
WG-7.5
20
IFIP

8
Reliability and Optimization of Structural Systems

ETH Zurich, ZentrumJune 26-29, 2018

Efficient estimation of variance-based reliability sensitivities in
the presence of multi-uncertainty

Max Ehre, Iason Papaioannou, Daniel Straub
Engineering Risk Analysis Group, TU München, Germany

ABSTRACT

In reliability analysis, next to an estimate of the probability of failure, one is often interested in the
sensitivity of this estimate to changes in the model input. Moreover, in the presence of multi-uncertainty,
e.g. when information can be used to refine the probabilistic model of a subset of the inputs, sensitivity
measures with respect to a subset of the input parameters are of particular interest. In this work, we
propose a new sensitivity measure for the probability of failure conditional on such a subset of input
parameters. Since the failure event of interest is typically a rare event, evaluating reliability sensitivities
with sampling-based approaches becomes expensive. This motivates us to develop a method to efficiently
compute the new conditional reliability sensitivity measures by means of polynomial basis surrogates.
In a two-step procedure, conditional reliability samples are initially obtained from an auxiliary surrogate
to circumvent possibly expensive limit-state function evaluations. Based on these samples, a second
surrogate is computed which directly yields estimates of the proposed sensitivity indices. The approach
performance is tested on a numerical 2-D truss example.

1 INTRODUCTION

Reliability analysis is concerned with the evaluation of the probability of failure of an engineering sys-
tem. The system can be described probabilistically in terms of the input random vector ΘΘΘ with joint CDF
FΘΘΘ and a deterministic model Y mapping each ΘΘΘ to an output Y =Y(ΘΘΘ). The performance of the system
can be assessed in terms of its limit-state function g. The limit-state function defines the failure modes
of a system and by convention takes values below 0 in the failure domain of the input parameter space
ΩΘΘΘ. The system probability of failure is given by (Ditlevsen and Madsen, 1996)

P(F) = EΘΘΘ [I(g(ΘΘΘ)≤ 0)] =
∫

ΩΘΘΘ

I[g(θθθ)≤ 0] fΘΘΘ(θθθ)dθθθ , (1)

where the indicator function I equals 1 on the failure domain {ΘΘΘ : g(ΘΘΘ) ≤ 0} and 0 on its complement
and fΘΘΘ is the joint probability density of ΘΘΘ.
We consider a segmentation of the random input vector in two disjunct subsets ΘΘΘ = [ΘΘΘA,ΘΘΘB]

T . In prac-
tice, the type B-variables may represent random inputs on which information can be collected. This
information can then be used to refine the probabilistic model of ΘΘΘB via a Bayesian formulation and,
ultimately, improve the estimate of P(F) (reliability updating). The variables ΘΘΘB are often termed re-
ducible or epistemic. In contrast, the uncertainty on variables ΘΘΘA can not be reduced, which is why ΘΘΘA

are termed irreducible or aleatory. It is desirable to obtain information on the potential influence of each
component of the type B-variables in the reliability updating prior to running the updating e.g. to provide
decision support for data acquisition. To this end, we consider the probability of failure conditional on
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the prior type B-variable space (that is, before any information on ΘΘΘB is accounted for to change fΘΘΘB)
(Der Kiureghian and Ditlevsen, 2009):

PF(ΘΘΘB) = P(F |ΘΘΘB) = EΘΘΘA [I(g(ΘΘΘA,ΘΘΘB)≤ 0)|θθθ B]

=
∫

ΩΘΘΘA

I[g(θθθ A,θθθ B)≤ 0] fΘΘΘA|ΘΘΘB(θθθ A|θθθ B)dθθθ A. (2)

Note, that PF(ΘΘΘB) is a scalar function of a random vector and hence is itself a random variable. The
goal of this work is to quantify the sensitivity of PF to the elements of ΘΘΘB. To this end we propose a
novel reliability sensitivty measure based on a variance decomposition of the conditional probability of
failure. Moreover, we discuss an efficient approach for computing the sensitivities by means of surrogate
modelling techniques.
The structure of the paper is as follows: In Section 2 we discuss the basics of variance-based sensitivity
analysis and introduce the new reliability sensitivty index. Section 3 introduces polynomial basis surro-
gate modelling (polynomial chaos expansions (PCEs) and low-rank approximations (LRAs)) and their
relation to sensitivity measures. In Section 4 we give an outline of the two-level surrogate-based sensi-
tivity estimation procedure which is subsequently tested on a numerical 2-D truss example in Section 5.
Section 6 contains a brief discussion on the found results.

