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Context Prediction Architectures in Next Generation of Intelligent Cars

Sina Shafaei1, Fabian Müller2, Tim Salzmann3, Morteza Hashemi Farzaneh4, Stefan Kugele5 and Alois Knoll6

Abstract— The growing number of intelligent components
inside a car leads to a considerable increase in amount of
the produced data. Context aware paradigm plays a major
role in managing this data and offering a numerous number
of prospects and advantages for existing and new intelligent
applications inside the car. Following that, enabling context
prediction promises reliable solutions in terms of enhancing
the comfort of the occupants and vehicle dynamics. Moreover,
this would be a great step toward facilitating highly automated
and autonomous driving. However, due to the complex nature
of the data resources in an intelligent car and also the lack
of comprehensive studies on different aspects of this concept
in automotive, defining a functional architecture for context
prediction requires broad knowledge and better understanding
of multiple domains which are involved and have impacts. In
this paper, we investigate the most effective elements and factors
in each one of the related domains which help to enable context
prediction architectures inside the intelligent cars and analyze
the feasible dimensions in detail, cover their advantages, and
address the challenges ahead. We elucidate the possibility and
validity of our considerations with the help of two use cases of
adaptive HVAC and ACC systems.

I. INTRODUCTION

The biggest benefit of context-aware applications becomes
visible in mobile sensor-rich devices. Smartphones and wear-
ables became extremely adaptive to the environment they
are used in and are therefore improving the interaction
with the user. However, the set of sensors and the desired
functionality of such devices is limited and well defined.
A car by definition, is a mobile device, too. Compared to
smartphones it is equipped with an even richer set of sensors
and aims to fulfill many kinds of functionality including
highly complex functions. Dey et al. defines the “context”
as “Any information that can be used to characterize the
situation of an entity” [1]. Due to the high amount of sensory
data, it is not straight forward to define which sensor input
should form the context. There are already some approaches
on bringing the context-awareness in automotive software
architecture. The context data can be stored on a central
server [2] or on a layered architecture which relies on
services offered by a context provider [3].
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Modern context-aware applications, in addition to using
context to improve the user experience, also predict the future
context. This empowers a huge number of new applications
and use cases. Furthermore, as the future context for a
functionality is predicted, the application can anticipate by
adjusting how it interacts with the user or automatically
remodels its functionality. In an automotive context-aware
and context prediction architecture this enables a wide range
of new driver comfort features and extended driving function-
ality. For example the seat and in-cabin temperature could
be adjusted before the driver even enters the car. Moreover, a
context-aware architecture can considerably increase energy
efficiency of the systems [4]. By enabling the context predic-
tion in car architectures, this could even be improved further
which is a great advantage in modern electric vehicles with
limited energy capacity. However, research in automotive
domain regarding the integration of context prediction archi-
tectures has only recently begun. To be able to make progress
in this domain it is important to understand and address
the challenges and effective parameters first, therefore we
consider two leading use cases in an intelligent car in the
following for this purpose.

A. Heating, Ventilation and Air Conditioning (HVAC) System

HVAC is a set of functions to fulfill the aim of improving
the comfort of the driver and passengers inside the cabin.
While every modern car provides some kind of HVAC
system, their context-awareness is very limited at the moment
and do not employ context prediction. Much of the function-
ality of an HVAC system is very straight forward and results
in simple actions taken by the system, therefore, HVAC is
one of the simple, yet promising start points to bring context-
awareness and demonstrate the possibility of enabling con-
text prediction inside the car. Our leading example for an
HVAC system is the comfort functionality where the inner
space temperature of the car is automatically adjusted to
ensure the welfare of the occupants. The effectiveness of this
service can be detected by the emotion recognition systems
which are exclusively designed to monitor the emotional
status of the driver and passengers.

