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Abstract

Predicting the risk of complex diseases is a field of growing relevance in medicine and
shows high potential of refinement and improvement by integrating new data types and
larger data sets. But it also creates new challenges.
In this thesis, we investigate and overcome issues on four of these challenges: (i) com-
plex missing data structures where state-of-the art methods are not applicable, (ii) sample
selection bias occurring when data was not taken at random from a population, (iii) high-
dimensional data, when numbers of variables are tens of thousands to millions and thus
much higher than numbers of observations, and (iv) multi-omics data describing data con-
sisting of several groups of variables which are of different types and of different dimensions
and each of these groups should be integrated appropriately.
First, we look at (i) and especially at (ii) by investigating how to correct arbitrary sta-
tistical and machine learning models for sample selection bias resulting from a special
study design. We develop two novel correction approaches and compare these with, partly
extended, state-of-the-art correction methods in theory, in a simulation study, and on real
data. One of our proposed approaches outperforms all others in the case of the random
forest classifier and performs at least as well as other correction methods for other classi-
fiers. We provide the implemented methods in terms of a publicly available Software.
Second, we address (ii), especially (iii), and (iv); data from a big European study which
contain farm-related environmental and genome-wide genetic variables are analyzed with
the goal of predicting the risk of childhood asthma. Modern statistical learning approaches
are applied for handling high-dimensional data and incorporating multi-omics structure
appropriately. For the learning procedure we take into account sample selection bias which
is present in the data and propose methodology allowing for correcting the precision of
estimates for performance and comparing performances of two classifiers correctly. We
identify family history of childhood asthma as most predictive variable and by external
validation find only moderate prediction power which, however, is higher when only farm-
children are used for analyses.
Eventually, we deal with a project for (iii) and in particular the combination of (i) and
(iv) where the goal is to distinguish between allergic asthmatics, non-allergic asthmatics
and healthy controls by again using environmental and (a selection of) genetic variables
but in addition diverse immunological variables. Here, seven types of data are present in
the frame of a complex missing data structure. We employ statistical and machine learn-
ing classifiers for predicting the disease. Incorporating these in a novel modeling strategy
allows to use all information in the data rather than leaving out certain values as classical
naive strategies would do. Applying several strategies taking into account different scales
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and granularities in the data yields good performance and precision of performance is
increased when the proposed strategy is applied. We identify novel predictive variables
from the immunological data sets, especially three genes which have not been associated
with childhood asthma in literature before.
Altogether we show how prediction for diseases can be improved by utilizing statistical
methodology for taking into account bias, complexity and bigness of data.
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Zusammenfassung

Die Prädiktion des Risikos komplexer Krankheiten in der Medizin gewinnt an Relevanz
und birgt hohes Potential der Verfeinerung und Verbesserung, indem neue Datentypen
sowie größere Datensätze integriert werden. Ebenso bringt sie jedoch neue Herausforde-
rungen mit sich.
In dieser Arbeit untersuchen und lösen wir Aspekte zu vier dieser Herausforderungen:
(i) komplexe Datenstrukturen aufgrund fehlender Werte, bei welchen herkömmliche Me-
thoden nicht anwendbar sind, (ii) Sample-Selection-Bias (Selektionsverzerrung), welcher
auftritt, wenn Daten nicht zufällig von einer Grundgesamtheit gezogen wurden, (iii) hoch-
dimensionale Daten, wenn die Anzahl von Variablen in der Größenordnung von Zehntau-
senden bis Millionen liegt und damit wesentlich größer als die Anzahl von Beobachtungen
ist, sowie (iv) den Fall von Multi-Omics-Daten, bei welchem Daten aus Gruppen von Va-
riablen unterschiedlicher Typen sowie unterschiedlicher Dimensionen bestehen und jede
dieser Gruppen angemessen einbezogen werden soll.
Zunächst betrachten wir (i) und besonders (ii), indem wir untersuchen, wie beliebige sta-
tistische bzw. maschinelle Lernmethoden für Sample-Selection-Bias korrigiert werden kön-
nen, wenn dieser durch ein spezielles Studiendesign hervorgerufen wurde. Wir entwickeln
zwei neue Korrekturmethoden und vergleichen diese mit, zum Teil erweiterten, klassischen
Korrekturmethoden in der Theorie, in einer Simulationsstudie und auf echten Daten. Ei-
ne unserer entwickelten Methoden übertrifft alle anderen im Falle des Random-Forest-
Klassifikators und zeigt bei anderen Klassifikationsmodellen eine mindestens ebenso große
Güte wie andere Korrekturmethoden. Die implementierten Methoden stellen wir in Form
von öffentlich zugänglicher Software zur Verfügung.
Im Weiteren addressieren wir (ii), besonders (iii), sowie (iv); Daten einer großen euro-
päischen Studie, welche bauernhofbezogene Umwelt- sowie genomweite Genetikvariablen
enthält, werden analysiert. Das Ziel ist es hierbei, das Risiko von Asthma im Kindheits-
alter vorherzusagen. Hierzu werden moderne statistische Lernmethoden, welche hoch-
dimensionale Daten handhaben und Multi-Omics-Strukturen einbinden können, einge-
setzt. Innerhalb der Lernprozedur beziehen wir den in den Daten vorliegenden Sample-
Selection-Bias ein und schlagen eine Methodik vor, welche es erlaubt, die Präzision von
Schätzern für die Prädiktionsgüte zu korrigieren sowie das Verhalten zweier Klassifikatoren
korrekt zu vergleichen. Wir identifizieren Familienanamnese von Asthma im Kindheitsalter
als prädiktivste Variable und finden bei externer Validierung nur mäßige Vorhersagekraft,
welche sich allerdings verbessert, wenn Analysen nur auf Bauernhofkindern durchgeführt
werden.
Zu (iii) und insbesondere zu (i) und (iv) kombiniert behandeln wir schließlich ein Projekt,
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dessen Ziel es ist, zwischen allergischen Asthmatikern, nicht-allergischen Asthmatikern
und gesunden Kontrollen zu unterscheiden, erneut unter Nutzung von Umwelt- und (einer
Auswahl von) Genetikvariablen, jedoch zusätzlich von immunologischen Variablen. Hier-
bei liegen sieben Datentypen im Rahmen einer komplexen Struktur fehlender Daten vor.
Integriert in eine neuartige Modellierungsstrategie setzten wir Klassifikatoren aus dem sta-
tistischen bzw. maschinellem Lernen ein, um die Krankheit vorherzusagen. Diese erlaubt
es, sämtliche Information in den Daten zu nutzen anstatt gewisse Datenwerte auszulassen,
wie es bei naiveren Strategien der Fall wäre. Die Anwendung verschiedener Strategien,
welche die unterschiedlichen Skalen und Granularitäten in den Daten einbeziehen, führt
zu gutem Prädiktionsverhalten und einer erhöhten Präzision der Schätzer für die Prädik-
tionsgüte, wenn die vorgeschlagene Strategie eingesetzt wird. Wir identifizieren prädiktive
Variablen aus den immunologischen Datensätzen, insbesondere drei Gene, welche in der
Literatur bisher nicht mit Asthma im Kindheitsalter in Verbindung gebracht worden sind.
Insgesamt zeigen wir, wie die Prädiktion von Krankheiten mithilfe des Einsatzes von sta-
tistischer Methodik, welche Verzerrung, Komplexität und Größe der Daten berücksichtigt,
verbessert werden kann.



Contents

1 Introduction 1

1.1 Predicting disease risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Childhood asthma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Challenges in disease risk estimation . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Contributing manuscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methodological background 11

2.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Imputation of missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Types of missing data . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Single imputation techniques . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Multiple imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Statistical and machine learning models . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Multinomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Penalized regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 19



xii CONTENTS

2.3.4 Integrative L1-penalized regression with penalty factors based on
multi-omics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.5 Classification trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.6 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.7 Gradient boosting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.8 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Validating prediction models . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Measuring performance . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Independent validation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Correcting classifiers for sample selection bias in two-phase case-control
studies 31

3.1 Sample selection bias and stratified random sampling . . . . . . . . . . . . . 35

3.1.1 Sample selection bias — defintion . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Two-phase case-control studies . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Stratified random samples . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 State of the art correction approaches . . . . . . . . . . . . . . . . . 39

3.2.2 Correcting covariance structures . . . . . . . . . . . . . . . . . . . . 41

3.2.3 Properties of correction approaches . . . . . . . . . . . . . . . . . . . 45

3.2.4 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Real data application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



CONTENTS xiii

3.4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6 Additional Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Encountering big data: predicting childhood asthma risk by genetic and
environmental variables 67

4.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Population and questionnaires . . . . . . . . . . . . . . . . . . . . . 68

4.1.2 Genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Computational and statistical analysis . . . . . . . . . . . . . . . . . . . . . 71

4.3 Correcting and comparing losses for sample bias . . . . . . . . . . . . . . . 75

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Tackling multi-omics missingness patterns: classifying childhood asthma
phenotypes using genetics, environment and immunology 93

5.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Study population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.2 Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.3 Genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1.4 Microarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.5 RT-qPCR, flow cytometry and cytokines . . . . . . . . . . . . . . . . 96

5.2 Computational and statistical analysis . . . . . . . . . . . . . . . . . . . . . 96

5.3 A strategy for prediction on incomplete multi-omics data . . . . . . . . . . 102



xiv CONTENTS

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.1 Prediction modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Variable importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Summary and perspectives 115

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

A Supplementary Material 151

A.1 On correcting classifiers for sample selection bias . . . . . . . . . . . . . . . 151

A.1.1 Simulation scenarios with variables from different distribution fam-
ilies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A.1.2 Investigation of varying sample size and degree of imbalance . . . . . 152

A.1.3 Investigation of other bias types . . . . . . . . . . . . . . . . . . . . 155

A.2 On analyses on GABRIELA study . . . . . . . . . . . . . . . . . . . . . . . 157

A.2.1 P-value adjustment for variable importance . . . . . . . . . . . . . . 157

A.2.2 Variable importance genome-wide . . . . . . . . . . . . . . . . . . . 161

A.2.3 Tables on family history, environment and genetics . . . . . . . . . . 161

A.2.4 External validation for non-farm and farm children . . . . . . . . . . 164

A.2.5 Parametric inverse-probability bagging on GABRIELA . . . . . . . . 166

A.3 On analyses on CLARA study . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.3.1 Wider selection of important variables . . . . . . . . . . . . . . . . . 167



Chapter 1

Introduction

1.1 Predicting disease risk

Predicting complex diseases is an highly topical field in biomedicine. In medical practice
one hopes to improve disease risk management, that is diagnosis, treatment, and preven-
tion, on an individual level by using knowledge on all kinds of risk factors. By this, health
care on an individual level can be improved [73]. This goal is accompanied with the concept
of precision medicine which is “an emerging approach for disease treatment and prevention
that takes into account individual variability in genes, environment, and lifestyle for each
person” [11], thus a disease can be defined at a higher resolution, so that subgroups of
diseases can be targeted more accurately with new therapies [10]. As Figure 1.1 illustrates
the approach of precision medicine overcomes the traditional approach of assigning the
appropriate treatment for an individual. Predicting or classifying disease risks can be seen
as a first component of precision medicine (see Figure 1.1). Therefore, various types of
measurable possible influence factors are taken into account with the aim to build powerful
statistical models to predict whether or with which probability an individual will suffer
from a disease. Such factors can be demographical variables like age or place of domicile.
Environmental exposure is a further important category of influential factors for many
diseases [133, 156]. An often very predictive factor is the information on family members
having suffered from the disease [164]. As proven in literature [41], family history may
partly cover but surely not replace the predictiveness of another non-neglectable factor
which becomes more and more useful for risk prediction: genetics. Especially since the
sequence of the human genome has been completed in the beginning of the 21st century
— the sequence of the last chromosome was published in 2006 [68] — prediction of disease
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a) 

b) 

c) 

Figure 1.1: Scheme of the traditional medicine approach compared to precision medicine.
The latter consists of three key elements: a) classifying by risk which is the focus of this
thesis, b) surveillance for preclinical disease, and c) aligning an extended repertoire of
treatments with the individual’s molecular drivers of disease (adapted from Asher et al.
[9]).

risk or generally of complex phenotypic traits by genetics up to genome wide prediction
modeling has become a meaningful subject of biomedical research. Successful prediction
models by using data on single-nucleotide polymorphisms (SNPs), which are variations in
single nucleotides occuring at certain positions in the genome, have been built on type 1
diabetes, for instance [60, 184, 185].

In order to make an estimation of the risk of an individual, i.e. for which a future disease
status should be predicted, cohort study data is used where for each individual variables
are measured and the disease status is known. Classical statistical models and modern
machine learning models are then used to learn on this given data, that is these models
are fitted on the given data and can be applied on new data where the outcome has to be
predicted.
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Figure 1.2: (Unadjusted) prevalence rates (percentages) of ever asthma at age 4 years in
Europe by cohort. Values extracted from Uphoff et al. [172].

1.2 Childhood asthma

In this thesis childhood asthma will play a special role, as we will mostly focus our inves-
tigation of disease risk prediction on this case — within a collaboration with two groups
of clinicians at the Dr. von Hauner Children’s Hospital in Munich.

Asthma in the general context can be seen as a collection of diseases rather than one
specific disease which is a first point why prediction of asthma is difficult [40]. Therefore
in the applications of the thesis we will define asthma phenotypes in several ways (Chapter
4 and 5). According to Uphoff et al. [172], based on MeDALL cohorts in Europe, 4 year old
aged asthma prevalence ranges from 1.72% in a German study (LISAplus) up to 13.48%
in England (see also Figure 1.2 for prevalence rates in Europe). However, as childhood
asthma is not unambiguously defined and thus not diagnosed consistently the prevalence
of wheeze is to be mentioned as well: the proportion of children who ever had wheezing
or whistling in the chest varies from 9.82% in Greece to 55.37% in Spain [172]. These
varying numbers may suggest that childhood asthma may not be diagnosed the same way
in different countries — for instance, a study has shown that asthmatic complaints led to a
diagnosis for asthma for Dutch children, but to a diagnosis of bronchitis in German children
[124]. Nevertheless, independent of that childhood asthma can be seen as generally very
common disease.
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For this disease many possible predictors have been investigated. Childhood asthma is
highly heritable [171] which makes family history a predictive variable. Heritability gives
information on “how much of the variation in a trait is due to variation in genetic factors”
[188], or is formally defined “as the proportion of phenotypic variation [...] that is due to
variation in genetic values [...]” [188]. According to Ullemar et al. [171] childhood asthma
has a heritability of 0.82 (95% CI 0.79–0.85) which means that 82% of the childhood
asthma phenotype variability can be attributed to variation in genes.
Further it has been shown that demographical factors, such as sex [66], play a role in the
risk of getting asthma. According to this, boys generally have a higher risk of getting
childhood asthma than girls.
Several publications give evidence that childhood asthma is partly caused by environmental
exposure, especially farming environment plays a role and protects from childhood asthma
[49, 63].
Belsky et al. [15], Ege et al. [49], Moffatt et al. [123], Ober and Hoffjan [130], Vercelli
[178] investigate the genetic influence and Moffatt et al. [123] concludes asthma as being
a genetically heterogeneous disease and that determination of individual risk of asthma is
difficult.
Ege and Strachan [48], Ege et al. [49], for instance, have performed a gene-environment
interaction analysis; in general, the analysis of these kind of interactions is a complex issue
(and one central goal of Helmholtz Zentrum München). Some of the difficulties are that
data have to be large to guarantee sufficient power for a high number of tests of significance,
measuring environmental exposure is generally complex, in particular the incorporation
of its temporality, and that genetic variation is limited [116]. Ege and Strachan [48], Ege
et al. [49] have found associations with this kind of predictors in their interaction analyses;
strong effects have been found for the two-way interactions of several genes with farming
exposure, the consumption of raw farm milk, or contact with cows and straw [49].
Further, Raedler et al. [139] detect immunological factors that influence the development
of childhood asthma.

These findings indicate that childhood asthma represents a disease caused by several types
of predictors. Thus, studies on childhood asthma represent an ideal application of risk
prediction analysis comprising all the challenges this thesis aims to investigate and to solve
as described as follows.
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1.3 Challenges in disease risk estimation

For prediction of disease risk there is vast literature on how to build and evaluate risk
prediction scores using statistical tools and machine learning, see for instance Ankerst
et al. [7, 8], Do et al. [41], Kang et al. [93], Kotze et al. [99], Kruppa et al. [104]. In this
area certain challenges arise, where methodological and medical gaps have to be filled.
Several of these will be treated in this thesis and are described as follows.

Missing data

As in almost every area where data is measured and to be analyzed, the situation of
missing data values can arise. So does this in clinical and epidemiological studies. When
risk models should be built by incorporating the multivariate structure of the predictor
variables then the problem of missing data is especially difficult; generally all variable
values per observation or individual have to be available at once, since variables usually
cannot be taken into account sequentially. For situations where this is not the case,
solutions have been provided using so-called multiple imputation strategies [30] to impute
the missing data (see Section 2.2 for types of missing data and imputation techniques).
These have been successfully used in risk prediction [98]. However, handling missing values
is getting difficult and disputed when the values are missing systematically. In Chapter 5
a special missing data structure will be discussed and a novel strategy will be proposed.

Sample selection bias

So-called sample selection bias can be seen as a special case of missing data. It arises
when observations in the given sample were not taken at random. In epidemiology certain
systematic sampling designs are often used in order to enrich informative observations
[49]. The resulting sample selection bias is then corrected for by applying appropriate
weighting of observations and adjusting variance based on the design. The methodology
there is well-developed for classical statistical analyses; however, there are knowledge gaps
in applying modern methods as machine learning algorithms. Chapter 3 will investigate
such a situation and develop novel approaches applicable for arbitrary machine learning
algorithms. We will examine these on real data by using a biomedical data set for pre-
dicting the risk of hepatitis. Chapter 4 is an applied project regarding this topic as the
provided data is biased the described way. Correction approaches for training and testing
on such data will be applied and extended.
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High-dimensional data

A big issue and well-disputed data situation nowadays is high dimensionality. The age of
big data has arisen several years ago and the expression itself can be interpreted in many
ways. However, whenever the big data expression is disputed then the interpretation of
big data as large data regarding either the number of observations or of the variables is
always included in the considerations. The latter issue — having a high number of vari-
ables at hand — is surely the less common situation; looking across all kind of disciplines,
however, it does not uncommonly occur in medical applications. There, so-called omics
are common candidates of containing many more variables than observations. These are
biological data types typically ending in “-ome” or “-omics” when referring to the actual
field of study. Some examples are the genomics studying the lowest functional layer in a
biological system, i.e. the genes, transcriptomics studying the RNA, the proteomics study-
ing proteins, or metabolomics studying the chemical processes involving the end products
of metabolism. Genome-wide data plays an extraordinary role as the the number of vari-
ables is enormous, reaching from hundreds of thousands to millions of SNPs. Handling
such kind of data is now commonly done by genome-wide association studies (GWASs):
in a GWAS DNA sequence variations in terms of SNPs are measured and analyzed on
the whole human genome in order to identify risk factors for common diseases [28]. Even
though this approach can be incorporated for building risk scores [191], such approaches
may not be optimal as, for instance, relatedness of the variables is not incorporated in such
a model approach: the term linkage disequilibrium (LD) describes “the degree to which an
allele of one SNP is inherited or correlated with an allele of another SNP within a popula-
tion” [28] and is usually high for many positions on the genome. This leads to a scenario
of high collinearity in the context of linear regression analysis. Therefore, multivariable
statistical learning approaches handling such issues have been applied and compared on
such kind of data [165, 189] often involving regularization (see Section 2.3.3), but optimal
methods have to be investigated and established for each application in terms of disease
type and complexity and species, as those vary in trait architecture, marker density and
relatedness of SNPs [165]. Chapter 4 does so for humans in the case of childhood asthma,
applying sparse models, i.e. models where the final predictor consists of tens to hundreds
of variables, as well as dense models, i.e. models with up to hundreds of thousands of
variables in the final predictor. Chapter 5 treats a further case of high-dimensional data,
including expression data as high-dimensional predictor variables amongst other things.
There, however, the high-dimensionality is less extreme and another issue arises, described
as follows.
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Multi-omics data

Even though big amounts of predictor variables, such as high-throughput molecular data
have been used for developing prediction models for disease outcome for nearly 20 years
[67], it still often difficult to combine these with variables of other types of data, which
we call modalities [21]. Many diseases are complex and several modalities have to be
taken into account for optimal prediction: as previously mentioned, for the example of
asthma, these can be genetics, family history, environment, and demographic variables, for
instance. Omics data sets as introduced above can represent modalities as well; therefore,
the two terms will be treated as equivalent in this thesis. Integration of different modalities
have been taken into account in the past: mostly integration of such multiple omics data
sets have been focused on analyzing correlation structure [186] but also building risk
prediction models has already led to successful prediction [1, 176]. This way of multi-omics
integration is sometimes also referred to as multi-view learning, especially in the context
of machine learning [192]. As typically the dimensionality of the single modalities is very
different, those with higher dimension may be preferred by a statistical prediction model
than those with lower dimension. Approaches taking this into account have been proposed,
for example by analyzing each modality on its own and merging them or, in amended form,
merging them at different stages of the analysis [62, 195]. Another approach, the IPF-
LASSO, incorporates all modalities simultaneously with an additional optimized weighting
of each modality [20]. We will use this approach in Chapter 4. However, when the number
of modalities gets too high, this approach is too unstable. Another issue arises when
not all modalities are measured for all observations and only few complete observations
are available. The latter two issues come up in the data analyzed in Chapter 5: there,
immunological modalities in addition to genetic and environmental ones have to be taken
into account. We will propose a model strategy in order to tackle both issues.

1.4 Objectives of the thesis

The overall aim of this thesis — motivated by the application on studies on childhood
asthma — was to improve disease risk prediction for complex data structures, such as
general and complex missing data, data suffering from sample selection bias, large and
high-dimensional data, and multi-omics data.
In particular, we aimed at developing new methodologies and strategies and sought for
selection and application of most appropriate and modern methods in the field of machine
learning in order to exploit techniques for disease risk prediction at the best.
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An entailing subsidiary aim was to identify best prediction models as well as the most
important factors and variables for the disease childhood asthma.

1.5 Contributing manuscripts

Several parts of this thesis have been published by or submitted to peer reviewed journals.
The articles were written in collaboration with co-authors, mostly from the Institute of
Computational Biology, Helmholtz ZentrumMünchen, the Technical University of Munich,
or from the Dr. von Hauner Children’s Hospital. The articles are listed in the following,
along with individual contributions of the (main) investigators where relevant for this
thesis. The original papers describe the contributions of all authors.

• Chapter 3:

[100]: Norbert Krautenbacher, Fabian J. Theis, and Christiane Fuchs. Correcting
Classifiers for Sample Selection Bias in Two-Phase Case-Control Studies. Compu-
tational and Mathematical Methods in Medicine, 2017:18, 2017. doi: 10.1155/2017/
7847531. https://www.hindawi.com/journals/cmmm/2017/7847531/

I extended or modified the described methods (correction approaches for sample
selection bias) which have been proposed in literature and I developed the meth-
ods Stochastic Inverse-Probability Oversampling and Parametric Inverse-Probability
Bagging. I designed and conducted the simulation study and implemented all correc-
tion approaches. I implemented the R-package sambia with help of student assistants
Kevin Strauß and Maximilian Mandl. All aspects of the project were supervised by
Christiane Fuchs. The manuscript was written in cooperation with Christiane Fuchs.
Apart from minor modifications, Chapter 3 and Krautenbacher et al. [100] match.
Some parts of Krautenbacher et al. [100] were already covered by the methodological
background (Chapter 2) and thus were left out for Chapter 3.

• Chapter 4:

[102]: Norbert Krautenbacher, Michael Kabesch, Elisabeth Horak, Charlotte Braun-
Fahrländer, Jon Genuit, Andrzej Boznanski, Erika von Mutius, Fabian J Theis,
Christiane Fuchs, and Markus J Ege. Predicting childhood asthma risk by genetic
and environmental variables. submitted, 2018

I initiated and conducted the methodology used in the paper. I did all statistical
analyses and built and implemented the confidence intervals for AUC by bootstrap

https://www.hindawi.com/journals/cmmm/2017/7847531/
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using selection probabilities corrected for sample selection bias and the bootstrap test
for pairwise AUC comparison using selection probabilities. I modified several built-in
R methods to be applicable for appropriate weighting of observations (from packages
ipflasso, roc). All aspects regarding methodology and analyses were supervised by
Christiane Fuchs. Medical details for the manuscript were provided by Markus Ege.
The manuscript was written in cooperation with Markus Ege and Christiane Fuchs.
Chapter 4 and Krautenbacher et al. [102] match apart from minor changes; however,
parts from the supplement of the latter were included in the main text of this the-
sis’s chapter or left out for Chapter 4 and already included in the methodological
background (Chapter 2).

• Chapter 5:

[101]: Norbert Krautenbacher, Nicolai Flach, Andreas Böck, Kristina Laubhahn,
Michael Laimighofer, Fabian J Theis, Donna P Ankerst, Christiane Fuchs, and
Bianca Schaub. Classifying childhood asthma phenotypes from genetic, immunolog-
ical and environmental factors: A strategy for high-dimensional multivariable anal-
ysis. submitted, 2018

I initiated the methodology used in the paper and conducted the analyses together
with the student Nicolai Flach who did most of the implementation tasks. I devel-
oped the Combination strategy on complex multi-omics data structure. Christiane
Fuchs supervised the methodology and analyses. Medical details for the manuscript
were provided by Bianca Schaub, Andreas Böck, and Kristina Laubhahn. The
manuscript was written in cooperation with Bianca Schaub, Andreas Böck, Kristina
Laubhahn, Christiane Fuchs, Donna Ankerst and Michael Laimighofer.
Chapter 5 and Krautenbacher et al. [101] match apart from minor changes. However,
parts from the supplement of the latter were included in the main text of this the-
sis’s chapter or left out for Chapter 5 when already included in the methodological
background (Chapter 2).

Further contributing manuscripts

I was involved in further research projects on prediction of disease risk on complex data
sets which, however, are not contained in the main focus of the thesis.

• [98]: Ivan Kondofersky, Michael Laimighofer, Christoph Kurz, Norbert Krauten-
bacher, Julia Söllner, Philip Dargatz, Donna Ankerst, and Christiane Fuchs. Three
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general concepts to improve risk prediction: good data, wisdom of the crowd, recal-
ibration. F1000Research, 5:2671, 2016. doi: 10.12688/f1000research.8680.1

• [70]: Justin Guinney, . . . , Norbert Krautenbacher, . . . , and Yuxin Zhu. Prediction
of overall survival for patients with metastatic castration-resistant prostate cancer:
development of a prognostic model through a crowdsourced challenge with open
clinical trial data. The Lancet Oncology, 18(1): 132–142, feb 2018. ISSN 1470-
2045. doi: 10.1016/S1470-2045(16)30560-5. URL http://dx.doi.org/10.1016/

S1470-2045(16)30560-5 (complete author list: s. Bibliography)

• [159]: Fatemeh Seyednasrollah, . . . , and Prostate Cancer DREAM Challenge Com-
munity( . . . , Norbert Krautenbacher, . . . ). A DREAM Challenge to Build Predic-
tion Models for Short-Term Discontinuation of Docetaxel in Metastatic Castration-
Resistant Prostate Cancer. JCO Clinical Cancer Informatics, (1):1–15, 2017. doi:
10.1200/CCI.17.00018. URL https://doi.org/10.1200/CCI.17.00018 (complete
author list: s. Bibliography)

http://dx.doi.org/10.1016/S1470-2045(16)30560-5
http://dx.doi.org/10.1016/S1470-2045(16)30560-5
https://doi.org/10.1200/CCI.17.00018


Chapter 2

Methodological background

This chapter summarizes the methodology that has been used or is required for further
chapters. Parts of texts on notation or description of methodology match with those of
Krautenbacher et al. [100], Krautenbacher et al. [101], or Krautenbacher et al. [102] with
minor modifications.

2.1 General notation

For a data set we let n be the sample size and p be the number of variables (usually
of the covariates). We assume a set of observations {(xi, yi)}i=1,...,n which are drawn
independently from a distribution D. The domain of D is X ×Y with X the feature space
and Y a measurable space. Throughout the thesis, Y is a discrete label space since we
focus on classifiers in this work. In the case of a binary label space Y is coded by {0, 1}
— in this work this usually refers to the disease status: “disease (Y = 1) vs. no disease
(Y = 0)”. The setting can be extended to more than two outcome categories, for instance
when there are several subtypes of the disease. We will denote random variables by capital
letters and realizations (i. e. observations in the sample) by lower-case letters. Thus, the
matrix x contains all covariates of the given data, we let xi be the values for subject i
and xij be the value for subject i and covariate (feature) j, unless otherwise stated. X is
then the corresponding random variable.
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2.2 Imputation of missing data

Missing data occur in many practical data applications, in questionnaire data, for instance,
and thus requires appropriate solutions avoiding bias as far as possible.
In this chapter we will denote X(∗) as a multi-dimensional random variable with missing
values, X(∗)

obs as the observed values ofX(∗) (in the sense of non-missing values rather than
of realizations) and X(∗)

mis as the missing values of X(∗). Thus, realizations x(∗)
obs and x

(∗)
mis

taken together contain all values of the data x(∗), the part x(∗)
mis, however, is unknown.

