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Abstract

Atomistic simulations of battery materials have greatly improved our understanding of the elemen-
tary thermodynamic and kinetic processes in corresponding compounds. In most computational
studies density functional theory (DFT) is the method of choice due to the strong predictive power
founded in its quantum mechanical origin. The contribution of such studies ranges from the
characterization of the materials performance in battery applications [2–4] to the prediction of new
materials in screening approaches [5–8]. Unfortunately, DFT presents a major bottleneck in terms
of computational cost. This restricts its applicability to only most simple model structures. Even
at the limit of what is computationally tractable with present day resources, such models grossly
oversimplify the strong inherent disorder that is typically present in battery materials. In an
attempt to overcome this limitation, coarse grained approaches are often employed which permit
the computation of larger length and time scales. For example, contemporary studies use cluster
expansion, kinetic Monte-Carlo or percolation models [4, 9, 10]. These rely on input from DFT
calculations and thus enable an extrapolated evaluation of the relevant macroscopic properties.
However, a major shortcoming of these coarse grained models is the signi�cant restriction of
atomic degrees of freedom (DOF). These DOFs contain detailed information which is critical for
an accurate representation of disorder e�ects.

In this thesis, new computational approaches for di�erent classes of materials are therefore
elaborated. These approaches employ DFT validated or parameterized force �eld potentials, whose
advantageous numerical e�ciency allows for treating large system sizes while retaining the crucial
DOFs. The force �eld potentials are integrated into a simulation strategy which includes extensive
sampling from Monte-Carlo (MC) and/or molecular dynamics (MD) methods.

This unique combination of methodological tools provides unprecedented insight into the
implications of structural disorder on battery performance. The latter are hereby demonstrated
for two showcase battery materials that are of great technological value. In a �rst application to
the anode material Li4Ti5O12 (LTO), novel disorder-stabilized defects are revealed which promote
high localized mobility. This gives rise to a correlated ion di�usion mechanism that can rationalize
the hitherto unexplained high rate capabilities of this material [1]. Secondly, for the glass-
amorphous Li3OCl solid-state electrolyte, non-unity transference numbers are predicted which
suggest a performance limiting concentration polarization. It is reasonable to expect that much
of the hereby derived physical insight extends also to other applications of con�gurationally
disordered compounds. This work thus overall underscores the importance of disorder-induced
relationships in battery materials. Most importantly, such e�ects only become apparent on large
simulated length and time scales, which are not accessible with DFT. Therefore, the presented
methodology establishes a protocol that can be employed to uncover disorder relationships in other
technologically relevant materials. Ultimately, this opens the road towards a deeper understanding
of transport phenomena in general and help guide future e�orts for designing next-generation
battery materials.
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Zusammenfassung

Atomistische Simulationen von Batteriematerialien verbessern das Verständnis der grundlegenden
thermodynamischen und kinetischen Vorgänge in entsprechenden Sto�klassen. Die meisten dieser
Simulationen werden mithilfe von Dichtefunktionaltheorie (DFT) durchgeführt, da diese dann
ein hohes Maß an Genauigkeit und Vorhersagbarkeit besitzen. Die Beiträge aus solchen Studien
umfassen die Charakterisierung von Betriebseigenschaften der Materialien in Batterieanwendun-
gen [2–4] und die Vorhersage neuer Materialien in sogenannten “Screening” Ansätzen [5–8]. Die
Anwendung von DFT ist jedoch end verbunden mit einem hohen Rechenaufwandt. Aufgrund des-
sen, ist die Anwendbarkeit von solchen Studien auf kleinste Modellsysteme beschränkt, welches
eine problematische Limitierung für die Untersuchung von Batteriematerialien darstellt. Diese
sind häu�g von einer starken Unordnung bestimmt, welche in den kleinen Modellsystemen deut-
lich vereinfacht werden muss. Aus diesem Grund werden oft vergröberte Methoden verwendet,
welche die Behandlung größerer atomarer Strukturen erlaubt. In heutigen Studien werden dafür
z.B. Cluster Expansion, kinetisches Monte-Carlo oder Perkolationsmodelle verwendet [4, 9, 10].
Diese Verfahren nutzen dabei Informationen aus DFT Rechnungen und ermöglichen dadurch
eine extrapolierte Auswertung der relevanten Materialeigenschaften. Ein entscheidender Nachteil
der vergröberten Methoden ist allerdings die Reduzierung der atomaren Freiheitsgrade. Diese
sind jedoch entscheidend für eine akkurate Beschreibung von E�ekten, die durch Unordnung
entstehen.

In dieser Dissertation werden daher Simulationsansätze für verschiedene Sto�klassen erarbeitet,
welche DFT-validierte oder -parametrisierte Kraftfeldpotentiale verwenden. Mit diesen können
große atomare Strukturen behandelt werden, wobei die notwendigen Freiheitsgrade erhalten
bleiben. Die Kraftfeldpotentiale werden in eine Simulationsstrategie integriert, welche auf einer
Kombination von Monte-Carlo und/oder Molekulardynamik-Simulationen basiert.

Mithilfe des beschriebenen Ansatzes werden einschlägige Auswirkungen der Unordnung auf
die Leistung von zwei angewandten Batteriematerialien aufgedeckt. Hierbei sind neue, durch Un-
ordnung stabilisierte, Defekte in dem Anodenmaterial Li4Ti5O12 (LTO) gefunden worden, welche
eine hohe lokalisierte Ionenmobilität ermöglichen. Diese wiederum gibt eine Erklärung für die
bisher nicht verstandene hohe Ratenkapazität [1], welche in DFT Studien [11, 12] bislang nicht auf-
gedeckt wurde. Des Weiteren werden Li-Transferzahlen weniger eins in dem glasartig-amorphen
Festkörperelektrolyten Li3OCl vorhergesagt. Aufgrund dessen, kann eine leistungslimitierende
Konzentrationspolarisation angenommen werden. Diese beiden Beispiele demonstrieren die Be-
deutung von Zusammenhängen in Batteriematerialien, welche durch Unordnung induziert werden
können. Letztere sind jedoch nur auf großen Längen- und Zeitskalen in Simulationen erkennbar.
Daraus folgt, dass die in dieser Dissertation vorgestellte Simulationsstrategie eine mögliche Route
für die Untersuchung von Unordungse�ekten in weiteren Materialien vorgibt. Durch diese kann
ein tieferes Verständnis von Transportphänomenen in Materialien erarbeitet werden. Hieraus
entstehende Einsichten, welche für das Design neuer Materialien entscheidend sein können.
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1 Introduction

The relevance of structural disorder in materials has been recognized for many applications of
great technological value. Examples range from atomic scale doping of semiconductors in micro-
electronics [13] to nanoscale disorder in solar cell materials [14]. Desirable material properties
may also be speci�cally engineered by exploiting disorder. Prominent such representatives are
mechanical properties in the rich chemistry of alloys [15] and transport properties in crystalline
and amorphous materials [16].

Not surprisingly, disorder also plays a major role in battery materials. On the device scale,
cathode or anode are prepared by immersing particles in a binding agent whereby a high degree
of randomization is introduced. Favorable Li ion transport results from the cross-linked network
between the particles which exhibit a fast uptake by a maximized surface area [17, 18]. On the
atomic scale, disorder is ever present during battery charging and discharging. This is due to the
lithiation process that leads to a phase transition in which chaotic structural arrangements can be
expected [9]. Furthermore, many of the as-prepared materials exhibit inherent or coerced atomic
disorder which facilitates ion conduction or intercalation properties. With the exception of the
original layered cathode material LCO (LiCoO2) which exhibits a strict symmetry, most attempts
for improvement either su�er from or bene�t from occupational disorder. For example, the full
replacement of Co with Ni or Mn yields LNO (LiNiO2) and layered-LMO (LiMnO2), where the high
symmetry is not sustained and leads to performance limiting cation exchange. In contrast, the
systematic introduction of occupational disorder into the transition metal layers can produce high-
performance cathode materials such as the commercialized NCA (LiNi0.8Co0.15Al0.05O2) and NMC
(LiNi0.33Co0.33Mn0.33O2). Alternative classes of cathode materials, like spinel-LMO (LiMn2O4) or
polyanionic compounds like LFP (LiFePO4), are subject to doping strategies in order to introduce
disorder [3, 19]. Similarly, strong disorder is also found in anode materials. Carbon and silicon
based materials exhibit highly irregular structures based on an omnipresent nanostructuring that
is necessary for reasonable performance. Another example is the crystalline material LTO. An
increased Li content during synthesis yields the occupationally disordered Li4Ti5O12 instead of
the pure spinel LiTi2O4. The introduced disorder thereby enhances the material performance
profoundly [18]. Electrolytes follow the same principles. The liquid representatives exhibit high
ion mobility based on the chaotic structures in the aggregate state. In solid state electrolytes a
similar degree of disorder needs to be maintained to reproduce equally high ion mobility. Here,
amorphous materials like LiPON or crystals with strong occupational disorder as found in the
garnet LLZO (Li7La3Zr2O12) and the perovskite LLTO (Li3xLa2/3−xTiO) are employed [20–22].
Consequently, glass-ceramics, which are mixed amorphous and crystalline compounds, like
Li7P3S11 are equally suitable [23]. In light of the general presence of disorder, an understanding of
its impact on material properties will thus aid in the pursuit of better performing battery materials.

Computer simulations can provide most detailed insight into such structures at the microscopic
level. For simulating battery materials in particular, a large number of di�erent methods have
been applied over the years to e.g. explore atomic structures or ongoing dynamical processes.
These methods o�er di�erent levels of chemical accuracy which generally tend to scale with
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computational cost. This yields a reciprocal relationship between accuracy versus the length and
time scales accessible via simulation, as illustrated in Fig. 1.1. The highest level of accuracy is
provided by �rst-principles, or so-called ab initio, electronic structure methods. Based on the
fundamental laws of quantum mechanics, these exhibit strong predictive power and can provide
a most accurate description of atomic energies and forces. It is therefore not surprising that ab
initio methods, with density functional theory (DFT) as the most prominent example, have found
great popularity in battery materials research [24, 25]. For example, DFT has formed the basis for
numerous screening studies. Here, speci�c performance indicators are examined independently
in an attempt to either discover new materials or derive structural design principles [4–8, 26]. As
already indicated, however, this predictive power comes at a considerable computational cost.
The latter scales as N 3-N 10, where N is the number of electrons, depending on the employed
approximations [27]. This presently prohibits their application to system sizes beyond a few
hundred atoms. While this may su�ce for high symmetry bulk and surface models within periodic
boundary conditions [28, 29], it becomes a showstopper for applications to extended, disordered
systems. Similarly, achievable time scales for example in molecular dynamics (MD) simulations are
limited to few hundred picoseconds, i.e. a time scale that is statistically insu�cient for sampling
rare molecular events [30].

10−10 10−9 10−8 10−7 10−6 10−5 10−4

length / m

10−15
10−12
10−9
10−6
10−3
100

tim
e

/s

continuum

coarse grained

force �elds
semi-empirical

ab initio
methods

Fig. 1.1: Schematic representation of the accessibility of length and time scales with di�erent computational
methods (see text).

It is thus highly desirable to reduce the computational cost for accessing larger length and
time scales, while still retaining atomic-scale resolution. In this respect, the use of parameterized
e�ective models is particularly attractive. Here, parameterization can enter either in the solution
to many-body electron integrals (semi-empirical electronic structure), atomic interactions (force
�eld potentials), or the description of coarse grained (lattice Monte-Carlo, cluster expansion) and
mean �eld models [27, 30, 31]. Also in battery materials research such methods have been applied.
Based on DFT input, for example, cluster expansion allows for the extrapolation to larger length
scales and e.g. investigate the thermodynamic phase stability of intercalated compounds. Similarly,
kinetic Monte-Carlo allows for accessing longer time scales e.g. in order to study macroscopic
di�usion [2, 3, 9, 25, 32]. Alternatively, one may use classical interatomic, or force �eld, potentials.
The favorable numerical e�ciency of the latter o�ers an enormous advantage for simulating both
extended length and time scales. In battery applications, force �elds have previously been used to
e.g. study selected defect formation energies or investigate Li ion mobility via MD simulations in
order to extract macroscopic di�usion coe�cients [24, 25]. Overall, the e�ective nature of the
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aforementioned models also constitutes their major weakness as it restricts their application to
the speci�c physical problem for which they have been parameterized. Other drawbacks include
the limited predictability and ease of application since these models depend crucially on input
data and require a rather involved parameterization process.

If wishing to go one level further to even larger (macroscopic) length and time scales, one must
resort to continuum methods (see Fig. 1.1). Here, atomic resolution is lost since the smallest entities
considered are grains and e�ective �ows. These methods typically rely on many approximations
and e�ective ensemble properties [33]. Hence, they are most appropriately applied to the device
scale and will not be further discussed here.

In this thesis potential e�ects of disorder on battery materials are investigated. The employed
computational models and methods are uniquely combined to o�er a most detailed representation
of both thermodynamics and kinetics, while bridging the gap between the micro- and the mesoscale.
Speci�cally, the con�gurational entropy resulting from disorder is a central property which
needs to be adequately captured. Here, rigorous statistics are necessary to obtain representative
structural ensembles as created for example via Monte-Carlo sampling approaches. Accordingly,
the evaluation of materials properties at operating temperatures needs to include enough thermal
averaging which is most suitably performed via MD simulations. For these tasks large model
systems have to be employed to depict atomic relaxation and correlation e�ects. The attempted
strategy involves many calculations for large system sizes which cannot be conducted using
ab initio methods due to the prohibitive computational cost. Coarse-grained approaches are
also excluded on the basis of explicitly including all atomic degrees of freedom (DOF). Thus,
parameterized force �eld potentials are the optimal method of choice for the present purposes.
These yield an increased computational e�ciency by a factor of ca. 104 compared to other
potentially more accurate semi-empirical methods (such as tight-binding DFT) or machine learning
approaches [34]. To retain su�cient accuracy, the employed force �eld potentials are validated or
trained using DFT, following a bottom-up multiscale methodology.

The involved basic theory is presented in chapter 2 followed by the hereby newly combined and
developed methods in chapter 3. The derived methodology is applied to two systems of particular
technological relevance: The crystalline anode material LTO (Li4Ti5O12) which is presented in
chapter 4 and the solid state electrolyte Li3OCl in its glass-amorphous phase as presented in
chapter 5. Finally, chapter 6 presents a comprehensive summary of the results, along with the
drawn conclusions and outlook for future directions.
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2 Theoretical background

The approach employed in this thesis follows a multiscale methodology. The investigation of
disorder at large length and time scales is conducted using force �eld potentials. These are
parameterized and validated with high-level electronic structure calculations based on density
functional theory (DFT). Both approaches represent total energy methods which associate an
energy with the structural degrees of freedom (DOF) in a chemical system, as described through
the so-called potential energy surface (PES). The behavior of a system under the in�uence of
temperature can be investigated on basis of the PES via molecular dynamics (MD) which is a
applied throughout this work. The fundamental theory relevant for these methods is presented in
this chapter.

2.1 Density Functional Theory

In computer simulations for materials research, DFT is presently the most frequently applied
electronic structure method. This is due to the very favorable, for many applications, balance
between accuracy and computational e�ciency. The advantage of relying on the electron density
as the central quantity lies in the reduced DOF which need to be treated in comparison to e.g.
wavefunction based methods. From this follows a favorable system size scaling. In the following
the basics of concepts behind DFT are brie�y introduced. Naturally, a plethora of basic literature
exists which shall be referred to for a more detailed description [27, 31, 35].

2.1.1 Hohenberg-Kohn theorems

In electronic structure methods the fundamental energetic contributions in atomic systems are
treated. These consist of the interactions among and the momenta of the electrons and nuclei.
Explicitly included are the kinetic energy of the electrons Te and nuclei Tn as well as the electron-
electron Vee , nuclei-nuclei Vnn and nuclei-electron Vne interactions. When the mass di�erence
between electrons and protons is considered (me �mp ), the electron motion can often be assumed
as quasi instantaneous. This allows for a timescale separation. Subsequently, the nuclei can be
regarded as static and the terms which only depend on the nuclear positions, Tn and Vnn , can be
omitted. This simpli�cation is the adiabatic Born-Oppenheimer (B.O.) approximation, which is
valid in most cases. It follows for the total energy

Etot = Te +Tn +Vee +Vnn +Vne
B.O.−−−→ Etot,el = Te +Vee +Vne. (2.1)

The resulting expression thus represents the electrons interacting within an external potential
constituted by the nuclei [27, 31].

In DFT, the electrons are represented as a density ρ(r ) comprising the mapping of the electron
positions within an external potential. Here, only one unique density leads to an energy minimum
(to which every system strives). Henceforth, there is a unique density representation ρ0 of the

5



ground state energy E0 and in principle its wavefunction. These statements are the �rst and
second Hohenberg-Kohn theorem [36] which also suggest that a solution to an external potential
is unambiguous complying with the variation principle

E0 = E
[
ρ0(r )

]
< E[ρtrial]. (2.2)

Following this, any energy de�ned by a trial density ρtrial cannot give a better solution than that
obtained from ρ0. This is analogous to wavefunction based methods were a self-consistent solution
strategy is followed in order to obtain a suitable representation of the true wavefunction Ψ0. Such
an approach is possible since the corresponding Hamilton operator, which contains all energy
operations in a system, is clearly de�ned. In contrast to the latter, in DFT the non-linear functional
for the electron density is not known. Thus a straightforward variation of ρ in a self-consistent
manner to obtain ρ0 cannot be performed. Instead the di�erent contributions to the total energy
are split into known and unknown functionals of ρ

Etot = Te[ρ(r )] +Vee[ρ(r )] +Vne[ρ(r )]︸                                   ︷︷                                   ︸
known

+Vxc[ρ(r )]︸    ︷︷    ︸
unknown

. (2.3)

where Te[ρ(r )] corresponds to the non-interacting kinetic energy, Vee[ρ(r )], and Vne[ρ(r )] to the
known classical interactions and Vxc[ρ(r )] is the so-called exchange-correlation functional which
contains everything unknown [35].

2.1.2 Kohn-Sham Approach

The general solution strategy in the Kohn-Sham approach is based on a non-interacting reference
system. Here, the single electron wavefunctions ϕi combine to the real ground state density ρ0 as

N∑
i

|ϕi |2 = ρ0. (2.4)

Minimization of Eq. 2.3 with respect to the ϕi then yields an eigenvalue problem known as the
Kohn-Sham equations

(
− ~∇

2
i

2me
+ V̂e�

)
ϕi = ϵiϕi with V̂e� =

∫
ρ(r ′)
‖r − r ′‖dr

′ +
M∑
k=1

−zk
‖r − Rk ‖

+Vxc (2.5)

where − ~∇
2
i

2me
is the operator for the kinetic energy of the non-interacting reference electrons

and Ve� is the e�ective potential combining the classical and exchange-correlation potential. Ve�
consists of the Coulomb interaction of each single electron density with the mean-�eld ρ(r ′)
formed by the other electrons, the Coulomb interaction of the single electron density with the M
nuclei of charge zk and the potential Vxc of the unknown exchange-correlation functional. Eq. 2.5
can be solved in a self-consistent �eld approach. It should be noted, that the here resulting single
electron densities are not equivalent to molecular orbitals, although they turn out quite similar in
shape and energy [35].
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2.1.3 Exchange-correlation approximation

In the Kohn-Sham approach presented above the total electron energy is split into known and
unknown contributions. In the former the classic Coulomb interactions and the kinetic energy of
the non-interacting reference system cover the largest part of the total energy. Thus, the unknown
exchange-correlation functional only needs to approximate a small portion of the energy. This
contribution is however decisive for the chemical accuracy and involves rigorous physical e�ects
originating in the missing static exchange and dynamic correlation [27, 31, 35].

The exact form of the exchange-correlation functional is not known and likely never will be [37].
For this reason, many approximate functionals have been developed which can be categorized in
rungs according to their approximation strategy [27]:

LDA The local density approximation functional is based on the density at a point in space. For
each point the according exact exchange-correlation from a corresponding homogeneous
electron gas of equal density is taken. This approximation works fairly well for systems
with slowly varying densities such as metals.

GGA The generalized gradient approximation adds information about the gradient of the electron
density. Thus it is suitable to describe inhomogeneous systems.

meta-GGA meta-GGA functionals include even higher order derivatives into the exchange-
correlation. From this, only minor improvement is often gained in comparison to GGA for
which reason their application is rather rare.

hybrid In hybrid functionals the exact exchange as known from Hartree-Fock theory is calculated
for the Kohn-Sham reference system and mixed into LDA and GGA expressions. This
includes non-local contributions and leads to a strong reduction of the self-interaction error
at the cost of signi�cantly increased computational demand.

Further improvements or approximations may additionally be added. Universally applicable
to all functionals are parameterized or self-consistent methods to correct for missing van der
Waals interactions which are usually badly described using semi local DFT exchange correlation
functionals.

2.2 Force Field Potentials

Classical force �eld potentials use physically motivated analytical expressions which are param-
eterized to e�ectively describe interactions between particles in a chemical system [27]. Here,
the explicit treatment of electrons and the involved complex quantum mechanical terms are
avoided which reduces computational cost signi�cantly. The resulting force �eld expressions can
be optimized to yield high parallel e�ciency ensuring linear scaling of computational cost with
number of atoms. Thus, the treatment of millions of atoms is possible and simulation times are
accessible which are long enough to sample kinetic processes with statistical reliability [34].

The accuracy and predictability of a force �eld potential depends on its parameterization and
usually requires careful validation. Furthermore, the transferability of parameters from one system
to another relates to the generality of the parameterization strategy and the involved force �eld
expressions. It needs to be stressed that force �elds can only reproduce non-electronic attributes
which depend on the included physics. Using only basic interaction terms thereby limits to
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the thermodynamics and kinetics of transport and mechanical properties. Including specialized
potential terms, additional higher level information can be e�ectively included. Examples entail
optical, magnetic, oxidation state and solvation properties as well as bond breaking and formation
[27, 31, 34].

In literature, a multitude of force �elds can be found where each is designed to describe a
speci�c class of material. The most prominent type are molecular mechanics force �elds which
are used for organic systems and �nd most application in biology or polymer research. These
explicitly include terms describing covalent bonds with a speci�ed hybridization as well as the
resulting dependencies on bond angles, dihedrals and out-of-plane deformations. The involved
analytic terms are intuitive and can be parametrized in a straight-forward fashion [38]. In contrast
to this, interactions in bulk materials like solids are less clearly categorizable and respective force
�elds vary quite signi�cantly. The simplest potentials follow the Born model of solids (as described
in Sec. 2.2.1) which depends solely on pair-wise interactions and perform quite accurately for
ionic and van der Waals systems [39]. For covalent or metallic solids, manybody potentials are
necessary [34]. Hereby, the most successful force �elds include the (modi�ed) Embedded Atom
Model (EAM and MEAM) for metals [40–42] and the Terso� [43] and bond order potential (BOP)
[44] for covalent solids (e.g. Silicon). In order to extend force �elds to yield accurate and variable
oxidation states variable charge force �elds have recently emerged. These are needed for a reliable
description of e.g. transition metal oxides and interfaces. Popular examples include the reactive
force �eld ReaxFF [45] and the charge optimized many body potential (COMB) [46].

2.2.1 Born Model of Solids

Following the Born model of solids [39], an ionic compound presents a saturated system where
each ion holds a full valence shell. In contrast to unsaturated compounds where atoms form
covalent bonds with a strong directionality, interactions in saturated systems are isotropic and
can be described via two-body terms. For an ionic solid, these speci�cally consist of the ionic
Coulomb potential, the van der Waals interactions, and repulsive short range interactions due to
Pauli repulsion [39].

In the case of the well-known Coulomb potential, its reciprocal decay in distance r between two
charges qi with the relation E ∝ qiqj

r needs special consideration when treating crystals. Here,
the in�nitely extended ionic lattice creates an e�ective background potential which has to be
included via a correction. Either the lattice speci�c Madelung constant can be introduced as a
proportionality factor αM (E ∝ αM qiqj

r ) or a long range correction like the Ewald method or the
Particle-Particle Particle Mesh (pppm) formalism can be applied [29, 47, 48].

The van der Waals interactions originate from �uctuating dipoles in the charge cloud of an
atom. These can be derived from the polarizability dependence of the isotropically averaged
second order energy yielding the so-called London interactions. The latter have a fast decaying C

r 6

dependence of the ion eigen energies ∆i and ion polarizabilities αi with C = − 2
3

∆1∆2
∆1+∆2

α1α2. With
the approximation of ∆i as the ionization potentials the interaction potential has a well de�ned
and parameter-free analytical form. It should be noted that these induced dipole interactions in
non-ionic systems are fairly strong and cumulatively exceed that of permanent dipoles due their
isotropy [39].

Compared to the Coulomb and van der Waals interactions, the short range repulsion has no
simple analytical representation and is therefore heuristically approximated with a b

rn (Lenard-
Jones) or A exp− r

ρ (Buckingham) potential [39]. The exponential expression is thereby known to
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reproduce quantum mechanical behavior more accurately. It, however, su�ers from instabilities at
very small r which could occur in “bad” simulations, e.g. molecular dynamics simulations with
too large time steps [38]. The overall energy of an ionic system, following the Born model of
solids, is thus often expressed including a Buckingham repulsion such that

Ui j =
1

4πϵ0

qiqj

ri j
+Ai j exp

(
− ri j
ρi j

)
− Ci j

r 6
i j

(2.6)

where ϵ0 corresponds to the dielectric constant in vacuum, ri j to the ion distance, qi are the ion
charges, and Ai j , ρi j , Ci j are parameters for the short-range interactions.

Although de�ned for systems with pure ionic or/and van der Waals interactions, the potential
following Eq. 2.6 is often employed for compounds which include some covalency. This is possible
since in practice, the parameters Ai j , ρi j ,Ci j are �tted to reproduce reference data and not directly
derived from quantum chemical calculations. Hereby, the parameterCi j of the London interaction
is often non-correspondent to its physical meaning since it additionally accounts for weak covalent
interactions. This way, good-quality potentials have been parameterized for a wide range of oxides,
halogenides, and even polyanionic solids such as phosphates and silicates. For the latter an angular
dependent term is often added to reproduce the correct geometry of the polyanion [24, 49, 50].
The originally intended choice for qi in ionic systems are formal charges. However, these are
often replaced with fractional charges which physically correspond to a mean static polarization
of an ion. This is motivated by the fact that formal charges present an extremum compared to
charge partitioning schemes in ab initio calculations (which are also not uniquely de�ned) [38].
Using fractional charges usually yields better results but makes force �elds less transferable as an
environment dependent polarization is included.

2.2.2 Polarizability via the core/shell model

In order to extend the Born model of solids, the electronic polarizability α can be added to improve
the description of bulk properties. The latter include phonon dynamics, elastic properties, defect
and reorganization energies, as well as ion di�usion [51–53]. A simple e�ective example for such
an extension is the core/shell model by Dick and Overhauser [54]. This method is motivated by
�ndings that the electric response to an electrostatic environment corresponds to the deformation
of the outer electronic shell [55, 56]. Therefore, the latter is explicitly mimicked by adding a
pseudoparticle which is attached to the original ion. It follows, that ions previously described by
one point charge are now split into two particles, each carrying a fraction of the original charge
(see Fig. 2.1). The only interaction between such a core/shell pair is a restoring harmonic spring
force

Uc-s =
1
2kr

2
c-s (2.7)

where rc-s represents the core/shell distance and k is the force constant. This interaction cor-
responds to the harmonic response of the ionic polarization α according to the created dipole
p = qsrc-s where qs is the shell charge or the charge split respectively. The created dipole p is then
given as

p = qsrc-s = αE (2.8)
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where E is the induced electric �eld. Multiplying Eq. 2.8 with the charge qs yields an expression
for the induced force F

q2
src-s = αEqs = αF (2.9)

inserting the harmonic force Fc-s = krc-s then yields an expression for the polarizability only
depending on the shell parameters qs and k

α =
q2

s
k
. (2.10)

In a simulation the e�ect of the polarizability manifests itself by the Coulomb interactions of
each the core and shell with the other ions consisting either of point charges or again core/shell
pairs. Hereby, a polarized core/shell pair (r , 0) yields a combined Coulomb interaction which
di�ers from that of the original point charge. In the resulting model, van der Waals interaction and
the short-range repulse are only assumed to act between shells as a simpli�cation (see Fig. 2.1).
The introduced error of this approximation scales with the di�erence of the core/shell separation
r ic-s − r jc-s of two core/shell pairs i and j which is negligibly small [54].

+ -

+

-

Usr,vdw

rc-s

qs

qion − qs

Uc-s

Fig. 2.1: Schematic of the core/shell model. Two core/shell pairs are shown with the positive core carrying
the resulting charge qion − qs and a negative shell carrying the charge qs indicated by a “+” and
“-”, respectively. The internal core/shell interaction Uc-s acting over the core/shell separation rc-s
is indicated. Additionally, the short-range repulsion and van der Waals interactions which are
only acting between shells are labeled asUsr,vdw. It should be noted that the Coulomb interactions
act between all charges of di�erent core/shell pairs.

Overall the core/shell model has demonstrated considerable quantitative success. An extension
to the simple core/shell model has been developed by adding a �nite ionic radius instead of an
explicit shell particle for an isotropic interaction with the environment. This amendment, called
the breathing shell model, further re�nes phonon spectra and improves elastic properties at 0 K.
It thereby speci�cally cures a cauchy violation for symmetric (fcc) crystals where the core/shell
model yields the same elastic constants for transverse and shear relations (C12 = C44) [52].

2.3 Molecular Dynamics Simulations

In MD simulations, dynamic properties of a system are computed from the statistics observed
during its temporal evolution. For this, an atomistic model is propagated in time following classical
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mechanics i.e. Newton’s equation of motion. Temperature and pressure e�ects are explicitly
included which is very useful to study for example the operational behavior of battery materials.
In the following, fundamental aspects relevant in this thesis are elaborated.

2.3.1 Integrating the equations of motion

To determine particle trajectories in atomistic simulations, the equations of motion need to be
integrated in time. The required information about the change in momentum at a point of time
is readily obtained from the positions of and forces on the particles (e.g. taken from DFT or
force �eld calculations). For the integration, a time step is chosen as large as possible to reduce
computational cost but small enough to resolve the particle motion with a high accuracy. In
regard to the latter, any �nite time step will still lead to small errors accumulating over the course
of the simulation. These errors need to be compensated by a robust integration scheme which
approximates the involved di�erential equation (m(∂2x(t)/∂t2) = F (x(t))) accurately. For this,
di�erent algorithms exist which o�er varying advantages and disadvantages [29].

In general, the �nite time step as well as the numerical imprecision make the simulation
of a “true” trajectory de�ned by the initial atomic con�guration impossible. In practice this
presents no drawback however. There is su�cient evidence, that the e�ective trajectory an MD
simulation yields, provides an adequate representation of the correct behavior of the statistical
ensemble. In that, the numerical trajectory is close to the “shadow” orbit of the “true” trajectory
[29]. Nevertheless, certain issues regarding this accuracy need to be considered in choosing an
appropriate algorithm for the time integration. A most important indicator for the accuracy is the
conservation of energy or e�ective energy, respectively, depending on the treated ensemble [57].
An algorithm needs to ensure this despite numerical errors which easily arise due to integration
imprecisions. Here, one usually distinguishes between a short term and long term energy drift,
where the former and latter do not necessarily correlate. Another factor is time reversibility, i.e.
recovering the forward and backward particle movement when reversing time. This depends on
the time symmetry of the algorithm, re�ected in the approximate gradient during the integration
procedure. In principle, this characteristic should be ful�lled in order to comply with Newton’s
equations of motion which are symmetric in time. Lastly, a more abstract concern is the phase
space volume conservation, meaning the ability of an integration scheme to maintain a meaningful
statistical ensemble over the course of a trajectory [29].

To achieve an accurate approximation, the velocity v(t) and the momentum change via the
force f (t) at a point in time t and at a position r (t) can be symmetrically approximated for a time
step ∆t . Hence, the movements to and from the position r (t) are simultaneously considered. Two
Taylor expansions are thus formulated as

r (t + ∆t) = r (t) +v(t)∆t + f (t)
2m ∆t2 +

∆t3

3!
d3r

dt3 +O(∆t4) (2.11)

r (t − ∆t) = r (t) −v(t)∆t + f (t)
2m ∆t2 − ∆t3

3!
d3r

dt3 +O(∆t4) (2.12)

where (∆t4) represents the expansion term to fourth order. To obtain the resulting particle
movement both terms in Eq. 2.11 are added. Here, terms with an uneven power in ∆t which are
opposite in sign cancel each other

r (t + ∆t) + r (t − ∆t) = 2r (t) + f (t)
m

∆t2 +O(∆t4). (2.13)
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This can be rearranged to

r (t + ∆t) ≈ 2r (t) − r (t − ∆t) + f (t)
m

∆t2 (2.14)

where the forth order expansion term is omitted and expressed as an error in the order of ∆t4. Eq.
2.14 introduces the Verlet algorithm which presents a fairly robust integration scheme. It thereby
yields long term energy conservation, time reversibility and phase space conservation when
using a su�ciently small ∆t . On short timescales, the energy �uctuation, however, is not ideal.
Nevertheless, this algorithm and its derivatives are most frequently applied. From the formulation
in Eq. 2.14 it can be seen, that the velocity is not explicitly included. It can be calculated in an extra
step, which yields a comparatively large error on the order of ∆t2. An alternative formulation
which explicitly includes the velocity and is equivalent to Eq. 2.14 is the so-called velocity Verlet
algorithm. This is given as

r (t + ∆t) = r (t) +v(t)∆t + f (t)
2m ∆t2 with (2.15)

v(t + ∆t) =v(t) + f (t + ∆t) + f (t)
2m ∆t . (2.16)

It can be seen, that the velocity is still determined in an extra step. However, being directly
included in the integration scheme, it is equivalent in accuracy [29]. A half-step variant of the
velocity Verlet algorithm is implemented in the software LAMMPS [58] which is exclusively used
in this thesis.

An alternative to Verlet type algorithms are higher order algorithms. As the name suggests,
these include higher order terms of the Taylor expansion. For their evaluation, more derivatives
need to be stored and computed involving a higher computational cost. Additionally, they often are
not time reversible and phase space conserving [29]. Notwithstanding, they o�er superior short
term energy conservation which allows for larger time steps. In the case of MD simulations which
are based on high level theory i.e. electronic structure, they might provide a more economic time
integration scheme. Here, the disadvantages concerning long term energy and phase conservation
are not relevant on the targeted short timescales. A popular example of such a higher order
scheme is the predictor-corrector method [28, 29].

2.3.2 Thermostats

Newton’s equations of motion solved in an MD simulation with constant volume and number
of particles as described above in Sec. 2.3.1 correspond to the description of a microcanonical
(NVE) ensemble. Experimental conditions, however, usually imply a constant temperature and
pressure corresponding to an NPT or an NVT ensemble at the respective variable volume. In order
to realize this situation in a simulation, thermostats and barostats may be used.

Temperature in an NVE simulation

In order to evaluate the applicability of an NVE ensemble to reproduce experimental conditions,
the temperature �uctuations during a simulation can be estimated. Naturally, those �uctuations
need to be as small as possible to mimic a constant temperature. An estimate can be made by
considering the relative variance of the kinetic energy per particle. This directly corresponds to
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the second and forth moments of the Maxwell-Boltzmann distribution. A �xed expression can
thus be derived to [29]

σ 2
p2〈

p2
〉2 =

〈
p4〉 − 〈

p2〉2

〈
p2

〉2 =
2
3 (2.17)

where p is the particle momentum and σp2 the variance of its second moment. This quantity can
be related to the relative �uctuation of the instantaneous temperature T

σ 2
T〈

T
〉2
NVT

=
2

3N . (2.18)

The �nal expression scales with the number of particles. Therefore, it can be concluded, that an
NVE simulation only adequately reproduces a constant temperature ensemble, if a large number
of particles is explicitly treated. Since this is not always possible, a simulation might be directly
performed in the according isothermal canonical (NVT) ensemble [29].

Constant temperature simulations

Di�erent approaches exist to perform MD simulations in NVT ensembles. The basic idea is
based on coupling the simulation box to an outer heat bath. According to thermodynamics, both
systems will establish thermal equilibrium. In that, the heat bath can be assumed in�nitely large
or equivalently constant in temperature, thus imposing said temperature on the simulation [28].

