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Abstract—Network virtualization enables increasingly diverse
network services to cohabit and share a given physical in-
frastructure and its resources, with the possibility to rely on
different network architectures and protocols optimized towards
specific requirements. In order to ensure a predictable perfor-
mance despite shared resources, network virtualization requires
a strict performance isolation and hence, resource reservations.
Moreover, the creation of virtual networks should be fast and
efficient. The underlying NP-hard algorithmic problem is known
as the Virtual Network Embedding (VNE) problem and has
been studied intensively over the last years. This paper presents
NeuroViNE, a novel approach to speed up and improve a wide
range of existing VNE algorithms: NeuroViNE is based on a
search space reduction mechanism and preprocesses a problem
instance by extracting relevant subgraphs, i.e., good combinations
of substrate nodes and links. These subgraphs can then be fed
to an existing algorithm for faster and more resource-efficient
embeddings. NeuroViNE relies on a Hopfield network, and its
performance benefits are investigated in simulations for random
networks, real substrate networks, and data center networks.

I. INTRODUCTION

Context: Virtual Networks Providing Predictable Per-
formance. Today’s communication networks are challenged
with increasing diversity of applications (e.g., live streaming,
IoT applications, 5G, etc.) as well as frequently changing
demands, e.g., due to user mobility. Network virtualization is
an attractive paradigm that allows accommodation of differ-
ent applications on a shared infrastructure, while supporting
application-specific network architectures and optimizations.
Whereas resource sharing enables high network utilization,
efficient performance isolation mechanisms need to be in
place, to ensure a predictable application performance. This
in turn introduces the need for mechanisms to quickly and
efficiently provision virtual networks and their resources.
The Problem: Fast and Efficient Embeddings. The problem
of computing a minimal viable resource footprint for a virtual
network is known as the Virtual Network Embedding (VNE)
problem. The VNE problem is NP-hard in general [1] and
there exist many exact and heuristic algorithms [2]–[8]. While
exact solutions are attractive for their resource efficiency (in
terms of resource footprints of the virtual networks), they are
expensive to compute [9]. In contrast, heuristic algorithms
solve the VNE problem in acceptable time, but their embed-
ding footprints can be far from optimal. Especially problematic
are heuristic algorithms that split the embedding problem into
a node and a link mapping step [10]: substrate nodes that may
be ranked highly in the node step (e.g., due to available node

resources) might be located far away from each other, thus
requiring a lot of bandwidth resources.
The Idea: Subgraph Extraction. Our paper is motivated by
the observation that efficient solutions to the VNE problem
place frequently communicating nodes close to each other.
Moreover, we observe that many time-intensive VNE algo-
rithms may benefit when executed on subgraphs selected in-
telligently from the substrate network. Consequently, a prepro-
cessing mechanism that extracts subgraphs providing (1) high
probabilities for being able to accommodate virtual networks
and (2) ensuring low-cost embeddings can potentially lead to
shorter runtimes while preserving high embedding qualities.
Our Contributions. We propose a generic preprocessing
mechanism called NeuroViNE, to both, speed up and improve
existing rigorous VNE algorithms, by performing an effective
search space reduction and subgraph extraction. Concretely,
for a given virtual network request, NeuroViNE leverages a
Hopfield network [11], [12], which is a special artificial neural
network, to preselect a subset of “good” substrate nodes — the
Hopfield network extracts whole valuable subgraphs. Hopfield
networks do not require any kind of learning; the Hopfield net-
work designed and used in this paper computes a probability
for each node to be part of the subgraph. An existing VNE
algorithm is then used to find the final embedding solution.
Using extensive simulations, for which we reimplemented
five well-known embedding algorithms (namely GRC [10],
GREEDY [7], SDP [2], and the two VINEYARD [5] algorithms
D-VINE and R-VINE), we evaluate the performance of
NeuroViNE and find that it provides an attractive extension
to many algorithms. We also find that our approach can either
improve runtime or embedding quality, and in some cases even
both metrics at the same time.
Paper Organization. The remainder of this paper is organized
as follows. Section II introduces our model. Our solution,
NeuroViNE, is presented in Section III and evaluated in
Section IV. After reviewing related work in Section V, we
conclude and discuss future work in Section VI.

