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Biological intelligence processes information using impulses or spikes, which makes

those living creatures able to perceive and act in the real world exceptionally well and

outperform state-of-the-art robots in almost every aspect of life. To make up the deficit,

emerging hardware technologies and software knowledge in the fields of neuroscience,

electronics, and computer science have made it possible to design biologically realistic

robots controlled by spiking neural networks (SNNs), inspired by the mechanism of

brains. However, a comprehensive review on controlling robots based on SNNs is still

missing. In this paper, we survey the developments of the past decade in the field of

spiking neural networks for control tasks, with particular focus on the fast emerging

robotics-related applications. We first highlight the primary impetuses of SNN-based

robotics tasks in terms of speed, energy efficiency, and computation capabilities. We

then classify those SNN-based robotic applications according to different learning rules

and explicate those learning rules with their corresponding robotic applications. We

also briefly present some existing platforms that offer an interaction between SNNs and

robotics simulations for exploration and exploitation. Finally, we conclude our survey with

a forecast of future challenges and some associated potential research topics in terms

of controlling robots based on SNNs.

Keywords: spiking neural network, brain-inspired robotics, neurorobotics, learning control, survey

1. INTRODUCTION

The mysterious biological intelligence of living creatures has long attracted us to explore their
capabilities from perceiving, memorizing, to thinking, and then resulting in languages and
behaviors. Nowadays, owing to the increasing efforts of mimicking those structural and functional
principles, scientists have investigated how the brain, robot actuators, and sensors could work
together to operate robots autonomously performing complex tasks, e.g., in the form of self-driving
vehicles (Schoettle and Sivak, 2014), biomimetic robots (Ijspeert et al., 2007; Gong et al., 2016),
collaborative industrial robots (Shen and Norrie, 1999). However, to acquire more autonomy and
operate within the real world, robots should be further investigated with the following capacities:
(1) perceiving their environments via sensors that typically deliver high-dimensional data; (2)
processing redundant or sparse information with low response latency and energy efficiency; (3)
behaving under dynamic and changing conditions, which requires a self-learning ability.

Meanwhile, neither traditional control strategies nor conventional artificial neural networks
(ANNs) can meet those aforementioned needs. To be specific, traditional model-based control
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methods via numerical techniques, kinematics and dynamics
approaches often fail to adapt to unknown situations (Ijspeert,
2008; Yu et al., 2014; Bing et al., 2017). On the other hand,
conventional ANNs have difficulties in processing the high
computational demands for a step further, despite the hardware
progress that made large neural networks applicable to real-
world problems. The main disadvantages are as follow. First,
training artificial neural networks is time consuming (Krogh and
Vedelsby, 1995) and can easily take multiple days for state-of-
the-art architectures (Lee C. S. et al., 2016). Training large-scale
networks is computationally expensive [AlphaGo 1,202 CPUs
and 176 GPUs (Silver et al., 2016)], and running them typically
produces high response latencies (Dong et al., 2009). Second,
performing computations with large networks on traditional
hardware usually consumes a lot of energy as well. In self-
driving cars for example, this results in computational hardware
configurations that consume a few thousand Watts compared
to the human brain, which only needs around 20 Watts of
Power (Drubach, 2000). Especially in mobile applications, these
are considerable disadvantages, in which real-time responses are
important and energy supply is limited.

In nature, information is processed using relatively small
populations of spikes and their precise relative timing, which
is sufficient to drive learning and behavior (VanRullen et al.,
2005; Houweling and Brecht, 2008; Huber et al., 2008; Wolfe
et al., 2010). Therefore, a promising solution to robotics control
challenges could be given by spiking neural networks that mimic
the underlying mechanisms of the brain much more realistically.
Due to their functional similarity to the brain, SNNs have the
capabilities for processing information and learning in a much
better fashion, both in terms of energy and data, e.g., building
large-scale brain model (Eliasmith et al., 2012) or using neurally
inspired hardware such as the SpiNNaker board (Furber et al.,
2014) or Dynamic Vision Sensors (DVS) (Lichtsteiner et al.,
2008). Moreover, SNNs have offered solutions to a broad range of
specific implementations, such as fast signal-processing (Rossello
et al., 2014), speech recognition (Loiselle et al., 2005), robot
navigation (Nichols et al., 2010), and other problems solved by
non-spiking neural networks, but in fact showed even more
superiorities. However, a comprehensive review on controlling
robots based on spiking neural networks is still missing.

Therefore, in this article, we aim to survey the state-of-the-
art SNN modeling, design, and training methods for controlling
a variety of robotics applications since the recent decade. The
overall motivation of this article is to ease the barrier for
roboticists to understand the complicated biological knowledge
of SNNs, meanwhile enlighten readers with some general
learning-based SNN approaches to different robot control tasks.
The contribution of this survey is three-fold. First, we try to set
forth SNNs’ superiorities in terms of speed, energy efficiency,
and computation capabilities. And we outline a general design
framework for controlling SNN-based robotics tasks. Then, our
survey aims to summarize the learning-based SNNs in robotics
tasks, ranging from the modeling, learning rules, and robot
implementations and platforms. We generally categorize the
selected robotic implementations according to different learning
rules, this shows up in the source of learning signals, which could

be acquired from different ways, such as the labeled dataset,
neutral stimulus, rewards from environment or other external
controllers. Finally, we attempt to point out the open topics that
need to be addressed for implementing SNNs in robotics tasks.

The rest of the article is organized as follows. In section 2,
the theoretical background of SNNs will be briefly introduced,
which will include their biological foundations and the changing
course of the artificial neural networks on a basis of learning
rules. Section 3 presents the primary motivation and research
framework for SNN-based robot control. Then we will discuss
SNN implementations from the simple neuron unit to the
topologies of more advanced systems (section 4). Various
methods training SNNs for control tasks will be classified
and explained with their corresponding robotic applications
(section 5), as well as the existing platforms for exploring
neurorobotics (section 6). Finally we will summarize future
challenges and potential research topics in section 7 and conclude
in section 8.

2. THEORETICAL BACKGROUND

Before studying in deep of the robotics control based on SNNs, it
is worth briefly summarizing the biological mechanisms taking
place in human nervous system. Therefore, this section serves
as a short summary of the theoretical foundations as well as the
vocabulary that is used in the following sections. An in-depth
introduction of SNNs can be found in Vreeken (2003), Ghosh-
Dastidar and Adeli (2009), Ponulak and Kasinski (2011), and
Grüning and Bohte (2014).

2.1. Biological Background
Even today’s understanding of the human brain remains rather
incomplete and challenging, some insights into our neural
structure have been made over the past couple of decades. Since
the initial discovery of neurons as the basic structure of the
nervous system by Santiago Ramón yCajal at the beginning of the
twentieth century, a rough concept of how neurons might work
has been developed. At the very basis, neurons can be understood
as simple building blocks processing incoming information in the
form of short pulses of electrical energy into output signals. By
connecting neurons to huge networks, complex dynamics emerge
that can process information and make sense of our world. This
basic concept can be found all over nature, ranging from simpler
organisms like jellyfish with a couple of thousand neurons to
humans with an estimated number of 86 billion neurons on
average in our nervous system (Herculano-Houzel, 2012).

The structure of a typical neuron of the human brain
embedded in a salty extra-cellular fluid is shown in Figure 1A.
Incoming signals from multiple dendrites alter the voltage of
the neuronal membrane. When a threshold is reached, the cell
body or soma sends out an action potential—also called spike or
pulse—itself. This process of generating a short (1ms) and sudden
increase in voltage is usually referred to as spiking or firing of a
neuron. After firing, it is followed by a short inactive period called
the refractory period, in which the neuron cannot send out other
spikes regardless of any incoming signals.
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FIGURE 1 | (A) Neuron (Wikipedia, 2017b). The figure is attributed to Quasar Jarosz at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.

php?curid=7616130. (B) Synapse (Wikipedia, 2017e). The figure is attributed to Thomas Splettstoesser (https://www.scistyle.com) - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curid=41349545.

Once the membrane potential threshold has been reached and
the neuron fires, the generated output spike is transmitted via the
axon of a neuron. These can grow quite long and branch out to a
multitude of other nervous cells at the end.

At the end of an axon, the axon terminal, incoming
signals are transmitted to other nervous cells, such as other
neurons or muscular cells. There is now proven evidence that
synapses are in fact one of the most complicated part of a
neuron. On top of transmitting information, they work as a
signal pre-processor and play a crucial part in learning and
adaption for many neuroscientific models. When a traversing
spike reaches an axon terminal, it can cause a synaptic
vesicle to migrate toward the presynaptic membrane, as shown
in Figure 1B. At the presynaptic membrane, the triggered
vesicle will fuse with the membrane and release its stored
neurotransmitters into the synaptic cleft filled with the extra-
cellular fluid. After diffusing into this gap, neurotransmitter
molecules have to reach a matching receptor at the postsynaptic
side of the gap and bind with them. Directly or indirectly,
this causes postsynaptic ion-channels to open or close. The
resulting ion flux initiates a cascade that traverses the dendritic
tree down to the trigger zone of the soma, changing the
membrane potential of the postsynaptic cell. Therefore, different
neurotransmitters can have opposing effects on the excitability of
postsynaptic neurons, thus mediating the information transfer.
These effects that make postsynaptic cells either more or less
likely to fire action potentials are called excitatory postsynaptic
potential or inhibitory postsynaptic potential, respectively. The
dependence of postsynaptic potentials on different amounts
and types of neurotransmitters released and the resulting
number of ion-channels activated is often referred to as
synaptic efficacy in short. After a while, neurotransmitter
molecules are released again from their receptors into the
synaptic cleft and either reabsorbed into the presynaptic axon
terminal or decomposed by enzymes in the extra-cellular
fluid.

The properties, characteristics, and capacities of synapses
as signal pre-processors, e.g., chances of vesicle deployment
or regeneration and amount of receptors, are not fixed, but
always changing depending on the short and long-term history

of its own and outside influences. Neuro-hormones in the
extra-cellular fluid can influence both the pre and postsynaptic
terminals temporarily, i.e., by enhancing vesicle regeneration or
blocking neurotransmitters from activating ion-gate receptors.
All these effects that change the influence of incoming spikes on
the postsynaptic membrane potential are usually referred to as
synaptic plasticity and form the basis of most models of learning
in neuro and computer-sciences.

