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Abstract—Data-driven approaches in control allow for identi-
fication of highly complex dynamical systems with minimal prior
knowledge. However, properly incorporating model uncertainty
in the design of a stabilizing control law remains challenging.
Therefore, this article proposes a control Lyapunov function
framework which semiglobally asymptotically stabilizes a par-
tially unknown fully actuated control affine system with high
probability. We propose an uncertainty-based control Lyapunov
function which utilizes the model fidelity estimate of a Gaussian
process model to drive the system in areas near training data
with low uncertainty. We show that this behavior maximizes
the probability that the system is stabilized in the presence of
power constraints using equivalence to dynamic programming.
A simulation on a nonlinear system is provided.

Index Terms—Lyapunov methods, Machine learning, Uncer-
tain systems, Robust control, Nonlinear systems identification.

I. INTRODUCTION

CONTROL engineering is increasingly applied in domains
where precise model descriptions cannot be derived ana-

lytically. In parallel, improved sensor, storage and processing
technology make data-driven approaches feasible for modeling
complex systems with high precision. Therefore, data-driven
control has emerged to complement powerful machine learning
algorithms with the mathematical analysis of control theory.

Traditional system identification techniques are based on
parametric estimation paradigms, which suffer from finite
model parameters and bias towards a particular systems class.
Nonparametric models are a suitable alternative as they adapt
their model complexity to the given data using minimal prior
knowledge, see [1] for an overview in the linear case.

For nonlinear systems, Gaussian processes (GPs) are ap-
plied as a nonparametric, probabilistic model [2] due to
following properties: First, an implicit bias-variance trade-
off avoids over- or underfitting. Second, prior knowledge is
directly incorporated using Bayesian principles. And, most
importantly, the model quantifies its ignorance due to missing
data [3]. Many application utilize GPs in a model predictive
control scheme [4], [5] or reinforcement learning [6]. Inverse
models for robotic manipulators are also obtained using semi-
parametric methods, see [7]. However, none of these perform
a stability analysis of the controlled system. This is first
considered in an adaptive control scheme in [8], followed by a
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computed torque approach in [9] and a feedback linearization
control in [10]. These approaches focus on ultimate bounded-
ness, but do not ensure asymptotic convergence. In addition,
most applications do not take advantage of the inferred model
fidelity since it is either ignored [11] or used for other control
tasks, e.g., gain tuning [12]. However, areas of the state space,
where the model is highly uncertain, bare a risk for any model-
based control law to cause undesired behavior of the system.

The contribution of this work is a novel approach to stabilize
nonlinear systems with partially unknown dynamics taking
model confidence explicitly into account. We utilize tech-
niques from dynamic programming to derive an uncertainty-
based control Lyapunov function. It utilizes the model fidelity
knowledge of the GP to optimally avoid uncertain regions in
the state space. Based on this control Lyapunov function, the
control law achieves semiglobal asymptotic stability with high
probability on the partially unknown system. We show that this
probability is maximized through our choice of the control
Lyapunov function under input constraints.

The article is structured as follows: After defining the prob-
lem setting in Sec. II, Sec. III reviews Gaussian process state
space models (GP-SSM). Section IV presents the proposed
control law and the main results. A numerical illustration is
shown in Sec. V followed by a conclusion in Sec. VI.

II. PROBLEM FORMULATION

Consider a fully actuated control affine system1

ẋ = f(x) +G(x)u, x(0) = x0, (1)

with state x ∈ X ⊂ Rn, compact X and input u ∈ U ⊆ Rn.
The goal is to asymptotically stabilize the system at an
arbitrary point x∗ ∈ X under the following assumptions:

Assumption 1: The function f : X → Rn is unknown but
the function value f(x∗) is known.
This assumption is mild, because it only requires a single
(noise free) measurement of f as prior knowledge. Without
loss of generality, we take x∗ as an equilibrium point in the
origin, thus f(0) = 0.

We also impose a restriction on the ”complexity” of
the function f as measured under the reproducing kernel

1Notation: Lower/upper case bold symbols denote vectors/matrices,
R+,0/R+ all real positive numbers with/without zero and E[·]/V[·] the ex-
pected value/variance of a random variable, respectively. In denotes the n×n
identity matrix, ‖·‖ the Euclidean norm and ∇x f the gradient of a function f
with respect to x.