II. THE MODEL

The Virtual Network Embedding (VNE) problem [2] is
defined as follows.
Substrate Network. We consider an undirected graph Gp :=
(N p,Lp, Cp,Bp) to describe the substrate network. N p is the
set of physical nodes N p := {Np

i }si=1, where s is the number
of nodes of the substrate. Lp is the set of physical edges with
Lp ⊆ N p × N p and Lpij = (Np

i , N
p
j ) denoting a physical



link. Each node Np
i ∈ N p has CPU capacity Cpi and residual

capacity Cpi (t) at time t. Every link Lpij ∈ Lp has bandwidth
Bpij and residual bandwidth Bpij(t) at time t.
Virtual Network Requests (VNRs). A Virtual Network Re-
quest (VNR) is an undirected graph Gv := (N v,Lv, Cv,Bv).
N v is the set of all virtual nodes N v := {Nv

m}rm=1 of a
VNR, where r is the number of virtual nodes of the VNR.
Lv contains all virtual links with Lv ⊆ N v × N v and
Lvmn = (Nv

m, N
v
n). Vice versa, every virtual node Nv

m ∈ N v

has a CPU requirement Cvm and every virtual link Lvmn ∈ Lv
has a bandwidth requirement Bvmn.
Virtual Network Embedding. VNE algorithms try to map an
arriving VNR Gv to the substrate network Gp. A successful
embedding is then defined by a node mapping fN and a link
mapping fL function [7]:

fN : N v → N p (1)

fL : Lv → 2L
p

\ ∅ (2)

such that

∀Nv
m ∈ N v : Cvm ≤ C

p
fN (Nv

m)(t) (3)

∀Lvmn ∈ Lv : ∀Lpij ∈ fL(Lvmn) : Bvmn ≤ B
p
ij(t) (4)

For a valid mapping of VNR Gv to Gp, it is necessary to map
all virtual nodes N v to distinct substrate nodes N p (Eq. 1) and
to map all virtual links Lv to paths in the substrate network
(Eq. 2), i.e., a subset of links Lp′ ∈ 2L

p \ ∅. Note that we
assume unsplittable flows in this work. The CPU requirements
of all virtual nodes (Eq. 3) and the bandwidth requirements
of all virtual links must be fulfilled (Eq. 4); virtual nodes
and links can only be mapped on substrate nodes and links
providing enough residual CPU or bandwidth (Eq. 3, Eq. 4).

III. THE NEUROVINE PREPROCESSOR

In a nutshell, NeuroViNE is a preprocessor extracting sub-
graphs. Using subgraphs composed of good candidate nodes
can provide various benefits in terms of algorithm efficiency
or solution quality: e.g., such subgraphs can help improve
solution qualities of embedding algorithms, as we demonstrate
for heuristics [6], [10], or can provide time savings when
combined with runtime-expensive VNE algorithms, such as
algorithms based on mathematical programming [2]. Before
presenting our Hopfield network adaptation for subgraph ex-
traction, we will first provide background on Hopfield net-
works in the next section.

A. Background: Hopfield Network

Hopfield networks are a form of recurrent artificial neural
networks [12]. A Hopfield network has one layer of neurons
that are all interconnected, as shown in Fig. 1. The following
parameters specify a Hopfield network at time t:
• Number of neurons m.
• Vector V(t) ∈ [0, 1]m representing each neuron’s exter-

nal state.
• Vector U(t) ∈ Rm representing each neuron’s internal

state.

Internal
Neuron States 
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U

Fig. 1. A Hopfield Network with 3 neurons. The output of one neuron is fed
back as input to the other neurons. Input and output have the same size. The
final output is given by the values of the neurons.

• Bias vector I ∈ Rm, serving as independent input to each
neuron.

• Symmetric weight matrix T ∈ Rm×m, with Tij = Tji

being the weight of the connection between neuron i and
j and Tii = 0.

• Activation function g : Rm → [0, 1]m, calculating the
activation, i.e., the external state of each neuron.

One way to fully describe the behavior of neurons of a
Hopfield network is the differential equation [11]:

dU(t)

dt
= −U(t)

τHF
+ TV(t) + I. (5)

The input of one neuron Ui(t) is the sum of the output
of all other neurons plus the bias value Ii. The external
neuron state V(t) at point in time t is determined by using
a smooth approximation to the step function as activation
function g(V(t)), as originally proposed in [11]:

V(t) = g(U(t)) =
1

2
·
(

1 + tanh

(
U(t)

u0

))
. (6)

The free parameter u0 controls the steepness of the curve.
We fix u0 to 1 in our experiments since its variation showed
no significant impact on our results. When implementing a
Hopfield network in software, parameter τHF of Eq. 5 can be
set to 1 [11]. To avoid notational clutter, we drop the time
index t if the context is clear: e.g., U instead of U(t).

When executing a Hopfield network, its neurons potentially
converge towards stable states. Given the stable states, it is
shown that the neuron values imply a local minimum of the
so-called energy equation of the Hopfield network:

E = −1

2
VTTV −VT I. (7)

When used for optimization, parameters T and I have to be
chosen in such a way that they relate to the objective of the
optimization problem to be minimized. By solving Eq. 5, we
minimize Eq. 7 and, thus, the original objective represented
by T and I as well.

B. System Overview

NeuroViNE’s preprocessor uses a Hopfield network. Fig. 2
shows an overview of NeuroViNE. The main components
of NeuroViNE are the ratings for nodes and links of the
substrate, a selection function ζ(Gv) determining the number
of physical nodes in the subgraph, and the parameters of the
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Fig. 2. NeuroViNE uses a Hopfield network to extract a subgraph from the
substrate and then applies a VNE algorithm. Dependent on the VNR size, a
selection function ζ(Gv) determines the number of selected nodes. The size
of Gp determines the number of neurons of the Hopfield network, here five.
The current state of Gp determines the weight matrix T and the bias vector
I. The VNE algorithm embeds the VNR on the subgraph Gp, subgraph.