2.2. From McCulloch-Pitts to
Backpropagation
In 1943, neurophysiologist Warren McCulloch and
mathematician Walter Pitts wrote a theoretical paper on
how neurons might work describing a simple neural network
model using electrical circuits (McCulloch and Pitts, 1943).
Capable of performing mathematical operations with boolean
outputs, these first generation neural networks fire binary signals
once a threshold of summed incoming signals is reached in a
neuron. They have been successfully applied in powerful artificial
neural networks such as multi-layer perceptrons and Hopfield
nets (Hopfield, 1982).

With the advent of more powerful computing, this concept
was later extended by introducing continuous activation
functions, e.g., sigmoid (Han and Moraga, 1995) or hyperbolic
tangent functions, to handle analog inputs and outputs as well.
In fact, it has been proven that sufficiently large neural networks
with continuous activation functions can approximate any analog
function arbitrarily well by altering the network information flow
through their synaptic weights (Hornik et al., 1989). The most
commonly used and powerful supervised learning algorithm
that takes advantage of continuous activation functions by using
gradient-descent on an error function is called backpropagation
(Hecht-Nielsen, 1992).

However, second generation neurons do not model electrical
pulses that have been described in their biological counterparts,
their analog information signals can actually be interpreted as an
abstracted rate coding. Over a certain period of time, an averaging
window mechanism can be used to code pulse frequencies into
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analog signals giving these models a more biologically plausible
meaning.

2.3. Spiking Neural Networks
Following its biological counterpart, a third generation of neural
networks (Maass, 1997, 2001) has been introduced that directly
communicates by individual sequences of spikes. Instead of
using abstracted information signals, they use pulse-coding
mechanisms that allow for the incorporation of spatial-temporal
information that would otherwise be lost by averaging over
pulse frequencies. It becomes clear that these neural network
models, referred to as Spiking-Neural-Networks (SNNs), can be
understood as an extension to second generation neural networks
and can, in fact, be applied to all problems solvable by non-
spiking neural networks (Fiasché and Taisch, 2015). In theory, it
has been shown that these models are evenmore computationally
powerful than perceptrons and sigmoidal gates (Maass, 1997).

Due to their functional similarity to biological neurons
(DasGupta and Schnitger, 1992), SNNs have become a scientific
tool for analyzing brain processes, e.g., helping to explain how
the human brain can process visual information in an incredibly
short amount of time (Chun and Potter, 1995). Moreover, SNNs
promise solutions for problems in applied engineering as well
as power efficient, low-latency alternatives to second generation
neural networks, e.g., for applications in robotics (Lee J. H. et al.,
2016).

3. PRIMARY MOTIVATION AND
FRAMEWORK

In this section, we will briefly introduce the research impetuses of
SNN-based robotics control from multiple aspects. Core points
and a major framework for generally organizing an SNN for
robotic implementation are introduced as well.

3.1. Primary Impetuses
As the third generation of the neural network model, SNNs
have attracted more and more attention and gradually become
an interdisciplinary research field for neuroscience as well as
robotics. For clarity and simplicity, the fascinating features
of SNNs, which apply well to robotic controllers, can be
summarized as follows.

3.1.1. Biological Plausibility
From the perspective of neuroscience, SNNs once again raise
the level of biological realism by directly using individual
sequences of spikes in communication and computation, like
real neurons do (Ferster and Spruston, 1995). Experimental
evidence accumulated during the last few years has indicated that
many biological neural systems use the timing of single-action
potentials (or “spikes”) to encode information (Maass, 1997),
rather than the traditional rate-based models. In Walter et al.
(2015a), it is explained that how the exact modeling of time in
spiking neural networks serves as an important basis for powerful
computation based on neurobiological principles.

3.1.2. Speed and Energy Efficiency
Despite the hardware upgrades that make large neural networks
applicable to real-world problems, it usually does not apply to
robotics platforms with limited energy and computing resources.
Since SNNs are able to transmit and receive large volumes of
data encoded by the relative timing of only a few spikes, this
leads to the possibility of very fast and efficient implementations.
For example, experiments have demonstrated that visual pattern
analysis and pattern classification can be carried out by humans
in just 100 ms, in spite of the fact that it involves a minimum of
10 synaptic stages from the retina to the temporal lobe (Thorpe
et al., 2001). On the other hand, in terms of energy efficiency,
maintaining sufficient working of the nervous system to perform
various tasks requires a continuous energy supply (Sengupta and
Stemmler, 2014). Yet, the human brain only needs very low
power consumption, which is around 20 W of Power (Drubach,
2000).

3.1.3. Computational Capabilities
Recently, established experiments in vivo have indicated that
SNNs are capable of processing the information sufficiently
using a relatively small number of spikes to drive learning and
behavior (VanRullen et al., 2005; Houweling and Brecht, 2008;
Huber et al., 2008; Wolfe et al., 2010); meanwhile, they can also
handle a large-scale network containing up to a trillion neurons
like elephants (Herculano-Houzel et al., 2014). Furthermore,
SNNs are superior to non-spiking ones for utilizing the temporal
information, referring to the precise timing of events to acquire
the exact information with incredible precision and accuracy. For
instance, the auditory system of the barn owl is able to locate
sources of sound in the horizontal plane with a precision of 1 to
2 degrees, which equates to a temporal difference of only a few
microseconds (5µs) between the arrival of sound waves at the left
and right ears (Gerstner et al., 1999).

3.1.4. Information Processing
Instead of using abstracted information signals, SNNs use pulse
coding mechanisms that allow incorporating spatial-temporal
information that would otherwise be lost by only averaging over
pulse frequencies. This ability to learn and act in a dynamic
environment, rich with temporal information, is a necessary
quality for biological systems and for artificial systems that
seek to perform similar tasks. Neurobiologists used weekly
electric fish as a model to study the processing from stimulus
encoding to feature extraction (Gabbiani et al., 1996; Metzner
et al., 1998). They found that although pyramidal cells do not
accurately convey detailed information about the time course
of the stimulus, they reliably encode up- and down-strokes of
random modulations by bursts of spikes. In addition, a problem
referred to as “dynamic binding,” has at best remained elusive
to implement in neural networks, referring to different types of
sensor information together in an assembly. SNNs are able to
efficiently detect conjunctions of primitives (features) anywhere
on a-large-input grid in an efficient, position-invariant manner.
Examples such as data classification and image recognition tasks
can be found in Hopfield (1995), Thorpe et al. (2001), Bohte et al.
(2002), Guyonneau et al. (2004), and Shin et al. (2010).
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In conclusion, these interesting features make SNNs suitable
for pursuing autonomy for robotics implementations. However,
there is an implicit knowledge gap since SNNs are just
investigated at the theoretical level, rather than widely adopted to
practical robotics applications. Even so, the growing knowledge
of spiking neural networks and their increasingly popularity
consistently draw more research attention and have led to more
andmore SNN-based implementations, as illustrated in Figure 2.

3.2. Research Directions
The major research directions of SNNs have focused on three
aspects: SNN modeling, training, and implementations, which
will be detailedly discussed or briefly introduced with other
reference readings in the following sections. A general design
framework for learning-inspired robot control is shown in
Figure 3. Most robot control tasks chasing autonomy could be
described as a cycle including three steps, namely, perception,
decision, execution (Gspandl et al., 2012). Robots usually use
their sensors and actuators to sense and interact with the
environment. However, the SNNs can be regarded as the brains to

FIGURE 2 | Number of publications whose abstract contains the terms

“robot” and “spiking neural network” in the IEEE Explore and Elsevier Scopus

database, respectively. Number of publications whose title contains the terms

“robot” and its main text contains the term “spiking neural network” in the

Springer database. All the data is from 2000 to 2016.

FIGURE 3 | General design framework for learning-inspired SNN-based robot

control.

make decision, which build up a bridge between perception and
execution, by taking encoded information from environment and
outputting decoded motor commands for robots. To be specific,
first, the architecture and mathematical model of an SNN should
be determined including the neuron and synapse. Neurons are
known to be a major signaling unit of the nervous system, and
synapses can be seen as signal transmitters that communicate
among neurons. For this reason, modeling of an SNN is of great
importance to characterize its properties. Then, the SNN should
be initialized and trained with specific parameters and learning
rules, as conventional neural networks. Choosing an appropriate
learning rule directly impact the performance of the networks.
For an SNN, the most common learning rule is the Hebbian rule,
which will be explained in the following section. Finally, after
training the SNN successfully, it should be validated in other
scenarios and be optimized if necessary.

4. MODELING OF SPIKING NEURAL
NETWORKS

At the very beginning of the construction of an SNN for robot
control, an appropriate SNN control model should be decided on.
The basic task is to determine the general topological structure of
the SNN, as well as the neuron models in each layer of the SNN.

4.1. Neuron Models
Generally, neuron models can be expressed in the form
of ordinary differential equations. In the literature, many
different mathematical descriptions of spiking neural models
have been proposed, processing excitatory and inhibitory inputs
using internal state variables. The most influential models
used for SNNs are the Hodgkin-Huxley model (Hodgkin and
Huxley, 1952) as well as the Integrate-and-Fire model and its
variants (Burkitt, 2006). To find an appropriate one among
existing diverse neuron models, there is usually a trade-off to
be balanced between the biological plausibility and complexity.
A detailed comparison of the neuro-computational properties of
spiking and bursting models can be found in Izhikevich (2004).

One of the most widely used models is the so-called Leaky-
Integrate-and-Fire (LIF) model (Stein, 1965) that can be easily
explained by the principles of electronics. These models are
based on the assumption that the timing of spikes, rather than
the specific shape, carries neural information (Andrew, 2003).
The sequences of firing times are called spike trains and can be
described as

S(t) =
∑

f

δ(t − tf ), (1)

where f = 1, 2, . . . is the label of a spike and δ(·) is a Dirac
function defined as

δ(x) =

{

+∞ if x = 0

0 if x 6= 0
(2)

∫ ∞

−∞

δ(t)dt = 1. (3)
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Passing a simplified synapse model, the incoming spike train
will trigger a synaptic electric current into the postsynaptic
neuron. This input signal i(t) induced by a presynaptic spike
train Sj(t) can, in a simple form, be described by the exponential
function (Ponulak and Kasinski, 2011):

i(t) =

∫ ∞

0
Sj(s− t) exp(−s/τs)ds. (4)

Here, τs denotes the synaptic time constant. This synaptic
transmission can be modeled by low-pass filter dynamics.

The postsynaptic current then charges the LIF neuron model
increasing the membrane potential u according to

τm
du

dt
(t) = urest − u(t)+ R

(

i0(t)+
∑

wjij(t)
)

. (5)

where τm = RC is the time constant of the neuron membrane,
modeling the voltage leakage, depending on the resistance R. urest
is the potential value after each reset. i0(t) denotes an external
current driving the neural state, ij(t) is the input current from the
jth synaptic input andwj represents the strength of the jth synapse.
Once the membrane potential u reaches a certain firing threshold
ϑ , the neuron fires a single spike and its membrane potential is set
back to urest . Usually, this spiking event is followed by a refractory
period in which the neuron stays inactive and can’t be charged
again.

