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Abstract. In many geotechnical projects, field data is used to determine the soil parameters. In most instances, however, the 
statistical analysis is performed ad hoc and the spatial distribution of this data is not (expclitly) accounted for. A more formal 
statistical approach allows to make better use of the data and combine it in a consistent manner with other information on soil 
parameters. In particular, Bayesian analysis enables combining information from different sources to learn parameters and 
models of engineering systems, and facilitates a spatial modeling. In this paper, we apply the Bayesian concept to learn the 
spatial probability distribution of the friction angle of a silty soil using outcomes of direct shear tests at different locations; we 
then use the derived distribution to compute the reliability of a shallow foundation. We employ two different approaches for 
constructing the spatial probabilistic model of the friction angle. Both approaches account for the spatial variability of the soil 
parameter. In the first approach, we apply a single random variable for modelling the soil property within the area of interest. 
The inherent spatial variability of the parameter is described by the distribution of the random variable and we use the 
measurements to update the parameter of this distribution. We adopt the simplifying assumption of a highly fluctuating soil and 
use the distribution of the mean of the friction angle in conjunction with an analytical model for the bearing capacity to update 
the reliability of the shallow foundation. The second approach consists of modelling the spatial variability explicitly through a 
random field model and using the measurements to directly update the random field. Thereby, we employ a finite element model 
of the soil to assess the reliability of shallow foundation. 
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1. Introduction 

Geotechnical engineers are usually faced with 
large uncertainties on site conditions. To assess 
accurately the geotechnical performance, it is 
necessary to combine information from different 
sources (expert knowledge, information from 
literature and in situ measurements). Bayesian 
updating offers a consistent means for combining 
these information to learn the probabilistic model 
of uncertain parameters (Straub and Papaioannou 
2014). Thereby, a prior distribution reflecting the 
prior knowledge on site conditions is updated 
with measurements or other data to a posterior 
distribution. The derived distribution can be 
further used for reliability and risk assessment. 

Soil properties are varying in space, even 
within one soil type (Baecher and Christian 
2008). It is, therefore, imperative that available 
data and information are combined with models 
of spatially variable parameters in a consistent 
manner. In this paper, we perform Bayesian 
updating of the reliability of a shallow 
foundation in a silty soil using measurements of 

the friction angle from direct shear tests of soil 
probes taken at different locations. We employ 
two different models to address the spatial 
variability of the friction angle: a simplified 
model that involves a single random variable and 
a detailed random field model.  

2. Bayesian analysis 

Let 𝐗 denote the vector of the random variables, 
representing the uncertain soil parameters. Any 
failure event of interest 𝐹  can be expressed in 
terms of a limit state function 𝑔(𝐗) , which 
typically depends on the outcome of a 
geotechnical model, such that 𝐹 = {𝑔(𝐗) ≤ 0}. 
An appropriate prior probabilistic model of the 
random variables 𝐗  is constructed through 
assessing information available prior to on site 
investigations. Aside from reflecting all prior 
knowledge (or lack of knowledge), the prior 
probability density function (PDF) of 𝐗, denoted 
by 𝑓𝐗ᇱ , should incorporate the inherent spatial 
variability of the soil parameters (e.g. Rackwitz 
2000). Having established the prior distribution, 



the prior probability of failure before including 
site-specific data is obtained as: 

Pr(𝐹) = ∫ 𝑓𝐗ᇱ(𝐱)𝑑𝐱௚(𝐱)ஸ଴  (1) 

The corresponding reliability index is 𝛽ᇱ =
−Φିଵ[Pr(𝐹)], where Φିଵ  is the inverse of the 
standard normal distribution function. Eq. (1) can 
be solved by application of any of the well-
established structural reliability methods (e.g. 
Phoon 2008). 

During the construction process, additional 
data become available, providing information on 
𝐗  either directly or indirectly. For example, a 
direct shear test of a soil probe provides direct 
information on the value of the friction angle at a 
specific location, while a measurement of the 
settlement of a foundation provides indirect 
information on the soil properties through the 
geotechnical model. Measurement events 𝑍  are 
described by the likelihood function 𝐿(𝐱). The 
likelihood of a measurement is defined as being 
proportional to the conditional probability of the 
measurement given a parameters state: 

𝐿(𝐱) ∝ Pr(𝑍|𝐗 = 𝐱) (2) 

If multiple measurements 𝑍ଵ, … , 𝑍௠ are available, 
likelihood functions 𝐿ଵ, … , 𝐿௠ are established for 
each measurement individually. If all 
measurements are independent for a given 
parameter state, then the joint likelihood of all 
measurements is obtained as: 

