
Fakultät für Informatik
Fachgebiet Vernetzte Rechensysteme
Technische Universität München

Flexible Task Management for Self-Adaptation
of Mixed-Criticality Systems
with an Automotive Example

Daniel Andreas Krefft

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr.rer.nat.)

genehmigten Dissertation.

Vorsitzende:
Prof. Dr. Claudia Eckert

Prüfende der Dissertation:
Prof. Dr. Uwe Baumgarten
Prof. Dr.-Ing. Andreas Herkersdorf

Die Dissertation wurde am 22.08.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 11.12.2018 angenommen.

Abstract

With regard to future connected cars, there are two trends leading to consolidated hard-
ware devices as well as an increasing software complexity within a car. In consequence, a
rising number of software needs to use the provided resources of a few high-performance
hardware devices. For an efficient resource usage, a flexible software management sup-
porting the (self-)adaptation of a software system is getting more and more important
- even within a car. This flexible software management therefore needs to consider the
criticality and real-time properties of an application within this context. Corresponding
to the hardware consolidation, the management approach should be combined with the
actual application on one hardware device. With a recent advance of multi-core embed-
ded systems, there exists a potential hardware platform which is able to support this
combination in an embedded context. Especially, the usage of a flexible management
supporting the self-adaptation of a mixed-criticality software system on an embedded
hardware device during run-time is of interest.

For integrating a flexible software management on top of an embedded hardware plat-
form, this work investigates the application of a controlled adaptation process consider-
ing the given resources. The work, thus, describes a consolidated architecture approach
which designs the flexible software management as part of an operating system. The cor-
responding adaptation process is based on a newly designed run-time integration frame-
work which allows the deployment of mixed-criticality applications into a given software
system. For realizing the several decision phases within the integration framework, an
extended description considering the static and dynamic information of an application
and the system itself is described. With the usage of a multi-core platform, the decision
making processes for the adaptation can be executed beside the actual applications on
the same device.

The implementation is done by using a micro-kernel based real-time operating system.
As part of a distributed environment, the implemented system is tested according to
certain automotive scenarios. Furthermore, the system is also tested in isolation through
a software-in-the-loop comparable approach. The first evaluation results present an
indication if the demanded resource and adaptation requirements are fulfilled. Moreover,
this work presents a fundamental feasibility study for adapting an automotive system
during operation.

In conclusion, this thesis explores aspects for integrating a flexible software manage-
ment approach in an embedded mixed-critical system on a multi-core hardware platform
and demonstrates the feasibility of adapting such a system during operation.

iii

Zusammenfassung

Mit Hinblick auf zukünftige vernetzte Fahrzeuge, gibt es zwei Trends, welche sowohl zu
konsolidierten Steuergeräten, als auch zu einer zunehmenden Komplexität von Software
im Fahrzeug führen werden. In der Konsequenz muss eine steigende Anzahl von Soft-
ware die Ressourcen von wenigen leistungsstarken Steuergeräten verwenden. Für eine
effiziente Nutzung dieser Ressourcen wird eine flexible Verwaltung zur Unterstützung der
(Selbst-)Adaption eines Software Systems immer wichtiger - sogar im Fahrzeug. Diese
flexible Softwareverwaltung muss die Kritikalitäts- und Echtzeiteigenschaften einer An-
wendung in diesem Kontext berücksichtigen. Entsprechend der Hardwarekonsolidierung
sollte die Verwaltung mit der eigentlichen Anwendung auf einem Gerät ausgeführt wer-
den. Mit den jüngsten Entwicklungen von Mehrkernprozessoren in eingebetteten Sys-
temen existiert eine mögliche Plattform welche diese Kombination unterstützen kann.
Besonders die Nutzung einer flexiblen Verwaltung, welche die Selbst-Adaption im Bere-
ich gemischt-kritischer Software Systeme auf einem eingebetteten Gerät zur Laufzeit
unterstützt, ist hierbei von Interesse.

Für die Integration einer flexiblen Softwareverwaltung untersucht diese Arbeit die An-
wendbarkeit einer kontrollierten Adaption eines Software Systems unter Berücksichtigung
der gegebenen Ressourcen. Die Arbeit beschreibt hierzu eine konsolidierte Architektur,
welche die flexible Softwareverwaltung als Teil eines Betriebssystems vorsieht. Der Adap-
tionsprozess selbst basiert auf einem, in dieser Arbeit entwickelten, Laufzeit-Framework
zur Integration von gemischt-kritischen Anwendungen in ein gegebenes Software Sys-
tem. Zur Realisierung der einzelnen Entscheidungsprozesse innerhalb des Frameworks
wird eine erweiterte Beschreibung zur Erfassung der statischen und dynamischen Infor-
mationen über die Anwendung und das System selber präsentiert. Durch die Nutzung
eines Mehrkernprozessors können die Entscheidungsprozesse für die Adaption neben den
eigentlichen Anwendungen auf dem selben Gerät ausgeführt werden.

Die Umsetzung des vorgestellten Ansatzes erfolgt unter Verwendung eines microkernel-
basierten Echtzeitbetriebssystems. Das System wird in verschiedenen automotiven An-
wendungsszenarien als Teil eines verteilten Bordnetzes beziehungsweise, isoliert, in einem
Software-in-the-Loop Ansatz getestet. Die ersten Ergebnisse geben eine Einschätzung
darüber, inwieweit die geforderten Aspekte zur Nutzung der verfügbaren Ressourcen
und zum zeitlichen Verhalten der Adaption erreicht werden konnten. Darüber hinaus
präsentiert diese Arbeit eine grundsätzliche Machbarkeitsstudie über die Möglichkeit das
automotive System mit Hilfe des entwickelten Ansatzes zur Laufzeit zu adaptieren.

Zusammenfassend untersucht diese Arbeit die Aspekte zur Integration einer flexi-
blen Softwareverwaltung in einem eingebetteten gemischt-kritischen System auf einer
Mehrkernprozessor-basierten Hardware-Plattform und zeigt die Machbarkeit solch ein
System während der Ausführung zur Laufzeit zu adaptieren.

v

Acknowledgments

First of all, I would like to thank Prof. Dr. Uwe Baumgarten for his dedication giving me
the possibility to work at his chair of operating systems and for the opportunity to work
on such an interesting thesis topic. His door has always been open for conversations,
discussions and giving me the right directions. Further, I would like to thank my mentor
Prof. Dr. Andreas Herkersdorf for giving me valuable remarks and for his readiness to
examine my thesis.

Many thanks to all my colleagues at the chair of operating systems. I met many
special people who inspired me in our pro-active meetings, talks and day-to-day work.
Especially Susanne Guggenmos and Sebastian Eckl provided me a huge support. Many
thanks also to all students contributing to the work we developed during my time at the
chair, including the creation of our prototype, where Alexander Reisner and Alexander
Weidinger showed their enthusiasm and dedication.

I am deeply thankful to my family and my friends who supported me with open ears
and good advice over the years. Special thanks go to Woody Lemcke for proofreading
my thesis.

I would like to thank my parents, my mother Belinda Krefft and my father Raimund
Krefft. This thesis would not have been possible without all their love and support also
in difficult times.

Last but not least, a great thank you goes to a special person in my life. With your
smile, love and enthusiasm you have given me the motivation for this long run. Thank
you, Susanne Mozes.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

1 Introduction 1
1.1 Background and Current Trends . 1

1.2 Motivation . 3

1.3 Problem and Contributions . 6

1.4 Structure of the Work . 8

2 Fundamentals of Embedded Systems Development 9
2.1 Basic Taxonomy of a System . 9

2.2 Architecture in Software Engineering . 10

2.3 Functional and Design Requirements . 13

2.3.1 Taxonomy of Self-Adaptation . 14

2.3.2 Taxonomy of Dependability . 16

2.4 System Analysis Foundations of an Embedded System 21

2.4.1 System Architecture . 22

2.4.2 Real-time Scheduling . 26

2.4.3 Communication . 33

3 Domain Analysis 35
3.1 Operating System Architectures for Multi-Core Systems 35

3.2 Real-Time Scheduling of Dynamic Mixed-Critical Systems 38

3.3 Mixed-Critical System Properties . 42

3.4 Self-Adaptive Systems Properties . 44

3.5 Differences between Related Work and Proposed Approach 47

ix

Contents

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore
Systems 53
4.1 Description of the Overall System Architecture 53

4.2 Kernel Space and User Space Interactions 56

4.3 Allocation of Software Components to Multicore Hardware Platform . . . 60

4.3.1 Integration of Application Components within the System 61

4.3.2 Criticality-Aware Allocation of Software Components 63

4.3.3 Isolation Supporting Criticality . 66

4.4 Description of Workflows for Self-Adaptive Software Architecture Changes 68

4.4.1 Adding a New Task into the System 69

4.4.2 Optimizing current System State 70

4.4.3 Monitoring current System State 71

5 Flexible Task Management 75
5.1 Basic Model for Reasoning about Current Running State 75

5.1.1 Ready-Queue and Core Representation within User Space 75

5.1.2 Extended Task Model Considering Criticality and Schedulability . 76

5.2 Run-Time Task Integration Framework 77

5.2.1 Critical-Aware Dispatching of Tasks to Cores 78

5.2.2 Short-Term Online Admission Test 81

5.2.3 Long-term Knowledge-based Optimizer 84

5.2.4 Synchronizing User Space with Kernel Space 86

5.3 Combine the Framework Concept with the Designed Architecture 88

5.3.1 Co-Existent Scheduling Strategies 89

5.3.2 Tracing/Logging Software Component 89

5.3.3 Controller Software Component . 90

5.3.4 Synchronizer Software Component 91

6 Extension of a Microkernel-Based Operating System 93
6.1 Genode and Fiasco.OC Basic Concepts . 93

6.1.1 L4 Fiasco.OC Microkernel . 94

6.1.2 Genode Operating System Framework 96

6.2 Extension of the Fiasco.OC Microkernel 99

6.2.1 Adding additional Scheduling Policies 100

6.2.2 Extension of Time-related Thread Information 102

6.2.3 Extension of Scheduling-Context for Thread Deployment and In-
formation Gathering . 103

6.3 Operating System Framework Components 105

6.3.1 Component for Network Communication 105

6.3.2 Components for Information Gathering 107

6.3.3 Component for Controlling the System 110

6.3.4 Components for Loading and Deploying of Tasks 114

6.4 Limitations of the current Implementation 116

6.4.1 Getting System Information . 116

x

Contents

6.4.2 Adding New Tasks to the System 118

7 Evaluation of the Flexible Task Management 121
7.1 Scenario I: Reliable Autonomous Driving under Adaptation 121

7.1.1 Installing an Application Component During Operation 121
7.1.2 Updating an Application Component During Operation 124

7.2 Scenario II: Testing System Properties using Artificially Generated Task
Sets . 126
7.2.1 Support for the Separation of Software Components 127
7.2.2 Support for the Avoidance of Overload Situations 131
7.2.3 Support for Update Induced Dynamic Task Set Changes 133

8 Conclusion 137

9 Future Work 141

A Code Listings 143
A.1 Source Code . 143
A.2 Accpetance Test in Pseudocode . 155

B Evaluation Setup 159
B.1 Generating Artificial Task Sets . 159
B.2 Autonomous Driving Setup . 163

B.2.1 Hybrid Test Bed . 163
B.2.2 Installation Scenario Additional Files 165

Own Publications 169

Advised Theses 171

Bibliography 173

xi

List of Figures

1.1 Fields of application for connected-car-solutions (cited after Statista [116]) 2
1.2 ECU consolidation foresees the usage of smaller but more powerful hard-

ware devices [21] . 2
1.3 Software innovations fuel automotive and mobility advances but quickly

increase complexity [48]. 3

2.1 Architecture and design link requirements and code together [82] 11
2.2 AUTOSAR process to configure a system [9] 12
2.3 Generic Observer/Controller Architecture [107] 13
2.4 Overview about Self-Adaptation and their Instances 15
2.5 Taxonomy of Dependability presented as a tree [10] 16
2.6 Faults, errors and failures according to Kopetz [88] 16
2.7 ISO26262 Process Diagram Overview [75] 19
2.8 SEooC Development Lifecycle (cited after [131]) 22
2.9 Overview of an CPS system [41] . 23
2.10 Simplified Architecture of a Multicore Processor 24
2.11 SMP Processor Configuration with Operating System 25
2.12 Taxonomy of real-time scheduling algorithms [88] 26
2.13 Summary of times associated with a task execution [95] 28
2.14 Scheme of the guarantee mechanism used in dynamic real-time systems

(according to [29]) . 30
2.15 Kopetz 10.2: Necessary and sufficient schedulability test 31
2.16 Scheduling comparison . 32
2.17 Car2Car protocol stack (cited after [138]) 34

4.1 Block Diagram of the Overall Task Management Architecture 54
4.2 Mandatory components and their connectors 57
4.4 Allocation Example following the Partition Process 67
4.6 Activity diagram for inserting a new task within the system 70
4.7 Activity diagram for optimizing a ready queue 71
4.8 Activity diagram for diagnosing the current system state 72

5.1 Flowchart describing the allocation of newly arriving LO-tasks to a re-
spective core [113] . 80

5.2 Overall Synthesis Process [108] . 82
5.3 Sufficient and Exact Test in the context of other software components [53] 84
5.4 Abstract system overview with tracing/logging, controller, and synchro-

nization [113] . 88

xiii

List of Figures

5.5 Abstract overview of the optimization process of the controller software
component [113] . 90

6.1 Overall Overview about Fiasco.OC and Genode 93
6.2 A ready-queue with threads containing their scheduling parameter is as-

signed to each core. A scheduler populates this ready queue. [68] 95
6.3 Genode inter-process communication [64] 99
6.4 Collaboration Diagram for Fiasco.OC Microkernel 100
6.5 Simplified flow of Fiasco.OC and Genode interface 102
6.6 Simplified flow of Fiasco.OC and Genode interface for Deploy 104
6.7 Collaboration Diagram of several classes for the flexible task management

in Genode . 106
6.8 Collaboration diagram for information gathering (i.e. tracing) 108
6.9 Collaboration diagram for Sched controller 111
6.10 Flow Chart for Optimization Procedure according to [112] 115
6.11 Genode and Fiasco.OC priority values [64] 118

7.1 Installation Case Setup Car and Workstation 122
7.3 Update Case Setup Car and Workstation 124
7.4 Update of component on Core1 over time 126
7.5 Plot shows a periodically executed task on Core1 using a timing service

on Core0 . 128
7.6 Plot shows a task calculating PI on Core1 without using any services on

Core0 . 130
7.7 Plot shows a task calculating PI on Core1 with management components

running on Core0 . 132
7.8 Histogram View of optimizing process . 134
7.9 Piechart of average timing demands of several execution steps 135
7.10 Piechart of average timing demands of several steps during execution . . . 135
7.11 Timing measurements of different applications 136

B.1 Detailed toolchain view between offline and online system 159
B.2 Schematic View of Evaluation Setup . 164
B.3 Test Bed of Evaluation Setup . 164
B.4 Physical model car equipped with boards 165

xiv

List of Tables

2.1 ASIL Assignment according to ISO26262 21

5.1 Comparison of schedulability analyses for FP [53] 83
5.2 Comparison of schedulability analyses for EDF [53] 83
5.3 Comparison of lock-based and lock-free mechanism [66] 87
5.4 Comparison between Mutex, RCU and STM [33] 87

6.1 Scheduler Operation . 96
6.2 magic codes provided by the network component 107

B.1 Generated Tasks and their descriptions (idp js/mz) 162

xv

Acronyms

AC Autonomic Computing.

ACC Adaptive Cruise Controller.

AMP Asymmetric Multi-Processing.

ASIL Automotive Safety Integrity Level.

AUTOSAR AUTomotive Open System ARchitecture.

BSW AUTOSAR Basic Software.

CAN Controller Area Network.

CBS Constant Bandwidth Server.

COTS Custom Off The Shelf.

CPS Cyber-physical System.

CPU Central Processing Unit.

ECU Electronic Control Unit.

EDF Earliest Deadline First.

FP Fixed Priority.

GUI Graphical User Interface.

HARA Hazard Analysis and Risk Assessment.

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

IPC Inter Process Communication.

ISO International Organization for Standardization.

LCT Latest Completion Time.

xvii

Acronyms

LITMUSRT Linux Testbed for Multiprocessor Scheduling in Real-Time Systems.

MMU Memory Management Unit.

MUF Maximum Urgency First.

OC Organic Computing.

OS Operating System.

OSADL Open Source Automation Development Lab.

OSEK Offene Systeme und deren Schnittstellen für die Elektronik in Kraftfahrzeugen.

OSI Open Systems Interconnection.

RAM Random-Access Memory.

RCU Read Copy Update.

RM Rate Monotonic.

RPC Remote Procedure Call.

RTA Response Time Analysis.

RTE Run-Time Environment.

RTOS Real-Time Operating System.

SMP Symmetric Multi-Processing.

STM Software Transactional Memory.

SW-C AUTOSAR Software Component.

VBS Value-Based Scheduling.

WCET Worst Case Execution Time.

XML Extensible Markup Language.

xviii

1 Introduction

This chapter will give an introduction to the greater context of this work. An overview
about current automotive trends with their supposed implications for the development
of future embedded systems in this area will be outlined in section 1.1. The subsequent
section 1.2 will illustrate the motivation for this work which is derived from the former
implications. With the given motivation, possible challenges on the way towards a
solution which addresses the motivated aspects will be explained in section 1.3. After
that, certain contributions which are made by this doctoral thesis will be outlined. The
chapter will close with the overall structure of the work in section 1.4.

1.1 Background and Current Trends

In January 2016, McKinsey & Company published a report about possible perspectives
of technology-driven trends for the automotive industry towards 2030 [102]. One of
the eight key perspectives on the “2030 automotive revolution” considers the changes
driven by connectivity services and feature upgrades. This outlook is supported by a
current study [60] which estimates that the number of connected cars (i.e. predecessor
of autonomous driving cars) will increase globally up to 220 million by 2020. This
development is accompanied by a rising number of new application fields for connected-
car-solutions (see figure 1.1). A majority of these applications and services are mainly
driven by pure software-based solutions. Unlike before, certain services need software
maintenance mechanisms (e.g. evaluate, control, and modify) directly in the car. In
case of an automatic software update for instance, (i.e. “diagnosis & maintenance”) a
car’s software can be altered during operation. The resource demands (e.g. computation
power) of these new services can also be seen as a driving force for future trends in the
area of automotive hardware development.

One clear trend which is identifiable in the area of automotive (embedded) hardware
(see figure 1.2) is the development of smaller and simultaneously more powerful devices
(e.g. domain controllers). This development is mandatory due to the fact that the com-
putation effort which is needed by the new services will potentially increase. In a first
step, the performance gain was achieved by increasing the clock speed of a single pro-
cessor. This approach has reached its limits in recent years because of a negative impact
regarding simplicity (i.e. getting more complex), efficiency and power consumption. In
order to still allow further performance gains, recent embedded hardware is designed to
use multiple computation units on the same device. This is achievable by using a smaller
structural size allowing a tighter packing of electronic computing elements on hardware
units (i.e. constant hardware construction size). This development enables the practical

1

1 Introduction

Autonomous Driving
Self-driving cars
Parking Assitance

Security
Emergency Braking
Assistance
Road-following Systems

Entertainment
Smartphone-Integration
Music-/Videostreaming
Access to social networks

Diagnosis &
Maintainance

Automatic
Softwareupdate
Remote Maintainance

Navigation
Real-time Traffic
Information
Routing

Information
Online-News
Environmental
Information (e.g. fuel
price)

Figure 1.1: Fields of application for connected-car-solutions (cited after Statista [116])

design of multi-core embedded systems [105]. The trend is definitely going towards em-
bedded multi-processor and multi-core hardware which allows an independent execution
of software on distinct cores but on the same device. Now it is possible to consolidate
software functionality on one device rather than using several devices. For example,
it is possible to integrate maintenance mechanism on one core beside cores which are
providing the actual functionality. In this case, an automatic software update can be
prepared on the maintenance core without disturbing the execution of the other cores.
With this trend in the area of embedded hardware, there are also new possibilities to
manage and use software within a car.

Figure 1.2: ECU consolidation foresees the usage of smaller but more powerful hardware devices
[21]

2

1.2 Motivation

As shown in figure 1.3, there has been an increasing number of software features within
a car over the last years. The great majority of these new features are belong to the
domain of driving assistance functions with the goal of autonomous driving cars in the
foreseeable future. Today, the current capabilities of a car’s driving assistance functional-
ity already exceeds the actual control and regulation tasks to drive a car (e.g. X-by-wire).
This will be enforced with the advance of future autonomously driving cars which will
be steadily merged with their environment. Software is, hence, one of the main driv-
ing factors of future cars and it’s getting more and more complex. Adequate handling
of (complex) software inside a car is therefore of growing importance [24]. Especially,
supporting the flexible (i.e. dynamic at run-time) adaptation of a car’s system software
depending on its environment needs to be mastered. If a well known software mainte-
nance mechanism would be available in a car, the required system software adaptation
would be feasible.

Figure 1.3: Software innovations fuel automotive and mobility advances but quickly increase
complexity [48].

In conclusion, due to a raising software complexity within automotive systems there
is a common desire to update already delivered system software. With a recent advance
of multi-core embedded systems, there exists potential hardware platforms which are
able to supply an update mechanism even in an embedded context. The integration of
software updates however is challenging due to several constraints that software within
an automotive system needs to consider.

1.2 Motivation

The trend of a rising software complexity within a car could already be observed in
other areas not related to automotive industry. In general, several domains suffer from

3

1 Introduction

an increasing complexity of software systems where software, and its development, is the
driving factor. This problem always is subject to the area of software engineering, where
methods and approaches are developed to control the complexity of a system. In other
domains, outside of an automotive context, there are already methods and approaches
to control the complexity of a system. One of the established approaches is to design
a flexible system which is allowed to adapt its inner workings to a given situation.
For the context of this work this means to control the rising complexity of software-
based services within an embedded system by finding adequate software management
mechanisms. The overall focus relies here on the mechanisms which are proven to work
well in other domains (e.g. autonomic computing) but are not immediately available in
the area of embedded systems. Especially, the usage of dynamic software adaptation
mechanisms in embedded systems is of interest. Automotive functions however are used
for demonstrating the flexibility of the resulting architecture achieved through software
management. The main motivation is to apply software management techniques to a
category of devices whose software was not intended to be updated. The motivation in
this section therefore outlines the potential benefits but also the challenges which can
arise by using these mechanisms.

Most of flexible run-time software management approaches require that the system
can be modified during operation. Due to the fact that automotive systems are highly
integrated (mixed-critical) systems, there exists an integration challenge for such ap-
proaches in general [126]. In contrast to, for instance, server software and their related
adaptation mechanism, a modification of embedded software components within a car
during run-time is more limited. The severity in case of a failure during an adaptation
process of an automotive embedded system software differs greatly from a compara-
ble process in a data center. The resource constraints within an embedded system are
stronger in comparison to a data center system. The time when a reaction (i.e. behavior
change) needs to take place is another critical factor. In the case of a car as part of
a traffic situation, an excessive reaction time can lead to an accident. This situation
leads to a broad utilization of real-time operating systems within an automotive embed-
ded system because the correct system behavior does not solely depend on the correct
function execution but also on the time when this function gets executed.

In the area of real-time (operating) systems, the realization of a flexible adaptation
mechanism which dynamically manages the resources during run-time can be seen as a
challenge. In general, the design of a real-time system to operate as expected is subject of
certain requirements [88]. These requirements mainly concern the limits and conditions
(i.e. dependability and timing) under which a real-time system is able to provide its
functionality. In more detail, the programs which are executed on a real-time system
may have different timing or safety conditions. An integration of those programs on one
system is, in case of safety, considered as a mixed criticality system. In this case, an
embedded real-time system consists of several programs with varying importance for the
overall system and its dependability. As a result, the possibility of adding extra software
features to a mixed-critical embedded system during operation is not consistent with
the safety requirements of those systems. To be compliant with these limitations, the
development approach for designing a mixed criticality systems is focused on design-

4

1.2 Motivation

time rather than run-time. Current embedded systems therefore are designed to be
immutably during run-time.

Due to the fact that most embedded systems are designed to make the best fit to their
current task, current deployment strategies for embedded systems exclude the possibility
to update the system during operation at run-time. For the execution of its main task,
in most cases an embedded system basically does not need to be modified at run-time.
A closer look onto the interaction between an embedded system and its environment
offers the system’s main task for measuring and controlling the contextual physical pro-
cesses and their dynamics by orchestrating actions that influence the processes [95]. An
embedded system, hereby, does not necessarily change its internal working structure nor
its behavior. Future (automotive) trends however are leading to a dramatic increase of
automation and to a rising influence of these systems by their surrounding environment.
To overcome these future challenges, many current embedded systems (i.e interface func-
tion between physical and virtual world) need to be transformed towards cyber-physical
systems.

There are several situations in which an embedded system could benefit from an
adaptation of its software. If a scenario was not foreseeable during the design process
and therefore not tested, an embedded system could fail to manage this new situation
during run-time. Scenarios where such an uncertainty can arise is most likely in cases
of autonomous driving where a car is moving through a changing environment. With
the capability of adapting the software afterwards, these situation could be managed. A
further example is the retrofitting of software features to handle new standards (e.g. 5G
communication protocol). Opening an embedded system in the form of a connected car
to its environment entails the risk for software attacks which could be circumvented by
patching the affected parts.

In conclusion, flexible software management in embedded systems is also a resource
management problem. The provided limitations of an embedded system need to be re-
spected. The enhancement of a current embedded system with a dynamic adaptation
mechanism requires combining flexibility and integrity in one single system. The used
resources therefore need to be partitioned between the applications and the software
management. This partition needs to be guaranteed by an adequate separation mech-
anism. In embedded real-time systems, all software programs either static or dynamic
have an important aspect in common, namely time. A real-time system ensures the cor-
rect system behavior by guaranteeing timing conditions of its software. Timing aspects,
thus, are the key to real-time systems. In combination with mixed-critical systems, the
main task of an embedded real-time system is to ensure the timing conditions according
to each software’s criticality level and to prevent their mutual interference by accessing
the same hardware resource. A consistent resource management that is applicable to
a great variety of use-cases can be provided by a real-time operating system. There
is one software component in an operating system which is a basic mechanism for the
management of time (i.e. assigning CPU resources to software programs) - namely a
scheduler. Supporting a flexible software management, the underlying scheduling mech-
anism needs to be able to manage modifications of its set of to be scheduled actions,
unlike current approaches in embedded real-time systems. Nevertheless, the run-time

5

1 Introduction

adaptation needs to respect the conditions and limits of an embedded system for guar-
anteeing a stable system behavior. If an arbitrary adaptation for instance would be
possible, software may enter unforeseeable states that have never been tested or rea-
soned about at design-time possibly leading to incorrect system behavior. The scope of
a system’s adaptation behavior therefore needs to be limited by run-time control mech-
anisms (supporting the actual scheduling). Basically, the intended control mechanisms
are inspired by the current design-time steps for developing an embedded system. As a
result, the controlling tasks include the monitoring, diagnosing, correcting, and adapting
of system’s software [36]. For a correct system behavior, a (mobile) embedded system
needs to autonomously execute these steps in a changing environment. Without the
possibility of a human controller, an embedded system needs to be controlled by itself
(self-x). As a result, flexible software management will be enabled by distinct operating
system support via the scheduler.

1.3 Problem and Contributions

Within this section, the central research questions will be identified. Furthermore, the
contributions of this work will be enumerated.

Research Questions:

The central research problem within the context of this work is the software-based adap-
tation of an embedded mixed-critical system during operation.

Resource Partitioning With the possibility of altering existing applications within a
system, a demand arises where applications need to be correctly integrated or deployed
into the system during adaptation. Within the context of a mixed-critical system, dif-
ferent applications acquire different resources of the system. Considering the required
resource partitioning in combination with a possible deployment of applications, the
following questions for a concrete partitioning scheme arise:

• Research Question 1 : how could a separation of adaptation management and ap-
plications look like?

• Research Question 2 : how could a critical-aware resource allocation of an applica-
tion during run-time look like?

Adaptation Control An uncontrolled adaptation of applications within a mixed-critical
system during operation can be hazardous for the overall system state. Dedicated soft-
ware components and mechanisms for controlling the adaptation are therefore required.
There are several questions related to this.

• Research Question 3 : how could an adaptation control on top of an operating
system scheduler look like by keeping a small trusted computing base?

6

1.3 Problem and Contributions

• Research Question 4 : how could a concrete adaptation process look like that sup-
ports dynamic mixed-critical workloads?

• Research Question 5 : how could a concrete control mechanism look like that is
suitable for achieving a robust system execution?

Resource Usage and Overhead In the context of an embedded system, there are strict
resource constraints. The mechanism used for the adaptation of the system therefore
needs to be resource efficient. A central question, thus, is:

• Research Question 6 : which timing behavior does the adaptation management and
overall process show?

Contributions:

The following contributions will be presented in this work.

1. overall contributions

a) adaptation management and application execution is located on the same
device

b) an adaptation of the system takes place during operation at run-time

c) required separation of timing resources is achieved by utilizing distinct cores
on a multi-core platform via a co-existent (partitioned) scheduling scheme

2. architecture contributions

a) design of an architecture to enable a separation between applications and the
adaptation management as well as a separation between high critical and low
critical applications

b) integrating the adaptation management within the operating system user-
space of the designed architecture

3. process contributions

a) identification of concrete workflows for the adaptation process

b) presentation of kernel ready queues as well as an extended application model
within user-space

c) design of an user-space run-time integration framework for controlling the
adaptation process

4. implementation contributions

a) extension of an existing capability-based microkernel to provide required in-
formation, methods and scheduling strategies for the adaptation management

b) implementation of relevant software components in user-space via the Genode
Operating System Framework

7

1 Introduction

5. evaluation contributions

a) software-based only separation on a multi-core platform will be presented

b) coexistent scheduling strategies managing the underlying cores will be pre-
sented

c) a possible self-optimizing behavior for a robust system execution in spite
of changing conditions (i.e. continuous installation of applications) will be
presented

d) several timing measurement of distinct adaptation stages as well as the overall
adaptation process will be presented

e) a case study of a live update/installation within an automotive driving sce-
nario (hybrid simulator test bed) during operation will be presented

1.4 Structure of the Work

The remainder of this thesis is organized in the following chapters. Chapter 2 gives a
fundamental introduction of thesis relevant topics according to the area of cyber-physical
systems, scheduling theory and adaptive systems. In the following, chapter 3 provides
an analysis of existing solutions in the area of flexible task management. Therefore, this
chapter provides information about current system approaches for flexible task man-
agement as well as related work. After that, the derived requirements summarize the
identified corner points for the realization of a flexible task management. The chapter
concludes with the assumptions and restrictions taken for this thesis. After that, chap-
ter 4 describes the overall architecture in more detail and inspects each element of the
resulting architecture regarding its functionality, interface and behavior. Additionally,
it provides a detailed explanation about the taken deployment decisions of software to
hardware platform and the description of controlling mechanisms for an adaptive behav-
ior. In chapter 5, the intended concept of a flexible task management will be outlined.
First, a task model will be described which serves as base for relevant analysis. Followed
by the concept of a run-time integration framework for the management of variable task
sets, the chapter concludes with the combination of the run-time integration framework
into the designed architecture. The implementation of the proposed architecture and
flexible task management will be shown in chapter 6. In detail, the chapter shows the
extension of a given microkernel-based operating system with the propagated design
changes and their relevance for the implementation. The chapter 7 covers the executed
test cases for the implemented approach as well as their implications considering the
overhead and efficiency. The last chapters 8 and 9 close this thesis with a critical rating
of the undergoing research and its findings as well as open topics for future research.
Appendix A and appendix B contain the source code listings and a detailed description
about the used test setup.

8

2 Fundamentals of Embedded Systems
Development

As outlined in chapter 1, this work concerns flexible software management in the area of
embedded systems. This chapter is therefore structured according to the development
process of an embedded system and introduces, thereby, relevant terms for this work.
Beginning with section 2.1, the definition of a system as well as related terms (e.g. archi-
tecture) will be given. After that, section 2.2 outlines the general development process
for embedded systems and addresses the role of an architecture within this process. The
greater area of software requirements and especially design requirements will be covered
in section 2.3. The closing section 2.4 will provide an overview about a core task of the
design process, namely the system analysis. Relevant terms according to system and
software architecture (i.e. operating system, multi-core platform, real-time scheduling,
and communication) will be in the focus.

2.1 Basic Taxonomy of a System

At a first sight, the area of embedded systems has induced a vast number of varying
devices which are ubiquitous in our daily life. Despite their different applications, com-
mon software engineering methods are used for the development and design process of
embedded systems. This section therefore introduces basic terms from the area of sys-
tems and software engineering which are not necessarily restricted to embedded systems
at all.

A system can be commonly understood as a set of entities which are related among
each other. The entities could be arbitrary. In the context of this work, a system itself
could also be an entity as part of a greater system which interacts with other entities.
This view of a system corresponds to the definition by Avizienis [10]:

Definition 1 A system is an entity that interacts with other entities, i.e., other
systems, including hardware, software, humans, and the physical world with its natural
phenomena.

According to this definition an embedded system can be seen as a combination of a
hardware system and a software system. A hardware system is composed of a set of
hardware resources like memory, processor, bus and so on. A software system is corre-
spondingly composed of a set of software elements like functions, modules, components,
objects etc..

Later on, in section 2.3 two types of requirements will be introduced, namely functional
requirements and design requirements. In advance, a functional requirement describes

9

2 Fundamentals of Embedded Systems Development

what a system should perform in case of a certain event. These expectations can be
defined as a systems function:

Definition 2 The function of a system is what the system is intended to do and is
described by the functional specification in terms of functionality and performance [10].

Functions define what is expected from a system but without providing a concrete
solution which is actually defined by the behavior of a system.

Definition 3 The behavior of a system is what the system does to implement its
function and is described by a sequence of states [10].

The so far introduced taxonomy of a system describes solely a set of entities and gives
an indication that these entities are linked together. The taxonomy however lacks the
definition about the way these entities are related to each other. The term of a structure
will be defined as follows.

Definition 4 The structure of a system describes, the way how the entities of a
system are linked together.

The structure thus describes how the system is organized inside. Another term which
is related to the structure and the internal organization is the definition of a system’s
architecture.

Definition 5 A system architecture is the highest structural level describing the
fundamental organization of a system’s entities (i.e. their relationships among others)
and the principles governing a system’s design and evolution.

Due to the fact that entities of a system could also be systems (i.e. with their own
architecture), an architecture describes the structure of a system as hierarchy. The
aspect of system evolution in this definition describes that an architecture doesn’t merely
describe the static structure of a system but also dynamic changes. In general, an
architecture exists on an abstract level above algorithms or concrete data types. A
software architecture can therefore be seen as the highest level of a greater software
system [134]. This applies to a hardware architecture also.

In conclusion, the basic taxonomy of a system was introduced in this section. Several
definitions therefore were given. In the context of this thesis, software management
is of interest. The following taxonomy therefore is focusing on a software engineering
process rather than a general system engineering process. In a next step, the role of an
architecture within a software engineering process will be given.

2.2 Architecture in Software Engineering

Software engineering can be seen as a process where several methods are used to develop
software in a structured and reproducible way. Considering current procedure models
(e.g. v-model, waterfall), the overall goal of this process is to subsequently transform
initial system requirements to an actual executable system (i.e. source code).

10

2.2 Architecture in Software Engineering

Starting with a system analysis. A software system which is described by its require-
ments is analyzed (i.e. striped down). The corresponding requirements serve hereby as an
input for this process. After that, the relations between the system entities are formally
described. A software architecture is hereby the output of the system analysis. Require-
ments and code thus are interlinked by an architecture [82]. The architecture presents a
suitable assignment of requirements to architecture elements. The following design poses
principles for the realization of the architecture elements in an implementable form. This
fact is again depicted in figure 2.1

software requirements

system analysis

software architecture

software design

implementation

code

Figure 2.1: Architecture and design link requirements and code together [82]

This section will describe the role of an architecture within a software engineering
process. An architecture combines the requirements and the resulting code. The second
part of this section therefore shows two concrete examples of architectures with different
approaches for designing a system.

AUTOSAR Architecture

In the following, the AUTOSAR standard [40] should serve as an example of a model-
based approach for the development of automotive software systems. AUTOSAR stands
for AUTomotive Open System ARchitecture and defines the following key aspects:

• Architecture which is based on a layered architecture model which can be departed
in Application, RTE and Basic Software

• Methodology is used to enable a deployment of software across ECU-boundaries
as well as the configuration of basic software of each ECU

• Application Interfaces defines interfaces of typical automotive software applications
to enable a later integration

Beside other aspects of the development process, the AUTOSAR methodology de-
scribes an important step (see figure 2.2) to configure a system (i.e. “Configure System”).

11

2 Fundamentals of Embedded Systems Development

According to the AUTOSAR standard, an application is modeled as a composition of
interconnected components. Where each component has well-defined “ports”, through
which the component can interact with other components. During this configuration
step the components are mapped on specific system resources (ECUs). This deployment
is assisted by a tooling support which automates a part of the process. Thereby, the
virtual connections between the components are mapped onto local connections (within
a single ECU) or on network-technology specific communication mechanisms (such as
CAN or FlexRay frames).

ECU I

Virtual Functional Bus

AUTOSAR
SW-C1

AUTOSAR
SW-C2

AUTOSAR
SW-C3

AUTOSAR
SW-Cn...

ECU II

AUTOSAR
SW-C 1

AUTOSAR
SW-C3

AUTOSAR
SW-C 2

ECU n

AUTOSAR
SW-C n

RTE
Basic

Software

RTE
Basic

Software

RTE
Basic

Software

...

System Constraint
DescriptionECU

Descriptions

Tool Supporting development
of SW components

Gateway

SW-C
Description

SW-C
Description

SW-C
Description

SW-C
Description

ECU
Description

ECU
Description

Flex Ray CAN

Figure 2.2: AUTOSAR process to configure a system [9]

The described process for designing and implementing an automotive system via the
AUTOSAR methodology is by far not the only way to develop modern embedded sys-
tems. The next section covers a further architecture where an other approach will be
pursued.

Organic Computing Architecture

In case of a traditional engineering paradigm, there is a central methodology (i.e. process)
which guides through the required steps for developing an embedded system (cp. safety
process in section 2.3.2). This paradigm is mostly anchored in the design-time of the
development process. Another approach however allows the system to evolve during
operation. In contrast to the engineering paradigm, in the evolutionary paradigm there is
no centralized or coordinated planning [107]. Where in classical engineering the behavior
of a system (i.e. states) is completely described, the course of evolution is, by definition,
not determined by describing a given state of the evolving unit [107]. This has several
implications for the design of an architecture considering the evolutionary paradigm.

12

2.3 Functional and Design Requirements

First, there is no complete methodology which can be used to process from require-
ments to the final implementation [46]. Also, there is no clear way to process design
requirements (e.g. self-x properties) to functional requirements (cp. safety process). In
general, there is no process standard for the development of self-x capable systems com-
pared to other embedded systems (like automotive). Despite the lack of a complete
methodology, there are tools, paradigms, and references which can be used to develop
the systems in mind. An important paradigm for developing an architecture of a system
with self-x properties is the generic observer/controller architecture (shown in figure 2.3).

Figure 2.3: Generic Observer/Controller Architecture [107]

With an observer/controller architecture it can be determined which software compo-
nents are needed to support self-x properties in the targeting architecture. The concrete
design of these components however is left to the developer. There is no process which
takes the requirement of self-adaptation and results in distinct software components
which are equipped to realize the desired behavior. The task of a monitoring compo-
nent, for instance, is defined but it lacks a methodology which can be used to generate
functional requirements, derive an architecture and implement a component with exactly
these monitoring properties. Designing a system which evolves over time may require
this freedom during the development process. An architecture for evolving systems thus
represents a paradigm which can be used as starting point for own system analysis.

2.3 Functional and Design Requirements

At the beginning of a software engineering process there are requirements which specify,
in terms of functions, what a system should do in case of a distinct event. There
are basically two types of requirements defined in the context of software engineering:
functional requirements and design (quality) requirements.

13

2 Fundamentals of Embedded Systems Development

Definition 6 A functional requirement defines what should be done by the system
in case of a certain event. It therefore defines the functionality of a system.

Functional requirements specify [82]:

• the qualification for the purpose

• interoperability (co-working with other systems)

• security (access control)

Design requirements in contrast can be seen as requirements where a direct solution,
as with functional requirements, is not derivable. A requirement like “the ACC func-
tionality needs to conform with an ASIL D classification” needs a further detailing step
before a concrete realization can be made. Behind a design requirement there are also
functional requirements. Design requirements thus are not finished functional require-
ments.

The design requirements specify (selection) [82]:

• efficiency (timing and resource usage)

• maintainability

• safety (dependability)

• portability

Definition 7 A design requirement specifies what is demanded from a system in
terms of quality.

These design requirements thus determine how the architecture needs to be designed.
Safety, for instance, requires the design of distinct functionality to conform with stan-
dards (e.g. ISO26262) which means that a certain failure probability needs to be met.
Guaranteeing these requirements forms the implementation process as well as the design
of a functionality. So, design requirements formulate what is required but not how it is
achieved. Because of the high relevance of this thesis (i.e. dealing with software manage-
ment in embedded mixed-critical system), design requirements will be discussed in more
detail in subsequent subsections. To specify all demands on software quality however
both functional and design requirements are needed.

2.3.1 Taxonomy of Self-Adaptation

This section will cover the maintainability of a system through self-x properties. The
overall classification schema of self-adaptation can be summarized as depicted in fig-
ure 2.4. Hereby, a self-adaptation property of a system can be divided into structural
and behavioral modifications. Possible structural modifications are reconfiguration, com-
positional adaptation and recomposition.

14

2.3 Functional and Design Requirements

Self-Adaptation

Structure

Reconfiguration

Behavior

Recomposition
Compositional

Adaptation

Figure 2.4: Overview about Self-Adaptation and their Instances

Definition 8 A software entity has the capability of self-adaptation if it can au-
tomatically change its structure or behavior, based on observations of its system or
environment, with the goal to maintain or improve the Quality of Service [121].

Definition 9 A compositional adaptation changes the structure by adding or re-
moving of software components.

Definition 10 A behavioral adaptation changes the behavior (control flow or qual-
ity of service) of a software component without directly affecting component execution
sequences [121]. The behavioral adaptation thus concentrates on the adaptation of
service parameters.

Definition 11 A recomposition changes the allocation from software components
and resources (e.g. migration from one control unit to another).

After defining the different types of self-adaptation, there are several types when
an adaptation can be performed. Considering the work of Rohr [121], three different
activation types can be distinguished.

Definition 12 A system can be typed as reactive if the adaptation only happens
after a certain threshold was achieved (e.g. performance degradation).

Definition 13 A system can be typed as predictive if the adaptation will be executed
before a certain event occurs.

Definition 14 A system can be typed as proactive or goal-directed if the system
has a normal execution but decides for itself to gain a better state (e.g. performance
increase).

In this section, the taxonomy of self-x system properties considering the self-adaptation
of a system were defined. The next section will give an overview about the taxonomy of
dependability.

15

2 Fundamentals of Embedded Systems Development

2.3.2 Taxonomy of Dependability

Further design requirements which are relevant for this thesis are targeting the depend-
ability which is mandatory for a real-time system. The notion of dependability covers
the design attributes of a system that are relating to the quality of service a system
delivers to its users during an extended interval of time. The taxonomy used in this
section is inspired by the work of Avizienis [10] where a taxonomy overview is depicted
in figure 2.5.

Dependability Threats

Reliability

Attributes

Means

Safety

Faults

Errors

Failures

Fault Tolerance
(Reconfiguration)

Figure 2.5: Taxonomy of Dependability presented as a tree [10]

Beginning with the threats of the dependability, this section introduces the general
terms of fault, error and failure. The general relation of these terms is depicted in
figure 2.6. A fault, hereby, is the cause of an error which in turn causes a deviation of a
intended service resulting in a failure.

subsystem under
consideration

ERROR
unintended state

FAULT

cause of error
(and failure)

FAILURE

deviation of actual
service from

intended service

Figure 2.6: Faults, errors and failures according to Kopetz [88]

For further investigations the term of fault and failure are relevant. With accordance
to a system service, Avizienis [10] defines a failure as follows:

16

2.3 Functional and Design Requirements

Definition 15 Correct service is delivered when the service implements the system
function. A service failure, often abbreviated here to failure, is an event that occurs
when the delivered service deviates from correct service [10].

In relation to a service failure an error and a fault can be defined as:

Definition 16 Since a service is a sequence of the system’s external states, a service
failure means that at least one (or more) external state of the system deviates from the
correct service state. The deviation is called an error. The adjudged or hypothesized
cause of an error is called a fault [10].