Algorithm 1 Preselection and Virtual Network Embedding.
Require: Gp,Gv

1: Ξ(t)← β · calculate noderanks(N p)
2: Ψ(t)← calculate edgeranks(Lp)
3: ζ ← set number of preselected nodes (| N v |)
4: (T, I)← create hopfield network(Ξ, Ψ”, ζ)
5: V← execute hopfield network(T, I)
6: Gp, subgraph ← Gp
7: for Vi ∈ V do
8: if Vi < 0.5 then
9: remove node(Gp, subgraph, Np, subgraph

i )
10: end if
11: end for
12: fN ← map nodes(Gv , Gp, subgraph)
13: fL ← map edges(Gv , Gp, fN )
14: return (fN , fL)

Hopfield network (weight matrix T, bias vector I and energy
function E). Our goal is to accept as many virtual networks
as possible while reducing cost, i.e., increasing revenue-cost-
ratios. Algorithm 1 shows how all components interplay. The
relevant parts are explained throughout the next sections.

C. Substrate Node and Edge Ranking

In NeuroViNE, neurons in the Hopfield network represent
substrate nodes. In order to select the potentially best nodes
from the substrate, the neurons representing those nodes must
be associated with low values of Eq. 7. We introduce a node
and edge (node connectivity) rating for this purpose, which
will be used for the setting T and I in Sec. III-E.

The node calculation step (line 1) can consider any node
attribute, e.g., memory or CPU, or any attribute of a node’s
connected edges, e.g., latency or bandwidth. In this work, the
node ranking vector Ξ(t) ∈ R|Np| considers the residual CPU
capacities at time t as follows:

Ξi(t) = β ·
maxNp

j ∈Np Cpj (t)− Cpi (t)

maxNp
j ∈Np Cpj (t)

∀Np
i ∈ N

p, (8)

where β is a parameter that weighs the importance of the
node ranking. By taking the residual CPU, the Hopfield
network tries to identify subgraphs with a high remaining
CPU capacity, thus providing a high chance for acceptance.
Dividing by the highest available CPU capacity normalizes the

rankings to the interval from 0 and 1. Setting β = 7 showed
the best performance in the conducted simulations.

The edge ratings (line 2) are represented in the matrix
Ψ(t) ∈ [0, 1]|N

p|×|Np|. Determining the values of Ψ(t)
involves two steps; (1) setting the weights of all links and
(2) calculating the shortest paths between all nodes based on
these weights. The weights of all links are set as

wHF(ij) = Bpmax(t)−
Bpij(t)

Bpmax(t)
, (9)

where Bpmax(t) := maxLp
ij∈Lp Bpij(t) is the maximum resid-

ual bandwidth at time t among all links. The idea behind the
weight setting is to integrate the distance between nodes while
simultaneously considering the remaining capacities of links.
The link weights wHF are then used to calculate the distance
matrix D(t) containing the costs of shortest paths between all
nodes at time t. Finally, the values of the matrix Ψ are

Ψij(t) = γ · Dij(t)

max(D(t))
, (10)

where every value is normalized by the maximum value
of the matrix D(t), and the parameter γ weights the edge
ratings. γ = 3 provided the best results in our simulations.
Note that we assume that at least one path with remaining
capacity exists, otherwise the algorithm would not be executed
at all. The obtained ranking results in the selection of a
subset of substrate nodes with small distance in terms of hop
count to each other, but high residual capacity on connecting
links/paths. Combining distance and residual capacity into
the path calculation ensures that the virtual nodes can be
connected successfully with low cost.

D. Node Number Selection Functions

The node number selection functions determine the amount
of nodes that should be preselected, i.e., that determine the size
of the subgraph. As this function is interchangeable, it allows
to tailor the embeddings to specific goals. For instance, the se-
lection function can weight smaller networks higher than larger
networks. To realize such strategy, an operator would simply
have to select more nodes for smaller networks than larger
networks. Thereby, the acceptance ratio for smaller networks
might be larger than for larger networks. We propose three
selection functions: ζconst(Gv), ζfactor(Gv), and ζinverse(Gv).