Hilbert space (RKHS) norm. A RKHS is a complete sub-
space of the L2, for which the inner product 〈·, ·〉k fulfills
the reproducing property 〈f , k(x, ·)〉k = f(x). The induced
norm ‖f‖k =

√
〈f , f〉k is a measure for the smoothness of f .

Assumption 2: The function f(x) has a bounded RKHS
norm under a known kernel k, ‖fj‖k <∞ for j=1, . . . ,n .
This assumption limits irregularities (like discontinuities) of
the function [3]. The norm is computed using the eigendecom-
position of the kernel using Mercer’s Theorem. For all nonde-
generated kernels (see Sec. III-A), the RKHS is dense in the
space of continuous functions on a compact domain X [13].
Thus, the considered class of systems is very flexible by
uniformly approximating any continuous function [14].

In addition, we assume the availability of a training set.
Assumption 3: The state and a noisy version of its derivative

are measured over a finite time horizon, thus N data pairs are
given in the training set

D =
{(
x(i),y(i)

)}N

i=1
, y(i) = f

(
x(i)

)
+ ωi, (2)

where ωi are i.i.d. samples ωi ∼ N (0,σ2
onIn), σ2

on ∈ R+.
This only requires, that the uncontrolled system ẋ = f(x) has
a finite escape time, which is a very mild condition. The avail-
ability of measurements is essential for any data-driven design
and nowadays well justified with improved sensor technology.
The derivative measurement is even allowed to be noisy, i.e.
from a practical perspective discrete time state measurements
would suffice to compute the derivative approximately. We
also assume the full actuation holds everywhere and the effect
of the input on the state is perfectly known.

Assumption 4: The function G(x) : X → Rn×n is known,
differentiable and rankG(x) = n, ∀x ∈ X .
This assumption holds for example for robotic manipulators,
coupled multi-tank systems with inflows for each tank and
many others. It is also common for control affine systems [15].

Based on these assumptions, the goal is to find a state
feedback control law u(x), which asymptotically stabilizes the
system (1). We derive a control Lyapunov function based on a
GP representation of the dynamics. This Lyapunov function is
constructed using dynamic programming to avoid areas where
the uncertainty of the model is high and favor areas near
training data, where model fidelity is high. The identification
of the uncontrolled dynamic model ẋ = f̂(x) employs GP-
SSMs as reviewed in the following.

III. GAUSSIAN PROCESS STATE SPACE MODELS
A. Gaussian process regression

Gaussian processes allow to model nonlinear dynamical
systems and further indicate the model fidelity based on
distance to training data. A GP is a stochastic process which
assigns to any finite subset {x1, . . . ,xM} ⊂ X in a continuous
input domain a joint Gaussian distribution [3]. It is considered
as a distribution over functions f̂ : X → R denoted by

f̂(x) ∼ GP(m(x), k(x,x′)). (3)

The GP is fully specified by a mean function m(x) : X → R
and a kernel k(x,x′) : X×X → R. Both depend on the hyper-
parameters ψ which characterize the functions over which the

GP is a distribution. For the prior mean function, it is common
practice to set mj(x) = 0, for all j=1, . . . ,n if no further
knowledge is available. This is also assumed in the following
without loss of generality. A widely used covariance function
is the nondegenerated squared exponential (SE) kernel

kSE(x,x′) = σ2
f exp

 n∑
j=1

(xj − x′j)2

−2l2j

 . (4)

Its hyperparameters ψ =
[
l1 · · · ln σ2

f

]ᵀ
are the signal vari-

ance σ2
f ∈ R+,0 and the lengthscales lj ∈ R+, j=1, . . . ,n .

They are obtained from a likelihood maximization according
to Bayesian principles. It is usually solved with gradient-based
methods [3] even though it is non-convex.

Since (3) represents only functions with scalar outputs, n in-
dependent GPs are utilized to model the dynamical system (1)

f̂(x) =


f̂1(x) ∼ GP (0, k1(x,x′))
...

...
f̂n(x) ∼ GP (0, kn(x,x′)) ,

(5)

where ψj with j=1, . . . ,n are corresponding hyperparame-
ters of the kernel functions kj(·, ·).