S ∈ S with S a binary space denotes the variable that indicates whether X(∗) is observed:
for a variable j, Sj = 1 if X(∗)

j is observed (i.e. X(∗)
j is a subset of X(∗)

obs), Sj = 0 if X(∗)
j is

not observed (i.e. X(∗)
j is a subset of X(∗)

mis). The notation and descriptions in this section
are partly similar to Buuren [30].

2.2.1 Types of missing data

According to Rubin [149] data can be missing in three different ways: data missing
completely at random (MCAR), missing at random (MAR), and missing not at random
(MNAR). The following description is close that of Buuren [30].

MCAR is the missing data case causing the least problems when data has to be imputed,
it occurs when the probability of values being missing is the same for all observations.
Thus, in such a case, the cause of the missingness in the data is unrelated to the data
itself. Denoting ψ as the parameters of the missing data model formally data is MCAR if

P (S = 0|X(∗)
obs,X

(∗)
mis, ψ) = P (S = 0|ψ).

For instance, taking a random sample from a population where each observation has equal
probability of getting into the sample leads to missingness completely at random: obser-
vations not included in the resulting sample are then MCAR.

Data missing at random (MAR) is similar to MCAR; however, the probability of miss-
ingness depends on observed data. Again, as an example, a sample can be taken from a
population where the probability to be included depends on a known property. Then data
is MAR if

P (S = 0|X(∗)
obs,X

(∗)
mis, ψ) = P (S = 0|X(∗)

obs, ψ).

The most complex missingness situation is when data are missing not at random (MNAR).
This occurs when neither MCAR nor MAR can be assumed, that is the probability of the
missingness depends on unobserved data. Again, the example of taking a sample from
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a population can be applied: the probability to be included depends on an unknown
property. In a survey, income can be one variable with missings, where covariates which
are related to income are not given, for instance. The missing data model

P (S = 0|X(∗)
obs,X

(∗)
mis, ψ)

cannot be simplified in the case of MNAR.

In general, imputation for this type of missing data is difficult. The methods described
in this section are applicable for situations of MCAR or MAR. For handling MNAR,
strategies for finding more data on the explanations of the missingness should be found.
The problem of MNAR is further discussed in McPherson et al. [118], for instance.

2.2.2 Single imputation techniques

Many techniques for handling missing data have been developed. The probably simplest
one is the usage of only complete observations, i.e. observations containing missing values
at any variable are simply deleted. This approach is easy to apply and unbiased under
MCAR [30]. However, it is wasteful because a lot of given information is not used and
estimates can get imprecise.

Therefore, many commonly used techniques for handling missing data are based on impu-
tation methods replacing each missing value by one estimated value. This is called single
imputation. However, also many of these methods have disadvantages: the simplest tech-
nique amongst those may be mean imputation, i.e a missing value per variable is simply
replaced by the variable’s mean, so x̂(∗)mis,j = 1

n

∑
i x

(∗)
obs,ij ; it is unbiased for the mean under

MCAR, but disturbs the distribution of the data, and underestimates their covariances
[30]. More advanced methods are regression imputation or stochastic imputation: only
complete observations are used for building a regression model with choosing the variable
as response which missing values should be imputed for, i.e X(∗)

obs. The model fit is then
used for predicting this variable’s missing values X(∗)

mis by replacing the missing values
by the predicted ones (regression imputation). One can add some appropriate noise to
the prediction in order to reflect the uncertainty in the data which is underestimated by
simple regression imputation (stochastic imputation). Both approaches, however, still do
not take uncertainty into account appropriately, as imputed data are treated the same
way as the given data values. Generally all these approaches lead to underestimation of
the standard errors in the subsequent statistical analyses [30]. Figure 2.1 illustrates single
imputation techniques and their disadvantages.
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Figure 2.1: Single imputation on variables year and incidence for melanoma skin cancer
(data set melanoma from R-package lattice [152]). Blue indicates observed data points,
orange indicates imputed values. left figure: mean imputation. The distribution gets
disturbed, the variance is underestimated and the correlation is biased to zero. center fig-
ure: regression imputation. Correlation between the two variables is increased artificially
and the variance is underestimated systematically. Right figure: stochastic imputation.
Uncertainty is not taken into account as imputed data is treated as observed data.

2.2.3 Multiple imputation

A solution to the issues described in the previous section is multiple imputation. It gener-
ally contains the following steps introduced by Rubin [149]: the given incomplete data set
is imputed by a technique leading to several imputed versions of the data set. The desired
statistical analyses are conducted on each of the imputed data sets separately. In a final
step the results are aggregated (pooled) to one result with appropriate unbiased standard
errors (cf. Buuren [30] for more details).

For multiple imputation, similar techniques as in single imputation can be used. However,
at least one difference is required, when X(∗) should be imputed: the integrated single
imputation techniques must lead to varying imputation values each time they are applied.

One variable with missing values

As described in the previous section, missing values X(∗)
mis can be predicted from using

the remaining variables in a linear regression setting (regression imputation). Since this
method does not take into account the uncertainty of the model, i.e. only the value which
is most likely is used, added noise to the predicted values solves this problem partly
(stochastic imputation). Therefore values, for instance from a normal distribution with
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zero mean and variance of the residuals of the regression model, are taken and added
to the predicted value. As the true parameters of the regression model are usually not
known, parameter uncertainty can be taken into account in addition. To do so, there
are two main methods: one can draw the parameters from their posterior distributions in
a Bayesian fashion or alternatively apply bootstrapping, i.e. observed data is resampled
with replacement and parameters are re-estimated from the resulting samples.

A further alternative to these two techniques uses similar ideas, but exclusively imputes
missing values by observed values, namely predictive mean matching (PMM) [112]. The
method uses the Bayesian regression technique; however, here when potential valuesX(∗)

mis

are predicted, a set of values of X(∗)
obs which are close to the predicted values are identified.

From this set one observation is taken randomly in order to substitute the missing value.
This method has several advantages apart from being robust and easy to use. For instance,
it guarantees that imputed observations are realistic and imputed values outside of the
observed range of the variable to be imputed are impossible to occur. In all situations of
this thesis where multiple imputation is involved we choose PMM for imputing continuous
values.

Until now, we only described techniques for the situation where X(∗) takes continuous
values. Alternatives for categorical variables exist and partly work analogously, but involve
logistic regression (see Section 2.3.1) or multinomial regression (see Section 2.3.2) instead
of linear regression, for instance [30].

More than one variable with missings

Until now, we have described solutions for imputing in cases where one variable in a data
set has missing values. In practice, usually more than one variable contain missing values
which makes it more difficult to apply these imputation techniques. There are generally
several principles of handling the situation. For instance, data can be imputed monotoni-
cally, i.e. values are imputed by a sequence of univariate methods. This strategy, however,
is restricted to a certain missingness pattern. A strategy applicable to more general miss-
ingness patterns specifies a multivariate model by a set of conditional univariate models.
By iterating conditional models values are drawn in order to get imputed values. This is
known as fully conditional specification or chained equations.

The latter strategy has shown several advantages, it is flexible and easy to apply and has
shown satisfactory results (unbiased estimates) in simulations and practice [23, 81, 111,
137, 140]. Therefore, we employ the chained equations strategy, using the multiple impu-
tation by chained equations (MICE) algorithm and the corresponding R package [173] in
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the two more applied projects of the thesis where missing data occurs (Chapters 4 and
5). The MICE algorithm is initiated by drawing values randomly from observed data
and the incomplete data is then imputed variable by variable. Then several iterations are
performed using a Markov chain Monte Carlo method (MCMC).

In detail, for building an imputation data set using T iterations for data consisting of p
variables, the MICE algorithm works as follows (similar in Buuren [30]).

1. Specify P (X
(∗)
mis,j |X

(∗)
obs,j ,X

(∗)
−j , S) as an imputation model for variable X(∗)

j where

X
(∗)
−j is X(∗) without X(∗)

j

2. For each j, impute X(∗)
mis,j by starting imputations with random draws from X

(∗)
obs,j

3. For t in 1, 2, . . . , T do

For j in 1, 2, . . . , p do

(a) Let Xt
−j = (Xt

1, . . . , X
t
j−1, X

t−1
j+1, . . . , X

t−1
p ) be the currently complete data

without X(∗)
j

(b) Draw φ̇tj ∼ P (φtj |X
(∗)
obs,j ,X

t
−j , S)

(c) Draw imputations Xt
j ∼ P (X

(∗)
mis,j |X

(∗)
obs,j ,X

t
−j , S, φ̇

t
j)

4. Obtain complete data X := XT

φtj denotes the unknown parameter of the imputation model for variable p and iteration
t; φ̇tj represents a value randomly drawn from the posterior distribution of φtj .

We portray this algorithm with the following example (similar in Azur et al. [12]): We
assume a data set of 3 variables, which are age, income, and gender; each of them contains
missing values. The MICE algorithm first specifies the imputation model (step 1 of the
algorithm) and each variable is imputed with a starting imputation by filling the missings
with random draws from the values observed (step 2). Starting with age, the originally
missing values are set back to missings (step 3(a)) and only income and gender are used for
building an imputation model (step 3(b)) in order to draw imputations for age (step 3(c)).
Steps 3(a) to (c) are carried out for income, i.e. originally missing values are set back to
missings and predicted by an imputation model using age and gender. The procedure is
analogous for gender. Iterating these steps (3(a) - (c)) is then repeated several times (step
3, T times) until convergence. The final set of imputed values together with the observed
values build one complete data set (step 4).

Markov chains have to fulfill certain properties so they converge to a stationary distribution
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[158]. First, a Markov chain has to be irreducible, i.e. the chain should be able to reach all
possible states from any state. This property is fulfilled for the MICE algorithm. Second,
a Markov chain has to be aperiodic: there should be no oscillation between the different
chains. Aperiodicity is not necessarily guaranteed for MICE, but can be diagnosed and
avoided by stopping the chain at different points or by addition of noise. Third, a Markov
Chain has to be recurrent: a state is recurrent if it is not transient which is the case if,
given we start at a certain state, the probability of never returning to this state is greater
than zero. This property is not directly satisfied for the MICE algorithm but again can
be diagnosed. According to Buuren [30], in practical applications on data non-recurrence
is usually mild or even absent.

2.3 Statistical and machine learning models

With the following subsections we will give a brief overview of some classical statistical
models and modern machine learning algorithms. Each of the described methods will at
least once be used in the further chapters.

Statistical learning models (classifiers) are algorithms which learn on given training data
in order to predict an outcome variable as well as possible. A classification algorithm
as a special case predicts categorical outcome and thus is eligible for predicting (disease)
phenotypes or the risk of those. A classifier can be defined as

ϕ :

{
(X × Y)×n ×X → Y∗

((x, y),X) 7→ ϕ((x, y);X),

where the given learning data set (x, y) = ((x′1, y1)
′, . . . , (x′n, yn)′) is mapped to the pre-

diction (in our case classification) rule and applied to the random variable X. In classical
regression, ϕ predicts a value for Y , and hence Y∗ = Y. In classification, Y∗ is often
a “continuous pendant” of Y. In the logistic regression model (see next subsection), for
instance, one models P (Y = 1) ∈ Y∗ = [0, 1] instead of Y ∈ Y = {0, 1}.

In Chapters 4 and 5 we use notation in more applied manner. Since we have given test
data at hand we write in a less general context and apply the classifier to the new data
xnew instead of the random variable X.

In the following sections we will at first introduce models based on generalized linear
regression (Sections 2.3.1 to 2.3.4). There the general goal is to minimize the expectation
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of a loss L(Y, ϕ), i.e.

Ŷ = arg min
ϕ((x,y);X)

Ex,yL(Y, ϕ((x, y);X)). (2.1)

2.3.1 Logistic regression

We employ logistic regression [51] as a common classical binary classification method. It
is a common way to build a prediction model, for instance for a disease, and thus a risk
score. The model assumes Y |X to be Bernoulli distributed with success probability

P (Y = 1|X) = (1 + exp{−(β0+X
′β)})−1,

where β0 and β = (β1, . . . , βp)
′ are unknown parameters representing the effects of the

features X on the outcome variable Y . Here, the output of prediction model ϕ((x, y);X)

corresponds to the probability P (Y = 1|X).

In order to obtain the estimates β̂0 and β̂ from the data, one performs maximum likelihood
estimation by maximizing the log-likelihood

`(β0,β) =
n∑
i=1

(yi(β0 + x′iβ)− log(1 + exp(β0 + x′iβ)))

with respect to β0 and β.
For inferring the parameters solving the maximum likelihood estimation equation is not
possible in closed form here. Thus, iterative numerical algorithms can be employed in
order to calculate (β0,β) as the zeros of the derivative of `(β0,β). This can be done by
the Fisher-Scoring algorithm which here is equivalent to Newton’s method (for details see
Fahrmeir et al. [51], for instance).

2.3.2 Multinomial regression

The multinomial regression generalizes the logistic regression model: it extends the model
from K = 2 to K > 2 outcome categories. This can be modeled by

P (Y = l|X) =
exp{β0l +

∑p
j=1Xjβjl}∑

k∈{1,...,K} exp{β0k +
∑p

j=1Xjβjk}
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with l = 1, . . . ,K−1 which corresponds to a more symmetric approach regarding parametriza-
tion than a traditional approach [57]. Xj refers to the j-th covariate. Thus, for covariate
j there are K parameter estimates βjk instead of one βj . The parameter estimation steps
will be done for each l.

2.3.3 Penalized regression

The use of multivariable logistic or multinomial regression is suitable for classification
problems; however, it can be improved in prediction by using regularization [76]. Further,
if n > p, regression without regularization is analytically not feasible. In regularized
regression parameters are estimated by

(β̂0, β̂) = arg min
(β0,β)

{
n∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ · pen(β)}

with λ as tuning parameter and pen a penalization function. In logistic or multinomial
regression the term

∑n
i=1(yi− β0−

∑p
j=1 xijβj)

2 is replaced by −`(β0,β) with ` denoting
the log-likelihood function. The penalization function can be chosen to be based on the
L1-norm, i.e.

pen(β) =

p∑
j=1

|βj |

which corresponds to the LASSO penalty. It reduces the dimension of the data and
performs hard thresholding by setting coefficients of non-predictive or strongly correlated
variables to zero. Thus the LASSO performs variable selection. This is desired in many
data applications where it is unknown whether or which variables in a regression setting
are predictive and which variables are just noise or lead to collinearity. Therefore LASSO
is most appropriate when there is a small to moderate number of effects with moderate
size [168].

Another option for the penalty function is the L2-norm, i.e.

pen(β) =

p∑
j=1

β2j

which corresponds to the ridge penalty. It shrinks the coefficients of correlated variables
towards zero but without reaching the zero [76]. This version may be preferable when
there are many small effects rather than few moderate or large effects in the covariates
[168].
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Both penalties can be included in the penalization function, i.e.

pen(β) =

p∑
j=1

(αβ2j + (1− α)|βj |)

which yields the elastic-net penalty. It forms a compromise between the LASSO penalty
and the ridge penalty. Elastic net performs variable selection as the LASSO does but often
leads to better performance. It is especially useful when p is much larger than n where
LASSO tends to perform less successful [87].

2.3.4 Integrative L1-penalized regression with penalty factors based on
multi-omics data

As described in the introduction, a further issue in medical data can be the situation of
having several modalities. As previously mentioned, by modalities we refer to blocks of
variables which biologically belong together, for instance variables containing information
about the environment, demographics, family history or genetics. If these differ substan-
tially in their dimensions, practical problems can occur, i.e. variables of low-dimensional
modalities can get put at a disadvantage [21]. Therefore there is a modified version of
the LASSO, namely the IPF-LASSO (integrative L1-penalized regression with penalty
factors), assigning additionally different penalty factors to different data modalities [21].
Their coefficients are obtained by minimizing

n∑
i=1

(
yi −

M∑
m=1

pm∑
j=1

x
(m)
ij β

(m)
j

)2

+ pen(m)(β)

where

pen(m)(β) =
M∑
m=1

λm|β(m)|

with pm the number of variables from modality m (m = 1, . . . ,M), λm > 0 the tuning
parameter applied to the variables from modality m (m = 1, . . . ,M) which are denoted
as X(m)

1 , . . . , X
(m)
pm with their realizations x(m)

i1 , . . . , x
(m)
ipm

, and β(m) = (β
(m)
1 , . . . ,β

(m)
pm ). As

it will be required in Chapter 4, this framework can be adjusted to logistic regression
analogously to the previous section. Here, the complexity for parameter estimation is not
higher than for the LASSO, i.e. standard LASSO algorithms can be used [21].

The IPF-LASSO has similarities to group or sparse group LASSO, but is more flexible
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regarding the variation of the L1 shrinkage parameters for the different modalities. There-
fore, however, more tuning parameters have to be estimated.

2.3.5 Classification trees

Here we will introduce a model conceptually different to the previously described methods.
Classification trees (or regression trees for continuous outcome variables) [76] segment the
predictor space into regions. In these regions constant functions are assumed and the
segmentation can be interpreted as a tree. For an example see Figure 2.2.
For a p-dimensional feature space let V be the number of regions R1, . . . , RV . Then the
prediction model of a tree is given as

ϕ((x, y);X) =
V∑
v=1

cvI(X ∈ Rv)

where I denotes the indicator function. In classification cv is defined as

cv := argmax
v

pvl

where for outcome categories l = 1, . . . ,K

p̂vl =
1

|{xi|xi ∈ Rv}|
∑
xi∈Rv

Iyi=l

which is the percentage of observations of category l in region Rv. Thus, the most probable
class in the region is selected. Trees are grown in a greedy algorithmic fashion by iteratively
splitting the feature space along a certain splitting variable with a certain splitting value
by minimizing a cost function. This procedure is repeated recursively until some depth is
reached and all regions are built. For details, see for example Hastie et al. [76].

The following two sections describe so-called ensemble learners. The principle of ensemble
learning is to improve predictive performance by combining a collection of base learning
models to one powerful prediction model [76].
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Figure 2.2: Segmentation of a two-dimensional feature space (toy data with variables age
and BMI ) into regions by a classification tree with two splits. Left figure: data with two
outcome categories, diseased (green) and healthy controls (blue). Center figure: regions
classifying observations as diseased (green area) or healthy (blue area). Right figure:
Resulting tree corresponding to center figure.

2.3.6 Random forest

Random forest is a famous machine learning method. It is based on regression or classifi-
cation trees.

Prediction model

Random forests are ensembles of decision trees and a modification of bagging [26]. The
basic procedure of the learning algorithm is the following:

1. A bootstrap sample is drawn from the given learning data set.

2. A decision tree is grown by constructing recursive binary splits to the given data
based on the features (see Section 2.3.5).

3. At each node only a subset of features is selected at random.

4. Steps 1 to 3 are repeated and all trees are averaged; class probabilities can be
estimated as the relative frequency of the class of interest for a terminal node.

An essential step which is different from common bagging (cf. Section 3.2.1) is Step 3.
The random selection of features de-correlates the trees and makes the bagging procedure
more efficient.
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Variable importance

Contrary to generalized linear regression methods where the influence of a variable can
easily be interpreted by its effect βi, random forests are less easy to interpret. However,
the most important variables can be determined, for instance by a standard measure of
variable importance, the permutation importance. For j ∈ {1, . . . , p}, it is given by

VIj =
1

ntree

∑
t∈{1,...,ntree}

1

|OOBt|
∑

i∈OOBt

{I(yi 6= ŷ∗it)− I(yi 6= ŷit)},

where ntree denotes the number of trees in the forest, I denotes the indicator function,
OOBt the set of indices for observations not selected for building tree t (out-of-the-bag
observations), ŷit the predictions by the t-th tree before, and ŷ∗it after permuting the j-th
variable’s values. Further details can be found in Janitza et al. [89], for instance. In order
to obtain a selection of predictive variables, we applied a non-parametric version of the
permutation-based test of Altmann et al. [4]: after VIj for the j-th variable has been
calculated, a distribution of null importance values is built repeating three steps s times:

(i) Permuting the values of the response y

(ii) Fitting a new random forest using the permuted response

(iii) Computing VIj again

The p-value is computed as the fraction of null importance values which exceed the origi-
nally computed importance.

2.3.7 Gradient boosting

The following description of gradient boosting adjusted to our notation is similar to e.g.
Hastie et al. [76] (p.359 et seq.) or Ridgeway [142].

Boosting is — as the random forest — an ensemble learner; it combines many weak learners
to a strong learner in a — contrary to random forests — stage-wise way by optimizing
a certain loss function. Not only because of different choices of this loss functions there
are various different versions of boosting. Here we focus on a version which is a powerful
prediction tool: Friedman’s gradient boosting machine [58] and its extension to stochastic
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gradient boosting [59]. Gradient boosting outperforms other learning algorithms in many
applications, for instance in Ogutu et al. [132]. It is applicable when n is much larger than
p, addresses multicollinearity problems, and optimizes the prediction accuracy; thus it is
a efficient prediction model suitable for predicting disease risk.

Prediction model

Similar to the regression setting, in gradient boosting we try to find an estimator that
minimizes the expectation of our loss function L(Y, ϕ), see Equation 2.1. The loss function
is basically arbitrary and can be chosen to be the squared error loss in linear regression or
the misclassification rate in classification problems, for instance. In practice, when a set
of realizations {(xi, yi)}i=1,...,n is given one tries to minimize the empirical risk

R =
1

n

n∑
i=1

L(yi, ϕ((x, y);xi))

with respect to ϕ and its parameters. The idea of gradient boosting is to do so by
modifying the current estimate Ŷ by adding a further function in a greedy algorithmic
way: the negative gradient of

J (ϕ) =

n∑
i=1

L(yi, ϕ((x, y);xi)

is calculated in each iteration — in case of the mean squared loss these are the residuals
— and the estimate Ŷ can be updated per iteration by

Ŷ ← Ŷ − ρ∇J (ϕ)

where ρ corresponds to the step size along the direction of the greatest descent in a gradient
descent algorithm. With this procedure, however, prediction on an independent validation
set would not be successful and one further step is important: Friedman proposes to
estimate the negative gradient by using covariate information in a base-learning procedure
in order to approximate the gradient, usually — and as in our applications — a regression
tree. The final gradient boosting algorithm is in detail described by the following steps:

1. Initialize ϕ0((x, y);X) = arg minρ
∑n

i=1 L(yi, ρ)

2. For t in 1, 2, . . . , T do
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(a) For i in 1, 2, . . . , n compute

zi =

[
∂

∂ϕ((x, y);xi)
L(yi, ϕ((x, y);xi))

]
ϕ=ϕt−1

(b) Fit a learner Γt((x, z);xi) predicting zi for all i.

(c) Compute the gradient step size as

ρ = arg min
ρ

n∑
i=1

L(yi, ϕt−1((x, y);xi) + ρΓt((x, y);xi))

(d) Update
ϕt((x, y);X) = ϕt−1((x, y);X) + ρΓt((x, y);X)

3. Output Ŷ = ϕT ((x, y);X)

Several extensions improve the framework of this algorithm as proposed in Friedman [58]
and Friedman [59]. In particular, Friedman [59] proposes a further improvement which
he calls stochastic gradient boosting algorithm: observations are sampled uniformly with-
out replacement before each gradient step. This leads to variance reduction and led to
improved performance of the overall prediction model.

Variable importance

Friedman [58] suggests a variable importance measure similar to the one for random forest.
For boosted tree based methods an approximate relative influence measure of variable Xj

by Breiman et al. [24] is used which is defined as

R̂Ij(tree) =
S−1∑
s=1

î2sI(vs = j)

for a tree with S terminal nodes, index s running through all non-terminal nodes (since a
tree with S terminal nodes has S − 1 non-terminal nodes), vs the splitting variable which
is associated with s, I the indicator function, and î2s the empirical improvement when vs
is split. Friedman [58] then calculates the relative influence over all T trees which have
been generated by the boosting algorithm, that is

R̂I =
1

T

T∑
t=1

R̂Ij(treet).
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2.3.8 Naive Bayes

The naive Bayes classifier is another common machine learning algorithm for classification
(see e. g. Hastie et al. [76], p. 210 et seq.). It is simple and a computationally fast
algorithm and works well in high dimensions, especially if the naive assumption is nearly
met; it assumes independence between the p features and simply calculates for each class
j that can be attained by Y the marginal classifier

ϕ(j)((x, y);X) =

p∏
k=1

ϕ(j,k)((x, y);X(k))

by estimating feature-wise classifiers ϕ(j,k) via one-dimensional kernel-density estimation.
That means, the impact of each feature X(k) is estimated separately and combined to an
overall classifier.

2.4 Validating prediction models

In general, there is no prediction model that outperforms all other prediction models in
every problem; this is the general statement of the “no free lunch theorem” [187]. Therefore
on some given data different models are typically applied and validated in order to assess
and compare how well they perform, so that the best model can be identified.

2.4.1 Measuring performance

The prediction accuracy can be evaluated by the ability of how well a prediction model can
classify correctly, e.g. how well it can differentiate whether a subject would suffer from a
disease or not. One calculates the receiver-operator-characteristics (ROC) curve, which is
a measure widely used for evaluating prediction models when the disease response variable
is binary [54]. Since our prediction model returns values between 0 and 1 corresponding
to the probability of a subject having the disease, a decision whether the subject would
be diseased can be made by choosing a threshold, say c. If the threshold is exceeded,
the subject is labeled as being tested positive, otherwise as being tested negative. If pr
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denotes the predicted risk, there are two commonly used measures of correct prediction:
the true positive rate or sensitivity is defined by

TPR(c) = P (pr ≥ c|diseased)

and the false positive rate which is 1− specificity is defined by

FPR(c) = P (pr ≥ c|not diseased).

Displaying sensitivity (TPR) against 1- specificity (FPR) for all possible choices of c yields
the ROC curve

ROC(·) = {FPR(c),TPR(c), c ∈ (−∞,+∞)} = {(t,ROC(t)), t ∈ (0, 1)}

where in the latter expression ROC is the function mapping t to TPR(c) and FPR(c) = t.
The area under the ROC curve (AUC) is a common measure for model comparison and
evaluation [31, 75] and defined as

AUC =

∫ 1

0
ROC(t)dt.

The AUC can also be retained by calculating the Wilcoxon test of ranks [75]; it can
be seen as the probability that a classifier will rank a randomly chosen observation with
value 1 higher than a randomly chosen observation with value 0 [54]. Thus it measures
how well a classifier can discriminate between the outcome classes but does not take into
account how well prediction scores are calibrated, i.e. prediction scores do not necessarily
have to directly correspond to probabilities for the calculation of an AUC — they could
be multiplied by any (identical) factor and still yield the same AUC.

If the outcome variable has more than two categories, we can calculate a weighted average
of AUCs resulting from all combinations where one outcome category, the reference cate-
gory, is seen as one class and all other observations form the other class [54, 138]. In the
case of K classes, the average across K AUCs is calculated. Thus, in this one-versus-all
approach one calculates

LAUC(ŷ, y) =

K∑
k

LAUC,ck(ŷ, y) · p(ck)

with LAUC(ŷ, y) the AUC seen as loss function of the prediction ŷ and the true outcome
y. LAUC,ck denotes the AUC based on class ck and p(ck), the prevalence of class ck in the
data.
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For evaluating if a classifier is calibrated well, other measures must be used in addition,
for instance calibration plots or benefit curves [7].

2.4.2 Independent validation

When a prediction model has been trained it should be validated on an independent val-
idation data set. Ideally one can train a final model on one cohort and validate it on
another independent one.

If only one cohort is available and the number of given observations is limited cross-
validation [76] is an efficient validation strategy even though it is, in fact, not a completely
independent validation strategy. Note that if both, model selection and some generaliz-
ing performance of the best model, should be obtained within one cohort, nested cross-
validation has to be applied (see Laimighofer et al. [106], for instance). Cross-validation
often leads to high variance but this issue can be solved when special repeated cross-
validation designs are used [61]. In the projects of the thesis external validation was
possible, except for the project of Chapter 5 where the number of observations was that
small that leave-one-out cross-validation was necessary to guarantee feasibility of fitting
the classification models. Given the learning set size is fixed to n− 1, leave-one-out cross-
validation is the most efficient validation resampling procedure regarding its variance [61].

Independent validation is also important for selecting the right model; for instance, for a
LASSO model an appropriate tuning parameter λ has to be chosen with care. This tuning
parameter or complexity parameter of a prediction model can be optimized in the scope
of the so-called bias-variance trade-off [76]: Generally, the expectation (with respect to
true outcome y and predictions ŷ) of the loss L(y, ŷ) can be decomposed into a noise term
and variance and bias of ŷ. The noise term cannot be controlled, but variance and bias
terms can be minimized; in parameter tuning, if the estimated model contains too many
degrees of freedom, i.e. the free parameters that can vary independently, the model may
overfit and have high variance when applied on independent data. On the other side, if the
model does not contain a sufficient number of degrees of freedom, the model underfits the
data and is highly biased. Both extrema usually lead to poor performance on independent
data and a solution in between has to be found, for example by optimizing the complexity
parameter via cross-validation. Figure 2.3 illustrates the situation for the LASSO.
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Figure 2.3: Test AUCs for optimizing tuning parameter λ via cross-validation in a LASSO
model on toy data. The outcome variable is binary and predicted by up to p = 110
variables and n = 500 observations. The figure illustrates the bias-variance trade-off
in model selection: Small and large values of λ lead to low AUCs and thus to poor
performance. The optimal value for λ lies in between; the highest AUC is obtained when
26 of the 110 variables are selected, i.e. when 26 non-zero regression coefficients are
estimated.
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Chapter 3

Correcting classifiers for sample
selection bias in two-phase
case-control studies

Statistics is an art of inferring information about large populations from comparably small
random samples. This is necessary because in practice it is most often impossible to
receive measurements from all individuals in a population, e. g. due to organizational or
cost reasons. In the clinical context, for example, one might aim to predict the risk for
a certain disease based on clinical features for an entire population. The risk model will
be derived from information from a much smaller random subsample of the population.
When building such models, a common assumption is that the subsample follows the same
distribution as the population the sample was taken from. This assumption, however, is not
valid if the sample is not taken at random. In the epidemiological context, for example, this
case occurs in the well-known case-control studies [154]. Here, one is interested in finding
associations between features and rare disease outcomes. In order to increase precision
and achieve higher statistical power for finding significant associations, cases are enriched
such that cases and controls are equally represented in the sample. When a case-control
study is used for risk prediction on an unbiased population e. g. via logistic regression,
certain adjustments have to be made which have been elaborated in [84, 90, 146, 166].