Line 3 calculates the number of nodes based on one specific
function. Function ζconst(Gv) simply sets ζ to any pre-defined
constant value κ for all VNRs; it is independent of the
requested graph Gv:

ζ = ζconst(Gv) = κ (11)

Function ζfactor(Gv) uses the size of a VNR Gv , i.e, | N v |:

ζ = ζfactor(Gv) = κ· | N v | . (12)

κ allows to linearly scale the number of selected nodes: e.g.,
κ = 1 forces the Hopfield network to select exactly the
number of requested VNR nodes. Larger κ should increase
the probability of accepting a VNR. Function ζinverse selects



ζ inversely proportional to the number of requested virtual
nodes:

ζ = ζinverse(Gv) =
κ

| N v |
(13)

ζinverse is tailored towards the demands of optimal algorithms.
When embedding small networks, optimal algorithms can use
the entire network, while for VNRs, the substrate search space
should be reduced for runtime reasons. For correct operation of
NeuroViNE, it is important that the Hopfield network preselects
a number of nodes equal or greater than the number of
requested nodes of the VNR (i.e., ζ ≥| N v |). Note that the
Hopfield network may not always select exactly the requested
number of nodes. Instead, the number of selected nodes might
slightly vary around ζ. Generally, increasing the amount of
preselected nodes increases the likelihood that a VNR can
be accepted, but also decreases the efficiency of NeuroViNE.
Accordingly, Sec. IV analyzes the effect of the choice and the
parameter settings of the selection functions.

E. Hopfield Network Creation
With the ranking and number of nodes to be selected, we can

create a Hopfield network with | N p | neurons. The creation
of the network is done in line 4 of Algorithm 1. This step
involves the calculation of the neuron weight matrix T and
the bias vector I. First, we calculate the parts of T and I
that are caused by the constraints Tconstraint and Iconstraint. This
is done for all elements of the weight matrix and bias vector
using the k-out-of-n rule proposed by Page and Tagliarini [13]
as follows

Tconstraint
ij =

{
1 if i 6= j
0 if i = j

Iconstraint
k = −(2 · ζ − 1),

(14)

where i and j are the indexes of the weight matrix Tconstraint

and k is the index of the bias vector Iconstraint. The k-out-of-
n rule ensures that for a decision problem with n variables,
k variables will be chosen, i.e., be set to 1. Accordingly, the
Hopfield network should choose ζ substrate nodes out of all
N p. Finally, the actual weight matrix T and the actual bias
vector I can be calculated:

T = −2(Ψ(t) + α ·Tconstraint) (15)

I = −(Ξ(t) + α · Iconstraint) (16)

The parameter α weighs the constraint terms against the
optimization terms. A high α value ensures that the number
of selected nodes in the subgraph is close to the number of
nodes of a VNR. Setting α = 10 showed the best performance
in the presented simulations.

The energy function of the Hopfield network is given as:

E = VT (Ψ(t) + α ·Tconstraint)V + VT (Ξ(t) + α · Iconstraint),
(17)

where V is the vector of the neuron states. The inclusion of
the terms Tconstraint and Iconstraint ensures that the constraint is
satisfied, i.e., the correct number of nodes are selected. The
minimum of Eq. 17 implies the best possible combination of
nodes according to the edge and node ranking.

F. Finding the Stable Neuron State

To solve Eq. 5 we use the Runge-Kutta-Method as described
in Algorithm 2. First, the internal neuron states U, the iteration
count i, and the state change variable ∆ are initialized (line
1 to line 3). The while loop (line 4 to line 19) repeats until
either the state change variable ∆ is smaller than a threshold
δ or the maximum number of iterations imax is reached. Inside
the while loop, the next iteration of U and the difference to
the last iteration are calculated (line 6 to line 11). Finally, the
activation function calculates the output of the neurons (line
11). The parameter τ controls the step size of the updates.
Results presented in Sec. IV are obtained with τ fixed to 0.1.
The value of 0.1 yielded the best performance.

G. Modifications for Data Center Use Case

So far, we made the usual assumption that virtual nodes
can be embedded on any substrate node. In order to apply
our Hopfield network-based algorithm in data centers, we
introduce additional concepts.

Data center topologies come in many flavors, including
FatTree (FT) [14] or BCube (BC) [15]. In the context of
VNE, we need to distinguish two types of nodes: servers and
switches. Servers host the virtual machines carrying out the
customers’ operations, whereas switches are used to connect
servers. As such, only servers can host virtual machines.

To model such physical networks, we leverage that Hopfield
networks allow to fix some variables in advance, i.e., before
executing them. This method is called clamping [16]: certain
neurons are fixed to certain values. Clamping can be useful
when variables should be excluded from the search space or
if some variable solutions are already given.

Concretely, the modified Hopfield network system requires
additional information given by the set C0 containing all
switches, and the following constraint:

Vi = 0 ∀Np
i ∈ C0. (18)

The constraint is implemented using clamping. Generally, the
algorithm now requires additional information about whether
we face a data center topology and also the set C0.

Line 11 to line 14 provide the data center modification;
they are marked in blue. If the topology is a data center, the
elements of the internal state vector U representing switches
(C0) are set to a large negative value while the deviations dU
are set to 0. When the Hopfield network execution converges,
this will result in a solution where the nodes C0 are all set to
0 — excluding switches from the subgraph.