It is worth pointing out that biological studies highlight the
presence of another operational unit cell assemblies (Braitenberg,
1978) in the brain, which are defined as a group of neurons with
strong mutual excitatory connections and tend to be activated as
a whole. A deeper review of spiking neuron models can be found
in Andrew (2003).

4.2. Information Encoding and Decoding
The term neural encoding refers to representing information
from the physical world (such as direction of a moving stimulus)
in the activity of a neuron (such as its firing rate). On the other
hand, information decoding is a reverse process to interpret from
neuron activity to electrical signal for actuators (such as muscle
or motor). How the brain encodes information is to think of two
spaces: the physical space and neural space. The physical space
can be the physical properties of objects, such as color, speed,
and temperature. Neural space consists of properties of a neuron,
such as firing rate in most cases.

A number of neural information encoding methods have been
proposed, such as binary coding (Gütig and Sompolinsky, 2006),
population coding (Probst et al., 2012), temporal
coding, and the most commonly used rate
coding (Urbanczik and Senn, 2009; Wade et al., 2010). For
binary coding, neurons are only modeled to take two values
on/off, but it ignores the timed nature and multiplicity of spikes
altogether. Due to is simplicity, this coding mechanism was
used in early-stage implementations. Besides, binary coding is
also used to represent pixel value of an image (Meschede, 2017).
For rate coding, it is inspired by the observation that neurons
tend to fire more often for stronger (sensory or artificial)
stimulus. Scientists usually use a concept in probability theory

known as the Poisson process to simulate spike trains that have
characteristics close to real neurons. As the most intuitive and
simple coding strategy, rate-coding has been adopted by most
robotic implementations. For temporal coding, it is motivated
by the evidence founded in neuroscience that spike-timing can
be remarkably precise and reproducible Gerstner et al. (1996).
With this encoding strategy, information is represented with
the timing when the spike occurs. However, the underlying
mechanism is still not so clear. The aforementioned coding
solutions is usually for one single neuron. However, sometime a
population of neurons is used as a whole to encode information.
This is strongly supported by the brain of living creature, where
functions are controlled by one area of neuron populations.

The goal of neural decoding is to characterize how the
electrical activity of neurons elicit activity and responses in the
brain. Themost common used scheme for decoding is rate-based,
where stronger neuron activity usuallymeans highermotor speed
or force. In Kaiser et al. (2016), a steering wheel model based on
an agonist-antagonist muscle system was proposed according to
the spike numbers of output neuron.

4.3. Synaptic Plasticity Models
Once the neuron model is decided on, the synapse model should
be carefully chosen to connect those neurons inside and among
the layers of SNNs. By influencing the membrane potentials of
each connected neuron, synaptic plasticity was first proposed as
a mechanism for learning and memory on the basis of theoretical
analysis (Hebb, 1949). Up to this day, the synaptic plasticity
models used for practical implementations are typically very
simple. Based on an input-output relationship between neuronal
activity and synaptic plasticity, they are roughly classified into
two types, which are rate-based and spike based, that differ in the
type of their input variables.

4.3.1. Rate-Based
The first andmost commonly used definition of a firing rate refers
to a spike-count average over time (Andrew, 2003). The rate-
based model is a popular approach for converting conventional
ANNs into a spiking neural network that can still be trained
by backpropagation. It has been successfully used in many
aspects, especially in experiments on the sensory or motor
system (Adrian, 1926; Bishop, 1995; Kubat, 1999; Kandel et al.,
2000).

4.3.2. Spike-Based
Spike-based learning rules were developed in Gerstner et al.
(1993), Ruf and Schmitt (1997), Senn et al. (1997), Kempter
et al. (1999), and Roberts (1999). Experiments showed that the
synaptic plasticity is influenced by the exact timing of individual
spikes, in particular, by their order (Markram et al., 1997; Bi and
Poo, 1998). If a presynaptic spike preceded a postsynaptic spike, a
potentiation of the synaptic strength could be observed, while the
reversed order caused a depression. This phenomenon has been
termed as Spike-Timing-Dependent-Plasticity (STDP) or anti-
STDP for the exact opposite impact and explains the activity-
dependent development of nervous systems. In other words,
neural inputs that are likely to have contributed to the neurons’
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excitation are strengthened, while inputs that are less likely
to have contributed are weakened. As for neuro-engineering,
STDP has demonstrated to be successfully implemented as the
underlying neural learning mechanism in robots and other
autonomous systems in both simulated and real environments.

In the past, different mathematical models of STDP have been
proposed, e.g., by Gerstner and Kistler (2002). For this work,
the weight update rule under STDP as a function of the time
difference between pre and postsynaptic spikes was defined as

1t = tpost − tpre (6)

STDP(1t) =

{

A+e
−1t/τ+ , if 1t ≥ 0

−A−e
1t/τ− , if 1t < 0

, (7)

with A+ and A− representing positive constants scaling the
strength of potentiation and depression, respectively. τ+ and τ−
are positive time constants defining the width of the positive and
negative learning window. For deeper insights into the influence
of the STDPmechanism, readers could refer to Song et al. (2000),
Rubin et al. (2001), and Câteau and Fukai (2003).

A comparison of rate-based and spike-based spiking neural
networks used for MNIST classification is shown in Diehl and
Cook (2015).

4.4. Network Models
The SNN network model resembles the synapse model in
that it simulates synaptic interactions among neurons. Typical
examples of neural networks consisting of neurons of these types
are classified into two general categories:

4.4.1. Feed-Forward Networks
As the first and simplest type of network topology, information
in feed-forward networks always travels from the input nodes,
through hidden nodes (if any), to the output nodes and never
goes backwards. In the biological nervous system, abstracted
feed-forward networks are mainly found to acquire and transmit
external information. Therefore, similarly, networks of this
type are usually adopted for low-level sensory acquisition in
robotic systems, such as vision (Perrinet et al., 2004), tactile
sensing (Rochel et al., 2002), and olfaction (Cassidy and
Ekanayake, 2006). For example, inspired by the structures and
principles of primate visual cortex, Qiao et al. (2014, 2015, 2016)
enhanced the feed-forward models including Hierarchical Max
Pooling (HAMX)model and Convolutional Deep Belief Network
(CDBN) with memory, association, active adjustment, semantic
and episodic feature learning ability etc., and achieved good
results in visual recognition task.

Taking the work from Meschede (2017) as an example, a
two-layer feed-forward SNN was trained for a lane keeping
vehicle. The control scheme is shown in Figure 4. In this
work, the dynamic vision sensors (DVS) was used to detect
the land markers by generating a sequence of events. The
input layer consisted of 8× 4 Poisson neurons and connected
to the two LIF output motor neurons with R-STDP synapses
in an “all to all” fashion. The learning phase was conducted
by repeatedly training and switching the robot from the start
positions in the inner and outer lanes. In comparison with

FIGURE 4 | Control architecture of feed-forward SNN. A R-STDP SNN is used

to achieve lane-keeping task. The sensor input is the event sequence from

DVS and the two LIF output neurons are used to decode motor speed. All

these neurons are connected with R-STDP synapse in an “all to all” fashion.

other three learning methods, namely, the deep Q-learning
(DQN), DQN-SNN, and Braitenberg Vehicle, the R-STDP SNN
exhibited the best accuracy and adaptability in different lane
scenarios.

4.4.2. Recurrent Networks
Different from the feed-forward networks, recurrent neural
networks (RNNs) transmit their information with a directed
cycle and exhibit dynamic temporal behaviors. It is worth
pointing out that recurrent neural networks are recursive neural
networks (Wikipedia, 2017d) with a certain structure such as
a linear chain. Living organisms seem to use this mechanism
to process arbitrary sequences of inputs with their internal
memory stored inside RNNs. As for robotics implementations,
RNNs are widely used for vision (Kubota and Nishida, 2006),
planning (Soula et al., 2005; Rueckert et al., 2016), and dynamic
control (Probst et al., 2012).

In Rueckert et al. (2016), a recurrent SNN is proposed for
solving planning tasks, which consists of two populations of
neurons, namely, the state neuron population and the content
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neuron population. (see Figure 5) The state neuron population
consists of K state neurons, which control all the state of a
freely moving target. In their finite horizon planning task, the
agent spatial position is controlled by nine state neurons. These
state neurons are wired to each other and the content neuron
populations by R-STDP synapse. The context neurons produce
spatiotemporal spike patterns that represent high-level goals and
context information. In this case, its average firing rate represents
the target spatial position at different time step. A final reward
is only received if the agent passes through two obstacles, one at
time T/2 and one at time T. They show that the optimal planning
policy can be learned using the reward modulated update rule in
a network where the state neurons follow winner-take-all (WTA)
dynamics. Due to the probability, in each time step exactly one
state neuron is active and encodes the current position of the
agent. Their results demonstrated a successful planner trajectory
planning task using a recurrent SNN.

5. LEARNING AND ROBOTICS
APPLICATIONS

Changes in the strength of synaptic connections between
neurons are thought to be the physiological basis of
learning (Vasilaki et al., 2009). These changes can either be
gated by neuromodulators that encode the presence of reward
or inner co-activation among neurons and synapses. In control
tasks presented in this section, the network is supposed to
learn a function that maps some state input to a control or
action output. When successfully learned, the network is able to
perform simple tasks such as wall following, obstacle avoidance,
target reaching, lane following, taxi behavior, or food foraging.
In most cases, the network input directly comes from the robot’s
sensors, which range from binary sensors, e.g., olfactory, to
multi-dimensional continuous sensors, such as cameras. In
other cases, the input can be pre-processed data, e.g., coming
from electroencephalography (EEG) data. Similarly, the output

can range from one-dimensional, binary behavior control to
multi-dimensional continuous output values, e.g., for motor
control, as well.

Initially, solving simulated control tasks was done bymanually
setting network weights, e.g., in Lewis et al. (2000) and
Ambrosano et al. (2016). However, this approach is limited to
solving simple behavioral tasks such as wall following (Wang
et al., 2009) or lane following (Kaiser et al., 2016), it is usually only
feasible for very small network architectures with few weights.