One class of approaches is based on stochastic collisions of particles in the simulation with
an external �ctitious heat bath. Most noticeable such methods are the Andersen and Langevin
thermostat. The former includes a simple formulation only based on random collisions following
a time probability function to mimic the in�uence of a heat bath. More involved is the latter,
where the Brownian motion of a heat bath is implicitly modeled. Hereby, the equations of motion
are extended via a constant friction in combination with a collision term following a gaussian
distribution which exerts a �uctuating (white-noise) force. Both approaches create con�gurations
corresponding to a canonical distribution which include valid potential energy or pressure values
independent of the speci�ed collision rate constants. In comparison to that, the dynamic behavior,
i.e. any parameters dependent on time, are less well reproduced. Here, the random forces in�uence
the particle motion signi�cantly which then deviate from a realistic behavoir. In the Anderson
thermostat, only very narrow ranges of the collision rate allow for undisturbed particle dynamics.
Less pronounced in the Langevin thermostat, such a behavior can still occur if collision rate
parameters are not carefully chosen [28, 29].

A more elaborated class of approaches aims at deriving the equations of motion by incorporating
the heat bath degrees of freedom deterministically into the Hamiltonian of the simulation. From
this follows a new set of equations of motion which conserve an e�ective energy encompassing
the particles in the simulation and the heat bath. This way, a thermal equilibrium results which
gives a constant temperature. The original formulation by Nosé, later amended by Hoover, adds
a set of explicit heat bath coordinates s which couple to the simulation of N particles with an
e�ective mass Q . The original Hamiltonian, consisting of the kinetic energy contribution p2

i
2mi

of
each particle i as well as of the potential energy of the system Upot(rN ), then changes from

HNV E =

N∑
i=1

p2
i

2mi
+Upot(rN ) (2.19)
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to the amended form

HNose−Hoover =
N∑
i=1

p2
i

2mi
+Upot(rN ) + ζ

2Q

2 + 3N ln(s)kBT (2.20)

where kB is the Boltzmann constant,T is the target temperature and ζ is a simpli�cation added by
Hoover representing a thermodynamic friction ζ = s ′p ′s/Q with p ′s as the momentum of the heat
bath. In this formulation, Q determines the coupling strength of the heat bath to the simulation
and needs to be speci�ed. In deriving a practical expression for an implementation, it is found
that s acts as a scaling factor of the time step according to friction imposed by the heat bath. In
general, it is di�cult to incorporate s into the usual formulations since its coordinate system is
unde�ned. For this reason, the Nose-Hoover style thermostats are expressed in a Lagrangian form
which derives from the variation principle balancing potential and kinetic energy [28, 29].

Nose-Hoover Chains

The above described Nose-Hoover thermostat formally creates a correct canonical ensemble if the
center of mass (COM) of the system is �xed and no external force acts on the cell. Even if these
premises are violated, any deviation from a correct distribution is usually negligible. Nevertheless,
in some cases the explored phase space might be compromised which means that a non-ergodic
behavior is found. This may lead to a strong correlation of dynamic variables, e.g. of the di�usion
coe�cients. It should be noted that these coupling e�ects cannot occur in the alternative stochastic
approaches which however su�er from other disadvantages [29].

The reason for the inherent dynamic correlation lies in the inclusion of a single dynamic variable
ζ in the Nose-Hoover formulation. In its formulation not only the energy but also another more
abstract property is conserved. This can be remedied by the usage of so-called Nose-Hoover
chains where more thermostats are coupled to the original one including several ζk . In these, more
abstract properties are conserved which in turn decouple the system again [29]. The additional
computational cost is negligible and it thus presents the standard implementation in most MD
codes. This is also true for the LAMMPS simulation package [58] employed in this thesis, where
by default 3 thermostats are coupled.

Constant pressure simulations

If the density/volume of a system is unknown, it is worthwhile to perform simulations at the
experimentally equivalent NPT ensemble. For this, a barostat may be added which alters the
dimension of the simulation cell on the �y. An ensemble is created this way allowing for an
automatic equilibration of the system to experimental conditions.

A simple approach is given in the rescaling of the system volume depending on the pressure.
Such a term can be added into the equations of motion where a prominent example is the Berendsen
barostat. A coupling to a pressure bath which determines the rescaling of the cell dimensions χ is
formulated. This is based on the di�erence of the instantaneous pressure P to the target pressure
Pext as

χ = 1 − κT ∆t
tp
(Pext − P) (2.21)

where κT represents the isothermal compressibility, ∆t the time step and tp is a relaxation time
for the pressure �uctuations. The resulting distribution based on the simple rescaling is, however,
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not a canonical one. Thus, this thermostat is rather suitable for a “mild” equilibration of a system
before sampling at a determined volume [28].

Following the Nose-Hoover (chain) style thermostats, a deterministic approach is also possible.
In that, a Hamiltonian is again amended in combination with the temperature formulation above
to derive the according equations of motion. A more rigorous expression follows which includes
an e�ective massW for the coupling of the volume, and an according momentum pϵ based on the
change in volume ϵ = ln(V /V0). Interdependencies with the temperature variables s , ps , Q and ζ
arise yielding a Hamiltonian as

HHoover =
N∑
i=1

p2
i

2mi
+Upot(rN ) +

p2
ζ

Q
+ kBTζ +

p2
ϵ

W
+ PextV . (2.22)

Naturally, for this expression also a chain type barostat can be derived in order to avoid correlation
of dynamical properties [28, 29].

In general, the cell shape of a system can also be changed by the usage of a barostat. Here,
rescaling occurs corresponding to the deviations of the di�erent pressure tensor components Pαα
and Pα β .

2.3.3 Adiabatic Core/Shell Model

When performing MD simulations with a polarizable core/shell force �eld (see section 2.2.2)
special considerations have to be taken into account. This is due to the pseudo particles which are
introduced to mimic the electron cloud. Physically, the core/shell pairs each represent a single
ion which contributes with only three degrees of freedom from the perspective of statistical
thermodynamics. Thus, the core/shell spring represents an imaginary or “technical” degree of
freedom (DOF).

There are two methods proposed in literature to handle the shell and its imaginary degree of
freedom. The “massless” core/shell model by Lindan et al. is the �rst alternative [59]. Here, the
shell which represents electrons is considered to have a negligible mass compared to the core
representing the nucleus. Thus, the Born-Oppenheimer picture is assumed where the shell relaxes
instantaneously to any core con�guration. In practice this means that after every MD step the
shell positions are relaxed to minimize the forces on the shells. The system is then propagated in
time following the resulting forces acting on the cores. Although this model appears intuitive
based on the physical motivation, it su�ers from a considerable issue in energy conversation. This
is due to the fact, that the time integrated forces are discontinuous after the shell relaxation. Even
though heuristic approaches to rescale velocities exist, stable simulations are hard to maintain
[59].

An alternative method is the so-called “adiabatic” core/shell model by Mitchell and Fincham [53],
which is also used in this thesis. Here, the shell is given a fraction of the core’s mass which allows
it to be included into the overall propagation scheme. To approximate the instantaneous relaxation
of the shell, the di�erence between the core and shell mass (mc and ms , respectively) needs to
ensure an oscillation frequency νc-s su�ciently above the atomic vibrations in the simulated
system. The required mass fraction can therefore be estimated from the frequency of the harmonic
oscillator characterized by the spring constant k

νc-s =
1

2π

√
µ

k
with µ =

mcms

mc +ms
. (2.23)
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In this set-up the imaginary DOF is thus explicitly included in the equations of motion whereby
special consideration needs to be taken into account when using a thermostat. In principle, the
relative core/shell motion should be at a minimum according to the relaxed shell convention (zero
forces on shells) of the massless core/shell model. Therefore, any core/shell motion should only
correspond to the polarization as a product of the free response to the electrostatic environment.
Following this premise, the system needs to be handled very carefully during initialization and
equilibration. Firstly, when assigning initial velocities, no relative motion between the core/shell
pairs must be introduced. Secondly, a thermostat must only rescale the COM motion of a core/shell
pair, leaving the internal DOF untouched. This results in a quasi adiabatic motion of the core/shell
pairs with low thermalization rates which should be monitored. Naturally, some energy is
transferred into the imaginary DOF which account for the actual polarization. However, due to its
decoupling from the thermostat and the high oscillation frequency of the core/shell pairs, this
energy transfer remains minimal. The decoupling of the core/shell motion a�ects the thermostat
to an increased sensitivity to numerical �uctuations. As a result, this can lead to the leakage of
momentum into the simulation cell which needs to be corrected. After equilibration, the core/shell
oscillators are considered to be in a correct thermalized state, where the oscillation behavior
is in accord with the ions’ polarization state. At this point, any further non-elastic interaction
with neighboring ions unlikely leads to further noticable thermalization of the core/shell motion
[53]. Although the original literature is not clear about this, most codes like DLPOLY [60] and
GULP [61] allow the internal core/shell motion to be rescaled by a thermostat after this initial
equilibration period.

With the addition of pseudo particles, the de�nition of the instantaneous temperature T and
pressure P during an MD simulation needs to be reconsidered. Usually, these are de�ned by [28]

T = 2
3NkB

K =
1

3NkB

N∑
i

miv
2
i (2.24)

and

P = 2
3V K +

1
3VW =

1
3V

N∑
i

miv
2
i +

1
3V

N∑
i

ri fi (2.25)

whereV corresponds to the system volume, kB to the Boltzmann constant and N to the number of
particles. mi , ri , fi , and vi are the mass, positions, force and velocity of particle i . K represents the
kinetic energy andW the internal virial. In the massless core/shell model, the temperature and
pressure are clearly given by the core motion since the shells are not explicitely included in the
time integration scheme. This is not the case for the adiabatic core/shell model however. Here, the
temperature may depend on the COM velocity of the core/shell pairs (when the imaginary degree
of freedom is decoupled) or on all velocities including the relative core/shell motion. In both
cases, the 3N DOF de�ning the temperature correspond to the physical system, i.e. three for each
core/shell pair [53, 59]. The pressure can be de�ned in two ways, either by unifying the core/shell
particles as centers or by counting each particle as a separate atom. Each variant requires a
di�erent approach to the kinetic contribution K and the virial W . In the uni�ed approach the
internal core/shell contributions are ignored. It follows, that the kinetic energy corresponds to the
COM motion KC of the core/shell pairs and a centralized force component corresponding to the
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atom-atom virial without the core/shell spring contribution are considered

P = 2
3V KC +

1
3VWC with WC =W −

∑
m

rcs,m fspring,m (2.26)

with rcs,m as the core/shell separation ofm core/shell pairs and fspring,m the harmonic spring force
of each core/shell pair (note that this spring force constitutes the internal core/shell forces and is
equivalent to the particle-center contribution). In the approach based on separate atoms, the atom
based kinetic contribution and the full atom-atom force contributionW needs to be taken into
account (including the spring contribution) [62]. Both variants are identical in the limit of the
adiabatic approximation [62] and might be equally convenient for an implementation depending
on the original core/shell code.

The adiabatic core/shell model requires a smaller time step during an MD simulation due to the
resolution of the fast core/shell motion. Nevertheless, this additional computational cost is smaller
than for the massless model which su�ers from the high cost of the numerically demanding shell
relaxation.

In the context of this thesis, the formalism for the adiabatic core/shell model was implemented
and released into the o�cial distribution of the MD code LAMMPS [58].
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3 Methods and Analysis

In this chapter, the computational approaches which are used to systematically investigate dis-
ordered energy materials are elaborated. Besides the theoretical background, emphasis is put
on practical aspects which are the key methodological developments in this thesis. Speci�cally,
methods are presented which are essential for the composition of computational models and for
the evaluation of properties from statistical mechanics and thermodynamics.

3.1 Force Field Parameterization

Force �eld potentials are e�ective models based on parameterized analytical expressions to describe
interactions between atoms. As mentioned in Sec. 2.2, the involved expressions are chosen on
the basis of the target chemical system and can di�er signi�cantly. Therefore, they are de�ned
within a �exible framework in which atoms are distinguished by “types” rather than elements.
These carry particular properties like mass and charge, and a connectivity may be assigned
for prede�ned interactions to describe directed bonds, angle dependencies, and the like. The
corresponding mathematical terms are designed following chemical intuition which is based on
characteristics of the described systems’ composition, e.g. coordination environments, oxidation
states or hybridization [27, 38]. Clearly, the accuracy of a force �eld depends on the suitability of
the physics conveyed in the analytical expressions for the target compound. On top of this, their
parameterization is equally decisive in order to yield correct energies and derived forces. While
the analytical terms are chosen based on physical insight, their parameters need to be derived
numerically for which di�erent strategies have been developed over time [38, 52, 63, 64].

In general, force �eld potentials are categorized via the reference data they are parameterized to.
Broadly, two classes, empirical and higher level theory derived potentials are distinguished. The
former is based on a �tting procedure of the parameters to minimize the squared deviation from
experimental observables. Target values like densities, lattice constants, vibrational spectra, heat
capacities as well as elastic and dielectric properties are commonly used. While this reference data
comprises rigorous and accurate material properties, su�cient availability is not always given.
Additionally, the derived potentials yield a behavior to reproduce the (experimental) macroscopic
equilibrium. Therefore, interactions might be microscopically inaccurate and in any case of
e�ective nature. For that reason, they are unlikely transferable to other chemical systems [28, 38,
52]. In contrast to empirical potentials, higher level theory derived potentials are based on ab
initio data. These can be computed for any model system with a (theoretically) arbitrary chemical
spectrum allowing for a maximum in transferability. For a �tting procedure, ab initio data provides
atomistic properties as target values. Due to the microscopic nature of the force �eld interactions,
these give a more direct and detailed comparability than e�ective ensemble averages taken from
empirical data. An obvious choice for atomistic target properties are energies and forces — the
very same properties the analytic terms in a force �eld yield [38, 52, 64]. A parameterization
strategy based on such a direct match is coined “Force Matching” which is the method employed
in this thesis.
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3.1.1 Force Matching

Force matching is a state-of-the-art parameterization strategy which aims to �t the underlying
interactions of a force �eld potential directly to their ab initio counter parts at 0 K. A potential
is thus derived in a bottom-up approach giving accurate microscopic interactions which should
yield correct macroscopic properties. The derived parameters are thereby purely empirical to
reproduce the physical reference data [64].

Naturally, the quality of the obtained parameters depends strongly on the used reference data.
The latter is contained in a so-called training set and consists of model structures representing the
chemical system which the aspired potential shall describe. The selected structures should thus
include all local environments, especially those far away from equilibrium, in order to provide a
good description of the con�gurational variation. For this, a valid strategy is to amend the training
set iteratively with structures which intermediate (unsuccessful) potentials explore (for example
in an MD simulation) [64, 65]. It should be noted that the composition space of the training set
determines the validity of a derived potential and therefore its transferability.

In the parameterization procedure energies, forces and stresses are target properties. The latter
need to be included as a constraint within the usually vast solution space given by energies and
forces. Otherwise, an accurate description of bulk properties is hardly obtained. Hereby, the full
stress tensor σα β is taken into account as de�ned by the virial theorem

σα β = −
∑N

i riα fi β

3V (3.1)

whereV is the cell volume, N the number of atoms, riα the position and fiα the force component of
particle i in the Cartesian direction α or β , respectively. In direct comparison to the reference data
in the training set, parameters are optimized by local or global �tting routines which minimize a
cost function Γ [64, 65]

Γ(pi ) = we∆E +wf ∆F +ws∆σ (3.2)

where pi is the parameter set describing all interactions in the force �eld, ∆E, ∆F and ∆σ are the
deviations in energy, forces and stresses and we , wf , ws are weights assigned to the contributions.
The formulation for the energy term ∆E is based on the squared deviation of the energies E

∆E =

√∑nc−1
k

∑nc
l>k ((Ecl

k (pi ) − Ecl
l (pi )) − (Eai

k − Eai
l ))2√∑nc−1

k
∑nc
l>k (Eai

k − Eai
l )2

(3.3)

where Ecl
k and Eai

k are the energy for structure k of the potential with the parameter set pi and of
the ab initio reference, respectively. The double sum

∑nc−1
k

∑nc
l>k ensures to include all energy

di�erences between valid pairs of the nc reference structures in the training set. A normalization
by the squared sum of the ab initio energies is also applied. It should be noted, that the energies
only of structures with the same stoichiometry are compared. This way, the parameterization to
total ab initio energies is avoided and only relative energies are considered. The force term ∆F for
the squared deviation of the forces F is given as

∆F =

√∑nc
k=1

∑N
l=1

∑
α |F cl

k,l,α (pi ) − F ai
k,l,α |2√∑nc

k=1
∑N
l=1

∑
α (F ai

k,l,α )2
(3.4)
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where the indexk iterates overnc reference structures, within which for every atom l theα = x ,y, z
spatial force components F cl

k,l,α and F ai
k,l,α of the potential with parameter set pi are matched to

those from the reference calculations. A normalization via the squared sum of the ab initio force
components is applied. The stress term ∆σ is given as

∆σ =

√∑nc
k=1

∑
α,β |σ cl

k,α β (pi ) − σ ai
k,α β |2√∑nc

k=1
∑
α,β (σ ai

k,α β )2
(3.5)

where diagonal αα and o�-diagonal αβ stress components for each reference k are compared.
Also here, a normalization via the ab initio stresses is applied. Alternatively, the latter can be
replaced with an expression including the bulk modulus B (= 3B√nc )). It is recommended that
the weights should be set with we ≤ wf ,ws to account for the abundancy of data points of each
property per reference structure [65].

3.1.2 Fi�ing the force field parameters

The cost function Γ de�nes the �tness of a trial parameter set pi with respect to the training data.
The latter consists of ab initio properties in the here used “Force Matching” methodology (see
above Sec. 3.1.1), but could equally be based on empirical macroscopic properties. Maximizing
the �tness obtained from minimizing the cost Γ by varying the parameters in pi thus leads to
an improved force �eld potential. In that, the search for a force �eld presents itself as a global
optimization problem, where the individual parameters span a multidimensional cost surface. The
latter is high-dimensional since usually many parameters are included in the formulation of a
force �eld. Additionally, complicated interdependencies of the parameters arise in the analytical
expressions which yield a corrugated �tness-parameter space. Thus, their optimization does
not present a trivial task. A thorough search is hence necessary which can be computationally
intensive. Therefore, both the evaluation of the �tness for a trial parameter set as well as the
global search strategy needs to be e�cient. In that, the former determines the performance of
a single evaluation step and the latter how many steps need to be taken to obtain a satisfactory
result.

In the evaluation of the �tness function, many single point calculations over the training set
structures need to be performed in order to retrieve their respective energies, forces, and stresses.
This requires the largest share of computer time during an optimization procedure, for which
e�cient routines need to be implemented. In that, the minimization of input and output operations,
meaning the reading and writing of �les to the hard disk, presents a considerable acceleration.
Additionally, parallel operations should be included in order to exploit computational resources
ideally and reduce waiting time. In this thesis, this is realized by designing a framework based on
PYTHON packages and the software LAMMPS [58]. Hereby, the software package ASE [66] is used
for handling of atomic structures, which is directly linked to LAMMPS using PYTHON bindings.
This way, a quick data transfer from the actual force �eld calculations to other optimization
routines is facilitated. Furthermore, the PYTHON package MULTIPROCESSING is used to setup a
task pool parallelization scheme. With this, the evaluation of the training set is split into a number
of tasks which are distributed over the available processors.

In comparison to the improvement of the �tness evaluation, the global optimization strategy
provides stronger leverage for an e�cient procedure. However, it also presents a more di�cult
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problem. This is based on the typically high dimensionality of the parameter space which is likely
subject to many superbasins and local minima. Here, an exact solution which would require a
most thorough sampling cannot be determined. Therefore, heuristic methods need to be employed.
In literature, many di�erent approaches are proposed for application, where the most consistent
are either a mixture of simulated annealing and local optimizations, or the di�erential evolution
algorithm (DEA), a variant of the genetic algorithm (GA) [64, 67, 68]. In this thesis, evolutionary
motivated algorithms are used as implemented in the PYTHON package INSPYRED [69]. Besides
the DEA, another evolutionary algorithm, the particle swarm optimization (PSO) [70] is employed.
It is found that the latter provides a more e�cient and successful global optimization procedure
for treating this particular parameter space. Nevertheless, both methods provide viable solutions
whereby neither �nds a good local minimum but rather locates a related basin. Thus, after the
global optimization procedure a subsequent local optimization is performed. In this regard, the
most practical optimizer is found in the L-BFGS method as taken from the FITPACK library,
conveniently interfaced through SCIPY [71].

Di�erential evolution algorithm

Motivated by the concept of natural selection, the DEA [67] treats a number of trial solutions
in parallel and evolves them using “genetic operations”. In that sense, the solutions are called
chromosomes which are held by individuals forming a population. The latter is altered via the
operations mutation, crossover and selection over a course of generations. A population is thus
expressed as an array holding each individual i with its chromosome, the trial parameter set
pi at generation д as Pд = [pi,д]. The starting parameter sets are randomly initialized within
valid bounds, e.g. normally distributed around an initial guess or uniformly distributed in the
complete parameter space. Each generation, the individuals are evolved using the following
genetic operations:

1. Di�erential mutation: For each individual i , a newly mutated parameter set vi,д is created
via a linear combination of three randomly chosen individuals r1, r2 and r3 from the current
generation д according to

vi,д = pr1,д + F (pr2,д − pr3,д) (3.6)

where F corresponds to a random number ∈ [0, 2] to control the ampli�cation of the
mutation.

2. Crossover: To diversify the linear combinations of mutation vectors, an analog to “mating”
is introduced. The individual components x of the mutant parameter set of individual i are
exchanged with the components x of the current parameter set of individual i . From this, a
new (“mutated” and “mated”) trial parameter set ui,д is created following

ui,д = ui,д,x =

{
vi,д,x if nr [0, 1) < Cr
pi,д,x if nr [0, 1) ≥ Cr

(3.7)

where nr is a random number ∈ [0, 1) drawn for every component and Cr is a �xed cross
over constant. Following this, the resulting trial parameter set consists of mutations from
linear combinations where single components are left unchanged.
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3. Selection: The trial parameter setsui,д are evaluated using the cost function Γ and exchanged
for the current set for an individual i following

pi,д+1 =

{
ui,д if Γ(ui,д) ≤ Γ(pi,д)
pi,д if Γ(ui,д) ≥ Γ(pi,д) (3.8)

The algorithm is terminated if an individual reaches a �tness below a speci�ed threshold (if known)
or the rate of improvement is exhausted.

An implementation of the DEA is comparably simple and its execution is not time critical. In
that, it does not hold a large working memory, since at any time, only three arrays with the size
of the population × number of parameters need to be stored. Namely, the current population Pд ,
the mutated population vд and the trial population uд .

In characterizing the algorithm, this variant of the GA �nds a best parameter set con�ned
within the initial set of parameters. Thus, the diversity of the initial population decides over
the sampling width within the parameter space. In comparison, the general GA has a di�erent
mutation and selection mechanism [72] which allows it to explore a broader search space. Here,
the convergence is, however, considerably slower and does not prove viable for the corrugated
parameter space encountered in a force �eld parameterization [73].

Particle swarm optimization

The particle swarm optimization (PSO) algorithm [70] is also inspired by search patterns observed
in nature, speci�cally those of �sh or bird swarms searching for food. Here, the terminology
encompasses particles in a swarm which move through the search space with time. In that,
each particle possesses a position which corresponds to a trial parameter set pi with coordinates
corresponding to its individual components. The particles then move with a velocity de�ned by
the search algorithm. At a time t = 0 particles are initialized as in the case of the DEA, normally
distributed around an initial guess or uniformly distributed within the parameter bounds. They
hold an initial individual velocity which is de�ned from their positions as

vi (0) =
pi (0) − pmin

∆t
(3.9)

where pmin is the lower bound of each parameter in the parameter set and ∆t is a speci�ed step
width. Each time step the particle position is updated to a new position pi (t + 1) as

pi (t + 1) = pi (t) +vi (t + 1) · ∆t (3.10)

whereby the particle velocity vi (t + 1) is composed of information including an individual and
collective memory. Here, a personal best position pbi and collective best position pbд are stored at
any time. Both, quantities in�uence the particle velocity, following

vi (t + 1) = c0vi (t) + c1n
1
r
pbi − pi (t)

∆t
+ c2n

2
r

pbд − pi (t)
∆t

(3.11)

where n1
r and n2

r are uniform random numbers ∈ [0, 1] and pbi −pi (t) and pbд −pi (t) are the distances
of a particle at its current position pi (t) to its personal best and collective best, as illustrated in
Fig. 3.1. The included random numbers allow for a randomized exploration of the parameter

23



space. The constants c0, c1 ,and c2 are weights which are speci�ed to decide the in�uence of each
contribution to the velocity. According to their origin, these are termed inertia, self-memory (or
cognitive rate) and collective-memory (or social rate) constants. For these, recommended values
in typical applications are (1,2,2) or (0.5,1.5,1.5) [72].

Similarly to the DEA, a simple and lean implementation of the PSO is possible. Virtually no
computer time goes into its evaluation and only the current swarm p(t) and the best positions pb ,
need to be stored at any time.

pi (t)
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д
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i
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vi (t + 1)
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Fig. 3.1: (left) Schematic of the particle velocity in the PSO. The contributions of the inertia vi (t) (blue),
the self-memory pbi (orange) and the collective memory pbд (red), are graphically depicted. These,
are combined as described in Equ. 3.11 to yield the velocity vi (t + 1) (black) for the propagation
of the individual particles (black). (right) Comparison of the performance of the DEA (orange)
against the PSO (blue) for a force �eld potential parameterization of Li3OCl (see Sec. 5.3). For each
algorithm the average of three optimizations is shown using 1000 particles/individuals where
each is randomly initialized following a uniform distribution within the parameter bounds. The
�lled-in region shows the variance of the three runs for the best and median cost, respectively.

In evaluating the PSO for a force �eld parameterization, it is found that its performance is
superior to the often applied DEA. This is shown in Fig. 3.1 where the PSO �nds better minima
on average. Here, the overall swarm maintains an explorative behavior which can be seen in
the high lying cost-median. Single best particles only draw the swarm slowly to the current
minima. In contrast, the DEA converges the individuals much faster to a minimum (seen in
the early coincidence of cost-median and -minium). This behavior is prone to an early arrest
of the exploration, rendering this algorithm less suitable for the corrugated high-dimensional
optimization problem.

3.1.3 Parameterization of Polarizability in the Core/Shell model

A special case for a parameterization problem are augmenting models which add a new functional-
ity to a basic force �eld. One of those lies in the inclusion of the electronic polarizability important
for an accurate description of many ionic and polar systems. For this, the core/shell model is
used in this thesis due to its accuracy and simplicity as described in detail in Sec. 2.2.2. Here, a
satellite particle (the shell) carrying an extra charge qs is attached to the original ion (the core).
Restored via an harmonic force, the shell mimics the polarization of an electron hull by reacting
to the electrostatic environment. Two parameters are therefore included in the core/shell model,
namely the spring constant k and the shell charge qs which directly combine to the polarizability
α = q2

s/k . Since the latter presents the only e�ective parameter, either k or qs are required to
be parameterized. Usually, an intuitively chosen qs is kept �xed and k is optimized following
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di�erent strategies.

One frequently used strategy is based on �tting k simultaneously with the remaining parameters
of the force �eld to the elastic constants (C11, C12, C44), phonon frequencies (e.g. from infrared
spectroscopy) and the high frequency and static dielectric constants (ϵ∞ and ϵ0). In this rigorous
approach the combination of these physical properties is chosen to yield a reliable model [52,
63, 74]. As mentioned before, it is di�cult to control a �t to coerce each parameterized term to
cover exactly the purpose of its physical origin when referencing to empirical ensemble averages.
Considering the added �exibility introduced by the core/shell terms, this e�ect becomes very likely.
Thus, a phenomenological model results, yielding correct macroscopic properties which derive
from incorrect microscopic relations [52]. For example oxygen polarizabilities of 0.1156 Å3 which
strongly deviate from ab initio and experimental references of 1.58-2.07 Å3 [75] in a tetrahedral Li
coordination environment have resulted in the parametrization of Li2O and Li3OCl [76]. Here,
the core/shell interactions compensate an inaccurate underlying force �eld rather than providing
a correct polarizability. Knowing that this �aw is strongly enhanced by the reference data, a
simultaneous �t of all parameters against ab initio reference properties is alternatively performed
[63]. This likely yields a more physical interaction model due to the better comparability to the
reference data. However, even here resulting core/shell parameters have sometimes shown to be
void of any physical meaning.

Considering the underlying purpose of the core/shell model, a physically motivated parame-
terization is feasible. Thereby, an isolated �t of only the core/shell parameters to an according
reference is possible. In comparison to the macroscopic dielectric constants, defect [52] and
reorganization energies [68] from ab initio data present a better reference with a higher micro-
scopic accuracy. It should be noted, that these are dependent on the static dielectric constant ϵ0
only. Since force �eld potentials are mainly employed in simulations where the importance in
accuracy of structure outweighs that of optical properties, this reference appears more advanta-
geous than the high frequency dielectric constant ϵ∞. In practice, the microscopically motivated
parameterization strategy should be combined with a force �eld potential which is previously
parameterized in a 0 K picture to ab initio data of only non-defective structures. Subsequently, the
core/shell parametrization can be followed based on defective structures. This yields a consistent
potential, allowing for some control in the physicality of the individual force �eld terms. In
that, it prevents non-core/shell parameters to produce an overly averaging description (of the
defective and non-defective system) which has been reported to give a high penalty in accuracy
[52]. Besides its above mentioned advantages, the physically motivated strategy additionally
allows to reduce the computational cost of the �tting procedure. This is due to the fact, that the
core/shell parameterization can be executed separately. In the latter each reference calculation
to evaluate the core/shell parameters includes the relaxation of all shell positions. An increase
of the computational cost by 1-2 orders of magnitude of each evaluation step can thereby be
expected. If parameterizing core/shell parameters in combination with others, this increase a�ects
every evaluation of the �tting procedure, then within the usual rigorous global search. Thus, a
separate, physically motivated parameterization renders as considerably more feasible and is thus
the employed procedure in this thesis (see Sec. 5.3).
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3.2 Monte-Carlo sampling approaches for thermodynamic
ensembles

In atomistic simulations, the model structures of materials are often taken from experimental input.
This works especially well when treating high symmetry crystals where the atomic positions can
be determined by experimental techniques with a high accuracy. Unfortunately, this is not the
case in most complex materials where uncertainty about the atomic structure prevails. Many
battery materials belong to this category, due to their inherent disorder. Since their simulation is
subject of this thesis, a strategy for the determination of relevant atomistic structural models is
required. A powerful approach is based on Monte-Carlo simulations which can be used to explore
structural ensembles.

For this, a perspective following statistical thermodynamics is taken: Each microscopic con-
�guration of a material, that is the structure de�ned by the individual atomic positions, can be
interpreted as a microstate of a thermodynamic ensemble. To estimate whether such a microstate
is relevant, its probability p to occur in the equilibrium ensemble (de�ned by temperature and
pressure) needs to be determined [77, 78]

p(rN ) =
exp

(
−E(rN )

kBT

)
Z

with Z =

∫
exp

(
−E(r

N )
kBT

)
drN (3.12)

where rN are the positions of the N particles belonging to the con�guration of a microstate with
a potential energy E(rN ), kB is the Boltzmann constant and T the temperature. The potential
energy-based partition function Z represents the integral over all possible microstates of the
material. Considering the 3N degrees of freedom for the atoms in the system, Z is composed of
an unseizable amount of con�gurations which cannot be explicitly computed. This holds in most
materials even when discretizing the space of relevant structures (e.g. to local minima, see Sec.
4.4) [77, 78]. The overall problem in determining the probabilities p(rN ) for trial structures lies
within the partition function Z which is in practice inaccessible. However, good estimates can be
obtained using Monte-Carlo importance sampling as described in the following.

3.2.1 Metropolis Monte-Carlo and Beyond

The Metropolis importance sampling

In importance sampling the ratio de�ned by Equ. 3.12 is estimated by a Monte-Carlo scheme. In
the latter, a simulation is propagated between structures Sn based on the evaluation of a random
number nr ∈ [0, 1] against a transition probability pA. Starting from a random initial structure,
at each step n a random trial structure Strial is proposed and based on the outcome of nr and pA
accepted or rejected as

Sn+1 =

{
Sn if nr > pA
Strial if nr < pA

(3.13)

where Sn is the structure at the current step n and Sn+1 is the structure in the next step. Since pA
only depends on the previous state, a Markov chain of sampled states is created. For the importance
sampling the most prominent method is based on the Metropolis acceptance criterion [79]. The
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associated transition probability pA derives from the microstate probability p(rN ) between the
current and the trial structure (see Equ. 3.12) as

pA = min ©­«
1,
p(rNStrial

)
p(rNSn )

ª®¬
= min

(
1, exp

(−β (Etr ial − En)) ) (3.14)

where Etrial and En correspond to the potential energy E(rN ) of the trial structure and the origi-
nating step respectively and β = 1/kBT is the reciprocal product of the Boltzmann constant kB
and the temperature T . The minimum function min tops the acceptance probability at 1 which
is a guaranteed acceptance if En+1 < En . It should be noted, that this criterion complies with
detailed balance. Here, the transition probability pA guarantees that the number of accepted trial
moves to a state a is exactly equal to the number of accepted trial moves from state a. This way
the estimated ratio in Equ. 3.12 stays consistent in the long time limit [29, 77].

Accelerated sampling

The Metropolis criterion as presented above creates a canonical ensemble for a temperature T
in the long time limit. Here, the necessary amount of sampling (the simulation time) depends
on the ease of exploring the con�guration space of the underlying system. Corrugated potential
energy landscapes therefore require longer sampling due to the fact that the probability to cross
high energy barriers based on the condition in Equ. 3.14 is small. Several ways exist to accelerate
the sampling, where early approaches focused on improving the selection of new trial structures
based on schemes which preserve the condition of detailed balance [29, 77]. Besides these problem
dependent approaches, more general methods have been proposed, the most notable of which is
parallel tempering [80, 81].

In parallel tempering (also known as replica exchange) several Metropolis Monte-Carlo sam-
pling runs are conducted in parallel. Each replica samples in a canonical ensemble at di�erent
temperatures which increase starting from the temperature of interest. High temperatures allow
for the sampling of larger fractions of the con�guration space while low temperatures probe
the local energy landscape more thoroughly. To spread the degree of sampling evenly over the
con�guration space, replicas exchange their temperatures (or con�gurations, respectively) based
on an additional Monte-Carlo step. The probability pexchange for the exchange of temperatures Ti
(contained in βi ) and Tj (contained in βj ) of two replicas i and j is expressed as

pexchange =
exp

(
−βjEn,i − βiEn, j

)
exp

(
−βjEn, j − βiEn,i

) = exp
[(
βj − βi

) (
En,i − En, j

)]
(3.15)

where En,i and En, j are the potential energies of each replica at step n. As represented by the
�rst expression in Equ. 3.15 this Monte-Carlo step also maintains detailed balance (including
the forward and backward swap acceptance probability). The trial moves can be attempted after
every step or after a constant number of steps. An implemented trial frequency should target an
overall temperature swap at an acceptance ratio of 20 %, which ensures an e�cient sampling [80].
Decisive for this ratio are also the temperatures of the ensembles. Attempted swaps are usually
conducted between replicas with adjacent temperatures to be successful. Therefore, a geometric
progression of the involved temperatures (Ti/Ti+1 = constant) has been frequently suggested. The
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parallel tempering formalism creates canonical distributions for all temperatures involved and
ensures a fast and e�cient sampling. It should be mentioned that besides temperature, also other
physical and non-physical parameters can be swapped between the replicas [29, 80].