An even more complex sample design appears in two-phase case-control studies [153, 183].
Here, one does not only enrich a rare disease outcome but also a rare covariate, e. g.
an exposure. This measure prevents the sample from containing only few individuals
which fall into both rare categories. From such a sample one would hardly be able to
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Figure 3.1a: Stratified random selection process of a two-phase case-control study. Feature
characteristics known about a whole finite population are typically features which are
inexpensive to measure and called characteristics recorded in Phase 1. The expensive
characteristics are recorded only in Phase 2 — in the final sample.

draw conclusions about the rare combination. Figure 3.1a illustrates how the sampling
procedure is performed in practice. Figure 3.1b shows an exemplary table of numbers
of cases/controls and exposed/non-exposed individuals in the population and the sample.
This and other complex survey designs, e. g. cohort sampling designs [150], have been
used in order to obtain subpopulations with rare characteristics of features of interest
[95, 121, 151]. The efficiency and analysis of the design are described in White [183].

In the situations described above the sample follows a different distribution than the pop-
ulation. This can affect statistical analysis. In the general context, the issue is known as
sample selection bias [38, 77, 194]. It generally occurs when not all individuals from the
population have the same probability of getting selected for the sample. If a statistical
estimate is affected by sample selection bias, one should correct for it. The question of
whether correction is necessary depends on the type of sample selection bias, the consid-
ered classifier, and the research question to be answered. For example, no adjustment
is required if only the outcome variable is enriched and logistic regression is applied for
prediction purposes, because the slope coefficients of the linear predictor remain asymp-
totically unaffected by sample selection bias for this case (if the functional form and the
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before selection process after selection process

1,200 6,300

2,400 20,100

Exposed

Non−exposed

Cases Controls

500 500

500 500

Exposed

Non−exposed

Cases Controls

Figure 3.1b: Exemplary cross table for data before (left) and after (right) the selection
process of a two-phase case-control study. There is a clear dependency between exposure
and disease in the population. After the sampling process, this dependency vanishes
completely for the final sample.

explanatory features for the model are correct) [97]. In general, however, correction is
required, and there are several solutions to encounter this problem in complex survey
designs [113, 179]. These existing approaches mainly focus on classical prediction meth-
ods or simple survey designs. Strategies applicable also for machine learning approaches
have been suggested in the general sample selection bias context [52, 193, 194]. These
methods reconstruct the population data or its covariance structure and typically involve
non-parametric resampling techniques like bootstrapping. However, they neglect complex
survey designs. Thus, while correcting for sample selection bias in logistic regression is
well-investigated, its consideration is unclear for most machine learning approaches.

This chapter assesses, proposes and compares approaches to correct for sample selection
bias in complex surveys, especially in two-phase case-control studies. Therefore we focus
on binary outcome. Figure 3.2 illustrates the issue to be addressed. The emphasis is on a
widely-used machine learning approach: the random forest. We correct for the covariance
structure of the sample by incorporating knowledge about the sample selection procedure
into nonparametric and parametric resampling techniques. As the random forest is based
on resampling anyway (in terms of bagging, see Section 3.2.4), we incorporate the correc-
tion step into the inherent resampling procedure. We compare our correction approaches
to analogous state-of-the-art approaches, both for the random forest and other common
classifiers, namely logistic regression, logistic regression including interaction terms, and
the naive Bayes classifier. We especially address the question whether correction is neces-
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Figure 3.2: Scheme of learning on biased learning data and predicting on unbiased test
data. The classifier learns on four equally sized strata (complete biased learning data set)
but predicts on a data set (unbiased population) of different sizes of the four strata.

sary in random forests, and if so, whether current correction approaches can successfully
be transferred to the random forest and whether improvement is possible through alter-
native approaches. We assess and compare the prediction performance of the correction
techniques in a synthetic simulation study and in a real data application. We provide the
R package sambia so that readers can easily apply the methods presented here to their
data.

This chapter is structured as follows: We formalize sample selection bias and address the
necessity of correction in Section 3. Section 3.2 explains current approaches for corrected
learning on biased samples, and we propose two new methods based on drawing observa-
tions from theoretical distributions assumed for the given data. We furthermore analyze
properties of the various approaches in the context of sample selection bias. Section 3.3
presents a simulation study which compares all approaches regarding performance on new
unbiased test data. Section 3.4 shows a similar analysis on real data. We discuss and
conclude our work in Section 3.5.

This chapter is in parts identical with the following publication:
[100]: Norbert Krautenbacher, Fabian J. Theis, and Christiane Fuchs. Correcting Clas-
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sifiers for Sample Selection Bias in Two-Phase Case-Control Studies. Computational and
Mathematical Methods in Medicine, 2017:18, 2017. doi: 10.1155/2017/7847531

3.1 Sample selection bias and stratified random sampling

This section introduces general definitions and background information: A formal descrip-
tion of sample selection bias (Section 3.1.1), the special case of two-phase case-control
studies (Section 3.1.2), and properties of biased samples (Section 3.1.3).

3.1.1 Sample selection bias — defintion

The following set-up is similar to Zadrozny [194] and distinguishes sample selection bias
into three types. Throughout this chapter, Y is a discrete binary label space since we fo-
cus on binary classifiers in this chapter. General notation has been described in Section 2.1.

For the set-up of the sample selection bias issue, let S be a binary space. S ∈ S is
the variable that controls the selection of observations: For si = 1 the ith observation
is selected, for si = 0 the observation is not selected. Thus, observations (xi, yi, si) are
drawn from a distribution L with domain X × Y × S.

In general, a sample {(xi, yi, si)}i=1,...,n can be biased in three different ways. These types
of sample selection bias can be described as follows [52, 194] :

• Label bias: biasedness depends on Y only, so P (S|X, Y ) = P (S|Y ) but P (S|Y ) 6=
P (S).

• Feature Bias: biasedness depends onX only, so P (S|X, Y ) = P (S|X) but P (S|X) 6=
P (S).

• Complete Bias: biasedness depends on X and Y , i. e. there is no independence
between S and X, Y , so P (S|X, Y ) 6= P (S|Y ) and P (S|X, Y ) 6= P (S|X).
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Under label bias, S is not necessarily independent of X [52], and for feature bias S is not
necessarily independent of Y . This follows from

P (S|X, Y ) = P (S|Y ) ∧ P (S|Y ) 6= P (S) 6⇒ P (S|X) = P (S). (3.1)

This holds since: if x := t(y) where t is a function mapping to {0, 1}, then P (S|x) =

P (S|t(y)) =P (S|y) 6= P (S).

Analogously, one can show that feature bias does not imply that S is independent of Y .

Whenever there is sample selection bias, there are selection probabilities P (S = 1|Y,X)

(in particular P (S = 1|Y ) for label bias and P (S = 1|X) for feature bias). In practice,
these probabilities can often be estimated if they are unknown (see Huang et al. [83], for
instance). However, when sample selection bias has arisen due to a certain sampling design
they are typically known. Since throughout this chapter this case is treated exclusively it
is reasonable to assume them to be provided. All approaches proposed in this chapter will
incorporate these selection probabilities in terms of weights corresponding to the inverse
probabilities P (S = 1|X, Y )−1.

3.1.2 Two-phase case-control studies

In this chapter we will treat the special case of two-phase case-control studies and hence
put them into the context of sample selection bias in this subsection.

The case-control study is an example for sample selection bias in the clinical context: Some
diseases under investigation are very rare in the entire population. A random sample of
study participants would contain very few cases of the disease. Statistical analysis would
suffer from low precision and thus low power. In order to increase precision and power, the
number of cases is enriched such that the proportion of cases and controls in the sample is
identical. In particular, P (Y = 1|S) = 0.5 whereas the prevalence rate P (Y = 1) is much
smaller, so P (Y = 1|S) 6= P (Y = 1). This by Bayes’ theorem implies P (S|Y = 1) 6= P (S),
and thus there is label bias.

Case-control studies are mostly used for investigating associations between disease and
features. The underlying label bias does not alter the effect estimates in hypothesis testing
for associations between disease and features. However, this is true only asymptotically,
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and there may be consequences in small sample scenarios. If one focuses on prediction
e. g. via logistic regression — as we do in this chapter — the intercept estimate can simply
be adjusted as described in Rose and van der Laan [146] or Steyerberg et al. [166]. Elkan
[50] offers a solution for arbitrary classifiers.

In two-phase case-control studies, on the other hand, the selection is additionally controlled
by a categorical feature variable. Such studies suffer from label and feature bias, so there is
complete bias. We focus on this case, i. e. complex survey designs which involve complete
bias.

3.1.3 Stratified random samples

When data is sampled as in one-phase or two-phase case-control studies, there are groups
within which the selection probabilities are equal. These groups are called strata. In this
chapter we focus on two-phase case-control studies where the strata are determined by a
categorical stratum feature (often an exposure) Xe and the outcome Y . The remaining
features of X are X̃ := X \Xe.

For a population of size N and sample size n let h ∈ {1, . . . ,H} be the index of the
stratum. Realizations falling into stratum h are denoted by x̃h, xeh and yh, or combined
as (xh, yh) = (x̃h, xeh, yh). We denote by nh the size of the stratum h in the sample and
by Nh its size in the population. Then clearly P (S = 1) = n

N and

P (S = 1|x, y) = P (S = 1|xe, y) = P (S = 1|h(xe, y)) =
nh(xe,y)

Nh(xe,y)
, (3.2)

where h(xe, y) denotes the stratum determined by xe and y. Throughout the chapter we
will simply abbreviate this by h.

If the features determining the selection probabilities are categorical, the data set can
be partitioned into corresponding strata with equal selection probabilities. This is not
the case if e. g. the feature causing the selection bias is continuous. In the categorical
case, selection probabilities can be used for adjusting the distribution of the sample to the
original distribution of the population.

Consider the selection probability P (S = 1|h) for an observation of stratum h. We define

wh :=

[
maxh′ P (S = 1|h′)

P (S = 1|h)

]
as the inverse-probability (IP) weight for stratum h. The squared brackets denote rounding
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to the closest integer. The term IP weight is sometimes used in literature for the simple
inverse selection probability P (S = 1|h)−1. In this work, we use wh rather than P (S =

1|h)−1 to keep the number of newly generated observations minimal.

In our correction approaches we will use

n′ :=

H∑
h=1

nhwh, (3.3)

which can be seen as the number of re-weighted observations, i. e. the sum of all observa-
tions multiplied by their weights. As stated above we are interested in adjustment methods
which can be applied to arbitrary classifiers. In the next section, after stating a typical
set-up of a statistical learning procedure, we will describe several sample selection bias
correction approaches proposed in literature.

3.2 Methods

In this section we describe, modify and analyze IP weight-incorporating classifiers which
are designed for learning on an unbiased data set, when only a biased data set for learning
is given.

All correction approaches adjust the given data set to correct for sample selection bias by
reconstructing the original (unbiased) data structure before or while learning the classifier.
As introduced in Chapter 2 we consider the classifier

ϕ :

{
(X × Y)×n ×X → Y

((x, y),X) 7→ ϕ((x, y);X),

where the given learning data set (x, y) = ((x1, y1), . . . , (xn, yn)) is mapped to the predic-
tion (in our case classification) rule and applied to the random variable X.
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3.2.1 State of the art correction approaches

The methods in this section were proposed in literature and are partly modified for our
purposes.

No correction

The naive approach for learning on a biased sample is to simply ignore the bias. No IP
weights are used, and the classifier is trained on the given sample as it is. As shown in
Zadrozny [194], this approach is valid for some cases of sample selection bias, namely for
feature bias for a specific type of classifiers.

Inverse-probability oversampling

An intuitive method for correcting for sample selection bias is the plain replication of
each observation in the sample according to its IP weight, i.e. in a stratified random
sample one replicates an observation of stratum h by the factor wh. Then, the number
of observations in the reconstructed sample is n′. This sample is used for learning. In
maximum likelihood-based approaches like generalized regression models, this method is
equal to weighting the single likelihoods per observation. The procedure, sometimes simply
called inverse-probability weighting, has been used early [82], with applications both in
regression [144] and general statistical learning [50]. We refer to this technique as IP
oversampling : since in the stratification process some observations were oversampled, this
method is a way of re-oversampling under-represented observations in the stratified sample.
Since IP oversampling is applicable to arbitrary classifiers, we take it into account for
further comparisons. A drawback is that it changes the covariance structure per stratum
h. In Section 3.2.2 we propose a method that corrects for this issue.

Inverse-probability bagging

Another correction method uses bootstrap aggregation and averaging, commonly abbre-
viated to the acronym bagging. The procedure averages several predictions trained on an
ensemble of bootstrap samples und thus makes learners more robust [25]. Nonparametric
bootstrap samples arise by randomly drawing n times from the original data set of size n
with replacement. Bagging procedures fit a learner on each of these bootstrap samples
and combine the learners by averaging predictions or by majority vote. When building
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bootstrap samples from biased data sets, as in our case, resampling can take into account
IP weights: instead of drawing observations randomly, selection probabilities are set pro-
portional to wh for the respective strata h. This procedure is proposed in Nahorniak et al.
[126] and labeled IP bagging here.

Costing

Zadrozny et al. [193] argue that sampling with replacement as done in IP bagging is in-
appropriate since sets of independent observations from continuous distributions contain
two identical elements only with zero probability, whereas nonparametric bootstrap sam-
ples generally contain observations repeatedly. Zadrozny et al. [193] propose an approach
called costing, which is similar to IP bagging in terms of resampling from the learning data
and aggregation of learned algorithms on m new samples. It differs in the implementation
of resampling the m learning sets: here, an observation from the original learning set en-
ters a resampled data set only once at most. It is selected with probability wh/maxh′ wh′

according to the corresponding stratum h. Consequently the size of the new samples is
smaller than n and generally varies among the m learning sets. The latter aspect indicates
the difference of this approach to subsampling without replacement. A detailed descrip-
tion of the aspects of the algorithm can be found in Zadrozny et al. [193], Sections 2.3.2
to 2.3.4.

A drawback of costing in case of strata with a low number of observations is the following:
there may be subsamples which do not contain observations from all strata, which implies
that no classification rule can be learned for the missing strata from those subsamples. For
the purposes of this project, we adjusted the costing algorithm by not taking into account
such incomplete samples. This modification causes bias which we consider negligible.

Modified SMOTE

So far, all correction approaches replicated given observations. In contrast, Chawla et al.
[34] propose a synthetic minority over-sampling technique (SMOTE) to generate new,
synthetic data. The strategy is designed as a solution for the imbalanced class problem,
where rare cases (the minority class) are hardly represented in the (non-stratified) sample,
which mainly consist of common cases from the majority class. In this situation, several
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classifiers perform poorly because of the imbalanced proportion of outcome categories in
the data.

In its original form, SMOTE generates synthetic observations for the minority class as
follows: For fixed k ∈ N, one determines the k nearest neighbors of the minority class.
Depending on the desired number of new observations, one then randomly selects an
according amount of instances from this neighborhood. New observations arise as weighted
averages between original feature vectors and selected nearest neighbors. To that end,
weights are randomly sampled from the unit interval.

We adapt SMOTE to the context of stratified random samples: rather than enlarging only
the minority class, we generate synthetic observations for all strata with wh > 1. Thus we
apply SMOTE up to H−1 times, once for each stratum which requires more observations.
We refer to this algorithm as modified SMOTE hereafter.

3.2.2 Correcting covariance structures

The approaches above aim to reconstruct the original data distribution in order to then
learn a classifier on an unbiased sample. However, several aspects are not incorporated so
far: IP oversampling replicates observations and by this biases the covariance-structure
within the strata. A correction for this biasedness should be provided. Similarly, modified
SMOTE biases the data, especially for large weights wh, where the same observations are
used several times for synthetic data generation and lack contributing sufficient variation.
IP bagging and costing both exclusively base on resampling observed data. This may
become problematic especially for small sample sizes or only small stratum sizes (which
can occur in the resampled data sets for these two approaches): the fine structure in the
given data can be spurious due to the deficit of observations. Also due to small sample
sizes and hence too few values in the sample only covering a restricted range one may
underestimate variance and covariance of the data.

In this section we propose two procedures which aim to conquer the problem of small strata
by increasing the number of observations per stratum and at the same time estimate the
covariance of the population appropriately. The idea behind both approaches is to exploit
the fact that within each stratum h all observations are assigned the same weight wh. This
enables parametric resampling within each stratum.

Let L̃h be the distribution which X̃h follows. We aim to approximate L̃h by theoretical
distributions and estimate their parameters for each stratum h. In practice, determining
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the multivariate distribution of the features is difficult and relies on assumptions. One
might e. g. assume normally distributed features,

X̃h ∼ N (µh,Σh), (3.4)

and would then have to estimate µ̂h and Σ̂h for all h, which is typically done by their
empirical pendants. Even though we focus on the normal distribution in our empirical
investigations, we propose the following approaches such that they can be applied to
arbitrary distribution assumptions.

Stochastic inverse-probability oversampling

Our first approach builds upon the re- or oversampling techniques described in Sec-
tion 3.2.1. However, the repeated occurrence of observations of continuous features falsifies
the covariance structure of the reconstructed samples. Hence, we add noise to those data
sets obtained via IP oversampling and thus call our proceeding stochastic IP oversampling.

When adding this noise, we want to retain important distribution characteristics of the
respective stratum. As stated above, the stratified sample contains features X̃h ∼ L̃h. Af-
ter performing IP oversampling, the reconstructed features X̃

′
h do not follow L̃h anymore.

We aim to adjust X̃
′
h by adding noise terms ε̃h such that X̃

′
h + ε̃h approximately follows

the original distribution L̃h in the sense that it agrees in expectation and covariance. In
the following we derive a respective distribution L̃adjh for ε̃h.

We seek two conditions to hold:

E(X̃
′
h + ε̃h) = E(X̃h) (3.5)

Cov(X̃
(k)
h
′ + ε̃

(k)
h , X̃

(j)
h
′ + ε̃

(j)
h ) = Cov(X̃

(k)
h , X̃

(j)
h ) = Σh (3.6)

for all k, j ∈ {1, . . . , p} here denoting the index of the features. Because of (3.5) and since
E(X̃

′
h) = E(X̃h) we obtain

E(ε̃h) = 0. (3.7)
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The adjusted noise covariance matrix Σadj
h := Cov(ε̃

(k)
h , ε̃

(j)
h ) can be written as

Σadj
h =

wh − 1

whnh − 1
Σh. (3.8)

Proof of Equation 3.8: We derive an appropriate noise covariance matrix to be added
to the features X̃

′
h resulting from IP oversampling: For one stratum h we look at the

covariance of the pair of features X̃(k)
h , X̃

(j)
h for k, j ∈ {1, . . . , p}. For sample size n, we get

per stratum a sample covariance per pair x̃(k)h , x̃
(j)
h , given by

s
x̃
(k)
h ,x̃

(j)
h

=
1

nh − 1

nh∑
i=1

(x̃
(k)
hi − x̄

(k)
h )(x̃

(j)
hi − x̄

(j)
h ),

where x̄(l)h := 1
nh

∑nh
i=1 x̃

(l)
hi for any l ∈ {1, . . . , p}.

For IP oversampling we replicate the data points by the factor wh, which varies per
stratum. Thus the covariance of the modified sample is

s′
x̃
(k)
h ,x̃

(j)
h

=
1

whnh − 1

nh∑
i=1

wh(x̃
(k)
hi − x̄

(k)
h )(x̃

(j)
hi − x̄

(j)
h )

=
wh(nh − 1)

whnh − 1
s
x̃
(k)
h ,x̃

(j)
h

.

(3.9)

In addition to simple IP oversampling, stochastic IP oversampling incorporates the sum-
mation of some noise (matrix) ε̃. We want the following to hold for a pair of the random
vectors ε̃(k), ε̃(j) of size nh:

Cov(X̃
(k)
h
′ + ε̃

(k)
h , X̃

(j)
h
′ + ε̃

(j)
h ) = Cov(X̃

(k)
h , X̃

(j)
h ), (3.10)

where X̃(k)
h
′, X̃

(k)
h
′ are the random variables resulting from replication by a factor wh

(oversampling).
We can simplify

Cov(X̃
(k)
h
′ + ε̃

(k)
h , X̃

(j)
h
′ + ε̃

(j)
h ) = Cov(X̃

(k)
h
′, X̃

(j)
h
′) + Cov(X̃

(k)
h
′, ε̃

(j)
h )

+ Cov(X̃
(j)
h
′, ε̃

(k)
h ) + Cov(ε̃

(k)
h , ε̃

(j)
h )

= Cov(X̃
(k)
h
′, X̃

(j)
h
′) + Cov(ε̃

(k)
h , ε̃

(j)
h ),

since the noise component ε̃(j)h should not correlate with the feature random vector Xk

(neither ε̃(k)h with X̃(j)
h , respectively). This also holds for j = k.

We can estimate the components of the covariance matrix Cov(X̃
(k)
h
′, X̃

(j)
h
′) by s′

x̃
(k)
h ,x̃

(j)
h

=
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wh(nh−1)
whnh−1 sx̃(k)h ,x̃

(j)
h

. Substituting this into (3.10) yields for the entries of our noise covariance
matrix :

s′
ε̃
(k)
h ,ε̃

(j)
h

= s
x̃
(k)
h ,x̃

(j)
h

− wh(nh − 1)

whnh − 1
s
x̃
(k)
h ,x̃

(j)
h

=
wh − 1

whnh − 1
s
x̃
(k)
h ,x̃

(j)
h

.

In terms of random variables, the empirical covariance matrix combining all entries
s′
ε̃
(k)
h ,ε̃

(j)
h

for all k, j ∈ {1, ..., p} would be replaced by Σadj
h and the empirical covariance

matrix combining all entries s
x̃
(k)
h ,x̃

(j)
h

for all k, j ∈ {1, ..., p} by Σh. �

For instance, when assuming a multivariate normal distribution X̃h ∼ L̃h = N (µh,Σh),
the noise term

ε̃h ∼ L̃adjh = N
(

0,
wh − 1

whnh − 1
Σh

)
(3.11)

would retain the stratum expectation and covariance (and thus in the Gaussian case the
entire distribution).

In order to make a corresponding correction method more robust, we repeat the noise-
adding procedure and average over the models fitted on each of those repetitions. Algo-
rithm 3.1 displays the single steps of stochastic IP oversampling.

Parametric inverse-probability bagging

Stochastic IP oversampling above consisted of a deterministic replication of observations
followed by a stochastic alteration by adding noise. Now, we propose a completely para-
metric approach which we call parametric IP bagging. As in IP bagging, we draw bootstrap
samples from the original stratified data set. This time, however, we employ parametric
instead of non-parametric bootstrap and set the bootstrap sample size to n′. As in stochas-
tic IP oversampling, we assume a multivariate distribution underlying the original data
and estimate the parameters stratum-wise. The procedure is defined by Algorithm 3.2.



3.2. METHODS 45

Algorithm 3.1: Stochastic inverse-probability oversampling
Input: Observed sample (x̃, xe, y) of size n, IP weights wh
Output: Unbiased prediction ŷ for new unbiased data (X, Y ) ∼ D

1. Perform IP oversampling, resulting in reconstructed sample (x̃′, xe
′, y′) of size n′

2. for b = 1 to B do
for h = 1 to H do

(a) Estimate Σadj
h of distribution L̃h

(b) Draw noise vector ε̃bh from ˆ̃Ladjh of length nhwh
(c) Rebuild original stratum as (x̃′h + ε̃bh, xe

′
h, y
′
h)

end

(a) Combine strata to sample:
(x̃′ + ε̃b, xe

′, y′) = ((x̃′1 + ε̃b1, xe
′
1, y
′
1), . . . , (x̃

′
H + ε̃bH , xe

′
H , y

′
H))

(b) Fit classifier ŷb = ϕ((x̃′ + ε̃b, xe
′, y′);X)

end

3. Output the ensemble of learners {ŷb}b=1,...,B

4. Aggregate predictions on new data set by averaging: ŷ =
∑B

b=1 ŷ
b

3.2.3 Properties of correction approaches

So far, we described seven ways to deal with sample selection bias: no correction, IP over-
sampling, IP bagging, costing, modified SMOTE, stochastic IP oversampling and para-
metric IP bagging. This subsection compares their characteristics. They are summarized
in the left part of Table of 3.1 on page 55.

(i) Incorporation of weights

Except for the non-correction approach, all correction methods incorporate weights. As
mentioned in 3.2.1 there are cases of sample selection bias where the bias does not affect
the classifier so that correction in terms of weighting is not necessary. However, as we will
elaborate in this chapter on two-phase case-control studies, correction is necessary in the
context of complete bias.
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Algorithm 3.2: Parametric inverse-probability bagging
Input: Observed sample (x̃, xe, y) of size n, IP weights wh
Output: Unbiased prediction ŷ for new unbiased data (X, Y ) ∼ D

1. for b = 1 to B do
for h = 1 to H do

(a) Estimate parameters of distribution L̃h

(b) Draw parametric bootstrap sample x̃bh from ˆ̃Lh of size nhwh
(c) Rebuild stratum as (x̃bh, xe

×wh
h , y×wh

h ), where ’×wh’ denotes wh-fold
concatenation

end

(a) Combine strata to sample:
(x̃b, xe

×w, y×w) = ((x̃b1, xe
×w1
1 , y×w1

1 ), . . . , (x̃bH , xe
×wH
H , y×wH

H ))

with w =
∑H

h=1wh

(b) Fit classifier ŷb = ϕ((x̃b, xe
×w, y×w);X)

end

2. Output the ensemble of learners {ŷb}b=1,...,B

3. Aggregate predictions on new data set by averaging: ŷ =
∑B

b=1 ŷ
b

(ii) Correcting covariance structure of learning data

Sample selection bias can cause a biased covariance structure in the data. Some but
not all correction approaches correct for this bias: The non-correction approach clearly
uses the biased covariance structure. Also IP oversampling does not correct for it; the
replication of observations generally leads to underestimating the covariance (cf. Equation
3.9). For modified SMOTE, the resulting covariance structure depends on the magnitude
of the weights wh and the degree of separation of the features into distinct clusters. For
instance, a stratum with large weight wh will cause a large number of newly generated
observations as compared to the original number observations. The same neighbours will
be selected several times such that sufficient variation of the new observations cannot be
guaranteed. This may result in a similar issue as for IP oversampling described above.
All other approaches aim to obtain the right covariance structure per stratum and in the
entire reconstructed sample.
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(iii) Size of reconstructed samples

As a well-known fact in statistical learning, the bias of a classifier increases when the
learning sample size decreases. IP bagging is based on reconstructed samples of the same
size n as the original stratified data set. Sample sizes in costing are even smaller and
vary between bootstrap samples. Especially the small strata contain a small number of
observations for these two ways of reconstructing the sample. Consequently a certain
structure of the data may get lost for learning, e.g. the appropriate variability within
small strata may not be given anymore. IP oversampling, modified SMOTE and our
own methods stochastic IP oversampling and parametric IP bagging, on the other hand,
employ reconstructed samples of larger sizes n′ as defined in Equation (3.3). By this we
intend to have sufficient numbers of observations in each stratum for possibly improving
the learning of the classifier as compared to the use of smaller samples. In the non-
parametric IP oversampling, the larger sample size induces a large number of perfectly
repeated observations. This, again, biases the covariance structure. In our parametric
approaches, stochastic IP oversampling and parametric IP bagging, this drawback does
not occur.

3.2.4 Classifiers

In Sections 3.2.1 and 3.2.2 several approaches adjusting for sample selection bias have
been presented and proposed. We implemented all approaches for the following classifiers:
classical logistic regression based on maximum likelihood estimation as a classifier serving
as reference since correction approaches are well-established for it; the tree-based random
forest as our main object of interest; logistic regression including interaction terms; and
the naive Bayes classifier as further algorithms for comparison. These classifiers have been
described in Sections 2.3.1, 2.3.6, and 2.3.8.

For logistic regression we investigate two variants of this model: Once, all features enter
the model just linearly. In a refinement, features are additionally included as all possible
two-way interaction term combinations, not only in order to detect possible interaction
effects but also to obtain more complex decision boundaries.

As described in Zadrozny [194], a classifiers’ output can either depend on P (Y |x) only or
on both P (Y |x) and P (X). The first type of classifiers per definition is not affected by
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feature bias whereas the second type is affected. Thus one has to consider that the two
types behave differently under complete bias, as well.