Therefore, a variety of training methods for SNNs in control
tasks has been researched and published. Instead of focusing on
criteria such as field of research, biological plausibility or the
specific task, this section is meant to serve as a classification
of published algorithms into the basic underlying training
mechanisms from a robotics and machine learning perspective.
In the first part of this section, some implementations of
SNN control are introduced that use some form of Hebbian-
based learning. In the second part, publications are shown that
try to bridge the gap between classical reinforcement learning
and spiking neural networks. Finally, some alternative methods
on how to train and implement spiking neural networks are
discussed.

5.1. Hebbian-Based Learning
One of the earliest theories in neuroscience explaining the
adaption of synaptic efficacies in the brain during the learning
process was introduced by Donald Hebb in his 1949 book The
Organization of Behavior (Hebb, 1949). Often summarized by the
phrase “Cells that fire together, wire together,” his idea is usually
expressed in mathematical terms as

1wij ∝ vivj, (8)

where wij refers to the change of synaptic weight between the
presynaptic neuron i and the postsynaptic cell j; and v represents
the activities of those neurons, respectively.

FIGURE 5 | Control architecture of recurrent-SNN. A recurrent layer of state neurons is used to control the state of the agent and receives signals from the content

population, which decides the target position according to different time step.
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Hebbian-based learning rule that rely on the precise timing
of pre and post-synaptic spikes play a crucial part in the
emergence of highly non-linear functions in SNNs. Learning
based on Hebbs rule has been successfully applied to problems
such as input clustering, pattern recognition, source separation,
dimensionality reduction, formation of associative memories, or
formation of self-organizing maps (Hinton and Sejnowski, 1999).
Furthermore, different biologically plausible learning rules have
been used for using Spiking Neural Networks in robot control
tasks. However, as the basic underlying mechanism stays the
same, training these networks can be achieved in different ways
as follows (see Table 1). In the table, the two-wheel vehicle means
a vehicle with two active wheels.

5.1.1. Unsupervised Learning
According to STDP, if a presynaptic spike preceded a postsynaptic
spike, a potentiation of the synaptic strength could be observed
[Long Term Potentiation (LTP)], while the reversed order caused
a depression [Long Term Depression (LTD)]. Because of the
absence of direct goals, correction functions or a knowledgeable
supervisor, this kind of learning is usually categorized as
unsupervised learning (Hinton and Sejnowski, 1999). Learning
based on STDP rule has been successfully applied to many
problems such as input clustering, pattern recognition, and
spatial navigation and mental exploration of the environment.

Wang et al. (2008) used this approach to train a behavior
controller based on SNN to achieve obstacle avoidance using
ultrasonic sensory signals with a mobile robot by driving it
from different start positions. Compared with other classical
NNs, they demonstrated that SNN needs fewer neurons and is
relatively simple. Afterwards, they (Wang et al., 2014) extended
their navigation controllers with with wall-following and goal-
approaching abilities. In a similar research, Arena et al. (2010)
presented an SNN based on an unsupervised learning paradigm
to allow the robot to autonomously learn how to navigate in
an unknown environment. Their controller allowed the robot to
learn high-level sensor features, based on a set of basic reflexes,
depending on some low-level sensor inputs by continuously
strengthening the association between the unconditioned stimuli
(contact and target sensors) and conditioned stimuli (distance
and vision sensors).

5.1.2. Supervised Learning
In non-spiking neural networks, many successes in recent years
can be summarized as finding ways to efficiently learn from
labeled data. This type of learning, where a neural network
mimics a known outcome from given data is called supervised
learning (Hastie et al., 2001). A variety of different neuroscientific
studies has shown that this type of learning can also be found
in the human brain (Knudsen, 1994), e.g., in motor control
and motor learning (Thach, 1996; Montgomery et al., 2002).
But despite the extensive exploration of these topics, the exact
mechanisms of supervised learning in biological neurons remain
unknown.

Accordingly, a simple way of training SNNs for robot control
tasks is by providing an external training signal that adjusts the
synapses in a supervised learning setting. As shown in Figure 6,

when an external signal is induced into the network as a post-
synaptic spike-train, the synapses can adjust their weights, for
example, using learning rules such as STDP. After an initial
training phase, this will cause the network to mimic the training
signal with satisfactory precision. Even though this approach
provides a simple, straight-forward way for training networks,
it is dependent on an external controller. Especially for control
tasks involving high-dimensional network inputs, this may not
be feasible.

Several models have been proposed on how this might work,
either by using activity templates to be reproduced (Miall and
Wolpert, 1996) or error signals to be minimized (Kawato and
Gomi, 1992; Montgomery et al., 2002). In the nervous system,
these teaching signals might be provided by sensory feedback or
other supervisory neural structures (Carey et al., 2005). One of
these models that is primarily suitable for single-layer networks
is called supervised Hebbian learning (SHL). Based on the learing
rule derived in 8, a teaching signal is used to train the postsynaptic
neuron to fire at target times and to remain silent at other times.
It can be expressed as

wnew
ij = wold

ij + α vi tj, (9)

where wij again is the synaptic efficacy between a presynaptic
neuron i and a postsynaptic neuron j, α is the learning rate,
vi is the presynaptic neurons activity and tj represents the
postsynaptic teaching signal.

Carrillo et al. (2008) used this basic approach to train a spiking
model of the cerebellum to control a robotic armwith 2 degrees of
freedom in a target-reaching task taking joint angles and speeds,
as well as target position as inputs. The spiking cerebellummodel
is trained by simulating the robotics arm to seven different targets
repeatedly. In contrast to other STDP learning rules, only long-
term depression was externally induced by a training signal,
which relied on the motor error, namely the difference between
the desired and actual state. In a similar experiment, Bouganis
and Shanahan (2010) trained a single-layer network to control
a robotic arm with 4 degrees of freedom in 3D space. As inputs,
joint angles and the spatial During each training iteration, all four
joints are driven with random motor commands, in the range of
[−5◦, 5◦].direction of the end-effector were used, while outputs
consisted of four motor-command neurons. The training signal
was computed using an inverse kinematics model of the arm,
adjusting the synaptic weights with a symmetric STDP learning
rule. More examples can be found in Table 1 with an order by
descending year.

5.1.3. Classical Conditioning
Classical conditioning (Wikipedia, 2017a) refers to a learning
procedure in which a biologically potent stimulus (e.g., food) is
paired with a previously neutral stimulus (e.g., a bell). It will
result that the neutral stimulus comes to elicit a response (e.g.,
salivation), which is usually elicited by the potent stimulus. In the
famous experiment on classical conditioning (Pavlov and Anrep,
2003), Pavlov’s dog learns to associate an unconditioned stimulus
(US), in this case food, and a conditioned stimulus (CS), a bell,
with each other. While, it is not clear how the high-level stimuli

Frontiers in Neurorobotics | www.frontiersin.org 9 July 2018 | Volume 12 | Article 35

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bing et al. Survey on SNN-Based Robotics Control

T
A
B
L
E
1
|
L
e
a
rn
in
g
ru
le
s
b
a
se

d
o
n
S
T
D
P
/H

e
b
b
ia
n
le
a
rn
in
g
.

L
e
a
rn
in
g
ru
le

R
o
b
o
t

S
e
n
s
o
r

M
e
th
o
d
o
lo
g
y

R
e
fe
re
n
c
e

U
n
su

p
e
rv
is
e
d

Tw
o
-w

h
e
e
lv
e
h
ic
le

5
P
ro
xi
m
ity

S
e
n
so

rs
Im

p
le
m
e
n
tin

g
a
n
S
N
N
o
n
a
re
si
st
iv
e
m
e
m
o
ry

d
e
vi
c
e
a
n
d
a
p
p
ly
it
to

n
a
vi
g
a
tio

n
ta
sk
s

S
a
rim

e
t
a
l.,

2
0
1
6
a
,b

M
o
b
ile

ve
h
ic
le
C
a
si
s-
I

1
6
U
ltr
a
so

n
ic
S
e
n
so

rs
A
b
e
h
a
vi
o
r-
b
a
se

d
ta
rg
e
t-
a
p
p
ro
a
c
h
in
g
n
a
vi
g
a
tio

n
c
o
n
tr
o
lle
r
c
o
m
p
o
se

d
o
f
th
re
e

su
b
-c
o
n
tr
o
lle
rs
:
th
e
o
b
st
a
c
le
-a
vo

id
a
n
c
e
,
w
a
ll-
fo
llo
w
in
g
,
a
n
d
g
o
a
l-
a
p
p
ro
a
c
h
in
g
S
N
N

c
o
n
tr
o
lle
rs
.

W
a
n
g
e
t
a
l.,

2
0
1
4
,

2
0
0
8

Tr
iB
o
t
R
o
b
o
t

D
is
ta
n
c
e
S
e
n
so

r,

C
o
n
ta
c
t
S
e
n
so

r,

U
si
n
g
S
N
N
to

m
a
ke

ro
b
o
t
n
a
vi
g
a
te

in
a
n
u
n
kn

o
w
n
e
n
vi
ro
n
m
e
n
t
a
n
d
a
vo

id
o
b
st
a
c
le
s

A
re
n
a
e
t
a
l.,

2
0
1
0

S
u
p
e
rv
is
e
d

Tw
o
-w

h
e
e
li
n
se

c
t

4
P
ro
xi
m
ity

S
e
n
so

rs
Im

p
le
m
e
n
tin

g
a
n
in
d
ire

c
t
tr
a
in
in
g
S
N
N
in
d
ig
ita
lC

M
O
S
to

n
a
vi
g
a
te

w
ith

o
b
st
a
c
le
s

H
u
e
t
a
l.,

2
0
1
4
;

