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Figure 2.13: Amplitude error for different discretizations at Cr = 0.1.
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Figure 2.14: Phase error for different discretizations at Cr = 0.1.
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3 Implementation Aspects

This chapter is written following [144] and most parts are quoted literally.
The description of the methods introduced in Chapter 2 covered the physical and numerical

aspects. In this chapter, the algorithmic backgrounds are considered because the implementation
of numerical methods on modern hardware is an essential component in terms of efficiency.
Modern processors favor arithmetically intense algorithms such as dense matrix multiplications
over patterns typical for many solvers of partial differential equations that include kernels of a
streaming character with much fewer arithmetics. Thus, algorithmic complexities alone are not
enough to judge a method’s efficiency as the achievable performance of e.g. a sparse matrix-
vector product in terms of floating point operations per second can be almost two orders of
magnitude below the advertised peak performance [169].

The algorithmic developments were carried out for the problems and methods derived in
Chapter 2, i.e., for the acoustic wave equation discretized with (H)DG and explicit Runge–Kutta
methods or ADER time integration and are in parts transferable to other problems. ADER has
been successfully applied in the context of finite volume and DG methods [47, 49, 150]. An
advantage of ADER over explicit Runge–Kutta schemes is that ADER is not restricted by the
Butcher barriers and convergence orders beyond four are not overproportionally expensive. Pre-
vious work on ADER DG (as in [21]) relies on triangles or tetrahedra assuming constant coef-
ficients and straight lined boundaries. The operator evaluation in [21] is carried out based on an
element matrix with a theoretical complexity per degree of freedom of O(kd) in the degree k
for spatial dimension d. Here, an ADER DG formulation for quadrilaterals and hexahedra for
variable coefficients and curved geometries is proposed. Matrix-free operator evaluation relying
on fast quadrature with sum-factorization kernels with a theoretical complexity per degree of
freedom of O(dk) is used. The techniques of sum factorization with fast quadrature have been
established by the spectral element community [44, 88, 93, 125] but are also popular in the DG
community for explicit time integration [77]. Advances in computer architecture have rendered
the matrix-free evaluation, originally targeting high orders beyond around five, also highly com-
petitive at moderate orders, outperforming the memory bandwidth-limited sparse matrix-vector
product for second and higher degree polynomials [22, 94]. In terms of algorithmic layout, the
sole reduction of arithmetic operations is not advantageous if the memory bandwidth is the
performance limiting factor. It is shown that an operator evaluation with sum factorization as
in explicit Runge–Kutta schemes is memory bandwidth bound, despite its clear improvement
over matrix-based operator evaluation. ADER replaces the global operator application in each
Runge–Kutta stage by one global operator application and a completely element-local evaluation
routine, the Taylor–Cauchy–Kowalevski procedure, which allows to perform more computations
on data read from the global solution vectors. It is shown that ADER does not only employ fewer
operations but also supplies a higher arithmetic intensity, which is beneficial on modern cache-
based hardware.

45



3 Implementation Aspects

(a) Nodal basis with nodes on element
faces

(b) Nodal basis with nodes only in the
interior of the elements

Figure 3.1: Value access for flux evaluation depending on the nodal positions shown for two
elements with k = 4. Blue circles indicate nodal positions, the red line represents the
face for flux evaluation, and blue circles with red contour show, which node values
must be accessed for the flux evaluation.

Another aspect significant for performance is the choice of the shape function nodal points
and the choice of the quadrature rule. In case nodal points and quadrature points coincide, inter-
polation of the solution to quadrature points is avoided and computational expense is decreased.
This approach is well known in the context of spectral elements. Usage of the Gauss–Lobatto
points for the definition of the nodal points and for integration was shown to degrade the ac-
curacy of the mass matrix and its inverse [51, 161], though. Consistent Gaussian quadrature
instead yields full accuracy. A drawback of nodes in the Gauss points, however, is that the flux
evaluation on element faces requires an extrapolation accessing all degree of freedom values of
both adjacent elements because there are no node points on the faces. For the flux evaluation,
nodal points on the element faces ensure that only (k+ 1)d−1 instead of (k+ 1)d values must be
accessed as demonstrated in Figure 3.1. A new algorithmic method is proposed that changes the
polynomial basis and its nodes on the fly depending on the quantity to be evaluated. The stan-
dard DG global derivative oper2ator including flux evaluations relies on a Lagrange basis with
Gauss–Lobatto points while the ADER specific element local Taylor–Cauchy–Kowalevski pro-
cedure relies on a Lagrange basis with nodes in collocated Gauss points. Thereby, cheap element
evaluation and flux evaluation with minimal data access are combined. Despite this optimization
concerning node and quadrature choice, a second optimization concerning the efficient evalua-
tion of higher order spatial derivatives required in the Taylor–Cauchy–Kowalevski procedure is
proposed. Calculation of first order spatial derivatives and successive projection to a lower order
basis in combination with the collocated node and quadrature points minimize computational
work.

This chapter is structured as follows. The basic algorithmic building blocks are described
in the first part of Section 3.1. A quantitative study on the throughput for bases with or without
nodes on element faces is given in 3.1.1, which motivates the basis switching approach presented
in 3.1.2. The optimization relying on reduced polynomial spaces for higher spatial derivatives
is shown in Section 3.1.3. A detailed performance analysis in terms of theoretically derived
operation counts, throughput, the roofline model, computational timings, and scalability is given
in Section 3.2. A conclusion on the algorithmic developments is draw in Section 3.3.
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3.1 Algorithmic Developments
For the sake of clarity and brevity, a more compact notation is used throughout this chapter. The
pressure and the velocity are summarized in a vector u

u =

[
v
p

]
,

and the values of the degrees of freedom are summarized accordingly

U =

[
V
P

]
,

with the same relation as in equation (2.26)

uh = NU .

With this notation, the ADER HDG time stepping without reconstruction as in equation (2.27)
is given as

Uti+1
= Uti −Q−1KQ−1

k∑
j=0

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NTSjNdKUti . (3.1)

The method with reconstruction as in (2.31) in the new notation reads

Uti+1
= Uti − (ti+1 − ti)Q−1KUti

−Q−1KQ−1

(
k+1∑
j=1

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NTSj−1NdK

)
Q−1KUti .

(3.2)

Now that a brief notation is introduced, the basic underlying algorithmics on which the new
developments build are described. Subsequently, a brief preliminary performance evaluation for
different polynomial bases is given in Section 3.1.1. The evaluation of the integrals in the weak
forms in equations (3.1) or (3.2) is performed by fast integration relying on sum factorization
utilizing the structure of tensor product shape functions that are integrated with a tensor product
quadrature rule. In the remainder of this work, a Gaussian quadrature with k + 1 points per
direction for polynomials of degree k is chosen, which is enough to integrate bilinear forms with
element-wise constant coefficients on affine element shapes exactly. In particular, this choice
avoids the accuracy penalty of inexact Gauss–Lobatto quadrature on k + 1 points as highlighted
in [51]. On curved geometries, there is a possible integration error that is often subsumed in the
errors from variational crimes [20]. Note that more general hyperbolic problems with nonlinear
terms can easily be integrated with more points to avoid aliasing effects in this setup, see for
example [56].

For a function described by a basis of tensor degree k and (k + 1)d coefficients, the interpo-
lation onto (k + 1)d quadrature points takes (k + 1)2d additions and multiplications in a naive
implementation without sum factorization. The evaluation of each component of the gradient
takes 2(k + 1)2d operations. With sum factorization however, the work for the interpolation is
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reduced to 2d(k + 1)d+1 operations. The reduction of operations results from d applications of
one-dimensional interpolations of cost 2(k + 1)2 that go through all (k + 1)d−1 lines of basis
functions and quadrature points, respectively. In the remainder of this work, one application of
a one-dimensional interpolation over all points, involving (k + 1)d+1 operations, is refered to as
one “tensor product kernel”. Note that these kernels can be cast as small matrix-matrix multipli-
cations. For details, see [95].

In case of quadrature over Lagrange polynomials with nodes in the points of the quadra-
ture formula (a so-called collocated setup [93]), the interpolation from coefficients to values in
quadrature points is the identity operation and can be skipped. Thus, the evaluation of all d com-
ponents of the gradient only involves d tensor product kernels for each of the partial derivatives,
as opposed to d2 tensor product kernels for the basic evaluation scheme. As will be elaborated in
this work, the optimization of representing the solution coefficients via a collocated basis may
be premature as other factors, such as the cost of face integrals, may control the decision about
which basis to prefer. Similar kernels are also used for the summation over quadrature points
when multiplying with test functions or test function gradients, see e.g. [95] for details.

For the experiments, a state-of-the-art implementation of sum factorization based on the fi-
nite element library deal.II with support for massively parallel computations and adaptively
refined meshes with hanging nodes is used [4]. Since integration involves a series of heavy
arithmetics, the use of vectorization (SIMD) is fundamental for getting optimal performance on
current architectures. Following the concepts described in [95, 98], this work applies vectoriza-
tion over several elements which was found to provide best performance on polynomial degrees
up to at least 14 and reaches more than 50% of the arithmetic peak performance when consid-
ered in isolation, which is an extremely high value for a code compiled from generic C++ code
that contains k as a (template) parameter that lets the compiler decide on the loop unrolling and
register allocation.

3.1.1 Efficient Face Integral Evaluation
In this section, the impact of the polynomial basis functions on the efficiency of the evaluation of
the derivative operator K and the inverse mass matrix Q−1 are studied. Two contradictory factors
are considered: The inverse mass matrix is efficiently evaluated if quadrature points and nodes
of the polynomial basis coincide, which results in a diagonal mass matrix and hence simple
inversion. On the other hand, the derivative operator K includes the evaluation of both element
and face integrals. For the face integrals, data from both adjacent elements are required. For
nodal polynomials with nodes on the element faces, only the values associated to the nodes on
the faces must be accessed. If the nodes are only in the interior or polynomials are not nodal, all
vector entries of both adjacent elements are required and an extrapolation to the faces must be
carried out, see Figure 3.1.

Two variants are examined to demonstrate the effects of the aforementioned contradictory
factors. In one case, a polynomial basis of Lagrange functions with nodes in the same Gauss
points is used, in the other case a polynomial basis of Lagrange functions with nodes in the
Gauss–Lobatto points is used. Quadrature is always based on (k+ 1)d Gaussian points. The first
case results in a diagonal mass matrix, the second case satisfies the requirement to have nodes on
the element faces. Note that the usage of Gauss–Lobatto points as nodes and quadrature points is
not considered because it degrades accuracy [51, 161]. Figure 3.2 plots the results in terms of the
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number of degrees of freedom processed per second for a three-dimensional geometry consisting
of 803 Cartesian elements for polynomial degree k ∈ {1, 2, 3} and 403 Cartesian elements for
k ∈ {4, . . . , 12}. Computations are run on the system specified in Table 3.1.

The evaluation of the inverse mass matrix reaches a considerably higher throughput compared
to the derivative operator K because it is completely element-local whereas K requires the eval-
uation of face integrals and therefore additional data access from neighboring elements. In fact,
the throughput of the former is mostly limited by the memory bandwidth of loading the vector
and writing back into the same vector, which is 6.2 · 109 degrees of freedom per second for the
system’s memory throughput of 115 GB/s when counting 2×8(d+1) byte per polynomial (read
and write) and 8 bytes for access to the precomputed inverse entry of the diagonal, which is the
same for all (d + 1) components. Following [97], the action of the inverse mass matrix can be
cheaply evaluated by sum-factorization kernels that first transform into an orthogonal basis (i.e.,
the Lagrange polynomials in the (k + 1)d points of Gauss quadrature), apply the inverse diago-
nal mass matrix, and transform back to the original basis. The comparison to the throughput for
collocated nodes of shape functions and quadrature points shows that indeed the evaluation of
the non-diagonal mass matrix operation is only up to 15% slower compared to the diagonal mass
matrix. Thus, the substantial arithmetic operations can be almost completely hidden behind the
unavoidable memory transfer.

The face evaluation for the Lagrange basis in Gauss points does not only require to read the
values for the degrees of freedom located on the face but all values of the adjacent elements
to allow interpolation onto the face (or to write the face data into a separate global array with
additional memory transfer as done in [74, 77]). Comparing the throughput for Lagrange polyno-
mials in Gauss–Lobatto points and Gauss points reveals a significant drop in performance for the
derivative operator due to the increased memory access, including substantial indirect addressing
components as described in [95]. The direct comparison highlights that using polynomial bases
with nodal points on the element faces for the global derivative operator is highly beneficial.
This finding applies particularly to Runge–Kutta type time integrators, and it also holds for more
general nonlinear operators S.

The main findings are summarized as follows:
• The evaluation of the inverse mass matrix is memory bandwidth bound (especially for

moderate order) and a change of basis is for free.
• The throughput for the derivative operator is much lower than for the mass matrix, be-

cause values from both adjacent elements must be read in contrast to complete element-
local evaluations. Combined with the fact that also the Jacobian of the mapping must be
accessed, the memory bandwidth is reached earlier.
• This effect is counteracted by usage of a polynomial basis with nodes on the element

boundary, which will be further investigated in the following section.
• Usage of collocated node and quadrature points reduces the number of operations.

From these conclusions, ADER is self-evidently motivated: applications of the global derivative
operator K are traded for element local evaluations in the Taylor–Cauchy–Kowalevski procedure.

3.1.2 Flexible Basis Change
In the previous section, the effect of the memory bandwidth bound became apparent. Despite the
memory access, the number of operations is a central quantity of interest to judge code efficiency.
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Figure 3.2: Degrees of freedom processed per second for the derivative operator K and the in-
verse mass matrix Q−1 on a Cartesian grid for polynomial degrees k ∈ {1, . . . , 12}.
Gaussian quadrature on (k+1)d points is used. In one case, the polynomial basis con-
sists of Lagrange polynomials with nodes in Gauss–Lobatto points. In the other case,
the Lagrange polynomials have their nodes in the Gauss points yielding a diagonal
mass matrix.

As shown in Figure 3.2, a set of shape functions where only (k + 1)d−1 functions evaluate to
non-zero on each of the element faces is beneficial to reduce the vector access for face evalu-
ation. For element local evaluations, however, this involves additional d tensor product kernels
per component to interpolate from the solution values to quadrature points as compared to the
collocated node and quadrature points commonly used in spectral element solvers [93]. Hence,
different bases should be used for the different phases. For element local evaluations, a collo-
cated basis with nodes in Gauss points (denoted by G) is the best choice while a basis with nodes
in Gauss–Lobatto points (denoted by GL) is the best choice for the evaluation of face integrals. It
is proposed to switch the basis for the different phases on the fly while looping over the elements
for the Taylor–Cauchy–Kowaleski evaluation. The solution approximation is expressed either as

uG = NGUG or uGL = NGLUGL,

with the matrices NG,NGL containing the shape functions and the vectors UG,UGL containing
the degree of freedom values for Gauss and Gauss–Lobatto nodes, respectively. Theoretically,
there are no restrictions objecting to change the basis from one evaluation to the other. Since
both spaces are of the same degree, the equality uG = uGL holds in all cases.

For ADER, the collocated G basis is not only interesting for the application of the inverse
mass matrix Q−1 but especially for the Taylor–Cauchy–Kowalevski term

k∑
j=0

(ti+1 − ti)j+1

(j + 1)!
(−1)j

∫
K

NTSjNdKUti
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summing weighted spatial derivatives from zeroth to k-th order with different prefactors. Higher
order derivatives are computed by iterative calculation of a first derivative and a subsequent
projection applying the inverse mass matrix. The Taylor–Cauchy–Kowalevski term is completely
element local and significantly more calculations are operated on the read data compared to the
evaluation of the inverse mass matrix.

A successive evaluation of the gradient of a field and projection instead of direct evalua-
tion of high derivatives is proposed, which significantly improves efficiency in the context of a
matrix-free implementation on general meshes. Successively, problems of the form (w, ũi+1)K =
(w, ũi)K are solved, where the j-th spatial derivative is denoted ũj = ∇ju. Algorithm 1 shows
how the spatial derivatives are calculated by evaluation of the gradient field and projection onto
the degrees of freedom for the non-collocated basis GL. The application of the inverse mass
matrix must be understood in the matrix-free sum-factorization context according to [97].

Algorithm 1 Evaluation of j-th order derivatives for the non-collocated basis GL on general
non-Cartesian grids.

for i = 1, . . . , j do
evaluate∇ũiGL in the integration points ξG

multiply with weighting functions evaluated in integration points ξG and sum to get right
hand side vector rGL = (wGL,∇ũiGL)K
apply inverse mass matrix Q−1

GLrGL to get coefficients Ũ i+1
GL of the field ũi+1

GL
end for

The algorithm simplifies drastically if nodes and integration points are collocated because the
weighting with test functions and the application of the inverse mass matrix cancel out and all the
interpolation matrices are identity matrices. The simplified procedure is shown in Algorithm 2.

Algorithm 2 Evaluation of j-th order derivatives with the collocated basis G.
for i = 1, . . . j do

evaluate∇ũiG in the integration points ξG

set values for Ũ i+1
G of the field ũi+1

G
end for

Note that the basis change is done on the fly when processing the data from one element,
not on the global solution vector as that would incur additional memory transfer. If the current
global solution vector contains the degree of freedom values in the GL basis description, the
first evaluation in Algorithm 2 involves the interpolation from GL to G and then all remaining
evaluations from i = 2 to i = j are computed purely in the collocated basis G. The contribution
is finally written in the basis GL:

uGL

basis
change−−−→ uG −−−→ Taylor–Cauchy–Kowalevski

terms in G

basis
change−−−→ contribution in GL.

3.1.3 Degree Reduction
A possibility to further reduce the work in the evaluation of the Taylor–Cauchy–Kowalevski
sum is to reduce the polynomial degree in the representation of higher order spatial deriva-
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tives. This is a well-established method in the ADER DG community for affine element shapes
where typically hierarchical bases are used [21, 47]. The higher order spatial derivatives nat-
urally give a contribution only to the lower degree coefficients of the hierarchical basis in the
Taylor–Cauchy–Kowalevski procedure. In the case of sum factorization evaluation on general
non-Cartesian meshes, however, the embedding to lower polynomial degrees involves additional
operations as compared to the spectral evaluation routine from Algorithm 2. In a hierarchical ba-
sis, i.e., Legendre polynomials on quadrilaterals or hexahedra, the integrals with a non-affine ele-
ment geometry are evaluated by quadrature with sum factorization, which in turn must transform
between the Legendre basis and the collocation basis. For one spatial derivative i in Algorithm
2, the complexity rises from d tensor product kernels per component in the spectral evaluation to
3d tensor product kernels, where d kernels each are needed for the basis change in interpolation
and integration, respectively.

A more efficient algorithm can be devised as follows. First, the degree in terms of the Lagrange
basis in the respective Gaussian integration points of degree k − i + 1 and k − i of step i in the
Taylor–Cauchy–Kowalevski sum is reduced. The degree reduction is performed by an operation
Pk−ik−i+1ũ

i+1 where Pk−ik−i+1 is the projection operator from degree k−i+1 to k−i on the reference
element. Like in the hierarchical case, this setup combined with the additional interpolation of the
result into the points of the Taylor–Cauchy–Kowalevski sum involves 3d tensor product kernels
per component, as compared to only d kernels for the spectral derivative. Thus, as a second
ingredient it is proposed to apply the degree reduction only for every second spatial derivative.
This step also has the advantage of limiting the extra amount of geometry information, i.e., the
inverse Jacobian, that needs to be loaded in each quadrature point, as Gauss formulas of different
degrees evaluate the integrands in different positions and the implementation uses pre-computed
inverse Jacobians. In other words, the data of the inverse Jacobians loaded into caches is re-
used once again. The i-th spatial derivative ũi is thus expressed in a basis of polynomial degree
k − bj/2c · 2. Algorithm 3 details this procedure for j = 2.

Algorithm 3 Evaluation of high derivatives with collocated basis G and a degree reduction in
every second step.

set k(1) = k + 1
for i = 1, . . . , j do

evaluate∇ũiG in
(
k(i)
)d integration points ξ(i)

G

set values for Ũ i+1
G of the field ũi+1

G for degree k(i)

if i mod 2 = 0 then
project ũi+1

G to degree k − i by sum-factorized multiplication, Pk−ik−i+2Ũ
i+1
G

set k(i+1) = k(i) − 2
else

set k(i+1) = k(i)

end if
end for
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CPU 2× 14 core Intel Xeon Broadwell E5-2690v4, 2.6 GHz
memory 8 channels DDR 4 (2400 MHz) 153GB/s theoretic bandwidth
compiler g++ version 6.2
compiler optimization -march=haswell -03 -funroll-loops

Table 3.1: System specifications for the numerical tests.

3.2 Performance Evaluation
In the following subsections, the performance of DG with ADER and DG with explicit Runge–
Kutta time integration is analyzed in terms of operation counts, computation time, throughput,
and scalability. If not specified otherwise, the computational setup as shown in Table 3.1 is used
in the numerical examples.

3.2.1 Operation Counts
For the ADER DG method as given in equation (3.1), there are three main contributions to
the computational costs, namely the application of the inverse mass matrix with cost CQ, the
application of the global derivative operator with cost CK, and the evaluation of the Taylor–
Cauchy–Kowalevski sum with cost CTCK, resulting in an overall cost of

CADER-DG = 2 · CQ + CK + CTCK, (3.3)

as can be seen from equation (3.2). For an s-stage Runge–Kutta scheme, the costs are

CRK = s · (CQ + CK). (3.4)

In ADER, the high order approximations contribute to a sum over all terms in the truncated
Taylor series and CTCK involves an additional dependency on the polynomial degree k compared
to CQ and CK. In contrast, high order approximations with Runge–Kutta schemes use more
stages s, where the number of stages s has to increase more quickly than the required order of
accuracy (for orders larger than four) due to the Butcher barriers. ADER DG as well as Runge–
Kutta methods both repeatedly call the application of the derivative operator and of the inverse
mass matrices. The main difference is that ADER DG applies the derivative operator locally, i.e.,
element-wise, while Runge–Kutta integrators rely on the global derivative operator containing
both element and face contributions.

The operation counts for CQ, CK, and CTCK are derived from vector updates, matrix-vector or
matrix-matrix multiplications, which in turn rely on the matrix-free implementation of integral
evaluation for tensorial shape functions explained in Section 3.1. The cost for the evaluation of
one tensor product kernel on a δ-dimensional domain (e.g. δ = d in an element or δ = d− 1 on
element faces) calculates to

Ctensorial(δ) =

(
2 · k + 1

2
· 2 + (k + 1) + 2 ·

⌊
(k − 1) · (k + 1)

2

⌋)
· (k + 1)δ−1,

where the three summands in braces represent additions and subtractions (first term), multipli-
cations (second term), and fused multiply-add operations (last term, counted as two arithmetic
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Table 3.2: Number of calls of the tensor product kernel for acoustics in terms of cell kernels ”C”
and face kernels ”F”.

mass Q−1 stiffness matrix K TCK
cell eval. 2d d2 + 2d 2d
cell deriv. − 2d (k − 1) · d
face eval. − d · 4(d− 1) −
total 2d · C (d2 + 4d) · C + 4(d2 − d) · F (2d+ d(k − 1)) · C

instructions). Note that an even-odd decomposition of the local coefficients and matrices is used
that cuts operation count into approximately one half compared to a usual 1D matrix-vector
product [93, 95]. This cost is the main building block to derive the operation counts for CQ, CK,
and CTCK with the number of calls to the tensor product kernels as summarized in Table 3.2. The
operation count for ADER with reconstruction is already given in equation (3.3). For the fully
adjoint consistent scheme as introduced in Chapter 2.4.1 in equation (2.32), the operation count
calculates according to

CADER adcon full = (k + 1) · (CQ + CK).

Comparison to the cost for the Runge–Kutta update as given in equation (3.4) shows the al-
gorithmic similarity of Runge–Kutta and the fully adjoint consistent ADER scheme. For orders
beyond four, the number of Runge–Kutta stages has to increase overproportionally, indicating an
advantage for ADER adcon full for high orders of accuracy. Comparison to CADER shows once
more how ADER trades global for local evaluations by using the Taylor–Cauchy–Kowalevski
procedure. Note that the additional dependence on k for ADER is hidden in CTCK (see Table 3.2)
in contrast to Runge–Kutta and the fully adjoint consistent ADER scheme, where the depen-
dence appears in the final summation of costs. For details on the derivation of operation counts,
see [95] and [97].

In Figure 3.3, operation counts for the full schemes are compared, i.e., ADER versus a Runge–
Kutta scheme with five stages for all polynomial degrees. To allow for generalization and allow
comparability, the number of stages for the Runge–Kutta scheme is kept constant. ADER in-
volves fewer arithmetic operations for all considered polynomial degrees k ∈ {1, . . . , 12} for
both d = 2, 3. The figure also shows operation counts in case no basis change to a collocated
basis G and no degree reduction for the higher order spatial derivatives are carried out, i.e., if
the proposed algorithms of Sections 3.1.2 and 3.1.3 are not realized in the implementation of the
Taylor–Cauchy–Kowalevski procedure. Without optimizations, it is apparent that ADER has a
higher polynomial dependency on k than Runge–Kutta. The optimizations however compensate
this dependency. The basis change is not explicitly applied to the Runge–Kutta discretization
because the element-local mass matrix inversion is dominated by the memory bandwidth in
contrast to the ADER Taylor–Cauchy–Kowalevski term with higher operational cost, see also
Figure 3.2. Within the Runge–Kutta operator evaluation, however, the algorithm initially car-
ries out an evaluation of the shape functions in the quadrature points, followed by operations on
the quadrature points, and a closing integration while exploiting the tensor product quadrature
formulas and the tensor product shape functions as described in [95].

Figure 3.4 visualizes the gains of the degree reduction approach. As mentioned above, the
degree reduction introduces additional cost for the projection from one basis to the other but
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Figure 3.3: Operation counts for evaluation of one element with a five stage Runge–Kutta
scheme and ADER DG in two and three dimensions.
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Figure 3.4: Operation counts for the Taylor–Cauchy–Kowalevski procedure with degree reduc-
tion every step, every second, and every third step relative to using the degree k for
all summands.

also decreases the cost for all following evaluations of the tensor product kernels by reducing
the polynomial degree. The cost decrease due to the lower polynomial degree must outrun the
projection cost. The Figure shows the operation counts for the Taylor–Cauchy–Kowalevski pro-
cedure with degree reduction relative to an implementation without degree reduction and com-
pares the reduction in every step, every second step, and every third step. The operational cost
is approximately halved. For higher orders, the reduction in every step is not preferable because
the projection introduces overhead. For moderate polynomial degrees, the approach to reduce the
basis in every second step of the Taylor–Cauchy–Kowalevski procedure appears most beneficial.
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Figure 3.5: Run time per element for an explicit Runge–Kutta scheme with s = 5 and ADER
DG in two and three dimensions, measured on 28 cores.

3.2.2 Computational Timings

A two- and a three-dimensional example are set up on a domain Ω = [0, 1]d, solving the acoustic
wave equation with vibrational modes as analytic solution as in Section 2.5.1. Tests are run for
polynomial degrees k ∈ {1, . . . , 12} on a mesh with slightly deformed elements to prevent the
built-in Cartesian mesh optimizations in the code of [95]. In 2D, 12802 and 6402 elements are
used for k ∈ {1, 2, 3} and k ∈ {4, . . . , 12}, respectively. In 3D, 803 and 403 elements are used
for the respective polynomial degrees.

Figure 3.5 shows measured run times per time step and per element for numerical experiments
on 28 cores with LSRK4(5). Comparison between Figure 3.3 and Figure 3.5 reveals that the run
time follows the operation counts. ADER is significantly more efficient in terms of wall time
per element, though, which is due to the fact that the Taylor–Cauchy–Kowalevski procedure
requires one global vector access but Runge–Kutta requires one global vector access for each
application of the global derivative operator K in the stages. In other words, the operation counts
that ignore the memory access are pessimistic concerning ADER. This statement also holds
for the ADER implementation without basis change with run times between LSRK4(5) and the
optimized ADER.

3.2.3 Breakdown into Algorithmic Components

The algorithmic components are examined separately in terms of the computational time per mil-
lion degrees of freedom. In Figure 3.6, two versions of LSRK4(5) are compared: an optimized
vector updater that only reads and writes two vectors per stage by merging the loop over vectors
into a single loop and a standard vector updater reading five vectors and writing two vectors
per stage, similar to the “merged operations” presented in [52]. Also, the results for the opti-
mized ADER scheme implementing the basis change and degree reduction from Sections 3.1.2
and 3.1.3 and the ADER scheme without the degree reduction are shown in Figure 3.6. The
results are obtained from simulations on a three-dimensional non-Cartesian grid. The measured
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Figure 3.6: The algorithmic components for various polynomial degrees in 3D on 28 cores with
the low-storage scheme LSRK4(5) with optimized vector update “oVU” routine and
standard vector update “sVU”, and ADER time integration with the two optimiza-
tions as presented in Sections 3.1.2 and 3.1.3. In the very right panel, results are
shown for the ADER algorithm without the degree reduction optimization.

run time is the accumulated time spent in the respective functions, e.g., the contribution of the
derivative operator K appears five times as high for LSRK4(5) compared to ADER, because it is
applied in each of the five stages while ADER applies the derivative operator only once per time
step.

