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Abstract— The application of continuous optimization to
motion planning of autonomous vehicles has enjoyed increasing
popularity in recent years. In order to maintain low
computation times, it is advantageous to have a convex
formulation, in general requiring the planning problem to
be separated into a longitudinal and lateral component.
However, this decoupling of the motion often results in
infeasible trajectories in situations in which both components
need to be heavily linked, e. g., when planning swerving
maneuvers to avoid a collision with obstacles. In this work,
we propose an approach which extends the convex optimization
problem of the longitudinal component to incorporate changing
constraints, allowing us to guarantee feasibility of the resulting
combined trajectory. Furthermore, we provide additional safety
guarantees for the planned motion by integrating formal safety
distances assuming infinite precision arithmetic. Our approach
is demonstrated using simulated lane change maneuvers.

I. INTRODUCTION

Motion planning for autonomous vehicles aims to provide
comfortable, feasible, and safe trajectories [1]. Different
techniques have been proposed over the years to achieve this
goal. We first review graph-based techniques, followed by
continuous optimization.

Sampling-based trajectory planners, such as Rapidly
Exploring Random Trees (RRT) [2], [3], randomly sample
and connect states towards a goal region to obtain
a kinematically feasible and collision-free trajectory. Its
extension RRT∗ [4], [5] provides asymptotically optimal
trajectories. However, both algorithms might not obtain jerk-
optimal motions [6]. In [7], [8], so-called state lattices are
planned. These are sets of trajectories whose goal states
are vertices of a fixed predefined grid, resulting in a lattice
structure. Sampling has been combined with optimal control
in [9] to determine jerk-optimal trajectories by making use
of quintic polynomials. The State lattices method provides
good results, but lack optimality due to the fixed grid.

In order to overcome discretization effects, continuous
optimization is often applied to robot motion planning [10]–
[12]. The task of determining a feasible and collision-free
trajectory is solved by minimizing a cost function with
respect to a set of state and input constraints (and possibly
a set of disturbances). For autonomous vehicles, the motion
planning problem is formulated as a mixed-integer program
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in [13] and as a non-linear optimization problem solved
by sequential quadratic programming (SQP) in [14]. The
resulting optimization problems are non-convex and thus
harder to solve [15].

The computational complexity of the motion planning
problem can be reduced by linearizing the non-linear, non-
holonomic vehicle dynamics and separating the motion into
a longitudinal and a lateral component [16]. As a result, the
motion planning problem can be approximated with convex
optimization programs, for which efficient solvers exist
[17]. Convex collision avoidance approaches for autonomous
vehicles are proposed in [18], [19]. Optimal longitudinal and
lateral trajectories are obtained in [20], [21] using linear-
quadratic programs (QP). In [22], a convex formulation
is exploited to predict trajectories of traffic participants in
multi-vehicle planning. Unfortunately, the longitudinal and
lateral separation often results in infeasible trajectories (cf.
Sec. II).

Recent approaches try to eliminate the problem of
obtaining infeasible solutions using pre-planning and
dexterous constraint formulations. For instance, a rough
longitudinal motion is pre-planned in [23], which is used
to determine a short-term lateral motion afterwards. Pre-
planning a rough motion works well in simple scenarios, but
comes to its limits when the feasibility of the lateral motion is
highly linked to the planned longitudinal motion, e. g., when
swerving is required to avoid a collision with obstacles. In
order to consider the position constraints in such scenarios,
convex safety regions are proposed in [24]. Each of the
regions corresponds to different valid constraints imposed
by safety-relevant obstacles. However, an efficient approach
to determine these regions has not yet been provided.