𝐿(𝐱) = ∏ 𝐿௜(𝐱)௠
௜ୀଵ  (3) 

The impact of the measurements on the random 
parameters 𝐗 is quantified through computing the 
posterior PDF 𝑓𝐗ᇱᇱ, i.e. the conditional PDF of 𝐗 
given the measurement outcome. 𝑓𝐗ᇱᇱ is obtained 
through  Bayes’  rule: 

𝑓𝐗ᇱᇱ(𝐱) = 𝑎𝐿(𝐱)𝑓𝐗ᇱ(𝐱) (4) 

where 𝑎  is a proportionality constant, which 
ensures that 𝑓𝐗ᇱᇱ(𝐱) integrates to one. Application 
of Eq. (4) is not always straightforward. In some 
situations, it is possible to obtain an analytical 
expression for 𝑓𝐗ᇱᇱ  in terms of a known 
distribution model. This occurs when the prior 

and likelihood are described by so-called 
conjugate distributions (e.g. Ang and Tang 2007). 
However, in most cases the posterior PDF is 
evaluated numerically, either by gradient-based 
approximations or by sampling approaches. 
Straub and Papaioannou (2014) provide a review 
of different methods for solving the Bayesian 
updating problem. 

After estimating the posterior distribution of 
the parameters, the conditional probability of 
failure Pr(𝐹|𝑍) can be obtained by replacing the 
prior PDF with the posterior PDF in Eq. (1). If 
the posterior PDF is available in analytical form, 
the evaluation of Pr(𝐹|𝑍) can be carried out with 
the classical structural reliability methods. 
Alternatively, the reliability can be updated 
directly by application of the approach 
introduced in Straub (2011) and applied to 
geotechnical engineering in Papaioannou and 
Straub (2012). This approach is based on 
describing the measurement through a limit state 
function and solving two structural reliability 
problems.  

3. Modeling spatially variable parameters 

As mentioned earlier, the inherent spatial 
variability of the soil parameters needs to be 
addressed in a geotechnical reliability 
assessment. Spatial variability can be modeled in 
two fundamentally different ways. 

In the first approach, the soil property within 
an area is modeled with a single random variable 
𝑋. That is, the property at a specific location is 
not explicitly modeled and the inherent 
variability of the soil property within the area is 
represented by the PDF of 𝑋 , 𝑓௑ . This 
corresponds to the classical statistical approach, 
which is based on modeling the variability within 
a population with a random variable. This 
variability cannot be reduced with measurements, 
however the parameters 𝛉 of the distribution 𝑓௑ 
can be learned. This can be achieved by defining 
a prior distribution 𝑓𝛉ᇱ on 𝛉 and then updating the 
distribution with samples of 𝑋. Noting that 𝑓௑ is 
defined conditional on the parameters 𝛉, which 
are uncertain, the distribution of 𝑋  at each 
location, the so-called predictive distribution, can 
be obtained by marginalizing the joint PDF of 𝑋 
and 𝛉.  



In the context of reliability analysis, this 
approach facilitates the application of analytical 
geotechnical models that do not involve explicit 
spatial modeling. Parameters of such models 
usually refer to averages of a soil property over a 
failure surface. Spatial averaging is usually 
accounted for by reducing the variance of the 
inherent variability of 𝑋, through application of 
the variance reduction function (Rackwitz 2000). 
In the case of highly fluctuating soils, the 
variance of the spatial average of the soil 
property vanishes. In such cases the reliability 
can be calculated by considering only the 
uncertainty in the mean of the soil property. 

The second modeling approach of spatially 
variable properties is to model the property at 
each location explicitly. In this approach, the 
property is modeled by a random field 𝑋(𝑧) , 
which represents a random variable at each 
location 𝑧  (Rackwitz 2000; Baecher and 
Christian 2008). The random field is usually 
modeled by the marginal distribution at each 
location and the auto-correlation coefficient 
function. In order to numerically represent the 
continuous random field 𝑋(𝑧), it is necessary to 
discretize it with a finite set of random variables, 
e.g. by application of the Karhunen-Loève 
expansion. Once the prior random field is 
established, measurements of 𝑋  at specific 
locations can be used to update the random field 
or the random variables in its discrete 
representation. 

4. Bayesian updating of foundation reliability 

We illustrate the concepts of Bayesian analysis 
to the reliability assessment of a shallow 
foundation in silty soil. We consider a centrically 
loaded rigid strip footing with dimensions 
𝐵 = 3m and 𝐷 = 1m, as shown in Figure 1. This 
example is modified from Oberguggenberger and 
Fellin (2002). 

