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Abstract

Depth information is used in a variety of technical applications nowadays. Well-known
examples are autonomous driving and driver assistance or robots working independently
in factories and warehouses. One natural way of reconstructing depth of objects in the
environment is stereo vision. The main challenge in stereo vision is the matching prob-
lem, i.e. identifying the points on two images that are projections of the same point in the
world. Although solving the matching problem has been subject to much research effort,
achieving low latency and a high temporal resolution remains a challenging problem. It re-
quires high-frame rate cameras and very powerful computers which are potentially costly,
bulky and power demanding. Overall, this is not desirable or even viable for autonomous
systems. This thesis tackles the problem of low latency by utilizing neuromorphic sensors
for capturing visual data. Event-based vision sensors operate in an asynchronous fashion,
with very low-latency updates. The only information they convey is where and exactly
when illumination changes occur. This reduces data rates and opens up the possibility
of solving the stereo matching problem and computing depths in a light-weight, real-time
capable way. The structure of event-based data is, however, very different from conven-
tional frame data, and new algorithms are required to solve computer vision tasks.

In this thesis different algorithms for event-based stereo matching are developed, eval-
uated and compared. It investigates local, neighborhood correlation based algorithms,
global event-cloud registration methods and feature-based matching. In order to execute
the latter, a fast and robust feature extractor for event streams, which detects and tracks
lines, is developed and its accuracy and persistence are evaluated. Based on the tracker,
a line matching method is introduced, that allows low latency stereo matching even in
cluttered scenes and in the presence of noise.

In the final part, a potential application for event-based stereo vision outside of robotics is
explored: a mobility aid for visually impaired people. Depth-labeled events are translated
to virtual three dimensional sounds that deliver the information about the surrounding
environment to the user. The performance of the device is evaluated and compared to
other available electronic travel aids.
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Zusammenfassung

Viele moderne technische Anwendungen nutzen Entfernungs- und Tiefeninformation. Zu
den bekannteren Beispielen zahlen autonome Fahrzeuge, Fahrassistenz und Roboter in
Lagerhausern und Fabriken. FEine natiirliche Methode Entfernungen zu schétzen ist
rdumliches Sehen, auch stereoskopisches Sehen genannt, die Beobachtung der Umgebung
mit zwei gegen einander verschobene Sensoren. Das zentrale Problem, das es bei der
Anwendung von rdumlichen Sehen zu 16sen gilt, ist das Korrespondenzproblem, d.h. zu
bestimmen, welche Punkte in der Bildebene der jeweiligen Sensoren zum selben Punkt
in der Welt gehdéren. Das Korrespondenzproblem ist seit langer Zeit Gegenstand der
Forschung im Bereich des maschinellen Sehens. Hohe zeitliche Auflosung und geringe
Latenzen zu erreichen, ist jedoch nach wie vor eine herausfordernde Aufgabe, zu deren
Losung hohe Bildraten und leistungsfahige Computer herangezogen werden miissen. Fiir
autonome Systeme ist dies oftmals nicht moglich und andere Ansétze werden gebraucht.
Diese Arbeit untersucht Moglichkeiten ein schnelles, stereoskopisches System mit Hilfe
von ereignisbasierten Dynamic-Vision-Sensoren zu entwickeln. Dynamic-Vision-Sensoren
unterscheiden sich grundlegend von konventionellen Kameras. Thre Pixel arbeiten asyn-
chron und unabhéngig von einander. Das ermoéglicht extrem geringe Latenzen in der
Groflenordnung von wenigen Mikrosekunden. Sie iibertragen keine Information tiber die
Lichtintensitét, sondern lediglich {iber die Anderung der Intensitéit in Form von sogenan-
nten Ereignissen. Dadurch wird die Datenrate stark reduziert, was die Moglichkeit eréffnet
das Korrespondenzproblem mit vergleichsweise geringem Rechenaufwand in Echtzeit zu
l6sen. Die Datenstruktur der Dynamic-Vision-Sensoren unterscheidet sich jedoch funda-
mental von der konventioneller Kameras. Neue Algorithmen zur Lésung von Problem des
maschinellen Sehens sind daher erforderlich.

In dieser Arbeit werden verschiedene Stereoalgorithmen fiir ereignisbasiertes maschinelles
Sehen entwickelt, evaluiert und verglichen. Lokale, korrelationsbasierte Algorithmen,
globale Ereigniswolkenregistrierungsmethoden und merkmalsbasiertes Abgleichen werden
behandelt. Um letzteres zu ermoglichen wird eine neuartige, schnelle und robuste Meth-
ode entwickelt Linien in Ereignisstromen zu erkennen und zu verfolgen; ihre Genauigkeit
und Verfolgungspersistenz werden ausgewertet. Dann wird die Methode verwendet um
einen linienbasierten Algorithmus zu entwickeln, der das Korrespondenzproblem auch in
komplexen, verrauschten Szenen mit geringer Latenz l6sen kann.

Der letzte Teil der Arbeit konzentriert sich auf eine Anwendung auflerhalb von autonomen
System und Robotik. Ein elektronische Orientierungshilfe fiir Blinde wird entworfen.
Dafiir werden Ereignisse mit Entfernungsinformation versehen und dem Anwender als
virtueller drei-dimensionaler Ton tibertragen. Diese Tone tibertragen die Information iiber
die Umgebung. Der Gerat wird evaluiert und mit anderen elektorischen Orientierungshil-
fen verglichen.
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1 Introduction

Visual perception is one of the primary ways we use to orient ourselves in unknown
environments. The deduction of high level information from raw visual stimuli does not
seem to pose a challenging problem for humans. We can easily identify objects and
avoid obstacles when walking. Large parts of the brain are dedicated to processing visual
information to enable us to perform such tasks effortlessly. In stark contrast, extracting
information from cameras is a difficult problem for robots and computers that gave rise
to a whole field of research: computer vision.

In a world that gets more and more automated it is important to create autonomous
systems that are robust and safe so they can operate independently or in cooperation with
humans. A central requirement is that these systems can sense and adopt to changes in
their environment in a rapid and reliable way. One essential task in enabling autonomous
systems to do so is to accurately estimate the distance to objects in the surroundings, so
that a robot, for example, knows where to grasp, does not trip over obstacles and stops
moving when a person gets in its way. This task - finding fast ways to reconstruct depth
- is the objective of this thesis.

Nowadays, there are different types of depth detectors. They can be principally classi-
fied into active and passive. Active systems emit a signal and measure the environmental
reaction to estimate depth. The principle used here is measuring the time of flight. The
time it takes the emission, e.g. a laser pulse or an ultrasound wave, to be reflected back
from an object is used to infer the distance to the object. Other techniques project
patterns or structured light (usually in the infrared spectrum) and infer depth from the
perceived deformation to those patterns. While being in widespread use and delivering
depth maps of good quality, active sensing approaches share a number of drawbacks: they
need to constantly emit a signal which requires a certain amount of power. The amount
of power necessary increases with the desired distance to be detectable. Furthermore, if
multiple systems of the same type are used in the same area, their signals potentially
interfere, causing confusion in the distance measurement and reporting wrong values; the
number of systems that can operate in the same area is, therefore, limited. Finally, these
systems tend to be large, especially if they require a battery to be operational over a
longer time.

The second class of depth sensors are passive. Passive depth sensors observe the en-
vironment without sending signals. They deploy cameras and use optic flow, parallax,
structure from motion or stereo vision to estimate depth. In comparison with active sen-
sor, passive sensors (i.e. cameras) are usually smaller, do not require as much power and
do not project a signal to the environment, so multiple cameras can be used in the same
area without interfering with each other.

The approach chosen in this work is a passive one, based on stereo vision. The common
stereo setup consists of two parallel, coplanar cameras. They observe the same scene
from a slightly shifted position. This shift causes points in the view of one camera to be
horizontally displaced with respect to objects in the other camera. This displacement is
referred to as disparity. The amount of disparity is dependent on the distance of the object
to the cameras. So, by knowing the disparity of a point, its distance can be inferred ana-
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lytically. The main task in stereo matching is therefore, finding correspondences between
points in the two views, this is known as the stereo matching problem. Solving the stereo
matching problem is still a challenging problem and the computational costs associated
with solving it are often large. In traditional computer vision, several techniques have
been devised to solve the stereo matching problem. They range from local correlation
based approaches over feature extraction and matching and global approaches like graph
cuts (these methods will be introduces in more detail in Chapter 2). All these techniques
operate on data from conventional CCD or CMOS camera. These cameras capture frames
with a fixed update rate, i.e. every pixel will be read out synchronously and the visual
information is transmitted as full image frame; this process happens independently from
what is observed. But in many cases large parts of the observed scene change only very
little between two frames resulting in the cameras to capture a lot of redundant data. All
this data has to be processed by the subsequent computer vision system, essentially wast-
ing a large amount of resources on processing redundant data. Considering the contrary
case of parts of the environment that change very rapidly, all information about what
happened in between frames is lost or causes motion blur; the pixels are only sampled at
specific times. In conclusion, conventional cameras can be oversampling and undersam-
pling at the same time. This is where event-based visions systems come into play. These
systems capture visual information based on a entirely different principle. Every pixel
works independently and only emits information (a so called event) when it perceives a
change in illumination. There is no fixed sampling rate, so the information can be trans-
mitted with a very low latency of the order of tens of microseconds. Data will only be
generated when there is a change, otherwise pixels remain silent, which results in a sparse
data rate and eliminates redundancies. The structure of data of conventional cameras
and event-based sensors is fundamentally different: instead of a series of two-dimensional
frames with fixed time intervals, data is conveyed as a quasi-continuous stream of vision
events. This makes the development of new algorithms necessary, so the advantages of
event-based sensors become accessible.

Objective and Outline

This thesis explores different algorithms for stereo matching in an event-based framework.
The focus lies on developing possibilities to equip autonomous systems with real-time ca-
pable passive depth sensing, so not only accuracy of the results, but also computational
costs will be important. This thesis is structured to guide the reader from the basics of
computer vision to event-based sensors and stereo matching algorithms for them: Chap-
ter 2 discusses a basic camera model, calibration and undistortion. It then explains the
fundamental geometry of a stereo setup along with the problems that are to be solved
and argues that depth estimation is equivalent to solving the stereo matching problem.
Chapter 3 shows solution from conventional computer vision and discusses shortcomings
of the cameras. It then presents the event-based vision sensors, gives an overview over
the current state of the art in event-based stereo matching and summarizes related work.
Chapter 4 and Chapter 5 form the main contribution of this thesis; they introduce the
algorithms developed towards solving stereo matching in event-based cameras. First,
algorithms that work on the level of single events or unstructured groups of events are
analyzed. Then, a method for feature extraction from event streams is developed. Finally,
a method for stereo matching in feature space is presented and analyzed. Chapter 6 shows
how the research of this thesis can have an impact on society. Finally, Chapter 7 con-



cludes this work by summarizing the results and relating them to current state of research.

Figure 1.1: A stereo vision setup consisting of two event-based vision sensors in a rigid frame






2 Preliminaries

This chapter gives a brief introduction to the essential terms and concepts on which the
thesis is based. It covers the mathematical description of cameras, their calibration and
image rectification, then continues with the fundamental geometry of a stereo setup and
established stereo matching algorithms from conventional computer vision, which serve as
a partial basis for some of the ones developed for event-based sensors. Finally, event-based
sensors are portrayed and compared to conventional cameras and their properties.

2.1 A mathematical camera model

A camera is an object that projects the three dimensional world onto a two-dimensional
plane, the image plane. Mathematical descriptions of these projections are knows as
camera models. There exists a variety of different camera models of which a basic one
often used in computer vision is the pinhole model. We will briefly introduce this model
here loosely following the more detailed explanation to be found in [1]. The pinhole
model is a linear model of projection; all rays, originating from points in the world,
are projected through one point, the center of projection c. For our consideration, three
frames of reference are of interest: the world coordinates x,, = (4, Yus zw)T that describe
the world independently of the camera and its parameters, the camera coordinates x. =
(%¢, Ye, zc)T in which the camera is at rest and the center of projection lies at the origin,
and the image coordinates p = (u,v)? which describe positions within the image plane.
Let us begin with the transformation between the world coordinates and the camera
coordinates. The camera has an arbitrary position in the world, therefore a general
Euclidean transformation is needed. It consists of a rotation matrix R and a shift vector
t.

Te Taw
Ye | =R | yw | +t (2.1)
Zc Zw

We are now in the camera-centric frame of reference. Two geometric structures deserve
special attention in this coordinate system. First, consider the plane parallel to the x-y-
plane at z = f, with constant f € RT we will call this plane the image plane. Second, the
axis that passes through the center of projection and stands perpendicular on the image
plane; it is known as optical axis. To map a three dimensional point z. = (¢, Ye, zc)? to
the image plane the intersection of the line connecting z. with ¢ is computed: z. is mapped
to (fze/z, fye/z, f)T. By ignoring the z coordinate that is always f by construction, we
arrive at the camera projection from 3D to 2D:

(z,y,2)" = (fz/2, fy/?) (2.2)

Note, that dividing by z is a non-linear operation. In order to write the transformation
in a linear fashion a new set of coordinates is required.
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2.1.1 Homogeneous coordinates

A point in d-dimensional Euclidean space is represented by a vector of size d. We now
introduced homogeneous coordinates, in which an extra dimension is added. By definition
the same point is represented by the homogeneous coordinate that contains 1 as (d+1)"
value, i.e. the three dimensional point (x,y, z) in Euclidean coordinates and (x,y, z,1) in
homogeneous coordinates are identical. We additionally define that all coordinate tuples
that differ only in a scalar factor represent the same point, i.e. (z,y, z, 1) and (2z, 2y, 2z, 2)
(or (kx,ky,kz,k),k # 0 in general) are coordinates for the same point. To transform a
point (kx, ky, kz, k) back to a Euclidean coordinate system, we need to divide by k and
prune the last dimension®.

Let us now reconsider the mapping 2.2. It can be written as simple linear transformation

when using homogeneous coordinates:

fa. f 00 0\ [
foe|={0 roo) ¥ (2.3)
2 0010/ (7

This transformation so far assumes that the intersection of the image plane with the
optical axis (the principal point) coincides with the origin of the image plane coordinates
p = (u,v)T, which in practice may not be the case. Therefore, a shift of the mapping by
the coordinate of the principal points is applied, such that the general mapping expressed
in homogeneous coordinates becomes:

T

frw + 2wps S 0 pz O yw
fyw+zupy | = |0 f py Of [T (2.4)

Zw 0 0 1 0 f)

The left 3 x 3-block of the transformation matrix is called the camera calibration matriz.
This matrix contains the intrinsic parameters f,p,,p, which will be estimated later to
calibrate the camera.

0 pa
k={0 f p (25)
0 0 1

The complete mapping from world points to image point is now concisely described as
linear transformation in homogeneous coordinates:

L
-
‘ Rt v
Yi :(KO)<01> Zw , (2.6)
Z 1

where horizontal and vertical lines separate matrix blocks. The image coordinates are

()= () 27)

!This is not possible if & = 0; homogeneous coordinates where k = 0 are used to represent and distinguish
so called points at infinity. They are not used further in this thesis, so we will omit them here.

given as:
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2.1.2 Undistortion and Calibration

The pinhole model discussed above is a simple model for theoretical analysis, it does
not describe the imaging properties of real cameras properly. The model assumes an
point-shape (extensionless) pinhole through which all rays travel. Real camera lenses,
however, have finite aperture, which makes the ray courses imperfect with respect to the
pinhole model. The most prevalent deviation from the model is radial distortion. This
type of distortion is symmetric around a center of distortion, image areas are magnified
in dependence of their distance from the center of distortion. This can be compensated
for by a correction process that transforms the measured image to the image that would
have been measured using a perfect pinhole camera. After undistortion, the data from
the physical camera can be treated as if it was generated by a pinhole camera.

() =20(5) e

The radial distortion depends only on the distance r from the center of distortion
($c7 yc)T-

T=x.+ L(r)(z — x.)

9=y + L(r)(y - yc)

The function L(r) is approximated by its Taylor expansion and the requirement L(0) =
1.

(2.9)

L(r) =14 rir 4 ror? +rgrd +... (2.10)

where the first coefficients k1, kappas, kappas and (z.,y.) are usually regarded as part
of the internal camera parameters. These parameters are calculated using a scene with
known geometry. The deviation of the observed points from the expected position of
the points in a linear model is used as cost. The optimal parameters are estimated by
minimizing the cost using the Levenberg-Marquardt algorithm, a non-linear least square
minimization technique. Once the coefficients are obtained, the undistortion process is
completed and the camera can be calibrated.

Calibration is the estimation of intrinsic and extrinsic camera parameters. Extrinsic
parameters describe the position of the camera in world coordinates, while intrinsic pa-
rameters define the mapping from the camera coordinate system to image coordinate
system as defined in Equation 2.1. Calibration is a crucial part for many computer vi-
sion applications and different methods for it exist. In this thesis, the method proposed
by Zhang [2] is used. It uses a planar pattern with known geometry that is presented
with different orientations and distances. Knowing the exact positions of the pattern, we
can infer the parameters of the camera matrix by inverting the projective transformation
given in 2.6. In practice, the undistortion and the calibration steps are done in parallel
using the same pattern (see Figure 2.2).

2.1.3 Epipolar geometry

The previous sections dealt with the geometry and calibration of a single camera. Let us
now extend the discussion to a stereo setup by adding a second camera. With the help of
a second camera, we can triangulate the distance to objects from corresponding projection
points. We require, however, knowledge of the exact geometry between the two cameras.
This part of geometry, that deals with the relation of points on the image planes of two
cameras, is known as epipolar geometry. Figure 2.1 gives an overview.
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epipolar line [, for x

Figure 2.1: Epipolar geometry (Figure adapted from [1])

The two centers of projection C; and C, are separated by the baseline b. The respective
intersection points of b with the image planes are called epipoles, e; and e,.. A point in the
physical world x,, projects to image points x; and x, respectively. These three points lie in
a common plane 7. This fact can be used to simplify the search for corresponding points:
the intersection of 7 with the image planes is given as lines, called epipolar lines, I; (and
I, respectively). Since z;, z, and x,, will always be coplanar, x, will always lie on [,., the
epipolar line corresponding to xy. Thus, knowing the epipolar line simplifies the search
for the corresponding point significantly, the search is restricted to a one dimensional line
instead of the whole two dimensional image. This reduces computational costs strongly.

The epipolar geometry between x; and x, can be algebraically described using the
fundamental matrix F' that maps every point in one image to its epipolar line in the other
image: Fx, = [; and vice versa (for a detailed derivation see [1]). It follows that the
fundamental matrix satisfies the following equation for any pair of corresponding image
points x and z’:

o Fe, =0 | (2.11)

since x; lies on the epipolar line [; = Fx,. When the epipolar geometry is known, we
can further simplify the matching problem by transforming the image planes, such that
the epipoles lie at infinity and the epipolar lines become parallel to each other and to
the horizontal axis. Then, finding the epipolar line to a point becomes trivial, it is the
horizontal line with the constant vertical coordinate of the point, and computational
complexity is reduced. This process is known as rectification and will be explained in the
next section.