2 SENSITIVITY ANALYSIS

Various sensitivity measures to assert significance across an input-output relation have been proposed.
General methodological distinctions can be made with respect to the inputs for which sensitivities are
computed (parametric vs. non-parametric), as well as the range over which they are computed (local vs.
global). A review of the different methods can be found in (Saltelli et al., 2000) and (Iooss and Lemaître,
2015). The sensitivity measures considered here belong to the realm of variance-based sensitivity (or
Analysis Of Variance - ANOVA) methods, which is a class of non-parametric global sensitivity methods
that can effectively provide input variable importance rankings.

2.1 Variance-Based Sensitivity Analysis

ANOVA provides measures to estimate the contribution of a certain combination of input variables
ΘΘΘA,A ⊆ P({1,2, . . . ,d}) to the output variance of a quantity of interest (QOI) Q = Q(ΘΘΘ). A first-
order measure for this contribution is one that considers the influence of effects for which solely Θi is
relevant and neglects interaction contributions of Θi with other inputs. This is the first-order Sobol’ index
of Q with respect to the i-th component Θi of the model input ΘΘΘ, which is given by

SQ,i =
VΘi [EΘΘΘ∼i [Q|Θi]]

V [Q]
, (3)

where ΘΘΘ∼i indicates the vector of all components of ΘΘΘ but the i-th. SQ,i is the output variance fraction
caused by Θi only. Analogously, the total sensitivity index (Homma and Saltelli, 1996) measures the
combined variance contribution of Θi including any interactions with other variables and thus reads

ST
Q,i =

EΘΘΘ∼i [VΘi [Q|ΘΘΘ∼i]]

V [Q]
= 1− VΘΘΘ∼i [EΘi [Q|ΘΘΘ∼i]]

V [Q]
. (4)

Originally, these expressions follow from a projection of Q onto a unique orthogonal functional basis
with respect to the d-dimensional uniform space UUU and computing the partial variances related to the
summands. This projection is the so-called Sobol’ decomposition (Sobol’, 1993), which reads:

f (UUU) = f0 +
d

∑
i=1

fi(Ui)+
d

∑
i=1

d

∑
j=i+1

fi j(Ui,U j)+ · · ·+ f12...d(UUU). (5)

Given the marginal CDFs of Θi, Fi, and assuming pairwise independence amongst all Θi, the isoproba-
bilistic marginal transformation T : Θi→ Fi(Θi),1≤ i≤ d can be defined and the decomposition can be
generalized as f (T (ΘΘΘ)).
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2.2 The proposed reliability sensitivity index

In reliability analysis, the quantity of interest is the failure event F and the associated probability of
failure. Since F is defined via the indicator function of the failure domain, Luyi et al. (2012) propose to
compute importance rankings through a variance decomposition of the indicator function I(g≤ 0). They
do so by means of a surrogate modelling technique as the MC-estimators of these rare event-related typ-
ically exhibit relatively slow convergence and thus require large amounts of samples and g-evaluations.
Here we extend this approach to a multi-uncertainty setting and propose to perform a variance decompo-
sition of the conditional probability of failure defined in Equation (2). More precisely, we will use the log-
transformed version, lnP(ΘΘΘB). This can be understood as a measure for the magnitude of the conditional
probability of failure. In this way, we focus the sensitivity analysis on possibly substantial/magnitude-
altering changes in the estimate of P(ΘΘΘB). The novel sensitivity indices are given by

SlnP,i =
VΘB,i [EΘΘΘB∼i [ln{EΘΘΘA [I(g≤ 0)|ΘΘΘB]}|ΘB,i]]

VΘΘΘB [ln{EΘΘΘA [I(g≤ 0)|ΘΘΘB]}]

ST
lnP,i = 1−

VΘΘΘB∼i

[
EΘBi

[ln{EΘΘΘA [I(g≤ 0)|ΘΘΘB]}|ΘΘΘB∼i]
]

VΘΘΘB [ln{EΘΘΘA [I(g≤ 0)|ΘΘΘB]}]
.

