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Abstract: Prediction of deterioration in structural systems is associated with
large uncertainties. Inspections can reduce these uncertainties and support the
planning of measures to ensure the integrity of structural assets, but inspections
are costly and should be optimized. Past research and applications of risk-based
inspection planning have treated sequentially the questions “when to inspect?”
and “where to inspect?” to limit the computational cost of optimizing inspec-
tion plans. To optimize inspections in larger structural systems, we develop a
methodology that accounts for component interactions and interdependence such
as stochastic dependence in deterioration processes at different locations, struc-
tural interactions and progressive damage evolution. The methodology involves
a hierarchical dynamic Bayesian network to compute the updated system reli-
ability with component inspection results. The optimization utilizes a heuristic
for defining inspection strategies at the system level. In particular, component
inspections are prioritized based on their value of information (VoI). We investi-
gate heuristics that combine component characteristics which are closely linked
to the VoI. We define a Prioritization Index and study its effect for different com-
binations of component structural importance, uncertainty and correlation. For
numerical investigations, the methodology is applied to an idealized steel struc-
ture subject to fatigue deterioration.

1 Introduction
Civil and structural assets deteriorate over time due to processes such as fatigue, wear or corro-
sion, and can eventually become non-operational or even fail. Their state of deterioration can be
described and predicted only with uncertainty due to the stochastic nature of these processes [3,
13]. To reduce this uncertainty, the asset operator can devise inspection and maintenance plans
(I&M). Through inspections, the operator obtains new information on the state of the structure
and reduces the uncertainty on the system condition. However, the inspection and maintenance
actions can represent a significant part of the total life cycle cost of a structure. This paper ad-
dresses the optimization of these actions, so that the total expected I&M cost over the design
life of the structure is as low as possible without affecting the operability of the system.
Multiple studies have developed I&M planning methods and tools combining Bayesian meth-
ods and stochastic deterioration models [7, 8, 13, 18, 20]. An I&M plan can be modelled as a
sequential decision problem, as illustrated by the decision tree in Figure 1. This type of prob-
lem has been studied extensively and several general methods have been proposed to obtain a
global optimal strategy [2, 11]. These methods include the Partially Observable Markov De-
cision Process (POMDP), which has been utilized to solve single and multi-components I&M
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Figure 1: Simple decision tree in risk based inspection planning [13].

optimization problems [6]. However, the exact solution of the POMDP for multi-component
systems is an intractable computational challenge [2, 9, 6]. Approximate solutions have been
investigated, but they do not consider components interdependence and their joint effect on the
system condition [6]. For the same reasons, most risk-based planning optimization approaches
have simplified the system and focused on the optimization at the component level [8, 18].
However, these simplified models consider separately and sequentially the conditions of the
components and do not include the strong correlation among the states of multiple components.
The method proposed in [4] models the component interaction by adopting a hierarchical dy-
namic Bayesian network (DBN) to calculate the system probability of failure at any point in
time t, given inspection observation and repair decisions of the system components up to that
time t. This offline method is based on state-of-the art deterioration models, is applicable to
large multi-components systems, and takes into account component interdependence and their
joint effect on the state of the system. The DBN is utilized in a methodology to evaluate the
cost of any strategy for an I&M plan [5]. The methodology utilizes a heuristic to reduce the
optimization space of possible strategies at the system level and a Monte Carlo simulation to
obtain the expected cost of an adopted inspection and maintenance strategy. The heuristics ap-
proach plays the double role of eliminating sub-optimal and impractical strategies for the asset
operator, and pre-selecting subsets of strategies. The strategy that minimizes the expected cost
within the reduced space is not a global optimum but may be a good compromise and can be
compared to any other strategy being put forward as an alternative.
In [5], component prioritization for inspection is considered only in a simplified manner,
through the value of the component probability of failure. This paper extends the methodol-
ogy in [5] and combines component importance within the system and component probability
of failure to propose a new ranking index and a parameter η for the heuristic prioritization of
components for inspection. This extended methodology and proposed component prioritization
is applied to a steel structure.

2 The optimization problem
2.1 Terminology and parameters
The terminology, parameters of interest and basic assumptions in this study are outlined below.

· Finite horizon model: we evaluate the optimal decision plan for a deterministic service
life time T in years. This assumption is reasonable since the durability of materials or
technological advances are likely to make the structure obsolete after a certain time.

· Time step t: a discrete-time model is adopted, where a time step corresponds to one year.
This is typical for most structures, but the methodology and formulae in this paper can
be adjusted for different time step definitions. For the fatigue model presented in the



numerical investigation, one time step corresponds to ∆n fatigue stress cycles.