Given a dataset D in (2), the GP is employed for regression.
For a test input x∗, the j-th component of the inferred
output y∗ is jointly Gaussian distributed with the training data[

y∗j
yj

]
∼ N

([
0
0

]
,

[
k∗j kᵀj
kj Kj + σ2

onIN

])
, (6)

where k∗j = kj(x
∗,x∗) ∈ R, yj =

[
y

(1)
j · · · y

(N)
j

]ᵀ
∈ RN ,

kj =
[
kj
(
x(1),x∗

)
· · · kj

(
x(N),x∗

)]ᵀ ∈ RN ,

and

Kj =

kj
(
x(1),x(1)

)
· · · kj

(
x(1),x(N)

)
...

. . .
...

kj
(
x(N),x(1)

)
· · · kj

(
x(N),x(N)

)
∈ RN×N. (7)

Conditioning on test input x∗ and training data D yields

E[y∗j |D,x∗,ψj ] = kᵀj (Kj + σ2
onI)−1yj , (8)

V[y∗j |D,x∗,ψj ] = k∗j − k
ᵀ
j (Kj + σ2

onI)−1kj . (9)

B. Including known equilibrium to GP-SSMs

To make use of the known equilibrium point f(0) = 0
in Assumption 1, we introduce a minor modification to the
GP-SSM by extending (6) as followsy∗jyj

0

 ∼ N
0

0
0

 k∗j kᵀj kj (x∗,0)

kj Kj + σ2
onIN k0j

kj (0,x∗) k0j
ᵀ

kj (0,0)

,

where k0j =
[
kj
(
x(1),0

)
· · · kj

(
x(N),0

)]ᵀ ∈ RN .
Note that no observation noise is added for the training

point (0, 0) as this is known a priori without uncertainty and
not measured. For mean and variance predictions, we define

µj(x
∗) := E[y∗j |D,x∗, (0, 0),ψj ], j=1, . . . ,n (10)

σ2
j (x∗) := V[y∗j |D,x∗, (0, 0),ψj ], j=1, . . . ,n (11)



equivalent to (8) and (9) and their concatenations

µ(x∗) :=
[
µ1(x∗) · · · µn(x∗)

]ᵀ
, (12)

σ2(x∗) :=
[
σ2

1(x∗) · · · σ2
n(x∗)

]ᵀ
. (13)

Due to the continuity of the SE kernel, the bounds

σ̄2 := max
x∗∈X

‖σ2(x∗)‖, µ̄ := max
x∗∈X

‖µ(x∗)‖, (14)

exist. For the variance function is the following concluded.
Lemma 1: The posterior variance function σ2 : X →Rn

+,0

defined in (13) from a Gaussian process with SE kernel (4) is
component-wise positive definite.

Proof: According to [10], σ2
N (x) ≥ σ2

N+1(x), ∀x ∈ X
holds, where σ2

N (x) and σ2
N+1(x) denote the variance func-

tions for N and N + 1 training data points, respectively.
Considering only the training data point (0, 0), σ2(0) = 0
holds, as it can be directly seen from (9) and (11). This leads
with the non-negativity to σ2(0) = 0. For all x ∈ X \{0},
we can conclude that σ2(x) > 0 because of the measurement
noise σ2

on > 0 and finite training data points.

C. Model error

In the previous section, we have shown how to incorporate
Assumption 1 in the model, while this section investigates the
effects of Assumption 2. We limit the analysis here to the
SE kernel defined in (4), however it can be generalized to
other nondegenerated kernels, e.g. the Matern kernel (for an
overview see [3, Table 4.1]). Based on the work in [16], we
define the maximum information gain under a kernel kj as

γj = max
x̄(1),...,x̄(N+1)∈X

1

2
log |IN + σ−2

on K̄j(x,x′)|, (15)

where |·| denotes the determinate, x,x′ ∈
{
x̄(1), . . . , x̄(N+1)

}
and K̄j is the covariance matrix equivalently defined to (7).
Intuitively, this is a measure for the topology of X by taking
the best distribution of N+1 data points x̄(i) in X in terms of
the information gain. This allows to upper bound the difference
between the true function f(x) and the inferred mean µ(x)
with high probability.