Avizienis further distinguishes two levels of failures considering the relation between
the benefit provided by a service without a failure and the consequences of failures:

• minor failures, where the harmful consequences are of similar cost to the benefits
provided by correct service delivery;

• catastrophic failures, where the cost of harmful consequences is orders of mag-
nitude, or even incommensurately, higher than the benefit provided by correct
service delivery (cp. criticality).

Especially the level of catastrophic failures gives a first hint to the definition of criti-
cality (see below). As a result, the term of a fail-safe system can be defined as follows:

Definition 17 A system whose failures are, to an acceptable extent, all minor ones
is a fail-safe system [10]. A fail-safe system has been defined as a system, where the
application can be put into a safe state in case of a failure. At present, the majority
of industrial systems that are safety-relevant fall into this category [88].

An interesting remark is the fact that, according to Kopetz [88], a great number of
today’s industrial systems are fail-safe. This observation harmonizes with the fault-
tolerance methods provided in the context of self-x properties in the below text. In a
next step the attributes of dependability will be outlined.

There are several attributes for the system dependability where reliability and safety
are the most important inside the context of this thesis. Later on, the term of robustness
will be added.

To start with the reliability, Kopetz [88] defines reliability as follows:

Definition 18 The Reliability R(t) of a system is the probability that a system will
provide the specified service until time t, given that the system was operational at the
beginning, i.e., t = t0.

In accordance to provide the taxonomy of safety, the former definition of a catastrophic
failure can be extended to the term of criticality:

Definition 19 Criticality is a designation of the level of assurance against failure
needed for a system component [26].

Considering safety, Kopetz [88] defines it as:

17

2 Fundamentals of Embedded Systems Development

Definition 20 Safety can be defined as the probability that a system will survive
a given time-span without the occurrence of a critical failure mode that can lead to
catastrophic consequences [88]. In other words, Safety is reliability regarding critical
failures.

Where the combination of both terms lead to the definition of safety-critical systems.
Here the bridge to the timing demands of a hard real-time system is obvious:

Definition 21 A computer system becomes safety-critical (or hard real-time) when
a failure of the computer system can have catastrophic consequences, such as the loss
of life, extensive property damage, or a disastrous damage to the environment [88].

Where another definition is more relevant from the point of real-time system and
timing demands itself:

Definition 22 Informally, a safety critical real-time system can be defined as
one in which the damage incurred by a missed deadline is greater than any possible
value that can be obtained by correct and timely computation. A system can be defined
to be a hard real-time system if the damage has the potential to be catastrophic.[8]

In conclusion, a service failure (e.g. caused by a missed deadline) of a safety criti-
cal (hard real-time) system leads to catastrophic consequences. But there are systems
which are not exclusively safety critical. More and more systems provide functions with
different criticalities:

Definition 23 A mixed-criticality architecture can be understood as structural
system description, where applications of different criticality can coexist in a single
integrated architecture and the probability of any unintended interference, both in
the domains of value and time, among these different-criticality applications must be
excluded by architectural mechanisms [88].

For the means to attain the dependability, Avizienis [10] defines fault prevention, fault
tolerance, fault removal and fault forecasting. He concludes that a combination of all
four means is mandatory. For this thesis however the focus relies on fault tolerance
which avoids failures by error detection and system recovery [10]. Moreover, the fault
handling via reconfiguration fits to the concept of self-x system properties which was
provided in section 2.3.1.

Process Standard for Functional Safety

This section will give an example of a safety standard which describes the process to
transform design requirements to functional requirements. This standard is known as
ISO26262. According to ISO (the International Organization for Standardization), ISO
26262 is the adaptation of IEC 61508 to address the sector specific needs of electrical
and/or electronic (E/E) systems within road vehicles. ISO 26262 includes guidance to
mitigate the risks from systematic failures and random hardware failures by providing
a reference for the automotive safety life cycle (depicted in figure 2.7). and supports

18

2.3 Functional and Design Requirements

the tailoring of the activities to be performed during the life cycle phases, i.e., develop-
ment, production, operation, service, and decommissioning. Furthermore, the standard
provides an automotive-specific risk-based approach to determine integrity levels (Au-
tomotive Safety Integrity Levels (ASIL)) which are used to specify which of the require-
ments of ISO 26262 are applicable to avoid unreasonable residual risk. The remainder of
this section provides selected definitions (i.e. relevant for this thesis) from the extensive
standard work [75].

Figure 2.7: ISO26262 Process Diagram Overview [75]

An important step for the beginning of the safety process is the hazard analysis (step
3.7 in figure 2.7). This analysis is commonly defined as:

Definition 24 Hazard Analysis and Risk Assessment (for short: HARA) method
to identify and categorize hazardous events of items and to specify safety goals and
ASILs related to the prevention or mitigation of the associated hazards in order to
avoid unreasonable risk

The hazard analysis therefore outputs an assignment of items to their corresponding
integrity level. An Automotive Safety Integrity Level is hereby defined as:

Definition 25 Automotive Safety Integrity Level ASIL is one of four levels to specify
the item’s or element’s necessary requirements of ISO 26262 and safety measures to
apply for avoiding an unreasonable risk, with D representing the most stringent and
A the least stringent level.

19

2 Fundamentals of Embedded Systems Development

Where the term risk can be seen as the result of the following equation (according
to [49]): risk = severity × (exposure × controllability), according to the definition of
ISO.

Definition 26 A risk is a combination of the probability of harm and the severity
of that harm.

The related terms severity, exposure and controllability give information about the
extent, the frequency, and the ability to avoid a specific harm:

Definition 27 severity estimate of the extent of harm to one or more individuals
that can occur in a potentially hazardous event

Definition 28 exposure state of being in an operational situation that can be haz-
ardous if coincident with the failure mode under analysis

Definition 29 controllability ability to avoid a specified harm or damage through
the timely reactions of the persons involved, possibly with support from external mea-
sures

These attributes are classified by a consistent schema:

• Class of Severity (S)

– S0: No injuries

– S1: Light and moderate injuries

– S2: Severe and life-threatening injuries (survival probable)

– S3: Life-threatening injuries (survival uncertain), fatal injuries

• Class of probability of exposure regarding (E)

– E0: Incredible

– E1: Very low probability

– E2: Low probability

– E3: Medium probability

– E4: High probability

• Class of controllability (C)

– C0: Controllable in general

– C1: Simply controllable

– C2: Normally controllable

– C3: Difficult to control or uncontrollable

20

2.4 System Analysis Foundations of an Embedded System

C1 C2 C3

S1

E1 QoS QoS QoS
E2 QoS QoS QoS
E3 QoS QoS A
E4 QoS A B

S2

E1 QoS QoS QoS
E2 QoS QoS A
E3 QoS A B
E4 A B C

S3

E1 QoS QoS A
E2 QoS A B
E3 A B C
E4 B C D

Table 2.1: ASIL Assignment according to ISO26262

Based on this classification, corresponding levels will be selected depending on the risk
according to table 2.1:

The resulting safety classification is the first step on the way from design requirements
to functional requirements. In the next step this classification is used to form concrete
functional requirements. The approach during development of AUTOSAR, for instance,
is comparable to a Safety Element out of Context (SEooC) approach as described in
ISO DIS 26262-10, chapter 10. The SEooC approach is that safety goals or safety
requirements of the targeted element (e.g. a software unit) are replaced by assumptions
(see figure 2.8). These assumptions (e.g. failure modes to be detected and handled
in this software unit) are the basis for the implementation of such a generic software
element [131]. The lowest right box in figure 2.8 represents the software requirements
to be implemented either as software-component (SW-C) or as a feature in a specific
basic software (BSW). This approach is an example demonstrating the complete way
from defining and analyzing of design requirements and their systematic refinement to
functional requirements which can be implemented.

2.4 System Analysis Foundations of an Embedded System

The so far discussed requirements are independent from a later realization. An architec-
ture however combines requirements and implementation. For this, a knowledge about
the available resource is required to quantify if a requirement (e.g. efficiency) is fulfilled.
Furthermore, the management of such resources is of interest. This section therefore has
covered the area of system analysis within a software engineering process in more detail.
As a result, a software architecture as well as a software design will be provided. The
process of a system analysis for an embedded system however also requires a minimal
understanding of a system architecture which combines the software architecture and a
hardware platform. Both system architecture and software architecture therefore will be

21

2 Fundamentals of Embedded Systems Development

Figure 2.8: SEooC Development Lifecycle (cited after [131])

described in subsection 2.4.1 respectively. After that, subsection 2.4.2 covers the topic of
scheduling for real-time systems. This section closes with the most fundamental terms
concerning communication (see section 2.4.3).

2.4.1 System Architecture

A software system is generally executed on top of some sort of hardware system. Em-
bedded systems are no exception. This section therefore exemplifies a cyber-physical
system (see figure 2.9) to consider the available resources which need to be managed
by the software system. Due to the fact that scheduling is an integral part of the later

22

2.4 System Analysis Foundations of an Embedded System

software management, the focus relies on the computing resources (i.e. processors). In
this context, a cyber-physical system is defined as:

Definition 30 Embedded Real-time system and Cyber-Physical System.
A cyber-physical system (CPS) is an integration of computation with physical pro-
cesses whose behavior is defined by both cyber and physical parts of the system. Em-
bedded computers and networks monitor and control the physical processes, usually
with feedback loops where physical processes affect computations and vice versa [95].

physical/mechanical system CPS

embedded system

sensors and actuators

electronic hardware

software

connected to other systems

systems

Figure 2.9: Overview of an CPS system [41]

Each system consists of several hardware or software components. In general, each
component represents a modular, deployable, and replaceable part of the system that
encapsulates implementation and exposes a set of interfaces [42]. This notation is re-
cursive which means, that the e.g. software within a cyber-physical system can also be
assembled by components. Software in combination with electronic hardware, sensors
and actuators lead to a “conventional” embedded system. A cyber-physical system how-
ever extends an embedded system by the ability to communicate with other systems in
its environment.

Considering the processor configuration of such a cyber-physical system, a software
system (e.g. operating system) is responsible for the management of the available com-
putation units (i.e. cores). A certification of hardware is principally feasible but not
relevant for the context of this thesis. The cyber-physical system furthermore can be
understood as an usual computing device (i.e. memory management unit available). For
the remaining work a multi-core processor will be assumed.

The multi-core processor configuration as depicted in figure 2.10 is relevant for fur-
ther constraints (e.g. criticality, task, deployment) and thus makes this decision to the
most fundamental one. According to Schirmeister [125], there are two principal design

23

2 Fundamentals of Embedded Systems Development

opportunities for the resulting processing model. symmetric multi-processing (SMP)
and Asymmetric multi-processing (AMP). In a symmetric multi-processing system with
several processors, each of them has the same architecture, uses a shared memory space
with others and runs the tasks of the same operating system instance (see figure 2.11).
In a asymmetric multi-processing system, however, processors may have the same or a
different architecture, each processor has its own address space (i.e. distinct communica-
tion facility required), and each processor may or may not run an operating system. The
AMP offers a great flexibility and supports the safety relevant aspects, but also intro-
duces a more complex architecture where the execution of the tasks are bound to some
restrictions. SMP, on the other side, is a simple model whereas a temporal isolation and
partition (relevant for safety applications) through hardware is not fulfilled. Further, a
combination, also known as hybrid approach, where both models are combined to intro-
duce the benefits of both in the resulting processing design. In combination with the
mixed-critical constraint, tasks are not allowed to be deployed on each core equally. A
further constraint regarding the processor configuration is the affinity of task and core,
where the affinity needs to be respected by other system parts like the scheduler to cir-
cumvent a break or hazardous behavior in the system and in turn enables guaranteeing
a distinct or intended system behavior.

Figure 2.10: Simplified Architecture of a Multicore Processor

Commercial off-the-shelf (COTS) hardware predominantly follows the SMP model,
resulting in embedded devices with a great performance and an arguable price. Of course,
these systems lack the hardware support for safety related applications. Nevertheless, the
intended protection/separation mechanisms can be, at least the hardware independent
ones, implemented in software (e.g. Software Transactional Memory). This means a
given homogeneous SMP-based hardware architecture is combined with a heterogeneous
software approach, resulting in a hybrid approach (also referred as hybrid SMP-AMP).
The great benefit is to allow the application of these embedded devices in mixed-critical
application domains (as long as the specification provisions the protection mechanisms
through software). For the combination of software and hardware in a proper way to
establish a partitioned architecture, there exists several design models. Moyer [106]
outlines some of the common practices for the partitioned implementation, where the

24

2.4 System Analysis Foundations of an Embedded System

combination possibilities vary from OS-per-core, multiple SMP (coexistent OS manages
multiples cores), SMP and RTOS to SMP and bare-metal system configurations.

Figure 2.11: SMP Processor Configuration with Operating System

A combined design is leaned on the hybrid SMP-AMP configuration, where several
operating systems are responsible for multiple cores in the (many-core) system. In con-
trast, the scheduler policies rather than the operating systems differ from each other. To
realize this, a microkernel approach is enabled whereas the scheduling policies are het-
erogeneous across the cores. So, the microkernel manages all cores as usual in SMP-style
but each core embodies its own scheduler. The demanded controlling (e.g. manages the
partition/separation) part is outsourced as a user-space server application which can be
executed on a dedicated core on the same system or decoupled as part of another system.
This coexistent scheduler scheme enables the usage of several schedulers on one proces-
sor. Each scheduler manages one core and thus enables the application of algorithms and
methods/strategies known from the uni-processor scheduling where no huge heuristics
or complex strategies are required. Moreover, the Trusted Computing Base (e.g SuOC)
keeps small. Furthermore, the overhead of using and managing scheduler strategies in
contrast to operating systems can be reduced. A critical part of the outlined approach
is the admission of threads to the partitions and the guarantee of system behavior in
spite of dynamic changes.

In the context of the hybrid AMP-SMP system, affinity is used to pin the thread on
one specified core. This allows a fine controlled deployment (e.g. OC components are
executed on one dedicated core exclusively). Due to the strict core to thread binding,
a performance benefit is achieved caused by no need for switching the thread to other
cores. Indeed, it needs to be ensured that the thread is executed on the same core at a
given time, even when the system contains homogeneous scheduling strategies on some
of its cores. Moreover, threads as part of a task set (e.g. precedence) are required to be
executed on one core to ensure the execution order. The usage of an affinity allows the
binding of threads to cores and thus to guarantee the execution locality. But the binding
of threads to cores is restricted to a further constraint which keeps the criticality aspect
of the system into account.

To sum it up, this section describes the basic resource usage of a cyber-physical system
by a software system like an operating system. The basic processing management on the

25

2 Fundamentals of Embedded Systems Development

operating system side is done by a scheduling mechanism. The basic terms of (real-time)
scheduling will be described in the next step.

2.4.2 Real-time Scheduling

This section explains the fundamentals about the real-time scheduling used inside of an
operating system for the task processing. An important aspect is the basic taxonomy
for the classification of a scheduler. Followed by details about task relevant information,
this section closes with a comparison of scheduling policies.

Classification of Scheduling Algorithms

In this section, the various classification aspects of a scheduling algorithm will be de-
scribed. The explanation follows the diagram depicted in figure 2.12. According to the
shown graph, a (real-time) scheduler can be classified according to three greater areas.
At first, there are the considered timing constraints, namely soft real-time or hard real-
time. Each of these categories can be divided according to the point in time when a
scheduling decision takes place which is either static or dynamic. Both types of schedul-
ing decisions can be applied in the context of a non-preemptive or preemptive scheduling
mechanism.

Figure 2.12: Taxonomy of real-time scheduling algorithms [88]

Before starting with the scheduling classification a definition of real-time needs to be
given:

Definition 31 A system is real-time if the correctness of the system behavior de-
pends not only on the logical results of the computations, but also on the physical time
when these results are produced [88]

Starting with the timing constraints of a scheduling mechanism, depending on to be
schedulable tasks, timing demands can range from soft to hard real-time. Buttazzo [29]
therefore distinguishes the following three categories of real-time where each category
suffers differently from a deadline miss.

• Hard: A real-time system is said to be hard if missing a deadline may cause
catastrophic consequences on the system under control.

26

2.4 System Analysis Foundations of an Embedded System

• Firm: A real-time system is said to be firm if missing a deadline does not cause
any damage to the system, but the output has no value.

• Soft: A real-time system is said to be soft if missing a deadline has still some
utility for the system, although causing a performance degradation.

To explain the static and dynamic scheduling characteristics, it is important to men-
tion that these characteristics concern the scheduling decision directly. Lee [95] describes
the scheduling decision as a decision to execute a task with the following three parts:

• assignment: which processor should execute the task

• ordering: in what order each processor should execute its tasks

• timing: the time at which each task executes

In accordance to this, all three decisions can be made at design-time (offline) or at run-
time (online). Considering the taxonomy of online and offline, Buttazzo [29] describes
both terms as follows:

• A scheduling algorithm is used off-line if it is executed on the entire task set before
tasks activation. The schedule generated in this way is stored in a table and later
executed by a dispatcher.

• A scheduling algorithm is used on-line if scheduling decisions are taken at run-time
every time a new task enters the system or when a running task terminates.

The different types of possible schedulers are derived from the point in time when the
decisions are made. An off-line scheduler is often used as a synonym for static order
scheduler which performs the task assignment and ordering at design-time [95]. “In
general, static algorithms are those in which scheduling decisions are based on fixed
parameters, assigned to tasks before their activation” [29]. On the other side an on-
line scheduler, also known as fully-dynamic scheduler, performs all decisions at run-
time [95]. Buttazzo [29] generalizes this taxonomy: “Dynamic algorithms are those in
which scheduling decisions are based on dynamic parameters that may change during
system evolution.”

The last classification characteristic of a scheduler is whether it is allowed to interrupt
the currently executed task for its scheduling decision or not. The preemption can be
divided into the following two cases [29]:

• In preemptive algorithms, the running task can be interrupted at any time to
assign the processor to another active task, according to a predefined scheduling
policy.

• In non-preemptive algorithms, a task, once started, is executed by the processor
until it finishes its execution or it arrives the end of its scheduled time slice. In
this case, all scheduling decisions are taken as the task terminates its execution.

27

2 Fundamentals of Embedded Systems Development

Timing Characteristics of Tasks

This section covers the most important software entity treated by the task management
within an operating system, namely tasks. At first, the definition of a task and its relation
to synonymous terms (e.g. process) is given. Next, the relevant timing characteristics of
a task will be covered.

In the context of this thesis, the term of a task is used as synonym to a process
and consists of one single thread. A task represents a sequential computation on the
CPU. Important is that the described tasks are entities which are user-space applications
(i.e. managed by the corresponding management unit) and are not to be confused with
kernel tasks or kernel threads (which follow a similar definition).

Concerning the regularity of a task activation, there are basically two types which can
be distinguished:

• A periodic task is mostly triggered in regular intervals by a clock mechanism like
a timer (triggered by time)

• An a-periodic or sporadic task occurs irregularly during system execution and
is mostly triggered by an event (event triggered)

An overview about several timing parameters of a task execution τi is shown in fig-
ure 2.13. The terms mentioned in the figure are defined according to [29, 95] as:

Figure 2.13: Summary of times associated with a task execution [95]

• release time (also arrival time) ri is the time which a task becomes ready for
execution

• start time si is the time at which a task starts its execution

• finish time fi is the time at which a task finishes its execution

• response time oi is the difference between the finishing time and the release time:
oi = fi − ri

28

2.4 System Analysis Foundations of an Embedded System

• execution time ei is the total time that the task is actually executing on the
processor

• absolute deadline di is the time by which a task must be completed

• relative deadline Di is the difference between the absolute deadline and the
release time: Di = di − ri

• criticality is a parameter related to the consequences of missing a deadline (see
chapter 5 for more details)

• value vi represents the relative importance of the task with respect to the other
tasks in the system (used for optimization see chapter 5)

After outlining the scheduling basics within real-time systems, it follows the descrip-
tion of several aspects of finding a schedule.

Comparing Schedulers, Analysis and Tests

The comparison of schedulers includes several aspects where as a first step the general
terms for the comparison of scheduling mechanisms will be defined. Followed by an
important aspect of the scheduling configuration in the form of a placement. In the
context of this thesis the definition of admission and enforcement is important. As
part of the enforcement phase, relevant scheduling approaches/policies will be discussed
in detail. The admission includes the analysis in the form of tests to produce a valid
schedule where relevant details about the tests will be given.

The scheduling problem in its general form has been shown to be NP-complete. To
reduce the complexity of the problem to be solvable in polynomial time, it is possible
to use several assumptions (e.g. fixed priorities). These assumptions are used to classify
the various scheduling algorithms. The goal is to produce a feasible schedule. In this
context feasibility and schedulability can be defined as follows [29]:

• A feasible schedule allows all tasks to be completed

• A task set is schedulable if there exists at least one algorithm that can produce
a feasible schedule

After describing the base taxonomy, the next aspect is the assignment of tasks to the
underlying cores (i.e. mapping of scheduler on available cores). There are two approaches
that can be used to realize the scheduling on multi-core systems. Global scheduling,
where a global queue is used to manage the underlying cores by the operating system.
The partitioned scheduling approach binds individual queues to each core [25]. There is
also a combination of both possible. Hierarchical scheduling utilizes a global schedule for
the overall system cores and several local schedulers on lower layers. The last approach
can often be found in virtualization methods. The hierarchical scheduling approach
embodies a relative overhead in comparison to both pure scheduling approaches. The

29

2 Fundamentals of Embedded Systems Development

global scheduling scheme can be complex depending on the number of cores and the
type of tasks which should be scheduled. Partitioned scheduling in contrast reduces
the problem size and the migration overheads, while improving the predictability and
the determinism reasoning of a given behavior. Also, where the hierarchical scheduling
scheme can also be applied to the partitioned approach, the focus relies on a pure
partitioned scheme for the system design.

Figure 2.14: Scheme of the guarantee mechanism used in dynamic real-time systems (according
to [29])

In figure 2.14 the depicted scheme represents a guarantee mechanism used in dynamic
real-time systems. However, similar mechanism are applicable to static real-time sys-
tems. For the development of a consistent task management these mechanisms can be
generalized. The scheduling mechanism therefore can be understood as a combination
of admission and enforcement:

• During admission, several checks like scheduling analysis or acceptance tests are
performed to verify if a request is feasible

• The enforcement is defined as execution of the schedule

The available tests for analyzing a feasible schedule within the admission depends
on the scheduling algorithm used in the enforcement. Therefore, possible scheduling
approaches will be described in more detail followed by suitable tests. The three ap-
proaches considered in this thesis correspond to the scheduling approaches described by
Burns in his book [25]:

• Fixed-Priority Scheduling (FPS) - each task has a fixed, static, priority which
is computed offline. The tasks are executed in the order determined by their
priority. The priority depends on temporal requirements rather than criticality.

• Earliest Deadline First (EDF) Scheduling - the order of runnable tasks is
determined by the absolute deadline. The task with the nearest deadline will be
executed next.

• Value-Based Scheduling (VBS) - in situations (e.g. overload) where either
priorities nor deadlines are sufficient, a more adaptive approach is required. De-
termining the importance of tasks in such cases is realized by the assignment of a

30

2.4 System Analysis Foundations of an Embedded System

certain value. This value is used by an online scheduling algorithm to determine
which task to run next.

In accordance to the presented scheduling algorithms there exists two terms which are
relevant for the comparison of schedulers, namely optimal and heuristic [29].

• An algorithm is said to be optimal if it finds a feasible schedule, if one exists.

• A heuristic algorithm tends toward an optimal schedule but without guaranteeing
to find it.

Both FPS and EDF are optimal with respect to feasibility. In contrast, VBS is more
heuristic oriented. In the context of hard and soft real-time demands, this leads to a
classification in guarantee-based algorithms and best-effort algorithms [29]. Guarantee-
based algorithms is able to guarantee the feasibility of a schedule either in static
(offline) or dynamic (online) real-time systems. This class of algorithms are able to
be used in hard real-time systems. Best-effort algorithms however are not able to
guarantee the finding of a feasible schedule which predestined them for usage in soft
real-time systems.

The admission depends on the used scheduling algorithm and the intended usage either
in high or soft real-time systems. In general, there exists several test methods where the
most important characteristics of these tests are sufficiency and necessity [25].

Figure 2.15: Kopetz 10.2: Necessary and sufficient schedulability test

• A schedulability test is defined as sufficient if a positive outcome guarantees that
all deadlines are always met

• A failure of a necessary test leads to a deadline miss at some point during system
execution.

• An exact test is sufficient and necessary

Figure 2.16 summarizes the terms defined in this section. A real-time system can be
classified as either hard or soft. Hard real-time systems are either static or dynamic.
Static systems prefer an offline admission (e.g. Response Time Analysis) and an optimal
(static) enforcement (e.g. FPS). This combination leads to a highly guarantee capable
system. In dynamic hard real-time systems however a priority based online admission
(e.g. acceptance test) is mandatory to restrict the optimal but dynamic enforcement
(e.g. EDF). In dynamic soft real-time systems, admission as well as enforcement are

31

2 Fundamentals of Embedded Systems Development

best-
effort

guarantee-
based

heuristic

optimal

value-
based

priority-
based

enforcement

online
admission

optimal
enforcement

priority-
based

online
admission

optimal
enforcement

offline
admission

static

dynamic

dynamic

static

soft

hard

real-time
systems

Figure 2.16: Scheduling comparison

extended by value-based or heuristic approaches respectively. In its most extreme form,
a dynamic soft real-time application follows a best-effort strategy.

In cases of dynamic enforcement, the main objective is the management of overload
situations. Especially in combination with EDF, an admission control procedure helps to
avoid transient overload situations. For the admission procedure, the relative importance
of a task is represented by a value which can be classified as follows [25]:

• static - a task’s value stays the same whenever it is released

• dynamic - a task’s value is recalculated at the same time when it is released

• adaptive - a task’s value will be changed during its execution

The values are not only used for the admission but also for the optimization of a given
system.

To sum it up, this section has considered the timing aspects of a cyber-physical system.
At first the timing resource, core, was investigated and its principal management by an
operating system. The scheduling as central operating system service for core manage-
ment was explained. Several details about classification, task model and comparison of
real-time scheduler followed. Some system properties however are not necessarily pinned
down to timing demands. System properties related but not dependent on timing prop-
erties will be covered in the next section.

32

2.4 System Analysis Foundations of an Embedded System

2.4.3 Communication

This section completes the system analysis with relevant communication fundamentals.
Like in other domains, there are numerous communication technologies for transferring
information between embedded systems. These technologies are a combination of both
hardware and software solutions. There are common aspects however which clarifies the
communication fundamentals without going too deep into the detail of a single solution.
A simple example to demonstrate the heterogeneous communication technologies alto-
gether can be seen by utilizing the former overview of a CPS (see figure 2.9). Possible
communication could take place between the single systems of the CPS like suggested
in the following communication schema:

1. communication between cores on the electronic hardware via a bus or cache

2. communication between sensors/actuators and the electronic hardware via a two-
wire interface (e.g. spi) forming an embedded system

3. communication between a cyber-physical system and another system via an Ethernet-
based communication bus realizing the connection to other systems

4. communication between a car (i.e. set of cps) and another car via a wireless com-
munication (e.g. car2car)

This mixture of communication technologies is a concern in current automotive sys-
tems. The development of future cars (i.e. example for cps) however tries to establish
a homogeneous communication infrastructure rather than domain-specific isolated solu-
tions. In the long-term, Ethernet could be used to establish a homogeneous communi-
cation infrastructure, at least within a car [138]. Nevertheless, there are still situations
where a communication in a heterogeneous context needs to be established. These situ-
ations however can be addressed by a standardized communication model like the Open
Systems Interconnection model.

A concrete example for the communication between cars can be found in the domain of
Car to Car and Car to Infrastructure communication. These systems are used for traffic
control and allow the avoidance of accidents through a communication between cars.
The car2car consortium, comprised by car manufacturers and suppliers, coordinates
the development in this area. The consortium proposes a three-layer protocol stack as
depicted in figure 2.17. As it can be seen, the consortium prefers the usage of already
existent protocols and technologies rather than developing their own solutions.

In conclusion, the communication within an automotive embedded system is moving
to homogeneous solutions where applicable. In other scenarios, standardized models are
used to guarantee a homogeneous inter-system communication.

Conclusion

This chapter has introduced the foundations of embedded systems. The structure of the
chapter hereby was oriented according to the development process of embedded systems.

33

2 Fundamentals of Embedded Systems Development

C2C Transport

WLAN
IEEE 802.11p (und 802.11a,b,g)

Vehicle Safety
Application

Traffic Efficiency
Application

Infotainment
Application

Internet Protocol TCP / UDP

C2C Network
IEEE 1609

Internet Protocol
IPv4/IPv6

GSM/UMTS/LTE

Figure 2.17: Car2Car protocol stack (cited after [138])

Where possible, automotive examples were chosen to describe the several aspects during
the process. The several relevant definitions were placed at the distinct positions within
the process. With this chapter, the taxonomy for the remaining thesis was clarified. As
a next step, chapter 3 will provide an overview about the domain of flexible software
management in mixed-critical systems.

34

3 Domain Analysis

This chapter will cover the domain analysis for this thesis. In a first step, available oper-
ating system architectures for multi-core base systems will be investigated in section 3.1.
The following section 3.2 about real-time scheduling will investigate in several design con-
siderations for realizing a scheduling approach capable of managing a multi-core system.
This section will be complemented by the subsequent section 3.3 about mixed-critical
system properties. The section 3.4 about self-adaptive software engineering will analyze
the several possibilities to design and develop a self-adaptive system. Finally, the last
section 3.5 in this chapter will outline several restrictions and assumptions resulting from
the combination of the former sections to realize a flexible task management approach.

3.1 Operating System Architectures for Multi-Core Systems

This section describes available operating system architectures for multi-core systems.
Relevant architectures suitable as a base for realizing a flexible task management are in
the spotlight. Beginning with systems known from an automotive domain, this sections
steps through the several architecture types ranging from microkernel over monolithic
kernel to middleware based management solutions.

In the automotive domain, the open standard OSEK/VDX specifies in several parts
amongst others the operating system architecture. The AUTOSAR consortium reuses
this specification to realize its standard. Besides the operating system, AUTOSAR also
defines a methodology for the development of automotive systems. For the methodology,
a toolchain support is mandatory due to the fact that a great amount of the development
process is fully automated. A missing toolchain leaves the developer with the kernel
source code in an inapplicable state. For the toolchain there are great variation in licenses
and costs depending on selected products and vendors. With only the OSEK OS in mind,
there exists alternatives to commercial products in form of open source implementations
(partial with tooling support) like ERIKA Enterprise [55] or Trampoline [16]. The
intended target platform of these open implementations, however, is mostly suited for
embedded systems where e.g. a MMU is non existent. Where applicable, AUTOSAR
OS is intended to be used in a multi-core setting [110]. Further, there exists extensions
like Adaptive AUTOSAR [39] which provides a decent possibility to modify the static
systems. By the usage of these extensions, however, there are still constraints like the
run-time modification of schedules which makes it hard to realize a dynamic flexible task
management.

Another operating system architecture commonly found in the area of real-time em-
bedded systems is based on the microkernel paradigm. A special focus of these systems
relies on the usage in scenarios with high safety or security requirements. To achieve

35

3 Domain Analysis

the demanded assurance, microkernel-based systems are designed for supporting strong
separation of software components through system partitioning (also known as sepa-
ration kernel). Especially, mixed-critical systems can benefit from the separation [96].
Further improvements even show the advance of a multikernel paradigm especially for
multi-core systems [15] where the cores are managed by distinct kernel instances rather
than one monolithic kernel. Because of this separation, the overall performance of a
microkernel-based system highly depends on the throughput and therefore on an efficient
implementation of the selected communication mechanism between software components
(i.e. IPC) [97, 98]. This constraint as well as several other design improvements were
researched intensively [67, 54] leading to improved microkernel architectures and imple-
mentations. As well known, the L4 microkernel family contains several implementations
for different use cases. Some of the commercial implementations like PikeOS1 are suc-
cessfully applied in several industrial domains where other open source implementations
like Fiasco.OC2 or seL43 are freely available. Except for the common architecture design,
the several implementations vary strongly depending on the individual use-case which
makes a direct comparison difficult [56]. PikeOS is a static configured separation kernel
which fulfills the certification criterion according to several safety standards. Fiasco.OC,
however, focus lies on a dynamic and adaptive system without a certification. Current
research in this area lead to a new open source kernel, seL4, which provides an unique
aspect of formal verification of the complete kernel as required for the usage in certified
mixed-criticality systems [20, 99, 83].

Besides OSEK/VDX-based systems and microkernel-based systems, there is an ongo-
ing approach to apply the Linux kernel in safety-critical systems [101, 77]. Focusing the
required aspects of certification and real-time capabilities, the Open Source Automation
Development Lab (OSADL) mainly coordinates these efforts with its main goal to bring
the Linux kernel into industrial applications. Several preliminary assessments (com-
plexity, usage and reliability) considering a potential certification were identified [117].
Considering the real-time capabilities and reliability of the Linux kernel, several exten-
sions (commonly known as real-time preemption patch) are applied which enhances the
kernel with real-time functionality [94]. Again, there are several products and implemen-
tations available which support among others great tool-support for building a custom
Linux distribution. The required certification for the usage in safety-critical systems,
however, is still missing.

For using a (real-time) operating system, the kernel alone is not enough. There are
other software components required to provide the functionality of the operating system.
Especially in the area of microkernel-based systems, there exists several approaches to
provide the required components within a run-time environment. Known component
architectures are CAmkES4 (Component Architecture for microkernel-based Embedded
Systems) from the sel4 project L4Re5 and its predecessor L4Env from the Fiasco.OC

1https://www.sysgo.com/products/pikeos-hypervisor/
2https://os.inf.tu-dresden.de/fiasco/
3https://docs.sel4.systems/
4https://docs.sel4.systems/CAmkES/
5https://l4re.org/

36

https://www.sysgo.com/products/pikeos-hypervisor/
https://os.inf.tu-dresden.de/fiasco/
https://docs.sel4.systems/
https://docs.sel4.systems/CAmkES/
https://l4re.org/

3.1 Operating System Architectures for Multi-Core Systems

microkernel. There also exists further architectures which enhance the idea of a run-
time by providing the same components to a variety of microkernels. The Genode OS
Framework6 for instance is a developer tool-kit which aims to provide building blocks
to create customized operating systems where it supports both microkernels and mono-
lithic ones like Linux. In combination with Fiasco.OC, the resulting system is likely to be
much more secure and efficient in resource usage which allows usage in small embedded
systems. Moreover, there are run-time environments which are independent from the un-
derlying kernel and provide their services to arbitrary systems. Workgroups of the Multi
Core Association7 develop industry standards with focus on communication (MCAPI),
resources (MRAPI) and task management (MTAPI). These standards are used in the
development of embedded systems to focus on the considered solution independently
from the underlying hardware or software stack. For the MTAPI, there exists an open
source implementation called EMB28 by Siemens. Another solution is the Robot Op-
erating System9 (ROS) which is based on the Unix like operating systems (e.g. Linux).
An usage in the embedded domain seems principally feasible, but is restricted due to
the lacking real-time support of this combination [129].

The so far considered system architectures are running directly on hardware following
the classical operating system approach for managing the available hardware resources.
But there is another architecture approach for future embedded systems, namely virtual-
ization. A hypervisor resides between the hardware and its guests (i.e. virtual machines)
providing the demanded hardware access by a distinct calling interface. Virtualization is
a method gaining popularity in the automotive domain [109] and other embedded system
domains. There exists hypervisor approaches for embedded multi-core systems which
allows the application of full virtualization and paravirtualization in one common sys-
tem [59]. Like any other architecture covered in this section so far, there exists different
implementations and approaches for hypervisors. An interesting aspect, however, is the
proposal of Heiser [69] where the application of virtualization in embedded systems can
only be beneficial if an overall operating system technology shift to microkernels hap-
pens. An implementation of such support within a microkernel is presented by executing
Linux and Android on top of a Fiasco.OC microkernel10. Occurring limits introduced
by the hierarchical scheduling model are attempted to be circumvented [93] whereas
modifications within the guest are required which lead only to partial improvements
considering the application in embedded systems.

This section has described the several operating system architectures which can be
found in embedded multicore systems. For the realization of a flexible task manage-
ment there exists several operating system choices where each approach offers its own
strength. There are systems which differ mainly from the used kernel architecture,
run-time environment or virtualization. Scheduling, however, can be seen as the least

6https://genode.org/
7https://www.multicore-association.org/
8https://embb.io/
9http://www.ros.org/

10http://l4android.org, http://l4linux.org

37

https://genode.org/
https://www.multicore-association.org/
https://embb.io/
http://www.ros.org/
http://l4android.org
http://l4linux.org

3 Domain Analysis

common denominator of all approaches. The next section, therefore, steps further in
this direction and presents recent research results in the area of real-time scheduling.

3.2 Real-Time Scheduling of Dynamic Mixed-Critical Systems

This section covers the variety of real-time scheduling approaches found in the domain
of dynamic embedded mixed-critical multi-core systems. Starting with suitable schedul-
ing architectures, several approaches in particular hierarchical and microkernel-based
scheduling will be investigated. This will be followed by scheduling mechanisms suitable
for dynamic systems. After that, scheduling for multi-core systems is considered. This
section closes with possible scheduling policies capable for the usage in mixed-critical
embedded systems.

In the domain of dynamic systems, there are situations where neither priority nor
deadlines are sufficient for a scheduling decision. With the advance of dynamic systems
there was an early demand to develop new approaches which are able to handle dynamic
workloads. One of the early first steps in this direction was the combination of known
scheduling algorithms. Stewart [128] describes in his work the Maximum-Urgency-First
algorithm (MUF) as a combination of fixed and dynamic priority scheduling. With an
urgency value per task he was capable of showing the superiority of the combination
in contrast to traditional approaches like rate monotonic scheduling. Several deficien-
cies of the original MUF design considering deadline misses (e.g. overload situations)
are addressed and optimized in consecutive works [135, 122]. In his paper, Burns [28]
highlights the importance of a value-based scheduling approach in the context of flexible
scheduling and adaptive systems. So, independently of further system characteristics
like criticality, scheduling of a dynamic system requires the introduction of a greater,
fine-grained value-based decision mechanism allowing adequate system modifications.
Due to the fact that many scheduling policies are available, the question arises: which
combination is sufficient for the scheduling of adaptive systems?

Especially in real-time systems, rate-monotonic schedulers are often used due to their
straightforward implementation and supposed benefits compared to more dynamic sched-
ulers like EDF. But the drawbacks of EDF versus RM are not as huge as guessed. Indeed,
Buttazzo [30] states in his work that many assumptions about the superiority of RM
are either wrong or not valid in all usage scenarios. He concludes that only in hard
real-time scenarios RM can provide a small benefit against EDF where in every other
scenario EDF is equal or better than RM. Considering the implementation issues of
EDF, Buttazzo further demonstrates a possible usage in embedded systems by an ef-
ficient EDF implementation [31]. Proposing EDF and FP as the two main scheduling
policies with the domain of real-time systems, Burns [27] combines both approaches to
create a hybrid flexible scheduling policy which benefits from EDF’s efficiency and FP’s
predictability. Nevertheless, there are situations (i.e. overload) where the decision can-
not be based on the priority alone. Further in his work, Ravindran [118] states that the
usage of deadline/priority-based specification of time is inadequate. He therefore argues
that time/utility functions and the corresponding scheduling paradigm provide a more

38

3.2 Real-Time Scheduling of Dynamic Mixed-Critical Systems

generalized, adaptive and flexible approach. A potential scheduling policy is presented
by Kluge with the value-based MKU scheduling algorithms [85]. This heuristic algorithm
allows a proper handling of tasks even in overload situations whereby a defined number
of tasks need to be executed to guarantee the overall system behavior. After investigat-
ing the possible scheduling combinations, it is interesting how these combinations can
be designed.

Considering the usage of a resource reservation approach, many concepts were pro-
posed that are following the idea of a container-based server design [29] which subdivides
the CPU in time slots (i.e. container with capacities). A runnable task is assigned to one
of these slots. A consecutive approach is the deployment of scheduling policies on sev-
eral layers. On the global layer, one scheduling policy (e.g. periodic server) schedules the
tasks according to a container capacity whereby each task represents another scheduler
(i.e. local layer). A hierarchy of schedulers arises where this scheme is commonly known
as hierarchical scheduling. The hierarchical scheduling concept does not make any con-
siderations about the concrete scheduling policies on the global or on the local layer.
An approach of combining fixed-priority scheduling policies on both layers is presented
in the work of Davis [43]. Other possible combinations of local EDF and either FP or
EDF as global scheduler are also investigated in the work of Zhang [136]. There are also
hierarchical scheduling approaches that foresee more than two levels which can also be
adapted via a controller based mechanism [81, 80]. Hierarchical scheduling thus allows
a software-based separation of tasks within one system by simultaneously achieving a
flexible scheduling approach. An interesting point left is how different operating systems
are using the concept of a hierarchical scheduling mechanism.

Integrating hierarchical scheduling in different system architectures enables these sys-
tems a concurrent execution of their tasks either in a single-core or a multi-core setting.
Asberg [7] describes in his work mandatory steps to integrate a hierarchical scheduling
into the AUTOSAR OS. His work primarily addresses the challenge of component isola-
tion at run-time. He therefore suggests the usage of a Hierarchical Scheduling Framework
(HSF) and foresees the extension of AUTOSAR’s component model by the notion of sub-
systems/partitioning. With a missing partitioning concept in AUTOSAR, it is hard to
achieve the approach proposed within this thesis. Within the domain of virtualiza-
tion, hierarchical scheduling also plays an important role. Groesbrink [63] demonstrates
in his work the usage of a partitioned hierarchical scheduling approach where a parti-
tioned RM scheduling strategy on the global level is used. The hosted OS within each
VM schedules its tasks according to their own local scheduling policy. This approach
is especially interesting for multi-core settings. Using the hypervisor based approach,
however, the VMs are treated as black boxes where a modification of hosted OSs is re-
quired to provide the underlying global scheduler with the required timing information.
A similar approach for the Linux kernel is investigated by Asberg [6]. In the context
of microkernel-based systems, Lackorzynski [93] realizes this approach for the L4 Fi-
asco.OC microkernel. Similar concepts of hierarchical scheduling were also investigated
in the domain of microkernel-based systems but with another attempt. Replacing the
hypervisor with a microkernel, there are several efforts to move scheduling decisions from
kernel-space to user-space [130, 5] for improving the flexibility of a microkernel. Hierar-

39

3 Domain Analysis

chical scheduling allows the concurrent execution of tasks which can be supported by the
underlying hardware platform through the usage of multi-core processor configurations.

There is a trend in the automotive industry where ECUs become more and more multi-
core systems and new challenges for finding adequate scheduling concepts arise [104]. A
first work on utilizing a co-processor for scheduling in real-time systems is proposed by
Hildebrand [72] which allows the execution of time consuming computations apart from
the remaining system. A potential overhead is reduced by this approach. A survey
of hard real-time scheduling for multiprocessor systems is given by Davis [44]. In his
work, he compares the several scheduling approaches for multi-core systems and identi-
fies the current state but also opens issues for further research. Especially, the benefits
of partitioned and global scheduling against each other are outlined. Both scheduling
approaches have clear benefits and it depends on the use case which one to prefer. In
summary, however, it is proposed that the partitioned scheduling approach can outper-
form the global approach even in hard real-time scenarios. In his work, Baruah [14]
considers the scheduling of mixed-criticality implicit-deadline sporadic task systems on
identical multiprocessor platforms. He compares the two approaches of global and par-
titioned scheduling where the partitioned approach outperforms the global approach in
his simulation. The issues addressed, among others, are the overheads as an important
aspect in multi-core scheduling. The usage of a partitioned scheduling approach is also
proven in the context of mixed-criticality task sets by the work of Kelly [78] where the
task allocation and the priority assignment are focused on a fixed-priority scheduling
approach. For this work, several combinations of allocation and assignment algorithms
are considered with the result that an ordering according to a task criticality in combina-
tion with an efficient priority assignment algorithm outperforms the other combinations.
Heterogeneous multi-core systems are also subject to the research where each core is
dedicated to a separate scheduler with different scheduling policies [34] extending the
former idea of a co-processor. However, scheduling policies alone can only provide the
core of a flexible task management. There are further mechanisms required.

The so far described combination of scheduling policies is missing an important aspect.
Basically, dynamic mechanisms are allowed to adapt the existing task sets (e.g. according
to their capacity demands). By choosing a partitioned scheduling paradigm, a dynamic
assignment of tasks to corresponding cores will be resolved during run-time. Both aspects
are not covered by the presented combination of flexible scheduling approaches. For
supporting these aspects with the given scheduling approaches, an online schedulability
test needs to be added during run-time. The continuous adaptation of task sets further
requires the usage of a feedback control mechanism which monitors the system and
delivers required information for further tests. Each test method needs to be efficient
because it is generally executed during run-time. In his work, Santos [123] investigates
efficient on-line schedulability tests for feedback scheduling of soft real-time tasks under
fixed-priority. He concludes that the choice of a proper method for testing depends on
the kind of system and the hardware performance.