B. Adaptive Cruise Control (ACC) System

ACC describes a function for semi and highly automated
driving. It enables the car to automatically stay on a lane with
a preset velocity or follow a car on the lane if it goes slower
than the preset velocity. In contrast to HVAC it only provides
a single function to the user. The underlying functionalities
feeds ACC and the output, desired trajectory, is genuinely
more complex than the output of HVAC functions. The



leading functionality of ACC we consider here is the lane
detection which is an important sub-function of ACC to keep
the car on the lane.

We start with an intuitive definition for context prediction
in automotive in Section II. In Section III this paradigm
is examined from the software engineering perspective. We
further evaluate prediction dimensions, methods and their
dependencies in Section IV. The impact of cloud-based
services beside the Car-to-X concept on context prediction
structures is analyzed further in V. Section VI, respectively
covers the related considerations in current architectures of
automotive software for runtime environments. In Section
VII we cover the concerns and address the challenges on
ensuring the safe manner of intelligent components that are
employing prediction methods. In the last Section VIII we go
through the communication infrastructure and considerations
which are necessary to be taken into account and discuss
upon the state-of-the-art developments in this domain on the
way of satisfying the newly raised requirements.

II. CONTEXT PREDICTION

The ambiguity of the term “context prediction” itself,
in this domain is the first thing which needs to be ad-
dressed. For context-awareness we stick to the definition of
Dey et al. as “A system is context-aware if it uses context
to provide relevant information and/or services to the user,
where relevancy depends on the user’s task” [1]. For general
applications we define context prediction as the process of
inferring future context information from past and current
context. As modern cars have a steadily increasing amount
of sensors and other information sources (see Section V) it is
not always easy to define which part of the overall available
information describes the context of the desired functionality.
In ACC, it is hard for a human to define the context features
beforehand. Relevant information might not be included as it
does not seem relevant for the developer. Therefore, another
application of prediction methods is predicting the relevant
features (the context) from the overall available information
for a function. For the field of automotive software architec-
ture, we redefine the term “context prediction” by splitting
it to:

• Context feature prediction
• Context time-series prediction

and use to differentiate between them and to explain the chal-
lenges using each methodology individually or connected
in an automotive software architecture. As the concept of
context-aware computing and context prediction has a large
influence on all components within automotive software
structure, the main task is to define an architecture where
the individual components can interact together effectively.
Starting from traditional automotive software architectures,
existing components could be merged or removed and new
components might need to be considered. Also introducing
context-awareness and prediction together in a certain way
into a component of the architecture may affect how these
concepts have impact on other components. The main goals
here are first, understanding the possibilities and challenges

for the introduction of context prediction into individual
components and then investigating the effects of a component
which employs context prediction on all other components.
The context processing can either happen on application
layer with integration of the new components which provide
intelligent services or be applied on runtime environment and
possibly forwards the result toward the applications.

III. SOFTWARE ENGINEERING

Defining Context, Storing and Sharing Context, Robust-
ness, and User Experience are among the most important
challenges of context-aware computation which are depicted
by Dey et al. [1] and Winograd [5], and can be categorized
under the context prediction challenges as well. Most of them
have already been solved for mobile context-aware applica-
tions. However, bringing context-awareness and prediction to
an automotive environment reopens all again.

Depending on which dimensions of context prediction
are used and which way of introducing context processing
into the architecture is selected (Section II), the structure
of the software for functions and systems inside the car
must adapt substantially compared to traditional automo-
tive software development. This is necessary in order to
maintain the performance while satisfying the requirements
for the software systems in cars, like the specific context
for operation of the systems [6]. The simplest approach
is only using context time-series prediction with a fixed
prediction horizon. Here the software functionality have a
fixed input feature set with fixed prediction steps. Therefore,
traditional software patterns perform well. However, as soon
as the input is determined dynamically (e.g. online context
feature prediction) the software can become very complex
and quickly reach the limits of traditional rule-based software
patterns.