M
a
zu

m
d
e
r
e
t
a
l.,

2
0
1
6

Tw
o
-w

h
e
e
li
n
se

c
t

2
Te
rr
a
in
,
2
Ta
rg
e
t

In
d
ire

c
tly

tr
a
in

a
n
S
N
N
b
y
R
B
F
s
to

d
e
te
rm

in
e
p
re
c
is
e
sp

ik
e
tim

in
g
s
a
n
d
m
in
im

iz
e
a

d
e
si
re
d
o
b
je
c
tiv
e
fu
n
c
tio

n

Z
h
a
n
g
e
t
a
l.,

2
0
1
3

A
irc

ra
ft

IM
U

In
d
ire

c
tly

tr
a
in
in
g
a
n
S
N
N
to

a
p
p
ro
xi
m
a
te

a
n
o
p
tim

a
lfl
ig
h
t
c
o
n
tr
o
lle
r

F
o
d
e
ra
ro

e
t
a
l.,

2
0
1
0

4
-D

o
F
ro
b
o
tic

a
rm

4
Jo

in
t
E
n
c
o
d
e
r,
3

S
p
a
tia
ld

ire
c
tio

n
o
f

e
n
d
-e
ff
e
c
to
r

U
si
n
g
su

p
e
rv
is
e
d
le
a
rn
in
g
to

tr
a
in

a
si
n
g
le
-l
a
ye
r
n
e
tw

o
rk

to
c
o
n
tr
o
la

ro
b
o
tic

a
rm

w
ith

4
d
e
g
re
e
s
o
f
fr
e
e
d
o
m

in
3
D
sp

a
c
e

B
o
u
g
a
n
is
a
n
d

S
h
a
n
a
h
a
n
,
2
0
1
0

2
-D

o
F
ro
b
o
tic

a
rm

S
e
n
so

rim
o
to
r

U
si
n
g
su

p
e
rv
is
e
d
le
a
rn
in
g
to

tr
a
in

a
sp

ik
in
g
m
o
d
e
lo

f
th
e
c
e
re
b
e
llu
m

to
c
o
n
tr
o
la

ro
b
o
tic

a
rm

C
a
rr
ill
o
e
t
a
l.,

2
0
0
8

S
T
D
P
/
H
e
b
b
ia
n
L
e
a
rn
in
g

C
o
n
d
iti
o
n
in
g

S
im

u
la
te
d
fly

O
lfa
c
to
ry

R
e
c
e
p
to
r

Im
p
le
m
e
n
tin

g
a
n
S
N
N
in
sp

ire
d
b
y
D
ro
so

p
h
ila

o
lfa
c
to
ry

sy
st
e
m

to
si
m
u
la
te

fli
g
h
t

F
a
g
h
ih
ie
t
a
l.,

2
0
1
7

L
e
g
o
E
V
3
ro
b
o
tic

p
la
tf
o
rm

C
a
m
e
ra
,
In
fr
a
re
d

se
n
so

r
C
o
lo
u
r/
lig
h
t

se
n
so

r

L
e
a
rn
in
g
a
n
d
u
n
le
a
rn
in
g
a
u
to
n
o
m
o
u
sl
y
lo
c
o
m
o
tio

n
b
a
se

d
o
n
vi
su

a
l-
in
p
u
t
w
ith

re
in
fo
rc
e
d
/a
ve
rs
iv
e
re
fle
x-
re
sp

o
n
se

Ji
m
e
n
e
z-
R
o
m
e
ro
,

2
0
1
7

Tw
o
-w

h
e
e
lr
o
b
o
t

3
P
ro
xi
m
ity

S
e
n
so

rs
,
1

R
G
B
S
e
n
so

r

U
si
n
g
R
e
w
a
rd
-d
e
p
e
n
d
e
n
t
S
T
D
P
le
a
rn
in
g
ru
le
to

a
llo
w

O
C
a
n
d
C
C
le
a
rn
in
g

D
u
m
e
sn

il
e
t
a
l.,

2
0
1
6
a
,b

F
o
ra
g
in
g
A
n
ts

O
lfa
c
to
ry

S
e
n
so

rs
,

N
o
c
ic
e
p
to
r

L
e
a
rn
s
to

a
ss
o
c
ia
te

o
lfa
c
to
ry

se
n
so

r
in
p
u
t
w
ith

d
iff
e
re
n
t
b
e
h
a
vi
o
rs

th
ro
u
g
h
a

si
n
g
le
-l
a
ye
r
S
N
N

Ji
m
e
n
e
z-
R
o
m
e
ro

e
t
a
l.,

2
0
1
5
,
2
0
1
6

L
e
g
o
N
X
T
2
.0

C
o
lo
r
se

n
so

r,
To

u
c
h

S
e
n
so

r

U
si
n
g
S
N
N
to

su
st
a
in
O
C
in
m
u
lti
p
le
le
a
rn
in
g
sc

e
n
a
rio

s
C
yr

e
t
a
l.,

2
0
1
4
;
C
yr

a
n
d
T
h
é
ria

u
lt,

2
0
1
5

Tw
o
-w

h
e
e
lV

e
h
ic
le

L
ig
h
t
S
e
n
so

rs
U
si
n
g
lig
h
t
se

n
so

rs
in

a
ta
rg
e
t-
re
a
c
h
in
g
ta
sk

to
p
u
n
is
h
w
ro
n
g
fu
lb

e
h
a
vi
o
r

Iw
a
d
a
te

e
t
a
l.,

2
0
1
4

Tw
o
-w

h
e
e
lV

e
h
ic
le

5
P
ro
xi
m
ity

S
e
n
so

rs
,
9

IR
S
e
n
so

rs
,
V
ib
ra
tio

n

S
e
n
so

r

U
si
n
g
in
fr
a
re
d
,
u
ltr
a
so

u
n
d
a
n
d
vi
su

a
ln

e
u
ro
n
s
a
s
C
S
a
n
d
vi
b
ra
tio

n
n
e
u
ro
n
s
a
s
U
S

C
yr

a
n
d
B
o
u
ka

d
o
u
m
,

2
0
1
2

M
o
b
ile

ve
h
ic
le
C
a
si
s-
I

1
6
U
ltr
a
so

n
ic
S
e
n
so

rs
A
le
a
rn
in
g
a
lg
o
rit
h
m

c
o
m
b
in
in
g
o
p
e
ra
n
t
c
o
n
d
iti
o
n
in
g
a
n
d
a
sh

u
n
tin

g
n
e
u
ra
ld

yn
a
m
ic
s

m
o
d
e
li
s
a
p
p
lie
d
to

th
e
p
a
th

p
la
n
n
in
g

W
a
n
g
e
t
a
l.,

2
0
1
2

Tr
iB
o
t
R
o
b
o
t

D
is
ta
n
c
e
S
e
n
so

r,

C
a
m
e
ra
,
C
o
n
ta
c
t

S
e
n
so

r,

U
si
n
g
ta
rg
e
t
d
is
ta
n
c
e
a
s
C
S
,
w
h
ile

c
o
n
ta
c
t
se

n
so

rs
w
o
rk

a
s
U
S
c
a
u
si
n
g
a
n

u
n
c
o
n
d
iti
o
n
e
d
re
sp

o
n
se

A
re
n
a
e
t
a
l.,

2
0
0
9
a
,b

(C
o
n
ti
n
u
e
d
)

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2018 | Volume 12 | Article 35

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bing et al. Survey on SNN-Based Robotics Control

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

L
e
a
rn
in
g
ru
le

R
o
b
o
t

S
e
n
s
o
r

M
e
th
o
d
o
lo
g
y

R
e
fe
re
n
c
e

R
-S

T
D
P

F
la
p
p
in
g
In
se

c
t

G
P
S
a
n
d
IM

U
In
d
ire

c
tly

tr
a
in
in
g
a
n
S
N
N
-b
a
se

d
c
o
n
tr
o
lle
r
fo
r
a
d
a
p
tiv
e
fli
g
h
t
c
o
n
tr
o
l

C
la
w
so

n
e
t
a
l.,

2
0
1
6

1
-D

o
F
ro
b
o
tic
s
a
rm

5
P
ro
xi
m
ity

S
e
n
so

rs
U
si
n
g
a
n
S
N
N
tr
a
in
e
d
b
y
a
g
lo
b
a
lr
e
w
a
rd

a
n
d
p
u
n
is
h
m
e
n
t
si
g
n
a
lt
o
re
a
c
h
a
rb
itr
a
ry

ta
rg
e
ts

S
p
ü
le
r
e
t
a
l.,

2
0
1
5

M
u
sc

u
lo
sk
e
le
ta
la
rm

,
W
A
M

ro
b
o
t

E
n
c
o
d
e
rs

U
si
n
g
a
c
o
rt
ic
a
ls
p
ik
in
g
m
o
d
e
lc
o
m
p
o
se

d
o
f
se

ve
ra
lh

u
n
d
re
d
sp

ik
in
g
m
o
d
e
l-
n
e
u
ro
n
s

to
c
o
n
tr
o
la

tw
o
-j
o
in
t
a
rm

D
u
ra
-B

e
rn
a
le
t
a
l.,

2
0
1
5

C
A
R
L
-S

JR
Ta
c
til
e
S
e
n
so

rs
U
si
n
g
S
N
N
to

p
ro
vi
d
e
fe
e
d
b
a
c
k
to

u
se

rs
b
y
d
is
p
la
yi
n
g
b
rig

h
t
c
o
lo
rs

o
n
its

su
rf
a
c
e
.

C
h
o
u
e
t
a
l.,

2
0
1
5

Tw
o
-w

h
e
e
lv
e
h
ic
le

2
P
ro
xi
m
ity

S
e
n
so

rs
Im

p
le
m
e
n
t
a
ve
rs
io
n
o
f
D
A
-m

o
d
u
la
te
d
S
T
D
P
o
n
a
fo
o
d
fo
ra
g
in
g
ta
sk

E
va
n
s,

2
0
1
5

F
o
ra
g
in
g
S
im

u
la
to
r

V
is
u
a
lS

e
n
so

rs
U
si
n
g
re
w
a
rd
-S

T
D
P
b
a
se

d
S
N
N
to

so
lv
e
a
g
rid

-b
a
se

d
fo
ra
g
in
g
ta
sk

S
ko

rh
e
im

e
t
a
l.,

2
0
1
4

D
fR
o
b
o
tS
h
o
p
R
o
ve
r

C
a
m
e
ra
,
L
ig
h
t
S
e
n
so

r
U
si
n
g
a
n
S
N
N
a
n
d
e
xt
e
rn
a
lfl
a
sh

to
re
in
fo
rc
e
th
e
g
o
a
l-
d
ire

c
te
d
a
n
d
a
d
a
p
tiv
e
b
e
h
a
vi
o
rs

H
e
lg
a
d
o
tt
ir
e
t
a
l.,
2
0
1
3

2
-D

o
F
ro
b
o
tic
s
a
rm

S
e
n
so

rim
o
to
r

U
si
n
g
a
n
S
N
N
b
a
se

d
o
n
R
-S

T
D
P
to

c
o
n
tr
o
la

tw
o
-j
o
in
t
vi
rt
u
a
la
rm

to
re
a
c
h
to

a
fix
e
d

ta
rg
e
t

N
e
ym

o
tin

e
t
a
l.,

2
0
1
3

1
-D

o
F
ro
b
o
tic
s
a
rm

E
n
c
o
d
e
r

U
si
n
g
a
n
S
N
N
to

c
o
n
tr
o
la

si
n
g
le
-j
o
in
t
a
rm

fo
r
ta
rg
e
t
re
a
c
h
in
g

C
h
a
d
d
e
rd
o
n
e
t
a
l.,

2
0
1
2

FIGURE 6 | Supervised Hebbian training of a synapse: The weight of the

synapse between pre and post-synaptic neurons, Npre and Npost, is adjusted

by the timing of the pre-synaptic spike-train ssyn and external post-synaptic

training signal strain.