Further investigations in the context of schedulability analysis with focus on EDF
are presented in the work of Zhang [137]. His work results in the Quick convergence
Processor Demand Analysis (QPA) algorithm for analyzing the feasibility of a schedule

40

3.2 Real-Time Scheduling of Dynamic Mixed-Critical Systems

in single-core systems. A further comparison of existing schedulability tests for global
EDF scheduling on a multi-processor platform is presented by Bertogna [18]. He proposes
an algorithm that combines the advantages of the existing techniques. For fixed priority
scheduling policies, Negran [111] considers a response time analysis for a partitioned
multi-processor real-time system. The aim of this work is to soften the so far taken
constraints of previous work (e.g. usage dependent tasks). Especially in the context
of partitioned scheduling, admitting a new task plays an important role. Masrur [100]
presents an algorithm for the admission control for a partitioned EDF scheduler which
can be executed in constant-time i.e. independently from the input size of the to be
analyzed task set. In his work, Becker [17] investigates the usage of not only a single
test rather than a combination of sufficient and exact test. He demonstrates this new
combination in a simulation-based environment. The so far investigated schedulability
tests and schedulability policies have in common that their analysis is based on timing
characteristics.

The introduced task sets impose distinct timing demands on the system. Dependabil-
ity requirements however are orthogonal to timing demands (e.g. high critical tasks are
mostly hard real-time) but not similar. Criticality can therefore not exclusively be ex-
pressed by time. Moreover, tasks with different criticality demands lead to the challenge
of scheduling a mixed-criticality system. Thus, the question arises, which additional
criticality scheduling mechanisms are available? In his paper, Brandt [22] investigates
in the combination of hard real-time, soft real-time, and non-real-time processes with
the intention to provide demanded flexibility and guarantees for such systems. For de-
veloping his scheduler approach, he follows the Resource Allocation/Dispatching (RAD)
model which separates the resource management from the timing of delivery of those
resources. As a proof-of-concept, Brandt has developed the Rate-Based Earliest Dead-
line (EDF) scheduler which provides the integration of processes with several timing
demands (e.g. hard real-time). Under the usage of a novel bandwidth reservation mecha-
nism (i.e constant bandwidth server - CBS) with an EDF scheduling algorithm, Abeni [2]
provides a solution for dynamic systems where several tasks with different criticality can
be executed side by side (i.e. temporal isolation) on one system under the guarantee that
a predefined bandwidth will never be exceeded. Baruah [13] provides a formal model
of mixed-criticality workloads combined with analysis methods and corresponding algo-
rithms. The scheduling algorithms he investigates are reservation-based scheduling and
priority-based scheduling. He concludes that priority-based scheduling is superior to
reservation-based scheduling measured by the processor speedup factor. A side-by-side
comparison of mixed-criticality scheduling is presented by Huang [73]. He considers the
comparison between priority assignment, period transformation, and zero-slack schedul-
ing. A further article of Huang [74] extends this comparison by considering the several
available user-space enforcement and priority assignment mechanisms within the domain
of mixed-criticality scheduling. He concludes that those new approaches can provide
substantial improvements in task schedulability over the mixed-criticality scheduling
approaches which were investigated previously. As a key observation Huang proposes
that their developed version of an adaptive mixed-criticality enforcement mechanism
in combination with a fixed priority scheduling outperforms the other tested combina-

41

3 Domain Analysis

tions within the chosen scenarios. All tests are performed on a single-core based Linux
platform. In his work, Völp [133] investigates in mixed-criticality algorithm support
for fixed-priority scheduling within the context of a microkernel. He proposes that all
investigated algorithms can be mapped to the microkernel-internal scheduling structure
and thus demonstrates the feasibility of supporting mixed-criticality workloads within a
microkernel. Up to now, the assumption is that criticality workloads cannot be managed
by a real-time scheduler. However, there are efforts to enable such a management.

The following papers are discussing the requirements and demands of several ex-
tensions to conventional real-time scheduling approaches considering the new resource
allocation and scheduling challenges which comes with the advance of mixed-critical
systems. In their work, Baruah and Vestal [11] present their finding about certain
schedulability aspects considering a novel task model for multi-criticality real-time tasks
implemented upon preemptive uni-procesor platforms. They derive and evaluate a new
hybrid scheduling scheme to circumvent the limitations of current scheduling schemes
in this area (i.e. EDF). Guo [65] targets the problem of representing the failure proba-
bility of a safety critical real-time system which is required for the certification process
within a mixed-critical task model. He therefore extends the mixed-criticality task model
by adding a new parameter to each task which represents the likelihood of all jobs of
a task finishing their executions. A novel EDF-based scheduling algorithm exploits
these probabilistic information to make its decisions. Baruah [12] identifies challenges of
mixed-criticality systems considering both the static schedulability analysis and run-time
monitoring. He proposes a new implementation scheme for fixed priority uni-processor
scheduling of mixed-criticality systems with the requirement that jobs monitor their
execution times. For their evaluation, they study two scheduling algorithms: one that
assumes limited run-time support and one that requires additional run-time support for
mixed criticalities. They conclude that an additional run-time support provides superior
schedulability/certifiability guarantees.

This section has given a brief overview about the considerations in the area of real-
time scheduling. It therefore identifies the different aspects of scheduling mechanisms
and their influential factors from several system requirements. Starting with “classical”
scheduling problems the section evolves to topics considering the scheduling in multi-
core configurations and mixed-criticality systems. However, there are distinct aspects of
mixed-criticality systems that are not directly addressable by scheduling mechanisms.
The following section will cover these aspects in more detail.

3.3 Mixed-Critical System Properties

Considering the (fair) resource management between high-critical and low-critical tasks,
this section will summarize the related research to this topic. Beginning with the fun-
damental research challenges within this area, the main aspect of resource management
will be outlined. This is followed by common approaches which allow a fair usage of
resources between components with different criticality levels. After that, system issues

42

3.3 Mixed-Critical System Properties

like architecture design will be covered. The section closes with the research regarding
an operating system support.

The work of Burns [26] presents an actual state of the art report in this research area.
Burns identifies the fundamental research question in this area as a trade-off between the
partitioning (safety) and the sharing for efficient resource usage. Further, he identifies
several system problems relating to design and implementation of hardware and software
run-time controls.

Almeida [3] describes in his work the adaptation of a safety-critical system within well-
defined spaces. He follows an open systems approach but delimiting the space of possible
adaptations. As a central element he defines configuration spaces which constrain the
possible adaptation and thus ensure safety. For changing from one configuration space
to another, Almeida utilizes a switching logic during run-time.

A better resource management without a degradation of low-critical tasks is important.
Where low-criticality tasks should not be mistaken as tasks with little value and simply
dropping of them when a criticality change occurs is unacceptable [58]. A method
to allow tasks with lower criticality to be executed as long as they do not prevent
higher criticality tasks from meeting their deadlines is proposed by Santy [124]. For
demonstrating his concept he uses a fixed priority scheduling strategy. Santy’s method
is denoted as Latest Completion Time (LCT) where experiments show a reduced number
of tasks that need to be suspended. Rather than reducing the overall suspending of lower
critical tasks, Jan [76] uses the elastic task model to maximize the execution rate of low
criticality tasks. He uses the slack time generated by over-provisioned high-criticality and
the low-criticality tasks to maximize the execution. Additionally, Fleming [58] proposes
a scheme to maintain the operation of lower criticality tasks as long as possible. For that
reason he “introduces the notion of importance as a means to provide a greater level of
control and guarantees for LO criticality tasks during a criticality change”.

Groesbrink [62] proposes an architecture supporting an adaptive resource assignment
to virtualized mixed-criticality systems. His approach deals with the heavily under-
utilized resources caused by pessimistic assumptions and static resource management
approaches. The developed resource management protocol for virtualization respects
criticality levels and allows the addition of subsystems at run-time. The flexible re-
source management approach provides a solution for open virtualized mixed-criticality
systems. It allows a better utilization of resources through the dynamic adaptation of
resource assignment triggered by either application behavior or environmental changes.
As a prototyping platform, a custom real-time hypervisor, Proteus, is used. In further
research, Groesbrink [61] investigates in partitioning of virtual machines onto a multi-
core platform. The partitioning problem therefore is expressed as a formal model and
an algorithmic approach which systematically leads to candidate solutions. The over-
all optimization goals are minimizing the required number of cores or maximizing the
distribution of critical virtual machines. According to Groesbrink, the proposed auto-
mated “solution guarantees to find an optimal candidate, scales well with regard to an
increasing number of both virtual machines and processor cores, and provides analytic
correctness, which can support system certification”.

43

3 Domain Analysis

The work of Anderson [4], as one of the first in this area, “describes the development
of operating-system support for enabling mixed-criticality workloads to be supported on
multi-core platforms”. In this work he proposes an architecture for the support of peri-
odic task systems in the context of LITMUSRT . Especially, he addresses the problems
regarding the interference between high-critical and low-critical tasks in the context of
scheduling. He identifies two fundamental types of algorithms in the scheduling domain,
scheduling decision and test schedulability. Moreover, he is categorizing the partitioned
scheduling approach as hard real-time capable and the global scheduling approach as soft
real-time. Further, the interference between high-critical and low-critical tasks targets
the need for temporal isolation which can be assured by the operating system by provid-
ing a container abstraction. Anderson transfers this container concept to a server-based
approach with resource budgets that is based on an idea which is formerly presented by
Abeni [1] for uni-processors.

The work of Mollison [103] supplements the work of Anderson by extending the for-
merly described server-based approach with slack stealing. Additionally, Mollison out-
lines a hierarchical architecture where each criticality level gets its own dedicated schedul-
ing strategy assigned (i.e. criticality level is directly mapped to scheduling strategy). So,
for level A (highest criticality), a table-driven or cyclic scheduling is used where level B
is scheduled by partitioned EDF, level C and D both are scheduled by G-EDF (global
EDF) and level E by Best Effort.

Especially for the introduced overhead, the work of Herman [71] corresponds to the
work of Anderson and Mollison. The work presents the overhead for the release of an task
and the actual scheduling overhead. Herman postulates that the usage of LITMUSRT

for testing various RT-related design alternatives makes it attractive, but being based
on Linux disables it as a viable candidate for actual deployment in such systems.

To sum it up, this section has covered the ongoing research considerations regarding
the vital aspect of resource management in mixed-critical systems. The several aspects
like criticality levels, notion of importance, and system integration for realizing a resource
management mechanism were addressed. A point left for the next section is the invention
of flexibility within resource management. The domain of self-adaptive systems therefore
will be investigated in further detail.

3.4 Self-Adaptive Systems Properties

This section will consider the flexible aspect of resource management in the context
of self-adaptive systems. The section starts with common research challenges within
this area and identifies the design and documentation of self-adaptive systems as a
key challenge where several approaches for designing systems with self-x properties will
be outlined. This is followed by a short summary of related work about applying self-
adaptive systems in safety critical domains. The section closes with concrete applications
of self-adaptive approaches in operating systems.

It is a challenge to document a self-adaptive mixed-critical architecture. Self-x ar-
chitectures in common lead to highly dynamic context-aware systems as a reaction on

44

3.4 Self-Adaptive Systems Properties

context changes. The overall system manages its components dynamically (remove, add,
modify). The components realize a different behavior according to its context. For the
development of self-adaptive systems, architectures play an important role. There are
several architecture patterns for the description of self-adaptive systems available. In
his work, Cakar [32] identifies the lack of a clear definition of self-organization consider-
ing the design of self-organizing technical systems. He therefore investigates a survey of
currently identified research challenges and presents an approach to a quantitative defini-
tion of self-organization that is applicable to technical systems. Many aspects regarding
the software engineering for self-adaptive systems are collected by Cheng [35]. Start-
ing with a research road map, Cheng identifies the common open questions according
to self-adaptive systems. Besides the general challenges for finding a common taxon-
omy for systems with self-x properties, there are several efforts for finding an adequate
model-based description for such systems.

A reference model for self-management can be found in the work of Kramer [89].
Additionally, research challenges in this area are covered. Basically this model is based
on a three layer architecture model which, beginning with the lowest layer, consists
of component control, change management and goal management. For the component
control layer, the main task is to add or remove components to or from the system,
which is identified as a challenging task because of uncertainty during changes. A safe
application preservation is demanded through the implementation, thus a change does
not lead to a undesirable transient behavior. Change management, as the middle layer,
executes several actions as a response to a changing environment. The most challenging
task on this level is dealing with distribution and decentralization. The highest layer,
goal management, consists of time consuming computations such as planning. Especially
in the area of embedded systems, efficient planning algorithms need to be found. So, for
the description of a self-managed system, a component based approach embedded in a
three layer architecture is a possible description metric for such systems.

Another interesting work for designing architectures supporting self-x properties can
be found in the work of Oreizy [114]. Again, components can be added, removed or
replaced in the system. He introduces the concept of an observer and a dedicated syn-
chronization component. The latter is required, because of the observation that adding
a component to a running system, it must not assume that the system is in its initial
state. Additionally, his work describes the usage of components and connectors. The
latter ones bind components together and build up a well defined interface. Based on his
research, Oreizy [115] describes the tasks of a so called adaptation management (i.e. con-
trolling the adaptation) in more detail. “It monitors and evaluates the application and
its operating environment, plans adaptations and deploys change descriptions to the
running application” [115]. Moreover, in the same work Oreizy describes the need for
the management of goal changes (so called evolution management). The concept of an
adaptation management has influenced other works in the area of autonomic comput-
ing that are based on the concept of a cycle for monitoring, analyzing, planning and
executing (MAPE) of tasks [38].

Cheng [37] introduces the concept of styles for describing different architectural aspects
of the system. He describes the usage of central elements like components, connectors

45

3 Domain Analysis

and their interfaces (ports and roles). Moreover, Cheng defines so called representations
to support various levels of abstraction and encapsulations. Now, the logical grouping of
components according to a dedicated system configuration is possible. In further work,
Cheng [36] describes the requirements for the design of self-adaptive systems to be an
engineering solution. He proposes that the adaptation logic can be extracted from the
actual system code and treated as separate from the system.

After covering the capabilities of designing systems with self-x properties, there are
architecture patterns which can be used as a starting point. Richter [120, 23] proposes a
generic observer/controller architecture for Organic Computing. With his architecture-
oriented design approach, he wants to allow the self-organization by simultaneously
controlling the emerging global behavior of this kind of systems. He defines three dis-
tinct roles within his architecture: a system under observation and control, observer
and controller. Every role is defined with details about their sub-components and their
expected functions. The outlined architecture is meant to be a framework for different
algorithms stemming out of other domains like machine learning. Current challenges in
the domain of Organic Computing are addressed in the work of Schmeck, Müller-Schlör,
and Tomforde [127, 107, 132]. Primarily, a common understanding of self-organization
is a central problem. Moreover, the design and control mechanism of self-organized sys-
tems embodies a great research challenge. A similar but earlier approach to Organic
Computing can be found in the domain of Autonomic Computing, where data centers
are the main domain for this approach. Kephart [79] envisions the concept of autonomic
computing with the MAPE-cycle as its core. A concrete realization of this architec-
ture for instance is presented by Kluge [87, 84]. In his work, he proposes a real-time
operating system architecture with inherent support for Autonomic and Organic Com-
puting. Based upon this real-time operating system, Kluge introduces an Autonomic
Management mechanism which allows the separation of real-time applications from none
real-time reactions.

Enabling the usage of self-adaptive architectures in a safety-critical environment con-
cerns the trade-off between flexibility and assurance where the following related work
proposes possible solutions for this problem. Considering a possible management ar-
chitecture for building adaptive real-time systems, Kluge [86] extends the observer/-
controller architecture for an application in embedded real-time systems. He proposes a
two-layered management architecture where the global management is similar to previous
concepts in autonomous computing (i.e. MAPE). On the lower level, small management
units are used for micromanagement operating on a small parameter set. The basic idea
is to react on the lower level as fast as possible and defer complex and more sophis-
ticated reactions on the global management layer. Fischer [57] addresses the problem
of ensuring correct self-reconfiguration in safety-critical applications. He proposes an
approach for verified result checking to apply only valid results to the system. Espe-
cially in safety-critical applications, the uncertainty introduced by self-x algorithms can
be addressed. His approach verifies the results at design time independently from the
algorithm used at run-time. Further, he integrates the approach in a organic computing
architecture. As a result, the architecture allows the usage of self-x algorithms, but is
still being able to proof correctness of its results. A brighter overview about assurance

46

3.5 Differences between Related Work and Proposed Approach

in self-adaptive systems is given in the work of De Lemos [45] where he identifies several
key research challenges. The three major topics he focuses on are perceptual assur-
ances, composing and decomposing assurances and control theory assurances. Identified
research challenges consider the quantification of uncertainty, methods for also adapt-
ing the associated assurance cases and the definition of clear guidelines enabling the
application of control theory principles into self-adaptive systems.

This section has outlined the different related work concerning the self-x properties of
a system. The next section will provide a comprehensive list of assumptions, restrictions
and considerations which are derived from the domain analysis that has been provided
so far. The given aspects present the constraints for the investigated approach in the
context of this work.

3.5 Differences between Related Work and Proposed Approach

This section will outline the difference between the related work and the proposed ap-
proach within this thesis. A short recap about the introduced related work will be
provided in the following paragraphs. Each paragraph will close with a delimitation to
the present thesis. The remainder of this section will outline the several assumptions,
restrictions, requirements and design considerations which are considered for the design
and implementation of the proposed approach.

The related work about operating systems that was presented in section 3.1 shows a
great variety of possible approaches for supporting a flexible task management on a multi-
core system. These operating systems support either a dynamic (real-time) workload
or a mixed-critical workload. In spite of efforts for realizing an operating system which
supports both workloads, it is a challenge to consolidate the different requirements into
one unified system approach. Therefore, this thesis proposes a consolidated architecture
that is designed to support dynamic mixed-critical workloads.

The scheduling mechanism of an operating system can be seen as a central part for
supporting a dynamic mixed-critical workload (see section 3.2). Dynamic workloads are
hereby supported by the combination of several, but different, scheduling strategies to a
more flexible scheduling approach which can also be extended by an online schedulability
analysis. In case of a multi-core support, scheduling strategies are combined with online
assignment or allocation mechanisms. For supporting mixed-criticality workloads, there
are efforts to extend the task model of a scheduling algorithm. Summarizing all efforts,
a support for dynamic mixed-critical workloads thus introduces more complexity in the
actual scheduling approach. The proposed management design thus foresees a separation
between the actual flexible scheduling (enforcement) and the admission or allocation
mechanism. Moreover, both enforcement and admission are designed to be executed on
the same device. This thesis proposes an operating system design which supports this
separation on the same device.

In section 3.3 cited related work considers one of the main challenges within the
context of mixed-criticality systems, namely resource management. A main problem,
hereby, is partition (i.e. isolation) of the given resources by simultaneously sharing these

47

3 Domain Analysis

resources between mixed-critical software components for an efficient usage. Supporting
dynamic mixed-critical workloads, however, enforces this problem and requires run-time
control mechanisms. On the one hand, these mechanisms are placed directly within a
scheduling strategy. On the other hand, the control mechanisms are realized as part
of a hypervisor/operating system for multi-core systems. Contributing to an operating
system support for dynamic mixed-critical workloads, this thesis will outline an approach
which executes both the online control mechanism and the actual scheduling on the same
device during run-time. Moreover, this work foresees the application of the proposed
approach within a microkernel-based real-time operating system.

For designing a concrete control mechanism, the related work in section 3.5 outlines
several approaches to manage complexity in a software-based system. A main result
hereby is to grant the system more degrees of freedom by equally controlling the system
behavior. The cited works for enabling self-adaptive system properties include concepts
for control mechanism and possible architectures/paradigms. These concepts are also
applied in the context of safety-critical systems. Thus an application in the domain of
mixed-critical systems seems feasible. However, there is no concrete control mechanism
which can be used in the context of dynamic mixed-critical system. In accordance to
the mixed-critical control mechanisms, this thesis proposes a solution for a possible self-
adaptive control mechanism for dynamic mixed-critical workloads.

The following lists will outline several assumptions and design considerations according
to the remainder of this work. For designing a flexible task management, the combination
of several aspects stemming from the different research domains is required.

Assumptions The following assumptions are set for the design approach within this
work:

• An initial system configuration is executed on the hardware platform: The initial
deployment of system relevant components is done. There is no intention for the
investigation in offline partitioning, exploration and deployment algorithms in the
context of this work.

• The used embedded hardware platform is able to run ordinary operating systems:
The hardware platform allows e.g. virtual memory management and thus contains
a memory management unit.

• The hardware is assumed to working correctly: A hardware fault will not be de-
tected.

• The hardware platform is considered as COTS: There is no special hardware plat-
form required other than available for customers.

• Runnable on Embedded Multi-Core Platforms: With the advance of multi-core
systems in the embedded domain, it is affordable for the operating system to be
able to manage the underlying cores.

48

3.5 Differences between Related Work and Proposed Approach

• Communication interface with other systems: As part of a greater environment,
the operating system needs to provide corresponding interfaces for an external
communication.

• Components, Tasks and Threads: It is considered, that components are single-
threaded tasks. So, a possible lock-situation like deadlocks inside one task can
be circumvented. Functional parallelism, and thus utilizing the underlying multi-
core architecture, is achieved by execution of different tasks on different cores
(multiprocessing).

• Cores are independent: several cores inside the system can be considered in an
independent way. Each core with its scheduling scheme can be seen as an uni-
processor system, where former invented algorithms are applicable.

• Focus on software controls rather than hardware: The proposed system with its
flexible resource management is exclusively designed for software components.
Software control mechanism (e.g. admission) therefore are clearly in the focus.

Restrictions The following aspects and their investigations are no subject for the de-
veloped design approach within this thesis:

• All Tasks are known in advance: The tasks and their information (e.g. priorization,
safety level etc.) used for the flexible task management are considered as given.
There is no creation of new tasks during run-time.

• The components are binary compatible across platforms: The exchange of com-
ponents works only between hardware platforms with the same architecture (e.g.
ARM, x86).

• Concrete automotive functions are abstracted by artificial tasks: In the context of
this work there are components labeled after known automotive components but
are simplified versions.

• An external communication is assumed but only for testing: The required commu-
nication with other systems is merely used to exchange tasks/components. Neither
a real-time communication nor a holistic approach are content of this work.

• Cores and criticality: Assignment by utilizing the mixed-critical classification of
each task and each core. High-critical tasks are executed on high classified cores,
whereas low-critical tasks are executed on low classified cores. Communication
between cores is restricted under the assumption of equal criticality level.

• Execution of software run-time controls on the same device: The overall goal is
to enable a local adaptation on the same device without the need of an external
control unit. Receiving changes can be checked locally which reduces latency and
network bandwidth.

49

3 Domain Analysis

Requirements The following requirements are mandatory for the proposed solution
within this thesis:

• The hardware platform is at least a dual-core system: The intended approach for
separation and overhead reduction is only feasible within a multi-core configura-
tion.

• Small footprint (efficient resource usage): An operating system using immense
capacities of the available resources by itself is not suitable for the embedded
domain. Further, with regard to a real-time context, the operating system needs
to form a small trusted computing base.

• Allowing of run-time flexibility and guarantee: Both aspects are mandatory to
realize a flexible task management. Flexibility means the operating system is able
to modify the working component during run-time. Many systems in real-time and
mixed-criticality areas enforce the possibility of the used system to make guarantees
about distinct system behavior.

• Sharing of local resources in a safe way: Important aspect for the usage in mixed-
critical systems is the possibility of a fine-grained control about the resource sharing
between software components. Corresponding mechanisms need to be available in
the used operating system.

• Kernel-independent solution: Flexible management of resources should be inde-
pendent from the underlying kernel as far as possible. This enables a complete
application of the proposed concept. General idea is to implement a controller-
based mechanism for the several strategies to manage the underlying structures
like scheduler or thread-to-core binding. Also supporting components like synchro-
nization or monitoring are proposed to be realized in this way.

• Criticality level and affinity (i.e. component assignment to hardware resources):
Both concepts are similar but not equal. Scheduling mechanisms that handle these
aspects are different. The concept of an “affinity” is mandatory for the system due
to changing requirements. The configuration (i.e. which component runs on which
core) needs to be flexible. Also the timing aspects and the resource sharing are
affected by these differences. Flexible resource management needs to deal with
this in a consistent way.

• Compensation of introduced overhead: By separating the adaptation logic from the
system logic by using the proposed multi-core approach, the introduced overhead
can be subsumed.

• Efficient controlling and monitoring methods: Providing the adaptation mecha-
nism on the same embedded device requires an efficient implementation of adap-
tation methods.

50

3.5 Differences between Related Work and Proposed Approach

• Modification of software components at run-time: The proposed system is at least
capable of adding and removing of components during run-time. A modification
of component parameters (e.g. priority) is not intended so far.

Design Considerations The following points considers general directions for the design
of the proposed approach:

• Allowing several scheduling policies running on the same system: The benefit of
using a multi-core based system is not to increase performance rather than allow a
heterogeneous partition. This is achieved by assigning different scheduling policies
to distinct cores.

• Online analysis as preferred method: In the context of a flexible task management
all analysis mechanisms which are required to realize the management should be
on-line. Thus the system is able to react on dynamic contextual changes.

• Combination with admission tests: The dynamic adaptation of the system also
requires the combination of scheduling (enforcement) and admission. The later
is responsible to guarantee a valid system configuration where the enforcement
mechanism is responsible for the execution. A separation of both mechanisms
allows the combination of different algorithms.

• Improved robustness of single scheduling policies through adequate optimization:
The used scheduling algorithms have their benefits and drawbacks (e.g. transient
overload situations). A continuously running optimization mechanism as part of
the admission grants the possibility to eliminate potential hazardous states.

• Scheduling and criticality: Due to the static scheduling decision, FPS is used in
hard real-time scenarios where guarantees outshines flexibility. EDF, however, can
be used as well in soft and hard real-time scenarios where in this thesis it is enabled
for soft and quality assurance scheduling due to its great resource utilization. But,
in some scenarios there is the possibility where neither priorities nor deadlines
are sufficient. In this scenario a more adaptive scheme via value-based scheduling
(VBS) need to be applied.

• Strict separation of components with different criticality: As a key concept of
mixed-criticality systems, it is mandatory that components with different criticality
level are separated to circumvent possible influences between those.

• At least support for two criticality level: There are many research approaches which
investigate in more criticality levels but two level is rather more investigated. It is
the least common base for design and development of mixed-criticality system.

• Separation of adaptation logic and system logic: Similar to the separation in mixed-
criticality systems, adaptation logic needs to be separated from system logic. This
is for reducing the introduced overhead by the adaptation mechanism execution

51

3 Domain Analysis

(e.g. permanent monitoring). A failure in adaptation logic does not influence the
system logic (i.e. no adaptation possible but system stays functional).

Conclusion

This chapter has provided an overview about the related work in the fields of operating
systems, real-time scheduling, and system design properties to realize a flexible software
management solution within a mixed-critical system context. The chapter has been
closed by a section about distinct attributes which are (e.g. assumptions, restrictions
etc.) combining the related work with the own thesis. The mentioned requirements
and design considerations will be the starting point for the following chapters. Based
on the investigations from this chapter, chapter 4 will therefore describe the author’s
architecture approach to combine flexible software management and mixed-criticality
system attributes.

52

4 Design of a Consolidated Self-Adaptive
Software Architecture for Multicore
Systems

This chapter will propose an operating system design for an embedded mixed-critical
multi-core system (cf. contributions 2 a,b). The design foresees that applications can be
updated during run-time in respect to the chapter 3 outlined requirements and design
considerations. Beginning with an outline of the overall architecture, a short description
of relevant hardware/software components will be given in section 4.1. Further, the in-
terconnection of the outlined software components as well as their functionality within
the system will be presented in section 4.2. For the integration of specialized software
components (i.e. controller), a possible allocation of software components to the under-
lying hardware platform follows in section 4.3. With the outlined software components
in place, section 4.4 will describe possible control flows supported by the design.

4.1 Description of the Overall System Architecture

This section will introduce a system architecture which is designed according to the
findings in section 3.5. The overall architecture design can be seen in figure 4.1 where
the System is embedded in a greater network (i.e. Environment). In the following, the
architecture describes exactly one system within a network.

The available hardware resources of the system are provided by the Hardware Platform
which resides on the bottom of the system. In detail, the following physical system
resources are considered:

• Central Processing Unit (CPU): homogeneous multi-core configuration for execut-
ing threads

• Input/Output Devices: sensors and actuators

• Memory : main memory (i.e. random access memory)

• Communication Interface: bus-based network communication

Altogether, the Operating System represents the system software which is executed on
top of the hardware platform. The operating system is hereby divided in a Kernel Space
and a User Space. The purpose of the kernel space is to provide an abstraction (i.e. kernel
objects) from the underlying physical hardware resources to the software components

53

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

Operating
System

Hardware
Platform

Network
Communication

Synchronizer

ControllerTaskloader

Logging/
Tracing

Scheduler

User
Space

Kernel
Space

Applications

Environment System

Management
Network

Public
Network

Tracing and Synchronizing Interface

...

Thread n

Thread 1

Per-Core Runqueue

Scheduler

...

Thread n

Thread 1

Per-Core Runqueue

Core 0 Core 1
CPU

MemoryI/O Devices Communication

Interface

Figure 4.1: Block Diagram of the Overall Task Management Architecture

executed in user space. Within the user space, several software components are realizing
the flexible task management. Both spaces are allowed to interchange information via a
Tracing and Synchronization Interface. More details about the function of each kernel
object and software component will be given in the following.

The kernel space provides the following kernel objects and internal data structures:

• (Thread) Scheduler : manages the execution order of threads by using a distinct
queue-based scheduling strategy

• Thread : represents the execution of a software component

• Run queue: represents a queue per core with runnable threads

Scheduler The central role of the kernel thread scheduler object is the management
of the underlying central processing unit and its cores by assigning CPU time to differ-
ent execution threads. In general, the scheduling component consists of data structures
(e.g. queue), strategies and interfaces related to the cpu management according a par-
titioned scheduling scheme. The dynamic queue-based data structure (i.e. changeable

54

4.1 Description of the Overall System Architecture

during run-time) consists of several execution threads which need to be executed on the
cpu. Each scheduling strategy is working on these queues. For a flexible task man-
agement, the kernel thread scheduler is therefore a crucial kernel object to get per-core
information about the overall state of the ready queue and single threads.

The software components within the user space can be divided in:

• management components

– Controller : (re-)configuration of new ready queue

– Synchronizer : deploying of ready queue

– Taskloader : loading of new applications in form of tasks

• common purpose components

– Network Communication: communication with the environment

– Logging/Tracing : gathering and parsing of operating system information

• application components (Applications): varying functionality and complexity

Controller In general, the controller component constrains the system adaptation (e.g. new
system state) depending on the given instructions for creating a new task or optimiz-
ing the system according to a selected target function (e.g. utilization). The controller
component hereby contains different processes for analyzing and planning of new system
states. Whereas, the analysis process depends on services provided by the monitoring
component about a current system state. The planning process uses the results of the
analysis process to calculate a valid system state with the demanded modifications and
submits the result via a shared memory provided by the synchronization component.

Tracing/Logging The tracing/logging component is the central monitoring part of the
flexible task management architecture and responsible for the collection, pre-analysis
and aggregation of information from several sources within the operating system.

Taskloader For the dynamic deployment of new applications within the system, the
taskloader component provides the relevant services to the network component. Whereas,
the taskloader component is responsible for the management of its applications (e.g. start-
ing and stopping). Hereby, it reads the provided meta information (i.e. task descrip-
tion) and creates a task (representation of an application) accordingly. Moreover, the
taskloader component provides interfaces for the network component as well as for ap-
plication subsystem. It is capable of adding and removing of tasks (for the network
component) and starting and stopping of tasks (for the application subsystem).

Synchronizer The synchronizer component is used to keep the user space and kernel
space in sync. It therefore calculates an adequate point in time when an update of
the underlying kernel space (i.e. ready queues) is feasible. For this calculation it follows
distinct strategies according to the state of the targeting ready queue which can be either
empty or filled.

55

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

Network Communication The network component is responsible to communicate with
a systems environment (e.g. other systems) and therefore realizes a server which diverts
the internal services to external calls. Where most of the provided services affect the
aforementioned components (e.g. monitoring, controller). The data exchange format
used for the communication with other systems within the environment is file-based.

Both common purpose components and management components are invariant and
hence unaffected from run-time adaptation. Whereby, not every common purpose com-
ponent is mandatory in every adaptation use-case (see section 4.4). Basically, common
purpose components realize the basic infrastructure for system modifications from the
outside. Application components are subject to a run-time adaptation and can vary in
functionality and complexity. For example, the functionality and complexity can range
from sensor/actuator components over automotive specific components (e.g. adaptive
cruise controller) up to virtualized components (e.g. infotainment, real-time system).
Actually, a components functionality and complexity and therefore its system require-
ments determine the possibility to be a subject of an adaptation. In case of an adapta-
tion, application components are allowed to be added, removed or modified for the sake
of optimization and fail-safe state. But there are also application components which are
vital for the overall system and where even a modification is risky (e.g. critical compo-
nents). In this case the application component will be excluded from an adaptation. For
a clear separation, the architecture utilizes the underlying multi-core hardware platform
to allocate corresponding application components according to their adaptation capabil-
ities (see section 4.3). So, individual application components are largely unaffected from
a given adaptation process if required.

This section has introduced an architecture design supporting a flexible task man-
agement within a multi-core embedded system. All relevant components, objects and
resources has been identified and explained. For answering how a component performs
its actual functionality, further details about the insights of a component will be outlined
in the next section.

4.2 Kernel Space and User Space Interactions

This section will provide an overview about the interconnections between user space
software components among each other as well as to the underlying kernel space with
its kernel objects. Based on an overall view of all connections within the operating
system, the consecutive subsections will explain the involved kernel objects and software
components in more detail.

The component and connectors diagram, which can be seen in figure 4.2, shows an
excerpt of all mandatory components and their interconnections. Each component is
equipped with distinct connectors symbolizing their service demand or service supply.
The components hereby follow the naming convention of the already introduced soft-
ware components with one exception: for describing the Tracing and Synchronization
Interface, the kernel is assumed as a further component rather than a space.

56

4.2 Kernel Space and User Space Interactions

The information exchange between kernel space and user space includes information
about the current system state which are provided mainly by the scheduling kernel
object and are consumed by the tracing/logging component in user space (i.e. system
information). On the other hand, modified system states are deployed by an user space
synchronizer component to the underlying scheduling kernel object.

Network

Communication

Taskloader

Controller

Applications

Kernel

Synchronizer Tracing/Logging

logging

information

system

informationnew

task set

check task

start/stop

create/destroy

system

information

deploy

task binary

description

Figure 4.2: Mandatory components and their connectors

The kernel space provides two interfaces which handle the corresponding requests to
get system information and to deploy a new ready queue.

Kernel

kernel

information

deploy

Within the kernel space there are co-existing scheduler
kernel objects which are assigned to the individual cores of
the hardware platform. Each scheduler kernel object pro-
vides interfaces to modify its complete ready queue or one
single thread. By calling the deploy interface, the task or
ready queue is forwarded to the targeting scheduling object

57

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

by an internal routing mechanism. By calling the system
information interface, the kernel collects the individual in-
formation of all scheduler kernel objects, their ready queues, and their running threads.
These information are gathered from every individual kernel object (e.g. execution time
from thread) and are bundled on a per-core base. In a last step these information can
be combined to get information about either the complete kernel space or a single core.

For providing system information, the tracing/logging component needs an interface
for gathering the demanded information from the underlying kernel. Accordingly, the
tracing/logging component serves these information via distinct interfaces to other user-
space components. The tracing/logging software component thus provides the following
interfaces: tracing information, logging information and kernel information.

Tracing/Logging
tracing

informationkernel

information logging

informaiton

The core of the collection routine which
gathers the information about the kernel
(i.e. via kernel information interface) is
based on a tracing process inside the trac-
ing/logging component. After the trac-
ing, the following aggregation step com-
bines these information to a common data
set (i.e. system state) which can be queried by internal other user-space components
(e.g. controller) via the provided tracing information interface. The tracing/logging
component hereby provides an unified interface which can be used to get the current
system information. A call of the tracing interface, however, does not return the system
information directly but rather as a reference on a shared memory region. This allows
the sharing of system information between components by simultaneously reducing the
processing overhead in the tracing/logging component induced by components concur-
rently requesting the current system information. The logging information interface
includes a further processing step where the common data set is serialized for a later
network transfer.

For controlling the adaptation of the system, the controller component includes a de-
cision making process which is based on the current system information, the relevant
task set, and the task (i.e. application) which will be subject to the adaptation. The
controller software component correspondingly provides the following interfaces: trac-
ing information, task set to deploy and check task. The system information which is
requested via the tracing information interface contains the current ready queue of the
target core. For a given application, the check task interface provides a test if the ap-
plication can be enqueued in the current ready queue. In case of a positive result, the
new ready queue is served via the task set to deploy interface.

Controller
tracing

information

check

task

task set
to deploy

Considering the co-existent scheduling
strategies within the system, the internal
structure of the controller component con-
sists of several methods for analyzing the
related ready queues of each core. In any
case, an analysis leads to concrete instruc-
tions how the ready queues can be modified accordingly or not. Depending on the prop-

58

4.2 Kernel Space and User Space Interactions

erties of a given application, the controller decides which scheduling strategy on which
core is capable of executing this application. Corresponding to the scheduling strategy,
a analysis method will be chosen. There are also cases where a modification of a ready
queue is not caused by the deployment of a new application (i.e. installation). The
controller thus provides analysis methods for improving the overall system reliability by
optimizing existing ready queues.

The synchronizer software component deploys a given task set (i.e. ready queue) at a
distinct point in time (i.e. reliability of the kernel can be guaranteed) to the underlying
kernel by calling its corresponding system calls. For providing this functionality, the
synchronizer component possesses the interfaces deploy and task set to deploy.

Synchronizer

task set
to deploy

deploy

For transferring the new task set from
the controller component to the synchro-
nizer component, the task set to deploy in-
terface will be used. Within the synchro-
nizer component, a distinct point in time
for deploying the given task set to the un-
derlying kernel will be calculated. The calculation of a suitable point in time depends,
therefore, on the state of the kernel queues which are either empty or filled. The sync
of an empty queue is relatively straightforward and not bound to special constraints.
Whereas, for a filled queue there are additional synchronization points possible, namely
fixed switching point and variable fixing point. For the former case a dedicated switching
task marking a save point for synchronization (e.g. idle task) can be used. However, for
the latter case of variable point in time switching, a more complex routine needs to be
elaborated due to difficulties arising (e.g. task dependencies). In the end, the given task
set will be deployed to the underlying kernel via the deploy interface. This can be done
in two distinct ways: as a complete ready queue or as task by task. In both cases the
kernel’s system calls are used.

The network communication component is used to get applications in the system and
to get logging information out of the system. For this purpose, the network commu-
nication component uses two internal interfaces, namely logging information and load
task.

Network

Communication
logging

information

load

task

The network communication compo-
nent provides external interfaces for com-
municating with the management network
and the public network which are used to
receive corresponding requests and data.
To realize this functionality, the inter-
nal structure of the network component
adapts a socket server. For serving the in-
coming requests, the services of a distinct
user-space software component will be used. For example, the process of loading a new
task utilizes the load task service of the taskloader component.

59

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

The taskloader component is the entry point of the flexible task management. There-
fore, it provides interfaces for managing the applications. The following interfaces are
provided: check task, load task and start/stop create/destroy.

Taskloader

start/stop

create/destroy

check

task
load task

The internal structure is based on a
task set storing the applications which
are managed by the flexible task manage-
ment. A new task is transferred from the
network communication component to the
task loader via the load task interface. Af-
ter that, the taskloader component uses

the check task interface of the controller to check which modifications on the current
task set are mandatory. Related applications can be managed by the start/stop cre-
ate/destroy interface. For concrete workflows which demonstrate the interplay of the
taskloader component, controller component etc., see section 4.4.

An application component is managed via the taskloader through the start/stop cre-
ate/destroy interface.

Applications

start/stop

create/destroy

An application component hereby con-
sists of a (meta) description, monitoring
data and the actual binary. The descrip-
tion as well as the monitoring data is re-
quired to manage the application and pro-
vides information about its current state.
During execution, this is important to de-
termine if the actual application execution (i.e. traced by the monitoring component) is
compliant to the given specification (i.e. task description). This reasoning embodies the
foundation of the decision process within the controller component. If an application
gets created by the taskloader, the description is used to initialize the timing aspects of
the binary (e.g. period). Furthermore, the application code in binary form is loaded into
the application. The binary contains an execution thread which is consumed by the un-
derlying scheduler kernel object. Starting the application formally starts the execution
of the thread.

This section has described the interactions between the user space software compo-
nents. Therefore, distinct interfaces of each software component were presented.

4.3 Allocation of Software Components to Multicore Hardware
Platform

In this section, an allocation between software components and hardware platform re-
sources (i.e. cores) will be developed. Hereby, functional and dependability requirements
of software components will be addressed. As a functional aspect, applications should,
as far as possible, not be influenced by the execution of the remaining software com-
ponents. Possible deployment configurations therefore will be outlined in section 4.3.1.
Dependability requirements, on the other side, have a strong relevance to the critical-

60

4.3 Allocation of Software Components to Multicore Hardware Platform

ity of a software component. For that reason, a criticality aware mapping of software
components with possible isolation capabilities will be presented in section 4.3.2 and
section 4.3.3.

4.3.1 Integration of Application Components within the System

This section will provide several deployment strategies for software components. A pos-
sible performance degradation of application components through the remaining system
needs to be avoided. In general, the management and common purpose components are
an attachment for the overall system functionality (i.e. provided by the application com-
ponents) introducing overhead and should therefore, be separated from the application
components. Moreover, in case of a failure within the management or common purpose
components, a separation ensures the continuous execution of the applications (i.e. de-
pendability). Indeed, there exists several strategies to place the application components
within the overall system and although each strategy is fostering the reduction of the
introduced overhead, they all come at a cost.

Within the described system architecture, application components can be principally
integrated in either the user-space of the operating system or directly on top of the
hardware platform (i.e. with or without a common software stack). By integrating an
application on top of the hardware platform, the application will be executed on a
distinct core and is separated from the remaining operating system. In the context of
this section, this scenario will be referenced as bare metal integration. By integrating
the application within the operating system (i.e. using a common software stack with
the remaining software components), there are two scenarios conceivable: directly as
application component within the user-space or indirectly as part of another application.
The first scenario will be referenced as native integration. The second scenario will be
referenced as stacked integration. An overview of the available integration scenarios is
depicted in figure 4.3.

Hardware Platform

Application

Operating
System

Kernel
Space

User
Space

Core 0 Core 1

(a) bare metal

Hardware Platform

Core 0 Core 1

Operating System

Kernel
Space

User
Space

Application
Remaining

Components

(b) native os

Hardware Platform

Core 0 Core 1

Operating System

Kernel
Space

User
Space

Application

AppRemaining
Components

(c) stacked applications

Figure 4.3: Several mapping strategies for application component

61

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

The deployment scenario as depicted in figure 4.3 (a) describes the integration of an
application component directly on top of a dedicated processing core (i.e. bare metal) of
the hardware platform. The application hereby is separated from the operating system
completely. In this case, the remaining software components don’t interfere with the
application directly. This isolation can be used to implement an application which takes
care of its own resource management. This leads to a number of configurations where
the application can be a simple program, a complete operating system or a virtualized
solution. Obviously, this allows a very flexible use of the application whereby services
which are required for managing this application also need to be developed in conformity
with the remaining system. According to the management, an application residing on
one dedicated core need to utilize a dedicated communication mechanism to provide their
services to the system software. Due to the fact that executing an application exclusively
on a dedicated core, this scenario prohibits the usage of this core by other system software
components (i.e. core is not managed by system software) which results in a waste of
valuable resources. Considering the performance of the chosen deployment scenario, the
execution of an application directly on a dedicated core embodies by far the greatest
performance potential in comparison to other deployment scenarios. In this case, even
applications with tight timing constraints could be integrated. For the availability of
the system, an application which is deployed as depicted intersects the system software
architecture which has a questionable impact for the stability of the overall system if the
application will fail. In summary, executing an application on one dedicated hardware
platform core results in high performance regarding computation speed (fast). On the
other side, the strict separation from the rest of the system software complicates the
management of resources and dependability related aspects.