We did the following adjustment in the random forest procedure: For all approaches in
Section 3.2.1 and 3.2.2 which are based on aggregating after re-sampling, namely IP bag-
ging, costing, stochastic IP oversampling, and parametric IP bagging, we incorporate these
approaches into the random forest correspondingly. That means, instead of performing
bagging within another bagging, we combine the two procedures. Note that IP oversam-
pling incorporated in a random forest turns the approach to a bagging method. In fact,
IP oversampling is exactly the same method as IP bagging when using samples of size n′

instead of n. Thus for the implementation of our approaches into the random forest we
implicitly take both versions of IP bagging into account.

3.3 Simulation study

So far, we have presented and developed strategies for fitting classifiers under complete
bias. In this section we investigate their performance when a sample from a two-phase
case-control study is given as learning data set but the test data is unbiased, i.e. it is a
random sample from the population. We do this in a simulation study. After stating the
set-up in Section 3.3.1, we compare performances for the introduced correction approaches
and classifiers (Section 3.2) and report the results in Section 3.3.2.

3.3.1 Design

For evaluating the performance of correction approaches on training samples from two-
phase case-control studies and unbiased validation data sets, we need three kinds of data
sets: First, a biased learning data set stemming from a two-phase case-control study.
Second, an unbiased large reference learning data set for comparison purposes. We refer
to this data as population. It is not available in practice. Third, an unbiased test data
set distributed like the population is required. We artificially simulated such data sets as
described in the following.
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We started by generating the large unbiased population data set. To that end, we randomly
sampled 105 feature vectors consisting of one binary exposure variable Xe and p = 5

continuous other features X̃(j), j ∈ {1, . . . , 5}. The exposure Xe was ment to serve as
a stratum feature with a low proportion (10%) of exposed (Xe = 1) individuals and a
majority of non-exposed (Xe = 0) individuals. The p = 5 other features were generated
independently of xe and of each other. We investigated the following four distribution
families:

• Normal distribution: X̃(j) ∼ N (µ(j), σ(j)
2
) for all j = 1, . . . , p,

• Student’s t distribution: X̃(j) ∼ t(vj) for all j = 1, . . . , p,

• Poisson distribution: X̃(j) ∼ Po(λj) for all j = 1, . . . , p,

• Bernoulli distribution: X̃(j) ∼ Ber(πj) for all j = 1, . . . , p.

The distribution parameters were uniformly drawn from the following sets for j = 1, . . . , p:
mean µ(j) ∈ [1, 10], standard deviation σ(j) ∈ [1, 5], degrees of freedom vj ∈ {10, 11, 12,

. . . , 98, 99, 100}, event rate λj ∈ {1, 2, 3, 4, 5}, probability of success πj ∈ [0.4, 0.6].

In order to also investigate more realistic distribution scenarios, we additionally generated
and analyzed data sets with dependent features and features from different distributions.
These studies yield similar results as the setting above and are described in the supple-
mentary material for this chapter (see Supplemental Section A.1.1).

Given the covariates X = (Xe, X̃), the outcome Y was generated according to a logistic
regression model: Y |X ∼ Ber(θ(X)), where θ(X) = (1 + exp{−(β0 +Xβ)})−1. We chose
the effects in terms of regression coefficients β = (βe, β1, . . . , β5)

′ as follows: The exposure
has a negative effect on the outcome with βe := log 0.5. The effects β1, . . . , β5 for the main
features are varied at random, namely uniformly on the interval [−0.15, 0.15] in order to
gain an intermediate performance of a classifier applied on an independent data set. β0 was
chosen such that P (Y = 1) = 0.1. By this setup the population with a rare exposure,
P (Xe = 1) = 0.1, and rare cases, P (Y = 1) = 0.1, is fully generated. In the Supplemental
Section A.1.2 we treat further simulations scenarios where these probabilities and the
sample sizes are varied.

In order to obtain a biased stratified sample, we simulated a two-phase random selection
process from the population (Figure 3.1a) such that P (Y = 1|S) = 0.5 and P (Xe =

1|S) = 0.5. In a first step an equal number of observations was randomly taken with
xe = 1 and with xe = 0. In a second step, in each of these two strata from the first



50 CHAPTER 3. CORRECTING CLASSIFIERS FOR SAMPLE SELECTION BIAS

step, an equal number of observations with y = 1 and y = 0 was selected. By this
we partitioned the population into four equally-sized strata corresponding to (y, xe) ∈
{(1, 1), (1, 0), (0, 1), (0, 0)}. By Supplemental Section A.1.3 we also cover the scenarios for
one-phase random selection processes, i.e. when there is only label bias or only feature
bias.

Test data sets of size 104 were created in exactly the same way as the population. For our
simulation study, we generated the population data set, the stratified data set and the test
set 1000 times for each feature distribution assumption. This way, we could empirically
assess the variability of the performance of the correction and classification methods.

Looking at the population’s univariate marginal distributions of the single variables and
comparing them to those of a biased sample arisen as described above, and to corrected
samples which were generated by parametric IP bootstrap indicates that the distribution
in the population is more similar to the corrected sample distribution than it is to the
distribution of the biased sample. (see Figure 3.3).

Application of classifiers

We apply the seven correction approaches (Section 3.2) combined with the four considered
classifiers (Section 3.2.4) to the synthetic data. To that end, stochastic IP oversampling
and parametric IP bagging, proposed by us (Section 3.2.2), require a distribution assump-
tion for the main features X̃. We always assume them to be normally distributed, even if
the features in fact follow a Student’s t, Poisson or Bernoulli distribution. We aim to find
out how the algorithms get affected when assumptions are not met.

In fact the four different distribution scenarios meet the Gaussian assumption in decreasing
order: The normal distribution trivially fulfills it. The t distribution is still continuous
and symmetric so that the violation of the normality assumption may not get too severe.
The Poisson distribution is discrete but approximately normal for λ ≥ 30; however, in
order to guarantee the normality assumption to be violated, we let λi ∈ {1, 2, 3, 4, 5}. The
Bernoulli distribution cannot be seen as continuous and violates the normality assumption
the most.



3.3. SIMULATION STUDY 51

x1

D
en

si
ty

−10 0 10 20

0.
00

0.
10

0.
20

x2

D
en

si
ty

−10 0 10 20

0.
00

0.
10

0.
20

x3

D
en

si
ty

−10 0 10 20

0.
00

0.
10

0.
20

x4

D
en

si
ty

−10 0 10 20

0.
00

0.
10

0.
20

x5

D
en

si
ty

−10 0 10 20

0.
00

0.
10

0.
20

population
non−corrected sample
parametric IP bootstrap sample

Figure 3.3: Distribution of variables from population, a biased sample and a generated
sample corrected by parametric inverse-probability bootstrap for the normal distribution
scenario. The corrected sample shows more similarity than the biased sample for the single
variables (confirmed by Wilcoxon-Mann-Whitney-test).

Evaluation

We measure the performance of the different classifiers combined with the various correc-
tion approaches by the AUC. The AUC is appropriate especially in the context of sample
selection bias since it does not require binary prediction (i. e. discretizing continuous risks
by choosing a cut-off) and is unaffected by linear transformations of the predictions as
only ranks are considered. Thus differences in performance should not be influenced by
good or bad calibration of the prediction.

The goal of the comparison is to see whether correction approaches perform significantly
better than not correcting. For each classifier, we fit a linear regression model with the
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AUC as target variable and the correction approach as covariate. The latter variable
is dummy-coded with ’no correction’ as reference category. An approach is determined
to differ significantly from the non-correction approach if its coefficient’s t-test confidence
interval does not contain zero. For all comparisons we use a level of significance of α = 5%.

Software

We used the statistical software R for all analyses [167]. More specifically, for building
logistic regression models we used the R package stats [167], for random forest the R
package ranger [190], and for naive Bayes the R package e1071 [119]. The modified
implementation of the SMOTE algorithm is based on the R package smotefamily [161].
We validated our results via ROC-analysis, using the R packages pROC [143] and ROCR
[160].

3.3.2 Results

The simulation study yielded the following results, see also Figures 3.4 to 3.7: As ex-
pected, for every distribution scenario (see previous subsection) and all classifiers the
performance of learning on the entire population was significantly better than learning
without correction on the smaller biased learning data set. Also, for all classifiers and in
all distribution scenarios, there was at least one correction technique that outperformed
the non-correction approach (with two exceptions: logistic regression with additional in-
teraction terms and naive Bayes, both in case of normally distributed main features).

However, there were differences between classifiers concerning the success of correction
approaches. We start by contrasting logistic regression and the random forest as this
comparison is of our primary interest:

The overall result for logistic regression (Figure 3.4) is that all correction approaches
perform significantly better than non-correction. Exceptions are costing and modified
SMOTE in the normal distribution scenario which on average performs better than non-
correcting, but not significantly. For t-distributed and Poisson distributed features the
difference between the performance of non-correction and the other approaches is more
prominent than for the normal distribution scenario. In the Bernoulli case, this difference is
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Figure 3.4: Performance of correction approaches in logistic regression, measured by AUC.
We fit a linear model for the AUC as influenced by the correction method (dummy-coded,
no correction as reference category). The graphic depicts 95% confidence intervals for the
respective coefficients. The dotted line shows the intercept of the model, i.e. the mean
AUC for no correction. The blue colored methods are newly proposed by us.



54 CHAPTER 3. CORRECTING CLASSIFIERS FOR SAMPLE SELECTION BIAS

Random Forest
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Figure 3.5: Performance of correction approaches in the random forest, measured by AUC.
We fit a linear model for the AUC as influenced by the correction method (dummy-coded,
no correction as reference category). The graphic depicts 95% confidence intervals for the
respective coefficients. The dotted line shows the intercept of the model, i.e. the mean
AUC for no correction. The blue colored methods are newly proposed by us.
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the highest. Within each distribution scenario, the correction approaches perform similar
to each other.

For the random forest the picture is rather different (Figure 3.5); only one correction
approach performs significantly better than non-correcting: the parametric IP bagging
proposed by us. In fact, for normally and t-distributed features all other correction meth-
ods perform even worse than non-correcting. In the Poisson scenario, they perform either
worse than non-correction or equally fine (IP bagging and costing). Only in the scenario
in which the assumption of having continuous main features (required by the approaches
proposed by us) are not met at all, i. e. for the Bernoulli distribution, almost all correction
approaches perform better than not correcting. An exception is stochastic IP oversam-
pling proposed by us. This approach failed in all distribution scenarios for the random
forest.

Properties according
to Section 3.2.3

Sufficient
performance

Correction approach (i) (ii) (iii) Logistic
regression

Random
forest

No correction × × × × ×
IP oversampling X × X X ×
IP bagging X X × X ×
Costing X X × (X) ×
Modifed SMOTE X (X) X (X) ×
Stochastic IP oversampling X X X X ×
Parametric IP bagging X X X X X

Table 3.1: Properties and performance of correction approaches for logistic regression
and random forest. The properties are: (i) a correction attempt is made at all; (ii) the
covariance structure of the learning data is attempted to be unbiased; (iii) learning is based
on a data set containing a larger number n′ of observations than the original stratified
data set (see Equation 3.3). Criteria are fulfilled (“X”), not clearly fulfilled (“(X)”) or not
fulfilled (“×”).

Table 3.1 summarizes the properties of the correction approaches (Section 3.2.3) together
with the just described results. We label the performance of an approach to be sufficient
if it results in a significant increase of the AUC as compared to the non-correction ap-
proach for the normal distribution scenario. Costing and modifed SMOTE do not yield
unambiguous improvements for logistic regression since their confidence intervals slightly
overlap with the value under the null hypothesis. However, as we will see in Section 3.4,
both approaches perform significantly better than non-correction on real data.

In order to obtain a more comprehensive picture of the benefit of correcting for sample
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selection bias, we applied the correction methods in combination with two more classifiers,
logistic regression with additional two-way interaction terms in addition to the linear terms
and naive Bayes, leading to the following results:

Logistic regression with interaction terms yields a similar picture as standard logistic re-
gression (Figure 3.6): All correction approaches perform similarly to each other. In the
t- and Bernoulli scenario, again all correction approaches outperform the non-correction
approach, except for costing for t-distributed features, which performs similar to non-
correcting. For both the normal and the Poisson distribution, all correction approaches
perform significantly worse than not correcting. An exception is parametric IP bagging:
Similarly to the random forest case, only this method performs significantly better than
no correction for the Poisson distribution scenario. For the normal distribution, the ap-
proach is the only one which does not perform significantly worse than the non-correcting
approach.

For naive Bayes (Figure 3.7), again all correction approaches behave similarly as in logistic
regression. Depending on the data distribution, correction approaches perform worse or
better than non-correction. Especially in the normal distribution scenario the correction
approaches are not successful.

3.4 Real data application

This section investigates the performance of the correction methods in a real data example.
Other than in the synthetic data situation in the previous section, we do not know the
true distribution of the entire population here. In order to still be able to evaluate the
predictions appropriately, we chose a very large real data set from which we could extract
a small stratified learning set and a large unbiased test set as described in the following.
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Logistic Regression with two-way interaction terms
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Figure 3.6: Performance of correction approaches in logistic regression with additional
two-way interaction terms, measured by AUC. We fit a linear model for the AUC as
influenced by the correction method (dummy-coded, no correction as reference category).
The graphic depicts 95% confidence intervals for the respective coefficients. The dotted
line shows the intercept of the model, i.e. the mean AUC for no correction. The blue
colored methods are newly proposed by us.
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Figure 3.7: Performance of correction approaches in the naive Bayes classifier, measured by
AUC. We fit a linear model for the AUC as influenced by the correction method (dummy-
coded, no correction as reference category). The graphic depicts 95% confidence intervals
for the respective coefficients. The dotted line shows the intercept of the model, i.e. the
mean AUC for no correction. The blue colored methods are newly proposed by us.
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Figure 3.8: Normal quantile-quantile plots for main features X̃ in real data set. For
visualization purposes, we only displayed a random sample of 10,000 observations instead
of the full data set of size 106.

3.4.1 Design

Data

We evaluate the various prediction methods on the example of the hepatitis data set (data
ID: 269, exact name: “BNG(hepatitis)”, version: 1) from OpenML [174]. It contains 106

observations of a binary outcome Y and 20 features. Y captures whether a hepatitis
patient stayed alive and hence takes the categories live and die. We chose the binary
variable sex as stratum feature Xe. From the remaining variables, we took into account
the four continuous features albumin, alkaline phosphatase, prothrombin time and age,
denoted by X̃. These features were approximately normally distributed (partly after
transformation, see the quantile-quantile plots in Figure 3.8) and strongly associated to
the outcome.

Stratification process

We aimed to evaluate the prediction methods on data sets which underwent sample selec-
tion bias. We hence constructed a learning data set by performing a two-phase stratified
random selection process on the hepatitis data set. To that end, we selected n = 2000 out
of the 106 observations, enriching the outcome Y and the feature variable sex, denoted
by Xe. Figure 3.9 shows the sizes of the four strata in analogy to Figure 3.1b. As test
data set, we chose a subset of 10,000 observations from the hepatitis data set, disjoint to



60 CHAPTER 3. CORRECTING CLASSIFIERS FOR SAMPLE SELECTION BIAS

before selection process after selection process

3,111 202,630

104,260 679,999

male

female

die alive

500 500

500 500

male

female

die alive

Figure 3.9: Cross table for the hepatitis data set before (left) and after (right) the selection
process of a two-phase case-control study.

the learning data. We defined the first 106 observations (without the test data) as the
population which served as reference learning data set as in the previous section.

3.4.2 Results

We trained all methods on the biased learning data and evaluated them on the unbiased
test data. The resulting AUCs are compared by seven pairwise hypothesis tests according
to [39]. We corrected for multiple testing via Bonferroni correction, i. e. set the threshold
for p-values to α∗ = 0.05/7 = 0.0071.

The real data results confirm the findings from the simulation study. For logistic regression,
all weighting approaches perform very similar, that was significantly better than the non-
weighting approach and even comparable to learning on a large population (Figure 3.10a).

For random forest we obtain similar results as in the simulation study (Figure 3.10b):
Only parametric IP bagging performs significantly better than the non-weighting approach.
Costing and IP bagging perform insignificantly better, IP oversampling, modified SMOTE
and stochastic IP oversampling perform significantly worse.

Also for logistic regression with interaction terms and naive Bayes we obtain results match-
ing with the simulation study: the assumptions for normality are met only roughly for the
real data, in which case the correction approaches all perform similarly and better than
no correction (Figure 3.10d).
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Figure 3.10a: Performance of logistic regres-
sion on real data. The graphic depicts 95%
confidence intervals for the respective AUC
value calculated and on the basis of [39]. All
correction approaches perform similarly and
significantly better than no correction (test
by [39], α∗ = 0.0071).
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Figure 3.10b: Performance of random forest
on real data. The graphic depicts 95% confi-
dence intervals for the respective AUC value
calculated and on the basis of [39]. Only
one correction approach, our novel paramet-
ric IP bagging, performs significantly bet-
ter than no correction (test by [39], α∗ =
0.0071).
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Figure 3.10c: Performance of logistic regres-
sion with all two-way interaction terms on
real data. The graphic depicts 95% confi-
dence intervals for the respective AUC value
calculated and on the basis of [39]. All
correction approaches perform significantly
better than no correction (test by [39], α∗ =
0.0071).

p < α*

 

p < α* p < α* p < α*
p < α*

p < α* p < α*

0.75

0.78

0.81

0.84

po
pu

lat
ion

no
 co

rre
cti

on

IP
 o

ve
rs

am
pli

ng

IP
 b

ag
gin

g

co
sti

ng

m
od

ifie
d 

SM
OTE

sto
ch

as
tic

 

 IP
 o

ve
rs

am
pli

ng

pa
ra

m
et

ric
 

 IP
 b

ag
gin

g

A
U

C

Naive Bayes

Figure 3.10d: Performance of naive Bayes
on real data. The graphic depicts 95% confi-
dence intervals for the respective AUC value
calculated and on the basis of [39]. All
correction approaches perform significantly
better than no correction (test by [39], α∗ =
0.0071).
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3.5 Discussion and Conclusion

We investigated how to learn classifiers on stratified random samples as resulting from
two-phase case-control studies. Here, our emphasis was on random forest classification
since previous bias correction methods did not pay special attention to resampling-based
classifiers. However, we studied a broad range of classification techniques. This work
hence guides the choice of such approaches also for other classifiers. The methods are
immediately applicable due to the implementations provided in our R package sambia.

State-of-the-art not always satisfactory — random forest requires novel
method

Both our simulation study and the real data application show that prediction from biased
on unbiased data sets can be improved if the stratification process is taken into account
and corrected for. However, state-of-the-art correction approaches from classical statistics
(IP oversampling, IP bagging, costing and modified SMOTE) do not yield the desired
improvement for random forests. In fact, they can even lead to worse AUC values than
those obtained when not performing any correction. From our two proposed approaches
(stochastic IP oversampling and parametric IP bagging), on the other hand, the latter
could always outperform the non-correction approach.

We were also interested in all correction approaches’ success when employed in the con-
text of logistic regression. It turned out that any method improves prediction on an
independent data set as compared to no correction, and all correction techniques perform
similarly.

Table 3.1 helps to explain the different behaviors of the two classifiers: Correction ap-
proaches are based on one or several of the principles (i) IP weighting, (ii) rebuilding the
original covariance structure and (iii) increasing the number of learning observations as
compared to the stratified sample. Obviously, weighting (Property i) should be applied
in order to obtain any improvement in performance. Moreover, the covariance structure
should be corrected for (Property ii) when applying a random forest. IP oversampling and
partly modified SMOTE failed to fulfill this criterion. For logistic regression, in contrast,
the covariance structure does not matter since point estimates of regression coefficients
are not affected when the variance in the data is underestimated. Last, sample sizes
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(Property iii) seem to matter more for random forests than for logistic regression. This
is reasonable since too small sample sizes can restrict the range of the values of a feature
and thus underestimate their variance leading to the same issue as for Property ii. This
made IP bagging and costing perform poorly for the random forest. This leaves us with
stochastic IP oversampling and parametric IP bagging, both proposed by us. However,
although stochastic IP oversampling was designed to fulfill Properties i, ii and iii, we could
not yield successful results for random forests.

The results for logistic regression suggest that all correction methods, except modified
SMOTE, may approximately result in the identical classifier since their performances
were very similar. This becomes clear to be the case, in fact, when the concepts of cor-
rection methods are compared: except for IP oversampling the correction approaches IP
bagging, costing, stochastic IP oversampling and parametric IP bagging, are all based on
aggregating resampled or bootstrapped data, so correspond to bagging methods. Bag-
ging is an approach which can transform instable classifiers to stable classifiers. However,
investigations have shown “when the classifier is rather stable, bagging is useless” [163].
The coefficient estimate for logistic regression is already the best linear unbiased estimator
(BLUE) if the assumptions of the linear model are met, thus the estimator has minimum
variance and is unbiased. Thus, bagging will in general not improve such a model.
In terms of correction approaches this holds as well: IP oversampling is identical to weight-
ing observations in maximum-likelihood estimation for logistic regression. This implicates
that all bagging correction approaches do not improve the model over the IP oversampling
approach and thus not the prediction of that, but they work and are unbiased in terms of
sample selection bias correction since weighting is incorporated.

Having compared correction methods in random forests and in logistic regression, one may
conclude that the choice of parametric IP bagging is advisable whenever the distribution
assumptions for this approach are met. In order to once more revise this conclusion, we
investigated the behaviors of all correction approaches in two more classifiers, a logistic
regression model with additional interaction terms and the naive Bayes classifier. For the
logistic regression model with interaction terms, once again only the parametric IP bagging
consistently outperformed the non-correction approach. For naive Bayes, all approaches
performed similarly among each other, confirming the above stated rule.

Against our expectations, naive Bayes failed in the simulation study for the normal dis-
tribution scenario but did well for all other distributions. A generally unexpected result
was the poor accomplishment of stochastic IP oversampling. It performed worse than
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non-correction in several scenarios and was successful only in those situations where all
other correction approaches were successful as well.

Parametric IP bagging — limitations and solutions

For a random forest, parametric IP bagging is an effective technique for prediction on
an unbiased data set and can also be preferred for other classifiers. However, in this
chapter we restricted our simulations and real data example to the case where the main
features could be assumed to be roughly normally distributed (after transformation, if
necessary) so that the assumption of a multivariate normal distribution was appropriate.
The success of parametric IP bagging generally depends on meeting the assumptions about
the distributions of the features. Hence, the method should be chosen with care. On the
other hand, our simulations show that even in scenarios where assumptions are barely
met (e. g. for Poisson distributed features), the approach still works. Clearly, one could
also adjust the distribution family for the parametric bootstrap in parametric IP bagging.
Even mixture distributions are conceivable e.g. for bimodal feature distributions.

So far, parametric IP bagging has not been designed for binary or categorical main features
or combinations of different types. This could be done by subgrouping the corresponding
categories (or combining categories in the case of several categorical features) and estimat-
ing parameters in each of the subgroups for the assumed distribution family analogously to
what we did for the different strata. Again, one would draw parametric bootstrap samples
within all subgroups and construct a new unbiased sample within the scope of parametric
IP bagging.

Novel methodology recommended for stratified random samples

Even though our new approaches were developed for the random forest, they are gener-
ally tailored towards learning by any classifier and can be incorporated in other machine
learning algorithms. Parametric IP bagging has shown to perform well even if theoreti-
cal assumptions are not met. It can be applied on any stratified random sample and is
not restricted to two-phase case-control studies. More generally, it is suited for any sam-
ple suffering from sample selection bias where the stratum-features are categorical and
the remaining features roughly follow a multivariate distribution from which parametric
bootstrap samples can be drawn. For general classifiers, its performance is mostly com-
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parable to that of other correction methods. Parametric IP bagging is the first correction
method designed for the random forest and in that context clearly outperforms all other
approaches.

With this project on sample selection bias in stratified random samples we have addressed
one issue that often arises in studies caused by their special design where maximal power
is desired. In particular we treated the case of training classifiers in two-phase case-
control studies. The next chapter is an application on real data resulting from a study on
childhood asthma where the study design exactly corresponds to a two-phase case-control
study. There the enrichment of the exposure variable “farm” and the outcome variable
“childhood asthma” cause the sample selection bias. Thus correction solutions will have
to be taken into account when classifiers are trained and, in this case, also when they are
validated, as also validation data is affected by sample selection bias.

3.6 Additional Material

Additional figures, code and data are available at https://www.helmholtz-muenchen.

de/index.php?id=47085 and in the appendix of this thesis.
Software in terms of the R-package sambia implements all correction approaches used in
this thesis and is available on CRAN [103].

https://www.helmholtz-muenchen.de/index.php?id=47085
https://www.helmholtz-muenchen.de/index.php?id=47085
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Chapter 4

Encountering big data: predicting
childhood asthma risk by genetic
and environmental variables

About two decades ago, the human genome project elicited much hope and fear about
genome-wide testing. It was hypothesized that the resulting knowledge “may foretell fu-
ture disease and [. . . ] could be used to discriminate against or stigmatize a person” [37]. In
the meantime, international consortia bringing together more than 10,000 cases [115, 123]
have discovered various genetic determinants of childhood onset asthma, a paradigm of
a polygenic disease with additional environmental determinants [45], which may even
interact with the underlying genotype [131]. With these genetic and environmental deter-
minants, much of the variance in population studies can be explained. But what does this
imply for an individual? Do these determinants “foretell future disease” [37] in individuals?

In their meta-analysis of genome-wide association studies (GWAS) on childhood onset
asthma, Moffatt and colleagues actually reported low predictive values with a very modest
AUC of 0.58, with 0.5 marking no predictive value at all [123].

This modest prediction quality conflicted with the strong hereditary background postu-
lated from twin studies [43]. On the other hand, the relatively weak association of asthma
with family history in the GABRIELA study [80] contrasts with the twin studies and
points towards interactions with environmental exposures likewise shared by twins.
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In search of gene-environment interactions for childhood asthma exposures related to farm-
ing have been explored with inconclusive results. This is illustrated by the interaction of
farm milk consumption with the innate immunity receptor CD14 [17], which later was
invalidated in a well-powered genome-wide interaction study [49].

The impact of genetic loci on clinical phenotypes is typically tested or predicted univari-
ately. However, with about 0.6 to 0.7 million independent loci in the human genome [42],
the multiplicity of univariate tests severely reduces the overall statistical power. This is a
conceptual limitation of the classical test theory and can hardly be overcome by merely
increasing case numbers. In risk prediction modeling, likewise, univariate models limit the
predictive power as they leave out potentially important dependencies between loci. The
concurrence of all loci is exploited most effectively by incorporating them into one multi-
variable model. However, the large amount of variables poses a computational challenge
and often discourages researchers from multivariable analyses. The aim of the present
study was to explore novel statistical tools, which consider predictor variables integra-
tively rather than separately. We hypothesized that these methods would substantially
improve individual-level disease prediction based on genetic information and interactions
with environmental variables.

This chapter is in parts identical with the following manuscript:
[101]: Norbert Krautenbacher, Michael Kabesch, Elisabeth Horak, Charlotte Braun-Fahrländer,
Jon Genuit, Andrzej Boznanski, Erika von Mutius, Fabian J Theis, Christiane Fuchs, and
Markus J Ege. Predicting childhood asthma risk by genetic and environmental variables.
submitted, 2018

4.1 Data collection

The following data collection methods have been performed by the clinical partners in-
volved in this chapter’s project or members who were involved in the study conduct.

4.1.1 Population and questionnaires

The participants of this analysis were enrolled in the Austrian, Swiss, and German arms
of the cross-sectional GABRIEL Advanced Studies (GABRIELA) [65]. By a stratified
random selection process (Figure 4.1), informative children were enriched in order to gain
maximum power for association analyses in genome-wide data [49]. The selection process
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corresponded to a two-phase case-control study similar to the situation investigated in
Chapter 3. These 1,707 GABRIELA participants were also included in previous meta-
analyses of asthma [123].

Invited to participate: 
n=132,518 

Participation in phase 1: 
n=79,888 

Children eligible for phase 2: 
n=34,491 

(with full consent) 

Participation in phase 2: 
n=9,668 

(enriched for farm exposure) 

Genome-wide testing: 
n=1,707 

(enriched for asthma cases) 

Training: 
n=1,410 
(DE, CH) 

Validation: 
n=297 

(AT) 

Figure 4.1: Participant flow in the GABRIELA study

The questionnaires contained items on individual and family health, socioeconomic back-
ground, and farm-related exposures. According to the German ISAAC definition [182],
childhood asthma was defined in school children as a physician diagnosis of asthma at
least once or of asthmatic bronchitis at least twice. If a child lived on a farm run by the
family, the child was termed “farm child” (n = 483), and “non-farm child” (n = 1, 224)
otherwise. Other farm-related exposures were related to raw milk consumption or contact
with animals or animal feed. Those variables were included either as exposure in the first
years of life or as exposure during the past 12 months.