Lemma 2: For any compact set X ⊂ Rn and a probabil-
ity δ ∈ (0, 1) holds

P{‖µ(x)− f(x)‖≤‖β‖‖σ(x)‖,∀x ∈ X}≥(1− δ)n, (16)

where µ(x) and σ(x) are the mean and standard deviation
posterior function of the GP in (12) and (13), respectively,
and β =

[
β1 . . . βn

]ᵀ
with

βj =

√
2‖fj‖2kj

+ 300γj log3

(
N + 1

δ

)
, ∀j=1, . . . ,n ,

where fj is the j-th component of f and γj is defined in (15).
Proof: Similar to [12, Lemma 1], this is derived

from [16, Theorem 6], which states for the scalar case

P {|µ(x)− f(x)| ≤ βσ(x), ∀x ∈ X } ≥ 1− δ. (17)

Using the fact that ω is uncorrelated, yields

(1− δ)n ≤ P


n⋂

j=1

|µj(x)− fj(x)| ≤ βjσj(x),∀x ∈ X


≤ P

‖µ(x)−f(x)‖ ≤

∥∥∥∥∥∥∥
β1σ1(x)

...
βnσn(x)


∥∥∥∥∥∥∥,∀x ∈ X


and using the triangle and the Cauchy-Schwarz inequality∥∥[β1σ1(x) · · · βnσn(x)

]ᵀ∥∥ ≤ n∑
j=1

βjσj(x) ≤ ‖β‖‖σ(x)‖,

yields the presented result.
The information gain γj has a sublinear dependence on N for
most kernels as shown in [16]. Thus, even though β increases,
this bound concludes, that the model error ‖f(x)− µ(x)‖
descreases with more training points. Therefore, Lemma 2
allows to make high probability statements regarding the
maximum model error, which will be needed in the analysis
of the proposed control law.

IV. CONTROL DESIGN & ANALYSIS
For the control, we consider the feedback linearizing form

u(x) = −G−1(x) (µ(x) + kc∇xᵀV (x)) , (18)

where µ(x) is the mean of the GP-SSM defined
in (12), kc > 0 and V : X → R+ is a positive definite
differentiable function employed as control Lyapunov func-
tion. In a first step (Sec. IV-A), we will generally show
which conditions for V (x) and kc must hold to stabilize the
system with a certain probability. In Sec. IV-B we analyze
how this probability is maximized under finite control power
constraints. Section IV-C finally proposes a specific Lyapunov
candidate which takes the model uncertainty into account.

A. Conditions for asymptotic stability

Theorem 1: Consider the unknown system (1) under As-
sumptions 1-4 represented by a Gaussian process with SE
kernel in (12), (13) and a positive definite differentiable
function V (x) with ‖∇xV (0)‖ = 0 and

‖σ(x)‖ − ‖∇xV (x)‖ ≤ 0, ∀x ∈ X . (19)

Further consider the control law (18) with kc > ‖β‖ with β
from Lemma 2. Then, the origin of the closed loop sys-
tem is semiglobally asymptotically stable with probability at
least (1− δ)n for all x0 ∈ X .

Proof: For V (x) as Lyapunov candidate holds ∀x ∈ X

V̇ (x) = ∇xV (x)ẋ = ∇xV (x)(f(x) +G(x)u(x))

= ∇xV (x) (f(x)− µ(x)− kc∇xᵀV (x)) (20)

≤ ‖∇xV (x)‖‖f(x)− µ(x)‖ − kc‖∇xV (x)‖2,

where the inequality yields from the Cauchy-Schwarz inequal-
ity. Employing Lemma 2 allows the conclusion

P
{
∀x ∈ X , V̇ (x)≤‖∇xV (x)‖ (‖β‖‖σ(x)‖−kc‖∇xV (x)‖)

}
≥(1−δ)n (21)



which yields

P
{
∀x ∈ X \{0}, V̇ (x) < 0

}
≥ (1− δ)n (22)

under condition (19) and kc > ‖β‖. The strict inequality
holds because ‖∇xV (x)‖ is lower bounded by the positive
definite function ‖σ(x)‖. Additionally, V̇ (0) = 0 holds from
condition ‖∇xV (0)‖ = 0.