· Policy πt : the set of rules adopted at time t guiding the decision process based on the
information available at that time [1]. The policy gives the answer to the questions "In-
spect?" {Yes/No}, "Where?" {component i, j...}, "Repair?" {Yes/No} in function of the
inspection, repair and failure history.

· Strategy S = {π1, ...,πt , ...πT}: the set of policies for all decision steps. The universe S
of strategies increases exponentially with the number of components and the number of
states describing the condition of a component.

· Inspection outcomes Z = {Z1, ...,ZT}: the (Zt) are random variables containing the pos-
sible inspection history during the service life of the structure. The vector Zt stores the
information for components 1≤ i≤ N, if inspected at time t, and the inspection results.

· Costs: the utility of a strategy is expressed in monetary terms, in function of the different
costs incurred during the service life [14].

– cC: cost incurred when an inspection campaign is launched. It includes the cost of
installing inspection devices or transporting inspection operators to site, and the cost
of impairing the operation of the system.

– cI: cost of inspection per component. It includes the cost of the time spent for each
component inspection during an inspection campaign.

– cR: cost of repairing one component. It also includes the associated downtime.
– cF : cost incurred if the structure fails.

We assume that the inspection and maintenance actions have a fixed price over the service
life.

· Discount rate r: we consider a discounting factor for the costs incurred in the future.
For the life cycle cost calculation, all costs are discounted to their present value by the
discounting function γ(t) = 1/(1+ r)t .

2.2 Formulation of the optimization problem
The decision-maker searches for the optimal inspection-repair strategy Sopt , which minimizes
the expected cost over the service life of the structure:

Sopt = argmin
S∈S

(E[CT |S]). (1)

The expected cost E[CT |S] of a strategy S can be derived as follows [5]:

1. The total lifetime risk associated to a strategy S and an outcome Z is the sum of the
discounted risk, namely the cost of failure multiplied by the probability of failure of the
system Fs(t), conditional on the inspection outcomes and repairs as prescribed by the
strategy:

RF(S,Z) =
T

∑
t=1

cF · γ(t) ·Pr(Fs(t)|S,Z0:t−1). (2)

2. The lifetime risk is added to the lifetime inspection and repair costs, which are determined
by the inspection and repair history:

CT (S,Z) =CC(S,Z)+CI(S,Z)+CR(S,Z)+RF(S,Z). (3)



3. Finally, the expected total life-time cost and risk, for a strategy S, is given by

E[CT |S] = EZ[CT (S,Z)] =
∫

ΩZ(S)
CT (S,z) fZ(z)dz. (4)

The solution of Eq. (1) is already non trivial for a single-component system and has been studied
extensively [8, 13]. The complexity of the calculation increases for a multi-component system,
due to the large number of possible strategies and inspection outcomes. The methodology sum-
marized in section 2.3 addresses the calculation of the probability of failure in Eq. (2) at each
time step, given an inspection and repair history, with a dynamic Bayesian Network with time
and state-space discretization. The computation of the integral in Eq. (4) is performed with a
Monte Carlo simulation. A solution to the optimization problem of Eq. (1) is given in section 3.

2.3 Dynamic Bayesian Network model
2.3.1 Deterioration model

Fatigue crack growth is modeled by Paris’ law where the evolution of the crack depth D is
described by:

dD
dt

=C[∆SM
e π

M
2 ] ·D(t)

M
2 , (5)

where C and M are empirical material parameters. C can be expressed as a function of M, i.e.
C =C(M) [13].
The fatigue stress range ∆S is described by a Weibull distribution with scale and shape parame-
ters K and λ . The distribution of the equivalent fatigue stress range ∆Se = (E[∆SM])

1
M is defined

by Eq. (6) [13], as

∆Se = K ·Γ
(

1+
M
λ

) 1
M

. (6)

One can integrate Eq. (5) between t−1 and t (one time step corresponding to ∆n fatigue cycles),
with initial condition Dt−1:

Dt =

[(
1−M

2
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√
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)
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2 )
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2 )
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Failure of a component is defined by the fatigue crack size exceeding a critical depth dc.

2.3.2 Inspection model

The observation outcome Zt is a random variable defined conditionally on Dt . The possible
states of Zt are defined on R+ by the discrete state {"no crack detected"}, i.e.{Zt = 0}, and
the continuous state {"crack detected and measured as z"}, i.e. {Zt = z}z>0. The corresponding
hybrid distribution is defined in Eq. (8), where φ(.) is the standard normal probability density
function, and Φ(.) is the standard normal cumulative distribution function:Pr(Zt = z|Dt = d) = exp

(
− d

ξ

)
if z = 0

fZt |Dt=d(Zt = z) = (1−Pr(Zt = 0|Dt = d)) · 1
1−Φ(−d

σε
)
·φ
(

z−d
σε

)
if z > 0.