Most of the context prediction applications today, have
software which is strictly rule based, programmed specif-
ically for a single application. This works well for non-
complex functionality and fixed input dimensions. However,
if the functionality itself is of such complexity that it cannot
be programmed rule-based, machine learning could be used
to infer an output (or action) of the function given its current
(including past and future) context. We call this context
output or action inference interchangeably. In special cases
this can be seen as another context prediction dimension. For
instance, when the context is used to predict what the desired
action of the driver/passenger will be. Therefore, it is re-
quired to investigate generally applicable softwares or model-
based patterns which can be used dynamically for varying
input dimensions and any complex functionality. Traditional
software engineering in automotive will considerably change
with integration of context prediction due to the increasing
number of the new technologies which are meant to bring
intelligence into the cars (respectively the advancements in
hardware) while these changes must still maintain and fulfill
the concerns w.r.t. requirements engineering, compatibility
and software integration [6]. Functionality will be produced



by models instead of rule based software. Our concern there-
fore, is to bring existing software architectures and machine
learning together and investigate models (like reinforcement
learning) which can be universally used merely by adjusting
the model parameters. This enlightens the importance of the
concerns we describe here along with the ones represented
in Section IV.

Another key challenge for enabling the context-awareness
and prediction, is the software and system integration. In the
automotive industry this is done using the Autosar (Automo-
tive Open System Architecture) as a runtime environment.
Although the Autosar provides a powerful architecture to
develop automotive software components independent from
specific base-hardware and operating system [7] but the lack
of enough flexibility in its coding guidelines leaves open
challenges regarding the probabilistic models. Therefore, it
is important to focus on how next generation of context-
aware softwares can be designed so it can be integrated into
embedded hardware and employ the new technologies like
service-oriented computing in automotive software architec-
ture [8] to preserve not only the independency from hardware
or operating system but also supporting the capabilities
for run-time adaptations. Alternatively different possibilities
of runtime environments need to be evaluated for their
capabilities and enforcement in software which we cover in
Section VI.

IV. PREDICTION AND INFERENCE METHODS

There are widely used methods for prediction and in-
ference in different domains of research related to con-
text prediction. A thorough comparison of them is repre-
sented in [9]. The sequence prediction approach is one of
the quite researched ones in theoretical computer science.
D. Cook et al. [10] provides a comprehensive overview of
sequence prediction techniques with focus on smart homes.
Another approach is based on Markov chains which are
formal models and some projects applied them to address
context prediction problems like [11] in which the au-
thors addressed an active device resolution problem or the
work presented at [12] where the authors used discrete
time Markov chains to predict the driving route. Dynamic
Bayesian Networks (DBN) is a generalization of Markov
models while avoiding some of the Markov model’s short-
comings which got used in numerous projects like the user
modeling and user goals inference at [13] and respectively
predicting the person’s indoor movement at [14] by repre-
senting the context as DBN where the current room depends
on several rooms visited previously. Here the duration of
staying depends on the current room, time of the day and
also, day of the week.

The neural networks in machine learning are gaining more
and more success in solving a variety of problems like pattern
association, recognition, and function approximation, hence
seem promising enough to be used in the context prediction
core of the architectures. One of the earliest works is [15]
where the authors described a smart house that predicts ex-
pected occupancy patterns in the house, estimates hot water

usage and the likelihood for a zone to be entered. Similar
use cases based on neural networks for context prediction
can be found in [16]–[18]. Nearly all of the aforementioned
prediction and inference methods, are employed for specific
use cases therefore, it is obvious that there is lack of a general
prediction method which performs well equally in all of the
use cases.