While these expressions appear cumbersome, they exhibit key features of the new indices.

1. The variance decomposition of the total variance contributed by ΘΘΘB rather than ΘΘΘ is performed,
which is reflected by the normalizing constants.

2. The variance due to ΘΘΘA is accounted for as a weight of the contribution of each outcome θθθ B.

3. Due to the expectation EΘΘΘA , the employed QOI is smooth over ΩΘΘΘB . In particular, it is non-binary
as opposed to the QOI underlying the indices proposed by Luyi et al. (2012).

In the following section, we discuss common problems when tackling reliability sensitivities with sam-
pling methods. Thereafter, we introduce the means to circumvent sampling almost entirely in the com-
putation of the novel sensitivity indices.

2.3 Monte-Carlo estimators

Saltelli et al. (2000) provide Monte Carlo-estimators for expressions (3) and (4). Based on a set of ns d-
dimensional ΘΘΘ-samples, ns ·(d+2)/2 model evaluations are necessary to compute them. Therefore, these
estimators may be intractable if a model evaluation is computationally expensive, d is large or Q is given
by a failure event with small associated probability of failure for which ns ≈ 100/P(F) at an estimator
coefficient of variation of 10%. Therefore, since typically P(F) is very small, ns becomes prohibitively
large. Note, that for the novel sensitivity indices the computational burden would even amount to a
multiple of what is needed for the computation of sensitivity indices of the indicator function of g. This
is due to the need to solve Equation (2) ns ·(d+2)/2 times, which may in turn require many g-evaluations
per solution. Conversely, computing the indices associated with I(g ≤ 0) requires a single g-evaluation
at each sample to determine whether g≤ 0. Therefore, the computational effort approximately scales as
the average number of g-calls necessary to solve Equation (2). However, the smoothness in our choice of
Q is key to an entirely surrogate-driven sensitivity computation, which facilitates the use of only a small
fraction of the samples required in the sampling-based procedure. Two types of surrogate models have
been tested and are detailed in the subsequent section.
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3 POLYNOMIAL BASIS SURROGATE MODELLING

Let ΘΘΘ be a random vector on the outcome space Rd with joint CDF FΘΘΘ whose elements are mutually
independent and Y(ΘΘΘ) =Y ∈R. If Y has finite mean-square, i.e. EΘΘΘ[Y (ΘΘΘ)2]< ∞, it belongs in a Hilbert
spaceH on which an inner product of any two functions g,h ∈H is defined as

〈g(ΘΘΘ),h(ΘΘΘ)〉H = EΘΘΘ[g(ΘΘΘ)h(ΘΘΘ)] =
∫

Rd
g(θθθ)h(θθθ) fΘΘΘ(θθθ)dθθθ , (6)

where fΘΘΘ(θθθ) is the joint PDF of ΘΘΘ. g and h are orthogonal if

〈g(θθθ),h(θθθ)〉H = EΘΘΘ[g(ΘΘΘ)h(ΘΘΘ)] = 0. (7)

Note, that if g and h can be written as products of univariate functions of the components of ΘΘΘ, the
following holds:

〈g(θθθ),h(θθθ)〉H =
d

∏
i=1

EΘi [gi(Θi)hi(Θi)]. (8)

Given a complete and orthonormal basis of H, {hi(ΘΘΘ), i ∈ N}, Y may be expressed as a linear combina-
tion of the basis functions:

Y = Y(ΘΘΘ) =
∞

∑
i=0

aihi(ΘΘΘ). (9)

Then, since Y ∈H, the approximation

Ŷ = Ŷ(ΘΘΘ) =
p

∑
i=0

aihi(ΘΘΘ) (10)

asymptotically (p→ ∞) converges to Y in the mean-square sense. For d = 1, a possible choice of basis
functions related to certain standard distribution types of fΘΘΘ are known polynomial families {ψi(Θ), i =
0, ..., p}, which can be found systematically by means of the Askey scheme (Xiu and Karniadakis, 2002).
This lays the foundation for both PCEs and LRAs. They differ with respect to how the multi-dimensional
base polynomials are defined and how the expansion coefficients ai are determined. For d > 1, due
to Eq. (8), multi-dimensional basis polynomials Ψk can be easily constructed as products of the one-
dimensional canonical polynomials ψ

(i)
k .