The native deployment scenario where the applications are part of the operating sys-
tem user space offers some benefits regarding implementation, management, performance
and reliability. A detailed overview of the scenario is depicted in figure 4.3 (b) where the
applications are able to use the services and resources from the software stack. By using
this software stack, the applications are able to use common services already provided
by the operating system. This reduces the implementation overhead in comparison to a
bare metal solution where even basic functionality need to be implemented. In this case,
the development of an application also can be focused on the essential functionality. The
management of applications as part of the operating system on top of a homogeneous
software stack allows the consistent usage of the systems infrastructure for communica-
tion and processing (e.g. scheduler). A seamless integration of the applications is thus
feasible, where existing communication mechanisms can be utilized to further reduce the
overhead. Moreover, as part of the operating system, applications can be represented by
the same task model as remaining components within the system which eases the timing
analysis (e.g. calculation of the introduced overhead). Considering the performance, ap-
plications can also be separated from the remaining software components by deploying
the applications on other cores. Of course, the used software stack needs to be flexible
enough to provide this deployment on several cores (e.g. affinity). Furthermore, the
software system stack needs to allow a fix binding of applications to corresponding cores
at run-time. Regarding the dependability of the overall system, a failing application can

62

4.3 Allocation of Software Components to Multicore Hardware Platform

be restarted by the established management mechanism. So, the outlined deployment
scenario achieves a balance in the areas of implementation, management, performance
and reliability. After describing the first deployment scenario with a system software
stack, in the following an alternative deployment will be outlined.

The deployment scenario shown in figure 4.3 (c) describes a further option to integrate
the applications on top of a system software stack. An application can be executed as
part of another application which is a native operating system component. This allows
the stacking of applications. In general, this approach introduces a greater abstraction
for the integration of an application apart from the operating system. This enables a
greater software-based separation of the application from the remaining components of
the operating system even if it’s a part of it (i.e. loose coupling). Considering the im-
plementation of this deployment scenario, applications can also be part of a virtualized
operating system (e.g. Linux) mirroring the design possibilities of the bare metal deploy-
ment scenario. This enables a great implementation flexibility due to the abstraction
from the underlying operating system. Considering the management of such stacked ap-
plications, their surrounding applications are still managed by the operating system user
space components. But, the additional abstraction enforces the fact that the underlying
system is not aware about the insights of the application component itself which means
a restriction in the management possibilities. Moreover, through the higher abstraction
level, an application’s performance may suffer from an exceeding lag which is caused by
the extended call stack of a function from the application down to the hardware. Es-
pecially in cases where applications have higher timing demands, this scenario may not
be sufficient. In comparison with the native operating system deployment scenario, this
deployment scenario derives a comparable flexibility in case of an application malfunc-
tion. In conclusion, the deployment scenario where applications are integrated within
another application allows a comparable flexibility to the native deployment scenario
considering the implementation and the dependability. However, the described scenario
falls short in cases of management and performance where an additional abstraction on
the software system stack introduces further barriers.

To sum it up, the provided deployment scenarios for integrating an application within
the system emphasis different aspects of implementation, management, performance
and dependability. Whereby, the deployment of applications within the native operating
system finds a balance between these aspects, the other provided deployment scenarios
clearly prefer one of these aspects at the expense of other aspects. All described de-
ployment scenarios however are based on the assumption that the applications have the
same criticality and thus are able to be deployed on an arbitrary core on the hardware
platform. The next section therefore will provide the second aspect of the allocation,
namely criticality.

4.3.2 Criticality-Aware Allocation of Software Components

In this section, relevant design decisions to realize a possible criticality mapping will be
presented. Thus, the representation of a criticality level across different system parts
like cores, schedulers and software components will be described. Cores, for example, as

63

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

part of the hardware platform need to be classified according to a criticality level. For
each criticality level, a dedicated scheduler within the kernel space is chosen to fulfill the
required timing demands. Further, it is important to extend the description of software
components (e.g. task and execution) in accordance to a given criticality level.

Assuming that the combination of several software components can have the following
criticality classification: equal or mixed critical. There are at least two criticality levels
needed to allow the discussion about a mixed critical combination of software compo-
nents. Software components therefore are either low-critical (lo) or high-critical (hi).
This criticality representation needs to be respected even on core level, where cores with
a certain criticality certification can be expensive and part of a special hardware device.
However, to bring the designed approach to a great number of general purpose platforms
rather than few special purpose ones, this thesis focuses on an exclusively software-based
realization of criticality classification on top of the hardware platform without specially
certified cores.

For the management of available hardware platform cores by the kernel, the archi-
tecture approach foresees an allocation of a dedicated scheduler to each core. The
criticality classification (e.g. high critical) and the timing behavior of a software com-
ponent (e.g. hard real-time) are orthogonal1. Both aspects of the software component
therefore need to be correspondingly mapped to the available cores and the schedulers.
For example, in case of a high critical component, the value of a software component
could be defined as point in time where the result of this component is no longer relevant
or harmful for the system. For that case, a deadline based scheduler (e.g. EDF) aware
of handling deadlines could be used. Whereas, by non critical software components,
fairness provided by the completely fair scheduler (CFS) could be demanded for keeping
the timing behavior of a software component. According to the isolation of the resulting
core set, each core is managed by one dedicated scheduler enabling a separation between
software components running on other cores. This allows, but is not limited to, the
realization of mixed-critical configurations of core sets where the set contains of one or
more pure high-critical cores in combination with low or none-critical cores. Hereby,
components for a low-critical core like the management components can be separated
from high-critical application components by simply allocating them to one core and
the application components to another one. Moreover, this approach allows the further
usage of well tried single-core scheduling mechanisms in a multi-core environment, where
the scheduling strategy on each core can range from simple to complex according to the
criticality demands (i.e. even mixed-critical scheduler would be possible). In conclusion,
there is a suitable scheduler managing each core in isolation from other cores as part of
a multi-core environment. So, the next relevant allocation aspect address the admission
of a software component to an available scheduler and the communication between cores
to allow the cooperation between software components on dedicated cores.

The admission of a software component to a corresponding hardware platform core
within the system software stack requires the usage of criticality, schedule type and
core affinity which are part of the software components task description. Whereby, the

1There are hard real-time software components which are not highly critical and vice versa.

64

4.3 Allocation of Software Components to Multicore Hardware Platform

criticality property and the scheduler type are both mandatory for a proper admission
(see former paragraph). For example, assuming a deadline-based low critical software
component: If the admission of this component takes place considering the criticality
only, a low critical core with a priority-based scheduling policy (e.g. FPP) is also a
valid admission target, hence, unable to deal with deadlines. Otherwise, with an admis-
sion considering only the scheduling type, a high critical core could be selected where a
dynamic admission on this core can result in a hazardous system state. So, both prop-
erties, criticality as well as scheduler type are required for a proper admission whereas
the chosen example is simplifying the available parameter combination. In general, the
admission is based on the combination of all parameters describing the scheduler and
core properties respectively. But, there is a problem in case more than one scheduler or
core have the same capability to satisfy the admission demand for a software component.
In case of scheduling type, there are more schedulers capable of dealing with deadlines
(e.g. EDF, LLF) where a immediate solution is to specify the concrete scheduling policy
rather than its scheduling aspect (i.e. deadline). Furthermore, there can be equal critical
cores which are managed by equal scheduling policies (e.g. EDF) where both cores would
be feasible for an admission. If the core binding is irrelevant for the admission of the
software component, there is a certain flexibility for the admission mechanism to select
one of the cores. In contrast, where the binding is relevant for the proper execution of a
software component, there exists an additional affinity parameter which allows to guar-
antee that the software component is always executed on the selected core. In all cases,
the admission mechanism is responsible to correctly enqueue the software component
within the scheduler. The considered concept, so far, is based on the idea of separating
(i.e. temporal isolation) the execution of software components on different cores accord-
ing to their criticality classification. But, in case of management components and their
to be managed applications, an inter-core communication mechanism is required.

The criticality classification of a software component also influences the inter-core
communication and requires a decision which software components on different cores
(with or without varying criticality classification) are allowed to communicate with each
other2. For example, management components (running on one core) require the com-
munication with their to be controlled applications which are executed on another core.
In combination with a corresponding criticality classification, the question arises: what
is an allowed communication configuration for the relationship between management
components and the to be managed components? In general, management components
need the same criticality classification as their to be managed components. For example,
a high critical classified management component is allowed to manage high critical ap-
plication components. Whereas a low critical management component is responsible for
low critical applications respectively. However under the assumption that a high critical
component enforces a tighter timing behavior than a low critical component, there exists
the possibility to control a low critical application by a high critical component but not
other way around. So, an allowed communication configuration which can be seen as

2software components running on the same core are always allowed to communicate with each other if
required

65

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

valid respects these criticality relations. Indeed, the criticality classification influences
the allowed communication configuration but the criticality compliance also requires the
technical support by the hardware platform (see section 4.3.3). The so far described de-
sign considerations for an allocation of a software component to the underlying hardware
platform will be combined to an overall task management architecture in the following.

The architecture configuration given in figure 4.4 follows the so far described aspects
of a critical aware allocation of software components. Whereby, the architecture is
layered on the horizontal dimension according to the described operating system and
hardware platform. Corresponding to this, the vertical dimension shows the system
software stack on top of each hardware platform core. Each core with its associated
software stack which is composed of software components is colored according to a certain
criticality classification. Beginning with the individual software stack on each core, kernel
objects are colored in green. Additionally, operating system software components are
colored in orange. In this configuration, the application components (colored in blue)
are part of the operating system (native deployment scenario) but mainly separated
from the remaining management and common purpose components (colored in orange).
In this configuration low-critical cores are colored in yellow and high critical cores are
colored in red. In general, the chosen configuration allows the execution of application
components without the impact of a possible adaptation process due to the fact that the
controller component is not executed on the same core as the application component.
This configuration, indeed, is one possible solution to the outlined allocation problem
but rather simplified.

In conclusion, this section has described the several aspects of a criticality aware
allocation of software components to the hardware platform. The allocation of soft-
ware components (operating system/applications) requires both scheduling type and
criticality classification where in some cases an additional core affinity can be helpful.
Furthermore, the inter-core communication between mixed-critical cores is required to
allow the management of applications by the management components running each on
distinct cores. However, the partitioning and separation of software components accord-
ing to their criticality makes no assumptions about the isolated concurrent execution of
software components on the same system. That means, software components are able to
influence or disturb other software components in their execution leading to unforeseen
system states. The next section therefore presents another aspect which is also related
to criticality, namely isolation.

4.3.3 Isolation Supporting Criticality

This section will describe the two isolation concepts which can be divided in this work,
namely temporal isolation and performance isolation. Whereby, temporal isolation can
be seen as a software-based mechanism for separating high critical components from low
critical components. On the opposite, performance isolation is a hardware-supported
mechanism which supports the additional separation of hardware resources like caches.
Possible scenarios will be described where either a performance isolation or temporal
isolation can be used.

66

4.3 Allocation of Software Components to Multicore Hardware Platform

Application Application Application

Application Application Application

Network

Task Loader

Tracing

Logging

Controller

Synchronzier Monitor Monitor Monitor

Scheduler Scheduler Scheduler Scheduler

Core Core Core Core

Cache

Figure 4.4: Allocation Example following the Partition Process

Temporal isolation, as depicted in figure 4.5a, can be achieved by the deployment
of a high critical component on a dedicated core without the common system software
stack (cf. bare metal deployment scenario). Hereby, high critical components are able to
be executed independently from the remaining software components running within the
system software. However, the software based separation of high critical components
doesn’t enforce the independent execution of software components as a whole. The
reason for this are shared resources like caches. Malicious software components are able
to utilize the shared resources to influence the timing demands of high critical software
components on the other core. For that scenario, a software-based isolation is limited in
case of hardware side attacks. That’s why the concept of isolation need to be supported
by hardware-based design concepts to circumvent the described scenario.

The separation of hardware-related parts like caches from remaining resources pro-
vided by the hardware platform is a essential design decision for the realization of the
performance isolation. Hereby the former limited isolation approach can be extended for
guaranteeing strong timing conditions. This approach is depicted in figure 4.5b where
the isolated application has an exclusive access to core and its related cache. This system
in system approach allows the integration of hard real-time components next to the soft-
ware stack. Different variations are thereby conceivable: a real-time operating system,

67

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

a hardware emulation for high-speed calculations. Considering the communication be-
tween the completely isolated core with the other components within the system, a bus
infrastructure could be used. However, performance isolation comes to the cost of higher
management effort [47]. In conclusion, the combination of best effort components with
high critical components within one system requires the usage of performance isolation
for strong timing guarantees where software based temporal isolation is not enough.

Application Application Application

Application Application Application

Network

Task Loader

Tracing

Logging

Controller

Synchronzier Monitor Monitor Monitor

Scheduler Scheduler Scheduler Scheduler

Core Core Core Core

Cache

(a) temp

Application Application Application

Application Application Application

Network

Task Loader

Tracing

Logging

Controller

Synchronzier Monitor Monitor Monitor

Scheduler Scheduler Scheduler Scheduler

Core Core Core Core

Cache Cache

(b) perf

Figure 4.5: Temporal Isolation and Performance Isolation Approaches

To sum it up, this section has described an allocation of software components to the
hardware platform. The section has described the separation of applications from the
remaining software components. This separation considers that the underlying cores
are equal critical which is not true in all cases. Thus, a criticality aware mapping of
software components to the underlying hardware platform was covered afterwards. An
important aspect hereby is the representation of criticality within the system. As a last
step, additional isolation concepts for supporting the assignment strategy were outlined.
The next section will describe the concrete adaptation workflows (i.e. dynamic behavior)
by using the introduced software components.

4.4 Description of Workflows for Self-Adaptive Software
Architecture Changes

The previous sections have been used to identify relevant software components, their
connections with each other as well as their allocation to the underlying multi-core
platform. What is missing so far is a concrete sequence for managing applications where

68

4.4 Description of Workflows for Self-Adaptive Software Architecture Changes

the management components and common purpose components are used together. This
section therefore will outline three concrete workflows demonstrating such sequences.
The section 4.4.1 will describe a sequence if a new application needs to be added to the
system (i.e. install, update). The subsequent section 4.4.2 will focus on an optimization
of the system to keep it reliable. The last section 4.4.3 will outline a possible sequence
which can be used for diagnosing the running system by an external device.

4.4.1 Adding a New Task into the System

The figure 4.6 depicted activity diagram describes an adaptation workflow, where a new
application component (i.e. task) is added to the overall system. During this flow, there
are several processing steps required to actually deploy the new application into the
system. Supporting these steps, an application consists of a description and the ac-
tual binary. An application description represents certain information about the to be
integrated component like its execution (e.g. timing aspects) requirements. An appli-
cation’s binary represents the actual execution context of a component. The provided
information is processed by the presented components during several workflow stages.

Starting with the network communication component, the transferred information
about the component as well as their execution binary will be received. As a consecutive
step, the network communication component transfers the received data and binary to
the task loader component which reads the task description and stores the task binary
accordingly. The task loader component keeps a set of applications which need to be
managed. Each application which is allowed to be executed on the system will be stored
within this set. As a first step, the task loader reads the provided component description
and starts to constructs an application component considering the provided information.
During this construction phase, the task loader emits the controller component to check
if the application will fit into the system or not. This decision, if a application fits into
the system, is made by a admission process within the controller component. For the
admission process, the controller component requests the system information from the
tracing/logging component and will update its internal information about the system
respectively. Both the updated system information and the task are required for deciding
if a deployment of the task into the system is feasible or not. In case of a negative
admission result, the workflow terminates and the task construction is aborted. If the
new application can be successfully deployed into the system, the task loader gets positive
feedback from the controller and stores the allowed application in its set of applications.
Moreover, the synchronizer component will get informed about a required update. The
remaining workflow steps include the update of the ready queue as well as its deployment
by the controller and synchronizer component together. After receiving the new ready
queue, the synchronizer calculates an adequate point in time when a synchronization
with the kernel is possible. Finally, the synchronizer component deploys the new ready
queue to the kernel by calling the relevant enqueue/dequeue system calls.

69

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

Add Task

Network Communication

receive task
description

receive task
binary

Taskloader

read task
description

store task
binary

check task

set task allowed

Controller

request system
info

update internal
information

feasible

update ready
queue

send ready
queue

Tracing/Logging

collect information
from kernel

provide information

Synchronizer

register required
update

get new
ready queue

calculate sync
point in time

deploy

not feasible

Figure 4.6: Activity diagram for inserting a new task within the system

4.4.2 Optimizing current System State

The activity diagram which is shown in figure 4.7 describes an adaptation scenario where
a given system state will be optimized to e.g. avoid a potential hazardous system state.
In contrast to the described scenario of adding a task, an adaptation process is started
by an internal change within the system like finishing an application. Starting within
the tracing/logging component which is continuously monitoring the system, a change
in the execution behavior of the system will be observed. After that, the controller
component will request the new current system information which is provided by the
tracing/logging component. This topical information is used to update the internal
information within the controller component. According to a given optimization goal,
the controller component starts to optimize the current system state. The controller
therefore decides which tasks are allowed to be executed and which tasks are not. The

70

4.4 Description of Workflows for Self-Adaptive Software Architecture Changes

result of the optimization step is sent to the task loader component and the synchronizer
component. The task loader component updates its set of applications considering the
result of the optimization process. The remaining steps for getting the new ready queue
to the kernel are similar to the steps which were described in the former scenario. As
before, the resulting ready queue is handed over to the synchronization component.
Again, the synchronizer component will calculate an appropriate point in time where
the synchronization can take place.

Optimize Ready Queue

Taskloader

start/stop

tasks

Controller

request system info

update internal
information

optimize

update ready
queue

send ready
queue

Tracing/Logging

execution
changes detected

collect information
from kernel

provide information

Synchronizer

register required
update

get new
ready queue

calculate sync
point in time

deploy

Figure 4.7: Activity diagram for optimizing a ready queue

4.4.3 Monitoring current System State

The activity diagram shown in figure 4.8 depicts the scenario when tracing or logging
information about the current system state is delivered to an external system for e.g. di-

71

4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems

agnosis purposes. The workflow for the external request starts with the network commu-
nication component where a corresponding message will be received. The tracing/logging
component collects the demanded information again from dedicated system calls pro-
vided by the kernel. In contrast to an internal usage of the collected information by other
software components, an additional step is required which will prepare the information
for a later transmission over the network. Within this step, the information will be
serialized into a file-based format. After that, the network communication component
gets the file-based description of the system state and sends it back to the other system.

Diagnosing Current System State

Network Communication

receive ’get status’
command

send
information

Tracing/Logging

collect
information

provide
information

serialize
information

Figure 4.8: Activity diagram for diagnosing the current system state

This section has described three workflows for adapting the designed system architec-
ture. In detail, activity diagrams for adding a new task, optimizing a given system state
and sending system information for diagnostic purposes were provided. Within these
activity diagrams the run-time activities of each software component were outlined.

Conclusion

This chapter has provided a consolidate architecture approach to integrate a flexible task
management within a multi-core mixed-critical embedded system. The chapter therefore
has started with an overview about the complete architecture. Within this section,
relevant hardware resources, software components, and kernel objects as well as their
distinct roles were identified. The subsequent section has described the interconnection
of software components and kernel objects by providing the distinct interfaces and the
internal workings of each software component. Further, the allocation of the software
components to the underlying hardware platform were discussed. The focus hereby
was on the functional separation of applications from the remaining components and a
criticality aware allocation mechanism. After describing these aspects, the last section

72

4.4 Description of Workflows for Self-Adaptive Software Architecture Changes

has outlined the run-time behavior of the software components considering three different
adaptation scenarios. As a next step the so far described design will be refined with
concrete methods and algorithms to provide the postulated management mechanisms.

73

5 Flexible Task Management

This chapter will outline the concept of a flexible task management which is based on an
adaptation process of a given software system (cp. contributions 3 b,c). The several steps
within this adaptation process are subsumed to a consistent integration framework which
is able to integrate mixed-criticality applications into a software system during run-time.
A model, which will be described in section 5.1, represents the current running state of
cores and ready queues. This model will serve as a base for the distinct reasoning steps
within the integration framework. The current integration framework will be presented in
section 5.2. Afterwards, section 5.3 will describe which software component is responsible
for which processing step of the integration framework.

5.1 Basic Model for Reasoning about Current Running State

This section will describe a model which is used by the distinct integration framework
steps to reason about the current running state of the underlying kernel space. This
model is used during run-time and is stored on the same device. The design concept
hereby foresees that the majority of the algorithms are executed in user-space which
encapsulates the complexity from the kernel. With the usage of a multi-core system,
a regeneration of task sets can be done on one dedicated core during run-time. The
model, hereby, supports the representation of cores and ready queues within the user-
space which will be described in section 5.1.1. Moreover, each application which needs
to be integrated within the system consists of a description representing a combination
of the required mixed-criticality parameters as well as the required timing parameters.
The extended description will be outlined in section 5.1.2.

5.1.1 Ready-Queue and Core Representation within User Space

Due to the strict separation of admission and enforcement (i.e. integration framework
and kernel scheduling object) in user-space and kernel-space, a direct access from user-
space software components to the underlying ready queues is not allowed. Moreover,
providing a representation of the underlying ready queues makes this approach kernel
agnostic. Thus, the processing steps of the integration framework are done on a model-
based representation of the underlying kernel space. This representation models the
cores and the ready queues respectively where each core gets a ready queue assigned.
A first design and implementation of this concept was demonstrated in the work of
Nieleck [113].

A ready queue is represented by a rq buffer containing the tasks that will be executed
on the assigned core. For a fast access by the several integration steps, this object

75

5 Flexible Task Management

should be shared between the distinct software components. The size of a rq buffer
can be arbitrarily set via the configuration phase of the system. Due to the fact of an
embedded context, the maximum size of this buffer needs to be carefully chosen (e.g. 100
tasks). Beside the array storing the tasks, there are common methods required for the
adding and removing of tasks to a rq buffer.

Each core of the hardware platform is described by a pcore representation. A pcore
gets a rq buffer assigned. An important information that is related to a physical core
is its criticality classification. The concept prohibits that tasks with different criticality
classifications are executed on the same core. For an empty core, the classfication of
the first arriving tasks will be used to initialize the core classfication. For example, a
core is allowed to execute high-critical tasks if and only if the core itself is classified
as high-critical. In contrast, if a core is classified as a low-critical core it is allowed to
execute lo-critical tasks exclusively. Pcores stores these criticality information within a
dedicated variable. Mapping the distinct states of a physical core, a pcore also supports
the following states: active, standby, and off. A pcore is identified by an id which is
represented by a unique number. Each pcore Ci = (poli, idi, µi) defines the following
information:

• poli := FP,EDF defines the scheduling strategy which is used on this core

• idi defines the identification number of a core

• µi defines the criticality of each core

After describing the basic representation of the underlying kernel space, the next
section will cover the content of each rq buffer, namely tasks. The task description
which is used in a later reasoning within the integration framework will especially be
into focus.

5.1.2 Extended Task Model Considering Criticality and Schedulability

Each software application component is represented by a task that resides in one of the
user-space ready queues. This section will describe the extended task model considering
the criticality properties and the timing properties of a task. The given (static) properties
are used by the run-time integration framework during the dispatching and admission
phases. Additionally, the description contains dynamic information about a task that
is required for the later optimization steps where this information is used to decide if a
task is allowed to be scheduled.

An application software component KS is represented by a finite set of tasks KS :=
τ1, τ2, . . . , τn, where a task τi has the following static information:

• Li defines the criticality classification (either HI or LO)

• Ti defines the minimal arrival time (period) in case of a periodic task

• Di defines the absolute deadline

76

5.2 Run-Time Task Integration Framework

• Ci defines the computation time or Worst Case Execution Time (WCET)

• Pi defines the priority for priority based scheduler

• Si defines the scheduling strategy which is required by this task

• Ai defines the affinity for manually assigning a task to a core

The so far observed task attributes are mostly fixed during the execution of a task. If
an arriving task needs to be integrated into the system, an online admission/acceptance
test and a sufficient test can benefit from this information (will be described later).
In case of dynamic workloads where an optimization needs to be executed, some task
information needs to be gathered during run-time and isn’t known in advance. The
description of a task τi therefore will be extended by the following dynamic information
(cp. section 2.4.2):

• ai defines the arrival time

• si defines the start time

• fi defines the finishing time

• vi defines the importance

Considering the optimization, the controller software component decides which task
needs to be switched on/off to circumvent any overload situations. The controller hereby
utilizes the importance v of each task in comparison to the other tasks and the health
of the overall system.

To sum it up, this section has described the model for reasoning within the integration
framework. The hereby introduced representations include the ready queues, cores and
tasks. As a next step, the following section will describe the integration framework and
the usage of this model in more detail.

5.2 Run-Time Task Integration Framework

This section will provide the concept of an integration framework that is responsible
for the actual adaptation process. Within this integration framework, the concept of
an online admission for dynamic mixed-critical workloads on the same device during
run-time will be provided. Starting with a dispatching process that returns a capable
core for the given task, section 5.2.1 describes the mapping of a task to a core in more
detail. After that, an efficient admission process is used to test if the task fits into the
existing ready queue of the core. This will be described in section 5.2.2. For a long-term
optimization, a knowledge-based approach was developed within this work which will be
explained in section 5.2.3. Finally, the modified task set model needs to be deployed and
synchronized from user-space to the kernel-space which will be outlined in section 5.2.4.

77

5 Flexible Task Management

5.2.1 Critical-Aware Dispatching of Tasks to Cores

This section describes the dispatching of tasks to cores in more detail. During this
process, the attributes of a task are compared with the attributes of the cores (i.e. rep-
resented by a pcore). A successful matching happens if the task attributes and core
attributes are compatible. The dispatching concept was investigated in the work of Ni-
eleck [113]. This section will explain the basic mechanism and ideas behind the matching.

All of the task attributes which are used for the matching process are provided via the
static information within the task description. For example, a task must be allocated
to a core with equal criticality classification. Furthermore, the scheduling type of a task
needs to match the scheduling policy on the targeted core. So, a priority-based task
must be allocated to a core with priority-based scheduling. This process is executed for
the relevant attributes provided by both task and core. It can be extended for example
by the comparison of utilization (cp. bin packing) and other relevant attributes. If a
matching was not successful (no suitable core was found), the task will be rejected with
a corresponding message. Finding a core which is suitable for the task is based on the
following rules:

1. The criticality of a task is compared with the criticality classification of a core:
τL = Cµ

2. If the task specifies a distinct scheduling strategy, the following check is executed:
τS = Cpol with pol = EDF,FP

3. If the task specifies an affinity, the target core with a corresponding id will be used:
τA = Cid

With these rules, the concepts in section 4.3.2 for assigning a task to a core can be
expressed. However, dependent tasks are assumed to be executed on the same core. In
a further step, the selected core is checked for its utilization to clarify if the task in
question is able to be integrated onto this core. A capacity-based concept that utilizes
an arithmetic approach for checking if the new task fits is used. This is achieved by
calculating the utilization or the load of a core and comparing these parameters with
the corresponding task parameters. The utilization of a core CU is represented by the
sum of all task utilization within its ready queue CU =

∑
τi
τUi. The utilization of a task

can be provided by τUi = τCi
τTi

. If a new task with τUj needs to be assigned to this core,
the following rule will determine if the task should be rejected from execution where θ
represents a threshold between 0 < θ < 1:

CU + τUj > θ ⇒ reject task

The calculation of the utilization heuristic is based on static information (i.e. τCi, τT i).
This information may not be available in every scenario (i.e. low-critical tasks). An
alternative calculation, thus, is based on the actual load of the core which is measured
during run-time (i.e. dynamic information). The load can be seen as the amount of time
not in the idle task. In this case, the core with the lowest load is taken. If the task

78

5.2 Run-Time Task Integration Framework

could be assigned to two or more cores, the core with the smallest id will be chosen.
The flowchart which is depicted in figure 5.1 describes the overall process in case of a
low-critical task [113]:

• An arriving task’s attributes are checked against the above mentioned rules

• In case of an available core, the utilization heuristic is used to guarantee that the
remaining capacities of this core are sufficient. In a negative case, another potential
core will be selected. If there is no other core available, the task will be rejected.

• If more than one core is available and meets the requirements, the core with the
lowest load will be selected.

• If more cores with the same load are available, the core with the smallest id will
be selected.

If the task defines an affinity A, these checks will be circumvented and the task is
assigned to a core with the corresponding id.

The processing steps for dispatching a high-critical task to the system are similar to
the outlined flow of integrating a low-critical task. However, due to the fact that a high-
critical task requires a highly precise analysis, there is a higher demand of testing. In
case of allocating a high-critical task, a complete scheduling analysis could be performed
every time a new high-critical task arrives at the system. This approach, however, is
inefficient in the context of an embedded system. Another testing approach is therefore
selected which can be found in section 5.2.2. Moreover, it will be assumed that a high-
critical task need be executed under all conditions. Thus, low-critical tasks can be
prevented to allow the execution of a high-critical task. The corresponding steps for
realizing such a dispatching behavior are as follows [113]:

• An arriving task’s attributes are checked against the above mentioned rules

• If no core is available that meets the requirements, it is checked to determine if
there are any unused cores

• If one core is available that meets the requirements, a scheduling analysis has to
be performed on that core. If the scheduling analysis is negative, i.e. the task can
not be scheduled, the system is checked for unused cores

• If more than one core is available that meets the requirements, the utilization
heuristic function is used to determine in which order the cores should undergo a
scheduling analysis. The first core that is analyzed positive is allocated the task.
For the case that no core turns out to be positive, two possible approaches could
be used to try to allocate the task to a core of the system:

– Immediately try to optimize the scheduling in a way that the task can be
scheduled.

79

5 Flexible Task Management

task arrives

LO-
task?

Hi-task allocation
/ task rejection

core w/
sched

strategy

inactive
cores

available

available
cores >1

check for core w/
lowest utilization

lowest
util on
>1 cores

choose core with
smallest ID

allocate task to core

no

Figure 5.1: Flowchart describing the allocation of newly arriving LO-tasks to a respective
core [113]

80

5.2 Run-Time Task Integration Framework

– Like with the other cases, first check if there is any unused core that can be
used. If this is not the case, then optimization could be tried.

The dispatching of a high-critical task is more difficult than the dispatching of a low-
critical task. Beside finding an empty core, another solution could be the usage of a
propagated low-criticality core. In this case, the low-criticality tasks will be skipped and
the core with its corresponding scheduling strategy could be initialized as high-critical.
Although this solution is feasible with the provided concept, it disregards the importance
of low-critical tasks for the overall system behavior.

In conclusion, this section has described the first part of the integration process in
form of a run-time dispatching mechanism. The allocation results in a potential core
on which a given task could be allocated. As a next step the concepts for testing the
integration of a task into a ready queue of this core will be described.

5.2.2 Short-Term Online Admission Test

The designed admission test is departed in two categories according to the criticality of
a task. This section will describe the first category, where a short-term online admission
test is used to check if a high-critical task can be integrated in a given ready queue. This
approach can be seen as a reactive adaptation. The second testing category, optimizing,
will be described in the next section 5.2.3 where this approach can be seen as a proactive
adaptation. Due to the context of an embedded system, the used algorithms in both
cases need to be resource efficient. As stated before in section 5.2.1, a high-critical
task requires an exact analysis in any case. In the best case, a complete schedulability
analysis could be used. However, in the context of an embedded system this approach
is not practical. For this reason, this section will describe two other concepts. Starting
with an online admission approach which utilizes an off-line calculated configuration
table, the remaining part of this section will describe an online admission approach
which generates such a new configuration during run-time.

Design-Time Configuration and Online Admission

The first approach is using an offline calculated configuration of all possible task combi-
nations which is stored within the system and serving as a knowledge database in case
of an admission. Each configuration hereby consists of a fixed set of tasks. Each task
gets its priority assigned during the configuration phase. This concept was investigated
via a simulation-based approach by the work of Multani [108]. The generation of such
configurations is based on a synthesis process which is depicted in figure 5.2 as a flow
chart diagram.

The iterative synthesis process for the dynamic reconfiguration DR-Offline itself con-
sists of three sub-processes. One process is responsible for the generation of all possible
task set configurations. Within this step, τL and τP will be set. In a second stage,
a partitioning process obtains the required dispatch table for different cores using a
bin-packing heuristic BP-FF. In case of a valid partition (i.e. status feasible), a final
task-priority validation process obtains the best possible priorities for the partitioned

81

5 Flexible Task Management

Start DR-Offline

Generate
all Possible
Task Sets

Call Heuristic
BP-FF for

next Task Set

If Status
==

INFEAS

Call Algo DR-
RTA to obtain

the priorities for
each Task Set

End DR-Offline (Fail)

If Status
==

INFEAS

avail(UC)
==

TRUE

End DR-Offline (SUCCESS)

DR-Offline
Config

yes

yes

no

proceed

no

no yesyes

Figure 5.2: Overall Synthesis Process [108]

task-sets. Partitioned task-sets are validated by using a response time analysis DR-RTA
for each task-set which is allocated to a core. As a result the synthesis process produces
highly feasible solutions in form of dispatch tables.

During run-time, adding a new task triggers the admission control which refers to
the stored configuration DR-Offline Config for selecting the corresponding task set.
After that, the ready queue of the matched target core is exchanged with the found
configuration. According to the result of the admission process, a positive or negative
feedback will be given. The implemented model and simulation framework for testing
this concept were using a priority based scheduling strategy [108]. This approach however
is independent from the used scheduling strategy.

82

5.2 Run-Time Task Integration Framework

Table 5.1: Comparison of schedulability analyses for FP [53]

RTA HET Sufficient Test

runtime + - ++

power exact exact sufficient

pessimism ++ ++ -

Table 5.2: Comparison of schedulability analyses for EDF [53]

QPA Algorithm MCF Approach BHR

runtime + ++ -

power exact sufficient exact

pessimism ++ - ++

The described approach has the limitation that all tasks sets need to be known in
advance. The admission approach, however, need to be able to dynamically add or
remove tasks from the ready queues (i.e. supporting an dynamic adaptation). To achieve
this, a new approach which provides the calculation of new task sets during run-time
will be presented.

Run-Time Configuration and Online Admission

This section will outline a new concept, where ready queues can be configured during
run-time (i.e. no offline configuration) on the embedded device itself.

To handle high-critical tasks, the schedulability analysis is replaced by an acceptance
test. In accordance to this, the acceptance test consists of a sufficient and an exact
test [53]. This acceptance test is capable of taking decisions about newly arriving tasks
in an efficient way where the static task information will be used. For example, the
used algorithms within this work are using the Deadline τDi, computation time τCi,
priority τPi and the period τT i of a task. The proposed acceptance test can consist of
an arbitrary combination of a sufficient test and an exact test. This depends on the
underlying scheduling strategies. The outlined concept lies the focus on the usage of
priority based scheduling strategies. In the work of Edinger [53], thus several algorithms
were identified and validated for a usage in an embedded context. Depending of the
schedulability strategy, table 5.1 and table 5.2 summarize the results for a fixed-priority
scheduling strategy and an Earliest Deadline First strategy respectively. On the one
hand, for a fixed priority preemptive scheduling approach the combination of response-
time analysis (RTA) and sufficient test is a good choice. For a core manged by an EDF
policy, QPA is a good choice although other algorithms may provide a better run-time
complexity.

Integrating the acceptance test in the environment of available system software com-
ponents leads to the overall process given in figure 5.3. According to the roles of each
component (see chapter 4), the task is processed accordingly up to the controller compo-
nent. After choosing a suitable core via the outlined dispatching mechanism, the task is

83

5 Flexible Task Management

checked if it fits into the core’s ready queue. This check is done by the available sufficient
and exact tests dependent on the required efficiency. If the new task passes one of the
tests, it is added to the task-set. Then, in this way, the reconfigured ready queue is
exchanged with the current ready queue.

Environment System

start

Client
Network

Communication
Taskloader

ControllerTracing/Logging

Sufficient Test

SchedulableTask accepted

Exact TestSchedulable

Execution

Figure 5.3: Sufficient and Exact Test in the context of other software components [53]

This section has provided two concepts of a short-term admission process for deciding
if an arriving task can be integrated within a selected ready queue during run-time.
The first concept, hereby, integrates the new task by selecting an offline generated ready
queue configuration. The second concept, however, generates this ready queue with the
assistance of an acceptance test completely during run-time. Both concepts are able
to analyze hard real-time tasks as well as soft real-time tasks. In case of soft real-time
tasks, a further admission process, that is able to optimize a given ready queue during
run-time, will be presented in the next section.

5.2.3 Long-term Knowledge-based Optimizer

This section will introduce a new concept for the admission of soft real-time tasks during
run-time. The goal is to optimize certain ready queues with soft real-time tasks to follow
a specified optimization goal. This concept can also be used to continuously integrate
a soft-real time task without a previous admission test. In any case, the optimization
decision is based on an importance value that is derived from the observed behavior of

84

5.2 Run-Time Task Integration Framework

each task over time. According to the specified conditions of an optimization goal, the
importance value of a task is compared with these conditions. Depending on a positive
or negative result, the task is allowed to be executed or not.

If an optimization of a given ready queue is required (i.e. overload situation), a po-
tential optimization decision is bound to a distinct optimization goal. Depending on
the desired system behavior after the optimization, it is required that a corresponding
optimization goal can be selected. Thus, the proposed concept supports the selection
of several optimization goals. These optimization goals are selected according to the
criticality aspects and real-time aspects of a given ready queue and its containing tasks.
Considering these optimization goals, the optimization approach was tested with certain
goals [113], [112], [108]. The focus hereby relies on the fairness, (hardware) utilization
and energy consumption whereby each optimization was required to produce a safe state
of the system.

Corresponding to a optimization goal, each task holds an importance value τvi which
indicates the behavior of this task under the given goal over time. Beside the (static/dy-
namic) priority related attributes of a task, this additional attribute is used to classify
if a task’s behavior correlates with the optimization goal. Hereby, the importance value
is the result of a function that calculates the utility of a task depending of the selected
goal. This concept aspect was partially investigated in the work of Helminger [70] to
decide if a chosen modification of task periods leads to a better schedulability result
or not. In contrast, this thesis proposes a concept which generalizes this approach as
a solution in user-space rather than a scheduling extension. A decision function which
is defined by a distinct optimization goal gets the importance value (i.e. defined by a
target function) and checks if this value corresponds with the target requirements of the
optimization goal. In either a positive or negative case, the task is allowed or declined
to be scheduled.

The basic optimization approach is based around a competing task model [112].
A competing task causes other tasks to violate their timing conditions (e.g. deadline
misses). As a countermeasure, the optimizer denies all competing tasks to be scheduled.
The optimization process is designed around the following steps:

1. Detect situation where optimization is required (i.e. overload situation)

2. Identification of competing tasks

3. Update scheduling permissions

Situation Detection As a first step the situation in which an optimization is required
needs to be detected. In case of a deadline-based scheduling this situation can be recog-
nized by a rising number of deadline misses of the distinct tasks.

Competing Tasks Identification As a second step, the competing tasks need to be
identified. Considering that the tasks are scheduled via the EDF scheduling algorithm,
a task with a deadline most shortly before the deadline of the considered task (i.e. missing
its deadline) can be seen as its competitor.

85

5 Flexible Task Management

Scheduling Permissions Update To avoid future executions of a task having a dead-
line miss due to one of the competing tasks, the optimizer has to reduce the set of tasks
which are scheduled by the scheduling algorithm. Due to the reduced set, the remaining
tasks may finish their executions before reaching their deadlines.

Using this concept, two approaches for optimizing ready queues according to a fairness
goal and an utilization goal were developed in the work of Niedermeier [112]. In case
of a fairness optimization, the importance value of a task represents the ratio between
the number of missed deadlines in comparison to the number of successfully runs of
this task. In case of a deadline miss, the importance value is increased. On the other
hand, the importance value is decreased if a task run was successful. As a result, a
task with many deadline misses gets a high importance value. The optimizer compares
the importance values of all tasks within a ready queue and allows the task with the
highest importance values to be scheduled. Thus the selected tasks are able to reduce
their number of deadline misses. The fairness hereby is that deadline misses are equally
distributed over the task set. Considering the optimization according to the utilization
goal, the utilization of a task is assigned to its importance value. Since the utilization
value indicates how much processing time the task might require for its execution and
the goal is to schedule as many tasks as possible that require a lot of processing time,
the optimizer selects the tasks with a high importance value.

This section has described a long-term admission process which can be used to opti-
mize a given ready queue during run-time. The next section will outline a concept for
synchronizing the newly generated ready queues from user space to kernel space.

5.2.4 Synchronizing User Space with Kernel Space

This section covers the synchronization mechanisms in more detail. The basic idea is to
execute the synchronization exclusively within the operating system. It is important to
clarify when the synchronization does happen. In other words, to identify several desig-
nated system states where a switch to a new system state does not cause any hazards.
For the synchronization itself, there are a common set of synchronization primitives
which need to be investigated. Similar to the monitoring component, the synchronizer is
heavily dependent from the used system design. Only common synchronization aspects
are described in this section where implementation related aspects are covered in the
next chapter.

Considering the proposed design, within the user-space a set of new ready-queues are
generated which are consumed by the underlying kernel-space. In this case, a new system
configuration is deployed into kernel-space. But, arbitrary switching is not allowed due
to safety restrictions which implies a robust and reliable system despite of adaptation.
Additionally, it can’t be assumed that the system is in a designated state (e.g. idle)
at the time of switching request. Therefore, some kind of synchronization between the
user-space and the kernel-space needs to be established.

Possible synchronization primitives for the usage in embedded systems, as part of
a user-space realization, were analyzed in the work of Haecker [66]. The primitives

86

5.2 Run-Time Task Integration Framework

can be categorized in lock-based and lock-free mechanisms. In conclusion, table 5.3
summarizes the compared synchronization primitives and shows that a sequential-lock
based mechanism provides a potential solution.

Name Deadlocks Read-Speed Write-Speed Security Overhead

Semaphore/Mutex 1 1 1 5 1

Read-/Write-Lock 3 3 1 5 3

Sequential-Lock 5 4 5 5 3

Read-Copy-Update 5 5 5 3 3

Table 5.3: Comparison of lock-based and lock-free mechanism [66]

An actual realization and deeper investigation of the found synchronization mechanism
was done in the work of Chandrasekhara [33]. The evaluation result can be found in
figure 5.4 which confirms that a lock-based mechanism provides a better solution for
an embedded system in comparison to a lock-free mechanism like Read-Copy-Update
(RCU).

Criteria Mutex RCU STM

Implementation + – ++

Read-speed – ++ +

Write-speed – + +

Deadlocks – ++ +

Overhead + + –

Security/Consistency ++ - +

Table 5.4: Comparison between Mutex, RCU and STM [33]

Regardless of the used synchronization primitive, another important aspect is the
point in time when a synchronization needs to take place. In other words, when the
created task-set is deployed into the underlying kernel. This point depends on several
conditions: the used scheduling and the state of distinct ready queues. In this scenario
the focus lies on static priority preemptive approaches as well as dynamic approaches.
Three conceptual approaches for possible concepts were investigated in the work of
Chandrasekhara [33]:

• Empty ready-queue: If the run queue is empty, exchanging the list is easy since
no threads exist in the ready queue. In this case, it is assumed that the exchange
of the entire ready queue list with a new list can be done. A CPU lock is used to
disable the thread preemption and the new ready queue will be deployed.

• Static point-in-time: Regarding a static point-in-time switching policy within a
filled queue, a selected thread (e.g. idle) can be used to determine the end of
an execution cycle. The switch takes place after the end of the execution cycle.
A controller component decides which thread should be allowed to complete its
execution before exchanging the ready queue.

87

5 Flexible Task Management

• Variable point-in-time: The synchronization approach can be realized by using a
lock mechanism that supports a variable point-in-time for switching (i.e. dynamic
synchronization point). Potential mechanisms are Read-Copy-Update (RCU) or
Software-Transactional-Memory (STM). But, these mechanisms come with a cost
of implementation complexity and thus overhead.

To sum it up, this section has outlined a synchronization concept that is required
for the exchange of task sets from user-space to the underlying kernel-space. For that
reason, several algorithms are evaluated and suitable candidates were identified. Further,
several ready queue states were investigated for the concept.

5.3 Combine the Framework Concept with the Designed
Architecture

Within this section, the presented run-time integration framework concept will be com-
bined with the designed consolidated architecture from chapter 4. The focus hereby
will rely on the software components tracing/logging, controller and synchronizer which
are mainly realizing the already presented concepts. For an overview, figure 5.4 depicts
these software components as well as their data flows. Starting with section 5.3.2, this
section will briefly outline the usage of co-existent scheduling strategies. After that, sec-
tion 5.3.2 will provide details about the tracing/logging software component including a
monitoring process for a microkernel-based operating system. Section 5.3.3 will give an
overview about the controller component. This section will close with details about the
synchronizer component (see section 5.3.4).

Figure 5.4: Abstract system overview with tracing/logging, controller, and synchroniza-
tion [113]

88

5.3 Combine the Framework Concept with the Designed Architecture

5.3.1 Co-Existent Scheduling Strategies

Partitioned scheduling scheme was selected because of a better predictability and smaller
overhead by using a partitioned scheduling approach. Each scheduler can be treated
as one single core scheduler within a multi-core based setting. For that reason, Mul-
tani investigates several scheduling scheme alternatives to find a feasible combination
of admission and enforcement [108]. As a result, the concept of co-existent scheduling
strategies will be realized through the usage of an (dynamic) earliest-deadline first and
a (static) fixed-priority preemptive scheduling strategy within the kernel.

