
Incentive Design for
Present-Biased Agents

A Computational Problem in Behavioral Economics

by Dennis Kraft

Technische Universität München
Fakultät für Informatik

Fakultät für Informatik
Lehrstuhl für Algorithmen und Komplexität

Incentive Design for
Present-Biased Agents

A Computational Problem in Behavioral Economics

Dennis R. R. Kraft

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines Doktors der Naturwissen-
schaften genehmigten Dissertation.

Vorsitzender: Prof. Dr. Francisco Javier Esparza Estaun

Prüfer der Dissertation: 1. Prof. Dr. Susanne Albers
2. Prof. Dr. Martin Bichler

Die Dissertation wurde am 27.06.2018 bei der Technischen Universität München ein-
gereicht und duch die Fakultät für Informatik am 30.10.2018 angenommen.

Abstract

The tendency to underestimate future costs and rewards is a wide spread cognitive bias

that may severely impair a person’s ability to make consistent plans over an extended

period of time. People who exhibit such a present-bias are prone to inefficient behavioral

patters such as procrastination and the abandonment of partially completed work. As

a result, they may require external incentives to reach certain goals. Drawing on a

recent graphical model due to Kleinberg and Oren [16], we approach the design of such

incentives from an algorithmic perspective. In the first part of this work we consider

three commonly used incentives that are based on prohibition, penalties and rewards.

We are particularly interested in comparing the conceptual costs of implementing these

incentives as well as analyzing the complexity of computing optimal and approximately

optimal designs. The presented results summarize and extend our previous work on

computing efficient incentives [2, 3]. In the second part of this work we turn our attention

to two generalized versions of Kleinberg and Oren’s graphical model. The first one

addresses incentives for multiple people of a heterogeneous population while the second

one is concerned with incentives for people whose present-bias varies over time. Our

goal is to quantify the conceptual cost that penalty based incentives incur due to these

changes in the setting. Furthermore, we study the complexity of computing optimal or

approximately optimal designs in both models. The obtained results have been published

in our work on incentive design with imperfect information [4].

i

Acknowledgments

I would like to express my sincere gratitude to my adviser Prof. Dr. Susanne Albers,

who gave me the opportunity to peruse my research interests. I deeply value her trust

and support throughout my time as a doctoral student. I am also very grateful to my

second adviser Prof. Dr. Martin Bichler for reviewing this thesis and mentoring me on

my academic work. Furthermore, I want to thank Prof. Dr. Javier Esparza for taking

the time to hold the chair of the examination committee. I am particularly indebted to

Angelika Freisberg and Manfred Freisberg for their tireless proofreading. The quality of

this work has improved a lot due to their hard work. I also want to extend my thanks to

Jasmin Kraft and Glenn Watamanik, who proofread one of the publications leading up

to this work. My special thanks go to Dr. Yiannis Giannakopoulos, Marinus Gottschau,

Prof. Dr. Harald Räcke, Sebastian Schraink, Dr. Suzanne van der Ster, Richard Stotz,

Jeremias Weihmann and all my other colleagues who made the last years an enjoyable

and rewarding experience. Finally, I want to thank my family, my partner and my

friends for their patience, love and support.

iii

List of Symbols

β present-bias

β(v) present-bias assigned to a node v by the present-bias configuration β

µ∗(G, β) minimum reward or budget for which G admits a motivating sub-

graph, cost configuration or reward configuration

µ(G, β) minimal reward or budget for which G is motivating

τ range of the present-bias set B

B set of present-bias values

c(e) cost of an edge e

c̃(e, β) perceived cost of an edge e

c̃(P, β) perceived cost of a path P

c̃(v, β) perceived cost of a node v

d(v) cost of a cheapest path from a node v to the terminal node t

E set of edges of G

e variable denoting an edge of G

F subset of edges of G

G task graph

h(e) extra cost cost assigned to the edge e by the cost configuration h

i, j, k, ` numerical indices

n number of nodes in G

P,Q,R variables denoting a path within G

q(Gr, β) maximum reward collected in the task graph Gr

r reward awarded at t

r(v) reward awarded at a node v by the reward configuration r

s, t terminal nodes of G

u, v, w, z variables denoting nodes of G

V set of nodes of G

W subset of nodes of G

v

Contents

Abstract i

Acknowledgments iii

List of Symbols v

1 Introduction 1
1.1 The Post Office . 1

1.2 Temporal Discounting . 3

1.3 The Graphical Model . 5

1.4 Incentive Design . 7

1.5 Our Work . 9

2 The Formal Framework 13
2.1 The Graphical Model . 13

2.2 Revisiting the Post Office . 14

2.3 Computational Considerations . 16

2.4 The Scalability of Task Graphs . 17

3 Prohibition Based Incentives 19
3.1 The Car Wash . 19

3.2 Computing Motivating Subgraphs . 22

3.3 Optimal Travel Routes . 29

3.4 Two Complementing Approximation Algorithms 33

3.5 The Approximability of Optimal Subgraphs 36

4 Penalty Based Incentives 43
4.1 The Seminar . 43

4.2 Prohibition versus Penalty Fees . 45

4.3 Computing Motivating Cost Configurations 48

4.4 Greedy Threats . 52

vii

Contents

4.5 The Copied Cost Approximation . 56

4.6 The Approximability of Cost Configurations 60

5 Reward Based Incentives 63
5.1 Extending the Graphical Model . 63

5.2 Exploitative Incentives . 65

5.3 Intermediate Reward versus Penalty Fees 67

5.4 Computing Motivating Reward Configurations with Budget Constraints . 69

5.5 Mixed Incentives . 77

6 Heterogeneous Agents 83
6.1 Preparing for the Big Race . 83

6.2 Modeling Heterogeneous Populations . 86

6.3 The Price of Heterogeneity . 88

6.4 Revisiting the Copied Cost Approximation 91

7 A Variable Present-Bias 95
7.1 Modeling Variability . 95

7.2 The Price of Variability . 98

7.3 The Approximability of Cost Configurations for a Variable Present-Bias . 103

7.4 Occasionally Unbiased Agents . 111

8 Conclusions 115
8.1 Summary of Results . 115

8.2 Future Work . 117

viii

1 Introduction

Saving up money, writing a term paper and losing weight are just a few of many res-

olutions that people make every day. But despite their best intentions they often find

it difficult to see their resolutions through: they squander money, delay work and in-

dulge in unhealthy food. The underlying pattern of behavior like this is generally the

same. In order to reach some long-term goal, people plan a certain course of action

that they believe maximizes their current and future utility. However, as time goes by,

other courses of action are becoming more appealing and the original plan is eventually

changed. Sometimes this is the result of unforeseen circumstances. But people also tend

to deviate from their original plan even if the circumstances stay the same. In this case,

their change of mind often leads to seemingly irrational behavior such as procrastination

and the abandonment of partially completed work. It is needless to say that behavioral

patterns like these may greatly affect a person’s own welfare as well as the welfare of

others. Moreover, this type of behavior challenges traditional economic models, which

assume that a person’s preferences stay consistent over time.

1.1 The Post Office

With the advancement of behavioral economics, insight from psychology and related

fields has been incorporated into economic theory to better understand the causes and

effects of human behavior. As a result of this process, a behavioral model has been put

forward that offers a particularly simple yet compelling explanation for the phenomenon

of time-inconsistent behavior. The underlying idea of this model is that people assign

disproportionately greater value to the present than to the future. This cognitive bias

is also called the present-bias. To illustrate how time-inconsistent behavior emerges

naturally as the result of a present-biased perception, we have a brief look at a story

due to Akerlof [1]. Note that we slightly adapt the story for the sake of a more coherent

discussion within the context of this work.

Imagine a person named Alice who is expecting a package. Once the package has

arrived at the local post office, Alice has 10 days time to pick it up before it is returned

1

1 Introduction

Figure 1.1: Alice waiting in line at the post office

to the sender. Since the package is important to her, assume that Alice pays a price

of c for each day that she goes without its content. However, due to the long waiting

lines at the post office, which are equally dreadful each day of the week, Alice also has

to invest a considerable one-time effort of c′ > c to get the package. Figure 1.1 shows

an illustration of Alice’s plight at the post office.

It seems like the best course of action in Akerlof’s story is to collect the package as

soon as possible. After all, Alice incurs a cost of c′ regardless of the day she goes to the

post office. However, if she goes on the day that the package arrives, she pays none of

the additional cost of c that becomes due each day after. This simple analysis suggests

that Alice would be eager to collect the package right away. However, experience shows

that people who face similar situations often behave differently and delay costly tasks

even if this delay results in unnecessary cost.

To understand this phenomenon, assume that Alice is present-biased in the sense

that she evaluates current costs accurately, but discounts future costs by a factor of

β ∈ (0, 1]. For the sake of our discussion, let β < 1 − c/c′ and recall that c′ > c. The

latter assumption ensures that a feasible value of β exists. Now assume that the package

has just arrived at the post office. If Alice decides to collect it right away, she incurs an

immediate cost of c′. In contrast, if she decides to collect it on the next day, she only

incurs an immediate cost of c and anticipates a future cost of β · c′. Thus, she believes

that the cost of running the errand on the current day is c′ whereas the cost of running

the errand on the next day is c+ β · c′. By choice of β, the second option appears to be

strictly less costly to Alice, i.e.,

c+ β · c′ < c+
(
1− c

c′
)
· c′ = c′.

As a result of this inequality, she decides to wait for a short while and collect the package

on the following day.

2

1.2 Temporal Discounting

However, before Alice heads to the post office the next day, she takes the time to

briefly reevaluate her plan. Similar to the previous day, she believes that the cost of

running the errand immediately is c′ while the cost of waiting for another day is c+β ·c′.
Since this is the same situation as before, Alice changes her mind and decides to collect

the package one day later. Note the inconsistency of this behavior. On the first day

Alice does not go to the post office with the good intention to pick up the package one

the following day, but then she changes her plan and decides to wait again. The repeated

application of this argument implies that Alice fails to pick up the package at any of

the first 9 days. The reason is that waiting always seems to be the more preferable

option to her. Only on the very last day, when she cannot delay the errand anymore,

must she go to the post office. It should be stressed that Alice does not anticipate this

behavior, nor does she procrastinate on purpose. Nevertheless, an accumulation of many

time-inconsistent choices, each one rather insignificant on its own, eventually causes her

to follow the worst possible course of action.

1.2 Temporal Discounting

One of the main difficulties that Alice faces in Akerlof’s story is the trade-off between

costs and benefits that occur at different points in time. When assessing intertemporal

choices like this, economists generally assume that people attach less weight to distant

events than to imminent ones. To specify this notion of temporal discounting formally, let

u(e) be the utility of a certain event e. Furthermore, let ũ(e, t) be the utility that a person

assigns to e whenever e occurs t time units in the future. If the person evaluates ũ(e, t)

according to some form of temporal discounting, then this utility can be expressed as

ũ(e, t) = D(t) · u(e), where D(t) denotes a discount factor that decreases monotonically

over times. Depending on the particular form of the discount rate D(t)/D(t + 1) − 1,

economists distinguish between two models of temporal discounting.

In traditional economics the prevailing model is based on the assumption that the

discount rate is a constant value ρ ∈ [0,∞), i.e., D(t)/D(t + 1) − 1 = ρ. Clearly,

this assumption implies that the discount factor D(t) decreases exponentially over time.

More precisely, it implies that D(t) = (1/(1 + ρ))t. The corresponding model of tem-

poral discounting is therefore also known as exponential discounting. It can be stated

that much of the appeal of exponential discounting is due to the conceptual elegance

and mathematical simplicity that go along with a constant discount rate. But despite

the popularity of the model, a staggering amount of empirical research casts serious

doubts on its descriptive validity. A comprehensive survey on this topic has been com-

3

1 Introduction

piled by Frederick, Loewenstein and O’Donoghu [11]. To highlight just one discrepancy

between the theoretical predictions of exponential discounting and actual human behav-

ior, consider the phenomenon of preference reversal. Under certain circumstances, it is

well-documented that people change their preference with respect to two events if those

events are delayed by a constant amount of time, see e.g. [14]. However, such observa-

tions are incompatible with exponential discounting. To see this, assume that a person

prefers some event e at time t over another event e′ at time t′, i.e., ũ(e, t) ≥ ũ(e′, t′). In

the exponential discounting framework, this immediately implies that the same person

also prefers e over e′ if both events are delayed by q time units. The reason is that

ũ(e, t+ q) =
(1

1 + ρ

)q
· ũ(e, t) ≥

(1

1 + ρ

)q
· ũ(e′, t′) = ũ(e′, t′ + q).

Clearly, this cannot explain preference reversal. But if exponential discounting fails to

predict such a fundamental phenomenon, it certainly cannot shed light on more complex

instances of time-inconsistent behavior either.

Due to this shortcoming of exponential discounting, behavioral economists have ad-

vocated an alternative model of temporal discounting. Their argument is based on

experimental research indicating that people do not only exhibit a monotonically de-

creasing discount factor, but also a monotonically decreasing discount rate, see e.g. [24].

Temporal discounting that incorporates this observation is called hyperbolic discounting

because the function obtained from interpolating empirically collected data generally

resemble a hyperbolic function. The discount factor D(t) is therefore often defined as

D(t) = 1/(1 + α · t) for some fixed parameter α ∈ [0,∞). It is easy to demonstrate

that this type of hyperbolic-discounting indeed predicts a preference reversal in some

settings. Consider for instance a person with discount parameter α = 1 who needs to

choose between two events e and e′ with a respective utility of u(e) = 2 and u(e) = 3.

If e occurs at time t = 0 and e′ occurs at time t′ = 1, then this person clearly prefers

e over e′ considering that ũ(e, 0) = 2 > 3/2 = ũ(e′, 1). Nevertheless, a delay of 2 time

unites reverses this preference since ũ(e, 2) = 2/3 < 3/4 = ũ(e′, 3). The intuitive reason

for the change of mind is that the discount rate at time t = 0 is higher than the discount

rate at time t = 2. Thus, the person is more sensitive to the time interval between e

and e′ in the near future than to the same time interval in the far future.

Empirical comparisons between exponential discounting and hyperbolic discounting

generally find hyperbolic discounting to be the descriptively superior model, see e.g. [15].

However, the mathematical properties of hyperbolic functions make this framework im-

practical for a theoretical analysis of complex scenarios. In an attempt to find a compro-

4

1.3 The Graphical Model

0 t
0

D(t)

1

quasi-hyperbolic

hyperbolic

exponential

Figure 1.2: Different types of discount factors decreasing over time

mise between descriptiveness and practicality, Laibson has forwarded the idea of quasi-

hyperbolic discounting [19], which since then has become a standard model of temporal

discounting in the field of behavioral economics. To keep the model simple, Laibson

approximates human discount rates with a constant ρ ∈ [0,∞) at any time t > 0. The

only exception is at the time t = 0 when time the discount rate might be higher. The

magnitude of this divination is quantified by the parameter β ∈ (0, 1]. More precisely,

the discount factor D(t) is defined as D(t) = β · (1/1 + ρ)t whenever t > 0 and D(t) = 1

otherwise, i.e., t = 0. Figure 1.2 depicts the resulting valuations of D(t) for some ar-

bitrary choice of β and ρ and compares them to other forms of hyperbolic discounting

and exponential discounting. It is particularly interesting to note the discontinuity of

D(t) at t = 0 in the quasi-hyperbolic model. This distinctive feature of quasi-hyperbolic

discounting can be interpreted as a cognitive bias against immediate cost and toward

immediate benefits. If this bias seems familiar, it is because Akerlof’s model of temporal

discounting is based on a similar idea. In fact, the model is a special case of quasi-

hyperbolic discounting that sets ρ = 0. As Akerlof’s story demonstrates, even this most

basic form of quasi-hyperbolic discounting gives rise to relevant behavioral phenomena

such as procrastination. This makes quasi-hyperbolic discounting an expressive but also

convenient framework for theoretical research.

1.3 The Graphical Model

So far we have given a brief overview of how hyperbolic discounting in general and quasi-

hyperbolic discounting in particular may cause people to act in a certain way that is at

odds with traditional economic theory. But although an extensive amount of research in

5

1 Introduction

behavioral economics is concerned with the effects hyperbolic discounting, most of the

obtained results require additional and often quite intricate modeling effort. To unify

these results, Kleinberg and Oren propose an elegant graph theoretical model in which

many of the behavioral anomalies generally attributed to hyperbolic discounting emerge

naturally as different instances of a single computational problem [16].

A formal introduction to Kleinberg and Oren’s model is presented in Chapter 2. At

this point we only sketch the high level ideas. Kleinberg and Oren’s graphical model

is essentially a planning problem in which a single agent constructs a path through

a directed acyclic graph G. The nodes of G, which include a source node s and a

target node t, represent intermediate states of progress toward a certain long-term goal.

To move from one node to the next, the agent must complete an atomic task that is

associated with the corresponding edge of the graph. Task graphs like this are routinely

used in various fields of computer science to model planning and scheduling problems.

Due to their expressive power, they also seem to be a suitable tool to model many of

the decision environments that behavioral economists are interested in.

While navigating the task graph G, the agent moves forward according to the following

simple iterative procedure: When located at a certain node v, she evaluates the cost of

all paths from v to t and chooses whichever path appears to be the cheapest. But since

she is present-biased, she only evaluates the cost of the outgoing edges of v correctly.

All subsequent edges represent future tasks and are therefore discounted by the agent’s

present-bias β. Once the agent has settled for a certain path P = v, w, . . . , t, she crosses

the first edge of P and moves onto w where she reevaluates her plan. For this purpose,

she calculates the cost exactly the same way as she did at v. The only difference is that

she is now located at w, which may change her perception of some of the edges.

It is easy to see that the agent’s decision making process closely resembles Akerlof’s

behavioral model from Section 1.1. By using Akerlof’s ideas, Kleinberg and Oren make

some implicit assumptions on the nature of the agent, which deserve further discussion.

Consider for instance the way in which the agent evaluates the utility of paths in the

task graph. The fact that she perceives immediate edge costs accurately and discounts

future edge costs by a factor of β implies that the graphical model is based on a special

case of quasi-hyperbolic discounting where the discount rate is set to ρ = 0. By shifting

the focus onto the agent’s present-bias, Kleinberg and Oren settle for a compromise

between descriptively validity and formal simplicity. But even though a compromise like

this is common in theoretical work, reducing a person’s decision making process to a

single cognitive bias is of course a gross simplification. To obtain more comprehensive

behavioral models, economists distinguish between a wide variety of cognitive biases,

6

1.4 Incentive Design

see e.g. [9]. It should be noted that, apart from the present-bias, the standard version

of the graphical model does not address any other cognitive bias directly. However, an

interesting line of research by Kleinberg, Oren and Raghavan incorporates additional

biases into the graphical model [18].

Another fundamental assumption of the graphical model relates to the way in which

the agent chooses which edge to cross after evaluating all utilities. Recall that Kleinberg

and Oren assume that the agent greedily picks an edge that lies on a path that she

momentarily believes is a cheapest path to t. Clearly, this decision can only be justified if

the agent is unaware of her own present-bias. People who are prone to such a lack of self-

awareness are called naive, whereas people who are fully aware of their present-bias and

plan accordingly are called sophisticated. Sometimes behavioral economists also consider

a type of person who is aware of her present-bias, but misjudge its extent, see e.g. [22].

Such people are called partially sophisticated. Extensive empirical and experimental

research suggests that naive reasoning and sophisticated reasoning both play important

roles in different contexts of everyday life [9, 11]. However, the agent’s decisions process

in the Kleinberg and Oren’s graphical model only captures naive behavior. An extension

to sophisticated and partially-sophisticated agents has been studied by Kleinberg, Oren

and Raghavan [17].

We want to underline that our work is primarily based on the original version of the

graphical model. In particular, we strictly adhere to Akerlof’s assumptions on present-

biased behavior. This means we assume that the perception of the agent is affected only

by her present-bias and that her decisions are the result of a naive maximization of her

currently perceived utility.

1.4 Incentive Design

A recent line of research uses Kleinberg and Oren’s graphical model to quantify the effects

of present-biased behavior on a person’s performance in social and economic settings,

see e.g. [13, 16, 17, 18, 23]. In the case of Akerlof’s scenario, these effects are widely

apparent. For instance, recall that the protagonist Alice repeatedly delays the task of

collecting a package from the post office. Since Alice suffers a cost of c for each of the

9 days on which she fails to collect the package, she eventually incurs an unnecessary

total cost of 9 · c. In a slightly modified scenario, the avoidable cost may become even

greater, growing exponentially in the length of the delay [16, 23].

Considering the loss of efficiency caused by present-biased choices, economists often

try to encourage sensible behavior by adjusting the external circumstance of a given

7

1 Introduction

scenario. We call such adjustments incentives. To illustrate the idea, assume that the

post office in Akerlof’s scenario wants people to collect their packages in a more timely

manner and reduces the number of days that it stores parcels from 10 to just 1. As

a result of the new policy, Alice has no choice but to collect her package right away.

Clearly, this sense of urgency is not only beneficial to the post office, but also to Alice

since she saves the cost of procrastinating. Deadlines like the one imposed by the post

office are a canonical example of how incentives can help people to reach their goals

in a more effective way, see e.g. [5]. Other examples of potentially beneficial incentives

that are often considered in the economic literature include strategically implemented

rewards and penalties [7, 21].

Depending on the particular scenario, some types of incentives are usually more suit-

able than others. However, to assess the quality of a particular incentive it is important

to take its designer’s objective into account. Behavioral economists generally distinguish

between two different types of designers. On the one hand are self-interested designers

who try to maximize their personal utility. Incentives implemented by such designers

include performance bonuses that companies promise their employees to increase pro-

ductivity or payment plans that retailers provide to attract more customers. Note that

these incentives are sometimes at the expense of present-biased people if this benefits

the designer. Benevolent designers on the other hand are first and foremost interested in

the welfare of the people they care for. A common example of incentives implemented

by benevolent designers are government policies that try to help people reduce their use

of harmful substances such as tobacco, alcohol and drugs.

Drawing on the work of Kleinberg and Oren, we assume that the primary objective

of a designer is to ensure that a given person reaches a predefined goal [16]. Note that

this objective is usually held by self-interested and benevolent designers alike, although

their motives are different. The problem faced by the designer is that her objective

is not necessarily the same as that of the person in question. To capture the potential

discrepancy, it is sensible to assume that the person is motivated by some form of reward,

which she receives upon completing the goal. Kleinberg and Oren capture this idea in the

graphical model by assigning a non-negative reward r to the target node t. Furthermore,

they assume that the person is free to quit whenever she believes that the reward does not

cover her cost. In a setting like this, the designer is inevitably interested in minimizing

the person’s maximum perceived cost. Otherwise, the designer cannot ensure that the

person remains motivated long enough to reach the goal. Note that this objective is

different from simply minimizing the total cost experienced by the person. The intuitive

reason why the two objectives do not coincide is that under certain circumstances sub-

8

1.5 Our Work

optimal behavior such as procrastination keeps a present-biased individual motivated

while more cost effective behavior does not. An example of this seemingly paradoxical

phenomenon can be found in Section 4.1.

1.5 Our Work

The economic literature is rich in examples of incentives that address certain forms of

present-biased behavior. However, most of these examples are limited to very specific

scenarios that often require an intricate modeling effort. Based on Kleinberg and Oren’s

graphical model [16], we present a novel and unifying approach to incentive design in-

corporating various ideas from the field of algorithms and theoretical computer science.

Our main focus is on quantifying the conceptual efficiency of different types of incentives

and analyzing the computational challenges of their design.

We first turn our attention to incentives that are based on the prohibition of strategi-

cally selected courses of action. A common example of this type of incentive is deadlines

that prohibit actions if they violate a predefined time limit. However, more complex

incentives may prohibit an arbitrary selection of actions. Kleinberg and Oren capture

such prohibition structures in the graphical model by removing the edges of forbidden

actions from the task graph G. Based on this framework, they observe that some sce-

narios admit prohibition structures that improve the agent’s performance exponentially

with respect to the size of G. More precisely, the performance improves within a factor

of β−n+2, where n denotes the number of nodes of G. On top of this conceptual result

Kleinberg and Oren raise the algorithmic question of identifying an optional subset of

edges to remove from G.

In Chapter 3 we prove that Kleinberg and Oren’s observation about the efficiency of

prohibition based incentives is tight and argue that the computation of an optimal prohi-

bitions is NP-hard [2]. It should be noted that Tang et al. obtain a similar NP-hardness

result [23]. However, our result holds true even if the agent’s behavior with respect to an

optional prohibition structure is known in advance. This curious property of prohibition

based incentives turns out to be a key challenge in the design of efficient solutions. In

fact our NP-hardness result can be generalized to prove that any approximation of an

optimal prohibition structure within a factor less than
√
n/3 of the optimum is NP-hard

as well [2]. We complement this theoretical upper bound on the approximability of prohi-

bition based incentives with a polynomial time algorithm that approximates an optimal

solution within a factor of 1 +
√
n [2]. This settles the approximability of prohibition

based incentives up to a small constant factor.

9

1 Introduction

To avoid the algorithmic limitations of prohibitions, we introduce a new type of in-

centive to the graphical model in Chapter 4. The idea is to make certain actions less

attractive by imposing artificial penalties. Similar to prohibition such penalty based in-

centive are frequently used in practice. Consider for instance a library that charges late

fees to ensure the timely return of its books or a government that imposes fuel taxes to re-

duce its citizen’s carbon footprints. We model such incentives by assigning non-negative

extra cost to the edges of G. This cost can be thought of as a penalty fee that the agent

incurs when traversing the corresponding edge. However, we do not assume that the de-

signer benefits directly from this fee. More precisely, we assume that the designer is not

interested in maximizing the total amount of penalty fees that the agent accumulates.

Instead, her objective remains the same as in the previous setting, namely to keep the

agent motivated for as little reward as possible. A conceptual analysis of penalty fees

shows that they realize this objective at least as efficiently as prohibition structures do

and up to 1/β times more efficiently in some scenarios [3]. This result is tight. Taking

a closer look at the computational properties of penalty fees, we are able to prove that

the construction of an optimal allocation of fees is NP-hard [3]. However, in contrast

to prohibition based incentives, it is possible to design an almost optimal allocation in

polynomial time if the agent’s behavior with respect to an optimal solution is known

in advance [3]. This computational advantage is also reflected in the 2-approximation

algorithm that we present for the design of an efficient allocation of penalty fees [3]. A

generalization of our NP-hardness result furthermore yields an asymptotically matching

lower bound of 1.08192 on the approximability of the problem [3].

In Chapter 5, we study incentives that are based on intermediate rewards. Their

purpose is to increase the appeal of certain transitional stages of a long-term project.

Kleinberg and Oren propose to model this type of incentive by assigning non-negative

rewards to arbitrary nodes of G. However, they do not investigate the resulting reward

allocations in detail. Instead, they pose the formal analysis of reward based incentives

as an open research problem [16].

A key observation that should be kept in mind when considering reward based incen-

tives is that present-biased people are occasionally motivated by rewards that they never

claim. Assuming that the designer does not have to pay for such rewards, she may use

this phenomenon to her advantage and get the agent to perform work for free. Under

certain circumstance the designer may even motivate the agent to traverse the entire

task graph G without incurring any cost. Note that exploitative rewards like this are

impossible if the agent is only offered a single reward upon completion of G. Based on

these considerations, we argue that the cost efficiency of reward based incentives may

10

1.5 Our Work

exceed the cost efficiency of penalty based incentives by an unbounded factor, at least

from the designer’s perspective. Conversely, there exist scenarios in which reward based

incentives are β−n+2 times less cost efficient than penalty based incentives. These results

are tight. Apart from the conceptual implications of exploitative rewards there are also

some computational ones. A particular curious consequence of exploitative rewards is

that it is NP-hard to decide whether a given scenario admits a reward allocation that

keeps the agent motivated for free [16]. As a result, it is not only NP-hard to construct

optimal reward allocations but it is also NP-hard to approximate them within a bounded

factor. Surprisingly, the computational challenges of constructing efficient prohibitions,

penalty fees and intermediate rewards immediately disappear if we combine them in a

single incentive. We conclude the first part of our work by showing that a combined

incentive admits optimal designs in polynomial-time. It should be noted that this result

as well as most of the other results about intermediate rewards depend crucially on the

assumption that the designer does not have to pay for uncollected rewards. A different

setting in which the designer incurs cost even if the agent does not claim a reward has

been investigated by Tang et al. [23].

In the second part of this work we set the formal evaluation of different types of

incentives aside and turn toward two variations of the graphical model. We lay our main

focus on how these variations impact the design of efficient incentives. In particular, we

are interested in their impact on penalty fees. The reason why we choose penalty fees

rather than prohibition or reward based incentives is partly because of their conceptual

power and partly because of their favorable computational properties.

The first variation of the graphical model addresses a research problem proposed by

Kleinberg and Oren concerning the design of incentives for a population of present-

biased people rather than a single individual [16]. The difficulty of this problem is

that the members of the population may have different present-biases. We model this

notion of heterogeneity by defining a set B ⊂ (0, 1] that contains each present-bias

of the population. The goal is to design an incentive that motives a given member

of the population independent of the corresponding present-bias. Settings like this are

particularly interesting if individual incentives are not admissible due to equal treatment

directives or simply impractical due to the size of the population. Another reason for

designing incentives for multiple present-biases arises if precise information about a

certain present-bias is unavailable. A fundamental question in this context is whether

incentives that are motivating for all present-biases of the set B are inherently more

costly than incentives that address only a single present-bias of the set B. We call the

qualitative ratio between the two incentives the price of heterogeneity.

11

1 Introduction

In Chapter 6 we demonstrate that penalty fees may exhibit a price of heterogeneity

that is greater than 1. More precisely, we construct a family of scenarios in which

this ratio converges to 1.1 [4]. This implies that a true loss of efficiency is sometimes

unavoidable. However, the price of heterogeneity may not become arbitrarily large. To

prove this remarkable fact, we revisit the 2-approximation algorithm we have originally

designed for a single person. A careful adaptation of the algorithm to multiple individuals

does not only retain the approximation factor of two 2, but also yields an allocation of

penalty fees that bounds the price of heterogeneity by the same amount, i.e., 2 [4].

The second variation of the graphical model is inspired by the work of Gravin et al. and

assumes that the present-bias of a person is not a fixed value, but varies over time [13].

One way to interpret such variations is as artifacts of other cognitive biases that are

not directly accounted for in the graphical model. Attempting to keep people motivated

despite a varying present-bias may therefore yield more robust incentives. However, the

additional robustness may come at the cost of a decreased efficiency. To quantify this

loss, we introduce the the price of variability. Similar to the price of heterogeneity, this

measure reflects the qualitative ratio between incentives that are robust with respect to a

variable present-bias and incentives that are designed for a fixed present-bias. Note that

this definition assumes that all present-biases are restricted to a predefined set B ⊂ (0, 1]

of potential values.