3.1 Polynomial Chaos Expansions

Given the polynomial family of the i-th input Θi up to pi-th order {ψ(i)
j (Θi), j = 0, ..., pi}, the j-th multi-

dimensional basis function reads

Ψ j =
d

∏
i=1

ψ
(i)
α ji(Θi), (11)

where ααα contains all combinations of d-dimensional index sets each assigning a polynomial order to
each input Θi such that the total polynomial order |ααα j| = ∑

d
i=1 α ji ≤ p,0 ≤ j ≤ P− 1. The number of

basis functions P is given by

P =

(
d + p

p

)
(12)

and the PCE format reads

ŶPCE(ΘΘΘ) =
P−1

∑
j=0

a j

d

∏
i=1

ψ
(i)
α ji(Θi). (13)

The coefficients aaa are found through a projection of Y onto the space spanned by {Ψ j, j = 0, ...,P−1}.
In this work,we evaluate aaa using an ordinary least-squares (OLS) procedure, which approximates the
projection. Equation (12) indicates a fast growth of the OLS problem size with increasing dimension d.
This motivates the use of sparse PCE methods which is also the method of choice in this work. Sparse
PCE reduces P by penalizing the number of terms in the PCE through solving a modified, L1-regularized
least-squares problem (Blatman and Sudret, 2011). In this way, the method elicits a minimal number of
basis functions such as to best explain the output variance.
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3.2 Canonical Decomposition

Low-rank approximations have been introduced originally to represent high-dimensional tensors by
means of lower-dimensional tensors (Grasedyck et al., 2013). A specific format of such approxima-
tions are canonical decompositions, in which tensors are approximated by means of a linear combination
of products of one-dimensional tensors (Hitchcock, 1927). The idea extends to continuous spaces where
a multivariate function is approximated by a linear combination of products of univariate functions:

ŶLRA(ΘΘΘ) =
r

∑
j=1

a j

d

∏
i=1

pi

∑
k=1

zi jkψ
(i)
k (Θi). (14)

Therein, an additional set of coefficients zzz appears, which is can be efficiently determined by solving
reduced, univariate least squares problems over the directions i = 1, ...,d repeatedly (while keeping all
remaining directions constant in each step; this is often referred to as alternating least squares). In a
second step, the coefficients aaa are determined via OLS. A detailed description of the procedure may be
found in (Chevreuil et al., 2015) and (Konakli and Sudret, 2016b).

3.3 Surrogate-Based sensitivity indices

Both PCEs and LRAs can be used to infer first-order and total sensitivity indices directly from the
computed model coefficients. Rather than searching estimates of expressions (3) and (4), the similarity
of the underlying orthogonal Sobol’ decomposition in Eq. (5) with Eqs. (13) and (14) is exploited.
Sudret (2008) showed that the Sobol’ decomposition of the PCE can be found by collecting any multi-
dimensional Hermite polynomials depending on identical variable subsets ΘΘΘA into fA(ΘΘΘA). Therefore,
computing the partial variance of the PCE model associated with a subset of variables ΘΘΘA amounts to
summing the squared coefficients of the respective multi-dimensional basis polynomials in which the
elements of ΘΘΘA occur (exclusively for Sobol’ indices and greedily for total indices). The same concept
can be applied to LRAs even though the compressed format (product) renders the evaluation somewhat
more tedious. The expressions for LRA-based first-order and total indices are derived in (Konakli and
Sudret, 2016a).