As can be seen from Figure 3.6, the cost for vector updates in Runge–Kutta schemes cannot
be neglected, neither in the standard implementation nor in the optimized variant, where they
contribute with about a third or a quarter of the run time, respectively. Likewise, the results
document the high level of performance reached in the computations of K and Q−1, a distinctive
feature of the developed implementation. For ADER, the vector updates have a comparably
small contribution to the entire cost because only one single update at the end of the method is
required.

The application of the derivative operator K is most expensive for k = 1 with its rather dis-
advantageous ratio between degrees of freedom located on the element faces as compared to the
interior. The ratio improves for higher orders and an almost constant throughput per degree of
freedom is obtained, despite the theoreticalO(k) increase in arithmetic complexity. The constant
throughput is mainly explained by the memory transfer that scales as O(1) per unknown. The
Taylor–Cauchy–Kowalevski procedure shows slightly increasing costs for higher degrees as an
additional summand contributes in the Taylor expansion according to equation (3.1). Nonethe-
less, the increase for higher degrees is moderate due to the proposed degree reduction approach
as presented in Section 3.1.3 and efficient algorithms, less than doubling the run time between
degrees two and twelve. In the rightmost panel of Figure 3.6, results are shown for a Taylor–
Cauchy–Kowalevski procedure that does not reduce the polynomial degree, where the increase
in computing time is much more significant. Obviously, the latter reaches higher arithmetic
throughput with more than 300 GFLOPs/s, which is a secondary quantity, though.
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3.2.4 Roofline Performance Model

Figure 3.7 shows a roofline model according to [169] for LSRK4(5) and ADER in two and
three dimensions on a non-Cartesian mesh. It plots the operated FLOPs per second over the
arithmetic intensity, which is defined as operated FLOPs per accessed memory in byte. Typical
values of the arithmetic intensity for vector updates or matrix algebra are ≈ 1

8
FLOP
byte to ≈ 1

4
FLOP
byte .

The roofline plots contain the hardware specific limits in terms of the memory bandwidth limit
(diagonal lines) measured with the STREAM triad benchmark and the peak arithmetic perfor-
mance (horizontal lines). All numbers are based on measured data from hardware performance
counters, extracted from monitoring the programs with the likwid performance measurement
tool, version 4.3, as presented in [163].

Generally, the polynomial degree increases for the points from left to right. The left panel
of Figure 3.7 highlights that ADER comes with a higher arithmetic intensity, in particular for
the higher degrees, as compared to LSRK4(5) that is clearly in the memory bandwidth bound
regime. The computations are made for a non-Cartesian mesh where not only vector entries
and some index data must be loaded from main memory but also the inverse of the Jacobian
transformation in each quadrature point.

The right panel of Figure 3.7 shows the results for the individual components of the methods.
The evaluation of the derivative operator K that needs to load geometry data is most strongly
limited by the memory. Note that loops over cells and faces are interleaved in the implementation
to re-use the vector data loaded into caches in cell integrals also for face integrals. More detailed
measurements similar to the ones presented in [95] show that the code of face integrals finds more
than 90% of the vector data for face integrals already in caches. Nonetheless, the partial indirect
addressing with gather/scatter type instructions to rearrange the face data for vectorization over
several faces and the remaining cache misses reduce throughput by around 25% as compared
to idealized code that only performs the integration, see the experiments in [95] for details.
The Taylor–Cauchy–Kowalevski procedure comes along with considerably higher arithmetic
intensities, but the high level of arithmetic optimizations in the proposed algorithm still keeps
the code in the memory-limited region, in clear contrast to e.g. [21]. Given these detailed results,
the behavior of the entire method can be characterized as follows: the Runge–Kutta scheme
applies K and Q−1 five times in each time step, while ADER only applies K and Q−1 once and
the rest is taken care of by the completely element-local Taylor–Cauchy–Kowalevski procedure,
enabling a much higher re-use of cached data.

3.2.5 Throughput as Function of Polynomial Degree

Figure 3.8 lists the computational throughput in terms of degrees of freedom processed per
second and the actually realized GFLOPs per second rate, measured with the likwid tool
[163], version 4.3. If not stated otherwise, the optimized implementation of ADER using the
basis change and reduction as proposed in Sections 3.1.2 and 3.1.3 are considered.

The performance advantage of ADER compared to the low-storage Runge–Kutta scheme is
a factor of around 4 for low polynomial degrees. The advantage decreases to a factor of 1.5
for k = 12 owing to the additional computations for the high order of accuracy of the ADER
time integration, whereas the LSRK4(5) schemes uses a fixed temporal accuracy of four with
five stages. In terms of GFLOPs rates, which lie between 60 and 264 GFLOPs per second,
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Figure 3.7: Roofline model for polynomial degrees k = 1, 2, 4, 8, 12 for the entire method (left
panel) and the individual method components in 3D (right panel).

ADER operates 1.6 times more GFLOPs per second due to better caching. For comparison,
a matrix based evaluation of a sparse matrix vector product was reported to reach 21 GFLOPs
per second [96] on the same hardware.

3.2.6 Throughput as Function of Problem Size

The throughput as a function of the problem size between 4 · 103 and 2 · 109 degrees of freedom
in 3D with shape functions of polynomial degree k = 4 is shown in Figure 3.9. For small
discretizations of size ndof < 105, limited parallelism prevents the full exploitation of the 28
cores. Then, the parallel efficiency improves and a first peak is reached at around ndof ≈ 106

where all data fits into the 70 MB of level 3 cache of the two processors and no access to
main memory is needed. Performance drops again once the data structures exceed the caches
and the vector and geometry data need to be streamed from main memory. For ndof > 106, a
slow increase of the throughput is noted, which is related to the decreased influence of the MPI
communication for larger discretizations due to a maximal beneficial volume-to-surface ratio.

3.2.7 CPU Time Versus Accuracy

In this section, the time to solution is evaluated with respect to the accuracy on a two-dimensional
example. With the standard setup of a vibrating membrane with seven modes, simulations are
run on different refinement levels of the mesh between 52 and 12802 elements for polynomial
degrees k = 1, 4, 7. For a fair comparison, the number of processors is chosen reasonably for
the discretization sizes, e.g., the coarsest discretization is computed on one processor core only
while the finest discretization is computed on 28 cores. The final numbers report the accumulated
CPU time over all utilized processors. For the accuracy, the L2 pressure error at the final time
T = 1.0 is considered. The upper panel of Figure 3.10 plots the results for a Courant number of
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Figure 3.8: Throughput in terms of degrees of freedom per second and GFLOPs per second
comparing LSRK4(5) and ADER DG in two and three dimensions.
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freedom processed per second for one time step for k = 4.
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Cr = 0.1. Generally, higher orders appear beneficial in case a strict accuracy criterion is applied.
ADER yields the same solution quality as LSRK4(5) in less computational time.

Since ADER and Runge–Kutta schemes are subject to different CFL stability limits, the solu-
tion accuracy versus the CPU time at Cr = 0.9 ·Crcrit of the respective time integrator is analyzed
in the bottom panel of Figure 3.10. The critical Courant numbers are taken from Section 2.5.2.
For k = 1, ADER is faster for most error tolerances. For k = 4, all methods perform similarly.
With polynomial degree k = 7 for the spatial discretization, ADER outperforms LSRK4(5)
clearly because the LSRK4(5) scheme is of order four while the spatial discretization is of order
eight, and the temporal error dominates over the spatial error. This is also true for LSRK5(9) at
high spatial resolution.

The superconvergence property as explained in Section 2.5.1 is explored and simulations are
run with reconstruction for ADER and the postprocessing step to obtain k + 2 convergent solu-
tions. The results for Cr = 0.1 and Cr = 0.9 · Crcrit for polynomial shape functions of degree
k = 4 are presented as green lines in Figure 3.10. Again, for Cr = 0.1, ADER performs slightly
better compared to LSRK4(5), while a significant performance advantage for ADER is noted
for Cr = 0.9 · Crcrit, which is due to better temporal accuracy. Comparing the top and bottom
panel for k = 7 shows that ADER is also faster than LSRK4(5) with smaller time steps. The
discretization with LSRK5(9) is competitive to ADER for the superconvergent pressure result
with k = 4. For the polynomial degree k = 7, a change in slope indicates the turnover from
spatial error domination to temporal error domination. Where the temporal error dominates, the
advantage for ADER is more distinct. This is due to the fact that ADER DG is automatically
k + 1 convergent in space and time while Runge–Kutta is limited by the Butcher barriers: either
overproportionally more stages are required to match the temporal order of accuracy with the
spatial discretization, or a small time step is required.

3.2.8 Scalability

In order to assess the strong scalability of the proposed methods, a two- and a three-dimensional
geometry consisting of 6402 and 403 elements of polynomial degree k = 4 (ndof = 3.1 · 107

and ndof = 3.2 · 107, respectively) are used and the solution is computed on 1 to 28 = 256
processors on a parallel cluster of 2 × 8 core Intel Xeon E5-2630 v3 (Haswell) processors at
2.4 GHz. Additionally, one computation with fewer elements (402, ndof = 1.2 · 105) in 2D is
carried out such that the distribution yields only six elements per processor for the highest level
of parallelism. The left panel of Figure 3.11 summarizes the results. In accordance with the
previous sections, ADER is consistently faster than LSRK4(5) for the same time step size ∆t.
The scaling is almost ideal with a slight kink when going from 8 to 16 processors, where the code
goes from being compute bound to being memory bound. For the small discretization the scaling
deteriorates for high processor numbers due to communication overhead. In the right panel,
results are shown for a strong scaling study on the SuperMUC Phase 2 Petascale system with
nodes of 2× 14 Intel Xeon E5-2697 v3 (Haswell) processors at 2.6 GHz on 1 to 512 nodes. For
the 2D LSRK4(5) simulation, a kink can be seen when going from 224 to 448 cores indicating
that simulations are memory bandwidth bound on lower core counts but get computation bound
at higher core counts. At this processor count, all local data of the time integrators fits into the
L3 cache of the individual processors bypassing the slow main memory. The scaling is close
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Figure 3.10: Accuracy over wall time accumulated over all MPI ranks comparing low-storage
Runge–Kutta and ADER for the same time step size and at their respective critical
time step size. Polynomial degrees k = 1, 4, 7 are studied. For k = 4 the super-
convergent pressure solution is also considered for error calculation indicated by
“sc”.
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Figure 3.11: Strong scaling for LSRK4(5) and ADER DG in two and three dimensions in terms
of wall time per time step over the number of cores. The left panel is obtained on
a cluster using 1 to 256 cores of Intel Haswell E5-2630 v3, while the right panel
is obtained with simulations on the SuperMUC Phase 2 system using 28 to 14336
cores of Intel Haswell E5-2697 v3.

to ideal considering that the highest level of parallelism corresponds to 28 and 4 elements per
processor in 2D and 3D, respectively.

Figure 3.12 plots the strong scalability for the algorithmic components. It can be seen that
the vector updates give the largest contribution to the reduced scalability between 8 and 16 pro-
cessors, which is due to the fact that the utilized cluster possesses 16 cores but only 8 memory
channels which can be saturated already with 8 processors. The kink is only due to shared mem-
ory effects because the communication is considered as part of the operator application. Since
LSRK4(5) spends a larger fraction of time in vector updates, the reduced scalability in the over-
all method is more pronounced. The inverse mass matrix and the Taylor–Cauchy–Kowalevski
procedure scale almost perfectly while the stiffness matrix shows a slight scaling decay due to a
worse volume-to-surface effect of the data that must be exchanged with MPI.

In order to illustrate the effect of memory bandwidth on the algorithmic components, the
calculations are repeated on an Intel Xeon Phi 7210-F (Knights Landing, KNL) system with
64 cores and 16 GB of high-bandwidth memory delivering up to 420 GB/s. For KNL, the code
is vectorized with AVX-512, i.e., eight-wide SIMD lanes, as opposed to AVX2 with four-wide
SIMD lanes on Broadwell. In Table 3.3, the computing times per time step are compared to a
calculation on 28 Broadwell cores. The KNL system yields a speed up for the vector update
of about 4 for LSRK4(5), corresponding to the four times higher memory bandwidth. Also, the
application of the inverse mass matrix is substantially faster. The derivative operator K, on the
other hand, runs slightly slower on KNL because of the more irregular code patterns in face
integrals that favor the more sophisticated CPU cores of Broadwell.
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Figure 3.12: Strong scaling for LSRK4(5) and ADER DG in three dimensions for the compo-
nents of the algorithm in terms of wall time per time step over the number of cores
for ndof = 3.2 · 107 on up to 16 Haswell E5-2630 v3 nodes.

Table 3.3: Comparison of one node with 28 Broadwell cores and 64 KNL cores in terms of wall
time per time step for a system with 3.2 · 107 degrees of freedom. “VU” abbreviates
“vector update”.

VU K Q−1 TCK sum
LSRK4(5) Broadwell 5.4 · 10−2 1.1 · 10−1 2.6 · 10−2 — 1.9 · 10−1

LSRK4(5) KNL 1.3 · 10−2 1.2 · 10−1 2.0 · 10−2 — 1.5 · 10−1

ADER Broadwell 4.5 · 10−3 2.5 · 10−2 6.6 · 10−3 1.8 · 10−2 5.4 · 10−2

ADER KNL 1.5 · 10−3 2.7 · 10−2 3.6 · 10−3 1.7 · 10−2 4.9 · 10−2
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3.3 Conclusion
A performance analysis for explicit Runge–Kutta and ADER DG implementations was pre-
sented. ADER outperforms optimized low-storage Runge–Kutta schemes over a range of test
scenarios. The ingredients are fast integration techniques with sum factorization that combine
optimal-complexity mathematical algorithms utilizing the tensor product structure of the shape
functions with a highly competitive implementation that vectorizes over several elements and
faces. The methods have been devised to be applicable also for complex meshes with curved
quadrilateral or hexahedral elements. The experiments clearly show that it is most efficient to
evaluate operators including face integrals with nodal basis functions that have nodes on the
element boundaries, while the cell evaluations in the Taylor–Cauchy–Kowalevski procedure of
ADER are best performed with Lagrange polynomials in the points of the quadrature formula.
To combine these two, an on-the-fly change between the bases has been proposed in this work.
This result is in contrast to the consensus belief in spectral elements that favor collocation of
the polynomials nodes and quadrature points. While the theoretically derived operation counts
already signify a slight benefit for ADER compared to Runge–Kutta, the actual timings show a
distinct benefit, reducing the time to perform one time step by approximately a factor of four, be-
cause ADER better suits modern hardware architecture: while Runge–Kutta schemes are mostly
limited by the memory bandwidth, ADER performs more operations on the data that is loaded
from main memory and thus reaches a higher arithmetic intensity. A detailed analysis of Runge–
Kutta versus ADER integration at the CFL stability limit has shown comparable performance
where the Runge–Kutta time discretization order matches the spatial discretization order. For
approximations with a high order of accuracy where the Butcher barriers set in, ADER exceeds
the abilities of Runge–Kutta because its computational cost does not grow overproportionally.
While the findings for ADER are limited to linear hyperbolic PDEs, the optimizations regarding
the basis functions and reduced vector access for the Runge–Kutta time integrators regarding
basis functions are also directly applicable to general nonlinear systems of hyperbolic PDEs.

The work highlights the importance to develop modern DG solvers according to the trends
and limits in modern hardware architectures. For common solvers, the memory bandwidth limit
is more relevant also when performing the relatively expensive computations of high order DG
methods, i.e., it is met earlier than the arithmetic performance limit. Trading global for element-
local operations counters this effect, rendering approaches like the Taylor–Cauchy–Kowalevski
procedure favorable. Vector updates are inherently memory bandwidth limited and need to be op-
timized specifically. The experiments and performance models highlight that going significantly
beyond the throughput recorded in this work demands either hardware with higher memory
bandwidth, such as GPUs or the Xeon Phi, or new software paradigms that reduce the memory
access over several stages, such as wavefront blocking that is already commonly used in the
finite difference community.
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A critical issue for the accurate simulation of wave propagation is the presence of artificial
boundaries. If the real problem is in infinite space as shown in Figure 4.1(a), the computational
domain must introduce an artificial boundary that should be perfectly permeable for outwards
traveling waves, see Figure 4.1(b). A fundamental law representing this behavior is the Sommer-
feld radiation condition

lim
|r|→∞

r
(d−1)/2

(
∂p

∂r
− ikp

)
= 0,

with the radial coordinate r and the wave number k [154]. It states that waves radiated from the
sources must scatter to infinity. Is is derived for the Helmholtz equation and also holds in the
time domain.

An exemplary boundary condition approximately representing the Sommerfeld radiation con-
dition is the first order absorbing boundary condition (ABC)

v · n− 1

cρ
p = 0, (4.1)

which was already metnioned in Chapter 2 of this work and was derived in [53]. In one dimen-
sion, the absorbing condition (4.1) is exact and outward traveling waves do not cause reflections
at the artificial boundary. In two or three dimensions, reflections occur for waves that do not
hit the boundary orthogonally. For a wave with an angle of incidence of 45◦, reflections have
an amplitude of 17% of the original wave [53]. To increase accuracy and decrease artifical re-
flections, high order ABCs were proposed in [53] and in [75, 76, 158]. A great variety of high
order ABCs exists (see e.g. [63, 70] for reviews), however, they suffer either from non-locality or
require the evaluation of high derivatives in space or time. Also, edge and corner treatment and
the application to curved boundaries are not straight forward. The approach overcoming these
drawbacks is the perfectly matched layer (PML). The PML was initially introduced in [14] in
the context of electromagnetic waves and the finite difference time domain method. The com-
putational domain is surrounded by an additional layer with the purpose to absorb waves from
the actual physical domain without reflections at the interface, see Figure 4.1(c) and 4.2. The
name “perfectly matched” states the property that the continuous formulation of the PMLs is
exactly non-reflecting at the interface. In the interior of the PML, the waves are attenuated by
a complex coordinate transformation enforcing exponential damping [30]. The original publi-
cation [14] formulates the PML using a split-field approach. Later the uniaxial PML formula-
tion [138] emerged. However, both formulations can also be seen as a result of a complex coordi-
nate stretching [30]. General PML formulations and a review on the developments of PMLs are
given in [6]. A drawback of PMLs is that their accuracy depends on the discretization as well as
on the selection of several parameters. Good parameter choices are obtained through experience,
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(a) Sound sources in a region of in-
terest in infinite space.

(b) Truncation of the infinite space
by an artificial boundary and an
absorbing boundary condition.

(c) Truncation of the infinite space
by a perfectly matched layer.

Figure 4.1: The solution of the wave equation in an infinite space or approximations of the infi-
nite space.

experimentation, or automated routines [112]. Note that the standard formulation for PMLs is
either for straight boundaries on cuboidal domains (with overlap in the corners) or for cylindri-
cal or spherical domains (see e.g. [38]). To the author’s knowledge, there are no publications on
general PML geometries. A comparison between PMLs and high order ABCs in the frequency
domain is presented in [131] with the main conclusion that they perform equally efficient in the
high accuracy regime. Later, even more efficient evaluations of high order ABCs with an opti-
mized GPU implementation were proposed [113]. However, until this day, the question whether
PMLs or ABCs should be used is not easily answered.

In this work, the first order ABC and PMLs are used because they are easily combined with
the DG spatial discretization of the acoustic wave equation as presented in Chapter 2. Parts of
this chapter are based on the Master’s Thesis by M. Kufner [102]. In Section 4.1, a very general
PML formulation is derived based on the first order formulation of the acoustic wave equation.
Section 4.2 addresses the stability of the PML configuration and in Section 4.3, the absorption
function is introduced. Spatial and temporal discretization are given in Section 4.4 and numerical
examples are presented in Section 4.5. The chapter is concluded in Section 4.6.

4.1 Derivation

The formulation presented in this work is based on the common stretched coordinate approach
as e.g. in [112]. The derivation is however more general and allows for higher flexibility. The
formulation allows for PMLs on convex and concave polygons while keeping the number of
auxiliary variables to a minimum. Also, it enables the combination of circular or spherical PMLs
with straight PMLs as shown in Figure 4.2.
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Figure 4.2: Exemplary configurations of an acoustical domain surrounded by PMLs.

Starting point for the new formulation is the acoustic wave equation written as first order
system (2.4)–(2.5), which is repeated here for convenience

∂v

∂t
+

1

ρ
∇p = 0, (4.2)

∂p

∂t
+ c2ρ∇ · v = 0, (4.3)

with the sound pressure p, the acoustic particle velocity v, the mass density ρ, and the speed
of sound c. This system is solved on the domain ΩA in the time interval [0, T ]. The computa-
tional domain is now extended by the PMLs ΩPML

A with the new boundary ΓPML
A as sketched in

Figure 4.2. On the boundary ΓPML
A either a Dirichlet, a Neumann, or an ABC is enforced:

Dirichlet p = pD,
Neumann v · n = 0,

first order absorbing v · n− 1

cρ
p = 0.

In Section 4.5.4, it will be identified, which of these three boundary conditions gives the best
results. Of course it is also possible to surround the domain ΩA only partially by PMLs. The
extension is straightforward. The equations presented in the following are for acoustical domains
completely surrounded by PMLs to keep notation clear.

A general solution of the undamped wave equation as in (4.2)–(4.3) is the superposition of
plane pressure waves and plane velocity waves

p = p̂ei(k·x−ωt),

v = v̂ei(k·x−ωt),

with the amplitudes p̂, v̂ for pressure and velocity, the wave vector k, and the angular frequency
ω. In the artificial PML domain ΩPML

A , damped plane waves shall be solutions

p̃ = p̂ei(k·x−ωt−
1
iω
k·γ)), (4.4)

ṽ = v̂ei(k·x−ωt−
1
iω
k·γ)), (4.5)
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with the damping function γ = γ(x) defining the direction and the magnitude of the damping.
The damping is represented by a real part in the exponent. The damping function must vanish
on the interface between standard domain and PML domain γ = 0 on ΩA ∩ ΩPML

A to obtain the
perfectly matched property and have a reflection free interface. For convenience, the abbreviation

A =

(
∂γ

∂x

)T

(4.6)

is introduced for the transposed partial derivative matrix of the damping function with respect to
the spatial coordinates.

A wave equation is sought for which the damped plane waves are a solution or more specifi-
cally, a differential operator ∇̃ is sought such that the damped waves (4.4) and (4.5) are a solution
to

∂ṽ

∂t
+

1

ρ
∇̃p̃ = 0, (4.7)

∂p̃

∂t
+ c2ρ∇̃ · ṽ = 0. (4.8)

The application of the modified differential operator ∇̃ to the damped solution shall have the
same effect as the application of the standard operator to the undamped solution:

∇̃p̃ !
= ikp̃ and ∇̃ · ṽ !

= ik · ṽ.

The modified differential operator must be

∇̃ =

(
I − 1

iω
A

)−1

∇, (4.9)

which can be seen from the gradient of p̃ derived from equation (4.4)

∇p̃ = ∇
(
p̂ei(k·x−ωt−

1
iω
k·γ))

)
=

(
ik − 1

iω
k ·A

)
p̃

=

(
I − 1

iω
A

)
ikp̃,

and the following expansion

∇̃p̃ = ikp̃ =

(
I − 1

iω
A

)−1(
I − 1

iω
A

)
︸ ︷︷ ︸

I

ikp̃ =

(
I − 1

iω
A

)−1

∇p̃,

where the gradient expression from above is inserted for ∇p̃. With the differential operator as
in (4.9), equations (4.7) and (4.8) yield the same dispersion and amplitude relation as the original
wave equation.
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Writing equations (4.7) and (4.8) in frequency domain allows to introduce the operator

− iωp̃+ ρc2∇ · ṽ + ρc2
(
(iωI −A)−1A

)
: (ṽ ⊗∇) = 0,

− iωṽ +
1

ρ
(iωI −A)−1∇p̃ = 0,

with the symbol⊗ representing a dyadic product and the symbol : representing a tensor contrac-
tion. In order to enable the transformation back to the time domain, the auxiliary variables zj are
introduced in the frequency domain

s∑
j=1

zj =
(
(iωI −A)−1A

)
: (ṽ ⊗∇) .

If the matrix A is diagonizable, this equation can be reformulated. Therefore, the eigenvalues
λi of A are determined as the roots of the characteristic polynomial. The matrix A is of size
d× d and hence, d eigenvalues can be found, however some eigenvalues can have a multiplicity
greater than one and in general s denotes the number of distinct eigenvalues of A. The distinct
eigenvalues are summarized in µj with j = 1, ..., s while λi with i = 1, ..., d lists all eigenvalues.
The eigenvectorsEi to the eigenvalues λi are summarized inG = [E1 . . . Ed] and Fj denotes the
row-vectors of G−1. With the introduced notation, the equation defining the auxiliary variables
is reformulated

s∑
j=1

zj =
s∑
j=1

µj
iω − µj

(Ej ⊗ Fj) : (ṽ ⊗∇) , (4.10)

with the notation Ej ⊗ Fj =
∑r

k=1Ek ⊗ Fk for r-fold eigenvalues. Therefore, eigenvalues
with algebraic multiplicity greater than one imply a reduction of the number of required aux-
iliary variables. Stipulating the equality for each summand in equation (4.10), the following s
equations must be fulfilled in the frequency domain

−iωzj + µjzj = −µj (Ej ⊗ Fj) : (ṽ ⊗∇) for j = 1, ..., s. (4.11)

With this definition of the auxiliary variables zj , the transformation of the modified wave equa-
tion from the frequency domain back to the time domain is possible. After several algebraic
manipulations, the following time domain formulation is found

∂ṽ

∂t
+

1

ρ
∇p̃ = −Aṽ, (4.12)

∂p̃

∂t
+ c2ρ∇ · ṽ = −ρc2

s∑
j=1

zj, (4.13)

∂zj
∂t

+ µjzj = µj (Ej ⊗ Fj) : (ṽ ⊗∇) for j = 1, ..., s. (4.14)

The system (4.12)–(4.14) is complemented by initial conditions for p̃, ṽ, and zj . The auxiliary
variables zj are always initialized to zero. By construction, the superposition of damped plane
waves for pressure and velocity are solutions to this equation. The interface between ΩA, where
the standard wave equation is fulfilled, and ΩPML

A , where the derived modified wave equation is
fulfilled, is reflection free in the continuous context because the differential operator ∇̃ yields
the same dispersion and amplitude relations as the original wave equation.
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4.2 Stability
The modulus of the pressure field p̃ is studied to analyze the stability properties of the derived
equations

|p̃| =
∣∣∣p̂ei(k·x−ωt− 1

iω
k·γ))

∣∣∣ = |p̂|
∣∣∣e− 1

ω
k·γ
∣∣∣ .

For k · γ > 0, the plane wave p̃ is decaying. The product k · γ is abbreviated by

g = k · γ.

As stated above, the damping function γ is zero on the interface between the physical acoustical
domain ΩA and the PML domain ΩPML

A per premise and hence is g. To ensure a monotonically
decaying wave, the following relation must hold for the directional derivative of g in the propa-
gation direction given by k

∇g · k|k| ≥ 0.

Expanding the spatial derivatives gives

∇g · k|k| = (k · (∇γ) + (∇k) · γ) · k|k| ≥ 0.

For constant material properties in terms of speed of sound c and mass density ρ, the spatial
derivative of the wave vector vanishes and the result is

k · (∇γ) · k = kT

(
∂γ

∂x

)T

k = kTAk ≥ 0,

where the conversions are only changes in notation and insertion of the abbreviationA as intro-
duced in equation (4.6). The derived condition holds true if A is positive semidefinite, i.e., all
eigenvalues of A must be greater or equal to zero: µj ≥ 0. This conditions enables checks for
stability on the potential damping functions and layer configurations by calculation of the eigen-
values of A. The matrix A is in general not symmetric and for given geometries and profile
functions, the eigenvalues of A must be determined in order to be able to judge on the stability
of the configuration.

4.3 The Absorption Function
Last, the damping function γ and thus the matrix A need specification. They depend on the
user input of a function σ which is often denoted as absorption function or profile function.
Several possibilities to define σ are known and some common definitions are introduced in the
following.

The damping function γ calculates as the integral over the absorption functionσ starting at the
interface between the physical and the PML domains. The definition of the absorption function
is not a simple task because it determines the magnitude of the damping. A straightforward
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Figure 4.3: Different absorption functions all with α = 1 and δ = 1.

approach would be to choose σ as a constant function of high absolute value in order to damp
the outgoing waves as quickly as possible

σconst = α,

with α as scaling parameter. The problem, however, is that a PML is only perfectly matched
in the continuous case. As soon as the wave equation and the modified wave equation are
discretized, reflections can occur at the interface. The magnitude of these reflections depends
amongst other things on the absolute value of σ. Therefore, polynomial functions have been
proposed (see e.g. [62])

σn(ξ) = α

(
ξ

δ

)n
,

where n is the degree of the polynomial, α is a scaling parameter, ξ is defined in ΩPML
A and

describes the normal distance to the interface between physical domain and PML. The value
δ is the PML thickness and ξ ∈ [0, δ]. The polynomial degree is commonly chosen as n = 2
or n = 3. The optimal choice for α is problem dependent because α balances the damping of
the outgoing waves and the reflections from the PML. There is no general rule how to choose
α. Additional possibilities to define the absorption function are the hyperbolic and the shifted
hyperbolic absorption functions from [15]

σhyp(ξ) =
α

δ − ξ ,

σshyp(ξ) =
α

δ − ξ −
α

δ
.