The close resemblance between the price of variability and the price of heterogene-

ity may raise the question whether the former can be bounded by a constant factor as

well. In Chapter 7 we refute this conjecture for penalty based incentives. Instead, we

present evidence that the price of variability is closely connected to the relative range

τ = maxB/minB of the set B. For this purpose we construct a family of scenarios in

which the price of variability approaches τ/2 as τ goes to infinity [4]. A complementing

upper bound of τ+1 can be deduced from a further generalization of the 2-approximation

algorithm of the previous chapter [4]. Similar considerations also yield a matching ap-

proximation ratio of τ + 1 for the problem of optimizing robust incentives [4]. Of course

there remains a wide gap between τ +1 and the NP-hard approximation ratio of 1.08192

implied by our earlier work. To close this gap to some extent, we prove that no constant

approximation is possible in polynomial time unless NP = ZPP [4]. Unfortunately, this

result implies that it is generally more difficult to work with a variable present-bias than

with a fixed present-bias. However, there is one striking exception to this rule. We

end our work with this positive exception and present a polynomial time algorithm that

constructs optimal and robust penalty fees whenever B contains the value 1, i.e., the

agent occasionally loses her present-bias [4].

12

2 The Formal Framework

The graphical model of Kleinberg and Oren [16] provides a general framework to analyze

and quantify the behavior of present-biased agents. This lays the formal foundation of

our work. We therefore use the following chapter to thoroughly introduce this framework

and settle some of its fundamental computational properties.

2.1 The Graphical Model

Consider an agent working towards some long-term goal and assume that her progress is

tracked via the n nodes of a directed acyclic graph that is induced by the node set V and

edge set E. Furthermore, assume that V includes a designated source node s and target

node t. To move from one node v to another node w, the agent must complete the task

associated with the edge (v, w). The corresponding effort is captured by a non-negative

edge cost c(v, w) ≥ 0. Once the agent reaches t, she receives a non-negative reward r ≥ 0

as compensation for her previous expenses. We call this graphical representation of a

given scenario the task graph and denote it by G = (V,E, c, r).

Definition 2.1.1 (Task Graph). The task graph G = (V,E, c, r) is a directed acyclic

graph with a pair of terminal nodes s, t ∈ V , a non-negative edge cost c : E → R≥0 and

a non-negative reward r ≥ 0.

On her way through G, the agent moves forward according to the following procedure:

Located at a node v 6= t, she tries to find a cheapest path to t. However, only the initial

edge (v, w) of any path P = v, w, . . . , t must be paid immediately; all other edges are

charged at a later point in time. Being prone to temporal discounting, the agent scales

the cost these future edges contribute to P by her present-bias β ∈ (0, 1]. We call the

resulting estimate c̃(P, β) = c(v, w)+β ·
∑

e∈P\{(v,w)} c(e) the perceived cost of P . Taking

the minimum perceived cost of all paths from v to t yields the perceived cost c̃(v, β) of v.

Similarly, we define the perceived cost c̃(v, w, β) of (v, w) as the minimum perceived cost

of all paths to t with (v, w) as their initial edge.

13

2 The Formal Framework

Definition 2.1.2 (Perceived Node and Edge Cost). The perceived cost of a given node

v ∈ V \ {t} or edge (v, w) ∈ E is defined as c̃(v, β) = min{c̃(P, β) | P = v, . . . , t} and

c̃(v, w, β) = min{c̃(P, β) | P = v, w, . . . , t} respectively.

Once the agent has determined the perceived cost of her current node v, she compares

it to the reward r. However, because she receives r upon reaching t rather than right

away, she discounts its actual value by β. Drawing on our previous terminology, we call

β · r the perceived reward. If the agent believes the reward to compensate upcoming

expenses ,i.e., c̃(v, β) ≤ β · r, she is willing to continue her walk through G. In this case,

she crosses which ever edge (v, w) matches her perceived reward, i.e., c̃(v, w, β) = c̃(v, β),

and the entire procedure is repeated at w. Ties between outgoing edges are broken

arbitrarily. Otherwise, if c̃(v, β) > β · r, she deems any further work towards reaching t

unprofitable and abandons G prematurely without collecting any reward.

We consider G to be motivating if and only if the agent does not abandon G while

constructing her path from s to t. Note that more than one such path might exist due

to ties in the perceived cost of incident edges. In this case, the agent must not abandon

on any of her paths for G to be motivating.

Definition 2.1.3 (Motivating Task Graph). A task graph G = (V,E, c, r) is motivating

for an agent with present-bias β ∈ (0, 1] if and only if she does not abandon G on any

of the paths she may take from s to t.

Without loss of generality, we often implicitly assume that each node of G is located

on a path from s to t. This assumption is justified because the agent cannot plan to

construct paths along nodes that do not satisfy this property. Consequently, no such

node is relevant to the agent’s behavior and we can safely remove them from G, for

instance in a pre-processing step.

2.2 Revisiting the Post Office

To become more familiar with the graphical model, we take another look at the story

from Section 1.1. Recall that the protagonist of this story is an agent named Alice who

has 10 days to pick up a package from the post office. Each day that the package is not

in her possession, she pays a cost of c for not being able to use its content. Furthermore,

she has to invest a one-time effort of c′ > c to collect the package in the first place. For

the sake of a simple discussion, we set c = 1 and c′ = 2 and assume that Alice’s reward

for collecting the package is very large. This way we do not need to consider cases in

which she is inclined to leave the package at the post office.

14

2.2 Revisiting the Post Office

s v2 v3 v4 v9 v10

t

. . .

. . .

2 2 2 2 2 2

1 1 1 1

Figure 2.1: Task graph of the post office scenario

The task graph G depicted in Figure 2.1 captures this setting in the following way:

Each node vi, with s = v1, represents one of the days i ∈ {1, . . . , 10} on which Alice

may collect the package. To complete this task, she must cross the edge (vi, t) for a cost

of c(vi, t) = c′ = 2. Note that Figure 2.1 merges some of the edges (vi, t) to keep the

drawing simple. If i < 10, Alice may also defer the errand by crossing the edge (vi, vi+1).

The incurred cost c(vi, vi+1) = c = 1 corresponds to cost Alice pays because she cannot

use the package on day i.

With the task graph G in place, we are ready to investigate Alice’s behavior for any

present-bias β ∈ (0, 1] she may have. According to the rules of the graphical model,

Alice decides her next move at a given node vi based on the perceived cost of the paths

from vi to t. Due to the structure of G, each such path Pi,j = vi, . . . , vi+j , t is uniquely

defined by the length j ∈ {0, . . . , 10 − i} of its associated delay. If Alice plans to cross

the edge (vi, t) to collect the package right away, she can only take Pi,0. The perceived

cost of this edge therefore evaluates to

c̃(vi, t, β) = min{c̃(Pi,0, β)} = c̃(Pi,0, β) = c(vi, t) = 2.

Conversely, as long as i < 10, Alice may cross the edge (vi, vi+1) to wait another day. In

this case, she can choose any Pi,j for which j > 0, resulting in a perceived cost of

c̃(vi, vi+1, β) = min{c̃(Pi,j , β) | 1 ≤ j ≤ 10− i}

= min
{
c(vi, vi+1) + β ·

(
c(vi+j , t) +

j−1∑
k=1

c(vi+k, vi+k+1)
) ∣∣∣ 1 ≤ j ≤ 10− i

}
= min{1 + β · (j + 1) | 1 ≤ j ≤ 10− i} = 1 + β · 2.

Depending on β, three different types of behavior may emerge from Alice’s preference

between the two edges (vi, t) and (vi, vi+1): If β > 1/2, then c̃(vi, t, β) < c̃(vi, vi+1, β)

and Alice collects the package on the very first day. On the other hand, if β < 1/2,

then c̃(vi, t, β) > c̃(vi, vi+1, β) and Alice repeatedly defers the errand until the very last

15

2 The Formal Framework

day. Finally, if β = 1/2, then c̃(vi, t, β) = c̃(vi, vi+1, β), implying that Alice is indifferent

between the two option. Consequently, she may pick up the package from the post office

on any day i within the 10-day time period.

2.3 Computational Considerations

The previous section demonstrates how the graphical model reduces human decision

making to a purely mechanical process. The beauty of the model is that we can imple-

ment this process to automatically simulate and analyze the behavior of a present-biased

person. However, a successful implementation requires a closer look at the evaluation of

perceived cost. After all, this cost is at the heart of an agent’s decisions.

According to Definition 2.1.2, the perceived cost c̃(v, w, β) of an edge (v, w) is defined

as the minimum perceived cost with respect to all paths from v to t across the initial

edge (v, w). From a conceptual point of view, this definition seems intuitive. However,

it is rather impractical from a computational perspective since the task graph G could

contain an exponential number of paths from v to t across the edge (v, w). A brute

force search for the minimum perceived cost is therefore intractable. To speed things

up, let d(v) = min{
∑

e∈P c(e) | P = v, . . . , t} be the cost of a cheapest path from v to t.

Clearly, d(v) can be computed in polynomial time with respect to the encoding length

of G via standard shortest path algorithms. Furthermore, it holds true that

c̃(v, w, β) = min{c̃(P, β) | P = v, w, . . . , t}

= min
{
c(v, w) + β ·

∑
e∈P\{(v,w)}

c(e)
∣∣∣ P = v, w, . . . , t

}
= c(v, w) + β ·min

{∑
e∈P ′

c(e)
∣∣∣ P ′ = w, . . . , t

}
= c(v, w) + β · d(w).

This yields an alternative and more tractable definition of perceived edge cost. Similarly,

we can compute the perceived cost of a node v ∈ V \ {t} by determining the minimum

perceived cost over all outgoing edges (v, w), i.e.,

c̃(v, β) = min{c̃(P, β) | P = v, . . . , t} = min
{

min{c̃(P, β) | P = v, w, . . . , t}
∣∣ (v, w) ∈ E

}
= min{c(v, w) + β · d(w) | (v, w) ∈ E}.

Having an efficient way to compute perceived cost is relevant for two reasons. First, it

implies that the graphical model is compatible with agents who have limited resources

16

2.4 The Scalability of Task Graphs

to make a decision; a notion that is also known as bounded rationality in the behavioral

economic literature, see e.g. [6]. Secondly, it allows us to simulate and quantify present-

biased behavior in real-world settings. One parameter that is of particular interest to us

in this context is the minimal motivating reward µ(G, β).

Definition 2.3.1 (Minimal Motivating Reward). The minimal motivating reward µ(G, β)

is the smallest reward for which the task graph G becomes motivating for an agent with

present-bias β ∈ (0, 1].

Keeping in mind that perceived edge and node cost can be computed in polynomial

time with respect to the encoding length of G and β, it is not too hard to see that

µ(G, β) can be as well.

Proposition 2.3.1. The minimal motivating reward µ(G, β) can be computed in poly-

nomial time with respect to the encoding length of G and β.

Proof. The minimal motivating reward µ(G, β), can be computed via a simple depth

first search through G. The search starts at s and only considers edges (v, w) satisfying

c̃(v, w, β) = c̃(v, β). Let W be the set of nodes encountered during the search. Clearly,

W can be constructed in polynomial time with respect to the encoding length of G

and β. Furthermore, it is easy to see that W contains exactly the nodes that an agent

with present-bias β may visit if the reward at t is sufficiently motivating. Consequently,

the minimal motivating reward is equal to µ(G, β) = max{c̃(v, β) | v ∈ W}/β, which

implies the desired result.

A direct consequence of this result is that it provides an efficient way to decide whether

a certain task graph G is motivating for an agent with present-bias β.

Proposition 2.3.2. Deciding whether a task graph G = (V,E, c, r) is motivating for

an agent with present-bias β ∈ (0, 1] is possible in polynomial time with respect to the

encoding length of G and β.

Proof. By definition of the minimal motivating reward, it is easy to see that G is moti-

vating if and only if r ≥ µ(G, β). However, Proposition 2.3.1 implies that µ(G, β) can

be computed within the given time bounds. This completes the proof.

2.4 The Scalability of Task Graphs

We conclude this chapter with a proposition that will be of great help to us later on.

To motivate the proposition, imagine a scenario without monetary transactions. In this

17

2 The Formal Framework

case it may be difficult to assign cost and reward in absolute terms. Conveniently, the

graphical model is invariant to the numerical parameters of the task graph as long as

their ratio is preserved. To see this, we define the concept of a scaled task graph:

Definition 2.4.1 (Scaled Task Graphs). Let λ > 0 be an arbitrary positive scaling

factor. The task graph Gλ = (V,E, cλ, rλ) is a scaled version of G = (V,E, c, r) if and

only if cλ(e) = λ · c(e) for all e ∈ E and rλ = λ · r.

It is not too hard to see that the agent’s behavior in Gλ is identical for all scaling

parameters λ > 0. As a result, all versions of Gλ share the same motivational properties.

This observation is particularly convenient as it generalizes many complexity theoretic

results that we present in the next chapters from specific reward values to arbitrary

reward values.

Proposition 2.4.1. The motivational properties of a task graph Gλ = (V,E, cλ, rλ) are

independent of the scaling factor λ > 0.

Proof. Let λ > 0 be an arbitrary scaling factor and assume that the agent is located at

some node v 6= t. It is easy to see that the perceived cost of any path P = v, w, . . . , t in

Gλ is exactly λ times the perceived cost of P in G. More formally, it holds true that

c̃λ(P, β) = cλ(v, w) + β ·
∑

e∈P\{(v,w)}

cλ(e) = λ · c(v, w) + β ·
∑

e∈P\{(v,w)}

λ · c(e) = λ · c̃(P, β).

This means that the agent’s preference over the outgoing edges (v, w) in Gλ is identical

to her preference in G. Furthermore, the reward rλ is by definition equal to λ times the

reward r. Combining the two observations shows that the agent traverses the same edges

and abandons at the same nodes in both graphs. As a result, Gλ must be motivating if

and only if G is. This implies the proposition.

18

3 Prohibition Based Incentives

In this chapter we focus on incentives that prohibit an agent from performing certain

tasks. The goal is to impose these prohibitions in a way that reduces the reward re-

quired to keep the agent motivated. We are particularly interested in the computational

complexity of computing optimal or approximately optimal solutions for this incentive

design problem. However, to introduce the setting we neglect computational consider-

ations for a moment and first take a closer look at the conceptual power of prohibition

based incentives.

3.1 The Car Wash

The benefit of strategic prohibition is perhaps best illustrated by a simple example.

Consider, for instance, a scenario in which Alice has 10 days time to wash her car.

On each day she can either do the chore right away or wait until the next day. If she

decides to procrastinate, she incurs no immediate effort. However, the longer she waits

the harder it becomes to clean the car. Assuming an exponential increase of effort, let

2i be the cost of cleaning the car on a particular day i ∈ {1, . . . , 10}. The task graph

G = (V,E, c, r) depicted in Figure 3.1 captures this scenario by assigning each day i to

a distinct node vi. In the special case of i = 1, let s = v1. Edges of the form (vi, t)

correspond to the task of washing the car on day i, while edges of the form (vi, vi+1)

with i < 10 are procrastination edges that postpone the task to the next day.

Assume that Alice has a present-bias of β = 1/2. When located at a node vi with

i < 10, it is easy to see that she is indifferent between washing her car right away or

waiting until the next day, i.e.,

c̃(vi, t, β) = 2i = β · 2i+1 = min{0 + β · 2j | i+ 1 ≤ j ≤ 10} = c̃(vi, vi+1, β)

As a result, it may happen that Alice procrastinates until day 10 at which point she

must wash the car to receive the reward. Since the edge (v10, t) has a cost of 210, this

implies that a reward greater or equal to 210/β = 2048 is required to make G motivating,

i.e., µ(G, 1/2) ≥ 2048. Clearly, such a high reward is not very cost effective.

19

3 Prohibition Based Incentives

s v2 v3 v4 v9 v10

t

. . .

. . .

2 4 8 16 32 1024

0 0 0 0

Figure 3.1: Task graph of the car wash scenario

A sensible measure to improve efficiency is to introduce a deadline that prohibits Alice

from procrastinating. We can implement such a deadline by removing the edge (s, v2)

from the task graph G. The set F = {(s, v2)} of removed edges induces a new task graph

GF = (V,E \ F, c, r). We call this task graph a subgraph of G.

Definition 3.1.1 (Subgraph). The subgraph GF = (V,E \ F, c, r) is a task graph ob-

tained by removing the set F ⊆ E of edges from a given task graph G = (V,E, c, r).

Now, assume that Alice is located at the source node s of the subgraph GF . Since

GF does not contain the edge (s, v2) anymore, she does not receive the reward if she

postpones the car wash to the next day. In fact, her only option to receive the reward

is to traverse the edge (s, t) immediately. The perceived cost of this plan evaluates to

c̃F (s, t, β) = 2. Note that we write c̃F instead of c̃ whenever we refer to some perceived

cost in the subgraph induced by F . Similarly, we write dF to denote the cost of a

cheapest paths in GF . The above considerations imply that a reward of 2/β = 4 is

sufficient to make GF motivating. In fact, it is not too hard to see that this reward is

the best possible among all subgraphs of G. We therefore refer to this reward as the

minimum motivating reward and denote it by µ∗(G, 1/2).

Definition 3.1.2 (Minimum Motivating Reward). The minimum motivating reward

µ∗(G, β) is the smallest reward for which the task graph G admits a subgraph that is

motivating for an agent with present-bias β ∈ (0, 1].

Comparing the minimal motivating reward with the minimum motivating reward

shows that the removal of (s, v2) improves the cost efficiency of G by a factor of

µ(G, 1/2)

µ∗(G, 1/2)
=

2048

4
= 512.

Considering a slightly generalized version of the car wash scenario, it becomes apparent

that this cost efficiency ratio can grow exponential in the size of the task graph.

20

3.1 The Car Wash

Figure 3.2: Alice cleaning her car

Proposition 3.1.1. The cost efficiency ratio µ(G, β)/µ∗(G, β) lies between 1 and β−n+2

for all task graphs G and present-bias values β ∈ (0, 1]. This result is tight.

Proof. Clearly, the ratio µ(G, β)/µ∗(G, β) is never less than 1 sinceG∅ is a valid subgraph

of G. Moreover, it is easy to construct a task graph G in which it is of no advantage

to remove edges, e.g. a task graph with just a single edge. This proves that the lower

bound of 1 is valid and tight. We therefore focus on the upper bound β−n+2.

As a first step, we check the validity of the upper bound. For this purpose, consider

an arbitrary task graph G = (V,E, c, r). By definition of the minimal motivating reward

µ(G, β), at least one of the agent’s paths from s to t must contain a node w 6= t with a

perceived cost of c̃(w, β) = β · µ(G, β). Assuming that w 6= s, let v be a node that the

agent visits before w. Considering that

c̃(v, β) = c̃(v, w, β) = c(v, w) + β · d(w) ≥ β · d(w) ≥ β · c̃(w, β),

it should be clear that the perceived cost increases by no more than a factor of β−1 as

the agent moves from v to w. However, any path that the agent may take from s to

w consists of at most n− 1 nodes. An inductive argument on these nodes immediately

implies that the perceived cost of s is at least c̃(s, β) ≥ βn−2 · c̃(w, β) = βn−1 · µ(G, β).

Conversely, let GF be a subgraph that is motivating for the minimum motivating

reward µ∗(G, β). The perceived cost of s in GF is a lower bound on the perceived value

of µ∗(G, β), i.e., β · µ∗(G, β) ≥ c̃F (s, β). Considering that the perceived cost of s can

only decrease whenever additional edges are added to GF , we conclude that

β−n+2 · µ∗(G, β) = β−n+1 · (β · r′) ≥ β−n+1 · c̃F (s, β) ≥ β−n+1 · c̃(s, β) ≥ µ(G, β).

This establishes the upper bound of β−n+2.

21

3 Prohibition Based Incentives

It remains to show that the upper bound is tight. To prove tightness, consider a task

graph G = (V,E, c, r) that consist of a directed path P = v1, . . . , vn−1 and an additional

edge (vi, t) for each node vi of P . The edges of P are free of charge whereas the edges

(vi, t) have exponentially increasing cost of c(vi, t) = β−i. The initial node of P also

serves as the source node, i.e., s = v1.

For each i < n − 1, it should be easy to see that an agent with present-bias β is

indifferent between the two edges (vi, vi+1) and (vi, t) when located at vi. The reason is

the same as in the car wash scenario. It may therefore happen that the agent walks all the

way from s to vn−1 along the path P . However, once she reaches vn−1, the only remaining

path to t leads across the edge (vn−1, t). Since this edge has a cost of β−n+1, a reward

of β−n+1/β = β−n or more is necessary for G to be motivating, i.e., µ(G, β) ≥ β−n. In

contrast, consider a subgraph GF in which the edge (s, v2) is removed. Clearly, the only

path from s to t in GF is along the edge (s, t) for a cost of β−1. But this implies that

GF is motivating for a reward of β−1/β = β−2, i.e., µ∗(G, β) ≤ β−2. We conclude that

the ratio between the minimal motivating reward and minimum motivating reward is at

least β−n+2 and therefore the upper bound is tight.

3.2 Computing Motivating Subgraphs

As demonstrated in the previous section, prohibition can improve the cost efficiency of

task graphs considerably. However, to exploit the full potential of this incentive design

strategy, we need to identify an optimal set F of edges to remove from a given task graph

G = (V,E, c, r), i.e., a set F that satisfies µ(GF , β) = µ∗(G, β). A straight forward

approach to this problem is a brute force search through all subsets F ⊆ E. Of course,

such a search becomes intractable very fast considering that E admits exponentially

many subsets with respect to its size. As a result, one may wonder whether more

efficient algorithms exist.

To investigate this question, we take a closer look at the computational complexity

of finding an optimal set F . As a first step, we define a decision version of the problem

called MOTIVATING SUBGRAPH (MSG):

Definition 3.2.1 (MSG). The problem of deciding whether a task graph G = (V,E, c, r)

admits a subgraph GF that is motivating for a given present-bias β ∈ (0, 1].

It is easy to see that MSG is contained in the complexity class NP. The reason is that

any solution of a feasible MSG instance can be verified in polynomial time.

Proposition 3.2.1. MSG is contained in NP.

22

3.2 Computing Motivating Subgraphs

Proof. Let G = (V,E, c, r) be the task graph of an MSG instance I that admits a

motivating subgraph GF = (V,E \ F, c, r). To establish membership of MSG in NP, we

need a certificate of polynomial size that verifies the existence of a feasible solution in

polynomial time. The obvious candidate for such a certificate is of course GF . On the

one hand, the encoding length of GF is clearly polynomial in that of I and it is easy

to check whether GF is indeed a subgraph of G. On the other hand, Proposition 2.3.2

states that it can be decided in polynomial time with respect to the encoding length of

GF and β whether GF is motivating. Because β is part of the given MSG instance I,

this completes the proof.

A more interesting question is whether MSG is contained in the complexity class P, i.e.,

does there exist a polynomial time algorithm to decide whether a given MSG instance

has a feasible solution? In the special case of β = 1, such an algorithm exists indeed.

The reason is that an agent with no present-bias simply follows a cheapest path from s

to t. Therefore, it is of no advantage to delete edges and a given MSG instance admits

a motivating subgraph if and only if its task graph is motivating itself. According

to Theorem 2.3.2, the latter condition can be checked in polynomial time. A similar

approach also decides MSG whenever no reward is placed, i.e., r = 1.

In the remainder of this section, we argue all other instance of MSG are far more

difficult to decide. More precisely, we show that MSG is NP-hard for β ∈ (0, 1) and

r > 0. In particular this means that MSG is not contained in P unless P = NP. To

prove NP-hardness, we construct a polynomial reduction from the well-known, NP-hard

3-SATISFIABILITY (3-SAT) problem, see e.g. [12].

Definition 3.2.2 (3-SAT). The problem of deciding whether ` clauses c1, . . . , c` over m

variables x1, . . . , xm with 3 literals per clause have a satisfying truth-value assignment.

In the analysis of the reduction, we encounter several paths P = vm+1, . . . , v0 with

exponentially increasing edge cost c(vi, vi−1) = (1−β)i−1. According to the Lemma 3.2.2,

the perceived cost of P evaluates to 1. It is particularly interesting to observe that the

same holds true for any non-empty subpath of P ending at v0. In other words, the

perceived cost of P stays invariant as the agent travels along its edges. As it turns out,

this is a convenient property, which we use several times through this work.

Lemma 3.2.2. For any path P = vm+1, . . . , v0 with edge cost c(vi, vi−1) = (1 − β)i−1,

it holds true that c̃(P, β) = 1.

Proof. According to the geometric series, it is possible to express the sum
∑m−1

i=0 (1−β)i

as (1− (1− β)m)/β in closed form. Together with the definition of perceived cost, this

23

3 Prohibition Based Incentives

immediately yields the desired result

c̃(P, β) = (1− β)m + β ·
m−1∑
i=0

(1− β)i = (1− β)m + β · 1− (1− β)m

β
= 1.

We are now ready to establish that MSG is NP-hard. The proof of this theorem is

an adapted version of a reduction originally presented in our work on penalty based

incentives [3]. An alternative proof that was discovered independently of ours can be

found in the work of Tang et al. [23].

Theorem 3.2.3. MSG is NP-hard for any present-bias β ∈ (0, 1) and reward r > 0.

Proof. Let I be an arbitrary instance of 3-SAT, which consists of ` clauses c1, . . . , c`

over m variables x1, . . . , xm. Furthermore, let β ∈ (0, 1) be a fixed value independent

of I. Our goal is to construct a task graph G = (V,E, c, r = 1/β) in polynomial time

such that the resulting MSG instance J has the following two properties:

(a) If I is satisfiable, then J must admit a motivating subgraph.

(b) If J admits a motivating subgraph, then I must be satisfiable.

This reduction proves the theorem for r = 1/β. However, the more general result for

r > 0 follows directly from the scalability of r according to Proposition 2.4.1.

As the first step of the reduction, we specify the structure of G. Figure 3.3 depicts G

for a simple sample instance of 3-SAT. Note that the drawing splits G at the node u1

into a top and a bottom layer. The top layer contains a node vk,y for each variable xk

and truth-value y ∈ {T, F}. We call these nodes boolean nodes and the edges between

them regular edges. The cost of these regular edges is (1 − β)3 − ε, where ε denotes a

small but positive quantity satisfying

ε < min
{

(1− β)3,
β · (1− β)3

1 + β

}
.

As Figure 3.3 shows, there is a regular edge (vk,y, vk+1,y′) for each pair of boolean nodes

associated with two consecutive variables xk and xk+1. Furthermore, all boolean nodes

of the first variable x1 or the last variable xm are connected to the other nodes of G

via a regular edge of the form (u2, v1,y) or (vm,y′ , u3) respectively. The idea behind this

construction is that the agent’s path along the boolean nodes corresponds to a satisfying

truth-value assignment τ : {x1, . . . , xm} → {T, F} and vice versa.

Similar to the boolean nodes at the top layer, there is a so-called literal node wi,j

for each literal j ∈ {1, 2, 3} of each clause ci at the bottom layer. The literal nodes are

24

3.2 Computing Motivating Subgraphs

s
w1,1 w1,2 w1,3 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3

u1

u1 u2
v1,T v1,F v2,T v2,F v3,T v3,F

u3 t

z

top layer

bottom layer

. . .

Figure 3.3: Reduction from the 3-SAT instance: (¬x1, x2, x3), (x1,¬x2,¬x3), (x1,¬x2, x3)

connected in the same way as the boolean nodes, i.e., there is a regular edge (wi,j , wi+1,j′)

of cost (1− β)3− ε for each pair of literal nodes associated with two consecutive clauses

ci and ci+1 as well as a regular edge (s, w1,j) and (w`,j′ , u1) for each literal node of the

first clause c1 and last clause c`. The purpose of the bottom layer is to identify a true

literal per clause with respect to the truth-value assignment τ obtained at the top layer.

This verifies that τ is indeed satisfying.

In addition to the regular edges, G contains several shortcuts. First, there is a shortcut

of cost (1− β)2 from each literal node wi,j to a distinct boolean node. If the j-th literal

of ci is equal to a variable xk, this shortcut goes to vk,F . Otherwise, if the literal is

negated and equal to ¬xk, it goes to vk,T . Secondly, there are two shortcuts from each

boolean nodes vk,y to the target node t. One of them consists of a single edge of cost∑2
i′=0(1−β)i

′
, while the other is routed through the intermediate node z and consists of

two edges; the first is free of charge while the second has a cost of 2− β. Finally, there

is one more shortcut from u2 to t via an edge of cost 2− β.

To complete the task graph G, we add four more auxiliary edges (u1, u2), (u3, u4),

(u4, u5) and (u5, t). The cost of these edges is (1−β)2, (1−β)2, 1−β and 1 respectively.

Clearly, the resulting graph is acyclic. Moreover, since all numerical values are indepen-

dent of the particular 3-SAT instance I, the graph can be constructed in polynomial

time and is of polynomial size with respect to I.

25

3 Prohibition Based Incentives

Having specified the task graph G, we proceed to argue that the corresponding MSG

instance J satisfies property (a), i.e., J admits a motivating subgraph whenever I
is satisfiable. For this purpose, let τ be a satisfying truth-value assignment of I and

consider the subgraphGF obtained by removing all shortcut edges of the form (vk,τ(xk), z)

and (vk,¬τ(xk), t) from G. This way, all boolean nodes satisfied with respect to τ have

a single edge shortcut and all unsatisfied boolean nodes have a double edge shortcut.

Furthermore, assume that all regular edges incident to an unsatisfied boolean or literal

node are deleted as well. Figure 3.4 shows the resulting subgraph GF for a satisfying

truth-value assignment of the 3-SAT instance given in Figure 3.3.

To prove that the subgraph GF is indeed motivating, we have to determine the agent’s

walk through GF . Starting at s, her only option is to cross a regular edge and move

to one of the literal nodes that set the first clause to true. Because τ is a satisfying

truth-value assignment, at least one such node w1,j must exist. If the agent plans to

take the shortcut at w1,j immediately, Lemma 3.2.2 yields an upper bound of

c̃F (s, w1,j , β) ≤ (1− β)3 − ε+ β ·
(
(1− β)2 + 0 + (2− β)

)
= (1− β)3 + β·

(2∑
i′=0

(1− β)i
′
)
−ε = 1− ε

for the perceived cost of (s, w1,j). This is less than the perceived reward and therefore

she is motivated to move forward to w1,j where she faces two new options: Either she

takes the immediate shortcut the way she planned at s or she crosses a regular edge to

one of the satisfied literal nodes of the next clause. With the help of Lemma 3.2.2 it is

easy to see that the perceived cost of the immediate shortcut is 1. The perceived cost

of the regular edges on the other hand is at most 1− ε according to the same reasoning

that bounds the perceived cost at s. Consequently, the agent prefers the regular edges

over the shortcut and moves to the next literal node. Repeating this argument proves

that she travels step by step along the literal nodes of the bottom layer until she reaches

a node w`,j′ of the last clause. At this point, she cannot plan to take a shortcut at a

later literal node anymore. However, if she plans to take the shortcut at u2 instead, the

perceived cost of (w`,j′ , u1) is still at most 1 − ε . As a result, she eventually moves to

u2 via the intermediate node u1. This completes the bottom layer.

The analysis of the top layer reveals an identical behavior pattern. From the initial

node u2 to the last boolean node vm,τ(xm), the agent consistently prefers the next shortcut

over the present shortcut. Consequently, she moves from one satisfied boolean node to

the next until she reaches vm,τ(xm). At this point she prefers to move to t via the nodes

26

3.2 Computing Motivating Subgraphs

s
w1,1 w1,2 w1,3 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3

u1

u1 u2
v1,T v1,F v2,T v2,F v3,T v3,F

u3 t

z

top layer

bottom layer

. . .