3.2.2 Wang-Landau Sampling

The above described methods sample con�gurations for a canonical ensemble which is bound at a
temperature (or several temperatures). In contrast to that, the Wang-Landau sampling directly
estimates the partition function Z (see Equ. 3.12) [82–88]. In that, it produces an estimate of the
con�gurational density of states (cDOS) (denoted as д(E)) which gives the number of all possible
con�gurations for an energy E. This relates to the partition function Z as

Z =

∫
д(E) exp

(
− E

kBT

)
dE ≡

∑
i

д(Ei ) exp
(
− Ei
kBT

)
(3.16)

Similar to the estimated ratio over Z in the Metropolis importance sampling (see above Sec. 3.2.1),
the Wang-Landau sampling gives a relative cDOS д(E) which yields a comparative weight of the
amount of con�gurations at a certain energy. In simulations, these energies are usually discrete
or in the case of continuous variables represent an energy bin Ei (see right term in Equ. 3.16).
With the goal to estimate a representative structural/con�gurational ensemble of a material at a
temperature T , the according probability for a structure with an energy Ei can be retrieved in the
canonical distribution P(E,T ). The latter relates to д(E) as

P(Ei ,T ) = д(Ei ) exp
(
− Ei
kBT

)
(3.17)

It should be noted that the cDOS can also be de�ned as a function of other physical quantities, for
example of the magnetization as often done in Ising models.

The Wang-Landau sampling is conducted as a random walk in energy space. It is thereby based
on a transition probability between energy levels Ei which depends on a continuously updated
д(Ei ) as

p(En → Etrial) = min
[
1, д(En)
д(Etrial)

]
(3.18)

where En is the energy of the originating and Etrial the energy of the target con�guration. After an
accepted step the new energy level becomes the origin and its bin is updated, while a rejected step
ends with an update of the originating bin. Bins are updated by multiplication with a modi�cation
factor f resulting in д(Ei )′ = f д(Ei ). Initially, each bin is given a value of 1 and f is set to e . To
ensure an even sampling of the chosen energy range, a histogram H (E) with the dimension of
д(E) accumulates each visit and is periodically checked for its �atness (usually 1000 MC times,
MC time = trial MC steps / bins in д(Ei )). Based on the relative deviation of each entry H (Ei ) from
the mean

〈
H (E)〉 the �atness hf is reached when ‖H (Ei ) −

〈
H (E)〉 ‖ ≤ (1 − hf ) 〈H (E)〉. Once a

required �atness is arrived at (usually hf = 80 % [82, 84, 85]), the modi�cation factor f is re�ned as
f ′ =

√
f . This way the sampling is propagated until f converges to a target value while becoming

progressively more accurate [82, 84].
Since the sampling depends on a prede�ned, discretized energy range which determines the

bins in д(E), the treated problem must be previously explored [86]. Alternatively, there are
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proposed schemes which adapt this energy range on the �y [89]. In some cases, a sampling may
be conducted within restricted bounds located on the known energy range (for example when
trivially parallelizing — see below). Here, sampling at a boundary is inevitable. To capture such
boundary e�ects, steps outside the assigned range need to be counted into the originating bin
[83].

Obtaining the cDOS for complex systems

The Wang-Landau sampling provides in principle a good assessment of the whole con�gurational
space since not energies but the cDOS de�nes the acceptance probability. Here, д(E) acts as a
bias which in combination with the �atness criterion forces the system into non-explored energy
regions ensuring an overall broad sampling. Unfortunately, the convergence of д(E) may be very
slow. Despite accelerating schemes like the so-called 1/t algorithm [85, 88] the Wang-Landau
sampling remains a challenge for complex practical applications like the con�guration space of
disordered materials. A major reason for this is the enforced �atness. It requires Monte-Carlo steps
to drive the system very evenly across the full energy range in every re�ning cycle of the cDOS
(during which f remains constant). For this reason, parallelized sampling has been suggested
with random walkers sampling simultaneously in a replica-exchange type strategy [87]. While
this facilitates a faster sampling across the energy range, it requires a large pool of computational
resources for a single calculation. An alternative is trivial parallelization as employed in this thesis.
Here, several walkers sample independently on overlapping energy ranges [82, 84, 87]. While this
solution is less elegant, it allows for a �exible distribution of computational resources.

In the trivial parallelization each walker i performs an individual Wang-Landau sampling.
The resulting д(E)i are joined in a post-processing step within their overlap regions. A best
coinciding point is thereby based on the gradient of the logarithm of д(E)i , which corresponds to
the inverse microcanonical temperature (1/T = d(S(E))/dE = d(ln(д(E)))/dE). In literature [87],
d(ln(д(E)))/dE is approximated via �nite di�erences. This leads to errors propagating along the
energy axis E which amplify with the roughness of д(E)i (see Fig. 3.2). A tolerable error is only
obtained if the sampling is propagated until convergence to a smooth д(E)i . An alternative to this
�nite di�erence method, developed in this thesis, conjoins the sampled д(E)i based on a noisy data
approach. For this, B-spline functions are used to obtain a smoother gradient [1] (see Fig. 3.2):

1. Each ln(д(E)i ) is �tted via a spline function, where data points are weighted by their
reciprocal distance to a linear �t of ln(д(E)i ). Thus, outliers weigh less which allows for a
minimal smoothing parameter. Robust scaling factors ∆ ln(д(E)) between adjoined ln(д(E)i )
are then obtained from a best coinciding gradient (d(ln(д(E)))/dE).

2. The raw data sets ln(д(E)i ) of each walker are scaled via ∆ ln(д(E)) and a smooth global
function is �tted by another spline.

As seen in Figure 3.2, this procedure leads to a robust approximation of д(E). In comparison to
that, the �nite di�erence method yields a conjoined д(E) with a strong non-continuity even at
late convergence cycles, which originates in an inaccurate assembly. Thus, the application of the
noisy data approach renders superior. In that, it is even possible to sample at a lowered �atness as
well as to apply an early termination criterion. This is due to the fact, that the smoothness of the
raw data is not that critical anymore as further elaborated in Sec. 4.4.

29



rel. ln(д(E))
0.5

1.5

2.5

en
er

gy
pe

ra
to

m
/m

eV

∆ ln(д(E))∆ ln(д(E))

rel. ln(д(E))

100 101 102

д(E)

0.0

1.0

2.0

f7

f13

100 101 102

д(E)

f7

f13

Fig. 3.2: (top left) Relative ln(д(E)i ) of neighboring random walkers i (in shades of gray). The individually
�tted spline functions are shown in blue and the resulting scaling factors ∆ ln(д(E)) which relate
the relative ln(д(E)i ) are indicated. (top right) Scaled ln(д(E)i ) of the same individual walkers with
the globally �tted spline function (green). (bottom left) д(E) for early and late re�ning cycles f7
and f13 resulting from the spline function based procedure in comparison to the �nite di�erence
approach (bottom right). The data is based on the con�guration space sampling of Li4Ti5O12 (see
Sec. 4.4) using the typical inspection interval and �atness of 1000 MC time and 80 %

3.3 Material properties from simulations

3.3.1 Ion transport

Ion transport is a central property in battery materials. From computer simulations it can be
determined with comparably high accuracy for an investigated model. On the one hand, using
statistical mechanics gives access to average ensemble properties which exhibit apparent macro-
scopic coe�cients. On the other hand, the examination of detailed atomistic processes allows for
e�ective estimates and the determination of a transport mechanism.

Transport coe�icients from microscopic quantities

To evaluate transport coe�cients from equilibrium MD simulations, two approaches are commonly
used. The �rst is the Green-Kubo (GK) formalism which is based on linear response theory or
more precisely the �uctuation-dissipation theorem. Here, the response of a dynamic variable
A near its equilibrium 〈A〉0 to a weak, time dependent perturbation 〈∆A(t)〉 is considered. The
latter can thereby be assumed in a linear regime due to its small magnitude. For the transport at
equilibrium, i.e. when no external driving force is present, a perturbation in a mechanical property
is decisive. This can be derived to yield a time correlation function relating the time derivative of
the perturbation variable ÛA(t) to its macroscopic transport coe�cient λ [28, 29]

λ =

∫ ∞

0
〈 ÛA(t) ÛA(0)〉dt (3.19)

A second approach is based on the closely related Einstein formalism. Originally derived for
Brownian motion, it yields an analogous expression which holds at long sampling times ∆t [16,
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28, 29] and is given as

2∆tλ = 〈(A(t) −A(0))2〉 (3.20)

The GK and Einstein formalism are strictly equivalent. Both are used in the evaluation of transport
coe�cients whereby di�erent advantages and disadvantages in their application are found as
outlined in the following.

Macroscopic di�usion coe�icients

Based on the above mentioned relations for transport coe�cients, the macroscopic di�usion
coe�cients can be obtained from MD simulations. The central observable in this case is the
position operator ®r (t) and its derivative in time, the velocity ®v(t). For the GK formalism follows
the integral of the velocity autocorrelation function (VACF) to determine the di�usion coe�cient
D∗ [28, 29]

D∗ =
1
3

∫ ∞

0
〈®vi (t)®vi (0)〉dt (3.21)

where ®vi corresponds to the velocity of every particle i and the factor 1
3 normalizes by the

dimensions, i.e. the three spacial coordinates. The corresponding Einstein formulation, valid in the
long time limit, contains the central property 〈|®ri (t)− ®ri (0)|2〉 called the mean square displacement
(MSD) as originating from the position operator. It is given as [16, 28, 29]

D∗ =
1
3
〈|®ri (t) − ®ri (0)|2〉

2∆t (3.22)

where ®ri is the position of particle i , ∆t is the sampling time and the formula is again normalized
by the dimensions. To reduce statistical errors, the VACF and MSD can be time averaged. In
that, a sampling over a lag time may be repeatedly initialized at constant time intervals in an
MD simulation [90]. Hereby, the sampling sections should overlap to a reasonable degree, in
order to exploit the obtainable statistics from the MD data. The computed di�usion coe�cients
are so-called tracer di�usion coe�cients (denoted D∗). This is based on their original derivation
where no particle interactions are considered. Thus, they refer to the motion of a tracer particle in
a (homogeneous) medium in a random walk fashion [16, 91].

The central quantities to each formalism, the VACF and MSD exhibit system dependent behavior.
This is demonstrated for the transport of Li in di�erent systems as shown in Fig. 3.3. Here, the
VACF decreases in time and, independent of its pro�le, drops to zero at a point of complete
decorrelation. Its integral, however, behaves di�erently. In the liquid (melt of Li3OCl, Fig. 3.3 top)
a smooth integral converges to a �nite value and thus gives a �nite di�usion coe�cient following
Eq. 3.21. The convergence of the integral within the short correlation time is owed to the mean
continous motion of particles in the liquid. In contrast to this, the integral drops to zero for the
corresponding high temperature crystal (Li3OCl, Fig. 3.3, bottom). Here the motion depicted
during the correlation time only corresponds to vibrations of Li ions within the potential of their
lattice sites. This behavior can be recognized from the strong oscillations around zero in the
VACF. Long range motion in this crystal, corresponds to rare hopping events between vacancies
(vacancy mechanism). Despite the high temperatures where the crystal shows many hopping
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events, this motion still correlates on a very long timescale. Even when going to considerably
larger correlation times, the required statistics to capture this correlation in the long range tail of
the VACF are unfeasible — an e�ect also observed for other quantities [92].
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Fig. 3.3: Exemplary VACFs (blue) and their integral (orange, left) as well as the MSDs (blue, center) from
the same simulation for Li in an ionic melt of Li3OCl at 900 K (top) compared to the corresponding
crystal with an included vacancy at 1200 K (bottom). (right) Schematic of motion regimes found
in an MSD with the corresponding anomalous di�usion exponent α .

In contrast to that, the corresponding MSDs show a continuous increase for both systems.
Thus, independent of the di�usion mechanism, a �nite value of the MSD can be obtained and a
macroscopic di�usion coe�cient determined. It needs to be mentioned that long sampling times
are necessary in order to reach statistically meaningful coe�cients. In general, these depend
strongly on the treated system. To determine the sampling time, the phenomenological di�usion
regimes have to be distinguished. As shown in Fig. 3.3 on the right, these consist of a ballistic
motion, an intermediate correlated motion and a long range transport. Each regime can be
identi�ed from the time dependency MSD ∝ tα , where the anomalous di�usion coe�cient α is
decisive [93]. Only when α = 1, one speaks of “normal di�usion” which in the long time limit is
the only relevant transport regime. Thus, statistics need to be su�cient for the extraction of an
accurate gradient MSD / ∆t of the normal di�usion. While, the intermediate regimes are usually
not recognizable in the MSD of a liquid or of solid at very high temperatures, in disordered media
they show a strong in�uence (see for example 5.5). Here, the speci�c extraction of a gradient
MSD /∆t only from the linear regime is crucial.

In conclusion, the MSD allows for a more transparent investigation of the macroscopic di�usion.
This is true unless investigating a highly dynamical system where di�usion behavior can be
derived from the short time scale. Thus, the Einstein formalism presents a more suitable approach
in disordered materials and crystals with a vacancy-mediated di�usion mechanism.

Ionic conductivity

Closely related to the di�usion of ions is the ionic conductivity. Considering the in�uence of an
external electric �eld on an ionic system, a current is induced yielding a non-equilibrium steady-
state. When the external electric �eld slightly changes, an electric (vector) potential response from
the ions of the system follows as a linear perturbation. This can be reformulated as an in�nitesimal
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response of microscopic currents ®j ion which are expressed as [29]

®j ion =
N∑
i=1

qi ®vi (3.23)

where N is the number of particles i with charge qi and velocity ®vi . Inserting this pertubation
term into Equ. 3.19 for the GK formalism an expression for ionic conductivity σDC can be derived
following the �uctuation dissipation theorem [29]

σDC =
1

3VkBT

∫ ∞

0
〈®j ion(t)®j ion(0)〉dt

=
1

3VkBT

∫ ∞

0

〈
N∑
i=1

N∑
j=1

qiqj ®vi (t)®vj (0)
〉
dt (3.24)

where kB is the Boltzmann constant, T the temperature, and V the volume. This expression can
be rearranged to recover the tracer di�usion coe�cients D∗

σDC =
1

3VkBT

∫ ∞

0

〈
N∑
i=1

q2
i ®vi (t)®vi (0) +

N∑
i=1

N∑
j,1

qiqj ®vi (t)®vj (0)
〉
dt

=
1

3VkBT
©­­«
nβ∑
β

q2
βNβD

∗
β +

∫ ∞

0

〈
N∑
i=1

N∑
j,1

qiqj ®vi (t)®vj (0)
〉
dt

ª®®¬
(3.25)

where nβ is the number of di�erent species β , Nβ the number of particles belonging to that species
and qβ its charge. From the rearranged expression in Eq. 3.25, it can be seen that the current
correlation function includes the tracer di�usion of each species as well as a cross-correlation term.
The latter thereby consists of the di�usion and charge interaction correlation [94, 95]. Neglecting
the cross-correlation one can reformulate this expression to

σDC =
1

3VkBT

nβ∑
β

q2
βD
∗
βNβ . (3.26)

This expression serves as an approximation for an idealized conductivity. The formulation 3.26 is
often called the Nernst-Einstein relation and can be directly derived from the Einstein relation on
basis of non-interacting particles [16]. An alternative approach based on the Einstein formalism
of the current correlation was recently suggested by Haskins et al. [96]. Simply inserting the
integral of ®j ion into Equ. 3.20 as the analogous to the GK formulation yields

σDC =
1

6VkBT
1
∆t

〈






N∑
i

[
qi ®ri (t) − qi ®ri (0)

]






2〉

(3.27)

where ®ri is the position of particle i . This can be also written as

σDC =
1

6VkBT
1
∆t

〈






N∑
i

qi ®di (∆t)








2〉
(3.28)
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where ®di (t) indicates the displacement vector for each particle over the sampling time ∆t . This
way it may become apparent that Equ. 3.27 corresponds to the total charge transport, i.e. the
cumulative distance which a “center of charge” moved. It should be noted, that this expression is
not related to Eq. 3.26 but strictly follows the Einstein formulation for interacting particles.
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Fig. 3.4: Exemplary current correlation functions (CCF) in blue and their integral in orange as well as the
total charge migration ‖∑N

i qi ®ri (t)‖ in blue for an ionic melt of Li3OCl at 900 K (top) compared to
the corresponding crystal with an included vacancy at 1200 K (bottom). Shown is the CCF with a
maximum correlation time of 1 ps (left) and 2 ps (middle). The total charge migration following
the Einstein formulation in Eq. 3.27 is shown on the right.

When obtaining the conductivity with either the GK or the Einstein formulation (as in Eq. 3.24
or 3.27), similar practical issues as described for the tracer di�usion coe�cient arise (see above).
As shown in Fig. 3.4 the GK formalism shows an oscillating behavior in a non-liquid and long
range transport cannot be resolved within short correlation times. Slow convergence is observed
due to the interaction correlation which even shows problematic behavior in the liquid. Although
seemingly converged within 1 ps in the latter a recurrence of the correlation function becomes
obvious going to longer correlation times. This badly converging behavior is well-known [94,
95] and results in large errors. Nevertheless, successful application with reasonable convergence
of the GK formalism can be found in ionic melts at temperatures above 3000 K [97]. At such
elevated temperatures a melt behaves like a true liquid with little ionic cross correlation, which
is comparable to ionic motion in a solvent at dilute concentrations. In comparison to that, the
equivalent Einstein formulation gives a more consistent conductivity. Due to the fact that long
averaging times for the GK formalism are required in any case, the long time limit required for
the Einstein formulation is not a disadvantage.

Atomic di�usion processes

It is not always convenient to perform equilibrium MD simulations to investigate transport. For
example, a vacancy di�usion mechanism in a crystal will only exhibit su�cient motion events at
unachievable simulation times or at high temperatures. Since a temperature dependence might
change the actual di�usion mechanism, other approaches are required. Furthermore, macroscopic
di�usion coe�cients represent ensemble averages and do not elucidate on the di�usion mechanism
which might reveal interesting insights relevant for the improvement of battery materials.

An alternative approach to investigate ion di�usion is by resolving single atomic di�usion
processes, i.e. hopping events at 0 K [2, 9]. For these, the minimum energy paths are investigated
reveiling an associated activation barrier ∆Ea . Tentative hopping events are thereby guessed and
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an accurate minimum energy path can be practically computed using the nudged-elastic-band
(NEB) method or modi�ed versions thereof [98, 99]. Based on the activation energies di�erent
possible migration pathways can be compared and thus the most likely di�usion mechanism
identi�ed. Neglecting entropy, an approximate hopping frequency Γ can be obtained from the
activation barrier and a vibrational prefactor ν∗

Γ = ν∗ exp
(
−∆Ea
kBT

)
. (3.29)

Γ represents the probability for a hop to succeed which is attempted at the frequency ν∗. Here,
the latter may be approximated via the lattice vibration or Debye frequency, respectively [2, 9, 16].
If the involved di�usion mechanism requires the presence of a vacancy, the hopping rate strongly
depends on a defect formation energy ∆Eformation. An approximate, e�ective hopping rate results
as [16]

Γ′ = ν∗ exp
(
−∆Ea + ∆Eformation

kBT

)
. (3.30)

Since the vacancy formation probabilities are usually low, they a�ect the apparent di�usion
considerably. Thus their determination is critical for the investigation of the di�usion and is
discussed in more detail in the next section 3.3.2. Many studies follow the described approach to
investigate a material. Some of these are conducted systematically in an attempt to derive material
design principles for material classes [3, 7].

The above mentioned methodology relies on a good chemical intuition in order to guess all
relevant elementary di�usion processes. Here, the dependencies on neighboring atoms - their
chemical environment - needs to be taken into account. In that, success depends strongly on
the complexity of the investigated system. In practice, working out all possibilities for a jump
process by hand is only feasible for high-symmetry crystals. Although computer algorithms may
aid in this task, the combinatorial problem quickly exceeds practical limits when investigating
highly disordered materials. For that reason, an approach combining MD simulations and 0 K NEB
calculations is used in this thesis (compare Sec. 4.5). Migration processes are sampled during a
conventional equilibrium MD and then used as input processes for NEB calculations. This allows
for a high degree of automatization and eliminates any dependency on chemical intuition.

Naturally, the sampling of processes is not a straight forward task in a model with continuous
positions in space. Thus, a discretization of the atom positions in the MD simulation is necessary
as visualized in Fig. 3.5. In the approach developed in this thesis, the continuous positions
are projected onto a lattice, whereby for a crystal the according crystallographic symmetry
lattice is used. The underlying host lattice, i.e. the fcc or hcp structure is adjusted to the mean
thermal positions of the host ions in a �rst step and the interstitial sites placed on the resulting
coordination centers. Atoms are then assigned to their closest crystallographic sites. In the case
of a con�icting assignment, the closest ion is chosen for a site and the clashing ions are sorted
to their next surrounding site. To capture atomic motion correctly for each snapshot in an MD
trajectory, core sets around each crystal position are de�ned presenting a minimal radius for site
association to �lter recrossing events [100, 101]. Hereby, an acceptance radius corresponding to a
fraction of the smallest distance between adjacent sites must be chosen. This choice needs to be
carefully examined to compromise between a minimal recrossing ratio and loss of information. In
comparison to other approaches found in literature [102, 103], the complete structure is mapped
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onto the lattice rather than only the mobile species. This gives the �exibility to extract the atomistic
surrounding from di�erent trial host structures in order to di�erentiate hopping processes via
their chemical environment. The latter can be conveniently distinguished by e.g. comparing all
atom-atom distances within a enclosing volume de�ned by the distance between the initial and
�nal lattice site and a reasonable cuto� as shown in Fig. 3.5 [1].

Fig. 3.5: Depiction of the discretization of the Li ion motion to the crystallographic sites in a trajectory for
the example of Li4Ti5O12 (compare Sec. 4.5). (Left) undiscretized trajectory depicted as a Li ion
density plot where all continuous positions sampled during the trajectory are shown. (Middle)
the corresponding discretized trajectory with all occurring hops marked by a connection. (Right)
schematic of an enclosing cavity to isolate the chemical environment surrounding a hopping
process (indicated in black). Li ions are depicted in blue, Ti ions in grey and O ions in red.

Although only e�ectively appearing processes are investigated in the according NEB calcu-
lations, a large number of distinguishable processes can still be found. Considering also the
computational cost of MD simulations in general, this rigorous approach is only feasible when
used with classic force �eld potentials or semi-empirical methods.

Correlation factors and Haven ratio

In characterizing the macroscopic di�usion or conductivity, useful quantities are the correlation
factor fcorr or the Haven ratio HR , respectively. These allow for mechanistic interpretation by
relating the apparent ion transport to the uncorrelated and/or dilute case, respectively. In the
case of a crystals, i.e. the di�usion on a lattice, the correlation factor relates the overall particle
displacement R =

∑n
i=1 ®ri within n steps of displacements ®ri (hops on a lattice) to a random walk.

For this, the explicit expansion of the mean squared displacement is considered [16, 104]

〈
R2

〉
=

n∑
i=1

〈
®r 2
i

〉
+ 2

n−1∑
i=1

n∑
j=i+1

〈®ri ®r j 〉 (3.31)

where the left part of Eq. 3.31 refers to the ensemble averaged squared displacement and the right
part to the ensemble averaged cross terms. The latter expresses the correlation of every step to all
consecutive steps. Considering a pure Markovian random walk, the cross correlation term will
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vanish in the long time limit and only the ensemble averaged absolute displacement will remain
[105]. If follows for the correlation factor [16]

fcorr = lim
n→∞

〈
R2〉〈

R2
random

〉 = 1 + 2 lim
n→∞

∑n−1
i=1

∑n
j=i+1

〈®ri ®r j 〉∑n
i=1

〈
®r 2
i

〉 ≡ D∗

Drandom
(3.32)

where the left part (+1) of Eq. 3.32 is the Markovian random motion and the right part the
normalized correlation term. In general, the right part turns out to be ≤ 0 . This derives from the
fact, that the di�usion in crystals is vacancy mediated which will always lead to a back-correlation
in the atomic motion. This means that there is always a probability for an hop to be reversed. When
treating high-symmetry crystals, the lattice symmetry allows to determine analytical expression
for the correlation factors. From these, a rule of thumb was derived depending on the probability
of back-correlation which relates to the number of coordinating neighboring sites Z [16]

fcorr ≈ 1 − 2
Z
. (3.33)

The correlation factor for lattice di�usion in more complex systems are traditionally determined
from Monte-Carlo (MC) simulations [105]. Unfortunately, this requires an involved setup for
complex systems which is usually beyond any applicability. As an alternative, the same information
as obtained in an MC simulation can be extracted from an MD simulation by employing the
discretization procedure described in Sec. 3.3.1. This allows for a convenient determination of
the correlation factor. In general, correlation factors give characteristic values between 0.45-1.0.
These allow to deduce the complexity in a di�usion mechanism or directly to identify the same if
an analytical solution is available [16, 91].

A similar concept which is used in solid state ionics is the Haven ratio HR which relates the
charge transport to the tracer di�usion. In comparison to the correlation factor it is universally
applicable but only describes a phenomenological quantity for which no analytical expressions
are formulated [16, 91, 104]. It de�nes as

HR ≡ D∗

Dσ
(3.34)

where Dσ represents a charge di�usion coe�cient. This latter quantity is not equivalent to a
real di�usion coe�cient as it does not relate to Fick’s law of di�usion. Instead, it is directly
correspondent to the exact Nernst-Einstein formulation and can be determined if σDC is known
as

Dσ =
3VkBTσDC

q2N
. (3.35)

From Eq. 3.34 follows, that the Haven ratio HR compares tracer di�usion — the di�usion in a
chemically homogeneous host — to the di�usion under in�uence of an electric �eld. Di�erences
betweenD∗ toDσ arise from the ion-ion correlation included in the formulation of the conductivity
as pointed out in Eq. 3.25. Contained are thereby back-correlation, collective ion motion, as well
as e�ects summarized as conductivity correlation [91]. In most systems, HR shows values ≤ 1
which derives from the fact, that the electric �eld induced di�usion adds on top of the tracer
di�usion. In traditional crystals based on a vacancy di�usion mechanism 0.5 ≤ HR ≤ 1.0 can be
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expected [104]. In comparison to that, ion conducting glasses exhibit Haven ratios between 0.1-0.6
which is believed to derive from a broad distribution of migration energies as well as collective
ion motion. The latter, originates from the lowered dimensionality of the di�usion network in the
glass host structure [104]. To obtain the Haven ratio in an MD simulation, D∗ and Dσ need to be
determined. The former can be readily obtained by the respective GK or Einstein formulation as
described in Sec. 3.3.1. For the latter, σDC has to be computed �rst as described in Sec. 3.4 and can
then be calculated from Eq. 3.35. In general, the Haven ratio is de�ned for a single ion species.
However, it can also be determined for the net conductivity in a system which relates an idealized
to a charge correlated conduction mechanism [96, 106]. For this, the ratio

HR ≡
σ ∗DC
σDC

(3.36)

can be determined where σ ∗DC represents the correlation-free conductivity as obtained from Eq.
3.26. This Haven ratio of the net conductivity is useful in determining the coupled motion of ionic
species of opposite charges.

3.3.2 Defects

Defects determine many material properties and are most relevant for di�usion since vacancies
facilitate atom migration. This is true for every di�usion mechanism with the exception of
interstitial di�usion which however presents a special case in many regards, anyways. In highly
symmetric ionic crystals Frenkel and Schottky defects are the only possibility for defect realization.
In the former an ion is displaced from its original position to an interstitial and in the latter an
anion-cation pair is missing from the crystal lattice creating two vacancies. Higher structural
complexity in the case of transitions metal oxides allows more �exibility. Here, charge neutrality
can be compensated by a varying oxidation state of the cations and strong covalent character allows
for �exibility in the electronic structure. A usually lower symmetry lattice thereby enables antisite
defects (cation exchange) which present irregularities in the usual occupation of crystallographic
sites. Finally, ambivalent doping can lead to stabilized vacancies and is often introduced into
materials to facilitate ion mobility [16, 24].

In battery materials, these kind of defects may be very relevant for the Li ion mobility. It
depends on the composition of the material and its functionality whether and what kind of defects
play a role. In intercalation materials intrinsic vacancies are created during the intercalation
process which are usually the main facilitator for di�usion [2, 3, 9]. However, in some intercalation
compounds defects play a major role where a prominent example are antisite defects in LiFePO4
[24, 107–110]. With the exception of collective conductors like LGPS [111], vacancies created by
defects and doping present the charge carriers in most crystalline solid state electrolytes [22, 26,
112]. It follows, that determining the role of defects is a crucial task in understanding the di�usion
in battery materials.

The Mo�-Li�leton method

The Mott-Littleton method presents the most popular approach to calculate defect energies in
crystals using computer simulations [38, 113, 114]. It aims at the computation of isolated defects,
i.e. in the dilute limit which approximates the case in ionic crystals very well [16]. Here, vacancies,
interstitials, or impurities which form the components of a formal defect are evaluated individually.
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Thus, charged defects are treated and a cluster approach (no periodic boundary conditions) is
used. A large amount of explicit atoms is required to treat the extended reaction of the lattice to a
defect in a geometry optimization accurately. Therefore, force �eld potentials are used for this
procedure.

In the computational set up of a model for an isolated defect, the system is split into an inner
(1) and outer region (2). In region 1 a defect may be placed and atomic coordinates r are given
full �exibility. In comparison to that, the atoms in region 2 are only subject to a displacement ζ
within a harmonic potential. This is justi�ed since compensating displacements far away from
the defect can be assumed to be small. In the original approach, at the outer boundary of region 2,
a continuum model simulates the electrostatic response of the in�nite crystal. The dimensions
of the individual regions RX should be in the bounds de�ned by the cuto� rcuto� of the applied
force �eld as: rcuto� < R1 < (R2 − R1) < R2. In this setup, the self energy of region 2, i.e. the
potential based atom-atom interactions depending on the displacements of the atoms within the
harmonic potential, can be neglected from the total energy calculation. Their in�uence is already
included in the interaction energy with region 1 and thus the computational cost of the approach
is tremendously reduced [61]. To evaluate the defect energies, it is necessary to compute the
system with the perfect lattice and the defect included giving:

Udefect(r , ζ ) = U tot
defect(r , ζ ) −U tot

perfect(r , ζ ) (3.37)

If the actual formation energies are of interest, a correction according to the chemical potential of
the isolated removed or added defect species is necessary. In contemporary studies the program
GULP [61] is mostly used which includes an e�cient implementation of the Mott-Littleton method.
Here, the originally applied continuum model is replaced by the sum of the induced polarization
in the charged system.

It should be noted, that the treatment of vibrational entropy increases the accuracy of defect
energies often in the order of 10 meV. This energy di�erence may be a decisive factor when deduc-
ing the thermal properties of a material. The entropy can be estimated via phonon calculations
whereby exact formulations are rigorous in their application [115]. In practice these are therefore
rarely applied and contemporary programs include many simpli�cations [61].

The Mott-Littleton method has been successfully employed in the investigation to many kinds
of defects in various material classes [116]. This is also true for studies on battery materials as
outlined above [3, 24].

Defect formation probability for non-dilute defects

Battery materials often exhibit low symmetry crystal structures which are prone to disorder.
This opens the possibility for stabilization e�ects, which likely renders the approximation of
dilute defects inadequate. This is for example the case in LiFePO4 where a clustering of antisite
defects is observed [117, 118]. Additionally, the location of a defect in a disordered material is
ambiguous. Here, many possibilities exist to include a dislocation or vacancy which di�er in their
chemical environments. The associated con�gurational entropy may be decisive which needs
to be estimated by a thorough sampling. In the Mott-Littleton method, interactions between
non-dilute defects are not represented and a thorough sampling is not feasible. Therefore, in this
thesis defect energies are approximated using periodic cells.

To sample non-dilute defects in periodic cells, all constituents of the defect need to be included
into the cell to maintain charge neutrality. It follows that the interactions between defect com-
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ponents as well as the interaction with their periodic images are present. Hereby, the choice of
the supercell size formally de�nes a defect concentration at which long range defect interactions
are sampled. Thus, large enough supercells need to be chosen in order to minimize the periodic
interaction and also to allow for enough con�gurational stabilization. To obtain relative energies,
defects are randomly introduced into a supercell of con�guration Λ followed by a subsequent
geometry optimization. This yields a series of relative defect energies ∆Edefect = U Λ,defect −U Λ.
In the case of neutral, stoichiometric defects like antisite or Frenkel defects these energies cor-
respond to the formation energies. Otherwise a correction may be applied. Sampling enough
representatives, a distribution of relative defect energies CΛ(∆Edefect) can be approximated by a
�t to a Gaussian or skewed Gaussian function. Although the latter might give a better �t, the
quantitative di�erences are minute in practice. The resulting distributions are then normalized to
yield a defect energy probability pΛ(∆Edefect)

pΛ(∆Edefect) = CΛ(∆Edefect)∫ ∞
−∞CΛ(∆Edefect)d∆E

. (3.38)

Considering the con�gurational disorder which allows for a stabilization of non-dilute defects in
the �rst place, many con�gurations Λ might belong to a relevant thermal ensemble. Hence, this
procedure may be repeated for a representative number of con�gurations from which an averaged
probability of relative defect energies is taken p(∆Edefect) = 〈pΛ(∆Edefect)〉.

From the approximated defect energy probability a defect formation probability pdefect per
defect realization at temperature T can be obtained by Boltzmann-weighted integration

pdefect =

∫ ∞

−∞
p(∆Edefect) exp(−∆Edefect/kBT ) d∆Edefect (3.39)

where kB is the Boltzmann constant. A defect density ρdefect can then be determined by multiplying
with the number of possible realizationsm per supercell cell and dividing by the average supercell
volume 〈Vcell〉

ρdefect =
m · pdefect

〈Vcell〉
. (3.40)

It should be noted, that the components of non-dilute defects are in proximity which might lead
to a recombination and reinstatement of the original lattice. Therefore, it is necessary to probe for
the likelihood of defect recombination using for example NEB calculations. While less important
in a case of Schottky or antisite defects, this might be especially relevant for Frenkel defects.

3.3.3 Thermodynamic and mechanic properties for glasses

In the description of glasses, the viscosity and heat capacity are important thermodynamic and
mechanical properties. Especially in the characterization of the glass transition they present
de�ning variables [119–121]. With respect to chapter 5, techniques to obtain these from MD
simulations are presented in the following.

Shear viscosity

The shear viscosity η is a measure of the ease of �ow of a material. It quanti�es how layers of
a �uid can �ow parallel to each other with di�erent velocities. Microscopically, this relates to
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the propensity of a �uid to transmit momentum in a direction perpendicular to the direction of
velocity or momentum �ow. This multiparticle reaction can be expressed by the o�-diagonal
elements of the stress tensor σα β , hence an in�nitesimal coordinate deformation. A linear response
can therefore be de�ned relating the perpendicular gradient of a velocity ∂vα

∂β to the deformation
proportional to σα β . From this, a GK relation can be derived [28, 29]

η =
1

kBTV

∫ ∞

0
〈σα β (t)σα β (0)〉dt (3.41)

Since the stress tensor elements are multiparticle properties, this time correlation function is slowly
converging. One hence averages over all three o�-diagonal components σxy , σxz , and σyz which
leads to a noticeable improvement. In practice, this method works well for liquids. In contrast to
this, in highly viscous materials or solids the correlation times exceed any reasonable computer
time. Thus, one resorts to approximate the convergence. Similar to other slowly converging
properties the autocorrelation function shows a mixture of an exponential and linear decay [92].
After simulating for a long enough correlation period which allows to estimate the function pro�le,
the autocorrelation function can be �tted and an integral approximated. As discussed in Sec. 5.4,
such a procedure is, however, not very robust and conveys large errors. Nevertheless, the relevant
order of magnitude de�ning a material as a liquid or a glass can be estimated.

Alternatively to the GK description of the viscosity, there is an Einstein formalism for equilibrium
MD simulations [28]. Furthermore, non-equilibrium MD simulations provide direct means of
measuring the shear stress and obtain the viscosity. Although more accurate in the case of solids,
these simulations include long simulation times and involved computational setups [122]. It should
be mentioned that the bulk viscosity can be similarly obtained via an GK or Einstein approach
based on the diagonal components of the stress tensor σαα . Here, a correction must be applied to
compensate for non-vanishing equilibrium averages [28].