II. MOTIVATION AND CONTRIBUTION

We initially consider a convex optimization problem,
separated in longitudinal and lateral direction, to reduce
the computational complexity. In order to obtain a feasible
trajectory, the longitudinal and lateral planners have to
respect the dynamics of the ego vehicle at any point in
time (cf. friction circle [25, p. 382]). However, to satisfy
dynamics, the longitudinal and lateral planners require prior
knowledge of the intended future motion of the respective
other planner. Fig. 1 illustrates the dependency of the two
planners using an urban example: the ego vehicle has to
steer through parked cars in a one-way road. In order to
accomplish the task, the lateral planner has to determine a
suitable lateral acceleration and apply it at a certain point in
time t1 to steer to the left side (in driving direction). On the
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Fig. 1. Illustration of the feasibility problem. The ego vehicle (blue) has
to pass parked vehicles.

other hand, the longitudinal planner must determine a point
in time t2 for starting to decelerate in order to not cause a
collision with the parked car in front of the ego vehicle.
The times t1 and t2 cannot be obtained independently.
Additionally, the motion planners face changing position
constraints. The longitudinal position is constrained by the
parked vehicles at the beginning of the illustrated maneuver.
After gaining enough lateral distance to pass the parked
cars, this constraint is not relevant anymore. Integrating these
changing constraints into existing optimization tools in a
simple yet efficient manner is challenging.

Contribution: In this work, we propose an efficient
mixed-integer programming approach to resolve the issues of
re-combining the longitudinal and lateral motion of convex
motion planners, which

1) ensures feasibility of the lateral motion profile in
situations with changing position constraints,

2) can be easily integrated by extending the optimization
vector of the convex longitudinal optimization
problem, and

3) provides safety guarantees by incorporating formal
safety distances.

Our approach works as follows (cf. Fig. 2): we divide
the planned maneuver in safe convex regions (cf. [26]) in
the time domain based on the intended lateral motion. For
each region, we specify longitudinal position constraints
(including formal dynamic safety distances) for the ego
vehicle and a binary encoding of this region in order
to integrate the changing constraints into the longitudinal
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Fig. 2. Procedure of the proposed approach to compute feasible trajectories.
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Fig. 3. Kinematics of the vehicle’s motion in path coordinates [21].

planner. Using pre-planning of a lateral trajectory, we can
determine the minimum length of the regions to guarantee
feasibility. During the longitudinal planning, these safe
convex regions (required by the lateral planner) are optimally
distributed across the optimization horizon to perform the
desired maneuver. After obtaining the longitudinal motion,
the lateral motion planner is able to determine a feasible
lateral motion.

This paper is structured as follows: Sec. III introduces the
utilized models and assumptions. Afterwards, the extension
of the underlying optimization problem to incorporate
changing constraints is described in Sec. IV. The integration
of formal safety distances is explained in Sec. V. This paper
finishes with a validation of the presented approach using
simulated lane change maneuvers in Sec. VI followed by
conclusions in Sec. VII.

III. PRELIMINARIES

Without loss of generality, we describe the vehicle’s
kinematics in path coordinates [9], i. e., Cartesian poses
(x1, x2, θ)

T ∈ R3 are replaced by (s, d, θ)T ∈ R3 in a
curvilinear coordinate system aligned with the center Γ of
the lane the ego vehicle is initially driving in, defined by the
curvature κr and the reference orientation θr (cf. Fig. 3). A
lane change can be modeled using an offset to the reference
Γ. We use v ≥ 0 to describe the velocity and a to describe
the acceleration of a vehicle.

We assume that the initial time is t0 = 0. In addition, the
following time-invariant assumptions are made:

1) the positions and velocities of safety-relevant vehicles
are fully observable,

2) the maximum absolute acceleration |amax| of vehicles
is known, and

3) a prediction of the future motion of vehicles is given.

Note that our approach can also be extended to include
fail-safe trajectories to guarantee safety even if vehicles
vigorously deviate from the predicted motion [27].

To focus on the novel aspects, we only consider
yielding maneuvers, in particular lane changes. However, our
approach is applicable to other types of maneuvers as well.
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(a) Lane change maneuver divided in three regions: Pre, Peri, and Post [24]. Regions respect formal safety distances. For better visualization, the regions
are illustrated two-dimensional, but concern only the longitudinal planning.
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(b) Encoding by two binary vectors δ1 and δ2.