In order to select a method for the context prediction core
in future automotive architectures there are a set of concerns
which need to be taken into account. The knowledge infer-
ence factor must be identified beforehand since some of the
state-of-the-art prediction approaches, like neural networks,
do not consider the prior knowledge inference. Moreover, the
prediction core must provide a reliability estimation while
maintaining the readability for the developer in order to
have the option of validating the correctness and verifying
the safety (see Section VII) of the predicted context or
taken decisions. This indicates also the importance of the
observability factor w.r.t. being a white box or black box. In
most of the cases the information loss in the preprocessing
step is unavoidable, yet this loss shall not affect the important
relevant features in a way that the predicted context falls into
the undesired region. Besides all of this, the remaining con-
cern is the mutual dependency between the predicted context
and system actions which is still an unsolved issue. However,
the works on Markov Decision Processes (MDP) address this
issue. MDPs are a plausible and practically effective way
to predict the context in situations when Markov models
are applicable and control actions can significantly affect
prediction results. We also address a set of considerations
regarding the prediction core which we do believe are of
importance in next generation of intelligent cars due to the
complex nature of the generated data. These concerns are
categorized into Feature Prediction, Time-Series Prediction,
Output/Action Inference, and Online Learning which are
explained in details in the following.

A. Feature Prediction

The feature prediction for a function, focuses on find-
ing correlations between the feature subsets (the existing
information) and the output. If such correlation exists the
information is likely to be part of the function’s context. So
far this has not been a focus of context-aware architectures.
However, other fields of study have already started research
in this area. In marketing for example, finding correlations
in big data sets (e.g. buying habits) is of great interest. Here,
some tools like association rule learning or market basket
analysis aim to find correlations in data. Regarding this issue
an evaluation of the existing models from other fields and
checking the feasibility of integrating them into this domain
is beneficial. It’s worth mentioning that correlation does not
automatically deduces a causal connection.

B. Time-Series Prediction

For time-series prediction, research has already been
started in non-automotive context prediction architectures.
Sigg [19] and Rosa [20] both give overviews of different



machine learning models and the corresponding feasibility
and integration for context time-series prediction. For a gen-
eral model it is important to be able to set or automatically
vary the prediction horizon. For ACC use case, only the past
and next seconds are really important. Similarly in HVAC use
case it is of interest to predict the context for the next minutes
or even hours. A practical example is when the planned
navigation route is over a mountain pass. As the temperature
is expected to drop, the heating should be increased. For this
aim an inspection into the existing models that are used in
traditional prediction architectures and adapting or extending
them is necessary.

C. Output/Action Inference

Finding a relatively generic model which describes the
output/action inference within a context prediction-based
architecture in car is a challenging task. Therein multiple
factors play a role: first of all depending on the functionality,
the complexity of the output might be high. In our ACC use
case the output is a structure describing the lanes on the
road. The output is much more complex when there is more
than one single output value like it was in HVAC (e.g. desired
temperature). Also the input dimension might vary (dynamic
context features) and the data representation in those dimen-
sions can vary too (normalization, discrete/continuous, etc.).
Therefore, it is hard to find a supervised model which is
generic enough to serve all purposes. Using reinforcement
learning, however, enables a shift of complexity from the
model itself towards finding an action policy and a suitable
reward function. Here the model and learning algorithm are
the same for all use cases. Just the policy and reward function
needs to be defined for each use case separately and desirably
define them dynamically and online.

D. Online Learning

For a plug and play architecture it is mandatory to learn
the necessary context features online. If the context features
are learned online, the other context related parts have to
be highly adaptive and learn online as well since their input
dimensions are exposed to change. In this case, most of the
desired context-aware functionality has to be available in the
car at the very beginning of the use or at least be learned
very fast. Especially for the context output prediction it is
important to quickly learn the desired output. For the use
case of HVAC the algorithm has to acquire the knowledge
about the desired temperature of an individual after a short
period of time and quickly adapt to changes. Otherwise it is
not an enrichment and will not be accepted by the driver.
This is not feasible with pure online learning. Hence a
thorough research into possibilities to combine offline and
online information for the training of models is needed
like the work of Ye et al. [21] in representing an online
planning approach with regularization that got included in
an autonomous driving system for real-time control of the
vehicle which itself was originated by the proposals of
Gelly et al. [22] on “algorithms that combine the general

knowledge accumulated by an offline reinforcement learning
algorithm, with the local knowledge found online”.