They tend to infinity at the outer boundary of the PML and hence theoretically absorb waves
entirely. In the discrete context this property is again only approximated. The parameter α is
commonly chosen as α ≈ c for the hyperbolic function and α ≈ 1 for the shifted hyperbolic
function. Figure 4.3 summarizes the presented possibilities to define profile functions.

4.3.1 Straight-Lined Boundaries
Different PML geometries require different definitions of the vector valued function σ. First,
a straight-lined boundary is considered as shown in Figure 4.4. At the interface ΓPML

A,in , the co-
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Figure 4.4: Acoustical domain with straight-lined PML.

ordinate ξ is zero, since it describes the distance to the interface in normal direction n. In real
coordinates, points on the interface are denoted x0. The normal vector n is of length |n| = 1.
The vector valued absorption function is given by

σ(ξ) = σ(ξ) · n.

The absorption function has different contributions for the coordinate directions, depending on
the orientation of the boundary. If the boundary is orthogonal to the x1-direction, only the first
entry of σ is non-zero and only waves propagating in x1-direction are damped. For the above
definition of σ, the damping function γ calculates as

γ(x) =

∫ n·(x−x0)

0

σ(ξ)dξ,

with x0 as closest point on the interface to x, thereby integrating over the normal distance to the
interface. Consequently, the derivative of γ(x) is

A(x) = n⊗ σ.

It has only one non-zero eigenvalue µ = n·σ and hence only one auxiliary variable z is required.
The wave equation in a general PML as in (4.12)–(4.14) adapted to the straight-lined PML reads

∂ṽ

∂t
+

1

ρ
∇p̃ = − (n⊗ σ) ṽ,

∂p̃

∂t
+ c2ρ∇ · ṽ = −ρc2z,

∂z

∂t
+ n · σz = − (n⊗ σ) : (ṽ ⊗∇) .

4.3.2 Circular and Spherical Boundaries
For domains of circular or spherical shapes, the point x0 denotes the center of the domain. The
vector nr denotes the outward pointing normal vector of unit length as a function of x with
x ∈ ΓPML

A,in as shown in Figure 4.5. The absorption function is chosen as
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Figure 4.5: Circular acoustical domain with center point x0.

σ(ξ) = σ(ξ) · nr(x),

where ξ is again the shortest distance to ΓPML
A,in in the domain ΩPML

A . The damping function subse-
quently is

γ(x) =

∫ |x−x0|

0

σ(ξ) · nr(x)dξ.

During the calculation of A, the spatial dependency of the normal vector must be considered,
yielding

A = η(I − nr ⊗ nr) + σnr ⊗ nr,

η =
1

|x− x0|

∫ |x−x0|

0

σ(ξ)dξ.

In two dimensions, η is a 1-fold eigenvalue of A, in three dimensions, it is 2-fold belonging
to eigenvectors pointing in circumferential direction, while σ is always a 1-fold eigenvalue be-
longing to an eigenvector pointing in radial direction. In case an analytic indefinite integral is
available for the function σ(ξ), the eigenvalue η can be calculated analytically.

The wave equation as in (4.12)–(4.14) adapted to the circular and spherical PML reads

∂ṽ

∂t
+

1

ρ
∇p̃ = −(ηI + (σ − η)nr ⊗ nr)ṽ,

∂p̃

∂t
+ c2ρ∇ · ṽ = −ρc2(zr + zη),

∂zr

∂t
+ σzr = −σ(nr ⊗ nr) : (ṽ ⊗∇) ,

∂zη
∂t

+ ηzη = −η(I − nr ⊗ nr) : (ṽ ⊗∇) .

Note that the number of auxiliary variables is s = 2 for the two-dimensional as well as the
three-dimensional case.
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Figure 4.6: Acoustical domain ΩA with two overlapping PMLs.

4.3.3 Overlapping Perfectly Matched Layers
In the corners of the computational domain, PMLs can overlap, see Figure 4.6. Two PMLs with
orthogonal normal vectors are shown. Since the PML wave equation (4.12)–(4.14) is linear, the
principle of superposition applies. In the single PMLs, the equations as derived in Section 4.3.1
apply. In the overlapping region ΩPML,1

A ∩ ΩPML,2
A , the damping function results from a simple

addition

γΩPML,1
A ∩ΩPML,2

A
:= γ12 = γ1 + γ2 =

∫ n1·(x−x0)

0

σ1(ξ)dξ +

∫ n2·(x−x0)

0

σ2(ξ)dξ.

For absorption functions which are parallel to the respective normal vector, the matrix A12 is
symmetric and has real eigenvalues. The matrixA12 then calculates as

A12 = A1 +A2 = σ1n1 ⊗ n1 + σ2n2 ⊗ n2.

In case the normal vectors are orthogonal the PML wave equation in the overlapping regions is
given by

∂ṽ

∂t
+

1

ρ
∇p̃ = −

(
r∑
j=1

σjnj ⊗ nj
)
ṽ,

∂p̃

∂t
+ c2ρ∇ · ṽ = −ρc2

r∑
j=1

zj,

∂zj
∂t

+ σjzj = −σj (nj ⊗ nj) : (ṽ ⊗∇) for j = 1, ..., r.

Therein, r is the number of overlapping regions. As displayed in Figure 4.4, two PMLs overlap
and r = 2. In three dimensions, at the corner of a cube, three PMLs overlap and r = 3. If
the normal vectors are not orthogonal, the more general equations (4.12)–(4.14) must be used.
Stability must be checked by testing the sign of the non-zero eigenvalues ofA.

4.3.4 General Shapes
For PMLs which are neither straight-lined, nor spherical, cylindrical, nor an overlap of those,
the function σ must be defined according to the requirement that γ vanishes on the interface
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ΓPML
A,in and such that the eigenvalues of A are greater or equal to zero µj ≥ 0 and the general

equations (4.12)–(4.14) must be used.

4.4 Spatial and Temporal Discretization

The numerical solution of the PML equations (4.12)–(4.14) is based on HDG spatial discretiza-
tion and is achieved following the same approach as in Chapter 2.2 of this work. The problem
can either be understood as to solve problem (4.12)–(4.14) in ΩPML

A and problem (2.4)–(2.5) in
ΩA or to solve only problem (4.12)–(4.14) in ΩPML

A ∪ ΩA with γ = 0 in ΩA. Both approaches
result in the same computational procedure, because the coupling between elements is carried
out by the trace variable playing the same role in both problem statements. For ease of notation,
the first approach is presented in the following without explicitly repeating the coupling criterion
λ = λ̃ on ΩPML

A ∩ ΩA. The tesselation of the domain ΩPML
A into elements is denoted T h,PML

A .
The weak form is derived by multiplication with weighting functions w̃, q̃, yj, µ̃ for the ve-

locity, pressure, auxiliary, and trace field, respectively, integration over one element, partial in-
tegration, summation over all elements in the domain, and replacement of the element boundary
terms stemming from partial integration by the trace variable and stabilization term:

(
w̃,

∂ṽ

∂t

)
T h,PML

A

−
(
∇ · w̃, 1

ρ
p̃

)
T h,PML

A

+

〈
w̃ · n, 1

ρ
λ̃

〉
∂T h,PML

A

= − (w̃,Aṽ)T h,PML
A

,

(
q̃,
∂p̃

∂t

)
T h,PML

A

+
(
q̃, c2ρ∇ · ṽ

)
T h,PML

A
+
〈
q̃, c2ρτ(p̃− λ̃)

〉
∂T h,PML

A

= −
(
q̃, ρc2

s∑
j=1

zj

)
T h,PML

A

,

(
yj,

∂zj
∂t

)
T h,PML

A

+ (yj, µjzj)T h,PML
A

= (yj, µj (Ej ⊗ Fj) : (ṽ ⊗∇))T h,PML
A

for j = 1, ..., s ,

〈µ̃, ṽ · n〉∂T h,PML
A

+
〈
µ̃, τ(p̃− λ̃)

〉
∂T h,PML

A

= 0,

where a Neumann boundary condition is assumed on the outer PML boundary ΓPML
A . Application

of the first order ABC or a Dirichlet condition on the outer PML boundary is analogous as in
Section 2.2, i.e., for the ABC an additional term is added to the last of the equations analogous to
the term in equation (2.13) and a Dirichlet condition would be weakly imposed on the pressure
field by setting the trace variable to the L2 projection of the prescribed value on the faces along
the boundary.

The discretized problem reads: Find p̃h ∈ Ph, ṽh ∈ Vh, zj,h ∈ Ph, λ̃h ∈ Lh(pD) such that for
all q̃h ∈ Ph, w̃h ∈ Vh, yj,h ∈ Ph, µ̃h ∈ Lh(0)

(
w̃h,

∂ṽh
∂t

)
T h,PML

A

−
(
∇ · w̃h,

1

ρ
p̃h

)
T h,PML

A

+

〈
w̃h · n,

1

ρ
λ̃h

〉
∂T h,PML

A

= − (w̃h,Aṽh)T h,PML
A

,

(4.15)
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(
q̃h,

∂p̃h
∂t

)
T h,PML

A

+
(
q̃h, c

2ρ∇ · ṽh
)
T h,PML

A
+
〈
q̃h, c

2ρτ(p̃h − λ̃h)
〉
∂T h,PML

A

= −
(
q̃h, ρc

2

s∑
j=1

zj,h

)
T h,PML

A

, (4.16)

(
yj,h,

∂zj,h
∂t

)
T h,PML

A

+ (yj,h, µjzj,h)T h,PML
A

= (yj,h, µj (Ej ⊗ Fj) : (ṽh ⊗∇))T h,PML
A

for j = 1, ..., s , (4.17)

〈µ̃h, ṽh · n〉∂T h,PML
A

+
〈
µ̃h, τ(p̃h − λ̃h)

〉
∂T h,PML

A

= 0. (4.18)

In contrast to the material parameters c, ρ, which are assumed to be element-wise constant, the
eigenvalues µj in equation (4.17) are generally space dependent, which can introduce an inte-
gration error in combination with the standard quadrature. However, since absorption functions
are smooth by construction and reasonable PMLs span several elements, effects like aliasing are
assumed to be negligible.

The semidiscret system in matrix form reads A 0 0
0 M 0
0 0 P




˙̃V
˙̃P
˙̃Z

+

 L B 0
H D R
S 0 T

 ṼP̃
Z̃

+

 C
E
0

 Λ̃ =

 0
0
0

 , (4.19)

IṼ + JP̃ + GΛ̃ = 0. (4.20)

The last equation enforces the continuity between elements and is the same as in equation (2.15).
Thereby, also the continuity between PML and non-PML region is enforced. The vector Z sum-
marizes the degrees of freedom for all auxiliary variables zj . As in Section 2.3.2, time integration
is based on explicit Runge–Kutta time stepping. The derivation of the fully discrete system is
analogous and is not repeated here.

4.5 Numerical Examples
In the following, several examples are presented, showing basic functionality and properties on
the one hand (Sections 4.5.1-4.5.4) and the advantages of the proposed scheme over common
schemes on the other hand (Section 4.5.5).

4.5.1 Convergence Behavior in One Dimension
For a convergence study of the PML formulation, a semi-one-dimensional domain of length
l = 1 with PML of length δ is created as shown in Figure 4.8. On the boundary along the x1

direction, homogeneous Neumann boundary conditions are applied creating the one-dimensional
behavior. On the left and right boundary along the x2 direction, the first order ABC is applied
for the study at hand but various boundary conditions are studied in the subsequent sections. In
a first setup, the PML length is set to δ = 1. The domain is meshed with 200 linear elements in
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Figure 4.7: Convergence results for one-dimensional PML example.

x1 direction. The material parameters are ρ = 1 and c = 1. For time integration, the LSRK3(3)
integrator is used and the time step size is ∆t = 0.001 with a Courant number of Cr = 0.1.
Initial pressure and velocity are

p0 = e−100·(x1−0.5)2 ,

v0 = e−100·(x1−0.5)2 ,

representing a Gaussian hill propagating in positive x1 direction. For t = 0, the Gaussian hill is
located at x1 = 0.5.

The convergence behavior is studied in terms of the reflection at the interface between PML
and physical domain. As mentioned earlier, the interface between PML and physical domain is
only reflection free in the continuous context. In the following, a numerical convergence study
on the reflection is carried out for polynomial degrees k = 1, 2, 3, 4 of the shape functions.
The measured quantity is the L2 pressure error at t = 1.0 in the physical part of the domain.
Theoretically, the pressure is zero in the entire physical part but due to reflections at the interface,
pressure amplitudes are measured. Figure 4.7 shows the convergence on four uniformly refined
meshes. From the HDG context and as examined in Chapter 2, optimal convergence with order
k + 1 accuracy is expected. The measured results indicate convergence of order k, which is
assumed to result from the equation for the auxiliary variable z, which always starts from a zero
field and has the velocity divergence, i.e., a derived quantity, as input.

4.5.2 Quantitative Study of the Absorption Functions
The setup is the same as in the preceding section with the initial fields representing a Gaussian
hill and k = 3. Here, different absorption functions as introduced in Section 4.3 are studied. To
prevent infinite values of σ, the hyperbolic function and the shifted hyperbolic function assume
1.25δ for PML width. Large values of σ can yield instabilities in the time integrator. The scaling
parameter in the absorption function is set to α = 100.

Figure 4.9 shows snapshots of the pressure field for various points in time. For t = 0.5, the
peak of the Gaussian hill hits the interface ΓPML

A,in . At this point in time, it is already apparent
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Figure 4.8: Computational semi-one-dimensional domain with PML on the right boundary.
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Figure 4.9: Pressure along the x1 axis for three points in time simulated with six different choices
for the absorption functions.

that high reflections occur for the constant profile function σconst as well as for the hyperbolic
absorption function σhyp. As stated in the derivation, the PML is only perfectly matched in the
continuous case. Also for the other absorption functions, reflections occur at the interface but
they are of much lower amplitude as can be seen from the snapshots at t = 1.0 and t = 1.5.
In the PML, the wave travels more slowly and is damped. For t = 1.0, the cubic absorption
function shows low damping compared to the quadratic, the linear, and the shifted hyperbolic
function. This is due to the fact that the parameter α is the same for all, and the integral over σ
starting from the interface ΓPML

A,in is lower for the cubic profile. However, the reflections traveling
back through the physical domain are lower for the cubic absorption function. The linear and
the shifted hyperbolic absorption function perform similarly in quality and quantity. From this
comparison, constant and hyperbolic functions appear disadvantageous and quadratic and cubic
absorption functions perform better compared to linear and shifted hyperbolic function in terms
of reflections at the interface.

In the next test, the quadratic profile function is used but the parameter α to scale the absorp-
tion function is varied. Apart from that, all other settings are as in the preceding simulations.
Figure 4.10 displays the pressure along the x1 axis at time t = 0.9. In the PML domain (right
panel of Figure 4.10), pressure amplitudes decrease for increasing α. For α = 1 almost no damp-
ing occurs and the maximal pressure amplitude is 0.977. For α = 10, 100, 200, 400, the maximal
pressure amplitudes in the PML domain are 0.81, 0.16, 0.04, 0.01, respectively. The qualitative
behavior is opposite in the physical domain: a part of the Gaussian hill is reflected at the interface
between physical and PML domain and propagates back into the physical domain. For higher
values of the parameter α, higher reflections occur. Maximal pressure amplitudes in the physical
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Figure 4.10: Pressure along the x1 axis at time t = 0.9 for a quadratic profile function with differ-
ent values for the parameter α scaling the absorption function. Notice the different
scaling of the pressure axis in the two panels.

domain are 1.02·10−5, 9.72·10−5, 6.20·10−4, 9.68·10−4, 1.50·10−3 for α = 1, 10, 100, 200, 400,
respectively. This example highlights a typical trade off when configuring a PML: high values for
α induce higher damping but also increase unphysical reflections at the interface. The situation
is even more intricate, if the PML width is smaller as will be shown in Section 4.5.3.

4.5.3 The Layer Width
In this section, the layer width δ is examined quantitatively. Therefore, the same setup as in the
previous sections is chosen except that the boundary at x1 = l + δ is not applied with the first
order absorbing boundary condition but a Neumann boundary condition that causes reflections.
Therefore, all wave absorption has to be carried out by the PML. Shape functions of k = 3
and a mesh with characteristic element size h = 0.01 are chosen. Quadratic as well as shifted
hyperbolic absorption functions are used with α = 100 for both cases. Additionally, the quadratic
profile function is tested with α = 400. To allow for a fair comparison between the different
setups, the maximum of the modulus of the pressure is measured at t = 1/c (l + 2δ). At this time,
the Gaussian hill traveled to the right boundary, was reflected and returned to the initial position.
The shortest tested layer width corresponds to the size of one finite element, i.e., δ = h. The
highest tested value corresponds to δ = 20h, which is beyond the range of reasonable choices
in practical applications but is presented here to gain a deep understanding of the underlying
methodical and numerical properties.

Figure 4.11 plots the results. In the semi-logarithmic plot, the quadratic absorption function
with α = 100 yields a straight line indicating an exponential relation between layer width and
reflection amplitude. For thin PML layers, the quadratic profile with α = 400 yields the lowest
reflections. For δ ∈ [0.05, 0.1], the shifted hyperbolic profile function performs best. For the
thick layer with δ = 0.2, the quadratic profile with α = 100 appears best. At this stage, the
layer is thick enough to absorb the wave almost completely and the dominant contribution to the
measured pressure amplitude stems from the reflection at the interface, which is why α = 100
gives a better result than α = 400. It is important to keep in mind that the spatial discretization
uses shape functions of polynomial degree k = 3, which yields comparably low errors from the
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Figure 4.11: Reflections in the physical domain as function of the layer width δ for a one-
dimensional setup comparing quadratic and shifted hyperbolic absorption func-
tions.

reflection at the interface (see Figure 4.7). Most of the errors measured for the quadratic profile
with α = 100 are caused by too low damping. For α = 400, effects of both the reflection at the
interface as well as the reflection at the outer boundary are seen. In applications, a reasonable
trade off must be found between reflections at the interface and damping in the PML.

4.5.4 The Outer Boundary Conditions

A possibility to improve the absorption is to apply the first order absorbing boundary condition
to the PML boundary ΓPML

A . It is expected that this allows for smaller PMLs for a given level of
accuracy. In this section, the effect of the outer boundary conditions is quantified. Since the first
order absorbing boundary condition is exact in one dimension and perfectly absorbs orthogonally
impacting waves, the effect of the outer boundary conditions is studied on a quadratic domain
with a spherically propagating pressure wave. The physical domain is ΩA = [−1, 1]×[−1, 1] and
surrounded by PMLs of variable width. The mesh is Cartesian with quadratic elements (k = 2)
of size h = 0.02, the time step size is set to ∆t = 0.001, and the initial pressure and velocity
distributions are given by

p0 = e−100·(x21+x22),

v0 = 0.

For the PML, a quadratic absorption function with α = 100 is chosen. The tested widths corre-
spond to one to ten layers of PML elements. Numerical experiments are run with the first order
absorbing boundary condition, a Neumann condition, or a Dirichlet boundary condition on ΓPML

A .
Since the reflections from the outer boundary are the quantity of interest, the maximal pressure
value in the physical domain at t = 2 + 2 · δ is measured.

Figure 4.12 plots the maximal of the modulus of the pressure for the different configurations
over the PML width δ. For thick layers, all configurations perform similarly because the PML
behavior and reflections at the PML interface dominate over the effect of the outer boundary
condition. The measured reflections stem from the interface between physical domain and PML
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Figure 4.12: Reflections in the physical domain as function of the layer width δ for a two-
dimensional setup visualizing the influence of the outer boundary condition.

and not from the outer boundary conditions. For PML width δ < 0.1 and α = 100, the effect of
the outer boundary condition is visible. The transition from dominating errors at the interface to
dominating errors at the outer boundary manifests as kink between δ = 0.05 and δ = 0.1 for α =
100. For Neumann and Dirichlet boundary conditions, reflections occur at the outer boundary,
while the absorbing boundary condition dampens most of these reflections. For comparison, the
Dirichlet test case is also evaluated for α = 50 plotted as dashed cyan line in Figure 4.12. The
decrease of the reflections with increasing PML width is significantly slower due to the reduced
damping. The transition from domination of reflections stemming from the outer boundary to a
damping within the PML is slower. To elaborate on the discretization error, the simulation with
Neumann boundary condition is repeated but with cubic shape functions k = 3 instead of k = 2
as in the preceding section. Figure 4.12 shows the result as magenta dashed line. Comparing
both setups with k = 2 and k = 3 reveals that the curves are very similar. Only for the smallest
PML width of δ = 0.02, a difference is seen. The dominating error is hence not due to the
discretization error but due to the general reflection and damping properties of the PMLs.

For PMLs of sufficient width or with a sufficiently high damping parameter, the choice of the
outer boundary condition does not influence the simulation accuracy significantly. In cases of
thin PMLs or unsuitable damping or absorption function, the absorbing boundary can enhance
the accuracy of the simulation. In this setup, the maximal deviation of the incident angle from
orthogonal incident onto the outer boundary is 45◦. If this deviation was higher, the gains from
the absorbing boundary condition would be lower.

4.5.5 A General Setup

The general applicability of the PML approach presented herein is demonstrated using a two-
dimensional geometry as shown in Figure 4.13. The physical domain ΩA consists of a circle
of radius R = 1 which is cut by planes in a 45◦ angle through the point (x1, x2) = (0.8, 0).
The upper straight boundary represents a hard wall while the other two boundaries should be
perfectly absorbing. Two setups are compared, see Figure 4.13. In the first setup, the absorbing
boundaries are mimicked by the first order ABC. In the second setup, PMLs of width δ = 0.1
are used. The reflecting hard wall is represented by a Neumann boundary. The initial fields are
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(a) Physical geometry (b) Physical geometry with PMLs

Figure 4.13: Setup consisting of a cut circle with one reflecting and two absorbing boundaries.

given by

p0 = e−100·(x1+x2−0.5)2−4·(x1−x2+0.3)2 ,

v0 = 0.

The computational domain is discretized with 5676 and 7190 quadratic elements (k = 2) in the
ABC and PML case, respectively. The material parameters are c = 1, ρ = 1 and the LSRK3(3)
with ∆t = 0.001 is used.

This example puts high demands on the PML formulation because two PMLs, a spherical and
a straight lined overlap as shown in 4.13(b). In the overlapping region, the general formulation
according to equations (4.12)–(4.14) with spectral decomposition is applied, while the other re-
gions allow for the specific formulations for spherical and straight lined boundaries. Figure 4.14
shows snapshots of the pressure fields at various points in time to give an impression of the wave
propagation pattern. Figure 4.15 compares the pressure fields at the final time T = 2.6 between
ABC and PML setup. Apparently, the setup with ABCs yields higher artificial reflections. In the
physical domain ΩA, the maximal pressure is max |p| = 0.0157 and max |p| = 0.0076 for ABC
and PML, respectively.
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4 (d) t = 0.6 (e) t = 0.8 (f) t = 1.0

(g) t = 1.2 (h) t = 1.4 (i) t = 1.6 (j) t = 1.8 (k) t = 2.0 (l) t = 2.2

Figure 4.14: Snapshots of the pressure field at various points in time. The grey lines separate
PML and physical domain. The color scale is the same for all images.

(a) With PML (b) Without PML

Figure 4.15: Pressure fields at final time t = 2.6.
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4.6 Conclusion
In contrast to the common stretched coordinate formulation, the transformation into the time
domain is based on a spectral decomposition of A. One advantage of the derived formulation is
that only as many auxiliary variables zi must be introduced as the matrixA has distinct non-zero
eigenvalues. This is especially useful in settings where a PML is not aligned with the coordinate
axes: in a two-dimensional as well as in a three-dimensional setting, only one auxiliary vari-
able must be introduced within a plane PML. Also, this formulation is easily applied to circular
and spherical PMLs in Cartesian coordinates. It turns out that the circular as well as the spher-
ical PML require two auxiliary variables (for the sphere, the second eigenvalue has algebraic
multiplicity of two), thus reducing computational expense.

Another advantage is that the eigenvalues of A indicate non-stable configurations of PMLs
before executing the numerical simulation. When constructing a computational domain, choos-
ing profile functions, and PML geometries, the calculation of the eigenvalues of A reveal the
stability of the configuration. It turns out that it is possible to surround even concave polygons
with PMLs and the eigenvalues remain positive. In contrast, a concave sector of a circle as PML
part turns out to be unstable.

The presented numerical examples demonstrate convergence properties and give indications
on the choice of parameters for a PML configuration. A common drawback of PMLs is that
several parameters must be determined by the user, namely the outer boundary conditions, the
layer width, and the profile function (shape and magnitude). The choice of a set of parameters
is difficult and depends heavily on the example at hand, which is why no general rules can be
provided. The given numerical examples supply a first impression on the impact of the parameter
choices on the solution quality. For the derived method and the alogrithmic framework at hand,
one can state that the first order ABC should always be applied to the outer boundary because
it can improve solution quality in case of thin layers without increasing the computational cost.
The layer width should at least span two element layers but computational cost increases with the
layer width. The definition of a good profile function for a given problem is most challenging.
Quadratic profile functions are most common while shifted hyperbolic functions are preferable
for thin PMLs. An extensive study on profile functions is given in [112].

An aspect that should be addressed by future work is the convergence behavior. As shown in
Chapter 2, the spatial discretization of the acoustic wave equation yields optimal convergence
of order k + 1. In combination with PMLs, however, convergence of order k is observed, which
is traced back to the formulation of the equations for the auxiliary variables. Enhancing the DG
formulation for the system (4.12)–(4.14) through integration by parts in equation (4.14) and
introduction of a numerical flux might recover optimal convergence.

The herein presented PML formulation allows for PMLs surrounding general prismatic bodies
and also for PMLs combining spherical or cylindrical boundaries with straight lined boundaries,
which (to the author’s knowledge) has previously not been possible.

86
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The accurate prediction of sound propagation is a challenging task and until now, there is no
method yielding accurate results over the entire frequency range and for early as well as late
reflections. In [153], a comprehensive summary of methods and their applicability to specific use
cases is given. Numerical methods to find an approximate solution of the acoustic wave equation,
like finite difference, finite element, or boundary element methods allow for the prediction of
diffraction, early and late reflections, but they are comparably slow for high frequencies because
of high resolution demands [54]. For high frequencies, geometrical methods like ray tracing
are more suited, which however fail to capture diffraction effects occurring especially in low
frequency regimes [153]. In case multiple reflections occur, sound loses its directionality and a
diffusive sound propagation can be assumed. Then, a parabolic diffusion equation is solved [17],
which is numerically cheaper compared to the hyperbolic acoustic wave equation. The accuracy
of this method however is limited.

In this work, the acoustic wave equation is solved using DG methods and explicit time integra-
tion as presented in Chapter 2. Hence, the explicit DG approach is put into perspective with com-
petitive methods and relevant applications. Historically, the finite difference time domain method
(FDTD) is most popular with the first implementations for the acoustic wave equation in 1994
described in [18, 142]. Back then, however, the computational resources only allowed for coarse
grids and very low frequencies (< 150 Hz). With the advances of computational resources and
developments of new numerical methods or further developments of basic numerical methods,
nowadays a large variety of complex real world problems can be solved and sound propagation
prediction through numerical simulations plays an important role in design processes. Relevant
problem classes among others are general urban acoustics [78, 115] and more specifically city
planning [78], or street canyon design [139] as well as room acoustics, e.g. class rooms, living
rooms, concert halls, corridors, open space offices, see [16, 123, 132]. Another topic subject to
vivid research is auralization [130, 135, 141], i.e., the simulation of sound propagation in spe-
cific scenarios to generate acoustical signals and make the modeling results audible. Auralization
improves the user experience of virtual reality, movies, and computer games. In the last years,
efforts were made to introduce benchmark examples for linear and nonlinear acoustics; until
now, however, most examples for linear acoustics refer to the frequency domain [79, 80].

In the following sections, representatives of urban acoustics and room acoustics are presented
in order to demonstrate the applicability of the developed code to real world problems, but also
to compare the computational expenses with the results reported in literature. In Section 5.1,
sound propagation in a village is shown, with reference to [115]. In Section 5.2, a cathedral like
geometry is studied as in [16].
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5.1 Urban Acoustics

In [78], a review on the recent questions that are relevant to computational urban acoustics is
given. It highlights the importance to be able to accurately predict time dependent sound fields
in urban environments. Here, the applicability of the proposed acoustical solvers to answer ques-
tions of urban acoustics is demonstrated based on a three-dimensional training village, which has
already been used in order to verify an acoustical solver [115]. Consideration of this example
is representative for general outdoor acoustics, which is relevant for urban planning and city
design [87] or useful for gun shot localization in the context of crime control [103].

The geometry under consideration is based on the artificial village presented in [2, 115], where
a FDTD method and an adaptive rectangular decomposition approach is used to solve the acous-
tic wave equation in the training village. The geometry consists of fifteen buildings of different
height (here, flat roofs are used, which is in contrast to the original publication where not only
flat roofs but also peeked roofs are used). Figure 5.1(a) depicts the geometry of the buildings.
The computational domain is a cuboid of size 175×140×14 with the buildings cut out. Surfaces
corresponding to walls, roofs, and the ground are assumed to be perfectly reflecting, whereas the
first order absorbing boundary condition is applied on all other boundaries. A source is located
at (62, 104, 1) corresponding to SP1 from [115].