For external validation, the models were trained on the Swiss and the two German arms
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Table 4.1: SNPs reported for childhood asthma in the GWAS catalog [114]
SNP Region Reported genes* Comments
rs4658627 1q44 C1orf100 chromosome 1 open reading frame 100
rs9815663 3p26.2 IL5RA interleukin 5 receptor subunit alpha
rs2705520 3q13.2 ATG3 Autophagy Related 3
rs17033506 3p22.3 (intergenic) ARPP21: cAMP Regulated Phosphoprotein 21
rs9823506 3q12.2 ABI3BP ABI Family Member 3 Binding Protein
rs6871536 5q31.1 RAD50 RAD50 Double Strand Break Repair Protein
rs1295686 5q31.1 IL13 Interleukin 13
rs2473967 6q21 (intergenic) LOC105377956; LOC105377953
rs6967330 7q22.3 CDHR3 Cadherin Related Family Member 3
rs9297216 8p12 (intergenic) LOC105379365
rs16929097 9p23 (intergenic) TYRP1 (Tyrosinase Related Protein 1)
rs11141597 9q21.33 (intergenic) LOC105376124 / GAS1
rs928413 9p24.1 IL33 Interleukin 33
rs7927044 11q24.2 (intergenic) LOC107984373; LOC387820
rs7328278 13q13.3 (not reported) DCLK1 (Doublecortin Like Kinase 1)
rs10521233 17p12 (intergenic) LOC105371544; LOC107985014
rs2305480 17q21.1 GSDMB Gasdermin B
rs3894194 17q21.1 GSDMA Gasdermin A
rs7216389 17q21.1 ORMDL3 ORMDL sphingolipid biosynthesis regulator 3
* Genes are reported by authors of original publications [114]. If no genes are reported,

mapped genes are given in the comments column.

of GABRIELA (n = 1, 410) and validated in the independent population of the Austrian
GABRIELA arm (n = 297); the relation of the sizes of training and validation datasets
was chosen for an optimal trade-off of variance and bias [74]. In addition, n = 928 children
of the prospective PASTURE birth cohort served for external validation of the final model
in a cohort design.

4.1.2 Genotyping

Genotyping was performed with the Illumina Human610 quad array (Illumina Inc, San
Diego, Calif, http://www.illumina.com), and quality was assessed as described previ-
ously [123]. SNPs were identified by linkage disequilibrium patterns from the HapMap
CEU SNP panel version 2 and the 1000 Genomes pilot 1 release [64]. Candidate SNPs
(Table 4.1) were defined as SNPs included in the GWAS catalog for childhood onset asthma
[114].

http://www.illumina.com
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4.2 Computational and statistical analysis

All statistical analyses were performed with R software [167]. We employed genotyped
SNPs and imputed SNPs, obtained from HapMap CEU SNP panel version 2 with the
use of Markov chain-based haplotyper [110]. SNPs were filtered for imputation quality:
the so called estimated r2 or Rsq is the estimated correlation between imputed and true
genotypes. We removed SNPs with Rsq < 0.30. In addition, SNPs with a low minor allele
frequency (MAF < 0.05), i.e. SNPs where the less frequent allele occurred too rarely,
were removed. Using the R package SNPRelate, we pruned for linkage disequilibrium by
removing SNPs within a 5 · 105 SNP window that had r2 > 0.95 [191]. By this we reduced
the imputed SNP data from 2,543,887 SNPs to 744,908 SNPs.

Imputing missing values

Environmental variables (Supplemental Table A.1) had less than 25% missing values;
missing values of existing variables were imputed by multiple imputation with the MICE
algorithm using the R package MICE which we described in Chapter 2 Section 2.2.3. Con-
tinuous variables were imputed by predictive mean matching, binary variables by logistic
regression, multicategorical variables by a multinomial logit model. We used five imputa-
tions and kept the required multiple imputation steps through all our analyses according
to Rubin [148] (see also Section 2.2.3).

Response

Apart from the main response variable doctor-diagnosed asthma, we investigated the
asthma phenotype in a more unambiguous way. To that end, we left out subjects who
reported current wheeze or used asthma sprays but were not diagnosed with asthma (sen-
sitivity analysis). By this definition, 166 of the 1707 subjects dropped out.

In a further investigation, we defined children to have asthma irrespectively of bronchitis.
Children without doctor-diagnosed asthma were treated as controls. By this definition 4
of the 1707 subjects dropped out due to missing data on asthma diagnosis.



72 CHAPTER 4. PREDICTING ASTHMA RISK BY GENETICS+ENVIRONMENT

Prediction models

We compared multivariable approaches to a state-of-the-art strategy for developing a pre-
diction model from GWAS: There are several ways of selecting SNPs univariately and
building prediction models from it. According to an extensive investigation of these ways
[191], the best strategy is a one-phase procedure, which we chose using all training data
to select SNPs and to estimate the coefficients for the SNPs. We ranked the p-values
starting with the smallest and included the best 100 SNPs for building a prediction score
as recommended in the literature [191], yielding the highest AUCs according to their in-
vestigations: Marginal multiple simple logistic regression models were fitted for each SNP
j, i.e. P (yi = 1|xij) = (1 + exp(−(β0 + βjxij)))

−1 . We then built a score Si for subject i
from the sum of the univariately estimated coefficients of the 100 top SNPs:

Si =
100∑
j=1

xij β̂j .

In addition to classical GWAS performing an association test univariately for each single
SNP [123, 191], we incorporated all variables at once in multivariable statistical learn-
ing models with the following regularization methods: the least absolute shrinkage and
selection operator (LASSO) and elastic net (cf. Section 2.3.3) as our goal was to select im-
portant variables from many candidate variables, so that we used those penalty terms that
penalize non-influential coefficients to zero. Further, in order to incorporate all modalities
appropriately and avoid issues that can arise for multi-omics data (cf. Chapter 1), we
implemented the integrative L1-penalized regression with penalty factors (IPF-LASSO)
(cf. Section 2.3.4). As a further state-of-the-art machine learning method we used the
random forest (cf. Section 2.3.6) .

Each of the mentioned multivariable classification models was applied to the determinants
demographics, environment, family-history, and genetics, each separately and then step
by step on several to all determinants at once including a further modality incorporating
selected interaction terms between the modalities.

Sample selection bias in data at hand

Since the data were not taken by pure random sampling but by a stratified random se-
lection process (details in Ege et al. [49]), sample selection bias occurred [100]. Statistical
analysis had to take this into account. From the selection process, selection probabilities
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were available so that appropriate information from an unbiased large population (34,4391
children obtained after phase 1) could be taken into account. This was incorporated in
correction approaches in the learning and the validation procedure as elaborated in the
following.
To correct the point estimates for the effects for sample selection bias in logistic regression,
the observations were weighted by inverse-probability weights wi [100] which were given
after the stratified random selection process [162]. Then the modified log-likelihood was
given by

`mod(β0,β) =

n∑
i=1

wi(yi(β0 + x′iβ)− log(1 + exp(β0 + x′iβ))).

Since this is a modification of maximum likelihood estimation in the common sense, this
function is called pseudo-maximum-likelihood [162]. This correction was applied to all
classifiers based on logistic regression. The approach results in the same coefficient esti-
mates as IP oversampling (cf. [100]/Chapter 3).

As this correction still gives biased estimates for the standard errors of the regression
coefficients, for the prediction model based on GWAS and ranking p-values the standard
errors were adjusted: for p-value calculation, the standard errors of β̂ were adjusted by
design-based standard errors with approximation via Taylor series with the R-package
survey [113].

Random forests, however, as an ensemble of many classification trees can be affected
by the so-called imbalanced data classification problem [35]. In general, state-of-the-art
correction methods for sample selection bias would cause such imbalanced data in the
present study; our investigations have shown that most correction methods indeed do
decrease performance of the random forest if the data at hand is sampled from such
a stratified random sample ([100]/Chapter 3). The novel approach parametric inverse-
probability bagging which has shown to be successful for random forests in Krautenbacher
et al. [100]/Chapter 3 was not suitable for the data at hand: especially SNP data, seen
as continuous variables, typically have skew distributions rather than being eligible for
being approximated by a multivariate normal distribution — the distribution should be
either symmetric (and to be approximated by a multivariate normal distribution) or be a
Bernoulli distribution, but none of it is the case. Thus, for this method we went without
correcting for sample selection bias in the learning process; otherwise the classes of the
response would get strongly imbalanced. However, for comparison we applied parametric
IP bagging and show results in the supplement (Figure A.11).
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Model selection and validation

Model selection and 5-fold cross-validation was performed on the 1,410 Swiss and German
participants. The best models were then externally validated in the 297 Austrian partici-
pants and additionally in the PASTURE birth cohort. As a metric for model comparison,
we applied the AUC with a bootstrapped 95%-confidence interval [54]. If not indicated
otherwise, AUC values refer to random forest models.

Variable importance

In order to identify the most important variables for prediction, we considered those
variables that were selected by the most successful prediction model. In most of the
analyses the random forest turned out to perform best, however, for the best model on
farm children also IPF-LASSO nearly performed as well as the random forest. In the
latter analyses we investigated both models.

In case of random forests we used Altmann’s method (cf. Chapter 2). For variable
importance in genome-wide applications, however, we used a further version based on
cross-validation instead of OOB (out-of-the-bag) observations, proposed by [89]. This
version works well for high-dimensional data (but was too unstable for the low-dimensional
analyses) but is a much faster implementation of a random forest variable importance
measure. For the latter we took the multiple testing issue into account, see also the
Supplemental Section A.2.1.

For the IPF-LASSO we determined the most important variables as follows. Any version
of LASSO per definition only selects variables contributing to good prediction. Hence,
we interpreted the selected variables as the important ones. We determined the degree
of importance of these variables as the size of the highest penalty λ for which the corre-
sponding coefficient still remained non-zero. This is plausible since the more predictive a
variable, the stronger one can penalize it without its coefficient being set to zero by the
LASSO-procedure.
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4.3 Correcting and comparing losses for sample selection
bias

In this section we will propose how to correct a loss, here in terms of AUC, for sample
selection bias when classifiers have to be validated. Weights have been incorporated for
calculating the loss [38] and been implemented for the AUC [57]; however, no unbiased
confidence intervals have been provided.

Further, we will propose a test of significance for comparing two losses, again here in terms
of AUC. Such a test has been proposed [39] for comparing AUCs; however, it will give
biased results under sample selection bias. In our bootstrap-based [46] version inverse-
probability weights are incorporated in order to correct for sample selection bias.

Correcting confidence intervals for AUC by bootstrap using selection proba-
bilities

Sample selection bias does not only affect the training of a model but also its evaluation. In
addition, confidence intervals for the AUC are desirable but would be biased without cor-
recting for sample selection bias. Hence, both the evaluation and the confidence intervals
should be adjusted, e.g. by weighting [38]. However, an established evaluation weighting
approach given for certain loss functions [38] is not directly applicable to the AUC. There-
fore, we propose a different approach resolving both issues: We perform weighting by the
use of bootstrap [46]. For the predicted risk ŷ = (ŷ1, . . . , ŷn) and the corresponding true
response y = (ŷ1, . . . , ŷn), the corrected AUC is then given by

1

B

B∑
b=1

LAUC(ŷb, yb)

where the pair (ŷb, yb) corresponds to the b-th bootstrap sample, b ∈ {1, . . . , B}, which
is built by resampling n elements with replacement from (ŷ, y), using selection probabil-
ities proportional to wi for observation i. LAUC denotes the loss function, which here
corresponds to the AUC. We construct a percentile-confidence interval

[LAUC,2.5%(ŷb, yb), LAUC,97.5%(ŷb, yb)]

with LAUC,q(ŷb, yb) denoting the empirical q-quantile of the B bootstrap values LAUC(ŷb,

yb)b=1,...,B. For all our analyses in this chapter, we chose B = 10, 000.
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A bootstrap test for pairwise AUC comparison using selection probabilities

Similarly to the corrected confidence intervals introduced above, we implemented a test
based on selection probabilities for the pairwise comparison of two AUC values when
validated on the same data. Let ŷ(1) = (ŷ

(1)
1 , . . . , ŷ

(1)
n ) be the predicted risk by a first

classifier, ŷ(2) = (ŷ
(2)
1 , . . . , ŷ

(2)
n ) the predicted risk by a second classifier and again y =

(y1, . . . , yn) the corresponding true response. We regard the corrected difference of AUCs

1

B

B∑
b=1

DAUC(ŷ(1),b, ŷ(2),b, yb)

with
DAUC(ŷ(1),b, ŷ(2),b, yb) := LAUC(ŷ(1),b, yb)− LAUC(ŷ(2),b, yb)

where the pair (ŷ(k),b, yb) for classifier k ∈ {1, 2} corresponds to the b-th bootstrap sample,
b ∈ {1, . . . , B}, again, taken by using selection probabilities proportional to wi. We
construct a percentile-confidence interval for this difference by

[DAUC,2.5%(ŷ(1),b, ŷ(2),b, yb), DAUC,97.5%(ŷ(1),b, ŷ(2),b, yb)]

with DAUC,q(ŷ
(1),b, ŷ(2),b, yb) denoting the empirical q-quantile of the B terms DAUC(ŷ(1),b,

ŷ(2),b, yb)b=1,...,B, again obtained via bootstrap with selection probabilities proportional to
wi. As before, we chose B = 10, 000. We consider two classifiers to perform significantly
different — i.e. we reject the null hypothesis H0: “AUC for classifier 1 is equal to AUC
for classifier 2” — if the confidence interval does not overlap with zero. Analogously, one
can test H0: “AUC for classifier 1 is less than or equal to AUC for classifier 2”, if AUC for
classifier 1 is expected to be at least as good as classifier 2. The corresponding one-sided
percentile-confidence-interval is

[DAUC,5%(ŷ(1),b, ŷ(2),b, yb), 1].

4.4 Results

The n = 850 cases and n = 857 controls included in the present analyses differed with
respect to sex, family history of asthma and atopy, and various farm-related exposures
(Table 4.2, Supplemental Table A.1).
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Table 4.2: Potential determinants of asthma. A selection of variables included in demo-
graphics, family history or environment are shown. Sex, family history of asthma and
atopy, consumption of farm milk, contact with cows or straw and living on a farm show
significant association to childhood asthma.
Characteristic Cases (%) Controls (%) p-value*

n=850 n=857
female sex 39.70% 49.40% 0.002
age§ 8.32 (0.06) 8.19 (0.06) 0.15
body mass index§ 17.11 (0.11) 16.99 (0.11) 0.375
family history of atopy 70.00% 49.40% <0.001
family history of asthma 30.06% 12.40% <0.001
living on a farm 9.00% 13.60% <0.001
at least two siblings 0.42 (0.02) 0.45 (0.02) 0.374
high parental education 27.30% 28.80% 0.633
maternal smoking during pregnancy 12.40% 8.50% 0.037
consumption of farm milk during past 12 months 13.40% 19.40% <0.001
consumption of farm milk in first year of life 6.20% 11.80% <0.001
consumption of farm milk (pregnancy to age 3yrs) 20.70% 27.60% <0.001
contact with cows (past 12 months) 12.90% 16.60% 0.02
contact with cows (pregnancy to age 3yrs) 14.60% 20.30% <0.001
contact with straw (past 12 months) 15.70% 21.10% 0.009
contact with straw (pregnancy to age 3yrs) 12.40% 16.20% 0.009
contact with hay (past 12 months) 29.70% 33.50% 0.145
* p-values based on Fisher’s exact test or, in case of continuous variables, Wilcoxon tests

§ mean and standard error of mean
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Figure 4.2: Risk of childhood asthma by environmental exposure, family history, and
genetics. Individual risks are assessed by weighted logistic regression in a 5-fold cross-
validation procedure based on (A) the four variables for family history; (B) the three
demographics variables sex, age, and body mass index, (D) the environmental variables
listed in Table A.1 in the supplement, and (D) the 19 candidate SNPs listed in Table 4.1.
Empirical density functions are estimated by kernel density estimation. The distribution
of the individual asthma risk differed clearly between cases and controls in all models as
confirmed by Kolmogorov-Smirnov tests with all p < 10−6. The overlap in density mass
between cases and controls is given as percentage.
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The distribution of the individual asthma risk estimated by kernel density estimation
was assessed by separate weighted logistic regression models for family history of asthma,
demographics, environmental variables, and genetics (Figure 4.2). Though the distribution
of the individual asthma risk differed between cases and controls in all models, there was
a substantial overlap of the asthma risk distribution as determined by the area under
the density functions (density mass) between both groups, rendering prediction of asthma
risk on an individual level very difficult. The most pronounced difference in asthma risk
between cases and controls was found for family history with only 37% of density mass
overlap.

Given the inadequate separation of asthma risk between cases and controls, we explored
various multivariable learning approaches (multivariable logistic regression with LASSO
penalty, multivariable logistic regression with elastic net penalty, and random forest) to
improve the discriminatory power of the prediction. When assessing groups of variables,
i.e. family history, demographics (sex, age and BMI), environment, and genetics sepa-
rately, the various methods did not differ with respect to prediction quality (Figure 4.3,
upper panel).



4.4. RESULTS 79

All children

Non−farm children

Farm children

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

family−history demographics environment candidate SNPs SNPs 
 genome−wide

A
U

C
A

U
C

A
U

C
method Log.Reg. (LASSO) Log.Reg. (Elastic Net) Random Forest GWAS−Log.Reg.

Figure 4.3: Comparison of prediction performance for different groups of predictors and
statistical methods. Prediction performance of the variable groups family-history, demo-
graphics, environment, candidate SNPs (Table 4.1), and genome-wide SNPs on a stand-
alone basis. As statistical methods, we used multivariable logistic regression with LASSO
penalty, multivariable logistic regression with elastic net penalty, the random forest and
multiple logistic regression models. The AUC is calculated as mean over 5 imputation data
sets with 95% confidence intervals constructed by bootstrap using selection probabilities.
The dotted line at 0.5 corresponds to the AUC-value where a prediction model classifies
cases and controls not better than at random.

Again, family history was the best predictor of childhood asthma with an AUC value of 0.62
[0.57-0.66] in the random forest model. All other groups of variables did not predict better
than by chance except for environmental variables in the random forest model (AUC=0.55
[0.51-0.59]). When stratifying prediction models for the two major study groups, i.e.
farm children and non-farm children, we noted that the joint model was driven by the
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non-farm children (Figure 4.3, middle panel), who accounted for about two thirds of the
population. For farm children, however, different prediction models emerged: instead of
environmental variables, demographics and genome-wide SNPs (AUC=0.61 [0.51-0.70])
predicted significantly (Figure 4.3, lower panel). Of the 744,924 GWAS SNPs about
3700 SNPs were estimated to be significant in the genome-wide prediction model (see
Supplemental Figure A.7). Among asthma cases many more SNPs differed significantly
between farm and non-farm children as compared to non-cases (see Supplemental Figure
A.8).

In an effort to explore combined effects of all predictors, we sequentially complemented
prediction by family history with demographics, with environmental variables or candi-
date SNPs or both, and finally by interaction terms for the SNPs and the other variables.
For all groups of variables, random forest and IPF-LASSO performed much better than
simple LASSO (Figure 4.4, upper panel) and the other techniques. Prediction by family
history was significantly (Table 4.3) improved by demographics and environmental vari-
ables (AUC= 0.65 [0.61-0.70]) or, in case of farm children, by demographics and candidate
SNPs (AUC= 0.70 [0.62-0.78]), whereas GWAS SNPs and interaction terms did not further
improve prediction quality (Figure 4.4, lower panel).
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Figure 4.4: Prediction performance for family-history and additional predictors for dif-
ferent statistical methods. Prediction performance for models based on family-history
alone and successively combined with demographics, environment or candidate SNPs,
environment and candidate SNPs, environment interacting with candidate SNPs, and de-
mographics plus genome-wide SNPs. As statistical methods, we used multivariable logistic
regression with LASSO penalty, IPF-LASSO, and the random forest. The AUC is calcu-
lated as mean over 5 imputation data sets with 95% confidence intervals constructed by
bootstrap using selection probabilities. The dotted line at 0.5 corresponds to the AUC-
value where a prediction model classifies cases and controls not better than at random.

The most successful prediction models shown in Figure 4.4 were subsequently assessed for
the contribution of individual variables to the entire model and externally validated. In
the random forest prediction model for all children (AUC= 0.64 [0.54-0.73], Figure 4.5,
left panel) and non-farm children (AUC= 0.63 [0.53-0.72], Figure 4.5, center panel) the
variables for family history of asthma and atopy scored highest with respect to variable
importance, followed by the demographics age and sex, but also 26 environmental exposure
variables such as contact to cats, dogs, cows, straw, and hay. For farm children (Figure 4.5,
right panel), also family history and sex contributed most importantly to the prediction
models. Instead of environmental variables, however, three candidate SNPs emerged as
significant predictors, one of them intergenic. The two other SNPs are known to be
related to IL33 and RAD50 (Table 4.1). Sensitivity analyses using IPF-LASSO confirmed
the IL33 SNPs from the random forest prediction model (Figure 4.6) with an AUC of
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Table 4.3: Confidence intervals for bootstrap test of the difference between two AUCs for
combined prediction model against a single determinant prediction model. For comparison
of the AUC of the best prediction model combining several determinants (Figure 4.4) to
the best prediction model for one determinant (always family-history, Figure 4.3), a one-
sided bootstrap test for the difference between two AUCs was calculated with a level of
significance of 0.05. The resulting lower bounds of the 95%-confidence interval of the
differences in the AUCs are shown. For each subgroup (all children, non-farm children,
farm children) the confidence interval for the difference to the AUCs does not overlap with
the null — the AUC of the synergy model is significantly higher than the AUC for family
history.

Subgroup Best stand-alone model
(Figure 4.3, random forest)

Best synergy model
(Figure 4.4, random forest)

lower bound of
95%-CI
for AUC
difference

all children family history family history + demographics + environment 0.0051
non-farm children family history family history + demographics + environment 0.0078
farm children family history family history + demographics + candidate SNPs 0.0019

0.86 [0.59-0.99] averaged over the prediction scores of random forest and IPF-LASSO (see
Supplemental Section A.2.4 for details).

A sensitivity analysis revealed AUCs of 0.57 [0.51-0.64] and 0.55 [0.51-0.58] for prediction
by candidate SNPs and demographics in all children with and without a family history of
asthma, respectively. External validation in the Austrian GABRIELA arm (Figure 4.7A)
and the PASTURE birth cohort (Figure 4.7B, summary of variables see Supplemental
Table A.2) confirmed the AUC values from the previously cross-validated random forest
model. Sensitivity analyses using different asthma definitions yielded a better prediction
quality for a model excluding individuals with current wheeze or asthma medication from
the reference group (Figure 4.7C) and a model using only an asthma diagnosis irrespec-
tively of obstructive bronchitis (Figure 4.7D).

Additional results for applying parametric IP bagging are shown in the supplement, Section
A.2.5, which confirms that the approach works moderately for binary (environmental)
variables but fails for SNP data which is neither symmetrically distributed nor binary as
the scenarios in Chapter 3.
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Figure 4.5: Importance of variables contributing to the best prediction models. Variable
importance determined by random forest models for all children (left figure) and stratified
for non-farm (center figure) and farm children (right figure).

4.5 Discussion

Asthma risk as predicted by logistic regression based on family history of asthma or
atopy, demographics, environmental variables, and genetic data overlapped between cases
and controls to a large extent thereby challenging disease prediction on an individual
level. With the use of sophisticated methods from the area of machine learning, which al-
low for multivariable consideration of predictors, performance of prediction was improved
noticeably beyond the classical logistic regression approach. In combined models, pre-
diction of asthma was mainly driven by family history, sex, and various environmental
variables, whereas candidate and genome-wide SNPs did not improve prediction. Only in
farm children, genetic information contributed significantly to the prediction model, while
environmental exposure did not add to prediction models in this group of children. Table
4.4 summarizes the top AUCs.
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Figure 4.6: Variable importance by IPF-LASSO for the best model in farm children. De-
terminants of the prediction model IPF-LASSO in farm children which performed similarly
to the random forest in the internal validation (Figure 4.4), sorted by importance (λ, left
panel) with respective effect sizes (βi, right panel). Positive βi values represent risk fac-
tors; negative values represent protective factors; λ and βi values are averaged over the 5
imputation datasets.

Unbiased validation guaranteed by incorporating sample bias and use of
external data

Validation of prediction models was threefold: for a selection of a best model, cross-
validation within the GABRIELA training data was performed; for a first external vali-
dation the Austrian GABRIELA arm and for a further external validation the PASTURE
study were used. The first two validation procedures would be biased if performance was
calculated without correction for sample selection bias. By correcting confidence intervals
for the AUC via bootstrap using inverse-probabilities as selection probabilities we could
guarantee that point and interval estimates were both unbiased. Further we provided a
test for determining whether a prediction model performed significantly better than an-
other one by again incorporating the principle of bootstrap with selection probabilities.
By this, model comparison could be performed correctly.
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Table 4.4: Top AUCs on different validation data. Best prediction was accomplished by
analysis on farm children only. External validation using all children led to lower AUCs.
In each case, the classifier was random forest.

Subgroup
Best AUC
cross-validated
(Figure 4.4)

Best AUC on
Austrian
GABRIELA arm
(Figure 4.7 A)

Best AUC on
PASTURE
(Figure 4.7 B)

all children
(family history + demographics + environment) 0.65 0.64 0.62

non-farm children
(family history + demographics + environment) 0.65

farm children
(family history + demographics + candidate SNPs) 0.70

Methodological shortcomings in previous prediction models overcome by
multivariable modeling

The GWAS of the last two decades were definitively a success when considering the dis-
covery of new loci and the confirmation or invalidation of candidate genes [129, 135].
However, the above-mentioned expectations with respect to disease prediction in individ-
uals have not been fulfilled, regardless whether anticipated with hope or fear. Moffatt
and colleagues already reported a low AUC of 0.58 for the seven top SNPs identified by
their meta-analysis for childhood asthma [123]. However, this figure might be biased for
the following reasons: First, the prediction model was fitted on the entire dataset leaving
no independent sample for validation, which may have resulted in a too optimistic AUC.
In our population such an approach would have resulted in an AUC of 0.60 for GWAS
SNPs, instead of 0.54 as reported in Figure 4.3 (upper panel). Second, the approach
chosen by Moffatt and colleagues integrated only the top seven SNPs thereby ignoring
additional information provided by the SNPs that missed genome-wide significance or
summary statistics in general, and thus may underestimate the true predictive power of
a genome-wide approach [22, 135]. This second issue was exactly the starting point of
our endeavor. We sought to integrate all available genetic information by multivariable
modeling and to complement that with questionnaire data on familial predisposition and
strong environmental determinants.

Therefore we applied random forest and various forms of penalized multivariable logistic
regression such as LASSO, elastic net, and IPF-LASSO. These models find an optimal
trade-off between statistical exhaustiveness and the risk of model overfitting; the latter
might negatively impact external validity and thus predictive power.



86 CHAPTER 4. PREDICTING ASTHMA RISK BY GENETICS+ENVIRONMENT

For comparison, we also applied a two-step approach with first performing a classical
simple logistic regression and second creating a prediction score based on the top hits of
the previous step [191].

Analyzing modalities separately — best prediction by family history

Before combining environmental, genetic, familial, and demographic variables we assessed
these four modalities separately (Figure 4.3). By our proposed solution for testing AUCs
pairwise in a corrected manner, we showed that combining several of these compartments of
variables leads to significantly better prediction than using them separately. With the use
of random forest, we found significant prediction by environmental variables considering
about 40 variables. Among those, exposure to cats and dogs contributed rather impor-
tantly to the prediction of asthma (Figure 4.5) though in GABRIELA these exposures
were only related to atopic sensitization [88]. Otherwise, there were strong associations
observed in this population with farm exposure reducing asthma risk by 37% and raw
milk consumption by 45% [49], which contrast with the rather modest AUC-value of 0.55
[0.51-0.59] in the present analysis. Association estimates, however, are only meaningful
in risk factor research or for prevention in populations, whereas prediction refers to indi-
viduals and requires much stronger associations with outcomes [69, 94]. Family history of
asthma, e.g., increased asthma risk by 208% [49], which is reflected by the much better
prediction achieved with the four variables concerning family history.

Random forest on genome-wide data as best prediction model purely
based on genetics

Genetic effects, in turn, are rather weak in polygenic diseases. Even more the random
forest prediction model by genome-wide SNPs with its AUC of 0.61 [0.51-0.70] in farm
children is remarkable (Figure 4.3A, lower panel). It may reflect improved prediction by
inclusion of SNPs above the genome-wide significance threshold. These non-significant
SNPs might still be relevant for polygenic diseases and finally may help explaining the
missing heritability [22, 135]. On the other hand, about 99.5% of the genome-wide SNPs
did not significantly contribute to the prediction model and may have increased noise [169].



4.5. DISCUSSION 87

Combining modalities — SNPs overruled by family history?

When establishing combined prediction models based on several groups of variables, the
genome-wide SNPs were replaced by candidate SNPs not among the top 50 genome-wide
SNPs (Supplemental Figure A.7) and family history of asthma or other atopic diseases,
which might be better proxies for predictive hereditary factors than the vast majority of
genome-wide SNPs. Family history integrates a wealth of hereditary information though
at much lower resolution as compared to genome-wide SNPs.

A family history may reflect shared environments such as the microbiome, which is clearly
passed from mother to child [13]. Likewise a family history may represent conditions
during pregnancy, e.g. an inflammatory status of the mother shaping the fetal immune
system and thus contributing to disease transmission [47].

Nevertheless, family history might partially reflect the penetrance of the genotype, which
is influenced by various biologic phenomena such as methylation and posttranslational
modifications [96, 120, 170]. Consequently, SNPs that influence the phenotype might be
detected more easily in a population enriched for a positive family history. This may
also explain why the prediction model of diabetes type 1 susceptibility in a population
preselected for a family history yielded a rather high AUC value of 0.87 [185]. However,
this may only apply to rare diseases, whereas for highly common, heritable conditions such
as asthma the predictive power of SNPs might be overruled by family history [41]. In the
present analysis, prediction by candidate SNPs was weak and did not differ between the
strata with and without family history.