FIGURE 7 | Classical Conditioning with STDP synapse between Npre and

Npost: An unconditioned stimulus (US) A or B causes the post-synaptic neuron

Npost to fire. The conditioned stimulus (CS) firing shortly before its associated

US will adjust its weights so that Npost will fire even in the absence of US. Due

to the Hebbian learning rule, the synaptic weight is unchanged when the other,

unrelated stimulus causes Npost to fire.

given in his experiment are processed within the brain, the same
learning principle can be used for training on a neural level as
well. Figure 7 shows how a synapse based on the STDP learning
rule can associate US and CS provoking a response even in the
absence of US.

Following this principle, bio-inspired robots can learn to
associate a CS, e.g., sensory information, with a US that functions
as an external reinforcer. That way, robots can learn to follow the
desired behavior based on sensory inputs. Arena et al. (2009a,b,
2010) showed how classical conditioning can be used in an
obstacle avoidance and target reaching task. In an SNN with
two output motor neurons, distance and vision sensors function
as CS, while contact and target sensors work as US causing
an unconditioned response. By navigating the robot in a pre-
designed enclosed environment, the robot successfully learned to
associate the CS and the US together and reach the target without
hitting obstacles. In a similar experiment, Cyr and Boukadoum
(2012) carried out different classical conditioning tasks in a
controlled virtual environment using infrared, ultrasound and
visual neurons as CS and vibration neurons as US. Wang et al.
(2008, 2014) constructed a controller that stimulated two motor
neurons as US. A single-layer SNN using proximity sensor
data as CS input was then trained in tasks such as obstacle
avoidance and target reaching. Iwadate et al. (2014) used light
sensors in a target-reaching task to punish wrongful behavior.
Jimenez-Romero et al. (2015, 2016) and Jimenez-Romero (2017),
implemented a virtual ant that learns to associate olfactory sensor
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input with different behaviors through a single-layer SNN. The
robot was able to learn to recognize rewarding and harmful
stimuli as well as simple navigation in a simulated environment.
Casellato et al. (2014) proposed a realistic cerebellar SNN with
a real haptic robotic arm to achieve diverse sensorimotor tasks.
In all tasks, the robot learned to adjust timing and gain of the
motor response and successfully reproduced human biological
systems acquire, extinguish, and express knowledge in a noisy
world.

In order to successfully learn such behavioral tasks, some
unconditioned stimulus has to be given for every relevant
conditioned stimulus that the robot should learn. This alsomeans
that the robot will learn to associate stimuli that are delayed
in time. Taken together, using classical conditioning for robot
control basically means constructing an external controller that
provides unconditioned stimuli for every relevant state input,
which may not be feasible in many tasks.

5.1.4. Operant Conditioning
While classical conditioning is concerned with passively
associating conditioned and unconditioned stimuli with each
other, operant conditioning (OC) consists of associating stimuli
with responses and actively changing behaviors thereafter.
Conceptually, operant conditioning involves changing voluntary
behaviors and is closely related to reinforcement learning and
its agent-environment interaction cycle. A behavior response is
followed by either reinforcement or punishment. Reinforcement
following a behavior will cause the behavior to increase,
but if behavior is followed by punishment the behavior
will decrease. Instead of developing a formal mathematical
model, operant conditioning has been mainly researched in
biological and psychological domains. Despite advances in
the understanding of operant conditioning, it is still not
clear how this type of learning is implemented on a neural
level.

In this context, Cyr et al. (2014) and Cyr and Thériault
(2015) developed a spiking OC model that consists of an input
feeding cue neuron, an action neuron and a predictor neuron
that receives rewards or punishments. With this simple basic
architecture and learning rules such as habituation and STDP,
they were able solve simple OC-related tasks in a simulated
environment, such as pushing blocks. In another publication by
Dumesnil et al. (2016a,b) a reward-dependent STDP learning
rule was implemented on a robot to allow for OC learning and
demonstrated in a maze task. The RGB camera was used to
capture the color information which represented the cue or the
reward in the maze environment. Eventually, the robot learned
the association, if an action was frequently followed by a reward.

5.1.5. Reward-Modulated Training
In Figure 8 the learning rule for reward-based training
is shown. Using one or more chemicals emitted by a
given neuron to regulate diverse populations of neurons is
know as neuromodulation (Hasselmo, 1999). As one of the
neuromodulators, dopamine neurons forming the midbrain
dopaminergic cell groups are crucial for executive functions,
motor control, motivation, reinforcement, and rewards. Most

FIGURE 8 | Reward-modulated STDP synapse between Npre and Npost:

Depending on the post-synaptic output spike-train, a reward r is defined that

modulates the weight change of the synapse.

types of neurological rewards increase the level of dopamine
in the brain, thus stimulating the dopamine neurons (Schultz,
1998). Inspired by dopaminergic neurons in the brain, the effects
of STDP events are collected in an eligibility trace and a global
reward signal induces synaptic weight changes. In contrast to
supervised training as discussed before, rewards can be attributed
to stimuli, even if they are delayed in time. This can be a very
useful property for robot control, because it might simplify the
requirements of an external training signal leading to more
complex tasks. A simple learning rule combing models of STDP
and a global reward signal was proposed by Florian (2007) and
Izhikevich (2007). In the R-STDP, the synaptic weight w changes
with the reward signal R. The eligibility trace of a synapse can be
defined as,

ċ(t) = −
c

τc
+ ω(1t)δ(t − spre/post)C1 (10)

where c is an eligibility trace. spre/post means the time of a pre-
or post-synaptic spikes. C1 is a constant coefficient. τc is a time
constant of the eligibility trace. δ(·) is the Dirac delta function.

ẇ(t) = R(t)× c(t) (11)

where R(t) is the reward signal.
In the literature, a variety of algorithms has been published

using this basic learning architecture for training. Even though
they are all based on the same mechanism, the rewards can be
constructed in different ways.

1. Rewarding Specific Events: The most straight-forward
implementation of reward-based learning resembling classical
reinforcement learning tasks uses rewards associated to
specific events. Evans (2012) trained a simple, single-layer
SNN in several food foraging tasks consisting of 4 input
sensor neurons and 4 output motor neurons. In a separate
network, other reward-related sensor neurons stimulated a
dopaminergic neuron that in turn modulated the synaptic
weight change. With this simulation setup, the robot was able
to learn food-attraction behavior and subsequently unlearn
this behavior when the environment changed. This was
achieved by a training stage during which the robot were
randomly droved to explore the environment effectively.
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By shifting the dopamine response from the primary to a
secondary stimulus, the robot was able to learn, even with
large temporal distance, between correct behavior and reward.
Faghihi et al. (2017) showed an SNN model of a fruit fly that
is able to execute both first and second order conditioning. In
a simple task, the simulated fly learned to avoid getting close
to an olfactory target emitting electric shocks. Furthermore,
the same behavior can be transferred to a secondary stimulus
that is associated to the primary stimulus without emitting
electric shocks itself.

2. Control ErrorMinimization: As opposed to rewarding specific
events, dopamine-modulated learning can also be used in
an optimization task to minimize an objective function.
This is usually achieved by strengthening or weakening the
connections that lead to changes in the objective function
based on their eligibility traces. Clawson et al. (2016) used this
basic architecture to train an SNN to follow a trajectory. The
network consisted of lateral state variables as inputs, a hidden
layer and an output layer population decoding the lateral
control output. Learning is achieved offline by minimizing the
error between decoded actual and desired output, which is
provided by an external linear controller.

3. Indirect Control Error Minimization: For some potential
applications of SNNs, e.g., neuroprosthetic devices implanted
in the brain, directmanipulation of synaptic weightsmight not
be possible. Therefore, an indirect approach to training SNNs
was shown by Foderaro et al. (2010) that induces changes
in the synaptic efficacy through input spikes generated by a
separate critic SNN. This external network was provided with
control input as well as feedback signals and trained using a
reward-based STDP learning rule. By minimizing the error
between control output and optimal control law offline, it was
able to learn adaptive control of an aircraft. Similar ideas were
presented by Zhang et al. (2012), Zhang et al. (2013), Hu et al.
(2014), and Mazumder et al. (2016) who trained a simple,
virtual insect in a target reaching and obstacle avoidance task.

4. Metric Minimization: The same principle can also be applied
to minimize a global metric that might be easier to construct
and calculate than an external controller. Chadderdon et al.
(2012) proposed a spiking-neuron model of the motor cortex
which controlled a single-joint arm in a target-reaching task.
The model consisted of 144 excitatory and 64 inhibitory
neurons with proprioceptive inputs cells and output cells
controlling the flexor and extensor muscles. A global reward
or punishment signal was given depending on the change
of hand-target distance during the learning phase, during
which the robot was set with five different targets repeatedly.
Neymotin et al. (2013) and Spüler et al. (2015) extended
this architecture with two-joint robotic arm later. Similarly,
Dura-Bernal et al. (2015) used a biomimetic cortical spiking
model composed of several hundred spiking model-neurons
to control a two-joint arm. With proprioceptive sensory
input (muscle lengths) and muscle excitation output, the
network was trained by minimizing the hand-target distance.
The distance error was reduced by repeatedly move to the
target with the guidance of a global reward/punish signal.
Kocaturk et al. (2015) extended the same basic architecture

in order to develop a brain-machine interface. Extracellularly
recorded motor cortical neurons provide the network inputs
used for prosthetic control. By pressing a button, the user
can reward desired movements and guide the prosthetic arm
toward a target. Using a miniaturized microprocessor with
resistive crossbar memories implemented on a two-wheeled
differential drive robot, Sarim et al. (2016a,b) showed how an
STDP-based learning rule could lead to target approaching
and obstacle avoidance behavior. Although, in this case,
learning was implemented using if-then rules that relied on
distance changes from target and obstacles, it is conceptually
identical to reward-modulated learning. This can easily be
seen by exchanging the if-rules with a reward of+1 or−1.

5. Reinforcing Associations: Chou et al. (2015) introduced a
tactile robot that uses a network architecture inspired by
the insular cortex. As in classical conditioning, a dopamine-
modulated synaptic plasticity rule was used to reinforce
associations between conditioned and unconditioned stimuli.

