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 Introduction 
The integrity of ship structures is subject to significant uncertainty associated with deterioration 
processes, among which corrosion loss is the most common and often the most critical one [6]. 
Corrosion phenomena relevant to ship structures are uniform (general) corrosion, pitting corro-
sion, crevice corrosion and galvanic corrosion [12]. Uniform corrosion, which is the focus of 
this contribution, can reduce the structural capacity by a widespread reduction of plate thick-
ness, leading to a loss in cross section.  It is influenced by a variety of factors, such as age, type, 
cargo type, area of operation. These factors vary among ships and among position and type of 
elements within a ship structure. For example, the bottom shell exposed to sea water or a tank 
with corrosive cargo are more vulnerable to corrosion than other elements in the ship. Empirical 
models are available to describe the corrosion progress [5, 8, 16, 17]. Considering the signifi-
cant uncertainty associated with the many influencing factors and their effect, such models 
should be formulated probabilistically. 
To manage corrosion and the associated uncertainties, inspections are carried out regularly on 
ship structures. Inspection results reduce uncertainty and facilitate efficient repair and replace-
ment of corroded elements. Because inspection results are necessarily incomplete and subject 
to uncertainty, they should be described in a probabilistic format. These can be achieved in a 
Bayesian framework, in which the prior corrosion model is combined with information from 
the inspections [4]. 
In this study, we apply a hierarchical spatial model following [13] to describe corrosion in a 
mid-ship section. Failure of a mid-ship section is taken as the relevant limit state. The reliability 
is computed conditional on inspections of the structure through plate thickness measurements. 
We thereby investigate the effect of the spatial dependence on the updated reliability. Compu-
tations are performed by means of the BUS approach with Subset Simulation [21], which can 
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handle Bayesian analysis and reliability updating with a large number of random variables, as 
encountered when modeling spatially variable properties. To enhance computational efficiency, 
we propose to calculate conditional probabilities in reverse chronological order, which allows 
reusing samples generated in the previous time steps. We furthermore apply spectral decompo-
sition to reduce the dimensionality of the problem.  
In a numerical example, the framework is applied to calculating the probability of flexural fail-
ure of the mid-ship section of a tanker. We compare the results obtained with varying spatial 
corrosion models, to investigate the effect of modeling assumptions. To demonstrate the effec-
tiveness of the framework, we compute results for varying number of inspected elements. Be-
sides enabling a better use of inspection results, the proposed approach can potentially also be 
used for improved planning of inspections, in which the spatial dependence is accounted for.  

 Modelling Spatial Variability of Corrosion in Ship Structures 

2.1 Remaining Thickness of Plate Under Corrosion 

We express the remaining thickness 𝑤𝑤 of a plate at time t as	𝑤𝑤 𝑡𝑡 = 𝑤𝑤% +𝑀𝑀 − 𝐷𝐷 𝑡𝑡 , where 
𝑤𝑤% is the design plate thickness, 𝑀𝑀 is the thickness margin, and 𝐷𝐷 is the corrosion depth. The 
plate is the basic element, and we do not further consider the variability of uniform corrosion 
within the plate.  
The corrosion depth 𝐷𝐷(𝑡𝑡) is calculated with a bi-linear corrosion model, in which the corrosion 
loss is zero if 𝑡𝑡 is smaller than the coating life 𝐶𝐶- and increases at a constant rate afterwards 
[19]. The corrosion rate, the coating life and the thickness margin M are modeled as lognormal 
random variables [13]. 

2.2 Hierarchical Representation of Corrosion in a Ship Cross-section 
Spatial dependence of corrosion in ship structures has previously been addressed by grouping 
structural elements depending on location and type (e.g. bottom shell, side shell, deck plating), 
and representing each group by separate parameters [1, 3, 12]. In [13], a hierarchical Bayesian 
model was proposed for predicting corrosion progress, which hierarchical levels being e.g. 
fleet, frame, compartment and structural element (Figure 1). The correlation between two plate 
elements is a function of the level of hierarchies that is shared by the two plates. At the lowest 
hierarchical level, a random field describes the dependence between two plates within the same 
compartment. This model is capable of representing spatial dependence depending on location, 
type and mutual distance of elements.  