Stratifying analyses for farm-exposure — highest predictive quality for
farm children

Stratification for environmental exposure, however, was very informative: The prediction
models between farm and non-farm children varied completely with respect to genetics.
Farm children may be rather homogeneous in their environmental exposure leaving hardly
any variance for the assessment of environmental factors thereby fostering prediction by
genetic factors. Additionally, farm exposures may prevent many cases of asthma so that
farm children might be affected mainly by genetically determined forms of asthma, which
renders them an interesting population for genetic research.

Two of the SNPs contained in the random forest prediction model for farm children are
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related to the genes IL33 (rs928413) and RAD50 (rs6871536) thereby representing two
major asthma risk loci [18]. IL33 has been implied in allergies and autoimmune disorders,
and a role in exuberant immune responses related to reduced numbers of regulatory T cells
is discussed [155]. The other SNP was not selected in the IPF-LASSO probably because
this approach gives more weight to other groups of variables as illustrated by the higher
importance of sex (Figure 4.6). Nevertheless the detection of rs6871536 by random forest
alone is informative. This SNP is situated in an intron of RAD50 in the TH2 cytokine locus
on chromosome 5 and has been reported to be associated with asthma, atopic eczema, and
total IgE levels [18, 109, 181].

Though marginally missing statistical significance, two further candidate SNPs (rs9815663,
rs6967330) may also be of interest as they are related to CDHR3 and IL5RA. Like other
members of the cadherin family of transmembrane proteins, CDHR3 is associated with
asthma-related traits and a function in epithelial polarity, cell-cell interaction and differ-
entiation has thus been suggested [18]. The alpha chain of the IL5 receptor is essential
for differentiation and maturation of eosinophils, and inactivation of IL5 reduces airway
eosinophilia [157]. Taken together, the detected genes are mainly related to the allergic
aspects of asthma; allergic asthma, in turn, is related specifically to lung function impair-
ment and need for inhaled corticosteroids [40]. In contrast, the SNPs of the asthma risk
locus on chromosome 17q21 did not relevantly contribute to the prediction models in farm
children. This locus has been suggested to encode susceptibility to environmental signals
[32], which might not be relevant for the prediction of the sort of asthma farm children
suffer from.

Improved prediction by omitting inconclusive asthmatics

Essentially, asthma is an umbrella term for various disease entities manifesting with similar
symptoms [40, 45]. Children whose parents are not aware of an asthma diagnosis might
be classified as controls even if they are treated with asthma drugs or experience current
asthma symptoms. When excluding these children from the reference group (Figure 4.7),
the prediction performed significantly better thereby implying true cases of asthma covered
by this grey zone. The performance of the prediction also improved when asthma was
defined irrespectively of recurrent diagnoses of obstructive bronchitis, which may point
towards more severe asthma forms [40].
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No improvement by including interaction terms

Previously it has been demonstrated that the GABRIELA study was well powered for de-
tecting interactions with farming for SNPs with minor allele frequencies above 0.2 [48, 49].
Prediction, however, requires much stronger effects, which also includes larger interaction
odds ratios. This might explain why inclusion of interaction terms with farming did not
improve prediction quality in the entire population (Figure 4.4, upper panel). The as-
sociation of farming with various SNPs on a genome-wide level was largely restricted to
asthma cases (cf. Supplemental Figure A.7) thereby suggesting that farm children suf-
fer from genetically distinct forms of asthma. However, assumptions about underlying
pathomechanisms remain speculative as long as the farm effect on asthma has not been
deciphered on a molecular level.

Fully exhausted methodology for prediction on high-dimensional multi-
omics data

Technically we have fully exploited the instruments of predicting childhood asthma with
modern machine learning methods and incorporated four sets of variables as efficiently as
possible by optimizing their contribution potential via random forest and a multivariable
penalized regression approach – the IPF-LASSO.
In general, multivariable techniques offer the opportunity to assess several predictor vari-
ables simultaneously thereby considering the complex correlation structure of multi-omics
datasets and consequently the mutual interplay of variables. In addition, multivariable
approaches reduce the risk of unstable statistical models, which may occur when relevant
explanatory variables are missing.

Nevertheless multivariable regression still entails practical difficulties: In case the number
of individuals is smaller than the number of predictor variables, the maximum likelihood
estimator does not exist. This is particularly the case in GWAS and known as the n << p

problem. Also highly correlated covariates increase the variance of the parameter estimates
and hence interfere with the stability of the estimated models. These difficulties can be
overcome by penalized regression, particularly IPF-LASSO, which enables stable variable
selection and simultaneously protects from overfitting by an optimized tuning parameter.

Consistently the highest prediction quality was achieved by random forest, a prominent
representative of machine learning. In contrast to regression models it is based on decision
trees and can efficiently handle high-dimensional data and incorporate interactions be-
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tween predictor variables automatically. Random forest is unaffected by highly correlated
variables and thus inherently robust.

Applied to genome-wide data, this combination of classifiers prevented from difficulties
which can occur in this situation: As described in the introduction of this thesis, the
optimal method for such data has to be established for each particular application as
trait architecture, marker density and relatedness of SNPs vary from disease to disease
[165]; with LASSO we employed the classical representative for a sparse model; with the
conceptually completely different random forest we involved an appropriate pendant which
contrarily can be seen as a dense model. Elastic net surely is closer related to the LASSO
but forms a middle course between sparseness and density, as intrinsic variable selection
is still performed but variables with weaker effect can remain in the model as shrunk
effect. The additional application of the IPF-LASSO prevented other groups of variables
from getting lost in the genome-wide data which contained at least tens of thousands times
more variables than demographics, family history, or environment. Other approaches with
different concepts have been proposed, for instance by incorporating Bayesian modeling
[19, 128], but are partly not feasible for application for hundreds of thousands of variables
or generally are less built for gaining best prediction power rather than for finding the
correct associations.

Taken together we have applied computationally efficient, stable and robust methods,
which run a low risk of model overfitting and can handle a high number of variables
simultaneously and hence more appropriately. These properties render them ideal tools
for prediction though they may be computationally demanding and require a powerful
computing infrastructure. In addition we proposed and applied confidence intervals and a
test of significance for comparing performances corrected for sample selection bias.

Concluding remarks

The insight that asthma runs in families is not trivial. As illustrated by our final models
much of the predictive power of a family history was replaced by genetic and environ-
mental variables – depending on the respective subpopulation. In other words, the simple
question on a family history of asthma and atopy just integrates multifaceted information
on several known environmental and genetic predictors and complements it with all the
complexity of family life, which is neither captured by questionnaire records nor genome-
wide data.
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With this chapter we have used the knowledge we gained from the previous chapter, i.e.
how to train prediction models when there is sample selection bias in the given data.
As also validation data was biased, we developed solutions for incorporating appropriate
correction strategies for this issue as well. Further, we extensively investigated the poten-
tial of predicting childhood asthma by environmental exposure and genetics. In the next
chapter, we will extend the current project in several ways: we will integrate a further
biological component for prediction, the immunology of an individual, thus have more
modalities to integrate in a multi-omics situation, and, in this context, will treat a more
complex case of missing data.
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Figure 4.7: External validation of prediction models For external validation, individual
ROC curves of the 5 imputations with AUC are shown. The internally validated random
forest prediction model of a parent-reported doctor-diagnosis of asthma once or obstruc-
tive bronchitis twice based on family-history, demographics, and environment yielded a
AUC of 0.65[0.61-0.70]. A. External validation in the Austrian arm of GABRIELA. B.
External validation in the PASTURE birth cohort. C. Similarly to A, but excluding con-
trol individuals with current wheeze or use of asthma-specific drugs. D. Similarly to A,
but for a parent-reported doctor-diagnosis of asthma once irrespectively of any obstructive
bronchitis.



Chapter 5

Tackling multi-omics missingness
patterns: classifying childhood
asthma phenotypes using genetics,
environment and immunology

Having gained knowledge on how well childhood asthma cases can be predicted by using
questionnaires on environmental exposure and genetic SNP data, in this chapter, we will
analyze data containing additional immunological components and will consider a modified
definition of the disease.

As indicated previously, childhood asthma is not unambiguously defined. However, it
can clinically be divided into two main phenotypes: allergic asthma (AA) and non-
allergic asthma (NA) [145]. Several studies have tried to disentangle distinct underlying
pathophysiological mechanisms, but were hampered by the complex nature of the disease
[5, 29, 107, 139]. While singular targets were identified, one could not consistently pin-
point a reliable pattern of relevant pathways critical for asthma phenotype differentiation
and in the long-term potentially patient-tailored treatment of the disease. However, this
is important as a number of children with asthma are not well-controlled, potentially due
to uniformal, not patient-specific therapies with mainly steroids to date.

Omics data, such as genomics and transcriptomics, have become increasingly available
in human cohorts and thus more critical for understanding the pathogenesis of childhood
asthma [177]. Inherent high dimensionality, incomplete data, and multiple platforms make
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the analysis of prediction models complex. Reliable analysis strategies for multi-omics data
from multiple platforms in large cross-sectional studies urgently needed to predict the risk
of this multifaceted disease. Tools for integration of multiple omics datasets exist in liter-
ature [79] but are often restricted to analyzing correlation structures rather than building
multivariable prediction models. Methods have been proposed to do so, i.e. using several
modalities for predicting [176]. Acharjee et al. [1] use the machine learning method random
forest and pre-select significant variables. Zhao et al. [195] analyze each modality on its
own and merge the single components. The IPF-LASSO (see Section 2.3.4) incorporates
each modality via penalized regression estimating weights for each modality. Approaches
proposed in literature incorporate useful and efficient ideas. However, successful solu-
tions for incorporating data structures where different values are measured for different
observations are not yet available.

Hence, novel strategies to build and validate multivariable prediction models incorporat-
ing all individuals and all variables simultaneously are needed for classifying asthma in
children. For cancer, patient-specific therapies are long-established, and this has been
started for adult asthma by using biologicals such as anti-IL-5 for specific asthma pheno-
types [127, 136]. For childhood asthma, patient-tailored therapies are still not available,
but urgently needed to avoid long-term consequences of exacerbations.

In this study, we propose a novel approach to optimize prediction of childhood asthma
phenotypes when different omics data types are used as input factors. Multi-omics data
include questionnaire, clinical diagnostic, genotype, gene expression microarrays, quanti-
tative real time RT-PCR (RT-qPCR), flow cytometry and cytokine secretion data. Com-
bining multi-omics data types together with a novel and reliable analysis strategy for large
human cohorts will contribute to detailed understanding of childhood asthma, potentially
relevant for novel therapeutic strategies. The strategy can also be translated to numerous
other complex diseases.

This chapter is in parts identical with the following manuscript:
[101]: Norbert Krautenbacher, Nicolai Flach, Andreas Böck, Kristina Laubhahn, Michael
Laimighofer, Fabian J Theis, Donna P Ankerst, Christiane Fuchs, and Bianca Schaub.
Classifying childhood asthma phenotypes from genetic, immunological and environmental
factors: A strategy for high-dimensional multivariable analysis. submitted, 2018
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5.1 Data collection

The following data collection methods have been performed by the clinical partners in-
volved in this chapter’s project or members who were involved in the study conduct.

5.1.1 Study population

Children between 4 and 15 years from southern Germany were recruited in the Univer-
sity Children’s Hospital Munich from the CLARA/CLAUS (Clinical Asthma Research
Association) study [139] in three groups, namely healthy children (HC), mild-to-moderate
allergic asthmatics and non-allergic asthmatics. Parents completed a detailed question-
naire assessing health data on allergy, asthma, and socioeconomic factors. Asthmatic
patients were diagnosed according to GINA guidelines [55]. Inclusion criteria for asthmat-
ics were classical asthma symptoms, including at least three episodes of wheeze and/or a
doctor’s diagnosis and/or history of asthma medication in the past and lung function in-
dicating significant reversible airflow obstruction according to American Thoracic Society
(ATS)/European Respiratory Society (ERS) guidelines [16]. Allergy was defined based on
a positive specific IgE level in accordance with clinical symptoms.

5.1.2 Modalities

We investigated seven data modalities: questionnaire, diagnostic, genotype, microarray,
RT-qPCR, flow cytometry and cytokine data. Parents completed a detailed questionnaire
assessing health data on allergy, asthma, and socioeconomic factors. Diagnostics included
weight, height, blood count, immunoglobulins, CrP and IL-6 as well as FeNo.

5.1.3 Genotyping

Genomic DNA was extracted from whole blood (Flexigene DNA-Kit, Qiagen Hilden, Ger-
many). Samples were genotyped for 101 loci using matrix-assisted laser desorption/ionization
time-of-flight-mass-spectrometry (Sequenom, Inc., San Diego, CA). Deviations from Hardy-
Weinberg equilibrium were assessed for quality control of genotyping procedures.
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5.1.4 Microarrays

RNA of PBMC from a subgroup (14AA/8NA/14HC), comparable to the whole population,
were analyzed by Affymetrix-GeneChip R©Human-Gene 1.0 ST-arrays. Quality of scanned
arrays was checked by MvA, density, RNA-degradation plots, using R and Bioconductor
[85, 167]. Robust multichip averages were used for background correction, normalization,
and control of technical variation.

5.1.5 RT-qPCR, flow cytometry and cytokines

Peripheral blood mononuclear cells (PBMCs) were isolated within 24h after blood with-
drawal, cultured in X-Vivo (48h) unstimulated (U), stimulated with plate-bound anti-CD3
(3µg/ml) plus soluble anti-CD28 (1µg/ml), lipid A (LpA, 0.1µg/ml) or peptidoglycan
(PGN, 1mg/ml, OR) at 37◦C. Cell pellets were used for RNA isolation for microarray and
RT-qPCR, and supernatants were used for cytokine measurements. RNA, isolated with
RNeasy Mini-Kit was processed (1µg) with reverse transcriptase (Qiagen, Hilden, Ger-
many). Gene-specific PCR-products were measured by CFX96 TouchTM Real-time-PCR
Detection-System (Bio-Rad, Munich, Germany) for 40 cycles. For flow cytometry, 2.5x106
cells were cultured in X-Vivo (48h, U, anti-CD3/28, LpA) and counted on a FACSCanto
II flow cytometer (Becton Dickinson). Cytokine levels were determined in supernatants
of PBMCs with Human Cytokine-Multiplex-Assay-Kit (Bio-Rad) using LUMINEX.

5.2 Computational and statistical analysis

Data Preprocessing

The statistical analyses were performed with R software [167]. We excluded non-asthma
patients with other diseases so that only healthy children without any clinical allergic
symptoms were included in the HC group. In addition, variables containing more than
25% missing values were completely removed from the data.
After restricting to the above listed phenotypes, our data set contained 260 observations.
The variables can be sub-grouped into seven modalities according to their biological mean-
ing: cytokines, SNPs, flow cytometry, diagnostics, questionnaire, and gene expression.
Their dimensions and outcome distributions are summarized in Table 5.1.
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Table 5.1: Dimensions and distributions of outcome (asthma) for the seven modalities.
Modality #observations #variables HC AA NAA
Cytokines 148 39 74 63 11
SNPs 172 101 82 77 13
Flow cytometry 162 100 68 79 15
Diagnostics 248 24 103 117 28
Questionnaire 260 118 110 121 29
RT-qPCR 107 187 46 46 15
Gene expression 36 96953 14 14 8

The cytokine modality comprised 38 continuous variables of 148 observations of four dif-
ferent stimulation types. The genotype modality in terms of SNPs contained counts (0, 1
and 2) which were treated as continuous, i.e. we assumed the additive model (with 0 and 2
being the homozygous and 1 the heterozygous form). Thus 101 continuous variables of 172
observations were available. 100 physical and chemical characteristics of cells measured by
flow cytometry were available for 162 subjects, all of them as continuous variables. The
diagnostic modality contained results of detailed blood tests and individual characteris-
tics. This modality contained 24 continuous variables and 248 observations. Questions
about environmental exposure were answered and recorded in the questionnaire modality
for 260 subjects with 118 questions. The gene expression modality contained polymerase
chain reaction (PCR) measurements for 107 subjects and 187 variables. Data was avail-
able from 36 subjects for three stimulus types, resulting in a total of 96,953 variables for
this modality.

For different modalities, diverse groups of children were observed, with different group
sizes and only a small overlap between groups. This caused a complex missingness data
structure between the modality data sets. In addition, there were missing values within
in the modalities, which were assumed to be missing at random or missing completely at
random.
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Imputing missing values

The single data modalities originally containing numerous missing values were each com-
pleted via imputation yielding a basic structure of the full data set (Figure 5.1). We again
used multiple imputation performed separately for each modality to handle missing values
within each modality, described as follows. Again, first, we imputed missing values five
times to generate several imputed (complete) data sets using the MICE algorithm. Next,
we fit models described in the next sections to each of the complete imputed data sets,
and finally, we averaged resulting estimates over the multiple data sets, and appropriated
aggregated standard errors. We applied these multiple imputation steps to all analyses in
this chapter according to Rubin [148] (as described in Section 2.2.3).
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Figure 5.1: Structure of the given data after imputation within each modality. The blue-
colored areas depict the given data values (all white areas correspond to missing data).
The given data consists of seven groups of variables of the same type (modalities). There
are only few subjects containing data for all modalities. The given gene expression by
microarray data is the restricting component regarding complete cases and contains the
most variables (reduced in figure for illustration reasons).
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The intersection data sets after multiple imputation containing complete observations from
all modalities embraced 33 children.

In the following, by yi ∈ {0, 1, 2} we denote the three-categorical outcome (coding “0” for
representing category HC, “1” for category NA and “2” for AA, respectively) for individual
i. In applications where generalized linear regression is involved, pairwise models with
binary coding yi ∈ {0, 1} are used instead. We denote m ∈ {1, . . . ,M} as the modality,
with M = 7 total number of modalities considered. All quantities referring to a certain
modality are superscripted by this notation, i.e. xm denotes the predictor matrix for
modality m. A classifier trained on the data set (x, y) and applied on a new individual
with predictor values xnew is then expressed as ϕ((x, y);xnew).

Validating predictions

To evaluate prediction quality of statistical models based on the given data, several classi-
fiers were compared which were fitted on a training data set and validated on an indepen-
dent test data set. Since only a small number of subjects were available, we implemented
the more efficient leave-one-out cross-validation (LOOCV) approach, i.e. a prediction
model was trained on n − 1 observations, using the left out observation for independent
validation. By doing this for all n possible ways of partitioning the data in this LOOCV
manner, we yielded exactly n independent predictions for validation.

We measured the loss of deviating predictions ŷ from the true values y by the ROC curve,
in terms of the AUC and used the version for more than two outcome categories (cf.
Chapter 2 Section 2.4), which we denote by LAUC(ŷ, y).

Applying statistical learning models

For predicting childhood asthma in terms of the three categories AA, NA and HC, we
used statistical learning models employing regularization techniques that accommodate a
greater number of variables than observations (cf. Section 2.3.3). Therefore, we used a
regularized multinomial regression model as introduced in Section 2.3.2. We applied two
versions of the penalized regression model; first, we used the LASSO penalty for dimension
reduction as it performs hard thresholding by setting coefficients of non-predictive or
strongly correlated variables to zero. Second, we used the elastic net penalty, so that some
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coefficients of correlated variables are only shrunk towards zero, but without reaching the
zero [76]. We also applied the two machine learning methods based on classification trees
introduced in Sections 2.3.6 and 2.3.7 — random forest and stochastic gradient boosting.

Multi-omics learning approaches

Figure 5.2: Schematic illustration of data partitions taken into account for prediction
modeling at a time. A. All observations per modality were included, but training and
validation was done separately for each block. B. Only complete observations were used,
classifiers were trained on all modalities at once. C. All modalities and all observations
were incorporated in a single prediction model and validated on complete observations.

We handled the complex data structures across modalities, i.e. having given many more
values than the values for complete observations, by utilizing two different modeling strate-
gies and developing a novel one from both ideas (see Figure 5.2) and compared all these
in the scope of the four multivariable statistical learning approaches (multi-class logistic
regression with LASSO penalty, multi-class logistic regression with elastic net penalty,
random forest and boosting). In a first strategy (Strategy A), we analyzed each modality
separately such that for each modality m all observations nm were used but training and
validation were possible only modality-wise (see Figure 5.3A). This approach could hypo-
thetically yield a prediction model which performs better than using only few complete
observations in case that there is one modality explaining most of the outcome because
this modality would provide a sufficient number of observations. However, as this ap-
proach failed to combine the M modalities into one single prediction model, we jointly
considered all modalities but took into account only complete observations as a second
strategy (Strategy B). This yielded an overall prediction model but reduced the number
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of subjects drastically from originally 260 subjects to 33 subjects. Figure 5.3B illustrates
the strategy.

...	

...	

...	

A.	

B.	

C.	

Valida(on	set	

Training	set	

1.	fold	 2.	fold	 Last	fold	

Figure 5.3: Three strategies of training classifiers on the complex missing data structure.
Schematic boxes illustrate the data structure in terms of seven modalities partitioned into
training (green) and validation (orange) sets. The columns per row illustrate the corre-
sponding fold within a cross-validation procedure. A. All observations per modality were
included; however, all classifiers were trained and validated separately for each modality
(only depicted for the first modality). B. Only complete observations were used, classi-
fiers were trained on all modalities at once. C. All modalities and all observations were
incorporated in a single classification model and validated on complete observations.

Due to the shortcomings of the former two strategies, we developed a third approach
incorporating all n observations and all M modalities (i.e. all variables p) in the next
section.
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5.3 A strategy for prediction on incomplete multi-omics
data

We propose a novel model strategy shown in Algorithm 5.1 that makes use of all available
data by learning a classifier on each modality separately and combining the single risk
scores via optimzed weights obtained in an inner-validation procedure depending on their
single prediction power.

The strategy basically comprised two steps. After partitioning the data into training and
test sets, in a first step, a classifier was fitted and validated on each modality separately.
This enabled all observations per modality to be utilized for learning and prediction quality
of each modality to be established. In the second step, the prediction quality (in terms
of AUC) per modality served as weights for building a prediction model by combining
the classifiers trained on the single modalities. The approach can be seen as a strategy of
multi-view learning [192]. To implement the strategy we used LOOCV, with each of the 33
individuals with complete observations as new test observations and the remaining data for
learning according to Algorithm 5.1. Figure 5.3C illustrates what the training-validation
scenario on the given data looks like.

5.4 Results

260 individuals of the CLARA/CLAUS population with definitive phenotypes (AA/NA/HC)
in total were available for the present analyses. AA cases (47%), NA cases (11%) and HC
(43%) in the data differed with respect to variables from seven data modalities: cytokines,
genetics, flow cytometry, diagnostics, environment, RT-qPCR and microarray (Figure 5.1,
details Table 5.1).

5.4.1 Prediction modeling

Prediction of asthma risk with appropriate estimation of the prediction quality via cross-
validation performed by two intuitive strategies (A and B) and a novel strategy combining
both (Strategy C) yielded the following results. For preventing from severe overoptimistic
bias regarding performance of a best model, we report results for all models [44, 92].

Strategy A performed prediction on single modalities separately. The comparison of per-
formances on each modality on a stand-alone-basis showed no discriminatory power for
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Algorithm 5.1: Weighted multi-omics prediction strategy
Input: Given data (x, y) from modalities m = 1 to M ,
new observation xnew, classifier ϕ
Output: Prediction score for new observation ŷnew

1. Train the classifier separately on each modality:
For m = 1 to M

(a) Partition data (x, y) into training and testing sets denoted by (x, y)train and
(x, y)test

(b) For each {(x, y)train, (x, y)test}
i. fit classifier ϕ on (x, y)mtrain
ii. obtain prediction score on test observation: ŷmtest = ϕ((xm, y)train;xmtest)

(c) Let ŷm∗ be the concatenation of the predictions ŷmtest for all test sets, and ym∗
be the concatenation of the corresponding observed values. Calculate the
AUC LmAUC = LAUC(ŷm∗ , y

m
∗ )

2. Combine modality-wise prediction to one overall score:

(a) Calculate weights wm by

wm :=
1{Lm

AUC>0.5}(L
m
AUC − 0.5)∑M

m=1 1{Lm
AUC>0.5}(L

m
AUC − 0.5)

(b) Calculate prediction scores ŷmnew by

i. fitting classifier ϕ on xm

ii. obtaining prediction score on new observation: ŷmnew = ϕ((x, y)m;xmnew)

(c) Obtain final prediction on new observation by

ŷnew :=

M∑
m=1

wmŷmnew

any classifier on flow cytometry (AUC for best classifier boosting 0.54[0.45-0.64]) and RT-
qPCR (AUC for LASSO 0.47[0.36-0.59], Figure 5.4A). All CIs crossed the AUC=0.5 line,
indicating that the prediction models did not do better than random guessing. There were
moderate performances (mean AUC less than 0.7) for cytokines (boosting 0.60[0.51-0.70]),
SNPs (random forest 0.66[0.57-0.75]), and diagnostics (LASSO 0.69[0.61-0.75]). Mean
AUCs higher than 0.7 were yielded by modalities environment with an AUC for boosting
of 0.75[0.69-0.82] and microarray with an AUC of 0.74 and a comparatively large con-
fidence interval [0.54-0.90] (Figure 5.4A). Strategy B considered only observations with
values of all modalities given and achieved a higher AUC than Strategy A for LASSO
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Figure 5.4: Comparison of prediction for different modalities for different statistical meth-
ods and strategies. A. Performance of prediction models on each modality analyzed sepa-
rately (Strategy A). B. Performance for complete case model (Strategy B). C. Performance
of combination strategy (Strategy C).

(0.77[0.60-91]) and boosting (0.81[0.65-0.94], Figure 5.4B), again with large confidence in-
tervals. Strategy C combined A and B. Here, as in B, boosting outperformed the other
classifiers clearly with an AUC of 0.82[0.66-0.94] (Figure 5.4C). Performance did not sig-
nificantly increase from Strategy B to C. However, the classifiers’ variance for C decreased
slightly as shown by the narrower confidence intervals (Table 5.2). Thus, including not

Table 5.2: Length of confidence intervals for prediction models and Modeling Strategies
B and C.

Classifier CI length (Strategy B) CI length (Strategy C)
LASSO 0.3106 0.3179
Elastic net 0.3455 0.3262
Random Forest 0.3973 0.3536
Boosting 0.288 0.2764

only all data modalities but also all observations per modality (Strategy C) may offer the
chance to improve precision in risk estimates for asthma rather than it is possible by using
e.g. only clinical or only diagnostic measures, or otherwise using all possible modalities
but taking only those observations into account where all values for all these modalities
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are measured.

5.4.2 Variable importance
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Figure 5.5: Performance of prediction models on the 33 complete cases (Strategy B). The
procedure was run twice – once the modified model including genes which only contained
annotated genes (left), once the original model including non-annotated genes in addition
(right). The AUCs are calculated as the average over the 5 imputations; the error bars
show 95% bootstrap confidence intervals.

Strategy B presents a reasonable trade-off between convenient interpretability and good
prediction performance; contrary to Strategy C the entire prediction model consists of one
model fit and not of a combination of several fits, so variable importance can be determined
straightforwardly depending on the classifier. However, even though confidence intervals
were larger, the performance of Strategy B was similar to the one of Strategy C. Hence, we
investigated the best prediction model of Strategy B with respect to its most important
predictor variables. For meaningful interpretation, we considered annotated genes only
for the microarray modality set here. Figure 5.5 shows the performance of the refitted
modified model, i.e. Strategy B with annotated genes only. Boosting, which originally
performed best (AUC=0.81[0.65-0.94]), predicted slightly worse in the modified version
(AUC=0.77[0.58-0.93]). Here, LASSO performed similarly to boosting (AUC=0.77[0.60-
0.91]). Therefore, we analyzed the most important variables of both classifiers. As we
based our investigations on variable importance on the two prediction models, we looked
in detail at the ROC-curves for these two models (Figure 5.6); even though the overall
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AUC was equal in both prediction models, their values differed regarding their one-versus-
all comparisons (for boosting: AUC=0.79 for HC vs. all, AUC=0.78 for AA vs. all,
AUC=0.72 for NA vs. all).
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Figure 5.6: ROC-curves for the two best performing prediction models, LASSO and Boost-
ing, on the 33 complete cases (Strategy B), when all variables were used but non-annotated
genes were excluded. ROC-curves were calculated separately (aggregated over all 5 im-
putations) as A. Healthy controls (HC) vs. all others, B. Allergic asthmatics (AA) vs.
all others and C. Non-allergic asthmatics (NAA) vs. all others. The overall AUC of 0.77
for both prediction models is a weighted average over the three single AUC-comparisons.
The weights correspond to the proportions of HC (0.36), AA (0.39) and NAA (0.24),
respectively.

Over all imputations, LASSO selected 22 non-correlated variables, which were exclusively
genes from the microarray modality (Figure 5.7B and Table 5.3). In contrast, boosting
used all variables by preferring and ranking them according to their importance without
excluding correlated variables. Here, we took those 50 variables into consideration which
were ranked highest. The selection contained variables from modalities microarray, cy-
tokines, diagnostics, environment, and RT-qPCR (Figure 5.7A and Table 5.4). The two
lists overlapped in three variables, illustrated by Figure 5.7C (and Tables 5.3 and 5.4), all
of them were genes from the microarray modality: PKN2, PTK2, and ALPP. Thus, we
considered these as model-independent most important variables for prediction of child-
hood asthma. A wider overlap could be determined with more relaxed assumptions (for
details, see the supplement of this thesis, Section A.3.1), i.e. when variables in the two sets
were considered as corresponding to each other when their correlation coefficient exceeded
a pre-defined threshold.