2.1.4 Stereo calibration and rectification

In practice it is hard to align to cameras perfectly parallel with the optical centers on
the same height. There are inevitably small mechanical misalignments, in sensor, lens,
casing and the like that cause imperfections. This will render the epipolar lines to not be
parallel and complicate the matching problem since the epipolar line for every point that
is to be matched has to be computed.Before approaching the matching, we first aim at
mathematically transforming the image planes in a way, that they both lie within the same
plane. To that end, we have to determine the spatial relationship of the cameras to each
other, known as stereo calibration and then rectify the image planes. Stereo calibration
estimates the rotation Rgiereo and translation tgiereo between the two cameras. If there is
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Detected points
+ Reprojected points
Checkerboard origin

Figure 2.2: Checkerboard pattern with known geometry used for calibration (foreground). Top
row: raw views from two DAVIS240C sensors with detected checkerboard corners
indicated by green circles. Colored horizontal lines pass through different points in
both images. Bottom row: Views after undistortion, calibration and rectification
has been applied. The colored horizontal lines now are epipolar lines. Corresponding
points lie at same height in image coordinates, hence the search for correspondences is
simplified to one dimension. (Figures produced with the MATLAB stereo calibration
toolbox?

a calibration for every camera individually, the stereo calibration can be computed from
the extrinsic parameters. Let us denote the camera-centric coordinates of left and right
image plane x; and x,. The world point x,, maps to camera coordinates via

7 = R — ) (2.12)
xr = Ry (xy — tr)

The final step is transforming the images to be suitable for fast stereo matching: align
the image planes of both cameras to be in the same plane. The image planes are first
rotated around the center of projection such they are aligned with the baseline. Then, the
epipolar lines are parallel and corresponding points in both image have the same height.
Figure 2.2 shows an example of a calibration pattern before and after calibration, Fig-
ure 2.3 details the representation of space extracted by the rectification. Depicted are the
positions of the sensors to each other (red and blue) and the position of the calibration
patterns in space that were used to compute their relative positions (colored squares in

https://de.mathworks.com /help/vision /ug/stereo-camera-calibrator-app.html
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Y {mm}

X (mm)

Figure 2.3: Inferred relative position of cameras (bottom left, depicted blue and red) and posi-
tions of patterns (squares mid to top right) in relation to cameras. 113 image pairs
were used. (Figure produced with the MATLAB stereo calibration toolbox)

the upper right hand side).

Commonly, rectification is applied in a backward way to the images: for every pixel in
the rectified target image a virtual pixel at a floating point number is computed in the
source image. Then the intensity value of this pixel interpolated by several neighboring
source pixels. Figure 2.4 illustrates the process. The problem with forward projecting each
pixel of the source image to the rectified target is that it results, in general, in non-integer
coordinates for the target. This may cause some pixel to be left blank after rounding
the coordinates back to integers (this effect can be seen in Figure 3.8). However, in the
frame work of event-based vision, only the forward rectification is applicable. Events are
asynchronous binary atomic entities that can not easily be interpolated like synchronous
full frame intensity values in conventional cameras. So algorithms must either work with
floating point coordinates or deal with pixels that never generate events.

a) b)
— /_"

Source Target Source Target

Figure 2.4: a) Backward rectification: the intensity of a pixel in the target image is determined
by projecting it back to the source image and computing the weighted average over
the neighbors. This way every target image pixel has a defined value. b) Forward
rectification: since events are atomic events at different points in time, there is no
weighted average of neighbors. Events streams are rectified by forward projecting
from source, resulting in floating point coordinate in the target

Le ur,
Ye | =1+ kir+ Kor? + /@37“3)K_1RL vy, (2.13)
Ze 1

10
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2.1.5 Depth reconstruction using point correspondences

The objective of stereo vision is to reconstruct depth of world points using their projections
to the image planes. The main bottleneck of stereo algorithms is the stereo matching prob-
lem. Stereo matching aims at finding corresponding entities between two images, points
that are projections of world coordinate (e.g. same object) in the scene. Ways to solve the
stereo matching problem will be discussed extensively in the upcoming chapters. First,
we will show that solving the stereo matching problem is equivalent to depth reconstruc-
tion. Assume correspondences between points on the image planes have been established,
then the distance z of a world point can be computed using triangulation. Since we have
aligned our image planes with rectification to be parallel (see Section 2.1.4) the depth
computation can be simplified.

P

Figure 2.5: Depth triangulation. To find z, the depth of P, it is sufficient to know the baseline
distance b and the disparity d = u; — u,: z = % (see text for details on derivation).

Looking at Figure 2.5, we can see that the following relation holds by similarity of
triangles.

ur _ by

f oz

Cun be (2.14)
oz

where the baseline was split into left and right segments b = b;+b,.. Adding both equations
in 2.14 gives the relation between the disparity d = u; — u,:

ul—uR:bL—i—bR

f z
d b
G=2 (2.15)
_of
T

Distance is inversely related to disparity, z ~ d~!'. That means that a given uncertainty
in disparity affects depth estimates for far away objects much more than for close object.
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d/px | z/m || d/px | z/m
1 24.32 || 30 0.81
2 12.16 || 31 0.78
3 8.11 32 0.76
4 6.08 33 0.74
5) 4.86 34 0.72
6 4.05 35 0.69
7 3.47 36 0.68
8 3.04 37 0.66
9 2.7 38 0.64
10 2.43 39 0.62

Table 2.1: Disparity-to-depth mapping for a stereo setup with two DAVIS240C sensors, lenses
with focal length 4.5 mm and a baseline distance of 10 cm for two selected ranges of
pixel disparities. Note the large changes in distance for moderate changes in disparity
when disparity is low

Usually, disparity is given in units of pixels. An estimation error of 1px translates to
an depth error of a few centimeters for an object that is less than a meter away and to
an error of more than a meter for an object that is a few meters away. Furthermore, for
algorithms that do not resolve below the pixel levels, this implies that the depth resolution
becomes very coarse for distant objects. The exact relation depends on pixel size; with
disparity d’ given in units of pixels and the pixel size p, it becomes: z = Cll’ff. Table 2.1
provides a mapping between disparity and depth for the sensor that was used for most

experiments in this work.
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3.1 Conventional Stereo Matching

The main task for stereo matching algorithms is to establish correspondences via points
in two rectified images. Once correspondences have been established, the depth of these
points can be computed using the epipolar geometry and depth inference describe in the
previous sections. In conventional computer vision a multitude of algorithms have been
developed to solve the stereo matching problem. This section provides a brief introduction
into the fundamentals of computational stereo matching. For a comprehensive summary
of algorithms we recommend the reviews found at [3, 4].

Stereo matching algorithms can be classified into two main categories: local and global
algorithms. Local algorithms match points between images based on information in the
vicinity of the points. They subdivide further into feature-based sparse and area-based
dense algorithms. Both classes are interesting for event-based vision as well, so we will
briefly outline them here.

Area-based stereo matching

Area-based methods aim at finding a dense disparity map, i.e. they want to map every
pixel in the left image a pixel in the right image. The matching is achieved by defining a
matching cost function and choosing the point along the epipolar line that minimizes this
function. The most common matching cost functions are the absolute difference of pixel
intensity of left and right image (/; and I,.):

AD(z,y.i,j) = [li(z,y) — In(z + i,y + j)| (3.1)
and squared intensity difference:
SD(x,y,4,5) = (L(x,y) — I(x + i,y + j))° (3.2)

The underlying assumption is that pixels seeing the same point in the world display the
same intensity. To reduce mismatches and suppress physically impossible matches often
further constraints are introduced:

e Uniqueness constraint: one pixel in the left image has a unique matching pixel in
the other image. If multiple matches are found, only one can be valid, all others have
to be discarded. It is also possible that no pixel matches, if the point is occluded in
the other image.

e Ordering constraint: in general, the order of points along a horizontal line in one
rectified image is the same as the order of the points in the other image !

e Continuity constraint: because the world is made from continuous objects the
disparity usually varies smoothly along neighboring pixels except for object bound-
aries, which exhibit disparity discontinuities.

Lan important exception are points belonging to small objects in the foreground, the “forbidden zone” [5].
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Only considering single pixels when computing matching costs is sensitive to noise and
often leads to poor results. To improve matching quality, it is common to not only examine
the pixel that is to be matched but all pixels p = (py, py)? in a window W (z,y) of size [ x k
around it (i.e. W(z,y) ={p|z—1/2 <py <x+1/2 N y—k/2 < p, <y+k/2}). The cost
of all pixels in W are aggregated to obtain a more robust matching result compared to
individual pixel cost matching. The most popular cost aggregating functions are the Sum
of Absolute Differences (SAD), Sum of Square Differences (SSD) and Normalized Cross
Correlation (NCC). Assuming that we have rectified image, the epipolar line is horizontal
and the window is shifted only along the z-axis:

SAD(z,y,d) = Z (', y) = I(z' — d,y)| (3.3)
'y eW(x,y)
SSD(z,y,d)= > (L(z'y) - L(z' —d.y))° (3.4)
z'y' €W (z,y)

1 a0 I :U/, ! _T N Irr- I‘,—d, ! —TT.

\/Z‘”/’y'ew(w»y) (L(a'y) — Tl)z (L(2 —d,y) — Tr)Z

where the sums run over all coordinates within the chosen window. This summation is

visualized in Figure 3.1.

Left view Right view

o TR\ :
I epipolar

[ N / line

o Zo-dmax o
Cost aggregation
every step

Figure 3.1: Window-based stereo matching. A window of size m x [ is constructed around left
and right pixel at (zg,y0). Cost aggregation is computed, then the window in the
right view is moved along the epipolar line in steps of 1 px. This is repeated until d
reaches a predefined disparity dpax-

The size of the window is adaptable and depends on the application. It is an important
choice because it affects the quality of results. On the one hand, the window needs to be
large enough to effectively disambiguate similar regions along the epipolar line by finding
unique matches; on the other hand, it must not be too large to be accurate for small objects
and at disparity discontinuities. There are also approaches which adapt the window
size during the matching process [6]. The cost functions have different advantages and
disadvantages. SSD tends to overweight outliers and noise due to the quadratic penalty
for intensity difference. The normalization process in NCC subtracts the intensity mean
from both images to reduce effects of intensity variations between the two images and
divides by the standard deviation to restrict values to the interval [—1,1]. Because of the
more complex calculations compared to SAD and SSD, it is the slowest of the three.
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Area-based algorithms are challenged by scenes in which the cost function has low values
for multiple pixels : in large textureless regions, many pixel neighborhoods look almost
identical and the cost function assumes similar values for a large number of contiguous
pixels; the same problem arises for horizontally extended patterns (e.g. door and window
edges) where the edge is parallel to the epipolar lines; in regions with repetitive patterns
multiple spatially separated pixel have the same matching cost. Breaking the tie in these
cases is normally not possible without bringing in external, more non-local information.

Feature-based stereo matching

The feature-based stereo matching approach is separated into two steps. First each image
is individually processed to extract a range of chosen features. Computer vision litera-
ture abounds in algorithms for features extracting of different levels of complexity. Well
known examples are the Harris corner detector [7], the Scale-invariant feature transform
(SIFT) [8], Speeded-up robust features (SURF) [9], which all extract local point features;
extended features images can for instance be constructed on the basis of edges by using
the Canny edge detector [10] or the Sobel filter that are designed to find edges. Shape-
based feature detectors, such as the Hough transform [11, 12], search for geometric shapes
like lines, ellipses and the like. In [13] different features are analyzed and an overview of
which features are useful for tracking and matching is given.

After the extraction is done, the correspondences between extracted features are searched
in the next step. The search process makes use of the same constraints as the matching
in dense methods: all matches must fulfill the epipolar constraint. If there are multiple
possibilities uniqueness, ordering and smoothness along extended features are used to re-
solve conflicts. This way a sparse disparity map is obtained that gives disparity estimates
at image positions where features were extracted. Figure 3.2 illustrates the process using
the Tsukuba data provided in the Middlebury data set and the Harris corner detector as
example. Both images were processed with the feature extractor, resulting corners are
shown in red. Now, correspondences have to be found, of which a few are shown using
green lines.

Figure 3.2: Result of the Harris detector on two images from a widely used data. Red dots
indicate detected corners, green lines indicate examples of correspondences

In principle any descriptor can be used as basis for stereo matching. In this work, lines
are of special interest because, we will later develop a method to extract lines from event
streams and match them for depth information (Chapter 5). In the frame-based domain
several line-based matching algorithms have been developed, e.g. [14], who proposed a
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graph based method, which is the basis for our method,[15] who present a robust de-
scriptor for line matching in images or [16] who recently introduced a 3D reconstruction
method based on lines (2017). When applying these to video data an additional inter-
frame tracking of lines is desirable to gain temporally coherent depth information. Such
methods are described in [17, 18, 19].

Global stereo matching

Global algorithms incorporate dependencies between pixels and their matches and operate
on multiple pixels (or even the whole frame) simultaneously. In global methods the
matching of one pair of pixels depends not only on their neighbors, but also on the
neighbors’ matches, because they require the depth map to be smooth. Usually, global
methods define a global model and formulate the matching problem as minimization of
an energy function. This energy function consists of a term for the local matching costs
Egata as well as a term that expresses how consistent the matches are (over the epipolar
line or over the whole image) Egmooth, Where the latter term acts as regularization.

E(d) = Edata(d) + )\Esmooth(d) (3.6)

Different methods for global matching have been devised. Some methods separate the
global correspondence problem into subproblems and search for consistency along the
epipolar lines independently. Dynamic programming [20, 21] is exemplary: it simplifies
the problem by disentangling it into smaller parts, thereby, it does neglect the relation
between these lines. This can lead to inconsistencies between the lines which can be seen
on the left hand side in Fig. 3.3. Different lines may have very different optimal match-
ing solutions resulting in the strip pattern when next to each other. An approach that

Figure 3.3: Depth map for Tsukuma data set computed with dynamic programming (left) and
graph cuts (right). The dynamic programming approach optimizes lines indepen-
dently, which gives rise to the stripe pattern. Graph cuts also provide consistency in
the vertical direction (figures from [3])

includes consistency along the vertical axis is graph cuts [22, 23]. Graph cuts regularize
the matching function for local smoothness, also taking into account pixels above and
below the epipolar line, such that neighbors in all direction have to be consistent. This
generates a smoother depth map as Dynamic Programming (Fig. 3.3).

Concerning computational speed, global methods are, in general, slower than local
methods. Global methods try to enforce global consistency, where changing one match
has implications for the costs of many other matches which leads to a more complicated
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optimization procedure. Local methods typically compute optimal matching costs for
every pixel once without using feedback during the matching.

3.2 Dynamic Vision Sensors

One of the main goals of this thesis is to develop a stereo matching algorithm that can be
used in real time, has low latency and does not require extensive amount of computing
resources. The stereo matching approaches described above use regular cameras as source
for visual data which have some disadvantages towards this goal. Regular cameras capture
snapshot of the environment at fixed time intervals, typically every 15-40 ms. Every pixel
is read out for every new frame, regardless of their values are identical to the prior time
step. This generates large quantities of data and requires a high bandwidth for transferal
and processing which results in high power demands or long processing delays that come
in addition to the data latency of some tens of milliseconds. Latency can be reduced by
increasing the frequency of frame readout, but this creates even higher data rates. The
relatively low dynamic range [24] can lead to over- or underexposure, even within the
same view if the illumination varies spatially, e.g. due to light sources and shadows; this
turn is detrimental for machine vision algorithms. All these properties complicate usage
of conventional cameras in real-time application.

We tackle the disadvantages of conventional cameras by using dynamic vision sensors for
visually recording the environment. Dynamic vision sensors of are a product of neuromor-
phic engineering. This branch of engineering aims at mimicking sensing and processing
architectures of nervous systems in electronic circuits. It uses as inspiration the biologi-
cal implementation of information perception, representation and processing that enables
robustness to changing environmental conditions and system damage, as well as power
efficiency. The insights from biology are transferred to create novel hardware and soft-
ware. One of the results of this endeavor, are silicon retinae of which Dynamic Vision
Sensor (DVS) are a type. They were firstly built by Mead and Mahowald in the late
1980s [25]. Silicon retinae are inspired by biological retinae of mammals and model their
transient responses, as an approach to collecting visual information of the environment
that is distinctly different from the approach of conventional digital cameras.

Silicon retinae collect information in a data-driven manner, which gives them proper-
ties suitable for e.g. robotic applications, where low latency is desirable and computing
resources are limited. The sensor responds to pixel-local relative changes in light inten-
sity and discards the absolute illumination information. Pixels of a silicon retina operate
independently and asynchronously. This property allows every pixel to generate an event
exactly at the point in time when its illumination changes, leading to a very fast response
time; the latency typically lies in the order of tens of microseconds. An increase in bright-
ness triggers a so called ON-event, a decrease an OFF-event. There are no frames, instead
a quasi continuous stream of vision events is generated. Due to the fast manner in which
events are generated, DVS do not suffer from motion blur which occurs in conventional
cameras when objects move during the exposure time of one frame. In DVS, there is no
fixed exposure time, pixels react as soon as they have measured a change in brightness.
In fact, the change of illumination intensity is measured on a logarithmic scale. That way
it is possible to achieve a high dynamic range of > 120dB for modern sensors: in dark
environments already small changes in lighting trigger events, while in bright scenes are
larger absolute change is necessary. Examples of successful usage of DVS comprise realiza-
tion of fast reacting robotic systems [26, 27], (real-time) tracking [28, 29, 30], low-latency
odometry [31], self localization and mapping [32], neural activity imaging [33]
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APS output: U/ U’ ; \//

DVS output:

<

time
Figure 3.4: Conceptual difference between conventional frame-based cameras and event-based

sensors. APS sensors produce a series of frames, while DVS produce a continuous
stream of events. (Figure adapted from [34])

Figure 3.4 and 3.5 compare DVS sensor recordings and a comparison with conventional
camera. The images show a quickly moving hand with a pen. On the left hand side,
recordings with an Active Pixel Sensor (APS)sensor are shown: in the upper image,
all pixels were read out simultaneously, the pen and hand are blurred due to their fast
movement. In the lower image, a darker scene, the conventional camera is mainly black.
On the right hand side, accumulated event streams recorded with the DVS are shown; it
is important to note that the pixels were not all read out simultaneously, but at the time
they perceived a brightness change. The fainter an event in the figure, the older it is. In
the upper image, the hand and pen are visible, because they move, the rest of the scene
is static and will not cause the DVS to generate any data. Hand and pen are not blurred,
but rather leave continuous traces in the event stream (see Figure 3.4 for a visualization).
In the darker environment, hand and pen are still well visible. The noise level is, however,
much higher than in the brighter recording, because the pixel sensitivity for illumination
changes was increased.

As mentioned before DVS generate a stream of events. These events will be denoted as
ev = (t,z,y,p), where t is the time the event was generated, (z,y) the image coordinate
where it was created, p the polarity, i.e. if the brightness increased or decreased:

1, iflog I(z,y,t+ At) —log(I(x,y,t) > AI

ev(z,y,t) = . (3.7)
0,iflog I(x,y,t + At) —log(I(x,y,t) < AI

During the last years, different types of event-based sensors have been developed [35,
36, 37]. The first commercially available DVS has a resolution of 128 x 128 and pro-
duces timestamps with microsecond resolution. Newer sensors combine APS and DVS
functionality.

In this thesis, a DAVIS240C sensor is used. This is a hybrid sensor which has dynamic
vision sensor functionality as well as active pixel sensing, i.e. conventional frames. The
resolution is 240x 180 pixels, its dynamic range is about 130 dB. On every pixel DVS and
APS circuits operate independently, but they share the same photodiode.

This leads to issues with increased noise in the DVS, if frames are read-out while events
are captured: pixels are likely to generate an event, when the APS is read out. This
leads to spikes in the event rate and a “sheet” of spurious events in the event stream.
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Figure 3.5: Comparison of APS (left column) and DVS (right column). Depicted is a quickly
moving pen and hand. Top row: bright light conditions (note the blur on hand and
pen), bottom row: dark light conditions (ceiling lights switched off, only light source
is laptop)

We aim at developing algorithms that only use event and therefore deactivated the APS
most of time. However, when a comparison with conventional algorithms is desired,
we captured both data simultaneously, which resulted in deterioration of event stream
quality. Additionally, the DVS pixel spontaneously generate ON events due to a leakage
current. This is unavoidable and has to be taken care of (Section 4.1 explains how noise
was filtered). A more detailed description of the sensor’s details can be found in [37].
Summarizing, the main advantages DVS offer over conventional cameras are:

e very high temporal resolution

low latency

high dynamic range

dynamic data rates because only scene dynamic is captured
e no undersampling of moving objects

Since the working principle of DVS is fundamentally different from conventional cam-
eras, algorithms aimed at the latter can not be used on event-based data - new methods
have to be developed. The next section will give an overview over the current state-of-
the-art in event-based stereo matching.

3.3 Event-based Stereo Matching

During the last years, event-based vision has gained growing research interest. Several
approaches towards event-based stereo matching have been explored, albeit not nearly
as many as with conventional cameras. The majority of published algorithms can be
classified in one of three classes: image reconstruction, time-correlation methods and
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neural networks. An early approach is to reconstruct frames from the event stream and
use area-based matching patterns like the Census transform to create a disparity map[38],
which was later refined by belief propagation and post filtering [39]. Event streams are
accumulated to obtain images, like for instance shown in Figure 3.5. Then conventional
methods are applied to these images: the authors investigated the accuracy of area-based
as well as feature-based methods. Accumulating images, however, loses the high temporal
resolution of the stream.