 
Figure 1: Hierarchical structure of the spatial corrosion model taken from [13]. 



In this study, we describe the spatial dependence of corrosion process in a mid-ship section 
following the hierarchical model as implemented in [11]. Four hierarchical levels are defined: 
frame, cell, structural element, and single plate element (e.g. stiffener, web, plating). For sim-
plicity, the same hierarchical model represents spatial dependence of the corrosion rate 𝑅𝑅, the 
coating life 𝐶𝐶- and the thickness margin 𝑀𝑀. 
Figure 2 illustrates the effect of spatial dependence through random realizations of corrosion 
loss in a mid-ship section, where the variation of line color indicates how much the simulated 
corrosion loss deviates from the average corrosion loss. Figure 2(a) and (b) show realizations 
obtained with the hierarchical model, with different degrees of dependence (details in section 
5.1). For comparison, a random realization of the case with independence among corrosion in 
the individual elements is included, which is clearly unrealistic. Finally, Figure 2(d) shows a 
random realization following the classical approach of considering spatial variability of corro-
sion in ship structures [3], wherein the cross section is divided into groups of elements (e.g. 8). 
Each group is characterized by a single random variable, implying full dependence within the 
group. Different groups are modeled as independent.  
To reduce the dimension of the random variable vector, we employ a spectral decomposition 
of the correlation matrixes describing the spatially distributed corrosion rate, coating life and 
thickness margin. The number of eigenvalues is selected to ensure that more than 99% of total 
variability is captured by the approximation.  

(a) strong dependence 

 

(b) weak dependence 

 
(c) independence 

 

(d) classical approach 

 

 
Figure 2: Realizations of thickness reduction due to corrosion with different spatial dependence. 

 Load and Resistance Models 

3.1 Ultimate Bending Moment Capacity 
Loss of steel by corrosion leads to a reduction of moment capacity. We calculate the ultimate 
moment capacity 𝑀𝑀/ of the hull girder section based on the incremental curvature method de-
scribed in the IACS guideline [10]. We combine this method with the optimization scheme of 
[14] to reduce computational cost. Uncertainties in corrosion depth, Young’s modulus, and 
yield stress are considered when computing the probability distribution of the ultimate moment 
capacity.  



3.2 Vertical Bending Moment 
The vertical bending moment acting on the hull girder section is calculated as the sum of stillwa-
ter moment and wave-induced moment, which are functions of ship size, operational condition, 
cargo history, sea states and additional parameters. The stillwater bending moment 𝑀𝑀01 is here 
represented by a normal distribution [3, 7, 9, 15, 24]. Based on [7], mean value and standard 
deviation are defined as 𝜇𝜇01 = 0.70𝑀𝑀01,7  and 𝜎𝜎01 = 0.20𝑀𝑀01,7 , where 𝑀𝑀01,7  is the design 
stillwater moment calculated with IACS guidelines [10]. The extreme wave-induced moment 
𝑀𝑀1: is modeled by the Gumbel distribution with scale parameter 𝑎𝑎1: and location parameter 
𝑏𝑏1: determined following [7]. Details on the calculation of the bending moment can be found 
in [11]. 

3.3 Limit State 
In this study, flexural failure of a cross-section due to bending moment is taken to define the 
limit state, which is defined as follows: 

𝑔𝑔 𝐗𝐗; 𝑡𝑡 = 𝑋𝑋/𝑀𝑀/ 𝐗𝐗𝐬𝐬, 𝑡𝑡 − 𝑋𝑋01𝑀𝑀01 − 𝑋𝑋1:𝑀𝑀1: 1  

𝐗𝐗𝒔𝒔 is the vector of random variables affecting the ultimate moment strength; 𝑋𝑋/ represents the 
model uncertainties associated with ultimate moment strength calculation; 𝑋𝑋01 and 𝑋𝑋1: are the 
model uncertainties related to the stillwater and wave-induced moment load calculations. 
Model uncertainties are described by normal distributions following [15]. All random variables 
are combined in the vector 𝐗𝐗 = 𝐗𝐗𝐬𝐬, 𝑋𝑋/, 𝑋𝑋01, 𝑋𝑋1:,𝑀𝑀01,𝑀𝑀1:

D. A failure domain ΩF is defined 
by the failure limit state function as ΩF = {𝑔𝑔 𝐗𝐗; 𝑡𝑡 ≤ 0}. 

 Bayesian Updating 

4.1 BUS Approach with Subset Simulation 
In Bayesian analysis, the measurements are expressed by a likelihood function. In this study, 
the observation event is a set of plate thickness measurements 𝑤𝑤J. We assume additive meas-
urement error 𝜖𝜖, so that the measurement at element 𝑖𝑖 and time 𝑡𝑡 is related to the true plate 
thickness 𝑤𝑤M(𝑡𝑡) by 𝑤𝑤J,M 𝑡𝑡 = 𝑤𝑤M 𝑡𝑡 + 𝜖𝜖M(𝑡𝑡). Measurement errors are modelled as independent 
normal random variables with zero mean and standard deviation 𝜎𝜎N, i.e. 𝜖𝜖M(𝑡𝑡)~𝑁𝑁 0, 𝜎𝜎N . The 
resulting likelihood function is: 

𝐿𝐿 𝐗𝐗𝐬𝐬 = 𝐿𝐿M 𝐗𝐗𝐬𝐬, 𝑡𝑡
R

MST-

= exp −
1
2

𝑤𝑤X,M 𝐗𝐗𝐬𝐬, 𝑡𝑡 − 𝑤𝑤J,M 𝑡𝑡
𝜎𝜎N

YR

MST-

2  

where N is the total number of inspected elements, 𝑤𝑤X is the remaining plate thickness predicted 
with the implemented models. Following the BUS approach (Bayesian Updating with Struc-
tural reliability methods) proposed in [20 - 22], the likelihood function 𝐿𝐿 describing 𝑍𝑍 can be 
cast into a structural reliability framework, by defining the observation limit state function: 

ℎ 𝐗𝐗𝐬𝐬, 𝑈𝑈% = 𝑈𝑈% − Φ^T 𝑐𝑐𝑐𝑐 𝐗𝐗𝐬𝐬 3  

𝑈𝑈% is a standard normal random variable,  Φ^T is the inverse standard normal cumulative dis-
tribution function, and c is a positive constant that can be chosen following [21]. It should be 
noted that only the random variables 𝐗𝐗𝐬𝐬 which affect a remaining plate thickness are included 



in the observation limit state function. The observation limit state function defines a corre-
sponding observation domain Ωa = {ℎ 𝐗𝐗𝐬𝐬, 𝑈𝑈% ≤ 0}. The updated failure probability condi-
tional on the observation event Z can be calculated as: 

Pr 𝐹𝐹|𝑍𝑍 =
Pr 𝐹𝐹 ∩ 𝑍𝑍
Pr 𝑍𝑍

=
𝑓𝑓𝐗𝐗(𝐗𝐗)𝑑𝑑𝐗𝐗𝑑𝑑𝑑𝑑𝐗𝐗,/j∈ lm∩ln

𝑓𝑓𝐗𝐗(𝐗𝐗)𝑑𝑑𝐗𝐗𝑑𝑑𝑑𝑑𝐗𝐗,/j∈ln

4  

To solve Eq. (4), we employ subset simulation [2]. This method expresses the failure event as 
the intersection of nested intermediate events and the probability of failure is evaluated through 
as product of (larger) conditional probabilities of these intermediate events. Because of the con-
ditioning on 𝑍𝑍, the classical subset simulation is modified and the conditional probability of 
failure is expressed as:  

Pr 𝐹𝐹|𝑍𝑍 =
Pr 𝐹𝐹M∗q

MS%

Pr 𝑍𝑍
= Pr 𝐹𝐹M∗ 𝐹𝐹M^T∗

q

MST

= 𝑝𝑝%q^T𝑝𝑝q 5  

𝐹𝐹M∗ is the intersection of the intermediate failure event 𝐹𝐹M as used in classical subset simulation 
and the observation event, 𝐹𝐹M∗ = 𝐹𝐹M ∩ 𝑍𝑍. Therefore, the subset simulation starts with samples 
conditional on 𝑍𝑍 , since 𝐹𝐹%∗ = 𝑍𝑍 . The parameter 𝑝𝑝% = Pr 𝐹𝐹M∗ 𝐹𝐹M^T∗  is taken as 0.1; 𝑝𝑝q =
Pr 𝐹𝐹q∗ 𝐹𝐹q^T

∗  is the conditional probability of failure computed in the last subset 𝑀𝑀. Details on 
the algorithm can be found in [22]. The adaptive MCMC algorithm proposed in [18] is used to 
improve the accuracy and efficiency of subset simulation. 