5.3.2 Tracing/Logging Software Component

The tracing/logging software component is supporting the decision process within the
integration framework by delivering information about the current system state to the
software components controller and synchronizer. Obviously, the mechanism to get
relevant information about the current scheduling state (i.e. ready queues) out of the
underlying system highly depends on the provided kernel interface. Thus, details for a
concrete implementation of such a mechanism will be described in the following chapter 6.
This section will provide a conceptual overview about the monitoring mechanism within
the tracing/logging software component.

Due to the fact that the decision process within the integration framework is exe-
cuted online during run-time, it is required that the monitoring mechanism also pro-
vides its information during run-time. Moreover, the monitoring mechanism needs to be
able to deliver its information in a real-time setting because the proposed management
approach is targeting this kind of systems. With these requirements, several tracing
mechanisms were investigated and their suitability was tested for the outlined monitor-
ing approach [119] within the designed architecture. As a result, an existing tracing
framework could be used as a starting point for the monitoring mechanism. The tracing
framework, however, has provided the basic mechanism which were extended by the
required interfaces and information to build a sound monitoring solution.

The outlined task model in section 5.1.2 (i.e. application description) contains the
static and dynamic parameters of a task and its corresponding thread. The monitoring
method delivers the dynamic information to populate dynamic parameters of the task
model. The dynamic information hereby summarizes the efforts of several works [92,
64, 113] to find a consistent representation of required monitoring information for the
outlined adaptation workflows. The monitoring process is working on a representation
of exactly this task model that is implemented as a stand-alone monitoring object (see
chapter 6). Thus, a consistent management of information during the integration process
could be achieved.

This section has outlined the conceptual contents of the tracing/logging software com-
ponent. A real-time monitoring mechanism that is executed during run-time is the cen-
tral part of the concept. An existing tracing mechanism which supports the run-time and
real-time requirements was extended to a sound monitoring solution for the proposed
integration framework. The next section will outline another software component where

89

5 Flexible Task Management

a great majority of the decision process will take place, namely the controller software
component.

5.3.3 Controller Software Component

The controller software component is realizing the following processing steps of the run-
time integration framework:

• critical aware dispatching of tasks to cores

• short-term online admission testing if a task fits into the system

• long-term knowledge-based optimizing of existing ready queues

This section will introduce the concrete analysis strategies and mechanism that are
selected for the realization of the outlined concept within the controller component.
A concrete implementation of the component, however, will be shown in the following
chapter 6.

An abstract overview of the controller process (according to Nieleck [113]) with its
parts can be seen in figure 5.5 where the “input to the controller is a set of tasks that
are executed on the system and the monitored system state” [113]. The controller is
able to modify the blue circled aspects of the system, namely allocation, tasks, cores and
scheduling strategies. These modifications are constrained by one or more attributes (red
box) e.g. overload. As a result, the controller constructs several task sets (run queues)
which are bound to distinct cores. The tasks within the task set are executed on the
corresponding core. The individual parts of the controller are explained in the following.

Figure 5.5: Abstract overview of the optimization process of the controller software compo-
nent [113]

90

5.3 Combine the Framework Concept with the Designed Architecture

For a critical aware dispatching of tasks to cores, the controller stores an abstract
representation of the cores and their corresponding ready queues (cp. concept in sec-
tion 5.1.1). The dispatching algorithm itself is designed according to the concept that is
presented in section 5.2.1. An efficient matching process serves a central part of the de-
signed dispatching algorithm. This matching process basically compares the attributes
of a task description with the attributes of the existing cores. A feasibility test of this
matching process is given in the work of Nieleck [113] via a simulation-based testing
approach.

Considering the concept of a short-term online admission test during run-time that is
provided in section 5.2.2, a concrete combination of an exact test and a sufficient test
is required. As a potential combination for a fixed-priority scheduling, Edinger [53] has
proposed the combination of a response time analysis and Bini’s sufficient test. The
algorithms are using the user-space representation of the ready queues like proposed in
the concept (see section 5.1.1). For the implementation of the algorithm (see chapter 6),
it is required that the ready queues are sorted. An incoming task will be checked if it
fits into the system or not according to the admission concept in section 5.2.2. Similar
to the critical aware dispatching of a task, these algorithms need to be efficient. The
concept was finally tested in the work of Edinger [53] and it could be demonstrated that
this combination shows it is capable as an online test during run-time.

For the concept of a long-term optimization of existing ready queues, an concrete
optimizing process for the earliest deadline first is realized within the controller software
component. Following the concept in section 5.2.3 an algorithm which is able to avoid
overload situations was integrated. As outlined in the concept, a fairness and utilization
optimization can be selected as target function. Additionally, this optimization goal can
be changed during run-time via a dedicated control interface. The optimizer process,
hereby, is realized for the optimization of low-critical cores. An application of high-
critical task sets is feasible but were not investigated so far. For realizing the concept of
concurrent tasks, the controller additionally stores a list with information of concurrent
tasks, deadline misses and execution states. With this information the optimizer is able
to use the history of a task for its decision. In her work, Niedermeier [112] shows a
polynomial timing behavior via a static analysis of the algorithm. However, a later run-
time evaluation could demonstrate that the optimizing algorithm works like expected.

This section has provided the concrete combination of the provided concepts for dis-
patching and admission with the controller software component. All concepts could be
successfully integrated and tested as part of the controller component. The next section
will provide more details about the synchronizer software component.

5.3.4 Synchronizer Software Component

This section will describe the synchronizer software component which realizes the concept
in section 5.2.4 for synchronizing the user-space and the kernel-space.

The synchronizer component is completely realized in the user-space with no direct ac-
cess to the kernel ready queue objects. The synchronizer uses the same user-space ready
queue representation like the tracing/logging and the controller software component (see

91

5 Flexible Task Management

concept 5.1.1). Thus, there is no separate kernel object required which corresponds to
the idea of a small trusted computing base. An existing scheduler kernel object, how-
ever, needs to be extended by a deployment system call interface. A first realization and
test of a user-space synchronizer software component was done in the work of Chan-
drasekhara [33]. The synchronization was realized by a per-cpu variable for locking the
CPU and disabling the interrupts to update the existent ready queue. Corresponding to
the process of finding an adequate point in time for synchronizing user-space and kernel-
space, a smart-sync labeled method was realized. This method provides a consistent
synchronization check that consists of testing if a ready queue is empty or a scheduler is
idle (i.e. static point in time for synchronization). The synchronizer component is able
to interchange single threads or complete ready queues.

This final section has described the synchronization software component and the com-
bination with the former outlined concept of synchronizing the user-space and kernel-
space.

Conclusion

This section has provided the conceptual foundations about the flexible task management
which supports the self-adaptation of a system from user-space. Therefore, a user-space
model for representing the system state as well as a single application was introduced.
After that, the concept of a run-time integration framework was outlined which divides
the integration process into distinct steps. The focus hereby has relied on the dispatching,
admission and synchronization of tasks. The chapter has closed with transferring the
developed concepts to the designed software components. A possible implementation
will be shown in the next chapter 6.

92

6 Extension of a Microkernel-Based
Operating System

In this chapter, relevant implementation steps for realizing the architecture as well as the
outlined concept will be provided. This chapter thus corresponds to the implementation
contributions (contribution category number 4). Starting with basic concepts of the used
microkernel-based operating system, section 6.1 outlines by Fiasco.OC and Genode pro-
vided concepts. The focus in the consecutive section 6.2 relies on the required extensions
within the micro-kernel for supporting the proposed concept. Followed by section 6.3,
the concrete implementation of relevant operating system components for the flexible
task management will be outlined. This chapter will close with current limitations of
the implemented extensions (see section 6.4).

6.1 Genode and Fiasco.OC Basic Concepts

The basic concepts of the L4 Fiasco.OC microkernel (in the following abbreviated as
Fiasco.OC) and the Genode OS Framework (in the following abbreviated as Genode)
will be covered in this section. At a first step, the overall picture of the interplay between
Fiasco.OC and Genode will be outlined. Moreover the distinct roles and features of each
software part will be explained. A deeper investigation of relevant information about
Fiasco.OC addresses the basic architecture, scheduling context, capabilities concept and
system call interface. Genode complements these mechanisms by a consistent software
stack where the basic architecture and the main concept of client/server infrastructure
are subject of the section which will follow afterwards.

Figure 6.1: Overall Overview about Fiasco.OC and Genode

93

6 Extension of a Microkernel-Based Operating System

The simplified architecture depicted in figure 6.1 shows the overall relation between
Fiasco.OC and Genode. The microkernel, Fiasco.OC, thereby is executed in privileged
mode and provides a mostly policy free (i.e. except scheduling) abstraction to the un-
derlying hardware. Relevant aspects for possible extensions in the context of this work
are the system call interface, the scheduling and the capability system. Concrete policies
for realizing the distinct services of an operating system (e.g. device drivers, protocol
stacks etc.) are left to Genode which is executed in user-space. It follows a recursive
system architecture based on a tree-like parent/child concept. The root of this tree
is core which has access to the raw physical resources such as memory, CPUs etc. In
combination with init (started by core), core provides the basic policies for higher-level
components (e.g. GUI session and Applications). Init instantiates subsequent child-node
components. Deeper insights of Fiasco.OC and Genode considering the provided aspects
will be presented in subsection 6.1.1 and 6.1.2.

6.1.1 L4 Fiasco.OC Microkernel

This section describes the L4 Fiasco.OC microkernel in more detail. As a basic idea, Fi-
asco.OC strictly follows the definition of a microkernel in the sense of separating policies
from mechanisms. Mechanisms are therefore provided by the microkernel where applica-
ble (i.e. exception is scheduling) and are complemented by a concrete policy within the
user-space. Thus, Fiasco.OC realizes basis functionality like processing (i.e. scheduling),
resource management, and communication. Fiasco.OC therefore provides several kernel
objects which realize the main functionalities of the kernel (i.e. communication, memory
management and processing). The following provides an overview of all kernel objects
with a short explanation of their distinct role.

• IPC Gate: Used for communication.

• Task: Provides the memory for the threads and encapsulate the threads in a
protection domain.

• Thread: As a central element a thread represents the driver class for most kernel
functionality.

• IRQs: Handler for interrupts raised by the underlying hardware. Hardware inter-
rupts. This class encapsulates handware IRQs. Also, it provides a registry that
ensures that only one receiver can sign up to receive interrupt IPC messages.

• Scheduler: Provides access to all processing related information and actions
(i.e. ready queues)

• Factory: Special kernel object which is used to create all other kernel objects via
a defined interface. An exception hereby is the scheduler object which cannot be
created over this interface.

94

6.1 Genode and Fiasco.OC Basic Concepts

The processing management of Fiasco.OC is based on tasks, threads and a scheduling
context. In this context, tasks are defined as protection domains which realize a vir-
tual address space (i.e. separation of tasks). Within each task one or more threads are
executed. Each thread owns a kernel-level thread control block (ktcb) consisting of reg-
isters, instruction pointer and stack pointer as well as an user-level thread control block
(utcb). The utcb is meant as communication buffer for inter-process communication
between user-space and kernel-space. Figure 6.2 depicts the basic relationships between
a scheduling context, a thread and a task in a simplified form. Each task references
a thread which in turn is derived from the context class which stores a reference on
a scheduling context instance. Different scheduling parameters which are encapsulated
with a scheduling context (e.g. start time) are assigned to each thread. Fiasco.OC uses
these information to determine the execution order. The scheduler is working on ready
queues which are also encapsulated in a scheduling context. Each instance of a ready
queue is realized in a distinct class and may be used in a coexistent way. The standard
scheduling strategy is a round robin algorithm which gets its thread information from
the corresponding scheduling context (e.g. priority).

Figure 6.2: A ready-queue with threads containing their scheduling parameter is assigned to
each core. A scheduler populates this ready queue. [68]

A key concept of Fiasco.OC is the usage of capabilities for the communication between
kernel objects and user-space components. The basic idea is to circumvent security flaws
due to the avoidance of global object identification. In contrast, each task gets a list
of capabilities which is used to identify other objects with a local identifier. Tasks are
able to communicate with other tasks if they have the corresponding capability. For the
communication with another object, the task binds the communication on a capability.
Moreover, each capability-based access is routed through the kernel which checks the
permission in a first step. If a task is permitted (client), the kernel grants the access to
the communication capability of the receiver task (service provider) by simultaneously
resolving the receiver capability of the receiver task.

95

6 Extension of a Microkernel-Based Operating System

Another key aspect of micro-kernels and Fiasco.OC in special, is the Inter Process
Communication (IPC) as a central part of the communication between kernel objects
and between user-space components. The synchronous IPC mechanism (i.e. used by
Fiasco.OC) is similar to function calls where the receiver signals the possibility to receive
data. If a sender needs to send data to the receiver, the former is blocked by the kernel
and the receiver is able to read the data directly form the storage of the sender. But
also for the communication between kernel space and user-space, the ipc mechanism is
used in form of system calls. Due to the fact that the IPC-calls are implemented deeply
within Fiasco.OC (i.e. assembly), it can be guaranteed that every communication is
routed through the kernel and thus allows the observation of the communication and
potential access violations (i.e. capabilities).

For the communication during an IPC call, the information is stored in distinct reg-
isters and buffers. Buffer registers are used to transfer the information indirectly to
the receiver via shared memory. A direct copy is sent to the receiver by using distinct
message registers (i.e. within utcb).

Services which are provided by the kernel are exclusively callable by IPC requests.
The IPC framework however doesn’t define a distinct protocol, thus for each service a
protocol need to be implemented. As an example, the scheduling protocol describes the
direct communication process between user-space components and kernel scheduler ob-
jects. Basically, the scheduler interface can be used if the required capabilities are given.
Table 6.1 describes the individual scheduling operations provided by the communication
interface in more detail.

L4 PROTO SCHEDULER

Operation Description

L4 SCHEDULER INFO OP Get general information about the scheduler (i.e. number of cores)

L4 SCHEDULER RUN THREAD OP Thread executed

L4 SCHEDULER IDLE TIME OP Get information about computation time

Table 6.1: Scheduler Operation

This section has described the already available mechanism in Fiasco.OC for process-
ing, memory management and communication. In a next step, section 6.1.2 will cover
the available mechanism in Genode.

6.1.2 Genode Operating System Framework

This section will covers the Genode Operating System Framework in more detail. Espe-
cially the unique concepts considering the architecture, communication and right man-
agement will be described. A basic design decision of Genode is to explicitly declare the
resource usage where in contrast to monolithic operating systems, Genode does not try
to abstract from physical resources and does not provide an application with the impres-
sion that it has access to (almost) unlimited resources [56]. Genode is a kernel-agnostic
solution where micro-kernel system calls are abstracted in a way that it resembles the
general separation model from policy and method as closely as possible. Stemming
from the kernel capability management, Genode’s architecture always follows a tree-like

96

6.1 Genode and Fiasco.OC Basic Concepts

pattern where the right management is applicable in a recursive way from the root to
the leafs. The overall communication is handled by remote procedure calls which con-
crete the more abstract inter process communication framework found in the Fiasco.OC
micro-kernel. At first, more insights about Genode’s capability system as well as its com-
ponent architecture is given. The section closes with the communication infrastructure
of Genode.

Similar to Fiasco.OC, Genode binds capabilities to resources. Resources (e.g. cpu
session) are represented by RPC (Remote Procedure Call) objects which can be called if
the proper rights are given. RPC objects provide a clearly defined interface through
a component (i.e. process) may leave its own sandbox (i.e. protection domain) and
interact with the remote object. In comparison with the basic kernel IPC framework,
accessing a RPC object with a capability results in a access test within the kernel
where the already introduced capability list is used to check if the access is allowed.
Genode translates kernel capabilities in an abstract representation under the usage of
kernel-specific implementations (i.e. each kernel gets its own capability implementation
in user-space). Moreover, capabilities can be transferred (similar to Fiasco.OC) whereby
a resource can be accessed by a process which holds the right capability or by directly
requesting the resource capability. Requesting capabilities is not limited to resources held
by other components. Similarly, if a component needs to start an additional thread, it
uses its CPU session capability to ask its dedicated CPU session object at Genode’s core
component to create and set-up a thread for the client component.

Genode’s resource management is based on a parent-child relationship between the
components. A parent is responsible to provide the necessary resources during the
creation process of its children where it donates a part of its own resource budget.
Regardless of how many (sub-) children a parent creates, the total amount of resources
for the whole branch is limited by the parents initial budget (initial configured during
run time).

The communication within Genode is based on a server-client paradigm with remote
procedure calls. When a component needs to perform an operation, which is not inter-
nally provided by it, it needs to ask a another server component to provide it with this
service. A component however could be both a server (i.e. service provider) and a client
(i.e. service consumer). Server provided services are announced to their parent during
the creation of the component by passing the service name and a special root capability
to the parent.

Communication between Components

The basic inter-process communication mechanism is the synchronous remote procedure
call. The RPC interface is designed similar to the ipc realized by Fiasco.OC where it
closely resembles the semantics of a function call, where the control and thus the data is
transferred from the caller to the called component. Genodes RPC mechanism is built
on top of the kernel’s IPC mechanism which explains the similarity to Fiasco.OC.

For the RPC communication there are three main parties involved, namely server,
client and the kernel. The situation is the same as in similar user-space implementa-

97

6 Extension of a Microkernel-Based Operating System

tions like L4Re where neither the client nor the server are aware of the identity of the
corresponding communication partner. The access control (i.e. identity check) comes in
form of capabilities which are validated within the kernel. The integrity of this capa-
bility based approach is guaranteed by the exclusive management of kernel objects and
corresponding protection domains each associated with a capability inside the kernel.
Furthermore, Genode introduces a strategy where a parent is in charge to decide if a
child component is going to receive certain capabilities [64].

If a component needs to communicate with other components in the Genode sys-
tem, the component establishes a connection to other components to use their services.
All components are also responsible for routing service requests to their corresponding
services. After the component has established the connection it is able to directly com-
municate with the server (i.e. via a capability). There exists several session types within
the Genode system, but the CPU session associates the component with a kernel process
to be scheduled by the scheduler. Preceding child creation, the parent is required to cre-
ate a CPU connection for the child, specifying session name and its scheduling priority,
as will be described later.

For the communication itself, there are several implementation classes responsible
which are depicted in figure 6.3 and are described by Guba [64] as follows:

• Session The Session class is the central interface between client and server.

• Client The Client class holds the capability to use an RPC Session interface.

• Connection Interacting directly with the Client class is still rather complex, as the
Client needs to be initialized using session-construction arguments, connected, and
closed again. In order to simplify this process, the Connection class encapsulates
a Client and provides a single interface for a component to use.

• Session The Session Component class is the actual RPC object that is to be
Component called. It features implementations of the functions defined in the
Session interface.

• Root The Root Component class, similar to the Connection class on the client
Component side, encapsulates the usage of a Session Component. It announces the
service by name and with it the capability to create RPC sessions to the parent.

Beside RPC, there are two other mechanisms for inter-component communication
within Genode - signals and shared memory. Signals are useful when a component needs
to get notified about events in an asynchronous way (i.e. contrary to RPC, the control
is not delegated to another component). For sharing huge amounts of data, the usage
of shared memory for this case is foreseen in Genode. One component has to provide
the shared memory region (e.g. dataspace) out of its own RAM quota where one or
more other client components could attach this region to their virtual address space
(i.e. capabilities are granted) and are able to effectively access the same physical address
space range [56].

98

6.2 Extension of the Fiasco.OC Microkernel

Figure 6.3: Genode inter-process communication [64]

Communication between Kernel-Space and User-Space

As an starting point, if a given user-space software component wants to get related
timing information (e.g. period) out of the kernel. The former described user thread
control block is thereby used as buffer to interchange relevant information between kernel
and user-space. The utcb will be supplemented by message registers (mr) which contain
additional (meta-)information about e.g. the target operation (e.g. get information about
threads. The actual kernel system call is encoded in one single ipc call which makes a
routing according to the target function within the kernel necessary.

The collected kernel information can be placed within a user-space trace buffer which is
provided by Genodes tracing framework. “Tracing enables a monitor process to provide
some of its own RAM quota to log information about other processes” [64]. Genode’s
TRACE service is required to access the buffer and trace events. The provided service
does not exclusively provide information about traced processes rather than any process
currently running within Genode.

To sum it up, this section has described the basic concepts of Fiasco.OC as well as
Genode. After identifying the important aspects and interfaces, the required extensions
for implementing a flexible task management on top of Genode will be described. Start-
ing with the changes in Fiasco.OC the section 6.2 describes the modifications in greater
detail. After that it follows the implementation of relevant user-space components within
Genode.

6.2 Extension of the Fiasco.OC Microkernel

This section describes the necessary and realized changes within the implementation of
Fiasco.OC (see figure 6.4). First, the kernel is extended by an additional scheduling
policy to provide the at least two different scheduling policies which can be executed
in a coexistent way (see section 6.2.1). For an extended monitoring of the kernel itself,
additional information about timing aspects of individual threads needs to be enhanced
(see section 6.2.2). This information is later used within the user-space to e.g. get system
information. But also the other direction, from user-space to kernel-space, exists (see
section 6.2.3). Starting in the user-space, new system states (i.e. queues) need to be

99

6 Extension of a Microkernel-Based Operating System

transferred into the kernel. Moreover, there is other information for a later analysis of
the running system which is collected inside the kernel. An overview about the relevant
information as well as their implementation will be given.

Context

+ consumed time()
+ start time()
+ set dead time()
+ get dead time()
+ get time()

Receiver

Thread

Thread object

+ invoke()
– sys thread stats()

FactoryKobject

SpaceTask

Scheduler

+ Operation : enum

+ kinvoke()
– sys idle time()
– sys info()
– sys get rqs()
– sys get dead()
– sys deploy thread()
– sys run()

Sched context::Ready queue

+ switch ready queue()

Sched context::Ready queue base

+ switch rq()
+ get rqs()
+ get dead()

Sched context

+ set()

Per cpu<Sched context::Ready queue>

Ready queue fp<Sched context>

+ switch rq()
+ requeue()

Ready queue edf<Sched context>

+ switch rq()
+ requeue()

Figure 6.4: Collaboration Diagram for Fiasco.OC Microkernel

6.2.1 Adding additional Scheduling Policies

To provide a coexistent scheduling scenario, Fiasco.OC need to be enhanced by an
additional scheduling policy. In the concrete case, the earliest deadline first strategy is
realized within the kernel (i.e. Ready queue edf). Starting with a main challenge for the
potential extension, it follows a possible solution where also limitations of this solution
are highlighted.

For describing the main problem for a potential solution it is noteworthy that Fi-
asco.OC is designed according to a partitioned scheduling approach. Each core in the
system gets its own ready queue which is managed by the corresponding scheduling
strategy. Ready queue and strategy are encapsulated in a scheduling context. But, for
the whole system only one scheduling context is allowed. This means all cores are man-
aged by the same scheduling strategy like fixed priority preemptive. For the execution of

100

6.2 Extension of the Fiasco.OC Microkernel

coexistent scheduling strategies this approach is obviously a limiting factor. The possible
solution approaches are discussed in the following.

In a first solution [52], a dedicated EDF scheduling strategy was intended to be exe-
cuted beside a fixed priority strategy (i.e. pure coexistent). For a proper realization of
this approach, the complete building process of Fiasco.OC needs to be extended because
of the circumstance when a scheduling strategy is assigned to the core. This happens
during the compilation process of Fiasco.OC where each core gets a dedicated strategy
via a Makefile based configuration procedure. Adapting the complete building process
is a very time consuming challenge. Furthermore, the scheduling strategies are fixed
assigned to a core and therefore not interchangeable during run-time. Due to the lack
of enough flexibility and the time consuming modifications, an other solution needs to
be found.

Another solution which is based on a former idea of [68] allows the application of
coexistent scheduling strategies without a time consuming re-factoring of the toolchain.
The former distinct strategies of fixed priority and earliest deadline first will be combined.
The resulting combined strategy (i.e. scheduling context) consists of two ready queues
(one per strategy) which are assigned to one core. Considering special thread parameter,
it will be decided in which target queue the thread will be placed in.

Starting in user-space, the creation of threads is handled by Genode’s Platform thread
class. The finalize construction method as shown in listing A.1 was extended to assign a
distinct parameter to each thread which can be used to decide about a thread’s affiliated
scheduling strategy. There are currently two parameters supported which can be assigned
via the modified l4 sched param by type method: Deadline and Fixed prio indicating
that the corresponding scheduling strategy is either earliest deadline first (EDF) or
fixed priority preemptive (FP). These settings are propagated to the underlying kernel
by running the created thread via the l4 scheduler run thread system call.

Fiasco.OC provides a high-level interface of system calls which are based on the com-
mon IPC kernel interface. In this case, the function l4 scheduler run thread u as shown
in listing A.2 is used to prepare the required message registers for the resulting l4 ipc call.
Within this function the priority or deadline parameter will be set. Additionally, the re-
quested operation code for running a thread (i.e. L4 SCHEDULER RUN THREAD OP)
as well as the target kernel object (i.e. L4 PROTO SCHEDULER) needs to be set.
Within the scheduler kernel object, the IPC call is routed to an internal sys run (see
listing A.3) method by using the former requested operation code. At this point, the
former assigned attributes for priority and deadline are used to check which scheduling
context should be used. Finally, the corresponding scheduling context will be set by call-
ing the set function of the scheduling context as shown in listing A.4. The setting of the
adequate context determines the resulting scheduling queue. In this case, the scheduling
context consists of two subcontexts each wrapping a dedicated ready queue. As a result
the thread will be enqueued in the contexts ready queue which is either Ready queue fp

or Ready queue edf. Each queue class implements the corresponding strategy.
After describing the extension of Fiasco.OC with an additionally scheduling policy

within a combined scheduling context, a next step is to get information out of the
kernel.

101

6 Extension of a Microkernel-Based Operating System

6.2.2 Extension of Time-related Thread Information

Providing the rich information about individual threads considering their timing behav-
ior requires an extension of current thread structures within the kernel. The missing
information which is derived from the presented task model are implemented accord-
ingly. For a later analysis via a response time analysis or other optimizing mechanism,
run-time information about threads is required. Where an user-space monitoring com-
ponent (see section 6.3.2) receives and provides relevant information to other user-space
components. This section follows the logical order of the systems call graph for getting
relevant information out of the kernel (depicted in figure 6.5).

Platform thred::start time

l4 thread stats time

l4 threads stats time u

l4 ipc call

invoke

sys thread stats

comit result

l4sy/thread.h

thread object.cpp

Figure 6.5: Simplified flow of Fiasco.OC and Genode interface

At first, for providing relevant timing information of a thread, Genode’s Platform thread
class was extended by demanded methods. Considering the former described task model,
the following timing attributes of a thread can be identified: consumed time, period,
starting time, finishing time and system time. Each attribute gets its respective method
where some of these methods need to get their information directly from the kernel. For
example, the start time method collects its information by calling the appropriate kernel
l4 thread stats time function (see listing A.5). As previously stated, each function call
prefixed with l4 triggers a corresponding internal system call within the high-level ker-
nel interface (i.e. l4sys). The internal system call, in this case l4 thread stats time u (see
listing A.6), takes care of preparing distinct message registers and calling the kernel’s
ipc method. Within the registers, the operation code (here: L4 THREAD STATS OP)
and the Thread kernel object will be set as usual.

102

6.2 Extension of the Fiasco.OC Microkernel

Finally, the kernel’s Thread object class is responsible for handling the correspond-
ing IPC call considering the operation code. This decision consists of several steps
which involves distinct methods like the invoke function (see listing A.7) of the Thread
class where the corresponding operation code handler will be selected. For each new
thread timing attribute which should be provided by the kernel, this method need to
be modified. The operation codes are hereby assigned to concrete function calls within
the Thread object class. In case of getting the start time of a thread, the correspond-
ing method is sys thread stat which is shown in listing A.8. This function aggregates
diverse thread information mainly from the kernel scheduling context object (Schedul-
ing context) and sends them back to the user-space by calling the commit result method.
The scheduling context object of the kernel stores related timing attributes in general.
Missing timing attributes were supplemented (i.e. required calculations) as well as cor-
responding methods which allow the access of the novel attributes. The interface of the
scheduling context object therefore were extended by these functions (see listing A.9).
As a result, required timing attributes are accessible in a consistent way.

To sum it up, this section has described the flow of timing information from kernel to
user-space. In the next step, the other way around will be described to deploy threads
into the kernel during run-time.

6.2.3 Extension of Scheduling-Context for Thread Deployment and
Information Gathering

This section describes the extension of Fiasco.OC to be capable of deploying new threads
into the kernel. The default scheduling context is mostly (but not limited to) focused on
fixed-priority scheduling (as its default scheduling policy). A deployment of new tasks
or switching of complete task sets (i.e. ready queues) is yet not possible. The extension
of the scheduling context is divided in four steps:

• Implementing the actual deploy function

• Creating a reference within the invoke function of the ipc call interface

• Creating a new capability for the call

• Implementing the actual switching method for single threads or sets of threads

In general, this extension is meant to transfer the information from user-space to
kernel-space (in contrast to section 6.2.2). Nevertheless, in the context of this section
additional changes considering the scheduling context which allows gathering information
about the ready queues per core will be described. Similar to section 6.2.2, a call graph
(depicted in figure 6.6) is used to provide an overview about the involved functions
(i.e. distinct code changes).

To provide the Genode’s Platform thread class the opportunity to deploy a thread to
the kernel during run-time, a corresponding function within Fiasco.OC’s l4 sys interface
is required. This function is labeled as l4 scheduler deploy thread and is shown in list-
ing A.10. The corresponding changes, namely a new operation code as well as an internal

103

6 Extension of a Microkernel-Based Operating System

l4 scheduler deploy thread u

l4 ipc call

kinvoke

sys deploy thread

switch ready queue

switch rq

switch rq switch rq

l4sys/scheduler.h

scheduler.cpp

sched context.cpp

sched context-fp edf.cpp

ready queue fp.cpp ready queue edf.cpp

Figure 6.6: Simplified flow of Fiasco.OC and Genode interface for Deploy

system call function (i.e. l4 scheduler deploy thread u) are provided respectively (see list-
ing A.11 and A.12). The functionality however is similar to other system call functions in
the sense of preparing the relevant messages for the IPC. In contrast to the extension in
section 6.2.2, in this case the scheduler object of the kernel (i.e. L4 PROTO SCHEDULER)
handles the request.

The scheduler object of Fiasco.OC routes the IPC call to the corresponding handler
method sys deploy thread which was newly created. The process hereby is similar to
the presented approach in section 6.2.2. Considering the provided operation code (an
overview about supported operation codes can be seen in listing A.13), a corresponding
method is called from the invoke function of the scheduler object (see listing A.14). In
this case, the newly added sys deploy thread function as shown in listing A.15 is called.
This function creates a new ready queue which is based on the actual ready queue from
the current scheduling context and the thread which should be deployed. In a later
step, the newly created ready queue will be swaped with the current ready queue. To
guarantee, that the correct ready queue will be switched, a metric attribute (i.e. priority
or deadline) which identifies the corresponding scheduling context will also be assigned
into the list. The actual switch of the ready queues is provided by the switch ready queue
method in the scheduling context.

Within the scheduling context, the switch ready queue function as shown in list-
ing A.16 uses the actual function from the Ready queue base class. Considering the
metric as the second element of the list, the switch rq function (see listing A.17) deter-
mines which concrete ready queue, either Fixed Priority or Earliest Deadline First, will
be replaced by the new list. As shown in the last given listing A.18, the implementation
of switch rq on the example of the Ready queue fp class reuses the requeue function of
Fiasco.OC to deploy the new list thread by thread.

Beside the extension for providing a potential deployment functionality from user-
space, there are some extensions within the scheduling context made which provide

104

6.3 Operating System Framework Components

additional information for later analysis of the system state. In the concrete case the
information is about the ready queues themselves. The functions are either capable to
get the current state of the ready queue (get rqs) and to get information about potential
finished threads within a queue (get dead). The latter is required due to some restrictions
caused by the tracing framework of Genode which will be described later.

This section has described the extensions made in the Fiasco.OC kernel, especially the
addition of a new scheduling strategy, the extension of timing information per thread,
and the creation of a deployment interface. Within the next section the focus lies on the
user-space components rather than the kernel.

6.3 Operating System Framework Components

This section will describe the relevant software components which are required for realiz-
ing the outlined concept of a flexible task management within the Genode operating sys-
tem framework (see figure 6.7). First, a network software component which is responsible
for the communication with other systems will be described (see section 6.3.1). After
this, software components for gathering the relevant system information from the kernel
as well as related software components processing these information will be outlined
(section 6.3.2). As a central part, the software components which are used to control the
system adaptation process will be described in more detail afterwards in section 6.3.3.
This section will close with the relevant software components for loading and deploying
a set of tasks (see section 6.3.4).

6.3.1 Component for Network Communication

The user-space component for network communication (or simple: network component)
is basically realized as a stream socket server (see listing A.19) in combination with a
customized protocol. Genode already supports an OSI compliant network stack which
is used to implement the server functionality on top. The network component, hereby,
fulfills two functions:

1. Input information is processed and (if required), is forwarded to a target component
within the system

2. Output information from the system (e.g. monitored data) is sent to other systems

For both cases (i.e. input and output), a customized protocol was developed which is
based on so called magic codes (see table 6.2) which are used to remotely control the
system. The protocol hereby supports the outlined adaptation workflows as described
in section 4.4:

• Adding a new application to the system

• Optimizing a current system state

• Monitoring a current system state

105

6 Extension of a Microkernel-Based Operating System

Dom0 server::Dom0 server

+ connect()
+ server()
+ disconnect()
+ start()
+ send profile()

Sched controller::Session component

+ new task()
+ update rq buffer()
+ optimize()
+ set opt goal()
+ scheduling allowed()

Sched controller

+ enq()
+ get optimizer()

Taskloader session component

+ start()
+ stop()
+ add tasks()
+ clear tasks()

Task

+ Description
+ Shared data

+ run()
+ stop()
+ name()
+ running()
+ setSchedulable()
+ isSchedulable()

Parser session component

+ profile data()
+ live data()

Mon manager::Mon manager

+ update info()

Sync

+ deploy()

Figure 6.7: Collaboration Diagram of several classes for the flexible task management in Genode

106

6.3 Operating System Framework Components

Code Description

SEND DESCS Packet contains task descriptions as XML

CLEAR Clear and stop all tasks currently managed on the server

SEND BINARIES Multiple binaries are to be sent

GO SEND Binary received, send next one

START Start queued tasks

STOP Stop all tasks

GET LIVE Request live info as xml

GET PROFILE Request profiling info as xml

Table 6.2: magic codes provided by the network component

The protocol, hereby, poses a simple key value pair mapping where a magic code is
assigned to a distinct method which handles the request accordingly. Some magic codes
however require the sending or receiving of additional information. For this purpose,
a data file is used which contains the required information. In case of optimizing the
current system state, the optimization goal is transferred within a data file rather than
a magic code. This keeps the foot print of the control protocol small. By monitoring
a current system state, monitored data are encoded in a data file which can be sent
back to the client. For adding a new application to the system, however, a further file
needs to be sent to the system - a binary file which represents the compiled application.
In this case a data file is used to provide additional (i.e. meta) information about the
application like input parameter or timing attributes.

The central serve method of the network component as shown in listing A.20 demon-
strates the relevant structure for consuming the earlier described magic codes. Each case
within the main server-loop represents one distinct action (e.g. SEND DESCS) which
is handled in this distinct branch. For example, task descriptions and task binaries are
provided to the taskloader component (see below) which is responsible for the loading
of the tasks.

After describing the component for network communication and their basic workings,
the next section describes the relevant user-space components to get distinct information
from the system.

6.3.2 Components for Information Gathering

This section will provide an extension of Genode’s tracing framework to enable the
collection of timing related attributes from the underlying kernel. This section therefore
corresponds to section 6.2.2, with the difference that it describes the user-space view of
the collection process (i.e. stops at the Platform thread class). Most of the presented
software components are required for the collection of information. Considering the
monitoring of a current system state, the collected information need to be prepared for
the transmission via the network component. This section therefore closes with details
about a related serialization process of the collected information.

107

6 Extension of a Microkernel-Based Operating System

Mon manager

+ update info()

Trace::Session component

+ cpu info()
+ mem info()
+ scheduler info()

Trace::Subject registry

+ lookup by id()

Trace::Subject

+ info cpu() : CPU info
+ info ram() : RAM info
+ info scheduler() : SCHEDULER info

Trace::CPU info

+ CPU info()

Trace::RAM info

+ RAM info()

Trace::SCHEDULER info

+ SCHEDULER info()

Trace::Source

+ Info
+ Dynamic Info
+ Static Info
+ Global Info

+ info()
+ sched info()

Cpu thread component

+ trace source info()

Platform thread

+ affinity()
+ execution time()
+ start time()
+ arrival time()
+ kill time()
+ killed()
+ dead()
+ rq()
+ num cores()
+ idle()
+ foc id()
+ id()
+ prio()

Figure 6.8: Collaboration diagram for information gathering (i.e. tracing)

According to the collaboration diagram depicted in figure 6.8, the central user-space
component for requesting distinct system information is represented by the Mon manager
class. This class is designed as a registry for storing several system information in form of
distinct Monitoring objects (see listing A.21). Each object is hereby designated for stor-
ing system information about a single user-space component thread. For each user-space
component thread which can be identified by an unique number, this object stores asso-
ciated tracing information about cpu and memory. It further plays an important role in
a later mapping between user-space and kernel-space (see section 6.4). The monitoring

108

6.3 Operating System Framework Components

object is designed as general as possible whereas for the context of this thesis the major-
ity of stored elements within the Monitoring object represent task related information
(e.g. timing attributes).

Each user-space component (e.g. controller) which requires distinct information about
the system, requests the service of the Mon manager class which in turn provides this
service via its update info function (see listing A.22). First and foremost, each component
which needs system information provides the Mon manager with a dedicated dataspace
(i.e. shared memory) out of its own memory quota (due to the capability regulations).
This shared memory is attached to the monitoring memory via memory mapping. After
that, the Mon manager establishes a connection to the tracing service. For storing
the collected information about user-space components, a memory buffer with tracing
subjects will be reserved. Each user-space component consists of several threads which
are sharing a common session name (i.e. name of the user-space component). Each
tracing subject corresponds to one single thread. Basically, update info iterates over all
tracing subjects and fills the corresponding Monitoring object of each tracing subject
respectively. Based on the example of getting a thread’s execution time, the common
process for getting system information will be outlined.

By establishing a connection to the trace service, an object of the Trace::Session component
class will be instantiated. This class provides a set of functions which can be used to get
the distinct information about the cpu, the memory or the scheduler. To get the actual
information, Trace::Session component requests the Trace::Subject registry which holds
all tracing subjects of the system. Basically, the registry provides a search of the subject
in question and calls the corresponding method of the tracing subject. For example, a
call of the cpu info method results in the info cpu method (see listing A.23) provided
by a Trace::Subject.

The main purpose of the Trace::Subject class is to group the incoherent information
(i.e. scattered anywhere in the system) into a uniform representation. Each instance
of the Trace::Subject, therefore, consists of tracing sources (i.e. where the information
comes from) and the corresponding groups of information (e.g. Trace::CPU info). In
the case of getting the execution time, the info cpu method gets the information by
calling info method of a related source. Further information (e.g. affinity) is gathered
and stored in the same way. As a final step, all collected information about the cpu are
grouped in a Trace::CPU info class (see listing A.24).

Investigating the info function within the Trace::Source class, the listing A.25 shows
the basic process about getting the relevant information. As expected, a task’s execution
time belongs to a kind of dynamic information which is changing over time (i.e. in con-
trast to static information which are fixed). The internal structures Info, Dynamic Info,
and Static Info are used to store the several types of information (e.g. labels, priori-
ties, time related parameters). As a result the function returns an info object with the
accumulated information of dynamic and static data elements.

In the case of getting execution time, the corresponding implementation of dynamic info
can be found inside the Cpu thread component which is responsible for the management
of threads within Genode. As shown in listing A.26, the dynamic info function gets
its information by calling several methods within the Platform thread object. In case

109

6 Extension of a Microkernel-Based Operating System

of getting the execution time, The Platform thread provides a corresponding function
with the same name. The concrete method behind the execution time function of the
Platform thread is the formerly described l4 thread stats time kernel function.

Besides the execution time there is other information which is collected during the
system execution. These information corresponds to the elements found in the monitor-
ing object which was explained in the beginning. Where it can be seen that not only
timing relevant information is collected, but also information for identifying the tasks
and their memory usage. All these information together is collected from several places
over the system, partly from the kernel and from the user-space. But all information
has in common that they are represented in an internal system dependent way and are,
so far, not ready to be transferred to other systems.

The Parser session component is also an user-space component which transforms the
internal information data to a serialized object for transferring. Basically, this compo-
nent uses the already implement functionality of Genode’s XML facility. As it can be
seen in listing A.27 the parser component prepares a dataspace (i.e. shared memory)
where the monitor component can store its information inside. For each traced object,
a corresponding XML node is created within the former created XML tree. All infor-
mation which is provided by the monitoring component is ncapsulated in corresponding
XML attributes. This happens for all subjects which should be traced. After that, the
create XML structure can be transferred to other systems via the usage of the network
component.

In conclusion, this section has provided an overview about the basic monitoring in-
frastructure for getting distinct information about user-space software components. In a
next step, this information can be used to realize a flexible management of such software
components. This management approach is based on a dynamic adaptation process
(i.e. adding) of running software components. An unconditional adaptation however
is not applicable. So, the central user-space component which is used to control the
adaptation process of the system will be presented within the next section.

6.3.3 Component for Controlling the System

The adaptation possibilities of the flexible task management need to be controlled and, if
required, to be constrained. Both aspects are covered by the user-space Sched controller
component. This component is responsible for the required checks and provides its ser-
vices to other components like the Taskloader session component. This section describes
the implementation in more detail, where an overview about the involved classes can be
seen in the collaboration diagram depicted in figure 6.9. Beginning with a basic oper-
ation of adding a new task to the system during run-time, subsequent steps and flows
will be described including the acceptance test and optimization mechanism.

Basically, adding a new task (i.e. software component) to the system during run-
time is provided by the Taskloader session component. The relevant add tasks function
however utilize the new task function of the Sched controller::Session component which
tests if the new task can be seamlessly integrated (i.e. without side-effects) into the
existent system. In conclusion, adding a task by the taskloader should be verified by

110

6.3 Operating System Framework Components

Sched controller::Session component

+ new task()
+ scheduling allowed()
+ optimize()

Sched controller

+ enq()
+ get optimizer()

Sched alg

+ RTA()
+ fp sufficient test()

Sched opt

+ add task()
+ start optimizing()
+ set opt goal()
+ scheduling allowed()

Figure 6.9: Collaboration diagram for Sched controller

the controller if this task is schedulable within the system or not. Along this analysis
process, several tests will be done according to the criticality of a task.

The former function call of new task will trigger the enq method within the Sched controller
(see listing A.28). Basically, there are two different approaches implemented to test a
task. In the first case, an acceptance test is executed to check the schedulability of the
new task before its actual execution (relevant tests are in the Sched alg class). The ac-
ceptance test is a combination of response time analysis and sufficient test as described
in the concept. On the other hand, the task is accepted anyway and an optimization
routine modifies the task during its actual execution (implemented in Sched opt). Of
course, the optimization process can also be used as an acceptance test (before execu-
tion) however this not done in this thesis. By design, the decision if an acceptance test
or an optimization should be done for the task depends on its criticality level. Within
the context of this thesis, the criticality level is assigned to a corresponding scheduling
strategy either fixed priority (i.e. high criticality) or earliest deadline first (i.e. low criti-
cality). The categorisation of a task in high critical and low critical however solely takes
place in user-space (i.e. for Fiasco.OCs scheduler treats threads without criticality).

111

6 Extension of a Microkernel-Based Operating System

Acceptance Test

The corresponding algorithms for testing if a new task can be accepted by the system
are implemented within the Sched alg class. An important aspect for the usage of these
functions is the fact that the tasks have to be sorted according to their priorities within
the ready queue. Another prerequisite for the algorithms is that the current task set
is schedulable without the new task (i.e. initial system is schedulable). Furthermore,
each task for itself is schedulable. The implementation details of the algorithms are
very exhaustive therefore a description in pseudo code was chosen to explain the basic
procedure.

The RTA algorithm is an iterative approach to calculate the response time of each
task within a task-set. The calculation of the response time continues until the response
time doesn’t increase anymore. The overall task-set is only schedulable if for all of its
tasks the condition Ri ≤ Di is given. Choosing an appropriate initial value (i.e. in this
case worst case execution time) for the response time reduces the number of required
iterations (i.e. tests) for one task. Due to the fact that in the given preemptive system
a new task only influences tasks with the same or lower priority, the set of to be tested
tasks can be further decreased.

The response time analysis (RTA) as shown in algorithm A.1 covers the several cases
in which each task and ready queue can be. The actual calculation of the response
time is done in the cmp response time function (see algorithm A.2) according to the
equation 6.1.