Another class of algorithms processes events individually to gain depth information. In
[40], [41] the high temporal resolution of the sensors is used to correlate events based on
their timestamps. For each incoming event ev = (x,y,t,p), a set S;(t) is constructed that
contains all events in temporal vicinity §t:

Si(t) = {ev(az,y,t) in R; |V, [t —t] < g} (3.8)

It is not possible to simply match with the event that lies temporally closest, because
timestamps are subject to noise from different sources like electronic jitter, discrete pixel
sizes etc.). From S;(t), a set of possible matches is extracted using the epipolar constraint

M (ev(z,y,t)) = {e(@r, yr, t') € S;(t) | Vk, d(ev,li;) < Ap} | (3.9)

with the Euclidean distance function d(-,-) and a threshold value A,. Additional con-
straints to further reject events are then applied (uniqueness, ordering, average pixel
activity etc.). If M only contains one match this is taken as match, otherwise the events
are discarded. So, this method is an event-to-event-matching approach. Differences in
event generation characteristics of the sensors’ pixels may pose challenges it.

Some extensions to this approach have been suggested since the temporal and geo-
metrical constraints applied alone can not resolve all matching ambiguities. [42] adds
Gabor filters to use orientation as additional cue for disambiguating event matches. If the
baseline distance of the sensors is small and they are horizontally aligned, then observed
object edges have approximately the same orientation. Banks of Gabor filters separate
the events based on the edge orientation and match events separately. The base method
and the orientation sensitive extension, however, tend to produce a not insignificant num-
ber of wrong matches, as analyzed by [43], especially when multiple objects are in the
scene. The authors there propose a different extension by using techniques from message
passing.A Markov Random Field is constructed with a hidden node for every pixel, which
represents the disparity belief of the field at this position. Each node is connected to
its four nearest neighbors and to an observation node. The observation node introduces
information and is used to calculate the state of the hidden nodes. In addition, the hidden
nodes exchange messages about their current belief of the disparity state. The disparity
is then inferred by finding a maximum posterior probability over the state of all hidden
nodes. Using this probabilistic framework, the authors are able improve matching results
compared to prior versions. They show this quantitatively with ground truth data they
labeled. The accuracy improvement comes, however, at the cost of increasing computing
time by up to two orders of magnitude compared to the base version.

The third class of event-based algorithms is formed by neural networks that implement

the cooperative matching approach, first suggested by Marr and Poggio[44] for static im-
ages. Different version of such networks for event streams have been proposed|[45],[46].
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They work in an event-driven fashion, i.e. they process each event immediately when they
receive it. The networks are composed of one neuron for all combinations of pixels and
allowed disparity. An active neuron stands for the network’s belief that the corresponding
pixel has the disparity the neuron represents. To arrive at a sensible and correct state,
the network architecture implements the uniqueness constraint and continuity constraint
by appropriate excitatory and inhibitory connections between the neurons network. Since
pixels can only have one disparity value, neurons along the epipolar line inhibit each
other. Neighboring neurons on other epipolar lines that represent the same disparity get
excitatory input. This implements the continuity constraint, which states that objects are
usually smooth and the disparity does not vary (or varies only slowly) along the surface
of objects. Figure 3.6 gives a schematic of the network’s connections. Some of these net-
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Figure 3.6: Working principle of the cooperative network (Figure from [45]). The center grid is
composed of cells representing disparity; on the margin in horizontal direction one
pixel row of the right sensor is plotted, in vertical direction one pixel row of the left
sensor. An event in the left sensor at z; is matched with an event at x;_1 in the right
sensor resulting in disparity d*. This is represented by activity of cell Ci’l e This

cell now excites cells representing the same disparity in the neighborhood (fndicated
by a green hue) and inhibits cells that represent a different disparity or a different
match for the event (indicated by a red hue).

works have been shown to run efficiently on neuromorphic hardware[47, 48]. The data for
which they were deployed were, however, simple objects in front of a static setup. Their
performance on complex dynamic scenes, e.g. with moving sensors, has yet to be proven.

A stereo setting is not the only way that has been developed to for the task of recon-
structing depth from event streams. Rebecq et al. recently proposed a method to estimate
depth using a single DVS sensor[34]. The work is based multi-view stereo methods which
they made usable for event streams. Using only one sensor frees the approach of the
requirements of having a rigid frame for multiple cameras, calibrating the geometry and
synchronizing the clocks. Instead the technique requires knowledge of the sensor pose to
calculate the depth of events. This information can be gained by an external tracking
system or the depth estimation can be combined with a pose estimation algorithm[49].
Events are projected as semi-infinite rays back into space for which the sensor pose is used.
When the sensor moves, a point in the world creates multiple events. The corresponding
rays intersect in space at the position of the object (illustrated in Figure 3.7). Hence, by
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finding the rays’ intersection depth of objects can be calculated. The computation load
is comparatively light weight and can be done in real-time on a modern CPU.

Figure 3.7: Event are propagated back into space using the known sensor orientation (blue trian-
gles). Points of ray interjection correspond to the scene object and allow to calculate
the 3-dimensional position (Figure from [34]).

3.4 Event-based feature extraction

Compared to area and correlation-based stereo matching, feature-based stereo matching
has gained little attention. It requires algorithms that reliably extract and potentially
track features from event streams which can then be used to find correspondences. Several
trackers for different shapes have been developed. An early example of this can be found
in [50]. Based on this [27] shows how to construct a robotic goalie with fast reaction
time of only 3 ms. [26] focuses explicitly on detecting lines from events and describes a
pencil balancer which attempts to keep a pencil in an upright position. Pencil movements
are compensated by quickly moving the base its standing on using estimates about the
pencil position. The estimation is performed in Hough space. In a more recent work,
[51] describe a line segment detector to detect multiple lines in arbitrary scenes. They
use Sobel operators to find the local orientation of events and cluster events with similar
angles to form line segments. Events are stored in a circular buffer of fixed size, so that
old events are overwritten when new ones arrive and the position and orientation of lines
is updated through this process. Focus lies on line detection, not tracking. There are also
increasing efforts to track other basic geometric shapes in event-based systems: corners
have been a focus in multiple works as they generate distinct features that do not suffer
from the aperture problem, can be tracked fast and find usage in robotic navigation.
[52] use a corner matching algorithm based on a combination of geometric constraints to
detect events caused by corners and reduce the event stream to a corner event stream. [53]
transfer the well-known Harris corner detector ([7]) to the event domain, while [54] present
a rapid corner detection method inspired by FAST ([55]), which is capable of processing
more than one million events per second. [56] introduces a method to track visual features
using different kernels like Gaussians, Gabors or other hand designed kernels. [57] uses
a hybrid approach combining frames and event stream. It does not require features
to be specified beforehand but extracts them using the greyscale frames. The extracted
features are subsequently tracked asynchronously using the stream of events. This permits
a smooth tracking through time between two frames.
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3.5 Ground Truth Data for Quantitative Evaluation

Evaluation is a crucial part in the development of the vision system and is traditionally
done on ground truth labeled data sets. These datasets allow quantitative evaluation
of algorithms and provide the community with a metric to compare different proposed
methods, extensions and filters. For this reason they are central to the development of new
methods. In traditional computer vision there is a variety of accepted benchmark data
sets against which algorithms are evaluated. For the problem of stereo correspondence
matching, the Middlebury data set [3] has become the de facto standard. The images used
for demonstration in Chapter 3 are for instance contained in this set. By now, there have
been multiple iterations and extensions of it [58, 59, 60] and this benchmark continues to
be used as standard. These dataset are, however, not useable for evaluating the event-
based approaches presented in this work because the underlying data representation and
working principles differ fundamentally. To this day, no event-based dataset featuring
ground truth has established itself as a commonly accepted benchmark in literature.
Nevertheless, it is important to quantitatively evaluate methods to measure the impact
of parameters and compare different methods. Recently, Xie et al. published a dataset
of ground truth labeled event-based recordings [43]. It consists of 5 scenes with simple to
moderate complexity. The recorded scenes are the following (illustrated in Figure 3.8):

a) One box: a single box with almost constant disparity moved sideways

b) Two boxes: two boxes at different depths moved sideways in opposite directions at
same height but never occluding

c¢) One person: a person walking parallel to the image planes

d) Two persons: two persons walking parallel to the image plane at different depths in
front of each other (with occlusion)

e) One person different depth: one person walking diagonally away from the camera,
so the depth changes constantly

In this thesis, these data are used to compare the developed methods with the literature.
These scenes have, however, a few shortcomings. They were recorded with static sensors
and the recordings are, therefore, very clean and show little noise and no clutter. Cali-
bration is already applied. It was done by rounding the corrected event coordinates to
the nearest integer. This leads to a grid like pattern where no events are ever located (see
Fig. 3.8 ¢), d) ) where the effect is very visible). Additionally, the original non-integer
event locations are lost. The accuracy when analyzing errors of methods with subpixel
accurate disparity estimates will therefore distorted.

Next, the settings of the two sensor seem to have been different during recording,
this manifests for instance in different event rates even in scenes that show the same
stimulus (see Table 3.1). The event streams are quite dissimilar at multiple times during
the recordings, which makes matching harder. Especially, the recording ‘One Person
with Different Depths’ is problematic. Figure 3.9 shows the problems. The right stream
depicted in the upper row has considerably fewer events, especially ON-events, to the
extend that certain features become invisible (e.g. around the head or the left arm). This
was likely caused by sensor problem during recording. In the lower row, a similar problem
can be seen: the right part of the body is not visible in the right stream.

For these reasons, we also produced an additional ground truth dataset ourselves. We
chose a scene of higher complexity and moved the sensors instead of having static sensors
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Data set Total event | Number events | Number events
number left sensor right sensor
One Box 97,179 40,059 57,120
One person 441,796 195,873 245,923
Two Boxes 63,544 24,071 38,843
Two persons 636440 272,019 364,421
One person 140,254 87,730 52,524
different depth
Table and Cones | 3,551,038 1,633,966 1,917,072

Table 3.1: Event distribution over sensors for different data files

observe a dynamic scene. The scene contains is a table, cones and boxes at different
depths. Snapshots of the recording can be found in Figure 3.10. Ground truth values
were found by manually clustering events belonging to the same edge and aligning the
edges. Having all edges labeled independently allows the user to compose the scene in a
modular way if a less cluttered scene is desired, it also allows to remove and add sensor
noise. The event coordinates are available with unrectified integer coordinates as well as
rectified, undistorted floating point number coordinates allowing evaluation on a subpixel
accuracy level. This allows a flexible testing and evaluating of novel algorithms.
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3.5 Ground Truth Data for Quantitative Evaluation

Figure 3.8: Data set provided by Xie et al. (2017) [43]. a) ‘One Box’, b) ‘T'wo Boxes’, ¢) ‘One
Person’, d) ‘Two Persons’ e) 'One Person Different Depths’. First column shows
snapshot from beginning of respective file, second column from end (event streams
were accumulated for 100 ms, fainter color represents older event age, labeled dis-
parity not shown).
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3 State of the Art

Left stream Right stream

Figure 3.9: Problem with the 'One person different depth’ recording. a) and b) are each a
corresponding pair of accumulated event streams (100 ms accumulation time). Left
and right stream are dissimilar frequently during the recording.

Figure 3.10: Two snapshots from our recorded ground truth dataset. Each edge was separated
and labeled manually. The scene can be modularly composed to the users wishes.
Left: beginning of recording shows table. Right: Later boxes and cones at different
distances become visible.
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4 Event-based stereo matching approaches

This chapter describes algorithmic approaches towards event-based stereo vision. In sec-
tion 3.1, the distinction between stereo matching algorithms using local information and
algorithms using global information was made. We will first examine local algorithms,
which are more suited towards the nature of event-based data where the information is
transmitted as stream of single events and synchronous global information is absent. In
principle, it is desirable to process each of the single events directly when it is received
in a fast manner using the information that is available at that point in time. Global
approaches, on the other hand, require us to wait a certain time interval to collect events
and then process all gathered information synchronously. Matching multiple events at
the same time, they can impose global consistency and smoothness of the disparity maps.
However, one can not make use of one of the major advantages DVS provide: low-latency
due to asynchronicity. The second part of this chapter will analyze global matching algo-
rithms.

4.1 Noise filtering

Before taking a look at the matching process, let us first consider the quality of event-
based data. The sensors are not perfect, pixel can spontaneously generate events without
a corresponding stimulus. These spontaneous events, which we will call noise, is cause
by thermal fluctuations and junction leakage currents [35]. Leakage current accumulates,
causing the pixels to perceive a constant increasing in brightness. The pixels will generate
a spontaneous ON-event with a certain regularity. These events deteriorate the quality of
the data and create unnecessary data which has to be processed.

The leakage current noise can not be modelled as Poisson process which does not take
the accumulation into account. We will use a simple time-interval-based model here to
get an approximative assessment of how much noise we have to expect within one time
interval. Let ra¢ be the probability that a pixel generates a spontaneous event in the time
interval At. We exclude the possibility of two or more spontaneous noise events in this
time window since spontaneous activity needs time to accumulate the leakage current that
causes it. We assume that noise of all pixels is independent and identically distributed.
The probability that n spontaneous events in an rectangular window of [ x m pixel then
is binomially distributed:

Ixm
p(# of events > n) = <l Xim

%

> (1 —ra)Xmi (4.1)
We determined an estimate for p by recording a gray surface with a DAVIS240C for 15
minutes and dividing the number of events by time and resolution. The actual amount of
noise is heavily temperature dependent. The temperature of the room was approximately
23°C, the temperature reported by the internal thermometer of the sensor was approxi-
mately 29°C. Assuming independence and identical distributions for all pixels as stated

above, this leads to a spontaneous activity rate, respectively activity probability density
p ~ 0.058 events/(s*px). To check if an event ev is noise, the nearest neighbor filter
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4 Event-based stereo matching approaches

a) b) c)

Figure 4.1: Effect of different noise filters: a) Unfiltered accumulated event stream when sensor
faces textureless gray surface; b) nearest neighborhood filter; ¢) 5x5-pixel-window-3-
events-threshold filter. At = 100ms for both filters, events accumulated for 1 second
for all views. The nearest-neighbors filter lets a significant amount of noise events
pass; in contrast the 5x5-pixel-window filter filters out almost all noise

is frequently employed. It checks if there was an event in the eight pixels surrounding
ev with age below a threshold At. Using the model given in 4.1 with A¢ = 100ms (i.e.
7100ms=0.0058 the probability for this criterion to be randomly met is

p(> 1 event in adjacent pixel) =

1 — p(no event in adjacent pixel) =

, (4.2)
3x3—-1 a
( ) 7 00ms (1 — T100ms)>* 7! = 4.54%

0

where the —1 arises from the fact that the middle pixel, that generated the event, usually
is not checked for a prior event. 4.54% false positives is still a relatively high rate of noise
events that pass; this is especially important for algorithms that are sensitive to outliers.
To suppress more noise, we increased the window size in which it is checked for prior
events, and simultaneously increased the number of events we require to find to let an
event pass. We used a window size of 5x5 and an event threshold of 3 events:

5x5—1
p(> 3 events in 5 x 5 window ) = Z <5 % f B 1) 7 poms (1 — T100ms) >~ = 0.036%
i=3

(4.3)
These parameters brought the best trade of between computation time and filtering qual-
ity. Also see table 4.1 for more parameters. The filter with a 3x3 window and 2 events
threshold was found empirically to filter out to many thin structures and rejected. It is, in
principle,important to let the threshold of events be smaller than the window side length,
because thin features (e.g. a vertical bar spanning the whole window height but only one
pixel in width) are filtered out otherwise.

Additionally, it is worth mentioning that the overall noise level significantly increases,
if the APS and DVS operate in parallel. Since the algorithms in this, solely use DVS
events (except for calibration with uses APS only), this issue is secondary and we did not
deeply investigate how to overcome it.

4.2 Window-based matching

The first approach is based on constructing a small window around incoming events and
computing a similarity measure for windows in the other stream. The general idea is to
compare the vicinity of an incoming event to same-sized areas along the epipolar line.
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4.2 Window-based matching

Window size | # events | p(false positive)
3%3 1 4.45%
3x3 2 0.092%
9XH 1 13.0%
5x5H 2 0.8%
9XbH 3 0.036%
<7 3 0.28%
<7 4 0.017%

Table 4.1: Comparison of different filter parameters for the described noise filter

The area that minimizes a matching cost function (i.e. is most similar) will be chosen
as corresponding area and used to compute disparity. Window-based methods have long
been used in conventional computer vision to find dense depth maps(see section 3.1).
These methods use pixel intensities as input to the cost function. Event-based sensors do
not provide intensity information; the primary information conveyed is event generation
time. Therefore, we choose the cost function to be based on the event timing. Generation
times of events in corresponding regions of both two views to be very similar since they
depict the same physical object. That implies that the time difference of the events within
matching windows is on average small what makes time difference of event occurrence a
suitable cost function ¢(z,y). However, we do not know in advance if there recently was
an event at a given pixel position which also stands in contrast to conventional cameras
where each pixel has an intensity value to read out, if there was no event in either of the
both streams during the last 7 seconds, we do not consider the position for computing a
cost value. These events are considered too old to be correlated with the current scene
and are likely to distort the aggregated cost function value. Cost between two events
ev; = (t;, z1,y1, poly) and ev, = (t,, z,, yr, pol,) at time ¢y is then is computed as:

lti — t.|, if tg —t; < 7 and tg — ¢, < 7 and pol; = pol,

c(ev, evy) = { (4.4)

undefined, otherwise

To find a total matching cost of two windows, a cost aggregation function over the win-
dow is required. We chose and compared the three mentioned functions: sum of absolute
differences, sum of squared difference and normalized cross correlation (see Section3.1).
Both sums are executed only over cost values that are defined, the sums are then nor-
malized by F, the number of pixels considered. This results in an average cost value and
make windows with different numbers of valid pixel pairs comparable.

1 m—&-% y+é
Csp = 3 3 Ieg) (4.5)

i=r—§ j=y%

1 m—&-% y—l—é
Cop=7 3 3 (clif)) (4.6)

i=r—g j=y—3
In the following, we will first present the base algorithm, followed by extensions to
enforce consistency using the properties of the event stream. For clarity of presentation,

we will assume that we want to find the disparity of events in the left event stream. It is,
however, not restricted to the left stream and works identically for the right stream.
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4 Event-based stereo matching approaches

The method handles every event as soon as it received. For every incoming event e, we
construct a square window of [ x [ pixels around the event pixel coordinates x. and y,
in both retinas. We compute the matching costs between both windows. Then, we move
the right window one pixel to the left along the epipolar line. This process is repeated
until the window was shifted by a predefined maximal disparity An.x. Events with an
z-coordinate lower than A — max are rejected, because not the full range of possible
positions can be evaluated and matching would, hence, be biased towards low disparities.
The epipolar lines were chosen to be horizontal for all recordings which can be achieved by
rectification (see Section 2.1.4). This simplifies computation by turning movement along
the epipolar line essentially to incrementing the x coordinate.

The size [ of the window and event lifetime 7 are parameters of this method. Changing
[ is a trade-off between the risk of confusing similar textures when the window is to small
and their is too little information to disambiguate, on the one hand, and ignoring small
structures and requiring more computing time, on the other hand. 7 sets how many events
are concerned for the matching cost computation. Setting is to a low value may eliminate
too many events to achieve meaningful cost values, especially in slower scenes where there
are few events. Whereas setting it to a high value risk distorting the cost function with
old events from objects that have become unrelated to the currently evaluated location.

4.2.1 Experimental results

First, the performance of the three different cost aggregation functions was evaluated
to compare with each other. We tested the algorithm with the ground truth data set
described in 3.5. Experiments were conducted on an Intel Core i7 4770K running at 3.5
GHz, the code was implemented in C++.