E. End-to-End Learning

Having said that all context related components support
different aims, they also are highly dependent on each
other. If the context features are determined online, the
subsequent components must be adaptive. This raises the
question of whether independent models for each component
are reasonable. Working towards end-to-end learning could
be an alternative. Even a single model for all functionality
which receives all information as input and all expected
output/actions as output can be possible. For HVAC func-
tionality with its multiple actions of limited complexity this
is a reasonable approach to develop. In contrast, for the use
cases like ACC with a highly complex output and underlying
structures this does not seem to be a promising approach. On
the one hand, finding good models for end-to-end learning is
hard and often a matter of experience. On the other hand it
is still reasonable to use a reinforcement learning approach
to shift the focus to finding a good policy instead. An end-
to-end learning approach has the advantage that interfaces
between components are dynamic by definition.

V. CLOUD SERVICES AND CAR-TO-X

Concepts of cloud-based services and Car-to-X (c2x)
information sharing, are now growing fast in automotive
domain. These bring many opportunities to context-aware
and context prediction-based applications. New context can
become available to cars without the cars having to sense
it themselves. This might be the exchange of trajectories
with other vehicles (Car-to-Car (c2c) communication) for the
functions involved in automated driving or information about
the current status of the environment around the vehicle, like
traffic lights. Using that information, a context prediction
structure can better understand and predict more accurately
due to the quickly changing environment. For the ACC lane
detection use case, c2c communication could bring great
improvement. If a car in front has a better set of sensors
then we could use the sensor data of that car to predict
the context and be generally context-aware of the lanes
in ego vehicle. Especially for prediction, using data from
cars which are ahead of us, can bring big performance
improvements. However, this requires the context features
to be predicted online. Main challenges here, come from the
communication itself. As Wagner et al. pointed out, ensuring
the compatibility interfaces for c2x is a major challenge
[23]. Despite these challenges the inclusion of cloud services
and c2x communication besides investigation on existing
communication approaches, which expand the sensory in-
formation of the car, can be used as context and to predict
the future context. However with all the benefits that cloud
services or c2c and c2x brings to the driving, there is a raising
concern on ensuring the security of the network. Avoiding
malicious data injection into the intelligent components by
an attacker especially on the services which rely on online
learning and detecting the safety violations by the provided



information (e.g. trajectories) either by the environment or
other vehicle are important.

VI. RUNTIME ENVIRONMENT

In a traditional automotive software architecture the run-
time environment is a middleware which connects software
components, functionality, and hardware. A middleware con-
trolling all functional components opens the possibility to
move context-awareness and context prediction into the run-
time environment and then provide the context to functional
components. This is already covered in mobile devices in a
way that the responsible middleware detects if the phone is
tilted, predicts if it will be in the near future and provides
this information to the relevant application like camera. Even
enforcement of context-awareness is possible. In the mobile
example, the middleware can adjust the resolution (e.g. from
720x1080 to 1080x720) to enforce the application to change
its displays according to the context. Paspallis et al. [24] uses
a middleware for collecting context accordingly.

Multiple projects have been developed to create a dynamic
runtime environment capable of the features needed to enable
context prediction. Sommer et al. [25] created a platform
called RACE which is capable of Plug & Play and works
greatly together with today’s concept of highly sensorised
cars and other communication concepts. Depending on which
sensors and which other software is installed in the car, soft-
ware component can change its behavior. For the HVAC use
case this means that if an additional sensor is installed (e.g.
facial fatigue detection or emotion recognition of passengers)
this new information is used by the functional software to
adjust the heating. We should also consider this fact that
enabling plug & play might require a standardization of
interfaces for the components of the architecture. We can
investigate this issue from two perspective of Sensor and
Function Monitoring