(8)

2.3.3 System DBN

The DBN models the deterioration process at the component level and at the system level as
per Figure 2. K, M, C and λ are modelled as constants. For each component, Dt , Mt and Kt
are random variables describing the state of the component at time t, with Mt = Mt−1 and
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Figure 2: Hierarchical dynamic Bayesian network [4].

Kt = Kt−1. The effect of components’ interdependence and correlation at the system level is
modelled through the hyper-parameters α . The random variables are discretized and the condi-
tional probability tables are pre-computated according to Eqs. (7 - 8). Exact Bayesian inference
at each time step at the component level, and at the system level through the hyper-parameters,
enables the calculation of the probability of failure for each component given the observation
from all components. Finally, the updated probability of system failure Fs is calculated. The
inference is performed following the algorithm described in [4].

2.4 Monte Carlo simulation
Monte Carlo simulation approximates the integral in Eq. (4) by:

E[CT |S]'
1
ns

ns

∑
j=1

CT (S,z j), (9)

where ns is the number of samples and (z j)1≤ j≤ns are samples of the inspection history gener-
ated from sampled deterioration histories of the structure [5]. The number of samples determines
the accuracy of the approximation. For the optimization problem, the required accuracy should
allow two strategies to be compared with a small uncertainty. In our study, we find that 200
samples are sufficient to identify the optimum strategy.

3 Value of information and component prioritization
3.1 Heuristics
A heuristic is a simple method to generate I&M strategies and reduce the search space of strate-
gies to a discrete subset. This approach is common in risk-based inspection planning and has
been demonstrated to approximate the optimal strategy efficiently for individual structural ele-
ments [8]. The choice of the heuristics can be guided by operational constraints on the minimum
inspection interval and the system reliability threshold. We characterize the heuristics at the sys-
tem level with the following parameters [5].

1. Inspection campaigns are performed at fixed intervals ∆T .
2. The numbers of inspected components in each campaign is nI .
3. If a threshold on the system reliability pth is exceeded, an additional component is in-

spected. If no inspection campaigned was planned at that time, an additional inspection
campaign is carried out.



4. Repairs of components are carried out if damage measurements exceed a repair criterion
dR.

5. Components are prioritized for inspection following a selection criterion described in
section 3.2.

These five parameters define the strategies now considered for the optimization problem. The
heuristic can yield a sub-optimal solution but reduces the complexity of the decision problem.

3.2 Prioritization Index PI(η)

We investigate several component prioritization criteria and their effect on the cost of the strate-
gies. The value of information (VoI) is a good candidate for such a criterion and can be defined
as the expected utility of inspecting component i at time t, i.e. the net gain of inspecting one
component rather than doing nothing [11]. However, the calculation of the VoI demands sig-
nificant computational efforts for multi-component systems [15, 19]. In the application of the
DBN-MC method to a Daniels system, the components’ probability of failure was used as a
proxy for the VoI [5].
In this study, we aim to find an improved proxy that also accounts for component importance.
Fundamentally, the information gained by inspecting a component is contained a) in the re-
duction of the uncertainty on the condition of this component and the corresponding effect on
the system reliability; and b) in the reduction of the uncertainty on the condition of other com-
ponents, through the components’ interdependence. Indeed, more information is gained on the
deterioration of other components from inspecting a component with a higher probability of
failure [18].
To approximate the relationship between the probability of system failure Pr(Fs) and the prob-
ability of component failure, we introduce the Single Element Importance measure for compo-
nent i (SEIi), defined as the difference between the probability of failure of the intact system
and the probability of failure of the system when only component i has failed [16]. Due to the
conditional independence properties of the Bayesian network, the SEIs are independent of any
observation and are constant in time. With Fi denoting the event "failure of component i", it is

SEIi = Pr(Fs|F1, ...,Fi−1,Fi,Fi+1, ...,FN)−Pr(Fs|F1, ...,FN). (10)

Using the total probability theorem and inserting the definition of the SEI from Eq. (10), one
can approximate the probability of system failure at a time t:

Pr(Fs)'
constant︷ ︸︸ ︷

Pr(Fs|F1, ...,FN)+SEI1 ·Pr(F1)+ ...+SEIN ·Pr(FN)+b, (11)

where b represents the contribution of simultaneous component failure. Here, the conditioning
event Z0..t−1,1..N is omitted. Note that Eq. (11) is not actually used to calculate Pr(Fs), but
shows that the probability of system failure is a function of the terms SEIi ·Pr(Fi) defined for
each component, hence by a), the VoI for component i is a function of SEIi ·Pr(Fi). Furthermore,
as stated in b), the amount of information learnt on other components is related to the probability
of failure Pr(Fi), through the components’ interdependence.
The numerical study investigates the relative weight of the quantities SEIi and Pr(Fi), as per a)
and b), to find an improved proxy for the VoI. For this purpose, we introduce a Prioritization
Index (PI) with an adjustable exponent η :

PI(η) = SEIη

i ·Pr(Fi), with 0≤ η ≤ 1. (12)

Other factors should be considered for the VoI, such as the effect of varying component cor-
relations, the inspection quality, and the cost of inspection. For instance, an underwater part



of the structure is more difficult and costly to inspect with the same accuracy as a part of the
superstructure. We limit the study to equi-correlated components, with equal inspection quality
and cost.

4 Numerical investigation
4.1 Zayas frame description
We apply the methodology to the Zayas frame [10]. This two-dimensional welded frame shown
in Figure 3 is widely used for studying offshore structures. The structure is subjected to gravity
and is loaded laterally at the top left node by a quasi-static point load L. The details of the
loading and the DBN setup can be found in [4] and [12]. The components are defined as the 22
fatigue hotspots. Two hotspots belonging to the same element have the same SEI. The system
failure is assessed through a pushover analysis [12], conditional on components states.
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Figure 3: The Zayas frame [12, 10].

4.2 Fatigue model and DBN Parameters
It is here assumed that deterioration parameters for all components have the same marginal dis-
tributions and are equi-correlated, but the method is applicable for varying probabilistic models
and correlation coefficients. The parameters of the DBN and the discretization process of the
variables are summarized in [4]. The crack depth variable D is discretized in 100 intervals, as is
the observation variable Z. The cost model assumed for the optimization is presented in Table 1,
with the same inspection and repair costs for all components. To reduce the number of required
computations, we assume that a repaired component performs like a new one [17].

Table 1: Cost model.

Inspection campaign, cC 1
Component inspection, cI 0.1
Component repair, cR 0.3
System failure, cF 104

Discount rate, r 0.02



4.3 Optimization
The optimization is performed exhaustively on the discrete set of parameters values as per Table
2. We use 200 samples for the MC simulation, which gives an acceptable variability for the
approximation of the expected cost of one strategy and is sufficient to conclude on the strategy
with the minimum cost.

Table 2: Parameters for the heuristic strategies.

Minimum time between inspection campaigns, ∆T [year] {5, 10}
PoF threshold, pth {7 ·10−4, 1 ·10−3, 2 ·10−3}
Minimum number of inspected hotspots, nI {1,2,3,...,22}
Repair criterion, dR {0}
Prioritization parameter, η {0, 0.2, 0.5, 0.7, 1}

4.4 Results
The results for the approximated expected cost of strategies with η = 0 are shown in Figure 4.
From this graph, the best strategy with η = 0 is defined by ∆T = 10, pth = 1e−3 and nI = 4. The
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Figure 4: Strategy optimization for η = 0.

constraint of a minimum inspection interval along a probability threshold might not be optimal.
In practice, it is however challenging to agree a strategy with the operator without minimum
(regular) inspection intervals.
The influence of parameter η on the expected cost of strategies is illustrated in Figure 5. Varying
η from 0 to 1 decreases the cost of the strategy in the order of 10%. The η factor also has a
smoothing effect on the expected cost curve for the same number of simulation samples, which
is due to a lower variance in the total life cycle cost.
Figure 6 shows that the greatest reduction in cost between η = 0 and η = 1 is in the risk of
failure. All other costs are also reduced but to a lesser degree.

5 Conclusions
This paper extends the methodology for estimating the optimal inspection and maintenance
strategy of large multi-component structural systems, described by Luque and Straub in [5],
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Figure 6: Decomposition of costs for the strategy ∆T = 10, pth = 10−3 and nI = 4.

within the space of strategies defined by heuristic parameters. The heuristic of component in-
spection was investigated with a Prioritization Index acting as a proxy for the value of informa-
tion of inspecting a component. This Prioritization Index factors in the information gained at the
system level through the component importance in the structural system, as well as the informa-
tion learned about other components through the probability of failure of the component. The
application of the methodology to a frame structure confirmed the computational efficiency of
the dynamic Bayesian network model combined with Monte Carlo simulation for a more com-
plex multi-component system. The proposed prioritization heuristic proved to be an effective
measure to reduce the expected cost of a chosen strategy.
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