Figure 4.2 shows a comparison for different values of the parameters. Although NCC
is a much more complex function and takes more computation time than the easier SAD
and SSD the performance is considerably worse. SAD and SSD perform comparably
with SAD being slightly better overall. The quadratic cost term in SSD penalizes the
matching of uncorrelated events e.g. through noise heavier than SSD. Therefore, for longer
event lifetimes, where there is a higher probability of uncorrelated events spontaneously
appearing plus the stronger quadratic penalty. SAD performance is more robust against
this effect, performance varies slower with different event life time. Precision increases
monotonically with window size, so in terms of precision a larger window is better.

When it comes to computing time, SAD and SSD perform virtually the same, as was
expected, and faster than NCC. Larger window sizes require more computing time. For a
window size of 5, processing one event takes about 5 us, corresponding to 200.000 events
per second. Increasing the window size to 15 already uses 20 us (50.000 events per second).
Average computing times are displayed in Figure 4.3.

For the reasons stated above, we chose Sum of Absolute Differences as cost aggregation
function and 100ms as event lifetime. Note that event lifetime must most likely be tuned
to the velocity expected in the observed environment when this algorithm is deployed.

In comparison with current literature, the method performs comparable with the best
published method. Especially for larger window sizes. Table 4.2 provides an overview
over the presented window-based method and different other published algorithm. The
computation in literature was done using MATLAB, so timing information is not directly
comparable. However, considering absolute computing time, we can state that the variant
of our algorithm with window size 11x11 can approximately be run in real time, if the
event rate does not significantly exceeds 100.000 events per second.
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4.2 Window-based matching

NCC

% estimated event with
disparity error < 1px

| | | | | J | | | | | J | | | | | J
25 50 100 200 500 1000 25 50 100 200 500 1000 25 50 100 200 500 1000

log(Event lifetime / ms)  log(Event lifetime / ms) log(Event lifetime / ms)

Figure 4.2: Accuracy of the window-based stereo approach in dependence on event lifetime, for
different window sizes and cost aggregation functions.
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Figure 4.3: Computing time per event for different cost aggregation functions (event lifetime set
to 100ms)

A problem that is not reflected in the averaging statistics is fact that falsely matched
events tend to cluster. There are regions of consistent false matches. Often they are
part of a larger physical object which was partially matched correctly and partly falsely.
This can be misleading for an autonomous system using the stereo information. It would
perceive two objects at different depth of which one is a phantom object. Because the
wrong matches are located close to each other, it is not possible to easily correct them
with a window-based smoothing scheme. In the following we will look at a correction
mechanism that aims at rejecting wrong matches and generating disparity propagation
along edges to improve disparity smoothness over longer distances.

4.2.2 Edge traversing extension

DVS events occur primarily at object boundaries and edges. Along most edges, the
disparity varies slowly, if at all. Therefore, we propose a postprocessing step to ensure
smooth disparity values along edges. Based on an idea by Witt and Weltin[62] a variable is
introduced which reflects the confidence that a match is correct. Confidence is propagated
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4 Event-based stereo matching approaches

) _ b

Figure 4.4: Left and right input (a and b) and disparity output (c). Colors in ¢) represent
disparities. The disparity of both person should only vary within a small margin,
i.e. both should be shown in a consistent color (green and blue respectively), but
there are patches of incorrect disparities. These would appear as phantom objects
in a downstream processing system. Note that the left side of the disparity map is
empty: in this area not the whole disparity range can be scanned, to prevent biasing
it is therefore ignored

along connected parts of the event stream, such that high confidence matches are used to
correct low confidence matches and a consistent depth estimate is provided.
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Figure 4.5: Examples for a cost aggregation functions, x shows the disparity of the event, y the
associated matching costs for the respective disparity. (a) desirable graph of the cost
function with a distinct minimum, (b) an undesirable graph with multiple, here two,
minima

Algorithmically, confidence is defined via the ration of lowest and second lowest match-
ing cost. A match should be as unambiguous as possible, the correct position is expected
to have significant lower matching cost than all other positions. This is reflected by a
distinct minimum in the cost aggregation function. Multiple minima at different posi-
tions along the epipolar line, in contrast, suggest multiple fitting positions reducing the
certainty of the chosen match to be correct. Figure 4.5 shows examples for both cases.
The proposed confidence measure compares the lowest and second lowest cost by taking

the quotient ¢ = sec%giggygzgtcszﬁu?lue of the values and assigning discrete confidence values
based on it:

e high confidence, if ¢ > 3
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4.2 Window-based matching

e good confidence, else if ¢ > 2
e low confidence, else if ¢ > 1.5
e no confidence, else ¢ < 1.5

In addition to high confidence matches, smoothness of the depth map is to be enforced.
That implies that neighboring pixels’ disparities can not differ by more than one. If they
do, either one of the matches is wrong or they see a depth discontinuity and likely do not
belong to the same physical edge.

We propose a disparity postprocessing step for every event based on the matching
confidence and the smoothness constraint.

After the matching step, every event computes the matching confidence. If the confi-
dence is good or better, the event searches for a two neighboring events, that are consistent
and have at least good confidence. This group serves as anchor point for the traversal.
Now, first a list of edge events is created, then the found events are refined. Travel along
the edge and avoid circular cycling through the same events only neighbors in direction
of traversal are regarded. The disparity of newly added events is changed based on its
matching confidence. If the matching was done with highest confidence, we do not change
it. If the confidence is one category lower, the disparity is set to the mean of the new
event and its prior neighbor. If the confidence is two or more categories lower we replace
the disparity with the prior event’s one.

In the next step, the discovered chain of events is iteratively smoothened. Two adja-
cent events are compared in terms of matching confidence. If the confidence is the same,
nothing is done, if the confidence of the two events differ by one, the disparity of the
lower confidence event is set to the mean of both events disparities, if the confidence level
difference is more than 1, the lower confidence event’s disparity is overwritten by the
higher confidence event’s disparity. This is done until all events in the chain have been
processed. This eliminates low confidence matches from the chain by interpolating them
using the higher confidence matches.

Results show no improvement but actually deterioration to the base version of the algo-
rithm, the accuracy is perceivably lower (Table 4.3). A more detailed investigation of this
result found two main causes. First, the basis for the cost function is time difference, not
intensity as in conventional matching, and the proposed confidence measure is unsuitable
for time differences. Event traces are spatially highly correlated: the pattern belonging
to an extended object within the comparison window at time ¢ has a very similar looking
pattern generated at time t — At, only shifted by one pixel, and again a very similar
looking pattern at approximately ¢ — 2A¢ shifted by two pixels and so on. During the
cost aggregation steps all these patterns yield a similar cost value with the additional
punishment of n * At, depending on distance. This results in slowly increasing cost ag-
gregation graphs, not single minima spikes as one gets when search for spatial correlation
based on intensities. Figure 4.6 shows such a graph. The optimal disparity is very likely
correct, but will not be labeled with a high confidence because the neighboring costs are
all low as well. High confidence values are a result of low speed of the objects moving,
thus effectively increasing At and also a result of noise events which break the smooth
pattern described above. This causes events to be corrected into the direction of noise,
lowering the overall quality of the matching. The ratio of lowest and second lowest cost
is, therefore, not a suitable metric to determine unambiguity of matches.
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Figure 4.6: Typical cost aggregation graph. Cost increases slowly with disparity.

4.2.3 Discussion

We proposed a window-based stereo matching algorithm based on the local vicinity event
timestamp differences. The achieved accuracy of window-based methods is on par or bet-
ter than that of recently published other methods. In terms of speed the presented algo-
rithm has the potential to processes event rates in the order of a hundred thousand events
per second, and hence has the potential to be employed in a real-time setting, especially
with an optimized implementation. Efforts to improve the algorithms by postprocessing
disparities and incorporating a smoothing scheme failed however. This underlying reason
for this was on the one hand, that wrong matches tend to cluster and these clusters have
consistent disparity, and on the other hand, that the introduced confidence measure was
not suitable for event-based data which is temporally highly correlated along the epipolar
line.

A fundamental drawback of the window-based method as presented is that it is restricted
to integer disparity value. The epipolar line is scanned in discrete steps of one pixel per
step. As we have discussed before small disparity changes can lead to large changes in
perceived depth for objects that are medium to far distance (see Table 2.1). It is desir-
able to have floating point accurate disparity instead of being constraint to integers. This
can partly be improved by increasing the resolution of the event-based sensors. How-
ever, window-based methods do not scale favorably for higher resolutions. The number
of computations per event grows significantly if there are more steps along the epipolar
line and window sizes have to be increased to cover the same solid angle. Additionally,
sensors with a higher resolution generate more events, so that not only the computations
per event, but also the event rate increases. Since the algorithm with the setup as used
here is already on the edge of real-time capability, an increased resolution would make
real-time hardly achievable. In order to gain the possibility to achieve subpixel accuracy
and improve scalability, we now turn to different event processing approaches.

34



4.3 Aggregate methods

4.3 Aggregate methods

The second class of approach to solve the stereo problem were methods that operate on
multiple events at the same time, different to the methods presented in section 4.2.

Event data can be represented as point clouds in three dimensional space: two spatial
dimensions and one temporal dimension. In a stereo setting of two event-based cameras
with short baseline, the point clouds originating from the same object will be similarly
shaped. By aligning two point clouds belonging to the same object we will be able to
infer the disparity of the cloud’s events.

The problem of aligning two point clouds, is known as point cloud registration or point
matching. The objective is finding a transformation that maps on point cloud to another
one. The general problem can be formalized as follows: assume we have two finite point
sets L and R which contain N and M points from R%. Find a transformation 7 that
maps R to T(R) = R’ such that the sum over the distances of every pair of points from
R’ and L is minimized:

dLTR) = S S i1 (4.7)

reT(R) I€L

where 1(r) is the point in L with the smallest Euclidean distance to r and f is a distance
function (e.g. Euclidean distance).

We used point cloud registration to solve the stereo matching problem and analyzed
two different approaches which will be introduced in this section: a probabilistic one,
based on coherent point drift[63], and a geometric one, based on the iterative closest
point algorithm[64].

4.3.1 A geometric approach to registering event streams: Iterative Closest
Points

The Iterative Closest Point Algorithm (ICP) is a point-based iterative algorithm to find
an optimal alignment between two different point clouds. It is often used to stitch results
from surface scans of different sensors together, a task that is very similar to the alignment
of event clouds. ICP has already been applied to problems in event-based vision [57, 65]
as well as in stereo vision [66]. We will briefly introduce the algorithm here, motivate and
derive our adjustments for stereo vision and then present and discuss the results.

4.3.1.1 Algorithm

Initially, one point cloud is fixed and used as reference cloud. The other point cloud
(reading cloud) will be iteratively updated to match the reference cloud. In every iteration,
the points in the reading cloud are paired with their nearest neighbor in the reference
cloud according to Fuclidean distance. After having found the pairs, the transformation
is chosen such that the sum of squared distances between pairs of points is minimized.
Then, the reading cloud is transformed and the next iteration is started with finding new
corresponding pairs (see Algorithm 1).

Using the squared distance as error measurement makes the method highly susceptible
to outliers. Noise events that lie far away from the actual visual signal will typically have
a much larger distance to their nearest event in the other stream. This leads to a high
weighting in the squared distance sum. The event correspondence is, however, spurious,
since it is matches noise events, and will only distort the result. It is, therefore, important
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Data: point cloud R, point cloud L, initial transformation guess 7°

while not converged and maximum number of iterations not exceeded do
For every point in L find the closest point in T")(R(¥));
Find T¢*+1) that minimizes the sum of square distances between point pairs;
R(k—l—l) — T(k+1) (R(kz)) :

end

Result: Optimal Transformation 7™
Algorithm 1: Iterative closest point algorithm

to preprocess the event clouds using an outlier filter. We used an outlier filter, that rejects
a certain percentile of events with respect to the highest distance to neighboring events.

The linear transformation 7" has the following form:

T:<§ f) , (4.8)

where t is a D dimensional translational vector and R a matrix whose properties can be
chosen depending on the desired type of translation. The original ICP is formulated to
find a rigid transformation between the point sets, i.e. a transformation that is composed
purely from rotation and translation and does not change the distance of any two points
within a cloud. In this case R € SO(d). In case of non-rigid transformation R can become
an affine matrix that introduces shear terms.

The stereo setup enforces some geometric constraints that simplify the final transfor-
mation.

e The vision sensors are oriented in the same direction: the event point clouds are not
rotated against each other. R is diagonal.

e The sensors lie in a plane parallel to the pixel’s x-axis, objects of the same height
will be mapped to the same pixel row: there is no shear along the y-axis, Ry, =1

e The sensor clocks are synchronized: there is no shift along the t axis, ¢ = 0.

We allow R to be an affine transformation along the x axis. This is founded in the fact
that the projections of objects who are not parallel to the camera baseline will be have
differing lengths along the x axis in image planes. Using these constraints, it is possible
to reformulate the problem. The general transformation for an event in homogeneous
coordinates ev = (evy, evy, evg, 1) becomes:

R.. 0 0 t, evy Rozev, + t,
1 0 1 0 ¢ evy evy + iy
Te) =169 01 0]|eny|~ evy (4.9)
0 0 0 1 1 1
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Using c(ev) as event in L that lies closest to ev, the quantity to be minimized becomes:

mTin Z (T(ev) — c(ev))? =

evER
2
Ryzevy + 1t Cx
min evyej vl o] = 4.10
T evER 1t 1y ( . )
mTin (Rux % Vg +te — c2)) + (evy +t, — ) + (evr — ¢)?
eveER

The last line in 4.10 is a sum of positive terms (squares of real numbers are larger or
equal zero) with independent variables. In order to minimize it, it is sufficient to minimize
each summand independently. Let us start with the last term containing the event time.
It does not have any free variable, because we neither rotate nor shift the time coordinate.
So, there is nothing we can do to optimize it. The middle term containing the y coordinate
contains the parameter g, for which a simple analytic solution is available:

d 2
%Z(evy+ty_Cy) = 0
evER
2 (Ay+t,) = 0
evER
(4.11)

2> Ay+2Nt, = 0

evER
2N Ay +2Nt, = 0
ty = _Fy )

where we used Ay = ev, — c(ev), and the average Ay = % > ever Ay. So, the optimal
value for the y-shift is the average of the y difference of the corresponding points. The
y-shift will not be reflected directly in the computation of event disparity, it influences
however the distances of events between the clouds and the pair finding step prior to the
optimization step.

After having found a solution the y coordinate, let us look at the x coordinate. The term
containing the x coordinate has the form of a problem of linear regression. Formulated as
matrix expression the equation that needs to be fulfilled becomes

XB=c |, (4.12)

where we subsumed the data in a matrix X, the parameters in vector 5 and the comparison
values in vector c.

1 evp C1

X — |1 evy 75:(57;“)’6: C2 (4.13)

This is an overdetermined system for which we want to minimize the error. Ordinary
least square is applied to compute the minimizing S*. OLS is a common estimator for
observational data, and computationally simple. It minimizes the sum of squared residuals
The close form solution for this problem is:

g =(XTx)1xTe (4.14)
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Note, that this solution may contain the inverse of a matrix, but this matrix is only a
square matrix of the same dimensionality as the data, i.e. two in our case, so the inverse
can be computed very quickly.

Once we have found S*, the optimal transformation is applied to the data cloud. Then,
the new closest point pair are searched again and a new optimal transformation is com-
puted. This procedure is repeated iteratively until the transformation converges and the
iteration is stopped.

4.3.1.2 Evaluation

To evaluate the capabilities of the method, we ran experiments testing different data
event cloud sizes and outlier rejection factors on the ground truth data provided by Xie
et al. ([43], also see Section 3.5). Because the assumption of approximating the projec-
tive transformation with an affine one only holds for scenes that contain only one body,
we tested it with the data sets that only contain one object, namely ‘One Box’, ‘One
Person’ and ‘One Person Different Depths’ (in scenes with multiple objects, it would be
required to segment the recording into single objects first). The objective was to deter-
mine the disparity of events in the left stream by finding the transformation that maps
them onto the right stream. The number of events in the left cloud per registration at-
tempt IV, was fixed, the reference cloud was constructed by the events in the right retina
that occurred during the same time interval as the left cloud events. After registration
was completed, the next left event cloud was formed from the subsequent N, events and
the next right cloud from the corresponding right stream events. This was iterated until
the whole file was processed. Outlier rejection was varied from keeping all datapoints
(100%) to only keeping the 10% datapoints with the smallest distance to other points.
Experiments were performed with an Intel Core i7 4770K running at 3.5 GHz. For the
registration we used a publicly available library [67] as base and extended it with the pre-
sented error minimization and point cloud transformation. The code was written in C++.

In terms of computing time, the registration operates very favorably. Figure 4.7 shows
the required computing time per events. Computing time is slightly higher than 1 us
for most settings, equaling 900,000 to 1,000,000 events per seconds which is significantly
higher that the processing rate of the window-based method. The computing time grows
very slowly with the size of the event clouds registered (less than 15% when increasing
the clud size by a factor of 10). It also does only weakly dependent on the outlier rejec-
tion threshold. As one would expect, rejecting more events is faster, but only slightly so.
Consequently, when optimizing the parameters for matching accuracy, we do not have to
factor in computing time, since the differences between the different parameter sets are
minor.

In terms of accuracy, the method is not as satisfactory as it is in terms of computing
time. Figure 4.8 shows the ratio of correctly estimated events to all estimated events. It
is clearly favorable to reject a considerable amount of events as outliers. The accuracy
was highest when 30%-50% of non-noise input events were rejected. The size of the event
cloud has a smaller influence on accuracy, as long as it is over 2,000. Accuracy increase
slows down with larger clouds. But since the computing speed does not deteriorate with
increasing event cloud size, the size that performed best can be chosen. For the subse-
quent analyses, the event cloud was set to 6,000 and outlier rejection to 50%. Table 4.4
contains the results achieved with this setting broken down for each data set and com-
pares them with values obtained by other methods in recent literature. Note that, the
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Figure 4.7: Computing time per event in dependence on event cloud sizes for different percentages
of inlier events (averaged over 60 on each data set)

presented values do not necessarily reflect the highest accuracy gained for each set, be-
cause we evaluated all datasets with the best overall parameters and avoided tweaking
parameters to optimize individual set. The different values for the estimation rate come
from filtering noise and repetitive events. Every event that was not classified noise was
assigned a disparity (with the literature values, it is not clear which events were not la-
beled.). A disparity was also assigned to events that were not used during the registration
processes via the obtained transformation.

Surprisingly, the disparity accuracies this type of registration yielded were only mediocre,
more specifically, they were worse than the simple approach of overlaying of the centers
of gravity of the event clouds with the same parameters (see Figure 4.9). Interestingly,
registration even gave less-than-optimal results for easier stimuli like a box, which basi-
cally translate to two lines when viewed with a static DVS. We analyzed the cause of
the unexpected result. The analysis revealed a problem with the point matching step
of the optimization scheme. As described above, ICP operates by minimizing the sum
of squared distances between point pair, where a point in the data cloud is paired with
the point in the reference point that lies closest by Euclidean distance. When the data
cloud is transformed with an affine transformation the events’ spatial distances are not
integers in pixel anymore; the grids of reference and data cloud can not be aligned any-
more. This leads to the effect that, only considering the x-axis, the closest points can
lie on either side of a data point, Figure 4.10 visualizes this. It shows a small slice (5
pixel rows) of the reference event cloud and a optimally transformed data cloud for the
box recording projected to the x-t-plane. The transformation we are looking for in the
shown case has a larger displacement in the negative direction along the x-axis. However,
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Figure 4.8: Accuracy of geometric registration averaged over all applicable datasets

such a displacement would increase the distances between pairs in which the reference
cloud has the larger x-coordinate and is, therefore, not an optimal transformation accord-
ing to the optimization rule described above. The data cloud is stuck in the reference
cloud. The error in the disparity estimate is typically not very large (as it could be in
the window-based case). The one person, different depth data set is a very difficult set
because at several points during the recording the event clouds are not similarly shaped
(cf. Section 3.5). This complicates disparity estimating significantly and explains the
poor accuracy. Linear stimuli that caused the described problem are, however, frequent
in DVS recordings, so we expect this effect to occur often and there is no simple remedy
for it. The pixels are at discrete locations, abandoning the affine transformation renders
the method to the center-of-gravity overlay which was also evaluated as comparison, but
is certainly no appropriate method for more complicated recordings.