Rn+1
i = Ci +

i−1∑
j=1

⌈
Rni
Tj

⌉
Cj (6.1)

There are the following cases which need to be checked by the RTA algorithm. First,
if the task-set is empty the task is accepted without any further tests (i.e. under the
given condition that each task alone is schedulable). Second, if the priority of the new
task is lower than all other tasks within the task-set, the response time for the new task
itself need to be calculated. In all other cases, the start point for the response time
calculation has to be found where the priority of the new task is used to find the first
task (within the task set) with equal or lower priority. For all tasks after this starting
point, the response time has to be recalculated. If all tasks have passed the test, the
new task can be added to the system. The RTA algorithm is an exact but expensive test
with an exponential run-time behavior. In the context of this thesis therefore a sufficient
but more efficient test is also provided.

For the realization of a sufficient test (i.e. doesn’t find all schedulable solutions) for
fixed-priority task-sets, the schedulability test of Bini [19] was chosen (see algorithm A.3).
Again, for each task within task-set the condition Ri ≤ Di need to be given to pass the
test. The calculation of the response time follows according to equation 6.2.

∀iRubi =
Ci +

∑i−1
j=1Cj(1− Uj)

1−
∑i−1

j=1 Uj
≤ Di (6.2)

112

6.3 Operating System Framework Components

The run-time behavior of the implemented algorithm depends only on the number of
tasks within a task-set (i.e. O(n)). This is achieved by accumulating the sums within
the fraction from task to task. Due to this approach the algorithm needs to iterate over
the task-set for the required checks only once. This adds a new task similar to finding
an adequate position within the task-set (cp. RTA starting point). “The new task has
to be proven before the upper bound for the response time of the first task with a lower
priority is calculated. If the upper bound is lower or equal than the deadline for every
task, the task-set is schedulable.” [53]

Optimizing

The optimizer algorithm is provided by the Sched opt class. The add task function is
responsible for adding a task to the set of tasks within the internal task set used by
the controller for a later optimization. It is mandatory, that each task which is subject
of a potential optimization is added via this method. The entry point for the central
optimizing routine is start optimizing. This function is called during the actual execution
of a task.

The implementation of the start optimizing function consists of several hundreds lines
of code due to the fact that the overall optimization process covers several use-cases.
For a better overview, figure 6.10 provides a flow graph diagram for the optimization
process as a whole.

As the first step, the optimizer queries the monitoring component via update info for
any system changes (i.e. task changes). The tasks and threads are separated from each
other and there exists no direct information about which thread belongs to which task.
A separate matching therefore is required which assigns the threads to their tasks by
using a label as identifier. As a result, there exists a list of tasks and their threads which
are interesting for a potential optimization. This step is commonly known as data query
in the optimization process, where the analysis of the queried tasks will be discussed in
the following.

The analysis process of the optimizing function within the controller component is
departed in several steps (see figure 6.10). These steps are used to further investigate the
former queried tasks to adapt in accordance to their states the optimization process. In
principal, it can be differed between a successful execution and a non-successful execution
of a task with its corresponding threads. However, both branches are based on some
common used functions which will be shortly presented in the following list:

• Modification of value The optimization value is a central attribute which is
considered by the optimization. Each optimization step requires a corresponding
modification (i.e. increase,decrease).

• Update functions During the optimization process, used structures and variables
need to be updated. The attributes in this case are utilization, permissions and
tasks.

113

6 Extension of a Microkernel-Based Operating System

For both cases (i.e. successful and non-successful), the presented functions are used
in different combinations. Starting with a successful executed task (i.e. regularly termi-
nated), its value will be decreased which allows other tasks in a next execution cycle to
be executed. Accordingly the utilization, the dispatched flag and the scheduling permis-
sion will be updated. All in all, the task is set to be successfully executed. The more
complex part (i.e. in the sense of checking) is if a task (or its jobs) were not success-
fully executed. When this happens it need to be clarified why not. In this case there
are basically three reasons which are checked, namely the task was not allowed to be
scheduled, a task missed its deadline or a task was killed. Where in the last both cases
(e.g. deadline missed or killed) another request to the monitoring component needs to
be made. In this case however not the actual task list will be requested, rather the list
with terminated tasks (i.e. RiP list).

This section has provided details about the general controlling process via the Sched controller
component. Two different testing approaches has been provided which allow the test
before or during a task execution. In a last step, the next section closes the gap and
provides the missing parts for loading and deploying of tasks.

6.3.4 Components for Loading and Deploying of Tasks

In case of adding a new tasks or optimizing a current system state, tasks need to be inte-
grated or removed from the system. These changes are mandatory in user-space as well
as in kernel-space. For the former, a component (i.e. task loader) is responsible for the
loading of arriving tasks. The system state needs to be consistent between user-space and
kernel-space. Each change within the task set however makes a synchronization between
the user-space and kernel-space mandatory. This synchronization is done by another
component with the corresponding name. The following describes both components,
especially their implementation in more detail beginning with the taskloader.

The taskloader is responsible for the following aspects:

• manages tasks (create, delete)

• parses arriving task descriptions

• stores task binaries in its own dataspace

An important detail about the taskloader stems from the strong parent child concept
introduced by Genode. Every task which will be added during run-time needs to be
a child of taskloader (as parent). As mentioned earlier, only a parent has the full
capabilities to manage its child accordingly. Thus, the taskloader is allowed to create or
delete its children (application tasks). A similar component which allows the creation
of tasks within in Genode is the init process. The taskloader memes a second level
init process in this way, because there are no other possibilities (except through huge
modifications of init) to control the children (i.e. deployed tasks) in the intended way.

Adding new tasks to the system follows a simple routine in which the correspond-
ing task description will be parsed and relevant information will be extracted (see list-

114

6.3 Operating System Framework Components

start

Query Monitoring data for considered task

Monitoring
data contains
at least one
new job of
the task?

Decrease value

Update utilization

Update disptached flag

Update sched-
ule permission

First job
of task was

already
started
before?

Task was
allowed to

schedule a job
at this period?

Increase value

Reset values

Update sched-
ule permission

Last job
of task did
not already

start before?

Query RIP list

Job had
deadline

miss vs. job
was killed

Remove task from
list of alive tasks

Add task to list
of ended tasks

Update competitors

Update related tasks

Determine cause task

Add cause task
to competitors

Update related tasks

Increase value

Reset values

Update dis-
pateched flag

Update sched-
ule permission

yes no

noyes

yes no

yes no

killeddeadline miss

Figure 6.10: Flow Chart for Optimization Procedure according to [112]

ing A.29). For each task within the task description, different tests will be performed to
check if the new task is schedulable according to the chosen strategy.

If the controller component decides that the resulting task set is schedulable for the
current system state, the new task set (which is only existent in user-space) needs to
be deployed within the kernel. This deployment is done by the synchronization com-
ponent which allows a fine grained determination when the right point in time for a
synchronization will be. The synchronization component therefore provides a deploy
functionality which maps the deploy queue function of a platform thread in its simplest
form. In this case the task set will be instantely deployed within the kernel without
further checking of possible hazardous results. Within the platform thread the former

115

6 Extension of a Microkernel-Based Operating System

explained l4 scheduler deploy thread method is responsible for the actual exchange of
the queues.

With reaching the end of this section, all relevant user-space software components
which are used to realize a flexible task management have been described. The next
section will cover possible limitations of the current implementation.

6.4 Limitations of the current Implementation

This section will describe some implementation constraints of the so far realized user-
space components and kernel objects. All constraints are grouped around a central
problem, namely the representation of a system state (i.e. set of ready queues) in user-
space via a dedicated buffer structure. This problem concerns all of the following actions:

• getting system information

• adding a new task to the system

Beginning with the limitation during the process of getting system information, user-
space components as well as kernel objects will be addressed. It follows the limitations
during the addition of a new task to the system.

6.4.1 Getting System Information

During the process of getting system information, several limitations can be identified. It
starts with a central problem in the notification mechanism about system changes. This
affects consecutive monitoring and analysis processes. Furthermore, there are some lim-
itations from the used tracing framework which will be described. Finally, the cause and
the consequences of identity translation (e.g. matching) between user-space components
and kernel objects will be outlined.

Beginning with the exchange of information between kernel and user-space, some
limitations need to be remarked. Due to its simple structure, an utcb is merely an
one dimensional array, all information needs to be simple (i.e. no complex data types
are allowed). In best case the information is a scalar unit, like in this case a timing
attribute. Another limitation is the high level of abstraction from the kernel upwards to
the user-space. So, many levels need to be intersected to transport the given information
out of the kernel into the user-space. This could be a potential problem if the reaction
of a system will be strongly influenced by a great number of information exchanges
(or exchanges with few but huge information sets). Furthermore, the internal routing
through a single ipc call and a required resolving considering the given capability can
slow down the overall performance of the system.

A central problem within the so far described implementation covers the tracking of
current system changes. There is no notify mechanism similar to an interrupt service
routine concept which can be used to call distinct functions (e.g. optimizing) at certain
events (e.g. task exist). If a component needs to get continuous information about the

116

6.4 Limitations of the current Implementation

system state it needs to call the update info in a busy waiting-like fashion. A possible
out-of-sync between the current system state and the representation in user-space how-
ever is possible. This problem influences the overall information gathering process for
the internal components as well as the external systems (e.g. for a later analysis). As an
example, the networking component undergoes several changes to deliver an adequate
system state back to another system (i.e. work station). The first version to transfer
information about system changes between systems was an transaction-based process
where the system in the active role starts the transfer and commits the transaction by
requesting an update (i.e. profile data) at the end. The problem with this approach
is that during start and commit, monitoring data vanishes due to the fact that only
the recent timing information (i.e. dynamic task information) can be traced (i.e. stor-
age constraints on an embedded system). Indeed events (e.g. task finishes) can get lost
because the point in time where the information is updated doesn’t correlate with the
point in time when an event arises. Improving this situation, the new implementation
was time-based rather than event-based which means that the system was able to trans-
fer its system-state at any point in time (i.e. live data). The system which requests the
actual system state however needs to poll the information in a short period of time. This
improves the situation considering the consistent information gathering (i.e. more infor-
mation about corresponding events). As a result, more events can be traced dependent
of the chosen time interval. But as a restriction the interval couldn’t be set to a number
where all system changes could be traced. So, the chance to miss certain events was
reduced but not eliminated. The last implementation improvement taken so far, was to
transform the system in question to an active sender. This is realized via a push service,
where the system itself delivers its state pro-actively to other systems. As a side-effect
of this solution, each notification about a system change needs to be routed through the
network component.

Beside the missing notification support there is another limitation rooted in the used
tracing framework. In the case a task will be killed via a remote kill command, the
task will be removed from the tracing framework. This causes that the monitoring
component to be unable to trace this task anymore (i.e. get information). Considering the
information about the finishing time of a task, this is not optimal. It needs therefore to be
a solution where the information about killed tasks is still accessible via the monitoring
component, even the task itself is not presented anymore within the tracing framework.
For the solution, a separate list (Rest in Peace - RiP) was introduced. With the assist
of this list a task gets recorded shortly before it is killed. The last existent information
(i.e. before killing) remains as a snapshot within this list and can be requested as usual.

For the last limitation concerning the gathering of information, an understanding of
how Genode and Fiasco.OC handles their scheduling priority values is required. “The
scheduling in Genode is for the most part handled by the chosen kernel. Genode merely
abstracts the common scheduler parameters, namely priority and CPU core affinity, and
makes these values available to the framework. However, how these parameters affect
performance greatly depends on the chosen kernel.” [64] As it can be seen in figure 6.11,
Genode maps its available priorities to a subset of Fiasco.OC’s available priorities. A
matching which translates Genode priorities to Fiasco.OC priorities is therefore required.

117

6 Extension of a Microkernel-Based Operating System

Figure 6.11: Genode and Fiasco.OC priority values [64]

The loose coupling of user-space and kernel-space also enforce the demand of a match-
ing mechanism. This matching mechanism is not a single function within the system
rather than distributed over several places within the system (i.e. whenever a analysis
of a task set is required). The Monitoring object is the central structure within this
matching process. However, the fact that Genode and Fiasco.OC choose their identifi-
cation number of a task/thread independently and randomized leads to a problem. This
means there exists no direct translation between Genode’s identification numbers and
Fiasco.OC’s identification numbers The translation is done via the help of an unique
label name which is assigned to each task. Each Monitoring object therefore implements
a label, genode id and foc id. Without a doubt, a matching process introduces a certain
overhead within the system.

After outlining the limitations during the information gathering process, the next
section covers the limitations arising if a new task will be added to the system.

6.4.2 Adding New Tasks to the System

The flexibility by adding a new task to the system during run-time is constrained by
some limitations which will be covered within this section. There are certain prerequisites
which are required to successfully deploy a new (external) task within the system. On
the other side, the capability mechanism constraints a straightforward implementation
of the synchronization component.

Before it is possible to add a new task to the system, some prerequisites need to be
fulfilled. This starts with the selection of the combined scheduling context (i.e. fp/edf)
during compile time. This configuration is fixed as long as the system is active and
is valid for all cores. The active schedule per core however can be set within Genode’s
configuration file (i.e. run files) at run-time. The affinity, priority and deadline attributes
of each task are encoded in the task description which is send to the system during run-
time. A check if new tasks corresponds to one of both scheduling strategies is done in
user-space. One of the biggest drawbacks of the chosen combined scheduling approach
is its worse scaleability. For two strategies, the management overhead is acceptable
but increases with every additional scheduling policy. Foremost the management of
threads (i.e. enqueue) gets more complex which can result in a potential performance
degradation.

The synchronization component is meant to control the point in time when the modi-
fied task-set gets deployed into the kernel. Required capabilities to allow the synchronizer
to work in such a way, however, are missing. As an intermediate solution, tasks will be

118

6.4 Limitations of the current Implementation

deployed via the taskloader (i.e. 2nd level init) which holds the distinct capabilities. So
the control of the kernel scheduler from the user-space doesn’t work as expected. There-
fore the only task sets which are allowed to be executed by the scheduler are already
deployed ones. For example there exists no control mechanism within the user-space to
force the instant execution of a task independently from the actual system state. In the
current implementation, the user-space components prepare the new task set and hands
over the control to the kernel scheduler which executes the task set as a whole. Enabling
the synchronize component to deploy (and control) the task set from user-space enforces
the following steps.

1. Getting new “deploy” capabilities form the kernel

2. Modifying taskloader, controller and synchronizer component to get an adequate
deploy cycle

3. Enhancing the synchronizer component to realize the conceptual ideas (e.g. deploy
thread in certain point in time)

Moreover, the current deployment function only works with a fixed priority preemptive
scheduling strategy.

Conclusion

This chapter has provided the extension of a micro-kernel base operating system. It
therefore has described which functionality is already provided by Fiasco.OC and Gen-
ode. The main part of this chapter has covered the required kernel-space and user-space
modifications for realizing a flexible task management. The chapter has closed with
certain limitations of the current implementation. The next chapter will present the
evaluation results of the developed system.

119

7 Evaluation of the Flexible Task
Management

This chapter will present different evaluation results which are sampled through a num-
ber of testing scenarios. Each scenario is used to proof distinct operational conditions
of the flexible task management. The first testing scenario will evaluate (section 7.1)
a possible usage of the operating system within an automotive context. The second
scenario (section 7.2) is used to analyze the consolidated architecture as well as the re-
alized operating system. In this chapter considered testing aspects correspond with the
outlined contribution item number five in chapter 1.

7.1 Scenario I: Reliable Autonomous Driving under Adaptation

This section will demonstrate the usage of the developed approach in the context of an
automotive system. The overall test setup as well as the autonomous driving scenario
are described in section B.2 in the Appendix B. The concrete contribution which will be
covered in this section is a case study of an live update/installation within an automotive
driving scenario (hybrid simulator test bed) during operation (cp. contribution 5e) .

The chosen case studies therefore simulate both an installation and an update process
of an application software component during an autonomous driving maneuver. In both
cases, an adaptation of the current system during operation will be performed. In sec-
tion 7.1.1, the initial installation process of a new software component will be described.
After that, section 7.1.2 will detail the update process of an application component.

7.1.1 Installing an Application Component During Operation

The installation process which will be outlined in this section deploys a application
component to the target system. As an example application, the network communi-
cation component, labeled as mbl adapt, of the motor control subsystem was selected.
This component is primarily used to receive incoming motor control commands over the
network. With the help of another software component (i.e. mbl client), the incoming
network commands are mapped to concrete function calls which are used to control the
engine. If the mbl adapt application is missing from the system, the communication is
interrupted and the engine doesn’t get any movement commands. The idea to proof a
successful installation is to observe that the engine gets from an initial state (i.e. engine
stands still) to an active state (i.e. engine starts).

The principal setup can be seen in figure 7.1. There are several inter-connected control
units (i.e. Pandaboards and Raspberry Pi) re-creating a vehicle electrical system. Each

121

7 Evaluation of the Flexible Task Management

control unit is equipped with the developed operating system. The Pandaboard-based
control units represent the “logical” devices which are comparable to domain controllers
and consist of a dual-core system (In the following labeled as Core0 and Core1). The
network communication as well as certain management tasks will be executed on these
boards. In contrast, control units which are represented by the Raspberry Pi single-board
computer are responsible for the direct control of the connected hardware (i.e. sensors
and actuators). These boards are also able to communicate via a network interface but
provide the concrete “control” interface of the connected hardware.

Pandaboard

Pandaboard Pandaboard

Experimental Vehicle

Workstation

Speed Dreams 2

Sensor/Actuator

Virtual Machine

MQTT

Core 0 Core 1

InstallMgmt

Kernel Space

User Space

Core 0 Core 1

AdapterMgmt

Kernel Space

User Space

Core 0 Core 1

ACCMgmt

Kernel Space

User Space

Raspberry Pi

Core 0

Servo

Client

Mgmt

Kernel Space

User Space

Raspberry Pi

Core 0

MBL

Client

Mgmt

Kernel Space

User Space

Engine

Controller

Servo

Controller

M

M

Figure 7.1: Installation Case Setup Car and Workstation

The control unit with a gray box, labeled with “Install”, marks the target unit on
which the mbl adapt application would be installed. This, for the installation scenario,
prepared control unit executes the developed operating system with all flexible task

122

7.1 Scenario I: Reliable Autonomous Driving under Adaptation

management components on Core0. The to be installed component will be deployed on
Core1 of the board which doesn’t execute any other software components. Both cores
of the control unit are managed by fixed priority preemptive scheduling strategies. An
acceptance test is therefore automatically chosen by the sched controller component.
The installation scenario follows an automated testing routine which consists of a script
(see listing B.4) and a corresponding task description (see listing B.5).

The following installation sequence is encoded in the log files B.6, B.7, B.8, and B.9
provided in Appendix B.

Time (mm:ss) Component Description

00:20 mbl client connected and ready for receiving commands
00:28 dom0-HW connected and waiting on receiving task

description and task binary of mbl adapt application
03:31 dom0-HW receives task description and task binary

of mbl adapt application
03:32 taskloader starts task
03:37 mbl adapt connected and ready for receiving commands
03:39 mbl client receiving motor control commands

The successful installation of the required component can be seen by the starting
movement of the engine. Figure 7.2 shows the result before and after the installation.
Between the standing engine and the rotating engine there are several minutes elapsed.

(a) Standing (b) Rotating

Figure 7.2: States of Motor Movement

This section has provided an installation process of a missing application component
on one of the control units within the vehicle board network. The successful installation
shows the principal feasibility of a flexible task management within the context of an
automotive system. All processes are executed during the vehicle’s operation at run-
time. As an extension of this test scenario, the next section provides an update scenario
where an existing software component on one core gets updated.

123

7 Evaluation of the Flexible Task Management

7.1.2 Updating an Application Component During Operation

This section will describe the other use case within the autonomous driving scenario,
namely an update of an existing application component. For this use case an application
which calculates the fractorial portion of the number pi will be used. Consecutive updates
of this component are used to increase the number of to be calculated decimal places.
This use case principally demonstrates the application of an update within an automotive
system during operation.

The setup for this scenario can be seen in figure 7.3. In contrast to the installation case,
the target control unit is hereby executed in a virtual environment due the possibility of
simulating four cores (i.e. the hardware control units exclusively provide two cores).

Pandaboard

Experimental Vehicle

Workstation

Speed Dreams 2

Sensor/Actuator

Virtual Machine

MQTT

Core 0 Core 1

ACCMgmt

Kernel Space

User Space

Raspberry Pi

Core 0

Servo

Client

Mgmt

Kernel Space

User Space

Raspberry Pi

Core 0

MBL

Client

Mgmt

Kernel Space

User Space

Engine

Controller

Servo

Controller

M

M

QEMU PBX-A9

Core 1 Core 2

MBL

Adapter
Mgmt

Kernel Space

User Space

Core 0 Core 3

Servo

Adapter

Update

Figure 7.3: Update Case Setup Car and Workstation

Within the virtual environment, a quad-core system is simulated which executes the
developed operating system with the following configuration:

124

7.1 Scenario I: Reliable Autonomous Driving under Adaptation

Core Description

Core0 Executes the operating system with management components
Core1 Executes the application component which is subject to an update
Core2 Executes the network component for controlling the engine
Core3 Executes the network component for controlling the steering and braking

All cores are managed by fixed priority preemptive scheduling strategies. The update
process is controlled by the workstation via a testing script (see listing B.10) and a
corresponding task description (see listing B.11). Each update is done with a distinct
application version (i.e. varying input parameter). For example, the initial version of the
application calculates the number of Pi according to a given numeric argument (e.g. 2
decimal places). An update of this application is considered as changing this numeric
argument (e.g. increase it by one). Each application is allowed to finish its calculation
(i.e. no kill operation).

The resulting sequences on Core0 (colored in red) and Core1 (colored in blue) are
depicted in figure 7.4. This figure shows the following tasks:

FOC ID Component

907 Taskloader
961 Parser

1338 Monitor
1533 Schedule Controller (Controller)
1687 Dom0-HW (Network Communication)

>1761 Pi Application

An update is hereby periodically processed for the purpose of testing. As it can be
seen there is an interplay of relevant management components on Core0. The monitor
component itself periodically observes the system and serves as information provider for
the controller and the taskloader component. In general, deploying a task (i.e. updating)
can be seen as a pattern within the figure: Dom0-HW communicates with the taskloader
and the taskloader itself communicates with the controller. This represents exactly
the wanted system behavior. At 2.9e4ms the taskloader finally deploys the task into
the system and after 3.3e4ms the dom0-HW registers the exit state of the deployed
application. At 5.1e4ms the parser gets its information from the monitor component
and prepares this information for transferring. At the point 5.11e4ms, the taskloader
again deploys an application (i.e. updated version). Because the testing script triggers
a periodic update script, there is also the same system behavior identifiable over time.

This subsection has provided an update scenario, where an application component is
updated during run-time. Both scenarios which were covered in this section has given an
overview about the overall install and update capabilities of the developed system. The
next section therefore will outline a more in detail analysis about certain single steps
which are parts of the overall process.

125

7 Evaluation of the Flexible Task Management

Core	0
Core	1

T
h

re
ad

	I
D

907
961

1338

1899

2033

2168

2312

2456

Time	(ms)

0 5×104 105 1,5×105 2×105

Figure 7.4: Update of component on Core1 over time

7.2 Scenario II: Testing System Properties using Artificially
Generated Task Sets

This section will present the results for testing the operating system in an software-
in-the-loop like setting. The operating system, thus, is executed on a distinct control
unit which is connected to a workstation. Within this setup, artificially generated task
sets will be used to test the distinct system properties. First, the separation between
software components on a multi-core platform (cp. contribution 5a) will be investigated
in section 7.2.1. This is followed by of the co-existent scheduling approach in com-
bination with an optimization process for a robust execution (see section 7.2.2) that

126

7.2 Scenario II: Testing System Properties using Artificially Generated Task Sets

demonstrate the feasibility for contribution 5b and 5c. This section will be closed with
first timing measurements (cp. contribution 5d) about the distinct adaptation phases
(see section 7.2.3). The overall test setup for this scenario is outlined in Appendix B.

7.2.1 Support for the Separation of Software Components

One of the principal aims by using a multi-core based hardware platform in the context
of this thesis is to provide a certain separation of the adaptation control components
(i.e. management) from the application components (i.e. actual execution). A central
aspect which need to be investigated is therefore the interplay between the software
components across cores boundaries. The following tests are provided on a dual-core
system where the first core is labeled as Core0 and the second core as Core1.

Of course, separating different user-space components heavily depends on the resource
management capabilities which are provided by Fiasco.OC and Genode. The following
tests therefore focus on the interplay of user-space components by using services which
are directly provided by Genode (i.e. flexible task management components will be ex-
cluded). The first test utilizes a periodically waiting task, labeled as idle, executed on
Core1 which uses a timing service, labeled as timeout-scheduler, on Core0. The plot 7.5
depicts the interplay between both cores. The bars colored in blue represent the tim-
ing behavior of Core1, whereas bars in red are indicating the behavior of Core0. The
numbers which are labeled along the y-axis represent the process ids executed on each
core:

• entry-point: 263, 220, 13

• signal: 274, 231

• idle: 198, 191

• timeout-scheduler: 242

• core and system: 7, 9

The green boxes mark certain points where an interplay between the components takes
place. At first idle’s main thread (191), entry-point thread (263) and signal thread (274)
are created on Core0 and will be moved to Core1. This process is marked via the two
green boxes on the left side. If idle starts it’s execution, it continuously triggers a signal
(274) to wait for a certain amount of time. This signal is received by the entry-point
(220) of the timeout-scheduler component. This component starts its execution (242)
and exclusively utilizes the core for an amount of time which equals the waiting time of
idle. This circumstance is marked with the third green box. Due to the fact that idle is
waiting periodically, the remaining plot depicts exactly this repeating process. As a first
insight, there is a remarkable interplay between both cores. In a worst case scenario,
this interplay can lead to a over-utilization of Core0. As a next step, the condition under
which an interplay can be reduced needs to be investigated.

127

7 Evaluation of the Flexible Task Management

C
o

re	0
C

o
re	1

T
im

e	(m
s)

2501000
3535

3550
2,0325×10

4
3,5207×10

4
3,721×10

4
5,148×10

4
5,32×10

4

Thread	ID

7 139

220
231
242

263
274

F
ig

u
re

7
.5

:
P

lo
t

sh
ow

s
a

p
erio

d
ica

lly
ex

ecu
ted

ta
sk

o
n

C
o
re1

u
sin

g
a

tim
in

g
serv

ice
on

C
o
re0

128

7.2 Scenario II: Testing System Properties using Artificially Generated Task Sets

By disabling the usage of services from components executed on Core0, components
are no longer influencing the behavior of Core0 during their actual execution on Core1.
For this test, a long running task which calculates the fractional portion of the number
PI will be used. The actual calculation doesn’t depend on any services provided by the
components on Core0. Plot 7.6 shows the result of this test. Again, bars colored in blue
represent the timing behavior of Core1, whereas bars in red are indicating the behavior
of Core0. The numbers which are labeled along the y-axis represent the process ids
executed on each core:

• pi: 139, 146

• entry-point: 173, 84, 13

• signal: 184, 95

• system: 7

Similar to the first test, pi’s main thread (139), entry-point thread (173) and signal
thread (184) are create on Core0 and will be moved to Core1. This is also marked with
the two green boxes on the left-hand side of the plot. The green box located in the
middle of plot marks the time-span in which the calculation of PI’s fractional portion
takes place. Within this area, there is actually no computation on Core0 (i.e. idle).
After the calculation is done, there is a interchange of information via signaling. This
indicates that the remaining interplay is restricted to common management functionality.
The green box on the right-hand side indicates that even independent workloads are
possible.

So far, an interplay is still existent. It is possible, however, that a task on Core1
can be executed without any interference caused by components on Core0. The key
are the services which are used by a component and, maybe more important, where
these services are located. In general, there are two possibilities for the usage of ser-
vices. First, a component completely avoids the explicit usage of services for its own
computation. This could be a solution in cases where components are not related to any
input/output operations. Second, required services are bundled with the application on
the same core. This solution however depends on the modularity of the used system
where some components may fail if their dependent services are located on a different
core. Nevertheless, the second approach allows the design of a service hierarchy where
frequently used services can be located on the application core. Management services
however can be assigned to a central core. In this way an interplay between components
can be controlled and deferred. In the previous tests, Core0 embodies such a simple
management core which is used to get the application task (e.g. idle) up and running on
Core1. In further tests, the components of the flexible task management were therefore
added exclusively to Core0. Plot 7.7 shows this case where, beside the basic Genode
components, the following components are executed on Core0 :

• pi(1252)

129

7 Evaluation of the Flexible Task Management
C

o
re	0

C
o

re	1
Thread	ID

7 13 84 95

146

173

184

T
im

e	(m
s)

700
800

900
1000

1100
1200

1300
1400

1,676×10
5

1,6765×10
5

1,677×10
5

F
ig

u
re

7
.6

:
P

lo
t

sh
ow

s
a

ta
sk

ca
lcu

la
tin

g
P

I
o
n

C
o
re1

w
ith

o
u

t
u

sin
g

a
n
y

serv
ices

on
C

o
re0

130

7.2 Scenario II: Testing System Properties using Artificially Generated Task Sets

• dom0-server(1224,298)

• nic(1214,563)

• sync(511)

• sched-controller(458)

• parser(405)

• taskloader(351)

• utilization(245)

• mon-manager(193)

These component modules are used as described in chapter 6 and are responsible for
the deployment of new tasks which are received over the network. On the second core,
Core1, pi(1299), signal(1334), entry-point(1323) are executed as before. The components
are used to get task on Core1 up and running. From the point in time where the actual
calculation of pi takes place, there is no interruption from Core0 and vice versa. The
usage of the developed management components therefore doesn’t cause an additional
dependency.

In conclusion, this section has outlined the basic possibilities of separating the man-
agement components from the actual application components. To enable a separation
it is mandatory to clarify which dependencies between components executed on distinct
cores can be arise. The several tests have shown that there are principal interactions
depending on a component’s service usage. This usage however can be avoided to a
certain degree which allows an independent workload for each core. According to this,
flexible task management components were assigned to Core0. These tests are indepen-
dent from a coexistent scheduling approach and were therefore done by using a fixed
priority preemptive scheduling on both cores. The next section will cover the evaluation
of an overload avoidance support by using a coexistent scheduling approach.

7.2.2 Support for the Avoidance of Overload Situations

This section will demonstrate the support for the avoidance of overload situations which
will occur by an increasing workload on the system. As already known, an earliest
deadline first scheduler can benefit from this support. The optimizing process is therefore
executed for a set of earliest deadline first tasks. The test foresees that new tasks are
periodically added to the system to drive the system to an overload situation. The
optimizing mechanism shall circumvent this situation. Moreover, it is relevant how long
the optimizing process takes place. Thus, a first timing measurement of the overall
optimizing process will be given in the end.

The test configuration is based on a co-existent scheduling assignment (i.e. each core
is managed by an other scheduling strategy). In case of the used dual-core system:
Core0 is managed by a fixed priority preemptive scheduling strategy. Core1 is managed

131

7 Evaluation of the Flexible Task Management

C
o

re	1

Thread	ID1299

1334

C
o

re	0

Thread	ID193
245
298
351
405

1252

T
im

e	(m
s)

0
5×10

4
10

5
1,5×10

5
2×10

5

F
ig

u
re

7
.7

:
P

lot
sh

ow
s

a
ta

sk
ca

lcu
la

tin
g

P
I

o
n

C
o
re1

w
ith

m
a
n

a
g
em

en
t

co
m

p
o
n

en
ts

ru
n

n
in

g
on

C
o
re0

132

7.2 Scenario II: Testing System Properties using Artificially Generated Task Sets

by an earliest deadline first scheduling strategy. The used optimizer (i.e. Sched opt) is
used to optimize the tasks on Core1 and uses the utilization as its decision function.
Plot 7.8 shows the overall run of Core1. In general, it can be seen that the system
constantly executes between two or three tasks simultaneously although the number
of tasks increase over time. Tests without the optimizer, in contrast, showed that the
system is getting overloaded with a task set between four and five tasks. With an active
optimization the number of deployed tasks can be doubled. In result, there are eight
tasks which can be executed on the core. The graph depicted in the bottom third of the
plot indicates the distribution of tasks which could not be scheduled at a certain point
in time. Additionally, the dots in the middle of the plot shows the point in time where a
task was not allowed to be scheduled. In principal, the optimizer drops each task which
causes a deadline miss. Of course this extreme optimization can lead to situations where
six tasks are not allowed to be scheduled. The system, however, stays in a responsive
state.

Optimizing processes can be very expensive and especially in the context of embedded
systems, an adequate timing under the given resource constraints can be a challenge.
The following timings could be measured during a single optimization step:

• Minimum: 27 ms

• Average: 109 ms

• Maximum: 376 ms

In relation to the remaining steps which are required for the deployment of a task via
the network, these timings are only a fraction of which can be seen in figure 7.9. Over
half of the required time is related to the network, namely sending the task description
and the task binaries.

To sum it up, this section demonstrates that a potential overload situation can be
avoided by the realized optimizing mechanism. Some situations however prevent schedul-
ing up to six tasks. Though this guarantees a robust system execution but can be im-
proved. Considering the required time of a single optimization step, it can be seen that
even in the context of an embedded system this can be in an acceptable dimension,
especially in comparison to the other steps which are required to deploy a task on the
system. With this section, also the co-existent scheduling approach can be successfully
demonstrated. The timing measurements are exclusively done for the optimizing step.
In the next section thus the timing analysis for a acceptance test will be provided.

7.2.3 Support for Update Induced Dynamic Task Set Changes

For the test results provided in this section, each core of the dual-core system are man-
aged by a fixed priority preemptive scheduling strategy. Due to the fact that tasks with
a period will be deployed within this setup, the controller automatically chooses the
acceptance test rather than the optimization method. The acceptance test is hereby re-
alized as a combination of the response-time analysis and a sufficient test. The timings

133

7 Evaluation of the Flexible Task Management

in
sert

in
sert

in
sert

in
sert

in
sert

in
sert

in
sert

in
sert

Simultaneously
Executed	Threads

Points	in	Time
of	Disabling

Threads

Number	of
Denied	Threads0

T
im

e	(m
s)

5×10
4

10
5

1,5×10
5

2×10
5

2,5×10
5

F
ig

u
re

7
.8

:
H

isto
g
ra

m
V

iew
o
f

o
p

tim
izin

g
p

ro
cess

134

7.2 Scenario II: Testing System Properties using Artificially Generated Task Sets

57.82%

Send Descriptions [1735 ms]

24.79%

Send Binaries [744 ms]

10.47%

Destruction [314 ms]

3.29%

Start [99 ms]

3.62%
Optimizer [109 ms]

Figure 7.9: Piechart of average timing demands of several execution steps

for an acceptance test with a response-time analysis in contrast to the remaining steps
needed for the deployment of a task can be seen in figure 7.10. Again, the time required
for the analysis itself (RTA Analysis) is small in comparison to the other steps. The
steps for sending the task description and the task binaries require the majority of the
time. These are single steps of one deployment process.

60.25%

Send Descriptions [1848 ms]

20.77%

Send Binaries [637 ms]

12.64%

Destruction [388 ms]

5.46%

Start [167.5 ms]

0.86% RTA Analysis [26.28 ms]

Figure 7.10: Piechart of average timing demands of several steps during execution

The figure 7.11 presents the timings of certain deployment processes, all for different
applications. The measurement starts after the system connects to the workstation
and is terminated after the first acknowledgment of the system (i.e. exit event if task
terminates). The dark blue bar time since desc shows the duration it takes from the
first connect until the description was send. In contrast, the light blue bar (push profile)
shows the duration of the overall deployment process on the system. It describes the

135

7 Evaluation of the Flexible Task Management

time between the start of the task and the response of the system to the workstation.
Again, the actual time spent for the execution of the deployment of a given task into
the system is by far smaller than it takes to send the description.

tumatmul pi namaste linpack hey cond-modcond-42

1,500

2,000

2,500

3,000
2,844

2,958

2,043

2,943

2,697

2,855

3,062

1,646

2,126

1,396

2,015

1,669

1,839

1,950

ti
m

e
[m

s]

time since desc send push profile

Figure 7.11: Timing measurements of different applications

Within this section more timing related measurements were given. The focus hereby
relies on the acceptance test rather than the optimizer. Furthermore, the overall tim-
ing of a single deployment process as well as a number of deployment processes were
provided. It can be seen, that the network related steps always require a great amount
of time of the deployment process. This section closes the evaluation tests considering
an artificial task set. In the following section, the evaluation results should provide a
possible usage of the invented approach in an automotive environment.

Conclusion

This chapter has described first evaluation results of the realized flexible task manage-
ment approach. It therefore has provided two use-case scenarios in where the operating
system is executed. Several contributions regarding isolation, timing and optimizing
where done in the standalone scenario. A principal applicability in an automotive con-
text was provided by the autonomous driving scenario. Following this, the next chapter
will provide an overall conclusion about the thesis and will point out possible future
improvements.

136

8 Conclusion

This chapter will describe the relations between the research questions, contributions,
and the respective chapters in summary. The focus here relies on answering the initial
research questions considering the contributions and the thesis chapters. The ordering
within this chapter conforms to the ordering of the research questions. As a result, final
remarks will be given in this chapter. Open points for future development however will
be subject to chapter 9.

Resource Partitioning

Automotive trends lead to a consolidation of hardware units which may result in sys-
tems where software with different criticality classifications are executed. An important
aspect of such mixed-critical systems is the partitioning of available resources between
the software. On the other side, a flexible management of resource is needed for future
connected cars. A partitioning approach needs to be found which is capable of separat-
ing both software with different criticality levels and the management from the actual
execution.

The approach which is contributed (cp. contribution 1c) by this work in general
foresees the usage of a multi-core platform where each core is managed by a separate
scheduling strategy (i.e. co-existent scheduling).

Research Question 1 The separation between applications and adaptation manage-
ment was addressed by the proposed architecture design (cp. contribution 2a) in chap-
ter 4. A possible allocation of software components to the multi-core hardware platform
considering this separation was discussed in section 4.3.1. The provided evaluation re-
sults (cp. contribution 5a) of both automotive scenarios in section 7.1.1 and section 7.1.2
have demonstrated the successful partitioning of applications and adaptation manage-
ment.

Research Question 2 The critical aware allocation of an application during run-time
was again addressed by the proposed architecture desgin (cp. contribution 2a) in chap-
ter 4. A concept for the critical-aware allocation of applications was described in sec-
tion 4.3.2. With this concept, a new dispatching mechanism as part of an integration
framework (cp. contribution 3c) was designed in section 5.2.1. The evaluation results
in chapter 7 have demonstrated, that an allocation according to the criticality of an
application can be used to assign it to a corresponding scheduler.

137

8 Conclusion

In general, The final tests in chapter 7 shows that the architecture and the implemen-
tation are able to handle the separation and that the usage of co-existent scheduling
strategies is feasible. A complete separation, however, has not been achieved so far due
to certain reasons. A main concern are the services which are provided by software
components on one core and are used by software components (i.e. application) of an-
other core. The dependencies between the components, indeed, can be reduced but not
avoided. A management of cores by co-existent scheduling strategies however can be
proofed without restrictions. If a scheduling strategy corresponds to a set of tasks with
a certain criticality classification, even the execution of mixed-critical systems is possi-
ble. But, due to the dependencies between the cores, a restriction is that the cores have
to be the same criticality. As an alternative, a high-critical core is allowed to manage a
low-critical core. These variants were successfully tested in chapter 7.

Adaptation Control

Following the trend of hardware consolidation, the integration of a flexible task manage-
ment along the actual application on the same device is reasonable. This thesis therefore
contributes to a concept which allows such a system configuration. Related to the con-
text of mixed-critical systems, an unconditional system adaptation through the flexible
task management needs to be avoided. Controlling the adaptation and guaranteeing
certain aspects about the system’s behavior is therefore a matter of interest.

Research Question 3 Integrating an adaptation control on top of an operating system
was considered in the overall architecture design which was presented in section 4.1 and
section 4.2 following the contribution 2b. At first, relevant software components form-
ing the flexible task management are identified and designed. Additionally, chapter 4
evaluates several design possibilities how the main components of the flexible task man-
agement can be integrated in the system on the same device. Moreover, it was important
to find a representation of the underlying kernel space and an extended application model
(cf. contribution 3b) which was presented in section 5.1. Both aspects were considered
in the later implementation of the software components (cf. contribution 4b).

Research Question 4 For designing a concrete adaptation process which supports dy-
namic mixed-criticality workloads, concrete workflows for the adaptation process were
identified (cf. contribution 3a) in section 4.4. These workflows are used to identify po-
tential data and control flows to clarify in which operational states a system could be
(see chapter 4). This information is used to design an adaptation process which can be
done during the operation of a system (see chapter 5). The actual adaptation process
is based on a run-time integration framework (cf. contribution 3c) which combines the
dispatching, admission and synchronization steps in one consistent process. This frame-
work was described in section 5.2. The concrete mechanisms were identified and realized
in chapter 5 and chapter 6 respectively. Two case studies were provided in chapter 7
which show the the basic functionality of the implemented control mechanism by using
an automotive installation and update scenario.

138

Research Question 5 A concrete control mechanism that is able to keep a robust sys-
tem execution was developed as part of the run-time integration framework (cf. 3c). In
the concrete case an optimization process for avoiding overload situations was developed
in section 5.2.3. The possible self-optimization (cf. contribution 5c) was successfully
evaluated in section 7.2.2.

Finally, within the thesis relevant software components for realizing a flexible task
management could be identified. With the realization of the task management, an adap-
tation during system’s operation can be demonstrated. The flexible task management
and the applications can be integrated on the same device whereas the realization is
following the outlined architecture approach. In combination with restrictions in the
separation of components, the thesis proposes a central management core where the
flexible task management is executed. Additionally, chapter 6 already provides some
limitations of the current implementation.

Resource Usage and Overhead

In the area of embedded systems, a provided solution needs to deal with resource con-
straints. Related to this context, this thesis contributes to the investigation of efficient
adaptation mechanisms (i.e.low overhead and resource consumption) applicable to this
area.

Research Question 6 Investigating in the overall timing behavior of the provided adap-
tation process (cf. contribution 5d), the evaluation results that were presented in sec-
tion 7.2.3 has proven that the proposed approach introduces an acceptable timing over-
head in contrast to other stages of the adaptation process (see chapter 7). Moreover, the
core decision making provided by this approach is rather efficient even in the context of
an embedded system. The overall contributions show, that an application of self-x capa-
ble decision making algorithms directly on the embedded device is feasible. Of course,
there is an overhead but it is minimal in comparison to other steps of the deployment
process. Moreover, guarantees of a reliable system execution can be shown by using the
developed self-optimizing approach. Although the first tests are promising, the timing
requirements heavily depend on the number of to be tested tasks.

To sum it up, this chapter has concluded the research question and the contributions
made by this thesis. For each contribution, related chapters were mentioned and final
remarks were given. There are still open aspects which will be covered in the next
chapter.

139

9 Future Work

The final remarks given in chapter 8 provide a starting point for a future development of
the proposed solution. There are several directions in which the system can be evolved.

Resource Partitioning In general, the main focus of this thesis relies on the manage-
ment of cores (i.e. scheduling). A resource partitioning however also needs to consider
the available memory resources of a system. A possible extension of the developed
approach is to modify the outlined adaptation management in this direction. In the
concrete case, the information gathering and the decision making process need to be
extended. Related to this, a partial separation is provided within this thesis. Investigat-
ing in hardware architectures with multi-processor configuration could solve the shared
memory (i.e. caches) problem. On the other side, transforming the micro-kernel based
approach to an exo-kernel allows to decouple the components further. The deployed
applications are meant to be independent from other tasks to provide their calculations.
In an automotive system however several functions are bundled together to realize a dis-
tinct application. The communication and synchronization between these tasks needs
to be investigated. In addition, the provided approach lacks a safety certification which
would be required for the application in future vehicles.

Adaptation Control Considering the current implementation of the adaptation control
mechanism, there are several open points for future work. Like the developed con-
trolling component, the synchronization component needs to be enhanced by adequate
algorithms to realize an intelligent decision, when user-space and kernel-space can be
synchronized. In general, the adaptation of the kernel-space from the user-space embod-
ies some challenges. In the long run, an user-space scheduling could be feasible where the
micro-kernel is then solely responsible for messaging and capability management. This
would reduce the complexity further and allows the reinforcement as a trusted comput-
ing base. As a central point hereby would be an efficient representation of a kernel-space
state in user-space. The so far provided algorithms for realizing a self-optimizing system
are a first step in this direction. Further paradigms and algorithms however need to be
applied.