4 CONDITIONAL SURROGATE-BASED RELIABILITY SENSITIVITIES

The computation of sensitivity indices via polynomial surrogates requires the QOI to be sufficiently
smooth. In particular, any attempts to obtain surrogate-based indices of the indicator function of the
failure domain I(g≤ 0) directly in such a manner must fail due to the discontinuity in I(g≤ 0). However,
the log-transformed conditional probability of failure is continuous in the space of ΘΘΘB so that one may
compute the proposed sensitivity indices with polynomial surrogates. To this end, we devise a two-level
surrogate modelling procedure. Building a surrogate of lnP (level 2) requires an experimental design that
consists of samples of ΘΘΘB and the associated probabilities of failure given each of these samples. That
is, in order to obtain the experimental design one has to solve n2 reliability problems, where n2 is the
experimental design size for the final surrogate. Therefore, an auxiliary (level 1) surrogate is built for the
actual model Y , based on which the reliability computations can be conducted. For the level 1-surrogate,
n1 samples of ΘΘΘ as well as the evaluation of the original model at these samples are required. The overall
number of original model evaluations is thereby limited to n1 because any subsequent computations are
surrogate-based. The analysis proceeds in the following way:

1. Perform latin hypercube sampling (LHS) to obtain n1 ΘΘΘ-samples and evaluate the model Y at these
samples. Build the level 1-surrogate for the model, Ŷ .

2. Elicit a variable subset of interest ΘΘΘB (possibly repeat the analysis for various subsets). Perform
latin hypercube sampling (LHS) to obtain n2 ΘΘΘB-samples. For each sample, use a structural relia-
bility method and the level 1-surrogate-based limit-state function ĝ to approximate

P̂(i)
F = EΘΘΘA

[
I(ĝ
(

ΘΘΘA,θθθ
(i)
B

)
≤ 0)

∣∣∣θθθ (i)
B

]
=
∫

ΩA

I
[
ĝ
(

θθθ A,θθθ
(i)
B

)
≤ 0
]

fΘΘΘA|ΘΘΘB

(
θθθ A|θθθ (i)

B

)
dθθθ A.
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3. From the set {θθθ (i)
B , ln(P̂(i)

F )}i=1,··· ,n2 , build the level-2 surrogate ̂lnPF(ΘΘΘB).

4. Obtain first-order and total sensitivity indices of l̂nPF by means of the model coefficients.

The procedure outlined above is also sketched in Figure (1).

Experimental
Design

Level 1:
Ŷ

ΘB-samples

lnP -samples

Structural
Reliability
Methods

Level 2:
l̂nP

First-order/
Total conditional
reliability indices

Figure 1: Flow diagram of 2-level surrogate-based conditional reliability sensitivities.

5 EXAMPLE APPLICATION

The considered example is a 2-D truss (Figure (2)) consisting of 13 rods, where horizontal and diagonal
rods have log-normally distributed cross-sections A1, A2 and Young’s moduli E1, E2, respectively. The
truss sustains 6 vertical point loads P1 - P6 which are modelled as Gumbel-distributed (Lee and Kwak,
2006; Konakli and Sudret, 2016a). The parameters of the input variables are given in Table (1). Failure
is defined by g(ΘΘΘ) = ulim−umax(ΘΘΘ), where ulim = {10cm,12cm,14cm} are considered.

4m 4m 4m 4m 4m 4m

2m

P1P2P3P4P5P6

umax

E1, A1

E1, A1 E2, A2
E2, A2

Figure 2: 2-D truss example.

In view of the Bayesian interpretation of the variable sets ΘΘΘA (irreducible) and ΘΘΘB (data available, re-
ducible), the latter is chosen to comprise any material properties ΘΘΘB = {E1,A1,E2,A2} and thus ΘΘΘA =
{P1, . . . ,P6}.

Table 1: Input variable definitions of the truss example.