Figure 3.4: Subgraph for the truth-value assignemnt τ(x1) = τ(3) = T and τ(x2) = F

u3, u4 and u5. According to Lemma 3.2.2, the perceived cost of these nodes never

exceeds 1, which proves that GF is motivating.

All that remains is to show that our reduction also satisfies property (b), i.e., I has

a satisfying truth-value assignment whenever J admits a motivating subgraph. For

this purpose, let GF be a motivating subgraph and P the path that the agent takes

through GF . It is important to observe that P cannot contain any shortcuts. For the

top layer, this follows from the fact that all of its shortcuts contain an edge e of cost 2−β
or more. Clearly, the perceived cost of e is at least c̃F (e, β) ≥ 2 − β > 1 and therefore

not motivating. To verify the observation for the bottom layer, assume that P contains

a shortcut edge from some literal node wi,j to a boolean node vk,y. The perceived cost

of this edge can be at most 1, otherwise the agent loses motivation. By construction

of G, there is a distinct cheapest path from vk,y to t, namely the double edge shortcut

at vk,y. Because the perceived cost of the path from wi,j to t via this shortcut evaluates

to 1, we know that the shortcut must be contained in GF . However, once the agent has

reached vk,y, the perceived cost of the shortcut decreases to β · (2− β). In contrast, any

path P ′ = vk,y, . . . , t whose initial edge is regular must include a top layer shortcut or

pass the nodes u3, u4 and u5. In both cases, the perceived cost of P ′ is at least

c̃F (P ′, β) ≥ (1− β)3 − ε+ β · (2− β) > β · (2− β).

27

3 Prohibition Based Incentives

The second inequality is valid by choice of ε. As a result, the agent prefers the double

edge shortcut at vk,y over all regular edges. This is a contradiction to the previous

observation that P does not contain a top layer shortcut.

Because P does not contain shortcuts, we conclude that it contains exactly one literal

node wi,j and one boolean node vk,y for each clause ci and variable xk. Consequently, we

can construct a truth-value assignment τ in the following way: If P includes the node

vk,T , then τ(xk) = T . Otherwise, if P includes vk,F , then τ(xk) = F .

To conclude the proof, we need to show that τ indeed satisfies all clauses. For this

purpose, consider an arbitrary clause ci and let wi,j be the corresponding literal node

contained in P . Furthermore, let w′ be the node that precedes wi,j with respect to P .

We denote the path that the agent plans to take at w′ by P ′. Clearly, the initial edge of

P ′ must be the regular edge (w′, wi,j). However, this means that none of the subsequent

edges can be regular anymore. The reason is that no matter how P ′ is chosen, the path

always charges a cost of (1 − β)2 and 2 − β at some point; the former cost must either

be payed at a bottom layer shortcut or the edge (u1, u2) while the latter cost must be

paid at a top layer shortcut or along the nodes u3, u4 and u5. Consequently, any further

regular edge added to P ′ would result in too much perceived cost. More precisely, the

perceived cost of P ′ would amount to a value of at least

c̃F (P ′, β) ≥ (1− β)3 − ε+ β ·
(
(1− β)3 − ε+ (1− β)2 + (2− β)

)
= 1 + (1 + β) ·

(β · (1− β)3

1 + β
− ε
)
> 1

The inequality is valid by choice of ε. It is easy to see that this is not motivating. But if

P ′ only contains one regular edge, it must consist of the direct shortcut from wi,j to the

corresponding boolean node vk,y and the double edge shortcut from vk,y to t. Note that

P ′ cannot contain the single edge shortcut at vk,y for the same reason that it cannot

contain a second regular edge. As a result, we know that the double edge shortcut at

vk,y must be part of GF .

For the sake of contradiction, assume that P includes the boolean node vk,y. As argued

earlier, the perceived cost of a regular edge at vk,y is at least (1− β)3 − ε+ β · (2− β).

By choice of ε, this is too expensive to keep the agent from entering the double edge

shortcut at vk,y which only has a perceived cost of β · (2−β). Of course, this violates the

observation that the agent must not take shortcuts. Consequently, P needs to contain

the boolean node vk,¬y instead. By construction of G this implies that the truth-value

assignment τ satisfies the j-th literal of ci. Because this holds true for all clauses, τ is a

satisfying variable assignment. This completes the proof.

28

3.3 Optimal Travel Routes

3.3 Optimal Travel Routes

The fact that MSG is NP-hard immediately implies the same for the design of optimal

subgraphs. But what computational challenges give rise to this result? To gain some

more insight, consider a scenario in which partial information about the structure of a

solution is revealed. More precisely, assume we know which nodes the agent visits in an

optimal subgraph GF for a reward of µ(GF , β). We call the corresponding set W ∗ of

nodes an optimal travel route.

It is interesting to observe that the knowledge of W ∗ renders the reduction of Theo-

rem 3.2.3 ineffective. The reason is that the variable nodes contained in W ∗ correspond

to a satisfying truth-value assignment whenever the 3-SAT instance of the reduction is

satisfiable. Clearly, this implies that W ∗ is NP-hard to compute. But it also raises the

question whether knowledge of W ∗ simplifies the design of an optimal subgraph. In the

next chapter we prove a similar conjecture for penalty based incentives. Unfortunately,

this result cannot be carried over to prohibition, i.e., an optimal subgraph remains NP-

hard to design even if W ∗ is known. To prove this, consider the following promise version

of MSG, which we call MSG-PROMISE:

Definition 3.3.1 (MSG-PROMISE). The problem of deciding whether a task graph

G = (V,E, c, r) admits a motivating subgraph in which the agent visits the nodes of a

predefined node set W or does not admit a motivating subgraph at all.

Given an optimal subgraph GF of G, MSG-PROMISE can be decided in polyno-

mial time whenever W = W ∗; just check whether µ(GF , β) ≤ r. However, by using a

reduction from `-DISJOINT CONNECTING PATHS (`-DCP) we can show that MSG-

PROMISE is NP-hard, even if W = W ∗. This implies that knowledge of W ∗ does not

reduce the complexity of computing optimal subgraphs.

Definition 3.3.2 (`-DCP). The problem of deciding whether a graph H with ` disjoint

node pairs (s1, t1), . . . , (sk, tk) admits ` mutually node-disjoint paths, one connecting

each si to the corresponding ti.

According to Lynch [20], `-DCP is NP-hard in undirected graphs. Conveniently, his

reduction adapts seamlessly to directed acyclic graphs, see e.g. [2]. This allows us to

emend `-DCP instances into task graphs. In [2] we use such an embedding to prove that

MSG is NP-hard. However, the same construction can prove an even stronger result,

namely that MSG-PROMISE is NP-hard for W = W ∗.

Theorem 3.3.1. MSG-PROMISE is NP-hard for any present-bias β ∈ (0, 1), reward

r > 0 and W = W ∗, where W ∗ is an optimal travel route.

29

3 Prohibition Based Incentives

Proof. Let I be an arbitrary instance of `-DCP that consists of a directed acyclic graph

H and ` disjoint node pairs (s1, t1), . . . , (s`, t`). Furthermore, assume that the present-

bias β ∈ (0, 1] is independent of I. Our goal is to reduce I to an RMSG instance J on

a task graph G = (V,E, c, r = 1/β) such that J satisfies the following three properties:

(a) If J admits motivating subgraphs, then the agent travels along a common path in

each such subgraph. We call this path the regular path.

(b) If I has ` node-disjoint connecting paths, then J admits a motivating subgraph.

(c) If I does not have ` node-disjoint connecting paths, then J does not admit a

motivating subgraph.

Choosing W to be the set of nodes on the regular path, the above properties prove the

theorem for the special case of r = 1/β. For all other rewards r > 0, the theorem follows

directly from the scalability of r shown in Proposition 2.4.1.

The task graph G, which is illustrated in Figure 3.5, has the following structure: First,

there is the regular path from s to t along the intermediate nodes v1, . . . , v`+3. The cost

of the first ` + 1 edges of this path is (1− β)3 − ε, where ε denotes a positive constant

that satisfies

ε < min
{β · (1− β)

`+ 1
,
β · (1− β)3

1 + β

}
.

The last three edges (v`+1, v`+2),(v`+2, v`+3) and (v`+3, t) have a cost of (1− β)2, 1− β
and 1, respectively. Secondly, G contains ` shortcuts that connect each node vi with

i ≤ ` to t via the embedding of H. More precisely, the i-th shortcut goes from its initial

node vi to a distinct node wi via an edge of cost (1−β)2. From wi the shortcut continues

to the terminal node si of H via an edge of cost (`+1− i) · (1−β)/(`+1). After passing

through H, the shortcut connects ti with t via an edge of cost i · (1 − β)/(` + 1) + 1.

Note that the prices of (wi, si) and (ti, t) are complements of each other and sum up to

(1− β) + 1. The edges of H are free of charge.

The resulting task graph G is acyclic and its construction requires at most polynomial

time and space with respect to I. Furthermore, the regular path of G is the only path

from s to t whose edges are all of cost less than or equal to 1. This is due to the cost of

the final shortcut edges (ti, t). As a result, the agent must travel along the regular path

to stay motivated. This establishes (a).

We continue to show that J satisfies property (b), i.e., J admits a motivating sub-

graph whenever I has ` node-disjoint connecting paths. For this purpose, assume that

` node-disjoint connecting paths exist in H and consider the subgraph GF obtained by

30

3.3 Optimal Travel Routes

s v1 v2 v3 v` v`+1

v`+2

v`+3

t

w1 w2 w3 w`

s1 s2 s3 s`

t1 t2 t3 t`
H

. . .

. . .

Figure 3.5: Reduction from an `-DCP instance of a graph H

deleting all edges of H that are not part of one of these paths. When located at a node

vi with i ≤ `, the agent has two choices: First, she may take the current shortcut at vi.

According to Lemma 3.2.2, the perceived cost of this option is

c̃F (vi, wi, β) = (1− β)2 + β ·
((`+ 1− i) · (1− β)

`+ 1
+
i · (1− β)

`+ 1
+ 1
)

= (1− β)2 + β ·
(
(1− β) + 1

)
= 1.

Secondly, she may take a regular edge and move to the next node vi+1. Assuming

that she plans to continue her walk along the shortcut at vi+1, or the nodes v`+1, v`+2

and v`+3 in the special case of i = `, the perceived cost of this option is at most

c̃F (vi, vi+1, β) ≤ 1 − ε. Again, this bound is a direct result of Lemma 3.2.2. Similar

calculations reveal a perceived cost of at most 1 for each of the edges (s, v1), (v`+1, v`+2)

and (v`+2, v`+3). As a result, all edges going out of nodes of the regular path are

motivating. Nevertheless, the agent strictly prefers the regular edges over the shortcuts.

This means that she travels along the regular path until she eventually reaches t.

It remains to show that J satisfies (c), i.e., J admits no motivating subgraph whenever

I does not have ` node-disjoint connecting paths. To prove this statement, let GF

be an arbitrary subgraph. Without loss of generality, we may assume that the agent

travels along the regular path of GF . The reason is that no other type of subgraph can

possibly be motivating according to (a). Assuming that H does not have ` node-disjoint

connecting paths, our goal is to show that GF is not motivating.

31

3 Prohibition Based Incentives

We call the i-th shortcut in GF degenerated if the cost of a cheapest path from vi to t

via wi is different from the target value θ =
∑2

i′=0(1−β)i
′
. In particular, the i-th shortcut

is degenerated if there is no path from vi to t via wi in which case the cost is infinite.

Note that all degenerated shortcuts miss the target value by (1 − β)/(` + 1) or more.

Because H does not admit ` node-disjoint connecting paths, at least one degenerated

shortcut must exist in GF . To see this, assume for a moment that no such shortcut

exists. This means that there is a cheapest path Pi from vi to t via wi for all i ≤ `. By

construction of G, it holds true that Pi contains (wi, si). As the total cost of Pi sums

up to θ, it follows that the last edge of Pi must be (ti, t). Furthermore, Pi must be

node-disjoint from all other paths Pj with j < i. Otherwise, Pi would not be a shortest

path from vi to t considering that the cost of (tj , t) is less than the cost of (ti, t). As a

result, the subpaths between si and ti correspond to ` node-disjoint paths in H. This

contradicts the assumption that no ` node-disjoint paths exist.

Having established the existence of a degenerated shortcut in GF , we distinguish two

cases: Either there is a degenerated shortcut at vi such that the cost of a cheapest path

Pi from vi to t via wi is less than θ, or all degenerated shortcuts cost more than θ.

We start with the first case. Let i be the largest index of a degenerated shortcut such

that the cost of Pi is less than θ. Because the cost of Pi misses the target value by

(1− β)/(`+ 1) or more, the perceived cost of (vi, wi) is at most

c̃F (vi, wi, β) ≤ (1− β)2 + β ·
(
θ − 1− β

`+ 1

)
= 1− β · (1− β)

`+ 1
< 1− ε.

The second inequality holds true by choice of ε. In contrast, all later shortcuts cost θ

or more. This implies that the perceived cost of (vi, vi+1) is at least c̃F (vi, vi+1, β) ≥ 1.

Clearly, this contradicts the fact that the agent stays on the regular path of GF .

As the first case is impossible, only the second one remains, i.e., all degenerated

shortcuts cost more than θ. Let vi be the initial node of such a shortcut and assume

that the agent is currently located at the preceding node v′ with respect to the regular

path. At this point the agent may plan to take one of two types of paths across the initial

edge (v′, vi): The first type of path is of the form P = v′, vi, wi, . . . , t, i.e., it contains a

shortcut at vi. However, the cost of this shortcut exceeds θ by (1− β)/(`+ 1) or more.

Consequently, the perceived cost of P is at least

c̃(P, β) ≥ (1− β)3 − ε+ β ·
(
θ +

1− β
`+ 1

)
= 1− ε+

β · (1− β)

`+ 1
> 1.

The last inequality holds true by choice of ε. The second type of path is of the form

32

3.4 Two Complementing Approximation Algorithms

P ′ = v′, vi, vi+1, . . . , t, i.e., it contains a regular edge out of vi. By construction of G,

the path P ′ must cross some other edges after vi+1 whose total cost is at least θ. These

edges may either be part of a shortcut or they occur at the nodes v`+1, v`+2 and v`+3.

As a result, the perceived cost of P ′ is at least

c̃(P ′, β) ≥ (1− β)3 − ε+ β ·
(
(1− β)3 − ε

)
= 1 + (1− β) ·

(β · (1− β)3

1 + β
− ε
)
> 1.

Again, the last inequality holds true by choice of ε. This means that no matter whether

the agent plans along P or P ′, the perceived cost is not motivating. Therefore, GF

cannot be motivating either. This completes the proof.

3.4 Two Complementing Approximation Algorithms

Since the design of optimal subgraphs is NP-hard, we turn our attention to approximate

solutions. For real-world applications it seems reasonable to assume that an agent’s

present-bias cannot become arbitrarily small, but stays relatively close to 1. In such a

setting, it might be acceptable to compute a subgraph GF whose minimal motivating

reward µ(GF , β) approximates the optimal reward µ∗(G, β) within a factor of 1/β. The

following algorithm presents a straight forward way to compute such a subgraph:

Algorithm 1: CheapestPathApprox

Input: task graph G, present-bias β
Output: edge set F

1 P ← shortest path from s to t;
2 F ← E \ P ;
3 return F ;

The idea of this algorithm is simple. As the name “CheapestPathApprox” suggests,

it computes a cheapest path P from s to t and removes all edges apart from the ones

contained in P . This way, the agent is forced to travel along P , which results in a 1/β

approximation ratio.

Proposition 3.4.1. Given a task graph G and present-bias β ∈ (0, 1], Cheapest-

PathApprox constructs a subgraph GF whose minimal motivating reward µ(GF , β)

approximates µ∗(G, β) within a factor of 1/β.

Proof. Let P be the path computed by CheapestPathApprox. At any node v of P ,

the perceived cost of v satisfies c̃F (v) ≤ dF (v) ≤ d(s). The minimal motivating reward

33

3 Prohibition Based Incentives

of GF is therefore at most µ(GF , β) ≤ d(s)/β. Conversely, the perceived cost of s is at

least c̃F ′(s) ≥ β · dF ′(s) ≥ β · d(s) for all subgraphs GF ′ , including optimal ones. As a

result it holds true that µ∗(G, β) ≥ d(s), which in turn yields the desired ratio

µ(GF , β)

µ∗(G, β)
≤ d(s)/β

d(s)
=

1

β
.

Apart from the computational properties of CheapestPathApprox, it is interesting

to briefly consider the real-world implications of the algorithm. In particular, note that

CheapestPathApprox constructs a prohibition structure that imposes a most cost

efficient sequence of tasks onto the agent. Of course, this seems to be a rather dictatorial

approach to designing incentives. However, in the case of a moderate present-bias the

graphical model suggests that such prohibitions actually yield cost efficient results for

the agent as well as for the designer who places the reward.

Assuming that we only face a real-world instance of β, the approximation ratio of

CheapestPathApprox might be satisfactory. However, from the point of view of

computational complexity the ratio is less impressive. The reason is that the value 1/β

of the ratio can grow exponentially in the encoding length of β. Consequently, we need

an approximation strategy that performs well for small values of β.

To come up with a suitable strategy, observe that a small β implies a highly present-

biased agent, i.e., an agent who cares almost exclusively about her current cost. It seems

sensible to guide such an agent along a path P that minimizes the maximal cost along

its edge. We call such a path a minmax path. To impose the minmax path P , it suffices

to remove all other edges of the task graph. This yields the following algorithm:

Algorithm 2: MinMaxPathApprox

Input: task graph G, present-bias β
Output: edge set F

1 P ← minmax path from s to t;
2 F ← E \ P ;
3 return F ;

It is easy to see that the above algorithm, which we call MinMaxPathApprox, has

a linear approximation ratio of 1 +β ·n. From a theoretical point of view, this improves

upon the exponential approximation ratio of CheapestPathApprox.

Proposition 3.4.2. Given a task graph G and present-bias β ∈ (0, 1], MinmaxPathAp-

prox constructs a subgraph GF whose minimal motivating reward µ(GF , β) approximates

µ∗(G, β) within a factor of 1 + β · n.

34

3.4 Two Complementing Approximation Algorithms

Proof. Let P be the minmax path computed by MinMaxPathApprox and denote the

cost of its most expensive edge by c(P) = max{c(e) | e ∈ P}. By definition of P , the

agent must encounter an edge e of cost c(P) or more in any subgraph GF ′ that connects

s with t. The preceived cost of e is lower bounded by c̃F ′(e) ≥ c(e) ≥ c(P). Since this

observation also holds true for an optimal subgraph, we conclude that µ∗(G, β) ≥ c(P)/β.

Conversely, each edge e of P charges c(P) or less. Taking into account that P has a

length of at most n− 1, the perceived cost of its nodes v does not exceed

c̃F (v) ≤ c(P) + β · (n− 2) · c(P) ≤ c(P) + β · n · c(P).

This bounds the minimal motivating reward of GF by µ(GF , β) ≤ c(P)/β+n · c(P) and

results in the desired approximation ratio of

µ(GF , β)

µ∗(G, β)
≤ c(P)/β + n · c(P)

c(P)/β
= 1 + β · n.

Keeping in mind that CheapestPathApprox performs best for high values of β

and MinMaxPathApprox for low values of β, the following combination of the two

algorithms suggests itself: Run CheapestPathApprox whenever β is greater or equal

to some threshold value θ and MinMaxPathApprox whenever β is less than θ. This

approach, which is taken from our work on prohibition based incentive design [2], yields

an approximation ratio of 1 +
√
n for a suitable choice of θ.

Theorem 3.4.3. Given a task graph G and present-bias β ∈ (0, 1], it is possible to

approximate an optimal subgraph within a factor of 1 +
√
n in polynomial time with

respect to the encoding length of G and β.

Proof. The approximation ratio of 1+
√
n is a direct result of Propositions 3.4.1 and 3.4.2.

In fact, it suffices to set the threshold θ to 1/
√
n in the combined approximation strat-

egy described above. It remains to show that CheapestPathApprox and MinMax-

PathApprox can be implemented in polynomial time with respect to the encoding

length of G and β. For CheapestPathApprox this should be obvious. To see that

MinMaxPathApprox also requires only polynomial time, we need an efficient way to

construct a minmax path through G. One possible approach is to start with an empty

graph and insert the edges of G in non-decreasing order of cost until s and t become

connected for the first time. Any path from s to t in the resulting subgraph is a minmax

path. Clearly, this requires only polynomial time.

35

3 Prohibition Based Incentives

3.5 The Approximability of Optimal Subgraphs

The combined approximation ratio of the algorithms presented in the previous section

is proportional to the square root of the encoding length of the input. Interestingly, no

substantial improvement on this ratio is possible unless P = NP. The reason is that

the optimization version of MSG, which we call MSG-OPT, is NP-hard to approximate

within a factor less than
√
n/3. This suggests that Theorem 3.4.3 is tight apart from a

small constant factor; a result that is particularly surprising considering the relatively

simple algorithmic techniques employed to establish the theorem in the first place.

Definition 3.5.1 (MSG-OPT). The problem of computing µ∗(G, β) for a given task

graph G and present-bias β ∈ (0, 1].

Our argument is based on a generalized version of the reduction from `-DCP con-

structed in the proof of Theorem 3.3.1. To facilitate the analysis of the reduction, the

following Lemma turns out to be helpful.

Lemma 3.5.1. For any integer k ≥ 1 it holds true that(
1− 1

3 · k + 3

)3·k+3
>

1

3
.

Proof. Note that the function f(x) = (1 − 1/x)x is monotonically increasing for x ≥ 1.

As a result, it holds true that(
1− 1

3 · k + 3

)3·k+3
= f(3 · k + 3) ≥ f(6) =

15625

46656
>

1

3
.

We are now ready to conclude this chapter by establishing the claimed hardness result

for MSG-OPT. As in the previous sections, the proof of the following theorem is taken

from our work on prohibition based incentive design [2].

Theorem 3.5.2. MSG-OPT is NP-hard to approximate within a ratio less than
√
n/3.

Proof. Let I be an arbitrary instance of `-DCP that consists of a directed acyclic graph

H and ` disjoint node pairs (s1, t1), . . . , (s`, t`). Furthermore, let k > 1 be an arbitrary

positive integer that is polynomial in the encoding length of I. We determine the best

choice of k with respect to I at a later point in time. Our goal is to reduce I to an MSG

instance J on a task graph G = (V,E, c, r) with the following two properties:

(a) If I has ` node-disjoint connecting paths, then J has a motivating subgraph for a

reward of r = 1/β, i.e., µ∗(G, β) ≤ 1/β.

36

3.5 The Approximability of Optimal Subgraphs

u9·k2 v1 v2 v3 v` v`+1

v`+2

v`+3·k+3

t

w1 w2 w3 w`

s1 s2 s3 s`

t1 t2 t3 t`
H

. . .

. . .

...

Figure 3.6: Embedding unit of an `-DCP graph H

(b) If I does not have ` node-disjoint connecting paths, then J has no motivating

subgraph for a reward r ≤ k/β, i.e., µ∗(G, β) ≥ k/β..

Consequently, any algorithm approximating the minimal motivating reward µ∗(G, β)

within a ratio of k or less must also solve I. Recall that Proposition 3.4.1 proves the

existence of a polynomial time algorithm that approximates µ∗(G, β) within a factor of

(1/β). As a result, the present-bias β cannot be independent of I. Rather, β must be a

value less than 1/k. For convenience, let β = 1/(3 · k + 3).

We are now ready to specify the task graph G. In general, G consists of two parts: the

embedding unit and the amplification unit. As Figure 3.6 shows, the structure of the em-

bedding unit is closely related to the reduction presented in the proof of Theorem 3.3.1.

In particular, the embedding unit consists of a regular path from the node u9·k2 to the

target node t along the intermediate nodes v1, . . . , v`+3·k+3 as well as ` shortcuts, which

are routed through the embedding of H. However, the edge cost of the regular path and

its shortcuts is a bit different from Theorem 3.3.1. In case of the regular path the first

`+ 1 edges have a cost of (1− β)3·k+3 − ε, where ε is a positive value satisfying

ε < min
{β · (1− β)3·k+1

`+ 1
,
β · (1− β)3·k+3

1 + β
,

1

1 + k
, (1− β)3·k+3 − 1

3

}
.

Note that the term (1 − β)3·k+3 − 1/3 in the above expression is a positive quantity

according to Lemma 3.5.1. Once the regular path passed the last shortcut, its edge

cost steadily increases towards t. More precisely, each edge (vi, vi+1) with i > ` and

37

3 Prohibition Based Incentives

s u1 u2 u3 u9·k2

z t

v1
. . .

. . .

Figure 3.7: Amplification unit

t = v`+3·k+4 has a cost of (1 − β)`+3·k+3−i. To conclude the embedding unit, we con-

sider the edge cost of the individual shortcuts. The initial edge (vi, wi) of shortcut i

charges (1 − β)3·k+2 while the edges (wi, si) and (ti, t) have a complementing cost of

(`+ 1− i)(1− β)3·k+1/(`+ 1) and i · (1− β)3·k+1/(`+ 1) +
∑3·k

j=0(1− β)j respectively.

All edges of the embedding of H are free of charge. The total cost of the shortcut

therefore evaluates to
∑3·k+2

j=0 (1− β)j .

Next, we take a closer look at the amplification unit, which is depicted in Figure 3.7.

The amplification unit is connected to the embedding unit via the edge (u9·k2 , v1) and

extends the regular path by an additional segment from s to u9·k2 along the nodes

u1, . . . , u9·k2−1. Similar to the embedding unit, each edge of the regular path in the

amplification unit has a cost of (1− β)3·k+3 − ε. Furthermore, there is a shortcut from

each node ui to t via a common node z. The initial edge (ui, z) of this shortcut has

a cost of (1 − β)3·k+2 while the second edge (z, t) charges
∑3·k+1

j=0 (1− β)j . Just like

in the embedding unit the total cost of a shortcut in the amplification unit evaluates

to
∑3·k+2

j=0 (1− β)j . It is easy to see that the resulting task graph G is acyclic and its

encoding length is polynomial in the encoding length of I.

In the following, we prove that J satisfies property (a), i.e., J admits a subgraph

that is motivating for a reward of r = 1/β whenever I has ` node-disjoint connecting

paths. For this purpose, assume that ` node-disjoint connecting paths exist in H and

consider the subgraph GF obtained by deleting all edges of H that are not part of such

a path. An argument similar to the one given in the proof of Theorem 3.3.1 shows that

whenever the agent is located at a node of the regular path with an outgoing shortcut,

the perceived cost of this shortcut exceeds the perceived cost of the outgoing regular

edge by a value of ε. Therefore, the agent has no incentive to leave the regular path.

Furthermore, the perceived cost is at most 1 at any node of the regular path. This means

that the given reward is sufficient for GF to be motivating.

We continue with (b), i.e., no subgraph of J is motivating for a reward of r ≤ k/β if

I does not have ` node-disjoint connecting paths. To prove this, let GF be an arbitrary

subgraph of G and assume that no ` node-disjoint connecting paths exist in H. Our goal

38

3.5 The Approximability of Optimal Subgraphs

is to show GF cannot be motivating. Without loss of generality, we may assume that

the agent does not leave the regular path in GF . The reason is that all other paths to t

contain an edge with a perceived cost strictly greater than
∑3·k

j=0(1− β)j , namely (z, t)

or an edge of the form (ti, t). According to Lemma 3.5.1, this cost is greater than

3·k∑
j=0

(1− β)j =
3·k∑
j=0

(
1− 1

3 · k + 3

)j
>

3·k∑
j=0

(
1− 1

3 · k + 3

)3·k+3
>

3·k∑
j=0

1

3
= k,

which is not covered by the perceived reward. Therefore, any subgraph GF in which the

agent leaves the regular path cannot be motivating and needs no further consideration.

In particular, we may assume that GF contains the entire regular path.

Similar to the proof of Theorem 3.3.1, we call the i-th shortcut of GF in the embedding

unit degenerated if the cost of a cheapest path from vi to t via wi is different from the

target value θ =
∑3·k+2

j=0 (1 − β)j . By construction of G, all degenerated shortcuts miss

the target value by (1 − β)3·k+1/(` + 1) or more. Recall that I is assumed to have no

solution. Following the same argument presented in the proof of Theorem 3.3.1, this

implies that some degenerated shortcut must exist in GF . Furthermore, the proof of

Theorem 3.3.1 also implies that these shortcuts cannot cost less than θ if we want the

agent to stay on the regular path. As a result, we can make a case distinction on whether

the first shortcut of the embedding unit is degenerated or not.

If the first shortcut is not degenerated, then there exists an integer i with 1 < i ≤ `

such that the (i− 1)-st shortcut is not degenerated, but shortcut i is. Let P denote the

path that the agent plans to take at vi−1. If the initial edge of P is the shortcut edge

(vi−1, wi−1), then the perceived cost of P in GF evaluates to 1 according to Lemma 3.2.2.

Conversely, if the initial edge of P is the regular edge (vi−1, vi), then P may either

contain the shortcut at vi or another regular edge (vi, vi+1). Because the i-th shortcut is

degenerated and exceeds the target value θ by at least (1−β)3·k+1/(`+1), the perceived

cost of P in the first case is at least

c̃F (P, β) ≥ (1− β)3·k+3 − ε+ β ·
((1− β)3·k+1

`+ 1
+

3·k+2∑
j=0

(1− β)j
)

= 1 +
β · (1− β)3·k+1

`+ 1
− ε > 1.

The second inequality holds true by choice of ε. Otherwise, if P does not contain the

degenerated shortcut at vi, then P may or may not be routed along a shortcut at some

subsequent node of the regular path. Either way, considering that no shortcut of the

39

3 Prohibition Based Incentives

subgraph GF costs less than the target value θ, we deduce that the perceived cost of P

must be at least

c̃F (P, β) ≥ (1− β)3·k+3 − ε+ β ·
(

(1− β)3·k+3 − ε+

3·k+2∑
j=0

(1− β)j
)

= 1 + (1 + β)
(β · (1− β)3·k+3

1 + β
− ε
)
> 1.

Again, the second inequality holds by choice of ε. However, this means that the agent

strictly prefers the shortcut at vi−1 over the regular edge at vi−1. This contradicts the

assumption that the agent stays on the regular path.

We now consider the case in which the first shortcut of the embedding unit is degen-

erated. Let i be the highest index of a node on the regular path of the amplification unit

such that ui is connected to t via a direct shortcut in GF . The perceived cost of this

shortcut is 1 when viewed from ui. However, according to the previous paragraph, all

paths P along (ui, ui+1), or (u9·k2 , v1) in the special case of i = 9 · k2, have a perceived

net cost greater than 1. This contradicts the assumption that the agent stays on the

regular path. But if no ui has a direct shortcut to t, then the perceived cost of s is

c̃F (s, β) ≥ (1− β)3·k+3 − ε+ β ·
(

9 · k2 ·
(
(1− β)3·k+3 − ε

)
+

3·k+2∑
j=0

(1− β)j
)

= 1− ε+ β · 9 · k2 ·
(
(1− β)3·k+3 − ε

)
.

Taking into account that β = 1/(3 · k + 3) we can further simplify this term to

1− ε+ β · 9 · k2 ·
(
(1− β)3·k+3 − ε

)
= 1− ε+ 9 · k2 · 1/3 + ((1− β)3·k+3 − 1/3− ε)

3 · k + 3

> 1− ε+ 9 · k2 · 1/3

3 · k + 3

= k +
(1

1 + k
− ε
)
> k.