Problems arise as well at the edge of the fields of view. When an object is completely
visible in one retina, but only partially in the other one, the event clouds will of course
look very different, and registration will fail due to violation of the assumption that the
clouds belonging to the same object look similar.

The fact, that this method is already unsuited for easy types of scenes without further
tweaking it, and its limitation to rigid objects, that would make non-trivial stream seg-
mentation preprocessing in more complex scenes necessary, led us to the assessment that
this path or development will likely not result in a functional and robust stereo matching.
Therefore, we continued with a different registration approach which is subject of the next
section.
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Figure 4.9: Comparison of the registration (ICP) with center-of-gravity overlay (COG). 50%
events kept as inlier for both methods.

4.3.2 A probabilistic approach to registering event streams: Coherent Point
Drift

The second approach formulates point cloud registration in terms of probability theory.
As with ICP the goal is to find a transformation to align two point sets. In Coherent
Point Drift (CPD), this is expressed as probability density estimation.

CPD has advantages over ICP. It does not require the transformation to be rigid. So,
it can deal with disparity discontinuities in the data. This could not be done with rigid
transformations as in ICP. Furthermore, it models the point clouds in terms of probability
distributions, so it does not require geometric pairing of point pairs, which lead to prob-
lems in ICP. The number of points are not required to be (approximately or even closely)
the same. These favorable properties make it applicable to more scenarios in event-based
stereo matching.

4.3.2.1 Algorithm

We will now give a brief introduction to the algorithm, which based on [63]. The input
consists of two point clouds that we want to map to each other. One point cloud is used
to construct a probability density function, the other is regarded as data drawn from
the distribution. We are now interested in a transformation on the probability density
function that maximizes the likelihood of the data to be drawn.

CPD uses a Gaussian Mixture Model (GMM) to construct the distribution: the points
in the cloud are the GMM centroids, the variance of the centroids is assumed to be the
same for all centroids. A uniform distribution is added to the model to better deal with
outliers and noise. The GMM parameters are iteratively adapted to match the data
distribution better based on an Expectation Maximization (EM) optimization scheme.

Let us consider point set L containing NN points and the point set R containing M
points respectively. The initial probability distribution is
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Figure 4.10: Problem with registering event clouds. The affine transformation de-aligns the
grids in a way that some closest neighbors are to both sides of events along the
x-axis during point pair search. (Depicted is a slice of an event stream of thickness
Ay = 5px projected to the x-t-plane)

M+1
pl@) =" P(m)p(x|m) (4.15)
m=1
with Gaussian distributions p(x|m) = ( 12) 7 exp (— 52z ]/x — ¥,u||?) and uniform distri-
2mwo2) 2

bution p(x|M + 1) = % Assigning equal membership probabilities to all Gaussians and
introducing a parameter w,0 < w < 1, that scales the weighting of the uniform distribu-
tion, the actual mixture model can be written as:

1 Mo
p(r) =w- 5+ (1-w)- > 27P(xm) (4.16)

m=1

As commonly done in probability theory, we do not operate directly on this function but
reparametrize it in terms of the negative likelihood function E(f,0?) with 6 being the
positions of the centroids:

M+1

N
E(6,0%) == log > P(m)p(x|m) (4.17)
n=1 m=1

Non-rigid registration still is a challenging task in computer vision. Non-rigid trans-
formation is a vast class of transformation. The authors, therefore, pick a regularization
framework and define the transformation 7" that acts on the point cloud R via a displace-
ment function y(R):

T(R,v) =Y +v(Y) (4.18)

42



4.3 Aggregate methods

Then a regularization term ¢ is introduced:

fv,6%) = E(V,0%) + %q&(v) (4.19)

with the log-likelihood function E and a tradeoff parameter A. The displacement function
v is derived via in an intricate manner using variational calculus which can be found in
the original work. The final results leads to an iteration rule for the final EM algorithm.

Important parameters of the non-rigid transformation are A and 8. They penalize devi-
ation from a smooth transformation. Especially, A can be adjusted to trade-off quality of
fit versus smoothness of transformation. [ defines the width of the regularizer Gaussians.

4.3.2.2 Evaluation

To give an impression of the shape of event clouds, an accumulated event stream (Fig-
ure 4.11) and the corresponding three dimensional event cloud from different positions
(Figure 4.12) is shown (for clarity, only every fourth event depicted in the cloud picture).
Data is taken from the ‘T'wo persons’ dataset, which contains a recording of two persons
walking at different depths. The right event cloud is shaped similarly, but with events
shifted according to their disparity. Figure 4.13 illustrates the result of the registration.
In Figure 4.13 a) the two event clouds are shown in the same coordinate frame before
registration is applied. The events on the left side, which belong to the person closer to
the sensors, have a larger relative displacement than the events on the right side, which
belong to the person further away from the sensor. Figure 4.13 b) shows the result after
applying CPD: both event clouds have been aligned. There are some obvious errors, e.g.
the left (red) events with x > 100 and x < 120 which were mapped to a location far from
any right (blue) event structure, but the overall alignment seems correct. Both clouds
were aligned with a non-rigid transformation that was able to find different displacements
for different cloud sections, indicating that CPD can indeed be used to match multiple
objects at the same time.

Left stream Right stream

L

Figure 4.11: Section from ‘Two Persons’ dataset represented as accumulated event stream.

For a quantitative analysis, we applied CPD to all datasets described in 3.5. The
analysis was done using MATLAB and compiling expensive calculations as C-code for
acceleration using MATLABs MEX functions. We first performed a grid search over the
parameters A and [ on a logarithmic scale. Figure 4.16 visualizes the results. The two
parameters share a complex relationship. The mean accuracy over all datasets can both
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Figure 4.12: Section from ‘Two Persons’ dataset shown in Figure 4.11 represented as event
clouds. a) Oblique view, b) Front view

increase or decrease with increasing A depending on the value of 3, both parameters are
coupled and can not be tuned independently; the initial grid search is inconclusive for a
definitive tuning of the parameters and must be iterated on a finer scale to obtain optimal

values. However, before taking a deeper look at the parameters, there are two things to
note: computing time and overall average accuracy.
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Figure 4.13: Registration process. a) Left and right event cloud in the same coordinate frame
before registration, b) After registration

CPD uses an iterative expectation-maximization scheme and, as underlying probability
density function, a Gaussian mixture model with a large number of centroids. The op-
timization equations are very complex compared to ICP and require a lot of computing
time. Figure 4.14 shows the average computing time per event for different sizes for event
clouds. It processes approximately 100-700 per second. Computing times per event are
lower for easier scenes (boxes) and grow with the size of the whole event cloud. But most
importantly, the computing times for CPD are orders of magnitude larger than in window-
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based stereo matching and iterative closest point registration, both of which are based
on much simpler equations and optimization schemes. This can partially be explained
by the fact that the computations were partly done in MATLAB. So, there is potential
for speeding up the computations using completely compiled code. However, the speed
up of several orders of magnitude, that is required to arrive at computing times that can
realistically process event-streams in a real-time scenario, seems far from achievable by
using only translating the code to a compiled language.

Secondly, the overall average accuracy as assessed by the parameter sweep over wide range
of values, lies far below 70%. The combination of requiring intensive computation and
yielding suboptimal results, lead us to the conclusion that CPD is not suitable for build-
ing a fast and reliable stereo matching algorithm. The matching accuracy compares

—&— One Box
—6— Two Boxes
One person

—6— Two persons

8,000 |-

—&— One person (dd)

6,000 (b~

4,000 |-

Average time per event / us

2,000 |-

\ \ \ \ \ \ j
500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Left event cloud size

Figure 4.14: Average computing time per event for the different data sets. Geometrically more
complex scenes (persons) require longer computing time than simpler ones (boxes).
Parameters were chosen as A = 100 and g =1

unfavorably to the matching with ICP even for the best tested values of the parameters.
Compared to the geometric ICP, CPD requires orders of magnitude more computing time.
This is shown in Figure 4.14.

4.4 Summary and Discussion

We introduced and analyzed multiple matching methods for event-based stereo. First, a
window-based approach, that searches for every event the area that is most similar to the
event’s vicinity along the epipolar line. It optimizes a cost function based on the times-
tamps of the neighboring events. We investigated the effects of parameters and found
that the window size trades off accuracy and computing speed. Estimating disparity on a
ground truth dataset and were able to outperform other algorithm available in the liter-
ature on multiple recordings even when tuning parameters towards real-time capability.
In general, the approach yielded satisfying results, especially taking its simplicity into ac-
count. Drawbacks of the algorithm are on the one hand, that it is fundamentally bound to
integer pixel accuracy, since windows are based on pixels. For small disparities this limits
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Figure 4.15: Average matching accuracy for different values of A and 8. The parameters are
coupled and can not be treated independently.

the depth resolution significantly. On the other hand, there is the problem of having no
means to enforce consistency globally or over longer distances. It takes single events and
matches them independently from each other. The attempt to introduce a postprocessing
step to generate smoothness and consistency based on a confidence measure did not im-
prove the results. This is because wrong matches also often have a high confidence score
and are correlated, that is they are spatially close and have the same (wrong) disparity.
This causes the postprocessing step to keep the wrong matches; many correlated events
seem consistent. The problem with sensing many events at the same area with the same
disparity is that it leads to the perception of ‘phantom objects’, objects that do not exist
at the perceived distance.

In order to enforce global consistency, we moved to global matching methods next.
The nature of event-based data suggest using point cloud alignment techniques, also
known as point cloud registration. We, first, modified a geometric registration algorithm,
iterative closest points, to comply with the geometric requirements of a rectified stereo
setup. The method is constrained to affine transformation, which limited its use to single
objects. Analysis of the properties found that the registration is not robust even in simple
scenes (like a single box) due to the grid structure of pixels. This makes the accuracy
worse than a simple center-of-gravity overlay. Taking this finding and the fact that ICP
is constrained to simple single objects into account, we moved on to a more complex
registration technique: coherent point drift. Evaluation showed that this algorithm is
capable of matching multiple objects at different depths using a non-rigid transformation.
The increased complexity requires, however, much more computing time, rendering the
method unusable in a real-time setting. In addition to the accuracy and computation time
issues, there is a more fundamental problem when applying any type of registration for
event-based stereo vision. The registration can only start as soon as the entirety of the
clouds is known, that means, only when the last event arrived so, the event streams have
to be accumulated, conceptually comparable to building images. The clouds are processed
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Figure 4.16: Accuracy for different values of 5 and A

as batches, resembling frame-based processing style. This loses the major DVS advantage
of low latency. So, summarizing, the performance of methods using event aggregations
was not satisfactory and we did not achieve our goal of developing a way to enforce global
consistency in the matching process. We, therefore, changed focus towards a different class
of algorithms: feature-based stereo matching, which is described in the next chapter.
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Data set Method | Estimation rate | Estimation accuracy
One Box ST 40.74 68.16
STS 49.16 73.33
Cop-Net 71.78 75.29
EMP 82.16 77.15
WBS(11) 84.45 83.26
WBS(15) 85.29 82.67
One person ST 45.43 52.33
STS 47.87 56.53
Cop-Net 50.77 74.10
EMP 94.55 92.00
WBS(11) 79.26 87.88
WBS(15) 76.61 90.73
Two Boxes ST 34.98 54.25
STS 34.34 62.61
Cop-Net 61.13 75.29
EMP 73.64 82.21
WBS(11) 85.97 73.97
WBS(15) 83.80 75.00
Two persons ST 43.06 42.59
STS 40.89 47.29
Cop-Net 49.73 67.08
EMP 92.71 70.64
WBS(11) 85.85 72.39
WBS(15) 83.34 76.19
One person ST 37.86 41.33
different depth STS 35.42 46.08
Cop-Net 53.84 40.78
EMP 58.36 61.14
WBS(11) 66.76 53.45
WBS(15) 57.64 58.67

Table 4.2: Comparison of the here presented event time comparing window-based stereo match-
ing with other methods from literature (values and acronyms for other algorithms
from [43], ST: space-time correlation method [40], STS: space-time surfaces [61],
Cop-Net: cooperative stereo network [45], EMP: event-based message passing [43],

WBS(n): window-based stereo with window size n (proposed algorithm) )

Data set Unrefined | Refined

One Box 83.26 79.89
Two Boxes 73.97 73.16
One Person 91.64 87.88
Two Persons 72.38 68.53
One person 53.45 52.79

different depth

Table 4.3: Comparison of the matching accuracy for the unrefined and refined versions of the
window-based stereo matching algorithm
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Table 4.4:

50

Data set Method | Estimation rate | Estimation accuracy
One Box EMP 82.16 77.15
ICP 74.89 86.52
COG 74.89 93.41
One Person EMP 73.64 82.21
1ICP 54.73 94.29
COG 54.73 95.94
One person EMP 58.36 61.14
different depth ICP 68.39 62.26
COG 68.39 66.15

Comparison of the ICP matching results with the method presented in [43] (EMP)
and a simple overlay of the center of gravity of both event clouds (COG). This method
performed better than methods from literature (compare Table 4.2 for results of more
algorithms). However, surprisingly, it performed worse than center-of-gravity align-

ment.




5 Event-based features and feature
matching

This chapter describes the development of a feature extraction algorithm for event streams
and a subsequent stereo matching algorithm based on extracted features. Reliably iden-
tifying interest points in images has long been a central area of research in computer
vision ([68], also see Chapter 3). Here, the need for investigating features arose from the
unsatisfying results of depth estimation based on single events or aggregation of events
shown in the previous chapter. These methods had undesired properties with regards to
computing time, robustness, matching quality and limitations. This chapter will focus on
a different approach towards solving the matching problem: feature-based stereo vision.
Feature-based stereo vision divides the matching problem into two steps: extraction of
features and matching of features. Instead of directly matching single events or event
clouds as before, we first aim at finding a robust descriptor for areas in the stream that
contain more information than single events, examples of this are for instance corners
or lines. Events are labeled as being part of a certain structure. We then perform the
matching on features instead of events. This has some conceptual advantages: By match-
ing geometric objects, we maintain the benefit of being able to work with floating point
coordinates and the potential to achieve subpixel accuracy. The number of features is
very low compared to the number of events. Event rates in streams lie typically in the
order of hundred thousand events per second if the sensor is in motion, whereas a typ-
ical scene usually contains much fewer than a thousand features like corner and lines.
Additionally, features contain much richer information (e.g. size, orientation, shape), so
finding correct correspondences is fast and less error prone. Features furthermore offer a
possibility to sensibly downsample the event stream by reducing the density of events at
feature locations to the amount necessary to keep track of the features and not process the
surplus events. This potentially allows more processing time for events in regions where
no features where found while simultaneously not discarding information.

The disadvantage of a purely feature-based stereo matching algorithm is that only regions
in the stream in which features are found are being matched. Events that do not belong
to a feature are discarded and do not get labeled with a disparity.

In this chapter, we will first analyze event-based corner detectors. Subsequently, we will
introduce a fast and robust feature extractor based on linear segments in the event stream
and compare it with other line detectors. Then, we then submit the linear segments to a
matched scheme and use them as landmarks to arrive at a reliable depth estimation for
events.

5.1 Event-based Corner Detection

A fundamental structure in visual data are corners. After detecting corners in the event-
stream, they can be separated from the remaining events and separately be matched. For
the first step, the corner detection, there are algorithms available in the literature. Vasco
et al. [53] transferred the Harris corner detector, which is widely used due to its relative
numerical simplicity and reliability, to the event-based domain. Mueggler et al. [54] did
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Figure 5.1: Binary surfaces generated from event steam showing an edge (left) and a corner
(right). Black corresponds to locations where an event occurred (Figure adapted
from [53])

this with the FAST corner detector. These two methods will be examined for their suit-
ability for stereo vision.

The original Harris corner detector measures spatial intensity gradients around a pixel.
It is indicative of a corner to have a large gradient in two different directions (compared
to a straight edge which has a gradient only in one direction). Mathematically, this can
be found by a score value depending on the eigenvalues of the Harris matrix that contains
terms of gradients in orthogonal direction. If both eigenvalues are large than the pixel
is labeled as corner, otherwise it is not. Since there are no intensities in event-based
vision, a binary map of the vicinity of an event is taken as input (Figure 5.1). The main
parameter of the method is the threshold value of the score function. We implemented
the method as presented in [53]. Figure 5.2 shows results for three scenes: a checkerboard
with clear corners, the ‘Two persons’ scene from ground truth data provided in [43] and
the scene with a table, boxes and cones (Section 3.5). Events labeled as corners are drawn
in red. In the upper row (a-c), a low threshold was used. Many events are identified as
corners, even at locations where there clearly are none, e.g. the borders of the checker
board pattern in a) or the foot of the left person in b). So, for the images in the lower row
(d-f) the threshold was increased. This reduced the number of corner events significantly
and lead to good recognition of the clear corners in d). On the other side, there remained
still spurious corner events in e), but more importantly, many of the corners in the more
cluttered scene f) were not detected, for instance at the table’s top, while wrong detections
are still observed, e.g. at the base of the cones or the table’s top’s sides.

The second corner detector is based on the Features from accelerated segment test
(FAST) detector. The original FAST detector labels a pixel as corner if all intensities in
a contiguous circle segment around it are all higher or all lower. To adapt it for event-
based vision, the intensity was replaced by the event timestamp. The algorithm labels an
event as corner event by scanning circles around it for segments of 45° to 90° width with
temporally close timestamps. If segments of the appropriate length are found, the event
is label as corner. We implemented the event-based FAST detector as well. Figure 5.3
shows results for the three scenes also used for the Harris detector assessment. Compared
to the Harris detector, it fails to label all the corner event in the checkerboard scene a),
however, it overall finds more corners in the cluttered scene c), especially at the table’s
legs and cone points. There are still many wrongly label events, for example at the table’s
top and in the noise parts of the scene.

The many wrong detections in subfigure b) are related to a deeper problem with corner
detection which arises specifically in the setting of stereo matching. For proper stereo
matching the sensors need to be rectified (Section 2.1.4). Due the forward manner in
which rectification is applied events have floating point number coordinates. The pro-

52



5.1 Event-based Corner Detection

c)

Figure 5.2: Application of the event-based Harris detector to three different scenes. a)-c) low
score threshold (¢ = 0.04) to label events as corners, d)-f) high threshold (¢ = 0.07)

Figure 5.3: Application of the event-based FAST detector

posed corner detectors scan the neighborhood of events based on integer coordinates,
floating point values that are not suitable to address positions in the pixel grid. To
arrive back at integer values rounding of the floating point is applied; this has been
done by Xie et al. with the ground truth data used for evaluation earlier (Section 3.5).
Rounding the coordinate values results in pixels never being addressed as can be seen
in Figure 5.2 a) and c¢) and 5.3 a) where pixels in a web like structure do not contain
any events. This in turn lets events on the border between addressed and unaddressed
pixels have characteristics of a corner and they can be labeled accordingly. The effect is
especially visible in Figure 5.3 b) in which many of the events are label wrongly as corners.

Both corner detection methods have undesired properties. Corners are not identified re-
liably and many falsely labeled corners would generate noise in a potential corner matching
scheme. Secondly, although corners are an omnipresent features, they are very localized
and formed by only a very small fraction of the stream’s events. When reducing streams
to corners to much information is neglected to gain a meaningful representation of the
observed scene.

53



5 Event-based features and feature matching

Figure 5.4: Event traces for a box moved from bottom to top through the field of view of a DVS.
Visible are dense manifolds of events corresponding to the two edges of the box.
Events originating from the movement of the person holding the box are excluded for
the sake of clearer visualization. The frames put in the event stream show snapshots
of the situation at the time they were triggered. Box edges are indicated by blue
bars for better visibility. Note that one axis corresponds to time!

Based on the presented results, we concluded, that corners are not the most suitable
feature towards stereo matching. Instead, we focussed on lines, which are a more extended
feature and are presented in the next section.