5.2. Reinforcement Learning
In the previous subsection, a variety of approaches was presented
for training SNNs based on Hebbian learning rules. This was
done either by providing a supervised training signal through
an external controller or by using a reward-based learning rule
with different ways of constructing the reward. The latter type
of learning, however, was shown to successfully train SNNs in
simple tasks solely based on delayed rewards. In general, all of
these approaches have been trained in tasks that don’t require
looking very far ahead, as reinforcement learning theories usually
do.

In classical reinforcement learning theory, on the other hand,
learning to look at multiple steps in advance in a Markov
Decision Process (MDP) is one of the main concerns. Therefore,
several algorithms have been published combining SNNs with
classical reinforcement learning algorithms.

5.2.1. Temporal Difference
The learning rule in which one looks at one ormore steps forward
in time was introduced as temporal difference (TD) learning.
Hereby, Potjans et al. (2009) and Frémaux et al. (2013) used
place cells to represent the state space in an MDP and single-
layer SNNs for state evaluations and policies. Both algorithms
were able to learn to navigate in a simple grid-world after some
training. With a similar approach, Nichols et al. (2013) presented
a robot controller inspired by the control structures of biological
systems. In a self-organizing, multi-layered network structure,
sensory data coming from distance and orientation sensors
was gradually fused into state neurons representing distinct
combinations of sensory inputs. On top, each individual state
neuron was connected to 3 output motor neurons. By fusing the
sensory input into distinct state neurons and connecting them to
action neurons, a simplified TD learning rule could be used to set
each synaptic weight in the last layer individually, when the robot
conducted a trial locomotion. Performance of this controller was
demonstrated in a wall-following task.
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While these state representations work very well for relatively
small state spaces, they are usually bound to fail for larger, high-
dimensional state spaces, since the TD method can only obtain
the reward in several steps. Therefore, it is less stable and may
converge to the wrong solution, especially for high-dimensional
state spaces. In fact, these approaches can conceptually be seen
as an SNN implementation of table-based Q-learning.

5.2.2. Model-Based
Although for robot control tasks, such as those shown
in this paper, model-free reinforcement learning methods
seem favorable, two recent publications are at least worth
mentioning that presented SNN implementations of model-
based reinforcement learning algorithms. Rueckert et al. (2016)
presented a recurrent spiking neural network for planning tasks
that was demonstrated on a real robot in an obstacle avoidance
task. Friedrich and Lengyel (2016) implemented a biologically
realistic network of spiking neurons for decision making. The
network uses local plasticity rules to solve one-step as well
as sequential decision making tasks, which mimics the neural
responses recorded in frontal cortices during the execution
of such similar tasks. Their model reproduced behavioral and
neuro-physiological data on tasks ranging from simple binary
choice to multi-step sequential decision making. They took a
two-step maze navigation task as an illustration. During each
state, the rat was rewarded with different values according to its
actions. The reward wasmodeled as an external stimuli. The SNN
learned a stable policy within 10 ms.

5.3. Others
Except for the two aforementioned major methods, there are also
other training methods for SNNs in robot control tasks as follows
(see Table 2).

5.3.1. Evolutionary Algorithms
In nature, evolution has produced a multitude of organisms in
all kinds of shapes with survival strategies optimally aligned
to environmental conditions. Based on these ideas, a class of
algorithms has been developed for finding problem solutions
by mimicking elementary natural processes called evolutionary
algorithms (Michalewicz, 1996). Generally, evolutionary
processes can be understood as some form of gradient-
descent optimization. Therefore, a typical problem using these
algorithms is getting stuck in local minima. In applications in
robot control, evolving SNNs have been shown to work well in
mostly static environments. Due to the training principle of trial
and error, there are usually difficulties in dynamically changing
environments.

Floreano and Mattiussi (2001) showed a vision-based
controller in an irregularly textured environment that navigated
without hitting obstacles. The predefined SNN consisted of 18
sensory-input receptors connected to 10 fully-connected hidden
neurons and 2 motor-output neurons. Using static synaptic
weight values, the algorithm was used to search the space
of connectivity by genetically evolving only signs of weights
(excitatory and inhibitory), when the robot was continuously
driving around in the experiment setup. With a population of

60 individuals, fitness was evaluated by summing up over motor
speeds at every time step, and new generations were created
using one-point crossover, bit mutation and elitism. Hagras et al.
(2004) later extended this approach to evolving SNN weights as
well using adaptive crossover and mutation probabilities. They
were able to evolve good SNN controllers in a small number
of generations in a wall-following scenario. Howard and Elfes
(2014) presented a quadrotor neurocontroller that performed
a hovering task in challenging wind conditions. With a feed-
forward network taking the differences between current position
and target position as input and pitch, roll and thrust as output,
weights and topology were evolved to minimize the spatial error.
In a target-reaching and obstacle-avoidance task using binocular
light sensors and proximity sensors, Batllori et al. (2011) evolved
an SNN by minimizing the control error in order to mimic
an external controller signal. Markowska and Koldowski (2015)
used a feed-forward network architecture of predefined size to
control a toy car. Based on speed, localization and road boarder
input signals, the network controlled speed regulation and turn
direction, and evolved its weights using a genetic algorithm.

5.3.2. Self-Organizing Algorithms
Alnajjar and Murase (2006) formulated a synaptic learning
rule that enforced connections between neurons depending on
their activities. During the learning phase, the robot gradually
organized the network and the obstacle avoidance behavior was
formed. With this self-organization algorithm that resembles
other Hebbian-based learning methods, they were able to learn
obstacle avoidance and simple navigation behavior.

5.3.3. Liquid State Machine
As a particular kind of SNN, an liquid state machine (LSM)
usually consists of a large assemblage of neurons that receives
time-varying input from external sources as well as from
other neural units (Yamazaki and Tanaka, 2007). All mixed
and disorderly neuron units are randomly generated and then
arranged under the activations of recurrent spatio-temporal
patterns of the connections obtained from the time-varying
input. Hence, the LSM is regarded as a large variety of
nonlinear functions which is able to compute the output as
linear combinations of the input. LSMs seem to be a potential
and promising theory to explain brain operation mainly because
neuron activities are not hard coded and limited for specific
tasks. Burgsteiner (2005), Probst et al. (2012), and Arena et al.
(2017) showed how liquid state machines can be trained for robot
control tasks.

6. SIMULATORS AND PLATFORMS

With the fast development of neuroscience and chip industry,
large-scale neuromorphic hardware using spiking neural
networks has been studied to achieve the same capabilities as
animal brains in terms of speed, efficiency, and mechanism.
For examples, SpiNNaker (Furber et al., 2013) is a million-
core system for modeling large-scale SNNs in real time.
TruthNorth (Merolla et al., 2014) contains 1 million
programmable spiking neurons and only consumes less than one

Frontiers in Neurorobotics | www.frontiersin.org 14 July 2018 | Volume 12 | Article 35

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bing et al. Survey on SNN-Based Robotics Control

T
A
B
L
E
2
|
O
th
e
r
le
a
rn
in
g
ru
le
s.

L
e
a
rn
in
g
ru
le

R
o
b
o
t

S
e
n
s
o
r

M
e
th
o
d
o
lo
g
y

R
e
fe
re
n
c
e

E
vo

lu
tio

n
a
ry

a
lg
o
rit
h
m
s

N
e
u
ra
lR
a
c
in
g
g
a
m
e

S
p
e
e
d
o
m
e
te
r,

P
ro
xi
m
ity

S
e
n
so

rs

U
si
n
g
e
vo

lu
tio

n
a
ry

a
lg
o
rit
h
m

to
tr
a
in

S
N
N
a
n
d
c
o
m
p
a
re

re
su

lts
w
ith

m
u
lti
-l
a
ye
r
p
e
rc
e
p
tr
o
n

M
a
rk
o
w
sk
a
a
n
d

K
o
ld
o
w
sk
i,
2
0
1
5

Q
u
a
d
ro
to
r

G
P
S

U
si
n
g
e
vo

lu
tio

n
a
ry

a
lg
o
rit
h
m

to
g
e
n
e
ra
te

h
ig
h
u
til
ity

to
p
o
lo
g
y/
w
e
ig
h
t

c
o
m
b
in
a
tio

n
s
in

th
e
S
N
N

H
o
w
a
rd

a
n
d
E
lfe
s,

2
0
1
4

Tw
o
-w

h
e
e
lV

e
h
ic
le

5
IR

S
e
n
so

rs
U
si
n
g
S
N
N
to

m
im

ic
th
e
b
e
h
a
vi
o
rs

c
a
p
tu
re
d
u
n
d
e
r
c
o
n
tr
o
lo

f
a
h
e
u
ris
tic

ru
le
p
ro
g
ra
m

B
a
tll
o
ri
e
t
a
l.,

2
0
1
1

K
h
e
p
e
ra

R
o
b
o
t
(T
w
o
-w

h
e
e
lV
e
h
ic
le
)

L
in
e
a
r
C
a
m
e
ra

U
si
n
g
e
vo

lu
tio

n
to

ra
p
id
ly
g
e
n
e
ra
te

S
N
N
c
a
p
a
b
le
o
f
n
a
vi
g
a
tin

g
in

a

te
xt
u
a
le
n
vi
ro
n
m
e
n
t

F
lo
re
a
n
o
e
t
a
l.,

2
0
0
6
;

F
lo
re
a
n
o
a
n
d
M
a
tt
iu
ss
i,

2
0
0
1

Tw
o
-w

h
e
e
lV

e
h
ic
le

4
IR

S
e
n
so

rs
A
u
se

-d
e
p
e
n
d
e
n
t
sy
n
a
p
tic

m
o
d
ifi
c
a
tio

n
a
lg
o
rit
h
m

o
f
S
N
N
fo
r

o
b
st
a
c
le
-a
vo

id
a
n
c
e
ve
h
ic
le
b
e
h
a
vi
o
r

A
ln
a
jja
r
a
n
d
M
u
ra
se

,

2
0
0
6

Tw
o
-w

h
e
e
lV

e
h
ic
le

9
U
ltr
a
so

n
ic
S
e
n
so

rs
,
4

B
u
m
p
S
e
n
so

rs

U
si
n
g
a
n
a
d
a
p
tiv
e
G
A
to

e
vo

lv
e
th
e
S
N
N
o
n
lin
e
th
ro
u
g
h
in
te
ra
c
tio

n
w
ith

th
e
re
a
le
n
vi
ro
n
m
e
n
t

H
a
g
ra
s
e
t
a
l.,

2
0
0
4

F
u
zz
y
lo
g
ic
a
l

Tw
o
-w

h
e
e
lV

e
h
ic
le

7
U
ltr
a
so

n
ic
S
e
n
so

rs
(5

in
fr
o
n
t,
2
a
t
b
a
c
k)