Fig. 4. Lane change maneuver divided in regions, encoded by binary vectors.

IV. COMBINED LONGITUDINAL AND LATERAL
TRAJECTORIES

We model different stages of the lateral motion during a
maneuver, e. g., lane following and subsequent swerving, by
constructing safe convex regions within the free space of the
ego vehicle. Integrating these regions as changing constraints
into the optimization problem of the longitudinal planner
enables us to guarantee feasibility of the planned trajectory.

A. Formulation of Safe Convex Regions

During a maneuver, the longitudinal position of the ego
vehicle is constrained by different surrounding vehicles and
objects depending on the lateral motion of the ego vehicle.

We introduce Nlong ∈ N as the finite discrete optimization
horizon of the longitudinal planner. Inspired by [24], we
denote the different stages (depicted in Fig. 4a) of a
lane change maneuver as Pre (following the initial lane),
Peri (lane change), and Post (following the goal lane).
We formally define them for the optimization step k ∈
{0, . . . , Nlong} as

Prek = {sego ∈ R | sego < s1(k)− σsafe,1},
Perik = {sego ∈ R |sego < s1(k)− σsafe,1 ∧

sego < s2(k)− σsafe,2 ∧
sego > s3(k) + σsafe,3},

Postk = {sego ∈ R | sego < s2(k)− σsafe,2},

(1)

where si ∈ R, i ∈ {1, 2, 3} correspond to the predicted
longitudinal positions and σsafe,i to the safety distance to the
surrounding vehicles (cf. Fig. 4a). Note that other maneuvers
may require the construction of fewer or more convex regions
or a different number of vehicles.

If the Peri region is small with considering the minimum
and maximum allowed position of the ego vehicle, the
resulting motion of the lane change requires high lateral
accelerations. To limit the required maximum lateral
acceleration, we enforce the Peri region to have a pre-
computed minimum length nmin ∈ {0, . . . , Nlong} at each
optimization step k. Note that nmin becomes smaller at each

re-planning cycle (cf. Sec. IV-B) and eventually becomes
zero when the ego vehicle has fully entered the goal lane.

To formulate this as a mixed-integer program, we define a
binary encoding (cf. Fig. 4b) of the three regions using two
binary vectors, δ1 ∈ {0, 1}Nlong and δ2 ∈ {0, 1}Nlong .

Definition 1: The binary encoding of the three regions in
(1) is

[
δ1(k) δ2(k)

]
=


[1 0] sego(k) ∈ Prek

[0 0] sego(k) ∈ Perik

[1 1] sego(k) ∈ Postk.

Since the temporal order1 of the regions is given for the
maneuver, the values of δ1 and δ2 can be further constrained.

Definition 2: The binary encoding in Def. 1 must satisfy the
following constraints:

1) δ2 switches from zero to one at most once;
2) δ2 does not switch before δ1;
3) After the Peri region, δ1 and δ2 switch jointly;
4) The Peri region is at least nmin ∈ {0, . . . , Nlong} long,

which can be written as N −
∑N

k=1 δ1(k) ≥ nmin.

Depending on the region the ego vehicle is located in,
different position constraints must be active (cf. (1)). We
use the Big-M method [28, pp. 156–159] to include these
changing constraints with respect to the binary encoding (cf.
Def. 1) into the optimization problem of the longitudinal
planner. After introducing the resulting linear constraints in
(2), we briefly recall the Big-M method.

sego(k) ≤ sO1
(k)− σsafe,1(k) + δ2(k)Mbig

sego(k) ≤ sO2
(k)− σsafe,2(k) + (δ1(k)− δ2(k))Mbig

sego(k) ≥ sO3
(k) + σsafe,3(k)− δ1(k)Mbig.