5.2 Line extraction

This section describes a new method to extract lines and linear segments from event-
streams, large parts of it have already been published [69]. Lines are an ubiquitous
feature in our everyday life. Many structural edges are linear, at least approximately.
This can be buildings, door frames, tables, traffic signs, car outlines and the like. They
all have shapes that can be decomposed into linear segments. The edges often form a
prominent part of DVS steams because, it is at these transitions that brightness difference
are large. This makes lines a frequently appearing and interesting feature to detect.
Lines serve our ultimate goal to find a fast and robust method for DVS stereopsis well
because they are extended features in contrast to corners or other features known from
conventional computer vision (like SURF, SIFT etc.). They have a compact symbolic
representation, which contains much useful information to disambiguate them, when they
are to re-identified in another view on the same scene. They can also build the basis for
building visual models of the environment [70]. In the following, we give a explanation the
underlying idea of line detection and tracking and a detailed presentation of the algorithm.

5.2.1 Algorithm

The main idea behind the algorithm is to identify planes of events in x-y-t space. On
short time scales, straight physical edges move with near constant velocity through the
field of view, i.e. acceleration due to physical acceleration or projective transformation
can be neglected if the observed time interval is sufficiently small. Therefore, straight
edges leave traces of events in x-y-t space that are approximately planar on short time
scales. Fig. 5.4 shows event traces of a box that was moved upwards. Note that the
duration of this recording would not be considered a short timescale and that the man-
ifolds are slightly curved. Our algorithm aims to identify these manifolds by piecewise
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Figure 5.5: Overview over the algorithm. Top: stream part, bottom: batch part running in
background

approximation with a chain of planes. Each plane is used to infer the movement of a line
in the field of view. Note that this approach does not work with spinning lines and will
fail to track these as they do not form planes in x-y-t-space. The detection approach is
split into two steps: first, we cluster events that were generated within a small time and
space window. These clusters are grown by adding events that are close in x-y-t-space.
Secondly, we periodically check if the clusters form planes in x-y-t-space. If they do, we
promote the cluster to a line, otherwise we keep them as clusters. Tracking of lines follows
by assigning newly incoming events to planes and tracing these planes through time. To
avoid that the number of events taken into account in our method is strongly dependent
on sensor velocity we use an event buffer with a fixed amount of events at all times and
discard old events. Figure 5.5 shows an overview over the complete processing flow that
each incoming event will be subject to. Every event is run through a noise filter, then we
check if it belongs to a line and, if so, assign it to this line. Else, we check if a cluster is
nearby and if that is the case add the event to the cluster. If there is no cluster, nearby
events are collected to form a cluster; if we do not find more events than a threshold v, we
leave the event unassigned (v typically lies in the order of 20-30 events). We will explain
every step in detail now.

Event preprocessing First, events are separated by polarity. After separating events,
we apply different noise filters: first, we introduce a refractory period per pixel. After
a pixel emitted an event we will suppress further events from this pixel within a certain
time interval, because pixels sometimes generate additional spurious same-polarity events
if they have been triggered before and pixels may emit multiple events of the same polarity
if the change in brightness was very strong. Experimentally, we identified 1ms for opposite
polarity events and 50ms for same polarity events to work well. All events that are received
during this period with respect to their polarity are discarded. Afterwards, an additional
filtering step checks for every incoming event if at least 3 same polarity events in a 5x5
pixel window around it have been registered. If not, the event is labeled as noise and not
processed further.

In the following, we will continue to explain the algorithm from the end of the process-
ing chain, because it is easier for the reader to follow the whole process starting with the
way clusters are initially formed, then promoted to lines, and how these lines are finally
transferred through time.

Cluster creation When an event arrives (and could not be assigned to an existing
line or a cluster), we use it as seed to search for a chain of adjoining pixels that recently
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5 Event-based features and feature matching

generated events. First, we search for the youngest event in the ring of the 8 adjacent
pixels. If we find no event, we search in the next ring of 16 pixels around the adjacent
pixels. If we still find no events, we abort the search. Otherwise, we add the youngest
event to our chain and repeat the procedure from the pixel position of the found event.
This step is iterated until the chain length crosses a threshold or we do not find any new
events.

If we are able to create a chain of events, we cluster the events of the chain, add all
events that have been generated by adjacent pixels and store these events as cluster,
thereby creating a candidate for a plane.

Cluster growth Moving one step to the left in the process flow (Figure: 5.5): when an
event could not be assigned to a line, we look for a cluster to attach it to. To that end,
we check if there is an event that belongs to an adjacent cluster. If there is, we assign the
event to the cluster. If there is more than one cluster found, we merge these clusters and
add the event to the new larger cluster.

Cluster promotion When a cluster has collected enough events (in the order of 20-40
events), we check if its events form a plane in x-y-t-space. As stated above, the underlying
assumption is that the velocity of lines on the retina can be approximated as constant
on short time scales. Then, non-spinning straight edges in the real world generate flat
planes of events. To check if the candidate cluster’s events form a line, we compute the
principal components of the event coordinates (x,y,t) where we scale the time coordinate
with a constant factor. A value of 1000£° was experimentally determined to work well
for the robotic platform as well as for handheld movements (in high speed environments
this factor may have to adapted):

1 Y1t
X = T2 Y2 to (5.1)

be the matrix, that contains the coordinates of events belonging to the cluster. Assume,
that all coordinates (x,y,t) are centered (i.e. T =), z; = 0, etc.). It then holds that,

1 1 Zz xz2 Zz TiYi Zz zit;

Diwiti 2yt 2t

where ¢ runs over all events and N is the total number of events. For the last step the
eigen decomposition was applied. A is a diagonal matrix containing the eigenvalues of
XTX, which are guaranteed to be positive real numbers since X7 X is real symmetric and
positive semidefinite. U is a orthogonal matrix containing the respective eigenvectors. As
a perfect plane forms a linear 2D subspace in the 3D space, one principal value (eigenvalue)
vanishes, when we compute the Principal Component Analysis (PCA) on points lying in
the same plane. The corresponding eigenvector stands orthogonally on the plane. Event
planes in a real world recording, however, will never be perfect since these planes contain
noise through various sources like finite size pixels, electronic jitter, delay during event
generation, not perfectly constant velocity of observed objects, events stemming from
other sources etc. For a planar structure one eigenvalue will nevertheless be very small,
proportional to the ‘thickness’ of the plane. So, assuming that the eigenvalues in A
are ordered in ascending order, we examine Ajp: if it is greater than a threshold 6, we
conclude that the cluster does not form a plane and, therefore, was not caused by an
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5.2 Line extraction

observed line. We keep on collecting events and trying to promote it until n promotion
attempts failed. Then, we drop it (for our experiments, we chose § = 1px? and n = 3).

If the smallest eigenvalue is below the threshold we promote the candidate to a real line
(or 3D-plane respectively). The position and orientation of the line at time ¢present is now
inferred by intersecting the approximated event plane with the plane t = tpresent, further
called the present plane. The parameters to be determined are a vector I pointing along
the line, a point p which is contained in the line and a the length of the line. We start
finding I by using the principal component vector belonging to the smallest eigenvalue as
normal vector 7 € R3. The calculation is straightforward and can be done analytically:
we use the fact that a vector [ pointing along the intersection of two planes must lie
within both planes and therefore be orthogonal to both plain normals. A possible choice
that fulfills this condition is the cross product of event plane normal 7 and present plane
normal e;:

f: ﬁ X 515 - (n17n27n3)T X (0707 1)T = (n27 _nlvo)T (53)

Having found a vector pointing along the line, the next step is to find a point p that is
contained by the line. We pick p, such that it is closest to the events’ center of gravity
¢ = (%,y,t). pcan then be found using these two observations: first, the vector 7 pointing
from € to p must be contained in the event plane as p and ¢ are both contained in this
plane, i.e. m is perpendicular to the plane normal 7i. Second, m points along the path
of shortest distance from ¢ to the line, therefore it has to be perpendicular to [ as well.
This makes 17 = 7 x [ a natural choice. We then find P as intersection of the line ¢+ a m
with the plane t = fpresent Where we determine o using the fact that p3s = tpresent and

(1 x l_jg = —n? —ni:

N tpresent —t 7 (54)

p= 2 2
ni+nj

SRS

Finally, to find the length a of the line we assume that the events are evenly distributed
along the whole extension of the line. The length «a is then proportional to the standard
deviation along the line which we already gained from the principal component analysis.
We pick the center of the line as origin and use £ as a one dimensional coordinate along
the line and a constant distribution function p(&) over the length of the line a:

L f —q a
p(f)z{‘“f /2<t<af2 (5.5)

0 , otherwise
Then (£) = 0 and

0o a/2 1

(- @R == [ poga= [ ‘ea- i (56)
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from which follows that a = /12 (£2)).

We arrived at a line parametrization with midpoint p, direction [ and length a. Note
that we chose ¢t = tpresent arbitrarily! We can use any other time to predict the line
parameters in the (near) future without requiring any new input. The corresponding
calculations are as outlined only a few three dimensional vector operations and very fast
to perform.
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5 Event-based features and feature matching

Whenever a cluster is promoted to a line we check if the new line’s position and slope
match the ones of a line that was previously deleted. We require the polarities to be
identical, the angular distance to be less than 5° and the midpoints distance to the other
line to be less than 2px (although this threshold should be adapted depending on the
sensor resolution). If there is a deleted line that matches, we assume that we lost track of
the it and recovered it now. In this case we will assign the new line the ID of the deleted
line.

Line growth When a new event is received, we check for lines close to the pixel of event
generation. We assign the event to the line if it is closer than v/#, with @ the threshold
for cluster promotion, to the line inferred at the time of event generation. The threshold
could however be fixed independently to make the line collect more or less events gener-
ated in its surroundings.

Persistent tracking For larger time spans, the assumption of planarity is violated.
This means the principal component analysis breaks down, if events that are too old are
used. Therefore, we need to update the inferred planes either periodically or on request,
as soon as an accurate estimate is required, by removing events that are older than a
certain time or if a line contains many events per length simply by removing the oldest
events. After removing these events, orientation of the event plane (and thereby also
of the inferred line) will be re-estimated by re-applying PCA and going through all the
additional steps described above. Note, furthermore, that this is not an expensive update,
since we can store the sum of coordinates for the PCA, and just modify it when adding
or removing events from the line. If after an update there remain less than 10 events or
the smallest eigenvalue exceeds 6, the line will be deleted. We keep deleted lines’ position
and orientation in memory in case they are recovered. The following global checks run
additionally in the background:

e Clusters are also periodically cleaned by removing old events.

e Lines are checked for coherence: if lines display gaps in the event distribution, they
are split into two lines. Gaps are detected by projecting every event position onto
the parametrized line, partitioning the line in bins of stepwidth 2px. If two adjacent
bins are empty the line is split at this gap.

e Merging of lines: if lines have an angular difference of less than 5° and same polarity,
as well as the midpoints’ distances to the respective other line are less than 2 px
(same values as for recovering deleted lines) and the midpoints’ distances to each
other are less than the half sum of the lengths, i.e. the lines are adjacent to each
other, they are merged to form just one line.

5.3 Experimental results

We performed experiments to evaluate the quality of the matching and tracking, as well
as quantifying the latency and computational costs and investigated the robustness. For
all experiments we used an Intel Core i7 4770K running at 3.5 GHz. The algorithm was
implemented without parallelization in C+-+.

5.3.1 Quality of matching and tracking

To evaluate the quality, we recorded data sets with the DAVIS240C, capturing both events
and frames (frames captured with a rate between 15-20 Hz). To our knowledge, there
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5.3 Experimental results

exists no data set with ground truth values for event-based line tracking. So, we obtained
ground truth values for lines by applying the well-known Canny edge detector ([10]) to
every frame. Since there is no definite standard to define and extract line from images, we
took the Canny filter output and manually removed bent edges based on human judgment,
such that only straight edges (i.e. lines) remained. We then applied linear regression to
the coordinates of pixels that belong to lines and arrived at line parametrizations which
were used as ground truth. Additionally, we manually labeled the lines of all frames so
that corresponding lines got the same ID in every frame to allow to check persistence of
tracking of our algorithm.

Our method is able to successfully extract lines from event-based vision streams. Fig. 5.7
displays a snapshot of detected lines in an event stream. Fig. 5.6 compares our results
to other methods for line detection on two frames with a 200ms time interval between
them using a scene with a staircase which contains many lines. The first row shows
the two frames and the corresponding ground truth. The second (resp. third row) show
different line detection algorithms applied to the first (resp. second) frame or event stream,
depending on algorithm. The leftmost pictures depict the results of the probabilistic
Hough transform ([12]) as implemented in OpenCV!; the images next to them contain
the results of the Line Segment Detection (LSD) ( [71]) as provided on the IPOL webpage?;
followed by ELiSeD ( [51]) as implemented in jAER? and finally our method (to arrive
at the plot for ELiSeD we took all lines that were created from the time the frame was
taken up until 10ms earlier). The probabilistic Hough transform (a) is able to detect
well contrasted lines, but it runs into problems when estimating the right lengths. The
detection images look fairly different from the ground truth. Furthermore, the extracted
lines look quite different between the frames what would make inter-frame matching a
hard task. In contrast, the line segment detection method (b) yields high quality results.
The extracted line segments reflect the ground truth very well. However, longer lines
tend to be broken up into segments and would need to be merge before they can be
used for tracking in a next step. ELiSeD (c) tends to yield very small segments and to
break up longer lines into smaller pieces. That produces lots of very short-lived segments.
Meanwhile, the method proposed here (d) is able to successfully extract longer lines and
keep track of them. The numbers on the rightmost panels denote IDs we assigned lines
after creation. Most of the IDs of corresponding lines in both panels are identical, i.e.
they have been successfully tracked. This tracking did not require an additional step, but
is gained automatically by applying our algorithm.

To measure the quality, we compared the estimated lines with the labeled ground-
truth lines, where we assumed that an estimated line matches a ground-truth line if their
difference of angles was less than 5° and the perpendicular distance from the midpoint of
the estimated line to the ground-truth line was smaller than 1.5 px. We then obtained
difference of angles and lengths for the matched lines: angles of lines are known to be a
robust feature to estimate when detecting lines. This holds also for our method where the
average absolute angular error over all matched lines was approximately 0.6°, the median
absolute angular error approximately 0.4° (on the same data set Hough had mean/median
angular error 0.7°/0.4°, LSD had mean/median angular error 0.9°/0.4° and ELiSeD had
mean/median angular error of 1.5°/1.1°). In contrast, line length is a rather unstable
feature to extract. Using our algorithm we are able to extract lines with a high precision
of length. Fig. 5.8 shows a distribution of the relative lengths of the estimated lines to

"https://github.com/itseez/opency
http://www.ipol.im /pub/art/2012/gjmr-lsd/
Shttps:/ /sourceforge.net /projects/jaer/
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Figure 5.6: Comparison between different approaches. Top row left-to-right: frame taken from
a DAVIS240C recording, frame 200ms later, ground truth lines for the first frame,
ground truth lines for the second frame. Second row left-to-right: a) Hough trans-
form, b) LSD, c¢) ELiSeD, d) our method. Third row: same algorithms as above
applied to the second frame. In the images of our method lines were additionally
assigned an ID to demonstrate the tracking capabilities (cf. text).

the ground truth lines on 52 labeled frames of the staircase data set. For every match of
an estimated line with a ground truth line, we calculated the ratio lsﬁgfﬁ?éfsgﬁatijtﬁfie)
and created a histogram over all matched lines. The distribution for our method peaks
comparatively sharply around 100% which means, that the majority of our line estimates
are correct in length. LSD also exhibits a peak around 100% but has a tail towards zero,
which is caused by estimated lines broken up in segments. ELiSeD produces many small
segments leading to a distribution where most matches only cover a small part of the
ground truth line and the Hough transformation has big problems estimating lengths,

over- and underestimating very often.

5.3.2 Persistence of tracking

The other aspect we aimed towards besides lines detection was tracking, i.e. we should
be able to identify every line over the entire time that it is visible with the same ID. In
figure 5.6, we attached ID numbers to the lines detected with our algorithm. Most lines
that correspond to the same physical lines have the same ID in both images (and at every
point in time between the two frames as well (not visible)). To evaluate the persistence
quantitatively, we took the difference of the first time a ground-truth line was matched by
a specific ID with the last it was matched by this ID and compared it with the duration the
ground-truth line was in the field of view. Figure 5.9 shows the distribution of relative
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lifetimes. More than half of the lines in our experiments are tracked throughout their
whole life time; that means they are found very fast after they enter the field of view and
subsequently tracked until they leave it. For a smaller fraction of lines it took longer to
identify and track them, so that they are not tracked over their whole visibility, while an
even smaller fraction of lines was not found quickly or lost during tracking.

There are certain limitations when working with the DVS. The amount of events that
lines generate depends on their angle to the movement direction of the camera. Lines
perfectly aligned with the sensor movement direction are invisible to the DVS because only
the leading edge presents a luminance change. Therefore, these lines can not be tracked. If
a line is being tracked but becomes aligned with the movement after a movement direction
change of the sensor it will become invisible, too, and track will be lost. To overcome
this, one could include an inertial measurement unit (IMU) and estimate the invisible
line’s position using acceleration information. However, it turns out that the problem
of invisible lines is in practice not severe. Vibrations of the sensor, which can stem for
example from a robot’s motors or natural tremor in case of handheld DVS, cause the
sensor to perform movements in the orthogonal direction of the line which makes them
visible to the sensor. We performed an experiment to examine the dependence of the line
detection on the angle for which we printed lines with known inclination from 0° to 10°
in steps of 2° and recorded the scene using a self-built robotic platform with a mounted
DVS that drove in parallel to the stimulus. Figure 5.10 shows the stimulus and the robot
we used. Furthermore, it shows the detected lines at the beginning of recording as well
as roughly four seconds later at the end of the recording. All lines could be detected,
even the line with 0°was tracked because the microvibrations of the robot caused small
perpendicular movements which rendered it visible. In fact, these movements generate
ON as well as OFF events, leading to a redundant double tracking of the lines due to the
fact that we split handling of ON and OFF events. This redundancy can potentially be
used to recover from the loss of tracking in one polarity domain. The feasibility of this
was not evaluated and will be subject to further investigation.

In the second experiment, we drove with the robot over the seams a of a tiled floor.
These irregularities in the surface caused small abrupt movements of the sensor. Fig-
ure 5.11 shows tracked lines in such a setting. It contains two snapshots made by a robot
driving towards a tiled wall and crossing seams in the floor on its way. Our method is
capable of dealing with small irregularities and small amplitude shaking as can be caused
by crossing seams. Sudden changes in movements (like large sudden displacements caused
by stronger shaking) can, however, not be dealt with and result in the loss of track of
lines. The underlying reason for this is that sudden changes will cause a kink in the event
trace in x-y-t-space. These kinks can not be modelled well with the chain of planes and
our method will fail. As soon as the lines’ movement is smooth again, they will typically
be regained fast, but with a new ID.

As third experiment, we attached a sensor to a radio controlled model car to evaluate
behaviour at high velocity (~12 km/s). We recorded two different settings and evaluated
the results by visual inspection.

In the first experiment, the car started on an checkerboard pattern floor and drove through
a door towards another door. Because the floor was smooth, we observed no major dis-
turbances (especially no abrupt changes in motion) and detection and tracking yielded
good results. Figure 5.12 presents snapshots from this experiment.

In the second scene, the car drove over uneven floor in a narrow hallway with a compara-
tively high noise level due to irregular illumination patterns and textures on wall and floor.
In this recording detection of lines again yielded good results; tracking, however, was more
challenging. While some lines (especially those perpendicular to the car vibrations) could
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Figure 5.7: Event stream with current position of detected lines (events accumulated for 50ms).
Camera rotates clockwise, so lines move to the left and older events trailing to the
right of lines are still visible.

be tracked well, others were often lost. This can be explained by the same reason for
which we lost track of lines while driving over seams: the car experienced abrupt changes
of motion, which lead to kinks in the event plane causing our tracking method to fail.

5.3.3 Latency and computing costs

This section presents an experiment to evaluate the latency. The independent operation
of DVS pixels generates a quasi-continuous stream of events. Due to this sensor property
the events have already a low delay from illumination change in the scene to reception
of the event in a processing device. Each event can be handled individually and is used
to update our belief about the current state of the world immediately after arrival. We
measured the time it takes to process an incoming event and call the update function
that re-estimates the line position using a scene with a swinging pendulum. This gives
us a single line traversing the display with predictable translatory speed. To measure the
error we obtained ground truth values for the line position in the following way: first, we
discarded the OFF events and binned the ON events in slices of 50 milliseconds. We then
found the leading edge by picking for every pixel row of the sensor the event that was
furthest in movement direction. We used robust linear fitting as built-in in MATLAB to
fit a line and reject outliers and inspected each fitted line visually. Fig. 5.13 (left) shows
one fitted line graphically.