Remark 1: Here, semiglobal stability is achieved because
the set X is bounded to apply Lemma 2 properly. However,
the region of attraction, the compact set X , can be chosen
arbitrarily large as long as it is finite. For any compact X
(no matter how large), there exists a gain kc which results in
asymptotic stability on the entire set.

B. Considering power limitations

In principle many control Lyapunov functions stabilize the
system according to Theorem 1. However, it is not trivial to
find a suitable candidate if we consider the practical limitation,
that only finite control power umax > 0 is available

‖u(x)‖ ≤ umax, ∀x ∈ X . (23)

Given this constraint, the goal for the control design is to
maximize the probability that the system is asymptotically
stabilized. We will refer to this probability as the confi-
dence ∆ = (1− δ)n and denote ‖β‖ = β(∆) from Lemma 2.
Thus, we want to choose V (x) and kc such that the confi-
dence ∆ is maximized, the power constraint (23) is satisfied
and the equilibrium is stabilized in the sense of Theorem 1.
This is formalized and solved in the following:

Lemma 3: Consider the upper bound for the control input

‖u(x)‖ ≤ (µ̄+ kc‖∇xᵀV (x)‖)/λ
¯
G ≤ umax ∀x ∈ X , (24)

where µ̄ is defined in (14) and λ
¯
G is the smallest singular

value of G, ∀x ∈ X . If the input power constraint (24)
fulfills umax > µ̄/λ

¯
G, the maximization of the confidence

∆∗ = arg max
‖∇xV (x)‖,kc

∆ (25a)

s.t. (µ̄+ kc‖∇xV (x)‖)/λ
¯
G ≤ umax, kc>β(∆),

‖∇xV (x)‖ ≥ ‖σ(x)‖, ∀x ∈ X
(25b)

is solved by

‖∇xV (x)‖ = ‖σ(x)‖, kc = (umaxλ
¯
G − µ̄)/σ̄. (26)

The largest possible confidence for any arbitrarily small ε > 0
with (umaxλ

¯
G − µ̄)/σ̄ > ε > 0 is

∆∗ = β−1
(

(umaxλ
¯
G − µ̄)/σ̄ − ε

)
, (27)

where β−1 is the inverse of β(∆).
Proof: Since β(∆) is monotone, the problem can be

rewritten to optimize over β. Since the constraint set is then
convex and the objective is linear, the maximum is attained
on the boundary. As kc must not depend on x, but must
hold ∀x ∈ X , the lower bound (umaxλ

¯
G−µ̄)/σ̄ is taken for kc.

The inverse β−1 exists since β(∆) is monotone.

Remark 2: Lemma 3 does not maximize the reliability
under the constraint (23) but uses an upper bound for the
control input as constraint, given by (24). The solution (27)
is a lower bound to the actual achievable confidence, be-
cause (24) is less restrictive than (23). The condition for
optimality ‖∇xV (x)‖ = ‖σ(x)‖ also holds for the true con-
straint (23) and will mainly be used in the following.

C. Uncertainty-based Lyapunov function

From Lemma 3, we obtain a condition for the optimal (with
respect to the confidence) Lyapunov function given by

‖σ(x)‖ = ‖∇xV (x)‖, ∀x ∈ X (28)
with boundary condition V (0) = 0.

Solving this differential equation is not trivial, however it is
a well known problem: A necessary condition for the optimal
value function in dynamic programming takes the same form
as derived from Hamilton-Jacobi-Bellman (HJB) equation.
This equivalence is formalized in the following.

Theorem 2: Consider the value function V̂ : X → R+,0

defined as

V̂ (x0) = min
x̂(s)

∫ S

0

cσ (x̂(s)) ds (29)

s.t. x̂(0) = x0, x̂(S) = 0, (30)

representing the accumulated cost along an optimal path x̂(s)
from the current state x0 to the origin, which is parameterized
by the arclength s ∈ [0 S], S ∈ R+ for which holds ‖dx̂ds ‖ = 1.
For a stage cost cσ : X → R+,0, given by

cσ(x) = ‖σ(x)‖, (31)

the value function V̂ is a control Lyapunov function V (x)
which solves the optimization (25).