In [115], simulations were run on a mesh consisting of 11 million grid points, a time step size
of ∆t = 3.85·10−4 with 2000 time steps, which corresponds to a simulation frequency of 450Hz.
They state that a simulation took 20 minutes on a single core CPU machine. Here, simulations
are run on several discretizations as listed in Table 5.1, which approximately recreate the same
number of grid points as in [115]. The final time is T = 0.77. For time integration, ADER
without reconstruction is used with a Courant number of Cr = 0.2 in the smallest element. The
average Courant number is Cr ≈ 0.05. Figure 5.2 shows pressure snapshots at various points
in time to give an impression of the sound propagation patterns and Figure 5.3 gives a three-
dimensional impression of the sound field.

Simulations are run on a two socket Intel Xeon E5-2690 v4 Broadwell 2.6GHz system,
compiled with the g++ compiler, version 6.2, at optimization level -march=haswell -03
-funroll-loops. Table 5.2 summarizes the computational timings. The number of proces-
sors and the wall time for the specified number of processors are shown. The CPU time calculates
as product of processors and wall time. Last, the CPU time for 2000 time steps is given in min-

Figure 5.1: Geometry of the training village.
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(a) Pressure at t = 0.1 (b) Pressure at t = 0.2 (c) Pressure at t = 0.3

Figure 5.2: Pressure snapshots in the training village on the xy plane at z = 1 and on the yz
plane at x = 62.

Figure 5.3: 3D view of the pressure at t = 0.12 on three planes and as isosurfaces.
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setup I setup II setup III
grid spacing 0.6 1.2 2.4
degree k 1 3 7
effective resolution 0.3 0.3 0.3
#grid points 1.20 · 107 1.15 · 107 1.21 · 107

∆t 7.8 · 10−5 2.45 · 10−5 1.91 · 10−5

#time steps 6436 19704 26180

Table 5.1: Discretizations used for the urban acoustics simulation.

setup I setup II setup III
#processors 28 28 28
wall time [s] 1.2 · 103 2.5 · 103 4.6 · 103

CPU time for all time steps [s] 3.4 · 104 6.9 · 104 1.3 · 105

CPU time for 2000 time steps [min] 114 76 106

Table 5.2: Discretizations used for the urban acoustics simulation.

utes to allow comparison to [115]. Setup I requires the least CPU time for all time steps. For
2000 time steps, setup II is the fastest. Comparison to [115] with approximately the same num-
ber of grid points and the same number of time steps shows that the computational time is only
3.8 times higher for setup II. This is a very good result, considering that the adaptive rectangular
decomposition is based on a semi-analytic approach using the discrete cosine transform in the
decomposed rectangles and considering that their time integration is not of order five as in setup
II but a two step type and hence of lower order.

The presented comparison does only consider computational time for a given number of grid
points. The accuracy of the results is not taken into account. In [115], it is stated that the adaptive
rectangular decomposition requires only 2.6 time samples per wavelength (compared to ten or
twenty samples used in earlier FDTD methods). Here, a consistent discretization is supplied
with accuracy order O(hk+1), which does only partly coincide with the old rules of thumb on
how many nodes or samples must be used per wavelength. The source functions used in [115]
were developed in [104], where frequency contents of 150 Hz corresponding to a wave length
λ = 2 m were specified. With the discretizations listed in Table 5.2, between three and seven
nodes are used per wavelength depending on the considered element and because nodes are not
equidistantly distributed within elements. However, one can clearly say that setup III is expected
to yield the most accurate results. Although the effective resolution h/k+1 is the same in all three
setups, setup III allows for an order eight approximation between nodes and therefore supplies
the highest accuracy. A comparison of the computational performance considering accuracy and
temporal stability should be addressed by future work.
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5.2 Room Acoustics

5.2 Room Acoustics

Room acoustics is an area of intensive ongoing research because it is impacting human task
performance [135] e.g. at workplaces. Also, computational prediction of acoustic characteris-
tic of rooms is used in the design of concert halls. In the context of auralization, the acoustic
characterization of indoor scenery is required as well.

In the literature, cathedrals and concert halls are common examples to demonstrate accuracy
and performance of solvers for the acoustic wave equation, see e.g. [16, 116, 132]. The appli-
cability of the proposed algorithm to a cathedral-like geometry is demonstrated in analogy to
the example presented in [16], where it was studied in the context of finite volume and FDTD
methods and claimed to be representative for a complex room geometry in three dimensions.
The geometry consists of three overlapping blocks of length 40, height 10, and width 10. Addi-
tionally a half sphere of radius 10 is on top of the bricks as depicted in Figure 5.4. The initial
pressure distribution is given by

p0 = exp
(
−n ·

(
(x1 − 15)2 + x2

2 + x2
3

))
,

which corresponds to a Gaussian pulse excitation at the location indicated by S in Figure 5.4.
Values n = 0.5, n = 5, and n = 50 will be studied to obtain signals of different frequency
composition. All boundaries are assumed to be perfectly reflecting hard walls, except for the
boundaries at the six ends of the blocks, where a first order ABC is applied. The geometry is
discretized with 89880 elements of polynomial degree k = 8 or 8 · 89880 = 719040 elements
of polynomial degree k = 4 obtained by uniform refinement. Both discretizations result in an
effective resolution of approximately 0.0625. For time integration, ADER without reconstruction
at a Courant number of Cr = 0.2 is used. The final time is T = 0.2. With the rule of thumb to
use five nodes per wavelength1, this spatial discretization allows for frequencies of up to 1 kHz
and hence is in the low frequency simulation regime.

Figure 5.5 plots several pressure snapshots for n = 50 to give an impression of the sound
propagation patterns. Figure 5.6 compares the reflection patterns for the different widths of the
initial pulse at time t = 0.07 on the discretization of 89880 elements with k = 8. Only for the
initial pulse with high frequency content, a clear image of all occurring reflections is found.

Pressure curves over time are monitored at the three receiver locations L1, L2, and L3 as
indicated in Figure 5.4(a), which are located at (7.51, 0.01, 13.00), (−7.49, 0.01, 13.00), and
(−14.99, 0.01, 0.01). They are shown in Figure 5.7 for n = 5. These so-called impulse re-
sponses of a room can be used to determine the reverberation time, i.e., the time for reflected
sound to become inaudible. This is an important quantity for the design of rooms because it de-
termines the speech intelligibility. Impulse responses in rooms are also used in music or movie
production, e.g., to artificially create the impression of reverberated sound matching the scenery
by auralization. In Figure 5.7, the different arrival times of the initial signal are clearly visible.
Since most walls are perfectly reflecting and no sound absorption is simulated, strong signals
also arrive after the initial signal.

1Note that several rules of thumb exist specifying different values for the required nodes per wavelength. In [1],
about four nodes per wavelength are suggested for high spatial approximation orders (k > 10), while [60]
suggest about 4.6 nodes for k = 10 and six nodes for k = 4. A discussion of the rules of thumb is given
in [111].
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Figure 5.4: Complex three-dimensional room geometry.

(a) t = 0.04 (b) t = 0.06 (c) t = 0.08

Figure 5.5: Pressure snapshots in the room at various points in time for n = 50. Plots in the top
row show the xy plane at z = 0 and plots at the bottom show the xz plane at y = 0.
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(a) n = 0.5 (b) n = 5 (c) n = 50

Figure 5.6: Pressure snapshots in the room at t = 0.07 for the different initial pressure impulse
widths. Plots in the top row show the xy plane at z = 0 and plots at the bottom show
the xz plane at y = 0.
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Figure 5.7: Pressure over time for the three locations as indicated in Figure 5.4 for n = 5.
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Figure 5.8: Pressure over time with n = 50 for detector location L1 comparing different dis-
cretizations.
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For the two given discretizations (k = 8 with 89880 elements versus k = 4 with one re-
finement, i.e., 8 · 89880 = 719040 elements), the pressure curves at detector location L1 are
compared. For wide initial pressure impulses (n = 0.5, n = 5), no differences are apparent.
Only for the thin initial pressure impulse with n = 50, the two discretizations yield slightly dif-
ferent results as shown in Figure 5.8. The discretization with k = 4 and the coarse mesh shows
lower amplitude peaks and slightly smoother curves, which is in accordance with the findings
presented in Section 2.5.3. For comparison, pressure signals are also obtained with two coarser
discretizations using k = 2 and k = 4 both with 89880 elements. The results are also shown in
Figure 5.8. For k = 2, the signal is very smeared and fails to recover qualitative solution features
because the high frequency components cannot be captured by the discretization. For k = 4, the
distinct peaks of the signal are represented, however, with significantly lower amplitudes and a
visible phase error.
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6 The Optoacoustic Imaging
Technique

The photoacoustic effect was first described by Alexander Graham Bell in 1880 [13]. Ever since,
it was initially applied for the characterization of gases [164] and only in the early nineties its
capabilities for photoacoustic (or equivalently optoacoustic) biomedical imaging were discov-
ered and explored [99, 100, 124]. In the last decades, great advancements were achieved and
the methodology has evolved to a sophisticated imaging technique with a wide range of appli-
cations [166]. An exhaustive overview of the historical developments is given in [110]. Here,
the physical imaging principle is briefly introduced and afterwards, a brief literature review on
optoacoustic image reconstruction methods is presented.

6.1 Functional Principle

In optoacoustic imaging, an object of interest is illuminated with a short pulse of laser light.
The laser light is typically chosen in the near infrared range to maximize the penetration depth.
The light propagates within the given object according to its optical properties and is partially
absorbed. The absorption causes a temperature rise and hence thermal expansion, which induces
local pressure rises within the tissue. The pressure propagates through the object according to its
mechanical properties and is eventually detected as ultrasound signal. The detected ultrasound
signals are used to reconstruct images of the object. See Figure 6.1 for a visualization of the
procedure. Classically, the reconstructed images show either the optical absorption coefficient
or the absorbed optical energy density map [166, 174]. However, there are also other methods
reconstructing or estimating optical scattering properties as well as acoustical properties [143,
160], which will be addressed in more detail in Section 6.2.

Tomographic setups range from mounted tomographs [46], over self-made constructions, to
handheld systems [23]. Thereby, different illumination scenarios are combined with different
detector geometries and types. Doing so, either cross section images, entire three-dimensional
reconstructions, or specific regions of interest are resolved and reconstructed. To bridge the gap
between the object and the detectors, a coupling medium is required. Suited media are water or
ultrasonographic coupling gel because their acoustic impedances are similar to the impedance
of soft tissue [165].

The advantages of optoacoustic imaging over common imaging techniques are manifold.
Compared to ultrasonography, optoacoustic imaging yields different contrast, because the im-
ages show optical properties rather than mechanical properties [41]. Compared to purely optical
imaging techniques, optoacoustic imaging provides images with higher resolution because sound
propagation is a wave propagation phenomenon unlike light propagation in biological tissue
which is rather diffusive [24, 84]. In contrast to magnetic resonance imaging, the tomographic
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Figure 6.1: The optoacoustic imaging procedure: An object of interest is illuminated with a short
impulse of laser light. Acoustic signals are generated by the photoacoustic effect and
are detected at the boundary.

setup is less elaborate and less expensive. Last, the used excitation in terms of laser light is non-
ionizing and therefore less hazardous than radiography. On the downside, optoacoustic imaging
does not reach high penetration depths, such that it can only be used in regions close to the skin
and not for imaging e.g. across the entire torso [41]. This is due to the fact that laser light is used
for the excitation, which is strongly scattered and absorbed in biological tissue and penetrates
only the first one or two centimeters of tissue. This drawback is overcome if microwaves are used
for the excitation of signals. The imaging is then referred to as thermoacoustic imaging [174].
In that case however, the reconstructed images do not represent chromophore distributions as in
optoacoustic imaging but dielectric tissue properties.

6.2 Optoacoustic Image Reconstruction Methods

Optoacoustic image reconstruction methods can be classified according to the quantity to be
reconstructed: either the absorbed optical energy density which is assumed to be proportional
to the initial pressure rise is reconstructed (case I), the optical absorption coefficient is recon-
structed (case II), or other quantities are additionally reconstructed by specialized algorithms
(case III). See Figure 6.2 for an overview. In case I, only the acoustical part of the imaging pro-
cedure is inverted, i.e., the acoustical source is reconstructed from the signals measured at the
boundary. Three main approaches to solve the acoustic inversion exist, namely back-projection,
time-reversal, and model-based inversion. An overview of acoustic inversion methods in optoa-
coustic tomography is given in [137]. The fundamental back-projection algorithm for optoaco-
sutics is described in [173] for three-dimensional setups with planar, spherical, and cylindrical
detection surfaces. Later, this algorithm was extended e.g. for limited view scenarios [105] or in
the context of quality enhancement through weighting functions [73]. Time-reversal is another
approach to solve the inverse acoustic source problem, which propagates the pressure measure-
ments from the detectors backwards in time into the region of interest. An analytic time-reversal
formula (which is equivalent to the universal back-projection formula of [173] under certain
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Figure 6.2: Optoacoustic imaging is classified according to the quantity to be reconstructed and
according to the inverted parts of the imaging procedure.

assumptions) is derived from Green’s functions [175]. Most time-reversal algorithms, however,
are based on numerical implementations [67, 81, 162]. Model-based inversion techniques build
a numerical model of the acoustic problem that maps an initial pressure field to boundary mea-
surements and subsequently inverts the relation to solve for the initial pressure [114, 136]. In
contrast to back-projection and time reversal methods, model-based inversion techniques are
more flexible and allow to introduce additional modeling aspects like the detector frequency
response [122].

In case II, the absorption coefficient is reconstructed from the absorbed energy map by solving
the pure optical inverse problem and using case I as input (two-stage scheme), or the entire imag-
ing procedure is covered by one model (single-stage scheme). The first of these two approaches
is more common because of the lower problem complexity and lower computational expense
with representatives [5, 10–12, 28, 41, 109, 119, 160, 178]. Conceptually, these methods are
also able to reconstruct the diffusion or scattering coefficient or even the Grüneisen coefficient
characterizing the thermodynamic tissue properties and are therefore also known as quantitative
optoacoustic image reconstruction methods. One important question for this step of the optoa-
coustic imaging inverse problem is uniqueness. The reconstruction of absorption and scattering
coefficient is non-unique in case only one illumination pattern is used [41]. In case an arbitrary
number of illumination patterns is available, two optical properties can be determined uniquely
and stably but not three as shown in [10]. For illuminations with different colors of laser light
(multi-spectral illumination), all three coefficients can be reconstructed simultaneously [11]. As
shown in [119], unique reconstruction of all three parameters is also possible with only one wave-
length if the solution is restricted to piecewise constant parameters. These results hold for optical
light transport modeled by the diffusion approximation. Results on the uniqueness of reconstruc-
tion for the radiative transport equation with multi-specral illumination are given in [109], and
the reconstruction is again stable if several wavelengths are used. The reconstruction of opti-
cal properties based on the full problem is less common due to higher computational expenses
but allows for new levels of flexibility in terms of setup or consideration of acoustical hetero-
geneities [71, 82, 143]. The work [143] bridges the gap to the specialized algorithms of case III
that additionally reconstruct acoustical material properties like speed of sound, mass density, or
impedance. In [85], a reconstruction algorithm is presented that is based on a finite element dis-
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cretization of the Helmholtz equation and an adjoint sensitivity analysis. A statistical approach
for strong acoustic heterogeneities is described in [43], which weighs signal parts with the prob-
ability of affection by acoustical heterogeneities for correction. Exact reconstruction formulas
for speed of sound and absorption coefficient are presented in [92] with the restriction to sliced
illumination experiments. A recent publication [107] proposes a segmentation method that uses
characteristic features of the acoustical signals to determine acoustical properties prior to the op-
tical image reconstruction. It is limited concerning variations in acoustical properties and setup.
One general problem for the reconstruction of not only the initial energy distribution but also
the speed of sound is that the solution is generally not unique. However, a ‘(weak) local unique-
ness result’ is presented for odd dimensions and restrictions on the parameters and the geometry
in [81]. In [156], it is shown that the linearized problem for recovery of both speed of sound
and initial energy distribution is unstable. Another important aspect is that most of the reviewed
methods are only applied in a theoretical context and were not combined with experimentally
obtained data.

The progress in numerical modeling and implementation as well as the increase in computing
power make it possible to model the physical processes unfolding in an optoacoustic scanner
during acquisition more accurately. As indicated in Section 1.1, an optoacoustic image recon-
struction algorithm is derived that does not only recover the optical properties of an object,
namely absorption and diffusion coefficients, but also the mass density and speed of sound with-
out restrictions on the underlying geometry, the tomographic setup, or assumptions on parame-
ter distributions. The algorithm includes an iterative gradient-based optimization scheme and is
based on a physical description of the underlying problems taking the primary physical effects
into account by means of the optical diffusion approximation and the acoustical wave equation.
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In this chapter, the developed image reconstruction algorithm is presented. In Section 7.1 and
Section 7.2, the physical model and the numerical model are described, respectively. In Sec-
tion 7.3, the objective function is presented and in Section 7.4 the parameter gradients are de-
rived. The solution algorithm is given in Section 7.5. A proof of concept and a numerical example
are shown in Section 7.6 and Section 7.7, respectively.

7.1 Physical Model
A general description for light transport in scattering tissue is provided by the radiative trans-
fer equation (RTE), which takes the effects of absorption, emission, and scattering into ac-
count [167]. It describes the evolution of the radiance I(x, t, ŝ) as function of position x, time t,
and solid angle ŝ. The dependence on the solid angle is due to the directionality of general light
transport. The RTE reads

1

l

∂I(x, t, ŝ)

∂t
+ ŝ · ∇I(x, t, ŝ)− (µa + µs)I(x, t, ŝ)

= µs

∫
4π

I(x, t, ŝ)P (ŝ′ · ŝ)dΘ′ + S(x, t, ŝ),

with the speed of light l, the absorption coefficient µa, the scattering coefficient µs, the emission
source term S, and the probability density function P (ŝ′ · ŝ) describing the probability of scat-
tering from direction ŝ′ to direction ŝ [167]. Absorption and scattering coefficient describe the
probability for photons to be absorbed or scattered when traveling a unit length, respectively. A
common approach to avoid the probabilistic character of the RTE in the context of biomedical
optics is the diffusion approximation (DA). The DA is based on the assumption that the propagat-
ing light looses its directionality due to sufficiently many scattering events. Decisive parameters
to determine the validity of the DA are the absorption coefficient µa, the scattering coefficient µs,
and the parameter g describing the anisotropy of scattering. The reduced scattering coefficient
calculates as

µ′s = (1− g)µs.

It is related to the probability density function P (ŝ′ · ŝ) and corrects the scattering description if
photons are not scattered to arbitrary angles but preferably to a direction similar to the original
direction. A rule of thumb for the applicability of the DA in dependence on absorption and
scattering coefficient according to [84] is

µ′s ≥ 10 · µa. (7.1)
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This condition requires that the scattering is dominant over the absorption. If this criterion is
fulfilled, light loses its directionality after a relative short propagation distance and hence, light
transport in an optical medium is reliably described by the diffusion theory. However, the DA can
yield unsatisfactory results near sources and near the boundary and results should be scrutinized
for their accuracy requirements in these regions. The DA partial differential equation is given by

1

l

∂φ

∂t
+ µaφ−D∆φ = S.

It is derived from the RTE by integration over all directions and assuming direction independent
photon movement. The diffusion coefficient D is an abbreviation for

D =
1

3(µa + µ′s)
,

which is a third of a transport mean free path.
In a typical optoacoustic imaging setup, the illumination by a laser light source is applied for

several nanoseconds. Considering the speed of light l and typical length scales of the imaging
objects, the steady-state DA is applicable with the illuminating light source represented by a
Dirichlet boundary condition. The remainder of the boundary is subject to a Robin boundary
condition, which models photons leaving the body without being scattered back. Volume source
terms are uncommon in optoacoustic imaging and therefore neglected. Hence, the description of
light propagation in biological tissue is given by

µaφ−D∆φ = 0 in ΩL, (7.2)

φ = φ̂ on Γdir
L , (7.3)

φ+ 2D∇φ · n = 0 on Γrob
L , (7.4)

with the optical domain ΩL, its Dirichlet boundary Γdir
L , and Robin boundary Γrob

L . As in the pre-
vious chapters, the vector n denotes the outward pointing normal vector. In [167], a detailed
derivation of the DA from the RTE is given. In [29], a review on the optical properties of bio-
logical tissues is given, listing material properties from several references. Representative values
for the material parameters in biological tissue are summarized in Table 7.1. The values indicate
the applicability of the DA, since most materials fulfill the criterion given by equation (7.1). The
values are subject to high variations due to the experimental setup, the species, and of course the
natural variations within one tissue type.

Table 7.1: Representative values for optical tissue properties [29].

tissue type µa [ 1
cm

] µs [ 1
cm

] µ′s [ 1
cm

]
aorta 0.52− 18.10 171− 410 25.70− 69.40
blood 1.30− 4.87 505− 1413 2.49− 6.11
heart 0.07− 0.35 136− 167 −
lung 8.10− 25.50 35− 356 −
muscle 0.12− 11.20 4− 530 1.20− 8.00
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7.1 Physical Model

With equations (7.2)–(7.4) representing a description of light propagation in biological tissue,
which is sufficiently accurate in typical optoacoustic imaging setups, the next step is to find a
description of the photoacoustic effect. Light heats tissue, especially in regions with high optical
absorption. The heating causes a thermal expansion and hence an induction of pressure. The
pressure propagates according to the laws of acoustics and is eventually measured with acoustical
detectors. For optoacoustic signal generation, the light source must be temporally varying, i.e.,
pulsed or modulated. A common setup is to use pulsed laser light, and a typical temporal length
of a light pulse is several nanoseconds (e.g. 15 ns). This is a comparably long time considering
the speed of light and allows to describe the light propagation with the steady-state DA as given
in (7.2). Considering heat propagation and pressure propagation however, several nanoseconds
is very short and it is assumed that neither heat nor pressure propagate significantly within this
time period. This assumption is called thermal and stress confinement [167]. Hence, the pressure
pt0 and the velocity vt0 induced by the illumination calculate according to

pt0 = −Gµaφ in ΩL, (7.5)
pt0 = 0 in ΩA \ ΩL , (7.6)
vt0 = 0 in ΩA , (7.7)

with the Grüneisen coefficientG summarizing thermodynamic material properties. The object of
interest is generally surrounded by an acoustical coupling medium, either water or ultrasonic gel,
to overcome the distance between the object and acoustical transducers with minimal acoustical
signal deterioration. The union of the object of interest and the coupling medium is denoted ΩA.
The coupling medium is generally assumed to be transparent µa = 0, which is represented by
equation (7.6).

The sound propagates in the object of interest and in the coupling medium according to the
conservation of mass, linear momentum, and energy. In optoacoustics, different assumptions on
the sound propagation can be made, as already mentioned in Chapter 6. One important modeling
step is the consideration of damping effects. Sound propagation can be lossless, i.e., a plane
wave travels with constant amplitude, or it can be subject to viscosity, i.e., a plane wave travels
with decreasing amplitude and energy is dissipated. In the present model, viscous effects are
neglected because the propagation distances are limited. Another common assumption in the
context of optoacoustic imaging is acoustic homogeneity, i.e., spatially constant speed of sound
and mass density. This assumption prevents consideration of typical effects of sound propagation
like reflection, diffraction, or refraction and is rough as the natural variations in soft tissue can
already yield reflections with up to 30% signal amplitude [143]. In the presence of bones or
air (e.g. in the lung), reflections can even be higher, which is why spatially varying material
properties are considered in this work. The lossless propagation of sound in a heterogeneous
medium is described by the acoustic wave equation derived in equation (2.3) in Chapter 2 and
repeated here as first order system

∂v

∂t
+

1

ρ
∇p = 0 in ΩA × [0, T ], (7.8)

∂p

∂t
+ c2ρ∇ · v = 0 in ΩA × [0, T ], (7.9)

p = pD on Γdir
A × [0, T ], (7.10)
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v · n = 0 on Γneu
A × [0, T ], (7.11)

v · n− 1

cρ
p = 0 on Γabc

A × [0, T ], (7.12)

with Dirichlet, Neumann, and first order absorbing boundary condition. The applicability of
the boundary conditions depends on the tomographic setup. For generality, all three types are
mentioned at this point.

The last relevant physical process in the optoacoustic signal forming process is the signal
detection. The acoustical detectors are located at (a part of) the boundary of the acoustical do-
main Γmon

A ⊆ ∂ΩA. Many different types of acoustic detectors are employed in optoacoustic
tomographs. The simplest model of an acoustical detector corresponds to the evaluation of the
pressure field in one point and at a specific time pdj

s (tk) = d(p(xdj , t)), with j numbering the de-
tectors dj and k numbering the sampling times k ∈ [0, nstep

D ] with the number of sampling times
nstep

D . A more accurate model considers that detectors are of finite size and evaluate the pres-
sure on a surface by integration or averaging pdj

s (tk) = d(p(x, tk)). Additionally, transducers
can be focused, such that the measured pressure also depends on the wave’s direction of travel,
i.e., the detected pressure values are also a function of the boundary geometry and the velocity
vector, pdj

s (tk) = d(p(x, tk),n(x),v(x, tk)). Another characteristic measure for a detector is its
impulse response (IR): a detector is impinged with a Dirac impulse signal and the measurement
signals are monitored. The impulse response can be a smeared or scaled Dirac impulse, but it
can also include negative values depending on the physical principle the detector is based on.
The effects mentioned before (i.e., finite detector size and focusing) can also affect the impulse
response. If the impulse response is considered in the function d, the measured value at time
tk depends not only on the current state but also on previous pressure values and the pressure
detection function follows pdj

s (tk) = d(p(x, t),n(x),v(x, t)). In the model derived in this work,
the function d is chosen to represent the pressure evaluation in one point with consideration of
the impulse response

p
dj
s (tk) = d(p(xdj , t)), (7.13)

with t in the proximity of the evaluation time tk. Thereby, the directional dependence and the
integration over the detector surface are neglected.

In summary, the optoacoustic imaging procedure is modeled by four distinct contributions,
namely the light transport, the photoacoustic effect, the sound propagation, and the sound detec-
tion. The physical description of the imaging process is summarized as follows:

P1 The DA given by equations (7.2)–(7.4) describes the light transport in the object of interest
ΩL. The Dirichlet boundary condition represents the applied laser light source.

P2 A mapping describes how optical quantities are converted to acoustical quantities by the
photoacoustic effect, see equations (7.5)–(7.7).

P3 The acoustic wave equation (7.8)–(7.12) describes the sound propagation in a lossless,
heterogeneous medium.

P4 The function d describes how an acoustical detector measures pressure.
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7.2 Numerical Model

The modeling assumptions are:

M1 Light transport is diffusive (µ′s ≥ 10·µa). This approximation yields errors near boundaries
and near source terms.

M2 Heat and sound transport during the illumination are neglected, i.e., the excitation is in
thermal and stress confinement.

M3 Damping of acoustic waves due to viscous effects is neglected.
M4 An acoustic detector is assumed to be infinitely small and independent of direction.

From a mathematical viewpoint, the describing equations are complete. In terms of modeling
error versus algebraic complexity, the trade-off is reasonable considering the typical noise levels
in optoacoustic imaging and typical artifacts, e.g. due to the assumption of acoustic homogeneity.

The evaluation of the optoacoustic model given by equations (7.2)–(7.4) for the optical prob-
lem, equations (7.5)–(7.7) for the photoacoustic effect, equations (7.8)–(7.12) for the sound prop-
agation, and equation (7.13) for the detection with given material parameters is denoted as the
forward problem. The inverse problem of image reconstruction concerns the determination of
material parameters from pressure measurements.

7.2 Numerical Model
In this section, the numerical treatment of the physical model derived in Section 7.1 will be
explained. The occurring physical phenomena are one-way coupled, i.e., they can be solved one
after another and hence are easily treated with different numerical methods.

First, the diffusive light transport is considered given by equations (7.2)–(7.4). For spatially
varying material parameters µa, D, arbitrary boundary conditions, and arbitrary domain geome-
tries ΩL, analytic solutions are not available and numerical solution strategies are required. Since
the light transport is described by an elliptic partial differential equation with reactive and dif-
fusive term, the standard continuous finite element method is suitable to find an approximate
solution. The tessellation of the domain ΩL is denoted T hL . The function spaces for the solutions
φ and the weighting functions ψ are defined as

Φ =
{
φ ∈ H1(T hL ) : φ = φ̂ on Γdir

L

}
,

Ψ =
{
ψ ∈ H1(T hL ) : ψ = 0 on Γdir

L

}
.

With the notation for domain and boundary integrals as specified in Sections 2.2, the weak form
is derived by multiplication of the given problem with the weighting functions and integration
by parts

(ψ, µaφ)T h
L

+ (∇ψ,D∇φ)T h
L

+

〈
ψ,

1

2
φ

〉
Γrob

L

= 0. (7.14)

The boundary term is transformed according to the zero weighting functions on the Dirichlet
boundary and the given expression on the Robin boundary Γrob

L . In contrast to the method de-
rived in Section 2.2, a separate integration over each element boundary is not necessary, because
weighting and solution spaces are continuous.
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For the discretized problem, the following solution and weighting spaces are defined

Φh =
{
φh ∈ S1(T hL ) : φh = Pφ̂ on Γdir

L

}
,

Ψh =
{
ψh ∈ S1(T hL ) : ψh = 0 on Γdir

L

}
,

where S1(T hL ) denotes the finite element space for linear finite elements associated with the
triangulation T hL . The space S1(T hL ) is ndof

L -dimensional and the solution φh is spanned by the
basis functions associated to the nodes of the mesh. The values of the degrees of freedom scaling
the basis functions are summarized in the vector Φ, which is again of length ndof

L and analogous
for the field ψh with the values summarized in Ψ. The material parameters µa, D, and G are
potentially spatially varying. They are discretized as element-wise constant µah, Dh, and Gh and
the describing coefficients are summarized in the vectors µa, D, and G. With these notations
and assumptions, the discretized weak form in matrix notation reads

ΨT (KLΦ− FL) = 0.