Random Variable Distribution Mean Standard deviation
A1 [m2] Log-Normal 2 ·10−3 2 ·10−4

A2 [m2] Log-Normal 1 ·10−3 1 ·10−4

E1,E2 [Pa] Log-Normal 2.1 ·1011 2.1 ·1010

P1 - P6 [N] Gumbel 5.0 ·104 7.5 ·104

Both level-1 and level-2 experimental designs have been obtained via latin hypercube sampling. 100
samples have been used for both PCE and LRA level 1-surrogates. In the first level, the LRA approach
yields consistently smaller global and conditional (on samples for which u ≤ ulim) model errors, which
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is why all level-2 surrogates are built from a level-1 LRA approach. This is in accordance with the
findings of Konakli and Sudret (2016b). The analysis has been repeated for different random level-1
experimental designs 20 times, which yields the estimator statistics given in Figures 3 & 4. They are
given for the relative error ε with respect to the direct Monte-Carlo (DMC) reference solution, which is
defined as

εQ =
Q−Qre f

Qre f
. (15)

All reliability analyses haven been performed with the first-order reliability method (FORM). For the
reference solution, nDMC = 105 samples have been used implying the solution of 3 ·105 reliability prob-
lems of dimension 6 (since the reduced B-variable space has dimension 4).
The high sensitivity indices of E1 and A1 are computed accurately with 1-2 % relative error with 100
model evaluations. For the variables E2 and A2, which have low influence, relative errors can become
as large as 40% in single cases. This may partly be due to the small magnitude of the sought numerical
values in combination with the slow convergence rate of the DMC-approach for the proposed reliability
sensitivities. While the LRAs are superior in predicting the model behaviour (level 1) in the tails of
the input joint density, PCE and LRA-based level-2 surrogates perform comparably well. Evidently, the
logarithmic transformation yields very similar first- and total-order indices. This is not the case for the
reliability indices proposed in (Luyi et al., 2012), in which first-order contributions are often negligibly
small and total-order indices have to be considered.

ulim Mean estimates Relative error ε

10 cm

E1 E2 A1 A2
0.0

0.2

0.4
DMC
PCE
LRA

E1 A1

−0.02

0.00

0.02
µε
±σε

E2 A2

−0.4

−0.3

−0.2

12 cm

E1 E2 A1 A2
0.0

0.2

0.4

DMC
PCE
LRA

E1 A1

−0.02

−0.01

0.00

0.01

0.02 µε
±σε

E2 A2

−0.3

−0.2

−0.1

14 cm

E1 E2 A1 A2
0.0

0.2

0.4

DMC
PCE
LRA

E1 A1

−0.01

0.00

0.01

µε
±σε

E2 A2

−0.30

−0.25

−0.20

Figure 3: lnPF first-order Sobol’ indices: mean estimates and relative errors (n1 = 100,n2 = 1000).
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ulim Mean estimates Relative error ε

10 cm

E1 E2 A1 A2
0.0

0.2

0.4

DMC
PCE
LRA

E1 A1

−0.01

0.00

0.01

0.02

0.03
µε
±σε

E2 A2

−0.3

−0.2

−0.1

0.0

12 cm

E1 E2 A1 A2
0.0

0.2

0.4

DMC
PCE
LRA

E1 A1

−0.01

0.00

0.01

0.02

0.03
µε
±σε

E2 A2

−0.3

−0.2

−0.1

0.0

14 cm

E1 E2 A1 A2
0.0

0.2

0.4

DMC
PCE
LRA

E1 A1

−0.01

0.00

0.01

0.02
µε
±σε

E2 A2

−0.25

−0.20

−0.15

−0.10

Figure 4: lnPF total indices: mean estimates and relative errors (n1 = 100,n2 = 1000).