4.2 Computing Reliability in Function of Time 
The conditional probability of failure is computed in function of time t. The structural capacity 
of the ship reduces with time because of corrosion, which affects the probability of failure. To 
reduce computational effort, we propose to compute the reliability in different time steps se-
quentially, starting from the last time step.  

 
Figure 3: Limit state surfaces describing failure at different times 𝑡𝑡, where failure occurs when corrosion  

exceeds the plate thickness 𝑤𝑤% = 40mm. The limit state functions are 𝑔𝑔 𝑟𝑟, 𝑐𝑐u = 40𝑚𝑚𝑚𝑚 − 𝑟𝑟(𝑡𝑡 − 𝑐𝑐u),  
which potentially corresponds to Eq. (1). The black dots show Monte Carlo samples of 𝑅𝑅 and 𝐶𝐶u. 

To illustrate the idea, Figure 3 shows failure domains for a simple deterioration limit state at 
different times. Clearly, the failure domain at time t–1 is a subset of that at time t. This property 
can be exploited in subset simulation, by computing the failure probabilities in reverse time 
order. The probability of failure at time step 𝑡𝑡 can be written as Pr(𝐹𝐹-) = Pr 𝐹𝐹- 𝐹𝐹-wT Pr(𝐹𝐹-wT). 



Hence, it is sufficient to compute Pr 𝐹𝐹- 𝐹𝐹-wT , and the samples conditional on failure in time 
step 𝑡𝑡 + 1 are available as seeds for this computation.  
 

 Numerical Investigation 

5.1 Problem Definition 
A mid-ship section of a tanker described in [11] is investigated. The main parameters of the 
tanker are: length 𝐿𝐿=255m, breadth 𝐵𝐵=57m, height 𝐻𝐻=31.1m, block coefficient 𝐶𝐶z=0.842, 
mean value of the Young’s modulus 𝐸𝐸 =207,000MPa, mean value of the yield stress 
𝜎𝜎|=353MPa. The considered cross-section consists of 400 stiffened plate elements, and each 
of them consists of plating, stiffener and web, leading to a total of 1,200 basic elements.  
Corrosion parameters are assigned in function of 8 distinct groups, in function of the location 
within the cross section. The corrosion rate R is modeled through lognormal random variables 
whose mean values are in the range 0.06 – 0.34 [mm/year], and whose C.o.V.s are 0.1 or 0.5. 
The coating life 𝐶𝐶- is modeled by lognormal random variables with mean value equal to 5 years 
and C.o.V. 0.40. Details on the probabilistic modeling of the corrosion is provided in [11].  
The hierarchical spatial model is defined with three levels: cross-section (level 1), cells (level 
2) and structural element types (level 3). All basic elements are assigned to the hierarchical 
levels based on their location and type.  For illustration purposes, we define a weak and a strong 
spatial dependence model, whose properties are summarized in Table 1. These models are com-
pared to the classical approach, in which each corrosion parameter is represented by 8 random 
variables assigned to each of the 8 corrosion groups. In addition, we consider a model with all 
elements treated as independent. 

Table 1: Correlation at each hierarchical level defined for two spatial dependence cases 

Hierarchical level Weak dependence Strong dependence 
Level 1: Frame 0.04 0.10 
Level 2: Cell 0.19 0.32 

Level 3: Struct. elem. 0.53 0.70 
 

5.2 Reliability Updating with Thickness Measurements 
A set of hypothetical thickness measurement data is generated through a Monte Carlo simula-
tion based on the prior probabilistic models and the strong dependence case (Table 1). Meas-
urement uncertainty is represented by a normal distribution with 𝜎𝜎N=1mm. Inspections are 
performed in years 5, 15 and 25, at selected locations indicated in Figure 4.  
Subset simulation is carried out with 1,000 samples per subset level. Calculations are repeated 
10 times to estimate the sampling variability. Through the spectral decomposition, the 1,200 
random variables representing each of the corrosion parameters are compressed to 50 random 
variables in the case of the weak spatial dependence model and to 33 random variables in the 
case of the strong dependence model.  