The vector FL results from the non-zero Dirichlet boundary values and KL denotes the assem-
bled system matrix stemming from the three terms in equation (7.14) in discretized fashion.
Obviously, the weighting function values are arbitrary and the system

KLΦ = FL

must be solved to obtain the approximate solution to the light transport problem. The numerical
cost to solve this system depends mainly on the size of the system matrix KL and hence the
number of nodes in the tessellation T hL .

Next, a discretization of the equations describing the photoacoustic energy conversion is
sought. Equations (7.6) and (7.7) are trivial. Only equation (7.5) requires special attention. For
all elements K of the tessellation T hA of the acoustical domain that have an intersection with
the optical tessellation K ∩ T hL 6= ∅, the following L2 projection is defined for the discretized
pressure ph,t0 ∈ Ph as in Section 2.2,

(qh,t0 , ph,t0)K = − (qh,t0 , Ghµahφh)K ∀qh,t0 ∈ Ph. (7.15)

This mapping requires the evaluation of the fields Gh, µah, and φh in the quadrature points of
the acoustical element K. In case a given quadrature point does not lie in T hL , no energy is
disposed because no absorption is present and the product Ghµahφh is zero. The projection can
analogously be written in matrix form

QT
t0

(KA,PAPt0 −KL,PAΦ) = 0

with arbitrary weighting, such that the initial pressure field is determined by solution of the
system

KA,PAPt0 = KL,PAΦ.
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7.3 Objective Function

The matrix KA,PA is a mass matrix on the acoustical mesh while KL,PA combines weighting
functions based on the acoustical discretiztaion with an evaluation of a field defined on the optical
discretization.

For the description of efficient solution strategies of the acoustic wave equation, the reader is
referred to Chapters 2 and 3 of this work. Here, only an abbreviated notation shall be introduced
generalizing the different discretization approaches presented previously.

The discretization of the acoustic wave equation (7.8)–(7.12) with HDG for spatial discretiza-
tion and explicit Runge–Kutta schemes or ADER for temporal discretization is generally given
as  Wti+1

Qti+1

Mti+1

TKac
A,M

 Vti+1

Pti+1

Λti+1

−Kac
A,F

 VtiPti
Λti

 = 0 ∀ i = 0 to i+ 1 = nstep
A ,

where the specific discretization determines the acoustical matrices Kac
A,M and Kac

A,F scaling the
unknowns and the quantities from the preceding time step, respectively.

The last discretization to be specified is the discretization of the detection, which is given by

p
dj
s (tk) = d(p(xdj , t)).

A general discretization of this equation is given by

KDPs,tk = F k
D (Vl,Pl) ∀k = 0, ..., nstep

D with l = 0, ..., nstep
A , (7.16)

with the vector valued function FD taking into account the impulse response of the detectors.

7.3 Objective Function
The experiments with an optoacoustic tomograph yield time-sampled pressure curves from sev-
eral detectors. The values from all detectors for the time points tk are summarized in the k vectors
Pm,tk . The simulated pressure curves are calculated according to equation (7.16) and the preced-
ing equations and are summarized in the k vectors Ps,tk . The difference between the measured
and simulated pressure values determines the error e

e =
1

2

n
step
D∑
k=0

‖Pm,tk − Ps,tk‖2 .

The objective for solving the inverse problem of optoacoustic imaging is to minimize the dif-
ference between measured and simulated pressure values by adapting the discretized material
parameters

min
µa,D,c,ρ

e. (7.17)

Since this is an inverse problem that suffers from ill-conditioning, a regularization in form of a
Tikhonov regularization rTikh or a total variation regularization rTV can be added to the error and
the objective function is defined as

J = e+ rTV + rTikh =: e+ r, (7.18)
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with

rTV =
1

2
ωµa

TV‖∇TVµa‖2 +
1

2
ωDTV‖∇TVD‖2 +

1

2
ωcTV‖∇TVc‖2 +

1

2
ωρTV‖∇TVρ‖2,

rTikh =
1

2
ωµa

Tikh‖µa‖2 +
1

2
ωDTikh‖D‖2 +

1

2
ωcTikh‖c‖2 +

1

2
ωρTikh‖ρ‖2.

and∇TV approximating the gradient on the discretized quantities. The weights ωµa,D,c,ρ
TV,Tikh are user-

defined. The regularized objective is to minimize

min
µa,D,c,ρ

J, (7.19)

in contrast to minimization of the error as in equation (7.17). In case all regularization weights
ωµa,D,c,ρ

TV,Tikh are zero, equations (7.17) and (7.18) are equivalent.
The problem given in equation (7.19) is denoted an inverse problem, because material param-

eters are sought for given geometry, boundary conditions, and measurement data. The solution
of the correspondent forward problem as introduced in Section 7.1 is only a subproblem.

7.4 Parameter Gradients
The minimization of the objective function J requires information about the dependence on
the material parameters, i.e., the gradients of the objective function with respect to the material
parameters are sought

dJ

dµa
:= gµa ,

dJ

dD
:= gD,

dJ

dc
:= gc,

dJ

dρ
:= gρ.

The dependency of J on the material parameters is strongly nonlinear. By changing one material
parameter in one element, all solution fields are altered. To enable the evaluation of the gradients,
a Lagrangian functional L is constructed such that its partial derivatives with respect to the
material parameters equal the absolute parameter derivatives of the objective function

∂L
∂µa

=
dJ

dµa
,

∂L
∂D

=
dJ

dD
,

∂L
∂c

=
dJ

dc
,

∂L
∂ρ

=
dJ

dρ
. (7.20)

The Lagrangian is given by the sum of the objective function itself and all discretized weak
forms of the optoacoustic imaging model

L = J (7.21)

+ ΨT (KLΦ− FL) (7.22)

+QT
t0

(KA,PAPt0 −KL,PAΦ) (7.23)

+

n
step
A −1∑
i=0

 Wti+1

Qti+1

Mti+1

TKac
A,M

 Vti+1

Pti+1

Λti+1

−Kac
A,F

 VtiPti
Λti

 (7.24)

+

n
step
D∑
k=0

QT
s,tk

(
KDPs,tk − F k

D (Vl,Pl)
)
. (7.25)
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Therein, the discretized weighting functions act as Lagrange multipliers to enforce the physical
problem as constraint for the minimization of the objective function. As long as the solution
variables solve the systems of equations, the residuals of the weak forms are zero, and the La-
grangian reduces to L = J . For the derivatives however, the correlation is not as obvious. To
show that the gradient relations of equation (7.20) are fulfilled, an abbreviated notation is in-
troduced. The values of the degrees of freedom of all solution fields (Φ,Vti ,Pti ,Λti ,Ps,tk) are
summarized in the vector Z and the corresponding values of the weighting degrees of freedom
(Ψ,Wti ,Qti ,Mti ,Qs,tk) are summarized in Y . The values describing the discretized parameter
fields (µa,D, c,ρ) are contained in the vector m. With these abbreviations, the Lagrangian is
compactly written as

L(Y ,Z,m) = J(Z,m) +W(Y ,Z,m)

explicitly stating the dependencies andW representing all discretized weak forms with

W = Y T (KWZ − F ) = 0.

The total derivative of the Lagrangian with respect to the material parameters calculates as

dL
dm

=
dJ

dm
+

dW
dm

=
∂J

∂m
+
∂J

∂Z

dZ

dm
+
∂W
∂m

+
∂W
∂Y

dY

dm
+
∂W
∂Z

dZ

dm

=
∂J

∂m
+
∂W
∂m

+
∂W
∂Y

dY

dm
+

(
∂J

∂Z
+
∂W
∂Z

)
dZ

dm

=
∂L
∂m

+
∂W
∂Y

dY

dm
+

(
∂J

∂Z
+
∂W
∂Z

)
dZ

dm
.

From the first to the second line, the derivatives are expanded. From the second to the third line,
the terms are reordered and last, the partial derivative terms are summarized as partial derivative
of the Langrangian itself. Using the right hand side of the first line and the last line, the equality

dJ

dm
=

∂L
∂m

+
∂W
∂Y

dY

dm
+

(
∂J

∂Z
+
∂W
∂Z

)
dZ

dm
− dW

dm
(7.26)

follows. In case the last three terms on the right hand side are shown to be zero, the equalities
from equations (7.20) are confirmed. In the following, the three terms are examined one after
another.

The derivative of the weighting degrees of freedom with respect to the material parameters
dY/dm is zero, because the weighting is arbitrary and does not depend on the material parameters.
The derivative of the entire weak form with respect to the material parameters dW/dm is zero as
well, because the weak form must be zero even for disturbed material parametersm+ δ:

W(Y ,Z(m),m) = 0

W(Y ,Z(m+ δ),m+ δ) = 0
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Evaluation of the limit of the difference quotient defining a derivative reveals that

dW(Y ,Z(m),m)

dm
= lim
|δ|→0

W(Y ,Z(m+ δ),m+ δ)−W(Y ,Z(m),m)

δ

= lim
|δ|→0

0− 0

δ
= 0.

Hence, the last term in equation (7.26) vanishes. Last, the term(
∂J

∂Z
+
∂W
∂Z

)
︸ ︷︷ ︸

(∗)

dZ

dm
= 0

must be zero. The derivative of the solution values with respect to the material parameters is not
zero, since the solution generally changes when the material parameters change. Consequently,
the contribution (∗) must vanish in order to make the product equal to zero. The term (∗) is
denoted the adjoint problem. The weak form partially derived with respect to the solution values
gives rise to a discrete problem in terms of the weighting functions with the derivative of the
objective function as source term. For the forward model derived in the preceding sections, the
adjoint problem reads

∂L
∂Ps,tk

→ KT
DQs,tk = (Ps,tk − Pm,tk) , (7.27)

∂L
∂Vtstep

A

,
∂L
∂Ptstep

A

,
∂L
∂Λt

step
A

→ Kac
A,M

T

 Wt
step
A

Qt
step
A

Mt
step
A

 =

n
step
D∑
k=0


(
∂F k

D

∂Vti

)T

(
∂F k

D

∂Pti

)T

0

Qs,tk , (7.28)

∂L
∂Vti

,
∂L
∂Pti

,
∂L
∂Λti

→ Kac
A,M

T

 Wti

Qti

Mti

 = Kac
A,F

T

 Wti+1

Qti+1

Mti+1

+

n
step
D∑
k=0


(
∂F k

D

∂Vti

)T

(
∂F k

D

∂Pti

)T

0

Qs,tk ,

∀i = nstep
A − 1 ... 1,

(7.29)

∂L
∂Vt0

,
∂L
∂Pt0

,
∂L
∂Λt0

→ KT
A,PAQt0 = Kac

A,F
T

 Wt1

Qt1

Mt1

+

n
step
D∑
k=0


(
∂F k

D

∂Vt0

)T

(
∂F k

D

∂Pt0

)T

0

Qs,tk , (7.30)

∂L
∂Φ

→ KT
L Ψ = KT

L,PAQt0 . (7.31)

The order in which these equations are written down is a guideline for the solution procedure of
the adjoint problem. The adjoint problem is solved in reverse order. First, the adjoint measure-
ment values Qs,tk are evaluated from simulated and measured pressure values. Next, the adjoint
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7.5 Solution Algorithm

wave equation problem is considered, which is solved backwards in time: the ‘initial conditions’
for the last time step are set according to the adjoint detector function. Then, the adjoint sound
propagation is solved backwards in time until an adjoint pressure at time step zero Qt0 is calcu-
lated and used in order to calculate the adjoint photoacoustic effect. Last, the adjoint light flux
Ψ is determined.

With weighting functions fulfilling equations (7.27)–(7.31), the third term on the right hand
side of equation (7.26) vanishes and the desired link (7.20) is actually true such that the objective
function gradients are straightforwardly evaluated from the Lagrangian by partial differentiation:

gµa =
dJ

dµa
=

∂L
∂µa

=
∂r

∂µa
+ ΨT∂KL

∂µa
Φ +QT

t0

∂KL,PA

∂µa
Φ (7.32)

gD =
dJ

dD
=

∂L
∂D

=
∂r

∂D
+ ΨT∂KL

∂D
Φ (7.33)

gc =
dJ

dc
=
∂L
∂c

=
∂r

∂c
−

n
step
A −1∑
i=0

 Wti+1

Qti+1

Mti+1

T

∂Kac
A,F

∂c

 VtiPti
Λti

 (7.34)

gρ =
dJ

dρ
=
∂L
∂ρ

=
∂r

∂ρ
−

n
step
A −1∑
i=0

 Wti+1

Qti+1

Mti+1

T

∂Kac
A,F

∂ρ

 VtiPti
Λti

 (7.35)

In case regularization is enabled, the objective function depends on the material parameter itself
and this has to be considered in the gradients. The remaining contributions stem from the weak
form. For the acoustical gradients, solution vectors of the forward and adjoint problem from all
time steps have to be summed, which is explained in Section 7.5.2.

The gradients of the objective function as listed above could alternatively be evaluated using
a finite difference approach. For each value in the material vectors, one evaluation of the entire
forward problem with a disturbed material value has to be carried out to determine the correspon-
dent entry in the gradient vector. The computational expense relates to the number of material
parameters nparam and the solution of nparam + 1 forward problems is required. Evaluation of the
gradients by solution of one forward problem and one adjoint problem is as expensive as two
evaluations of the forward problem. Calculation of the gradients with the adjoint approach hence
is nparam+1

2
times faster compared to finite differences.

7.5 Solution Algorithm
To solve the optimization problem given by equation (7.19), gradient based solution strategies
are chosen. Depending on the application and problem setup, the user can choose between a gra-
dient descent or a low-storage BFGS procedure. Also, the user can chose which of the material
parameters should be optimized. The algorithmic framework allows for the optimization of all
four material parameters µa, D, c, ρ. For specific applications however, the optimization of the
diffusion coefficient D or the mass density ρ is not needed.

Input parameters for the solution algorithm are an optical as well as an acoustical discretiza-
tion. For the optical problem, this concerns the mesh consisting of elements and nodes. For the
acoustical problem, this concerns also the mesh, the polynomial degree of the shape functions,
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the time integration scheme, and the time step. Boundary conditions for the optical domain (a
Dirichlet boundary condition where the laser is applied, and Robin boundary conditions for the
remainder) and boundary conditions for the acoustical domain (ABCs, PMLs, reflecting Neu-
mann or Dirichlet boundary conditions) must be specified as input. Most important is the input
of initial material parameters for µa, D, c, ρ, which are subsequently optimized. A reasonable
choice of initial material parameters can reduce the overall computational time significantly and
can even change the result, since the objective function generally has more than one local min-
imum. Additionally, the user has to specify the maximum number of global iterations as well
as the number of sequential operations, i.e., the number of iterations to optimize the absorp-
tion coefficient, diffusion coefficient, speed of sound, and mass density, separately, denoted by
iseq
µa
, iseq
D , iseq

c , iseq
ρ . A tolerance must be specified to check convergence by comparison of the tol-

erance to the objective function. With all input parameters available, the minimization problem
is solved as shown in Algorithm 4. After the initialization phase, the entire forward problem is
solved and the objective function is evaluated. Then, the entire adjoint problem is solved and the
required gradients are evaluated. The optimization loop is entered. It consists of four subprob-
lems, each looping the line search for one material parameter for the given number of sequential
iterations. It is important to note that the absorption coefficient is optimized first, followed by
the speed of sound, mass density, and finally diffusion coefficient. This order is according to the
general sensitivities of the parameters from high to low. The overall optimization loop is repeated
until convergence is achieved or the maximal number of iterations is reached.

Note that an optimization procedure summarizing all material parameters and all gradients to
optimize them altogether in one line search is not reasonable, because they scale differently and
because they have different sensitivities.

Algorithm 4 Global solution algorithm
solution of the forward problem
evaluation of the objective function J = e+ r
solution of the adjoint problem
evaluation of the gradients gµa , gD, gc, gρ
repeat

for i = 0, i < iseq
µa

do
run line search to update the absorption coefficient µa

end for
for i = 0, i < iseq

c do
run line search to update the speed of sound c

end for
for i = 0, i < iseq

ρ do
run line search to update the mass density ρ

end for
for i = 0, i < iseq

D do
run line search to update the diffusion coefficientD

end for
until convergence or maximal number of iterations is reached

112



7.5 Solution Algorithm

7.5.1 Line Search
As can be seen from Algorithm 4, a line search method is required. The version chosen herein
is based on the description in [121], Chapter 3.5. Here, the main aspects of the line search are
repeated. A line search procedure is concerned with the optimization problem along a given
direction d, i.e., to find the step length β such that the update of the quantity to be optimized
(here exemplary for the absorption coefficient)

µla = µa + βldµa

yields a sufficient progress for the optimization problem. The Wolfe conditions determine if the
progress is sufficient. The first Wolfe conditions requires a sufficient decrease of the objective
function

J(µl+1
a ) ≤ J(µa) + c1β

lglµa
· dµa ,

where l denotes the line search iteration. The coefficient c1 is a user specified constant c1 ∈ (0, 1)
that is usually chosen small. Since the directional derivative gµa · dlµa

is negative (for a gradient
descent approach it is dlµa

= −gµa), the stated condition requires a decrease that is proportional
to the step length as well as the directional derivative. It is also denoted Armijo condition. It is
easily fulfilled for small step lengths. To prevent too short steps and obtain sufficient progress,
the second Wolfe condition (also denoted as curvature condition) tests the new gradient

gl+1
µa
· dµa ≥ c2g

l
µa
· dµa ,

with the user specified constant c2 ∈ (c1, 1). This condition requires the new gradient to be less
steep. To enforce beneficial updates, the second Wolfe condition is formulated in strong form

|gl+1
µa
· dµa| ≤ |c2g

l
µa
· dµa |.

An update fulfilling the Wolfe conditions does not necessarily yield a minimizer. Only the re-
peated update with each update fulfilling the Wolfe conditions can result in a parameter distri-
bution minimizing the objective function along the direction dµa . The line search procedure to
determine a step length β∗ fulfilling the strong Wolfe conditions is shown in Algorithm 5. It
starts with the choice of an initial step length. If a gradient descent scheme is used, the initial
step length depends on the scaling of the parameters. If low-storage BFGS is used, the initial
step length is set to one. The line search contains a loop in which the forward problem and the
objective function are evaluated for the updated parameters. The first Wolfe condition is checked
and the zoom function is called if the condition is violated because this corresponds to a too long
step. If the first Wolfe condition is fulfilled, the adjoint problem and the gradient are evaluated
to enable verification of the second Wolfe condition. If it is fulfilled, a suitable step length is
found. If the directional derivative is positive, the step length is too long and is reduced in the
zoom function. The line search terminates after a user defined maximal number of iterations and
checks the success of the step length determination. The line search procedure makes use of the
zoom function as specified in Algorithm 6. It is called as soon as the general line search proce-
dure sets a too long step length. Its structure resembles the general line search except that it can
additionally change the direction of search.
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Algorithm 5 Line search

set initial step length β0

for l = 0, l < lmax do
µla = µa + βldµa

solution of the forward problem
evaluation of the objective function J l

if J l > J0 + c1β
lglµa
· dµa then

determine β∗ by call of zoom with βmin = βl−1, βmax = βl

break
end if
solution of the adjoint problem
evaluation of the gradient glµa

if |glµa
· dµa| ≤ |c2g

0
µa
· dµa | then

β∗ = βl

break
end if
if glµa

· dµa ≥ 0 then
determine β∗ by call of zoom βmin = βl, βmax = βl−1

break
end if
βl+1 = 2 · βl

end for
if Wolfe conditions are fulfilled then
β∗ = βl

else
print an error message

end if

7.5.2 Checkpointing
The objective function gradients with respect to the acoustical parameters require the combi-
nation of forward and adjoint solutions in every time step, as can be seen in equations (7.34)
and (7.35). A naive implementation would store all vectors Vti ,Pti from the forward run to
combine them with the adjoint solutions during the adjoint run. This, however, requires the stor-
age of nstep

A velocity and pressure solution vectors, which is not possible for a realistic image
reconstruction simulation and standard working memory size. To avoid the storage of all solu-
tion vectors, a checkpointing strategy is utilized as proposed in [64] and shown in Algorithm 7.
The idea is to write restarts every ncheck steps during the forward solution and repeat the solu-
tion of the forward problem during the adjoint run. Thereby, the required storage reduces from
nstep

A solution vectors to ncheck solution vectors, see Figure 7.1. The drawback is that the forward
problem is solved twice, once in the standard solve and then again during the adjoint run, which
increases computational expenses. Compared to a finite difference approach, the calculation of
the gradients using the adjoint approach with checkpointing is still nparam+1

3
times faster.
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Algorithm 6 Zoom

read input parameters βmin and βmax

for l = 0, l < lmax do
choose βl ∈ (βmin, βmax)
µla = µa + βldµa

solution of the forward problem
evaluation of the objective function J l

if J l > J0 + c1β
lglµa
· dµa then

βmax = βl

else
solution of the adjoint problem
evaluation of the gradient glµa

if |glµa
· dµa| ≤ |c2g

0
µa
· dµa | then

β∗ = βl

break
end if
if (glµa

· dµa)(β
max − βmin) ≥ 0 then

βmax = βmin

end if
βmin = βl

end if
end for
β∗ = βl

Algorithm 7 Adjoint acoustical problem with checkpointing

for i = 0, i ≤ nstep
A do

if i mod ncheck = 0 then
store current adjoint solution vectors
read solution vectors of forward problem from restart nstep

A − i− ncheck

for j = 0, j ≤ ncheck do
solve forward step nstep

A − i− ncheck + j
store j-th forward solution vector

end for
end if
solve (nstep

A − i)-th adjoint step
combine forward and addjoint quantities and add to gradients

end for
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7 The Optoacoustic Image Reconstruction Method

Figure 7.1: Scheme of the checkpointing approach to solve the adjoint problem and calculate the
gradient contributions, in analogy to Algorithm 7.

116



7.6 Proof of Concept

7.6 Proof of Concept
Based on a simple example, the operating principle of the reconstruction algorithm presented
in the previous sections is demonstrated. The geometry is two-dimensional with the acoustical
domain ΩA = [−5, 5]× [−0.1, 0.1] and the optical domain ΩL = [−1, 1]× [−0.1, 0.1] as shown
in Figure 7.2. The domain has detectors on the edges at x1 = ±5 with four detectors in total.
Neumann boundary conditions are applied to the edges of the acoustical domain parallel to the x1

direction in order to get a semi-one-dimensional solution behavior. The remaining two edges are
absorbing by the first order absorbing boundary condition, which is exact for one-dimensional
wave propagation. The optical degrees of freedom are entirely constrained, such that the optical
light flux is of the form

φ = 1.

The optical domain is meshed with twenty equally sized elements. The acoustical domain is
meshed with one hundred equally sized elements of polynomial degree k = 2. For acoustical
time integration, the low-storage Runge–Kutta scheme LSRK3(3) of order three with three stages
is chosen in combination with a time step size of ∆t = 0.005 and hence a Courant number of
Cr = 0.1. The final time is T = 7 such that nstep

A = 1400 time steps are solved.

Figure 7.2: Geometrical setup for the proof of concept.

For a first forward solve, the material parameters are set to

µa = 1, c = 1,
D = 1, ρ = 1.

Unless stated otherwise, the Grüneisen parameter G is always assumed to be G = 1 in the
remainder of this work.

The artificial measurements at the four detectors are evaluated as pressure point values. For the
light flux, no evaluation of a solution is necessary because all degrees of freedom are constrained
by the given Dirichlet values. The initial acoustical fields are calculated from the light flux and
the material parameters in accordance with (7.5)–(7.7). The pressure along the x1-axis for t = 0
and successive times is shown in Figure 7.3(a). The pressure values over time as measured at
one detector are shown in Figure 7.3(b). For the four detectors, the curves are the same because
the setup is symmetric.

The generated artificial measurement values are used to validate the reconstruction algorithm.
For the simple setup, analytic expressions for objective function and absorption coefficient gra-
dient are derived to validate the correctness of the methodological as well as algorithmic frame-
work. For changes in the absorption coefficient, which is assumed to be spatially constant in the
entire optical domain ΩL, the objective function calculates as

J(µa) =
1

2
· 4 · 400 ·

(
µa − 1

2

)2

= 200 (µa − 1)2 .
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Figure 7.3: Pressure visualization for artificial measurement simulation.

The factor 1/2 stems from the definition of the objective function. The factor 4 represents the
four detectors. In 400 time steps, the measurement curves and the curves for variable µa differ
by µa−1

2
since the measurement curves were created with µa = 1 and the wave equation halves

the initial pressure in one dimension. The gradient of the objective function with respect to the
absorption coefficient calculates as

dJ(µa)

dµa
= 400 · (µa − 1) .

Running the algorithm with the same input parameters as in the simulation to create the mea-
surement data but with µa = 0.9 yields an objective function value Jsim(µa = 0.9) = 1.96617,
which is close to the expected value of J(µa = 0.9) = 2. The difference results from the os-
cillations and smearing due to the discontinuity in the initial pressure field and correspondent
discretization errors. The absorption coefficient gradient from the combination of forward and
adjoint quantities evaluated by the algorithm according to (7.32) is −39.11726, which is close
to the expected value of −40. Algorithmically, the absorption coefficient gradient is calculated
in an element-wise manner. Figure 7.4 shows the element-wise contributions to the scalar gra-
dient value, one received from the adjoint run, the other received by a finite difference analysis.
Each element should contribute −2 to the overall gradient since they are all equally sized but
deviations appear in the elements close to the boundary, which is again traced back to the dis-
continuity in the initial pressure field and the fact that the numerical solution procedures cannot
resolve the discontinuity. A comparison between the values from the finite difference and the ad-
joint approach shows that both strategies result in similar values and their performance in terms
of accuracy is comparable. They are not equal, not even to the discretization error, because the
adjoint run relies on several approximations, i.e., values associated to the acoustical degrees of
freedom are interpolated to node values of the optical domain. These operations introduce an
approximation error larger than the acoustical and optical discretization error. Hence, the gradi-
ents stemming from adjoint and finite difference approach differ slightly. To clarify the mode of
operation, Figure 7.5 shows the adjoint pressure plotted along the x1-axis for several points in
time. The adjoint problem is executed backwards in time starting at t = 7 and evolving to t = 0.
The differences between measurement data and simulated data are the driving force for the ad-
joint problem and are applied on the faces associated to the detectors. The differences propagate
according to the adjoint wave equation and form a structure representing the difference between
the material parameters.
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Figure 7.4: Element-wise contributions to the scalar gradient plotted over the x1-component of
the element center.
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Figure 7.5: Pressure along x1-axis for several times for gradient evaluation.

Figure 7.6 shows the element-wise gradients for speed of sound c and mass density ρ for input
parameters µa = 0.9, D = 1, c = 0.9, ρ = 0.9 where optical and acoustical domain overlap and
c = 1, ρ = 1 in the remainder of the acoustical domain. A difference between finite difference
and the adjoint approach is visible but within the expected range. Unfortunately, no analytic
expressions for the objective function and gradients can be derived in the presence of acoustical
heterogeneities.

To validate the correctness of the diffusion coefficient gradient, the boundary conditions must
be different. If the entire optical domain is prescribed with light flux values, the diffusion co-
efficient gradient is always zero, because its sensitivity results purely from the optical problem.
Therefore, only the two edges of the optical domain oriented in x2 direction are prescribed with
a Dirichlet value φ̂ = 1 and measurement data is generated with all material parameters on 1.
The gradients are calculated for D = 0.9, all other settings remain unchanged. Figure 7.7 shows
the diffusion coefficient gradient evaluated with the adjoint approach and the finite difference
concept. The values are very similar. Again, no analytic expression is available.

The example presented in this section serves as a validation of the derived method based on a
simple analytic example. Objective function and objective function gradients are in accordance
with analytically derived expressions, or (where no analytic expressions are available) with finite
difference estimates.
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Figure 7.6: Element-wise contributions to the scalar gradient plotted over the x1-component of
the element center for the speed of sound and mass density.
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Figure 7.7: Element-wise contributions to the scalar gradient plotted over the x1-component of
the element center for the diffusion coefficient.