Putting everything together, we may conclude that GF is not motivating for the given

reward. This proves property (b).

To complete the proof, we must determine a suitable value for k. For this purpose let

k be the number of nodes in H. Clearly, this value is polynomial in the encoding length

of I. The total number of nodes in G is

n = 2 + (9 · k2 + 1) + (k + 2 · `+ 3 · k + 3).

40

3.5 The Approximability of Optimal Subgraphs

The first term of this sum accounts for s and t, the second for the amplification unit and

the third for the embedding unit. Considering that ` ≤ k, we get n ≤ 9 · k2 + 6 · k + 6.

However, this bound on n is less than (9 + ε′) · k2 for any positive value ε′ if only H is

large enough. In fact, it suffices to assume that H has k ≥ (
√

6 · ε′ + 9 + 3)/ε′ nodes.

As a result, n ≤ (9 + ε′) · k2 holds true and implies k ≥
√
n/(9 + ε′). But this means

that MSG-OPT is NP-hard to approximate within a ratio less than
√
n/3.

41

4 Penalty Based Incentives

Having encountered fundamental computational challenges in the design of efficient pro-

hibitions, we turn our attention to more general incentives that are based on penalties.

Similar to the previous chapter, our goal is to reduce the reward required to keep the

agent motivated. But instead of prohibiting her from performing certain tasks, we now

merely assign penalty fees to them. As a result, we obtain a more powerful incentive

design tool that exhibits more favorable computational properties at the same time.

4.1 The Seminar

To introduce the concept of penalty based incentives, it is instructive to consider another

one of our stories. This time, the protagonist Alice signs up for a 10-week seminar at

her university. To pass the seminar, Alice can do one of two things. Either she solves

a homework exercise each week or she gives a presentation at the end of the seminar.

The homework has a weekly cost of 1 while the presentation has a one-time cost of 3.

Due to organizational matters, Alice needs to sign up for the presentation in advance.

This procedure has no cost. However, if she omits any of the homework exercises before

she signs up for the presentation, she fails the course. Figure 4.1 models this scenario

as a task graph G = (V,E, c, r). The nodes vi of G represent the individual weeks

i ∈ {1, . . . , 10} with s = v1 while the edges (vi, w) and (vi, vi+1) with t = v11 correspond

to the choice between signing up for the presentation or solving a homework exercise.

Assuming that Alice has a present-bias of β = 1/3, she experiences a perceived cost of

c̃(s, w, β) = 0 + β · 3 = 1 if she signs up for the presentation. In contrast, the perceived

cost of doing a home work exercise is c̃(s, w, β) = 1 + β · 3 = 2. This cost is realized

if Alice plans to sign up for the presentation one week later. As a result, she opts for

the presentation in the very first week and pays a cost of 3 at the end of the seminar.

Clearly, this is the cheapest path through G that Alice can take with respect to the total

cost she pays. But what about the required reward?

Keeping in mind that Alice’s signs up for the presentation immediately, the minimal

motivating reward of G is µ(G, β) = c̃(w, t, β)/β = 9. Furthermore, it is not possible to

43

4 Penalty Based Incentives

s v2 v3 v9 v10

tw

. . .

. . .

0 0 0 0 0

11 1 1

3

Figure 4.1: Task graph of Alice’s seminar

reduce this reward with prohibition based incentives. The reason is that prohibitions can

only keep Alice from visiting the node w if they disconnect each path of the form vi, w, t.

However, without these paths, the only path from s to t that remains is s, v2, . . . , v10, t.

The perceived cost of s therefore becomes 1 +β · 9 = 4, which requires a reward of at 12

to be motivating. Clearly, this is more expensive than simply omitting the prohibitions

in the first place.

Considering that prohibitions cannot improve the minimal motivating reward of G,

the question arises whether penalty fees can. To investigate this question, consider a

scenario in which the sign up process for the presentation is not free, but requires to write

a lengthy proposal. Let the cost of this proposal be 3/2+ε where ε denotes an arbitrarily

small but positive quantity. The cost of the proposal can be interpreted as a penalty fee

that is charged whenever the agent tries to sign up for the presentation. In the graphical

model, we formalize this notion by assigning an extra cost of h(vi, w) = 3/2 + ε to each

edge (vi, w). We call the resulting assignment h of non-negative cost to edges a cost

configuration. Applying h to G yields a new task graph Gh = (V,E, c+ h, r).

Definition 4.1.1 (Cost Configuration). Assigning a cost configuration h : E → R≥0 to

a task graph G = (V,E, c, r) yields a new task graph Gh = (V,E, c + h, r) whose edge

cost is defined as (c+ h)(e) = c(e) + h(e).

Taking a closer look at the new task graph Gh, it is easy to see that the perceived

cost of signing up for the presentation in any given week i, i.e., the perceived cost of an

edge (vi, w), now evaluates to

c̃h(vi, w, β) = c(vi, w) + h(vi, w) + β ·
(
c(w, t) + h(w, t)

)
=

3

2
+ ε+ β · 3 =

5

2
+ ε.

Conversely, solving the homework exercise of week i has a perceived cost of at most

c̃h(vi, vi+1, β) ≤ 1 + β · (3/2 + ε + 3) = 5/2 + β · ε. This cost is realized if Alice plans

to sign up for the presentation next week. In the special case of i = 10, she may simply

complete the seminar by turning in her last homework. Note that we write c̃h instead of

44

4.2 Prohibition versus Penalty Fees

Figure 4.2: Alice giving a presentation

c̃ to denote the perceived cost with respect to a specific cost configuration h. Similarly,

we write dh to denote the cost of a cheapest paths with respect to h. The fact that

c̃h(vi, w, β) = 5/2 + ε > 5/2 + β · ε ≥ c̃h(vi, vi+1, β) implies that Alice always prefers

solving the current homework exercise to signing up for the presentation. As a result,

her walk through Gh leads her along the path s, v2, . . . , v10, t. Since she never incurs cost

greater than 5/2 + β · ε on this path, a reward of (5/2 + β · ε)/β = 15/2 + ε is sufficient

to make Gh motivating. Assuming that ε is sufficiently small, i.e., ε < 3/2, this is less

expensive than any result we may hope to achieve by prohibiting certain tasks.

4.2 Prohibition versus Penalty Fees

The scenario presented in the previous section suggests that penalty based incentives are

sometimes more powerful than prohibition based incentives when it comes to motivating

present-biased agents cost efficiently. To formalize this observation, we need to take a

closer look at the notion of minimum motivating rewards. In the context of penalty fees,

let the minimum motivating reward µ∗(G, β) be defined as follows:

Definition 4.2.1 (Minimum Motivating Reward). The minimum motivating reward

µ∗(G, β) is the infimum over all rewards for which the task graph G admits a cost

configuration that is motivating for an agent with present-bias β ∈ (0, 1].

A curious technicality of the above definition is its use of an infimum rather than a

minimum. In the case of prohibition based incentives this is unnecessary since µ∗(G, β)

is drawn from a finite set of values. More precisely, µ∗(G, β) is drawn from the set of

all values that correspond to the minimal motivating reward µ(GF , β) of a particular

subgraph GF . However, penalty based incentives behave differently. The reason is that

G admits an infinite number of cost configurations. Consequently, G may not have an

optimal cost configuration.

45

4 Penalty Based Incentives

s
u

v1 v2 v3

t

w

(1− β)3 1

(1− β)2 2− β

(1− β)3

(1− β)2 1− β

Figure 4.3: Task graph with no optimal cost configuration

To give a concrete example of such a scenario, consider the task graph G depicted in

Figure 4.3 and an agent whose present-bias is some value β ∈ (0, 1). By construction of

G, the agent is indifferent between the edges (u, v1) and (u,w) when located at u. In

both cases the perceived cost evaluates to 1. If she chooses the edge (u,w), she perceives

a cost of 2−β at the next node w. Conversely, if she crosses (u, v1), she perceives a cost

of 1 at each node vi. Since β < 1, (u, v1) is clearly the better choice. However, to break

the tie between (u,w) and (u, v1), some positive extra cost of ε must be assigned to the

path u,w, t. As a result, the perceived cost of s becomes min{1 + β · ε, 1 + β(1− β)3}.
The first term of the minimum corresponds to the path along w while the second one

corresponds to the path along v1, v2 and v3. The perceived cost of s implies that G

admits a motivating cost configuration for all rewards strictly greater than 1/β as long

as the tie breaker ε is sufficiently small. However, because ε must not become 0, no

reward configuration is motivating for a reward of exactly 1/β. Nevertheless we say that

1/β is the minimum motivating reward of G, i.e., µ∗(G, β) = 1/β.

Having established the notion of minimum motivating rewards in the context of

penalty based incentives as well as prohibition based incentives, we can finally compare

the cost efficiency of the two incentives formally. To avoid confusion, let µ∗pnl(G, β) denote

the minimum motivating reward for penalty fees and µ∗prb(G, β) the minimum motivat-

ing reward for prohibitions. We keep this notation until the end of this section. Given a

specific task graph G and present-bias β, the cost efficiency ratio µ∗prb(G, β)/µ∗pnl(G, β)

indicates how a strategic choice of penalty fees compares to optimal prohibitions. Ac-

cording to the following theorem, which is taken from our previous work on penalty

based incentives [3], it turns out that penalty fees are at least as efficient as prohibitions

and under certain circumstance up to 1/β times more efficient.

Theorem 4.2.1. The cost efficiency ratio µ∗prb(G, β)/µ∗pnl(G, β) lies between 1 and 1/β

for all task graphs G and present-bias values β ∈ (0, 1]. This result is tight.

Proof. The lower bound of 1 is a direct consequence of the fact that each subgraph GF

46

4.2 Prohibition versus Penalty Fees

can be emulated by a cost configuration h. For this purpose, it is sufficient to assign

large enough extra cost to all edges e ∈ F , e.g. h(e) = 1 +
∑

e∈E c(e)/β. Clearly, this

does not change the perceived cost of any path P not using edges of F . Moreover, the

agent has no incentive to prefer an alternative path P ′ over P if it uses edges of F , i.e.,

c̃h(P ′, β) ≥ β ·
(

1 +
∑
e∈E

c(e)

β

)
>
∑
e∈E

c(e) ≥
∑
e∈P

c(e) ≥ c̃h(P, β).

As a result, the agent is bound to make identical decisions in GF and Gh whenever s

and t are not disconnected by F . Otherwise, if s and t are disconnected, Gh is more cost

efficient than GF anyway. This establishes the lower bound of 1 on the cost efficiency

ratio. To see that this bound is tight, consider a task graph G consisting of just a

single edge. Because it is of no advantage to delete or assign extra cost to this edge, it

immediately follows that µ∗prb(G, β)/µ∗pnl(G, β) = 1.

Now, we take a closer look at the upper bound. To establish a bound of 1/β, let G

be an arbitrary task graph and consider the subgraph GF whose only edges are those

of a cheapest path P from s to t. This way the agent has no choice but to follow P if

she wants to reach t. Considering that her perceived cost along the way is bounded by

the actual cost of P , i.e., bounded by d(s), we may conclude that µ∗prb(G, β) ≤ d(s)/β.

Next, consider an arbitrary cost configuration h. Because h can only increase but never

decrease the edge cost, the perceived cost at s with respect to h is at least β · d(s).

Consequently, it holds true that µ∗pnl(G, β) ≥ d(s). This yields the desired upper bound

of µ∗prb(G, β)/µ∗pnl(G, β) ≤ 1/β.

It remains to show that the upper bound is tight. For this purpose, we construct a task

graph G that is a slightly modified version of the task graph modeling Alice’s seminar,

i.e., the task graph depicted in Figure 4.1. More precisely, let m = dβ−2 · (1−β)−1 · ε−2e
and assume that G contains a path v1, . . . , v2·m+1 whose edges are all of cost (1−β) · ε2.
We call this the regular path and set s = v1 and t = v2·m+1. In addition to the regular

path each vi with i ≤ 2 ·m has a shortcut to t via a common node w. The edges (vi, w)

are free of charge, whereas (w, t) has a cost of 1/β.

We proceed to argue that µ∗prb(G, β) ≥ 1/β2. For the sake of contradiction, assume

the existence of a subgraph GF that is motivating for a reward 1/β2. In this case the

agent must not take shortcuts as her perceived cost at w exceeds her perceived reward.

Therefore, she must follow the regular path. In particular, she must visit each node vi

on the first half of the path, i.e. i ≤ m+ 1. Let P = vi, vi+1, · · · , t be the path she plans

to take. There are two conceivable versions of P . On the one hand, P may contain a

shortcut at some point. In this case P also contains the edge (w, t) and has a perceived

47

4 Penalty Based Incentives

cost of at least c̃F (P, β) > β · c(w, t) = 1. On the other hand, P may avoid all shortcuts.

In this case P is routed via the regular path. But this means that P contains at least

m regular edges, each of which contributes a fraction of β · (1 − β) · ε2 or more to the

perceived cost of P . The total perceived cost of P therefore evaluates to

c̃F (P, β) ≥ m · β · (1− β) · ε2 = dβ−2 · (1− β)−1 · ε−2e · β · (1− β) · ε2 ≥ 1/β ≥ 1.

Due to the perceived cost of P , we conclude that (vi, vi+1) has a perceived cost of at

least 1. However, the perceived cost of the shortcut from vi to t is also 1 if it is not

interrupted. Since the agent must not take a shortcut in GF , we conclude that all of the

firstm+1 shortcuts are interrupted inG′. As a result, all paths from s to t contain at least

m regular edges and the perceived cost of s evaluates to c̃F (s, β) ≥ m·β(1−β)·ε2 ≥ 1/β.

This contradicts the assumption that GF is motivating for a reward strictly less than

1/β2 and therefore µ∗prb(G, β) ≥ 1/β2 holds true.

To complement this result, we construct a cost configuration h that is motivating for

a reward of (1 + ε)/β. We achieve this by adding an extra cost of ε to all shortcut edges

(vi, w). To upper bound the perceived cost of (vi, vi+1), assume that the agent plans to

take a shortcut at the next node vi+1. Assuming ε < 1, this yields a perceived cost of

c̃h(vi, vi+1, β) ≤ (1− β) · ε2 + β ·
(
ε+

1

β

)
< 1 + ε

for all i < 2 · m. In the special case of i = 2 · m the inequality remains valid since

c̃h(vi, vi+1, β) = (1− β) · ε2 < 1 + ε. Conversely, the perceived cost of the shortcut at vi

is at least c̃h(vi, w, β) = ε+ β · 1/β = 1 + ε for all i ≤ 2 ·m. The agent is therefore never

tempted to divert from the regular path. Moreover, she never experiences a cost greater

than 1 + ε, which implies that µ∗pnl(G, β) ≤ 1/β. This concludes the proof.

4.3 Computing Motivating Cost Configurations

Having established the conceptual power of penalty based incentives, we turn our atten-

tion to their computational properties. As in the last chapter, our design objective is to

keep the agent motivated for as little reward as possible. To express it more formally,

given a task graph G and present-bias β, we try to construct a cost configurations h that

matches the minimum motivating reward up to a predefined precision-parameter ε > 0,

i.e., µ(Gh, β) − ε ≤ µ∗(G, β). We call such a cost configuration almost optimal. The

reason why we are interested in almost optimal rather than optimal cost configurations

lies in the fact that the latter may not exist in G as shown in the previous section.

48

4.3 Computing Motivating Cost Configurations

In order to get a first glimpse of the complexity inherent to the computational task

at hand, we formulate a decision version of the problem called MOTIVATING COST

CONFIGURATION (MCC):

Definition 4.3.1 (MCC). The problem of deciding whether a task graph G = (V,E, c, r)

admits a motivating cost configuration h for a given present-bias β ∈ (0, 1].

In contrast to prohibition based incentives, it is not straight forward to solve MCC

via an exhaustive search that considers all possible cost configurations of the given task

graph G. The reason is that G admits an infinite number of such cost configurations.

At first sight, MCC may therefore seem to be a harder problem than MSG. However,

a careful analysis reveals that MCC is contained in the complexity class NP. Keeping

in mind that MSG is also contained in NP, this implies that MCC is in fact not harder

than MSG from a complexity theoretic perspective.

Proposition 4.3.1. MCC is contained in NP.

Proof. Let G = (V,E, c, r) be the task graph of an MCC instance I and assume that I
admits a motivating cost configuration. Of course, any such cost configuration can be

used as a certificate to verify that I is indeed feasible. However, it is not immediately

obvious that one of these certificates can be encoded in polynomial space with respect

to I. After all, cost configurations may assign arbitrary cost to the edges of G. To

prove the proposition, we must therefore argue that a motivating cost configuration

with polynomial encoding length exists.

For this purpose, let h∗ be an arbitrary motivating cost configuration and let W

be the set of nodes that an agent with present-bias β visits in Gh∗ . Furthermore, let

Pv = v, . . . , t be a path that minimizes the perceived cost at v with respect to h∗, i.e.,

c̃h∗(v, β) = c̃h∗(Pv, β). In this case, any cost configuration h that satisfies the following

constraints must be a motivating cost configuration:

c̃h(Pv, β) ≤ β · r for all v ∈W \ {t}

c̃h(Pv, β) < c̃h(P, β) for all v ∈W \ {t}

and all P = v, u, . . . , t such that u /∈W

h(e) ≥ 0 for all e ∈ E.

By definition of c̃h, it should be easy to see that all of the above inequalities are

linear with respect to the extra cost h. Consequently, if we replace all strict inequalities

in the second set of constraints by non-strict inequalities, we can interpret the result

49

4 Penalty Based Incentives

as a linear program without a specific objective function. Clearly, the feasible region

of this linear program is non-empty as it contains h∗. As a result, the program also

contains a basic solution. Since each constraint that is active in this basic solution can

be encoded in polynomial space with respect to I, the basic solution itself can also be

encoded in polynomial space.

The only thing left to do is to recover the strict inequalities in the second set of con-

straints. For this purpose, let hv,P be a solution to the linear program that maximizes

the difference between c̃h(P, β) and c̃h(Pv, β) for a given node v ∈ W \ {t} and path

P = v, u, . . . , t such that u /∈ W . By choice of the objective function, hv,P must sat-

isfy c̃h(Pv, β) < c̃h(P, β). Furthermore, we may assume that hv,P can be encoded in

polynomial space with respect to I.

Now, let h̄ be the arithmetic mean over hv,P for all possible combinations of v and P .

Clearly, h̄ is a feasible solution of the linear program that satisfies each inequality of

the second set of constraints in the strict sense. Consequently, h̄ is a suitable certificate

for I if its encoding length is polynomial in I. But because the encoding length of

each solution hv,P is polynomial in I and there are at most exponentially many such

solutions, it follows that h̄ can indeed be encoded in polynomial space.

Conversely, MCC does not appear to be substantially easier than MSG either. Similar

to MSG, the problem is trivial to solve in polynomial time whenever β = 1 or r = 0.

The approach is the same as in Section 3.2. However, for all other parametrizations of

β and r MCC turns out to be NP-hard. The following proof of this observation is based

on a reduction from 3-SAT that is closely related to the reduction presented in the proof

of Theorem 3.2.3. The reduction can also be found in [3].

Theorem 4.3.2. MCC is NP-hard for any present-bias β ∈ (0, 1) and reward r > 0.

Proof. Let I be a 3-SAT instance, consisting of ` clauses c1, . . . , c` over m variables

x1, . . . , xm. To establish the theorem, we reuse the reduction from 3-SAT to MSG from

the previous chapter. This means I is mapped to a task graph G = (V,E, c, r = 1/β)

similar to the construction of the proof of Theorem 3.2.3. The only difference is that

the single edge shortcuts at the boolean nodes of G are omitted this time. Figure 4.4

depicts the resulting MCC instance J for a simple sample instance of I.

Assuming that β ∈ (0, 1) is a fixed value independent of I, our goal is to establish the

following two properties:

(a) If I is satisfiable, then J must admit a motivating cost configuration.

(b) If J admits a motivating cost configuration, then I must be satisfiable.

50

4.3 Computing Motivating Cost Configurations

s
w1,1 w1,2 w1,3 w2,1 w2,2 w2,3 w3,1 w3,2 w3,3

u1

u1 u2
v1,T v1,F v2,T v2,F v3,T v3,F

u3 t

z

top layer

bottom layer

. . .

Figure 4.4: Reduction from the 3-SAT instance: (¬x1, x2, x3), (x1,¬x2,¬x3), (x1,¬x2, x3)

This proves the theorem for r = 1/β. As usual, the more general result for r > 0 follows

from Proposition 2.4.1.

We begin the proof by showing that our reduction satisfies (a), i.e., J admits a mo-

tivating cost configuration whenever I has a satisfying truth-value assignment. For this

purpose, let τ be a satisfying truth-value assignment and consider the cost configuration

h that assigns an extra cost of (1 − β)2 to all shortcut edges of the form (vk,τ(xk), z).

Furthermore, let h charge an extra cost of 2/β for all regular edges incident to an un-

satisfied boolean or literal node. It is easy to see that the resulting task graph Gh is

conceptually identical to the subgraph GF constructed in Theorem 3.2.3. First, the ex-

tra cost assigned to the edges (vk,τ(xk), z) corresponds to the removal of the single and

double edge shortcuts in GF . Secondly, the extra cost assigned to the regular edges is

large enough to discourage the agent from planning to cross the respective edges at any

point in time. Clearly, this is equivalent to removing these edges all together. From

the proof of Theorem 3.2.3 we know that GF is motivating and therefore Gh must be

motivating as well.

We proceed to show that our reduction also satisfies (b), i.e., I has a satisfying truth-

value assignment whenever J admits a motivating cost configuration. To establish this

property, let h be a motivating cost configuration and P the path that the agent takes

throughGh. A similar argument to that presented in Theorem 3.2.3 proves that P cannot

contain any shortcuts, but must pass one literal node wi,j and one boolean node vk,y for

each clause ci and variable xk. Consequently, we can construct a truth-value assignment

51

4 Penalty Based Incentives

τ in the following way: If P includes the node vk,T , then τ(xk) = T . Otherwise, if P

includes vk,F , then τ(xk) = F .

To conclude the proof, we need to show that τ indeed satisfies all clauses. For this

purpose, consider an arbitrary clause ci and let wi,j be the corresponding literal node

contained in P . Furthermore, let w′ be the node that precedes wi,j with respect to P and

P ′ the path that the agent plans to take at w′. According to the same argument given

in the proof of Theorem 3.2.3, P ′ cannot contain any regular edge apart from (w′, wi,j).

As a result, P ′ must take the direct shortcut from wi,j to the corresponding boolean

node vk,y followed by the shortcut from vk,y to t. The perceived cost of this path is at

least c̃h(P ′, β) ≥ 1 − ε, even if we ignore extra cost. Therefore, h can assign not more

than β/ε of extra cost to the shortcut at vk,y, otherwise P ′ would not be motivating.

For the sake of contradiction, assume that P includes the boolean node vk,y. As argued

in the proof of Theorem 3.2.3, all regular edges at vk,y have a perceived cost of at least

(1 − β)3 − ε + β · (2 − β). Conversely, the perceived cost of the shortcut at vk,y is at

most ε/β + β · (2 − β) due to the bound on the extra cost established in the previous

paragraph. By choice of ε, this not enough extra cost to keep the agent from entering

the shortcut, considering that

(
(1− β)3 − ε

)
− ε

β
=
β + 1

β
·
(β · (1− β)3

1 + β
− ε
)
> 0.

But this violates the fact that the agent must not take shortcuts. Consequently, P must

contain the boolean node vk,¬y instead. By construction of G, this implies that τ satisfies

the j-th literal of ci. As ci was chosen arbitrarily, τ must be satisfying.

4.4 Greedy Threats

The NP-completeness of MCC indicates that the design of almost optimal penalty based

incentives is as challenging as the design of optimal prohibition based incentives, at least

in a general setting. Uncovering the computational benefits of penalty fees therefore

requires a more nuanced analysis. As a first step we revisit the notion of optimal travel

routes. Recall that the previous chapter defines such a route as the collection W of

nodes that the agent may visit in an optimal subgraph. Extending this idea to penalty

based incentives, let W be an almost optimal travel route if W contains all nodes that

the agent may visit in an almost optimal cost configuration.

In the following assume that we have knowledge of an almost optimal travel route W .

Our goal is to use this information to reconstruct an almost optimal cost configuration h.

52

4.4 Greedy Threats

At first sight, this may seem ambitious considering that the same problem is NP-hard for

prohibition based incentives, see Theorem 3.3.1. However, the following greedy algorithm

constructs the desired cost configuration h in polynomial time assuming that we provide

a sufficiently small tie breaker ε > 0.

Algorithm 3: GreedyThreats

Input: task graph G, present-bias β, node set W , tie breaker ε
Output: cost configuration h

1 foreach e ∈ E do h(e)← 0;
2 foreach v ∈W \ {t} in reverse topological order do
3 δ ← min{c̃h(v, w, β) | w ∈W};
4 foreach u /∈W do h(v, u)← max{0, δ − c̃h(v, u, β) + ε};
5 return h;

The basic idea of GreedyThreats is simple. After initializing the cost configuration

h to assign zero extra cost to the edges in G, the algorithm iterates through all nodes

of W \ {t} in reverse topological order, i.e., node v is considered before node v′ if v

is reachable from v′ via a directed path. Let v be the node of the current iteration.

Furthermore, let w be a successor of v that is also contained in W . Assuming that

W is a valid travel route, at least one such node w must exist. The value δ denotes

the minimum perceived edge cost over all edges (v, w) with respect to the current cost

configuration h. To make sure that the agent stays within the set W , the algorithm

greedily assigns an extra cost of max{0, δ− c̃h(v, u, β)+ε} to all edges (v, u) that exit W

at v. This way, the perceived cost of (v, u) is greater than δ by a difference of at least ε.

Furthermore, the extra cost assigned to (v, u) does not change the perceived cost of

any previously considered edge. The reason is that GreedyThreats iterates through

W \ {t} in reverse topological order. An illustrative way to think of h is as a greedily

assembled collection of penalties for diverting from the travel route W . However, due to

the effectiveness of this construction, the agent never never leaves W and the penalties

become mere threats. For this reason, we call the algorithm GreedyThreats.

It remains to show that GreedyThreats yields an almost optimal cost configura-

tion h. In fact we prove a slightly more general result, namely that for any collection W of

nodes that the agent may visit in a motivating cost configuration h∗, GreedyThreats

constructs a cost configuration h that is motivating for the same reward as h∗. An inter-

esting conceptual interpretation of this result is that a present-biased person’s behavior

can be just as efficiently influenced by the mere threat of a future penalty as by the

actual enforcement of a penalty.

53

4 Penalty Based Incentives

Proposition 4.4.1. Let h∗ be a cost configuration for the task graph G = (V,E, c, r)

and W the set of nodes that an agent with present-bias β ∈ (0, 1] may visit in Gh∗ for a

reward of µ(Gh∗ , β). If the tie breaker is set to

ε ≤ min
{
c̃h∗(v, u, β)− c̃h∗(v, β)

∣∣ v ∈W,u ∈ V \W, (v, u) ∈ E
}
,

then GreedyThreats constructs a cost configuration h that is motivating for a reward

of µ(Gh∗ , β).

Proof. From the description of GreedyThreats it should be clear that the cost con-

figuration h provides no incentive to leave the travel route W . This holds true inde-

pendently of the actual tie break value. Without loss of generality we therefore assume

that ε ≤ min{c̃h∗(v, u, β) − c̃h∗(v, β) | v ∈ W,u ∈ V \W, (v, u) ∈ E}. Note that this

is a positive bound. The reason is that c̃h∗(v, u, β) > c̃h∗(v, β) holds true for all edges

(v, u) that exit the set W . Otherwise, the agent has an incentive to cross (v, u). But

this contradicts the assumption that (v, u) exits the set W .

Because the agent does not leave W with respect to h, it suffices to show that h is

motivating for a reward of µ(Gh∗ , β). To prove this claim, consider an arbitrary node

v ∈ W \ {t} and assume that all nodes w ∈ W \ {t} that precede v in a topological

ordering of the task graph satisfy the following two properties:

(a) The perceived cost c̃h(w, β) is less or equal to the perceived cost c̃h∗(w, β).

(b) The cheapest path cost dh(w) is less or equal to the cheapest path cost dh∗(w).

Our goal is to show that h also satisfies (a) and (b) for v. Keeping in mind that h∗ is

by definition motivating for a reward of µ(Gh∗ , β), property (a) immediately implies the

desired result.

We begin with (a), i.e., we need to show that c̃h(v, β) ≤ c̃h∗(v, β). By definition of

W it is possible to express c̃h∗(v, β) as c(v, w) + h∗(v, w) + β · dh(w) for some successor

w ∈ W of v. In the special case of w = t, the term dh∗(t) evaluates 0. Together with

the observation that GreedyThreats assigns no extra cost to edges within W , i.e.,

h(v, t) = 0, we obtain the desired result

c̃h∗(v, β) = c(v, t) + h∗(v, t) ≥ c(v, t) + h(v, t) ≥ c̃h(v, β).

Next, assume that w 6= t. In this case hypothesis (b) implies dh(w) ≤ dh∗(w). Because

GreedyThreats sets h(v, w) = 0, it once more follows that

c̃h∗(v, β) = c(v, w) + h∗(v, w) + β · dh∗(w) ≥ c(v, w) + h(v, w) + β · dh(w) ≥ c̃h(v, β).

54

4.4 Greedy Threats

v u w t
.

W

P ′

Figure 4.5: Structure of P assuming that u 6= w 6= t

We continue with (b), i.e., we need to show dh(v) ≤ dh∗(v). For this purpose, let

P = v, u, . . . , t be a cheapest path to t with respect to h∗, i.e.,
∑

e∈P c(e)+h
∗(e) = dh∗(v).

Furthermore, let P ′ = v, u, . . . , w be the subpath of P that goes from v to the first node

w 6= v that is contained in W . Note that such a node w must exist because P ends at t,

which is contained in W . On the other hand, it might hold true that w = u or w = t.

Figure 4.5 illustrates the structure of P for distinct nodes u, w and t. It is crucial to

observe that h cannot not charge any extra cost within the path segment P ′ except at

(v, u). The reason is that GreedyThreats only assigns an extra cost to edges going

from a node within W to a node outside of W . However, by choice of w no such node

exists in P ′. Next, we make a case distinction on whether h(v, u) is a positive value.

First, assume that h(v, u) = 0. In this case, h does not charge any extra cost for the

path segment P ′. Consequently, we can bound the cheapest path cost dh∗(v) by

dh∗(v) =
∑
e∈P

c(e) + h∗(e) =
(∑
e∈P ′

c(e) + h∗(e)
)

+ dh∗(w) ≥
(∑
e∈P ′

c(e) + h(e)
)

+ dh∗(w).

Moreover, an argument similar to that given in the proof of the inductive step (a) implies

that dh(w) ≤ dh∗(w), which yields the desired result(∑
e∈P ′

c(e) + h(e)
)

+ dh∗(w) ≥
(∑
e∈P ′

c(e) + h(e)
)

+ dh(w) ≥ dh(v).