A. Sensor Monitoring

One possible functionality besides the plain communica-
tion between components could be detection of sensor fail-
ures which, nowadays, is done in a fail-silent manner. In this
case, the function gets stopped and the driver gets informed
over a display and then respectively an error memory entry
is set up. If the context and more data sources are added dy-
namically via Car-to-X or cloud services this becomes more
complex. While the challenges are substantial this brings
huge advantages, too. For example a detected failure of the
front radar of the ego vehicle could result in the runtime envi-
ronment replacing the relevant context of that sensor with the
sensory data provided by the preceding vehicle. As sensors
are not reliable w.r.t. being entirely fail-safe, the faulty or
missing data automatically gets replaced by a different data
source like the work represented at König et al. [26] which
made first steps including such assumptions into context
prediction. Alternatively if the runtime environment detects
a sensor which is disturbed but still delivers context, it is
challenging to filter the errors because all the sensors in
that case need to be checked regularly. In Highly Automated

Driving (HAD) this is categorized under the quality issues.
For example, the performance loss of the cameras has to be
detected regularly in case of situations like muddy camera.
The quality of data and therefore the quality of the context,
besides the correctness, is highly decisive towards the success
of a context prediction automotive architecture. Therefore,
behavior of the middleware which can evaluate and improve
the current status of sensors and their delivered data can be
a potential interest for the future researches. This also have
some impacts on improving the general safety aspects which
got discussed in Section VII.

B. Function Monitoring

Similar to sensor monitoring, monitoring the correct func-
tionality of the components by runtime environment is a
desired feature. Especially with complex functionality com-
ponents, using probabilistic models, a check if output is still
generated by the component as well as a plausibility check
on the output, improves the stability of the system. A study
which was discussed by Buckl et al. [27] proposes changes
in context prediction architectures to open the possibility of
testing single functions for failures and errors. Thereby the
architecture must be the least complex possible even with an
increasing number of components.

VII. SAFETY

In a domain-agnostic model, Varshney et al. [28] defines
safety as the minimization of risk and uncertainty. In other
words, it is the absence of failures and dangerous situations.
From this perspective, safety is an essential consideration
when it comes to an automotive software architecture.

Currently the functional safety concerns of automotive
software are addressed by the ISO 26262 [29], which is an
international standard established with the aim of ensuring
that all components have been designed and developed with
rigor to ensure safety by minimizing random and systematic
failures. However, when it comes to knowledge inference and
machine learning-based solutions in context prediction, the
traditional verification and validation methods do not perform
very well. Software methodologies and tools to establish
safety assurance in safety-critical systems (e.g. [30]) have
been around for a long time, and in fact represent quite
a mature field. The trouble, however, is that these have
been developed for traditional software systems, i.e. the ones
which have been explicitly programmed to work in a certain
way, with clearly defined requirements.

If we take the case of neural networks as one of the
promising approaches for context prediction (see Section IV),
the main challenges from the perspective of safety can be
enumerated as black box structure, implicit specification, and
lack of acceptable coverage-based testing [31].

Splitting the data into train, validation, and test data is
one of the methods that we are very familiar with even to
date, and one that is extensively used to ensure the developed
adaptive system works well for a given set of inputs. This
method helps to verify the functioning of neural network,
but is not usually extensive enough to be considered as



a guaranteed approach in ensuring the safety in context-
based high-critical systems [32]. One of the main reasons
for lack of trust in the train-validation-test split method,
is that one is only left with a small set (normally around
20%) of the samples to test against, wherein the chances
are that cases of high interest or an unpredicted context
might not even be tested. A suitable way to overcome this
problem, is to use test data generation tools that can generate
synthetic data points which can be used for testing the
trained neural networks. This approach was found to aid
the verification procedure for neural networks according to
their correct behavior by unveiling missing knowledge a.k.a
context, in fixed neural networks and increasing confidence
in the working of adaptive neural networks [32].