U
si
n
g
S
N
N
to

m
im

ic
th
e
kn

o
w
le
d
g
e
o
f
a
fu
zz
y
c
o
n
tr
o
lle
r

K
u
b
o
ta
,
2
0
0
4

L
iq
u
id

st
a
te

m
a
c
h
in
e

H
e
xa

p
o
d
R
o
b
o
t

V
is
u
a
lS

e
n
so

r

(D
is
ta
n
c
e
,
H
e
ig
h
t)

M
u
sh

ro
o
m

b
o
d
ie
s
in

d
ro
so

p
h
ila

a
re

m
o
d
e
le
d
a
s
a
re
c
u
rr
e
n
t
S
N
N
u
n
d
e
r

L
S
M

p
a
ra
d
ig
m

A
re
n
a
e
t
a
l.,

2
0
1
7

2
-D

o
f
B
a
ll
B
a
la
n
c
e
P
la
tf
o
rm

P
o
si
tio

n
a
n
d
V
e
lo
c
ity

U
si
n
g
a
c
o
rt
ic
a
ln
e
tw

o
rk

(L
S
M
)
to

le
a
rn

u
n
d
e
r
a
su

p
e
rv
is
e
d
le
a
rn
in
g
ru
le

fo
r
p
o
si
tio

n
c
o
n
tr
o
l

P
ro
b
st

e
t
a
l.,

2
0
1
2

K
h
e
p
e
ra

R
o
b
o
t

8
IR

S
e
n
so

rs
U
si
n
g
R
a
n
d
o
m
ly
g
e
n
e
ra
te
d
re
c
u
rr
e
n
t
S
N
N
to

o
p
e
ra
te

re
a
l-
tim

e

o
b
st
a
c
le
a
vo

id
a
n
c
e

B
u
rg
st
e
in
e
r,
2
0
0
5

Frontiers in Neurorobotics | www.frontiersin.org 15 July 2018 | Volume 12 | Article 35

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Bing et al. Survey on SNN-Based Robotics Control

hundred milliwatts. Other neuromorphic computing platforms
such as Neural Grid (Benjamin et al., 2014), NeuroFlow (Cheung
et al., 2016) can be found and introduced in Schuller and Stevens
(2015). Meanwhile, a growing number of dynamic simulators
has been developed to assist robotic research (Ivaldi et al., 2014),
such as Gazebo (Koenig and Howard, 2004), ODE (Wikipedia,
2017c), and V-Rep (Rohmer et al., 2013). Those simulators
greatly facilitate the research process that involving mechanical
design, virtual sensors simulation, and control architecture.

Although adequate tools exist to simulate either spiking
neural networks (Brette et al., 2007; Bekolay et al., 2014), or
robots and their environments (Staranowicz and Mariottini,
2011; Harris and Conrad, 2011), tools that offer researchers joint
interaction, including a realistic brain model, robot, and sensory-
rich environment, are in need. Some existing platforms are listed
in Table 3.

iSpike (Gamez et al., 2012), as the first attempt to combine
spiking neural networks and robots, is a C++ library that provides
an interface between SNN simulators and the iCub humanoid
robot. It uses a biologically inspired approach to convert the
robot’s sensory information into spikes that are passed to
the neural network simulator, and it decodes output spikes
from the network into motor signals that are sent to control
the robot. CLONES (Voegtlin, 2011) communicates between
the Brian neural simulator (Goodman and Brette, 2009) and
SOFA (Allard et al., 2007) and is also an interface used for shared
memory and semaphores. A more generic system which permits
dealing with simulated robotic platforms is AnimatLab (Cofer
et al., 2010), which provides functionalities such as robot
modeling, two neural models, and plugins for importing other
models.

Recently, the first release of the HBP Neurorobotics
Platform (NRP) (American Association for the Advancement
of Science, 2016; Falotico et al., 2017) was presented, which
was developed within the EU Flagship Human Brain Project.
For the first time, it provides scientists with an integrated
toolchain to connect pre-defined and customized brain models
to detailed simulations of robot bodies and environments in
in-silico experiments. In particular, NRP consists of six key
components, which are essential to construct neurorobotics
experiments from scratch. It can be seen that the NRP
provides a complete framework for the coupled simulation of
robots and brain models. The Brain Simulator simulates the
brain by bio-inspired learning algorithms such as a spiking
neural network to control the robot in a silico neurorobotics
experiment. The World Simulator simulates the robots and
their interacting environment. The Brain Interface and Body
Integrator (BIBI) builds a communication channel between
brain models and robot models. The Closed Loop Engine
(CLE) is responsible for the control logic of experiments
as well as for the data communication between different
components. The Backend receives requests from the frontend
for the neurorobotics experiment and distributes them to the
corresponding component, mainly via ROS. The Frontend is a
web-based user interface for neurorobotics experiments. Users
are able to design a new experiment or edit existing template
experiments.

7. OPEN RESEARCH TOPICS

In the previous sections, the state-of-the-art of SNN-based
control for various robots has been surveyed in terms of
learning methods. Although an increasing amount of work has
been done to explore the theoretical foundations and practical
implementations of SNNs for robotics control, many related
topics need to be investigated, especially in the following areas.

7.1. Biological Mechanism
Despite the extensive exploration of the functions and structure
of the brain, the exact mechanisms of learning in biological
neurons remain unknown. Some of those related to robotics
applications are listed as: (1) How is diverse information coded in
many neural activities other than the rates and timing of spikes?
(2) How are memories distinguished, stored, and retrieved in
such an efficient and precise manner? (3) How do brains simulate
the future, since it involves the concept of “previous steps,” thus
requiring some form of memory? As long as we can constantly
address these unsolved mysteries of the brain, the robots of the
future definitely can achieve more advanced intelligence.

7.2. Designing and Training SNNs
None of the currently suggested algorithms are general-purpose
able, at least in principle, to learn an arbitrary task in the way
that backpropagation (through time) and its variants (with all
their limitations) do for rate neurons (Grüning and Bohte, 2014).
Therefore, there is no general design framework that could offer
the functionalities of modeling and training, as well as those
substantial tools for the conventional ANNs do, for instance,
Tensorflow (Allaire et al., 2016), Theano (Theano Development
Team, 2016), and Torch (Collobert et al., 2011). The nature of
this situation is that training these kind of networks is notoriously
difficult, especially when it comes to deep-network architectures.
Since error backpropagation mechanisms commonly used in
ANNs cannot be directly transferred to SNNs due to non-
differentiabilities at spike times, there has been a void of practical
learning methods.

Moreover, training should strengthen the combination with
the burgeoning technologies of reinforcement learning, for
instance, extending SNN into deep architecture or generating
continuous action space (Lillicrap et al., 2015). In the future,
combining the R-STDP with a reward-prediction model could
lead to an algorithm that is actually capable of solving sequential
decision tasks such as MDPs as well.

7.3. High Performance Computing With
Neuromorphic Devices
Another important general issue that needs extensive research
and is not clearly defined is how to integrate SNN-based
controllers into neuromorphic devices, since they have the
potential to offer fundamental improvements in computational
capabilities such as speed and lower power consumption (Hang
et al., 2003; Schuller and Stevens, 2015). These are of
vital importance for robot applications, especially in mobile
applications where real-time responses are important and energy
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TABLE 3 | Taxonomy of platforms for robotics control based on SNN.

Platform Name Methodology Reference

Platform

Neurorobotics

Platform

Design, import, and simulate different robot bodies and diverse brain models in

rich environments

Falotico et al., 2017

Musculoskeletal

Robots

Combining Myorobotics with SpiNNaker the proof of principle of a system that

can scale to dozens of neurally controlled, physically compliant joints.

Richter et al., 2016

Retina simulation The retina simulation platform is integrated in the NRP. Ambrosano et al., 2016

Neural self-driving

vehicle simulation

framework

A visual encoder from camera images to spikes inspired by the silicon retina, and

a steering-wheel decoder based on an agonist antagonist muscle model.

Kaiser et al., 2016

iSpike Interface between SNN simulators and the iCub humanoid robot Gamez et al., 2012

AnimatLab Provide functions, such as robot modeling, two neural models, and plugins for

importing other models.

Cofer et al., 2010

supply is limited. An overview of how to program SNNs based on
neuromorphic chips can be found (Walter et al., 2015b).

SNNs computation can highly benefit from parallel
computing, substantially more so than conventional ANNs.
Unlike a traditional neuron in rate coding, a spiking
neuron does not need to receive weight values from each
presynaptic neuron at each compution step. Since at each
time step only a few neurons are active in an SNN, the
classic bottleneck of message passing is removed. Moreover,
computing the updated state of membrane potential is
more complex than computing a weighted sum. Therefore
communication time and computation cost are much more
well-balanced in SNN parallel implementation as compared to
conventional ANNs.

7.4. Interdisciplinary Research of
Neuroscience and Robotics
Another barrier that needs to be removed comes from a
dilemma for the researchers of neuroscience and robotics:
Roboticists often use a simplified brain model in a virtual
robot to make a real-time simulation, while neuro-scientists
develop detailed brain models that are not possible to be
embedded into the real world due to their high complexity.
Learning complex sensorimotor mapping of the robot generated
in the interaction with dynamic and rich sensory environment
is also required (Hwu et al., 2017). An ongoing solution is
the Neurorobotics Platform, which offers adequate tools
to model virtual robots, high-fidelity environments, and
complex neural network models for both neuroscientists and
roboticists.

8. CONCLUSION

By mimicking the underlying mechanisms of the brain much
more realistically, spiking neural networks have showed
great potential for achieving advanced robotic intelligence
in terms of speed, energy efficiency, and computation
capabilities. Therefore in this article, we seek to offer readers
a comprehensive review of the literature about solving robotic
control tasks based on SNNs as well as the related modeling

and training approaches, and meanwhile offer inspiration to
researchers. Specifically, we retrospect the biological evidences
of SNNs and their major impetuses for being adopted for
the area of robotics at the beginning. Then, we present
the mainstream modeling approaches for designing SNNs
in terms of neuron, synapse, and network. The learning
solutions of SNNs are generally classified into two types
based on Hebbian rule and reinforcement learning, illustrated
and expounded with exhaustive robotic-related examples
and summary tables. Finally, some popular interfaces or
platforms for simulating SNNs for robotics are preliminarily
investigated.

As indicated in the open topics, the biggest challenge for
control tasks based on SNNs is a lack of a universal training
method, as back-propagation is to the conventional ANNs.
Therefore, more knowledge and interactions from the fields of
neuroscience and robotics are needed to explore this area in the
future.
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