(2)

By use of a sufficiently large constant Mbig, constraints can
be activated and deactivated at certain discrete points in time
within the optimization horizon [29]. The value of Mbig

1Modeling situations in which a maneuver needs to be aborted is done
by reversing the temporal order for the next planning cycle.



must be large enough to not restrict feasible solutions of
the optimization problem, but small enough to not introduce
numerical instabilities during solving. If the factors of Mbig
in (2) evaluate to zero, the variable Mbig is eliminated and
the constraints are active. If the binary variables evaluate
to one, the equations are always fulfilled due to the large
value of Mbig and therefore, the respective constraints are
deactivated; except for the Peri region constraint due to the
utilized encoding. The advantage of using the Big-M method
is that linear constraints remain linear. Thus, we can include
the changing constraints directly into the linear-quadratic
optimization problem.

The presented approach is independent of the formulation
of the lateral and longitudinal optimization problems and
their cost functions, since the optimization vector is
merely extended, but not changed. As an example of
the longitudinal optimization problem, we extend a linear-
quadratic optimization problem

arg min
u

J(u)

s. t. x(k̂ + 1) = Ax(k̂) +Bu(k̂),

x(0) = x0,

umin(k) ≤ u(k) ≤ umax(k),

xmin(k) ≤ x(k) ≤ xmax(k),

with an initial state x0, a quadratic cost function J(u), a
linear vehicle model with state matrix A and input matrix B
as well as state and input constraints for discrete points in
time k ∈ {1, . . . , N} and k̂ ∈ {1, . . . , N − 1}.

Similar to [29], we extend the optimization vector u to
ũ = [u, δ1, δ2] and adapt the cost function to obtain the
mixed-integer quadratic problem

arg min
ũ

J̃(ũ)

s. t. x(k̂ + 1) = Ax(k̂) +Bu(k̂),

x(0) = x0,

umin(k) ≤ u(k) ≤ umax(k),

xmin(k) ≤ x(k) ≤ xmax(k),

sego(k) ≤ sO1
(k)− σsafe,1(k) + δ2(k)Mbig,

sego(k) ≤ sO2(k)− σsafe,2(k)

+ (δ1(k)− δ2(k))Mbig,

sego(k) ≥ sO3(k) + σsafe,3(k)− δ1(k)Mbig,

δ2(k̂) ≤ δ2(k̂ + 1),

δ2(k) ≤ δ1(k),

δ2(k̂)− δ1(k̂) ≤ δ2(k̂ + 1)− δ1(k̂ + 1),

N −
N∑

k=1

δ1(k) ≥ nmin ∈ {0, . . . , N},

where the first block of constraints corresponds to the
original optimization problem, the second block describes

the previous defined regions (2), and the third block ensures
the correctness of the binary vectors according to Def. 2.

B. Feasibility Guarantee of Trajectories

In this subsection, we prove that we can choose the
minimum length nmin of the Peri region (cf. constraint 4 in
Def. 2) during the longitudinal planning so that the existence
of a feasible lateral profile is guaranteed.

In the beginning of each re-planning cycle, a lateral
trajectory is planned with respect to a parameterized
longitudinal profile near the maximum acceleration
|ax,max| < |amax|. Based on the obtained lateral trajectory,
one can extract the minimum length of the Peri region.
This trajectory is solely used for determining nmin, which
is then used for the subsequent planning of the longitudinal
motion to guarantee the existence of a lateral trajectory.

Let us first consider the lateral dynamics of the ego
vehicle during the lane change. Given some longitudinal
acceleration ax, we can determine the maximum feasible
lateral acceleration ay with respect to the friction circle.

Definition 3: The maximum feasible lateral acceleration
ay,feasible(ax) given some longitudinal acceleration ax <
amax according to the friction circle [25, p. 382] corresponds
to

ay,feasible(ax) :=
√
a2

max − a2
x.