7.7 Numerical Examples

After validation of the algorithm by an analytic example in the preceding section, a more com-
plex and more realistic example is examined here with dimensions and material parameters in
a realistic range. The setup consists of a 20 mm diameter circle and an object of 10 mm diam-
eter with two inclusions as displayed in Figure 7.8(a). The blue region represents the coupling
medium Mw and the background tissue Mo is displayed in light gray. The circular inclusion
Mi,1 has a diameter of 2 mm and the center is located at (x1, x2) = (0 mm, 3 mm). The rectan-
gular inclusionMi,2 is of size 7 mm×1.5 mm with center location at (x1, x2) = (0 mm, 0 mm).
The material properties used to generate measurement data are summarized in Table 7.2. The

µa
[

1
mm

]
D[ mm] c

[
mm
µ s

]
ρ
[

mg
mm3

]
Mw 0.0 0.0 1.5 1.0
Mo 0.01 0.5 1.5 1.0
Mi,1 0.05 0.1 1.5 1.0
Mi,2 0.1 0.5 2.0 2.0

Table 7.2: Material properties for the setup shown in Figure 7.8.
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(a) Forward problem (b) Starting point for reconstruction

Figure 7.8: Setup of numerical example.

acoustical problem is solved on the entire domain while the optical problem is only solved in
the object excluding the coupling medium. A Dirichlet boundary condition on the light flux is
applied to the object’s boundary ∂ΩL with φ̂ = 1 J/mm2. The entire outer boundary ∂ΩA is sub-
ject to the first order ABC. The acoustical domain is discretized with 2059 quadratic elements
(k = 2) and the optical domain with 561 elements such that the elements of optical and acous-
tical mesh coincide in the object. The temporal discretization of the acoustical problem uses a
low-storage Runge–Kutta scheme of order three with three stages and two registers and is de-
noted by LSRK3(3). The time step is set to 0.006µs to fulfill the CFL condition in all elements
resulting in 5000 time steps for the entire simulation length of 30µs. With these settings, the
forward problem is solved and Figure 7.9(a)–(f) visualizes the results in terms of the light flux
and various pressure snapshots. Figure 7.9(g) plots three exemplary pressure monitor curves.
The computational time on one processor for one forward solve is approximately 21 s plus 24 s
for writing output in every 100th time step.

7.7.1 Committing the Inverse Crime

Reconstruction is run on the setup shown in Figure 7.8(b). Initially, the background material is
set for the entire object. The same spatial and temporal discretization are used as for the forward
solve, which means that the inverse crime is consciously committed [171]. This offers the op-
portunity to test the basic functionality and to determine the “optimal” convergence behavior of
the inverse problem.

7.7.1.1 All Parameters in One Reconstruction

The first study concerns the reconstruction of all parameters as described in Algorithm 7 with
at most 30 iterations and one sequence per parameter per iteration. The initial evaluation of the
objective function yields J = 0.8714. Figure 7.10(a) plots the relative objective function over the
iterations, whereas Figure 7.10(b) plots the relative parameter errors over the iterations. The error
in the parameter fields is calculated as the sum over all elements of the square of the difference
between the actual and the expected parameter values. The objective function value decreases
monotonically. Every forth update, the decrease in the objective function is comparably high,
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(a) Light flux φ (b) Pressure p at t = 0 (c) Pressure p at t = 0.6
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Figure 7.9: Solution of the forward problem.

which corresponds to updates of the most sensitive parameter — the absorption coefficient. The
relative error in the absorption coefficient distribution converges best, followed by the speed of
sound and the mass density. After 30 iterations, the reconstruction is not yet fully converged.
The diffusion coefficient starts with a disadvantageous update and slowly recovers but the algo-
rithm fails to improve the diffusion coefficient distribution. For the given setup and comparable
applications, the diffusion coefficient’s sensitivity is much lower than for the other parameters.
Figure 7.11 shows the reconstructed parameter fields after the 30 iterations. In the image of the
absorption coefficient, the two inclusions are nicely reconstructed including the magnitude of
the coefficient. The speed of sound and mass density image highlight the inclusion with errors in
the background material. The diffusion coefficient shows variations in the rectangular inclusion
even though it should be different in the circular inclusion. In the background tissue, the diffu-
sion coefficient is wrong by a factor of four. The overall computational time on one processor is
2.9 · 104 s or 8.1 h. The reconstruction includes 413 evaluations of the forward problem and 170
evaluations of the adjoint problem.
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Figure 7.10: Convergence of the objective function and the parameters.

Figure 7.11: Images after 30 optimization iterations of all parameters sequentially in each it-
eration. From left to right: absorption coefficient, speed of sound, mass density,
diffusion coefficient.

7.7.1.2 Each Parameter in its own Reconstruction

The reconstructed parameters influence each other. If an error in the absorption coefficient is
present, the optimization of the other parameters tries to counteract the deviations of the pres-
sure curves stemming from the error in the absorption coefficient. To be able to study the conver-
gence behavior of every field without interaction in the parameter fields, reconstructions are run
separately for each parameter with all other parameter set as in the generation of measurement
signals. In other words, one image reconstruction is run only for the absorption coefficient, while
all other parameters are set according to the sample solution. Analogous reconstructions are run
for the speed of sound, the mass density, and the diffusion coefficient. The convergence in the
objective function and in the parameters is given in Figure 7.12. Compared to Figure 7.10, the
convergence is better in all quantities. Even the reconstruction of the diffusion coefficient shows
the correct trend. The final images are shown in Figure 7.13. Compared to Figure 7.11, the im-
ages exhibit perceivably better quality. They detect the inclusion correctly with a high contrast
and the absolute values are in good agreement with the expected values.

Comparison of the two considered setups highlights the interaction between the reconstruc-
tions as one parameter tries to balance errors of another parameter. The reconstruction of the
absorption coefficient is similar for both setups, which relates to the fact that the absorption co-
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Figure 7.12: Convergence of the objective function and the parameters.

Figure 7.13: Images after 30 optimization iterations of each parameter separately while all other
parameters are set correctly. From left to right: absorption coefficient, speed of
sound, mass density, diffusion coefficient.

efficient is the most sensitive and the most determining parameter. Judging from the differences
between the two setups and the convergence speed of the parameter fields, speed of sound and
mass density are the second and the third most sensitive parameters, while the diffusion coeffi-
cient has lowest sensitivity. Generally, the diffusion coefficient has very low sensitivity in typical
optoacoustic setups [143, 147, 166], which is why it will not be considered in all following stud-
ies. For the following reconstructions, the diffusion coefficient is set to 0.5 in all materials, such
that it is spatially constant.

7.7.2 Differing Discretizations

The inverse crime [171] is avoided by creation of measurement data with a finer discretization
and addition of noise. In this section, the effect of differing discretizations is studied. Also,
the number of elements in the spatial discretizations is kept as in the preceding example but
the mesh is rotated by 45◦, such that the inclusions to be reconstructed do not conform with
the mesh. For the evaluation of the parameter errors, elements that lie on the edge between
background and inclusion are skipped. The absorption coefficient, speed of sound, and mass
density are reconstructed as in the first example of Section 7.7.1. The initial evaluation of the
objective function yields J = 0.9095 in contrast to J = 0.8714 when committing the inverse
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crime. This is due to two facts: First, the numerical solution is slightly different on a differing
mesh and second, the evaluation of the pressure error e now requires an interpolation to the
monitor positions. Figure 7.14 plots the relative objective function and the relative parameter
errors over the iterations with the dashed lines repeated from Figure 7.11 for reference. The
convergence behavior is very similar compared to the reconstruction with conforming meshes
and the objective function converges slightly more slowly but qualitatively in the same manner.
Absorption coefficient and mass density converge slightly faster and speed of sound slightly
more slowly. Figure 7.15 shows the final images and the effect of the nonconforming mesh is
clearly visible as zigzag contour of the inclusions. Apart from that, the images resemble those
shown in Figure 7.11.
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Figure 7.14: Convergence of the objective function and the parameters for nonconforming dis-
cretizations in forward and inverse problem. The dashed lines are repeated from
Figure 7.11 for reference.

The reconstruction is performed on the rotated mesh once again, but additionally, the input
measurement data is obtained with a finer discretization. The finer discretization is set up by
one uniform refinement step of the unrotated mesh. The time step is ∆t = 0.003µ s. With these
settings, the measurement data is obtained, which is used as input for the reconstruction on
the coarse rotated mesh. Figure 7.16 plots the convergence of the objective function and the

Figure 7.15: Images after 30 optimization iterations of all parameters sequentially in each it-
eration on a mesh not conforming with the inclusion shapes. From left to right:
absorption coefficient, speed of sound, mass density.

125



7 The Optoacoustic Image Reconstruction Method

parameters, again with the dotted lines from Figure 7.11 as reference. The convergence in the
objective function is significantly slower compared to the previous setups while the convergence
of the parameters is comparable to the inverse crime setup and almost the same as for the previous
example. The final images are shown in Figure 7.17. The visual impression is that some spurious
oscillations occur in the absorption coefficient. Also, the speed of sound shows less elements
with high values. The mass density image is very similar to Figure 7.15 except for one element
with a high value in the interior of the circular inclusion.
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Figure 7.16: Convergence of the objective function and the parameters for nonconforming dis-
cretizations in forward and inverse problem. The dashed lines are repeated from
Figure 7.11 for reference.

7.7.3 The Influence of Noise

In this section, the conforming discretizations for generation of measurement data and recon-
struction are considered and noise is added to the measurement signals before reconstruction.
Gray noise according to the ISO 66-phon equal-loudness contour is generated and scaled. The
maximal absolute value of all measurement signals is 0.0202. Therefore, the noise is scaled
by 0.00101 and 0.00202 and added to generate measurement signals with 5% and 10% noise
level, respectively. Figure 7.18 visualizes the noisy measurement signals for the detector located
at (10 mm, 0 mm). It is very important to use gray noise. White noise generated from random
numbers has a more pronounced high frequency component and is just smeared out by the spa-
tial discretization. In Figure 7.18, the effects of low frequency noise are visible as offset for
t < 3µs or 9µs < t < 13µs. Reconstruction is run on the conforming discretization setup and
the convergence results are shown in Figure 7.19. The objective function converges more slowly
the higher the noise level, which conforms with the expectations considering that the optimal
parameter distribution will yield a non-zero objective function. Note that a high noise level may
be problematic for the line search algorithm considering fulfillment of the sufficient decrease
condition. For the acoustical parameters, sound speed c and mass density ρ, the convergence
is slightly slower compared to the setup without noise with a slight advantage of the 5% noise
reconstruction over the 10% noise reconstruction. The absorption coefficient converges slightly
better in the noisy setups. Figure 7.20 shows the resulting images for 10% noise. The 5% noise
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7.7 Numerical Examples

Figure 7.17: Images after 30 optimization iterations of all parameters sequentially in each iter-
ation on a mesh not conforming with the inclusion shapes and measurement data
obtained on a finer discretization. From left to right: absorption coefficient, speed
of sound, mass density.
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Figure 7.18: Pressure monitor curve for the detector located at (10 mm, 0 mm) in its original
form and with 5% and 10% overlaid gray noise.

images are not shown because they are visually almost indistinguishable from the 10% noise
images.

7.7.4 Avoiding the Inverse Crime

As a last example, all concepts to avoid the inverse crime are combined, i.e., the reconstruction is
performed on the rotated mesh that does not conform with the inclusions using measurement data
obtained with the refined discretization overlaid with 10% of gray noise. In essence, the cases
of Sections 7.7.2 and 7.7.3 are combined. Figure 7.21 plots the convergence of the objective
function and the parameter errors. The convergence of the objective function is slower compared
to all preceding setups. The convergence of the parameters is very similar to the ones obtained
in Figure 7.19. The resulting images are shown in Figure 7.22. They appear comparable to the
images shown in Figure 7.17 where the discretization is rotated and measurement data is obtained
on a finer mesh.
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Figure 7.19: Convergence of the objective function and the parameters.

7.7.5 Long-Term Convergence

The reconstruction as in Section 7.7.1.1 is carried out but with 300 iterations instead of 30 and
omitting the reconstruction of the diffusion coefficient. Figure 7.23 plots the convergence of
the relative objective function and the relative parameter errors. Figure 7.24 shows images after
100 and after 300 iterations. The images show better contrast compared to the results after 30
iterations as presented in Figure 7.11. Especially for the mass density, a significant improvement
in the interior of the rectangular inclusion is visible comparing the image after 100 and after
300 iterations. The convergence of the objective function is fast in the first iterations (reaching a
relative objective function value of 1% already after 26 iterations) and slows significantly down
after that but continues to decrease with a final value of 7.38 · 10−4 after 300 iterations. Even
though the objective function reaches such a small value, the line search procedure succeeds
to find a valid step length in all iterations. The parameter fields converge monotonically with a
noticeable slow down after approximately 30 iterations. This example confirms once more the
correctness of the implementation of the derived image reconstruction method.

The reconstruction as in Section 7.7.4 avoiding the inverse crime is carried out but with 300
iterations instead of 30. The convergence of the objective function and the parameter fields is
plotted in Figure 7.25. The convergence of the objective function slows significantly down after
40 iterations. The parameter errors decrease in the first iterations. Absorption coefficient and
speed of sound show an increasing error after 63 and 40 iterations, respectively. Figure 7.26
shows images at iteration 100 and 300. Comparison with Figure 7.22 shows slight differences
concerning the contrast for the absorption coefficient and the mass density and a checkerboard
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7.7 Numerical Examples

Figure 7.20: Images after 30 optimization iterations of all parameters sequentially in each iter-
ation with 10% noise level, respectively. From left to right: absorption coefficient,
speed of sound, mass density.

0 10 20 30
10−3

10−2

10−1

100

iteration

re
la

tiv
e

ob
je

ct
iv

e
fu

nc
tio

n
J

(a) The objective function

0 10 20 30
0

0.5

1

iteration

re
la

tiv
e

pa
ra

m
et

er
er

ro
r

µa
c
ρ

(b) The material parameters

Figure 7.21: Convergence of the objective function and the parameters for nonconforming dis-
cretization with 10% noise level and measurement data obtained on a finer dis-
cretization. The dashed lines are repeated from Figure 7.19 for reference.

pattern in the absorption coefficient. Also, fluctuations in the speed of sound and mass density
distribution increase. This is a common error for high numbers of iterations when avoiding the
inverse crime by usage of differing discretizations. The mesh rotation causes the inclusion con-
tour to show a saw tooth contour, which in turn causes saw tooth shaped errors in the remainder
of the domain. Additionally, the noise is approximated in late iterations. Note that the optoacous-
tic inverse problem is heavily ill-conditioned and the optimization problem generally has several
local minima. Hence, the final solution depends on the first updates. The convergence behavior
and the images show that the sensitivity on the material parameters is higher than on the noise
and contour mismatch but that they play a role once the material parameters are reconstructed
and already decreased the objective function. For reconstructions with a high number of iter-
ations, total variation regularization should be added to avoid the increase of parameter errors
during late iterations.
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7 The Optoacoustic Image Reconstruction Method

Figure 7.22: Images after 30 optimization iterations of all parameters sequentially in each itera-
tion for nonconforming discretization with 10% noise level and measurement data
obtained on a finer discretization. From left to right: absorption coefficient, speed
of sound, mass density.
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Figure 7.23: Convergence of the objective function and the parameters for consciously commit-
ted inverse crime over 300 iterations.

7.7.6 The Effect of Pressure Discontinuities
The absorption coefficient is discretized as element-wise constant material parameter with jumps
between elements. If optical and acoustical discretization are conforming and the absorption
coefficient varies over elements, the initial pressure field contains discontinuities, since it is
evaluated according to

p0 = −Gµaφ,

see also equation (7.5). The acoustic wave equation transports discontinuities. Its discretized
counterpart, however, smears the discontinuity potentially with slight oscillations. Naturally, the
question of convergence behavior and the interaction between discretization error due to the dis-
continuity and image reconstruction quality arises. The following numerical example addresses
this question.

The setup is similar as in the preceding sections with geometry and material as in Figure 7.8.
Slightly different material parameters are used as shown in Table 7.3, i.e., the circular inclusion is
omitted and the acoustical material is spatially constant. In contrast to the preceding simulations,
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(a) 100 iterations

(b) 300 iterations

Figure 7.24: Images after 100 and 300 optimization iterations of all parameters sequentially in
each iteration for consciously committed inverse crime. From left to right: absorp-
tion coefficient, speed of sound, mass density.
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Figure 7.25: Convergence of the objective function and the parameters for nonconforming dis-
cretization with 10% noise level and measurement data obtained on a finer dis-
cretization over 300 iterations.

µa
[

1
mm

]
D[ mm] c

[
mm
µ s

]
ρ
[

mg
mm3

]
Mw 0.0 0.0 1.5 1.0

Mo,Mi,1 0.01 0.5 1.5 1.0
Mi,2 0.1 0.5 1.5 1.0

Table 7.3: Material properties for the setup shown in Figure 7.8 but for study on pressure dis-
continuities.

the entire optical domain is constrained with a Dirichlet condition on the light, such that the
optical field is spatially constant φ = 1 J/mm2. With G = 1, the initial pressure field hence
calculates as p0 = −µa.

Several forward solves are run. Two meshes are used, one with 2059 elements and one with
4 · 2059 = 8236 elements as uniform refinement of the first. For time integration, LSRK3(3) is
used. For linear elements (k = 1), the time step sizes are ∆t = 0.012µs and ∆t = 0.006µs for
the coarse and fine mesh, respectively. For refinement by adaption of the polynomial degree of
the shape functions, the Courant number Cr is kept constant.

Figure 7.27 shows the pressure signals obtained by the detector located at (x1, x2) = (10 mm,
0 mm) for the coarse and fine mesh with polynomial degrees k = 1, 2, 6, respectively. The ini-
tial pressure has two discontinuities that arrive at the given detector at 3.33µs and 4.33µs. The
zoom in the right panel of Figure 7.27 shows how different the discretizations approximate the
discontinuities: k = 1 on the coarse mesh smears both discontinuties. The other discretizations
show steeper slopes and oscillations around the discontinuities. The DG discretization is ex-
pected to be of accuracy order k + 1. This however only holds for smooth initial fields. In the
presence of discontinuities, the convergence is significantly slower, i.e., never better than order
one independent of the polynomial degree of the shape functions [180].

The next question is, how the discontinuity affects the adjoint solution. Therefore, the ab-
sorption coefficient of the inclusion is set to 0.011/mm and the first adjoint run is carried out.
Figure 7.28 plots the adjoint pressure field for t = 0 (the final step of the adjoint run) obtained on
the coarse mesh with k = 2 but with monitor data from all six setups considered before, i.e., the
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(a) 100 iterations

(b) 300 iterations

Figure 7.26: Images after 100 and 300 optimization iterations of all parameters sequentially in
each iteration for nonconforming discretization with 10% noise level and measure-
ment data obtained on a finer discretization. From left to right: absorption coeffi-
cient, speed of sound, mass density.

0 5 10 15 20 25
−4

−2

0

2

·10−2

t

p

2.5 3 3.5 4 4.5 5
−4

−3

−2

−1

0

·10−2

t

p

coarse, k = 1 coarse, k = 2 coarse, k = 6
fine, k = 1 fine, k = 2 fine, k = 6

Figure 7.27: Pressure at (x1, x2) = (10 mm, 0 mm) over time for the coarse and the fine mesh
with k = 1, 2, 6, respectively, on the time interval t = [0µs, 15µs] and zoom to the
interval t = [2.5µs, 5µs].

133



7 The Optoacoustic Image Reconstruction Method

0 1 2 3 4 5 6
-0.1

-0.08

-0.06

-0.04

-0.02

0

x1

ad
jo

in
tp

re
ss

ur
e
q

coarse, k = 1
coarse, k = 2
coarse, k = 6
fine, k = 1
fine, k = 2
fine, k = 6

Figure 7.28: Adjoint pressure at t = 0µs along a line from (x1, x2) = (0 mm, 0 mm) to
(x1, x2) = (6 mm, 0 mm) obtained with the coarse mesh and k = 2 but monitor
values from the different discretizations.

pressure curves plotted in Figure 7.27 are the input measurement data for this adjoint run. The
pressure field is plotted along a line from (x1, x2) = (0 mm, 0 mm) to (x1, x2) = (6 mm, 0 mm).
For k = 1 on the coarse and fine mesh, the curves are comparably smooth. The coarse mesh with
k = 2 yields a slightly different value in the inclusion. All other curves are congruent, despite
the noticeable differences in the input data (see Figure 7.27). That these noticeable differences
do not yield a noticeable difference in the adjoint pressure field is explained by Figure 7.29.
For curve (a) of Figure 7.29, a forward evaluation is run on the reconstruction setup, i.e., with
µa = 0.011/mm in the entire optical domain. The coarse mesh with k = 2 is used. The figure
displays the difference between this simulation and the forward run to obtain the measurement
data with the same discretization, both evaluated at (x1, x2) = (10 mm, 0 mm). Hence, curve
(a) can be understood as the source applied to the detector at (x1, x2) = (10 mm, 0 mm) for the
first adjoint run. This setup corresponds to the green curve in Figure 7.28. Curve (b) is simi-
lar but the difference is build with the forward run to obtain the measurement data on the fine
mesh with k = 6. It hence corresponds to the dashed blue line in Figure 7.28. Comparison
of curve (a) and (b) shows how different the source terms are depending on the difference of
the reference discretization. The oscillations close to the discontinuities for fine discretization
as shown in Figure 7.27 are reproduced in curve (b). Next, the pressure difference is applied
as source term to the adjoint problem and curve (c) shows the simulated adjoint pressure at
(x1, x2) = (10 mm, 0 mm) with (b) as source term. Curve (b) and (c) are not equal because
the application of the source term involves interpolation to the detector locations and projection
back onto the degrees of freedom. Also, interpolation in time is involved because the coarser
discretization operates on a greater time step size. Curve (d) visualizes the effects of the signal
propagation. It represents the simulated adjoint pressure for the same setup as curve (c) but eval-
uated at (x1, x2) = (8 mm, 0 mm), i.e., 2 mm further inside of the domain. Apparent differences
between curve (c) and (d) are an additional smoothing, which corresponds to the discretization
error. A qualitative visual comparison of curves (d) and (a) shows similar slopes. In summary it
can be stated that the reconstruction results do only depend negligible on the resolution of dis-
continuities if the discretization in the reconstruction is coarser. A coarse discretization operates
as a low pass filter and high frequency contents of measurement signals are filtered out because
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Figure 7.29: Pressure curves (a)–(c) are evaluated at (x1, x2) = (10 mm, 0 mm). Curve (a) is
obtained as the difference between the pressure monitored with the coarse mesh and
k = 2 with inclusion and without inclusion. Curve (b) is obtained as the difference
between the pressure monitored with the fine mesh and k = 6 with inclusion and
with the coarse mesh and k = 2 without inclusion. Curve (c) is the adjoint pressure
measured during the adjoint run. Curve (d) is the adjoint pressure measured during
the adjoint run but evaluated at (x1, x2) = (8 mm, 0 mm).

the approximation capabilities are limited. If the discretization in the reconstruction is finer, the
results are affected as indicated by the red line in Figure 7.28. A finer discretization detects the
differences in resolution. However, the reconstruction on finer meshes is an inverse crime that
should always be avoided [171]. Additionally, experimental setups always represent the case of
a too coarse reconstruction.

7.7.7 Conclusion

From the presented examples the following main conclusions are drawn:
• The two examples in Section 7.7.1 as well as the first example in Section 7.7.5 validate

the correctness of the code.
• The comparison to the two examples in Section 7.7.1 reveal a high level of ill-conditioning

already apparent in this simple full view setup. It also highlights the strong interaction
between the parameter reconstructions.
• The sensitivity of the diffusion coefficient is lower compared to the other parameters and

it is not considered in the remainder of this work.
• Usage of a non-conforming discretization of same characteristic element size and time

step size has only a minor effect on the convergence of objective function and parameters.
• Usage of a non-conforming discretization of larger characteristic element size and time

step size for reconstruction (or vice versa finer discretization for generation of measure-
ment data) yields a slowdown in the convergence of the objective function. The conver-
gence of the parameters is only slightly affected.
• With increasing noise level, the convergence of the objective function slows down no-

ticeably; the acoustic parameters converge more slowly, while the absorption coefficient
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converges slightly better, which however is assumed not to be reproducible over a range
of imaging tests.
• The combination of noise, spatial discretization not conforming with the inclusion shapes,

and finer discretization for generation of measurement data show that the differences in the
discretization have the strongest influence on the resulting images rather than the noise.
• Only for long-term optimizations, the noise causes significant fluctuations, especially in

the acoustic images. Total variation regularization should be applied if an optimization is
run with a high number of iterations.
• The resolution of the discontinuities has an insignificant effect on the image reconstruction

in case the inverse crime is avoided by reconstruction on coarser discretizations or in case
experimentally obtained measurement data is used.

If measurement data is obtained not by simulation but by experiment, the parameter recon-
structions will additionally try to balance modeling and discretization errors. Two major dif-
ficulties are stated for the quantitative image reconstruction in optoacoustics with the devel-
oped method: First, the computational time is high because a reconstruction requires several
forward and adjoint solves and second, the inverse problem of optoacoustic image reconstruc-
tion is strongly ill-conditioned. In Chapter 8, an approach to reduce computational expense is
presented and in Chapter 9, two methods opposing the ill-conditioning are derived.
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8 Reduction of the Computational
Domain

In this chapter, a concept to reduce the size of the computational domain in typical optoacoustic
image reconstruction scenarios is presented. First, a motivation is given in Section 8.1 followed
by an explanation of the functional principle in Section 8.2. Numerical evidence of the applica-
bility is provided in Section 8.3.

8.1 Motivation

In an optoacoustic tomograph, the object of interest must be surrounded by a coupling medium
to bridge the gap between the object and the transducers. Depending on the tomographic setup
and the object, the gap can be comparably wide such that a large amount of the computational
domain is occupied by the coupling medium. Using the example of the multispectral optoa-
coustic tomograph MSOT inVision256-TF (iThera Medical GmbH, München, Germany) with a
transducer ring of 81 mm diameter (see [46] for details on the tomograph) and a mouse brain
as imaging object with about 15 mm diameter, 96% of the reconstruction domain represent the
coupling medium while only 4% are covered by the object of interest. This is a waste of com-
putational resources in case the coupling medium is homogeneous and its parameters are not
optimized. In the reconstruction algorithm presented in Chapter 7, most computational time is
spent in the evaluation of the forward and adjoint acoustical problem and the computational cost
is directly proportional to the number of elements in the mesh of the acoustical domain. There-
fore, the potential gains of a reduction of the domain size are comparably high. To avoid the
superfluous evaluation of sound propagation in the coupling medium, the computational domain
is cropped and the measurement boundary is artificially moved closer to the object. Figure 8.1

Figure 8.1: Scheme of concept to reduce the computational domain size.
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shows a typical setup in the left panel: the dark gray area represents the object while the light
gray area represents the coupling medium. The idea is to artificially move the measurement
boundary closer to the object as shown in the right panel of Figure 8.1. In order to achieve this,
the measurement data must be transferred. The approach presented in the following is an adap-
tion of [7, 8], where it is used in the context of the wave equation and the Helmholtz equation
for the localization of a scatterer. The approach is also a further development of [9].

8.2 Functional Principle

Starting point is the setup as described in Chapter 7.5 with the optical domain ΩL and the acous-
tical domain ΩA significantly larger than the optical domain. At the portion Γmon

A of the boundary
of the acoustical domain ∂ΩA, the pressure is measured. For now, it is assumed that the acoustical
boundary and the acoustical measurement boundary coincide ∂ΩA = Γmon

A . The limited view sce-
nario will be studied subsequently. The objective is to reduce the acoustical domain to Ω̂A, which
is noticeably smaller than the original acoustical domain ΩA as indicated in Figure 8.1. There-
fore, the measurement signals have to be propagated from the original measurement boundary
Γmon

A to the boundary of the reduced domain Γ̂mon
A . This is achieved by a simulation on ΩA \ Ω̂A.

The measurement values are prescribed on Γmon
A by a Dirichlet condition and the pressure is

propagated back into the domain. At Γ̂mon
A , an absorbing boundary condition is applied. The

back propagation of the measurement data relies on the reciprocity of the wave equation. Due to
the fact that viscous entropy losses are not considered by the acoustic wave equation, solutions
p(x, t) are time invariant, i.e., p(x,−t) are as well solutions. The problem reads

∂v

∂t
+

1

ρ
∇p = 0 in ΩA \ Ω̂A × [0, T ], (8.1)

∂p

∂t
+ c2ρ∇ · v = 0 in ΩA \ Ω̂A × [0, T ], (8.2)

p = pm on Γmon
A × [0, T ], (8.3)

v · n− 1

cρ
p = 0 on Γ̂mon

A × [0, T ], (8.4)

where pm is obtained from the actual pressure measurement values Pm,tk by interpolation and
projection. Equations (8.1)–(8.4) are solved backwards in time starting from zero fields. At the
inner boundary Γ̂mon

A , the pressure values are monitored to generate the new set of measurement
values P̂m,tk . Solving the above problem is the transfer operator for

Pm,tk at Γmon
A → P̂m,tk at Γ̂mon

A .

The new set of measurement data P̂m,tk contains pressure values for all nodes on the artificial
measurement boundary. The time levels tk are determined by the time step size for the time
integration. If the time step size of the measurement data is different, the pressure values are in-
terpolated. An interesting side effect of the reduction of the geometrical size of the computational
domain hence is that the number of time steps to be performed for one forward or adjoint solve
of the acoustic wave equation is significantly reduced as well. This is due to the fact, that the

138



8.3 Numerical Evidence

signals have to cross the entire distance between Γmon
A and Γ̂mon

A before non-zero pressure values
arrive at Γ̂mon

A . All zero values are cropped out for the reconstruction of the reduced domain.