Rule extraction algorithms can, thus, be used to model
the knowledge that a neural network has acquired during the
training phase. These rules can be generated in a conjunctive
or subset selection form. The rules extracted thereby can
either be manually verified owing to the human readable
format, or can be automated with a model checker. This
method can be helpful to establish trust in the system, as
it augments the explainability of the system. It also aids
traceability of the requirements, as one can verify if the
rules depict functional requirements specified for the system.
They can also help examining the various functional modes
of the system, and to ensure that safe operation mode is
induced by certain inputs. Though this method brings along
a lot of advantages, it can be a good solution for offline
learning systems, where in the verification and validation,
system designer can extract rules from the network after
training is complete. As it was described in Section IV, the
online feature learning is a must for plug & play architectures
and in that case, it becomes an added overhead for the
system since the rules need to be extracted after every
iteration to ensure that it is learning as expected. This can be
expensive in terms of computation and time. However, there
are solutions like online monitoring which is a technique
that uses multiple monitors working together as an oracle
to provide information about the functioning of the neural
network in order to aid stability and convergence analysis
[33]. The goal here is to ensure that the adaptation dynamics
does not cause the network to diverge, triggering behavior
unpredictably. Data sniffing [34] is an example based on
the foregoing technique, which studies the data entering
and exiting a neural network. If a certain input could pose
negative results, then the monitors generate an alert and could
even possibly flag down the data, thereby not allowing it to
enter the system. This method is extremely useful in cases
where outliers could degrade the functioning of the system.

The RACE project [25] uses a centralized platform com-
puter to achieve a safety-critical execution environment with
interfaces for verifying and testing the components. An
alternative is to implement a separate controlling instance.
The ACC is context-aware and context prediction-enabled
and uses a probabilistic model to determine its actions which
needs to be approved by a formally verifiable component.
Only if the action is approved by the controlling instance

then it is executed. Thereby the advantages of context
prediction are combined with the formally verified safety of
the controlling instance.

VIII. COMMUNICATION

The newly generated data and the formed context, follow-
ing the Increase in number of applications in an intelligent
car, arises challenging requirements in the lowest level of the
context prediction architectures for in-vehicle communica-
tion systems. For instance, it has to provide mixed-criticality
to support different data traffic priorities, including traffic
with hard real-time requirements. Such a communication
system is supposed to provide higher bandwidth (e.g. re-
quired for best-effort video data transmission > 1GB/s)
and timing guarantees to fulfill safety-related requirements
(e.g. deterministic minimum latency and jitter, reliability, and
fail-operational). Considering the mentioned requirements,
Institute of Electrical and Electronics Engineers (IEEE) de-
cided to extend Ethernet standards to develop real-time Audio
Video Bridging (AVB) [35] technologies. These standards
are significant for automotive and automation application
domains. AVB working group defines a set of standards to
provide timing and synchronization guaranties. Its objective
is to guarantee a worst-case latency of 2ms for critical
and real-time traffic class A and worst-case latency 50ms
for traffic Class B over maximum of seven hops. To con-
trol the latency values, Credit-Based Shaper (CBS), Stream
Reservation Protocol (SRP) and timing and synchronization
have been specified in IEEE 802.1Qav, IEEE 802.1Qat, and
IEEE 802.1AS. Using the CBS mechanism, network bursts
(transmission of multiple frames directly behind each other)
are managed to fulfill timing requirements.

AVB standards have been further extended to reduce the
worst-case latency and jitter down to microsecond range and
to support redundancy mechanisms. These additional features
are significant for safety-relevant applications such as fail-
operational. The Time-Sensitive Networking (TSN) [36] task
group deals with developing the required standards towards
a unified hard real-time Ethernet technology.