To be a compatible alternative, the data center algorithm
uses a fallback algorithm (any VNE algorithm) in case the
preprocessor-based subgraph leads to an early rejection. This
might increase the computational resources and runtime; how-
ever, as the results will demonstrate, the benefits in terms
of cost savings and revenues favor this design. Furthermore,
using a heuristic algorithm as alternative still guarantees a
compatible algorithm runtime.



Algorithm 2 Execution of the Hopfield Network.
Require: I,T,∆, imax, dc flag, C0

1: U← Random
2: i← 0
3: ∆←∞
4: while (∆ > δ) ∧ (i < imax) do
5: i← i+ 1
6: k1 ← TV + I−U

7: k2 ← T( 1
2 (1 + tanh(

U+ 1
2 τk1

u0
))) + I− (U + 1

2τk1)

8: k3 ← T( 1
2 (1+tanh(U−τk1+2τk2

u0
)))+ I− (U− τk1 +

2τk2)
9: dU← k1+4k2+k3

6
10: if dc flag == True then
11: for i ∈ C0 do
12: Ui ← −∞
13: dUi ← 0
14: end for
15: end if
16: U← U + τ · dU
17: ∆← |dU|
18: V← 1

2 (1 + tanh( U
u0

))
19: end while
20: return V

H. Embedding of the Links and Nodes

After the preselection is complete, the subgraph Gp, subgraph

is created (line 6 to line 11 of Algorithm 1.). Gp, subgraph

contains only the substrate nodes whose neuron states are
active, i.e., N p, subgraph = {Np

i | N
p
i ∈ N p ∧ Vi > 0.5}. We

call the node mapping with the subgraph Gp, subgraph in line 12
of Algorithm 1. After all virtual nodes are mapped, we map
the edges by calling the edge mapping function in line 13.
The edge mapping is performed using the complete substrate
network Gp. If node and link mappings are successful, the
network is embedded to the substrate.

IV. EVALUATION

NeuroViNE can be employed together with many existing
algorithms, and we have evaluated different combinations in
different settings using extensive simulations, both on artificial
and real network topologies.

A. Methodology

The following sections summarize the simulation setups
involving VNE algorithms, substrate network graphs, virtual
network requests and VNE performance metrics. For all set-
tings, we performed at least 10 runs for every substrate setting:
e.g., we used 10 substrate graphs for both random network
models. For every setup, we run the online embedding until
2500 VNRs were processed.

1) Virtual Network Embedding Algorithms: In our eval-
uation, we compare five embedding algorithms with and
without NeuroViNE: the Global Resource Capacity algo-
rithm (GRC) [10], the Greedy algorithm (GREEDY) [7], the
optimal Shortest Distance Path algorithm (SDP) [2], the

two VINEYARD [5] algorithms D-VINE and R-VINE. We
use NeuroViNE in combination with GRC, SDP, D-VINE
and R-VINE as VNE algorithms; we refer to the algo-
rithm variants with Hopfield preprocessing HF-GRC, HF-SDP,
HF-D-VINE and HF-R-VINE. The Hopfield data center variant
is called HF-GRC-DC.

GRC introduces the Global Resource Capacity metric for
every node of the substrate network. GRC embeds the virtual
nodes to the substrate nodes with the highest metric values.
The parameters of GRC are set as proposed in [10]. GREEDY
rates the nodes based on their residual CPU capacity only.
In the edge embedding stage, GRC and GREEDY embed
all virtual edges consecutively depending on their rank. The
virtual edges are mapped using the shortest path in terms
of number of hops. D-VINE and R-VINE use a relaxed
integer programming formulation of the VNE problem. Either
deterministic (D-VINE) or randomized (R-VINE) rounding is
applied to provide a solution for a VNR. We use the shortest
path versions of D-VINE and R-VINE. SDP is an (exact)
mixed integer programming-based algorithm that tries to find
a cost optimal embedding. As SDP does not scale to large
topologies (> 50), the execution is prematurely interrupted
after 30 seconds.

2) Substrate Network Graphs: We evaluate the perfor-
mance of the algorithms with five substrate graph types: the
two random network graph models Erdős-Rényi (ER) [17] and
Barabási-Albert (BA) [18], realistic network graphs from the
Topology Zoo (TPZ) [19], and the two data center topologies
FatTree (FT) and BCube (BC).
Random Network Graphs. All ER graphs are generated with
100 nodes and a connection probability of 0.11. The CPU
capacities of the nodes and the bandwidths of the links are
equally distributed in the range from 50 to 100. This substrate
setup is the same as used by Gong et al. [10], allowing a
close comparison of the performance of GRC and HF-GRC.
The same resource generation process is used for BA graphs;
however, BA has two more parameters m0 and m. Both
parameters can be used to analyze different network densities.
The parameter m0 is set to 20. The value m of the BA model,
which controls the number of links in the network, ranges from
1 to 10 in order to analyze the impact of varying densities: a
higher m leads to a higher density.
Realistic Network Graphs. To evaluate the performance on
more realistic network graphs, we use all substrates with
| N p |≥ 50 nodes [19]. Overall, we analyze 28 topologies
from the Topology Zoo. If the data set provides unconnected
topologies, we use the largest components of the graphs. Using
TPZ graphs does not only provide insights on more realistic se-
tups, it also provides insights on the algorithms’ performances
on larger topologies: e.g., the KDL network graph has 709
nodes and 815 links. Compared to existing VNE evaluations,
this network is quite large. We randomly assign CPU values
between 50 and 100 and bandwidth values between 250 and
500. The increased bandwidth in comparison to the random
network graphs is necessary because the topologies are much
more sparsely connected than the random network graphs.