Proof: Derived from the HJB equation, a necessary
condition for the value function is

‖∇xV̂ (x)‖ = cσ (x) , ∀x ∈ X (32)

with boundary condition V̂ (0) = 0.

This is also known as the inhomogeneous Eikonal equa-
tion [17]. From the choice (31), it can be directly seen that
the conditions for deriving the value function (32) and for
maximizing the achievable confidence in (28) are equivalent.

Remark 3: The solution to the inhomogeneous Eikonal
equation is for most cost functions cσ not differentiable. How-
ever, it is common practice to consider viscosity solutions [18],
which exist for continuous, bounded and positive definite cost
functions, which is the case for cσ(x) in (31) (Lemma 1).
We conclude that any solution of the Eikonal equation taken
as control Lyapunov function also maximizes the confidence
according to Lemma 3. The equivalence is beneficial from a
practical point of view: It allows to use the value function from
dynamic programming [19] as control Lyapunov function to
maximize the achievable confidence. To compute it efficiently,
various techniques, e.g. fast marching methods [20], are avail-
able. It is also interesting from a theoretical perspective as it



matches an intuitive understanding: Under a power constraint,
the maximum confidence is achieved if the control minimizes
the uncertainty about the model along the path. The control
drives the system towards areas of the state space with training
points to avoid areas with low model fidelity. The control law
tracks the optimal path (in terms of lowest uncertainty) which
is generated by

ẋ = −∇xV̂ (x). (33)

Applying this uncertainty-based control Lyapunov function
in the control law (18) allows the following conclusion.

Proposition 1: Consider the unknown system (1) under As-
sumptions 1-4 modeled by a GP in (12) with SE kernel (4) and
the power constraint (24). Further consider the control law (18)
where kc = (umaxλ

¯
G − µ̄)/σ̄ and V (x) is the viscosity so-

lution of the Eikonal equation (32) with cσ(x) = ‖σ(x)‖.
Then, the origin of the closed loop system is semiglobally
asymptotically stable with at least probability ∆∗ which is the
maximum in terms of Lemma 3.

Proof: The solution to the Eikonal equation V (x) is pos-
tive definite from the imposed boundary condition V (0) = 0
and the fact that the path integral over a positive definite
cost function is larger zero for any starting point outside
the origin. The condition (19) is fulfilled with equality and
kc > β(∆∗) holds from (27). Therefore, the stability follows
directly from Theorem 1 and the maximum confidence from
Lemma 3 and Theorem 2.

V. NUMERICAL EVALUATION

This section discusses the implementation of the proposed
approach and presents a numerical evaluation on a two dimen-
sional system.

A. Setup and implementation

Consider the unknown unstable dynamics

ẋ1 = x1 + (cos(x1)− 1)x2 + u1,

ẋ2 = −s(x1) + x2 + u2,
(34)

where s(x1) = 1
1+exp(−2x1)−0.5 is a shifted sigmoid function.

The dynamics is continuous, has therefore a finite RKHS
norm under the squared exponential kernel on a compact set
and complies to Assumption 2 according to [16]. To obtain
the dataset D, the uncontrolled system is initialized at x0 =[
0.3 0

]ᵀ
and x0 =

[
−0.3 0.1

]ᵀ
, simulated for time T = 2

and observations are taken with sampling interval ∆t = 0.3
and noise σ2

on = 0.01 according to Assumption 3. This leads
to N = 20 on X = [−5 5]2. The training point (0,0) is
added according to Assumption 1. For training the Gaussian
process, the hyperparameters are obtained through likelihood
maximization using a quasi-Newton method. The maximum
input power is assumed to umax = 24. According to Lemma 3,
we estimate kc ≈ 17 and set ε = 2. To obtain the confi-
dence ∆, the following Monte Carlo approach is employed
because the constants γj and ‖fj‖kj are hard to compute
and the bound in Lemma 2 becomes very conservative: By
sampling 104 realizations of the GPs, we observe that the

condition in Lemma 2 for a ‖β‖ = 15 holds in ∆∗ = 99.87%
of the cases. If the likelihood optimization converged to
a local minimum, this sampling-based method accounts for
the suboptimality of the hyperparameters, because it directly
evaluates the probability of a large model error in (16). From
a theoretical perspective, this suboptimality causes a different
RKHS norm ‖f‖k, leading to a higher ‖β‖.