Heat capacity

The speci�c heat capacity describes the change in energy of a system with temperature. Here, one
di�erentiates between two relevant thermodynamic ensembles, i.e. a heat capacity at constant
volume CV and constant pressure CP . These are de�ned as CV =

(
δE/δT )

V and CP =
(
δE/δT )

P ,
respectively. The heat capacity can be directly obtained from MD simulations. Here, the �uctu-
ations, i.e. the mean changes around the equilibrium of the total energy Etot are considered. It
follows for CV [28]:

〈δE2
tot〉NVT = 〈E2

tot〉NVT − 〈Etot〉2NVT = kBT
2CV . (3.42)

The total energy term contains the potential energy Epot and kinetic energy Ekin which need to be
treated uncorrelated as:

〈δE2
tot〉NVT = 〈δE2

pot〉NVT + 〈δE2
kin〉NVT . (3.43)

The corresponding heat capacity at constant pressure is calculated from the instantaneous enthalpy
Etot + PV . Here it follows:

〈δ (Etot + PV )2〉NPT = kBT
2CP . (3.44)
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Again the uncorrelated terms 〈δE2
tot〉NPT , 〈δV 2〉NPT , and the correlation term 〈δEtotδV 〉NPT

should be considered individually [28]. In general, the simulation from which the instantaneous
quantities are sampled needs to insure to capture su�cient con�gurational relaxation events to
get a good representation of the heat capacity. Thus sampling lengths need to be checked for
convergence.

When comparing heat capacities to experimental values or trends, the most appropriate com-
parison will give a heat capacity at constant pressure which is usually measured based on ambient
conditions. However, simulations are often limited to the NVT ensemble, where this property
cannot be obtained (see Sec. 5.4). Notwithstanding, a relative comparison is still possible. In
that, CP will be quantitatively lower than CV . This is based on the work of expansion in the
NPT ensemble which leads to a lowered thermal energy. In comparing di�erent systems, e.g. a
crystal and a glass, expected trends should remain constant. Here, the internal energy restraining
a system from expansion will similarly restrain it from con�gurational sampling — both e�ects
will lead to equal trends in the �uctuations of the energy 〈δE2〉.
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4 Occupational disorder and ion mobility in
Li4Ti5O12 ba�ery materials ‡

The focus of this chapter is to elaborate the in�uence of disorder in a Li ion conducting and interca-
lating crystalline material with the example of lithium-titanium-oxide (Li4Ti5O12, LTO). Crystals
may exhibit an inherent disorder in their bulk structure due to partial or mixed occupation of
crystallographic sites. A rich con�guration space may result, depending on the underlying crystal
symmetry. This potentially complicates the already involved ion di�usion in Li intercalating mate-
rials. Already without such disorder, the applicability of dilute ion di�usion theory is not given, i.e.
the assumption that one rate-limiting microscopic migration barrier is relevant for macroscopic
di�usion in an Arrhenius-type relation [9, 16]. Instead, varying chemical environments can be
expected which yield many competing microscopic activation barriers. In any intercalation mate-
rial this arises from interacting Li ions which e�ectively change with concentration throughout
the lithiation process (see Sec. 3.3.1) [2, 9]. In the meantime, occupational disorder will add yet
another layer of complexity to the ion di�usion [10]. In contemporary computational studies, the
investigation of such disorder and its con�guration space is, however, always limited to a few
stable con�gurations at most. Therefore, no computational strategy has so far been designed to
systematically investigate possible relationships arising between occupational disorder and Li ion
transport.

4.1 Introduction

The commercialized anode material LTO is unique among battery materials due to its exceptional
cyclability and high rate capability. The latter has even been shown to exhibit record-breaking
quantities allowing for rapid dis-/charging in high current applications. The good cyclability of
LTO is found to result microscopically, from a zero-strain behavior. Here, the lattice constant
of the non-intercalated phase Li4Ti5O12 and the intercalated phase Li7Ti5O12 shows variations
of less then 1 % [11, 12, 18, 123]. In contrast to that, the high rate performance is owed to micro
or nano sized particles with an increased surface area for lithium uptake on the one hand and
to a fast intrinsic Li transport on the other [18, 124–127]. For this latter microscopic property a
number of largely controversial �ndings have hitherto prevented a clear atomistic understanding.

On the atomic scale, rate capability arises from Li insertion. The latter critically depends on
Li ion di�usion and electron conduction in the bulk, as well as on interfacial processes between
intercalated and non-intercalated phases [9, 25, 128]. Due to the mutual in�uence of these transport
phenomena, an involved complexity of the insertion process can be anticipated. This is in fact the
case for LTO, where a strongly varying Li ion mobility with Li concentration according to the
battery charge state is observed [129, 130]. During charging, the occuring phase transformation
from Li4Ti5O12 to Li7Ti5O12 leads to a dramatic increase in electronic conductivity from an insulator

‡Adapted in parts with permission from Ref. [1]. © 2017 American Chemical Society.
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at 10−7 to a conductor at 10−1 S cm−1 [131]. Additionally, Li7Ti5O12 forms a separated phase in
operational (non-equilibrium) conditions [132–135]. Based on this, an intercalation mechanism
has been linked to a Li7Ti5O12 phase forming an electron conducting network in the pristine
material which aids Li ion transport into the bulk [136]. Recently, respective Li percolation
channels have been detected within primary grains which elucidate a Li7Ti5O12 phase growth as a
spatially non-homogeneous, non-surface bound process [137]. A likely origin of the formation of
these inhomogeneous percolation channels may lie in the occupational disorder of LTO or more
speci�cally, in the atomistic relationships following therein.

Computational atomistic simulations are a suitable means to resolve the length and timescales
of Li transport. Many studies thereby focus on the elementary processes, considered the basic
building block for the ionic di�usion [2, 10, 16] (see Sec. 3.3.1). This strategy targeting simpli�ed
elementary steps might, however, miss decisive details of the collective motion following long
range charge carrier interactions. Additionally, such studies are mostly conducted in periodic
crystal models describing a highly symmetric, in�nitely extended bulk. Here, signi�cant di�culties
are encountered when depicting disordered structures, which are unfortunately common for Li
ion battery materials. These challenges are also met in the occupational disorder of LTO. The
latter is de�ned by a spinel-like structure following the Fd 3̄m space group where oxygen ions
form a distorted fcc lattice. Tetrahedral 8a sites are occupied by Li ions and octahedral 16d sites
are occupied by Li and Ti ions with a ratio of 1:5 which can be expressed as Li8a3 (Li1/5Ti5/6)16d

6 O12
[138, 139]. The mixed occupation of the octahedral sites opens up a combinatorial space which
results in an unseizable amount of possible structures. First-principle studies — albeit providing
useful insight into thermodynamics and kinetics [11, 12, 123, 140] — have hitherto neglected a
detailed treatment of this structural ensemble and its e�ect. However, it is very likely that this
might impact the di�usion behavior. Already in the corresponding ideal spinel stoichiometry of
LiTi2O4 (Li3Ti6O12) which is not subject to a mixed occupation of the 16d sites (only Ti occupation),
involved relationships arise. A multitude of di�erent local environments creates a multitude of
interrelated microscopic di�usion barriers in the three-dimensional di�usion network spanned
between the 8a sites [10, 32].

In this work [1], the con�gurational ensemble in the pristine LTO spinel accessible during
high-temperature LTO synthesis is explored and rationalized. This is facilitated via Monte Carlo
techniques based on a numerically e�cient, DFT validated interatomic potential [141]. Realistic
nanoscopic structures are obtained which feature a high degree of con�gurational disorder. This
in turn stabilizes a manifold of possible microscopic occupation patterns even including Ti16c

antisite defects. In a second step, the Li ion mobility is probed via MD simulations at a broad
temperature range. Around defects, localized and correlated interstitialcy-like di�usion occurs
which however appears isolated at 300 K and is therefore only complementary to the regularly
assumed vacancy mediated di�usion [2, 9]. Nevertheless, a likely relation to Li migration during
the intercalation processes can be made. This provides a reasonable atomistic explanation for the
recently observed Li transport phenomena (see above) which form the basis for the extraordinary
rate capability of this material. Additionally, e�ects at high temperatures (600 K) are evaluated
where separately initiated localized mobility regions overlap and di�usion thus becomes non-local.
This compares well to an experimentally and theoretically characterized surge in the di�usion
coe�cient by three orders of magnitude at temperatures above 600 K [141–143].
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4.2 Computational details

All DFT reference calculations are conducted using the FHI-aims code [144]. The PBE functional
is used and electronic states are described with an all-electron basis set as implemented in the
FHI-aims code. Gaussian occupation type broadening of 0.2 eV is enforced. The electronic structure
is converged until a total energy convergence of 10−5 eV and self-consistend forces until 10−3 eV/Å.
Structures are relaxed via a BFGS optimizer until residual forces are less than 10−2 eV/Å. All
calculations are conducted periodically where the Brillouin zone is sampled with a Γ-point centered
Monkhorst-Pack grid [145]. The k-point grid and basis set accuracy are chosen according to
structural dimensions. For the con�guration space and defect references (see Sec. 4.3.1), a “tight”
basis set as well as a 4 × 4 × 2 k-point grid for the 1 × 1 × 1 and a 3 × 3 × 2 k-point grid for the
2× 2× 1 supercells of the R3̄m representations of LTO are chosen. The larger structures including
up to 350 atoms for the validation of the defect stability (see Sec. 4.3.2) are computed with a “light”
basis set as well as a 2× 2× 2 k-point grid in order to account for the increased computational cost.

All force �eld based calculations are performed using the code package LAMMPS [58] developed
at Sandia National Labs. The potential terms applied in this study are based on the Born model of
ionic solids [39] using a pair potential including a term describing Coulomb, short-range repulsion
and van der Waals interactions as described in Sec. 2.2.1. To include polarization, the core/shell
model is applied (see Sec. 2.2.2). Parameters for the Buckingham potential and the shell model
for Li4Ti5O12 have been adopted from Kerisit et al. [141]. In Li4Ti5O12, only the O2− ions are
treated as polarizable ions. In accordance with the primary literature/potential, a cuto� of 9 Å is
chosen for the short range interactions and periodic boundary conditions are applied where the
Coulombic long-range forces are treated by a particle-particle particle-mesh solver [146]. The
employed potential parameters are validated for the treatment of the con�guration space and the
description of Ti16c antisite defects as shown in Sec. 4.3.

All presented geometry optimizations follow a two step protocol to avoid artifacts appearing
due to gradients induced by a strong core/shell interaction which occasionally appears in high
symmetry structures. In the �rst step only the atom positions are optimized without allowing the
core/shell degree of freedom (DOF) to relax. In the second step atom positions, core/shell DOFs
and the cell constant are allowed to relax. The obtained structures are evaluated for glass-like
distortions which are occasionally found at high energies. Non-crystalline structures are identi�ed
via cell volume deviation of more than 3 % from the experimental value and deviation of the
�rst two coordination spheres in the O-O radial distribution function (RDF) from the ideal fcc
coordination spheres (more than 1.75 and 2.75 atoms respectively). To evaluate the crystallographic
con�guration after a geometry optimization, structures are discretized via a projection onto the
fcc crystal lattice as described in Sec. 3.3.1. In comparison to the MD based method, a distortion
of the lattice is compensated in accordance to the displacement of the oxygen ions during the
geometry optimization.

For all presented NEB calculations, a harmonic NEB interaction force between images of 0.5
eV/Å is applied and a convergence criterion of 0.02 eV/Å between image interaction is set. By
including only ions in the vicinity of the investigated event into the NEB image interaction,
arti�cial long range e�ects are avoided.

Images of crystal structures and atomic depictions are created with VESTA [147] and the
atomic-simulation-environment (ASE) [66].
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4.2.1 Details for the Wang-Landau sampling

A predetermined energy range for the sampling is discretized into energy bins, each representing
a cDOS entry as desribed in Sec. 3.2.2. Hereby, the number of bins is chosen proportional to the
number of sampled lattice sites in our model [82] leading to a bin width of 0.18 eV per atom. Due
to the rough energy landscape encountered in the con�gurational space of Li4Ti5O12 and the high
computational cost following the large number of performed geometry optimizations, sampling
parameters are adjusted. A localized search is avoided by drawing new structures randomly from
the priorly assessed con�guration space after 100 consecutive non-accepted steps as established
in [82]. Additionally, a low �atness criterion of 50 % is chosen and checked every interval of 100
MC times (MC time = trial MC steps / bins) instead of the usual �atness of 80-95 % and an interval
of 1000 MC times [82, 84, 85] (compare Sec. 3.2.2). This leads to an earlier convergence of each
re�ning cycle. In comparing to the usual sampling criteria (here �atness of 80 % and interval of
1000 MC time) for the low end of the energy range as shown in Fig. 4.1, a deviation of the cDOS
(д(E)) is only found in the �rst 5-7 sampling cycles. Here, it can be seen that the tightly chosen
standard criteria lead to a similarly irregular д(E) in the early stages of the sampling. Close to
convergence, the resulting д(E) are equivalent whereby the standard sampling criteria exhibit an
increased computational cost of two orders in magnitude.
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Fig. 4.1: Comparison of the convergence of д(E) with di�erent sampling criteria (see text). Compared are
the light sampling criteria applied in the present work (solid lines) and the standard sampling
criteria (dashed lines). The convergence is depicted in terms of the re�ning parameters fi whereby
cycles are colored from yellow to red in ascending order and selected cycles are labeled.

A further adjustment in the sampling is a rather light �nal convergence criterion of f�nal =
exp(10−4) which di�ers from f�nal = exp(10−6) − exp(10−8) as often applied for the Ising model.
The early convergence coincides with the beginning of the so-called 1/t domain where gained
accuracy with simulation time decreases [85, 88]. The target property as obtained from д(E) is
a canonical distribution P(E,T ) = д(E)e−E/kBT at a temperature T , where kB it the Boltzmann
constant. In that, the dominating contribution of the Boltzmann factor drowns the incremental
higher accuracy gained at late re�nement cycles via a small f as shown in Fig. 4.2. This justi�es
an applied early f�nal.

The sampling is trivially parallelized as described in Sec. 3.2.2 using 33 random walkers each
covering 14 bins, thus leading to an overlap of four bins between adjacent walkers. Starting
con�gurations for each walker in its respective energy range are drawn from the pre-sampling.
To capture boundary e�ects, steps outside the assigned range are counted into the originating bin
[83]. In joining the individual д(E) from each walker a procedure using a spline interpolation is
used.
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Fig. 4.2: (left) Convergence of д(E) and (right) its e�ect on the relative canonical distribution P(E,T ) in
comparison to the Boltzmann factor e−E/kBT (black) at 1300 K. Shown are exemplarily the third
(f3), seventh (f7), ninth (f9) and thirteenth (f13) sampling cycle (from yellow to red). Note that
the maximum of P(E,T ) belonging to the third cycle is at higher energies which is not within the
limits of the diagram.

4.2.2 Details for the MD simulations

MD simulations are carried out with a time integration by the Verlet algorithm [148] using a
timestep of 0.2 fs. In order to propagate the core/shell particles, the shells are given a mass of
0.2 u [141] and their motion is integrated following the adiabatic core/shell model by Mitchell
and Fincham [53] (see Sec. 2.3.3). Equilibration is performed in an NPT ensemble applying a
Nose-Hoover chain thermostat and a Hoover chain barostat [148, 149], where the cell constant is
allowed to vary. The overall center-of-mass of the system is �xed by a correction of the velocities
to compensate for an observed minute translation of the system originating from numerical
imprecision in the decoupling of the relative core/shell motion during equilibration. Production
runs are conducted in the NVE ensemble as thermostating is not necessary because observed
thermalization rates of the relative core/shell motion are in no case higher than 4.0 · 10−4 K ps−1

up to a temperature of 600 K, which is well below the average literature value of 1.0 K ps−1 by
Mitchell and Fincham [53]. For each investigated con�guration and temperature, 7 simulations
are performed incorporating an equilibration of 50 ps and a production run of 1.95 ns. In order to
investigate only the di�usive regime, data sampling was commenced after 250 ps. A su�cient
simulation length in terms of di�usion correlation is ensured by a prior analysis via block-averaging.
To assess the microscopic information of the di�usion processes, snapshots of the trajectories are
discretized as described in Sec. 3.3.1. To �lter recrossing events, core sets around each crystal
position are de�ned with an acceptance radius of 0.55 Å compared to the smallest distance between
adjacent tetrahedral and octahedral sites of dTd−Oh =1.8 Å [100, 101].

NEB calculations on the force �eld level are employed to investigate rare migration events
identi�ed from the discretized trajectories (see above) as an ion hops over two interstitial sites.
From the �rst to last involved snapshot, 7-11 images are constructed depending on the length
of the estimated di�usion path. Similarly, processes resembling the observed rare-events are
embedded by linear interpolation of an assumed �rst and last snapshot with the same number of
images. Using this procedure all rare events found in MD trajectories for temperatures of 300-400 K
and randomly chosen events for 500 K and 600 K are investigated. The latter is constrained since
the sheer amount of identi�ed events for the higher temperatures is too large to be computed in
its entirety.
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4.3 Force field validation

The employed force �eld potential by Kerisit et al. is an extention to a TiO2 force �eld by Matsui
and Akaogi [150] to incorporate Li. The interaction parameters were derived based on the lattice
constants and bulk modulus of Li2O and lithiated rutile [151, 152]. Shell model constants are
directly obtained from reorganization energies following charge transfer in rutile (see equation.
2.10). Hereby, electronic structure calculations provide reference data for the training procedure
[68]. The resulting description of ternary compounds has shown to successfully reproduce
thermodynamic and kinetic properties of lithiated phases of the TiO2 polymorphs [151, 153],
Li2TiO3 [152] and Li4Ti5O12 [141]. Here, only minor discrepancies are seen in the elastic constants
for a fraction of investigated polymorphs. Nevertheless, based on a restricted parameterization
of Li-O interactions to a tetrahedral O coordination and the special purposes of this work, an
additional validation is shown in the following.

4.3.1 Occupational disorder in a minimal cell

A major goal of this work is the investigation of the occupational disorder. To validate a good
reproduction of the latter by the employed force �eld potential, relative energies and forces
for di�erent con�gurations are compared to DFT via geometry optimizations. For this, the full
con�guration space of a 1 × 1 × 1 supercell in the R3̄m space group is tested. This presents the
smallest possible stoichiometric representation with a chemical formula of Li8Ti10O24. The mixed
occupancy of the R3̄m representation only encompasses the distribution of 2 Li and 10 Ti ions on
the octahedral sites which yields 12!/(10! × 2!) = 66 possible con�gurations. These can be further
reduced to 6 inequivalent con�gurations due to symmetry (see Fig. 4.3) [1, 11].
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Fig. 4.3: (left) Symmetry inequivalent con�gurations of Li8Ti10O24 in the R3̄m space group. Oxygen is
shown in red, Ti in octahedral sites in blue, Li in octahedral sites in gold and Li in tetrahedral
sites in green. (right) Comparison of the relative energies of the geometry optimized symmetry
inequivalent con�gurations of Li8Ti10O24. The energies are referenced to the minimum energy
con�guration 1 of the potential (blue) and DFT-PBE (red), respectively. Adapted with permission
from Ref. [1]. © 2017 American Chemical Society.

For DFT and potential based calculations, atomic positions are initialized based on the ex-
perimental crystallographic positions and lattice parameters [138], and thereafter relaxed. This
way, the optimized structures give an unbiased representation of the local minima in a PES. As
shown in Fig. 4.3, the relative energies of con�gurations 1-6 optimized via DFT and the employed
potential show a slight deviation. Although the general trend of the energetic order is reproduced,
energetically close lying structures yield a reversed order for the con�gurations 2-3 and 5-6.
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It should be noted, that these deviations occur at an energy range exceeding the energies for
the relevant con�guration space (see Sec. 4.4). Hence, these con�gurations represent especially
unfavorable structures where the electronic structure in the small periodic cell will be able to
exert compensating polarization e�ects which are not accordingly mimicked by the core/shell
model. As shown in the next section, the deviations in larger supercells are fundamentally smaller.
Therefore, the correct general trend and the good reproduction at low energies ensures that the
force �eld potential yields su�ciently accurate energetics and forces for the description of the
occupational disorder. [1]

4.3.2 Ti16c antisite defect validation

In this work novel Ti16c defects are discovered during extensive structural sampling by means of
the employed force �eld potential (see Sec. 4.4). Thus, these defects also require validation since
they were not included in the original force �eld parameterization.

Defect predictability

Defects are investigated in the 1×1×1 and 2×2×1 supercell of the lowest energy con�guration in
the R3̄m space group representation (denoted 1, see above in Sec. 4.3.1). For this, a prior systematic
screening of all possible Ti16c defects is conducted performing geometry optimizations based
on the force �eld potential to retrieve stable defects. Randomly chosen low energy candidates
(denoted a,b, c, . . . ) are then re-optimized using DFT to establish their stability on the ab initio
PES. All probed defects remain stable and thus represent local minima at the DFT level, thereby
con�rming a reliable force prediction of the employed potential. In comparing the resulting
relative energies referenced to the defect-free con�guration as shown in Fig. 4.4, a profound size
dependent deviation is seen. In the small 1 × 1 × 1 supercell, defects appear at considerably lower
energies in the force �eld potential which translates to an overestimation of thermodynamic
stability. In comparison to that, in the larger 2 × 2 × 1 supercell large deviations disappear. In fact,
either relative energies coincide remarkably well or the defect stability is even underestimated
by the force �eld. Peculiarly, two of the defects show higher stability than the regular LTO
con�guration evident of an insu�cient depiction of LTO in small supercells. It can be concluded,
that the observed systematic overestimation of relative energies in the 1 × 1 × 1 supercell and the
overestimation of defect stability in some candidate structures in the 2 × 2 × 1 supercell derive
from electronic defect-defect interactions. This can be qualitatively con�rmed by Mulliken charge
analysis which shows that some charge transfer on DFT level occurs [1].

The defect predictability of the employed force �eld is assessed as adequate. Defects remain
stable on the DFT PES and relative energies of defects that do not include arti�cial charge transfer
are predicted with high accuracy. Although the force �eld might fail to describe the charge transfer
resulting from the defect-defect interactions which is unlikely in larger cells, this strictly leads to
energy stabilization e�ects. Thus the force �eld will only underestimate defect formation. The
case of strong defect-defect interactions as in the small 1 × 1 × 1 supercell, where the force �eld
problematically overestimates defect stability is hereby neglected. This is due to the reason that
these cells can only represent extremely high defect concentrations which are found non-probable
(see Sec. 4.4) [1].
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Fig. 4.4: Comparative calculations by means of the interatomic potential and DFT calculations for randomly
chosen, stable Ti16c defect candidate structures a,b, c, . . . referenced to the according defect free
structure 1 for a 1 × 1 × 1 (left) and 2 × 2 × 1 supercell (right). Blue circles represent geometry
optimizations on force �eld level, the red diamonds on DFT level. Adapted with permission from
Ref. [1]. © 2017 American Chemical Society.

Thermal stability of defects

In MD simulations Ti16c defects remain stable against a relaxation to the original (usually more
favorable) regular LTO con�guration (see Sec. 4.5). Here, a possible deactivation is associated
with a large energetic barrier in the force �eld potential as shown by NEB calculations (see Sec.
4.4). To evaluate this general observation as predicted by the force �eld potential, a comparison
on DFT level is conducted. Here, one obtained deactivation path of a NEB calculation showing a
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Fig. 4.5: Relative energies of the Ti16c defect deactivation pathway on basis of a NEB calculation on force
�eld level (blue) in a sampled con�guration with the formula Li288Ti360O864 (top). Relative single
point energies at DFT (orange) and force �eld level (blue) of the according NEB-images isolated in
truncated cells in a Li64Ti80O192 structure (bottom left) and a Li36Ti45O108 structure (bottom right).
The two local minima de�ned by the Ti ions in either the 16c or 16d site are marked on the x-axis.
Adapted with permission from Ref. [1]. © 2017 American Chemical Society.
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typical barrier is selected for comparison. Since the original cell which contains 1512 atoms is
too large for a DFT calculation, the simulation cell is truncated to isolate the atomic arrangement
depicting the deactivation pathway. It is ensured, that the cut-out cell remains stoichiometric and
maintains an fcc lattice. This is done for each image of the deactivation path and a subsequent
DFT and force �eld single point calculation is conducted. As shown in Fig. 4.5 for two di�erent
cut-out cells, the force �eld single point energies in the truncated cells reproduce the original
barrier satisfactorily, validating this approach for a comparison. The according relative DFT
energies coincide qualitatively with the force �eld derived barriers. Although allowing for a lower
energy transition, they still give barriers in excess of 2.3 eV con�rming thermal stability. It can be
concluded, that the force �eld potential predicts the thermal stability Ti16c defects well re�ecting
again a high accuracy in the description of LTO.

4.4 Sampling of the configuration space

4.4.1 Obtaining a representative ensemble of LTO

The occupational disorder of Li4Ti5O12 is explored via Metropolis Monte Carlo [29] and Wang-
Landau sampling [82–85, 87, 88] as described in Sec. 3.2. For this, large simulation cells are
employed to account for long-range e�ects. These consist of a (3 × 3 × 3) Fd3̄m super cell contain-
ing a total of 1512 atoms (according to Li288Ti360O864). In both samplings, new con�gurations are
created at each step by interchanging a Li with a Ti ion on an octahedral 16d site and subsequently
optimizing their geometries starting from an ideal fcc lattice. Although increasing the compu-
tational cost substantially, the geometry optimizations prove crucial in determining structural
stabilization based on the long range e�ects of the disorder.

A pre-sampling to assess the relevant total energy range and estimate the expected disorder is
based on the Metropolis acceptance criterion. To sample the corrugated energy landscape of the
occupational disorder in its full range, ultra-high temperatures (700, 1800 and 4000 K) are used
which allow for a quasi-global screening. Based on the energy range obtained from resulting
900,000 structures, the relative cDOS (д(E)) is approximated by a Wang-Landau sampling (see
details in Sec. 4.2.1). From the obtained cDOS which links the potential energy of a structure
to its relative probability, the canonical distributions can be estimated via P(E,T ) = д(E)e−E/kBT
where kB is the Boltzmann constant and T is the temperature [82–85, 87, 88] (see Sec. 3.2.2).
Since LTO synthesis protocols include a rapid cool-down which freezes-in structures formed at
high temperatures, a realistic mesoscopic ensemble of LTO is estimated from distributions of the
minimum and maximum synthesis temperatures TS at 700 and 1300 K [18, 127, 141, 154–157].

As shown in Figure 4.6, the accessible canonical distributions P(E,TS ) extend over a narrow
energy range with a sharp maximum at low energies and a tail extending to higher energies. Con-
tained con�gurations exhibit a considerable degree of disorder based on a variety of microscopic
motifs with respect to the mixed occupancy of Ti and Li on octahedral 16d sites. In Figure 4.7, this
is illustrated by comparing the Li16d -Li16d radial distribution functions (RDFs) of three randomly
chosen con�gurations from the canonical distributions to handpicked reference structures (see
Fig. 4.6). Included in the latter are the four lowest energy con�gurations found in the smallest
stoichiometric representation of LTO in the R3̄m space group [1, 11, 158] and a recently identi�ed
lowest energy con�guration “C1” realized within a (3 × 1 × 1) Fd3̄m unit cell [123, 140]. For an
appropriate comparison, the reference structures are periodically repeated to match the employed
supercell size and shape. The R3̄m structures represent high symmetry con�gurations incorporat-
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Fig. 4.6: Relative canonical distributions at 700 K (lightblue area) and 1300 K (orange area). The relative
energies of the con�gurations C1, 2 (blue circles) and a, b (green triangles) analyzed via MD
simulations (see Sec. 4.5) are marked.

ing a limited number of microscopic motifs and “C1” corresponds to a structure where octahedral
lithium ions are arranged in a regular pattern giving the largest Li16d -Li16d distances. In the RDFs,
the disordered con�gurations show a constant number of broadened peaks with variation found
in the intensity �ngerprint re�ecting di�erent combinations of all possible coordination shells of
the Li16d ions. In contrast to this, the high symmetry con�gurations (R3̄m) each give a subset of
these coordination shells with a sharp signal. Thus, motifs which appear energetically unfavorable
in high symmetry representations are found to accommodate each other in locally disordered
con�gurations. Similarly, “C1” exhibits sharp peaks and a missing coordination shell at 6.0 and
10.3 Å corresponding to its ordered occupation pattern. Although “C1” is already found at a low
energy, further stabilization of this ordered pattern is possible with increasing disorder.
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Fig. 4.7: (left) Relative energetic position and (right) comparison of the Li16d -Li16d radial distribution func-
tions of the four lowest energy R3̄m structures (stars, top), to three randomly chosen con�gurations
from the thermal ensemble and the con�guration “C1” (circles and triangle respectively, bottom).

It can be summarized from the comparison of the Li16d -Li16d RDFs, that LTO will mesoscopically
feature a rather distinct intrinsic inhomogeneity with widely changing local Li and Ti distributions.
Disorder-stabilized con�gurational motifs, such as found here, are likely to render the accuracy of
extrapolating methods like cluster expansion [2] unsuitable for describing the disorder in these
materials.

4.4.2 Ti16c antisite defects

The observed disorder related stabilization described above (Sec. 4.4.1) extends to more rigorous
structural changes. Here, disruptions of the regular occupation pattern can be found in Ti16c

52



antisite defects [1]. These defects are characterized by a displacement of a Ti ion from a 16d to a
16c site followed by a shift of a Li ion on an adjacent 8a site to the original 16d site as illustrated
in Fig. 4.8. A possible relaxation of this atomic arrangement to a defect-free con�guration at �nite
temperatures is kinetically hindered. In order to show this, all possible deactivation pathways of a
Ti ion from a 16c to a neighboring 16d site are investigated using NEB calculations with 15-20
interpolated images (see Sec. 4.3.2). The resulting activation energies are in excess of 2.3 eV. These
high barriers can be associated with the transition of the Ti ion through a narrow tetrahedral
coordinated 48f site [1]. Due to this bottleneck, these defects are considered as permanent
irregularities of the crystal lattice [1].

Considering a quantitative in�uence on the material properties, the defect concentration is
estimated from relative formation energies ∆ETi16c . Since the defects are stoichiometric (and thus
charge-neutral), formation energies can be determined from their relative energy referenced to
the respective defect free structure. These are probed in a series of geometry optimizations of
randomly introduced defects into randomly selected con�gurations. This way, a distribution
of relative defect formation energies pEi (∆ETi16c ) can be approximated (see Sec. 3.3.2). In order
to assess defect interactions, defect pairs and triplets are additionally investigated. In an initial
extensive sampling in few con�gurations, 99 % of the introduced single defects remained stable
revealing a (slightly) skewed normal distribution of formation energies in each con�guration as
shown in Fig. 4.8. In contrast to this, only 2 % and less than 1 % of defect pairs and triplets remained
stable at very high energies from which it can be concluded that any close range interactions are
destabilizing and therefore negligible.
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Fig. 4.8: (left) Ti16c antisite defect arrangement (as labeled) in the LTO crystal lattice with oxygen ions
in red, Li ions in green and Ti ions in light blue. (right) Typical relative defect formation energy
distribution p(∆ETi16c ) found in a single con�guration.

Following this insight, a representative number of distributions is then �tted to sets of 100
sampled single defects per con�guration. In order to relate the distributions to the energetic
probability of the respective con�gurations, a relation to the energy bins Ei of the con�gurational
DOS д(Ei ) is established (see Sec. 4.2.1). The sampled distributions within each bin Ei show only
little variation of 8 % for the mean, 10 % for the standard deviation and 30 % for the skewness.
Similarly an equally small variation with a maximum of 2 %, 9 % and 15 % for the mean, standard
deviation and skewness for the average distributions of all bins belonging to the relevant energy
range is seen. Hence, averaging of the defect formation energy distributions p(∆ETi16c ) for the
thermal ensemble is permissible. Note, that this generalization does not work for the whole
con�guration space since high energy con�gurations show distributions extending to considerably
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lower, even negative, formation energies. From the approximated distributions a defect formation
probability pTi16c per defect realization can be obtained for a given temperature T by integration
over the Boltzmann factor as described in detail in Sec. 3.3.2

pTi16c
=

∫ ∞

−∞
p(∆ETi16c ) exp(−∆ETi16c /kBT ) d∆E (4.1)

where kB is the Boltzmann constant. A volume based probability can then be obtained by multi-
plying with the number of possible realizations m per simulation cell and dividing by the average
volume V

pTi16c /V = pTi16c ×m/Vcell . (4.2)

For each of the 360 Ti ions, four surrounding 16c sites allow an exchange with two Li8a ions
each, resulting inm = 360 × 4 × 2 = 2880 possibilities per simulation cell for a single defect. The
resulting defect density is estimated as ≈ 6.8 · 10−6 Å−3 for TS = 700 K and ≈ 1.50 · 10−5 Å−3 for
TS = 1300 K based on an average the simulation cell volume of ≈ 16400 Å3. This translates to a
probability per Ti ion of ≈ 3.1 · 10−4 and ≈ 6.6 · 10−4 respectively, which is about two orders of
magnitude below the sensitivity of X-ray di�raction measurements [154, 159].

4.5 Li ion mobility

To rationalize Li ion mobility of Li4Ti5O12 as a function of the occupational disorder, the ion
di�usion is systematically investigated using MD simulations following the procedure described
in Sec. 4.2.2. Since the computational cost of the MD simulations are comparably high, only few
con�gurations in the relevant energy range can be evaluated. Thus, four representative candidate
structures as indicated in Fig. 4.6 are chosen to evaluate the Li ion dynamics. Of these, two
structures (“C1” and 2) correspond to regular LTO occupations and two (a and b) include a Ti16c

antisite defect. To evaluate mechanistic trends, various temperatures (300 K, 400 K, 500 K, and
600 K) are included. All MD simulations are performed strictly maintaining the stoichiometry
Li4Ti5O12. Hence, no lithiation e�ects are directly investigated. Although this would be of potential
interest, the necessary electron transport e�ectively occurring as polaron hopping between Ti
ions [151] cannot be modeled adequately using the here applied force �eld (see Sec. 2.2).

4.5.1 Li ion mobility at 300 K

To distinguish the mobility of Li ions in the simulated trajectories the discretization procedure (see
3.3.1 and 4.2.2) is employed. This allows for the evaluation of the total number of hops between
di�erent sites during the entire MD trajectory. A focus is set on the maximum displacement d
that each individual Li ion reaches from its original position throughout the simulation. This
can be compared to the minimal distance between two interstitial sites of dTd−Oh ∼ 1.8 Å, found
between a neighboring tetrahedral and octahedral site. Ions are observed to either remain in their
original site, or only move to a neighboring site (dTd−Oh ≤ d < 2dTd−Oh), or perform a multiple site
migration (d ≥ 2dTd−Oh). While the latter corresponds to a true di�usive pathway, for instance via
the sites 8a ↔ 16c ↔ 8a, the small displacements dTd−Oh ≤ d < 2dTd−Oh instead predominantly
arise from jumps into intermediate interstitials (mostly 8a → 16c). From these, the ions returns
on a picosecond time scale thus presenting a metastable state as also found in other theoretical
studies [9, 11, 12, 160].
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At room temperature, the MD data reveals a clear correlation between true Li ion mobility
and the Ti16c defects. Thereby, no Li di�usion is observed on the nanosecond timescale if no
such defect is present. This can be also recognized in the respective MSDs (see Fig. 4.12). As
exemplarily shown by means of con�gurations “C1” and 2 in Fig. 4.6 and con�rmed before in more
such con�gurations [1], this immobility extends to representatives at both low and high energies
of the thermal ensembles. Hence, irrespective of the wide range of local disorder of the regular
con�guration, Li ions are virtually immobile. This is consistent with the well-known low ionic
conductivity of stoichiometric LTO [133, 160] and con�rms recent ensemble-probing NMR results
[129, 130]. In contrast to this, the con�gurations denoted as a and b in Fig. 4.6 that contain one
Ti16c defect show a small fraction of mobile Li ions. These, remain in a �nite region of about 9 Å
around the defect, implying localized di�usion (see Fig. 4.10). Here, a portion of ions only perform
frequent back-and-forth hops to metastable intermediate sites (dTd−Oh ≤ d < 2dTd−Oh) while others
perform multiple-site migration d ≥ 2dTd−Oh. In detail, the short-lived vacancies created by the
former allow for a true motion by the latter. This process occurs in a concerted way as illustrated
in Fig. 4.9 and may include up to three Li ions, thus resembling an interstitialcy mechanism
which is characteristic for fast ion conductors [16]. Investigating the observed processes via NEB
calculations (see Sec. 4.2.2) reveals di�usion barriers in the range of 0.1-0.3 eV (compare Fig. 4.11).
These low energies rationalize their abundant occurrence on the here investigated nanosecond
timescales. Inserting the same mechanism into the regular LTO occupation pattern however yields
di�usion barriers in excess of 0.8 eV underscoring the missing mobility in con�gurations “C1” and
2 due to the absence of defects [1].