Resource Usage and Overhead By getting more and more powerful embedded systems,
new opportunities for the deployment and management of applications arise. Applica-
tions used in this thesis contained one single threaded task. An extension however could
be to deploy container-like compartments which host complete systems like Android or
Linux. The usage scenarios would be similar to data-centers. Furthermore, more pow-
erful co-processor configuration and thus algorithms could be developed for this class of

141

9 Future Work

devices. This leads to a possible extension where the management core is a co-processor
or the decision making algorithms are bound to a single special-purpose processor. In
general, the provided architecture approach could be enhanced to utilize such hardware
configurations leading to a further reduction of potential overhead.

142

A Code Listings

A.1 Source Code

1 void Plat form thread : : f i n a l i z e c o n s t r u c t i o n (const char ∗name)
2 {
3 i f (d l >0)
4 {
5 p r i o =0;
6 params = l4 sched param by type (Deadline , d l , 0) ;
7 }
8 e l s e i f (p r i o >0)
9 {

10 params = l4 sched param by type (Fixed pr io , p r i o , 0) ;
11 }
12 e l s e {
13 PWRN(”wrong schedu l ing type pr i o :%d dead l ine :%d” , pr i o , d l) ;
14 re turn ;
15 }
16
17 l 4 s ch edu l e r r un th r e ad (L4 BASE SCHEDULER CAP, thread . l o c a l . data ←↩

()−>kcap () ,
18 ¶ms) ;
19 }

Listing A.1: example of using the created scheduling context in user-space

1 l 4 s ch edu l e r r un th r e ad u (l 4 c a p i d x t scheduler , l 4 c a p i d x t ←↩
thread ,

2 l4 sched param t const ∗sp , l 4 u t c b t ∗utcb) L4NOTHROW
3 {
4 l 4 msg r e g s t ∗m = l4 utcb mr u (utcb) ;
5 m−>mr [0] = L4 SCHEDULER RUN THREAD OP;
6 m−>mr [1] = (sp−>a f f i n i t y . g r anu l a r i t y << 24) | sp−>a f f i n i t y . o f f s e t ←↩

;
7 m−>mr [2] = sp−>a f f i n i t y .map ;
8 m−>mr [3] = sp−>pr i o ;
9 m−>mr [4] = sp−>quantum ;

10 m−>mr [5] = sp−>dead l ine ; /∗ Own work ∗/
11 m−>mr [6] = l 4 map ob j con t r o l (0 , 0) ;
12 m−>mr [7] = l 4 o b j f p a g e (thread , 0 , L4 FPAGE RWX) . raw ;
13 re turn l 4 i p c c a l l (schedu ler , utcb , l4 msgtag (L4 PROTO SCHEDULER, ←↩

6 , 1 , 0) , L4 IPC NEVER) ;

143

A Code Listings

14 }

Listing A.2: scheduler interface for running a thread

1 Scheduler : : sy s run (L4 fpage : : Rights , Sy s c a l l f r ame ∗ f , Utcb const ∗ ←↩
iutcb , Utcb ∗outcb)

2 {
3 /∗ ed f thread ∗/
4 i f (iutcb−>va lue s [5] > 0)
5 {
6 L4 sched param deadl ine sched p ;
7 sched p . s c h ed c l a s s = −3;
8 /∗ Add dead l ine to a r r i v a l time ∗/
9 sched p . dead l ine = (iutcb−>va lue s [5]) +(outcb−>va lue s [1]) ;

10 thread−>s ched context ()−>s e t (s t a t i c c a s t <L4 sched param∗>(& ←↩
sched p)) ;

11 sched param = r e i n t e r p r e t c a s t<L4 sched param const ∗>(&sched p ←↩
) ;

12 i n f o . sp=sched param ;
13 }
14 e l s e
15 {
16 /∗ fp thread ∗/
17 i f (iutcb−>va lue s [3] > 0)
18 {
19 L4 sched param f ixed pr i o sched p ;
20 sched p . s c h ed c l a s s = −1;
21 sched p . p r i o = iutcb−>va lue s [3] ;
22 thread−>s ched context ()−>s e t (s t a t i c c a s t <L4 sched param∗>(& ←↩

sched p)) ;
23 sched param = r e i n t e r p r e t c a s t<L4 sched param const ∗>(&sched p ←↩

) ;
24 i n f o . sp=sched param ;
25 }
26 }

Listing A.3: run function of scheduler in Fiasco.OC

1 Sched context : : s e t (L4 sched param const ∗ p)
2 {
3 switch (p−>p . s c h ed c l a s s)
4 {
5
6 case L4 sched param deadl ine : : Class :
7 i f (p−>dead l ine . dead l ine == 0)
8 return −L4 er r : : EInval ;
9 t = Deadl ine ;

10 s c . ed f . p = 0 ;
11 s c . ed f . d l = p−>dead l ine . dead l ine ;
12 s c . ed f . q = Config : : D e f a u l t t im e s l i c e ;
13

144

A.1 Source Code

14 break ;
15
16 case L4 sched param f ixed pr i o : : Class :
17 t = Fixed pr i o ;
18
19 s c . fp . p = p−>f i x e d p r i o . p r i o ;
20 i f (p−>f i x e d p r i o . p r i o > 255)
21 s c . fp . p = 255 ;
22
23 i f (p−>f i x e d p r i o . quantum == 0)
24 s c . fp . q = Config : : D e f a u l t t im e s l i c e ;
25 e l s e
26 s c . fp . q = p−>f i x e d p r i o . quantum ;
27
28 break ;
29
30 d e f au l t :
31 re turn L4 er r : : ERange ;
32 } ;
33 re turn 0 ;
34 }

Listing A.4: set function in scheduling context

1 L4 INLINE l4 msgtag t
2 l 4 t h r e a d s t a t s t im e (l 4 c a p i d x t thread) L4NOTHROW
3 {
4 return l 4 t h r e a d s t a t s t im e u (thread , l 4 u t cb ()) ;
5 }

Listing A.5: Entry point for user-space interface in Fiasco.OC

1 L4 INLINE l4 msgtag t
2 l 4 t h r e a d s t a t s t im e u (l 4 c a p i d x t thread , l 4 u t c b t ∗utcb) ←↩

L4NOTHROW
3 {
4 l 4 msg r e g s t ∗v = l4 utcb mr u (utcb) ;
5 v−>mr [0] = L4 THREAD STATS OP;
6 return l 4 i p c c a l l (thread , utcb , l4 msgtag (L4 PROTO THREAD, 1 , 0 , ←↩

0) , L4 IPC NEVER) ;
7 }

Listing A.6: The internal thread stats time function

1 Thread object : : invoke (L4 ob j r e f /∗ s e l f ∗/ , L4 fpage : : Rights r i gh t s , ←↩
Sy s ca l l f r ame ∗ f , Utcb ∗utcb)

2 {
3 switch (utcb−>va lue s [0] & Opcode mask)
4 {

145

A Code Listings

5 case Op stats :
6 f−>tag (s y s t h r e a d s t a t s (f−>tag () , utcb)) ;
7 re turn ;
8 }
9 }

Listing A.7: invoke method of Thread object

1 Thread object : : s y s t h r e a d s t a t s (L4 msg tag const &/∗ tag ∗/ , Utcb ∗ ←↩
utcb)

2 {
3 Clock : : Time value ;
4 Clock : : Time pe r i od ;
5 Clock : : Time s t a r t ;
6 Clock : : Time dead ;
7 Clock : : Time t ime ;
8
9 i f (home cpu () != current cpu ())

10 drq (hand l e sy s th r ead s t a t s r emot e , &value , Drq : : Any ctxt) ;
11 e l s e
12 {
13 // Respect the f a c t that the consumed time i s only updated on ←↩

context switch
14 i f (t h i s == current ())
15 update consumed time () ;
16 value = consumed time () ;
17 pe r i od = per iod () ;
18 s t a r t = s t a r t t ime () ;
19 dead = get dead t ime () ;
20 t ime = get t ime () ;
21 }
22
23 utcb−>va lue s [0]= value ;
24 utcb−>va lue s [1]= pe r i od ;
25 utcb−>va lue s [2]= s t a r t ;
26 utcb−>va lue s [3]= dead ;
27 utcb−>va lue s [4]= t ime ;
28 // p r i n t f (”% lu %lu %lu %lu %lu \n” , utcb−>va lue s [0] , utcb−>va lue s [1] , ←↩

utcb−>va lue s [2] , utcb−>va lue s [3] , utcb−>va lue s [4]) ;
29
30 return commit resu l t (0 , 5) ; //Utcb : : Time val : : Words) ;
31 }

Listing A.8: central function to get timing-related information about a thread

1 c l a s s Context :
2 pub l i c Context base ,
3 protec ted Rcu item
4 {
5 pub l i c :
6 Cpu time consumed time () ;

146

A.1 Source Code

7 Cpu time s t a r t t ime () ;
8 void s e t dead t ime (Clock : : Time dead) ;
9 Cpu time get dead t ime () ;

10 Cpu time get t ime () ;
11 } ;
12 Unsigned64
13 Context : : per iod () const
14 {
15 return pe r i od ;
16 }

Listing A.9: Base class of scheduling context with relevant timing attributes

1 L4 INLINE l4 msgtag t
2 l 4 s ch edu l e r d ep l o y th r e ad (l 4 c a p i d x t scheduler ,
3 i n t ∗ thread) L4NOTHROW
4 {
5 return l 4 s ch edu l e r d ep l o y th r e ad u (scheduler , thread , l 4 u t cb ()) ←↩

;
6 }

Listing A.10: interface function called from user-space component

1 enum L4 schedu l e r ops
2 {
3 L4 SCHEDULER INFO OP = 0UL, /∗∗< Query i n f o s about the ←↩

s chedu l e r ∗/
4 L4 SCHEDULER RUN THREAD OP = 1UL, /∗∗< Run a thread on t h i s ←↩

s chedu l e r ∗/
5 L4 SCHEDULER IDLE TIME OP = 2UL, /∗∗< Query i d l e time f o r the ←↩

s chedu l e r ∗/
6 L4 SCHEDULER DEPLOY THREAD OP = 3UL, /∗∗< Query i d l e time f o r ←↩

the s chedu l e r ∗/
7 L4 GET RQS = 4UL,
8 L4 GET DEAD = 5UL,
9 } ;

Listing A.11: Additional operation for deploying threads

1 L4 INLINE l4 msgtag t
2 l 4 s ch edu l e r d ep l o y th r e ad u (l 4 c a p i d x t scheduler , i n t ∗ thread , ←↩

l 4 u t c b t ∗utcb) L4NOTHROW
3 {
4 l 4 msg r e g s t ∗m = l4 utcb mr u (utcb) ;
5 m−>mr [0] = L4 SCHEDULER DEPLOY THREAD OP;
6 m−>mr[1]= thread [0] ;
7 m−>mr[2]= thread [1] ;
8 f o r (i n t i = 1 ; i < thread [0]+1 ; i++){
9 m−>mr[2∗ i +1] = thread [2∗ i] ;

147

A Code Listings

10 m−>mr[2∗ i +2] = thread [2∗ i +1] ;
11 }
12 return l 4 i p c c a l l (schedu ler , utcb , l4 msgtag (L4 PROTO SCHEDULER, ←↩

(2∗ thread [0]) +3, 1 , 0) , L4 IPC NEVER) ;
13 }

Listing A.12: internal interface function for thread deployment

1 c l a s s Scheduler : pub l i c Icu h<Scheduler >, pub l i c I r q c h i p s o f t
2 {
3 pub l i c :
4 enum Operation
5 {
6 In f o = 0 ,
7 Run thread = 1 ,
8 I d l e t ime = 2 ,
9 Deploy thread = 3 ,

10 Get rqs = 4 ,
11 Get dead = 5 ,
12 } ;
13 } ;

Listing A.13: Internal options within scheduler object

1 PUBLIC
2 L4 msg tag
3 Scheduler : : kinvoke (L4 ob j r e f r e f , L4 fpage : : Rights r i gh t s , ←↩

Sy s ca l l f r ame ∗ f ,
4 Utcb const ∗ iutcb , Utcb ∗outcb)
5 {
6 switch (iutcb−>va lue s [0])
7 {
8 case In f o : r e turn s y s i n f o (r i gh t s , f , iutcb , outcb) ;
9 case Run thread : re turn sys run (r i gh t s , f , iutcb , outcb) ;

10 case I d l e t ime : re turn s y s i d l e t im e (r i gh t s , f , outcb) ;
11 case Deploy thread : re turn sy s dep l oy th r ead (r i gh t s , f , i u t cb) ;
12 case Get rqs : r e turn s y s g e t r q s (r i gh t s , f , iutcb , outcb) ;
13 case Get dead : re turn sy s ge t dead (r i gh t s , f , outcb) ;
14 d e f au l t : r e turn commit resu l t (−L4 er r : : ENosys) ;
15 }
16 }

Listing A.14: kinvoke method with switch statement for different operations

1 PRIVATE
2 L4 msg tag
3 Scheduler : : s y s dep l oy th r ead (L4 fpage : : Rights , Sy s c a l l f r ame ∗ f , ←↩

Utcb const ∗utcb) //gmc
4 {

148

A.1 Source Code

5 L4 msg tag const tag = f−>tag () ;
6
7 Sched context : : Ready queue &rq = Sched context : : rq . cur r ent () ;
8
9 i n t l i s t [(i n t) tag . words () −1];

10 l i s t [0]=((i n t) tag . words ()−3) /2 ;
11
12 f o r (i n t i = 1 ; i < tag . words () −1; i++){
13 l i s t [i]=utcb−>va lue s [i +1] ;
14 }
15
16 rq . swi tch ready queue (& l i s t [0]) ;
17
18 return commit resu l t (0) ;
19 }

Listing A.15: Deploy thread function within the scheduler object

1 bool swi tch ready queue (i n t ∗ i n f o) //gmc
2 {
3 return sw i t ch rq (i n f o) ;
4 }

Listing A.16: Wrapper function for the actual switch rq function within
Ready queue base class

1 IMPLEMENT
2 bool
3 Sched context : : Ready queue base : : sw i t ch rq (i n t ∗ i n f o) //gmc
4 {
5 i f (i n f o [1]==0)
6 return f p rq . sw i t ch rq (i n f o) ;
7 e l s e
8 re turn ed f r q . sw i t ch rq (i n f o) ;
9 }

Listing A.17: Actual switch rq functio in Ready queue base

1 c l a s s Ready queue fp
2 {
3 pub l i c :
4 bool sw i t ch rq (i n t ∗ i n f o) {
5 f o r (i n t i =0; i<ordered ; i++)
6 {
7 // p r i n t f (” enqueue %d\n” , Kobject dbg : : o b j t o i d (o rde r ed cont ex t s ←↩

[i])) ;
8 requeue (o rde r ed cont ex t s [i]) ;
9 }

10 return true ;

149

A Code Listings

11 }

Listing A.18: Concrete implementation of switch rq by reusing Fiaso.OCs internal
queuing methods

1 i n t Dom0 server : : connect ()
2 {
3 s o c k l e n t l en = s i z e o f (t a r g e t add r) ;
4 t a r g e t s o c k e t = lw ip accep t (l i s t e n s o c k e t , & ta rge t addr , &len) ←↩

;
5 i f (t a r g e t s o c k e t < 0)
6 {
7 PWRN(” Inva l i d socket from accept ! ”) ;
8 re turn t a r g e t s o c k e t ;
9 }

10 = sockaddr in ∗ t a r g e t i n add r = (sockaddr in ∗)& ta r g e t add r ;
11 PINF(”Got connect ion from %s” , i n e t n t oa (t a r g e t i n add r)) ;
12 re turn t a r g e t s o c k e t ;
13 }

Listing A.19: genode-dom0-hw/server.cc connect

1 void Dom0 server : : s e rve ()
2 {
3 whi l e (t rue)
4 {
5 i f (message == SEND DESCS) { . . . }
6 e l s e i f (message == SEND BINARIES) { . . . }
7 e l s e { . . . }
8 }
9 }

Listing A.20: genode-dom0-hw/server.cc

1 s t r u c t Mon i to r ing ob j ec t
2 {
3 Genode : : S e s s i o n l a b e l s e s s i o n l a b e l ;
4 Genode : : Trace : : Thread name thread name ;
5 Genode : : Trace : : Po l i c y i d p o l i c y i d ;
6 Genode : : Trace : : Execut ion t ime execut i on t ime ;
7 unsigned pr i o ;
8 unsigned id ;
9 unsigned f o c i d ;

10 s i z e t ram quota ;
11 s i z e t ram used ;
12 Genode : : Trace : : CPU info : : State s t a t e ;
13 Genode : : A f f i n i t y : : Locat ion a f f i n i t y ;
14 unsigned long long s t a r t t ime ;
15 unsigned long long a r r i v a l t im e ;

150

A.1 Source Code

16 unsigned long long ex i t t ime ;
17 } ;

Listing A.21: central element of information gathering - the monitoring object

1 s i z e t Mon manager : : update in f o (Genode : : Data space capab i l i t y ←↩
mon ds cap)

2 {
3 num threads=100;
4 Mon i to r ing ob j ec t ∗ threads = Genode : : env ()−>rm se s s i on ()−>attach (←↩

mon ds cap) ;
5 s t a t i c Genode : : Trace : : Connection t r a c e (1024∗4096 , 64∗4096 , 0) ;
6 Genode : : Trace : : Sub j e c t i d sub j e c t s [num threads] ;
7 s i z e t num subjects = t ra c e . s ub j e c t s (sub j e c t s , num threads) ;
8 f o r (s i z e t i = 0 ; i < num subjects ; i++) {
9 Genode : : Trace : : CPU info cpu in f o = t ra c e . cpu in f o (s ub j e c t s [i]) ;

10 Genode : : Trace : : RAM info ram info = t ra c e . ram info (s ub j e c t s [i]) ;
11 threads [i] . s e s s i o n l a b e l=ram info . s e s s i o n l a b e l () ;
12 threads [i] . thread name=ram info . thread name () ;
13 threads [i] . p r i o=cpu in f o . p r i o () ;
14 threads [i] . execut i on t ime=cpu in f o . execut i on t ime () ;
15 threads [i] . id=cpu in f o . id () ;
16 threads [i] . f o c i d=cpu in f o . f o c i d () ;
17 threads [i] . ram used=ram info . ram used () ;
18 }
19 return num subjects ;
20 }

Listing A.22: main routine of mon manager for getting system information (shortened)

1 CPU info Sess ion component : : cpu in f o (Sub j e c t i d s ub j e c t i d)
2 {
3 return s ub j e c t s . l ookup by id (s u b j e c t i d)−>i n f o cpu () ;
4
5 }

Listing A.23: Implementation of cpu info

1 c l a s s Genode : : Trace : : Subject
2 {
3 pub l i c :
4 CPU info in f o cpu ()
5 {
6 Execut ion t ime execut i on t ime ;
7 {
8 i f (source . v a l i d ()) {
9 Trace : : Source : : I n f o const i n f o = source−>i n f o () ;

10 execut i on t ime = in f o . execut i on t ime ;
11 }

151

A Code Listings

12 }
13 CPU info i n f o= CPU info (s t a t e () , p o l i c y i d ,
14 execut ion t ime , a f f i n i t y , s t a r t t ime , ←↩

a r r i v a l t ime , k i l l t im e , pr io , id , f o c i d ←↩
, pos rq

15) ;
16 re turn i n f o ;
17 }
18 } ;

Listing A.24: Implementation of info cpu

1 c l a s s Genode : : Trace : : Source
2 {
3 pub l i c :
4 In f o const i n f o () const
5 {
6
7 In f o i n f o ;
8 Dynamic Info dyn= i n f o . dynamic in fo () ;
9 S t a t i c I n f o s t a t= i n f o . s t a t i c i n f o () ;

10 i n f o . execut i on t ime=dyn . execut i on t ime ;
11 re turn i n f o ;
12 }
13 } ;

Listing A.25: Implementation of basic info function

1 c l a s s Genode : : Cpu thread component : pub l i c Rpc object<Cpu thread>,
2 pub l i c L i s t< ←↩

Cpu thread component > : : ←↩
Element ,

3 pub l i c Trace : : Source : : ←↩
I n f o a c c e s s o r

4 {
5 p r i va t e :
6 Plat form thread p la t f o rm thread ;
7 pub l i c :
8 Trace : : Source : : Dynamic Info dynamic in fo () const
9 {

10 re turn { p la t f o rm thread . execut i on t ime () ,
11 p l a t f o rm thread . a f f i n i t y () ,
12 p l a t f o rm thread . s t a r t t ime () ,
13 p l a t f o rm thread . a r r i v a l t im e () ,
14 p l a t f o rm thread . k i l l t i m e () ,
15 p l a t f o rm thread . p r i o () } ;
16 }
17 } ;

Listing A.26: Implementation of dynamic info function

152

A.1 Source Code

1 Genode : : Ram dataspace capabi l i ty Parse r se s s ion component : : ←↩
l i v e d a t a ()

2 {
3 mon ds cap = Genode : : env ()−>ram ses s i on ()−>a l l o c (100∗ s i z e o f (←↩

Mon manager : : Mon i to r ing ob j ec t)) ;
4 Mon manager : : Mon i to r ing ob j ec t ∗ threads=Genode : : env ()−>rm se s s i on ←↩

()−>attach (mon ds cap) ;
5 dead ds cap = Genode : : env ()−>ram ses s i on ()−>a l l o c (256∗ s i z e o f (long ←↩

long unsigned)) ;
6 long long unsigned ∗ r i p=Genode : : env ()−>rm se s s i on ()−>attach (←↩

dead ds cap) ;
7 s i z e t num subjects= mon manager . update in f o (mon ds cap) ;
8
9 Genode : : Xml generator xml (l i v e d a t a . l o ca l addr<char>() , ←↩

l i v e d a t a . s i z e () , ” l i v e ” , [&] ()
10 {
11 xml . node (” task−d e s c r i p t i o n s ” , [&] ()
12 {
13 f o r (i n t j = 0 ; j < 1 ; j++) {
14 f o r (s i z e t i = 0 ; i < num subjects ; i++) {
15 xml . node (” task ” , [&] ()
16 {
17 xml . a t t r i b u t e (” id ” , std : : t o s t r i n g (threads [i] . id) . ←↩

c s t r ()) ;
18 xml . a t t r i b u t e (” f o c i d ” , std : : t o s t r i n g (threads [i] . f o c i d) . ←↩

c s t r ()) ;
19 xml . a t t r i b u t e (” execut ion−time” , std : : t o s t r i n g (threads [i] . ←↩

execut i on t ime . va lue /1000) . c s t r ()) ;
20 xml . a t t r i b u t e (” p r i o r i t y ” , std : : t o s t r i n g (threads [i] . ←↩

pr i o) . c s t r ()) ;
21 xml . a t t r i b u t e (” core ” , std : : t o s t r i n g (threads [i] . a f f i n i t y . xpos ←↩

()) . c s t r ()) ;
22 xml . a t t r i b u t e (” po l i cy−id ” , s td : : t o s t r i n g (threads [i] . ←↩

p o l i c y i d . id) . c s t r ()) ;
23 xml . a t t r i b u t e (” s t a t e ” , std : : t o s t r i n g (threads [i] . s t a t e) . c s t r ←↩

()) ;
24 xml . a t t r i b u t e (” a r r i v a l−time” , std : : t o s t r i n g (threads [i] . ←↩

a r r i v a l t im e /1000) . c s t r ()) ;
25 xml . a t t r i b u t e (” s ta r t−time” , std : : t o s t r i n g (threads [i] . ←↩

s t a r t t ime /1000) . c s t r ()) ;
26 xml . a t t r i b u t e (” ex i t−time” , std : : t o s t r i n g (threads [i] . ←↩

e x i t t ime /1000) . c s t r ()) ;
27 xml . a t t r i b u t e (” s e s s i o n ” , threads [i] . s e s s i o n l a b e l . s t r i n g ()) ;
28 xml . a t t r i b u t e (” thread ” , threads [i] . thread name . s t r i n g ()) ;
29 xml . a t t r i b u t e (” ram quota” , std : : t o s t r i n g (threads [i] . ←↩

ram quota /1024) . c s t r ()) ;
30 xml . a t t r i b u t e (” ram used” , std : : t o s t r i n g (threads [i] . ram used ←↩

/1024) . c s t r ()) ;
31 }) ;
32 }
33 //Genode : : p r i n t f (” run %d\n” , j) ;
34 mon manager . update in f o (mon ds cap) ;
35 }
36 }) ;

153

A Code Listings

37 }) ;
38 Genode : : env ()−>ram ses s i on ()−>f r e e (mon ds cap) ;
39 re turn l i v e d a t a . cap () ;
40 }

Listing A.27: live data function for serializing system information

1 i n t S ch ed c on t r o l l e r : : enq (i n t core , Rq task : : Rq task task)
2 {
3 i f (task . t a s k c l a s s == Rq task : : Task c l a s s : : h i)
4 {
5 //Execute s u f f i c i e n t s c h e du l a b i l i t y t e s t
6 i f (! f p a l g . f p s u f f i c i e n t t e s t (&task , & rq s [core]))
7 {
8 // I f s u f f i c i e n t t e s t f a i l s −−> execute RTA (exact t e s t)
9 i f (! f p a l g .RTA(&task , & rq s [core]))

10 {
11 re turn −1;
12 }
13 }
14 }
15 e l s e i f (task . t a s k c l a s s == Rq task : : Task c l a s s : : l o)
16 {
17 // do task opt imiza t i on f o r l o ta sk s
18 opt imize r−>add task ((unsigned i n t) core , task) ;
19 }
20 i n t su c c e s s = rq s [core] . enq (task) ;
21
22 re turn suc c e s s ;
23 }
24 }

Listing A.28: adding a new task to the controllers ready queues

1 void Task loader ses s ion component : : add tasks (Genode : : ←↩
Ram dataspace capabi l i ty xml ds cap)

2 {
3 Genode : : Region map∗ rm = Genode : : env ()−>rm se s s i on () ;
4 const char ∗ xml = rm−>attach (xml ds cap) ;
5 i f (verbose debug) PINF(”Pars ing XML f i l e :\n%s” , xml) ;
6 Genode : : Xml node root (xml) ;
7 Rq task : : Rq task rq ta sk ;
8
9 //Update r q bu f f e r be f o r e adding ta sk s f o r on l i n e ana ly s e s to core ←↩

1
10 sched . upda t e rq bu f f e r (1) ;
11
12 const auto fn = [th i s , &rq ta sk] (const Genode : : Xml node& node)
13 {
14 shared . ta sk s . emplace back (ep , cap , shared , node , &sched) ;

154

A.2 Accpetance Test in Pseudocode

15 //Add task to Con t r o l l e r to perform a s c h e du l a b i l i t y t e s t f o r ←↩
core 1

16 rq ta sk = shared . ta sk s . back () . getRqTask () ;
17 i n t r e s u l t = sched . new task (rq task , 1) ;
18 i f (r e s u l t != 0) {
19 i f (verbose debug) PINF(”Task with id %d was not accepted by the ←↩

c o n t r o l l e r ” , r q t a sk . t a s k i d) ;
20 shared . ta sk s . back () . s e tSchedu lab l e (f a l s e) ;
21 }
22 e l s e {
23 i f (verbose debug) PINF(”Task with id %d was accepted by the ←↩

c o n t r o l l e r ” , r q t a sk . t a s k i d) ;
24 shared . ta sk s . back () . s e tSchedu lab l e (t rue) ;
25 }
26 } ;
27
28 root . f o r each sub node (” p e r i o d i c t a s k ” , fn) ;
29
30 sched . s e t o p t g o a l (xml ds cap) ;

Listing A.29: Adding a task is a simple xml parsing and deferred analysis

A.2 Accpetance Test in Pseudocode

Algorithm A.1 Response Time Analysis

if priority of new task is lower than all other tasks then
rtimeold ← ntaskwcet
if ¬cmp response time(ntask, nelements, ntask) then

return not schedulable
end if

else compute response time for all tasks with tprio ≤ ntaskprio
for all t ∈ tasks do

if tprio ≤ ntaskprio then
if ¬ cmp response time(ntask,idx,t) then

return not schedulable
end if

end if
if tprio ≥ ntaskprioand(t+ 1)prio ≤ ntaskprio then

if ¬cmp response time(ntask,idx+1,ntask) then
return not schedulable

end if
end if

end for
end if
return schedulable

155

A Code Listings

Algorithm A.2 Compute Response Time

function cmp response time(ntask, nelements, task)
while true do

for all nelements do
rtime← ceil(rtimeold/ctaskinter arrival) ×ctaskwcet
ctask ← ctask + 1

end for
if ntask! = task then

rtime← ceil(rtimeold/ntaskinter arrival) ×ntaskwcet
end if
if rtime ≥ ctaskdeadline then

return not schedulable
end if
if rtimeold ≥ rtime then

if rtime ≤ taskdeadline then
return schedulable

end if
end if
rtimeold ← rtime

end while
end function

156

A.2 Accpetance Test in Pseudocode

Algorithm A.3 Sufficient test

for all nelements do
if ntaskprio ≥ ctaskprio then

Rub ← (ntaskwcet + sum utilwcet)/(1− sum util)
if Rub ≥ ntaskdeadline then

return deadline hit
end if
sum util← ntaskwcet/ntaskinter arrival + sum util
sum utilwcet ← ntaskwcet × (1− (ntaskwcet/ntaskinter arrival))

end if
Rub ← (ctaskwcet + sum utilwcet)/(1− sum util)
if Rub ≥ ctaskdeadline then

return deadline hit
end if
sum util← ctaskwcet/ctaskinter arrival
sum utilwcet ← ctaskwcet × (1− ctaskwcet/ctaskinter arrival) + sum utilwcet
ctask ← ctask + 1

end for
if ntaskprio ≤ (ctask prev)prio then

Rub ← ntaskwcet + sum utilwcet/(1− sum util)
if Rub ≥ ntaskdeadline then

return deadline hit
end if

end if
return true

157

B Evaluation Setup

For the evaluation setup, a workstation (i.e. offline system) is connected with one or
several (virtualized) embedded systems (i.e. online system) as depicted in figure B.1.
The software running on the workstation is responsible for three greater areas during
the evaluation phase of the embedded system. First, the generation of test data consists
of simulated sensor values as well as the generation of tasks (or tasksets) which can be
deployed to the embedded system. Second, the workstation has a control functionality
during the actual evaluation phase where single software components on the embedded
system can be modified during run-time. Finally, the measured data after an evalua-
tion serves as base for further analysis of the embedded system’s performance. Certain
variations within the test setup (e.g. software selection) will be given.

Figure B.1: Detailed toolchain view between offline and online system

B.1 Generating Artificial Task Sets

With the usage of artificially generated task sets, certain corner cases (e.g. overload
situations) and their management through the embedded system can be investigated.
Especially an analysis of the interplay of all software components as well as the behavior
of each component in detail is possible. The overall process and relevant tools for gen-
erating artificial task sets for later testing purposes will be described in the following. A
task generator is therefore used to generate a wide variety of different task sets (i.e. load
scenarios). Each task consists of a description (as mentioned earlier) and the actual
execution code (i.e. task binary). The purpose of each test application (i.e. task binary)
will be described. Additionally, the process of task distribution (i.e. sending application
from taskloader to target platform) will be shown in more detail. In this context the

159

B Evaluation Setup

target setup (i.e. software components running on the online system) in the terminol-
ogy of a genode configuration file as well as a short description of possible virtual and
physical target platforms will be outlined.

The main purpose of the developed task generator is the generation of tasks (and
tasksets) in a target system understandable format (i.e. task description and task binary).
Due to the fact that the management mechanism is realized in Genode which itself
uses a XML-based configuration for its components, the used task description are also
represented by a XML file. The task generator therefore generates a XML representation
as task description where a possible alteration of each value of the task model is possible
(i.e. however not all combinations make sense). As a result, a fine-grained adjustment
of task model attributes is possible manually or fully automated (i.e. randomized). On
the other side, the source code of each task (i.e. test application) is available for the
task generator. If required, the task generator is able to compile the source code of the
needed task to a task binary.

For the inner workings, the task generator consists of several modules with distinct
functionality. The most important modules are:

• Task: Representation of a Task Description

• Task Set: A container of several tasks

• Distributor: Socket-based communication

• Monitor: Output of the system responses and additional storing in a database

There exists further modules which are responsible for the configuration of certain
operating system components on the target platform like the controller or the type of
data generation (e.g. randomized). Additionally parameters (i.e. commandline parame-
ter) for each task binary can be encoded in the task description. This allows not only
the modification of timing characteristics of each task but also the modification of its
inner working (e.g. varying work load).

The overall processing flow from the generation of tasks over the distribution of tasks to
the target system till the receiving of monitored data is shown in algorithm B.1. Starting
with opening a new socket-based session via the distributor module of the task generator
allows the exchange of tasks and information via a TCP/IP-based communication. The
generation process of task descriptions and task binaries can be realized by using a
command line interface where predefined test cases can be executed or by using the
task generator as a library in its own program. The generation however is using a
input file where the relevant tasks are defined (i.e. their descriptions and parameter
variations). The controller within in the flexible task management on the target system
can be modified (e.g. setting an optimization goal). After the generation is finished and
the tasks are distributed to the target system, the actual execution can be separately
triggered. During the execution, the target system sends monitoring information back
to the offline system (i.e. workstation) where this information can be either printed or
stored within a database for later analysis. The session can be explicitly terminated by

160

B.1 Generating Artificial Task Sets

the task generator or is implicitly terminated after a complete task execution on the
target system.

Algorithm B.1 Basic Session for Controlling the Target Machine (White-Box Test)

open session(ip-address, port)
task-description ← generate tasks(task-input.xml)
send task-descriptions
send task-binaries
set optimizer(optimization-goal)
start execution
receive monitored data(storage-type)
close session

Most of the calls are encapsulated in a high-level operating interface which can be
used to fully automate the former described processing flow by a single command line.
An example is given in listing B.1 which executes a task set example.Hey0TaskSet with one
single task. The monitored data is printed on the screen by using the stdio .StdIOSession.
Due to the specification of an ip-address, the distribution of tasks is realized over an
socket-based communication channel.

. / taskgen−c l i run −d −t example . Hey0TaskSet −s s t d i o . StdIOSess ion ←↩
1 7 2 . 2 5 . 0 . 1

Listing B.1: Example usage of the taskgenerator command line interface

As a next step, it needs to be clarified which concrete content contains a task set.
There exists several test applications which are compiled to task binaries and can be
transferred to the target system during run-time. The basic idea is to generate as many
load situations as possible from a small set of basic tasks. The tasks are mainly for
generating load on the target system rather than realizing a distinct functionality. Task
descriptions or single parameters can be altered to generate a greater variation. Tasks can
be combined in task sets where a task set can consist of a single task. Some applications
allow the setting of additional input arguments to control their inner execution (i.e. loop
iterations). Again, input arguments can be set within the task description. The table B.1
presents an overview about the available test tasks with a short description about their
functionality.

A concrete example of the configuration of such a task (i.e. test application) can
be seen in listing B.2. This example demonstrates the assignment of a task to a task
set Problem0. Several task attributes are set (i.e. key value pairs) where the period ←↩
and priority attributes indicate a task which will be later scheduled by a fixed priority

scheduler.

1 c l a s s Problem0 (TaskSet) :
2 de f i n i t (s e l f) :

161

B Evaluation Setup

Task Description

hey ’Hey’ is printed on the command line

namaste ’Namaste’ is printed on the command line

tumatmul
All prime numbers until a given parameter will be calculated
and the last five numbers are printed
on the console.

idle
A while loop
.

linpack Executes a linpack benchmark with an input parameter as problem size.

pi
Number Pi will be calculated iteratively. The argument specifies
the number of iterations

Table B.1: Generated Tasks and their descriptions (idp js/mz)

3 super () . i n i t ()
4
5 s e l f . append (Task ({
6 # gene ra l
7 ” id ” : 0 , # ignored and s e t by TaskSet
8 ” c r i t i c a l t im e ” : 0 ,
9 ” execut iont ime ” : 99999999 ,

10
11 # binary
12 ”quota” : ”1M” ,
13 ”pkg” : ”hey” ,
14 ” c on f i g ” : {} ,
15
16 # frequency
17 ”numberofjobs ” : 0 ,
18 ” per iod ” : 3 ,
19
20 # schedu l e r
21 ” p r i o r i t y ” : 10 ,
22 }))

Listing B.2: Example configuration of a task description with fixed values

Leaving the task generator on the workstation side, the operating system running
on the target system needs to be configured accordingly. This is done by Genode’s
configuration mechanism via so called run-files. A run-file specifies several aspects about
the components and their communications as well as controlling the overall build process
(i.e. which component is required for a certain use-case). A simple configuration example
can be seen in listing B.3. Depending on the components which need to be executed
during run-time, a configuration file can contain several entries from type start. In
this case however only the scheduling controller will be executed during run-time. For
executing the operating system as presented in chapter 6 the configuration is more
extensive than the presented example. In common, for each evaluation test presented

162

B.2 Autonomous Driving Setup

within this chapter, a separate configuration file similar to the presented listing will be
used.

1 s e t c on f i g {
2 <c on f i g verbose=”yes ” p r i o l e v e l s=”128”>
3 <parent−prov ide s>
4 <s e r v i c e name=”RAM”/>
5 <s e r v i c e name=”CPU”/>
6 </parent−prov ide s>
7 <de fau l t−route>
8 <any−s e r v i c e> <parent /> <any−ch i l d /> </any−s e r v i c e>
9 </ de fau l t−route>

10 <s t a r t name=” s c h e d c on t r o l l e r ”>
11 <r e s ou r c e name=”RAM” quantum=”1M”/>
12 <prov ide s> <s e r v i c e name=” Sch ed c on t r o l l e r ”/> </ prov ide s>
13 </ s t a r t>
14 append con f i g {
15 </ con f i g>
16 }

Listing B.3: configuration file for operating system running on the target system

This section has covered the generation of artificial task sets as well as common mech-
anism for configuring the target system. In its heart of the generation process a task
generator is used and takes care of the several running states during execution. Fur-
thermore the used test applications/tasks were presented as well as their configuration.
The section closes with the configuration mechanism used by genode to setup the target
system.

B.2 Autonomous Driving Setup

The highly experimental system approach which is developed in the context of this thesis
requires a run-time environment which is able to test the behavior of the system in certain
cases. On the other side, these tests can lead to unforeseen consequences which makes it
unfeasible to test the system within the context of a real traffic scenario. The presented
approach for testing the autonomous driving scenario therefore foresees the usage of
a hybrid test setup that was developed in the KIA4SM [91] project. The test setup
combines an automotive racing simulation with a physical model car (see section B.2.1).
The realized evaluation case targets a possible update of a software component on the
target system over the air during run-time by similarly keeping the autonomous driving
maneuver robust (see section 7.1.2).

B.2.1 Hybrid Test Bed

The hybrid test bed setup used in this scenario uses a combination of virtual and physical
test bed parts. An overview of the overall setup will be given where a short description
of the parts as well as the overall communication structure will be explained. After that,

163

B Evaluation Setup

virtual and physical parts are explained in more detail. The section closes with a listing
of exchanged information.

An schematic overview about the overall test bed is given in figure B.2. A worksta-
tion serves as a simulation endpoint where simulated sensor data in a virtual driving
environment are generated. The communication bus within the setup is Ethernet-based
following a standard TCP/IP protocol (i.e. no real-time Ethernet). For the execution
of the proposed operating system, there are several hardware/software platforms avail-
able (i.e. PandaBoard ES). Additionally, there are further platforms (i.e. Raspberry PI)
which equip the low-level hardware elements (i.e. sensors) with an adequate network
interface enabling the communication with the other platforms in the network.

Figure B.2: Schematic View of Evaluation Setup

Figure B.3: Test Bed of Evaluation Setup

The used driving environment is based on a racing simulation called Speed Dreams
(abbreviated as SD) (i.e. paraten project is TORCS). SD is able to simulate several
weather conditions, collision detection (i.e. physics engine) and allows the development
of autonomous driving cars (i.e. robots). Especially the last aspect allows the usage of

164

B.2 Autonomous Driving Setup

fully autonomous test cases. An overview about the complete physical setup can be seen
in figure B.3.

The introduced hardware platforms serve a model car as electronic control units (see
figure B.4). The by Speed Dreams generated virtual sensor values are used to trigger the
physical actuating elements (e.g. braking, steering) within the car. Whereby each actuat-
ing element is controlled by a corresponding Genode software component. For example,
for controlling the several servo motors within the car, a servo controller component was
developed. Similar is true for the main motor of the car. Beside the actual controlling of
the actuating elements, there exist other software components (i.e. adaptors) which are
responsible to translate the simulation values into concrete control events. A given adap-
tive cruise controller running on a Pandaboard therefore gets its position and distance
to a potential front-driving car from the simulation but is also responsible to calculate
which force individual physical brakes (e.g. front, left, right) need to hold. With these
force values, corresponding commands (e.g. brake front left) are executed. Within this
setup, information about position, speed, steering and braking are exchanged.

PandaBoard

Servo

Motor

BeagleBone

Figure B.4: Physical model car equipped with boards

B.2.2 Installation Scenario Additional Files

1 cur rent=in t (round (time . time () ∗1000))
2 s e s s i o n = Dom0 session (’ 1 0 . 200 . 3 2 . 1 21 ’ , 3001)
3 name = s t r (sys . argv [1])
4 s e s s i o n . r e ad ta sk s (s c r i p t d i r + name + ’ . xml ’)
5 s e s s i o n . s end desc s ()
6 s e s s i o n . s end b ins ()
7 s e s s i o n . s t a r t ()
8 time . s l e e p (10)
9 s e s s i o n . l i v e (s c r i p t d i r + ’ xml/ ’ + ’ a c c l o g . xml ’)

10 i=0
11 whi le 1 :
12 time . s l e e p (5)

165

B Evaluation Setup

13 s e s s i o n . l i v e (s c r i p t d i r + ’ xml/ ’ + s t r (i) + ’ a c c l o g . xml ’)
14 i=i+1

Listing B.4: Python test for install scenario (workstation)

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 < !−−Hier kommen d i e Tasks−−>
3 <t a s k s e t xmlns=” ht tp : //www. tmsxmlns . com” xmlns :x s i=” ht tp : //www.w3 . ←↩

org /2001/XMLSchema−i n s t ance ” xs i : s chemaLocat ion=” ht tp : //www. ←↩
tmsxmlns . com ta sk s e t . xsd”>

4
5 <pe r i o d i c t a s k>
6 <id>0</ id>
7 <execut iont ime>999999999999</ execut iont ime>
8 <c r i t i c a l t im e>0</ c r i t i c a l t im e>
9 <uc f i rmr t />

10 <uawmean>
11 <s i z e>10</ s i z e>
12 </uawmean>
13 <p r i o r i t y>127</ p r i o r i t y>
14 <numberofjobs>1</numberofjobs>
15 <per iod>0</ per iod>
16 <o f f s e t>0</ o f f s e t>
17 <quota>5M</quota>
18 <pkg>mbl adapter</pkg>
19 <c on f i g>
20 <network dhcp=”yes ” />
21 <mosquitto ip−address=” 10 . 2 00 . 3 2 . 7 5 ” />
22 </ con f i g>
23 </ p e r i o d i c t a s k>
24
25 </ t a s k s e t>

Listing B.5: Input file for mbl description

1 [2018−03−08 1 0 : 2 1 : 0 9] Genode 16.08−87−g1abce0d
2 [2018−03−08 1 0 : 2 1 : 1 0] [i n i t −> plat form drv] −−− Raspberry Pi plat form dr i v e r −−−
3 [2018−03−08 1 0 : 2 1 : 1 2] [i n i t −> usb te rmina l] PL2303 c o n t r o l l e r : ready
4 [2018−03−08 1 0 : 2 1 : 1 2] [i n i t −> usb te rmina l] Manufacturer : P r o l i f i c Technology Inc .
5 [2018−03−08 1 0 : 2 1 : 1 2] [i n i t −> usb te rmina l] Product : USB−S e r i a l Cont ro l l e r
6 [2018−03−08 1 0 : 2 1 : 2 0] [i n i t −> mbl c l i e n t] got IP address 1 0 . 2 00 . 4 2 . 2
7 [2018−03−08 1 0 : 2 1 : 2 0] [i n i t −> mbl c l i e n t] connected to mosquitto s e r v e r

Listing B.6: mbl client capture before install of mbl adapter

1 Genode 16.08−88− g7415f76 < l o c a l changes>
2 [i n i t −> t a sk l oade r] Taskloader root component : : Taskloader root component (Genode : : ←↩

Entrypoint ∗ , Genode : : A l l o ca to r ∗) : Creat ing root component .
3 [i n i t −> t a sk l oade r] Main : : Main (Genode : : Entrypoint&) : task−manager : He l lo !
4 [i n i t −> t a sk l oade r] v i r t u a l Task loader sess ion component ∗ Taskloader root component : : ←↩

c r e a t e s e s s i o n (const char ∗) : Creat ing Taskloader s e s s i o n .
5 [i n i t −> dom0−HW] in t main (int , char ∗∗) : dom0 : He l lo !
6 [i n i t −> dom0−HW] Dom0 server : : Dom0 server : : Dom0 server () : DHCP network . . .
7 [i n i t −> usb drv] n e t i f i n f o : r e g i s t e r ’ smsc95xx ’ at usb−ehci−omap−1.1 , smsc95xx USB 2.0 ←↩

Ethernet , 0a : 0 2 : 0 0 : 0 0 : 0 0 : 0 3

166

B.2 Autonomous Driving Setup

8 [i n i t −> n i c b r i d g e] −−− NIC br idge s t a r t ed (mac=0a : 0 2 : 0 0 : 0 0 : 0 0 : 0 3) −−−
9 [i n i t −> dom0−HW] Dom0 server : : Dom0 server : : Dom0 server () : Waiting 10 s f o r ip ←↩

ass ignement
10 [2018−03−08 1 0 : 2 1 : 2 1] [i n i t −> dom0−HW] got IP address 10 . 200 . 32 . 121
11 [2018−03−08 1 0 : 2 1 : 2 8] i n i t −> dom0−HW] L i s t en ing . . .
12 [2018−03−08 1 0 : 2 1 : 2 8] [i n i t −> dom0−HW] Got connect ion from 124 . 254 . 79 . 32

Listing B.7: dom0 hw install of mbl adapter

1 [2018−03−08 1 0 : 2 4 : 5 9] [i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : ←↩
Ch i l d s t a r t e r t h r e ad : : do send desc s (i n t) : Ready to r e c e i v e task d e s c r i p t i o n .