Using the same bandwidth values as for the random graphs
would result in rejection of nearly all VNRs.
Data Center Networks. Two data center types are inves-
tigated: BCube (BC) and FatTree (FT). The host and link
capacities are set to 100. The bandwidth value is chosen to
resemble realistic setups with 1 Gbps; the VNRs resemble
requests between 10 Mbps and 100 Mbps (see VNR generation
description). Since switches cannot host virtual machines, their
CPU capacity is set to 0; this also excludes the investigation
of needed processing for network traffic.

3) Virtual Network Requests: For ER, BA and TPZ sub-
strates, the VNRs are created using the ER method [17]. The
number of virtual nodes is equally distributed in the range
between 2 and 20. The connection probability is set to 0.5.
The required CPU capacities and bandwidths of virtual nodes
and links are equally distributed in the range from 0 to 50. The
arrival rate λ of VNRs is set to 5 arrivals per 100 time units.
Every VNR has a negative exponentially distributed lifetime
with an average of 500 time units. This VNR generation is
identical to the one used by Gong et al. [10].

For data center topologies, the Waxman graph
model (WAX) is used for VNRs. The model parameter
are set as follows: αWAX = 0.2 and βWAX = 0.4. The
number of nodes is equally distributed between 3 and 10; the
CPU capacities of the nodes between 2 and 20; the virtual
link demands between 1 and 10. This is in compliance with a
recently published study of VNE in data center networks [20].

4) Metrics: The following metrics are used to quantify the
quality of the solution for the online VNE problem; the metrics
are standard in literature to quantify VNE algorithms [7], [9].
Acceptance Ratio (AR) provides one general dimension to
compare VNE algorithms. It is the ratio of accepted VNRs
among all arrived VNRs. A high AR is generally one indicator
for an efficient embedding. Formally, the AR for a given time
interval T := [tstart, tend] is defined as

AR(T ) :=
| Racc(T ) |

| Rrej(T ) ∪Racc(T ) |
, (19)

where Racc(T ) is the set of accepted VNRs and Rrej(T ) is
the set of rejected VNRs during T .
Cost (COS) comes from the invested node and link resources.
To realize a virtual network on a substrate, node resources
and link resources need to be assigned to a virtual network,
i.e., a substrate operator needs to invest. While there is a 1-
to-1 mapping between requested and assigned node resources,
the costs for realizing a virtual path depend on the physical
path length. The cost COS(Gv) of a VNR is the sum of all
substrate resources that have been used to embed the VNR
and is defined as:

COS(Gv) :=
∑

Nv
m∈Nv

Cvm +
∑

Lv
mn∈Lv

| fL(Lvmn) | ·Bvmn, (20)

where | fL(Lvmn) | provides the length of the physical path
on which the virtual edge Lvmn has been mapped.
Revenue (REV) of a VNR is determined by the requested vir-
tual resources. The more resources a virtual network requests,
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Fig. 3. Illustration on the impact of κ for ζconst and ζfactor. Figures show
the improvement in percent for each metric: AR, TR, and RCR. Positive
values indicate a performance improvement achieved by NeuroViNE. GRC
vs. HF-GRC. Larger κ values let NeuroViNE improve metrics.

the higher the revenue. The revenue REV(Gv) is the sum of
all virtual resources and is given as:

REV(Gv) :=
∑

Nv
m∈Nv

Cvm +
∑

Lv
mn∈Lv

Bvmn. (21)

Simply building the sum of, e.g., CPU and data rate resources,
is a common approach in VNE [7].
Total Revenue (TR) in a given time interval T is the sum of
the revenues of accepted VNRs Racc(T ) of this time interval

TR(T ) :=
∑

Gv∈Racc(T )

REV(Gv). (22)

Revenue-Cost-Ratio (RCR) of a VNR is defined as the
fraction of Gv’s revenue REV(Gv) over Gv’s cost COS(Gv)

RCR(Gv) :=
REV(Gv)
COS(Gv)

. (23)

The best possible RCR can be achieved by a 1-to-1 mapping
between requested and allocated demands, i.e., all virtual
nodes and links are implemented on one physical node and
link respectively. A high RCR indicates low embedding cost:
an inevitable target for network operators.