Fig. 4.9: (left) Schematic illustration of the concerted interstitialcy di�usion process as occurring in the
vicinity of the Ti16c defect (gold). A frequent back-and-forth hop of one Li ion to the metastable 16c
site (light blue spheres) creates a short-lived 8a vacancy. This consequenty enables the multiple-
site migragion of a second Li ion (dark blue sphere). Oxygen ions are shown in red, Ti ions in
gray, and Li ions in green. (right) The same process depicted in the oxygen lattice (red) to indicate
the coordination sites more clearly. Reproduced with permission from Ref. [1]. © 2017 American
Chemical Society.

The picture emerging from these observations shows stoichiometric, nominally homogeneous
LTO as a mesoscopic material composed of disordered but predominantly rigid local con�gurations
with little Li ion mobility. This is interspersed with a lower bound of 300 ppm of Ti16c defects
per Ti atom (see above Sec. 4.4.1), which generate regions showing localized, correlated di�usion
extending fairly far into the bulk [1].
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4.5.2 Di�usion at elevated temperatures

The insights found at 300 K form the basis from which further understanding is gained about
di�usion in the regular LTO-spinel con�gurations and localized around Ti16c antisite defects. For
this, the di�usion at the elevated temperatures 400, 500, and 600 K in the four representative
con�gurations is additionally investigated. On this temperature range the di�usion mechanism
can be evaluated in more detail.

Fig. 4.10: Superimposed positions of all mobile Li ions showing evasive hops (dTd−Oh ≤ d < 2dTd−Oh) in
lightblue and multiple site migration (d ≥ 2dTd−Oh) in dark blue for exemplary trajectories of
con�guration 2 (top) and b (bottom) at 300-600 K (from left to right).

As shown in Fig. 4.10, at 300-400 K interstitial di�usion remains locally restricted around Ti16c

antisite defects and is therefore only seen in the con�gurations a and b. With the temperature
increase from 300 to 400 K the spatial extend of the localized di�usion regions de�ned by the
maximal distance between mobile Li ions grows from 9 to 16 Å. This increase comes as a conse-
quence of more Li ions involved in the correlated motion and individual Li ions migrating farther.
Associated higher migration barriers for the correlated di�usion events are thereby observed
(see Fig. 4.11). These are in the order of 0.45-0.55 eV and overcome at 400 K by Li ions originally
con�ned aside the mobile regions at 300 K. Hereby, they either create longer di�usion channels by
evading into intermediate sites (dTd−Oh ≤ d < 2dTd−Oh) or by directly participating in multiple site
migration (d ≥ 2dTd−Oh). At the temperatures 500-600 K interstitial di�usion is also observed in
regular LTO-spinel occupation patterns. This can be linked to spontaneously initiating evasive
high energy barrier hops which enable subsequent Li ion motion similar to the correlated motion
found around Ti16c defects. The initial short-lived vacancies occur randomly in favorable motifs
in the lattice and are connected to high energy barriers of at least 0.7-1.0 eV as evaluated from
NEB calculations (see Fig. 4.11). Since the spontaneously occurring mobility regions are no longer
bound to a defect, multiple such regions may appear in a simulation cell. These grow together to
�nally expand over the whole simulation cell at 600 K indicating long-range di�usion and a global
Li ion mobility already at the here probed nanosecond times scale. Note that the initiating hops
lead to rare interstitial di�usion by secondary ions only at 600 K in con�guration “C1”. A low
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mobility is thereby due to a higher rigidity of the LTO lattice based on its ordered occupation. At
a temperature ≥ 500 K the high temperature di�usion also dominates in con�gurations including
a Ti16c defect masking any additional high temperature in�uence of the defect.

C1 2 a b
0.0

0.5

1.0

1.5

E
A

/e
V

Fig. 4.11: Activation energies (EA) from NEB calculations for correlated di�usion processes as sampled
during MD trajectories (yellow, orange, red and purple for 300, 400, 500 and 600 K) and as tested
in the regular LTO occupation pattern (blue) for con�gurations C1, 2, a, and b.

Generalizing the ion motion in detail, the observed di�usion shows Li ions to be a�ected by an
initial void either triggered by a Ti16c defect or a high energy evasive hop. Li ions show a highly
correlated motion able to transport short-lived vacancies to a considerable distance. While the
main di�usion patterns involve a 8a ↔ 16c ↔ 8a motion, a small fraction of Li ions on 16d sites
close to the initial dislocation are also mobile. Interstingly, the latter have been predicted by �rst
principles to migrate with associated barriers of 0.8 eV [11] which �ts to the onset barriers found
here in the high temperature case. Furthermore, for high temperature di�usion experimental
studies described a dislocation of 8a Li ions to 16c sites corresponding to a disordered state
[142, 143] which was further predicted as a phase change to a defective rock-salt phase at high
temperatures [141]. Although we can observe high �uctuation between 8a and 16c sites, we
cannot state either phenomenon to be clearly distinguishable due to a generally chaotic motion.
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Fig. 4.12: MSD against time for single trajectories of con�guration 2 (dashed lines) and a (solid lines) at
400, 500, and 600 K (orange, yellow, and blue). Note the logarithmic depiction on the y-axis as an
aid for visualization.

When bridging atomic motion to macroscopic di�usion measurable in experiment, the MSD
of the di�using species is often used to evaluate a di�usion coe�cient. Following the Einstein-
Smoluchowski relation, normal di�usion is thereby a prerequisite. This means that the MSD needs
to increase linearly with time, i.e. the anomalous di�usion exponent α needs to be equal to one
in the relation MSD ∝ tα [16, 29, 93] (see Sec. 3.3.1). As shown exemplarily in Figure 4.12, the
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MSD in our trajectories exhibits a non-constant proportionality to time with temperature. At 300
and 400 K a near identical MSD behavior is seen (therefore only 400 K is shown) where either no
Li displacement takes place or single ion hopping events can be distinguished in the case of a
con�guration showing localized di�usion around a Ti16c defect. When localized di�usion occurs,
the MSD reaches a maximum which is de�ned by the spatial extent of the high Li mobility region
around a defect. The associated values for α are all well below 0.1 (c.f. Table 4.1) which is directly
proportional to the �nite migration length in the high mobility region over the simulation time.
The high temperature di�usion based on correlated motion following spontaneous void creating
hops (see above) is quantitatively visible in the strong increase of the MSD. While at 500 K this
mobility does not su�ce for an overall three dimensional migration with α of only 0.1-0.4, the
di�usion becomes truly global at 600 K with values of 0.4-0.8 (compare Tab. 4.1). The high variance
of α derives hereby from the fractional dimensionality de�ning the percolation networks of the
respective LTO con�gurations. A residual deviation of the global mobility at 600 K from normal
di�usion is based on the highly correlated mechanism and the multitude of microscopic hopping
barriers [93] where the latter is a consequence of the con�guration space of LTO as also con�rmed
on the DFT level [11, 12, 135]. The observed transition to a global Li ion mobility upon the high
temperature mechanism change compares well to an experimentally observed surge in Li ion
conductivity at temperatures above 600 K [141–143].

Tab. 4.1: Averaged anomalous di�usion exponents α obtained from the time dependence of the MSD
(MSD ∝ tα ) of the con�gurations C1,2,a and b for the investigated temperature range 300-600 K.

300 K 400 K 500 K 600 K

C1 - - 0.050 0.408
2 - - 0.106 0.549
a 0.077 0.212 0.391 0.649
b 0.189 0.198 0.424 0.702

Since the observed values for α do not yet show normal di�usion, an evaluation of di�usion
coe�cients comparable with experiment is improper. Nevertheless, the ensemble averaging MSD
gives an insight into the macroscopic behavior. As seen in this example, di�usion in�uencing
e�ects entangled in the MSD re�ect the collective motion expected at experimental time and
length scales indicating for instance the mechanism change.

4.5.3 Cascade-like di�usion upon Li insertion

The here presented simulations at the temperatures 300-400 K show only localized di�usion which,
as a sole mechanism, would predict no macroscopic Li ion conductivity. Since the latter is however
observable in LTO at room temperature [133, 160], it is evident that this picture is not complete.
Absent at the probed time scales are rarely occurring vacancy di�usion events, which present
the standard di�usion model for global Li transport in Li ion battery materials [2, 9, 11, 12]. In
fact, in order to witness such a vacancy di�usion event at room temperature, a simulation time
longer by 2-4 orders of magnitude would be needed for the here employed system size, where
the latter is estmated from the range of experimentally determined di�usion coe�cients [161].
Thus, a time scale separation of the mechanisms is noted, where ultra fast localized di�usion
around Ti16c defects at nanosecond time scales opposes slow vacancy di�usion at microsecond
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time scales. This picture �ts to a recent combined 7Li SAE NMR and �rst principles study [162]
where alongside di�erent time scales of slow Li ion exchange processes, ion mobility below the
experimental accessible microsecond time scale could be identi�ed.

It can be expected, that slow and fast mechanisms cooperatively transport Li ions in LTO in a
cascade-like arrangement [1]. Considering a slowly migrating Li+ vacancy in the bulk approaching
a region of high Li ion mobility, a quasi-instantaneously transport along the segment length of the
latter can be expected. However, the low Li ion conductivity in stoichiometric Li4Ti5O12 indicates
that this will only take place as isolated events. This is due to a global lack of Li+ vacancies which
can likely be considered dilute in the pristine material and therefore present a mobility bottleneck.
This situation changes upon lithiation where domains of rocksalt structured Li7Ti5O12 are formed
within the spinel con�guration [132, 133]. In the lithiated phase Li ions previously located on
the tetrahedral 8a sites occupy octahedral 16c sites which leads to an occupational mismatch on
the phase boundary. Here, interphase bound, �uctuating Li vacancies are created [135]. Already
at low lithiation levels of x = 0.1 in Li4+xTi5O12 a surge in Li ion conductivity is experimentally
observed [129, 130] which hints that these interphase vacancies become globally mobile. This
global mobility can be linked to a cascade-like di�usion where high mobility regions transport
such vacancies away from the interphase and extend these - then more abundant - vacancies to a
connected di�usion network.
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Fig. 4.13: (left) Estimated topology of the high mobility regions (blue) in Li4Ti5O12 following a primitive
packing. The interaction sphere of the high mobility region is shown in light blue and descriptive
distances are indicated by arrows as described in the main text. (right) Schematic depiction of
the connection of high mobility regions (blue) and Li7Ti5O12 domains (gray) via global di�usion
pathways.

To strengthen this claim, the topology of high mobility regions in Li4Ti5O12 is quanti�ed based
on the simulations performed in this work. These regions depend directly on the concentration
of Ti16c antisite defects which seed ultra fast Li ion mobility. From the reciprocal mean defect
concentration derived in Sec. 4.4.2 of ≈ 1.09 ·10−5 Å−3, it is estimated that a volume of ≈ 9.1 ·104 Å3

is needed to incorporate one defect. Assuming a primitive packing, a cubic volume is considered
separating defects with a shortest distance equivalent to the side length of 45 Å (see Figure 4.13).
The spatial extent of the high mobility regions around the defects is then estimated from the space
�lled by mobile Li ions during the MD simulations (compare above in Sec. 4.5.2). The estimates
are thereby taken from the simulations at 400 K. Here, they serve as an approximation to longer
simulation times since the �nite simulation time results in an inherent underestimation of the Li
di�usion at 300 K. Still localized, the long-range di�usion is not connected to a mechanism change
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and can therefore be viewed as an accelerated 300 K simulation. Encountered additional hopping
barriers found at the higher temperature are only larger by 0.1-0.2 eV which would translate to
rarely occurring high energy di�usion events observable at longer time scales. The space �lled
by mobile Li ions is estimated by a spherical volume where a diameter is approximated by the
maximum distance of mobile Li ions in a the high mobility region averaged over all trajectories.
A radius of 8 Å follows to which another 1.8 Å is added which corresponds to the distance of
neighboring interstitial sites necessary for a vacancy to connect with the high mobility region. As
depicted in Figure 4.13, this estimate yields distances between high mobility regions around a mean
of ≈ 26 Å which is equivalent to seven vacancy hops and thus renders the average mobility region
isolated in the uncharged state. However when intercalating Li, high mobility regions could funnel
a local Li ion gradient to accumulate adjacent moieties of Li7Ti5O12 (as discussed above) which
would grow until they connect to the next proximate region of high mobility. With this process
repeating, close lying regions of high mobility would be connected by Li7Ti5O12 moieties to form a
global di�usion pathway (see Figure 4.13). Considering shorter, below-average distances between
such regions, a global di�usion network could already appear at low concentrations of intercalated
Li ions which would boost Li ion mobility and explain the mentioned experimental �ndings [129,
130]. Additionally, this proposed mechanism elucidates the origin of global percolation channels
observed via conductive atomic force microscopy experiments during lithiation of LTO [137]
which are linked to a Li7Ti5O12 phase mediating Li ions through the bulk [136].

4.6 Conclusion and Summary

In summary, the degree of disorder and its e�ect on Li ion di�usion for Li4Ti5O12 is investigated.
Using Monte-Carlo sampling techniques we assess realistic mesoscopic representations of the
con�gurational space which yield a high degree of disorder stabilizing a manifold of atomistic
motifs. Hereby, even more disruptive Ti16c antisite defects - not following the regular spinel-like
arrangement - become possible and are predicted to occur with considerable concentrations.
The Li di�usion is explored at various temperatures using MD simulations, which intrinsically
incorporates and thus reveals all relevant ion motion.

From this it is found that vacancies appear around Ti16c antisite defects and additionally at
high temperatures in the regular spinel which act as a seed for con�ned ultra-fast correlated
motion following an interstitialcy mechanism. Although the correlated migration processes are
comparable at low and high temperatures, their implication is substantially di�erent. On the one
hand, fast mobility is isolated around the defect-sites at 300-400 K and therefore does not contribute
to global di�usion. This renders classic vacancy di�usion as the mechanism for long range Li
transport. On the other hand, multiple spontaneously occurring vacancies at temperatures ≥
500 K trigger localized mobility which interconnects and even forms a global di�usion network at
600 K. This �ts to the experimental observation that Li4Ti5O12 transits from a bad ion conductor
[160] to a good ion conductor at 600 K [143] and demonstrates the fundamental di�erence of
di�usion at low and high temperatures due to the collective and concerted motion.

Considering the atomistic origin of the high rate capability of LTO based on a Li ion mediating
Li7Ti5O12 phase [136, 137], a cascade-like mechanism is proposed. The latter is characterized
by fast localized di�usion around the defect sites and interphase exchange in a cooperative
manner [132, 135]. With estimating distances between regions of high mobility, this mechanism is
found viable to form a global di�usion network even at low concentrations of intercalated Li. This
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concludes a showcase of the possible impact of collective motion on the nanoscale to the mesoscale.
Naturally, further investigation of this cooperative di�usion is necessary to directly elucidate the
proposed mechanism. For this, lithiated stoichiometries need to be simulated explicitly, which
requires a charge transfer force �eld to take into account mixed valence states of Ti i.e. Ti3+ and
Ti4+ respectively.

In conclusion, the impact of occupational disorder is elucidated to enable collective ion motion.
In the here investigated LTO, this is dominating in its net e�ect over single ion processes and
therefore changes the picture of ion di�usion from the common description. On a more general
note, Li ion di�usion in many battery materials might be subject to similar collective processes
rather than solely to a single ion di�usion mechanism. This has already been con�rmed for some
fast ion conductors used for solid state electrolytes like LGPS [111]. Equally, this could extend to
other intercalating materials of which many exhibit substantial occupational or con�gurational
disorder, giving the necessary structural �exibility.

From a methodological perspective, this study presents a novel approach towards thoroughly
investigating occupational disordered crystalline materials. Here, con�gurational entropy, and
chaotic ionic motion are taken into account by combining di�erent methods. Firstly, the Wang-
Landau sampling mostly applied to model-problems, is technically adjusted to be employed for
experimentally relevant problems as presented in Sec. 4.2.1 and generalized in 3.2.2. Secondly,
the novel combination of MD simulations, their discretization, and NEB calculations allows to
elucidate the di�usion mechanism without any chemical intuition. In both cases, a high degree
of automatization is necessary for these tasks as the millions of involved con�gurations and
microscopic processes cannot be analyzed by hand.

The presented methodology thus overcomes the limitations of the more common strategy where
one simply investigates elementary single ion processes for an assumed “standard” di�usion
mechanism [2, 9, 16]. In that, the usually picked high symmetry, low energy con�gurations show
an explicit rigidity as seen in the above presented con�guration “C1” for LTO. If occupational
disorder is possible, these may not present the most stable con�gurations and may not depict the
most likely di�usion behavior.
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5 Li ion mobility in glass-amorphous Li3OCl

In this chapter, a study on glass-amorphous Li3OCl and its properties as a solid state electrolyte
is presented. As any glass, this material has no periodic structure and is therefore subject to a
considerable disorder. It di�ers from conventional ion conducting glasses since Li is not a guest
ion in an amorphous host but constitutes the sole network forming cation. Thus, Li is both
structure-giving and the mobile species which may lead to an unusual structure-mobility interplay.
From this, an ion di�usion behavior can be expected which deviates from di�usion models for ion
conducting glasses [104, 163, 164]. Considering the microscopic structure of a glass, a multitude of
local con�gurations can be expected which in this case are subject to profound dynamic changes.
The latter pose a considerable challenge for computer simulations since a systematic screening of
structures like the random network model for amorphous materials [165] is not applicable. This
renders a consistent sampling of the con�gurational entropy via a Monte-Carlo like procedure
impractical. It follows, that a computational approach is required in which rigorous temperature
dependent statistics are generated in order to capture the dynamic non-equilibrium state and its
e�ects in this glass.

5.1 Introduction

Glass-amorphous Li3OCl was �rst reported by Braga et al. as one of the fastest Li conducting
solid state electrolytes at 300 K [166]. Depending on ambivalent doping, ionic conductivities of 2-
30 mS/cm at lightly elevated temperature are reported which are on the order of non-aqueous liquid
electrolytes with a conductivity of 1-10 mS/cm [167–170]. This exceptional performance makes
this a superior solid electrolyte, outperforming even the best crystalline electrolyte Li10GeP2S12
with a conductivity of 12 mS/cm [171]. On the basis of this electrolyte, a novel Li ion battery is
proposed which theoretically provides unmatched capacity and lifetime [172]. This battery consists
of the glass electrolyte, a Li metal anode contacting a stainless steel current collector/container
and a cathode which is based on an understoichiometric sulfur or MnO2 to glass electrolyte mix
contacting a copper current collector. Interestingly, the potential in the battery is kept at a high level
which supposedly prevents the formation of Li2S compounds. Thus, the cathode is not formally Li
intercalating, but sulfur is proposed to act as a redox center which undergoes intermediate redox
reactions mediating Li ions to form Li metal at the cathode current collector. Here, the only driving
force allowing the formation of a potential is the workfunction di�erence between both current
collectors. This claim is based on the chemical stability of the used electrolyte against the current
collector. Naturally, this concept has caught much attention and criticism. It is argued that the
absence of redox reactions with an intercalation host cannot provide a thermodynamic potential.
Thus plating Li metal on either electrode when charging and discharging cannot create energy
[173]. Despite the skepticism for this new battery type, the involved glass-amorphous electrolyte
itself promises outstanding performance also in conventional solid state batteries. Besides the
high ionic conductivity, the material demonstrates mechanical malleability and is even capable to
be synthezised as Na3OCl for the use in sodium ion batteries [166, 172, 174, 175].
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The exceptional properties of glass-amorphous Li3OCl are argued to be founded in its special
synthesis procedure [166, 172, 174]. Here, either wet Li3OCl or Li3OCl1−x (OH)x (Na3OCl1−x (OH)x )
[174] is placed into a reactor and heated to 503-523 K. It is then cooled under air to let HCl and
H2O evaporate. Hydroxide ions are supposedly mostly removed that way and minor remains
are claimed to be bound in alkali (Li or Na) polyanions. When cool, the intermediate product is
ground to a powder either in an inert atmosphere or ethanol. The powder is then placed in an
epoxy sealed cell and cycled at elevated temperatures to form the glass and evaporate ethanol
or other remainders through the epoxy sealing. Crystalline side products are ruled out by XRD
or di�erential scanning calorimetry measurements, hence only an amorphous phase persists.
Shown via cyclic voltammetry, this phase remains stable against electrochemical reactions under
operational conditions. Ambivalent dopants of Mg, Ca or Ba are optionally added via their
hydroxides at understoichiometric amounts to lower the glass transition temperature. Ba doped
glass exhibits the highest conductivity, however, a general lack of characterization as summarized
in Tab. 5.1 leaves unclarity about this material. Furthermore, the original authors argue that the
synthesis under constant electrochemical cycling leads to an alignment of the interior dipoles.
Loosely based on DFT reference calculations, OLi− dipoles form which facilitate ion migration
enhancing the mobility in the excess volume of the glass [174, 175].

Tab. 5.1: Selected material properties of the pure Li3OCl and doped Li3−2xM(II)x OCl (x=0.005, M=Mg, Ca,
Ba) stoichiometries as taken from di�erent publications ([166]1 ,[176]2, [177]3, [174]4). Shown are
the melting and glass transitions temperatures Tm and Tg, the densities of crystalline and glass
phase as available, as well as the listed conductivities for given temperatures. *The listed glass
density is for a partially amorphous sample.

Tm / K Tg / K1 ρcrystal / g cm−3 ρglass / g cm−3 λAC / 10−3 S cm−1

Li3OCl 5552 392 2.023 1.96*1 2.1 (335 K)1

Li3−2xMgxOCl 5421 382 (409) 2.1 (332 K)1

Li3−2xCaxOCl 372 2.091 1.3 (314 K)1

Li3−2xBaxOCl 438 2.281 ≈ 33.5 (335 K)1,4

Clearly, the current state of research leaves several open questions about the glass-amorphous
electrolyte. Signi�cant di�erences between AC and DC conductivity (stated with a factor 5 [174])
and an extremely low temperature dependence of the mobility giving an apparent migration
barrier of < 0.1 eV are puzzling. Questionable is also the role of remaining OH−, or H+ ions. These
for instance have been shown to be one of the hidden critical performance enhancers in the
corresponding crystalline Li3OCl solid state electrolyte [178]. Additionally, the stability against
Li2O and LiCl formation under operational conditions — an e�ect also found in the corresponding
crystalline phase based on kinetic e�ects [179, 180] — is not yet understood. In this thesis, the
Li ion mobility in the pure amorphous material is investigated to obtain an insight in absence
of any possible impurities. Using atomistic simulations, a microscopic understanding of the
respective ion di�usion shall be gained. Hereby, a force �eld potential is employed to reach the
appropriate time and length scales encountered in a glass. The latter is parameterized against
ab initio reference data in order to retain a high accuracy. Glass structure ensembles are then
created using a melt-quench procedure and rigorously probed via MD simulations at di�erent
temperatures. The resulting statistics show that the experimentally reported high Li ion mobility
together with a low apparent migration barrier are factual. This excludes argued side e�ects of
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impurities as the source for the observed high ion conductivity. Furthermore, the microscopic
analysis shows that unexpected Cl mobility is also present which may explain the di�erences in
AC and DC conductivity. From this follows additionally, that the applicability of this solid state
electrolyte is compromised. Here, current limiting polarization concentration e�ects from the
simultaneous conduction of cation and anions can be expected.

5.2 Computational details

DFT calculations for all reference structures of the training set are performed with the Vienna Ab
Initio Simulation Package (VASP) [181, 182] using the projector-augmented wave (PAW) method
[183] and a plane wave basis set in periodic boundary conditions. The PBEsol [184, 185] functional
is employed and plane wave cuto� energies of ≥ 500 eV are used for all calculations. The Brillouin
zone is sampled with a Γ-point centered 4×4×4 Monkhorst-Pack grid [145]. Smearing of the Fermi
surface is enforced with a Gaussian width of 0.05 eV and the electronic structure is converged until
a total energy di�erence of 10−6 eV. To obtain minimum energy structures, geometries are relaxed
until residual forces are less than 0.001 eV/Å. To sample reference structures for the training set
for the melt and glass, ab initio molecular dyamics (AIMD) calculations are conducted. Here,
the same settings as above are used with the exception of a Brillouin zone sampling only at the
Γ-point to obtain a better computational performance. Convergence of energy, forces and stress
is thereby ensured and overall dynamic properties found in the trajectories do not show any
noticeable di�erences. For simulations in the NVT ensemble a Nosé thermostat [186–188] and for
NPT calculations a Langevin thermostat and barostat [28] are used.

All force �eld simulations are conducted using the code package LAMMPS [58] developed at
Sandia National Labs. The force �eld terms applied in this study are based on the Born model of
ionic solids, where a Coulomb term is combined with van der Waals interactions and short range
repulsion as described by the Buckingham potential (see Sec. 2.2.1). Additionally, polarization
is included via the core/shell model (see Sec. 2.2.2). The force �eld parameterization and all
subsequent calculations are performed within a cuto� of 12 Å for the short-range interactions
and treating Coulombic long-range interactions with a particle-particle particle-mesh solver[146].
In all simulations periodic boundary conditions are applied. MD simulations are performed using
a time integration via the Verlet algorithm [148] with a timestep of 0.2 fs. The core/shell particle
motion is integrated following the adiabatic core/shell model by Mitchell and Fincham [53] where
shell particles are given 2 % of the ion mass (see Sec. 2.3.3). A resulting relative core/shell motion
did in no case show thermalization rates higher than 8.0 ·10−5 K ps−1 up to a temperature of 1200 K
(melt simulations) which is well below the average literature value of 1.0 K ps−1 by Mitchell and
Fincham [53]. For the NVT ensemble a Nose-Hoover chain thermostat and in NPT simulations an
additional Hoover chain barostat is applied [148, 149]. Each MD simulation is equilibrated for
50 ps before data sampling.

Global and local optimization algorithms are adopted from the PYTHON packages INSPYRED
[69] and SCIPY [71], respectively (see Sec. 3.1.2). These are embedded in a PYTHON framework
based on the atomic-simulation-environment (ASE) [66] which is interfaced to LAMMPS via its
PYTHON bindings.

Images of crystal structures and atomic depictions are created with VESTA [147].
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5.3 Force Field Potential for glass-amorphous Li3OCl

To model structure and transport in an amorphous material via atomistic simulations, force �eld
potentials present a suitable approach. This is due to the reason that the properties of interest do
not require explicit electronic structure treatment and that the moderate computational cost of
force �elds allows to simulate at the necessary length and time scales. For Li3OCl such a potential
has only been parameterized for the crystalline phase by Mouta et al. [76]. As shown below, this
potential is not accurate for the description of the amorphous phase. Therefore, a new potential is
parameterized as described in the following.

5.3.1 Parametrization Strategy

To illustrate the interactions between the ions in the glass a pair potential in combination with
the core/shell model is chosen as described in Sec. 2.2. This is consistent with the existing force
�eld of the Li3OCl crystal [76]. The potential presents a versatile choice as it can describe highly
ordered [39] as well as disordered phases [65]. Speci�cally, it has been successfully applied to
many ionic crystals and oxides [24, 39, 52] (see Sec. 2.2) as well as to silica glasses [189–193]. The
alternative use of manybody potentials in order to grasp strong covalent interactions, which is
for example needed in transition metal compounds, is deemed negligible [34, 194]. This follows
from the assumption that Li3OCl keeps a strong ionic character independent of coordination
environment or phase. Small deviations from this rule are compensated by adding polarizability
via the core/shell model. The parameterization of the potential parameters is based on ab initio
data, as presented in the following.

Estimation of the density of amorphous Li3OCl

To set up realistic DFT reference models for the amorphous phase, knowledge of the equilibrium
density or at least its approximate range is needed. In contrast to the well-de�ned Li3OCl crystal
(see Tab. 5.1), experimental values for glass-amorphous Li3OCl are not available with satisfactory
accuracy. Therefore, the density is estimated from an NPT AIMD equilibration for the glass
at 300-400 K and for the melt at 700-900 K. The AIMD simulations are conducted for ≈ 120 ps,
which prove adequate for a su�cient convergence. For the glass, di�erent randomized-annealed
con�gurations are used as initial structures in order to account for its non-ergodic behavior
[119–121]. These are created via melt-quench procedures (see Sec. 5.4) on basis of the potential
by Mouta et al. [76]. The di�erent con�gurations give an approximate distribution of volumes
from which an estimate for the glass density of 1.79 ± 0.02 and 1.76 ± 0.01 g/cm−3 at 300 and 400 K
is determined. Note that these values are considerably lower than the experimentally suggested
density of 1.96 g/cm−3 which was determined for a partially crystalline sample [166]. The latter
translates to a volume expansion in comparison to the crystalline phase of only 6 % compared
to 13 ± 1 and 15 ± 1 % as determined from the AIMD simulations. Taking silica as a reference
where the amorphous to the crystalline phase shows an expansion of 20 % [195], the ab initio data
appears more convincing. In contrast to the glass, the melt behaves ergodic. Thus the density can
be determined more accurately from a single simulation and is found at 1.69 ± 0.03 and 1.61 ±
0.03 g/cm−3 for 700 and 900 K, which translates to 19 ± 2 and 26 ± 3 % volume expansion. Since
the volume expansion is a more intuitive value than the density, the dimensionless ratio V/Vcrystal
will be used in the following. This is referenced to the experimental lattice parameter 3.907 Å of
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the crystal at 300 K after [177]. This value is chosen as it lies between the DFT lattice parameters
available at 300 K which are stated at 3.90 Å [179] and 3.912 Å [166].

Pair potential parameters

An energy, force and stress matching procedure as described in Sec. 3.1.1 is used to obtain the
parameters for the pair potential. To enforce a high generality of the potential and prevent
over�tting, a training set is chosen which contains di�erent reference structures spanning the
phase space of Li3OCl. Thereby 16 % of crystal structures and 84 % of amorphous structures are
included to cover a broad spectrum of ionic distances which are likely to result in accurate short
and long range interactions [38]. To exclude arti�cial energy inconsistencies due to size e�ects
(in the Brillouin zone sampling of the plane wave basis set), all structures are of comparable size.
They are thereby chosen su�ciently large with 135 atoms to adequately describe disorder (an
only exception are defect structures with 133 atoms). During the �tting process the training
set is consistently extended to correct for unphysical con�gurations which appear in incorrect
intermediate potentials, a procudure as also suggested in literature [65].

Crystal references are based on a 3× 3× 3 supercell of Li3OCl and include two sets of structures.
A �rst set is composed of 40 structures created with random displacements of atoms around their
equilibrium positions (maximum of 1.5 Å) of which some are also compressed or expanded by
2% of the lattice constant. A second set of 24 structures is taken from NEB calculations of the
vacancy di�usion barrier. The vacancy is created as a Li-Cl Schottky defect [179]. Of this latter
set, 16 structures are added from NEB calculations based on intermediate potentials which show
too low barriers.

Amorphous structures are taken from AIMD simulations conducted for 100-200 ps in an NVT
ensemble of the glassy and molten phase. These are constrained at di�erent volumes distributed
around the densities obtained from the AIMD simulations, as described above. For the glass,
simulations are performed at volumes of 1.13, 1.15 and 1.20 Vcrystal and at 300 and 400 K. At each
volume several calculations with di�erent initial con�gurations are conducted to avoid a strong
bias (three for 1.13 and 1.15 and two for 1.20 Vcrystal). From the AIMD, structures from snapshots
are taken every 10 ps yielding 160 structures. Of the latter, a geometry optimization is performed
for 15 structures which are also added to the set. From ill-performing potentials, showing an
accelerated di�usion in test MD simulations as well as strong Li-Cl overbinding, another 154
structures are added for the volumes 1.13 and 1.15 Vcrystal. For the melt, 54 structures are taken from
AIMD simulations at 900 K at di�erent volumes of 1.20, 1.28 and 1.33 Vcrystal. The fast dynamics in
the liquid phase allows us to select structurally decorrelated snapshots. The decorrelation time
is estimated from the time interval in which the MSD exceeds the �rst coordination sphere as
determined from the radial distribution function (RDF).

In parameterizing the potential for the ternary system Li3OCl, 21 parameters are formally
included. This set can be reduced based on physical considerations [39]. Firstly, the partial charges
are represented as one parameter due the need to remain charge neutrality in the force �eld. For
the stoichiometric relation then follows: qCl = -qLi and qO = -2 qLi. Secondly, Li can be assumed to
be a relatively hard ion which will not be subject to any van der Waals interactions. This means
that the Buckingham parameters CLi−Li, CLi−O and CLi−Cl can be �xed to zero [76]. Despite this
reduction, the remaining 16 parameters still pose a considerable optimization problem. Scanning
all parameter dependencies on a grid within prede�ned boundaries scales with n16 where n
represents the number of grid points in each dimension. This already yields 4·107 evaluations for a
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minimal grid of n = 3 which is not easily achievable and with a su�cient grid spacing (i.e.n = 100)
impossible in the foreseeable future. Therefore a heuristic search is necessary including global and
local sampling, for which a PSO algorithm is employed (see Sec. 3.1.2). To cover a reasonably large
search space e�ciently, all PSO optimizations are conducted using a swarm size of 500 particles.
This exceeds the minimum number of recommended particles (10 × the number of variables) in
order to take into account the corrugated parameter space. Most of the conducted optimizations
converge more or less within 200 steps to a minimum, which is evident of an adequate swarm
size. A �nal potential is acquired employing the following strategy:

1. Generation of a large number of good initial guesses via several PSO runs. Each particle in a
PSO is initialized via uniformly randomized parameter sets within the maximal boundaries.

2. The parameter space is re-sampled around the initially guessed potentials using a PSO. For
this, particles are initialized with parameter sets normally distributed around the initial
guess.

3. Best candidates are locally optimized using an L-BFGS optimizer (see Sec. 3.1.2) and validated
as described below.

4. When the training set is iteratively extended, the parameterization is restarted from step 2.

Core/shell parameters

The pair potential described above shall reproduce the stoichiometric material at 0 K according to
the accuracy of the DFT-PBEsol reference (see Sec. 5.2). To amend this potential with an accurate
description for defective structures, the core/shell model is added which is parameterized on top of
the �nal potential (compare Sec. 3.1.3). For this, the energy, force and stress matching procedure
is also employed. This is applied to a new training set including Li-Cl Schottky defects and Li, Cl
and O Frenkel defects in crystalline structures.

The defects are randomly introduced into a 3× 3× 3 supercell of Li3OCl following a subsequent
geometry optimization at DFT level. In total, 11 and 16 structures with Schottky and Frenkel
defects are taken into account. Additionally, 8 structures describing a NEB path of a vacancy
di�usion process (see above) are appended, respectively. To relate these perturbed structures
to the equilibrium crystal, 15 crystal structures with slight atom displacements (as above) are
added as well. This specialized training set ought to be su�cient to parameterize the two spring
constants k for O and Cl and obtain a reasonable static polarizability. The reduced size of the
training set of 50 structures is also advantageous considering the increased computational cost of
the core/shell evaluation. Here, every reference structure evaluation requires an optimization of
the shell positions. For that, a conjugate gradient optimization as implemented in LAMMPS is
employed. The increase in computer time scales directly with the number of optimization steps
which, on average, turns out to be eight.

Although the search space for the optimization problem is only de�ned by two variables (the
spring constants k), a local optimization based on the above mentioned L-BFGS optimizer is
unreliable. Here, the parameter space involves many local minima which prohibit a gradient based
search. Therefore, a global search based on the particle swarm method is applied. Hereby, 200
particles are used to cover the complete parameter space uniformly within 20-800 eV Å−1 for each
k during the initialization. The shell charges — which present an arbitrary choice — are taken
from the previous parameterization for the Li3OCl crystal [76]. Starting from this, a �t �nds a

68



best solution usually within 10 steps whereby the median of particles falls close to that solution
already at step 50. Hence, this “global” optimization problem exhibits a minor search e�ort and
fortunately converges very fast to a global minimum.