5.2.1 Effect of Spatial Dependence Model 

We first perform an analysis considering inspection of 6 elements (Table 3). The resulting fail-
ure probabilities are shown in Figure 5. One can clearly observe the effect of the inspection in 



later years in the case of the weak and the strong spatial dependence model. The classical ap-
proach leads to smaller changes in the probability of failure with inspection outcomes. As ex-
pected, when considering plates as independent, no change in the probability of failure is 
observed, because the inspections provide information only about the 6 inspected basic ele-
ments (out of 1,200). 

 
Figure 4: Configuration of inspected elements among cross-section 

 
(a) Spatial independence 

 

(b) Weak dependence 

 
(c) Strong dependence 

 

(d) Classical approach 

 
Figure 5: PoF conditional on the thickness measurements under varying spatial dependence assumptions 

The sampling variability of the estimated probability of failure (PoF) is shown in Figure 6 and 
Table 2. The C.o.V. of the PoF estimate increases with decreasing probability of failure and 
with increasing number of inspections. The latter effect occurs because additional data leads to 
a smaller Pr 𝑍𝑍  and therefore to an increased number of subsets.  
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(a) Spatial independence 

 

(b) Strong dependence 

 

(c) Classical approach 

 
Figure 6 Sampling variability in the PoF estimates for different spatial dependence models. The solid line shows 

the mean estimate, and the shaded areas indicate ± one standard deviation.  

Table 2: C.o.V of PoF at selected years 

Time [yr] Independence Weak dep. Strong dep. Classical 
P(F) P(F|Z) P(F) P(F|Z) P(F) P(F|Z) P(F) P(F|Z) 

24 0.27 0.62 0.27 0.78 0.21 0.40 0.23 0.53 
25 0.26 0.46 0.24 0.79 0.16 0.58 0.25 0.51 
30 0.22 0.47 0.21 0.62 0.15 0.73 0.12 0.37 

 
5.2.2 Effect of Number of Inspected Elements 

We analyse the effect of number of inspected elements on the conditional failure probabilities. 
We consider three different sets of inspected elements following Table 3 and Figure 4.  The 
results are presented in Figure 7. Inspecting more elements provides more information, leads to 
a stronger reduction in uncertainty and on average results in reduced conditional failure proba-
bilities. However, this must not necessarily hold for specific outcomes. For unfavourable in-
spection outcomes, the PoF can even increase compared to the prior probability of failure.  

Table 3: Elements chosen for inspection for three case studies 

Inspection variable # of inspected elements 
3 elements 7, 12, 13 
6 elements 1, 3, 7, 9, 12, 13 
13 elements 1-13 

 

(a) strong dependence 

 

(b) classical approach 

 
Figure 7: PoF with different number of inspected elements. 



 Summary and Conclusions 
We investigate the effect of explicitly modeling the spatial variability of corrosion processes in 
ship structures in the context of reliability analysis and reliability updating. We apply the BUS 
approach with subset simulation for reliability updating, which can handle efficiently the large 
number of random variables arising from the modeling of spatial variability. Even after per-
forming a spectral decomposition of the corrosion parameters, the number of random variables 
is in the order of 100–200. To further enhance the computational efficiency, we implemented a 
chronologically reverse computation of the probability of failure, exploiting the fact that the 
failure domain at time 𝑡𝑡 is a subset of the one at time 𝑡𝑡 + 1. 
To understand the effect of different assumptions in the spatial modeling of corrosion, we com-
pare the results obtained with different dependence models. Neglecting spatial dependence (ei-
ther by assuming full correlation or independence) leads to unrealistic assumptions. 
Furthermore, there are clear differences among the results obtained with the different depend-
ence models, but further numerical investigations are necessary to make general conclusions. 
It is also necessary to extend the current investigation to consider all critical cross sections in 
the ship jointly. Such investigations are a straightforward extension of the study presented here.  
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