Based on the feasible lateral acceleration, we can compute
the time required to perform a swerving maneuver to an
adjacent lane, including some reaction time δsteer for the
steering actuators.

Definition 4: The minimum time tmin required to traverse
the lateral distance d, given a lateral acceleration ay and
reaction time δsteer, corresponds to (cf. [30]):

tmin(ay) :=

√
2d

ay
+ δsteer.

Assuming that the longitudinal planning algorithm does
not plan longitudinal trajectories with acceleration values
near the maximum acceleration amax (justified if the
longitudinal planner uses safety margins in the acceleration),
the following theorem holds:

Theorem 1: Given a2
x,max + a2

y,max ≤ a2
max, there exists a

number nmin ∈ {0, . . . , Nlong} of time steps so that for each
longitudinal trajectory satisfying constraint 4 in Def. 2, a
feasible lateral trajectory exists.

Proof: ay,feasible(ax) (cf. Def. 3) decreases
monotonically with increasing longitudinal acceleration
ax. Therefore, since ax,max < amax, the lowest maximum
feasible lateral acceleration ay,feasible := ay,feasible(ax,max) >
0 is always feasible for all trajectories that satisfy ax,max.

Since tmin (cf. Def. 4) is monotonically decreasing
with increasing ay,feasible, the maximum required traverse
time is tmin := tmin

(
ay,feasible

)
. We define nmin =

dtmin/∆tlonge for the longitudinal planning step size ∆tlong.
Let ax(k), k ∈ {1, . . . , N} be a longitudinal acceleration



profile of a trajectory with ax(k) ≤ ax,max ∀k. Then,
ay,feasible(ax(k)) ≥ ay,feasible and tmin(ay,feasible(ax(k))) ≤
tmin ≤ nmin∆tlong hold for all k.

If nmin > N , we set nmin = N . While performing the
intended maneuver, the remaining required lateral distance d
decreases. Therefore, tmin and consequently nmin decrease
over time when re-planning (cf. Def. 4) and eventually
become zero.

V. INTEGRATION OF FORMAL SAFETY DISTANCES

According to the Vienna Convention on Road Traffic, it is
the duty of the vehicles to keep a “sufficient distance [. . . ]
to avoid [a] collision if the vehicle in front should suddenly
slow down or stop” [31, §13]. These distances are formalized
using the maximum acceleration of the ego vehicle amax,ego
and the one of the preceding vehicle amax,obj [30], [32] as

σa
safe =

(vobj − |amax,obj|δbrake − vego)2

−2(|amax,obj| − |amax,ego|)
− vobjδbrake

+
1

2
|amax,obj|δ2

brake + vegoδbrake,

σb
safe =

v2
obj

−2|amax,obj|
−

v2
ego

−2|amax,ego|
+ vegoδbrake,

(3)

where δbrake is the maximum reaction time of the braking
actuators and vego and vobj are the velocities of the
ego vehicle and preceding vehicle, respectively. Note
that depending on the vehicles’ velocities and maximum
decelerations either σa

safe or σb
safe has to be used according

to [32]. In case we want to compute the safety distance to
a following vehicle, the ego vehicle is assumed to be the
preceding vehicle.

The velocities of the preceding vehicles are provided
by the used prediction. The safety distance is quadratic
in the velocity of the ego vehicle,thus, safety distances
cannot be directly included in optimization programs with
linear constraints. To circumvent this problem, we exploit
the convexity of the safety distance and use a piecewise
linear approximation for both distances in (3) instead. The
resulting linear approximation of the safety distance is over-
approximative and therefore does not impair safety.