5.3.2 Fi�ing success

The parameters of the �nal potential can be found in the Appendix A. For those, a relatively good
�t to the training set is achieved. The agreement in relative energy, forces and stress components
to the reference data is shown in Fig. 5.1 and the according mean errors are given in Tab. 5.2.
Overall, a comparably good reproduction of the DFT properties is seen in relating the crystalline,
glassy and molten phase, showing no evidence of systematic errors in the potential. Seemingly
large errors in e.g. the energies are mostly owed to outlying, extreme con�gurations. The goodness
of the �t and prediction becomes apparent when comparing to the potential of Mouta et al. [76].
Here, systematic errors can be found in the description of glass and melt structures which appear
critical in the overestimation of energies and underestimation of stresses (see Fig. 5.1). Of course
it should be noted that this force �eld potential was not parameterized against the amorphous
structures. Nevertheless, even for the crystal, the here obtained force �eld exhibits superior
performance which is mainly attributed to a better description of con�gurations far away from
equilibrium. This observation con�rms the disadvantage of an empirical parameterization where
only the macroscopic equilibrium can be captured [52].

Tab. 5.2: Residual mean error of relative energy (∆E in meV), forces (∆F in meV Å−1) and stress components
(∆σ in meV Å−2) for the training set, phase-divided into crystal, glass and melt structures. Values
are given as obtained for the here derived force �eld potential and as a comparison for the
potential by Mouta et al. which was parameterized for the crystal Li3OCl using an empirical
approach. Speci�cally errors for the isolated Buckingham potential as well as for the combination
with core/shell model are listed.

this work

Buckingham Buckingham & core/shell
∆E ∆F ∆σ ∆E ∆F ∆σ

crystal 1215 47 0.516 1166 24 0.580
glass 1896 103 0.674 1201 77 0.649
melt 922 142 0.690 1214 101 0.655

Mouta et al. [76]

Buckingham Buckingham & core/shell
∆E ∆F ∆σ ∆E ∆F ∆σ

crystal 1335 124 2.720 1218 85 2.683
glass 4336 230 4.122 3011 174 4.051
melt 7876 346 1.306 5082 260 1.146

The parameterized core/shell model yields a corrected description of the defective structures in
the training set. The mean error improves for energies by 110 meV, for forces by 18 meV Å−1 and
for stress components by 0.05 meV Å−2. While the change in energy and stress is rather negligible,
the improvement in the forces is quite dramatic. This shows especially for the outliers, i.e. the
problematic defects as depicted in Fig. 5.2. A noticeable improvement in most properties with
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against di�erent force �eld potentials (FF) for the structures in the training set. In each graph the
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“Mouta”) and on the right for the here obtained potential (labeled “this work”). Data points
corresponding to crystal structures are shown in orange, to glass structures in blue and to melt
structures in red.
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the additional core/shell model stays consistent for all structures in the larger training set used
for the parameterization of the Buckingham potential as shown in Tab. 5.2. The only exception
concerns the energies in the melt structures which worsen signi�cantly by 30 % and the stress
components in the crystal which worsen by 10 %. In the former a systematic underestimation
is thereby introduced. This is due to the the absence of the melt structures in the specialized
core/shell training set. This way the core/shell model removes a bias towards the melt from the
parameterization. Since the melt is not of special interest in this work, this error is unproblematic.
In comparison to that, a corrected description of the short range response to vacancies yielded
by the core/shell model is highly anticipated. The latter emerges as seemingly important which
shows in the improved forces and energies of the crystal and glass.

Fig. 5.2: Comparison of force components from DFT against the parameterized pair potential (FF) for the
structures in the core/shell training set. (Left) without and (right) with the core/shell model.

Since the core/shell parameters are parameterized following physical motivation (the polariz-
ability), the here obtained parameter set is examined more closely. The resulting force constants
k yield polarizabilities for O of 0.69 Å3 and for Cl of 2.32 Å3 (following Equ. 2.10). These values
re�ect the expected physics quite well where Cl is more easily polarizable. Comparing to polar-
izabilities from experimental or ab initio data, the here obtained values are below the literature
reference of ≈ 1.81 Å3 and ≈ 2.90 Å3 [75] for O and Cl in a Li environment, respectively. On
the one hand, this could be based on the di�erence in chemical environment as compared to the
literature reference values. On the other hand a di�erence might be due to the partial charges in
the parameterized Buckingham potential, which already represent a mean static polarizability
[27]. Furthermore, the oscillation frequencies of the core/shell particles based on the obtained
force constants are 3·1014 s−1 and 1·1014 s−1 for O and Cl, respectively. These are well above the
fastest vibrations in the melt at 900 K of 5·1010 s−1 (oscillation period of 20 ps) as estimated from
the Fourier transformation of the velocity autocorrelation function from the corresponding AIMD
simulations. Thus, the core/shell particles should be able to represent instantaneous polarization
in the adiabatic model (see Sec. 2.3.3).

5.3.3 Validation of the force field potential

Accurately reproduced DFT energies, forces, and stress components are a measure of success
for the �tting procedure against the training set. However, these do not indicate the chemical
predictive power of a force �eld potential. Thus, any emerging trial potentials are further validated
by comparing simulations to macroscopic, thermal properties against which no formal parameter-

71



ization has been conducted. Speci�cally, the thermal volume expansion and ionic mobility of the
crystal, glass and melt are evaluated.

Reference values for the crystal are taken from literature, where the temperature dependent
lattice constant has been determined experimentally [166] and di�usion barriers for the vacancy
di�usion mechanism have been reported in di�erent DFT studies [179, 196]. In contrast to this,
reference values for the glass or melt are not available at a reliable accuracy. For this reason,
the here conducted AIMD simulations (see above 5.3.1) serve as a comparison. Although, some
reference structures of the very same data are also included in the training set, their sensitive
temperature dependence is not.

For the evaluation of trial potentials, the temperature dependent volume is equilibrated for
100 ps in NPT MD simulations using crystal, glass and melt structures containing 135 atoms. NEB
calculations for the di�usion barrier in the crystal are computed using eight images in a 3 × 3 × 3
supercell of Li3OCl where a vacancy is introduced via a Li-Cl Schottky defect. The di�usion
coe�cients in melt and glass are sampled over 500 ps in NVT MD simulations. For this, the very
same initial con�gurations as employed in the AIMDs reference calculations are employed to
ensure a best possible comparability. Hereby, the force �eld MD exceeds the AIMD statistics of
100-200 ps, from which a lower standard deviation can be expected.
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Fig. 5.3: Volume against temperature for the validation of the force �eld potentials. Included are the volume
expansion of the crystal (orange), the glass (blue), and the melt (red). The references are indicated
with solid lines and are taken from literature for the crystal or AIMD simulations as described in
the text. Compared are the potential including core/shell particles with parameters from Sec. A
(circles) and the one of Mouta et al. [76] (crosses).

As shown in Fig. 5.3 the here parameterized potential reproduces the density of the glass quite
well. It can be noted that above 400 K the volume expansion increases which hints to a liqui�cation
of the system as expected for the glass transition. In comparison to this, the crystal and melt are
not as well represented. In the melt an overestimation of the volume by 3-10 % can be seen, which
points to inaccuracies of the potential to produce the far tail of the long range interactions. The
crystal on the other hand is underestimated by 2-3 % which is rather a sign of inaccuracies in
the reproduction of the Madelung potential [39]. Considering the deviation in melt and crystal,
the here compared volume represents a very sensitive parameter in comparison to the usually
compared lattice constants. Thereby, deviations of similar magnitute are also found in DFT studies
of crystalline Li3OCl. Reported lattice constants show di�erences of up to 3% when translated to
volume [197, 198]. Despite these deviations for melt and crystal, it is shown that the force �eld
potential is successfully tuned to accurately reproduce the glass density relevant for this work.

Considering ion mobility in the crystal, the force �eld potential reproduces the vacancy migra-
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tion barrier at 0 K su�ciently accurate with 0.29 eV which compares well with values obtained via
DFT of 0.31 eV [179]. In contrast to this, the comparison of di�usion coe�cients in the amorphous
phases from MD simulations is more ambiguous (see Tab. 5.3). This is due to the insu�cient statis-
tics, in particular in the AIMD, for the determination of the ion migration. Especially pronounced
in the small cells of the glass con�gurations, the associated errors easily exceed 100 %. Thus, only a
qualitative comparison is possible to estimate the ion di�usion. With this in mind, the determined
di�usion coe�cients compare surprisingly well. At all temperatures Li, Cl, and O mobilities are
found to be on the same order of magnitude. A seemingly systematic overestimated by a factor of
1.5-2.0 by the force �eld potential portrays an acceptable deviation. In the melt, the associated
error in the di�usion coe�cients is considerably lower — evidence for its ergodic behavior. Here,
the overestimation by the force �eld potential becomes clearer. Besides the quantitative di�erences,
phenomenological trends are consistent. Those are the apparent mobility of Cl ions in the glass
(see discussion in Sec. 5.5) as well as a peculiar order in the long range di�usion coe�cients of
DLi > DCl > DO in the melt. Here, the strong Li-O interaction forms a volatile network of mixed
edge and corner linked OLi6 units and the oxygen ions di�use with a continuously exchanging Li
“solvation shell”.

Tab. 5.3: Di�usion coe�cients as obtained from the AIMD reference and the force �eld validation calcu-
lations for the here obtained potential and the potential by Mouta et al. [76] as a comparison.
As described in the text the di�usion coe�cients are obtained for Li, Cl and O in short NVT
calculations with a system size of 135 atoms for the glass at 300 and 400 K and the melt at 900 K.

AIMD this work Mouta et al. [76]

glass (300 K) / 10−5 Å2 ps−1

Li 18.706 ± 18.955 28.322 ± 14.936 0.698 ± 1.893
Cl 4.754 ± 4.259 9.613 ± 20.991 0.624 ± 1.636
O 0.717 ± 4.454 3.213 ± 5.282 0.467 ± 1.141

glass (400 K) / 10−5 Å2 ps−1

Li 45.410 ± 97.134 169.167 ± 94.721 0.123 ± 0.142
Cl 20.485 ± 101.132 16.460 ± 30.729 1.616 ± 1.278
O 0.470 ± 29.709 4.713 ± 6.689 1.128 ± 1.002

melt (900 K) / 10−2 Å2 ps−1

Li 22.459 ± 5.770 40.114 ± 3.227 12.109 ± 1.473
Cl 12.023 ± 1.621 30.616 ± 5.584 10.875 ± 0.970
O 5.903± 0.654 12.504± 1.128 4.305 ± 0.424

To put the performance of the derived potential into perspective, a comparison to the force �eld
potential by Mouta et al. is conducted. Due to the lack of a parameterization for the amorphous
phase, the potential predicts according volumes with a substantial deviation as shown in Fig. 5.3.
This is due to the missing anharmonicity in the potential which also re�ects in the wrong thermal
expansion of the crystal. The latter is obtained at 300 K with 2.31·10−5 K−1 which is, however, only
slightly improved by the here derived potential with 2.91·10−5 K−1 in comparison to DFT 3.89·10−5

K−1 [166] and experiment 4.79·10−5 K−1 [166]. It follows, that the empirical derivation only yields
a correct description of the crystal at 300 K — i.e. the thermal equilibrium it was parameterized
to. Considering the mobility, the vacancy di�usion barrier is reproduced with a similar error as
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in the here derived potential. Curiously, the di�usion coe�cients in the amorphous phase are
dramatically underestimated. Since Cl di�usion turns out as high as Li, it is suspected that the
latter is slowed down based on an overbinding of Li to O. Thus, this empirically derived force
�eld potential shows an ambiguous behavior as such an overbinding is not seen in the migration
barrier of the crystal. It becomes evident, that this force �eld only yields an e�ective description
of the crystal at room temperature void of microscopically accurate interactions.

5.3.4 Suggested improvements for future force field parameterizations

The parameterization of the potential as described in this section, involves a lot of input based on
chemical intuition in the setup of the initial training set and the potential validation. Likewise,
the parameterization procedure requires a major computational e�ort to �nd good initial trial
potentials which serve as the basis for subsequent localized searches. Based on the usually vast
parameter space, �nding good starting points involves some luck. In order to improve on these
non-systematic factors, some considerations shall be put forward in the following.

In the current approach, the physical constraints — �xing the van der Waals parameters CLi−Li,
CLi−O and CLi−Cl to zero — give Li Coulomb interactions particular leverage. In that, the partial
charge of Li presents the only parameter to control the Li-Li long range interaction. In combination
with the other charges it thus delivers an e�ective background potential, synonymous with the
Madelung potential in the crystal. Corrections to this point charge model follow from the van
der Waals parameters CO−O, CO−Cl, and CCl−Cl. In contrast to this, the Buckingham term with the
parameters Ai j and ρi j only correct for the short range interactions with an overall less signi�cant
impact on the macroscopic physics.

Most trial potentials obtained by the strategy presented in Sec. 5.3.1 follow these systematic
relations. This can be deduced from the sensitivity of the cost function on the parameters, i.e. to
the measure of agreement to the reference data (see 3.1.1). Thereby, the PSO �nds a best fractional
charge relatively fast. A more tedious search is required for theCi j parameters, for which however
minima clearly converge (dependent on the charge). In contrast to this, the cost function is
comparably insensitive to the Buckingham terms. This underlines their lack of importance on the
intermediate and long range interactions if an optimal partial charge is found. In fact, most trial
potentials converge with a minimum Li-Li Buckingham term, whereby all Li-Li interactions remain
dependent on only the Coulomb interactions. Although these e�ects agree with the underlying
physics of the force �eld terms, it needs to be acknowledged that these relations are not generally
in place. In many potentials, Coulomb, Buckingham, and van der Waals interactions arbitrarily
mix to reproduce e�ective interactions. Often, the Buckingham terms have a signi�cant e�ective
range to overcompensate ill-de�ned charges.

Considering this systematic �nding, an adapted strategy is proposed:
1. A �rst optimization of the partial charge and the van der Waals parameters to a broad

training set, including many chemically relevant structures is conducted. Here, Buckingham
parameters would be constraint at minimal values - medium Ai j and small ρi j . A global
minimum would be thus swiftly obtained.

2. In a second step, the Buckingham parameters would be adjusted to a specialized training set
including many short ion distances to map an exact pro�le of the short range interactions.

3. A �nal readjustment of charges and van der Waals parameters by repeating the �rst step
would follow.
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4. Since it turned out to be very e�ective, the core/shell parameters would be adjusted in a
subsequent physical parameterization as elaborated in Sec. 5.3.1

Albeit not tested, this strategy might reduce the sampling e�ort and enhance the quality of the
obtained potential by strictly enforcing the physical meaning of each force �eld term. This can
prove to be especially crucial for pair potentials as used here which have been shown to be very
sensitive on the chosen parameters compared to many body potentials [199].

5.4 Obtaining a glass structure ensemble

The disorder in glasses results from a second order phase transition following the rapid cooling of a
liquid. In that, a material approaches solidi�cation continuously until a perceived structural arrest
occurs at the glass transition. The gradual thermodynamic transformation yields an amorphous
solid which is not at thermodynamic equilibrium. This shows for example in a density dependence
on the synthesis procedure or observable secondary structural relaxation. The latter consists of
non-translational, localized phenomena measurable by e.g. dielectric spectroscopy [119–121, 200,
201]. From a microscopic perspective, a glass is an amorphous solid, hence without any long-
range order which resembles a frozen, liquid-like structure. The according energy landscape is a
corrugated one, de�ned by many super basins describing possible con�gurations of an in�nitely
extending disordered random structure. A transition between such super basins corresponds
to translational changes of the global network. Such transitions are only possible above the
glass temperature or ultimately in the liquid phase when a system becomes ergodic. The super
basins are interspersed by many local minima representing localized rearrangements of atoms.
Transitions between these local minima correspond to the secondary relaxation described above.
These can be constituted of a variable length scale, thereby including a varying number of atoms.
Depending on the height of the barriers between such local minima, a comparably mobile glass
network can be found at �nite temperatures [121, 201–203].

Many challenges are to be faced when simulating such a material. Finite simulation cells with
periodic boundary conditions cannot truly represent a disordered in�nitely extended system, but
merely give an approximation. Therefore, the simulation cells need to be chosen large enough, so
that the enforced periodic boundary conditions do not in�uence the local disorder. Additionally,
the vast amount of global con�gurations according to the super basins described above can only be
sparsely sampled in a very limited subspace. Hereby, a representative picture can be approached
by studying an array of glass structures to obtain a structural ensemble. Finally, temperature
e�ects which sample structural rearrangements according to local minima in the energy landscape
need to be sampled at long time scales in order to be statistically meaningful. This latter e�ect
strongly depends on the depth of the minima and how relevant rare events are for the studied
phenomena.

5.4.1 The melt-quench procedure

Glass structures are created using a melt-quench procedure, a method motivated by the conven-
tional glass synthesis and regularly employed in simulation studies [120, 121, 164]. Simulation
cells containing 1080 atoms are used corresponding to a chemical composition of Li648O216Cl216.
Since the density of the pure glass was not determined experimentally [166], a distribution of
supercell volumes is studied. To this end, structural ensembles are created at constrained volumes
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of 1.12, 1.13, 1.14, 1.15 and 1.17 Vcrystal distributed around the estimated volume from AIMD
simulations (see above in section 5.3.1). This likely gives a more realistic representation of the
material considering the non-equilibrium synthesis conditions of the glass [120, 166].
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Fig. 5.4: (left) Decay of the �rst (black) as well as the combined �rst and second (gold) O-O coordination
shell (CNS) via ion exchange over the course of the melt trajectory. It can be seen, that the
combined CNS does not completely decorrelate, which is evident of the fast exchange within the
melt. (right) Schematic representation of the melt-quench procedure temperature pro�les for the
example of the fast quench protocol (shades of gray). Indicated are the seeds which are drawn in
the interval of the decorrelation times td from the melt MD simulation (orange).

For each volume 20 glass structures are quenched, seeded from a melt at 1200 K in which all
ions show fast di�usion allowing for rigorous positional rearragement. The seeds are drawn every
200 ps to ensure that initial structures are decorrelated. This decorrelation period td is determined
by monitoring the mean decay time of the �rst O-O coordination shell, which is equivalent to
the mixing of the slowest di�using species (see Fig. 5.4). Hereby, for each O ion the coordinating
O ions within a radius ≈ 4 Å for the �rst shell and ≈ 8 Å for the additional second shell (as
determined from the respective O-O RDF) are tagged at a time t0. During the MD simulation of the
melt the relative preservation of the original coordinating O ions is monitored and averaged over
all O ions yielding the mean decay. This procedure is time averaged over di�erent initial times
t0. For the quench, a stepped temperature pro�le with a step size of ∆T = 100 K is chosen. Long
dwelling times after each temperature drop are included to allow su�cient structural equilibration.
The dwelling times are extended exponentially every step to account for the slower relaxation
dynamics at lower temperatures (following the temperature decay T (t) = 800K exp (−rt) + 300K
with r as the decay exponent). Two relaxation protocols are applied yielding an overall quenching
rate of 0.26 and 1.32 K/ps (according to r = 10−6 and 2 · 10−7 ps−1). A relatively long structural
relaxation is thereby enforced compared to the usual cooling rates applied in linear melt-quench
procedures of 25-50 K/ps in AIMD [204–207] and 5-10 K/ps in classical MD simulations [191–193].
The total simulation time for each quench protocol amounts to 680 ps for the fast quench and
3.4 ns for the slow quench. All MD simulations are performed in an NVT ensemble as described
in Sec. 5.2.

5.4.2 Characterization of the glass ensembles

In order to characterize the thermal behavior of the material with statistical relevance, sampling
of thermodynamic properties is commenced after the quench for 1.5 ns in all structures. During
this sampling, the NVT ensemble is maintained.
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Fig. 5.5: Averaged thermodynamic properties of the quenched glass ensembles for the investigated volumes
at 300 K. Note, each data point and corresponding standard deviation is based on the data of 20
structures (see above Sec. 5.4.1). (left) Average relative energy ∆〈E〉MD sampled after the quench
and referenced to the crystal. (right) Heat capacity CV at constant volume with the theoretical
crystal reference indicated (see text). Ensembles created with the fast quench rate are shown in
yellow, and with the slow quench rate in light blue.

Complying with an ensemble based representation of a glass, the obtained structures are dis-
cussed as averages characterized by volume and quenching rate. Here, each ensemble corresponds
to the average and standard deviation from 20 glass structures (see above Sec. 5.4.1). To classify
the ensembles in the potential energy landscape picture, the time-averaged relative energy is
compared (see Fig. 5.5). Each ensemble shows a distribution of energies where the included data
points correspond to di�erent super basins belonging to di�erent glass network con�gurations.
Despite this energy span, a clear separation of the fast and slow quenched ensembles is found
whereby slow quenching rates yield lower energy structures indicating relevant thermodynamic
relaxation at long time scales. The ensemble energies also show a decreasing trend with volume
indicating an unambiguous convergence for the fast quench towards the equilibrated volume
around 1.12 and 1.13 V/Vcrystal.

In comparing a second order phase transition to a glass against the according �rst order
phase transition to a crystal, the change in thermodynamic properties is continuous compared to
discontinuous. This is characteristically seen in the heat capacity whereby its bifurcation during
the phase transition results in a lower value for the crystal [121, 200]. Therefore, the heat capacity
CV at constant volume of the glass ensembles is sampled based on the �uctuation of the potential
and kinetic energy Epot and Ekin as described in Sec. 3.3.3. A convergence of CV with sampling
time is ensured in order to capture su�cient secondary relaxation, i.e. transitions between the
local minima in the energy landscape. As shown in Fig. 5.5, the expected [121, 200] relation of CV
at a higher value for the created glass ensembles in comparison to the crystal is found. The latter
is calculated on basis of the same interatomic potential.

The glass structures of the ensembles can be characterized by the time averaged radial distribu-
tion function (RDF) as shown in Fig. 5.6. The ensemble-averaged RDFs have a shape typical for
systems with no long-range order like liquids or amorphous solids. They thereby converge to the
normalized bulk density (= 1) at which point all short range order is lost [189]. This convergence
indicates that the used simulation cells with a minimum box length of 24.3 Å (1.12 V/Vcrystal)
su�ce to describe the long range disorder present in the investigated glass. Interestingly, the
RDFs show a coinciding behavior independent of volume or quench rate. This is despite the
energy di�erences observed for the di�erent quench procedures. Thus, the glass maintains a
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Fig. 5.6: Structure properties of the quenched glass ensembles for the investigated volumes at 300 K. Time
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di�erent ensembles. Note that all RDFs coincide. (middle right) Ensemble averaged histogram of
the time averaged CNs within a cuto� of 2.5 Å for O-Li and 3.5 Å for Cl-Li. Ensembles created
with the fast quench rate are shown in shades of yellow, and at slow quench rates in shades
of blue, where lighter shading depicts larger volumes. (bottom) Exemplary glass structure as
resulting from a fast or slow quench. Li is depicted in blue, O-Li and Cl-Li coordination polygons
are depicted in red and green, respectively.
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liquid-like glass structure during relaxation where an overall short-range order decorrelates at
10 Å. As shown exemplarily in Fig. 5.6 individual small agglomerates of amorphous Li2O and
LiCl are formed. Considering these di�erent chemical environments based on the O and Cl
coordination by Li, the individual RDFs as well as the according time averaged CNs are compared
as shown in Fig. 5.6. The O-Li coordination shows a strong randomization where speci�cally any
short-range order is already lost beyond 8 Å. As seen in the �rst coordination shell of the RDF at
2.5 Å as well as in the CNs, it can be found that O-Li packing is comparably dense. Thereby, an
octahedral environment or slightly higher coordination is found which is characterized by edge
and corner sharing polyhedra (see exemplarily Fig. 5.6). In comparison to that, the Cl-Li shows a
farther reaching short-range order in its RDFs where a decorrelation only appears beyond 10 Å.
The resulting packing is less dense with a �rst coordination shell at 3.5 Å showing a less rigid
coordination environment, whereby over- and undercoordination is apparent.
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Fig. 5.7: Estimated shear viscosity η at 300 K. The viscosity is sampled over a correlation time of 500 ps for
4 ns for selected volumes of 1.13 and 1.15 Vcrystal. Ensembles created with the fast quench rate are
shown in yellow, and at slow quench rates in light blue.

To estimate the mechanical properties of the glass, the shear viscosity η is computed via the
auto correlation function of the o�-diagonal components of the stress tensor as described in Sec.
3.3.3. For this glassy material, the decay of the autocorrelation function extends far beyond the
time scale of MD trajectories and needs to be approximated. Here, the mean of an exponential and
linear �t to a correlation function averaged over a correlation period of 500 ps for each structure
is taken. Unfortunately, this method lacks robustness which can be seen in the large standard
deviation (outliers are discarded) in Fig. 5.7. Thus, the estimated η is not quantitatively reliable.
Additionally, it is likely underestimated if a long time convergence leveling of the according
correlation function is not captured in the sampling period. From this well-known e�ect for
slow converging correlation functions [92] the obtained viscosity represents merely a low bound.
As seen from the estimated values, the viscosity shows no signi�cant sensitivity to the quench
rate. In comparison to that, the volume strongly a�ects viscosity. Approaching the equilibrium
volume, ensembles yield a viscosity > 100 Pa s which corresponds to typical values of semi-
solids. Representing a low bound, this excludes the simulated material to behave like a true
liquid. Nevertheless, the approximate low viscosity rather indicates a ductile glass-amorphous
material than a typically sti� glass. A high ductility is therby a favorable property for a solid state
electrolyte since it avoids complex manufacturing in order to ensure crack-free contact to the
electrodes [208].
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5.5 Ion mobility

Ionic di�usion in amorphous materials is inherently complex due to their disordered, non-periodic
structure. From a single ion motion point of view, the number of coordination sites and according
di�usion barriers is not discrete as in a crystal lattice but rather follows a distribution [16, 91, 163].
Additionally, collective ion motion is a general phenomenon which leads to strong activation
and correlation e�ects [16, 201]. Percolation through the material would then depend on the
highest migration barrier, if a rigid host network is assumed [104, 163]. However, structural
relaxation of the host network — common in a weak glass — may continuously change the
potential energy landscape similar to the reaction of a solvent to the migration of a solute [164].
These considerations on the complexity of ion di�usion are based on fast ion conducting glasses
where foreign ions (glass modi�ers) di�use within the excess volume of a host network (glass
formers) [16, 163, 164]. In the glass-amorphous Li3OCl this situation is not given since Li is both
network forming and the mobile species. Therefore, a decoupling of viscoelastic relaxation and
ionic conductivity below the glass temperature [119, 164, 209] can only apply if structure-giving
and mobile Li ions can be strictly separated. Due to this lack of a lattice or a clear host network to
charge carrier separation, the elemental di�usion processes in the glass cannot be predicted easily
from chemical intuition. To investigate such a complex ion transport, MD simulations provide the
most practical method. Propagating the system at �nite temperatures thereby allows the ions to
explore the con�guration space autonomously yielding the e�ective ion motion.

5.5.1 Ion di�usion in glass-amorphous Li3OCl

To gain insight into the ion migration, classical MD simulations for 4 ns are conducted after the
individual glass quenches at 300, 340 and 400 K (see Sec. 5.4). Here, only the glass ensembles at
the volumes 1.13 and 1.15 Vcrystal are investigated due to the high computational cost. As shown
exemplarily in Fig. 5.8 the sampled mean square displacement (MSD) shows a rather irregular
behavior even over the long timescale indicative of the slurry dynamics in this disordered material.
Surprisingly, not only Li but also Cl ions migrate at 300 K. This stands in contrast to the O ions
which only exert minor rearrangement, as seen in their low MSD. This mobility behavior is
qualitatively con�rmed on the short time scales of AIMD simulations, i.e. at a high chemical
accuracy (see details in Sec. 5.3). In characterizing the statistical time dependent di�usion [90], the
MSD is taken as a time average 〈MSD〉 (see Sec. Fig. 5.8). From this 〈MSD〉 the phenomenological
di�usion behavior can be deduced. In the ballistic regime occurring at a time scale ≤ 50 ps, ions
already show a large instantaneous displacement (indicated by the dotted lines in Fig. 5.8). This is
due to large amplitude vibrations in the excess volume of the amorphous material. It follows a
transition regime where ions are subject to collisions and cooperative e�ects which converges
unusually slow in time, especially for Li. The long range transport follows with the typical normal
di�usion behavior. For all investigated trajectories this long range migration is derived by a �t
to the long-time (orange dashes in Fig. 5.8) linear part of the MSD which will also be the used
quantity in the further statistical analysis.

As a measure for the long range ion transport, the tracer di�usion coe�cents are evaluated
from the Einstein relation based on the linear part of the MSD (see Sec. 3.3). In Fig. 5.8 the
di�usion coe�cients are shown as averages of the structural ensembles de�ned by volume and
quenching rate (compare Sec. 5.4). Naturally, the Li di�usion is considerably higher than the
Cl di�usion. Nevertheless, the latter still shows a true long range mobility with �nite di�usion
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coe�cients. Among the di�erent ensembles, the di�usion coe�cients show little deviation. This
is not suprising with respect to their near identical short range order (see Sec. 5.4.2). In that, only
the fast quenched ensemble in the extended volume of 1.15 Vcrystal shows an e�ect on both Li and
Cl di�usion. This is possibly due to a larger excess volume in the glass network facilitated by the
fast quench in the larger cell. In the corresponding slow quenched ensemble this excess volume
has likely closed as hinted by the lowered di�usion.

Since a continous structural relaxation is expected in a glass [121, 201, 202], it suggests itself that
the observed di�usion might be a direct result thereof. Indeed such a relaxation can be observed
in many structures. However, the according relaxation is minor involving only a few 100 meV per
simulation cell over the course of the 4 ns simulation. A correlation to the di�usion is estimated by
relating the single di�usion coe�cients of Li, Cl and O against the average rate of the change in
potential energy dEpot/dt for each MD simulation. As shown in Fig. 5.9, only a weak correlation
between the di�usion coe�cients and the energetic relaxation of < 1 % for Li and Cl is found.
Hereby it can also be seen, that O remains virtually immobile in all trajectories and does not
partake in relaxation processes. Thus, it is concluded that any relaxation only corresponds to
light structural rearrangements and the observed di�usion coe�cients embody true long range
transport.

Tab. 5.4: Share of Li and Cl ions (in %) which show long range mobility according to an individual maximal
displacement ≥ 3.5Å at any point of the trajectory. Averages are taken for the slow and fast
quenches as indicated.

slow fast
300 K 340 K 400 K 300 K 340 K 400 K

Li 36.7 63.9 94.2 44.3 72.3 96.4
Cl 9.5 20.0 50.6 14.5 30.5 60.8

Considering the detailed ion motion, single ion trajectories are evaluated based on the overall
displacement and the mean chemical environment expressed via an averaged CN. Ions which travel
further than 2.5 Å (i.e. beyond the �rst coordination sphere, see Fig. 5.6) are thereby considered to
show true mobility. Already at 300 K, a large share of Li ions (≈ 40%) and a considerable share of
Cl ions (≈ 12%) is mobile (see Tab. 5.4). These shares increase gradually with temperature until
at 400 K most of the Li ions and half of the Cl ions show di�usion. This trend coincides with
the experimentally found glass transition temperature of 392 K [166] where the glass gradually
transforms to a supercooled liquid. In comparing the ensembles based on the quenching rate,
the slow quenched ensembles show slightly less mobile ions. In the latter, these are likely more
favorably bound within the glass network. This also explains the observed energy stabilization of
the slow quenched ensembles (see Sec. 5.4.2). Matching the mobile ions to their average CN as
shown in Fig. 5.10 allows to estimate in which chemical environment highest ion mobility occurs.
For Li, fastest di�usion is found at a high Cl CN of 3-5 and a low O CN of 0-2 which points to the
amorphous LiCl agglomerates and its interface to the Li2O phase. A moderate di�usion is found
within the Li2O phase. These trends can be linked to the stronger binding of O, yielding a tighter
glass network with less excess volume. For Cl, no distinct correlation is seen meaning that Cl
di�uses homogeneously. This phenomenological behavior stays consistent at higher temperatures.
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Fig. 5.10: Correlation between migration and CNs for (left) Li and (right) Cl motion at 300 K. The colormap
shows the displacement of mobile ions (∆r > 2.5 Å) against the time averaged CNs.

5.5.2 Ion conductivity in Li3OCl

To estimate the ionic conductivity from the ion migration, the Einstein formulation of the charge
di�usion [96] is employed (see Sec. 3.3.1). Here, only the Li and Cl motion is taken into account.
This is due to the reason, that the negligible oxygen motion is strongly emphasized in the squared
dependence of the charge in the Einstein formulation. Considering longer simulation times, this
e�ect would disappear as the O contribution would be dwarfed by long-range di�using Li and Cl
which is for example seen at the elevated temperature of 340 K.
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Fig. 5.11: Ensemble based ion conduction properties. Ionic conductivities λ following the Einstein formula-
tion for the current [96] are shown for 300 K (top left) and 340 K (top right). (bottom left) The
corresponding Li transference numbers at 300 K (see text). (bottom right) Arrhenius relation of
the ion di�usion with the here included temperatures. The corresponding experimental data
[166] (denoted “ref. exp.”) is plotted with black crosses. Ensembles created with the fast quench
rate are shown in yellow, and at slow quench rates in blue.
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As shown in Fig. 5.11, an overall high conductivity around ≈ 2.0 mS/cm is found. This is
associated with a large uncertainty, since the di�erent glass con�gurations are subject to strongly
varying ion di�usion. This is mainly based on the irregular occurrence of Cl motion in the di�erent
con�gurations. The latter exerts a considerable in�uence on the charge transport as a moving
counter ion. At an elevated temperature of 340 K the conductivities climb to ≈ 5.0 S/cm in the slow
quenched ensembles which only deviates from the experimentally reported value of 2.1 mS/cm at
335 K [166] by roughly a factor of 2. At this elevated temperature, the fast quenched ensembles
exhibit pronounced higher conductivities in comparison to a coinciding conductivity at 300 K.
This likely points to a low-temperature liqui�cation based on the less integrated, higher energy
structure. The apparent conductivity via the temperature dependence in the Arrhenius relation
is depicted in Fig. 5.11 (bottom right). The marked experimental data (crosses) shows that a
noticeable temperature dependence can be expected. In comparing that, only an estimate can be
made based on the few temperatures treated here, where the two available temperature fronts are
separated (the linear relation between neighboring data points). These exhibit e�ective activation
barriers of 0.19 and 0.28 eV between 300-340 K and 340-400 K, respectively. The low temperature
front compares well with the experimental activation barrier of ≈ 0.21 eV. In contrast to that, at
higher temperatures the force �eld potential underestimates the energy activation barrier. This is
likely due to the constraint volume of the simulation, since the experimental high temperature
barrier is associated with a volume expansion at the glass transition.

In deducing the conduction mechanism, the Haven ratios — i.e. the relation between the tracer
di�usion and the conductivity di�usion coe�cient HR = D∗/Dσ — are determined (see section
3.3.1). Hereby, the tracer di�usion coe�cient D∗ represents the average single ion mobility in a
random walk like depiction. In comparison to that, Dσ represents a di�usion coe�cient including
any correlation and activation e�ects. As shown in Tab. 5.5 the overall HR show a values within
1.0-2.0 which points to a slower charge transport than the overall ion di�usion. Such values are
comparable to ionic liquids where a strong correlation of Brownian motion and Li hops between
solvent molecules yield complicated back correlation e�ects [96, 106]. Interestingly, the single
ion HR show values between 0.4-0.7 which point to an opposite relation: faster charge transport
than ion di�usion. This is also the relation found in conventional fast ion conducting glasses,
where HR is normally between 0.1-0.8. A higher conductivity than the actual ion di�usion results
from cooperative and collective e�ects [91, 104, 201]. The discrepancy between the overall and
single ion HR reveals the mechanistic relationships within the investigated glass. In that, ions
independently move within the instantaneous amorphous host in a glass-like collective motion.
However, the fast moving charge centers given by Li and Cl, show a coupled, parallel motion,
reducing the overall charge transport and thus yielding the high overall HR. Considering, the
decrease of the overall HR with temperature (see Tab. 5.5), it can be seen, that this coupling
disappears when approaching the glass transitions. Here, the system becomes more �uid-like
allowing for a random motion.