Secondly, assume that h(v, u) > 0. In this case, GreedyThreats assigns an extra

cost to (u, v) in such a way that c̃h(v, u, β) = c̃h(v, β) + ε. Consequently, it holds true

that

dh(v) ≤ c(v, u) + h(v, u) + dh(u) = c̃h(v, u, β) + (1− β) · dh(u)

= c̃h(v, β) + ε+ (1− β) · dh(u).

However, according to the result of (a) it holds true that c̃h(v, β) ≤ c̃h∗(v, β). Together

55

4 Penalty Based Incentives

with the choice of ε, we get

c̃h(v, β) + ε+ (1− β) · dh(u) ≤ c̃h∗(v, β) +
(
c̃h∗(v, u, β)− c̃h∗(v, β)

)
+ (1− β) · dh(u)

= c̃h∗(v, u, β) + (1− β) · dh(u).

At his point it is essential to recall that GreedyThreats assigns no extra cost to the

edges of P ′ except for the first one, i.e., h(e) ≤ h∗(e) for all e ∈ P ′\{(v, u)}. Furthermore,

it holds true that dh(w) ≤ dh∗(w). Consequently, we can bound dh(u) by

dh(u) ≤ dh(w) +
∑

e∈P ′\{(v,u)}

c(e) + h(e) ≤ dh∗(w) +
∑

e∈P ′\{(v,u)}

c(e) + h∗(e) = dh∗(u),

which in turn implies that

c̃h∗(v, u, β) + (1− β) · dh(u) ≤ c̃h∗(v, u, β) + (1− β) · dh∗(u) = dh∗(v).

The last equality holds true because the edge (v, u) is by assumption part of a cheapest

path from v to t with respect to h∗. All in all, this proves that dh(v) ≤ dh∗(v).

4.5 The Copied Cost Approximation

The previous section suggests that penalty fees have a certain computational advantage

over prohibitions. This observation becomes particularly apparent in the light of Theo-

rem 3.5.2. Recall that this theorem establishes a hardness of approximation result for the

design of optimal prohibitions. However, the proof of the theorem relies heavily on the

fact that the knowledge of an optimal travel route does not simplify the computational

problem at hand. Considering that this key property of prohibition based incentives

does not apply to penalty based incentives, we may hope that latter type of incentive

admits more practical approximation algorithms than the former type.

Consider for instance CopiedCostApprox, an algorithm that takes a task graph G

and an agent with present-bias β ∈ (0, 1] as its input and returns a cost configuration

h that approximates any almost optimal cost configuration within a factor of 2. The

main idea of CopiedCostApprox, which we also present in [3], is simple: First, the

algorithm identifies a path P from s to t whose maximum perceived edge cost is a lower

bound on β · µ(Gh′ , β) for any conceivable cost configuration h′. Secondly, it assigns an

extra cost to all outgoing edges e of P such that the perceived cost of e either discourages

56

4.5 The Copied Cost Approximation

the agent from crossing e or the perceived cost of e exceeds any future cost that the agent

may experience before reentering P . Thus, the agent has no incentive to quit outside

of P . Furthermore, the extra cost is assigned in such a way that the perceived cost of

the edges of P is at most doubled. This yields the desired 2-approximation.

The reason why we call the algorithm CopiedCostApprox is that the extra cost

h(e) it assigns to an outgoing edge e of P is identical to the cost c(e′) of some other edge

e′, i.e., h(e) = c(e′) for some edge e′ of G. This peculiar detail about the structure of

h is particularly useful for the implementation of h in a real-world setting. After all, it

suffices to impose the tasks associated with e′ as additional tasks for e. Note that this

strategy even works in settings without money.

Algorithm 4: CopiedCostApprox

Input: Task graph G, present-bias β
Output: Cost configuration h

1 P ← minmax path from s to t with respect to c̃; α← max{c̃(e, β) | e ∈ P};
2 foreach v ∈ V \ {t} do

σ(v)← successor node of v on a cheapest path from v to t;
3 T = {(v, σ(v)) | v ∈ V \ {t}};
4 foreach (v, w) ∈ E do
5 if (v, w) /∈ P ∪ T then
6 h(e)← 2 · α/β + 1;

7 else if v ∈ P and w /∈ P then
8 P ′ ← v, σ(v), σ(σ(v)), . . . , t;
9 u← first node of P ′ different from v that is also a node of P ;

10 h(v, w)← cost of a most expensive edge of P ′ between v and u;

11 else h(e)← 0;

12 return h;

For a more detailed discussion of CopiedCostApprox assume that each edge e is

labeled with its perceived cost c̃(e, β). Furthermore, let h′ be an arbitrary cost configu-

ration and P ′ the path that the agent takes from s to t in Gh′ for a reward of µ(Gh′ , β).

Our goal is to bound β ·µ(Gh′ , β) from below by some value α. For this purpose, we set

α = min
{

max{c̃(e, β) | e ∈ P}
∣∣ P = s, . . . , t} ≤ max{c̃(e, β) | e ∈ P ′}

≤ max{c̃h′(e, β) | e ∈ P ′} ≤ β · µ(Gh′ , β).

In other words, α is the maximum perceived edge cost of a minmax path P from s to

t with respect to c̃. Note that P can be computed in polynomial-time by adding the

57

4 Penalty Based Incentives

edges of G in non-decreasing order of perceived cost to an initially empty graph until s

and t become connected for the first time. Any path from s to t through the resulting

subgraph of G is a suitable minmax path.

We continue with the construction of h. To facilitate this task, CopiedCostApprox

sets up a cheapest path successor relation σ. More precisely, it assigns a distinct successor

node σ(v) to each node v ∈ V \ {t}. The successor is chosen in such a way that (v, σ(v))

is the initial edge of a cheapest path from v to t. Since we may assume that t is reachable

from each node of G, all v 6= t must have at least one suitable successor. By construction

of σ, any path P ′ = v, σ(v), σ(σ(v)), . . . , t is a cheapest path from v to t. We call P ′ the

σ-path of v and T = {(v, σ(v)) | v ∈ V \ {t}} a cheapest path tree.

Once σ has been created, CopiedCostApprox starts to assign extra cost to the

edges (v, w) of G. For this purpose, the algorithm distinguishes between three types of

edges: First, (v, w) may neither be part of the minmax path P or a σ-path. In this case,

(v, w) is irrelevant to the approximation scheme. To ensure that the agent does not plan

along (v, w), CopiedCostApprox imposes an extra cost of h(v, w) = 2 ·α/β + 1. As a

result, any path along (v, w) has a perceived cost of at least 2 ·α+1/β. Clearly, this cost

is not covered by the anticipated reward of (2 ·α)/β. Alternatively, the edge (v, w) may

simply be removed if prohibition is possible. Secondly, (v, w) might be an edge that exits

the minmax path P , i.e., v ∈ P but w /∈ P . To determine an appropriate extra cost for

(v, w), CopiedCostApprox considers the σ-path P ′ of v. Let u be the first common

node between P and P ′ that is different from v. As P and P ′ both end in t, such a node

must exist. Moreover, let e be the most expensive edge of P ′ between v and u. The

algorithm assigns an extra cost of h(v, w) = c(e). As we show in Theorem 4.5.1, this

cost is sufficient to ensure that the agent does not encounter a perceived cost greater

than c̃h(v, w, β) should she decide to take a shortcut to u along the σ-path of w. Finally,

if neither of the above two cases applies to (v, w), then (v, w) must either be an edge

of P or an internal edge of a σ path, i.e., a σ-edge that does not exit P . In this case

CopiedCostApprox adds no extra cost to (v, w).

Clearly, CopiedCostApprox can be implemented to run in polynomial-time with

respect to the encoding length of G and β. It remains to show that the algorithm

returns a cost configuration h that achieves an approximation ratio of 2.

Theorem 4.5.1. Given a task graph G and present-bias β ∈ (0, 1], CopiedCostAp-

prox constructs a cost configuration h whose minimal motivating reward µ(Gh, β) is

less than 2 · µ(Gh′ , β) for any other cost configuration h′.

Proof. Recall that α denotes the maximum perceived edge cost along the minmax

58

4.5 The Copied Cost Approximation

path P . Furthermore, it should be evident that α/β ≤ µ(Gh′ , β) for any cost configu-

ration h′. To prove the theorem, we need to show that CopiedCostApprox returns a

cost configuration h that is motivating for a reward of 2 · α/β.

As a first step we argue that a cheapest path from any node v to t in Gh costs at

most twice as much as in G. More formally, we show that dh(v) ≤ 2 · d(v). For this

purpose let P ′ be the σ-path of v. By construction of σ, P ′ is a cheapest path from v

to t. It is crucial to observe that CopiedCostApprox assigns an extra cost to an edge

(v′, σ(v′)) of P ′ only if v′ is located on P . Consequently, there is at most one edge with

extra cost between any two consecutive intersections of P and P ′. Moreover, this extra

cost matches the cost of an edge of P ′ between v′ and the next intersection of P and P ′.

Therefore, each edge of P ′ can contribute at most once to the total extra cost assigned

to P ′. This means that h can at most double the price of P ′. Because the price of P ′ is

an upper bound on dh(v), it follows that dh(v) ≤ 2 · d(v).

We proceed to investigate the agent’s walk through Gh. Our goal is to show that the

perceived cost is at most 2 · α at each node v of her walk. This establishes the theorem.

Our analysis is based on the following case distinction: First, assume that v is located

on P and let w be the immediate successor of v on P . Since h assigns no extra cost to

(v, w), we conclude that v has a perceived cost of

c̃h(v, β) ≤ c̃h(v, w, β) = c(v, w) + β · dh(w) ≤ c(v, w) + β · 2 · d(w)

≤ 2 ·
(
c(v, w) + β · d(w)

)
= 2 · c̃(v, w, β) ≤ 2 · α.

The last inequality is valid by definition of α.

Secondly, assume that v is not located on P . In this case, let v′ be the last node of P

that the agent visited before v. Since the agent is only motivated to travel along edges of

P and T , we know that v is located on the σ-path of v′. In particular, this implies that

the agent must have crossed the edge (v′, σ(v′)) to get to v. Consequently, it holds true

that c̃h(v′, σ(v′), β) ≤ 2 · α and dh(σ(v′)) ≤ 2 · α/β. Taking into account that all paths

from σ(v′) to t either visit v or contain an edge that charges extra cost of 2 · α/β + 1,

we furthermore know that

dh(σ(v′)) ≥ min
{2 · α

β
+ 1, dh(σ(v))

}
.

But dh(σ(v′)) cannot be greater than 2 ·α/β, otherwise a reward of 2 ·α/β would not be

sufficiently motivating for the agent to cross the edge (v′, σ(v′)). Consequently, it holds

true that dh(σ(v′)) ≥ dh(σ(v)). To complete the proof, recall that (v, σ(v)) is located

59

4 Penalty Based Incentives

on P ′ between v′ and the next intersection of P and P ′. By construction of h we know

that h(v′, σ(v′)) ≥ c(v, σ(v)). Furthermore, h assigns no extra cost to (v, σ(v)). All of

this together finally yields the desired inequality

c̃h(v, β) ≤ c̃h(v, σ(v), β) = c(v, σ(v)) + β · dh(σ(v)) ≤ h(v′, σ(v′)) + β · dh(σ(v′))

≤ c(v′, σ(v′)) + h(v′, σ(v′)) + β · c̃h(σ(v′), β) = c̃h(v′, σ(v′), β) ≤ 2 · α.

4.6 The Approximability of Cost Configurations

We conclude this chapter by taking a closer look at the theoretical limitations that

underlie the approximability of almost optimal penalty fees. For this purpose, we restate

the decision problem MCC as the following optimization problem MCC-OPT.

Definition 4.6.1 (MCC-OPT). The problem of computing µ∗(G, β) for a given task

graph G and present-bias β ∈ (0, 1].

By reusing the reduction from the proof of Theorem 4.3.1, we are able to show that

MCC-OPT is NP-hard to approximate within a ratio of 1.08192. This result, which is

taken from [3], is particularly interesting as it implies that the design of almost optimal

penalty fees does not admit a PTAS unless P = NP.

Theorem 4.6.1. MCC-OPT is NP-hard to approximate within a ratio less or equal

to 1.08192.

Proof. Given a 3-SAT instance I of ` clauses c1, . . . , c` over m variables x1, . . . , xm, we

consider the same reduction as in the proof of Theorem 4.3.2. The only difference is that

our choice of ε is slightly more restrictive this time, as we assume that

ε < min
{
β · (1− β)3,

β2 · (1− β)3

1 + β

}
.

Let G = (V,E, c, r) be the task graph of the resulting MCC instance J . To prove the

theorem we need to verify that the following two properties of J hold true:

(a) If I has a satisfiable truth-value assignment, then J admits a motivating cost

configuration for a reward of r = 1/β.

(b) If I has no satisfiable truth-value assignment, then J does not admit a motivating

cost configuration for a reward of r ≤ (1 + β · (1− β)4)/β.

60

4.6 The Approximability of Cost Configurations

Consequently, any algorithm that approximates the minimal reward µ(G, β) within a

ratio of 1 +β · (1−β)4 or less must also solve I. Choosing β = 1/5 maximizes this ratio

and we obtain the desired approximation bound, namely 1 + (1− 1/5)4/5 = 1.08192.

It remains to show that J satisfies (a) and (b). However, the correctness of (a) is

an immediate consequence of the proof of Theorem 4.3.2. We therefore focus on (b).

For the sake of contradiction assume that there exists a cost configuration h that is

motivating for a reward of at most (1 + β(1− β)4)/β, but yet I has no solution. Let P

be a path that corresponds to the agent’s walk from s to t.

Similar to the proof of Theorem 3.2.3, we first observe that P cannot contain any

shortcut. Recall that all shortcuts at the top layer have an edge e of cost 2−β. However,

the perceived reward is at most 1+β(1−β)4. Because 2−β = 1+(1−β) > 1+β(1−β)4,

the agent has no incentive to traverse e. To verify the observation for the bottom layer,

assume that P contains a shortcut edge from some literal node wi,j to a boolean node

vk,y. Let P ′ be the agent’s planned path when located at wi,j . We distinguish between

two scenarios. First, P ′ might include a regular edge after (wi,j , vk,y). In this case, the

perceived cost of P ′ is at least

c̃h(P ′, β) ≥ (1− β)2 + β ·
(
(1− β)3 − ε+ (2− β)

)
> (1− β)2 + β ·

(
(1− β)3 − β · (1− β)3 + (2− β)

)
= 1 + β · (1− β)4,

even if we neglect extra cost. The second inequality holds true by choice of ε. Because

the perceived cost of P ′ exceeds the perceived reward, this scenario is not possible.

Secondly, P ′ might contain the shortcut from vk,y to t. In this case, the perceived

cost of P ′ is at least 1. Consequently, h may assign an extra cost of no more than

(β · (1− β)4)/β = (1− β)4 to the edges of P ′. This holds particularly true for the edges

of the shortcut from vk,y to t. Therefore, the perceived cost of taking the shortcut at

vk,y is at most (1− β)4 + β · (2− β). Conversely, any path P ′′ from vk,y along a regular

initial edge must include a top layer shortcut or pass the nodes u3, u4 and u5 to get to t.

In both cases, the perceived cost of P ′′ is at least

c̃h(P ′′, β) ≥ (1− β)3 − ε+ β · (2− β)

> (1− β)3 − β · (1− β3) + β · (2− β) = (1− β)4 + β · (2− β).

As a result, the agent prefers the shortcut at vk,y over all regular edges. This is a

contradiction to the previous observation that P does not contain a top layer shortcut.

Because h does not guide the agent onto a shortcut, we conclude that P contains one

61

4 Penalty Based Incentives

literal node wi,j and one boolean node vk,y for each clause and variable of I. Similar

to the proof of Theorem 3.2.3, we use P to construct a variable assignment τ in the

following way: If the agent visits vk,T along P , we set τ(xk) = T . Otherwise, if she visits

vk,F , we set τ(xk) = F . To conclude the proof we argue that τ satisfies all clauses of I.

This is a contradiction to our initial assumption that I has no solution.

Consider an arbitrary clause ci and let wi,j be the corresponding literal node in P .

Furthermore, let w′ be the node that precedes wi,j with respect to P and P ′ the path

that the agent plans to take at w′. As argued in the proof of Theorem 3.2.3, P ′ may

only contain one regular edge. Otherwise, the perceived cost of P ′ is at least

c̃F (P ′, β) ≥ (1− β)3 − ε+ β ·
(
(1− β)3 − ε+ (1− β)2 + (2− β)

)
= 1 + β · (1− β)3 − (1 + β) · ε > 1 + β · (1− β)3 − (1 + β) · β

2 · (1− β)3

1 + β

= 1 + β · (1− β)4.

By choice of ε, this is not motivating. But if P ′ only contains one regular edge, it must

consist of the direct shortcut from wi,j to the corresponding boolean node vk,y and the

shortcut from vk,y to t. In this case, the perceived cost of P ′ is at least 1 − ε. This

leaves an extra cost of no more than (ε + β · (1 − β)4)/β = ε/β + (1 − β)4 to place on

the shortcut from vk,y to t.

Finally, assume that P also includes vk,y. The perceived cost for taking a regular

edge at vk,y is at least (1 − β)3 − ε + β · (2 − β). Conversely, the perceived cost of the

shortcut at vk,y is at most ε/β + (1 − β)4 + β · (2 − β) due to the bound on the extra

cost established in the previous paragraph. By choice of ε this not enough extra cost to

keep the agent from entering the shortcut considering that

(
(1− β)3 − ε

)
−
(ε
β

+ (1− β)4
)

=
β + 1

β
·
(β2 · (1− β)3

1 + β
− ε
)
> 0.

Of course, this contradicts the fact that the agent cannot take shortcuts. As a result, the

agent cannot visit vk,y, but must visit vk,¬y instead. By construction of G this implies

that τ satisfies the j-th literal of clause ci and τ must be satisfying.

62

5 Reward Based Incentives

The previous two chapters deal with incentives that influence a person’s behavior by

making undesirable courses of action less appealing, either by prohibition or by imposing

penalty fees. The incentives presented in this chapter are based on the opposite idea,

namely to make desirable courses of action more appealing. For this purpose, we offer

rewards at intermediate states of progress. The resulting incentives are surprisingly

budget efficient in some scenarios. However, their design is computationally difficult. To

resolve this problem, we combine intermediate rewards with penalty fees and prohibition.

This yields a very powerful, yet computationally tractable incentive design tool.

5.1 Extending the Graphical Model

Incorporating the idea of reward based incentives in the graphical model requires the

placement of multiple rewards at various nodes of a given task graph G = (V,E, c, r).to

For this purpose, let r : V → R≥0 be an assignment of non-negative rewards to the

nodes of G rather than the value of a single reward placed at the target node t. We

call such an assignment a reward configuration. To emphasize the role of reward config-

urations as incentives, we write Gr instead of G whenever we study a particular reward

configuration r.

Definition 5.1.1 (Reward Configuration). The reward configuration r : V → R≥0 of a

task graph Gr = (V,E, c, r) assigns a non-negative reward r(v) to each node v ∈ V .

Note that the extension to intermediate rewards may cause the agent to collect dif-

ferent amounts of reward depending on the way she takes through the task graph Gr.

As a result, her preferences are not solely determined by perceived path cost anymore.

Instead, she bases her decisions on the more intricate notion of perceived net cost, i.e.,

the perceived cost of a path minus the perceived reward of the same path. More formally,

the perceived net cost c̃r of a path P = v, w, . . . , t is defined as

c̃r(P, β) = c(v, w) + β ·
(∑

e∈P\{(v,w)}

c(e)−
∑

u∈P\{v}

r(u)
)
.

63

5 Reward Based Incentives

Similar to the standard notion of perceived cost, this definition extends to the nodes and

edges of Gr in the following way: Given a node v, the perceived net cost c̃r(v, β) is the

minimum perceived net cost of all paths from v to t. Moreover, the perceived net cost

c̃r(v, w, β) of an edge (v, w) is the minimum perceived net cost of all paths whose initial

edge is (v, w).

Definition 5.1.2 (Perceived Node and Edge Net Cost). The perceived net cost of a

node v ∈ V \{t} or edge (v, w) ∈ E for a reward configuration r : V → R≥0 is defined as

c̃r(v, β) = min{c̃r(P, β) | P = v, . . . , t} and c̃r(v, w, β) = min{c̃r(P, β) | P = v, w, . . . , t}.

While constructing her path from s to t, the agent only crosses edges (v, w) whose

perceived net cost minimizes the perceived net cost among all outgoing edges of v, i.e.,

c̃r(v, w, β) = c̃r(v, β). Furthermore, the perceived net cost of (v, w) must not be positive.

Otherwise, the agent loses motivation and quits. We call the reward configuration r

motivating if the agent does not quit on any of her paths through Gr.

To decide whether a given reward configuration r is motivating, we need an efficient

way to compute the perceived edge net cost. For this purpose, let

dr(w) = min
{∑
e∈P

c(e)−
∑
u∈P

r(u)
∣∣∣ P = w, . . . , t

}
be the lowest net cost of any path from w to t. It is be easy to see that dr(w) can be

computed in polynomial time with respect to the encoding length of Gr. Consider for

instance a modified version G′ of Gr in which each edge (v, w) has a cost of c(v, w)−r(v)

instead of c(v, w). By construction of G′ any cheapest path from v to t has a cost of

dr(v) + r(t). Consequently, it is possible to compute dr(v) via a standard cheapest path

algorithm that can handle the potentially negative edge weight of G′. Based on the value

of dr(v) the perceived net cost of an edge (v, w) can be deduced as follows:

c̃r(v, w, β) = min{c̃r(P, β) | P = v, w, . . . , t}

= min
{
c(v, w) + β ·

(∑
e∈P\{(v,w)}

c(e)−
∑

u∈P\{v}

r(u)
) ∣∣∣ P = v, w, . . . , t

}
= c(v, w) + β ·min

{∑
e∈P ′

c(e)−
∑
u∈P ′

r(u)
∣∣∣ P ′ = w, . . . , t

}
= c(v, w) + β · dr(w).

Using the above method to compute the perceived net cost of edges enables us to simulate

the agent’s behavior and decide whether a given reward configuration is motivating.

64

5.2 Exploitative Incentives

Proposition 5.1.1. Deciding whether a given task graph Gr = (V,E, c, r) is motivating

for an agent with present-bias β ∈ (0, 1] is possible in polynomial time with respect to

the encoding length of Gr and β.

Proof. Consider a depth first search through Gr that starts at s and only traverses

edges whose perceived net cost satisfies c̃r(v, w, β) = c̃r(v, β). Let W be the set of nodes

encountered during the search. Keeping in mind that the perceived net cost of the edges

of Gr can be computed in polynomial time with respect to the encoding length of Gr

and β, it is easy to see that the set W can be computed within the same time bounds as

well. Furthermore, W contains exactly those nodes that the agent may visit if she does

not abandon Gr prematurely. As a result, Gr is motivating if and only if no node of W

has a positive perceived net cost. Clearly, this condition can be checked in polynomial

time, which completes the proof.

5.2 Exploitative Incentives

The construction of motivating reward configurations is not a particularly challenging

design problem in itself. After all, any connected task graph becomes motivating if

a sufficiently large reward is placed at its target node t. However, our goal is not

just to construct motivating reward configurations, but to construct motivating reward

configurations that are cost efficient at the same time. Similar to the previous incentive

design settings, we measure the cost efficiency of a certain reward configuration based

on the amount of reward that is collected by the agent. The only difference is that

the current setting admits solutions that are motivating even if some of the allocated

rewards are not paid out. Consider for instance the following scenario:

To prepare students for the final exam, Alice’s professor offers two voluntary review

courses at the end of his lecture series. The first course summarizes the basic content

while the second course is dedicated to more advanced topics. Due to the different levels

of difficulty, Alice expects to incur an effort of 1 and 3 for attending the respective

courses. Unfortunately, like many other students Alice also believes to gain no value

from attending the courses. Her professor, who is aware of this common misconception,

therefore grants students a bonus on the final exam if they attend both review courses.

However, he is already satisfied if they attend at least the first of the two courses.

Figure 5.1 captures Alice’s situation from the professor’s perspective in the graphical

model. The edges (s, v) and (v, w) correspond to the two review courses. After each

course Alice completes the task graph free of charge via the edge (v, t) or (w, t). This

reflects the professor’s indifferent attitude towards attendance of the second course.

65

5 Reward Based Incentives

s
v

w

t

3

0

0

1

Figure 5.1: Task graph of Alice’s training course

Assume that Alice estimates the value of the bonus to be 8, i.e., r(w) = 8. Further-

more, let her present-bias be β = 1/3. Under these assumptions, Alice is motivated to

attend the first review course. The reason is that her perceived net cost for taking both

review courses is −2/3 when located at s. More formally, it holds true that

c̃r(s, β) = min{c̃r(P, β) | P = s, . . . , t} = min{1 + β · (3− 8), 1 + β · 0} = −2

3
.

However, once Alice reaches v, her perceived net cost for attending the second course

becomes positive, i.e., c̃r(v, w, β) = 3− β · 8 = 1/3. Clearly, this is not motivating. As a

result, Alice abandons the reward at w and takes the edge (v, t) for a perceived net cost

of c̃r(v, t, β) = 0 instead. This completes her walk.

Note that the reward at w motivates Alice to move forward through the task graph,

although she eventually fails to claim it. We call rewards with this property exploitative.

Since exploitative rewards are not paid out, their contribution to the total cost of a

reward configuration is not immediately clear. Tang et al. [23] suggest to add the value

of exploitative rewards to the overall cost of the reward configuration. A conceivable

application of this accounting scheme are scenarios in which rewards must be installed

beforehand. However, many settings admit rewards that can be supplied on demand.

Consider for instance the previous scenario. Clearly, the professor incurs no cost for the

mere promise of a bonus on the final exam. Keeping in mind that Alice does not earn

the bonus, it seems reasonable to omit the bonus from the overall cost of the reward

configuration. To generalize this notion, let q(Gr, β) be the maximum total reward that

an agent collects on her way through a given task graph Gr. We call this quantity the

collected reward. In Alice’s case, the collected reward is 0.

Definition 5.2.1 (Collected Reward). The collected reward q(Gr, β) is the maximum

total reward that an agent with present-bias β may collect on her walk through Gr.

It is instructive to think of q(Gr, β) as the budget required for a particular reward

configuration r whenever the rewards can be raised on demand. The latter assumption is

66

5.3 Intermediate Reward versus Penalty Fees

particularly natural if r uses monetary rewards. Consequently, we believe that q(Gr, β)

provides a broadly applicable measure to quantify the cost efficiency of r that unlike

Tang et al.’s approach also captures the phenomenon of exploitative rewards. However,

to use this measure in practice, we need an efficient way to compute q(Gr, β). The

following theorem presents a possible approach:

Proposition 5.2.1. The collected reward q(Gr, β) can be computed in polynomial time

with respect to the encoding length of Gr and β.

Proof. Let G′ be the subgraph of G containing those edges that an agent with present-

bias β may cross in the task graph Gr on her way from s to t. Clearly, G′ can

be computed in polynomial time with respect to the encoding of Gr and β via a

simple depth first search that starts at s and considers only edges (v, w) satisfying

c̃r(v, w, β) = c̃r(v, β) ≤ 0. To determine the value of q(Gr, β), assume that each edge

(v, w) of G′ is labeled with a cost of c′(v, w) = r(w). By construction of c′, it holds

true that q(Gr, β) + r(s) is equal to the cost of a most expensive path in G′ that starts

at s. Since G′ is acyclic, it is possible to compute such a path in polynomial time. This

concludes the proof.

5.3 Intermediate Reward versus Penalty Fees

The previous section provides tools to determine the cost efficiency of reward based incen-

tives. But how do reward based incentives compare to other incentive design strategies

such as penalty fees? To investigate this question, let G be an arbitrary task graph and

β ∈ (0, 1] the present-bias of the corresponding agent. Furthermore, recall that the min-

imum motivating reward µ∗(G, β) provides a tight lower bound on the reward needed to

construct a motivating cost configuration. Keeping in mind that penalty based incen-

tives are at least as cost efficient as prohibition based incentives, it seems reasonable to

use µ∗(G, β) as a benchmark for our analysis. To compare reward based incentives to

this benchmark, we adapt the notion of µ∗(G, β) to reward configurations as follows:

Definition 5.3.1 (Minimum Motivating Collected Reward). The minimum motivating

collected reward µ∗(G, β) is the infimum over the collected reward q(Gr, β) of all reward

configurations r that motivate an agent with present-bias β ∈ (0, 1] to traverse G.

Note that the minimum motivating collected reward is defined in terms of an infimum

rather than a minimum. The reason for this peculiar technicality is that µ∗(G, β) is

drawn from an infinite set of reward configurations. Similar to cost configurations, this

67

5 Reward Based Incentives

s

w

v

t

0

1− β

1/β

1

Figure 5.2: Task graph with no optimal reward configuration

implies that some choices of G and β may not admit an optimal motivating reward

configuration. Consider for instance the task graph depicted in Figure 5.2

When located at the nodes v or w, a reward of 1/β or 1/β2 must be placed at t to

keep the agent motivated. Since the agent eventually collects this reward, it is clearly

more cost efficient to let her travel along v instead of w whenever β < 1. However, when

located at s, the perceived cost of the paths s, v, t and s, w, t is identical, i.e., they both

evaluate to 1. Independent of the reward at t, this implies that a positive reward of ε

must be placed at v to break the tie in favor of the lower path. Consequently, G admits

motivating reward configurations whose collected rewards are arbitrarily close to 1/β,

but no reward configuration whose collected reward is 1/β can be motivating due to the

need of a tie breaker at v.

Having established the notion of a minimum motivating collected reward, we proceed

to compare the cost efficiency of reward and penalty based incentives. For this purpose,

we consider the ratio between the minimum motivating collected reward and the mini-

mum motivating reward of the respective incentives. As in Theorem 4.2.1, which uses a

similar measure to compare penalty and prohibition based incentives, we call this ratio

the cost efficiency ratio. However, unlike the results of Theorem 4.2.1, we fail to identify

a strict hierarchy between reward and penalty based incentives with respect to their cost

efficiency. Instead, we witness scenarios in which reward based incentives outperform

penalty based incentives and vice versa. According to the following proposition, this gap

in performance may in fact become arbitrarily large in both directions. To facilitate the

formal proof of the proposition, let µ∗rwd(G, β) denote the minimal motivating collected

reward and µ∗pnl(G, β) the minimum motivating reward.

Proposition 5.3.1. The cost efficiency ratio µ∗rwd(G, β)/µ∗pnl(G, β) lies between 0 and

β−n+2 for all task graphs G and present-bias values β ∈ (0, 1]. This result is tight.

Proof. The lower bound of 0 is trivial because the cost efficiency ratio cannot become

a negative number. To verify that this bound is also tight, it suffices to consider the

68

5.4 Computing Motivating Reward Configurations with Budget Constraints

task graph G depicted in Figure 5.1. Recall that this graph admits a motivating re-

ward configuration whose collected reward is 0 for a present-bias of β = 1/3, i.e.,

µ∗rwd(G, 1/3) = 0. Furthermore, it is easy to see that any motivating cost configura-

tion must place a reward of at least 3 onto t to motivate the agent to cross (s, v). This

implies that µ∗pnl(G, 1/3) = 3, which in turn yields a cost efficiency ratio of 0.