B. Optimization Opportunities

We first exemplarily analyze the impact of the two node
selection functions ζconst and ζfactor on the three key per-
formance metrics AR, TR, and RCR. This evaluation pro-
vides initial insights on the tuning possibilities of NeuroViNE.
Fig. 3a shows the performance improvement for the constant
function ζconst and Fig. 3b shows the improvement for the
linear function ζfactor. For each selection size/factor κ, the
figures show the bar plots of the improvement defined as
Improvement = (HF-GRC − GRC)/GRC · 100 %, where
HF-GRC and GRC are placeholders for any performance metric
of the respective algorithm. A positive value indicates a better
performance with NeuroViNE.
Constant Selection Size. Fig. 3a illustrates that HF-GRC
blocks 73 % VNRs when ζ = κ (= ζconst) is set to a small
value like 5 nodes. Consequently, the TR decreases as less
virtual networks are accepted. The RCR, however, improves:



the nodes of the small virtual networks are always embedded
very close to each other. Increasing the number of nodes to
25 increases the AR to a level that is minimally higher than
the one of GRC; whereas TR is still minimally lower. Yet,
NeuroViNE improves the RCR by 18 %. When NeuroViNE
selects subgraphs with κ = 50 nodes, it shows a similar or
slightly higher AR and TR, while it still provides a 9 % higher
RCR: with NeuroViNE, all virtual networks with a size up to 20
nodes can be embedded much more efficiently. However, the
problem of ζconst is the insensitivity to the number of substrate
network- and VNR nodes. The number of nodes needs to be
predetermined based on the VNR request size to function well.
Selection Factor - Dependent on the Number of Virtual
Nodes. Fig. 3b shows that NeuroViNE using the factor-based
function ζfactor has almost the same AR as GRC, except for
κ = 2. The TR is statistically insignificantly better than with
GRC, again besides for κ = 2 where it is slightly lower. For
κ = 2, the Hopfield network does not always select enough
nodes for bigger virtual networks. Thus, bigger networks are
rejected even before the VNE algorithm can be run. Fig. 3b
indicates that HF-GRC improves the RCR ratio up to 8 % for
factors ranging from 2 to 8. We believe that trading off the
increased RCR for the slightly worse AR and TR is justifiable:
decreasing the cost by 10 % for 1 % lower TR. As we aim at
a significantly higher RCR for real topologies in the following
studies, we use ζfactor with κ = 2.5, which shows a still
acceptable tradeoff between RCR and AR or TR.

C. How does NeuroViNE perform on different topology types?

To illustrate the impact of different substrate topology
models, Fig. 4 shows the performance of all algorithms for
BA, ER and substrates from the TPZ.
Random graphs vs. realistic ones. Fig. 4a demonstrates
that GRC accepts slightly more VNRs on random network
graphs, whereas HF-GRC accepts the most VNRs on realistic
network graphs (TPZ) - HF-GRC is highly efficient when faced
with sparsely connected real topologies. While D-VINE and
R-VINE are generally not able to compete with GRC and
HF-GRC, NeuroViNE still increases the AR for both algorithms,
as indicated by HF-D-VINE and HF-R-VINE. Fig. 4b confirms
the observations from Fig. 4a: GRC has slightly higher rev-
enues than HF-GRC on random graphs, whereas NeuroViNE
accepts similar VNRs like the VINEYARD algorithms on
random graphs. For TPZ, HF-GRC shows again the overall best
performance: NeuroViNE accepts more and larger networks.
As Fig. 4c illustrates for RCR, NeuroViNE outperforms all
other VNE algorithms, independent of the topology type —
NeuroViNE always achieves the highest RCR values.
An illustrative example. Fig. 5 illustrates an exemplary
embedding for one VNR for GRC (Fig. 5a) and HF-GRC
(Fig. 5b) on the KDL graph (709 nodes and 815 links) from
the Topology Zoo: GRC embeds virtual nodes to central nodes
on this topology; unfortunately, these central nodes do not
need to be near each other, as the spatially distributed green
squares illustrate in Fig. 5a; long paths are required to connect
the virtual nodes. In contrast to GRC, HF-GRC selects nodes

that are close to each other and have high capacities in their
vicinities, as indicated by the orange-filled nodes centrally
located in the network in Fig. 5b. Since all nodes are close, the
paths between them are also shorter. This improves not only
the embedding quality (RCR), but also the AR. We conclude
that NeuroViNE is very useful on realistic network topologies.
In particular, it finds valuable nodes in sparsely connected
topologies. Furthermore, independently of the VNE algorithm,
it can help improve the RCR and reduce cost.

D. Do the benefits extend to data centers?

Fig. 6 reports on the results for data center topologies when
using GRC, HF-GRC-DC, and GREEDY. The Hopfield variant
HF-GRC-DC accepts slightly more VNRs (AR) for the FatTree
(FT) topology, whereas almost no change is observable for the
BCube (BC) topology. Note the high AR values that are already
obtained without applying NeuroViNE; the values actually
range from 0.95 to 0.98 for the FT topology. We omit the
presentation of the TR because it is hardly affected. However,
the improvements achieved by NeuroViNE in RCR are sig-
nificant; HF-GRC-DC improves the performance by 10 % for
FT and by 7 % for BC. The average cost of all embeddings is
reduced by placing clusters within racks where nodes are close
to each other. This brings numerous advantages: the clusters
might yield lower inter-communication latency or the provider
can operate the network more energy-efficient.