The subsequent optimization on the reduced domain Ω̂A is performed as usual but with PMLs
at its outer boundary (see Chapter 4 for a description of PMLs). The usage of PMLs is necessary
because the optimization on the reduced domain Ω̂A is significantly more sensitive to spurious
reflections compared to the full domain scenario.

Note that it is not possible to carry out the reduction simulation (8.1)–(8.4) with a PML instead
of an absorbing boundary condition at the inner boundary Γ̂mon

A . No stable configuration is found
for a ring shaped PML with the interface to the actual domain at the outer boundary (i.e., no
definition for γ such that the eigenvalues ofA are equal to or larger than zero, see Chapter 4).

8.3 Numerical Evidence

Based on a representative two-dimensional geometry, evidence for the applicability and the ben-
efit in terms of computational cost are demonstrated in the following.

Measurement data is created with a circular geometry of radius r = 40 for the acoustical do-
main and radius r = 10 for the optical domain. The optical domain contains a circular inclusion
of radius r = 3 with center at x = (1, 0). The optical properties for the generation of measure-
ment data areD = 0.5 in the entire optical domain, µa = 0.1 within the inclusion, and µa = 0.01
in the rest of the optical domain. The acoustical parameters are c = 1.5 and ρ = 1 throughout the
entire acoustical domain. The domains ΩA and ΩL consist of 8042 quadratic and 550 linear ele-
ments, respectively. For all simulations, the low-storage Runge–Kutta scheme LSRK3(3) is used
with the time step ∆t = 0.015 for acoustical time discretization. Figure 8.2 shows the absorption
coefficient distribution in the optical domain, the pressure at t = 15, and the pressure over time
for one of the detectors. The first signal arrives at the boundary at about t = 20 because it has to
travel through the entire coupling medium from r = 10 to r = 40 before detection.

(a) Absorption coefficient µa (b) Pressure at t = 15
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(c) Pressure values at (x1, x2) =
(40, 0)

Figure 8.2: Generation of measurement signals.
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(a) t = 50 (b) t = 40 (c) t = 30

(d) t = 20 (e) t = 10 (f) t = 0
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(g) Transformed measurement values resulting from re-
duction simulation evaluated at (x1, x2) = (15, 0)

Figure 8.3: Pressure in reduction simulation.

8.3.1 Full View

In this section, numerical evidence is given for the full view scenario, i.e., the entire acoustical
boundary is monitored. The limited view scenario is addressed in Section 8.3.2 The reduction
simulation is run on a ring with outer radius r = 40 and inner radius r = 15. The mesh is
the same as in the simulation to generate measurement data and consists of 6806 elements.
The measurement pressure values are applied on the outer ring as Dirichlet condition and new
monitor values are created at the inner ring where the first order absorbing boundary condition is
applied as described in equations (8.1)–(8.4). Figure 8.3 shows the backwards traveling pressure
at various points in time and one of the transformed measurement signals. As can be seen by
comparing Figure 8.2(c) and Figure 8.3(g), the values are qualitatively very similar. The main
differences are that the transformed signal starts much earlier and that the amplitudes are higher,
which is due to the fact that the signals travel inwards from a ring and accumulate.

After completion of the reduction simulation, a reconstruction on the reduced domain is car-
ried out. The acoustical domain Ω̂A consists of the same mesh as the original domain ΩA except
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(a) Full domain (b) Reduced domain

Figure 8.4: Absorption gradient in the optical domain resulting from simulations on the full and
reduced acoustical domain.

that it is cropped at radius r = 17.2. The PML region extends from r = 15. The mesh in the
reduced domain consists of 1626 elements. For all simulations, the low-storage Runge–Kutta
scheme LSRK3(3) is used with the time step ∆t = 0.015 for acoustical time discretization.
The image reconstruction is started from a uniform absorption coefficient distribution µ = 0.01.
Figure 8.4 shows the absorption coefficient gradient in the initial run for a simulation on the
full acoustical domain for reference in panel (a) and on the reduced acoustical domain in panel
(b). Qualitatively, the gradients are very similar. Quantitatively, the simulation on the reduced
domain yields smaller gradient values, which is due to the fact that reflections at the artificial
boundary appear. Also, the influence of dissipation and dispersion errors is different in the re-
duced setup. Comparing the numerical values of the gradients in the inclusion shows an average
deviation of 12.7%.

The computational expense for the acoustic forward and adjoint run is significantly decreased.
It is proportional to the number of acoustical elements, which is reduced from 8042 to 1626
corresponding to a speedup factor of 4.95. The speedup is even higher for smaller objects, larger
phantoms, or in three-dimensional simulations.

8.3.2 Limited View

The reduction procedure is basically the same for the limited view case. The setup is described
in Figure 8.5. The only difference in contrast to Figure 8.1 is that the monitor boundary does
not enclose the acoustical domain entirely. It is important that the reduced domain reproduces
this aspect. Results would be deteriorated if monitor values are produced for the entire bound-
ary ∂Ω̂A in the reduction simulation because pressure values would be prescribed that are not
representative for the measured signals but rather just side effects of the numerical concept.

Figure 8.6 shows the resulting absorption coefficient gradient in the first run in panel (c) and
repeats the gradients from the full view scenario on the full and reduced domain for comparison.
The gradient values are lower because the accumulated source term on the adjoint problem is
smaller simply due to the fact that the monitor boundary is smaller and consists of fewer detec-
tors. For the full view, the values outside of the inclusion seem to only depend on the distance
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Figure 8.5: Scheme of concept to reduce the computational domain size for the limited view
case.

(a) Full domain (b) Reduced domain (c) Reduced domain with
limited view

Figure 8.6: Absorption gradient in the optical domain resulting from simulations on the full, the
reduced acoustical domain, and the reduced acoustical domain with limited view.

to the inclusion. For the limited view, the values also show deviations depending on the orienta-
tion, which is traced back to the source term that depends on the angle as shown in Figure 8.7,
where pressure snapshots for the adjoint problem are given at various points in time. The rota-
tional symmetry is not completely restored due to the missing measurement values, see the green
coloring below the inclusion in Figure 8.7(d).

(a) t = 15 (b) t = 10 (c) t = 5 (d) t = 0

Figure 8.7: Snapshots of the pressure in the adjoint run for the limited view scenario.
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9 Opposing the Ill-Conditioning
Note: The following chapter is presented with reference to [143] and [147] and some parts are
quoted literally.

The optoacoustic image reconstruction method as proposed in Chapter 7 is far more general
than common optoacoustic image reconstruction algorithms. It allows for reconstruction of the
optical absorption, as well as the acoustic material properties, i.e., speed of sound and mass den-
sity on a variety of tomographic setups. This flexibility and versatility are accompanied by an
increase of the ill-conditioning of the inverse problem. Conditioning generally denotes the sen-
sitivity of a function with respect to its input. Ill-conditioning means that small changes in the
input can yield high deviations in the output. This automatically implies that small errors in the
input can distort the output (i.e., the result) significantly. Also, the general well-posedness of the
optoacoustic inverse problem must be questioned. A problem is said to be well-posed if a solu-
tion exists, is unique, and the output depends continuously on the input [69]. For optoacoustic
imaging, the uniqueness of the solution depends on the unknown parameters, the illumination
setup, completeness of measurement data, and many more, as explicated in Section 6.2.

The inverse problem (7.19) is strongly ill-conditioned. Two approaches to oppose the ill-
conditioning are presented. In the first approach, the basis functions used for the parameter dis-
cretizations are optimized. Typically, voxel or pixel based basis functions are chosen. However,
there are several other possibilities, e.g. local radially symmetric basis functions as proposed
in [151]. The authors of [151] claim an improvement of convergence compared to local poly-
nomial basis functions due to implicit regularization of a low-dimensional solution space if the
shape parameters of the bases are chosen appropriately. In [27, 152], computationally expensive
level-set functions are used to reconstruct inclusion shapes and inclusion parameter values. Their
application is limited to problems with only a few inclusions of regular shape. Here, a basis ap-
proach is presented that starts from a classical voxel basis and consolidates voxels to patches,
thereby introducing implicit regularization and making use of the biological partitioning into
several clustered materials. Additionally, material distribution patterns are communicated from
the most sensitive parameter to the less sensitive parameters, thereby improving the conditioning
of the inverse problem. This approach is more flexible and robust compared to level-set recon-
structions and does not require the identification of appropriate shape parameters for the bases.
In this way, distinct inclusions can be reconstructed and implicit regularization is introduced
while maintaining full flexibility. The approach can be thought of as a segmentation during re-
construction without strong parameter dependence. The concept of patched basis functions is
derived and demonstrated in Section 9.1.

The second method to oppose the ill-conditioning is presented with reference to [143, 147].
Material identification is reasonable when the composition of an object and typical values for the
material properties are known in advance. This is often the case in medical applications where
only a limited number of tissue types is present, e.g., soft tissue, skin, bone, brain, muscle, or-
gans, etc. and typical values are given in literature [29, 57]. In [143], the absorption and diffusion
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9 Opposing the Ill-Conditioning

coefficients are reconstructed and are used to identify materials from a user specified material
catalog to update the acoustical properties accordingly. A drawback however is that the diffusion
coefficient has low sensitivity in typical optoacoustic setups and its reconstruction is error prone.
Here, it is proposed to reconstruct only the absorption coefficient and then utilize the acoustical
gradients to find a unique assignment to materials from the catalog, see also [147]. One advan-
tage is a reduction of computational time because only one parameter is reconstructed and the
acoustical parameters are updated on the fly. The other advantage is that available prior knowl-
edge is brought into the reconstruction scheme without restricting the generality of the approach.
The method is derived and its applicability is demonstrated in Section 9.2.

9.1 Patched Parameter Basis Functions
A typical discretization of parameter fields is achieved by basis functions and scaling, i.e., ex-
emplary for the absorption coefficient

µah(x) = b(x)µa,

with b(x) containing basis functions and µa containing values to scale the basis functions. A
common approach to discretize the parameter distributions µah, Dh, ch, ρh is as element-wise
constant parameters where be(x) contains basis functions that are 1 in one element of the un-
derlying mesh T hL and 0 in the others. This is an intuitive approach when using finite elements
since parameters are commonly stored element-wise. However, this is not necessarily the best
approach. Usually, the solver for the physical problem and the solver for the inverse problem
have different demands on the spatial discretization. If the gradient of the objective function is
calculated using finite differences, one favors to keep the number of model parameters to a min-
imum, which is not possible for element-wise parameter discretizations in combination with a
physical solver being restricted to certain accuracy criteria. Also, inverse problems suffer from
ill-conditioning, which can be counteracted by basis functions that are tailored to the respective
inverse problem, e.g. by incorporating prior knowledge concerning the parameter distribution
properties.

In this section, a new type of parameter basis consisting of Patched Basis Functions (PBF)
is introduced. Biological bodies as well as engineering components consist of different tis-
sue/material types with distinct differences in their properties. Within one tissue type, slight
variations of the material properties are present, while discontinuities may appear from one type
to the other. Also, one tissue type is spatially connected, i.e., clustered and generally not scat-
tered. The proposed basis imitates these features by clustering several neighboring elements to a
patch. Patches are built from an elementwise quantity by collecting connected elements of simi-
lar value. The patch summarizes all element-wise basis functions to one patched basis function.
After setting up all patches, one does no longer have nele but npatch basis functions that are 1 inside
the respective patch and 0 outside the patch. Thereby, implicit regularization is introduced, while
full flexibility is maintained, because the patches are rebuilt in every iteration. Additionally, the
approach allows to transport information of a body’s composition from the most sensitive param-
eter to less sensitive parameters by creating PBFs on the most sensitive parameter and reusing
the created patches for the other parameters. Thus the ill-conditioning is strongly improved. Note
that the method is based on the assumption that general bodies have distinct materials with sharp
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9.1 Patched Parameter Basis Functions

boundaries over which discontinuities in the parameters appear. Therefore, the method is not
restricted to optoacoustic image reconstruction and can be applied to any other inverse problem
satisfying this assumption.

9.1.1 Parameter Basis Construction
Starting point is an element-wise quantity qe, e.g. a vector containing element-wise parameter
values qe = µa or an element-wise parameter gradient qe = gµa . This quantity must contain
information on the material type distribution. It is then used to build patches, i.e., to cluster
elements, which appear to be of similar type. Figure 9.1 shows the basic idea of the approach.
Starting point is an element-wise discretization of quantity q with basis be and values qe. As can
be seen from the figure, the parameter has one region on the left and one on the right where it
is almost zero. In three interior elements, it has a distinct value greater than zero and the three
elements have similar amplitude. It therefore can be concluded that the object consists of three
distinct material patches and the correspondent patched basis function should be as in the last row
of Figure 9.1 with only three basis functions associated to the three materials. In the following,
a procedure is developed to derive such basis functions.

Figure 9.1: Element-wise basis functions be(x), distribution of quantity qe, and patched basis
functions bp(x).

First, the range of the quantity qe is determined, i.e., its minimal and maximal value. The
range is denoted r = |max(qe) − min(qe)|. The element with the maximal value is used to
create the first patch. With a user defined ratio α, all neighbor elements whose values of qe are
in the interval [max(qe) − αr,max(qe)] are associated to the original element. If a neighbor is
added, its neighbors are checked as well. Hence, the criterion to build a patch is on the one hand
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9 Opposing the Ill-Conditioning

the similarity of value, and on the other hand the geometrical connection. For the next patch, the
element with the maximum value of qe, which is not yet associated to a patch, is used as start-
ing point. This is repeated until every element is associated to a patch. Algorithm 8 describes the
procedure schematically. It consists of two parts: a while loop terminating as soon as all elements
are assigned a patch ID and a for loop averaging the elemental gradients along the patches. The
algorithm makes use of a helper function ‘check neighbors’ to check if a neighboring element
belongs to the same patch, see Algorithm 9. Special care must be taken for discretizations dis-
tributed along several processors, since the PBF does not only rely on value clustering but also
on geometrical clustering. In serial, ‘check neighbors’ can be a simple recursive function. In
parallel, the elements that need a check must be stored and communicated before the function
can be called again.

Algorithm 8 Transformation to patches

determine max qe, min qe and r = |max qe −min qe|
p = 0
while not all elements assigned to a patch do
p← p+ 1
find element with the maximal unassigned value and assign patch ID PID = p
call to function ‘check neighbors’

end while
for q = 0; q < p do

sum the gradient values of all elements with patch ID q
divide sum by number of elements
write averaged value to all elements of patch q

end for

Algorithm 9 Check neighbors
for all row neighbor elements do

if qe ∈ [max(qe)− αr,max(qe)] and neighbor element not yet assigned then
assign patch ID PID = p
store neighbors IDs for later check

end if
end for
communicate stored neighbor IDs to all processors
for all stored neighbor IDs do

call to function ‘check neighbors’
end for

Several options to build patches are available and provide advantages depending on the sensi-
tivities and parameter distributions of the problem at hand.
• PBF self: All parameters build patches according to their own gradient (qµa

e = dJ
dµa

, qce =
dJ
dc

, qρe = dJ
dρ

).
• PBF abs grad: The absorption coefficient builds patches according to its own gradient, the

other parameters use these patches (qµa,c,ρ
e = dJ

dµa
).
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9.1 Patched Parameter Basis Functions

• PBF abs vals: The absorption coefficient builds patches according to its own gradient
(qµa

e = dJ
dµa

), the other parameters build patches according to the absorption coefficient
(qc,ρe = µa).
• PBF mixed: The absorption coefficient does not build patches, speed of sound and mass

density build patches according to the absorption coefficient (qc,ρe = µa).

9.1.2 Numerical Example
The example from Section 7.7.4 is used to study the solution behavior for PBF, where the inverse
crime is avoided by usage of a spatial discretization that does not conform with the inclusion
shapes and addition of noise. The results in terms of convergence of the objective function and
convergence of the error in the parameter fields are presented in Figure 9.2. As in the preceding
chapters, the error in the parameter fields is calculated as the square of the difference between the
actual and the expected parameter values and summed over all elements. The resulting images
are summarized in Figure 9.3. In terms of the objective function, all approaches converge and
none aborts early. However, the convergence is slower compared to the element-wise parameter
discretization because the number of effective degrees of freedom of the parameter discretization
is lower. In terms of the error in the parameter fields, all methods converge except for the error
of the mass density for PBS abs grad and PBF self. In all measured quantities, PBF abs grad and
PBF self deliver the slowest convergence. PBF mixed and PBF abs vals yield better convergence
in the parameters compared to the element-wise discretization and the errors are significantly
smaller. This also manifests as visual impression from the images given in Figure 9.3. It is
important to note, that better images do not necessarily yield a lower objective function value.
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Figure 9.2: Convergence of the objective function and the parameters for nonconforming dis-
cretization with 10% noise level for several patch types. The gray lines are obtained
by an element-wise parameter discretization as in the numerical examples in Sec-
tion 7.7.4.
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9.1 Patched Parameter Basis Functions

Figure 9.3: Images after 30 optimization iterations of all parameters sequentially in each iteration
for nonconforming discretization with 10% noise level for several patch types. The
left column, middle column, and right column show the absorption coefficient, speed
of sound, and mass density, respectively. The rows represent the different patch types
as labelled.
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9 Opposing the Ill-Conditioning

9.2 Material Identification
Generally, the composition of an examined object is known in advance. Depending on the imag-
ing purpose and the object, different types of tissue are expected, for example muscle, brain,
lung, bone, fat, and so forth. Literature supplies experimentally determined values or at least
ranges of values for optical as well as acoustical material properties for these tissues, see for ex-
ample [29, 57]. The basic idea is to take advantage of the fact that tabulated material properties
from literature or experiments are known and specific values are expected. This expectation is
made available for the reconstruction algorithm by providing a material catalog.

A biological tissue Mj is characterized by the parameter quadruple Mj = (µj, Dj, cj, ρj)
where j = 1, ..., nmat. Within one tissue type naturally slight variations occur. Between two tis-
sue types, a sharp interface often exists, consider e.g. bones, organs, or individual constituents of
organs. Before optimization, a set of nmat materialsMj is defined by the user. This set contains
parameters for all expected materials and is denoted as material catalog. The approach presented
in [143] reconstructs absorption and diffusion coefficient to find a unique mapping between op-
tical values and listed materials in case similar absorption coefficients are cataloged (witht first
ideas developed in [59]). The diffusion coefficient however has a very low sensitivity and its re-
construction is error prone. Therefore, a new material identification technique was developed as
presented in [147] that does not rely on the reconstruction of the diffusion coefficient. Instead, it
uses the acoustical gradients to identify materials correctly. The absorption coefficient is recon-
structed with the iterative reconstruction procedure on a pixel-based or PBF discretization and
the available acoustical gradients are then utilized for the identification process.

9.2.1 Consideration of Acoustical Gradients

The detailed procedure for material identification is displayed in Algorithm 10. For input, the
user has to specify a list of expected materials containing values of absorption coefficient, diffu-
sion coefficient, speed of sound, and mass density. Only the absorption coefficient is optimized
in a line search procedure and the material identification is carried out after every successful line
search. First, step lengths αc, αρ for c, ρ are calculated as the smallest step for which c − αc∇c
covers the range [min c,max c] from the materials in the catalog and analogously for the mass
density. Then, materials are identified that match the current element absorption coefficient. If no
material is applicable, the default values for soft tissue are set. If exactly one material is applica-
ble, the corresponding acoustical values are set. If several materials are applicable, the material
for which the acoustic gradients indicate the correct trend is chosen, i.e., decrease or increase. If
the acoustic gradients cannot identify any material or cannot identify one material uniquely, the
one with the smallest distance to the values of the range covering distribution cran = c − αc∇c
and ρran = ρ− αρ∇ρ is set.

9.2.2 Numerical Example

The considered numerical example is similar to the one from the preceding section. However, it
is slightly simplified and only the rectangular inclusion is examined and the circular inclusion
is not considered. For the generation of measurement data, the materials as given in Table 9.1
are used. Therein,Mw represents the coupling medium,Mo the object’s background, andMr
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9.2 Material Identification

Algorithm 10 Material identification
determine step length for c, ρ
for all elements e do

find all materialsMj that contain µa

if no material found then
set default acoustical materials

else if one material is found then
set acoustical materials of the found material

else
check if the gradient directions indicate materials
if no material direction applies then

determine material with smallest distance and set c, ρ
else if one material supplies indicated direction then

set c, ρ
else

determine material with smallest distance and set c, ρ
end if

end if
end for
update speed of sound and density distribution

µa
[

1
mm

]
D[ mm] c

[
mm
µ s

]
ρ
[

mg
mm3

]
Mw 0.0 0.5 1.5 1.0
Mo 0.01 0.5 1.5 1.0
Mr 0.1 0.5 2.0 2.0

Table 9.1: Material properties for the generation of measurement data.

the material of the rectangular inclusion. As in Section 7.7.2, data generation is run on a finer
discretization and the reconstruction relies on the base discretization rotated by 45◦.

Four different setups I–IV are studied to demonstrate different properties of the material iden-
tification method. All reconstruction parameters are as in the examples in Section 7.7. The only
input that varies between setups I–IV is the material catalog as specified in Table 9.2. Since the
diffusion coefficient is not subject to reconstruction and spatially constant, it is not explicitly
mentioned but always set to 0.5. Also the coupling medium is excluded from reconstruction.
Setup I is conditioned best, because the material catalog perfectly represents the expected mate-
rials. Setup II has an additional material, which lies in between the two expected materials. Setup
III has a third material with the same absorption coefficient but lower values for the acoustical
coefficients. Therefore, it tests the material identification due to the acoustical gradients. Setup
IV has one material with the absorption coefficient in between the expected values but opposite
acoustical coefficients.

Figure 9.5 shows the resulting images after 30 optimization iterations. For reference, one sim-
ulation (denoted ‘standard’) is run without material identification. In Figure 9.4, the convergence
of the objective function and the parameter fields is shown. Setups I–III are superior to the stan-
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9 Opposing the Ill-Conditioning

setup I µa
[

1
mm

]
c
[

mm
µ s

]
ρ
[

mg
mm3

]
M1 0.01 1.5 1.0
M2 0.1 2.0 2.0

setup II µa
[

1
mm

]
c
[

mm
µ s

]
ρ
[

mg
mm3

]
M1 0.01 1.5 1.0
M2 0.1 2.0 2.0
M3 0.05 1.75 1.5

setup III µa
[

1
mm

]
c
[

mm
µ s

]
ρ
[

mg
mm3

]
M1 0.01 1.5 1.0
M2 0.1 2.0 2.0
M3 0.1 1.0 0.6

setup IV µa
[

1
mm

]
c
[

mm
µ s

]
ρ
[

mg
mm3

]
M1 0.01 1.5 1.0
M2 0.1 2.0 2.0
M3 0.05 1.0 0.6

Table 9.2: Material properties for the generation of measurement data.

dard approach. The material identification speeds up the convergence and the images are very
clear. For setup III some oscillations are observed in the convergence plots which are due to a
false identification of the material with opposite acoustical values. After the 30 iterations, the
correct material is identified. For setup II with an intermediate material, eight elements are iden-
tified with the additional material. They are located at the inclusion boundary and therefore yield
even better results in the measured quantities compared to setup I with the matching material cat-
alog. Setup IV does not yield satisfactory results. The objective function oscillates and several
elements are identified with the wrong material. This behavior was expected to some extent be-
cause the additional wrong material has an absorption coefficient in between the default material
and the expected inclusion material. If the step length in the line search algorithm for the absorp-
tion coefficient yields intermediate absorption coefficient values, this material is identified and
permits convergence by updating the acoustical parameters in the opposite direction and thereby
making an underestimation of the absorption coefficient more likely. For such a material catalog,
an acoustical update should not be carried out after the completion of the line search for the ab-
sorption coefficient but within, i.e., as part of the standard parameter update such that the effect
is tested by the Wolfe conditions (see Section 7.5.1). However, convergence might still not be
obtained. Except for the very challenging material catalog, material identification helps to speed
up convergence and improve the image quality significantly.
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Figure 9.4: Convergence of the objective function and the parameters for different material cata-
logs. The gray lines are obtained by an element-wise parameter discretization without
material identification.
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9 Opposing the Ill-Conditioning

Figure 9.5: Images after 30 optimization iterations of all parameters sequentially in each iteration
for different material catalogs. The left column, middle column, and right column
show the absorption coefficient, speed of sound, and mass density, respectively. The
rows represent the different material catalogs as labelled.
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9.3 Conclusion

9.3 Conclusion
Optoacoustic imaging is an inherently ill-conditioned inverse problem and the ill-conditioning
is worsened by the attempt to not only reconstruct the absorption coefficient but additionally the
acoustical parameters. Two approaches to oppose the ill-conditioning were proposed. The adap-
tion of the basis functions for the parameter fields does not require any additional user input and
maintains the flexibility of a pure element-wise reconstruction. The results presented for the nu-
merical example show that the convergence in terms of the objective function is slower compared
to the element-wise parameter discretization. The convergence in the parameter fields, however,
is improved for PBF abs vals and PBF mixed where information on the object’s structure is
transported from the most sensitive parameter (the absorption coefficient) to the other parame-
ters. The material identification method requires the user to supply a list of expected material
parameters, which enables to let the algorithm know what seems obvious for an experienced
user. The presented results indicate that the convergence can be significantly improved. Only for
very tricky material catalogs, no convergence is obtained. In general, the material identification
is expected to improve results robustly if all materials approximately obey the same qualitative
behavior, e.g., the higher the absorption coefficient, the higher the speed of sound. Otherwise,
intermediate material identification with a false material can prevent further convergence.

Both methods to oppose ill-conditioning are applicable in the specific context of optoacoustic
image reconstruction but they are applicable to a wide range of other inverse problems as well.
For any kind of inverse problem involving clustered parameter distributions, a version of PBF
can improve convergence and conditioning. For any inverse problem, where the knowledge of
expected materials is at hand, the material identification can improve convergence. Also, both
methods can be combined with traditional concepts to counter ill-conditioning, e.g. Tikhonov or
total variation regularization.
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10 Applications

In this chapter, the methods derived in Chapters 7, 8, and 9 are applied to experimentally obtained
measurement data. In the first part of this chapter, the algorithm is applied to in-vivo mouse brain
measurements. In the second part, image reconstruction of a phantom is analyzed in detail.

(a) Interior of the tomograph (b) Holder

Figure 10.1: The interior and the holder of the MSOT inVision256-T: The yellow surface covers
the acoustical detectors. The dark gray rectangles on the detector ring contain the
fibers to provide the laser light. The tomograph is filled with lukewarm water as
coupling medium. The holder is used to place phantoms or animals in the tomo-
graph and is supplied with an artificial ventilation system.

Both sets of measurement data were generated with the multispectral optoacoustic tomograph
MSOT inVision256-TF (iThera Medical GmbH, München, Germany) with a transducer ring
of 80 mm diameter covering 270◦ with 256 array elements [46]. The center frequency of the
transducers is 5 MHz and the signals are band-pass filtered between 100 kHz and 6 MHz. The
acoustical signals are recorded with a sampling frequency of 40 MHz corresponding to a time
step size of ∆t = 0.025µs. To decrease the influence of noise, the final signals are an average of
20 measurements. The light source is provided by a laser system with adjustable wavelength. Ten
fibers provide the light from different directions to obtain a uniform illumination. For all mea-
surements, a wavelength of 700 nm is chosen. Figure 10.1 shows the interior of the tomograph.
A detailed sketch of the tomograph is given in Figure 1(d) of [46].

10.1 Mouse Brain Imaging

A female Hsd:Athymic Nude-Foxn1nu/nu mouse was imaged in-vivo in the specified tomo-
graph. The animal was anesthetized with a mixture of 1.8% isoflurane in 100% O2 at 0.8 ml/min
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Figure 10.2: Nude mouse in animal holder.

flow rate and placed in supine position. Figure 10.2 shows the mouse in the animal holder during
the experiment preparation.

10.1.1 Reduction Simulation

The first step before reconstructing images is the reduction of the computational domain as
explained in Chapter 8. Therefore, a three-dimensional computational domain as displayed in
Figure 10.3 is created. It consists of a cylindrical ring with outer radius 40 mm, inner radius
12.5 mm, and height 25 mm. The domain is cut into five layers perpendicular to the x3 axis. The
first and last layer are PMLs of 2.5 mm height mimicking that the tomograph basin is larger than
the computational domain. The three layers in between contain the acoustical domain where
the standard wave equation is solved. All layers are divided into quarters because the detector
ring covers 270◦ and three of the outer surfaces of the middle layer are the monitored surfaces
where measurement values are applied. Absorbing boundary conditions are applied to all inner
surfaces and new measurement data is created on three of the inner surfaces of the middle layer
recreating the limited view. The middle layer is of height 8 mm because the measurement data
is obtained in nine positions, i.e., scanning along the x3 axis with 1 mm steps. The geometry
is meshed with 2044800 hexahedral elements. For the shape functions, the polynomial degree
k = 2 is chosen. The time step size is set to ∆t = 0.003125µs and the time integrator LSRK3(3)
is used. For the coupling medium, the acoustical material parameters are set to ρ = 1.0 mg/mm3

and c = 1.518 mm/µs corresponding to water at 34◦C.
The spatial discretization yields ≈ 1.2 · 108 degrees of freedom for pressure and velocity and

additional degrees of freedom for the auxiliary variables in the PMLs. The computational time
on four nodes each with 24 cores of Intel(R) Xeon(R) CPU E5-2680 v3 operating at 2.50 GHz
is 6909 s for computations and 8523 s for output in 14720 time steps. The result of the reduction
simulation is a monitor file on the interior cylinder mantle. Figure 10.4 shows a pressure snapshot
of the reduction simulation at t = 15µs visualizing that only 270◦ of the cylinder mantle are
applied with monitor values.
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Figure 10.3: Computational domain for reduction simulation.