We proceed with the upper bound of β−n+2. The correctness of this bound follows from

the observation that the minimum motivating collected reward µ∗rwd(G, β) is always less

or equal to the minimal motivating reward µ(G, β), i.e., the reward that needs to be spent

if the only admissible incentive is a reward placed at t. According to Proposition 3.1.1,

it holds true that µ(G, β)/µ∗pnl(G, β) ≤ β−n+2. However, this immediately implies the

claimed upper bound
µ∗rwd(G, β)

µ∗pnl(G, β)
≤ µ(G, β)

µ∗pnl(G, β)
≤ β−n+2.

To prove tightness of this bound, we revisit the task graph introduced in the proof

of Proposition 3.1.1. Recall that this task graph G consists of a directed path P =

v1, . . . , vn−1 and a target node t. To save cost, it is essential that the agent does

not procrastinate, but moves from P to t as soon as possible. Using penalty based

incentives, this can be achieved easily by assigning a large enough extra cost to the

initial edge of P , i.e., (v1, v2). As a result, the minimum motivating reward of G is

µ∗pnl(G, β) = c̃(s, t, β)/β = β−2. Conversely, the topology of G makes it impossible to

assign intermediate rewards to G that incentivize the agent to leave P . The reason is that

intermediate rewards can only be placed on P itself. However, this would only increase

the agent’s incentive to stay on P . Thus, we may assume that the minimum motivating

collected reward equals the minimal motivating reward, i.e., µ∗rwd(G, β) = µ(G, β). Ac-

cording to Proposition 3.1.1, we get µ(G, β) ≥ β−n and conclude that the cost efficiency

ratio of G is β−n+2. This proves tightness of the upper bound.

5.4 Computing Motivating Reward Configurations with
Budget Constraints

So far we have gained insight into the conceptual power of reward based incentives.

As always, we continue with the computational complexity of destining this type of

incentive. Our goal is to design motivating reward configurations r whose collected

reward matches the minimum motivating collected reward within an arbitrarily small

precision parameter ε > 0, i.e., q(Gr, β) − ε ≤ µ∗(G, β) for a given task graph G and

an agent with present-bias β. Similar to the previous chapter, we call such reward

69

5 Reward Based Incentives

configurations almost optimal. The reason why we consider almost optimal reward

configurations instead of optimal ones is that the latter may not exist in G according to

the previous section.

To assess the complexity of designing almost optimal reward configurations, it is in-

structive to take a closer look at the following decision problem called MOTIVATING

REWARD CONFIGURATION (MRC).

Definition 5.4.1 (MRC). The problem of deciding whether a task graph G = (V,E, c, r)

admits a reward configuration r : E → R≥0 that is motivating for a given present-bias

β ∈ (0, 1] and stays within a fixed budget b ∈ R≥0, i.e., q(Gr, β) ≤ b.

Similar to penalty based incentives, it is not straight forward to solve MRC via an

exhaustive search since G admits an infinite number of possible reward configurations.

Nevertheless, a slight adaptation of the algorithmic ideas laid out in the proof of Propo-

sition 4.3.1 confirms that MRC ∈ NP.

Proposition 5.4.1. MRC is contained in NP.

Proof. Let G = (V,E, c, r) be the task graph of an MRC instance I and assume that

I admits a motivating reward configuration that stays within a given budget b. If this

reward configuration can be encoded in polynomial space with respect to I, then it can

also serve as a certificate to verify that I is feasible. To establish the proposition, it

therefore suffices to show that I admits a motivating reward configuration that stays

within budget and has polynomial encoding length.

Similar to Proposition 4.3.1 we prove the existence of such a reward configuration by

modeling I as a linear program. For this purpose let r∗ be an arbitrary motivating reward

configuration that stays within budget and let W be the set of nodes that an agent with

present-bias β visits in Gr∗ . Furthermore, let Pv = v, . . . , t be a path that minimizes the

perceived net cost at v with respect to r∗, i.e., c̃r∗(v, β) = c̃r∗(Pv, β). Clearly, any reward

configuration r that satisfies the following constraints is also motivating and stays within

the given budget

∑
v∈P

r(v) ≤ b for all P = s, . . . , t ⊆W

c̃r(Pv, β) ≤ 0 for all v ∈W \ {t}

c̃r(Pv, β) < c̃r(P, β) for all v ∈W \ {t}

and all P = v, u, . . . , t such that u /∈W

r(e) ≥ 0 for all e ∈ E.

70

5.4 Computing Motivating Reward Configurations with Budget Constraints

By definition of c̃r all of the above inequalities are linear with respect to the extra

cost r. Replacing the strict inequalities in the third set of constraints by non-strict in-

equalities therefore yields a linear program without a specific objective function. Clearly,

the feasible region of this linear program is non-empty as it contains r∗. As a result, the

program also contains a basic solution. Since each constraint that is active in this basic

solution can be encoded in polynomial space with respect to I, the basic solution itself

can also be encoded in polynomial space.

To complete the proof, we need to recover the strict inequalities in the third set of

constraints. For this purpose, let rv,P be a solution to the linear program that maxi-

mizes the difference between c̃r(P, β) and c̃r(Pv, β) for a given node v ∈ W \ {t} and

path P = v, u, . . . , t such that u /∈ W . By choice of the objective function, rv,P must

satisfy c̃r(Pv, β) < c̃r(P, β). Furthermore, we may assume that rv,P can be encoded in

polynomial space with respect to I.

Now, let r̄ be the arithmetic mean over rv,P for all possible combinations of v and P .

Clearly, r̄ is a feasible solution of the linear program that satisfies each inequality of the

third set of constraints in the strict sense. Moreover, r̄ can be encoded in polynomial

space since it is composed of at most exponentially many solutions rv,P . As a result, r̄

is a suitable certificate for I.

The more interesting question is whether MRC ∈ P. In the case of β = 1, MRC is

indeed solvable in polynomial time. To see this, recall that an agent with a present-bias

of β = 1 simply follows a cheapest path from s to t. Without loss of generality, all

rewards may therefore be placed at the target node t. As a result, it is easy to see that

the minimum motivating collected reward is exactly the cost of a cheapest path from

s to t. Clearly, this cost can be computed in polynomial time. However, in the more

general case of β ∈ (0, 1), MRC is much less likely to admit a polynomial time algorithm.

To substantiate this claim, we devise a reduction from SET PACKING (SP) [12].

Definition 5.4.2 (SP). The problem of deciding whether a collection of finite sets

S1, . . . , S` contains k ≤ ` mutually disjoint sets.

Note that the reduction presented in the proof of the following theorem is taken from

our work on penalty and reward based incentives [2].

Theorem 5.4.2. MRC is NP-hard for any bias factor β ∈ (0, 1), even if b = 0.

Proof. Let I be an arbitrary instance of SP that consists of ` sets S1, . . . , S` and an in-

teger k ≤ `. Furthermore, assume that β ∈ (0, 1) is an arbitrary fixed value independent

71

5 Reward Based Incentives

of I. Our goal is to construct a task graph G = (V,E, c, r) such that the resulting MRC

instance J satisfies the following two properties:

(a) If I has k mutually disjoint sets, then J admits a motivating reward configuration

for a budget of 0.

(b) If J admits a motivating reward configuration for a budget of 0, then I has k

mutually disjoint sets.

This establishes NP-hardness of MRC in the special case of b = 0. At the end of the

proof, we briefly sketch a method to adjust this reduction to an arbitrary b > 0 that is

independent of I.

As the first step of the proof, we construct the task graph G. Figure 5.3 depicts G

for a small sample instance of SP. In general, G consists of a source s, a target t and

k layers of nodes vi,j with 1 ≤ i ≤ k and 1 ≤ j ≤ `. For each vi,j with i < k there is

a so-called regular edge to each node vi+1,j′ of the next layer. To maintain readability,

Figure 5.3 omits these edges. In addition to the regular edges between layers, there is

also a regular edge from s to each node v1,j on the bottom layer and an edge from each

node vk,j′ on top layer to t. The idea behind this construction is that the agent walks

from s to t along the regular edges of G in such a way that the nodes v1,j , . . . , vk,j′ of

her walk correspond to a collection of k mutually disjoint sets Sj , . . . , Sj′ . All regular

edges that do not end in t charge a cost of 1 − β − ε, where ε is a small but positive

value satisfying

ε < min
{(1− β)2

k
,
β − β2

k − 1 + β

}
.

The other regular edges, i.e., the ones ending in t, are free of charge.

To motivate the agent to climb the layers, we add shortcuts to G that connect each

node vi,j to t via an intermediate node wi,j . The first edge (vi,j , wi,j) has a cost of 1,

while the second edge (wi,j , t) is free of charge. Note that due to the cost of the first

shortcut edge, a reward of r(wi,j) < 1/β can be placed at wi,j without the agent claiming

it. Conversely, a reward of r(wi,j) ≥ (1− ε)/β is sufficient to make the incoming regular

edges of vi,j motivating.

We finish the construction by drawing a path from each node vi,j to all nodes wi′,j′ for

which i′ < i and Sj ∩ Sj′ 6= ∅. These so-called backward paths consist of two edges: the

first one is free, but the second costs (1− β − k · ε)/(β − β2). The purpose of these paths

is to enforce the disjointness constraint of I. In the following paragraphs we address

this idea in greater detail. But first note that the final task graph is acyclic and can be

72

5.4 Computing Motivating Reward Configurations with Budget Constraints

s

v1,1 v1,2 v1,3 v1,4
w1,1 w1,2 w1,3 w1,4

v2,1 v2,2 v2,3 v2,4
w2,1 w2,2 w2,3 w2,4

v3,1 v3,2 v3,3 v3,4
w3,1 w3,2 w3,3 w3,4

t

layer 1

layer 2

layer 3

...
...

...
...

...
...

...
...

Figure 5.3: Reduction from the SP instance: S1 = {a, b}, S2 = {a, c}, S3 = {d, e, f},
S4 = {c, g} and k = 3

constructed in polynomial time and space with respect to the SP instance I. The latter

observation holds true because the encoding length of the edge cost is independent of I.

We proceed with the proof of statement (a), i.e., we show that J admits a reward

configuration that is motivating for a budget of 0 whenever I contains a collection of k

mutually disjoints sets. Assuming that such a collection exists, assign each of its sets

Sj to a distinct layer i of G and set the reward r(wi,j) = (1 − ε)/β. We refer to the

corresponding node vi,j as active. To prove that r is motivating, it suffices to argue that

r incentivizes the agent to climb from one active node to the next active node without

ever taking a shortcut. As all rewards are placed within shortcuts, this also implies that

the agent does not collect any reward and a budget of b = 0 is sufficient.

For a formal analysis assume that the agent is located at an active node vi,j with

i < k. At this point, she has four options. The first one is to follow the shortcut to wi,j .

However, this has a positive perceived net cost of c̃r(vi,j , wi,j , β) = ε and therefore it is

not motivating. Neither is the agent’s second option, which is to take a backward path.

The reason is that all backward paths have a positive cost, but by construction of G and

73

5 Reward Based Incentives

r no backward path that originates at vi,j leads to a reward. The agent’s third option

is to take the regular edge to the active node vi+1,j′ of the next layer i+ 1. In this case

the perceived net cost is at most

c̃r(vi,j , vi+1,j′ , β) ≤ (1− β − ε) + β ·
(

1− 1− ε
β

)
= 0

if the agent plans to take the shortcut at vi+1,j′ . Note that this is motivating. Finally,

the agent’s fourth option is to plan along a path P whose initial edge is regular but leads

to an inactive node. To prove that no such path P can be motivating, we make another

case distinction, this time on P :

First, P may include a backward path. In this case, at most one reward can be located

on P . As a result, the perceived net cost is at least

c̃r(P, β) ≥ (1− β − ε) + β ·
(1− β − k · ε

β − β2
− 1− ε

β

)
=

k

1− β
·
((1− β)2

k
− ε
)
> 0.

The inequality holds true by choice of ε and therefore P cannot be motivating. Secondly,

P may take the shortcut at the next layer i + 1. However, because this shortcut is not

associated with an active node, no reward is placed on it and P cannot be motivating.

Thirdly, P may take a shortcut on a layer i′ > i + 1. In this case, P contains at least

two regular edges but at most one reward. The resulting net cost is

c̃r(P, β) ≥ (1− β − ε) + β ·
(

(1− β − ε) + 1− 1− ε
β

)
= β(1− β − ε) > β ·

((1− β)2

k
− ε
)
> 0.

Similar to the first case of P the last inequality holds true by choice of ε and P is again

not motivating. Finally, P may neither contain a backward path nor a shortcut. But in

this case P does not contain a reward either and the positive cost of the first edge of P

implies that P is not motivating.

To complete the proof of (a), we consider the corner cases in which the agent is located

at s or at the active node vk,j of the top layer. At s her only option is to take a regular

edge. As argued before, the only regular edge that is motivating is the one that ends at

the active node of the bottom layer. Conversely, at vk,j , the agent has only one regular

edge to choose from. Because this edge is free of charge and ends at t, it is certainly

motivating. Furthermore, we already know that none of the other outgoing edges of vi,j ,

i.e., the shortcut and backward paths, are motivating. All in all, we conclude that the

agent walks from s to t by climbing from one active node to the next.

74

5.4 Computing Motivating Reward Configurations with Budget Constraints

Next, we consider statement (b). Assuming that I has a reward configuration r that

is motivating for a budget of b = 0, our goal is to prove that J admits a collection of k

mutually disjoint sets. For this purpose, consider an arbitrary walk of the agent through

Gr. It is crucial to observe that this walk must not contain a shortcut or backward path.

The reason is that the agent only enters shortcuts and backward paths if a positive

reward is placed on them. However, in this case the agent also collects the reward unless

she quits before. Both scenarios contradict the assumption that r is motivating for a

budget of b = 0. As a result the agent visits exactly one node vi,j per layer i on her walk

from s to t. Accordingly, we call any node vi,j that lies on one of the agent’s paths an

active node. Note that more than one active node per layer is possible.

In the following we prove that r needs to place a reward of r(wi,j) ≥ (1−ε)/β on each

shortcut of an active node vi,j . As an auxiliary hypothesis we furthermore argue that

the perceived net cost of vi,j is at least (i − k) · ε. Assuming that vi,j is a node of the

top layer, i.e., i = k, the auxiliary hypothesis is easy to see. After all, the agent must

not take a shortcut or backward path at vk,j . Her only remaining option is to cross the

direct regular edge to t, which is free of charge. Moreover, r cannot place a reward on t

without violating the budget constraint. Consequently, vk,j has a perceived net cost of

c̃r(vk,j , β) = 0 ≥ (k − k) · ε.
To see that r(wi,j) ≥ (1−ε)/β holds true for an arbitrary active node vi,j , we consider

an inductive argument. Our assumption is that vi,j satisfies the auxiliary hypothesis, i.e.,

c̃r(vi,j , β) ≥ (i−k)·ε. Furthermore, let vi−1,j′ be an active node of the previous layer from

which the agent plans to climb to vi,j . In the special case of i = 1, assume that vi−1,j′ = s.

By choice of vi,j and vi−1,j′ , there must exist a path P = vi−1,j′ , vi,j , . . . , t that minimizes

the perceived net cost of vi−1,j′ . To close in on the exact form of P = vi−1,j′ , vi,j , . . . , t,

we consider a case distinction with respect to the edge type of the initial edge e of the

subpath P ′ = vi,j , . . . , t.

In general, there are three choices for e. First, e could be a regular edge. If i+ 1 = k,

this means that P ′ goes directly to t and r cannot place any reward onto P ′ without

violating the budget constraint. Because the initial edge of P has a positive cost, it

immediately follows that P is not motivating. But this contradicts the assumption that

vi−1,j′ is active. Conversely, if i+ 1 < k, there is a difference between the perceived net

cost of P and P ′ of value

c̃r(P, β)− c̃r(P ′, β) = c(vi−1,j′ , vi,j)− r(vi,j)− (1− β) · c(e)

= (1− β − ε)− 0− (1− β) · (1− β − ε) = β · (1− β − ε).

75

5 Reward Based Incentives

Note that r(vi,j) = 0 due to the budget constraint. Together with the auxiliary hypoth-

esis, which implies that the perceived net cost of P ′ is at least (i− k) · ε, it follows that

P is not motivating

c̃r(P, β) = c̃r(P
′, β) + β · (1− β − ε) ≥ (i− k) · ε+ β · (1− β − ε)

=
(
k − i+ β

)
·
(β − β2

k − i+ β
− ε
)
> 0.

The last inequality holds true by choice of ε. Again, we arrive at a contradiction to the

assumption that vi−1,j′ is active. Secondly, e could be the initial edge of a backward

path. In this case, the difference between the perceived net cost of P and P ′ is

c̃r(P, β)− c̃r(P ′, β) = (1− β − ε)− 0− (1− β) · 0 = 1− β − ε.

The fact this difference is even greater than before contradicts the assumption that vi−1,j′

is active. This leaves a shortcut edge as the only remaining choice for e. In particular,

we may assume that P is of the form P = vi−1,j′ , vi,j , wi,j , t. As a result, r must place a

reward greater or equal to (1− ε)/β on wi,j to make P motivating.

To complete the inductive argument, it remains to show that the auxiliary hypothesis

holds true for the active node vi−1,j′ . Similar to the previous paragraph, it is helpful to

consider the difference in the perceived net cost of P and P ′. Keeping in mind that the

initial edge of P ′ is a shortcut edge, this difference is

c̃r(P, β)− c̃r(P ′, β) = (1− β − ε)− 0− (1− β) · 1 = −ε.

Together with the induction hypothesis, which implies that the perceived net cost of P ′

is at least (i− k) · ε, we obtain

c̃r(vi−1,j′ , β) = c̃r(P, β) = c̃r(P
′, β)− ε ≥ (i− k) · ε− ε =

(
(i− 1)− k

)
· ε.

This concludes the induction.

To summarize, recall that each active node vi,j has a reward of r(wi,j) ≥ (1 − ε)/β
allocated to its shortcut and its perceived net cost is at most (i−k) ·ε ≥ (1−k) ·ε. This

means that there can be no backward path from an active node vi,j to another active

node vi′,j′ . Otherwise, the perceived net cost for following the path P from vi,j to t via

wi′,j′ would be at most

c̃r(P, β) ≤ β ·
(1− β − k · ε

β − β2
− 1− ε

β

)
=

(1− k − β) · ε
β − β2

<
(1− k) · ε
β − β2

< (1− k) · ε,

76

5.5 Mixed Incentives

which violates the bound on the perceived net cost of vi,j . By construction of G, this

means that the active nodes vi,j along any of the agent’s walks correspond to a collection

of k mutually disjoint sets. We conclude that I has a feasible solution.

To complete the proof, we sketch a generalized version of the reduction to prove NP-

hardness for an arbitrary budget b > 0. For this purpose, consider a slightly modified

version of G in which the target node is renamed to t′ and a new target node t is inserted.

Both nodes are connected via an edge (t′, t) of cost β · b. This means that a reward of

b or more must be placed at t for the agent to cross (t′, t) and complete G. Due to the

placement of the reward, the agent is also certain to collect it whenever she completes G.

Thus, each motivating reward configuration r that satisfies the budget constraint must

set r(t) = b. Moreover, no further rewards must be collected by the agent.

To compensate for the extra reward at t, some of the edges in G become more ex-

pensive. The price of each regular edge that ends at t′ as well as the price of the initial

edge of each shortcut increases by an additional cost of (1− β) · β · b. Their new cost is

(1− β) · β · b and 1 + (1− β) · β · b respectively. The price of the remaining regular edges

rises by (1 − β)2 · β · b to (1 − β − ε) + (1 − β)2 · β · b. Finally, the price of the second

edge of each backward path rises by (1− β) · b to (1− β − k · ε)/(β − β2) + (1− β) · b.
All other edges have the same cost as before.

Assuming that the encoding length of b is independent of I, it is easy to see that

the resulting J can be constructed in polynomial time and space with respect to I.

Moreover, the same line of reasoning presented for b = 0 implies that the agent is

motivated to travel from s to t′ if and only if the sets S1, . . . , S` admit a collection of k

mutually disjoint sets. To verify this, it is helpful to observe that the reward at t and

the additional edge costs cancel each other in the perceived net cost of paths originating

at active nodes.

A particularly noteworthy detail about Theorem 5.4.2 is that it applies to MRC in-

stances with a budget of 0. As a result, it is also NP-hard to approximate the minimum

motivating reward µ∗(G, β) within any finite factor of its actual value. Unfortunately,

this implies that almost optimal reward configurations are not only difficult to compute

but also unlikely to admit any polynomial time approximation within a finite factor.

5.5 Mixed Incentives

To overcome the computational difficulties inherent to the design of reward based incen-

tives, we conclude this chapter with the brief study of a more general incentive design

setting that permits the use of rewards, penalty fees and prohibitions at the same time.

77

5 Reward Based Incentives

From a conceptual perspective this combination is much more powerful than the mere

sum of its parts. The reason is that a simultaneous placement of extra cost and interme-

diate rewards permits the construction of arbitrarily exploitative rewards. For instance,

let ε be a small but positive quantity and consider an edge (v, u) with a reward of

r(u) = (c(v, u) + h(v, u))/β − ε placed at u. Assuming that the agent is located at v, it

is easy to see that she has no incentive to cross (v, u) if no additional reward is offered

to her. However, whenever the agent considers (v, u) from a distance, she perceives a

net reward of

β ·
(
r(u)− c(v, u)− h(v, u)

)
= β ·

(c(v, u) + h(v, u)

β
− ε− c(v, u)− h(v, u)

)
= (1− β) ·

(
c(v, u) + h(v, u))− β · ε.

Considering that the extra cost h(v, u) can be chosen by the designer, the above equation

implies that the excess reward of (v, u) may also become arbitrarily high if β < 1.

Consequently, we can use (v, u) to draw the agent towards v without the need to pay

out the reward placed u. We call such an edge an attractor.

Based on the idea of attractors the following straight forward approach to designing

cost efficient incentives suggests itself. Assume that G contains a node v with at least

two outgoing edges (v, w) and (v, u). In this case, one of the two edges, let us say (v, u),

can be used as an attractor that keeps the agent motivated while traveling from s to v.

Once the agent is located at v she can then be motivated to cross the other edge, i.e.,

(v, w), by placing a sufficient reward at t. This way only the reward at t is paid out.

To minimize the reward at t, it is crucial that the maximum perceived cost of the edges

of the path Pv,w = v, w, . . . , t that the agent follows from v to t is as low as possible.

Without loss of generality, we may assume that all nodes v′ ∈ Pv,w \ {v} only have

successors nodes w′ that are themselves contained in Pv,w. Otherwise, we could reduce

cost by constructing the attractor at an edge (v′, u′) with u′ /∈ Pv,w. Since the internal

nodes of Pv,w have no outgoing edges leading out of Pv,w, we refer to Pv,w as a home

stretch. More formally, a home stretch Pv,w is defined by the following two properties:

(a) If a node v′ ∈ Pv,w \ {v} has an outgoing edge (v′, w′), then w′ ∈ Pv,w.

(b) The node v either has an outgoing edge (v, u) such that u /∈ Pv,w or v = s.

Note that the path of a home stretch Pv,w is distinctly determined by its first edge

(v, w). To see this, assume (v, w) admits two different paths that satisfy the home

stretch properties. In this case the paths need to fork at some node v′ 6= v and reunite

at some other node w′. The later observation holds true because both paths end at t.

78

5.5 Mixed Incentives

However, since G does not admit parallel edges, at least one of the two paths violates

property (a). This contradicts the assumption that both paths are home stretches.

Using standard graph search algorithms, it is not too difficult to construct the home

stretch associated with a particular edge of G in polynomial time. In particular it is

possible to enumerate all home stretches of G and select one that minimizes the max-

imum perceived cost of its edges in polynomial time. Let Pv,w be such a homestretch.

In the special case of v = s a motivating reward configuration is easily obtained by

placing a sufficiently large reward onto t. Otherwise, if v 6= s, it is possible to construct

a motivating combination of reward, penalty and prohibition based incentives as follows:

First, compute a sufficiently large reward that motivates the agent to traverse the home-

stretch. Secondly, compute a path R = v, u, . . . , t and place an attractor at (v, u). For

this purpose, R should satisfy u /∈ Pv,w. Finally, compute a path Q = s, . . . , t that leads

the agent from s to v. To make sure that the agent does not leave Q too early, remove

all edges of G that are neither part of Q, R, Pv,w or a parallel edge of Pv,w, i.e., an edge

that starts and ends at a node of Pv,w. According to these algorithmic ideas we obtain

the following polynomial time algorithm, which we call GreedyAttractor.

Algorithm 5: GreedyAttractor

Input: task graph G, present-bias β
Output: edge set F , cost configuration h, reward configuration r

1 foreach v ∈ V do r(v) = 0;
2 foreach e ∈ E do h(e) = 0;
3 Pv,w ← home stretch that minimizes the maximum perceived cost of its edges;
4 r(t)← max{c̃(e, β) | e ∈ Pv,w}/β;
5 if v = s then F ← ∅ ;
6 else
7 Q← path from s to v;
8 R← path from v to t whose initial edge (v, u) is different from (v, w);
9 F ← E \ (Q ∪R ∪ Pv,w ∪ {(v′, w′) | v′ ∈ Pv,w \ {v}});

10 α←
∑

e∈Q∪R c(e); h(v, u)← α/(1− β) + 1 + r(t); r(u)← α/(β · (1− β)) + 1;

11 return F, h, r;

An illustration of the paths Q, R and Pv,w constructed by GreedyAttractor is

depicted in Figure 5.4. To verify that the algorithm indeed yields motivating incentives,

it is instructive to trace the agent’s walk through G. By construction of F , the first

part of the walk follows the path Q. When located at a node v′ ∈ Q \ {v}, the agent

perceives a cost of at most α+β ·h(v, u) for taking the paths Q and R to t. Conversely,

the perceived reward of this path is β · (r(u) + r(t)). By definition of h(v, u) and r(u),

79

5 Reward Based Incentives

s
v

w

u

t
. . .

. . .

. . .

. . .

Q Pv,w

R

Figure 5.4: Structure of Pv,w, Q and R

this suffices to cover the cost

α+ β · h(v, u) = α+ β ·
(α

1− β
+ 1 + r(t)

)
= β ·

(α

β · (1− β)
+ 1 + r(t)

)
= β ·

(
r(u) + r(t)

)
.

As a result, the agent is motivated to move along Q until she reaches v. At this point

the perceived cost of the edge (v, u) is at least h(v, u). However, the perceived reward

remains β · (r(u) + r(t)). Clearly, this reward is not sufficient to motivate the agent to

enter R

h(v, u) =
α

(1− β)
+ 1 + r(t) >

α

(1− β)
+ β ·

(
1 + r(t)

)
= β ·

(α

β · (1− β)
+ 1 + r(t)

)
= β ·

(
r(u) + r(t)

)
.

The only other choice available to the agent is to enter the home stretch Pv,w. By

definition of Pv,w and r(t), we know that the edge (v, w) as well as all other edges of

Pv,w are motivating. As a result, the agent travels along the home stretch or its parallel

edges until she eventually reaches t.

All that remains is to investigate how well GreedyAttractor performs with re-

spect to an optimal solution. As it turns out, the collected reward that is induced by the

incentives of GreedyAttractor actually matches the collected reward of an optimal

solution. This result is all the more surprising since neither reward nor penalty nor prohi-

bition based incentives are likely to admit optimal and at the same time computationally

tractable designs when considered on their own.

80

5.5 Mixed Incentives

Theorem 5.5.1. Given a task graph G and present-bias β ∈ (0, 1), GreedyAttrac-

tor constructs a reward configuration r, a cost configuration h and set of prohibited edges

F whose collected reward q(Gr,h,F , β) is less or equal to the collected reward q(Gr′,h′,F ′ , β)

of any other motivating combination of incentives r′, h′ and F ′

Proof. Recall that the collected reward q(Gr,h,F , β) corresponds to the reward r(t) that

GreedyAttractor places at t. By definition of r(t), this means that q(Gr,h,F , β) is

equal to the maximum perceived edge cost of the home stretch Pv,w divided by β.

Now consider the path P ′ that an agent with present-bias β takes through an arbitrary

motivating task graph Gr′,h′,F ′ . Clearly, the tail section of P ′ contains a home stretch

Pv′,w′ . This follows directly from the definition of a home stretch. Furthermore, the same

definition implies the impossibility of motivating the agent with exploitative rewards

once she enters Pv′,w′ . In other words, we know that the agent collects all rewards that

keep her motivated while traveling along Pv′,w′ . To make sure that the agent does not

quit, we conclude that the collected reward q(Gr′,h′,F ′ , β) must be at least the maximum

perceived edge cost of Pv′,w′ divided by β. By choice of the homestretch Pv,w, we know

that this value is at most q(Gr,h,F , β).

81

6 Heterogeneous Agents

So far we have focused our attention on incentives that target a single person with a

specific present-bias. However, in many real-life scenarios it is not possible, or at least

not practical, to design customized incentives for each individual of a given population.

Instead, it is often necessary to design a single incentive that motivates each member of

a population equally well. The difficulty is that the population may be heterogeneous in

the sense that the present-biases of its members differ from one person to the next. In

the following chapter we investigate the formal implications of this generalization of the

graphical model. In particular, we are interested in the conceptual loss of efficiency aris-

ing due to the need to address multiple individuals at the same time. Using penalty fees

as our incentive of choice, we are able to bound the loss of efficiency by a constant factor

of 2. Furthermore, we present a polynomial time algorithm to construct a matching

assignment of penalty fees.

6.1 Preparing for the Big Race

Designing a single incentive that motivates a heterogeneous group of people is a complex

task. One of the main challenges is that the graphical model tends to be extremely

sensitive to the particular value of the present-bias β. Sometimes even the slightest

change in β may result in very different and sometimes counter-intuitive behavioral

patterns. Consider for instance the following scenario:

Assume that Alice wants to participate in a running event and asks her good friend

Bob to join her. In the two week leading up to the event, the two runners can prepare

for the race by choosing between a light workout plan A and a more demanding workout

plan B. Workout plan A has a cost of 1 each week, whereas plan B has a cost of 3 in

the first and 9 in the second week. However, workout plan B offers a more thorough

preparation than A. As a result, the two runners incur a cost of 13 in the final race if

they consistently choose A, but only a cost of 1 if they consistently choose B. Since the

plans A and B are incompatible with each other, it is furthermore the case that a switch

after one week results in an effort of 16 in the final race. Figure 6.1 models this setting

83

6 Heterogeneous Agents

s

vA

vB

vAA

vAB

vBB

t

3

1

1

9

9

1

1

16

13

Figure 6.1: Task graph of the workout plans A and B

as a task graph. The nodes vX and vXY represent an agent’s level of preparation after

completing the workouts X,Y ∈ {A,B}. To transition between nodes, the agent must

complete the workout associated with the corresponding edge or, if the edge happens to

end at t, run the final race.

Recall that we set out to construct an instance of the graphical model that is ill-

conditioned with respect to the present-bias parameter. For this purpose assume that

Alice and Bob have an almost identical bias of a = 1/2− ε and b = 1/2 + ε respectively.

If their present-biases were exactly 1/2, it is not difficult to see that they would consider

the two workout plans to be equal options at the beginning of the first week. The reason

is that the edges (s, vA) and (s, vB) would have identical perceived cost

c̃
(
s, vA,

1

2

)
= 1 +

1

2
· (1 + 13) = 8 = 3 +

1

2
· (9 + 1) = c̃

(
s, vB,

1

2

)
.