We use p linear functions g1, g2, . . . , gp : R → R to
approximate the safety distance σsafe ∈

{
σa

safe, σ
b
safe

}
. To

achieve this, we divide the valid velocity range [vmin, vmax]

σsafe

σ̃safe

vego

SAFE

UNSAFE

σ

Fig. 5. Piecewise linear approximation σ̃safe (solid) of the convex safety
distance σsafe (dashed).

in p equally large intervals [vi, vi+1], i ∈ {0, . . . , p − 1} by
setting

vi = (vmax − vmin)
i

p
+ vmin. (4)

For each interval, the safety distance is approximated using
a linear function, resulting in the safety distance formulation

σ̃safe(vego) =


g1(vego), v0 ≤ vego < v1,

g2(vego), v1 ≤ vego < v2,
...
gp(vego), vego ≥ vp−1.

(5)

In Fig. 5, a piecewise linear approximation of the safety
distance is shown. The ego vehicle is not allowed to enter
the shaded region in order to guarantee safety in case the
leading vehicle performs an emergency braking.

In order to integrate the p linear functions into the
optimization problem, we make use of the fact that each
convex, piecewise linear function can be represented as a
maximum function [33]. Thus, the convex safety distance
can be reformulated as

σ̃safe(vego) = max {g1(vego), g2(vego), . . . , gp(vego)} .

Respecting the maximum of these p linear functions is
equivalent to satisfying every single one of them due to
convexity.

According to the unique general form of linear equations,
each linear function gi(vego) can be expressed as gi(vego) =
mivego + ∆i allowing us to further rearrange the constraint
(2) for vehicle O1 to

sego ≤ sO1 − (mivego + ∆i) + δ2Mbig. (6)

The reformulation for vehicles O2 and O3 works
analogously. As a result, we obtain p linear position
constraints for each surrounding vehicle. Larger numbers
of linear functions p decrease the approximation error, but
increase the computational time of solving the optimization
problem.

VI. SIMULATION RESULTS

Our approach is implemented in MATLAB/Simulink and
tested within our own simulation environment on an Intel
i7-6820 processor using lane change maneuvers with speeds
of up to 36.1 m/s. The commercial solver Gurobi [17] is used
to solve the mixed-integer quadratic program.

The underlying longitudinal and lateral trajectory planning
problems are modeled according to [21] and extended to our
approach (cf. Sec. IV and Sec. V). In each planning cycle,
a longitudinal trajectory is planned with an optimization
horizon of Nlong = 20 and a step size of ∆tlong = 0.5 s.
Afterwards, the lateral profile is planned with a horizon of
Nlat = 20 and a step size of ∆tlat = 0.25 s with respect to
the calculated longitudinal trajectory.

Fig. 6 shows an example lane change scenario, in which
the ego vehicle is initially following the slower preceding
vehicle O1 and plans a trajectory into a small gap between
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Fig. 6. Ego vehicle performs lane change maneuver into a small gap between two vehicles at three points in time, each in one of the regions Pre, Peri,
and Post. The planned Peri region is illustrated with circles around the dots of the optimal trajectory. The driven trajectory (solid black) and reference
curves (gray with black dots) are depicted. The vehicles that are set as active constraints are filled and deactivated ones are colored in gray.

the two vehicles O2 and O3. The parameters are listed
in Tab. I. We assume constant acceleration to predict the
surrounding vehicles over the optimization horizon. Example
points in time t ∈ {1.0 s, 4.4 s, 7.0 s} show the ego vehicle
in the regions Pre, Peri, and Post. We use the step size
∆tlat = 0.25 s for the optimal trajectory in Fig. 6. Circled
dots of the optimal trajectory denote the Peri region, obtained
by our planner. Vehicles that are not set as active constraints
in the optimization problem are colored in gray. At t = 1.0 s,
the constraints imposed by the vehicles O2 and O3 on the
adjacent lane are deactivated.