The limit state function describing failure of 
the foundation is: 

𝑔(𝐗) = 𝑞௨ − 
௏
஻

  (5) 

where 𝑞௨ is the ultimate bearing capacity and 𝑉 
is the applied load. For simplicity, we assume a 

deterministic load 𝑉 = 1000  kN/m . The 
cohesion of the silty soil is close to zero and can 
be neglected. The unit weight of the soil is 
𝛾 = 19.8  kN/mଷ. The uncertainty in the friction 
angle 𝜑  is modeled with the two different 
approaches discussed in Section 3. We update 
the reliability of the foundation using 
measurement outcomes from direct shear tests. 

 
Figure 1. Foundation in silty soil. 

 

4.1. Random variable approach 

In this approach, we model the inherent 
variability of the friction angle with a single 
random variable with uncertain distribution 
parameters. We employ the lognormal 
distribution, which is a common choice for the 
probabilistic modeling of geotechnical properties 
(e.g. Griffiths and Fenton 2001). Assuming no 
mean trend, the conditional PDF of 𝜑  at each 
spatial location given the distribution parameters 
𝛉 reads: 

 𝑓ఝ(𝜑|𝛉) =
ଵ

ఝ఍ക√ଶగ
exp ൤− ଵ

ଶ
൬୪୬ఝିఒക

఍ക
൰൨ (6) 

where 𝛉 = [𝜆ఝ; 𝜁ఝ]  are the mean and standard 
deviation of the underlying normal distribution 
of ln 𝜑, which can be expressed in terms of the 
mean 𝜇ఝ and coefficient of variation (CV) 𝛿ఝ of 
𝜑 as follows: 

𝜁ఝ = ටln൫1 + 𝛿ఝଶ൯ (7) 

𝜆ఝ = ln 𝜇ఝ − ଵ
ଶ
𝜁ఝଶ  (8) 

The CV is modeled as constant in space and 
taken as 𝛿ఝ = 0.15 , which agrees with the 
typical CV of inherent variability of the friction 
angle of silty soils (Phoon and Kulhawy 1999). 
We assume that previous measurements on 
similar soils in the vicinity have indicated that 
the mean 𝜇ఝ is commonly between 25° and 31°. 



These values are taken as the 10  and 90% 
quantiles of 𝜇ఝ. We model the prior distribution 
of 𝜇ఝ  with a lognormal distribution and we 
evaluate its parameters 𝜆ఓക

ᇱ  and 𝜁ఓക
ᇱ  by matching 

the 10 and 90% quantiles to the aforementioned 
values. The prior mean of 𝜇ఝ  is 27.94° and its 
prior CV is 0.084 . From Eq. (8), the prior 
distribution of 𝜆ఝ  will be a normal distribution 
with parameters 𝜇ఒക

ᇱ = 𝜆ఓക
ᇱ − ଵ

ଶ
𝜁ఝଶ  and 𝜎ఒക

ᇱ =
𝜁ఓക
ᇱ . 

Direct shear tests of soil probes taken at 
certain locations in the area of the foundation 
resulted in the following values of the friction 
angle: 𝜑ଵ = 25.6°, 𝜑ଶ = 25.5°, 𝜑ଷ = 24°. These 
values are taken exemplarily from 
Oberguggenberger and Fellin (2002). In the 
present framework, these measurements 
correspond to samples of 𝜑 and can be used to 
update the distribution of 𝜆ఝ . The likelihood 
𝐿௜൫𝜆ఝ൯ of each sample 𝜑௜  is proportional to the 
probability of the sample given 𝜆ఝ  and is 
obtained by replacing 𝜑  with 𝜑௜  in Eq. (6). 
Assuming independence between samples, the 
joint likelihood describing all three samples is 
given according to Eq. (3) as 

𝐿൫𝜆ఝ൯ = ∏ 𝐿௜൫𝜆ఝ൯ଷ
௜ୀଵ  (9) 

The posterior PDF 𝑓ఒക
ᇱᇱ (𝜆ఝ)  of 𝜆ఝ  is obtained 

following Eq. (4). For the particular choice of the 
prior distribution of 𝜇ఝ , the resulting normal 
prior distribution of 𝜆ఝ  is the conjugate of the 
lognormal distribution of the underlying random 
variable 𝜑 (e.g. Ang and Tang 2007). Hence, the 
posterior PDF of 𝜆ఝ has the same analytical form 
as its prior; it is the normal PDF with parameters 
𝜇ఒക
ᇱᇱ  and 𝜎ఒക

ᇱᇱ  that can be evaluated using closed 
form expressions (e.g. Ang and Tang 2007). The 
posterior marginal PDF of 𝜑  at each spatial 
location can be evaluated by integrating out the 
distribution parameter 𝜆ఝ from the joint PDF of 
𝜑 and 𝜆ఝ, i.e. 