Tab. 5.5: Haven ratios HR = D∗/Dσ of the overall Li and Cl conductivity (full) and of the single ions at the
temperatures (T) 300, 340 and 400 K.

T full Li Cl

300 2.19 ± 0.99 0.67 ± 0.32 0.40 ± 0.35
340 1.91 ± 0.97 0.66 ± 0.36 0.52 ± 0.39
400 1.54 ± 0.87 0.59 ± 0.34 0.59 ± 0.39
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5.5.3 E�ects of the Cl mobility on the electrolyte performance

Considering the observed Cl mobility, the overall ion conductivity does not represent the e�ective
Li transport relevant for battery application. This relation in which Li ions contribute to the total
conductivity can be expressed via the transference number tx = Ix/Itot, the ratio of the current
Ix contributed by a species x to the total ion current Itot. Here, the corresponding single ion
conductivities Ix are determined from the Einstein formulation as described in Sec. 3.3.1. The
Li transference number is comparably constant for all structural ensembles with tLi ≈ 0.95 (see
Fig. 5.11). tLi directly relates the e�ective Li conductivity to the total conductivity [96] which is
therefore only slightly lowered and still yields ≈ 1.9 mS/cm at 300 K.
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one dimensional model cell (see text). (right) The current density ®J to potential U relationship
resulting from the model.

Although the observed Cl motion does not contribute to the relevant charge transport, it
nevertheless critically a�ects the operational ion current. When applying an electric �eld during
operational conditions, ions and counter ions migrate in opposite directions which leads to a
concentration polarization. Here, Cl ions accumulate at the counter electrode and bind Li ions
due to the necessity to maintain charge neutrality. Along the applied potential, the amount of
mobile Li ions decreases which lowers the power density of the material and ultimately limits to a
maximum applicable current [210].

In order to estimate this e�ect, a one dimensional cell model is employed with the following
assumptions derived from the simulations: In the electrolyte Li3OCl, each immobile O ion with a
charge of zO = −2 binds two Li ions (zCl = +1) forming a charge neutral amorphous Li2O host
network. Within this network Cl ions and Li ions di�use as a binary electrolyte (no convection).
Additionally, the di�usion coe�cients are assumed to remain constant, independent of local Cl
and Li concentration. This assumption is based on the fact that the local electrostatic e�ects are
already included in the ensemble averaged di�usion coe�cients. Secondly, due to the Li2O and
LiCl agglomerates in the glass structure, an uneven Cl / Li concentration gradient is likely along
the electrode cross section (see Fig. 5.6). Thus, a continuous phase network close to the original
composition Li3OCl throughout the material can be assumed. This would guarantee a steady
conduction according to the averaged di�usion coe�cient. Furthermore, magnetic correlation
is neglected. This yields a binary system that can be considered like a dilute electrolyte via a
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simpli�ed Nernst-Planck equation [211, 212]:

∂ci
∂t
= −Di∇2ci +

Dizie

kBT
ci∇Φ (5.1)

where ci , Di and zi are the concentration, di�usion coe�cient and charge of species i , e is the
elementary charge, kB the Boltzmann constant and T the temperature. The time dependent
di�usion thereby depends on Fick’s law of di�usion and electrostatic polarization following the
electric �eld E = −∇Φ. Under operation conditions a steady state ∂ci

∂t = 0 will be reached which
depends on the applied current I or its respective current density ®J = I/A perpendicular to the
electrode cross section A. In the steady state, the �ux of Cl ions will be zero and an equilibrating
concentration pro�le will therefore only depend on the �ux of Li ions [211]:

®J = −2zLieDLi
dC

dx
(5.2)

where dC
dx is the concentration gradient along the one dimensional cell with length 0 ≤ x ≤ L (see

a detailed derivation in the Appendix B). As input for the model serve the average Li di�usion
coe�cient DLi = 12 · 10−5 Å2ps−1 at 300 K, an equilibrium concentration C0 according to the here
determined density of 1.770 g cm−3 (see Sec. 5.3), and a cell length of 2 mm as also used in trial
cells by Braga et al. [166]. Concentration pro�les according to applied currents as shown in Fig.
5.12 are determined. The limiting current for the binary electrolyte at which the concentration of
Cl at the electrode drops to zero is found to be around 0.56 mA cm−2. The corresponding electric
�eld curves are also shown in Fig. 5.12. For the limiting current density it can be seen, that a rapid
potential drop suddently appears, representative of the interfacial resistance building up due to
the depletion of charge carriers [22].

When reaching the limiting potential in glass-amorphous Li3OCl, the material would still remain
Li conducting in contrast to the dilute binary Li-Cl electrolyte used in the model. This is due to
the persisting Li2O host network which is itself conductive. However, maintaining currents which
strongly exceed the limit current is probably di�cult. A likely unfavorable stability of the isolated
low density Li2O host network would yield a thermodynamic driving force against the complete
Cl depletion at the electrode. In overcoming the latter, induced chemical reactions would be
imaginable leading to the degradation of the electrolyte interfaces. These considerations, however,
remain speculation since experimentally probed current densities using a dilutely doped glass-
electrolyte have not yet exceeded into the limiting regime. For example, in the above mentioned
cell, maximum current densities have only been probed until 0.1 mA cm−2 [166]. Nevertheless, for
practical high power applications where current densities of 10 mA cm−2 are necessary [22], the
concentration polarization may become performance limiting. Here, the according e�ect would
have to be countered by using thin electrolytes. Following the relations from the one dimensional
model, these would need to be in the range of 10-100 µm. As reported in [172], such thicknesses
are realizable for this material.

5.6 Sensitivity to the force field potential

As discussed in Sec. 2.2 and 5.3 force �eld potentials are expected to be sensitive towards the
employed parameters. Most of the trial parameter sets tested in this work which are derived from
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the �nal training set show, however, a similar microscopic behavior as described above. Never-
theless, some earlier potentials not subject to a comprehensive training set, di�er substantially
in their phenomenological behavior. An interesting example shows overbinding between Li-Cl
that leads to strong agglomeration towards phase separated LiO2 and LiCl. Thus, the resulting
macroscopic material resembles more a glass-ceramic than a homogeneous glass. Although this
e�ect originates in a strong overestimation of the stability of this phase separation and is therefore
chemically inaccurate, the resulting ensembles are worthwhile for a discussion.
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Fig. 5.13: Structure properties of the quenched glass ensembles for an alternative force �eld potential at
300 K. (top left) All-ion (top right) Cl-Li and (middle left) O-Li RDFs g(r) averaged for the di�erent
volumes. (middle right) Ensemble averaged histogram of the time averaged O-Li and Cl-Li CNs
within a cuto� of 2.5 Å and 3.5 Å, respectively. Ensembles created with the fast quench rate are
shown in yellow, and at slow quench rates in blue. The averaged RDFs and CNs are additionally
depicted with lighter colors for smaller volumes. (bottom) Exemplary glass structures resulting
from a fast (left) and slow quench (right) of the same seed. Li is depicted in blue, O-Li and Cl-Li
coordination polygons are depicted in red and green, respectively.

The respective force �eld potential gives similar quench rate and volume dependencies on
the energies as the force �eld potential in the preceding chapter. However, the quench rate
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dependent structure ensembles di�er noticeable as shown in Fig. 5.13. Here, the RDFs of the
fast and slow quenched ensembles are well distinguishable. While the Li-O RDF is only subject
to slight deviation in the short-range ordering, the Cl-Li RDF shows a fundamentally di�erent
shape depending on the quench rate. In that, the slow quenched ensembles have a particularly
long-range order, which decorrelates only around 12 Å. In the corresponding CN plots, this can be
recognized in a large share of octahedrally coordinated Cl ions. As exemplarily shown in Fig. 5.13,
these originate in the formation of LiCl crystallites. In contrast to this, the fast quenched structures
do not show such crystallization, but are still subject to a phase separation of an amorphous LiO2
and LiCl phase. It should be noted, that these crystallites are unlikely present in the experimental
glass-amorphous Li3OCl since no evidence can be found in respective XRD spectra [166]. In the
latter, crystallites would usually be identi�able as it is known from other glass-ceramics [213–215].
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Fig. 5.14: Ensemble based ion conduction properties for an alternative force �eld potential at 300 K. (left)
Ionic conductivity λ following the Einstein formulation for the current [96] at 300 K. (right)
Ensemble based Haven ratios at 300 K. Ensembles created with the fast quench rate are shown in
yellow, and at slow quench rates in blue.

Curiously, the ion mobility in these phase separated structures exhibits comparable behavior to
the more accurate force �eld potential described in the preceding sections. In that, Li ions show a
reduced di�usion coe�cient. On the one hand, this is based on an inherently slower movement
and on the other on a smaller number of ions participating in di�usion. Despite the stronger
binding of Cl, it still exhibits motion to the same extent. The resulting conductivity is only slightly
underestimating the experimental values as shown in Fig. 5.14. Additionally, the lower Haven
ratios indicate a less coupled charge transport based on the more isolated ion di�usion events
mostly concentrated at the interphase between Li2O and LiCl. Here, the relation between Li and
Cl yields a transference number tLi of ≈ 0.8.

In conclusion, it can be seen that this alternative force �eld potential describes a mesoscopically
di�erent material. Despite this, the same macroscopic key characteristics as exhibited by the
previously described force �eld are found with almost quantitative comparability. This underscores
the observed insights about the macroscopic ion mobility in Sec. 5.5 for this highly unusual material
and puts any inaccuracies resulting from an insu�cient parameterization into perspective.

5.7 Conclusion and Summary

In this chapter, the glass-amorphous Li3OCl has been investigated with a focus on its performance
as a solid state electrolyte in Li ion battery applications. Using atomistic simulations, the mi-
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croscopic structure and ion mobility are analyzed. The claimed extraordinary ion conductivity
[166, 172, 174] is con�rmed. Thus, any deceptive charge transport from side products of the
glass synthesis procedure, like remaining water, can be excluded as a sole reason for the high
conductivity. A surprising �nding is the mobility of Cl ions which leads to an involved conduction
mechanism. Here, a coupled Li and Cl motion is observed whereby each individual ion species
is subject to collective di�usion. While the latter is a typical mechanism found in glasses, the
former resembles more the conduction within an ionic liquid. Due to the motion of both Li and Cl
a concentration polarization can be expected which will likely lead to a limited current/power per-
formance of the electrolyte. This can only be overcome by using electrolytes of reduced thickness,
hereby determined in the 10-100 µm range for high power applications. It should be noted that
the here investigated pure Li3OCl is not considered for battery applications but rather its dilutely
doped variants. These exhibit slightly higher conductivity and a profoundly reduced temperature
dependence with an activation energy of only 0.06-0.13 eV [166, 174]. From an atomistic point of
view, the dopants might promote a less rigid glass structure otherwise encountered only at higher
temperatures. Thus, it is likely that these would exhibit the here obtained picture with a di�erent
temperature relation.

The current data leaves some uncertainty. In that, the glass appears mechanically very soft
from the computed shear viscosity. The latter is based on very approximate calculations which
can only determine a lower bound. Additionally, the characteristics of the ion motion exhibit some
�uid like behavior. This is not untypical for a glass, and likely pronounced based on the specialties
of this material. Overall, further con�rmation is necessary, in order to ensure the computational
model to depict a glass and not its supercooled liquid counterpart.

The methodological e�ort of this work is founded in the force �eld parameterization and the
combination of an involved analysis to deduce atomistic and microscopic behavior in detail. For
the former a well-working strategy has been developed yielding an accurate potential, able of
a precise reproduction of DFT level interactions. The high quality predictive capability of the
parameterized potential has thereby been con�rmed in an extensive validation. The ionic di�usion
and conductivity is evaluated thoroughly using methods from statistical mechanics as more closely
presented in Sec. 3.3. In order to dismantle di�erent characteristics hidden in the chaotic ion
motion in this highly disordered material, these methods present a superior approach.
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6 Summary, Conclusions and Outlook

Computer simulations have been playing an important role in driving the research of battery
materials over the last decades. A plethora of computational studies, typically based on density
functional theory (DFT), have been most illuminating. These aim at the prediction of material
performance in terms of structure-property relations [3, 4, 24] or the deduction of guidelines for
the rational design of new compounds [4–8, 26]. However, the rather small DFT model systems
that are computationally tractable with present day resources represent a severe limitation. They
unavoidably fail to capture the considerable structural disorder that is often present in such
materials. Notwithstanding, this aspect may have a crucial impact on operative kinetic processes
such as macroscopic ion transport, and hence also on battery performance.

The main challenge in capturing structural disorder in corresponding theoretical models is
the inclusion of con�gurational entropy. This relates directly to the simulated structures, both
in terms of size (i.e. number of atoms) and phase-space sampling. The latter calls for addressing
not only the most stable structure (or structures), but an entire thermal ensemble of potentially
representative con�gurations. Considering also the large simulation sizes that are required, this
translates to an extensive combinatorial problem. The latter encompasses an almost staggering
amount of possibilities for the atomic degrees of freedom (DOF) — the full representation of which
is far from trivial.

This thesis strategically combined a unique set of methodological tools and sampling techniques
to explore the vast con�gurational space of battery materials. In order to access macroscopic
length and time scales, while retaining all atomic DOFs, force �eld potentials were employed.
These enable the explicit computation of large system sizes due to their advantageous numerical
e�ciency as compared to ab initio methods. The force �elds were parameterized and/or validated
against DFT to ensure that they provide a faithful representation of the underlying chemical
interactions. On this basis, extensive statistical sampling was conducted which showed that the full
�exibility of the atomic DOFs is absolutely necessary for describing the disorder and its in�uence
on transport phenomena. This revealed unprecedented insight into disorder-induced implications
to battery performance. The latter were showcased for two systems of great technological value,
namely the anode material Li4Ti5O12 (LTO) and the glass-amorphous Li3OCl solid-state electrolyte.

In a �rst application to LTO (described in chapter 4 and published in Ref. [1]), Monte-Carlo (MC)
sampling showed that low-energy structures are characterized by a high degree of microscopic
inhomogeneity. Facilitated by the latter, novel disorder-stabilized Ti16c antisite defects were
discovered. As observed in molecular dynamics (MD) simulations, these promote a localized
mobility that follows correlated di�usion. On this basis, a cascade-like mechanism was proposed
which elucidates the formation of Li percolation channels during the Li intercalation process
[137]. Consequentially, this explained the surge in Li ion conductivity upon Li insertion that
has been measured experimentally [129, 130]. This disorder-induced mesoscopic ion transport
mechanism fundamentally di�ers from the usually assumed bulk vacancy di�usion [16] and �nally
rationalizes the exceptional rate capabilities of LTO in battery applications.

The glass-amorphous Li3OCl solid-state electrolyte [166, 172, 174] (described in chapter 5) was
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investigated in a second application. This material presents a special ion conducting glass since Li
is the sole cation and thus simultaneously forms the host structure and acts as a charge carrier. MD
simulations in structural ensembles revealed that not only Li but also Cl di�usion occurs as a likely
result from this rather unusual composition. Individually, each ion species exhibited a di�usion
mechanism typical for ion conducting glasses [16, 104, 163, 164]. However, their combination
resulted in a coupled Li/Cl migration that ultimately changes the perceived conductivity. This
mechanism suggests that Li di�usion is considerably higher, thereby rationalizing ion conductivi-
ties that have been reported experimentally [166]. In contrast, the observed Cl mobility likely
in�uences the performance in a battery application through concentration polarization e�ects.
Resulting limiting currents were thereby estimated. In light of these, a maximum electrolyte
thickness of 10-100 µm was predicted for practical high-power battery applications.

This work overall underscores the importance of microscopic disorder to determine fundamental
material properties and processes that are crucial to the operating performance in a battery. Such
e�ects may only be illuminated from a multi-scale modeling approach, that allows for accurately
bridging the gap between the micro- and mesoscale. The hereby presented strategy is uniquely
set apart from commonly applied procedures which are unable to retain a high degree of atomistic
detail when moving towards larger scales [2, 3, 9, 24]. Relying on large-scale simulations and
extensive statistical sampling, this thesis thus o�ers a most detailed representation of ion mobility.
This rationalizes experimental conductivities for two representative systems that lie at the frontier
of battery research. It is reasonable to expect that much of the hereby derived physical insight
extends also to other applications of con�gurationally disordered compounds. Ultimately, this
opens the road towards a deeper understanding of transport phenomena in general. This in turn,
helps to guide future e�orts in designing the next-generation materials for electrochemical energy
storage.

Notably, the devised methodology establishes a protocol that can be applied beyond a particular
class of force �elds. In this thesis, the latter are speci�cally based on the Born model of solids.
While demonstrating su�cient accuracy for the presented purposes, these cannot depict the full
chemical picture when e.g. involving atoms of mixed valence states. Therefore, the application
of extended charge transfer force �elds represents the obvious next step forward. These can
describe varying oxidation states and hence electron transport processes. In this respect, a suitable
candidate is the recent embedded-ion method (EIM) by Zhou et al. [216, 217]. This many-body
potential was developed based on a charge-modi�ed version of the modi�ed embedded atom
method (MEAM) [218–220]. Here, to ensure charge neutrality, the charges are determined from
an embedded background potential rather than an explicit optimization procedure. While thus
promising improved performance, this potential also follows excellent energy conservation during
MD simulations. It is therefore rendered particularly suitable for the computational strategies
proposed in this thesis. Ultimately, this will allow for investigating electron conduction that
occurs alongside ion transport — an aspect that is particularly relevant during Li intercalation.
Furthermore, it will enable the accurate description of unsaturated ions that appear at grain
boundaries and interfaces [9, 25, 68, 151]. Finally, applications are envisioned that will also extend
to metals and semiconducting materials. Especially in the case of the latter, the inclusion of slow
electron transport via polaron hopping is crucial to the accurate description of ion di�usion since
these processes occur on the same time scale [9].

92



Acknowledgments / Danksagung

First and foremost I would like to thank Prof. Dr. Karsten Reuter for the support and guidance
during my time as a PhD student. My gratitude not only encompasses the scienti�c or strategic
advice but also the many opportunities to look beyond the scope of the PhD thesis. Especially,
the numerous visits to conferences as well as to collaborators in Jülich, Mülheim, and Stanford
university need to be pointed out. Additionally, I would like to thank for the extended research
visit at SLAC, Stanford university from which I gained scienti�cally as well as personally.

Likewise, I would like to thank my supervisor and mentor Dr. Christoph Schuerer for his
e�ortless support. His ingenious scienti�c and technical input was invaluable for the progress of
my projects. I would also like to thank him for the freedom and leeway he allowed for. In that, I
certainly had much opportunity to explore new techniques and gain a broader background.

Also, I would like to thank Prof. Dr. Alan Luntz and Dr. Johannes Voss for mentoring me and
their scienti�c guidance during my research visit at SLAC, Stanford university. Especially the
time invested in lengthy scienti�c discussions was invaluable and illuminating.

I also owe my gratitude to many others which helped me in valuable discussions. Here I would
like to point out Dr. Harald Oberhofer, Dr. Simon Rittmeyer, and Simone Swantje Köcher. I would
also like to acknowledge the IT-team: Georg Michelitsch, Matthias Kick, David Egger, Christoph
Schober, Christoph Muschielok, Juan Lorenzi and Christian Kunkel for all their support and for
their friendship. Following up, much appreciation goes to the rest of the group, the old and the
new members, for an incredibly pleasant atmosphere during my time there.

Besides the theory group I would like to thank my friends here in Munich and Cologne who
showed great understanding for my no-shows in times of stress. I would like to express my deepest
appreciation to my girlfriend Vanessa who always reassures me in times of self-doubt and showed
great support, patience and love. Finally, I would like to thank my parents who always give their
unconditional support and have helped me in every conceivable way. Without their care and their
love, this journey would have been much bumpier if not impossible.

Garching, June, 2018

93





Bibliography

[1] H. Heenen, C. Scheurer, and K. Reuter, Nano Lett. 17, 3884 (2017) (cit. on pp. i, iii, v, 29, 36,
43, 44, 48–51, 53, 55, 59, 91).

[2] A. Van der Ven, G. Ceder, M. Asta, and P. Tepesch, Phys. Rev. B: Condens. Matter Mater.
Phys. 64, 184307 (2001) (cit. on pp. iii, v, 2, 34, 35, 38, 43, 44, 52, 58, 61, 92).

[3] Y. Meng and M. Dompablo, Energy Environ. Sci. 2, 589 (2009) (cit. on pp. iii, v, 1, 2, 35, 38,
39, 91, 92).

[4] A. Urban, D.-H. Seo, and G. Ceder, NJP Comput. Mater. 2, 16002 (2016) (cit. on pp. iii, v, 2,
91).

[5] S. Kirklin, B. Meredig, and C. Wolverton, Adv. Energy Mater. 3, 252 (2013) (cit. on pp. iii, v,
2, 91).

[6] R. Muller and P. Schultz, Modelling Simul. Mater. Sci. Eng. 21, 070301 (2012) (cit. on pp. iii,
v, 2, 91).

[7] Y. Wang, W. Richards, S. Ong, L. Miara, J. Kim, Y. Mo, and G. Ceder, Nat. Mater. 14, 1026
(2015) (cit. on pp. iii, v, 2, 35, 91).

[8] G. Hautier, AIP Conference Proceedings 1765, 020009 (2016) (cit. on pp. iii, v, 2, 91).
[9] A. Van der Ven, J. Bhattacharya, and A. A. Belak, Accounts Chem. Res. 46, 1216 (2013)

(cit. on pp. iii, v, 1, 2, 34, 35, 38, 43, 44, 54, 58, 61, 92).
[10] A. Urban, J. Lee, and G. Ceder, Adv. Energy Mater. 4, 1400478 (2014) (cit. on pp. iii, v, 43,

44).
[11] B. Ziebarth, M. Klinsmann, T. Eckl, and C. Elsaesser, Phys. Rev. B: Condens. Matter Mater.

Phys. 89, 174301 (2014) (cit. on pp. v, 43, 44, 48, 51, 54, 57, 58).
[12] V. Weber, T. Laino, A. Curioni, T. Eckl, C. Engel, J. Kasemchainan, and N. Salingue, J. Phys.

Chem. C 119, 9681 (2015) (cit. on pp. v, 43, 44, 54, 58).
[13] R. Levy, Microelectronic materials and processes, 1st (Kluwer Academic, Dordrecht, 1989)

(cit. on p. 1).
[14] J. Choi, X. Yang, Z. Norman, S. Billinge, and J. Owen, Nano Lett. 14, 127 (2014) (cit. on p. 1).
[15] W. Callister, Materials science and engineering: an introduction, 7th (John Wiley & Sons,

New York, 2007) (cit. on p. 1).
[16] H. Mehrer, in Di�usion in solids (Springer, 2007) (cit. on pp. 1, 30, 31, 33, 35–38, 43, 44, 55,

57, 61, 80, 91, 92).
[17] B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010) (cit. on p. 1).
[18] M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari, Chem. Rev. 113, 5364 (2013) (cit. on

pp. 1, 43, 51).

95

http://dx.doi.org/10.1021/acs.nanolett.7b01400
http://dx.doi.org/10.1103/PhysRevB.64.184307
http://dx.doi.org/10.1103/PhysRevB.64.184307
http://dx.doi.org/10.1039/B901825E
http://dx.doi.org/10.1038/npjcompumats.2016.2
http://dx.doi.org/10.1002/aenm.201200593
http://dx.doi.org/10.1088/0965-0393/21/7/070301
http://dx.doi.org/10.1038/NMAT4369
http://dx.doi.org/10.1038/NMAT4369
http://dx.doi.org/10.1063/1.4961901
http://dx.doi.org/10.1021/ar200329r
http://dx.doi.org/10.1002/aenm.201400478
http://dx.doi.org/10.1103/PhysRevB.89.174301
http://dx.doi.org/10.1103/PhysRevB.89.174301
http://dx.doi.org/10.1021/jp5105455
http://dx.doi.org/10.1021/jp5105455
http://dx.doi.org/10.1021/nl403514x
http://dx.doi.org/10.1016/j.jpowsour.2009.11.048
http://dx.doi.org/10.1021/cr3001884


[19] N. Nitta, F. Wu, J. Lee, and G. Yushin, Mater. Today 18, 252 (2015) (cit. on p. 1).
[20] H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A.

Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, and J. Janek, Phys. Chem. Chem.
Phys. 13, 19378 (2011) (cit. on p. 1).

[21] O. Bohnke, Solid State Ion. 179, 9 (2008) (cit. on p. 1).
[22] A. C. Luntz, J. Voss, and K. Reuter, J. Phys. Chem. Lett. 6, 4599 (2015) (cit. on pp. 1, 38, 86).
[23] I.-H. Iek-Heng Chu, H. Nguyen, S. Hy, Y.-C. Lin, Z. Wang, Z. Xu, Z. Deng, Y. Meng, and

S. Ong, Appl. Mater. Interfaces 8, 7843 (2016) (cit. on p. 1).
[24] M. S. Islam and C. A. J. Fisher, Chem. Soc. Rev. 43, 185 (2014) (cit. on pp. 2, 9, 38, 39, 66, 91,

92).
[25] N. G. Hörmann, M. Jäckle, F. Gossenberger, T. Roman, K. Forster-Tonigold, M. Naderian,

S. Sakong, and A. Groß, J. Power Sources 275, 531 (2015) (cit. on pp. 2, 43, 92).
[26] B. Kozinsky, S. Akhade, P. Hirel, A. Hashibon, C. Elsässer, P. Mehta, A. Logeat, and U.

Eisele, Phys. Rev. Lett. 116, 055901 (2016) (cit. on pp. 2, 38, 91).
[27] F. Jensen, Introduction of Computational Chemistry, second (John Wiley & Sons, Chichester,

2007) (cit. on pp. 2, 5, 7, 8, 19, 71).
[28] M. Allen and D. Tildesley, in Computer simulations of liquids (Akademic Press, 1987) (cit. on

pp. 2, 12–16, 19, 30, 31, 41, 42, 65).
[29] D. Frenkel and B. Smit, in Understanding molecular simulation: from algorithms to applica-

tions (Akademic Press, 1996) (cit. on pp. 2, 8, 11–15, 27, 28, 30, 31, 33, 41, 51, 57).
[30] W. J. Hehre, A Guide to Molecular Mechanics and Quantum Chemical Calculations (Wave-

function, Inc., 2003) (cit. on p. 2).
[31] C. J. Cramer, Essentials of Computational Chemistry, second (John Wiley & Sons, 2004)

(cit. on pp. 2, 5, 7, 8).
[32] J. Bhattacharya and A. Van der Ven, Phys. Rev. B: Condens. Matter Mater. Phys. 81, 104304

(2010) (cit. on pp. 2, 44).
[33] V. Diwakar, S. Harinipriya, and V. Subramanian, in Theory and experiment in electrocatalysis

(Springer, 2010), pp. 315–349 (cit. on p. 3).
[34] S. J. Plimpton and A. P. Thompson, MRS Bulletin 37, 513 (2012) (cit. on pp. 3, 7, 8, 66).
[35] A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic

Structure Theory, �rst (Dover Publications, Mineola, 1989) (cit. on pp. 5–7).
[36] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) (cit. on p. 6).
[37] A. Becke, J. Phys. Chem. 140, 18A301 (2014) (cit. on p. 7).
[38] J. Hill, C. Freeman, and L. Subramanian, in Reviews in computational chemistry (Wiley-VCH,

Inc., 2007) (cit. on pp. 8, 9, 19, 38, 67).
[39] M. Born and K. Huang, in Dynamical theory of crystal lattices (Oxford University Press,

Oxford, UK, 1954) (cit. on pp. 8, 45, 66, 67, 72).
[40] M. Daw and M. Baskes, Phys. Rev. Lett. 50, 1285 (1983) (cit. on p. 8).
[41] M. Daw and M. Baskes, Phys. Rev. B 29, 6443 (1984) (cit. on p. 8).

96

http://dx.doi.org/10.1016/j.mattod.2014.10.040
http://dx.doi.org/10.1039/c1cp22108f
http://dx.doi.org/10.1039/c1cp22108f
http://dx.doi.org/10.1016/j.ssi.2007.12.022
http://dx.doi.org/10.1021/acs.jpclett.5b02352
http://dx.doi.org/10.1021/acsami.6b00833
http://dx.doi.org/10.1039/C3CS60199D
http://dx.doi.org/10.1103/PhysRevLett.116.055901
http://dx.doi.org/10.1063/1.881812 Publisher
http://dx.doi.org/10.1063/1.881812 Publisher
http://dx.doi.org/10.1103/PhysRevB.81.104304
http://dx.doi.org/10.1103/PhysRevB.81.104304
http://dx.doi.org/10.1557/mrs.2012.96
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1063/1.4869598
http://dx.doi.org/10.1002/9780470125939
http://dx.doi.org/http://dx.doi.org/10.1016/S0069-8040(08)70099-2
http://dx.doi.org/10.1103/PhysRevLett.50.1285
http://dx.doi.org/10.1103/PhysRevB.29.6443


[42] M. Baskes, Phys. Rev. Lett. 59, 2666 (1987) (cit. on p. 8).
[43] J. Terso�, Phys. Rev. B 37, 6991 (1988) (cit. on p. 8).
[44] D. Pettifor and I. Oleinik, Phys. Rev. B 59, 8487 (1999) (cit. on p. 8).
[45] A. van Duin, S. Dasgupta, F. Lorant, and W. Goddard, J. Phys. Chem. A 105, 9396 (2001)

(cit. on p. 8).
[46] J. Yu, S. Sinnott, and S. Phillpot, Phys. Rev. B 75, 085311 (2007) (cit. on p. 8).
[47] A. Toukmaji and J. Board, Comput. Phys. Commun. 95, 73 (1996) (cit. on p. 8).
[48] E. Pollock and J. Glosli, Comput. Phys. Commun. 95, 93 (1996) (cit. on p. 8).
[49] C. Catlow, Computer modelling in inorganic crystallography (Academic Press, San Diego,

1997) (cit. on p. 9).
[50] A. Sokol and C. Catlow, Computational methods for energy materials (John Wiley & Sons,

Ltd, 2013) (cit. on p. 9).
[51] B. Szigeti, Proc. Roy. Soc. 204, 51 (1950) (cit. on p. 9).
[52] C. Catlow and W. Mackrodt, Computer simulation of solids (Springer, 1982) (cit. on pp. 9,

10, 19, 25, 66, 69).
[53] P. J. Mitchell and D. Fincham, J. Phys: Condens. Matter 5, 1031 (1993) (cit. on pp. 9, 15, 16,

47, 65).
[54] B. Dick and W. Overhauser, Phys. Rev. 112, 90 (1958) (cit. on pp. 9, 10).
[55] R. Sternheimer, Phys. Rev. 96, 951 (1954) (cit. on p. 9).
[56] R. Sternheimer, Phys. Rev. 107, 1565 (1957) (cit. on p. 9).
[57] G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys. 126, 014101 (2007) (cit. on p. 11).
[58] S. Plimpton, App. Math. Sci. 117, 1 (1995) (cit. on pp. 12, 14, 17, 21, 45, 65).
[59] P. Lindan and M. Gillan, J. Phys: Condens. Matter 5, 1019 (1993) (cit. on pp. 15, 16).
[60] W. Smith, C. Yong, and P. Rodger, Mol. Simulat. 28, 385 (2002) (cit. on p. 16).
[61] J. Gale and A. Rohl, Mol. Simulat. 29, 291 (2003) (cit. on pp. 16, 39).
[62] D. Fincham, W. Mackrodt, and P. Mitchell, J. Phys: Condens. Matter 6, 393 (1994) (cit. on

p. 17).
[63] J. Gale, Philos. Mag. B 73, 3 (1996) (cit. on pp. 19, 25).
[64] P. Brommer, A. Kiselev, D. Schopf, P. Beck, J. Roth, and H.-R. Trebin, Modelling Simul.

Mater. Sci. Eng. 23, 074002 (2015) (cit. on pp. 19, 20, 22).
[65] P. Tangney and S. Scandolo, J. Chem. Phys. 117, 8898 (2002) (cit. on pp. 20, 21, 66, 67).
[66] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J. Friis,

M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J. Kermode,
J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson, T. Maxson,
T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M. Strange, K. S.
Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen, J. Phys: Condens.
Matter 29, 273002 (2017) (cit. on pp. 21, 45, 65).

[67] R. Storn and K. Price, J. Glob. Optim. 11, 341 (1997) (cit. on p. 22).

97

http://dx.doi.org/10.1103/PhysRevLett.59.2666
http://dx.doi.org/10.1103/PhysRevB.37.6991
http://dx.doi.org/10.1103/PhysRevB.59.8487
http://dx.doi.org/10.1021/jp004368u
http://dx.doi.org/10.1103/PhysRevB.75.085311
http://dx.doi.org/10.1016/0010-4655(96)00016-1
http://dx.doi.org/10.1016/0010-4655(96)00043-4
http://dx.doi.org/10.1098/rspa.1950.0161
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRev.112.90
http://dx.doi.org/10.1103/PhysRev.96.951
http://dx.doi.org/10.1103/PhysRev.107.1565
http://dx.doi.org/10.1063/1.2408420
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1088/0953-8984/5/8/005
http://dx.doi.org/10.1080/08927020290018769
http://dx.doi.org/10.1080/0892702031000104887
http://dx.doi.org/10.1088/0953-8984/6/2/011
http://dx.doi.org/10.1080/13642819608239107
http://dx.doi.org/10.1088/0965-0393/23/7/074002
http://dx.doi.org/10.1088/0965-0393/23/7/074002
http://dx.doi.org/10.1063/1.1513312
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/10.1023/A:100820282


[68] S. Kerisit, N. A. Deskins, K. M. Rosso, and M. Dupuis, J. Phys. Chem. C 112, 7678 (2008)
(cit. on pp. 22, 25, 48, 92).

[69] A. Garrett, Inspyred: bio-inspired algorithms in python, version 1.0 (cit. on pp. 22, 65).
[70] J. Kennedy and R. Eberhart, Proc. IEEE International Conf. on Neural Networks 1, 1942

(1995) (cit. on pp. 22, 23).
[71] E. Jones, T. Oliphant, and P. Peterson, SciPy: open source scienti�c tools for Python, ver-

sion 0.19.1 (cit. on pp. 22, 65).
[72] R. Hassan, C. B., O. de Weck, and G. Venter, 46th AIAA/ASME/ASCE/AHS/ASC Structures,

Structural Dynamics and Materials Conference 2, 1 (2015) (cit. on pp. 23, 24).
[73] S. Wengert, “Validation of a Polarizable Atomistic Force Field for the Solid State Ion

Conductor LATP,” Master thesis (Technische Universität München, 2018) (cit. on p. 23).
[74] M. Sangster, G. Peckham, and D. Saunderson, J. Phys. C: Solid State Phys. 3, 1026 (1970)

(cit. on p. 25).
[75] F. Holka, M. Urban, P. Neogrády, and J. Paldus, J. Chem. Phys. 141, 214303 (2014) (cit. on

pp. 25, 71).
[76] R. Mouta, M. Melo, E. Diniz, and C. Paschoal, Chem. Mater. 26, 7137 (2014) (cit. on pp. 25,

66–69, 72, 73).
[77] D. Frenkel, in Introduction to Monte-Carlo methods, Vol. 23 (John von Neumann Institute

for Computing, Jülich, NIC Series, 2004), pp. 29–60 (cit. on pp. 26, 27).
[78] L. Reichl, A Modern Course in Statistical Physics, 2nd (John Wiley & Sons, 2004) (cit. on

p. 26).
[79] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys. 21,

1087 (1953) (cit. on p. 26).
[80] D. Earl and M. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005) (cit. on pp. 27, 28).
[81] A. Malakis and T. Papakonstantinou, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.

Interdiscip. Top. 88, 013312 (2013) (cit. on p. 27).
[82] F. Wang and D. Landau, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.

64, 056101 (2001) (cit. on pp. 28, 29, 46, 51).
[83] B. Schulz, K. Binder, M. Mueller, and D. Landau, Phys. Rev. E: Stat. Phys., Plasmas, Fluids,

Relat. Interdiscip. Top. 67, 067102 (2003) (cit. on pp. 28, 29, 46, 51).
[84] D. Landau, S.-H. Tsai, and M. Exler, Am. J. Phys. 72, 1294 (2004) (cit. on pp. 28, 29, 46, 51).
[85] R. Belardinelli and V. Pereyry, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip.