We compared the position at which our algorithm estimated the line with two different
approaches: 1) retrieving the position of the line by interpolating the line movement lin-
early from the last calculated position of the line until the time of position request and
2) calling the update routine and refitting the line before returning the position estimate.
For the case of event processing without line update the average required time was ap-
proximately 0.7us with an estimation error of 0.50 pixels. When we do an explicit line
position re-estimation using PCA and vector recalculation as described in Section 5.2.1,
the average time required was approximately 7 us and the average estimation error was
0.48 pixels. So, the latency between arrival of new information (incoming event) and new
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Figure 5.8: Distributions of length ratios between estimated lines and matching ground truth
lines for (a) Hough transformation, (b) LSD, (¢) ELiSeD and (d) our method in
percent

belief (updated line state) lies in the order of a few microseconds. Note, that we normally
do not upgrade after each event! The reason why explicit updating does not reduce the
error significantly for the pendulum lies in the fact that the line is very well visible and
moves very smoothly, so the interpolation of its movement is already quite accurate. Fig-
ure 5.13 (right) shows the estimated line position at certain arbitrarily chosen checkpoints
versus the true line position for the case with line update for a fixed value of y. The red
line shows the position of the line, while the blue crosses indicates the position estimated
by our algorithm at the time after the computation (i.e. at the time of the event + the
time required to estimate the position). The computing time is sufficiently low to make
the estimation error introduced by the delay negligible.

In addition to latency, the overall computation load is another important quantity for
judging the usefulness of an algorithm. Figure 5.14 shows the dependence between number
of events and required computing time for a number of different recordings for a variety
of scenes. The red line gives an estimate for the worst case performance, suggesting that
the algorithm can handle at least 400k events per second in the current implementation.
On the right hand side, the computing load during one recording with a large number of
lines (the staircase scene) is shown. The recording was partitioned in slices of 100ms; the
computation time and number of events in every slice was then measured and plotted in
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Figure 5.9: Histogram over ratios of lifetimes of estimated lines to life time of ground truth lines
in percent

the figure. The graph shows an approximately linear relation between number of events
and time required to process them.
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(a) Stimulus image (b) Experimental Setup

-

(c) State at the beginning (ON/OFF resp.)

(d) State towards the end (ON/OFF resp.)

Figure 5.10: Dependence of line tracking on line orientation. Top row: (a) stimulus used: lines
with increasing degree versus the camera movement in steps of 2° and (b) camera
setup on robotic platform, robot was moving to the right during recording. Sec-
ond/third row: (c) tracking results at the beginning of the recording for ON/Off
events. (d) tracking results towards the end of the recording. Comparing the IDs,
that the lines were signed in the images, it can be seen that they were successfully
tracked despite being close to parallel to the movement direction of the sensor (lines
become visible due to microvibrations of the robot).
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Figure 5.11: Line tracking results for a robot driving over small irregularities caused by a tiled
floor. Comparing line IDs shows that lines were tracked even when crossing seams
(only ON events)

Figure 5.12: Snapshots from a sensor mounted on an RC car driving over even floor through a
door (time increases from left to right)
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Figure 5.13: Left: Detail from method of ground truth estimation. Right: true line position (red
line) and position estimates (blue crosses) at time of availability. Inlay zooms to
region between 1.6 and 1.8 seconds. Position estimate overestimates true position
by a small margin.
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5.4 Line Matching

Now, that we have developed a feature extraction scheme for event streams, we will put
it into use to solve the stereo matching problem. In the following, first, the basic idea
of construction a matching graph for line matching across views and our adaptation for
event-based visions are explained. Then, we assess the accuracy and required computing
time quantitatively and compare it with the values of other algorithms. Finally disparity
maps obtained with our method are shown to give an impression of the methods quality.

5.4.1 Match graph
5.4.1.1 Idea

To find correspondences between the lines detected in the two event-streams we advance
an idea developed by Ayache and Faverjon[14] to the continuous domain. The original
method was developed for line segments in a pair of static images. The basic idea of
our algorithm follows the original one, which we will summarize the here in addition to
describing where we developed it further for event-based vision.

The way of finding correspondences between lines is based on constructing an undirected
matching graph G = (V, E). A vertex V represents a pair of matched lines, whereas edges
F link vertices with consistent disparity. The underlying assumption is that most real-
world objects consist of a smooth surface and their disparity varies continuously. There
are, of course, disparity discontinuities, but we assume that within a subset of the de-
tected lines disparity varies smoothly. G is constructed by exploring potential matches for
every line and linking vertices that have a similar disparity. After the graph construction,
G consists of several connected components each representing a set of lines that form a
smooth surface patch. The matches in disjunct connected components are potentially
contradictory, so as last step in the matching process these contradiction are resolved,
which concludes the graph construction.

The construction of the graph utilizes only information that is available at a certain
time. Because of the continuous influx of events, there will be newly detected as well
as disappearing lines in the event streams at unpredictable points in time. The time
development is not accounted for when the graph is constructed; therefore, a method to
continuously modify a constructed graph is necessary. Lines that are detected are inte-
grated via a voting scheme to ensure they fit in consistently, lines that disappear will
trigger vertices of which they are part to be removed from G. In addition, a complete
graph will be newly constructed periodically which then overwrites the current matching
graph, comparable to key frames in video compression, to correct potential errors having
occurred during integration and assure global consistency.

5.4.1.2 Graph construction

G is constructed in a three step process: first, a number of potential correspondences is
acquired by randomly selecting lines in the right stream and checking against the lines
in the left stream. These tentative matches are used as seeds to grow the graph, so they
are required to be of high quality. Strong constraints are imposed to keep the number of
wrong matches low. To declare two lines as matching, they need to fulfill the following
purely local criteria:

e the right line midpoint must have a homologous point on the other line
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e the line geometry must be very similar (angle difference < 10° and length ratio < 1.5
were used for our experiments)

e event polarity of line must be identical

e there can only be one match that fulfills above criteria. If there are more, discard
all

In contrast to frame-based methods, we can not use brightness information along or

next to lines. The only information related to illumination is the polarity of line events
which is incorporated in the method as a matching constraint. Every retrieved match is
initialized as a vertex without edges; the vertices are used in the next step to grow the
graph.
In the next step, called propagation, we expand G by recursively searching for new matches
in the vicinity of already paired lines. We look for lines that belong to the same smooth
surface areas, so we require the depth difference between two neighboring lines to be
relatively small at the position where they are close to each other. In contrast to the
version for static images, we skip building a neighborhood graph. The arrangement of
lines constantly changes due the dynamic nature of event-based vision. To establish a
neighborhood relation the event streams are separated into a grid of rectangular cells.
Lines are members of every cell through which they pass (see Figure. 5.15). Every time
a line position is updated, the state of the grid is updated as well. Then the following
neighborhood relation is used: lines are considered neighbors, if at least one of the cells
they pass through is identical.

To explain how the graph is expanded let us denote the parent vertex that searches new
matches with vparent, consisting of a left line p;, and a right line p, which form a match.
The subscripts indicate in which streams the lines lie (left or right). The graph expansion
is started by gathering the set of neighboring lines N; of the p;. The lines in V) are sorted
in ascending order of their distance d, where distance is the minimal distance between any
two points on p; and a neighboring line n;. N; is pushed onto a stack which contains all
lines to be processed. Lines which intersect (d = 0) or are very close are processed first.
For the first line n; retrieved we form a set C,. of potentially corresponding candidate lines
in the right stream. All lines meeting the following requirements are added to the set:

e the midpoint of n; must have a homologous point on the candidate line ¢,

the angles of n; and ¢, must be similar (in this phase we chose angle difference
< 17.5°)

event polarity must be identical

disparity must be compatible (see below)

if ¢, has a prior match m;, n; and m; can not overlap

Note that we do not have a length requirement since lines might be broken into segments.
Therefore, we also relax the uniqueness constraint. If we encounter a line ¢, as potential
match that has a prior match m; we check if this prior match overlaps with n;. If they
do not overlap and all other criteria are met, we add ¢, to C,.. (see Fig. 5.15, left stream,
leftmost lines for an example). The constraints are chosen less tight compared to the first
phase, however, the requirement of compatible disparity is introduced. Although depth
may vary widely over the course of lines, it has to be the same at the position where two
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lines intersect (or almost the same where they are closest in case of non intersecting lines),
if p; and n; belong to the same smooth surface.

Because disparity is inversely related to distance, the limits for compatibility are dis-
parity dependent. To determine whether n; and ¢, have compatible disparity, we first
determine the point of the intersection i of p; with n; (which need not necessarily be
element of p; or n;). If ¢, is the correct match for n;, then p, and ¢, intersect (or are
close) at the y value of i, and both pairs of lines have similar distance to the sensors at
this point.

The distance from the camera D, of the vertex lines p; and p, using the focal length
f, the baseline distance b, pixel width w, line disparity disp at height ¢, and the stereo
geometry is given by:

f-b

D, —
Y w-disp

(5.7)

The distance D, of the candidate pair n; and ¢, at height ¢, is computed in the same
way. If the absolute difference |D, — D,.| is smaller than a threshold, the lines lie close to
each other in the real world and the matches are considered compatible. If C,. contains
more than one element, the one where |D, — D,.| is smallest is chosen. A new vertex vcpiq
is initialized and linked to vparent- The procedure is repeated with the winning line ¢, from
Uenild- All neighbors are collected and pushed on the stack (i.e. the closest neighbor of ¢, is
processed next). If we encounter a line ls on the stack which already has a corresponding
line (and is therefore part of a vertex wvgtack), it is checked if their disparity is consistent
with the last vertex that put it on the stack vcaning. If yes, we set an edge between vgiack
and Vealling. This generates a high level of connectedness, see e.g. Fig. 5.16.

After all seed vertices have been expanded, G contains multiple connected components
which represent different assumptions about the structure of the real world. The com-
ponents potentially contradict each other, i.e. they contain vertices where the left line is
identical, but the right line is not (or vice versa). These conflicts have to be resolved using
an assumptions about the world. Since we expect that the world is largely continuous, the
connected components of G containing the highest number vertices is assumed to contain
the correct line correspondences. All vertices in other connected components containing
a line that is also part of a vertex in the largest connected component is deleted. Then
connected component size is evaluated and the procedure is repeated with the next largest
connected component until no further connected components exist. The remaining ver-
tices contain the matching result. This concludes the initialization of the graph based on
the version for static images by Ayache and Faverjon.

5.4.1.3 Dynamic graph changes

Event-based vision data is, however, dynamic in nature and we do not have static images.
There will constantly be lines appearing and disappearing which need to be integrated
into or removed from the matching graph. Therefore, we need to dynamically adapt G
to new information. We propose a voting-based approach towards achieving integration.
As soon as a new line I,y is detected, we add it to the grid of cells to establish the
neighborhood relation with the rest of the lines (this is exemplified in Fig. 5.17 where a
new line with ID 16 appeared in center of the left stream). Then, lyey will perform a
search for corresponding lines in the other event stream according to the rules described
above except the rule of compatible disparity resulting in a set of candidate lines C'. Each
neighbor of ley votes which line in C' has to most compatible disparity (as described
above). The matching combination that gets the most votes will be assumed to be the
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correct one. A vertex wvpeyw is initialized and all vertices containing lines that voted for
the winning line will be linked to vpew. Removing lines is an easier process. If a line
disappears, we remove all vertices containing the line from the graph.

Figure 5.15: Example of matched lines between two event streams (events were artificially cre-
ated for clarity of scene). Detected lines are indicated with red, cell boundaries with
black, line IDs with blue. The lines of the left stream were additionally labeled with
their corresponding partner in the right stream.

Figure 5.16: Largest connected component
of the matching graph belong-
ing to the images in Fig. 5.15.
Vertices correspond to identi-
fied matches, edges are dispar-
ities that are consistent. Note
that vertices of diagonal lines
in the picture are strongly con-
nected because they have con-
sistent neighbor matches. The
line with ID 3 in the right
stream does not appear in the
graph since it did not find a
match.
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Figure 5.18: Graph from Fig. 5.16 after
the new line was integrated.
The new vertex and edges
are marked in red. Edges
were set between vertices who

voted for the winning match
(here (16,3) ).

After having found correspondences between lines, the last step consists in computing
the disparity of the events. This can be done in a very fast manner. The line detector
provides the index of the line the event belongs to, the line matcher the index of its match
in the other stream. The computation of disparity A reduces to a subtraction of the lines’
x values belonging to the respective events y value.

A:y_t’“_y;tl , (5.8)

my my

with slope m and intercept ¢ of right and left line. Note, that this approach does not
require a one-to-one correspondence on event level. We can assign disparity to events,
regardless of the existence of a specifically matching event.

5.5 Results

We conducted experiments in different settings to show the effectiveness of our method.
The vision sensor that was used was the DAVIS240C[37] and the computations were per-
formed using an Intel Core i7 4770K running at 3.5 GHz. The algorithm was implemented
in a not optimized fashion in C4++. For the stereo rig a short camera base line distance
of 10 cm was used in all experiments, the focal length was 4.5 mm.
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5.5.1 Experiments

The algorithm was evaluated on the data presented in Section 3.5. Figure 5.19 shows
snapshots from the matching process. Table 5.1 presents the numeric results. Different
methods were compared in terms of accuracy and required computation time. We imple-
mented the event-based message passing algorithm in C++ and ran all experiments on
a single core to make time measurements comparable. The columns in the table show
the following values: estimation accuracy (Est. acc.) measures the ratio of events, whose
disparity estimate lies within 1px of the ground truth values, to all estimated events.
Computation time (C. time) states the required time to process one event in microsec-
onds. Estimation rate is the ratio of events that were labeled with an disparity estimate
to all events. The last column gives the ratio of required computing time to length of the
recording. To be used in real-time the fraction has to be less than 1.

Although lines are not the optimal descriptor for scenes containing only persons the
overall matching accuracy of parts approximated by lines is high. A notable amount of
events could not assigned to lines and did not receive a disparity value, but the general
coverage of the scenes is quite high as can be seen in Figure 5.19. For the more complex
scene containing a table, boxes and cones the line-based matching had much better results
than other methods.

In terms of timing the line-based matching approach was superior to the other ap-
proaches. It was the only one that achieved real-time for all recorded scenes, even the
complex cluttered scene containing a table and cones. In comparison, the window-based
method could achieve real time for simple recordings, but needed more than three times
the recordings duration to process all events of the most complex recording. The event
message passing algorithm’s computing time was at least a factor 5 (for a simple recording
with low event rate) to a factor of over 200 (for a complex recording with high event rate)
higher than the recordings’ duration, showing that it can in the current form not be used
in a real-time scenario.

To get an estimate of the introduced latency, consider that the detection method used
has a very low latency of only a few microseconds per event[69]. After construction of the
matching graph, the corresponding lines are held in memory and there is no additionally
latency introduced except for a lookup. The computation to obtain the disparity of the
events is fairly easy (equation 5.8) and can reasonably assumed to be performable in at
most few microseconds on modern hardware. It can be concluded, that the method is
able to obtain disparity results with latency in the order of microseconds.

During analysis of the error, a potential problem with the labeling of the data became
apparent. The calibration of ground truth labeling system and DVS as described by the
authors of the publication may not have been entirely correct. Figure 5.20 shows the
histogram of disparity errors obtained with the line-based matching method for one data
file (the other data files look similar). The errors follow a Gaussian distribution, however,
the mean is not at 0 as one would expect, but at 0.5 px. Since the line detection algorithm
operates independently on both streams and disparity is found by subtraction, a system-
atic error in the feature detection stage would cancel. We, therefore, presume the stated
ground truth values are shifted slightly from the real ground truth values. Applying the
shift during the evaluation of our algorithm improves the results considerably. Table 5.2
compares the results.

In addition to the disparity labeled scenes for quantitative evaluation, we tested our
method in other complex environments: a checkerboard floor and an office scene which
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Data set Method | Est. acc % | C. time =~ rgé_titrinnfe Est. rate %
One Box LBS 86.09 1.27 0.026 44.57
WBS 83.26 13.7 0.28 84.45
EMP 77.15 298 6.2 82.16
One person LBS 76.00 1.22 0.16 41.80
WBS 87.88 15.1 2.04 79.26
EMP 92.00 384 52 94.55
Two Boxes LBS 51.56 1.25 0.028 41.80
WBS 73.97 11.1 0.25 85.97
EMP 82.21 251 5.6 73.64

Two persons LBS 59.27 1.81 0.37 45.68

WBS 72.38 16.2 3.36 85.85
EMP 70.64 365 75 92.71
One person LBS 54.54 1.49 0.047 13.38
different depth WBS 53.45 21.8 0.69 66.76
EMP 61.14 392 12 58.36
Table and Cones LBS 67.08 1.63 0.93 13.27
WBS 57.53 16.59 9.5 88.11
EMP 29.05 370 212 88.58

Table 5.1: Comparison of the line-based matching (LBS) results with the window-based method
(WBS) presented in Section 4.2 with window size 11 and event-based message passing

(EMP,[43]).
Data set Unshifted | Shifted
One Box 86.09 97.15
One person 76.00 75.73
Two Boxes 51.56 68.27
Two persons 59.27 64.05
One person 54.54 57.22
different depth

Table 5.2: Comparison of the line-based matching (LBS) results with results when shifting the
ground truth disparities of the dataset from [43] by 0.4 px.

was recorded with a radio-controlled car. Due to lacking ground truth values no numeric
evaluation is available for these scenes, but the resulting disparity maps look smooth,
consistent and plausible (Figure 5.21).

The first unlabeled complex scene contains a checkerboard pattern (Figure 5.21 c and d).
If matching is done based on event time correlation, ambiguities arising due to the repet-
itive structure have to be solved. This is a non-trivial task and can lead to inconsistent
disparity maps. Our method is able to solve these ambiguities due to the graph enforcing
global consistency and builds a smooth disparity map. Note that the visible lines have
not been matched continuously, but were broken in segments of tile length due to the
changing polarity along the checkerboard pattern.

For the other recording, we mounted two sensors onto a RC car and recorded an indoor
scene to evaluate the efficacy of our method on a small moving system. Due to the
low height of the car, the recording has a steep depth increase from the bottom of the
recording upwards. Using our method we could, however, match lines in foreground and
background and build a sparse depth map.
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5.6 Summary and Discussion

This chapter explored event-based features and their usability in solving the stereo match-
ing problem. First, event-based corner were investigated, specifically two classic corner
detectors, Harris detector and FAST detector, that were recently adapted for event-based
vision [53, 54|, but the conclusion was reached that corners are a suboptimal choice,
mainly because they cover only small parts of typical scenes and the extraction is not
reliable.

We then proposed a novel method for line extraction from event streams. Lines are a
ubiquitous structure and can also be used to approximate non linear edges which makes
them a reasonable choice to geometrically describe large parts of event streams. The
detector is based on the observation that lines leave planar traces in x-y-t-space. Planes
can be identified via dimensionality reduction which is done here via PCA. We showed
that the proposed line detection method is accurate, has a latency of only few microsec-
onds and can process at least 400,000 events per second in the worst cases on a standard
desktop computer. In addition to line detection, our method can also robustly track lines
over an extended period of time which was also demonstrated. Comparison with another
event-based corner detector showed the superiority of our method in terms of accuracy
and being equally accurate with a conventional method. Conventional methods, however,
lack the benefit of having an accurate line position estimate at all times and being able
to track the line without a separate processing step.

The developed line detector was used as basis for a feature-based stereo matching

algorithm. The fundamental idea of building a match graph [14] was transferred to the
continuous event-based domain. The graph ensures global consistency of the line matching
and can be constructed in a fast way. Consistency is achieved by a size comparison
between connected components, no costly graph algorithms are required. We evaluated
the accuracy and computation load. For simple scenes the accuracy was moderately lower
than the accuracy achieved with other methods, like window-based matching or event-
based message passing. This is partly due to the fact that lines to not approximate the
edges perfectly (Figure 5.19, partly by lines being matched wrongly because the actually
corresponding edge was not linearly approximated in one stream and is thus not available
for matching. The enforcing of global consistency plays only a minor role in the simple
scenes with little ambiguity.
For a complex scene the accuracy of line-based matching was much higher than the other
methods. This is explained, first, by the line detector’s robustness to noise, that allows an
accurate estimation of line positions; second, this is a result of the match graph ensuring
global consistency. In a cluttered scene there is more ambiguity to resolve when matching
single events because there are more edges and, hence, more potential matching partners
on the epipolar line. The line-based matching accounts for consistency, the single event
based method not. For this reason, the line-detector achieves higher accuracy in complex
scenes.