In addition, we calculated importances of each modalities: we refit the originally best
model (boosting with using also non-annotated genes again) repeatedly, each time leaving
one modality out. Also here, the gene expression modality predominated (Figure 5.8).
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Figure 5.7: Variable Importance for best models on complete observations. Genes are
denoted by their names with the type of stimulation in parentheses. A. Boosting variable
importance: variables ranked under the top 50 by boosting in the complete case model
averaged over all five imputations. B. LASSO-selected variables: variables selected by
LASSO in the complete case model over all five imputations. C. Venn diagram/pie charts
for sets of variables ranked highest by boosting (50 variables) and of variables selected by
LASSO (19 variables). Three variables (genes) were selected in both prediction models.

5.5 Discussion

These are the first proposals for prediction analyses of childhood asthma using cytokine,
genotype, flow cytometry, diagnostic, questionnaire, RT-PCR, and microarray data si-
multaneously which can be tested in further studies. Many studies on childhood asthma
currently analyze phenotypes based on assessment of singular measurements e.g. of cy-
tokines or gene expression data only [27].
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Table 5.3: Variables selected by LASSO in the complete case model over all five imputa-
tions. Bold marked variables were also identified by boosting.

Gene
Occurrences
in
imputations

Description

PKN2 (LpA) 1/5 protein kinase N2

ALG5 (LpA) 1/5 ALG5; dolichyl-phosphate
beta-glucosyltransferase

C15orf59 (LpA) 2/5 chromosome 15 open reading frame 59

ANKS4B (M) 5/5 ankyrin repeat and sterile alpha
motif domain containing 4B

NPIPB9///NPIPB6 (M) 2/5
nuclear pore complex interacting protein family;
member B9///nuclear pore complex
interacting protein family; member B6

CYTH1 (LpA) 2/5 cytohesin 1
ZNF432 (LpA) 1/5 zinc finger protein 432
ALPP (CD328) 2/5 alkaline phosphatase; placental
CAPN13 (M) 2/5 calpain 13
SP9 (CD328) 2/5 Sp9 transcription factor

OR6B3 (LpA) 2/5 olfactory receptor; family 6;
subfamily B; member 3

LOC100291105///RBM38 (M) 2/5 uncharacterized LOC100291105///
RNA binding motif protein 38

CD93 (LpA) 2/5 CD93 molecule
EPHA6 (M) 2/5 EPH receptor A6
LINC00969 (M) 2/5 long intergenic non-protein coding RNA 969
IQGAP2 (LpA) 2/5 IQ motif containing GTPase activating protein 2
CSNK1G3 (LpA) 5/5 casein kinase 1; gamma 3
LOC728613 (M) 2/5 programmed cell death 6 pseudogene

SEMA3A (M) 1/5 sema domain; immunoglobulin domain (Ig);
short basic domain; secreted; (semaphorin) 3A

PTK2 (LpA) 5/5 protein tyrosine kinase 2
MPLKIP (LpA) 5/5 M-phase specific PLK1 interacting protein
FMR1 (LpA) 1/5 fragile X mental retardation 1

Combining several omics data types has optimized prediction of childhood asthma pheno-
types in the CLARA childhood asthma study. The most important variables for prediction
of childhood asthma phenotypes comprised novel identified genes, namely PKN2 (protein
kinase N2), PTK2 (protein tyrosine kinase 2), and ALPP (alkaline phosphatase placental).

In addition to the complexity of modeling seven groups of variables of various dimen-
sions, which we called modalities, a further challenge required a novel strategy: Complete
observations, i.e. observations where values were given for all modalities, occurred only
rarely; for subgroups of modalities, many more observations were available. The novel
strategy had to incorporate all individuals and all variables at the same time with respect
to building and validating multivariable prediction models. We solved the missing data
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Table 5.4: Variables ranked under the top 50 by boosting in the complete case model
averaged over all five imputations. Bold marked variables were also identified by LASSO.
Variable Importance Modality Description

C1orf213///ZNF436 (CD328) 1.11 array chromosome 1 open reading frame 213/// zinc
finger protein 436

RORC (CD328) 0.92 array RAR-related orphan receptor C
TMEM106C (CD328) 0.91 array transmembrane protein 106C
ALPP (CD328) 0.88 array alkaline phosphatase; placental
OR51Q1 (CD328) 0.85 array olfactory receptor; family 51; subfamily Q; member 1
GOLGA6L6///GOLGA6L1 (CD328) 0.67 array golgin A6 family-like 6/// golgin A6 family-like 1
S100A7 (CD328) 0.62 array S100 calcium binding protein A7
IL1beta_M 0.56 cytokine IL1beta_M
CCDC185 (CD328) 0.53 array coiled-coil domain containing 185
Leucocytes 0.48 diagnostic Leucocytes
FANK1 (CD328) 0.47 array fibronectin type III and ankyrin repeat domains 1
CLCNKB (CD328) 0.45 array chloride channel; voltage-sensitive Kb
IL5_CD328 0.45 cytokine IL5_CD328
STMN1 (CD328) 0.45 array stathmin 1
NT5C3B (CD328) 0.40 array 5’-nucleotidase; cytosolic IIIB

LURAP1///POMGNT1 (CD328) 0.39 array leucine rich adaptor protein 1/// protein O-linked mannose
N-acetylglucosaminyltransferase 1 (beta 1;2-)

IL5_LpA 0.37 cytokine IL5_LpA
ARTN (CD328) 0.35 array artemin
PARK7 (CD328) 0.35 array parkinson protein 7
RD3 (LpA) 0.35 array retinal degeneration 3

UQCRHL///UQCRH (CD328) 0.34 array
ubiquinol-cytochrome c reductase
hinge protein-like///
ubiquinol-cytochrome c reductase hinge protein

months-breastfeeding 0.34 questionnaire months-breastfeeding

NUDT13 (CD328) 0.34 array nudix (nucleoside diphosphate
linked moiety X)-type motif 13

OR10X1 (CD328) 0.33 array olfactory receptor; family 10;
subfamily X; member 1

CHCHD1 (CD328) 0.32 array coiled-coil-helix-coiled-coil-helix
domain containing 1

SMYD2 (CD328) 0.30 array SET and MYND domain
containing 2

PKN2 (LpA) 0.28 array protein kinase N2
RPL11 (CD328) 0.27 array ribosomal protein L11
Segmented granulocytes 0.27 diagnostic Segmented granulocytes
CAP1 (CD328) 0.26 array CAP; adenylate cyclase-associated protein 1 (yeast)
PRADC1 (CD328) 0.26 array protease-associated domain containing 1
DMBX1 (CD328) 0.25 array diencephalon/mesencephalon homeobox 1
ZFP69B (CD328) 0.24 array ZFP69 zinc finger protein B
CSRP3 (CD328) 0.24 array cysteine and glycine-rich protein 3 (cardiac LIM protein)
alpha1Antitrypsin 0.24 diagnostic alpha1Antitrypsin

MMP13 (CD328) 0.24 array matrix metallopeptidase 13
(collagenase 3)

NGF (CD328) 0.23 array nerve growth factor
(beta polypeptide)

CD3D (CD328) 0.23 array CD3d molecule;
delta (CD3-TCR complex)

RASGRF1 (CD328) 0.22 array Ras protein-specific guanine
nucleotide-releasing factor 1

IRF8_328 0.22 pcr IRF8_328
TGM1 (CD328) 0.21 array transglutaminase 1

RNPEP (CD328) 0.21 array arginyl aminopeptidase
(aminopeptidase B)

TRAPPC3 (CD328) 0.21 array trafficking protein particle
complex 3

RHEB (LpA) 0.20 array Ras homolog enriched in brain
TNN (CD328) 0.20 array tenascin N

SSU72 (CD328) 0.19 array SSU72 RNA polymerase II CTD
phosphatase homolog (S. cerevisiae)

PTK2 (LpA) 0.19 array protein tyrosine kinase 2
IL1beta_LpA 0.19 cytokine IL1beta_LpA
SEPW1 (CD328) 0.18 array selenoprotein W; 1
RAB25 (CD328) 0.18 array RAB25; member RAS oncogene family
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Figure 5.8: Importance of modalities. The importance measure is the difference of AUCs of
the full model (AUC=0.81) and the reduced model. For all models boosting was used and
averaged over the 5 imputations. The microarray modality is clearly the most important
modality.

issue within each modality by multiple imputation since missingness completely at ran-
dom could be assumed for this type of missingness [173]. After filling the data gaps within
each modality, only a minority of 33 observations contained values for all modalities. We
considered and compared three modeling strategies combined with four modern statistical
learning methods, LASSO, elastic net, random forest, boosting. All four classifiers are
capable of handling biomedical data difficulties, such as highly-correlated variables and
large numbers of variables, partly exceeding the number of observations.

Prediction by seven modalities — best prediction obtained by using
boosting

The first intuitive modeling approach (Strategy A), which trained and validated predic-
tion models on each modality separately, showed differences in prediction quality in both,
the different modalities and the four different classifiers. Prediction was unambiguously
successful for environment and microarray, the only modalities with all prediction models
performing significantly better than random guessing (Figure 5.4A). According to this cri-
terion, prediction using cytokines, genetics, or diagnostics was successful, however, given
that a certain classification algorithm was selected. Flow cytometry and RT-qPCR modal-
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ities alone showed no evidence of predictive power, irrespectively of which classifier was
used. This is important as a number of studies are analyzed based on singular techniques
associated with childhood asthma phenotypes.

A further modeling approach (Strategy B), using only complete observations for prediction,
proved by increasing performances that combining all variables of all modalities to one
model is more predictive than using only single modalities.

Both strategies were trade-offs between using all observations per modality for the fitting
process and using all modalities simultaneously in a single prediction model. Combining
both aspects for training a prediction approach for the underlying complex missing data
structure required a special strategy. Therefore, we developed a novel modeling approach
(Strategy C), using the complete data for the training process (Figure 5.2C) by training a
classifier and optimizing a weight via internal model validation for each modality separately
in a first step and aggregating all established components in a second step (Algorithm 5.1).
This strategy decreased the variability of asthma prediction on independent data (Table
5.2). Boosting showed best performance for both, the complete cases model and our
novel strategy (Figure 5.2B and C). This method is helpful for clinical data sets where a
multitude of immune-related measurements are available but missing or small numbers of
subjects pose a problem for common analysis strategies.

Note that in this project the best model’s AUC value should not be recorded as generalizing
performance on new data since no external validation data was available and due to the
extreme limitation of sample size any further partitioning into a more nested resampling
procedure was not feasible (cf. Section 2.4.2).

Contributional influences — gene expression is most predictive

Prediction on complete cases using annotated genes only was comparable to the original
model with using also non-annotated genes and yielded high interpretability regarding the
most important variables for prediction. We thus repeated prediction by Strategy B on
the adjusted selection of genes. Evaluation by two conceptually different methods, the
variable selection via LASSO and the relative influence determined by decision trees in
the framework of boosting, yielded three model-independent most important variables for
prediction: the genes PTK2, PKN2 and ALPP.

PTK2, a member of focal adhesion kinase (FAK), encodes a cytoplasmic protein tyrosine
kinase that localizes to focal adhesions and contributes to integrin-mediated cell processes
related to cell survival. The activation of this gene regulates a wide variety of cellular
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responses and is assumed to be important in the early step of cell growth and intracellular
signal transduction pathways [134]. Although tyrosine kinases play an important role in
several pulmonary mechanisms like in airway hyperresponsiveness and airway remodeling,
no correlation between PTK2 gene and asthma has been described so far [72]. PKN2, also
called protein kinase C-related kinase 2 (PRK2) is a Rho target protein which regulates
the apical junction formation in human bronchial epithelium. It has been shown critical
for human cancer, and would represent a novel gene pathway potentially relevant for
childhood asthma [180]. ALPP is a gene which encodes the placental alkaline phosphatase
that catalyzes the hydrolysis of phosphoric acid monoesters and was previously identified
to be potentially involved in recurrent spontaneous abortion [175]. Although these three
genes have not been associated with childhood asthma yet, the findings in this study could
be a first hint for future investigations.

Further model-specific variables contributing to prediction were obtained (Table 5.3 and
Table 5.4). Contrary to the LASSO model which only labeled genes as most impor-
tant, boosting found variables also from other modalities. One of them is the number of
months of breastfeeding. This may have an influence on asthma, however, can be a case of
translucent correlation since mothers with family history may be biased in their decisions
for breastfeeding. Besides this, selected cytokines such as IL-1β and IL-5, diagnostics vari-
ables and RT-qPCR variables such as IRF8 have been identified as important by boosting
(Figure 5.7A).

In our results no genotype variables (SNPs) turned out to be important for prediction.
This is not surprising as in our and in previous analyses SNPs on stand-alone basis did
not exceed AUC values of around 0.60 [123]. The low predictive effects of SNPs may be
covered by effects from other omics data sets in our analysis.

Prediction techniques — using well-established algorithms and all data
information

We have used four of the most powerful instruments for prediction in terms of classifica-
tion from regularization regression methodology to machine learning. In practice, clas-
sical approaches as (multivariable) non-penalized logistic regression can bias parameter
estimates and make models instable when variables are highly correlated. Further, there
is no maximum likelihood estimator when the number of variables exceeds the number
of observations. Particularly the microarray data set represents both difficulties. Penal-
ized regression, such as the used LASSO and elastic net, solve these problems; variable
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selection generally ensures stability and prevents from overfitting.

Conceptually different but equally sufficient prediction methods are ensembles of decision
trees, commonly random forest and boosting, as used in our analyses. Both belong to the
most popular methods in machine learning and are now used in immune-related analysis.
They can handle highly-correlated variables and high-dimensional data as well and incor-
porate interactions between contributing variables. The ensembling principle combines
many decision trees at once and thus makes the two methods highly robust.

Apart from applying efficient classification algorithms, and running and comparing three
modeling strategies overcoming the complex data structure completed the methodology
of predicting childhood asthma: multi-omics approaches for childhood asthma have been
proposed [56] but rather for finding associations than for building multivariable prediction
models. Predicting on each modality separately revealed first answers on the predictive
power of each modality when the full information given was used. However, this did not
incorporate the multivariate structure between the modalities and could hence cause an
information loss. The obvious solution to only use complete observations with respect to
all modalities, again, came at the cost of a lack of information due to a smaller number
of observations. Prediction seemed complete and fully efficient only if all variables and
all observations were included in the analysis. Our novel approach, combining weighted
prediction scores obtained from the full information of each modality, fulfilled this require-
ment.

In conclusion, we applied robust and stable classification algorithms in concordance with
strategies for fully exploiting all information of the data in order to yield best possible
results for predicting asthma from seven modalities from genetics, immunology and envi-
ronment. Penalized regression methods complemented with machine learning approaches
have not been used on several modalities for prediction of childhood allergic asthma and
non-allergic asthma so far and should be considered as efficient prediction methods for this
kind of application and beyond. Prediction analysis on incomplete data with respect to
different modalities is feasible with certain strategies. We developed a novel strategy com-
bining all information from the data leading to smaller prediction variability. However, the
sufficient performance of the complete-case prediction model suggests focusing future data
collection on enriching complete observations rather than enlarging the number of investi-
gated individuals in total. This is important and requires a strict and thorough recruiting
protocol, which is particularly difficult in children and if multicenter studies are envi-
sioned. Microarray data in terms of three target genes responsible for integrin-mediated
cell processes, regulation of apical junction formation in human bronchial epithelium and
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placental alkaline phosphatase are predictive for asthma independently of the model ap-
proach, even though model-specific results show contributions from other modalities, such
as breastfeeding-months, IL1-beta and IL-5 cytokine and IRF-8 gene expression.

For the future, we suggest to implement our novel analysis strategy to more comprehen-
sively understand and analyze complex human immune regulation with respect to child-
hood asthma phenotypes. This method is also applicable for other cohort studies aiming to
assess multi-omics data sets in medium or large cohort studies. Further, when more data
like in the given study can be made available there is high potential for building and im-
proving current risk tools for childhood asthma which can be optimized by distinguishing
for pairs of outcome categories as Ankerst et al. [8], for instance.



Chapter 6

Summary and perspectives

6.1 Summary

This thesis provides statistical methodology in the context of predicting disease risk on
complex data.

The main methodological contribution is given by Chapter 3: We treated the problem of
having data sets under sample selection bias at hand and investigated the problem of how
to correct for this bias when the data arises from a stratified random selection process
or from one- or two-phase case-control studies. Even though there are approaches from
literature for correcting general classical statistical analyses there was a gap for the area
of machine learning. Correction methods for these have been provided in literature or
could be modified from similar problems to the one at hand but our simulation study
confirmed that these are not satisfactory in several scenarios. Therefore we proposed
two new methods where one of them — the parametric inverse-probability bagging —
could solve the issue and in all scenarios outperform those prediction models which were
not corrected. Especially the case of the random forest as prediction model showed no
satisfactory results for any correction method but for the parametric inverse-probability
bagging. For other classifiers our approach performed at least as good as other correction
approaches. Taken this together, by Chapter 3 we showed how approaches from similar
fields can be adjusted or modified to be suitable to the field of sample selection bias
in stratified random samples. We compared these and other state-of-the-art approaches
and showed in which scenarios and for which prediction models which of the approaches
are eligible for correcting sample selection bias appropriately. We finally provided novel
methodology that fills those gaps where all other approaches fail and implemented the
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relevant software in terms of an R package which is publicly available.

Theory treated in Chapter 3 was an essential basis for the following project: By Chapter 4
we showed an application for the issue of sample selection bias on real data for the example
of predicting childhood asthma from genetic and environmental variables. We leaned on
results from Chapter 3 to adjust appropriately for the bias coming from a two-phase
stratified random selection process and provided a strategy on how to find a powerful
prediction model that performed well on new data. We did this in the more difficult context
of having extremely high-dimensional data in terms of an n-smaller-p problem where p was
in the range of hundreds of thousands to millions of variables. For appropriate validation
of different models within the given data we proposed methodology based on bootstrap:
it provides weighted model validation with additional confidence intervals and a test of
significance in order to estimate uncertainty of predictions on the one hand and to test if a
prediction model performs significantly better than another one on the other hand; all this
is done in a weighted manner, so that correction for sample selection bias is guaranteed.
In addition to Chapter 3 where learning under sample selection bias was investigated,
this methodological contribution treated sample selection bias, but for validating on new
data. From the biological point of view we showed that family history of asthma and
atopy remains an important variable for prediction as it represents complexity of family
life which cannot only be covered by using questionnaire data on environmental exposures
or genome-wide data. Thus, the assumption that genome-wide data can predict polygenic
diseases might have been exaggerated — at least for childhood asthma.

By Chapter 4 the foundation was laid for an even more complicated situation; with a
further data set on childhood asthma containing again genetic and environmental variables
but this time with diverse immunological variables in addition, we further contributed to
methodological development in the area of prediction of disease risk. We did so especially
for another complex issue in data stemming from a clinical study: data for several different
modalities was given but for each modality different observations contained measured
values and only few complete observations existed. As also high-dimensionality was an
issue here we incorporated several statistical and machine learning methods into strategies
of handling the complex missing data issue. We finally provided a strategy for learning
an overall prediction model that incorporated both, all observations and all variables, so
that all given information in the data was used. The proposed strategy predicted asthma
risk successfully and increased precision of risk estimation compared to other strategies.

In addition to novel methodology, the application to asthma in the Chapters 4 and 5
showed important novel implications in medicine: Both projects were investigations of
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how well childhood asthma phenotypes can be predicted. In the first one (Chapter 4)
data on farm-related environmental exposures and on the genome were available in ad-
dition to family history and demographic variables. Besides determining the prediction
accuracy the goal was to identify which predictors are most relevant. We identified family
history, a determinant integrating environmental exposure and genotype, as the most rel-
evant predictor. Prediction accuracy was only moderate but showed an improvement for
investigating only farm children. These are generally strongly protected through environ-
mental exposure, but showed only genetic polymorphisms as predictive variables rather
than environmental factors.

Contrary to this study, only a fraction of patients was available in the second asthma
project (Chapter 5). The goal of distinguishing healthy children, mild-to-moderate allergic
asthmatics and non-allergic asthmatics was investigated without external validation, but
yielded valuable discoveries: using immunological variables in addition to environmental
and genetic variables showed good performance, especially because of using gene expression
data which contained the three most important predictors that have not been associated
to childhood asthma before.

6.2 Outlook

In the following we will provide some perspectives for the methodology we have dealt with
in this thesis. We will give several examples how the content of this thesis can be used
and further developed in future research.

Correction methods for class imbalance problem

In the project on sample selection bias theory (Chapter 3) we investigated the situation
where categories of certain variables are rare in the population but get enriched when a
sample is taken. That is, the affected variable was balanced out in a way that its categories
occurred with equal frequency. This sample process caused sample selection bias in the
resulting given data set. Approaches were utilized which in diverse ways oversampled the
originally more frequently occurring category so that the original data distribution was
generated.

This situation where adjusting for the distribution of the population is the goal may seem
to be the common case in which oversampling usually comes into play. However, there
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are further situations where oversampling techniques are applied but in a kind of opposite
manner: in so-called class imbalance problems [2], a variable which is typically the outcome
variable contains a rare category in the given data set. Here, regardless of the original
distribution in the population, oversampling techniques are applied in order to achieve that
classifiers can be trained on data with a more balanced outcome variable [91, 105, 108].
This is done because several classifiers generally fail to learn successfully on data with
imbalanced outcome variables. Thus, contrary to the sample selection bias situation,
here, given data is manipulated the other way round: a rare category is oversampled to
make the variable balanced rather than a balanced variable is oversampled to generate an
original distribution of the population.

One successful approach for class imbalance which generates synthetic observations for
this problem is SMOTE [34], for instance. In Chapter 3 we had modified this approach
to use it for the purpose of overcoming the sample selection bias problem. Even though it
was not successful in this case, the pendant could be successful: Our two approaches, the
stochastic inverse-probability oversampling or the parametric inverse-probability bagging,
which originally are designed for correcting sample selection bias also generate synthetic
observations and could be applied for class imbalance problems instead. They could be
used for oversampling a rare category in the data at hand. This may outperform other
approaches applied for the class imbalance issue, especially when a parametric generation
of observations is suitable for the data.

For realizing the idea of modifying our proposals into class imbalance solutions, further
refinements have to be investigated extensively; complete oversampling of the rare category
may not be the most ideal procedure: for instance, undersampling of the majority category
or a combination of under- and oversampling majority and minority categories, respectively
[34], may be required to make the approach most effective.

Sample bias incorporation in other fields

By Chapter 3 we showed a comprehensive investigation of how to act in statistical analyses
when a sample is not taken at random but observations have different probabilities of being
included in the sample. Then the given data suffers from sample selection bias. This kind of
situation does not only occur in epidemiological studies. Another highly relevant example
is single cell RNA sequencing (scRNAseq) analysis: scRNAseq is now a high-throughput
method which provides gene expression profiles, i.e. measures gene activities, of cells whose
number is quantified in addition [78]. By scRNAseq techniques whole tissue samples can
be characterized. A sample in this context is defined as the isolated single cells that are
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measured at once in a single run. When such a tissue sample from an organ is investigated,
many different cell types can be identified. A question of interest is how the abundances of
cell types change when a certain disease occurs or is present. In order to investigate rare cell
types in this context also here enrichment strategies within the cell sorting (flow cytometry
[14]) can be applied to increase statistical power for detecting effects. Usually correction
methods are not common in this field, and thus could be integrated. Depending on the
type of analysis either classical correction methods (as for logistic regression) or similar
methodology as proposed and compared in Chapter 3 based on bootstrap or bagging can
be directly applied or extended to guarantee unbiased statistical inference or successful
prediction in this new field.

Improved asthma risk score based on multi-omics data

In this thesis we have investigated how well childhood asthma can be predicted in terms of
how well asthma cases are distinguishable from healthy controls. However, clinicians often
would like to achieve something more: ideally a personalized risk score can be provided,
directly applicable to a child for which it is unclear whether asthma will evolve or not
and telling the probability of getting the disease. Such risk scores have been provided:
the asthma predictive index [33] is a widely used risk score tool for childhood asthma [86]
which is based on predictive variables like family history, diagnosis of eczema, sensitivity
to allergens, food allergy and wheezing symptoms. However, it does not include genetic
or immunological factors.

Chapter 4 has approved that family history is indeed the most important predictive vari-
able, but for the case of investigating only farm children also genetics contributed further
to improve the prediction of asthma risk. Moreover, Chapter 5 showed high potential for
risk prediction when immunological components are incorporated.

Thus, there is a high chance that an individual risk score for childhood asthma can be
improved by incorporating genetic and immunological factors. Therefore more multi-omics
data sets on childhood asthma including these diverse groups of variables with a sufficient
number of observations could lead to a wider selection of important influence factors from
various data types by applying modern statistical learning methods. This could eventually
result in the successful development of an improved personalized risk score for childhood
asthma.
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Deep learning involving features measured over time

“Big data” has gotten a famous buzzword in the last years and has been interpreted in
many different ways. One intuitive interpretation surely is big data in terms of large data
sets. In this work we have had large data sets with respect to the number of variables
p. However, big data in the large data context nowadays often refers to the number of
observations n rather than to p. When it comes to applying statistical learning on such
kind of big data a further buzzword often pops up — this is “deep learning”.

Deep neural networks or deep learning have attracted big attention in many fields where
large data sets occur as they are promising regarding finding hidden structures and thus
predicting with high accuracy; they were especially successful when features for an obser-
vation or individual can not be expressed as a single vector anymore but as a matrix, in
particular that is for images [141] or features evolving and measured over time [36].

Artificial neural networks originally are inspired by neural networks in the brain [53, 117,
147]; a neural network consists of an input layer, several hidden layers, and an output
layer. In the input layer the data are received. This layer is nonlinearly transformed
through several hidden layers of compute units — the neurons — which are connected
internally. Each of these neurons builds a weighted sum of the input of the previous
layer and a nonlinear so-called activation function is applied. The last part of the neural
network corresponds to the output layer which is the prediction for the new observation.
As the number of hidden layers nowadays can be chosen to be large, the fashion word
“deep neural network” has arisen. Deep learning is usually applied where prediction is the
main goal rather than determining which variables are important [76].

Deep Neural networks have also been used in biology [3, 6]. Recently they have been used
for risk prediction using Electronic Health Records (EHR) [36, 122], i.e. by using health
information on patients which are electronically stored in digital format [71]. In particular,
Cheng et al. [36] employs deep learning by using a matrix for each patient which contains
medical events (rows) per time (columns) and incorporates this information as features in
order to predict chronic diseases.

In the context of this thesis the perspectives in applying deep learning are diverse, provided
that data sets with large n can be made available. First, if EHR data in the first years of
life can be collected this information could be used instead of (or in addition to) cohort
data and be incorporated as described above in order to predict complex diseases like the
risk of childhood asthma. Second, similarly to collecting EHR data, studies on exposures
can be conducted in a time-resolved fashion. For instance, exposures such as contact to
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animals in the first three years of life can be recorded at regular intervals and thus again
be used in a deep learning setting for the prediction of childhood asthma risk.

6.3 Conclusions

With this thesis, we contribute to methodology in disease risk prediction. We investigate
the theory of the often present challenge of sample selection bias, especially by propos-
ing a novel correction approach applicable to arbitrary machine learning algorithms and
methodology for comparing performances of prediction models. In addition, we provide so-
lutions for further challenges as complex missing data structures and high-dimensionality
and we propose a strategy for prediction modeling on multi-omics data. We treat the
application example of childhood asthma using modern statistical and machine learning
methodology: we show how prediction for the disease can be improved and therefore
identify novel predictors.
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Appendix A

Supplementary Material

A.1 On correcting classifiers for sample selection bias

A.1.1 Simulation scenarios with variables from different distribution
families

In Chapter 3, Section 3.3 we have conducted a simulation study with many scenarios for
different classifiers and for different distributions. In order to convey a bigger picture,
we created a further more heterogeneous distribution scenario: We simulated variables
from different distributions within one data set which are partly correlated and with an
interaction effect on the outcome. We also added an additional noise variable (which was
not known/included for the training process).

Design

Concretely we generated the data analogously to the other scenarios of Section 4.1 with
several changes.

The variables were generated as follows:

• X̃(1) ∼ N (0, 1)

• X̃(2) ∼ t(25)
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• X̃(3) ∼ X̃(1) +N (0, 0.36)

• X̃(4) ∼ X̃(2) +N (0, 1.69)

• X̃(5) ∼ Ber(0.6)

• X̃(6) ∼ N (0, 1)

• X̃(7) = X̃(1) ∗ X̃(5)

Into our models we included X̃(j) for j = 1, . . . , 5, so that X̃(6) represents noise for
constructing Y and X̃(7) an interaction. The corresponding effects were chosen to be
β = (βe, β1, . . . , β7) = (0.5, 0.1,−0.12, 0.07, 0.05,−0.9, 0.07, 0.9).

Results

The performances for the simulation scenario for the four classifiers, logistic regression,
random forest, logistic regression with interaction terms, and naive Bayes, are compared
in Figure A.1: We fit a linear model for the AUC as influenced by the correction method
(dummy-coded, no correction as reference category). The graphic depicts 95% confidence
intervals for the respective coefficients. The dotted line shows the intercept of the model,
i.e. the mean AUC for no correction.The blue colored methods are newly proposed by us.