However, since Alice is slightly more present-biased than Bob, she has a strict preference

for workout plan A. More formally, it holds true that

c̃(s, vA, a) = 1 + a · (1 + 13) = 8− 14 · ε

≤ 8− 10 · ε = 3 + a · (9 + 1) = c̃(s, vB, a).

Conversely, Bob has a strict preference for workout plan B considering that

c̃(s, vA, b) = 1 + b · (1 + 13) = 8 + 14 · ε

≤ 8 + 10 · ε = 3 + b · (9 + 1) = c̃(s, vB, b).

Assuming that a sufficiently large reward is paid out upon completion of the race, it

84

6.1 Preparing for the Big Race

Figure 6.2: Alice and Bob in preparation for the race

follows that Alice moves to the node vA, whereas Bob moves to vB. Figure 6.2 illustrates

the runners completing their respective workouts.

After the first week, it is time to reevaluate Alice and Bob’s plans. In Bob’s case,

the perceived cost of his two new choices evaluates to c̃(vB, vAB, b) = 9 + 16 · ε and

c̃(vB, vBB, b) = 19/2 + ε. Assuming that ε is small enough, this implies that Bob is

inclined to switch to plan A; a strategy that results in a cost of 16 during the final race.

Conversely, it is easy to see that Alice has no reason to change from plan A to plan B.

As a result, her cost for running the final race is 13. It is astonishing that Alice ends up

paying much less than Bob during the training and the race despite the fact that their

biases are only marginally different. This observation may appear even more surprising

considering that Bob is less biased than Alice.

The intuitive reason for this phenomenon is simple: First, observe that even a slight

difference in the present-bias may cause two otherwise identical agents to take different

outgoing edges at a given node of the task graph. In Alice and Bob’s scenario, this hap-

pens at the initial node s. Secondly, once the agents’ paths separate, they may develop

independently of one another. Of course, the latter observation depends on the topology

of the task graph. However, it is not hard to imagine scenarios in which the difference

between the cost experienced by the two agents becomes arbitrarily large. In fact, it

suffices to let one of the agents, once their paths have split, traverse a procrastination

structure like the one described in the proof of Proposition 3.1.1. All in all, this goes to

show how intricate the relation between the present-bias and the topology of the task

graph may be; an observation that should be kept in mind when designing incentives for

a heterogeneous population of agents.

85

6 Heterogeneous Agents

6.2 Modeling Heterogeneous Populations

An elegant property of the graphical model is that the all the information needed to

predict an agent’s behavior is condensed in the single present-bias parameter β. In

order to model a population of agents, it therefore suffices to collect their individual

present-biases in a present-bias set B ⊂ (0, 1]. Whenever we have perfect information

about each individual of the population, we may assume B to be a finite set. However,

in many scenarios such detailed information is difficult, if not impossible, to obtain. In

this case, it is often more convenient to think of B as an infinite set. More precisely, we

define B to be a collection of closed intervals from the set (0, 1] that confine the actual

present-bias values of the population. This way the graphical model becomes much more

robust to minor imprecision in the specification of the population; a property that is all

the more desirable considering the observations of the previous section.

For technical reasons, we need to impose two additional assumptions on the structure

of B: First, we assume that B is composed of finitely many closed intervals. This

way the intersection of B with some other closed interval I ∈ (0, 1] is either empty

or contains a minimum and a maximum element. In particular, the set B itself must

contain a minimum element minB and a maximum element maxB. To quantify the

heterogeneity of B, we define the range τ = maxB/minB of B to be the ration between

these two values. Secondly, we assume that the intersection of B and I can be computed

in polynomial time with respect to the encoding lengths of B and I.

Based on the notion of B, we consider a given task graph G = (V,E, c, r) to be moti-

vating if no agent with a present-bias from the set B quits on one of her walks through

G. Clearly, this definition of motivating task graphs raises computational concern. Af-

ter all, we only know how to verify whether a particular task graph is motivating for

a single agent, a task that can be performed efficiently according to Proposition 2.3.2.

However, since B may contain infinitely many present-biases, it is generally not possible

to explicitly verify whether G is motivating for every single β ∈ B. Fortunately, we do

not have to do this. According to the following Theorem, which is taken from our work

on incentive design for uncertain present-bias values [4], it suffices to consider a finite

subset B′ ⊆ B of size O(n2). Note that the proof of the Theorem is partly inspired by a

result of Kleinberg and Oren that bounds the number of paths that an agent may take

through a task graph by O(n2) [16].

Theorem 6.2.1. For any task graph G = (V,E, c, r) and present-bias set B a finite

subset B′ ⊆ B of size O(n2) exists such that G is motivating for all β ∈ B if it is

motivating for all β ∈ B′.

86

6.2 Modeling Heterogeneous Populations

Proof. The proof consists of two steps. First, we determine which present-bias values

incline agents to traverse a given edge (v, w). More formally, let the set Bv,w contain all

values β ∈ [0, 1] such that c̃(v, w, β) = c̃(v, β). Our goal is to show that Bv,w is a closed,

possibly empty, subinterval of [0, 1]. In the second step, we collect the minimum values of

all non-empty intersection of a set Be and B in the set B′ = {min(Be∩B) | Be∩B 6= ∅}.
Note that by our assumption on B and Be the minimum of Be∩B is guaranteed to exist

as long as Be ∩B 6= ∅. Furthermore, B′ contains at most |E| elements and therefore has

a size of O(n2). Using a proof by contradiction, we argue that G is motivating for all

β ∈ B if it is motivating for all β ∈ B′. This completes the proof.

To see that Bv,w is a closed interval, it is helpful to observe how the perceived cost of

(v, w) changes with respect to β. For this purpose, let `v,w(β) = c(v, w) + βd(w) denote

the perceived cost c̃(v, w, β) with respect to β. Clearly, the function `v,w is linear and

so are the functions `v,w′ associated with the incident edges of (v, w). Together, these

functions yield the line arrangement Lv = {`v,w′ | (v, w′) ∈ E}. Recall that the agent is

only motivated to cross (v, w) if c̃(v, w, β) ≤ c̃(v, w′, β) for all (v, w′) ∈ E. The values

of β ∈ [0, 1] that satisfy this property are exactly those for which the line `v,w is on the

lower envelope of the line arrangement Lv. From the basic structure of line arrangements

we can conclude that Bv,w must be a closed interval, see e.g. [10].

To conclude the proof, it remains to show that G is motivating for each β ∈ B if it is

motivating for each β ∈ B′. For the sake of contradiction assume that G is motivating

for each β ∈ B′ but not for some b ∈ B. As a result there must exist a path P from s to

t along which an agent with present-bias b may walk and which contains an edge (v, w)

such that c̃(v, w, b)/b > r. Let BP =
⋂
e∈P Be be the set of all present-biases for which

an agent may follow the path P . From this definition it is immediately apparent that

b is contained in BP and therefore BP ∩ B 6= ∅. We now consider the structure of BP .

Since each set Be associated with an e ∈ P is a closed interval, so is BP . In particular,

as BP ∩B is not empty, one of these sets Be must satisfy min(Be ∩B) = min(BP ∩B).

Let a = min(Be ∩B) denote the corresponding present-bias. By definition of a it holds

true that a ∈ B′ and a ≤ b. Moreover, considering that a ∈ BP , we know that an agent

with present-bias a may follow the path P . However, once this agent reaches (v, w), her

perceived cost exceeds her perceived reward as

c̃(v, w, a)

a
=
c(v, w)

a
+ d(w) ≥ c(v, w)

b
+ d(w) =

c̃(v, w, b)

b
> r.

Consequently, G is not motivating for a. But this contradicts the assumption that G is

motivating for all β ∈ B′.

87

6 Heterogeneous Agents

It is interesting to observe that the proof of Theorem 6.2.1 does not only establish

the existence of the set B′, but also implies an algorithm to compute B′ in polynomial

time. As a result, it can be decided in polynomial time whether a given task graph

G is motivating with respect to the present-bias set B. It should also be noted that

Theorem 6.2.1 provides an efficient way to compute the minimal motivating reward

µ(G,B), i.e., the minimum reward that must be placed at t to ensure thatG is motivating

for all agents whose present-bias is contained in B. For this purpose, it suffices to set

µ(G,B) = max{µ(G, β) | β ∈ B′}.

6.3 The Price of Heterogeneity

Having established a suitable framework for analyzing heterogeneous populations, we

now focus on the design of cost efficient incentives. The difference to the previous chap-

ters is that a single incentive needs to motivate each agent of a given population equally.

We are particularly interested in the loss of efficiency that emerges when comparing such

universal incentives to incentives that only address a single individual of the population.

We call this hypothetical loss the price of heterogeneity. To quantify the price of het-

erogeneity for a given task graph G and preset-bias set B, let the minimum motivating

reward µ∗(G,B) be redefined as

Definition 6.3.1 (Minimum Motivating Reward). The minimum motivating reward

µ∗(G,B) is the infimum over all rewards for which the task graph G admits a certain

incentive that is motivating for all agents whose present-bias is contained in B ⊂ (0, 1].

Due to its favorable conceptual and computational properties, our incentive of choice

throughout this chapter is penalty fees. However, note that the price of heterogeneity

could also be used for other incentives. In the case of reward based incentives, it may be

sensible to consider the collected rewards rather than all the rewards that are laid out.

Having specified the minimum motivating reward µ∗(G,B), we can compare this quan-

tity to the minimum motivating rewards µ∗(G, β) for specific values of β ∈ B. As a

general rule of thumb one may expect to invest more if β is a small and less if β is

large. The reason is that an agent who is strongly present-biased discounts future re-

wards more than her less present-biased counter parts and therefore she requires more

reward to compensate for current cost. Keeping this observation in mind, it becomes

clear that a direct comparison between µ∗(G,B) and µ∗(G, β) is not reasonable. After

all, µ∗(G,B) applies to all values of B, which may include small values, whereas µ∗(G, β)

applies to just one value of B, which may be comparatively large. Instead, it seems more

88

6.3 The Price of Heterogeneity

sensible to compare µ∗(G,B) to the largest minimum motivating reward µ∗(G, β) of any

present-bias β ∈ B. Consequently, we define the price of heterogeneity as follows:

Definition 6.3.2 (Price of Heterogeneity). Given a task graph G and a present-bias set

B, the price of heterogeneity is defined as

µ∗(G,B)

sup{µ∗(G, β) | β ∈ B}
.

Let us illustrate the price of heterogeneity by going back to Alice and Bob’s scenario

and assume that B = {a, b} with a = 1/2 − ε and 1/2 + ε. It is easy to see that both

agents minimize their maximum perceived cost along the path P = s, vB, vBB, t. This

cost, which is either c̃(vB, vBB, a) = 19/2 − ε or c̃(vB, vBB, b) = 19/2 + ε, provides two

lower bounds for the reward that is required to motivate the agents. More formally,

it holds true that µ∗(G, a) ≥ (19/2− ε)/(1/2− ε) and µ∗(G, b) ≥ (19/2 + ε)/(1/2 + ε).

However, as we have seen in Section 6.1, neither Alice nor Bob are willing to follow P

without external incentives. To discourage them from leaving P , we may assign an extra

cost of h(s, vA) = 5 · ε to (s, vA) and h(vB, vAB) = 1/2 + 16 · ε to (vB, vAB). Observe

that the cost configuration h does not affect the agents’ maximum perceived cost along

P , which they still experience at (vB, vBB). As a result, our bounds for µ∗(G, a) and

µ∗(G, b) are tight and we get sup{µ∗(G, β) | β ∈ B} = µ∗(G, a). Moreover, h guides both

agents along the same path. Consequently, µ∗(G,B) = sup{µ∗(G, {β}) | β ∈ B} holds

true, which implies that the price of heterogeneity is 1.

As Alice and Bob’s scenario demonstrates, cost configurations designed for a hetero-

geneous population are not necessarily less efficient than those designed for a specific

individual of the population. In other words, we have seen a scenario in which the same

cost configuration motivates each individual of a given population efficiently. But this

raises the question whether all scenarios admit such a cost configuration or whether a

real loss of efficiency is bound to occur in at least some scenarios when transitioning from

individual to universal cost configurations. In other words, the question is whether the

price of heterogeneity can become greater than 1. According to the following proposition,

which is taken from [4], the answer to this question is yes.

Proposition 6.3.1. There exists a family of task graphs and present-bias sets for which

the price of heterogeneity converges to 1.1.

Proof. Let 0 < a ≤ 3/8 be some present-bias such that 4/a is integral and consider

a task graph G consisting of a directed path v0, v1, . . . , v12+4/a. We call this path the

regular path and charge a cost of 2 on its first edge. All other edges of the regular path

89

6 Heterogeneous Agents

s v1

v2 v11+4/a

t

w

. . .

4 6 + 3/a

1 1

2

Figure 6.3: Task graph admitting a price of heterogeneity of (9 + 11/(2 · a))/(10 + 5/a)

have a cost of 1. In addition to the regular path, we introduce a shortcut from v1 to

v12+4/a along a middle node w. The cost of the edges (v1, w) and (w, v12+4/a) is 4 and

6 + 3/a respectively. For the sake of convenience let s = v0 and t = v12+4/a. Figure 6.3

shows a sketch of G.

Now, assume that G is traversed by agents whose present-bias is either a or b = 1/2,

i.e., B = {a, 1/2}. Our goal is to construct two cost configurations ha and hb that are

motivating for a reward of 10 + 5/a when applied to agents with the respective present-

bias. Consequently, it holds true that sup{µ∗(G, a), µ∗(G, b)} ≤ 10 + 5/a. We then

continue to argue that a reward less than 9 + 11/(2a) is not sufficient to motivate both

types of agents simultaneously, i.e., µ∗(G,B) ≥ 9+11/(2 ·a). As (9+11/(2a))/(10+5/a)

converges to 11/10 for a→ 0, this establishes the proposition.

We begin with ha. For this purpose let ha assign no extra cost at all, i.e., ha(e) = 0

for all edges e. Furthermore, assume the agent has a present-bias of a and a reward of

10+5/a is placed at t. When located at s, the agent’s only choice is (s, v1). If she plans to

take the shortcut next, her perceived cost of (s, v1) is at most c̃ha(s, v1, a) ≤ 10 ·a+5. As

this matches her perceived reward, she proceeds to v1 where she faces two options: The

first one is to take the shortcut for a perceived cost of c̃ha(v1, w, a) = 6·a+7. Considering

that we have chosen a to satisfy a < 1/2, it follows that c̃ha(v1, w, a) > 10 · a + 5 and

therefore the shortcut is not motivating. The second option is to take the regular path

along the 11+4/a edges of cost 1, resulting in a perceived cost of c̃ha(v1, v2, a) = 10·a+5.

Similar to the situation at s, this cost matches her perceived reward and she proceeds

to v2. Since all remaining edges (vi, vi+1) have a perceived cost less than c̃ha(v1, v2, a),

the agent eventually reaches t and we conclude that ha is motivating for the given reward

and present-bias.

We continue to construct hb by setting hb(v1, w) = 1/(2 · a) and hb(e) = 0 for all

other edges. In contrast to the previous scenario, assume the agent now has a present-

bias of b = 1/2. The reward is still 10 + 5/a, but its perceived value has changed to

90

6.4 Revisiting the Copied Cost Approximation

5 + 5/(2 · a). When located at the initial node s, the agent’s perceived cost is at most

c̃hb(s, v1, b) ≤ 7 + 7/(4 · a) if she plans to take the shortcut afterwards. By choice of

a it holds true that a < 3/8 and we get c̃hb(s, v1, b) ≤ 5 + 5/(2 · a). Consequently,

the agent is motivated to proceed to v1. At this point, she has to choose between the

shortcut and the regular path. Her perceived cost of the former is c̃hb(v1, w, b) = 7+2/a,

whereas the latter has a perceived cost of c̃hb(v1, v2, b) = 6 + 2/a. Clearly, the regular

path is her preferred choice and since a < 1/2, it is also a motivating one. Because all

remaining edges (vi, vi+1) have a perceived cost less than c̃hb(v1, v2, b), it follows that hb

is motivating for the given reward and present-bias as well.

It remains to show that no cost configuration can be motivating for both agents at

the same time if the reward is less than 9 + 11/(2 · a). For the sake of contradiction

assume such a cost configuration h exists. Note that an agent with present-bias b must

not enter the shortcut as her perceived cost c̃h(w, t, b) = 6 + 3/a exceeds her perceived

reward of 9/2 + 11/(4 · a) for any a > 0. However, if we do not assign extra cost to G,

such an agent prefers the shortcut to the regular path when located at v1. The difference

in perceived cost is c̃(v1, v2, b)− c̃(v1, w, b) = 1/(2 · a)− 1. Consequently, h must assign

an extra cost greater than 1/(2 · a) − 1 to the shortcut. Next consider an agent with a

present-bias of a located at s. At this point her perceived cost for taking the shortcut

is greater than 9 · a + 11/2, due to the extra cost assigned by h. Note that this cost

exceeds her perceived reward. Her other option is to plan along the regular path. In this

case her perceived cost is 11 · a + 6. Clearly, this is even more expensive and therefore

contradicts the assumption that h is motivating for both agents simultaneously.

6.4 Revisiting the Copied Cost Approximation

Considering that a heterogeneous population may impair the cost efficiency of penalty

based incentives, i.e., the price of heterogeneity can become strictly greater than 1, the

question of an upper bound on the price of heterogeneity arises. Ideally, we would like

to design a cost configuration h whose minimal motivating reward µ(Gh, B) is within a

constant factor % of the minimum motivating reward µ∗(G,minB) for any conceivable

task graph G and any present-bias set B. Note that the existence of h would imply a

universal bound of % on the price of heterogeneity. In particular, the bound would be

independent of the range of B, i.e., the degree of heterogeneity exhibited by a certain

population. Surprisingly, we are able to construct a suitable cost configuration h for

a relatively small bound of % = 2. In fact, all we have to do is to slightly adapt the

CopiedCostApprox algorithm of Chapter 4 in the following way:

91

6 Heterogeneous Agents

Algorithm 6: CopiedCostApprox

Input: Task graph G, present-bias set B
Output: Cost configuration h

1 P ← minmax path from s to t with respect to the cost perceived by an agent
with present-bias minB;

2 α← max{c̃(e,minB) | e ∈ P};
3 foreach v ∈ V \ {t} do

σ(v)← successor node of v on a cheapest path from v to t;
4 T = {(v, σ(v)) | v ∈ V \ {t}};
5 foreach (v, w) ∈ E do
6 if (v, w) /∈ P ∪ T then
7 h(e)← 2 · α/minB + 1;

8 else if v ∈ P and w /∈ P then
9 P ′ ← v, σ(v), σ(σ(v)), . . . , t;

10 u← first node of P ′ different from v that is also a node of P ;
11 h(v, w)← cost of a most expensive edge of P ′ between v and u;

12 else h(e)← 0;

13 return h;

As in the original version of the algorithm, the above implementation of Copied-

CostApprox consists of two simple steps: First, it computes a value α such that

α/minB is a lower bound on the reward necessary to motivate agents with a present-

bias of minB, i.e., µ∗(G,minB) ≥ α/minB. In particular, this bound implies

sup
{
µ∗(G, β)

∣∣ β ∈ B} ≥ α

minB
.

Secondly CopiedCostApprox constructs a cost configuration h such that a reward of

2 · α/minB is sufficiently motivating for all β ∈ B, i.e., µ∗(G,B) ≤ 2 · α/minB. As

a result the price of heterogeneity can be at most 2. To see that h indeed satisfies the

promised properties, it is instructive to brush up on some of its main ideas.

Recall that h assigns extra cost in such a way that any agent with a present-bias β ∈ B
traverses only two kinds of edges: The first kind is edges of P . Note that each such edge

(v, w) ∈ P is motivating for a reward of α/minB if β ≥ minB. The reason is that

c̃(v, w, β) = β ·
(c(v, w)

β
+ d(w)

)
≤ β ·

(c(v, w)

minB
+ d(w)

)
= β · c̃(v, w,minB)

minB
≤ β · α

minB
.

92

6.4 Revisiting the Copied Cost Approximation

In particular, P is motivating for each β ∈ B. The second kind of edge corresponds to

the edges of the cheapest path tree T induced by the successor relation σ. Recall that a

path of the form P ′ = v, σ(v), σ(σ(v)), . . . , t is a cheapest path by definition of σ.

To keep agents on the edges of P and T , CopiedCostApprox assigns an extra cost

of h(e) = 2 · α/minB + 1 to all other edges. This raises their perceived cost to a value

greater of equal to 2 · α/minB + 1; a price no agent is willing to pay for a perceived

reward of β · 2 · α/minB. However, since no extra cost has been assigned to T so

far, the perceived cost of the edges in P and T is unaffected by h at this point. In

particular, all edges of P are still motivating for a reward of α/minB and any present-

bias β ∈ B. To keep agents from entering a costly σ-path P ′ = v, σ(v), σ(σ(v)), . . . , t,

CopiedCostApprox assigns an extra cost to the outgoing edges (v, σ(v)) of P , i.e.,

v ∈ P but σ(v) /∈ P . The extra cost h(v, σ(v)) is chosen to match the cost of a most

expensive edge on P ′ between v and the next intersection of P ′ and P . This way, the

resulting cost configuration h can at most double the perceived cost of any edge in P ;

see the proof of Theorem 4.5.1 for a precise argument. Furthermore, the perceived cost

of any outgoing edge (v, σ(v)) of P is either high enough to keep agents on P or they

do not encounter edges exceeding the perceived cost of (v, σ(v)) until they reenter P .

Again, a precise argument is given in the proof of Theorem 4.5.1. We conclude that a

reward of 2 · α/minB is sufficiently motivating and therefore the price of heterogeneity

cannot become greater than 2.

Theorem 6.4.1. The price of heterogeneity is at most 2.

Proof. The correctness of the theorem is a direct result of the above considerations and

the arguments laid out in the proof of Theorem 4.5.1.

In addition to the conceptual implications that CopiedCostApprox has on the price

of heterogeneity, it is also interesting to consider its computational implications on the

design of cost efficient cost configurations for a heterogeneous population. Clearly, this is

a difficult problem in general. After all Theorem 4.6.1 indicates that even in the special

case of a homogenous population, i.e., |B| = 1, no polynomial time approximation of

the problem is possible within a constant factor of 1.08192 unless P = NP. However,

considering the fact that CopiedCostApprox can be executed in polynomial time with

respect to the encoding length of G and B, we are able to construct a cost configuration

h that approximates the performance of any other cost configuration within a factor of

at most 2.

93

6 Heterogeneous Agents

Proposition 6.4.2. Given a task graph G and present-bias set B ⊂ (0, 1], Copied-

CostApprox yields a cost configuration h whose minimal motivating reward µ(Gh, B)

is less than 2 · µ(Gh′ , B) for any other cost configuration h′.

Proof. Recall that CopiedCostApprox constructs a cost configuration that is moti-

vating for a reward of 2 · α/minB independent of the particular present-bias chosen

from the set B. Furthermore, α/minB is a lower bound on the reward required by any

conceivable cost configuration h′ to motivate an agent with a present-bias of minB .

Considering that µ(Gh′ ,minB) ≤ µ(Gh′ , B), we conclude that

µ(Gh, B) ≤ 2 · α

minB
≤ 2 · µ(Gh′ ,minB) ≤ 2 · µ(Gh′ , B).

94

7 A Variable Present-Bias

The previous chapter addresses heterogeneous populations. A benefit of incentives that

are designed in such a setting is that they are robust with respect to imperfect knowledge

of a single person’s present-bias as long as it is expressed by at least one member of the

population. Our ambition in this chapter is to develop incentives that are robust with

respect to an even greater degree of uncertainty. More precisely, we consider a setting in

which a person’s present-bias is not only drawn from a range of different values, but also

changes within that range over time. The idea of this approach, which is inspired by work

of Gravin et al. [13], is to compensate for behavioral phenomena that are not accounted

for in Kleinberg and Oren’s original version of the graphical model [16]. Similar to the

previous chapter our goal is to quantify the conceptual loss of efficiency that arises due

to the unpredictable variability of the present-bias. Furthermore, we are interested in

the approximability of optimal incentives. In the case of penalty based incentives, both

of these issues can be addressed with a single polynomial time algorithm. The resulting

bounds are proportional to the range over which the present-bias varies. Although this

result is in stark contrast with the constant bounds presented in the previous chapter,

evidence that these results cannot be much improved exists.

7.1 Modeling Variability

To capture the notion of variability in the graphical model, it is convenient to think of the

agent’s present-bias not as a fixed parameter β ∈ B, but as a present-bias configuration,

i.e., an assignment of present-bias values β(v) ∈ B to the nodes v ∈ V of a given

task graph G = (V,E, c, r). Consequently, whenever the agent reaches a node v, she acts

according to her current present-bias value β(v). More precisely, she crosses an arbitrary

edge (v, w) that minimizes the perceived cost, i.e., c̃(v, w, β(v)) = c̃(v, β(v)), or quits if

the perceived cost of v exceeds the perceived reward, i.e., c̃(v, β(v)) > β(v) · r. We say

that G is motivating with respect to a certain present-bias configuration β ∈ BV if and

only if the agent does not quit on any of her walks from s to t. Note that BV denotes

the set of all present-bias configurations that map the nodes of G to the values of B.

95

7 A Variable Present-Bias

To illustrate this setting, we revisit Alice and Bob’s scenario of the previous chapter

depicted in Figure 6.1. Recall that the agent of the original scenario has a fixed present-

bias that is either a = 1/2 − ε if she happens to be Alice or b = 1/2 + ε if she is

Bob. Thus, the present-bias set is given by B = {a, b}. However, instead of committing

herself to either a or b, the new setting allows the agent to change between the two values

depending on her current state. For instance, her present-bias configuration could be

β(v) =

a if v ∈ {vA, vAA, vAB, vBB, t}

b if v ∈ {s, vB}
.

Assuming that the reward r is sufficiently large, any agent with the above present-bias

configuration walks along the same path that Bob would take, i.e., s, vB, vAB, t. However,

there is a subtle difference in the agent’s perception. At vAB her present-bias becomes

that of Alice and the perceived value of the reward drops from b · r to a · r. As a result,

the agent now needs more reward than Bob to stay motivated. In fact, it is not too hard

to see that the minimal motivating reward with respect to β evaluates to

µ(G, β) =
c̃(vAB, t, β(vAB))

β(vAB)
=

16

1/2− ε
;

a value that exceeds the minimal motivating reward of any fixed present-bias considering

that µ(G, a) = 13/(1/2− ε) and µ(G, b) = 16/(1/2 + ε).

Whenever precise information about the present-bias configuration β of an agent is

available, it is easy to simulate the agent’s walk through the task graph G and determine

the corresponding minimal motivating reward µ(G, β). However, perfect knowledge of

β might be very difficult if not impossible to achieve. It is therefore often more feasible

to assume that the agent’s present-bias varies arbitrarily over time. Whenever this is

the case, we are interested in the minimal motivating reward µ(G,BV), i.e., the smallest

reward that must be placed at t to ensure that G is motivating for all present-bias

configurations contained in BV . The following proposition presents a straight forward

approach to compute µ(G,BV) in polynomial time.

Proposition 7.1.1. The minimal motivating reward µ(G,BV) can be computed in poly-

nomial time with respect to the encoding length of G and B.

Proof. Consider the following procedure, which consists of three simple steps:

(a) Construct a set F containing all edges (v, w) that minimize the agent’s perceived

cost at a node v for some present-bias β(v) ∈ B.

96

7.1 Modeling Variability

(b) Compute the set W containing all nodes reachable from s via edges of F .

(c) Set µ(G,BV) to be max{c̃(v,minB)/minB | v ∈W}.

In the following proof we argue that each step requires only polynomial time and that

the final result computed in step (c) is indeed the minimal motivating reward.

We begin with (a). Observe that F only contains edges (v, w) for which a present-bias

β(v) ∈ B exists such that c̃(v, w, β(v)) = c̃(v, β(v)). We already know from the proof

of Theorem 6.2.1 that the collection of all values β′ ∈ B satisfying c̃(v, w, β′) = c̃(v, β′)

forms a closed subinterval Bv,w ⊆ [0, 1]. Moreover, the end points of this interval can be

computed in polynomial time. Together with the structural assumptions on B from the

previous chapter, we may assume that the statement Bv,w ∩ B 6= ∅ can be determined

efficiently for any edge (v, w). Consequently, F can be constructed in polynomial time.

We continue with (b). Given the set F the construction of W in polynomial time is

trivial. Furthermore, W contains exactly those nodes an agent with variable present-bias

can reach if the reward is sufficiently large. To demonstrate this, let P be a path from

s to v using only edges of F . If we go through the edges (v′, w′) of P one by one and

choose β(v′) as an element of the non-empty intersection Bv′,w′ ∩ B, we obtain a valid

present-bias configuration that may lead the agent to v for a sufficiently large reward.

Conversely, no such present-bias configuration exists for nodes v /∈ W . The reason is

that all paths P to v must contain at least one edge (v, w) /∈ F . But by definition of F

the agent does not traverse (v, w) for any β(v) ∈ B.

We conclude with (c). As a result of (b) we know that the agent can never reach nodes

outside of W . However, she can reach each v ∈ W unless she quits at some other node

of W before she gets to v. Therefore we know that G is motivating for all β ∈ BV if

and only if she never quits at a node v ∈W . Since the agent’s present-bias may become

minB at v, it is clear that a reward of max{c̃(v,minB)/minB | v ∈ W} or more is

necessary to keep her motivated. To convince oneself that this reward also suffices for

any other present-bias β(v) ∈ B, it is instructive to consider the following inequality

c̃(v, β(v))

β(v)
= min

{c(v, w)

β(v)
+ d(w)

∣∣∣ (v, w) ∈ E
}
≤ min

{c(v, w)

minB
+ d(w)

∣∣∣ (v, w) ∈ E
}

=
c̃(v,minB)

minB
≤ max

{ c̃(v,minB)

minB

∣∣∣ v ∈W}.
We conclude that max{c̃(v,minB)/minB | v ∈ W} corresponds to the minimal moti-

vating reward µ(G,BV). Furthermore, the value of max{c̃(v,minB)/minB | v ∈ W}
can be computed in polynomial time. This completes the proof.

97

7 A Variable Present-Bias

7.2 The Price of Variability

The computational considerations laid out in the previous section allow us to decide

whether a given task graph G is motivating for an agent whose present-bias varies unpre-

dictably over the present-bias set B. But of course, we do not limit ourselves to assessing

a given scenario. Instead, we try to improve the agent’s performance by constructing

suitable incentives. Similar to the previous chapter, we are particularly interested in

the conceptual loss of efficiency that emerges when comparing incentives designed to be

robust with respect to variability to incentives designed for a fixed present-bias which is

known a priori. We call this loss the price of variability.

Definition 7.2.1 (Price of Variability). Given a task graph G = (V,E, c, r) and a

present-bias set B, the price of variability is defined as

µ∗(G,BV)

sup{µ∗(G, β) | β ∈ B}

where the minimal motivating reward µ∗(G,BV) denotes the infimum over all rewards

for which G admits an incentive of a certain type that is motivating for an agent whose

present-bias varies over B.

Note that the price of variability may be used to study different types of incentives.

Nevertheless, due to the favorable properties of penalty based incentives laid out through-

out this work, we make them our incentive of choice once again.