𝑓ఝ(𝜑) = ∫ 𝑓ఝ൫𝜑|𝜆ఝ൯
∞

ି∞ 𝑓ఒക
ᇱᇱ (𝜆ఝ) 𝑑𝜆ఝ (10) 

Eq. (10) is the predictive distribution of 𝜑; here 
it is a lognormal distribution with parameters 𝜇ఒക

ᇱᇱ  

and  ට𝜎ఒക
ᇱᇱ  ଶ + 𝜁ఝଶ . 

Because the variability of the friction angle 
is modeled with a single random variable, it is 
possible to evaluate the bearing capacity of the 
foundation in terms of the analytical bearing 
capacity factors, as follows:  

𝑞௨ = 𝑞𝑁௤ +
ଵ
ଶ
𝛾𝐵𝑁ఊ (11) 

where 𝑁௤ = exp(𝜋 tan𝜑) tanଶ(45° + 𝜑/2)   , 
𝑁ఊ = 2൫𝑁௤ + 1൯ tan𝜑  and 𝑞 = 𝛾𝐷  (e.g. Das 
2009). Application of Eq. (11) requires the 
reduction of the inherent variability of 𝜑  to 
account for spatial averaging. However, if we 
assume a highly fluctuating soil, we can 
represent the variability of 𝜑 with the one of its 
mean 𝜇ఝ . This is an (non-conservative) 
approximation, which becomes exact for a soil 
with a scale of fluctuation of zero (Griffiths and 
Fenton 2001). 

Replacing 𝜑 with 𝜇ఝ in Eq. (11), the a priori 
probability of failure is evaluated as Pr(𝐹) =
𝐹ఓക
ᇱ (𝜑ி) , where 𝐹ఓക

ᇱ  is the (lognormal) prior 
cumulative distribution function (CDF) of 𝜇ఝ , 
and 𝜑ி = 21.23°  is the value of the friction 
angle for which 𝑔 = 0 . From Eq. (8), the 
posterior distribution of 𝜇ఝ  conditional on the 
measurements is again lognormal with 
parameters 𝜆ఓക

ᇱᇱ = 𝜇ఒക
ᇱᇱ + ଵ

ଶ
𝜁ఝଶ  and 𝜁ఓക

ᇱᇱ = 𝜎ఒക
ᇱᇱ , 

which corresponds to a posterior mean of 𝜇ఝ of 
26.62° and posterior CV of 0.06.   The posterior 
probability of failure is obtained as Pr(𝐹|𝑍) =
𝐹ఓക
ᇱᇱ (𝜑ி). 

The prior, likelihood and posterior 
distribution of 𝜇ఝ  are shown in Figure 2. The 
first row of Table 1 shows the prior and posterior 
failure probabilities and corresponding reliability 
indices computed with this approach. Although 
the measurements resulted in values lower than 
the prior mean of 𝜇ఝ, the posterior reliability is 
significantly higher than the prior. This is 
because of the reduced uncertainty, which can be 
observed in Figure 2. 



 
Figure 2. Prior PDF of 𝜇ఝ, posterior PDF of 𝜇ఝ and 

(normalized) joint likelihood describing the measurements. 

 

4.2.  Random field approach 

In the second modeling approach, the friction 
angle is modeled explicitly at each location 
through a random field. For simplicity, we 
neglect the variability in the horizontal direction 
and model the friction angle with a one-
dimensional homogeneous random field 𝜑(𝑧) , 
where 𝑧  denotes the coordinate in the vertical 
direction. We recall that 𝜑  was assumed to 
follow the lognormal distribution with uncertain 
parameter 𝜆ఝ  and fixed parameter 𝜁ఝ . The prior 
distribution of 𝜆ఝ is normal with parameters 𝜇ఒക

ᇱ , 
𝜎ఒക
ᇱ . The spatial fluctuation of 𝜑 is modeled by 

the auto-correlation coefficient function. We 
adopt the following exponential model for the 
prior auto-correlation coefficient function 
conditional on 𝜆ఝ: 

𝜌ఝᇱ (𝛥𝑧|𝜆ఝ) = exp ቀ− ௱௭
௟
ቁ (12) 

where 𝛥𝑧 = |𝑧ଵ − 𝑧ଶ|  is the distance between 
two points and 𝑙 is the correlation length, chosen 
as 𝑙 = 2m . The marginal distribution of 𝜑(𝑧) 
must equal the prior predictive distribution, 
which, analogous to Eq. (10), is a lognormal 

distribution with parameters 𝜇ఒക
ᇱ  and  ට𝜎ఒക

ᇱ  ଶ + 𝜁ఝଶ . 