2 [2018−03−08 1 0 : 2 4 : 5 9] [i n i t −> dom0−HW] Ready to r e c e i v e XML of s i z e 617 .
3 [2018−03−08 1 0 : 2 4 : 5 9] [i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : ←↩

Ch i l d s t a r t e r t h r e ad : : do send desc s (i n t) : Received XML. I n i t i a l i z i n g ta sks .
4 [2018−03−08 1 0 : 2 4 : 5 9] [i n i t −> s c h e d c on t r o l l e r] Update Rq buf fe r f o r core 1 !
5 [2018−03−08 1 0 : 2 4 : 5 9] i n i t −> t a sk l oade r] id : 0 , name : 00 . mbl adapter , p r i o : 127 , ←↩

dead l ine : 0 , wcet : 3567587327 , per iod : 0
6 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> s c h e d c on t r o l l e r] Task with name 00 . mbl adapter , i s now ←↩

enqueued to run queue 1
7 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> s c h e d c on t r o l l e r] Rq i s empty , Task s e t i s s chedu lab l e !
8 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> s c h e d c on t r o l l e r] S ch ed con t r o l l e r (enq) : Task 00 . ←↩

mbl adapter was r ta analyzed
9 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> s c h e d c on t r o l l e r] New element i n s e r t e d to bu f f e r at ←↩

po s i t i o n 0 with po in t e r e010
10 [2018−03−08 1 0 : 2 5 : 0 0] i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : s e rve () : Done ←↩

SEND DESCS. Took : 487
11 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : ←↩

Ch i l d s t a r t e r t h r e ad : : d o s end b ina r i e s (i n t) : Ready to r e c e i v e b i n a r i e s .
12 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> dom0−HW] 1 binary to be sent .
13 [2018−03−08 1 0 : 2 5 : 0 0] i n i t −> dom0−HW] Got binary ’ mbl adapter ’ o f s i z e 51224.
14 [2018−03−08 1 0 : 2 5 : 0 0] i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : s e rve () : Done ←↩

SEND BINARIES . Took : 178
15 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : ←↩

Ch i l d s t a r t e r t h r e ad : : d o s t a r t (i n t) : S ta r t i ng ta sks .
16 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> dom0−HW] void Dom0 server : : Dom0 server : : s e rve () : Done ←↩

START. Took : 130
17 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> t a sk l oade r] v i r t u a l void Task : : Ch i l d s t a r t t h r e ad : : entry ←↩

() : S ta r t i ng task 00 . mbl adapter
18 [2018−03−08 1 0 : 2 5 : 0 0] [i n i t −> t a sk l oade r] bool Task : : jobs done () : i t e r a t i o n : 0 num jobs ←↩

: 1 name : 00 . mbl adapter
19 [2018−03−08 1 0 : 2 5 : 0 5] [i n i t −> t a sk l oade r −> 00 . mbl adapter] got IP address ←↩

10 . 200 . 32 . 122
20 [2018−03−08 1 0 : 2 5 : 0 5] [i n i t −> t a sk l oade r −> 00 . mbl adapter] connected to mosquitto ←↩

s e r v e r
21 [2018−03−08 1 0 : 2 5 : 0 5] [i n i t −> t a sk l oade r −> 00 . mbl adapter] unknown top i c : savm/ car /0/ ←↩

s t e e r

Listing B.8: dom0 hw capture after install of mbl adapter

1 [2018−03−08 1 0 : 2 5 : 0 7] [i n i t −> mbl c l i e n t] setMotorSpeedAbs f i n i s h e d with 0
2 [2018−03−08 1 0 : 2 5 : 0 7] [i n i t −> mbl c l i e n t] powerpct 23
3 [2018−03−08 1 0 : 2 5 : 0 7] [i n i t −> mbl c l i e n t] setCommand 230
4 [2018−03−08 1 0 : 2 5 : 0 7] [i n i t −> mbl c l i e n t] setMotorSpeedAbs f i n i s h e d with 0

Listing B.9: mbl client capture after install of mbl adapter

1 cur rent=in t (round (time . time () ∗1000))
2 s e s s i o n = Dom0 session (’ 1 0 . 2 00 . 4 4 . 1 6 ’ , 3001)
3 name = s t r (sys . argv [1])
4 counter=0
5 whi le 1 :
6 s e s s i o n . r e ad ta sk s (s c r i p t d i r + name + s t r (counter) + ’ . xml ’)
7 s e s s i o n . s end desc s ()
8 s e s s i o n . s end b ins ()
9 s e s s i o n . s t a r t ()

167

B Evaluation Setup

10 time . s l e e p (30)
11 s e s s i o n . l i v e (s c r i p t d i r + ’ xml/ ’ + ’ update ’ + s t r (counter) + ’ l o g ←↩

. xml ’)
12 counter=counter+1
13 s e s s i o n . stop ()

Listing B.10: python test for update scenario (workstation)

1 <?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
2 < !−−Hier kommen d i e Tasks−−>
3 <t a s k s e t xmlns=” ht tp : //www. tmsxmlns . com” xmlns :x s i=” ht tp : //www.w3 . ←↩

org /2001/XMLSchema−i n s t ance ” xs i : s chemaLocat ion=” ht tp : //www. ←↩
tmsxmlns . com ta sk s e t . xsd”>

4
5 <pe r i o d i c t a s k>
6 <id>0</ id>
7 <execut iont ime>999999999999</ execut iont ime>
8 <c r i t i c a l t im e>0</ c r i t i c a l t im e>
9 <uc f i rmr t />

10 <uawmean>
11 <s i z e>10</ s i z e>
12 </uawmean>
13 <p r i o r i t y>127</ p r i o r i t y>
14 <numberofjobs>1</numberofjobs>
15 <per iod>0</ per iod>
16 <o f f s e t>0</ o f f s e t>
17 <quota>1M</quota>
18 <pkg>pi</pkg>
19 <c on f i g>
20 <arg1>4</ arg1>
21 </ con f i g>
22 </ p e r i o d i c t a s k>
23
24 </ t a s k s e t>

Listing B.11: Input task description for one pi update case

168

Own Publications

[50] Sebastian Eckl, Daniel Krefft, and Uwe Baumgarten. “COFAT 2015 - KIA4SM
- Cooperative Integration Architecture for Future Smart Mobility Solutions”. In:
Conference on Future Automotive Technology. 2015.

[51] Sebastian Eckl, Daniel Krefft, and Uwe Baumgarten. “Migration of Components
and Processes as Means for Dynamic Reconfiguration in Distributed Embedded
Real-Time Operating Systems”. In: OSPERT 2017. 2017.

[90] Daniel Krefft and Uwe Baumgarten. “Flexible Scheduling of Tasks for Self-Adaptation
in Mixed-Critical Automotive Systems”. In: Organic Computing Doctoral Disser-
tation Colloquium 2015. Ed. by Sven Tomforde and Bernhard Sick. Intelligent
embedded systems 7. Augsburg, Germany: kassel university press GmbH, 2015,
pp. 147–153.

[91] Daniel Krefft, Sebastian Eckl, and Uwe Baumgarten. KIA4SM - Kooperative In-
tegrationsarchitektur Für Zukünftige Smart Mobility Lösungen. Gesellschaft für
Informatik - Fachgruppe für Betriebssysteme, 2017.

169

Advised Theses

[33] Gurusiddesha Chandrasekhara. “Design and Prototypical Implementation of a
High-Level Synchronization Component for Dynamic Updates of Task Run Queues
in L4 Fiasco.OC/Genode”. MA thesis. Technische Universität München, 2016.

[52] Stefan Edinger. Erweiterung von L4 Fiasco.OC/Genode Zur Verwaltung von Koex-
istenten Scheduling Strategien Auf Einem Eingebetteten Echtzeitfähigen Mehrk-
ernsystem. Interdisziplinäres Projekt im Anwendungsfach Elektro- und Informa-
tionstechnik. Technische Universität München, 2016.

[53] Stefan Edinger. “Improved Task Management for Multi-Core Real-Time Systems
in an Automotive Environment”. MA thesis. Technische Universität München,
Aug. 15, 2017.

[56] Boris Espinoza-Kalchev. “Comparison of the PikeOS Hypervisor and the L4 Fi-
asco.OC/Genode: Development of a PikeOS Emulation Layer and Porting on
Xilinx Zynq-7000 SoC”. MA thesis. Technische Universität München, Apr. 15,
2016.

[64] Georg Guba. “Port and Extension of a Toolchain Regarding Machine Learn-
ing Supported Schedulability Analysis in Distributed Embedded Real-Time Sys-
tems”. MA thesis. Technische Universität München, Apr. 15, 2016.

[66] Robert Häcker. “Design of an OC-Based Method for Efficient Synchronization of
L4 Fiasco.OC Mircrokernel Tasks”. BA thesis. Technische Universität München,
June 15, 2015.

[68] Valentin Hauner. “Extension of the Fiasco.OC Microkernel with Context-Sensitive
Scheduling Abilities for Safety-Critical Applications in Embedded Systems”. BA
thesis. Technische Universität München, Oct. 15, 2014.

[70] Mathias Helminger. “Dynamic Realtime Scheduling of Quasi-Periodic Tasks for
Embedded Systems Testing on Linux”. MA thesis. Technische Universität München,
2014.

[108] Pritpal Singh Multani. “Analysis and Evaluation of Scheduling Strategies for
Safety Critical Automotive Systems”. MA thesis. Technische Universität München,
Dec. 15, 2013.

[112] Barbara Niedermeier. “Knowledge-Based Algorithms for Dynamic Task Man-
agement in Embedded Multi-Core Systems”. MA thesis. Technische Universität
München, 2017.

171

Advised Theses

[113] Paul Nieleck. “Design and Prototypical Implementation of an OC-Based Controller-
Stack for Optimizing Mixed-Critical Thread Scheduling in L4 Fiasco.OC/Genode”.
MA thesis. Technische Universität München, Oct. 17, 2016.

[119] Alexander Reisner. “Extension of the Genode OS Framework by a Component for
Runtime-Monitoring of a Real-Time Operating System”. BA thesis. Technische
Universität München, Dec. 15, 2015.

[129] Jonas Sticha. “Validating the Real-Time Capabilities of the ROS Communication
Middleware”. BA thesis. Technische Universität München, June 15, 2014.

172

Bibliography

[1] Luca Abeni and Giorgio Buttazzo. “Integrating Multimedia Applications in Hard
Real-Time Systems”. In: Real-Time Systems Symposium, 1998. Proceedings. The
19th IEEE. 00771. IEEE, 1998, pp. 4–13.

[2] Luca Abeni and Giorgio Buttazzo. “Resource reservation in dynamic real-time
systems”. In: Real-Time Systems 27.2 (2004), pp. 123–167.

[3] Luis Almeida et al. “A dynamic scheduling approach to designing flexible safety-
critical systems”. In: Proceedings of the 7th ACM & IEEE international confer-
ence on Embedded software. 2007, pp. 67–74.

[4] James H. Anderson, Sanjoy K. Baruah, and Björn B. Brandenburg. “Multicore
operating-system support for mixed criticality”. In: Proceedings of the Workshop
on Mixed Criticality: Roadmap to Evolving UAV Certification. 00041. Citeseer,
2009.

[5] Mikael Åsberg and Thomas Nolte. “Towards a user-mode approach to partitioned
scheduling in the seL4 microkernel”. In: ACM SIGBED Review 10.3 (2013),
pp. 15–22.

[6] Mikael Åsberg, Thomas Nolte, and Shinpei Kato. “Towards partitioned hierar-
chical real-time scheduling on multi-core processors”. In: ACM SIGBED Review
11.2 (2014), pp. 13–18.

[7] Mikael Åsberg et al. “Towards hierarchical scheduling in AUTOSAR”. In: Emerg-
ing Technologies & Factory Automation, 2009. ETFA 2009. IEEE Conference on.
IEEE, 2009, pp. 1–8.

[8] Neil Audsley et al. “Real-time system scheduling”. In: Predictably Dependable
Computing Systems. Springer, 1995, pp. 41–52.

[9] AUTOSAR. Virtual Functional Bus. Dec. 8, 2017.

[10] Algirdas Avizienis et al. “Basic concepts and taxonomy of dependable and se-
cure computing”. In: IEEE transactions on dependable and secure computing 1.1
(2004), pp. 11–33.

[11] S. Baruah and S. Vestal. “Schedulability Analysis of Sporadic Tasks with Multi-
ple Criticality Specifications”. In: Euromicro Conference on Real-Time Systems,
2008. ECRTS 08. July 2008, pp. 147–155.

[12] Sanjoy K. Baruah, Alan Burns, and Robert I. Davis. “Response-time analysis
for mixed criticality systems”. In: Real-Time Systems Symposium (RTSS), 2011
IEEE 32nd. IEEE, 2011, pp. 34–43.

173

Bibliography

[13] Sanjoy Baruah et al. “Scheduling Real-Time Mixed-Criticality Jobs”. In: IEEE
Transactions on Computers 61.8 (Aug. 2012), pp. 1140–1152.

[14] Sanjoy Baruah et al. “Mixed-criticality scheduling on multiprocessors”. In: Real-
Time Systems 50.1 (Jan. 2014). 00058, pp. 142–177.

[15] Andrew Baumann et al. “The multikernel: a new OS architecture for scalable
multicore systems”. In: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles. ACM, 2009, pp. 29–44.

[16] Jean-Luc Bechennec et al. “Trampoline an open source implementation of the
osek/vdx rtos specification”. In: Emerging Technologies and Factory Automation,
2006. ETFA’06. IEEE Conference on. IEEE, 2006, pp. 62–69.

[17] Klaus Becker, Marc Zeller, and Gereon Weiss. “Towards Efficient On-line Schedu-
lability Tests for Adaptive Networked Embedded Real-time Systems.” In: PECCS.
2012, pp. 440–449.

[18] Marko Bertogna. “Evaluation of existing schedulability tests for global EDF”. In:
Parallel Processing Workshops, 2009. ICPPW09. International Conference on.
IEEE, 2009, pp. 11–18.

[19] Enrico Bini et al. “A Response-Time Bound in Fixed-Priority Scheduling with
Arbitrary Deadlines”. In: IEEE Transactions on Computers 58.2 (2009), pp. 279–
286.

[20] Bernard Blackham et al. “Timing analysis of a protected operating system ker-
nel”. In: Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd. IEEE, 2011,
pp. 339–348.

[21] Thomas Bloor. The Automotive Shift to Software-Defined, Consolidated Con-
troller Architectures. http://qnxauto.blogspot.com/2016/10/automotive-
shifting-software-defined.html. Accessed: 2018-07-21.

[22] Scott A. Brandt et al. “Dynamic integrated scheduling of hard real-time, soft
real-time, and non-real-time processes”. In: Real-Time Systems Symposium, 2003.
RTSS 2003. 24th IEEE. IEEE, 2003, pp. 396–407.

[23] Jürgen Branke et al. “Organic Computing Addressing Complexity by Controlled
Self-Organization”. In: IEEE, Nov. 2006, pp. 185–191.

[24] Martin Buechel et al. “An Automated Electric Vehicle Prototype Showing New
Trends in Automotive Architectures”. In: IEEE, Sept. 2015, pp. 1274–1279.

[25] A. Burns and A.J. Wellings. Real-Time Systems and Programming Languages:
Ada 95, Real-Time Java, and Real-Time POSIX. International computer science
series. 01579 LCCB: 2001016408. Addison-Wesley, 2001.

[26] Alan Burns and Rob Davis. “Mixed criticality systems-a review”. In: Department
of Computer Science, University of York, Tech. Rep (2013).

[27] Alan Burns, Andy J. Wellings, and Fengxiang Zhang. “Combining EDF and FP
Scheduling: Analysis and Implementation in Ada 2005.” In: Ada-Europe. Springer,
2009, pp. 119–133.

174

http://qnxauto.blogspot.com/2016/10/automotive-shifting-software-defined.html
http://qnxauto.blogspot.com/2016/10/automotive-shifting-software-defined.html

Bibliography

[28] Alan Burns et al. “The meaning and role of value in scheduling flexible real-time
systems”. In: Journal of systems architecture 46.4 (2000), pp. 305–325.

[29] G. Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algo-
rithms and Applications. Real-Time Systems Series. 01953 LCCB: 2011937234.
Springer US, 2011.

[30] Giorgio C. Buttazzo. “Rate monotonic vs. EDF: Judgment day”. In: Embedded
Software. Springer, 2003, pp. 67–83.

[31] Giorgio Buttazzo and Paolo Gai. “Efficient EDF implementation for small embed-
ded systems”. In: Proc. of the 2nd Int. Workshop on Operating Systems Platforms
for Embedded Real-Time applications, Dresden, Germany. 2006.

[32] Emre Cakar et al. “Towards a quantitative notion of self-organisation”. In: Evolu-
tionary Computation, 2007. CEC 2007. IEEE Congress on. IEEE, 2007, pp. 4222–
4229.

[33] Gurusiddesha Chandrasekhara. “Design and Prototypical Implementation of a
High-Level Synchronization Component for Dynamic Updates of Task Run Queues
in L4 Fiasco.OC/Genode”. MA thesis. Technische Universität München, 2016.

[34] Ya-Shu Chen, Han Chiang Liao, and Ting-Hao Tsai. “Online Real-Time Task
Scheduling in Heterogeneous Multicore System-on-a-Chip”. In: IEEE Transac-
tions on Parallel and Distributed Systems 24.1 (Jan. 2013), pp. 118–130.

[35] Betty H. C. Cheng, ed. Software engineering for self-adaptive systems. Lecture
notes in computer science 5525. Berlin ; New York: Springer, 2009. 260 pp.

[36] Shang-Wen Cheng, David Garlan, and Bradley Schmerl. “Making self-adaptation
an engineering reality”. In: Self-star properties in complex information systems.
Springer, 2005, pp. 158–173.

[37] Shang-Wen Cheng et al. “Using architectural style as a basis for system self-
repair”. In: Software Architecture. Springer, 2002, pp. 45–59.

[38] Autonomic Computing et al. “An Architectural Blueprint for Autonomic Com-
puting”. In: IBM White Paper 31 (2006).

[39] AUTOSAR development cooperation. Adaptive Platform. url: https://www.
autosar.org/standards/adaptive-platform/ (visited on 11/07/2017).

[40] AUTOSAR development cooperation. AUTOSAR. url: https://195.234.139.
136/ (visited on 07/28/2018).

[41] CPS Cyber Physical Systems. url: http : / / addi - data . com / cps - cyber -

physical-systems/ (visited on 05/29/2018).

[42] Cyber-Physical Systems Public Working Group. url: https://pages.nist.gov/
cpspwg/ (visited on 11/22/2017).

[43] Robert I. Davis and Alan Burns. “Hierarchical fixed priority pre-emptive schedul-
ing”. In: Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE Interna-
tional. IEEE, 2005, 10–pp.

175

https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/
https://195.234.139.136/
https://195.234.139.136/
http://addi-data.com/cps-cyber-physical-systems/
http://addi-data.com/cps-cyber-physical-systems/
https://pages.nist.gov/cpspwg/
https://pages.nist.gov/cpspwg/

Bibliography

[44] Robert I. Davis and Alan Burns. “A survey of hard real-time scheduling for
multiprocessor systems”. In: ACM Comput. Surv. 43.4 (Oct. 2011), 35:1–35:44.

[45] Rogério De Lemos et al. “Software Engineering for Self-adaptive Systems: Re-
search Challenges in the Provision of Assurances”. In: Software Engineering for
Self-Adaptive Systems II. Springer, 2013, pp. 1–32.

[46] Tom De Wolf and Tom Holvoet. “Towards a Methodology for Engineering Self-
Organising Emergent Systems”. In: Frontiers in Artificial Intelligence and Appli-
cations 135 (2005), p. 18.

[47] Sanjay R. Deshpande. “Chapter 5 - Design Considerations for Multicore SoC
Interconnections”. In: Real World Multicore Embedded Systems. Ed. by Bryon
Moyer. Oxford: Newnes, 2013, pp. 117–197.

[48] C. Ebert and J. Favaro. “Automotive Software”. In: IEEE Software 34.3 (May
2017), pp. 33–39.

[49] Christof Ebert. “Functional Safety with ISO 26262”. Oct. 18, 2016.

[50] Sebastian Eckl, Daniel Krefft, and Uwe Baumgarten. “COFAT 2015 - KIA4SM
- Cooperative Integration Architecture for Future Smart Mobility Solutions”. In:
Conference on Future Automotive Technology. 2015.

[51] Sebastian Eckl, Daniel Krefft, and Uwe Baumgarten. “Migration of Components
and Processes as Means for Dynamic Reconfiguration in Distributed Embedded
Real-Time Operating Systems”. In: OSPERT 2017. 2017.

[52] Stefan Edinger. Erweiterung von L4 Fiasco.OC/Genode Zur Verwaltung von Koex-
istenten Scheduling Strategien Auf Einem Eingebetteten Echtzeitfähigen Mehrk-
ernsystem. Interdisziplinäres Projekt im Anwendungsfach Elektro- und Informa-
tionstechnik. Technische Universität München, 2016.

[53] Stefan Edinger. “Improved Task Management for Multi-Core Real-Time Systems
in an Automotive Environment”. MA thesis. Technische Universität München,
Aug. 15, 2017.

[54] Kevin Elphinstone and Gernot Heiser. “From L3 to seL4 what have we learnt in
20 years of L4 microkernels?” In: ACM Press, 2013, pp. 133–150.

[55] ERIKA Enterprise — Open Source RTOS OSEK/VDX Kernel. url: http://
erika.tuxfamily.org/drupal/ (visited on 11/07/2017).

[56] Boris Espinoza-Kalchev. “Comparison of the PikeOS Hypervisor and the L4 Fi-
asco.OC/Genode: Development of a PikeOS Emulation Layer and Porting on
Xilinx Zynq-7000 SoC”. MA thesis. Technische Universität München, Apr. 15,
2016.

[57] Peter Fischer et al. “Ensuring correct self-reconfiguration in safety-critical ap-
plications by verified result checking”. In: Proceedings of the 2011 workshop on
Organic computing. ACM, 2011, pp. 3–12.

176

http://erika.tuxfamily.org/drupal/
http://erika.tuxfamily.org/drupal/

Bibliography

[58] Tom Fleming and Alan Burns. “Incorporating the notion of importance into
mixed criticality systems”. In: Proc. 2nd Workshop on Mixed Criticality Systems
(WMC), RTSS. 2014, pp. 33–38.

[59] Katharina Gilles et al. “Proteus hypervisor: Full virtualization and paravirtual-
ization for multi-core embedded systems”. In: International Embedded Systems
Symposium. Springer, 2013, pp. 293–305.

[60] John Greenough. The massive internet-connected car market explained in one
infographic. url: https://www.businessinsider.de/complete-connected-
infographic-2015-2 (visited on 04/27/2018).

[61] Stefan Groesbrink and Luis Almeida. “A criticality-aware mapping of real-time
virtual machines to multi-core processors”. In: Emerging Technology and Factory
Automation (ETFA), 2014 IEEE. IEEE, 2014, pp. 1–9.

[62] Stefan Groesbrink, Simon Oberthür, and Daniel Baldin. “Architecture for adap-
tive resource assignment to virtualized mixed-criticality real-time systems”. In:
ACM SIGBED Review 10.1 (2013), pp. 18–23.

[63] Stefan Groesbrink et al. “Towards Certifiable Adaptive Reservations for Hypervisor-
Based Virtualization”. In: Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2014 IEEE 20th. IEEE, 2014, pp. 13–24.

[64] Georg Guba. “Port and Extension of a Toolchain Regarding Machine Learn-
ing Supported Schedulability Analysis in Distributed Embedded Real-Time Sys-
tems”. MA thesis. Technische Universität München, Apr. 15, 2016.

[65] Zhishan Guo, Luca Santinelli, and Kecheng Yang. “Edf schedulability analysis
on mixed-criticality systems with permitted failure probability”. In: Embedded
and Real-Time Computing Systems and Applications (RTCSA), 2015 IEEE 21st
International Conference on. IEEE, 2015, pp. 187–196.

[66] Robert Häcker. “Design of an OC-Based Method for Efficient Synchronization of
L4 Fiasco.OC Mircrokernel Tasks”. BA thesis. Technische Universität München,
June 15, 2015.

[67] Hermann Härtig and Michael Roitzsch. “Ten years of research on L4-based real-
time systems”. In: Proceedings of the 8th Real-Time Linux Workshop. 2006.

[68] Valentin Hauner. “Extension of the Fiasco.OC Microkernel with Context-Sensitive
Scheduling Abilities for Safety-Critical Applications in Embedded Systems”. BA
thesis. Technische Universität München, Oct. 15, 2014.

[69] Gernot Heiser. “The role of virtualization in embedded systems”. In: ACM Press,
2008, pp. 11–16.

[70] Mathias Helminger. “Dynamic Realtime Scheduling of Quasi-Periodic Tasks for
Embedded Systems Testing on Linux”. MA thesis. Technische Universität München,
2014.

177

https://www.businessinsider.de/complete-connected-infographic-2015-2
https://www.businessinsider.de/complete-connected-infographic-2015-2

Bibliography

[71] Jonathan L. Herman et al. “RTOS support for multicore mixed-criticality sys-
tems”. In: 2012 IEEE 18th Real Time and Embedded Technology and Applications
Symposium. IEEE, 2012, pp. 197–208.

[72] Jens Hildebrandt, Frank Golatowski, and Dirk Timmermann. “Scheduling co-
processor for enhanced least-laxity-first scheduling in hard real-time systems”.
In: Real-Time Systems, 1999. Proceedings of the 11th Euromicro Conference on.
IEEE, 1999, pp. 208–215.

[73] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. “Implementation and
Evaluation of Mixed-Criticality Scheduling Approaches for Periodic Tasks”. In:
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2012
IEEE 18th. IEEE, 2012, pp. 23–32.

[74] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. “Implementation and
Evaluation of Mixed-Criticality Scheduling Approaches for Sporadic Tasks”. In:
ACM Transactions on Embedded Computing Systems 13 (4s Apr. 1, 2014), pp. 1–
25.

[75] ISO. ISO 26262-1-Road Vehicles Functional Safety Part 1 Vocabulary. Technical
report, International Organization for Standardization/Technical Committee 22
(ISO/TC 22), 2011.

[76] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. “Maximizing the execution rate of
low-criticality tasks in mixed criticality system”. In: Proc. WMC, RTSS (2013),
pp. 43–48.

[77] Roland Kammerer. Linux in safety-critical applications. OSADL Heidelberg, 2011.

[78] Owen R. Kelly, Hakan Aydin, and Baoxian Zhao. “On Partitioned Scheduling of
Fixed-Priority Mixed-Criticality Task Sets”. In: IEEE, Nov. 2011, pp. 1051–1059.

[79] J. O. Kephart and D. M. Chess. “The vision of autonomic computing”. In: Com-
puter 36.1 (2003), pp. 41–50.

[80] Nima Moghaddami Khalilzad, Moris Behnam, and Thomas Nolte. “Implemen-
tation of the Multi-Level Adaptive Hierarchical Scheduling Framework”. In: 9th
Annual Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT). 2013, pp. 11–19.

[81] Nima Moghaddami Khalilzad, Thomas Nolte, and Moris Behnam. “Towards adap-
tive hierarchical scheduling of overloaded real-time systems”. In: Industrial Em-
bedded Systems (SIES), 2011 6th IEEE International Symposium on. IEEE, 2011,
pp. 39–42.

[82] Olaf Kindel and Mario Friedrich. Softwareentwicklung Mit AUTOSAR: Grundla-
gen. Vol. 1. dpunkt, 2009.

[83] Gerwin Klein et al. “seL4: Formal verification of an OS kernel”. In: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles. ACM,
2009, pp. 207–220.

178

Bibliography

[84] Florian Kluge. “Autonomic- Und Organic-Computing-Techniken Für Eingebet-
tete Echtzeitsysteme”. Doctoralthesis. Universität Augsburg, 2011.

[85] Florian Kluge, Markus Neuerburg, and Theo Ungerer. “Utility-based scheduling
of (m, k)-firm real-time task sets”. In: Architecture of Computing Systems–ARCS
2015. Springer, 2015, pp. 201–211.

[86] Florian Kluge et al. “A Two-Layered Management Architecture for Building
Adaptive Real-Time Systems”. In: Software Technologies for Embedded and Ubiq-
uitous Systems. Ed. by Uwe Brinkschulte, Tony Givargis, and Stefano Russo.
5287 vols. Springer Berlin Heidelberg, Jan. 2008, pp. 126–137.

[87] Florian Kluge et al. “An Operating System Architecture for Organic Computing
in Embedded Real-Time Systems”. In: Autonomic and Trusted Computing. Ed. by
Chunming Rong et al. 5060 vols. Springer Berlin Heidelberg, Jan. 2008, pp. 343–
357.

[88] Hermann Kopetz. Real-Time Systems - Design Principles for Distributed Embed-
ded Applications. Real-Time Systems Series. Springer, 2011.

[89] Jeff Kramer and Jeff Magee. “Self-managed systems: an architectural challenge”.
In: 2007 Future of Software Engineering. IEEE Computer Society, 2007, pp. 259–
268.

[90] Daniel Krefft and Uwe Baumgarten. “Flexible Scheduling of Tasks for Self-Adaptation
in Mixed-Critical Automotive Systems”. In: Organic Computing Doctoral Disser-
tation Colloquium 2015. Ed. by Sven Tomforde and Bernhard Sick. Intelligent
embedded systems 7. Augsburg, Germany: kassel university press GmbH, 2015,
pp. 147–153.

[91] Daniel Krefft, Sebastian Eckl, and Uwe Baumgarten. KIA4SM - Kooperative In-
tegrationsarchitektur Für Zukünftige Smart Mobility Lösungen. Gesellschaft für
Informatik - Fachgruppe für Betriebssysteme, 2017.

[92] Avinash Kundaliya. “Design and Prototypical Implementation of a Toolchain for
Offline Task-to-Machine Mapping in Distributed Embedded Systems”. MA thesis.
Technische Universität München, Oct. 15, 2015.

[93] Adam Lackorzyński et al. “Flattening hierarchical scheduling”. In: Proceedings
of the tenth ACM international conference on Embedded software. ACM, 2012,
pp. 93–102.

[94] Barbara Lange. “Vorhersagbar”. In: Magazin für professionelle Informationstech-
nik iX 10 (2013), p. 4.

[95] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems: A Cyber-
Physical Systems Approach. Second edition. Cambridge, Massachuetts: MIT Press,
2017. 537 pp.

[96] Ye Li, Richard West, and Eric Missimer. “The Quest-V Separation Kernel for
Mixed Criticality Systems”. In: arXiv:1310.6298 [cs] (Oct. 23, 2013). arXiv:
1310.6298.

179

http://arxiv.org/abs/1310.6298

Bibliography

[97] Jochen Liedtke. “Improving IPC by kernel design”. In: ACM SIGOPS Operating
Systems Review 27.5 (1993), pp. 175–188.

[98] Jochen Liedtke. On micro-kernel construction. Vol. 29. 5. ACM, 1995.

[99] Anna Lyons and Gernot Heiser. “Mixed-Criticality Support in a High-Assurance,
General-Purpose Microkernel”. In: WMC. 2014, pp. 9–9.

[100] Alejandro Masrur, Samarjit Chakraborty, and G. Farber. “Constant-time admis-
sion control for partitioned EDF”. In: Real-Time Systems (ECRTS), 2010 22nd
Euromicro Conference on. IEEE, 2010, pp. 34–43.

[101] Nicholas Mc Guire. “Linux for Safety Critical Systems in IEC 61508 Context”.
In: Proceedings of the Ninth Real-Time Linux Workshop in Linz. 2007.

[102] Detlev Mohr, Hans-Werner Kaas, and Paul Gao. Automotive Revolution: Perspec-
tive towards 2030: How the Convergence of Disruptive Technology-Driven Trends
Could Transform the Auto Industry. McKinsey and Company, 2016.

[103] Malcolm S. Mollison et al. “Mixed-criticality real-time scheduling for multicore
systems”. In: Computer and Information Technology (CIT), 2010 IEEE 10th In-
ternational Conference on. IEEE, 2010, pp. 1864–1871.

[104] Aurélien Monot et al. “Multicore scheduling in automotive ECUs”. In: Embedded
Real Time Software and Systems-ERTSS 2010. 2010.

[105] Bryon Moyer. “Chapter 1 - Introduction and Roadmap”. In: Real World Multicore
Embedded Systems. Ed. by Bryon Moyer. Oxford: Newnes, 2013, pp. 1–10.

[106] Bryon Moyer. “Chapter 6 - Operating Systems in Multicore Platforms”. In: Real
World Multicore Embedded Systems. Ed. by Bryon Moyer. Oxford: Newnes, 2013,
pp. 199–226.

[107] Christian Müller-Schloer, Hartmut Schmeck, and Theo Ungerer, eds. Organic
Computing — A Paradigm Shift for Complex Systems. Basel: Springer Basel,
2011.

[108] Pritpal Singh Multani. “Analysis and Evaluation of Scheduling Strategies for
Safety Critical Automotive Systems”. MA thesis. Technische Universität München,
Dec. 15, 2013.

[109] Multicore and Virtualization in Automotive Environments. url: https://www.
edn.com/design/automotive/4399434/Multicore-and-virtualization-in-

automotive-environments (visited on 05/20/2018).

[110] Nicolas Navet et al. “Multi-source and multicore automotive ECUs-OS protec-
tion mechanisms and scheduling”. In: Industrial Electronics (ISIE), 2010 IEEE
International Symposium on. IEEE, 2010, pp. 3734–3741.

[111] Mircea Negrean, Simon Schliecker, and Rolf Ernst. “Response-time analysis of
arbitrarily activated tasks in multiprocessor systems with shared resources”. In:
Proceedings of the Conference on Design, Automation and Test in Europe. Eu-
ropean Design and Automation Association, 2009, pp. 524–529.

180

https://www.edn.com/design/automotive/4399434/Multicore-and-virtualization-in-automotive-environments
https://www.edn.com/design/automotive/4399434/Multicore-and-virtualization-in-automotive-environments
https://www.edn.com/design/automotive/4399434/Multicore-and-virtualization-in-automotive-environments

Bibliography

[112] Barbara Niedermeier. “Knowledge-Based Algorithms for Dynamic Task Man-
agement in Embedded Multi-Core Systems”. MA thesis. Technische Universität
München, 2017.

[113] Paul Nieleck. “Design and Prototypical Implementation of an OC-Based Controller-
Stack for Optimizing Mixed-Critical Thread Scheduling in L4 Fiasco.OC/Genode”.
MA thesis. Technische Universität München, Oct. 17, 2016.

[114] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. “Architecture-based
runtime software evolution”. In: Proceedings of the 20th international conference
on Software engineering. IEEE Computer Society, 1998, pp. 177–186.

[115] Peyman Oreizy et al. “An architecture-based approach to self-adaptive software”.
In: IEEE Intelligent Systems and Their Applications 14.3 (1999), pp. 54–62.

[116] Hewlett Peckard. Connected Cars. https : / / infographic . statista . com /

normal/infografik_4717_connected_cars_n.jpg. [Online; accessed 26-April-
2018].

[117] R. H Pierce, Great Britain, and Health and Safety Executive. Preliminary as-
sessment of Linux for safety related systems. OCLC: 319976931. Sudbury: HSE
Books, 2002.

[118] Binoy Ravindran, E. Douglas Jensen, and Peng Li. “On recent advances in time/u-
tility function real-time scheduling and resource management”. In: Object-Oriented
Real-Time Distributed Computing, 2005. ISORC 2005. Eighth IEEE Interna-
tional Symposium on. IEEE, 2005, pp. 55–60.

[119] Alexander Reisner. “Extension of the Genode OS Framework by a Component for
Runtime-Monitoring of a Real-Time Operating System”. BA thesis. Technische
Universität München, Dec. 15, 2015.

[120] Urban Richter et al. “Towards a generic observer/controller architecture for or-
ganic computing”. In: Informatik (2006), pp. 112–119.

[121] Matthias Rohr et al. A classification scheme for self-adaptation research. 2006.

[122] Vahid Salmani, Saman Taghavi Zargar, and Mahmoud Naghibzadeh. “A modified
maximum urgency first scheduling algorithm for real-time tasks”. In: Transactions
on Engineering, Computing and Technology, ISSN 1305 5313 (2005), pp. 19–23.

[123] Rodrigo Santos, Giuseppe Lipari, and Enrico Bini. “Efficient on-line schedula-
bility test for feedback scheduling of soft real-time tasks under fixed-priority”.
In: Real-Time and Embedded Technology and Applications Symposium, 2008.
RTAS08. IEEE, 2008, pp. 227–236.

[124] Francois Santy et al. “Relaxing mixed-criticality scheduling strictness for task
sets scheduled with fp”. In: Real-Time Systems (ECRTS), 2012 24th Euromicro
Conference on. IEEE, 2012, pp. 155–165.

[125] Frank Schirrmeister. “Chapter 3 - Multicore Architectures”. In: Real World Mul-
ticore Embedded Systems. Ed. by Bryon Moyer. Oxford: Newnes, 2013, pp. 33–
73.

181

https://infographic.statista.com/normal/infografik_4717_connected_cars_n.jpg
https://infographic.statista.com/normal/infografik_4717_connected_cars_n.jpg

Bibliography

[126] Philipp Schleiß. Integration of Highly-Automated Driving Functions with Fail-
Operational Properties. 2017.

[127] Hartmut Schmeck et al. “Adaptivity and self-organization in organic computing
systems”. In: ACM Transactions on Autonomous and Adaptive Systems 5.3 (Sept.
2010), pp. 1–32.

[128] David B Stewart and Pradeep K Khosla. “Real-time scheduling of dynamically
reconfigurable systems”. In: IEEE International Conference on Systems Engi-
neering. 1991, pp. 139–142.

[129] Jonas Sticha. “Validating the Real-Time Capabilities of the ROS Communication
Middleware”. BA thesis. Technische Universität München, June 15, 2014.

[130] Jan Stoess. “Towards effective user-controlled scheduling for microkernel-based
systems”. In: ACM SIGOPS Operating Systems Review 41.4 (2007), pp. 59–68.

[131] Technical Safety Concept Status Report. AUTOSAR, Oct. 13, 2010.

[132] Sven Tomforde, Bernhard Sick, and Christian Müller-Schloer. “Organic Comput-
ing in the Spotlight”. In: arXiv preprint arXiv:1701.08125 (2017).

[133] Marcus Völp, Adam Lackorzynski, and Hermann Härtig. “On the Expressiveness
of Fixed Priority Scheduling Contexts for Mixed Criticality Scheduling”. In: Proc.
WMC, RTSS (2013), pp. 13–18.

[134] What Is Your Definition of Software Architecture. Carnegie Mellon University:
Software Engineering Institute, 2017.

[135] Saman Taghavi Zargar, Vahid Salmani, and Mahmoud Naghibzadeh. “MMUF:
An Optimized Scheduling Algorithm for Dynamically Reconfigurable Real-Time
Systems”. In: Information and Communication Technologies, 2006. ICTTA06.
2nd. Vol. 2. IEEE, 2006, pp. 3486–3491.

[136] Fengxiang Zhang and Alan Burns. “Analysis of Hierarchical EDF Pre-emptive
Scheduling”. In: IEEE, Dec. 2007, pp. 423–434.

[137] Fengxiang Zhang and Alan Burns. “Schedulability analysis for real-time sys-
tems with EDF scheduling”. In: IEEE Transactions on Computers 58.9 (2009),
pp. 1250–1258.

[138] Werner Zimmermann and Ralf Schmidgall. Bussysteme in der Fahrzeugtechnik:
Protokolle, Standards und Softwarearchitektur ; mit 103 Tabellen. 5., aktualisierte
und erw. Aufl. ATZ/MTZ-Fachbuch. OCLC: 890312433. Wiesbaden: Springer
Vieweg, 2014. 507 pp.

182

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Background and Current Trends
	1.2 Motivation
	1.3 Problem and Contributions
	1.4 Structure of the Work

	2 Fundamentals of Embedded Systems Development
	2.1 Basic Taxonomy of a System
	2.2 Architecture in Software Engineering
	2.3 Functional and Design Requirements
	2.3.1 Taxonomy of Self-Adaptation
	2.3.2 Taxonomy of Dependability

	2.4 System Analysis Foundations of an Embedded System
	2.4.1 System Architecture
	2.4.2 Real-time Scheduling
	2.4.3 Communication

	3 Domain Analysis
	3.1 Operating System Architectures for Multi-Core Systems
	3.2 Real-Time Scheduling of Dynamic Mixed-Critical Systems
	3.3 Mixed-Critical System Properties
	3.4 Self-Adaptive Systems Properties
	3.5 Differences between Related Work and Proposed Approach

	4 Design of a Consolidated Self-Adaptive Software Architecture for Multicore Systems
	4.1 Description of the Overall System Architecture
	4.2 Kernel Space and User Space Interactions
	4.3 Allocation of Software Components to Multicore Hardware Platform
	4.3.1 Integration of Application Components within the System
	4.3.2 Criticality-Aware Allocation of Software Components
	4.3.3 Isolation Supporting Criticality

	4.4 Description of Workflows for Self-Adaptive Software Architecture Changes
	4.4.1 Adding a New Task into the System
	4.4.2 Optimizing current System State
	4.4.3 Monitoring current System State

	5 Flexible Task Management
	5.1 Basic Model for Reasoning about Current Running State
	5.1.1 Ready-Queue and Core Representation within User Space
	5.1.2 Extended Task Model Considering Criticality and Schedulability

	5.2 Run-Time Task Integration Framework
	5.2.1 Critical-Aware Dispatching of Tasks to Cores
	5.2.2 Short-Term Online Admission Test
	5.2.3 Long-term Knowledge-based Optimizer
	5.2.4 Synchronizing User Space with Kernel Space

	5.3 Combine the Framework Concept with the Designed Architecture
	5.3.1 Co-Existent Scheduling Strategies
	5.3.2 Tracing/Logging Software Component
	5.3.3 Controller Software Component
	5.3.4 Synchronizer Software Component

	6 Extension of a Microkernel-Based Operating System
	6.1 Genode and Fiasco.OC Basic Concepts
	6.1.1 L4 Fiasco.OC Microkernel
	6.1.2 Genode Operating System Framework

	6.2 Extension of the Fiasco.OC Microkernel
	6.2.1 Adding additional Scheduling Policies
	6.2.2 Extension of Time-related Thread Information
	6.2.3 Extension of Scheduling-Context for Thread Deployment and Information Gathering

	6.3 Operating System Framework Components
	6.3.1 Component for Network Communication
	6.3.2 Components for Information Gathering
	6.3.3 Component for Controlling the System
	6.3.4 Components for Loading and Deploying of Tasks

	6.4 Limitations of the current Implementation
	6.4.1 Getting System Information
	6.4.2 Adding New Tasks to the System

	7 Evaluation of the Flexible Task Management
	7.1 Scenario I: Reliable Autonomous Driving under Adaptation
	7.1.1 Installing an Application Component During Operation
	7.1.2 Updating an Application Component During Operation

	7.2 Scenario II: Testing System Properties using Artificially Generated Task Sets
	7.2.1 Support for the Separation of Software Components
	7.2.2 Support for the Avoidance of Overload Situations
	7.2.3 Support for Update Induced Dynamic Task Set Changes

	8 Conclusion
	9 Future Work
	A Code Listings
	A.1 Source Code
	A.2 Accpetance Test in Pseudocode

	B Evaluation Setup
	B.1 Generating Artificial Task Sets
	B.2 Autonomous Driving Setup
	B.2.1 Hybrid Test Bed
	B.2.2 Installation Scenario Additional Files

	Own Publications
	Advised Theses
	Bibliography