Concerning the required computation time per event, line-based matching was one order
of magnitude faster than window-based matching and two orders for event-based message
passing. With less than 2 us per event the method proved to capable of estimating
disparities in real time. The combination of being able to accurately estimate disparity
in complex scenes and being useable in real-time makes line-based matching a promising
candidate for deployment on autonomous systems.
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Figure 5.19: Data set provided by Xie et al. (2017) [43]. a) ‘One Box’, b) ‘T'wo Boxes’, ¢) ‘One
Person’, d) ‘Two Persons’ e) 'One Person Different Depths’. First column shows
snapshot from beginning of respective file, second column from end (event streams
were accumulated for 100 ms, fainter color represents older event age).
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Figure 5.20: Distribution of errors for the "Two persons’ dataset
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0 as

(a) Table, boxes and cones in a noisy recording (b) Corresponding disparity map

(e) Office scene recorded with RCcar (f) Corresponding disparity map

Figure 5.21: (a,c,e) Snapshots of the left event stream for different scenes. ON events are depicted
white, OFF events black. (b,d,f) Resulting disparity maps of our method, disparity
is given in pixel. Grey events have not been matched. Note the different scales!
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6.1 A wearable mobility aid

Potential applications of DVS not only lie in the field of robotics; here, we propose a
wearable mobility device which is designed to assist blind and visually impaired people
with navigation and orientation. We employ two DVS sensors to extract depth informa-
tion with low latency. The information is translated into virtual 3D sound with the help
of individualized head-related transfer functions. This a easy to interpret, very intuitive
way of delivering spatial information to the user, especially compared to other Electronic
travel aid (ETA)s which use complex encoding like the vOICe [72]. Other ETAs deliver
the depth information via different sensor modalities like electric pulses on the tongue [73].
Figure 6.1 shows an overview over the information processing flow. The system discussed
here was initially proposed in [74] and then extended in [75]. Large parts of the following
chapter are based on the latter.

The system is designed to be wearable head gear. An early prototype is depicted
in Figure 6.2). It consists of two DVS with fixed geometry, a resolution of 128x128
pixels each and lenses with focal length of 6mm. Their synchronized vision stream is
transmitted to a computing stick on which the depth extraction is performed and events
are translated into virtual spatial sounds. The sound signal is sent to the users ear via
headphones connected to a USB sound adapter.

The two DVS sensors are equipped with an additional microcontroller and require
<=0.3W each (80mA at 3.3V). The processing is currently done on an off-the-shelf
compute stick which consumes approximately 10W (2A at 5V). We are working on
porting the processing part onto a microcontroller which operates at <= 0.5 W (150 mA
at 3V) and would allow the whole system to operate at ~1 W.

With a state-of-the-art cell phone battery we aim to achieve battery lifetimes of around
10h when the processing is done on a microcontroller.

In a normal use case the DVS produce on the order of 100 events per millisecond, far
more signals than the human auditory system can process [76]. We, therefore, downsample
the number of events that will be transmitted to the user by a factor of 1000 to roughly
100 per second. In contrast to the original version, we do not apply clustering strategies as
clustering did not prove to increase performance measurably. The distance to the object
that generated the event is then extracted using the stereo information of the two DVS
stream.

As experiments conducted with an earlier version of this device have shown poor perfor-
mance of elevation estimation using virtual spatial sounds we developed visual processing
as well as sound generation: the user is now provided with a vertical reference point
within their field of view. The field of view has been divided into three horizontal stripes
of different width. Events are grouped with respect to their specific section. We call the
middle stripe focus area. Inspired by the fovea centralis, where human vision is sharpest,
we choose to convey a larger amount of information from this area to the user and pick
60% of the sonified events from the focus area. The focus height was chosen to be 4
pixels, corresponding to about 1.5n the field of view; this matches approximately the
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Figure 6.1: Left: DVS events accumulated over 50 ms to form a frame for visualization. Visible
is a vertical bar with a warning. Colors correspond to distances of events. White
areas have not undergone a change in brightness during the accumulation period.
Right: Overview over the proposed system and information flow. (Figure from [75])

minimum audible angle for horizontally separated sounds, i.e. the minimum angle two
sound sources must be apart to be perceivable as separate, so that vertical and horizontal
resolution become similar. Events from the focal area are furthermore associated with a
sound that differs from the sound associated to events from off-focus areas to make them
easily distinguishable.

As soon as the position of an event in space is known and it has been selected for
sonification it will be translated into a virtual spatial sound, i.e. into a sound whose
source appears to lie at the position of the event. This encoding ensures an intuitive
presentation of the information to avoid the necessity of long training times before being
able to use the device.

Generating Head-related Transfer Function (HRTF)s that are perceived as coming from
an external source in space is a complex task. It requires the modulation of sounds via
a HRTF that describes how sounds are changed by the perceivers’ body, head and pinna
before they reach the ear canal. As HRTFs depend on the hearer’s anatomy, it is a highly
individual function which requires intricate measurements.

To address the need of individual HRTF's for sound elevation resolution, a method for
easier personalization of HRTFs from HRTF databases using body measurements of test
subjects was developed [77]. It is a trade-off between accuracy and feasibility and achieved
a significant improvement in user performance when estimating elevation of sound source.

Two types of clearly distinguishable sounds are implemented to encode events. A 440
Hz tone for events originating in the focus area and a click sound for events from the off-
focal area. They are passed through the head-related transfer function which transforms
them into binaural sounds that appear to come from the location where the event has
been generated when played to the user’s ear using stereo headphones.
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Figure 6.2: A device prototype mounted on a Styrofoam head.

The total latency of the system is approximately 50ms which is mostly due to the way
sounds are aggregated before they are replayed. We aim to achieve a latency of 10ms by
implementing more sophisticated sound replay algorithms.

6.2 Tests

In order to test the new processing algorithm, two types of experiments were carried
out. This section was published prior in [75]. The first is based on previous tests [74] to
obtain directly comparable results and consists of object detection, size discrimination,
and object localization. The second experiment is a common test for visual acuity using
the Landolt C based on free online resources[78]. The visual and acoustic processing
during the experiments was done using a laptop which provided better controllability and
visualization.

The first test was carried out by 11 subjects (9 male, 2 female, average age yu = 28 +5
years). They were seated in 60 cm distance from a white wall on which circles (black on
white paper) of different sizes were fixated. We modified the test in [74] to not use screens
to display the circles because many artifact events were generated due to the refresh rate
of standard monitors. The subjects wore the device positioned in a way that its field of
view was centered in the middle of the test area when they looked straight ahead. For
each category (object detection (OD), size discrimination (SD), object localization (OL))
twenty trials were conducted where the truth was randomly, equally distributed. Subjects
were given assistance to realign the field of view with the middle of the test area after
each trial if required.

The second experiment to test the efficacy of the introduced focal are for vertical res-
olution consisted of the Landolt-C Test where the task is to discriminate between two
possible orientations of an optotype (i.e. a standardized letter for acuity tests), here the
letter ’C’ (oriented with opening facing right or left). The vertical visual acuity (vVA) is
determined by the size of the letter for which a certain percentage of correctly identified
orientations is exceeded. The test group consisted of 5 subjects (3 male, 2 female, average
age pu = 27 + 5 years). Subjects were again seated in front of a white wall on which a
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Figure 6.3: Average performance for object detection (OD), size discrimination (SD), horizontal
object localization (HOL), vertical object localization (VOL).

printed optotype 'C’ was fixated. Due to the fixed absolute size of the printed optotype
the distance to the wall was varied to change the relative size. On average the test lasted
30 minutes (o = 10 minutes).

6.3 Results

For the first test, we split evaluation of object localization in horizontal position (left,
right) and vertical position (up, down) to assess the effects of the new information pro-
cessing and conveying strategies.

The change in performance for object detection, size discrimination and horizontal ob-

ject localization is only insignificant compared to the previous version as it was already
at a very high level (object detection 99%=+1%, size discrimination 96%+5.3%, horizontal
localization 90%+8.5%, Fig. 6.3). An interesting observation is that subjects required
more time for the size discrimination than before. The reason behind this is not clear yet
and needs to be further investigated (Fig. 6.4).
The introduction of a focal area in the system alongside the personalization of the HRTF
has, however, helped to overcome the inability to resolve the elevation of the artificial
sounds and raised the performance from about chance level to a success rate of approxi-
mately 95% (Fig.6.3). In contrast to the prior design subjects explore their environment
by moving the field of view by moving their heads, while in prior tests they were asked
to keep their heads still. The Landolt-C test for vertical acuity yielded an average visual
acuity of 2.23 £+ 0.14 on the logMAR scale. The logMAR (Logarithm of the Minimum
Angle of Resolution) scale is calculated by the base-10-logarithm of the gap size of an
optotype (here the letter 'C’) a subject is able to recognize. Lower values correspond to
higher visual accuracy. Results are shown in Table 6.1 along with acuity values of other
ETAs. Visual acuity is given as fractions: the denominator denotes the maximal distance
in feet from which a feature can be recognized with a visual aid while the enumerator
denotes the distance in feet from which a normal person can still see the same feature
(e.g. % means that a visually impaired person can still resolve a feature from 20 feet
which a normal sighted person can resolve from 100 feet).

Note: the test setups were not standardized, so comparability of the results is limited
and serves only as rough estimate. The vOICe was tested with two different groups of
subjects: the first test int Table 6.1 (I) was performed by sighted subjects and consisted of
a Snellen-E test [76], the second test (II) by blind users with 50-100h training performing a
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6.3 Results
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Figure 6.4: Average time per test trial for object detection (OD), size discrimination (SD), object
localization (OL, vertical and horizontal was done in one trial). Longer duration
correlates with higher difficulty of task

ETA Acuity logMAR Value
This device 205 — 2205 for vVA | 2.09 — 2.37 vVA
The vOICe (1) 2 — 2 1.56 — 2.8
The vOICe (II) - - 1—1.47
Phosphene Prosthesis 5% - %go 1.45—1.80
BrainPort o — s 2.34 —2.44

Vertical acuity for our device; the other devices were tested without discriminating
directions. Furthermore, the results were not gained using an identical standardized
test, so they can not be directly be compared.

For more details see text.

Table 6.1: Acuity comparison between different devices

Snellen-E test[79], the phosphene prothesis used a Landolt-C test with 8 orientations[80],
BrainPort was tested with untrained, mostly visually impaired users[81].
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7 Conclusion & QOutlook

This thesis has presented different approaches towards depth reconstruction using event-
based vision data. Similar to the stereo setup based on conventional cameras, the major
challenge is the stereo matching problem, i.e. the identification of corresponding points
in two different projections of the same scene. Having established point correspondences,
finding the depth is merely a matter of triangulation, hence finding the correspondences
is virtually equivalent to depth reconstruction. Solving the correspondence problem in
the event-based domain requires different approaches compared to frame-based methods.
Event-based sensors convey visual information as sparse, quasi-continuous stream of events
and each event contains only little information, namely where and exactly when brightness
has changed. The sparse data makes correct matching and scene reconstruction a difficult
and complex problem. On the other hand, the sensors are rewarding because they open
up the possibility for light-weight algorithms that have the potential to be run in real-
time. The high speed, low latency mode of operation of the DVS led to the selection of
performance metrics for the presented methods: besides matching accuracy, the focus lay
on event processing rate and latency.

During the course of this work different classes of algorithms were developed. The first
algorithm was based on correlating matching windows. The asynchronous nature of the
data suggested using event timestamps as cue for matching. We evaluated three different
cost aggregation functions: sum of squared differences, sum of absolute differences and
normalized cross-correlation and showed that sum of absolute differences gives the overall
best results.

We compared the proposed method with other published algorithms using the ground
truth data and evaluation metrics which were proposed by the authors and are avail-
able in the literature [43]. The window-based method yields good results compared other
methods [40, 42, 45]. For large window-size the accuracy is comparable to the best avail-
able method from literature, event-based message passing [43], on simple data set. On a
complex data set the window-based matching outperforms event-based message passing
achieving an accuracy of 57.5% compared to 29.1%. Processing speed does not achieve
real-time operation for large windows; for a smaller window-size, the algorithm runs in
real-time on a standard computer, but this comes at the cost of reduced accuracy. The
algorithm allows a trade-off between accuracy and speed, depending on the requirement
of the application. The speed stands in stark contrast to the speed of event-based message
passing, which is orders of magnitude slower than real-time, making the window-based
matching method overall a better choice. The window-based stereo matching has a cou-
ple of disadvantages. First, every event is matched independently, there is no notion of
global consistency. This leads to depth maps that are not smooth. We observed that mis-
matches often form clusters of consistent, but wrong disparity leading to the perception
of objects at positions where there are none. To improve the accuracy, we reformulated
an edge-based refinement scheme, originally designed to increase smoothness and consis-
tency for conventional cameras [62], for event-based data. The results, however, showed
no improvement but were worse than without refinement. We investigated the reasons
and found that the proposed refinement approach is not compatible with using event-time
stamps instead of intensities. Other methods for postprocessing, e.g. on belief propaga-
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tion [39, 43], deliver more promising results.

Global methods allow to find a consistent matching and in addition grant access to floating
point accuracy. Concurrent matching of multiple events employing point cloud registra-
tion techniques was explored. To that end the Iterative Closest Point algorithm was
adapted for the use in stereo matching by incorporating the geometric constraints of a
stereo setup in the equations. We derived the new optimization equations for the adapted
version of ICP. Evaluation showed that the accuracy of the method fell short of expec-
tations and achieved lower accuracy than a simple overlay of the event clouds’ centers of
gravity (Table 4.4).

The second registration algorithm analyzed was Coherent Point Drift. CPD uses a
probabilistic framework and is based on density estimation and expectation maximiza-
tion. It offers more flexibility than ICP by not being constraint to affine transformations
and allows non-rigid transformations. We showed qualitatively that this allows matching
of scenes with objects at different depth. Quantitative evaluation over a broad range of
parameters revealed that average accuracy is not satisfying and much less than of the
window-based stereo method (Figure 4.16). The complex calculations during the itera-
tive expectation maximization require a lot of computing time and render the registration
method unfit for real-time tasks. In addition to the relatively poor quantitative results,
event-cloud registration has a conceptual disadvantage. Both event clouds have to be
known fully before the registration starts, which means events have to be buffered before
being processed similar to creating images from events. This loses the low latency, that
event-based sensors offer.

Based on the quantitative findings and the conceptual considerations, we changed focus
to the third class of algorithms: feature-based methods. There are only few publications
concerning event-based features thus far. For generality, a feature that can be found in
a wide range of scenes had to be chosen. First, event-based corner detectors [53, 54]
were analyzed to assess their usability for stereo matching. We came to the conclusion
that corners are not a reasonable base for developing a feature-based stereo algorithm for
three reasons: first, the corner detectors do not describe corners as geometric objects,
but as event associated labels. They operate rather like a filter. An additional cluster
process would be required to identify physical corners, describe them geometrically and
track them through time. Second, corners only cover a very small area of typical scenes
and they can not be used to approximate extended shapes. Lastly, the currently available
corner detectors are prone to both not finding corners, even when they are quite promi-
nent, and to reporting false positives, i.e. they label events as corners, even though they
do not lie at actual corners. A feature that covers larger parts of scenes and can robustly
be detected should be chosen.

We developed a novel way of detecting and tracking lines in event streams based on the
observation that many scenes contain edges which are straight or can be approximated
with multiple lines [69]. The evaluation showed that detection and tracking is subpixel
accurate. We showed this in the context of tracking lines where we achieved an accuracy of
0.5 px. The method leverages the asynchronous, low-latency mode of operation of the sen-
sors by processing every event independently. This way we could reduce processing time
per event down to 0.7 us. Considering that the timestamp accuracy of events is limited
due to electronic jitter and other noise sources to the order of tens of microseconds, the
latency of our method is minute. An analysis for the worst case timing scenario showed
that our method can process at least 400,000 events per second on a desktop computer
making it suitable for usage in a real-time setup. Compared with the other available

86



event-based line detection method ELiSeD [51] our line estimates proved to be superior
in terms of accuracy of angle (average error 0.6° versus 1.5°) and line length where we
showed that most of our estimates are within 10% deviation from the ground truth value,
whereas ELiSeD mostly matched less than 30% of the line lengths (implying it breaks
them down in three or more segments). We additionally showed that our method can
robustly track lines, using recordings from a radio-controlled car.

Having developed a way to reliably extract lines, we used them for stereo matching.
To that end we advanced a light-weight, graph-based method for matching lines [14]
from the frame-based domain to the continuous event-based domain making it suitable
for use with continuous data. Lines have an easy symbolic description, but are rich in
geometric information. Based on it we construct and continuously update a matching
graph that ensures a globally consistent matching of lines. We showed that the line-based
stereo matching performs similar to other event-based stereo matching methods. This
holds true even in scenes that have no clear straight edges, like walking persons, where
edges have to be approximated with multiple line segments. The scenes used for ground
truth estimation contain few objects and are relatively simple, so that global consistency
ensuring, for which the line-matching was designed, plays only a minor role. In order to
better assess the capabilities of the line-based matching, we recorded a more complex scene
with multiple objects and a moving sensor and implemented the most recent and thus far
best performing stereo matching method we found in literature which is based on belief
propagation. We could show that the line matching approach significantly outperformed
both the belief propagation method as well as the window-based method in terms of
accuracy, achieving 67.1% accuracy, compared to 57.5% for the window-based method
and only 29.1% for the belief propagation.

Once lines are initialized and matched, deriving the disparity for an event is very light-
weight and can be computed quickly and with low latency. In terms of computing speed,
the line-matching algorithm outperforms the compared methods by at least one order of
magnitude. It required approximately 1.5 us per event, while the window-based matching
took on the order of 15us and the belief propagation method 300us. Hence, the line
matching method is the only method that fulfilled the real-time requirement even in
complex scenes with high event rates. The evaluation was done on a single CPU core to
ensure comparability. The way our algorithm is designed allows it to be easily parallelized.
The extraction of lines in every stream in each event stream is independent of each other
and can be done concurrently. The line matching can be executed in another parallel
process, so there is potential for substantial acceleration. This could be required when
event rates reach one million events per second and more, e.g. from next generation
dynamic vision sensors with higher resolution than the DAVIS240C.

Conceptually, the feature-based matching approach has some advantages over single
event-based and global matching methods. In contrast to the single event matching ap-
proaches [40, 42, 43] or the coincidence detector based neural networks [45, 46, 47|, the
feature based method is not dependent on one-to-one event matching, i.e. an event can
be labeled with a disparity regardless of having found an actual matching event in the
other stream. The matching is done on an abstracted level, in the feature space and the
disparities are inferred by mapping back to the events from the features. Being liberated
from the requirement of having a matching event makes the algorithm more robust to
differences in sensor settings. Consider the ground truth data streams used in this thesis
for instance: the event rates differ considerably and the event streams are very dissimilar
at times (Figure 3.9). In contrast to global matching, every event can immediately be
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processed, there is no need to collect a number of events before processing can start. This
way very low latency can be achieved.

A drawback of the method compared to the semi-dense methods (i.e. methods, that
try to match all events) is that not all areas of the stream can be matched, only the ones
which can be described by features. As we have shown, lines possess a high descriptive
power, and are able to linearly approximate edges of walking persons or to a certain de-
gree even circular features, so they can describe large parts of many scenes, and are not
restricted to scenes with many straight edges. Nevertheless, fewer events are labeled with
disparity compared to semi-dense methods. One possibility to achieve a better coverage
of the scene could be to combine the line-based matching with a secondary algorithm,
which processes events that were not assigned to lines, like the window-based matching
approach. Another possibility is to incorporate other primitives and shapes as features
for matching as soon as new detectors for them become available.
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