The planned Peri region satisfies the pre-determined
minimum length of nmin = 4 according to the longitudinal
discretization. At t = 4.4 s, the ego vehicle is located
in the Peri region and therefore has to consider all three
surrounding vehicles. The remaining time for the lane change

TABLE I
PARAMETERS OF THE PRESENTED LANE CHANGE SCENARIO

Variable Value Description

τ 40ms simulation cycle time
vego, init 16.67m/s initial velocity ego
v1 15.28m/s velocity O1

v2 18.89m/s velocity O2

v3 17.22m/s velocity O3

amax, ego 4m/s2 absolute maximum acceleration ego
amax, obj 8m/s2 absolute maximum acceleration

surrounding vehicles
dgap, init 29.9m initial gap size between O2 and O3

incl. safety distances
nmin,init 4 initial required length of Peri region

is nmin = 1 =̂ 0.5s, which is denoted by the three circled
dots in the planning horizon at 0 s, 0.25 s, and 0.5 s. Finally,
the ego vehicle is shown in the Post region at t = 7.0 s.

In Fig. 7 the optimal longitudinal position is illustrated
at the same three points in time t ∈ {1.0 s, 4.4 s, 7.0 s}.
For improved visibility, only the first 10 optimization steps
are plotted. Again, inactive constraints are colored in gray.
At t = 1.0 s, the planner optimizes the temporal start and
end of the Peri region along the planning horizon such that
nmin = 4 and the considered safety distances are satisfied
while respecting longitudinal dynamics. Before and after
the Peri region, constraints of unconsidered vehicles are
deactivated and thus the ego vehicle is allowed to enter the
safety distances. At t = 4.4 s, the ego vehicle has passed
vehicle O3. The minimum required length of the Peri region
has shrunken to nmin = 1. Afterwards, the ego vehicle is able
to pass O1 and follow O2. At t = 7.0 s, O1 is also passed
and nmin = 0. Therefore, the position of the ego vehicle is
only constrained by O2. Note that the planner tries to make
the Peri region as long as possible at any time with the aim
of increasing comfort. For this reason, the planned length of
the Peri region is 2.5 s at t = 1.0 s instead of the minimum
required length of 2.0 s.

All tested trajectories are feasible, which means that the
lateral algorithm returns a drivable trajectory based on the
given longitudinal velocity profile. The longitudinal planner
is forced to plan a region with length nmin in which all
vehicles are considered. In Fig. 7, it is shown that this region
is considered during the whole maneuver. In Fig. 6, one
observes that the start and end of this region are planned
consistently, which can be determined by the end of the
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Peri region at around 85 m in both time steps t = 1.0 s
and t = 4.4 s.

We compare our approach against a sampling-based
trajectory planner [9], in which trajectories are sampled
for different end states using a quintic polynomial. Both
planners require computation times of less than 0.1 s. We
use a cycle time of 0.1 s and sample in the time domain with
a step size of ∆t = 0.1 s and in the position domain with
∆long = 0.1 m and ∆lat = 0.5 m in longitudinal and lateral
direction. Both approaches obtain jerk-optimal trajectories.
However, the sampling approach produces discontinuities
when connecting subsequent planning cycles as shown in
Fig. 8 for the scenario in Tab. I.
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Fig. 8. Acceleration profile resulting from the presented approach (blue)
and [9] (orange).

VII. CONCLUSIONS

Separating the motion planning task in lateral and
longitudinal planning allows the formulation of two convex
optimization problems but leads often to infeasible lateral
trajectories. We guarantee the feasibility of lateral motions
of autonomous vehicles during planning of a longitudinal
motion by formulating an efficient mixed-integer program
with a convex relaxation. By extending the optimization
vector, the benefits of the original convex optimization
problem can be preserved while the missing dependency
between longitudinal and lateral directions is modeled. By
pre-planning a lateral trajectory, we are able to determine
the minimum time that is necessary in order to perform
the lateral motion of the maneuver. Our approach explicitly
considers the changing constraints during a maneuver as
hard constraints during the optimization. The safety of the
resulting trajectory is ensured by incorporating formal safety
distances.

We have demonstrated our approach using simulated lane
change maneuvers. Our approach is independent of the
longitudinal and lateral planners and can be adapted to other
types of maneuvers.
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