The random field 𝜑(𝑧) is defined as: 

𝜑(𝑧) = exp൫𝜆ఝ + 𝜁ఝ𝑈ఝ(𝑧)൯ (13) 

where 𝑈ఝ(𝑧)  is an underlying standard normal 
random field, whose auto-correlation function 
𝜌௎ᇱ (𝛥𝑧) is assumed equal to the one of 𝜑(𝑧), i.e. 

𝜌௎ᇱ (𝛥𝑧) ≈ 𝜌ఝᇱ (𝛥𝑧). This is a valid assumption for 
small 𝛿ఝ. Hence, ln 𝜑 will be normal with prior 
mean 𝜇୪୬ఝᇱ = 𝜇ఒക

ᇱ  and prior auto-covariance 
function: 

𝛤୪୬ఝᇱ (𝛥𝑧) = 𝜎ఒക
ᇱ  ଶ + 𝜁ఝଶ𝜌௎ᇱ (𝛥𝑧) (14) 

We note that due to the uncertainty in 𝜆ఝ , the 
covariance of ln 𝜑 becomes 𝜎ఒക

ᇱ  ଶ as 𝛥𝑧 →∞. 
We assume that the measurements 

considered in Section 4.1 (𝜑ଵ = 25.6° , 𝜑ଶ =
25.5°, 𝜑ଷ = 24°) are taken at locations 𝑧ଵ = 1m, 
𝑧ଶ = 3m , 𝑧ଷ = 5m  below the ground level. 
Neglecting the measurement uncertainty (as was 
also done in Section 4.1), the likelihood of the 
observations is given by: 

𝐿(𝜑(𝑧)) = ∏ 𝛿(𝜑(𝑧௜) − 𝜑௜)ଷ
௜ୀଵ  (15) 

where 𝛿  is the Dirac delta function. Following 
Eq. (13), the posterior distribution of ln 𝜑 given 
the measurements is normal and its posterior 
mean function 𝜇୪୬ఝᇱᇱ  and auto-covariance function 
𝛤୪୬ఝᇱᇱ  are known analytically (e.g. Straub 2012). 
Hence the posterior marginal distribution of 𝜑 is 
again lognormal. Figure 3 shows the resulting 
posterior mean and CV of 𝜑 . The posterior 
random field is no longer homogeneous. Because 
of the assumption of no measurement error, the 
posterior CV is zero at the locations of the 
measurements and increases away from these 
locations.  

 
Figure 3. Posterior mean and posterior coefficient of 

variation (CV) of the friction angle. 



In order to properly account for the spatial 
variability of the friction angle, the bearing 
capacity is evaluated with non-linear elasto-
plastic finite element analysis, following 
Griffiths (1982). Since we account for the 
variability only in the vertical direction, we take 
advantage of the symmetry and model only one 
half of the soil profile. The finite element mesh, 
consisting of eight-node quadrilateral elements, 
is shown in Figure 4. 

The prior and posterior reliability are 
evaluated by application of the line sampling 
method (Koutsourelakis et al. 2004). The results 
are shown in the second row of Table 1. The 
computed probabilities are considerably larger 
than the ones obtained with the random variable 
approach, reflecting the effect of the different 
assumptions on spatial correlation, which leads 
to a stronger spatial averaging in the case of the 
RV model. 

 
Figure 4. Finite element mesh used for evaluation of the 

bearing capacity. 

5. Conclusion 

We presented an application of Bayesian analysis 
for updating the reliability of a shallow 
foundation with measurements, considering the 
spatial variability of the soil. We demonstrated 
two different approaches for modeling the spatial 
variability: a random variable and a random field 
approach. We showed how data could be used to 
learn the distribution of soil properties modeled 
with any of the two approaches and how the 
derived posterior distributions could be 
employed to obtain the reliability of the 
foundation conditional on the data. 

Table 1. Prior and posterior reliability for the two considered 
modeling approaches. 

Modeling 
approach 

 

Prior Posterior 

Pr(𝐹) 𝛽ᇱ Pr(𝐹|𝑍) 𝛽ᇱᇱ 

RV 6.21 × 10ିସ 3.23 9.40 × 10ିହ 3.73 

RF 5.8 × 10ିଶ 1.57 1.32 × 10ିଷ 3.01 
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