6 CONCLUDING REMARKS

In this paper we propose a variance-based sensitivity index tailored to reliability analysis in the pres-
ence of multi-uncertainty. Moreover, we devise a two-level polynomial surrogate modelling strategy to
compute a model input variable importance ordering based on the proposed indices. It was found that
for a numerical 2-D truss example as few as 100 original model evaluations suffice to obtain accurate
importance rankings. Amongst the two considered surrogates, namely PCEs and LRAs, the LRAs have
been found to be more suitable for surrogate-driven reliability computations (level 1). Both PCEs and
LRAs perform comparably in level 2.
The contribution of the novel index is threefold. First, it focusses the sensitivity analysis on a variable
subset of interest which is specifically interesting in the presence of multi-uncertainty and data assim-
ilation applications. Secondly, it represents a direct sensitivity measure for the probability of failure
magnitude as opposed to indices based on the indicator function which rank influence on the failure
domain shape. Finally, the new index facilitates the entirely surrogate-driven computation of reliability
sensitivities by smoothening the indicator function discontinuity through an integral formulation.
For the investigated numerical example, the estimator variances due to the random selection of the exper-
imental design are relatively small. However, this need not be the case for other models and a possible
solution to this issue could be a more guided way to select the level-1 experimental design with respect
to the QOI.
The dimensionality of the models, that can be handled by the approach is mainly limited by the surrogate
modelling techniques. Using LRAs it is applicable up to several hundred input variables. Addition-
ally, as a byproduct of the analysis within a Bayesian inference problem, the obtained surrogate models
may be used to compute approximate reliability updates from posterior samples at negligible additional
computational cost.



Efficient estimation of variance-based reliability sensitivities in the presence of multi-uncertainty

ACKNOWLEDGMENTS

This project was supported by the German Research Foundation (DFG) through Grant STR 1140/6-1
under SPP 1886.

REFERENCES

Blatman, G. and B. Sudret (2011). Adaptive sparse polynomial chaos expansion based on least-angle
regression. Journal of Computational Physics 230(6), 2345 – 2367.

Chevreuil, M., R. Lebrun, A. Nouy, and P. Rai (2015). A least-squares method for sparse low rank
approximation of multivariate functions. SIAM/ASA Journal on Uncertainty Quantification 3(1), 897–
921.

Der Kiureghian, A. and O. Ditlevsen (2009). Aleatory or epistemic? Does it matter? Structural
Safety 31(2), 105–112.

Ditlevsen, O. and H. O. Madsen (1996). Structural reliability methods. John Wiley & Sons Ltd.

Grasedyck, L., D. Kressner, and C. Tobler (2013). A literature survey of low-rank tensor approximation
techniques. GAMM-Mitteilungen 36(1), 53–78.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal of
Mathematics and Physics 6(1-4), 164–189.

Homma, T. and A. Saltelli (1996). Importance measures in global sensitivity analysis of nonlinear
models. Reliability Engineering and System Safety 52(1), 1 – 17.

Iooss, B. and P. Lemaître (2015). A review on global sensitivity analysis methods. In C. Meloni and
G. Dellino (Eds.), Uncertainty management in Simulation-Optimization of Complex Systems: Algo-
rithms and Applications. Springer.

Konakli, K. and B. Sudret (2016a). Global sensitivity analysis using low-rank tensor approximations.
Reliability Engineering & System Safety 156(Supplement C), 64 – 83.

Konakli, K. and B. Sudret (2016b). Polynomial meta-models with canonical low-rank approximations:
Numerical insights and comparison to sparse polynomial chaos expansions. Journal of Computational
Physics 321, 1144–1169.

Lee, S. H. and B. M. Kwak (2006). Response surface augmented moment method for efficient reliability
analysis. Structural Safety 28(3), 261 – 272.

Luyi, L., L. Zhenzhou, F. Jun, and W. Bintuan (2012). Moment-independent importance measure of
basic variable and its state dependent parameter solution. Structural Safety 38, 40 – 47.

Saltelli, A., K. Chan, and E. Scott (2000). Sensitivity Analysis. John Wiley & Sons, Inc.

Sobol’, I. (1993). Sensitivity estimates for nonlinear mathematical models. Math. Modeling & Comp.
Exp 1, 407–414.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineer-
ing And System Safety 93(7), 964 – 979.

Xiu, D. and G. E. Karniadakis (2002). The Wiener–Askey polynomial chaos for stochastic differential
equations. SIAM Journal on Scientific Computing 24(2), 619–644.


	Introduction
	Sensitivity Analysis
	Variance-Based Sensitivity Analysis
	The proposed reliability sensitivity index
	Monte-Carlo estimators

	Polynomial Basis Surrogate Modelling
	Polynomial Chaos Expansions
	Canonical Decomposition
	Surrogate-Based sensitivity indices

	Conditional Surrogate-Based Reliability Sensitivities
	Example Application
	Concluding Remarks