Figure 10.4: Pressure snapshot at t = 15µs for the reduction simulation with the measurement
data from the mouse experiment.
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10.1.2 Image Reconstruction in Three Dimensions

For the image reconstruction, a cylindrical computational domain of radius 13.5 mm and height
12 mm is created. The outer 1 mm layers in radial and x3 direction represent PMLs. The PMLs
are terminated by absorbing boundary conditions. On 270◦ of the surface at r = 12.5 mm be-
tween x3 = −4 mm and x3 = 4 mm, the boundary is monitored, i.e., the objective function will
be evaluated here and the source term for the adjoint problem will be applied here. The source
term for the optical problem, i.e., the illumination by the laser light, is applied on the entire
360◦ of the optical cylinder mantle for x3 ∈ [−0.75 mm, 0.75 mm]. The remainder of the optical
boundary is applied with the Robin boundary condition as in equation (7.4). The optical domain
is meshed with 491520 elements while the acoustical domain is meshed with 860160 linear ele-
ments (k = 1). The time step size is set to ∆t = 0.005µs and the LSRK3(3) time integrator is
used. For the PBF approach, the parameter α is set to α = 0.1.

All reconstructions are run on four nodes each with 24 cores of Intel(R) Xeon(R) CPU E5-
2680 v3 operating at 2.50 GHz. The evaluation of one forward problem takes approximately
1000 s including forward optical problem, mapping, and forward acoustical problem. The acous-
tical part, however, is the main computational cost. The adjoint run takes approximately the same
time because the additional cost for the checkpointing and omitting of writing output cancel out
in terms of computational timings. Four reconstructions are run: with element-wise parameter
discretization, PBF abs vals, PBF mixed, and material identification. For material identification,
the following material catalog is supplied:

material µa
[

1
mm

]
c
[

mm
µ s

]
ρ
[

mg
mm3

]
M1 0.01 1.53 1.0
M2 0.28 1.5 1.1
M3 0.13 1.5 1.1
M4 0.49 1.6 1.1
M5 0.13 1.6 1.1
M6 0.18 1.5 1.1
M7 0.22 1.5 1.1
M8 0.47 4.1 1.9

Therein, the materialsM1 toM8 approximately represent the materials void tissue, skin, soft
tissue, vein, artery, white matter, gray matter, and bone, respectively, with values taken from [24,
29, 108] and the table developed in [172]. Figure 10.5 shows the resulting images after three
iterations and one sequence per parameter. For reference, Figure 10.6 shows a cryoslice through
a mouse brain and the absorbed energy map as obtained by model based inversion. Figure 10.7
plots the convergence in terms of the relative objective function over the iterations.

The images of the absorption coefficient show the same features like the model-based image,
i.e., the cortex and the temporal artery. The images are however more blurry due to the low
resolution. The acoustical images obtained with element-wise parameter discretization display
the skull and show fluctuations in the center of the interior. The PBF abs vals and PBF mixed
reconstructions show images for the acoustical parameters that recreate the features of the ab-
sorption coefficient because these two PBF approaches transport the basis information from the
absorption coefficient to the acoustical fields. For PBF abs vals, the features are more distinct
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10.1 Mouse Brain Imaging

Figure 10.5: Results for image reconstruction on three-dimensional domain with element-wise
parameter discretization, PBF abs vals, PBF mixed, and material identification dis-
played on a plane with normal vector in x3 direction and origin (0, 0, 0) and a plane
with normal vector in x2 direction and origin (0, 0, 0). The rows correspond to the
four setups as labeled, while the columns correspond to the absorption coefficient,
the speed of sound, and the mass density (from left to right).
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(a) Cryoslice through mouse brain. (b) Absorbed energy map obtained by
model based inversion.

Figure 10.6: Cryoslice through a mouse brain (Cx - cortex, DH - dorsal hippocampus, TA -
temporal artery, AC - amygdala complex, ON - optic nerve) and absorbed energy
map obtained by model based inversion.

compared to PBF mixed. The material identification does not identify skull because the recon-
structed absorption coefficient has too low values. However, the topography is represented. In
terms of convergence of the relative objective function (Figure 10.7), the element-wise recon-
struction gives the lowest values. As expected, every third update for element-wise, PBF abs vals,
and PBF mixed yields a high reduction because it correlates to the update of the absorption co-
efficient, which has the highest sensitivity. For the material identification, two marks are shown
at each iteration corresponding to the objective function value before and after the acoustical
update. The convergence speed is similar as compared to the other optimization schemes and
the acoustical update slightly increases the objective function in the first iteration and slightly
decreases the objective function in the second and third iteration.

10.1.3 Image Reconstruction in Two Dimensions

The images resulting from the three-dimensional reconstruction are blurry due to the coarse
discretization with an average pixel size of 0.2125 mm. A finer discretization cannot be used
because of the computational cost. Therefore, a two-dimensional image reconstruction is set
up. Due to the lower problem dimensionality, the problem complexity is reduced and higher
resolution can be obtained. Reconstruction is carried out on a circular domain with an average
pixel size of 0.0625 mm, i.e., pixels 3.4 times smaller than in the three-dimensional reconstruc-
tion. The simulation settings are comparable to the three-dimensional setup as explained in Sec-
tion 10.1.2. The circular acoustical domain is of radius 13.5 mm with the outer 1 mm in radial
direction representing a PML and ABCs at the outer boundary. The optical domain is circu-
lar with radius 12 mm and consists of 124096 element. The acoustical domain is meshed with
154816 elements of polynomial degree k = 2. For time stepping the low-storage Runge–Kutta
method of order three with three stages LSRK3(3) is used with a time step size of 0.001µs. Pa-
rameter reconstruction is carried out analogously to the three-dimensional reconstructions and
Figure 10.8 presents the resulting images. Figure 10.9 displays the convergence of the objective
function. In contrast to the reconstructions on the three-dimensional geometry, the images pro-
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Figure 10.7: Convergence behavior in terms of the relative objective function value during im-
age reconstruction on three-dimensional domain with element-wise parameter dis-
cretization, PBF abs vals, PBF mixed, and material identification.

vide a better resolution and more detail. The element-wise parameter discretization highlights
several anatomical features as in the image obtained by model-based inversion. The acoustical
images signify the skull but do not meet the expected material values for bone. The setup with
PBF abs vals provides low values for the absorption coefficient and the convergence is slow
compared to all other setups, see Figure 10.9. The absorption coefficient image obtained with
PBF mixed is very similar to the image with element-wise parameter discretization but with
slightly better contrast near the skull. The acoustical images of PBF abs vals and PBF mixed
are segmented according to the absorption coefficient features and oscillations are suppressed.
The material identification identifies several elements as bone tissue but not the entire skull is
identified. Thereby, the absorption coefficient reconstruction provides higher contrast compared
to the element-wise and the PBF mixed setup. Compared to the three-dimensional reconstruc-
tion, the impact of the acoustical parameter update is higher, which can be seen from the relative
objective function value and is due to the fact that the two-dimensional reconstruction identifies
bone.

10.1.4 Discussion of the Results

The reconstruction of the mouse brain images based on a three-dimensional computational do-
main are blurry due to the low resolution. A higher resolution can currently not be obtained
because it requires corresponding mesh refinement, which increases computational cost. The
evaluation of one forward problem on the given mesh takes approximately 1000 s on four nodes
each with 24 cores of Intel(R) Xeon(R) CPU E5-2680 v3. Three reconstruction iterations with
several evaluations of forward and adjoint problem take approximately 16 hours. The reconstruc-
tion on a two-dimensional computational domain allows for better resolution with an average
pixel size of 0.0625 mm and approximately 19 hours computational time. The images obtained
on the two-dimensional domain are visually better, i.e., provide more contrast and identify sev-
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Figure 10.8: Results for image reconstruction on two-dimensional domain with element-wise
parameter discretization, PBF abs vals, PBF mixed, and material identification
cropped to circle of radius 9 mm. The rows correspond to the four setups as labeled
while the columns correspond to the absorption coefficient, the speed of sound, and
the mass density (from left to right).
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Figure 10.9: Convergence behavior in terms of the relative objective function value during image
reconstruction on two-dimensional domain with element-wise parameter discretiza-
tion, PBF abs vals, PBF mixed, and material identification.

eral anatomical features. If a reconstruction should be carried out in two or three dimensions
is questionable and generally depends on the illumination setup. If an object is approximately
cylindrical, the material properties vary slowly along the cylinder axis, and the entire mantle is
illuminated, pressure waves propagate as cylindrical waves and a two-dimensional consideration
is equivalent. If, however, the illumination is only along one line on the cylinder mantle, the
pressure waves propagate as spherical waves and a three-dimensional simulation is physically
more accurate.

In the absorption coefficient reconstructions, negative values occur, which can be due to noise
but also due to modeling errors. A systematic study on negative absorption coefficient values
including the effect of permitting negative values should be addressed by future work.

To the author’s knowledge, this is the first time that optoacoustic images of speed of sound
and mass density have been reconstructed in the context of small animal imaging following the
same optimization approach and physical model as for the absorption coefficient. The acoustical
images are subject to severe ill-conditioning. To gain first insights concerning the sensitivity
of the acoustical parameters, a phantom study is carried out in the next section with mainly
acoustical contrast and no or only slight variations in the absorption coefficient.

10.2 An Experimental Phantom Study

A phantom of diameter 20 mm is created. The basis is Agar (Sigma–Aldrich, St. Louis, MO,
USA), a gelatin extracted from red algae used as thickening agent. Water is boiled and 1.5 g Agar
per 100 ml water is added such that a jellylike consistency with acoustical properties similar to
those of soft tissue will be obtained after cooling. A drop of ink is added for slight background
absorption and 6% Intralipid (Sigma–Aldrich, St. Louis, MO, USA) is added for scattering.
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Figure 10.10: Schematic view of the phantom.

Figure 10.11: Raw data. The gray scale signifies the absolute value of the measured pressure at
the detectors.

Before cooling, a thin glass sheet is inserted into the mixture to obtain a phantom as displayed
in Figure 10.10. Measurement data is generated as explained in the beginning of this chapter.

To give a first impression on the character of the measurement signals, Figure 10.11 shows
the raw data. Pressure curves over time are obtained for 256 detectors and 2030 time steps.
Apparently, each detector is subject to a different offset causing the impression of vertical lines.
Diagonal lines can be seen, which are related to signals caused close to the detectors, e.g. small
dirt particles in the coupling medium. The two horizontal lines correspond to the front and back
side of the phantom as seen from the detector. Between the two horizontal lines, wavy lines can
be seen which are caused by an absorption mismatch and reflections at the glass sheet.

A Butterworth highpass filter1 is applied along the time coordinate to eliminate the offset. The
resulting data is shown in Figure 10.12(a). In a next step, a Butterworth low pass filter2 is applied
along the detector coordinate to diminish the effect of the dirt particles. The result is shown in
Figure 10.12(b). The application of the two filters makes the characteristics of the signal related
to the actual phantom and its glass inclusion slightly more visible. The following reconstructions
rely on the signals to which both filters were applied.

1MATLAB function butter with arguments 1, 0.01, ‘high’
2MATLAB function butter with arguments 1, 0.2, ‘low’
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(a) Application of a Butterworth bandpass filter along
the time coordinate

(b) Application of a Butterworth lowpass filter along the
detector coordinate

Figure 10.12: Filtered measurement data.

10.2.1 Reduction Simulation

The reduction simulation for the phantom is carried out as for the mouse experiment with the
same discretization and parameters as in Section 10.1.1. Figure 10.13 displays pressure snap-
shots at various time points to give a visual impression of the reduction simulation. The char-
acteristic features of the monitored values are found: the curves appearing sinusoidal in Fig-
ure 10.12 are star shaped in Figure 10.13. The horizontal lines in Figure 10.12 appear circular in
Figure 10.13.

10.2.2 Image Reconstruction

The image reconstruction is run on the same three-dimensional geometry and with the same pa-
rameters as for the mouse experiment presented in Section 10.1.2. Three reconstructions are run,
namely the standard setup, i.e., element-wise parameter discretization without material identifi-
cation, PBF self, and a reconstruction with material identification. Note that other approaches for
PBF are not reasonable in this scenario, since the absorption coefficient does not offer any con-
trast. Figure 10.14 shows the resulting images. Apparently, the three methods fail to reconstruct
the glass insertion. For the absorption coefficient, contrast appears at the phantom boundary. The
acoustical parameters, show fluctuations at the phantom boundary and in the center. A slight in-
dication of the glass inclusion can be seen in the absorption coefficient reconstruction of the
element-wise discretization. The final relative objective function values after three optimization
iterations are 74%, 86%, and 82%, for the element-wise discretization, PBF self, and the material
identification, respectively.

10.2.3 A Representative Numerical Phantom

In order to put the results of Section 10.2.2 into perspective, the same study is carried out but
with measurement data obtained from a simulation that represents the setup. Thereby, the influ-
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(a) t = 10µs (b) t = 20µs (c) t = 30µs

(d) t = 40µs (e) t = 50µs

Figure 10.13: Snapshots of the pressure at various time points during the reduction simulation.
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Figure 10.14: Results for image reconstruction of the phantom with element-wise parameter dis-
cretization, PBF self, and material identification displayed on a plane with normal
vector in x3 direction and origin (0, 0, 0) and a plane with normal vector in x2

direction and origin (0, 0, 0). The rows correspond to the three setups as labeled
while the columns correspond to the absorption coefficient, the speed of sound,
and the mass density (from left to right).

169



10 Applications

Figure 10.15: Computational domain for numerical experiment.

(a) t = 0 (b) t = 5 (c) t = 7.5 (d) t = 10 (e) t = 10 (f)

Figure 10.16: Pressure snapshots of the forward solve of the representative numerical phantom
with a red shadow signifying the location of the glass inclusion. Panel (f) shows
the legend which is the same for plots (a)–(e).

ence of noise and modeling error are investigated. A computational domain is created with the
glass inclusion shaped and oriented as in the real experiment as displayed in Figure 10.15. The
glass inclusion is of size 8.97 mm× 1 mm, rotated about −35◦ around the x3 axis and its center
is located at (x1, x2, x3) = (1.3235 mm, 0 mm, 0 mm). Material values of c = 5.2 mm/µs and
ρ = 2.5 mg/mm3 are assigned to the inclusion, thereby representing glass. Absorbing boundary
conditions are applied to all outer acoustic boundaries. On the top and bottom of the cylinder,
1 mm is assigned to be PML. The pressure is monitored at the mantle of the cylinder between
x3 ∈ [−4 mm, 4 mm]. The domain is meshed with 67496 optical elements and 1196400 quadratic
acoustic elements. A forward solve is run with ∆t = 0.0025µs and the LSRK3(3) time inte-
grator. All unspecified quantities and boundary conditions are as in the preceding simulations.
Figure 10.16 shows pressure snapshots of the forward solve with a red shadow signifying the
position of the glass.

Figure 10.17 shows the measurement data in the same format like the Figures 10.11 and 10.12
revealing distinct differences. A reduction simulation with the measurement data is run just like
for the real measurement data as described in Section 10.2.1 to obtain a data set for reconstruc-
tions. Reconstruction is also carried out as for the real phantom experiment and the resulting
images are shown in Figure 10.18. The absorption coefficient shows slight fluctuations, espe-
cially at the boundary of the phantom. The acoustic coefficients show deviations at the location
of the inclusion but a quantitative reconstruction of the acoustical parameters is not obtained.
Also, deflections at the center of the phantom occur. In the element-wise reconstruction of the
absorption coefficient, errors are seen that are related to the acoustical heterogeneity, i.e., the two
smaller circles and the doubling of the contour in the bottom left part.
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Figure 10.17: Measurement data obtained from forward simulation of the representative phan-
tom.

10.2.4 Conclusion
The phantom is a very challenging setup for optoacoustic imaging because the glass inclusion
does not introduce an optical contrast. The glass introduces an acoustical heterogeneity that
causes reflections. In a standard model-based inversion, these reflections are seen as a well-
known artifact: the boundary of the phantom seems duplicated as shown in Figure 10.19 at the
bottom left. The reconstructions on the experimentally obtained data fail to accurately recon-
struct the inclusion even though they signify that heterogeneities are present. The study based on
the numerical phantom reveals that even with the perfect artificial data, a quantitatively correct
image reconstruction is challenging. The inclusion is indicated in the reconstruction but not per-
fectly localized. Also, the material identification does not improve the image, which is mainly
due to the fact that the absorption coefficient of the inclusion does not introduce a contrast and
the material identification relies solely on the acoustical gradient. All in all, the sensitivity for
the reconstruction of heterogeneities that are purely acoustical is very low. Additional to that,
the noise in the measurement data is comparably high, which can be seen by comparing Fig-
ures 10.12 and 10.17. The measurement signals only indicate the features, which appear char-
acteristic in the numerical signals. The temporal width of the first arriving pressure signal, i.e.,
the white horizontal lines in Figures 10.12 and 10.17, is different. This can be caused either by
the discretization error concerning the pressure discontinuity or by the light modeling with the
diffusion approximation. The diffusion approximation is known to have reduced accuracy near
boundaries and sources. Last, a mismatch of the diffusion coefficient yields a different light dis-
tribution and hence a different shape of the initial pressure field. The combination of modeling
errors, low sensitivity, and high noise levels prevent quantitative image reconstruction for this
challenging setup of an inherently ill-conditioned inverse problem.
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Figure 10.18: Results for image reconstruction on the representative numerical phantom with
element-wise parameter discretization, PBF self, and material identification dis-
played on a plane with normal vector in x3 direction and origin (0, 0, 0) and a
plane with normal vector in x2 direction and origin (0, 0, 0). The rows correspond
to the three setups as labeled while the columns correspond to the absorption co-
efficient, the speed of sound, and the mass density (from left to right).
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Figure 10.19: Image of the phantom with glass inclusion obtained with a standard model based
reconstruction algorithm.
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11 Conclusions and Outlook

In this thesis, two topics, namely the development of a high performance acoustical solver and
the development of an optoacoustic image reconstruction algorithm, have been addressed. Both
topics are treated separately in this concluding chapter.

11.1 High Performance Solver for Acoustics

In Chapter 2 of this work, the first building block for the high performance acoustical solver has
been set: the numerical methods. HDG was introduced for the acoustic wave equation in [120]
but in combination with implicit Runge–Kutta methods. In this work and in [97], a reformula-
tion of the semi-discrete problem has been presented that allows for using explicit Runge–Kutta
schemes. In contrast to HDG with implicit Runge–Kutta schemes, the interior degrees of free-
dom are kept while the trace variable is replaced in terms of the other variables. The update
procedure does not require the solve of a global linear system but only element-local and face-
local applications of inverse mass matrices, which reduces the computational cost significantly
as demonstrated by performance models and relevant experiments. A second achievement is the
combination of HDG with explicit ADER time stepping [145]. The method is of arbitrary high
order in space and time without restrictions such as the Butcher barrier for Runge–Kutta meth-
ods. LTS with ADER time integration in combination with DG for the elastic wave equation as
in [49] has been carried over to HDG for the acoustic wave equation. Thereby, every element
of the triangulation of the computational domain advances with its optimal time step avoid-
ing computational overhead due to too small time steps and keeping dispersion and dissipation
errors to a minimum. HDG typically offers the option for superconvergent results if the time
integration scheme is sufficiently accurate. For ADER HDG, temporal and spatial discretization
are strongly interlinked and the straightforward combination of ADER and HDG does not offer
superconvergent results. Therefore, a reconstruction step has been developed such that the su-
perconvergence property is preserved. The reconstruction step is theoretically supported by an
adjoint consistency analysis. With several numerical examples, it has been demonstrated that op-
timal convergence of order k+1 and superconvergence of order k+2 is obtained for polynomial
degrees k = 1, ..., 12. In additional numerical examples, it has been shown that the temporal
stability limit for ADER in combination with HDG is by a factor of ≈ 2 to ≈ 3 stricter com-
pared to a low-storage Runge–Kutta scheme of order four with five stages while dispersion and
dissipation behavior with the same time step size are favorable for ADER.

In Chapter 3, the second building block for the high performance acoustical solver has been
presented: the implementation aspects. The implementation of the explicit Runge–Kutta schemes
as well as of ADER is based on matrix-free operator evaluations with fast quadrature and sum
factorization kernels that combine optimal-complexity mathematical algorithms utilizing the
tensor product structure of the shape functions with a highly competitive implementation that
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vectorizes over several elements and faces [95, 144]. For ADER, two additional optimizations
have been proposed. An on-the-fly change between two bases has been developed to evaluate
operators including face integrals with nodal basis functions with nodes on the element bound-
aries and to evaluate cells in the Taylor–Cauchy–Kowalevski procedure of ADER with Lagrange
polynomials with nodes in the quadrature points. The second optimization concerns the effi-
cient evaluation of high derivatives in the Taylor–Cauchy–Kowalevski procedure: the degree of
the polynomial shape functions representing the higher order spatial derivatives is reduced by
projection on the lower dimensional approximation space. Performance analyses have been car-
ried out for several quantities of interest, i.e., timings, throughput, and scalability. While the
theoretically derived operation counts already signify a slight benefit for ADER compared to
Runge–Kutta, the actual timings show a distinct benefit, reducing the time to perform one time
step by approximately a factor of four because ADER suits modern hardware architecture bet-
ter: while Runge–Kutta schemes are mostly limited by the memory bandwidth, ADER performs
more operations on the data that is loaded from main memory and thus reaches a higher arith-
metic intensity. A detailed analysis of Runge–Kutta versus ADER integration at the CFL stabil-
ity limit has shown comparable performance where the Runge–Kutta time discretization order
matches the spatial discretization order. For approximations with a high order of accuracy where
the Butcher barriers set in, ADER exceeds the abilities of Runge–Kutta because its computa-
tional cost does not grow overproportionally. While the findings for ADER are limited to linear
hyperbolic PDEs, the optimizations regarding the basis functions and reduced vector access for
the Runge–Kutta time integrators are also directly applicable to general nonlinear systems of
hyperbolic PDEs.

In Chapter 4, a novel formulation for PMLs is derived, which is not only especially suitable
in the context of explicit HDG but also reduces the number of required auxiliary variables. The
back-transformation to time domain is based on a spectral decomposition of the gradient of the
damping function, which allows the detection of unnecessary auxiliary variables. The formula-
tion is general compared to formulations in the literature. The derived method allows to surround
general prismatic bodies and even to combine straight lined with spherical or cylindrical bound-
aries, which has previously not been possible to the best of the author’s knowledge.

Chapter 5 incorporates the methodologies and the implementation derived in the preceding
chapters to solve real world problems. The solver is applied to one representative of urban
acoustics, namely a training village, which has been extensively studied in the literature. Three
discretization setups are chosen to recreate characteristics from [115]. For a similar number of
grid points and the same number of time steps, the computational time required by the proposed
acoustical solver is competitive to an adaptive rectangular decomposition method considering
that adaptive rectangular decomposition relies on a semi-analytic approach using the discrete
cosine transform and is formally of lower order. A cathedral like geometry is studied to demon-
strate the applicability of the solver to room acoustics. Complex reflection patterns are predicted
over a wide frequency range with only ≈ 20 CPU seconds per time step for 2.6 · 108 degrees of
freedom.

Possible future research concerns the theoretical and numerical investigation of the time step
limit of the fully adjoint consistent ADER scheme and the trade-off with its disadvantageous
computational properties. Also, a theoretical and numerical comparison of ADER LTS with
other LTS approaches or so called implicit-explicit (IMEX) methods should be carried out [86].
To enhance the applicability of the acoustical solver to a broader range of acoustical problems,
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special boundary conditions are required representing e.g. walls with specific reflection prop-
erties due to windows and window sills. Especially for urban acoustics, the introduction of a
convective term to represent air movement due to wind would improve the prediction accuracy
in realistic scenarios. This, however, complicates the PML formulation. Considering the imple-
mentation aspects, future work should address GPUs for their higher memory bandwidth but
also concepts like wavefront blocking as already used in the context of finite differences [168].

11.2 Optoacoustic Image Reconstruction Method

In Chapter 6, an introduction to optoacoustic imaging is given where the functional principal
is explained and several common and less common solution approaches from the literature are
reviewed.

Chapter 7 details all steps of the derivation of the image reconstruction method. First, the
physical model has been developed. The light propagation is described by the diffusion approx-
imation because biological tissue is generally strongly scattering and one can therefore assume
that light loses its directionality after entering the medium. In general tomographic setups, the
laser illumination only lasts for a few nanoseconds, which is a too short time period for heat
or stresses to propagate. The energy conversion is hence in thermal and stress confinement and
the photoacoustic effect is described by an assignment. For the description of the sound propa-
gation, the acoustic wave equation has been chosen neglecting effects due to damping or shear
waves. The physical model has been transferred to a numerical model of the optoacoustic imag-
ing procedure by discretization with state-of-the-art methods. For the optical problem, standard
continuous finite elements are used, the photoacoustic effect is discretized by a mapping be-
tween potentially non-conforming meshes and the acoustic wave equation is discretized with
HDG for the spatial coordinate and Runge–Kutta or ADER for the temporal coordinate. The
objective function sums differences between measured and simulated pressure time curves at
the detectors. The gradients of the objective function with respect to the sought parameters, i.e.,
absorption coefficient, diffusion coefficient, speed of sound, and mass density have been derived
using the adjoint approach. The algorithmic framework is based on a gradient-based optimiza-
tion (either low-storage BFGS or steepest decent) with a line search fulfilling the strong Wolfe
conditions. The derived reconstruction method is very general in terms of the physical descrip-
tion and the supported tomographic setups. To the best of the author’s knowledge, this is the
first algorithm allowing for the reconstruction of the four fields of absorption coefficient, diffu-
sion coefficient, speed of sound, and mass density within one integral setup. A proof of concept
and several numerical examples demonstrate the correctness and the properties of the derived
method.

A typical optoacoustic tomograph has fixed detectors and overcomes the distance to the object
by a coupling medium, which is spatially homogeneous. In Chapter 8, an approach based on
the ideas of [8] has been presented to crop the computational domain such that computational
overhead due to the repeated simulation of wave propagation in a homogeneous medium is
avoided.

In Chapter 9, two novel methods to oppose ill-conditioning in inverse problems have been
developed. The first method is based on the idea that material properties are not randomly dis-
tributed but are made up of distinct clustered constituents, e.g. the different organs in a body.
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Commonly, image reconstruction determines parameter values for each pixel of the image sep-
arately or analogously, for each finite element of a mesh separately. In other words, the basis
functions for the parameter fields take on the value ‘1’ in one element and ‘0’ in all others. Here,
elements are clustered into patches to represent constituents of the object to be reconstructed.
The patches are generated automatically from the parameter gradients or the parameter distribu-
tions. Thereby, the number of degrees of freedom in the inverse problem is significantly reduced
without compromising the flexibility. The solution and the patches can evolve according to the
characteristics of the object. Another gain of this concept is that information can be transported
from the most sensitive parameter to the less sensitive parameters, e.g. by reusing the patched
basis functions of the most sensitive parameter. The second method to oppose ill-conditioning
is a material identification. Generally, an experienced user expects material parameters repre-
senting specific tissue types. This knowledge is input to the algorithm by supplying a material
catalog specifying expected tissue types with representative ranges for the material properties.
The algorithm only reconstructs the absorption coefficient and updates the acoustical properties
by choosing best matches from the material catalog. Best matches are determined with the ab-
sorption coefficient and the gradients of the acoustical parameters. Both approaches have been
validated and studied using numerical examples. In several scenarios, they speed up the con-
vergence of the parameter errors and improve the image quality significantly. Both methods are
straight forwardly carried over to other inverse problems.

In Chapter 10, all developed methods have been assembled and applied to experimentally
obtained data. The presented reconstruction algorithm has successfully reconstructed the optical
absorption coefficient from in-vivo mouse brain measurements and several anatomical features
were clearly identified. Optoacoustic images of the speed of sound and mass density distribution
have been reconstructed following the same optimization approach and physical model as for
the absorption coefficient, which is (to the author’s knowledge) reported for the first time. The
images suffer from low sensitivity. Therefore, a phantom study has been carried out highlighting
the ill-conditioning of acoustical parameter reconstruction in optoacoustic imaging.

One very important aspect to be considered in future work is the modeling error. It is espe-
cially important to keep the modeling error low because the reconstruction procedure cannot
distinguish if the deviation of measurement and simulation data is due to falsely set material
parameters or due to modeling errors. Images can therefore show characteristic features that are
associated to balancing or counteracting modeling errors. The first point to be addressed should
be the description of light propagation. The diffusion approximation is known to yield poor
results near sources and boundaries. The radiative transfer equation, from which the diffusion
approximation is derived, could reduce the modeling error in the description of light propagation.
The acoustical part could be extended by consideration of shear waves and damping. Extensive
studies on experimentally obtained measurement data should be carried out in order to quantify
modeling error and sensitivity. For the approaches opposing ill-conditioning, quantitative stud-
ies on benchmarks of general inverse problems would be interesting, especially in comparison
with standard methods to improve conditioning like Tikhonov or total variation regularization.
Applications should be extended concerning the tomographic setup, e.g., handheld systems.
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