Considering the new standards, IEEE 802.1 Qbv Time-
Aware Shaper (TAS) defines a time-triggered mechanism
to use gate drivers to prioritize data forwarding of the
switch ports. Hence, experienced latency of high-priority
and critical Ethernet frames in a switch is minimized. This
requires reservation of enough bandwidth for such critical
context using IEEE 802.1Qca Path Control and Reservation
and IEEE 802.1Qcc Stream Reservation Protocol (SRP)
enhancements and performance improvements. It is also
important to support a frame preemption mechanism (IEEE
802.1Qbu) to interrupt low-priority frame transmission to
the advantage of high-priority frames. Precise gate timing
requires clock synchronization which is supported by IEEE
802.1AS-Revision standard (Timing and Synchronization for
Time-Sensitive Applications in Bridged Local Area Net-
works). TSN proposes IEEE 802.1CB Frame Replication
and Elimination standard to support seamless redundancy
for application which are supposed to be fail-operational.



Despite all advantages of TSN which makes it a suitable
candidate for the future context prediction architectures, there
are some challenges which have to be considered towards a
successful integration. Theses are among others, security at
MAC layer and high network configuration and verification
overhead. From the perspective of prediction core of the ar-
chitectures which are based on machine learning approaches
(like the ones explained in Section IV), the correctness of
the learned context is highly critical. However, there are no
available solutions for security and anomaly detection in TSN
networks at the moment. This is a significant motivation to
follow the standardization activities in IEEE 802.1Qci and to
develop security solutions and introduce them to this working
group. Now, there are no competing solutions, which deal
with the TSN hardware components. However, this will
change in the next couple of years, when these components
are stabilized in automation and automotive domains. One of
the main challenges of Ethernet (MAC layer) is that security
aspects have never been a significant consideration in its
design. Its architecture focuses more on low-cost and easily
deployable Local Area Networks (LAN). This challenge gets
even bigger by considering TSN (which also acts at MAC
layer) in safety-critical domains and applications like acc.

Supporting plug & play features in TSN networks is a
further challenge which requires tools supporting model-
ing [37], [38] and automated schedule synthesis [39]. The
existing tools consider only the timing aspects but not the
reliability features or the impact of wireless communication
on the network performance and safety. Especially, current
activities in the working group IEEE 802.1CM w.r.t. 5G
development, are highly relevant for network management
when this comes to the cloud-based solutions and integration
of Car-to-X concepts as it was mentioned in Section V.

IX. CONCLUSION

In this work we expressed the impact of context prediction
in cars which implies many opportunities for improvement
in the functions not only in the current car architectures but
more importantly in the next generation of intelligent cars
on the way of reaching to full autonomy. As we pointed
out throughout this work, understanding different aspects
of the involved domains, beside addressing their challenges
is a crucial matter in defining an efficiently functioning
architecture for context prediction in order to improve the
different aspects of automotive mobility.

Although, there are multiple dimensions in which context-
awareness and context prediction architectures could be
defined and become operational, we only focused on comfort
and Intelligence with a simple comfort function (HVAC)
and a relatively complex intelligent one (ACC), and with
the help of those two, we did demonstrate the advantages
and applicability of deploying such structures. We adapted
the definition of context prediction to fit better into the
automotive domain and did investigate the main concerns
on the way of developing context prediction architectures
from the perspective of software engineering by addressing
the challenges that traditional methods face and presented

possible solutions for them. We covered the promising ap-
proaches of prediction and inference methods, considering
the advancements in domain of machine learning beside
the challenges that are of importance w.r.t. safety of such
systems. Cloud-based services & car-to-x integration by
recent developments in the domain of 5G and cloud tech-
nologies into the car structure was examined beside their
effects and requirements on context-awareness and context
prediction paradigm. Current status and the future vision
of the runtime environments in software architecture of
the cars was investigated from two perspective of sensor
and function monitoring and at the end, we proposed the
most suitable approaches and listed the challenges in car
communication infrastructure in order to satisfy the newly
raised requirements. Having said all these points, we believe
that enabling context prediction architectures for the next
generation of intelligent cars, is a necessary and indeed a
beneficial prerequisite to improve performance and increase
the acceptance of highly automated cars.
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