A.1.2 Investigation of varying sample size and degree of imbalance

In Chapter 3 we have identified the parametric inverse-probability bagging as the most
successful correction approach for the random forest. In this section we investigate if this
also holds when diverse parameters in the data are changed. Therefore we compare learning
on population, non-correcting, IP oversampling as one standard correction method and
parametric IP bagging.

For simulating the data we used the same settings as in Section A.1.1; however, we varied
sample size of the data taken from the population and in a further scenario varied the
distributions of the stratum variables Y and Xe, i.e. made rare categories less or more
rare.
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Figure A.1a: Performance of correction
approaches for mixed distributed features
for logistic regression, measured by AUC.
All approaches perform significantly better
than no correction except for the modified
SMOTE approach.
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Figure A.1b: Performance of correction ap-
proaches for mixed distributed features for
random forest, measured by AUC. Only
parametric IP bagging performs signifi-
cantly better than no correction.

Conducting the simulation study for different sample sizes led to poor performance for
correction approaches when the sample size was smaller than the original one of n = 500.
When the sample size was increased the parametric IP bagging worked well (Figure A.2).

Varying the imbalance of the Y and Xe in the population, i.e. the original probabilities
P (Y = 1) = 0.1 and P (Xe = 1) = 0.1 show that our approach still outperforms the
non-correction approach and the IP oversampling when the rare categories are less rare,
but not when the rareness is more extreme (Figure A.3). However, this may be explained
by the results for varying sample sizes: Due to a restriction of the sampling design we had
to decrease to sample size for the the more extreme case from n = 500 to n = 200 in this
scenario; as observed above (Figure A.2) this sample size is too small in general for the
approach to be effective.
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Figure A.1c: Performance of correction ap-
proaches for mixed distributed features for
logistic regression with interaction effects,
measured by AUC. All approaches perform
significantly worse than no correction except
parametric IP bagging which is not signifi-
cantly different.
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Figure A.1d: Performance of correction ap-
proaches for mixed distributed features for
naive Bayes, measured by AUC. Only IP
bagging and modified SMOTE perform sig-
nificantly better than no correction.

Figure A.2: Performance of correction approaches for mixed distributed features for ran-
dom forest, for different sample sizes. Both, parametric IP oversampling and parametric
IP bagging fail to outperform no correction when the sample size is small (left and center
figure). Parametric IP bagging outperforms no correction for a bigger sample size (right
figure).
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Figure A.3: Performance of correction approaches for mixed distributed features for ran-
dom forest, for different degrees of imbalance of Y and Xe. Both, parametric IP over-
sampling and parametric IP bagging fail to outperform no correction when P (Y = 1)
and P (X = 1) are both small (left figure), but parametric IP bagging outperforms no
correction when the corresponding probabilities are increased (center and right figure).

A.1.3 Investigation of other bias types

So far, in our studies on sample selection bias we had focused on complete bias which is
a combination of the other two types of bias — feature bias and label bias. Therefore, we
explored the behavior of parametric IP bagging for the random forest in this case as for
this classifier only our approach had successfully corrected for sample selection bias.

As in the previous section we applied the same settings as in Section A.1.1 for generating
the data, but used only a one-phase procedure as sampling design in order to generate
bias types where either only a rare outcome variable or only a rare feature was enriched
(label and feature bias, respectively).

The results clearly show that for both types of bias, for label bias (Figure A.4) and
for feature bias (Figure A.5) the parametric IP bagging outperforms the non-correction
approach. IP oversampling, however, performs less well than not correcting.
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Figure A.4: Performance of correction approaches for mixed distributed features for ran-
dom forest, for label bias and varying probabilities P (Y = 1). Parametric IP bagging
outperforms no correction in all cases.

Figure A.5: Performance of correction approaches for mixed distributed features for ran-
dom forest, for feature bias and varying probabilities P (Xe = 1). Parametric IP bagging
outperforms no correction in all cases.
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A.2 On analyses on GABRIELA study

A.2.1 P-value adjustment for variable importance

Background

In the frame of Chapter 4 we did further investigations on p-value adjustments. As in
the chapter we did not only present some measure for the importance of variables in a
classification model but also delivered p-values for more than 20 variables, so that multiple
testing may be an issue.

In practice, when a generalized linear regression model is applied and presented with all its
significance tests and p-values, the multiple testing issue often is not taken into account,
as usually the number of covariates is small so that false rejections of the null hypotheses
are unlikely. However, p-value adjustment can be done in such a scenario [125].

We applied a less commonly used method to detect significant variables in Chapter 4
— the non-parametric Altmann approach for random forests [4] and want to clarify if
p-value adjustment is necessary here. As we have up to 40 variables at hand, we perform
a simulation study with this many variables and a sufficient amount of observations. We
compare it to other methods: the generalized linear regression model, the LASSO (in terms
of how many variables are estimated to non-zero), and another approach for random forest
proposed by Janitza et al. [89].

We set up a simulation scenario for a binary outcome variable and normally and Bernoulli
distributed variables (varying n and p) where we applied the four methods. 5 variables
always had truly significant influence on the outcome.
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Figure A.6a: Boxplots for the number of
variables that were selected as significant by
the model for p = 40 and n = 2500. 5 vari-
ables have had a true effect. Only the Alt-
mann approach did not exceed the number
of significant variables.
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Figure A.6b: Boxplots for the number of
variables that were selected as significant by
the model for p = 100 and n = 5000. 5
variables have had a true effect. Only the
Altmann approach did not exceed the num-
ber of significant variables.

Results

We show the results for the four different variable importance measures in terms of type
I and type II errors. Figures A.6a and A.6b show how many variables were selected as
significant variables when 5 variables truly had an actual effect.

Type I error. Even though it less occurred in Janitza et al. [89] for the non-parametric
Altmann approach, in our simulation study the type I error was much smaller than 0.05
(Figures A.6c and A.6d). This held only for this approach and was 0.05 for the GLM and
the approach of Janitza. LASSO had a slightly higher type I error, given that selected
variables are seen as significant variables.

Type II error. There was no type II error for GLM or LASSO, and a type II error of
20% for the two random forest approaches (Figures A.6e and A.6f). This, however, still
corresponds to a statistical power of 80%.

Note that for these settings the number of variables was too little to guarantee stable
results for the method of Janitza et al. [89].

For the project of Chapter 4 we can conclude that the non-parametric Altmann approach
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Figure A.6c: Boxplots for the number of
variables that were wrongly selected as sig-
nificant by the model for p = 40 and n =
2500. The false positive rate was 0 (green
line) only for the Altmann approach. The
median of all other approaches was at least
at 5% (red line) for all other approaches.
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Figure A.6d: Boxplots for the number of
variables that were wrongly selected as sig-
nificant by the model for p = 100 and n =
5000. The false positive rate was 0 (green
line) for lower quantile of the Altmann ap-
proach (median: 1%). The median of all
other approaches was at least at 5% (red
line) for all other approaches.
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Figure A.6e: Boxplots for the number of
variables that were wrongly not selected as
significant by the model for p = 40 and
n = 2500. The false negative rate was
0 (green line) only for the GLM and the
LASSO. The median of the random forest
approaches was at least at 20% (red line) for
all other approaches which still corresponds
to a power of 80 %.
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Figure A.6f: Boxplots for the number of
variables that were wrongly not selected as
significant by the model for p = 100 and
n = 5000. The false negative rate was
0 (green line) only for the GLM and the
LASSO. The median of the random forest
approaches was at least at 20% (red line) for
all other approaches which still corresponds
to a power of 80 %.
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rather failed to detect a small percentage of truly significant variables, but did not erro-
neously determine variables as significant when there was no true effect.

A.2.2 Variable importance genome-wide

In the main chapter we determined the most important variables for the final best model.
We did so for the best model among the genome-wide models. Using different groups of
variables separately yielded only one AUC significantly different from 0.5 — the random
forest for farm children (Figure 4.3). We assessed the variable importance for this model
(Figure A.7A) and for the same constellation when family history and demographics are
added (Figure A.7B).

For genome-wide variable importance with farm-exposure as outcome variable calculated
for asthmatics and non-asthmatics (cf. Chapter 4), generally more significant variables
were found for asthmatics than for non-asthmatics for different levels of significance (Fig-
ure A.8).

A.2.3 Tables on family history, environment and genetics

Supplementary to the analyses of the main chapter we provide detailed information on vari-
ables (family history, demographics, environment) of the GABRIELA study (Table A.1)
and the PASTURE study (Table A.2). Table A.3 shows information on the candidate
SNPs extracted from other GWAS.



162 APPENDIX A. SUPPLEMENTARY MATERIAL

Table A.1: Distribution of environmental determinants and family history of atopy in
GABRIELA
characteristic cases controls p-value

center (study center (ref.: Innsbruck))
16.4% (Basel)
27.8% (Munich)
37.7% (Ulm)

15.6% (Basel)
32.6% (Munich)
31.9% (Ulm)

0.123

female (female gender) 39.70% 49.40% 0.002
age (age in years at 2007-01-01) 8.32 (se=0.06) 8.19 (se=0.06) 0.15
BMI (body mass index) 17.11 (se=0.11) 16.99 (se=0.11) 0.375
farm (farming status) 9% 13.60% <0.001
siblings (>1 siblings) 41.80% 44.60% 0.374
parental-education (high parental education) 27.30% 28.80% 0.633
smoking-pregnancy (maternal smoking in pregnancy) 12.40% 8.50% 0.037
milk-last-yr (consumption of farm milk past 12 months) 13.40% 19.40% <0.001
milk-first-yr (consumption of farm milk in first year of life) 6.20% 11.80% <0.001
milk-first-3yrs (consumption of farm milk pregnancy to age 3yrs) 20.70% 27.60% <0.001
cow-last-yr (contact with cows past 12 months) 12.90% 16.60% 0.02
cow-first-3yrs (contact with cows pregnancy to age 3yrs) 14.60% 20.30% 0.001
straw-last-yr (contact with straw past 12 months) 15.70% 21.10% 0.009
straw-first-3yrs (contact with straw pregnancy to age 3yrs) 12.40% 16.20% 0.009
hay-last-yr (contact with hay past 12 months) 29.70% 33.50% 0.145
hay-first-3yrs (contact with hay pregnancy to age 3yrs) 21.60% 26.10% 0.028

cow/straw-first-3yrs
(contact with cows and/or straw pregnancy to age 3yrs)

5.1% (straw only)
7.5% (cow only)
7.2% (both)

4.8% (straw only)
8.6% (cow only)
11.4% (both)

0.024

cow/straw-last-yr (contact with cows and/or straw past 12 months)
8.7% (straw only)
5.9% (cow only)
7.1% (both)

11.9% (straw only)
7.1% (cow only)
9.4% (both)

0.029

barn-first-3yrs (stay in barn pregnancy to age 3yrs) 14.60% 18.50% 0.015
barn-last-yr (stay in barn past 12 months) 16.50% 20.70% 0.021
stable-weekly-last-yr (stay in cattle stable once/week) 8.70% 12% 0.016

traffic (how often do trucks or busses drive by)
35.9% (rarely)
27.6% (often during day)
9.5% (almost whole day)

39.3% (rarely)
26.9% (often during day)
10.1% (almost whole day)

0.558

mold-last-yr (rooms with visible mold) 18% 11.60% 0.004
dog-first-yr (dog allowed to stay in the room in first year of life) 5.30% 6.50% 0.456
cat-first-yr (cat allowed to stay in the room in first year of life) 8.50% 15.50% 0.001
dog-2-3yrs (dog allowed to stay in the room in 2. and 3. year of life) 6.90% 7.20% 0.838
cat-2-3yrs (dog allowed to stay in the room in 2. and 3. year of life) 11.50% 21.40% <0.001
dog-4-5yrs (dog allowed to stay in the room in 4. and 5. year of life) 6.30% 6.90% 0.736
cat-4-5yrs (dog allowed to stay in the room in 4. and 5. year of life) 15% 24.60% <0.001
dog-last-yr (dog allowed to stay in the room past 12 months) 7.70% 8.90% 0.506
cat-last-yr (cat allowed to stay in the room past 12 months) 19.80% 30.10% <0.001
children-household
(people between 0-18 years live currently in your household) 2.39 (se=0.04) 2.37 (se=0.04) 0.921

adults-household
(people 18 years and older live currently in your household) 2.13 (se=0.06) 2.18 (se=0.03) 0.005

parents-smoke-ever (have parents ever smoked after birth) 61.60% 55.60% 0.052
parents-smoke-currently (do parents currently smoke) 33.20% 26.80% 0.024
daycare
(regular attendance of facilities with
children until school enrolment)

92% 92% 0.981

antibiotics-pregnancy (mother takes antibiotics during pregnancy) 11.80% 8.30% 0.074
cattle-last-yr (stay in cattle stable past 12 months) 11.10% 14.20% 0.043
cattle-first-yr (stay in cattle stable in first year of life) 6.10% 10.20% <0.001

birth-season (season of birth (ref.: Summer))
25.6% (Spring)
27.2% (Autumn)
25.4% (Winter)

22.6% (Spring)
23.5% (Autumn)
25.6% (Winter)

0.11

family-atopy (parental atopy or sibling atopy) 70% 49.70% <0.001
family-asthma (parental asthma or sibling asthma) 30.60% 12.40% <0.001
family-hayfev (parental hay fever or sibling hay fever) 48.30% 36.60% <0.001
family-fheczema (parental eczema or sibling eczema) 36.50% 25.80% <0.001

* p-values based on Fisher’s exact test or, in case of continuous variables, Wilcoxon tests
se = standard error of mean, yr = year
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Table A.2: Distribution of environmental determinants and family history of atopy in
PASTURE
characteristic cases controls p-value
female (female gender) 33.30% 50.10% 0.005
age (age in years at 2007-01-01) 6.12 (se=0.03) 6.12 (se=0.01) 0.823
BMI (body mass index) 15.73 (se=0.17) 15.78 (se=0.07) 0.501
farm (farming status) 37.20% 49.30% 0.041
siblings (>1 siblings) 33.30% 34% 0.905
parental-education (high parental education) 89.70% 82.90% 0.121
smoking-pregnancy (maternal smoking in pregnancy) 14.50% 12.10% 0.555
milk-last-yr (consumption of farm milk past 12 months) 30.80% 43.20% 0.034
milk-first-yr (consumption of farm milk in first year of life) 21.80% 33.50% 0.035
milk-first-3yrs (consumption of farm milk pregnancy to age 3yrs) 41.10% 53.80% 0.038
cow-last-yr (contact with cows past 12 months) 23.70% 40.50% 0.004
cow-first-3yrs (contact with cows pregnancy to age 3yrs) 31.40% 44.50% 0.035
straw-last-yr (contact with straw past 12 months) 19.70% 40% <0.001
straw-first-3yrs (contact with straw pregnancy to age 3yrs) 26.90% 43.80% 0.007
hay-last-yr (contact with hay past 12 months) 25.60% 42.80% 0.003
hay-first-3yrs (contact with hay pregnancy to age 3yrs) 38.20% 46.70% 0.181

cow/straw-first-3yrs
(contact with cows and/or straw pregnancy to age 3yrs)

0% (straw only)
3% (cow only)
27.3% (both)

2.1% (straw only)
3.2% (cow only)
41.7% (both)

0.053

cow/straw-last-yr (contact with cows and/or straw past 12 months)
1.4% (straw only)
6.8% (cow only)
17.6% (both)

5.1% (straw only)
6.7% (cow only)
34% (both)

0.006

barn-first-3yrs (stay in barn pregnancy to age 3yrs) 84% 77.60% 0.457
barn-last-yr (stay in barn past 12 months) 20.50% 42.80% <0.001
stable-weekly-last-yr (stay in cattle stable once/week) 29.50% 52.30% <0.001
mold-last-yr (rooms with visible mold) 15.40% 16% 0.891
dog-first-yr (dog allowed to stay in the room in first year of life) 15.40% 18.70% 0.472
cat-first-yr (cat allowed to stay in the room in first year of life) 26.90% 29.30% 0.658
dog-2-3yrs (dog allowed to stay in the room in 2. and 3. year of life) 18.70% 17.10% 0.726
cat-2-3yrs (dog allowed to stay in the room in 2. and 3. year of life) 25.70% 30.70% 0.367
dog-4-5yrs (dog allowed to stay in the room in 4. and 5. year of life) 25.30% 33.10% 0.168
cat-4-5yrs (dog allowed to stay in the room in 4. and 5. year of life) 37.80% 54.90% 0.005
dog-last-yr (dog allowed to stay in the room past 12 months) 16.70% 19.10% 0.602
cat-last-yr (cat allowed to stay in the room past 12 months) 34.60% 40.60% 0.299
children-household
(people between 0-18 years live currently in your household) 1.26 (se=0.13) 1.16 (se=0.04) 0.395

adults-household
(people 18 years and older live currently in your household) 2.05 (se=0.03) 2.18 (se=0.02) 0.106

parents-smoke-ever (have parents ever smoked after birth) 68.90% 61.30% 0.198
parents-smoke-currently (do parents currently smoke) 29.70% 27.10% 0.621
daycare
(regular attendance of facilities with
children until school enrolment)

93.80% 92.30% 0.682

antibiotics-pregnancy (mother takes antibiotics during pregnancy) 29.90% 25.80% 0.441
cattle-last-yr (stay in cattle stable past 12 months) 35.30% 45.40% 0.109
cattle-first-yr (stay in cattle stable in first year of life) 35.10% 47.20% 0.042

birth-season (season of birth (ref.: Summer))
25.6% (Spring)
23.1% (Autumn)
32.1% (Winter)

27% (Spring)
22.8% (Autumn)
26.2% (Winter)

0.642

family-atopy (parental atopy or sibling atopy) 83.10% 61.10% <0.001
family-asthma (parental asthma or sibling asthma) 35.10% 14.20% <0.001
family-hayfev (parental hay fever or sibling hay fever) 68.90% 44.20% <0.001
family-fheczema (parental eczema or sibling eczema) 50% 30.20% <0.001
* p-values based on Fisher’s exact test or, in case of continuous variables, Wilcoxon tests

se = standard error of mean, yr = year
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Table A.3: SNPs associated with childhood asthma from GWAS Catalog. SNPs associated
with childhood asthma in other studies are given by the GWAS Catalog. The 19 SNPs
given in GABRIELA and used for analysis are highlighted in green.
SNP Region Location Reported Genes Mapped genes Study
rs17036023-? 1p13.1 chr1:116587089 IGSF3 IGSF3 Ding L (PMID: 23829686); 2013
rs7527074-? 1q25.3 chr1:180676305 XPR1 XPR1 Ding L (PMID: 23829686); 2013
rs4658627-A 1q44 chr1:244347874 C1orf100 ZBTB18 - C1orf100 Forno E (PMID: 22560479); 2012
rs6054973-? 20p12.3 chr20:7405311 intergenic MIR8062 - SRSF10P2 Ding L (PMID: 23829686); 2013
rs6721181-? 2p22.1 chr2:39888556 intergenic THUMPD2 - SLC8A1-AS1 Ding L (PMID: 23829686); 2013
rs17033506-? 3p22.3 chr3:35598334 intergenic LOC100130503 Ding L (PMID: 23829686); 2013
rs9815663-T 3p26.2 chr3:3573203 IL5RA CRBN - SUMF1 Forno E (PMID: 22560479); 2012
rs9823506-? 3q12.2 chr3:100757869 ABI3BP
rs2705520-? 3q13.2 chr3:112550440 ATG3 ATG3 Ding L (PMID: 23829686); 2013
rs9883878-? 3q26.32 chr3:178137844 intergenic FGFR3P4 - LINC01014 Ding L (PMID: 23829686); 2013
rs35141484-? 4p14 chr4:39086721 KLHL5 KLHL5 Ding L (PMID: 23829686); 2013
rs17218161-? 4q12 chr4:58347679 intergenic SRIP1 - MIR548AG1 Ding L (PMID: 23829686); 2013
rs6871536-C 5q31.1 chr5:132634182 RAD50 RAD50 Bonnelykke K (PMID: 24241537); 2013
rs1295686-T 5q31.1 chr5:132660151 IL13 IL13 Bonnelykke K (PMID: 24241537); 2013
rs7770848-? 6p21.1 chr6:44801500 intergenic N/A Ding L (PMID: 23829686); 2013
rs2473967-? 6q21 chr6:113158133 intergenic PA2G4P5 - SOCS5P5 Ding L (PMID: 23829686); 2013
rs886448-? 7p15.3 chr7:24200546 intergenic RNA5SP228 - NPY Ding L (PMID: 23829686); 2013
rs6967330-A 7q22.3 chr7:106018005 CDHR3 CDHR3 Bonnelykke K (PMID: 24241537); 2013
rs7807274-? 7q32.3 chr7:131336340 MKLN1 MKLN1 Ding L (PMID: 23829686); 2013
rs9297216-? 8p12 chr8:34187743 intergenic CYCSP3 - RPL10AP3 Ding L (PMID: 23829686); 2013
rs16929097-? 9p23 chr9:12521826 intergenic JKAMPP1 - TYRP1 Ding L (PMID: 23829686); 2013
rs928413-G 9p24.1 chr9:6213387 IL33 IL33 Bonnelykke K (PMID: 24241537); 2013
rs11141597-? 9q21.33 chr9:86912543 intergenic RPS6P13 - GAS1 Ding L (PMID: 23829686); 2013
rs11000019-? 10q22.1 chr10:71831773 PSAP PSAP Ding L (PMID: 23829686); 2013
rs12570188-? 10q24.2 chr10:99095945 HPSE2 HPSE2 Ding L (PMID: 23829686); 2013
rs7927044-A 11q24.2 chr11:127891771 NR KIRREL3-AS3 - ETS1 Forno E (PMID: 22560479); 2012
rs7328278-C 13q13.3 chr13:35777629 NR DCLK1 Forno E (PMID: 22560479); 2012
rs10521233-G 17p12 chr17:13655763 NR MIR548H3 - CDRT15P1 Forno E (PMID: 22560479); 2012
rs2305480-G 17q12 / 17q21.1 chr17:39905943 GSDMB GSDMB Bonnelykke K (PMID: 24241537); 2013
rs7216389-T 17q12 / 17q21.1 chr17:39913696 ORMDL3 GSDMB Moffatt MF (PMID: 17611496); 2007
rs3894194-A 17q21.1 chr17:39965740 GSDMA GSDMA Bonnelykke K (PMID: 24241537); 2013

A.2.4 External validation for non-farm and farm children

In this section we report results for performance of a final prediction model determined
on only non-farm children and only farm children validated on the Austrian arm of
GABRIELA. For non-farm children random forest using demographics, family history
and environment had performed best and thus was applied as a final model. This yielded
an AUC of 0.63 (Figure A.9A.)

On farm children IPF-LASSO and random forest had performed similarly using demo-
graphics, family history and SNPs. We performed an average model combining prediction
scores of both models: the prediction scores of the random forest was standardized with
respect to mean and standard deviation of the IPF-LASSO’s prediction score. The average
of the two scores was used as final score and led to an AUC of 0.86 (Figure A.9B). Here,
for guaranteeing robustness of AUC confidence intervals, high class imbalance (occurring
for farm children on the Austrian GABRIELA arm) was avoided by forcing at least 10%
asthma cases into each bootstrap sample. Figure A.10 indicates that the more cases are
forced into one bootstrap sample the more precise the estimation of the AUC.
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Figure A.9: ROC-curves for best models for non-farm and farm children validated on the
Austrian arm of GABRIELA. Mean weighted ROC-curves of the 5 imputations (black)
with 1000 weighted ROC curves obtained via bootstrap (gray) for predictions on the Aus-
trian GABRIELA arm. A. Best prediction model for non-farm children (random forest)
validated on the Austrian GABRIELA arm. B. Best prediction model, resulting from
model averaging over standardized (subtraction of mean, division by standard deviation)
prediction scores of random forest and IPF-LASSO, for farm children.
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Figure A.10: Boxplots for AUCs for farm children validated on the Austrian arm of
GABRIELA for different numbers of cases that where included into a boostrap sample
at minimum. 5000 bootstrap samples were taken for each boxplot. The boxplots’ range
decreases the more balanced the bootstrap samples are regarding their outcome.

A.2.5 Parametric inverse-probability bagging on GABRIELA

The novel approach parametric IP bagging we proposed in Chapter 3 was for completion
applied on the data of the GABRIELA study. We applied the same variable setting as
for the final random forest models in Chapter 4 which were validated on the Austrian
GABRIELA arm. The results are shown in Figure A.11 and partly could be expected
according to the investigations in Chapter 3: for all children and non-farm children mostly
binary variables are given. This makes parametric IP bagging as it was proposed not
directly suitable but simulation study results of Chapter 3 have shown that in such cases
it still may work. The AUCs in our results were indeed only slightly lower than the ones
for the standard random forest. Farm children, however, contained mostly SNPs. Those,
seen as continuous variables, usually follow a non-symmetric distribution and thus may
disturb the estimation of a multivariate normal distribution. Indeed, the approach results
in an AUC close to 0.5.
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Figure A.11: External validation of parametric IP bagging on the Austrian GABRIELA
arm using family history and demographics for learning. Left figure: for all children
using environment in addition. Center figure: for non-farm children using environment in
addition. Right figure: for farm children using candidate SNPs in addition.

A.3 On analyses on CLARA study

A.3.1 Wider selection of important variables

In a more relaxed selection we regarded all variables which were selected by LASSO and
at the same time substantially correlated (correlation coefficient > 0.6) with a top-ranked
variable identified by boosting. Figure A.12 shows the corresponding correlation structure.
Figure A.13 illustrates the overlaps of correlated variables between variables identified by
LASSO und boosting with the relaxed assumptions. Table A.4 gives the corresponding
variable names.
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Table A.4: Overlap of variables selected by LASSO and variables ranked among the top
50 by boosting with treating variables of the two algorithms as equal if their Pearson
correlation coefficient was greater or equal 0.6. Variables in bold letters are contained in
the LASSO selected and the boosting selected variables.

features LASSO
features LASSO
correlated to
features boosting

features boosting
correlated to
features boosting

features boosting

CD93 (LpA) ALPP (CD328) C1orf213///ZNF436 (CD328) RORC (CD328)
CAPN13 (M) SP9 (CD328) TMEM106C (CD328) OR51Q1 (CD328)
LOC100291105///RBM38 (M) PKN2 (LpA) ALPP (CD328) S100A7 (CD328)
LINC00969 (M) ALG5 (LpA) GOLGA6L6///GOLGA6L1 (CD328) IL1beta_M
LOC728613 (M) C15orf59 (LpA) FANK1 (CD328) CCDC185 (CD328)

CYTH1 (LpA) CLCNKB (CD328) Leukozyten
ZNF432 (LpA) NT5C3B (CD328) IL5_CD328
OR6B3 (LpA) PARK7 (CD328) STMN1 (CD328)
IQGAP2 (LpA) RD3 (LpA) LURAP1///POMGNT1 (CD328)
CSNK1G3 (LpA) UQCRHL///UQCRH (CD328) IL5_LpA
PTK2 (LpA) PKN2 (LpA) ARTN (CD328)
MPLKIP (LpA) PRADC1 (CD328) months-breastfeeding
FMR1 (LpA) CD3D (CD328) NUDT13 (CD328)
ANKS4B (M) TRAPPC3 (CD328) OR10X1 (CD328)
NPIPB9///NPIPB6 (M) PTK2 (LpA) CHCHD1 (CD328)
EPHA6 (M) SEPW1 (CD328) SMYD2 (CD328)
SEMA3A (M) RPL11 (CD328)

Segmented granulocytes
CAP1 (CD328)
DMBX1 (CD328)
ZFP69B (CD328)
CSRP3 (CD328)
alpha1Antitrypsin
MMP13 (CD328)
NGF (CD328)
RASGRF1 (CD328)
IRF8_328
TGM1 (CD328)
RNPEP (CD328)
RHEB (LpA)
TNN (CD328)
SSU72 (CD328)
IL1beta_LpA
RAB25 (CD328)
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Figure A.7: Variable importance of the random forest model trained on genome-wide SNPs
in farm children. A selection of the 50 most important variables is shown. A. Only the
genome-wide SNPs are used for learning; corresponding to the lower right panel of Figure
4.3. B. Family history, demographics in addition to the genome-wide SNPs are used for
learning; corresponding to the lower right panel of Figure 4.4.
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Figure A.8: Genome-wide association study of farming stratified for asthma cases and
controls. The cumulative frequency of p-values is given stratified for asthma cases and
healthy controls. The number of p-values representing false positive findings for the cor-
responding levels of significance is given as reference.
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Figure A.12: Pearson correlation coefficient between variables selected by LASSO
(columns) and those ranked under the top 50 by boosting (rows) in the complete case
model. Genes are denoted by their names with the type of stimulation in parentheses.
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Variables	selected	by	LASSO	

Variables	selected	by	LASSO	correlated	to	variables	selected	by	boos4ng	

Variables	selected	by	LASSO	and	by	boos4ng	

Variables	selected	by	boos4ng	correlated	to	variables	selected	by	LASSO	

Variables	selected	by	boos4ng	

Figure A.13: Overlap of variables selected by LASSO and variables ranked among the
top 50 by boosting with treating variables of the two algorithms as equal if their Pearson
correlation coefficient was greater than or equal to 0.6. There were 30 variables fulfilling
this criterion: 14 variables selected by LASSO and 13 variables from the top boosting
variables, 3 by both.
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