E. Can we speed up exact (optimal) algorithms?

To answer this question, we compare the performance of
SDP and the HF variants HF-SDP in combination with the
selection functions ζfactor and ζinverse. For ζfactor, κ is set to
2.5; for ζinverse it is set to 300. The results for AR and TR
are quickly summarized without illustrating them: NeuroViNE
does neither improve nor worsen the results with statistical
significance. For the RCR over the number of nodes, Fig. 7a
illustrates that both Hopfield variants are better than SDP,
demonstrating again that NeuroViNE selects subgraphs with
nodes that are physically close to each other. Interestingly, the
improved RCR does not improve the AR: the embeddings are
still suffering from the blocking due to bottleneck links.

However, NeuroViNE highlights another interesting angle
for improvement: the preprocessing efficiently decreases the
model creation time and model solving time of the exact
algorithm while preserving its solution quality. The model
creation time encompasses the time to create the model for the
solver used by the optimal algorithm, e.g., to acquire memory
and to set all variables and constraints. For the HF variants,
it also involves the creation and execution of the Hopfield
networks. The linear selection function decreases the model
creation and solving time the most, as shown in Fig. 7c: the
solver spends the least time to find a feasible solution; the
solver even achieves a ten times lower model creation time. In
contrast, SDP and HF-SDP (inverse) are consuming the whole
given processing time (30 s) for VNR requests having more
than 8 nodes when solving the model. For HF-SDP (inverse),
this can be explained by the behavior of ζinverse: for smaller
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networks it selects more substrate nodes whereas for larger
networks it reduces the number of nodes. Using NeuroViNE,
exact algorithms based on mathematical programming can
become credible alternatives to heuristics on larger topologies.

V. RELATED WORK

Artificial neural networks have already been successfully
applied on a variety of combinatorial optimization problems,
including the traveling salesman problem [11], [12] (which
introduced the Hopfield network), the shortest path prob-
lem [21], the hub-placement problem [22], or the Knapsack

problem [23]–[25]. In the context of communication networks,
recent work used Hopfield networks e.g., for channel selection
in radio networks [26]. Recent work has successfully applied
deep neural networks [27] for cloud resource management.
Beside, in our recent work we have successfully used neural
networks for admission control for VNE [28].

To the best of our knowledge, Hopfield networks have not
yet been applied to VNE. A general survey of existing VNE
algorithms is given in [9]. Algorithms for solving the VNE
problem broadly fall in two categories: those which solve the
VNE problem in one step, during which both nodes and links
are mapped, and those which divide the problem into separate
node and link mapping steps. An example for the former are
exact algorithms based on mathematical programming [2]. An
example for a non-optimal one step algorithm is [6].

Most heuristic algorithms are 2-step algorithms: in the first
step, every virtual node is assigned to the best substrate node
that fulfills the capacity constraints. In order to determine
the best substrate node for every virtual node, the substrate
nodes are usually ranked according to substrate node attributes,
e.g., based on their remaining CPU [7] or graph measure [8],
[29]. To integrate the physical connections between nodes,
i.e., physical links and paths, into the ranking, heuristic
algorithms apply a global ranking procedure. For instance, the
MCRank [4] or the GRC rating [10] make a global rating of the
nodes. For each node, their global ranking metric integrates
also the distance to all other nodes in the network, e.g., by
using random walks through the substrate network. Generally,
after all nodes are rated and embedded, shortest path or multi
commodity flow approaches are used to interconnect them.

VI. FUTURE WORK

We believe that our work opens interesting directions for
future research. For example, it will be interesting to ex-
plore alternative approaches such as Boltzmann machines
and Pointer Networks, introducing additional challenges in
modeling and adapting those networks to accommodate re-
source constraints. Systems that can adapt, e.g., to changing
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Fig. 7. The mean values with 95 % confidence intervals of RCR, modeling time and solving time for SDP and HF-SDP in combination with linear and inverse
selection function. Performance metrics are depicted over number of nodes of VNRs. NeuroViNE improves RCR and reduces model creation and solving time.

networking environments or dynamically changing virtual
network demands, open further intriguing research directions.
In particular in changing environments, the parameters of
neural networks, e.g., Hopfield networks, might be needed
to adapt and be set automatically at runtime. As finding the
correct parameter setting is a time demanding and exhaustive
task, machine learning techniques for automatically finding
parameter settings will be particularly interesting to study.
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[16] L. Gislén, C. , and B. Söderberg, “”Teachers and Classes” with Neural
Networks,” International Journal of Neural Systems, vol. 01, no. 02, pp.
167–176, January 1989.
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