The most critical part of the implementation is the com-
putation of the control Lyapunov function V in (29) itself.
For its numerical evaluation, we discretize the state-space X
uniformly with 104 points and use the Dijkstra algorithm on
the resulting graph to compute the cost from the origin to every
node in the graph. This computation is performed offline after
the GP is trained. While the controller is running, a linear
interpolation between the costs of each node in the grid is
used to obtain the value function in the continuous space.2 To
apply the value function as a control Lyapunov function, its
gradient is evaluated by first order finite differences (with finite
difference εfd = 10−4). For more sophisticated algorithms,
we refer to the existing literature dealing with fast marching
methods [20]. The time-continuous forward simulation is per-
formed with a variable-step 4-order Runge-Kutta solver until
the trajectories reach proximity of the origin with ‖x‖ < 0.05.

B. Results

The training data and the resulting GP-SSM are visualized
in Fig. 1. It shows the generalization by the mean function
which indicates the diverging behavior. The norm of the
variance, which is chosen as the cost cσ(x), increases with
increasing distance to the training data. Figure 2 shows the
uncertainty-based control Lyapunov function and the resulting
behavior of the controlled system under the proposed control
law (18) for different initial positions. The control law first
pushes the system towards training data before driving in the
area of high model fidelity towards the origin.

C. Discussion

Generally, the approach allows to stabilize arbitrary complex
control affine fully actuated systems under the introduced
assumptions due to the model flexibility. The guarantee for
asymptotic convergence is obtained with probability ∆, spec-
ified by Lemma 3. The proposed Lyapunov candidate max-
imizes ∆ in terms of Lemma 3 under a given input power
constraint. Thus, there is a trade-off in the design between the
achieved confidence ∆, the number of training data N , the
complexity of the system to control ‖f‖k and the maximum
power umax. For the example system (34), we obtained a
confidence of ∆ = 99.87% for umax = 24. However, it reduces
to ∆ = 92.4% for umax = 23 and ∆ = 28.45% for umax = 22.
Thus the confidence is very sensitive to the maximum power.
On the downside, the GP and the proposed uncertainty-based
control Lyapunov function have a high computational com-
plexity. However, most of the heavy computation is performed

2The linear interpolation is guaranteed positive definite if one grid point
is positioned at the origin. It is differentiable almost everywhere (except for
the grid points). The alternative spline interpolation is differentiable, but not
guaranteed positive everywhere.



−4 −2 0 2 4

−4

−2

0

2

4

x1

x
2

‖σ(x)‖
D
µ(x)

Fig. 1. The training data D (black arrows) obtained from the uncontrolled
simulation of (34) and the mean prediction of the GP-SSM (red streamlines)
defined in (12). The norm of the predicted variance (13) is shown as colormap
(yellow is low, blue is high).
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Fig. 2. The value function V (x) from (29), used as uncertainty-based control
Lyapunov function, is shown as colormap (yellow is low, blue is high) with
training data (black arrows). Trajectories (red lines) show the closed loop
behavior under the proposed control law (18) for different initial states.

offline including the collection of training data (with u = 0),
the training of the GP model, the Monte Carlo simulation to
compute the confidence and the computation of the Lyapunov
function using a gridded discretization of the state space and
Dijkstra’s algorithm. For the controller itself, we utilize an
interpolation of the discretized Lyapunov function which is
sufficiently fast in the online phase. Generally, the uncontrolled
dynamics f(x) are assumed unknown, but the approach is
limited to fully actuated systems with the effect of each input
being perfectly known (Assumption 4).

VI. CONCLUSION
This paper introduces a control Lyapunov function approach

to ensure asymptotic stability using a data-driven Gaussian
process state space model. Using the specified assumptions
for the fully actuated control affine dynamics, we derive
general conditions on the control Lyapunov candidate which
achieve asymptotic stability with high probability on the true
system. To maximize this probability under control constraints,
we propose an uncertainty-aware control Lyapunov function

which favors areas with low model uncertainty. We propose a
numerically efficient method for its computation and illustrate
it in simulation on an unstable nonlinear system.
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