Top. 75, 046701 (2007) (cit. on pp. 28, 29, 46, 51).
[86] D. Landau and K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics, 3rd

(Cambridge University Press, 2009) (cit. on p. 28).
[87] T. Vogel, Y. Li, T. Wuest, and D. Landau, Phys. Rev. Lett. 110, 210603 (2013) (cit. on pp. 28,

29, 51).
[88] R. Belardinelli and V. Pereyry, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip.

Top. 93, 053306 (2016) (cit. on pp. 28, 29, 46, 51).

98

http://dx.doi.org/10.1021/jp8007865
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.2514/6.2005-1897
http://dx.doi.org/10.2514/6.2005-1897
http://dx.doi.org/10.1088/0022-3719/3/5/017
http://dx.doi.org/10.1063/1.4902353
http://dx.doi.org/10.1021/cm503717e
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1039/B509983H
http://dx.doi.org/10.1103/PhysRevE.88.013312
http://dx.doi.org/10.1103/PhysRevE.88.013312
http://dx.doi.org/10.1103/PhysRevE.64.0461XX
http://dx.doi.org/10.1103/PhysRevE.64.0461XX
http://dx.doi.org/10.1103/PhysRevE.67.067102
http://dx.doi.org/10.1103/PhysRevE.67.067102
http://dx.doi.org/10.1119/1.1707017
http://dx.doi.org/10.1103/PhysRevE.75.046701
http://dx.doi.org/10.1103/PhysRevE.75.046701
http://dx.doi.org/10.1103/PhysRevLett.110.210603
http://dx.doi.org/10.1103/PhysRevE.93.053306
http://dx.doi.org/10.1103/PhysRevE.93.053306


[89] A. Tröster and C. Dellago, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
71, 066705 (2005) (cit. on p. 29).

[90] H. Flyvbjerg and H. Petersen, J. Chem. Phys. 91, 461 (1989) (cit. on pp. 31, 80).
[91] G. Murch, Solid State Ion. 7, 177 (1982) (cit. on pp. 31, 37, 80, 84).
[92] A. Kinaci, J. Haskins, and T. Çağin, J. Chem. Phys. 137, 014106 (2012) (cit. on pp. 32, 41, 79).
[93] J. Kärger, D. M. Ruthven, and D. N. Theodorou, Di�usion in nanoporous materials (Wiley-

VCH, 2012) (cit. on pp. 32, 57, 58).
[94] M. Kowsari, S. Alavi, B. Naja�, K. Gholizadeh, E. Dehghanpishehd, and F. Ranjbar, Phys.

Chem. Chem. Phys. 13, 8826 (2011) (cit. on pp. 33, 34).
[95] A. Marcolongo and N. Marzari, Phys. Rev. Materials 1, 025402 (2017) (cit. on pp. 33, 34).
[96] J. Haskins, W. Bennett, J. Wu, D. Hernańdez, O. Borodin, J. Monk, C. Bauschlicher Jr., and

J. Lawson, J. Chem. Phys. B 118, 11295 (2014) (cit. on pp. 33, 38, 83–85, 88).
[97] D. Stein and F. Spera, Am. Mineral. 80, 417 (1995) (cit. on p. 34).
[98] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys. 113, 9901 (2000) (cit. on

p. 35).
[99] G. Henkelman and H. Jónsson, J. Chem. Phys. 113, 9978 (2000) (cit. on p. 35).

[100] C. Schuette, F. Noe, J. Lu, M. Sarich, and E. Vanden-Eijnden, J. Chem. Phys. 19, 134 (2011)
(cit. on pp. 35, 47).

[101] M. Sarich, R. Banisch, C. Hartmann, and C. Schuette, ZIB-Report, 0 (2013) (cit. on pp. 35,
47).

[102] M. Vogel, Phys. Rev. B: Condens. Matter Mater. Phys. 70, 094302 (2004) (cit. on p. 35).
[103] N. J. J. de Klerk and M. Wagemaker, Chem. Mater. 28, 3122 (2016) (cit. on p. 35).
[104] J. Isard, J. Non-Cryst. Solids 246, 16026 (1999) (cit. on pp. 36–38, 63, 80, 84, 92).
[105] G. Murch and R. Thorn, Philos. Mag. 39, 673 (1979) (cit. on p. 37).
[106] F. T., M. Kunze, M. Schönho�, J. Sundermeyer, and B. Roling, J. Phys. Chem. B 112, 12985

(2008) (cit. on pp. 38, 84).
[107] M. Islam, D. Driscoll, C. Fisher, and P. Slater, Chem. Mater. 17, 5085 (2005) (cit. on p. 38).
[108] R. Malik, D. Burch, M. Bazant, and G. Ceder, Nano Lett. 10, 4123 (2010) (cit. on p. 38).
[109] S. Adams and R. Rao, Solid State Ion. 184, 57 (2011) (cit. on p. 38).
[110] C. Tealdi, C. Sprea�co, and P. Mustarelli, J. Mater. Chem. 22, 24870 (2012) (cit. on p. 38).
[111] X. He, Y. Zhu, and Y. Mo, Nat. Commun. 8, 15893 (2017) (cit. on pp. 38, 61).
[112] Y. Zhu, X. He, and Y. Mo, ACS Appl. Mater. Interfaces 7, 23685 (2015) (cit. on p. 38).
[113] N. Mott and M. Littleton, Trans. Faraday Soc. 34, 485 (1938) (cit. on p. 38).
[114] A. Lidiard, J. Chem. Soc., Faraday Trans. 2 85, 341 (1989) (cit. on p. 38).
[115] J. Harding, J. Chem. Soc., Faraday Trans. 2 85, 351 (1989) (cit. on p. 39).
[116] C. Catlow, J. Chem. Soc., Faraday Trans. 2 85, 335 (1989) (cit. on p. 39).
[117] J. Maier and R. Amin, J. Electrochem. Soc. 155, A339 (2008) (cit. on p. 39).

99

http://dx.doi.org/10.1103/PhysRevE.71.066705
http://dx.doi.org/10.1103/PhysRevE.71.066705
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1016/0167-2738(82)90050-9
http://dx.doi.org/10.1063/1.4731450
http://dx.doi.org/10.1039/c0cp02581j
http://dx.doi.org/10.1039/c0cp02581j
http://dx.doi.org/10.1103/PhysRevMaterials.1.025402
http://dx.doi.org/10.1021/jp5061705
http://dx.doi.org/10.2138/am-1995-5-602
http://dx.doi.org/10.1063/1.1329672
http://dx.doi.org/10.1063/1.1323224
http://dx.doi.org/10.1103/PhysRevB.70.094302
http://dx.doi.org/10.1021/acs.chemmater.6b00698
http://dx.doi.org/10.1016/S0022-3093(99)00036-8
http://dx.doi.org/10.1080/01418617908239297
http://dx.doi.org/10.1021/jp804097j
http://dx.doi.org/10.1021/jp804097j
http://dx.doi.org/10.1021/cm050999v
http://dx.doi.org/10.1021/nl1023595
http://dx.doi.org/10.1016/j.ssi.2010.09.011
http://dx.doi.org/10.1039/C2JM35585J
http://dx.doi.org/10.1038/ncomms15893
http://dx.doi.org/10.1021/acsami.5b07517
http://dx.doi.org/10.1039/TF9383400485
http://dx.doi.org/10.1039/F29898500341
http://dx.doi.org/10.1039/F29898500351
http://dx.doi.org/10.1039/F29898500335
http://dx.doi.org/10.1149/1.2839626


[118] G. Gardiner and M. Islam, Chem. Mater. 22, 1242 (2010) (cit. on p. 39).
[119] C. Angell, K. Ngai, G. McKenna, P. McMillan, and S. Martin, J. Appl. Phys. 88, 3113 (2000)

(cit. on pp. 40, 66, 75, 80).
[120] P. Debenedetti and F. Stillinger, Nature 410, 259 (2001) (cit. on pp. 40, 66, 75, 76).
[121] F. Stillinger and P. Debenedetti, Annu. Rev. Condens. Matter Phys. 4, 263 (2013) (cit. on

pp. 40, 66, 75, 77, 82).
[122] P. Daivis and B. Todd, J. Chem. Phys. 124, 194103 (2006) (cit. on p. 41).
[123] P. C. Tsai, W. D. Hsu, and S. K. Lin, J. Electrochem. Soc. 161, A439 (2014) (cit. on pp. 43, 44,

51).
[124] L. Kavan, J. Procházka, T. M. Spitler, M. Kalbáč, M. Zukalová, T. Drezen, and M. Grätzel, J.

Electrochem. Soc. 150, A1000 (2003) (cit. on p. 43).
[125] W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelder, and F. M. Mulder, J. Am. Chem.

Soc. 131, 17786 (2009) (cit. on p. 43).
[126] Y. Shi, L. Wen, F. Li, and H.-M. Cheng, J. Power Sources 196, 8610 (2011) (cit. on p. 43).
[127] J. M. Feckl, K. Fominykh, M. Doeblinger, D. Fattakhova-Rohl�ng, and T. Bein, Angew.

Chem. 51, 7459 (2012) (cit. on pp. 43, 51).
[128] M. Park, X. Zhang, M. Chung, G. B. Less, and A. M. Sastry, J. Power Sources 195, 7904

(2010) (cit. on p. 43).
[129] W. Schmidt, P. Bottke, M. Stemad, P. Gollob, V. Hennige, and M. Wilkening, Chem. Mater.

27, 1740 (2015) (cit. on pp. 43, 55, 59, 60, 91).
[130] W. Schmidt and M. Wilkening, J. Phys. Chem. C 120, 11372 (2016) (cit. on pp. 43, 55, 59, 60,

91).
[131] D. Young, A. Ransil, R. Amin, Z. Li, and Y.-M. Chiang, Adv. Energy Mater. 3, 1125 (2013)

(cit. on p. 44).
[132] M. Kitta, T. Akita, S. Tanaka, and M. Kohyama, J. Power Sources 257, 120 (2014) (cit. on

pp. 44, 59, 60).
[133] M. Wagemaker, D. R. Simon, E. M. Kelder, J. Schoonman, C. Ringpfeil, U. Haake, D.

Luetzenkirchen-Hecht, R. Frahm, and F. M. Mulder, Adv. Mater. 18, 3169 (2006) (cit. on
pp. 44, 55, 58, 59).

[134] M. Wagemaker, E. van Eck, A. Kentgens, and F. Mulder, J. Phys. Chem. B 113, 224 (2008)
(cit. on p. 44).

[135] S. Ganapathy, A. Vasileiadis, J. R. Heringa, and W. Marnix, Adv. Energy Mater. 7, 1601781
(2017) (cit. on pp. 44, 58–60).

[136] C. Kim, N. S. Norberg, C. T. Alexander, R. Kostecki, and J. Cabana, Adv. Funct. Mater. 23,
1214 (2013) (cit. on pp. 44, 60).

[137] M. G. Verde, L. Baggetto, N. Balke, G. M. Veith, J. K. Seo, Z. Wang, and Y. S. Meng, ACS
Nano 10, 4312 (2016) (cit. on pp. 44, 60, 91).

[138] K. Kataoka, Y. Takahashi, N. Kijima, J. Akimoto, and K.-i. Ohshima, J. Phys. Chem. Solids
69, 1454 (2008) (cit. on pp. 44, 48).

100

http://dx.doi.org/10.1021/cm902720z
http://dx.doi.org/10.1063/1.1286035
http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1146/annurev-conmatphys-030212-184329
http://dx.doi.org/10.1063/1.2192775
http://dx.doi.org/10.1149/2.095403jes
http://dx.doi.org/10.1149/1.1581262
http://dx.doi.org/10.1149/1.1581262
http://dx.doi.org/10.1021/ja902423e
http://dx.doi.org/10.1021/ja902423e
http://dx.doi.org/10.1016/j.jpowsour.2011.06.002
http://dx.doi.org/10.1002/anie.201201463
http://dx.doi.org/10.1002/anie.201201463
http://dx.doi.org/10.1016/j.jpowsour.2010.06.060
http://dx.doi.org/10.1016/j.jpowsour.2010.06.060
http://dx.doi.org/10.1021/cm504564k
http://dx.doi.org/10.1021/cm504564k
http://dx.doi.org/10.1021/acs.jpcc.6b02828
http://dx.doi.org/10.1002/aenm.201300134
http://dx.doi.org/10.1016/j.jpowsour.2014.01.069
http://dx.doi.org/10.1002/adma.200601636
http://dx.doi.org/10.1021/jp8073706
http://dx.doi.org/10.1002/aenm.201601781
http://dx.doi.org/10.1002/aenm.201601781
http://dx.doi.org/10.1002/adfm.201201684
http://dx.doi.org/10.1002/adfm.201201684
http://dx.doi.org/10.1021/acsnano.Sb07875
http://dx.doi.org/10.1021/acsnano.Sb07875
http://dx.doi.org/10.1016/j.jpcs.2007.10.134
http://dx.doi.org/10.1016/j.jpcs.2007.10.134


[139] Z. Yang, D. Choi, S. Kerisit, K. M. Rosso, D. Wang, J. Zhang, G. Gra�, and J. Liu, J. Power
Sources 192, 588 (2009) (cit. on p. 44).

[140] S. Zahn, J. Janek, and D. Mollenhauer, J. Electrochem. Soc. 164, A221 (2017) (cit. on pp. 44,
51).

[141] M. Vijayakumar, S. Kerisit, K. M. Rosso, S. D. Burton, J. A. Sears, Z. Yang, G. L. Gra�, J. Liu,
and J. Hu, J. Power Sources 196, 2211 (2011) (cit. on pp. 44, 45, 47, 48, 51, 57, 58).

[142] C. Pecharromán and J. Amarilla, Phys. Rev. B: Condens. Matter Mater. Phys. 62, 12062
(2000) (cit. on pp. 44, 57, 58).

[143] I. Leonidov, O. Leonidova, L. Perelyaeva, R. Samigullina, S. Kovyazina, and M. Patrakeev,
Phys. Solid State 45, 2183 (2003) (cit. on pp. 44, 57, 58, 60).

[144] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Sche�er, Comp.
Phys. Commun. 180, 2175 (2009) (cit. on p. 45).

[145] H. Monkhorst and J. Pack, Phys. Rev. B: Condens. Matter. 13, 5188 (1976) (cit. on pp. 45,
65).

[146] R. W. Hockney and J. W. Eastwood, Computer simulation using particles (CRC Press, 1988)
(cit. on pp. 45, 65).

[147] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011) (cit. on pp. 45, 65).
[148] M. E. Tuckerman, J. Alejandre, R. Lopez-Rendon, A. L. Jochim, and G. J. Martyna, J. Phys.

A: Math. Gen. 39, 5629 (2006) (cit. on pp. 47, 65).
[149] W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B: Condens. Matter Mater. Phys. 69,

134103 (2004) (cit. on pp. 47, 65).
[150] M. Matsui and M. Akaogi, Mol. Simul. 6, 239 (1991) (cit. on p. 48).
[151] S. Kerisit, K. M. Rosso, Z. Yang, and J. Liu, J. Phys. Chem. C 113, 20998 (2009) (cit. on pp. 48,

54, 92).
[152] M. Vijayakumar, S. Kerisit, Z. Yang, G. L. Gra�, J. Liu, J. A. Sears, S. D. Burton, K. M. Rosso,

and J. Hu, J. Phys. Chem. C 113, 20108 (2009) (cit. on p. 48).
[153] S. Kerisit, K. M. Rosso, Z. Yang, and J. Liu, J. Phys. Chem. C 114, 19096 (2010) (cit. on p. 48).
[154] T. Ohzuku, A. Ueda, and N. Yamamoto, J. Electrochem. Soc. 142, 1431 (1995) (cit. on pp. 51,

54).
[155] Y. Tang, L. Yang, Z. Qiu, and J. Huang, J. Mater. Chem. 19, 5980 (2009) (cit. on p. 51).
[156] H. Shiiba, M. Nakayama, and M. Nogami, Solid State Ion. 181, 994 (2010) (cit. on p. 51).
[157] D. Shao, J. He, Y. Luo, W. Liu, X. Yu, and Y. Fang, J. Solid State Electrochem. 16, 2047 (2012)

(cit. on p. 51).
[158] Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.-S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, and

X. Huang, Nat. Commun., 2878 (2013) (cit. on p. 51).
[159] D. C. Johnston, J. Low Temp. Phys. 25, 145 (1976) (cit. on p. 54).
[160] M. Wilkening, R. Amade, W. Iwaniak, and P. Heitjans, Phys. Chem. Chem. Phys. 9, 1239

(2007) (cit. on pp. 54, 55, 58, 60).

101

http://dx.doi.org/10.1016/j.powsour.2009.02.038
http://dx.doi.org/10.1016/j.powsour.2009.02.038
http://dx.doi.org/10.1149/2.0771702jes
http://dx.doi.org/10.1016/j.jpowsour.2010.09.060
http://dx.doi.org/10.1103/PhysRevB.62.12062
http://dx.doi.org/10.1103/PhysRevB.62.12062
http://dx.doi.org/10.1134/1.1626760
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1107/S0021889811038970
http://dx.doi.org/http://stacks.iop.org/0305-4470/39/i=19/a=S18
http://dx.doi.org/http://stacks.iop.org/0305-4470/39/i=19/a=S18
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevB.69.134103
http://dx.doi.org/10.1080/08927029108022432
http://dx.doi.org/10.1021/jp9064517
http://dx.doi.org/10.1021/jp9072125
http://dx.doi.org/10.1021/jp103809s
http://dx.doi.org/10.1149/1.2048592
http://dx.doi.org/10.1039/B907480E
http://dx.doi.org/10.1016/j.ssi.2010.06.003
http://dx.doi.org/10.1007/s10008-011-1604-4
http://dx.doi.org/10.1038/ncomms2878
http://dx.doi.org/10.1007/BF00654827
http://dx.doi.org/10.1039/b616269
http://dx.doi.org/10.1039/b616269


[161] Y. Wang, L. Gu, Y. Guo, H. Li, X. He, S. Tsukimoto, Y. Ikuhara, and L. Wan, J. Am. Chem.
Soc. 134, 7874 (2012) (cit. on p. 58).

[162] M. F. Graf, H. Tempel, S. S. Köcher, R. Schierholz, C. Scheurer, H. Kungl, R.-A. Eichel, and
J. Granwehr, RSC Adv. 7, 25276 (2017) (cit. on p. 59).

[163] J. Kawamura, R. Asayama, N. Kuwata, and O. Kamishima, in Phys. solid state ionics (Research
Signpost, 2006) (cit. on pp. 63, 80, 92).

[164] A. Chandra, A. Bhatt, and A. Chandra, J. Mater. Sci. Technol. 29, 193 (2013) (cit. on pp. 63,
75, 80, 92).

[165] Y. Tu, J. Terso�, G. Grinstein, and D. Vanderbilt, Phys. Rev. Lett. 81, 4899 (1998) (cit. on
p. 63).

[166] M. Braga, J. Ferreira, V. Stockhausen, J. Oliveirad, and A. El-Azab, J. Mater. Chem. A 2,
5470 (2014) (cit. on pp. 63, 64, 66, 67, 72, 73, 75, 76, 82–84, 86, 88, 89, 91, 92).

[167] L. Valøena and J. Reimers, J. Electrochem. Soc. 152, A882 (2005) (cit. on p. 63).
[168] R. Kumar, B. Singh, and S. Sekhon, J. Mater. Sci. 40, 1273 (2005) (cit. on p. 63).
[169] Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu, Green Energy & Environment 1, 18 (2016) (cit. on

p. 63).
[170] E. Logan, E. Tonita, K. Gering, J. Li, X. Ma, L. Beaulieu, and J. Dahn, J. Electrochem. Soc.

165, A21 (2018) (cit. on p. 63).
[171] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, and M. Yonemura, Nat.

Mater. 10, 682 (2011) (cit. on p. 63).
[172] M. Braga, N. Grundish, A. Murchison, and J. Goodenough, Energy Environ. Sci. 10, 331

(2016) (cit. on pp. 63, 64, 86, 89, 91).
[173] D. Steingart and V. Viswanathan, Energy Environ. Sci. 11, 221 (2017) (cit. on p. 63).
[174] M. Braga, A. Murchison, J. Ferreira, P. Singh, and J. Goodenough, Energy Environ. Sci. 9,

948 (2016) (cit. on pp. 63, 64, 89, 91).
[175] M. Braga, J. Ferreira, A. Murchison, and J. Goodenough, J. Electrochem. Soc. 164, A207

(2017) (cit. on pp. 63, 64).
[176] J. Zhang, J. Han, J. Zhu, Z. Lin, M. Braga, L. Daemen, W. L., and Y. Zhao, Inorg. Chem.

Commun. 48, 140 (2014) (cit. on p. 64).
[177] O. Reckeweg, B. Blaschkowski, and T. Schleid, Z. Anorg. Allg. Chem. 638, 2081 (2012)

(cit. on pp. 64, 67).
[178] A.-Y. Song, Y. Xiao, K. Turcheniuk, P. Upadhya, A. Ramanujapuram, J. Benson, A. Magasin-

ski, M. Olguin, L. Meda, O. Borodin, and G. Yushin, Adv. Energy Mater. 8, 1700971 (2017)
(cit. on p. 64).

[179] A. Emly, E. Kioupakis, and A. Van der Ven, Chem. Mater. 25, 4663 (2013) (cit. on pp. 64, 67,
72, 73).

[180] M.-H. Chen, A. Emly, and A. Van der Ven, Phys. Rev. B: Condens. Matter Mater. Phys. 91,
214306 (2015) (cit. on p. 64).

[181] G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996)
(cit. on p. 65).

102

http://dx.doi.org/10.1021/ja301266wl
http://dx.doi.org/10.1021/ja301266wl
http://dx.doi.org/10.1039/C7RA01622K
http://dx.doi.org/10.1016/j.jmst.2013.01.005
http://dx.doi.org/10.1103/PhysRevLett.81.4899
http://dx.doi.org/10.1039/c3ta15087a
http://dx.doi.org/10.1039/c3ta15087a
http://dx.doi.org/10.1149/1.1872737
http://dx.doi.org/10.1007/s10853-005-6950-0
http://dx.doi.org/10.1016/j.gee.2016.04.006
http://dx.doi.org/10.1149/2.0271802jes
http://dx.doi.org/10.1149/2.0271802jes
http://dx.doi.org/10.1038/nmat3066
http://dx.doi.org/10.1038/nmat3066
http://dx.doi.org/10.1039/c6ee02888h
http://dx.doi.org/10.1039/c6ee02888h
http://dx.doi.org/10.1039/c7ee01318c
http://dx.doi.org/10.1039/c5ee02924d
http://dx.doi.org/10.1039/c5ee02924d
http://dx.doi.org/10.1149/2.0691702jes
http://dx.doi.org/10.1149/2.0691702jes
http://dx.doi.org/10.1016/j.inoche.2014.08.036
http://dx.doi.org/10.1016/j.inoche.2014.08.036
http://dx.doi.org/10.1002/zaac.201200143
http://dx.doi.org/10.1002/aenm.201700971
http://dx.doi.org/10.1021/cm4016222
http://dx.doi.org/10.1103/PhysRevB.91.214306
http://dx.doi.org/10.1103/PhysRevB.91.214306
http://dx.doi.org/10.1103/PhysRevB.54.11169


[182] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) (cit. on p. 65).
[183] P. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 17953 (1994) (cit. on p. 65).
[184] J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria, L. Constantin, X. Zhou, and

K. Burke, Phys. Rev. Lett. 100, 136406 (2008) (cit. on p. 65).
[185] J. Perdew, A. Ruzsinszky, G. Csonka, O. Vydrov, G. Scuseria, L. Constantin, X. Zhou, and

K. Burke, Phys. Rev. Lett. 102, 039902 (2009) (cit. on p. 65).
[186] S. Nosé, J. Chem. Phys. 81, 511 (1984) (cit. on p. 65).
[187] S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991) (cit. on p. 65).
[188] D. Bylander and L. Kleinman, Phys. Rev. B: Condens. Matter Mater. Phys. 46, 13756 (1992)

(cit. on p. 65).
[189] J. Kubicki and A. Lasaga, Phys. Chem. Minerals 17, 661 (1991) (cit. on pp. 66, 77).
[190] M. Utz, P. Debenedetti, and F. Stillinger, Phys. Rev. Lett. 84, 1471 (2000) (cit. on p. 66).
[191] A. Cormack, J. Du, and T. Zeitler, Phys. Chem. Chem. Phys. 4, 3193 (2002) (cit. on pp. 66,

76).
[192] J. Du and A. Cormack, J. Am. Ceram. Soc. 88, 2532 (2005) (cit. on pp. 66, 76).
[193] G. Broglia, G. Ori, L. Larcher, and M. Montorsi, Modelling Simul. Mater. Sci. Eng. 22, 065006

(2014) (cit. on pp. 66, 76).
[194] P. Vashishta, R. Kalia, A. Nakano, and J. Rino, J. Appl. Phys. 103, 083504 (2008) (cit. on

p. 66).
[195] W. Haynes, CRC Handbook of Chemistry and Physics, 92nd (CRC Press., 2011) (cit. on p. 66).
[196] Z. Lu, C. Chen, Z. Baiyee, X. Chen, C. Niub, and F. Ciucci, Phys. Chem. Chem. Phys 17,

32547 (2015) (cit. on p. 72).
[197] Y. Zhang, Y. Zhao, and C. Chen, Phys. Rev. B: Condens. Matter Mater. Phys. 87, 134303

(2013) (cit. on p. 72).
[198] Z. Deng, B. Radhakrishnan, and S. Ong, Chem. Mater. 27, 3749 (2015) (cit. on p. 72).
[199] S. Longbottom and P. Brommer, Uncertainty quanti�cation for classical e�ective potentials,

DPG Spring Meeting, 2018 (cit. on p. 75).
[200] M. Ediger, C. Angell, and S. Nagel, J. Phys. Chem. 100, 13200 (1996) (cit. on pp. 75, 77).
[201] H. Yu, W. Wang, H. Bai, and K. Samwer, Natl. Sci. Rev. 1, 429 (2014) (cit. on pp. 75, 80, 82,

84).
[202] F. Stillinger, Science 267, 1935 (1995) (cit. on pp. 75, 82).
[203] E. La Nave, F. Sciortino, P. Tartaglia, C. De Michele, and S. Mossa, J. Phys: Condens. Matter

15, S1085 (2003) (cit. on p. 75).
[204] M. Benoit, S. Ispas, P. Jund, and R. Jullien, Eur. Phys. J. B 13, 631 (2000) (cit. on p. 76).
[205] S. Ispas, M. Benoit, P. Jund, and R. Jullien, Phys. Rev. B. 64, 214206 (2001) (cit. on p. 76).
[206] X. Lei, Y. Jeeb, and K. Huang, J. Mater. Chem. A 3, 19920 (2015) (cit. on p. 76).
[207] T. Baba and Y. Kawamura, Front. Energy Res. 4, 22 (2016) (cit. on p. 76).

103

http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.100.136406
http://dx.doi.org/10.1103/PhysRevLett.102.039902
http://dx.doi.org/10.1063/1.447334
http://dx.doi.org/10.1143/PTPS.103.1
http://dx.doi.org/10.1103/PhysRevB.46.13756
http://dx.doi.org/10.1007/BF00202236
http://dx.doi.org/10.1103/PhysRevLett.84.1471
http://dx.doi.org/10.1039/b201721k
http://dx.doi.org/10.1111/j.1551-2916.2005.00352.x
http://dx.doi.org/doi:10.1088/0965-0393/22/6/065006
http://dx.doi.org/doi:10.1088/0965-0393/22/6/065006
http://dx.doi.org/10.1063/1.2901171
http://dx.doi.org/10.1039/c5cp05722a
http://dx.doi.org/10.1039/c5cp05722a
http://dx.doi.org/10.1103/PhysRevB.87.134303
http://dx.doi.org/10.1103/PhysRevB.87.134303
http://dx.doi.org/10.1021/acs.chemmater.5b00988
http://dx.doi.org/10.1063/1.1286035
http://dx.doi.org/10.1093/nsr/nwu018
http://dx.doi.org/10.1126/science.267.5206.1935
http://dx.doi.org/10.1088/0953-8984/15/11/330
http://dx.doi.org/10.1088/0953-8984/15/11/330
http://dx.doi.org/doi.org/10.1007/s100510050079
http://dx.doi.org/10.1103/PhysRevB.64.214206
http://dx.doi.org/10.1039/c5ta04474j
http://dx.doi.org/10.3389/fenrg.2016.00022


[208] K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, and Z. Chen, J. Electrochem. Soc. 164,
A1731 (2017) (cit. on p. 79).

[209] B. Scrosati, A. Magistris, C. Mari, and G. Mariotto, in Fast ion transport in solids (Springer
Netherlands, 1993) (cit. on p. 80).

[210] P. Atkins and J. de Paula, Physical Chemistry, 8th (Oxford University Press, 2006) (cit. on
p. 85).

[211] J. Newman and K. Thomas-Alyea, Electrochemical systems, 3rd (Wiley-Interscience, 2004)
(cit. on p. 86).

[212] R. O’Hayre and C. Suk-Won, Fuel cell fundamentals, 2nd (Wiley, 2009) (cit. on p. 86).
[213] M. Tatsumisago and A. Hayashi, Int. J. Appl. Glass Sci. 5, 226 (2014) (cit. on p. 88).
[214] T. Tsujimura, Solid State Ion. 262, 829 (2014) (cit. on p. 88).
[215] A. Hayashi, K. Noi, A. Sakuda, and M. Tatsumisago, Nat. Commun. 3, 856 (2012) (cit. on

p. 88).
[216] X. Zhou and F. Doty, Phys. Rev. B 78, 224307 (2008) (cit. on p. 92).
[217] X. Zhou, F. Doty, and P. Yang, Comput. Mater. Sci. 50, 2470 (2011) (cit. on p. 92).
[218] X. Zhou, H. Wadley, J.-S. Filhol, and M. Neurock, Phys. Rev. B 69, 035402 (2004) (cit. on

p. 92).
[219] X. Zhou and H. Wadley, J. Phys. Condens. Matter 17, 3619 (2005) (cit. on p. 92).
[220] E. Lee, K.-R. Lee, M. Baskes, and B.-J. Lee, Phys. Rev. B 93, 144110 (2016) (cit. on p. 92).

104

http://dx.doi.org/10.1149/2.1571707jes
http://dx.doi.org/10.1149/2.1571707jes
http://dx.doi.org/10.1007/978-94-011-1916-0
http://dx.doi.org/10.1111/ijag.12084
http://dx.doi.org/10.1016/j.ssi.2013.10.034
http://dx.doi.org/10.1038/ncomms1843
http://dx.doi.org/10.1103/PhysRevB.78.224307
http://dx.doi.org/10.1016/j.commatsci.2011.03.028
http://dx.doi.org/10.1103/PhysRevB.69.035402
http://dx.doi.org/10.1088/0953-8984/17/23/014
http://dx.doi.org/10.1103/PhysRevB.93.144110


Appendices

A Force field potential parameters for glass-amorphous Li3OCl 107

B Steady state charge polarization in a one dimensional dilute binary electrolyte 109

Appendix Bibliography 113

105





A Force field potential parameters for
glass-amorphous Li3OCl

Tab. 1.1: Pair potential parameters for the description of glass-amorphous Li3OCl as obtained via the
parameterization procedure described in Sec. 5.3.1 at a cuto� of 12 Å and the usage of a PPPM
long-range solver for the reciprocal part of the Coulomb interactions.

ion pair (ij) Ai j / eV ρi j / Å Ci j / eV · Å6

Li-Li 15594.1325 0.0832 0.0000
Li-O 982.9501 0.2472 0.0000
Li-Cl 441.6885 0.3083 0.0000
O-O 6415.7122 0.2460 89.5308
O-Cl 25817.1797 0.2540 140.2019
Cl-C 30193.5880 0.2636 82.0073

Tab. 1.2: Partial charges qion and core/shell parameters qshell and kcs for the description of glass-amorphous
Li3OCl as obtained via the parameterization procedure described in Sec. 5.3.1 at a cuto� of 12 Å
and the usage of a PPPM long-range solver for the reciprocal part of the Coulomb interactions.

i qion / e qshell / e kcs / eV Å−2

Li+ 0.743569 0.000 0.0000
O2− −1.487138 −2.183 82.6440
Cl− −0.743569 −2.535 43.4797
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B Steady state charge polarization in a one
dimensional dilute binary electrolyte

The in�uence of an electric �eld on ions in a solution induces directed migration. The resulting
transport can be described by the Nernst-Planck equation. Hereby, the time dependency of the
ion �ux Fi of species i as the change in its concentration ci [1]

∂ci
∂t
= −∇Fi (B.1)

results in

∂ci
∂t
= ∇

[
Di∇ci − uci + Dizie

kBT
ci

(
∇Φ + ∂A

∂t

)]
(B.2)

where Di and zi are the Di�usion coe�cient and charge of species i , e is the elementary charge,
kB the Boltzmann constant,T the temperature, ∇Φ = −E the change in potential corresponding to
the negative of the electric �eld and A the magnetic vector potential accounting for electrostatic
correlation. Equation B.2 includes a terms accounting for di�usion after Fick, convection of the
electrolyte and the electrostatic in�uence of an electric �eld.

An electrolyte in a closed electrochemical cell is not subject to convection giving u = 0 and in a
dilute ion concentration the di�usion coe�cient can be assumed constant as well as electrostatic
correlation can be neglected setting ∂A

∂t = 0. A simpli�ed expression results

∂ci
∂t
= ∇

[
Di∇ci + Dizie

kBT
ci

(∇Φ) ]
. (B.3)

Considering the long time limit of the ion motion under the in�uence of an electric �eld, a
steady state ∇2ci = 0 will be reached yielding a constant �ux

Fi = −
[
Di∇ci + Dizie

kBT
ci

(∇Φ) ]
. (B.4)

The total current density ®J consists of the individual �uxes

®J =
∑
i

zieFi (B.5)

and in the bulk of the electrolyte charge neutrality can be assumed yielding an overall charge
density ρe = 0 and a constant current density

ρe =
∑
i

zieci = 0; ∂ρe
∂t
= ∇®J = 0 (B.6)
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Considering a binary electrolyte containing two ions A+ and B− with charges zA and zB
where the free di�usion of one species is hindered e.g. by an electrode permeable to only A+

a concentration polarization scenario arises. As indicated in Fig. 2.1 species B− will establish
a concentration gradient under the in�uence of the �eld ∇Φ directed in x which will yield a
�eld gradient dΦ

dx . Due to the necessity to maintain charge neutrality, i.e. following quasi charge
neutrality A+ will establish a proportional concentration gradient after equ. B.6 giving [1, 2]

c = cAzA = cBzB (B.7)

el
ec

tro
de

el
ec

tro
de

llllllllllllll®J

A+

B−

dcA
dx =

dcB
dx

c i

x

Fig. 2.1: Schematic polarization concentration pro�le dc/dx for a one dimensional binary dilute electrolyte
under the in�uence of an electric �eld establishing the current density ®J . Species A+ establishes a
�ux in the steady state and the di�usion of species B− is hindered.

In the steady state there is no �ux of species B− (FB = 0), with equ. B.4 and a electric �eld
directed in x follows

0 = −DB∇cB + DBzBe

kBT
cB

(
dΦ

dx

)
(B.8)

giving an expression for dΦ
dx

dΦ

dx
=
dcB
dx

1
cBzB

kBT

e
(B.9)

For the current density ®J follows:

®J = zAeFA = −zAe
(
DA

dcA
dx
+
DAzAe

kBT
cA

dΦ

dx

)
. (B.10)

Inserting the expression for dΦ
dx (equ. B.9)

®J = −zAeDA

(
dcA
dx
+
cAzA
cBzB

dcB
dx

)
. (B.11)

Based on the quasi charge neutrality (equ. B.7), the expression simpli�es to

®J = −zAeDA

(
dcA
dx
+
dcB
dx

)
(B.12)
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Finally, if zA = −zB the concentration gradients are identical giving

®J = −2zAeDA
dc

dx
(B.13)

This expression allows to determine the concentration gradient in dependence of the applied
current density ®J .
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