Taking a closer look at the price of variability, it becomes clear that its definition

bares a certain resemblance to that of the price of heterogeneity. Consequently, one may

wonder whether other similarities between the two concepts exist. For instance, recall

that the CopiedCostApprox algorithm can be used to establish an upper bound of

2 on the price of heterogeneity; an upper bound that is independent of the particular

task graph G and present-bias set B. Clearly, this raises the question whether the same

technique also yield a similar upper bound on the price of variability. The answer is

yes and no. On the one hand, a slightly altered version of CopiedCostApprox can

indeed be used to derive an upper bound on the price of variability. On the other

hand, the resulting bound is not constant. Instead, it depends on the particular range

τ = maxB/minB of the present-bias set B.

The reason for this unsatisfying result is simple. The idea of CopiedCostApprox

is to create a cost configuration h that guides the agent along some favorable minmax

path P , but lets her take an occasional shortcut via a cheapest path if the maximum

perceived cost along the shortcut does not become too expensive. To ensure that the

98

7.2 The Price of Variability

shortcut does not become too expensive, h assigns a copy of the most expensive edge

cost of the shortcut to its initial edge. This way the perceived cost of any edge within

the shortcut is not greater than the perceived cost for entering the shortcut as long as

the present-bias stays the same. However, if the present-bias is subject to change, the

agent may become more biased after she has entered the shortcut. In this case she may

require a higher reward to stay motivated. A straight forward way to fix this problem is

to scale the assigned extra cost by the range of B. As a result we obtain the following

algorithm, which we call CopiedAndScaledCostApprox:

Algorithm 7: CopiedAndScaledCostApprox

Input: Task graph G, present-bias set B
Output: Cost configuration h

1 P ← minmax path from s to t with respect to the cost perceived by an agent
with present-bias minB;

2 α← max{c̃(e,minB) | e ∈ P};
3 foreach v ∈ V \ {t} do

σ(v)← successor node of v on a cheapest path from v to t;
4 T = {(v, σ(v)) | v ∈ V \ {t}};
5 foreach (v, w) ∈ E do
6 if (v, w) /∈ P ∪ T then
7 h(e)← (τ + 1) · α/minB + 1;

8 else if v ∈ P and w /∈ P then
9 P ′ ← v, σ(v), σ(σ(v)), . . . , t;

10 u← first node of P ′ different from v that is also a node of P ;
11 h(v, w)←

τ times the cost of a most expensive edge of P ′ between v and u;

12 else h(e)← 0;

13 return h;

Note that the above implementation of CopiedAndScaledCostApprox is closely

related to the implementation of CopiedCostApprox presented in Section 6.4. This

is particularly convenient as it allows us to extend many of the arguments originally

intended to establish a bound on the price of heterogeneity to the price of variability.

More precisely, it enables us to bound the price of variability by τ + 1. Note that this

result is taken from our work on incentive design for uncertain present-biases [4].

Theorem 7.2.1. The price of variability is at most τ + 1.

Proof. From the analysis of CopiedCostApprox in Section 4.5 it is clear that α/minB

is a lower bound on µ∗(G,minB) and thus also on sup{µ∗(G, β) | β ∈ B}. To establish

99

7 A Variable Present-Bias

the theorem, it therefore suffices to show that (τ + 1) · α/minB is an upper bound on

µ∗(G,BV). In particular, it must be demonstrated that CopiedAndScaledCostAp-

prox returns a cost configuration h that is motivating for all β ∈ BV if the reward is

set to (τ + 1) · α/minB.

Using the same reasoning as in the proof of Theorem 4.5.1 we may assume that the

cost of a cheapest path from any node v to t is at most τ + 1 times more expensive in

Gh than in G. Consequently, the perceived cost of each edge (v, w) ∈ P , and therefore

also that of each node v ∈ P , is covered by a reward of (τ + 1) · α/minB independent

of the actual value of β(v). The reason is that

c̃h(v, w, β(v)) = β(v) ·
(c(v, w)

β(v)
+ dh(w)

)
≤ β(v) ·

(c(v, w)

minB
+ (τ + 1) · d(w)

)
≤ β(v) · (τ + 1) ·

(c(v, w)

minB
+ d(w)

)
= β(v) · (τ + 1) · c̃(v, w,minB)

minB

≤ β(v) · (τ + 1) · α

minB
.

All that remains is to show that the same reward is also sufficient if the agent is

located at a node v /∈ P . For this purpose, let v′ be the last node of P that the agent

visits before reaching v. Since all edges that are neither part of P nor a σ-path have a

perceived cost of at least (τ + 1) · α/minB + 1, we can be sure that the agent travels

from v′ to v via σ-path edges only. In particular, this implies that the agent must cross

the edge (v′, σ(v′)) to reach v. For the same reasons that are presented in the proof

of Theorem 4.5.1, we may assume that a cheapest path from σ(v′) to t with respect

to h is more expensive than a cheapest path from σ(v) to t, i.e., dh(σ(v)) ≤ dh(σ(v′)).

Furthermore, the inequalities c(v, σ(v)) ≤ h(v′, σ(v′))/τ and h(v, σ(v)) = 0 hold true by

construction of h. Finally the definition of τ = maxB/minB implies that

β(v) ≥ minB ≥ minB · β(v′)

maxB
=
β(v′)

τ
.

Combining these observations yields

c̃h(v, σ(v), β(v)) = β(v) ·
(c(v, σ(v))

β(v)
+ dh(σ(v))

)
≤ β(v) ·

(c(v, σ(v))

β(v′)/τ
+ dh(σ(v))

)
≤ β(v)

(h(v′, σ(v′)) + c(v′, σ(v′))

β(v′)
+ dh(σ(v′))

)
=
β(v)

β(v′)
· c̃h(v′, σ(v′), β(v′)).

However, the agent has already crossed (v′, σ(v′)), which means that the perceived cost

100

7.2 The Price of Variability

s v1 v2 v1/a2+1/a v1/a2+1/a+1

tw

. . .

. . .

2 2 2 2 2

11 1 1

1/a

Figure 7.1: Task graph admitting a price of variability of (1/a2)/(2/a+ 2)

of the edge (v′, σ(v′)) can be at most c̃h(v′, σ(v′), β(v′)) ≤ β(v′) · (τ + 1) · α/minB.

Consequently, the perceived cost of the edge (v, σ(v)) is bounded by

c̃h(v, σ(v), β(v)) ≤ β(v)

β(v′)
· β(v′) · (τ + 1) · α

minB
= β(v) · (τ + 1) · α

minB
.

We conclude that a reward of (τ + 1) · α/minB sufficiently covers the perceived cost

of v. This completes the proof.

The fact that the just established bound on the price of variability is proportional

to τ may at first seem like a weak result, especially since τ can be an arbitrarily large

number. One may therefore wonder whether a different approach yields a better bound.

However, it is not difficult to construct scenarios in which the price of variability is close

to τ/2 for arbitrary choices of τ , see e.g. the proof of the following proposition which

is taken from [4]. Consequently, Theorem 7.2.1 is in fact tight up to a constant factor

of 2. This result is particularly surprising as it stands in stark contrast with the price

of heterogeneity.

Proposition 7.2.2. There exists a family of task graphs and present-bias sets for which

the price of variability converges to τ/2 as τ goes to infinity.

Proof. To obtain a price of variability close to τ/2 we consider an agent whose present-

bias varies over the set B = {a, 1} for some 0 < a < 1/2 such that 1/a is integral. Fur-

thermore, we construct a task graphG consisting of a directed path v0, v1, . . . , v1/a2+1/a+2

whose edges are all of cost 1. We call this the regular path. In addition to the regular

path we introduce 1/a2 + 1/a+ 2 shortcuts via a common node w. Each shortcut i with

0 ≤ i ≤ 1/a2 + 1/a+ 1 consists of two edges: The first edge goes from vi to w for a cost

of 2 while the second edge goes from w to t for a cost of 1/a. As source and target node,

we choose s = v0 and t = v1/a2+1/a+2. Figure 7.1 shows a sketch of G.

The remainder of the proof has a similar structure to that of Proposition 6.3.1. We

first argue that a reward of 2/a+ 2 is sufficiently motivating for any agent with a fixed

101

7 A Variable Present-Bias

present-bias of either a or 1, implying sup{µ∗(G, a), µ∗(G, 1)} ≤ 2/a+ 2. We then show

that no cost configuration h can motivate an agent with a variable present-bias if the

reward is less than 1/a2, i.e., µ∗(G, {a, 1}V) ≥ 1/a2. As a result the price of variability

must be at least (1/a2)/(2/a+ 2). Note that this term approaches 1/(2 · a) = τ/2 as a

goes to 0, which establishes the theorem.

To see that a reward of 2/a+ 2 suffices to motivate an agent with a fixed present-bias

of a, let the agent be located at an arbitrary node vi with i ≤ 1/a2 + 1/a + 1. The

perceived cost of (vi, vi+1) is at most c̃(vi, vi+1, a) ≤ 1 + a · (2 + 1/a) = 2 + 2 · a if

she plans to take the next shortcut at vi+1. In the special case of i = 1/a2 + 1/a + 1

the perceived cost is exactly 1 as she can reach t directly via (v1/a2+1/a+1, t). Either

way a reward of 1/a · (2 + 2a) = 2/a + 2 covers the perceived cost for staying on the

regular path. In contrast, taking the immediate shortcut at vi has a perceived cost of

c̃(vi, w, a) = 2 + a · (1/a) = 3. As we assume a < 1/2, the agent clearly perceives direct

shortcuts to be more expensive than the regular path. Consequently, she follows the

regular path from s to t for a reward of 2/a+ 2.

Next consider an unbiased agent, i.e., an agent with a fixed present-bias of 1. Clearly,

this agent strictly follows a cheapest path P from s to t. Furthermore, her perceived

cost along P never exceeds the total cost of P . Taking the first shortcut at s, we can

bound the cost of a cheapest path from s to t by 2 + 1/a < 2/a + 2. This implies that

the unbiased agent successfully reaches t for a reward of 2/a+ 2.

It remains to show that no cost configuration h is motivating for all present-bias

configurations β ∈ {1, a}V if the reward is less than 1/a2. For the sake of contradic-

tion, assume such a cost configuration h exists. Note that h must keep the agent from

visiting w. The reason is that a reward less than 1/a2 cannot motivate the agent to

cross (w, t) should her present-bias become β(w) = a. However, to prevent the agent

from taking a shortcut, h must assign a cost greater than 1/a2 − i to all shortcuts i for

0 ≤ i ≤ 1/a2. To see this, consider the following induction on i:

We start the induction with i = 1/a2. At v1/a2 exactly 2 + 1/a edges remain on the

regular path. Ignoring extra cost, there are two cheapest paths to t, one along the regular

path and one along the current shortcut. Consequently, if the agent is momentarily

unbiased, i.e., β(v1/a2) = 1, and therefore indifferent between the two cheapest path from

v1/a2 to t, it becomes clear that h must assign an extra cost greater than 0 = 1/a2 − i
to the current shortcut. This is to prevent the agent from moving to w.

For the induction step, let i < 1/a2 and assume that each shortcut j with i < j ≤ 1/a2

has an extra cost greater than 1/a2−j assigned to it. Our goal is to argue that the extra

cost of shortcut i must be greater than 1/a2 − i as well. When located at vi, exactly

102

7.3 The Approximability of Cost Configurations for a Variable Present-Bias

1/a2 − i + 1/a + 2 edges of the regular path remain until t. If the agent is currently

unbiased, she perceives a cost of at least 1/a2 − i+ 1/a+ 2 for taking the regular path.

Clearly she cannot reduce this cost by planning to take a shortcut j′ with j′ > 1/a2.

Should she consider a shortcut j with i < j ≤ 1/a2 instead, she must first traverse (j− i)
edges of the regular path. Together with the induction hypothesis her total perceived

cost for such a plan is at least (j − i) + 2 + 1/a + (1/a2 − j) = 1/a2 − i + 1/a + 2.

Consequently, her perceived cost for staying on the regular path is greater or equal to

1/a2 − i + 1/a + 2. Since this exceeds the cost of shortcut i by 1/a2 − i or more, we

know that an extra cost greater than 1/a2 − i must be assigned to the current shortcut

to prevent the agent from walking onto w. This concludes the induction.

We now know that all shortcuts i with 0 ≤ i ≤ 1/a2 have an extra cost greater than

1/a2− i. Using the same argument as in the inductive step, it should be clear that each

path from s to t has a cost of at least 1/a2 + 1/a+ 2. Therefore, if the agent is unbiased

at s, we need a reward of 1/a2+1/a+2 > 1/a to motivate her. However, this contradicts

our initial assumption on h.

7.3 The Approximability of Cost Configurations for a Variable
Present-Bias

Apart from studying the price of variability, CopiedAndScaledCostApprox can of

course also be used to construct actual cost configurations for agents with a variable

present-bias. Based on the arguments presented in the previous section, it is not hard to

see that CopiedAndScaledCostApprox yields a (τ + 1) approximation of the given

design problem.

Proposition 7.3.1. Given a task graph G and present-bias set B ⊂ (0, 1], CopiedAnd-

ScaledCostApprox yields a cost configuration h whose minimal motivating reward

µ(Gh, B
V) is less than (τ + 1) · µ(Gh′ , B

V) for any other cost configuration h′.

Proof. The proof of Theorem 7.2.1 argues that CopiedAndScaledCostApprox re-

turns a cost configuration h that requires a reward of at most (τ + 1) · α/minB to be

motivating for any present-bias configuration BV , i.e., µ(Gh, B
V) ≤ (τ + 1) · α/minB.

However, by construction of the parameter α we furthermore know that any agent whose

present-bias is fixed to be minB needs a reward of at least α/minB to stay moti-

vated. This holds true independent of the actual cost configuration h′ assigned to G,

103

7 A Variable Present-Bias

i.e., µ(Gh′ ,minB) ≥ α/minB. Consequently, we conclude that

µ(Gh, B
V) ≤ (τ + 1) · α

minB
≤ (τ + 1) · µ(Gh′ ,minB) ≤ (τ + 1) · µ(Gh′ , B

V).

The approximation ratio of (τ+1) is of course far from the constant ration of 2 that can

be achieved for fixed present-bias values. Moreover, our best hardness result so far, i.e.,

the result of Theorem 4.6.1, only implies that an approximation within a constant factor

of 1.08192 or less is NP-hard. Clearly, there is a large gap between the approximation

ratio that we can currently achieve in polynomial time and the approximation ratio which

we know to be hard. In an attempt to narrow this gap at least a little bit, we present

a reduction from VECTOR SCHEDULING (VS) in [4]. The goal of the reduction is to

prove that any constant factor approximation of an almost optimal cost configuration

that is robust with respect to variability is unlikely to be achievable in polynomial time.

Before we take a closer look at the reduction, it is of course sensible to specify an

exact notion of the computational problem for which we want to prove hardness. In

reminiscence of the original optimization problem MCC-OPT, and also in lack of a better

name, we call the problem at hand MCCV-OPT, where the “V” stands for “variability”.

Definition 7.3.1 (MCCV-OPT). The problem of computing µ∗(G,BV) for a given task

graph G = (V,E, c, r) and present-bias set B ⊂ (0, 1].

Furthermore, we need to define the optimization version of the VS problem that the

reduction is based on.

Definition 7.3.2 (VS-OPT). The problem of finding the smallest makespan with re-

spect to all schedules that assign ` jobs q1, . . . , q` ∈ Rd≥0 to m machines M1, . . . ,Mm,

i.e., minimize max{‖
∑

q∈Mi
q‖∞ | 1 ≤ i ≤ m} over all partitions of the vectors q1, . . . , q`

into the sets M1, . . . ,Mm.

According to the work of Chekuri and Khanna [8], VS-OPT is highly unlikely to admit

algorithms that achieve a constant approximation in polynomial time. More precisely,

they prove that no polynomial time algorithm approximates VS-OPT within a constant

factor of γ > 1, unless NP = ZPP. This holds true even if all vectors qk are 0-1 vectors.

Based on Chekuri and Khanna’s result, we can deduce that MCCV-OPT does not permit

a constant approximation in polynomial time either unless NP = ZPP.

Theorem 7.3.2. There is no polynomial time algorithm that approximates MCCV-OPT

within a constant factor γ > 1 unless NP = ZPP.

104

7.3 The Approximability of Cost Configurations for a Variable Present-Bias

Proof. Let I be an arbitrary instance of VS-OPT with a set of m machines and ` ≥ 2

jobs q1, . . . , q` ∈ {0, 1}d. Our goal is to construct a MCCV-OPT instance J that is of

polynomial size with respect to I and satisfies the following two properties:

(a) If I has a schedule with a makespan of κ, then J has a cost configuration that is

motivating for a reward r = κ · `+ `+ 1 independent of the particular present-bias

configuration β ∈ Bv.

(b) If J has a cost configuration that is motivating for a reward r independent of the

present-bias configuration β ∈ Bv, then I has a schedule with a makespan of at

most κ = 2 · r/`.

Consequently, any polynomial time approximation algorithm for MCCV-OPT that has

a constant approximation ratio % can be applied to J to obtain a bound of

2 · % · (κ · `+ `+ 1)

`
= 2 · % · κ+ 2 · %+ 2 · %

`

on the makespan. However, this solution approximates I within a factor of 2 · %+O(1).

According to Chekuri and Khanna [8], this is not possible unless NP = ZPP.

As our first step we construct the MCCV-OPT instance J . For this purpose, we need

to specify the present-bias set B and a task graph G. We begin with B. Proposition 7.3.1

shows that MCCV-OPT has a τ + 1 approximation algorithm. Consequently, the range

τ of B must depend on the size of I. To keep things simple, we set B = {1/`2, 1/2}.
We continue with the construction of G. For each machine i and dimension j, let

G contain a subcomponent Hi,j . The structure of these components, which we call

columns, is illustrated in Figure 7.2. Observe that each column Hi,j consists of ` layers.

Moreover, each layer k consists of a so-called regular path leading from the node vi,j,k to

the node wi,j,k via `4 edges of cost 1/`2. The total cost of this path therefore sums up to

`2. In addition to the regular path, each node of the layer k has a shortcut to the next

layer k + 1, or to t if k = `. For a convenient notation let t = vi,j,`+1. We distinguish

between two types of shortcuts: First, there is a shortcut from each node vi,j,k to vi,j,k+1

via an intermediate node v′i,j,k. The initial edge of this shortcut is free of charge while

the second has a cost of 1. Secondly, all remaining nodes of the layer k have a direct

shortcut to vi,j,k+1 for a cost of `.

To combine the individual columns into the final task graph G, we introduce ` − 1

additional nodes u1, . . . , u`−1 and set s = u0 and t = u`. As Figure 7.3 illustrates for

a small sample instance of I, each pair of consecutive nodes uk−1 and uk is connected

via a so-called extended regular paths, one such path Pi,k for each machine i. The path

105

7 A Variable Present-Bias

vi,j,1
wi,j,1

vi,j,2
wi,j,2

vi,j,3
wi,j,3

vi,j,`
wi,j,`

t

v′i,j,1

v′i,j,2

v′i,j,`

. . .

. . .

. . .

. . .

...
...

...
...

...

layer `

layer 3

layer 2

layer 1

Figure 7.2: A column Hi,j of the task graph G

Pi,k crosses the k-th layer of all the columns Hi,j for which the job qk has a cost of 1 in

dimension j, i.e., (qk)j = 1. More formally, Pi,k has the following structure: Let j be

an arbitrary dimension for which (qk)j = 1. Without loss of generality, we may assume

that at least one such dimension exists. Otherwise, qk could be assigned to any machine

without affecting the makespan and therefore it would be irrelevant to the schedule. If

j is the dimension of the lowest index satisfying (qk)j = 1, an edge of cost 1/`2 is drawn

from uk−1 to vi,j,k. Similarly, an edge of cost 1/`2 is drawn from wi,j,k to uk if j is

the dimension of highest index for which (qk)j = 1. For all intermediate dimensions j

satisfying (qk)j = 1 an edge of cost 1/`2 is drawn from wi,j,k to a distinct intermediate

node ui,j,k and another edge of the same cost is drawn from ui,j,k to vi,j′,k, where j′ is

the dimension of the next higher index satisfying (qk)j′ = 1. Note that the endpoints of

the extended regular path appear twice in Figure 7.3. Keeping this in mind, it is easy

to see that the agent can travel from s to t along a concatenation of extended paths and

that each such walk corresponds to an assignment of jobs to machines.

To complete G, we introduce one more shortcut type that connects all the nodes uk 6= t

and ui,j,k to t via a single edge of cost `. Note that these shortcuts are not depicted in

Figure 7.3 for the sake of a clear representation. Note that the resulting task graph G is

106

7.3 The Approximability of Cost Configurations for a Variable Present-Bias

s v1,1,1 w1,1,1 v1,2,1 w1,2,1

v2,1,1 w2,1,1 v2,2,1 v2,2,1
v1,1,2 w1,1,2 v1,2,2 w1,2,2

v2,1,2 w2,1,2 v2,2,2 v2,2,2
v1,1,3 w1,1,3 v1,2,3 w1,2,3

v2,1,3 w2,1,3 v2,2,3 v2,2,3 t

u1
u1

u2
u2

u1,1,3
u2,1,3

H1,1 H1,2 H2,1 H2,2

.

.

.

.

.

.

P1,1

P2,1

P1,2

P2,2

P1,3

P2,3

Figure 7.3: Reduction from a VS-OPT instance with m = 2 machines and ` = 3 jobs:
q1 = (0, 1)T , q2 = (1, 0)T , q3 = (1, 1)T

acyclic and can be constructed in polynomial time with respect to I. It should also be

mentioned that some columns of G might contain nodes which are not reachable from s.

For instance, there is no path from s to the first layer of H1,1 in the task graph sketched

in Figure 7.3. However, because these nodes do not affect the agent’s behavior, we may

ignore them in our analysis.

We proceed with the proof of statement (a). For this purpose, assume that I has

a schedule M1, . . . ,Mm with makespan κ. Our goal is to show that J admits a cost

configuration h that is motivating for a reward of κ · ` + ` + 1 for any present-bias

configuration β ∈ BV . A simple instance of h satisfying this property can be constructed

as follows: Given an arbitrary job qk, let i be the machine it is scheduled on, i.e., qk ∈Mi.

In this case, h assigns an extra cost of κ · ` + ` + 2 to the initial edge of all extended

regular paths Pi′,k with i′ 6= i. Furthermore, h assigns a cost of ` to the initial edge of

all shortcuts that start at a node vi,j,k for which qk has a cost of 1 in dimension j, i.e.,

(qk)j = 1. The idea behind this construction is to keep the agent from visiting extended

regular paths Pi′,k that do not match the given schedule, i.e., qk /∈Mi′ .

It remains to give a formal argument for why h is motivating. To see this, assume

that the agent is located at a node v 6= t of an extended regular path Pi,k with qk ∈Mi.

Furthermore, let β(v) ∈ B be the current present-bias. In the following we use a case

distinction on the type of v to show that the agent has a strict preference for staying

107

7 A Variable Present-Bias

on Pi,k or taking a single edge shortcut to t. In both cases, the perceived cost c̃(v, β(v))

does not exceed the perceived reward β(v) · (κ · `+ `+ 1). Thus, applying this argument

repeatedly until the agent reaches t yields the desired result.

We begin with v = uk−1. At any such node the agent has three options: The first one

is to enter an extended regular path Pi′,k for which i′ 6= i. However, because h assigns

an extra cost of κ · `+ `+ 2 to the initial edge of Pi′,k, this clearly cannot be motivating.

The agent’s second option is to enter Pi,k. In this case, let (uk−1, vi,j,k) be the first edge

of Pi,k and define P ′ = uk−1, vi,j,k, v
′
i,j,k, vi,j,k+1, v

′
i,j,k+1, . . . , t as the path from uk−1 to t

that climbs the layers of Hi,j along the double edge shortcuts. Clearly, P ′ consists of at

most ` shortcuts, each of which has an edge of cost 1. Furthermore, at most κ shortcuts

of P ′ charge an extra cost of `. This holds true by the assumption on the makespan of

the schedule. Together with the fact that c(uk−1, vi,j,k) = 1/`2 and β(uk−1) ≤ 1/`2, we

conclude that

c̃h
(
P ′, β(uk−1)

)
≤ 1

`2
+ β(uk−1) · (`+ κ · `) ≤ β(uk−1) + β(uk−1) · (`+ κ · `)

= β(uk−1) · (κ · `+ `+ 1).

This means that the agent is motivated to enter Pi,k. Moreover, if she does not enter

Pi,k, she must have chosen her only remaining option, which is to take the direct shortcut

from uk−1 to t. Either way our hypothesis holds true.

We continue with v = ui,j,k. In contrast to before, the agent has only two options at

such a node: either she stays on Pi,k or she takes the direct shortcut to t. As long as one

of these options is motivating, it does not matter which one she chooses. However, the

same argument presented in the previous paragraph to show that the agent is motivated

to enter Pi,k at uk−1 also proves that she is motivated to stay on Pi,k at ui,j,k.

Next consider the case that v is a node on the k-th layer of a column Hi,j such that v is

different from wi,j,k. When located at v, the agent has two options: either she takes the

immediate shortcut at v or she crosses a regular edge and stays on Pi,k. The perceived

cost of the first option is at least `+ β(v) · dh(vi,j,k+1). Conversely, the perceived cost of

the second option is at most 1/`2 +β(v) · (`+dh(vi,j,k+1)) if she plans to take a shortcut

immediately after crossing the regular edge. Consequently, she prefers to stay on Pi,k

whenever ` > 1/`2 +β(v) · `. Rearranging this term to 1−1/`3 > β(v) and recalling that

` ≥ 2 and β(v) ≤ 1/2 immediately show that the inequality is satisfied. But is the agent

also motivated to stay on Pi,k? Reusing the argument from the previous two paragraphs

immediately shows that she is motivated.

Finally, we consider the case v = wi,j,k. The agent’s options at such a node are twofold:

108

7.3 The Approximability of Cost Configurations for a Variable Present-Bias

either she takes the shortcut at wi,j,k or she moves to some node u across a regular edge

of Pi,k. Considering that the shortcut at wi,j,k is of cost `, it must have a perceived cost

of at least `. In contrast, the perceived cost of moving to u is at most 1/`2 + β(wi,j,k) · `
if the agent plans to take the shortcut to t immediately after. As a result, she prefers

to stay on Pi,k whenever ` > 1/`2 + β(wi,j,k) · `. But from the previous paragraph we

already know that this inequality is satisfied. Furthermore, 1/`2 ≤ β(wi,j,k) implies that

staying on Pi,k is also motivating because

c̃h
(
wi,j,k, u, β(wi,j,k)

)
≤ 1

`2
+ β(wi,j,k) · ` ≤ β(wi,j,k) + β(wi,j,k) · `

≤ β(wi,j,k) · (κ · `+ `+ 1).

As the last part of the proof, we consider statement (b). For this purpose assume that

J has a cost configuration h that is motivating for a reward of r for any present-bias

β(v) ∈ BV . Our goal is to schedule the jobs of I in such a way that the makespan is at

most 2 · r/`. Since any schedule has a makespan less or equal to `, we focus on the case

r < `2/2. In particular, this means that the perceived reward becomes strictly less than

1/2 for a present-bias of 1/`2. However, because the intermediate node v′i,j,k of a double

edge shortcut has a perceived cost of 1, this implies that the agent must never take any

such shortcut. Otherwise, she would lose motivation if her present-bias becomes 1/`2

at v′i,j,k. Clearly, the agent is also not interested in taking a single edge shortcut for a

present-bias of 1/`2. Consequently, if the present-bias is fixed to β(v) = 1/`2 at all the

nodes v of Gh, the agent constructs a path P from s to t containing no shortcuts. As a

result, P can be partitioned into a sequence of extended regular paths Pi,k. Assigning job

qk to machine i if Pi,k is contained in P therefor yields a feasible schedule M1, . . . ,Mm.

We proceed to argue that the makespan of M1, . . . ,Mm is at most 2 · r/`. As a first

step, it is helpful to observe that h needs to assign an extra cost of `/2 − 1 or more

to all shortcuts starting at a node vi,j,k of P . To verify this, assume that the agent is

located at vi,j,k. This scenario may occur whenever β(v) = 1/`2 for all nodes v of P that

come before vi,j,k. Furthermore, assume that β(vi,j,k) = 1/2. As argued in the previous

paragraph, the agent must not take the shortcut at vi,j,k. Instead she needs to stay

on Pi,k. Let P ′ denote her planned path at vi,j,k. We distinguish between two possible

scenarios. First, P ′ might follow Pi,k until it exits the current column Hi,j . In this case,

the first `4 + 1 edges of P ′ are all of cost 1/`2 and the perceived cost of P ′ is at least

c̃h
(
P ′, β(vi,j,k)

)
≥ 1

`2
+ β(vi,j,k) ·

(
`4 · 1

`2

)
=

1

`2
+
`2

2
.

109

7 A Variable Present-Bias

Keeping in mind that r < `2/2, this cannot be motivating. Secondly, P ′ might contain

a shortcut to the next layer of Hi,j . Recall that this shortcut cannot be the shortcut at

vi,j,k. But even if we assume that the agent takes the very next shortcut, the perceived

cost of P ′ is at least

c̃h
(
P ′, β(vi,j,k)

)
≥ 1

`2
+ β(vi,j,k) ·

(
`+ dh(vi,j,k+1)

)
.

In contrast, the perceived cost of the shortcut at vi,j,k is only β(vi,j,k) · (1 + dh(vi,j,k+1))

plus the extra cost assigned to (vi,j,k, v
′
i,j,k) and (v′i,j,k, vi,j,k+1). Because the agent must

not enter the shortcut at vi,j,k, it follows that this extra cost is greater than

1/`2 + β(vi,j,k) · (`− 1) > β(vi,j,k) · (`− 1) =
`− 1

2
>
`

2
− 1.

Next, consider the workload κi,j on an arbitrary machine i in an arbitrary dimension j.

Assuming that κi,j > 0, let qk be the job of the lowest index scheduled on i such that

(qk)i = 1. Furthermore, assume that the agent is located at vi,j,k and that her current

present-bias is β(vi,j,k) = 1/`2. Because vi,j,k is located on P , this assumption is justified.

We continue with a case distinction on the path P ′ that the agent plans to take when

located at vi,j,k. In general, P ′ can either exit column Hi,j via a regular edge or it is

completely contained in Hi,j and climbs to t via internal shortcuts. If P ′ exits Hi,j , it

must contain at least `4 + 1 regular edges, each of cost 1/`2. Clearly, the perceived cost

of such a P ′ is at least

c̃h
(
P ′, β(vi,j,k)

)
≥ 1

`2
+ β(vi,j,k) ·

(
`4 · 1

`2

)
> β(vi,j,k) ·

(
`4 · 1

`2

)
=

1

`2
·
(
`4 · 1

`2

)
= 1

and cannot be motivating for the perceived reward, which is less than 1/2. However,

this means that P ′ climbs to the top of column Hi,j via shortcuts. According to the

observation from the previous paragraph, this means that P ′ consists of κi,j or more

shortcuts that have a cost of at least `/2 with respect to h. As a result, the perceived

cost of P ′ is at least

c̃h
(
P ′, β(vi,j,k)

)
≥ β(vi,j,k) · κi,j ·

`

2
=
κi,j
2 · `

.

To make sure that this cost does not exceed the perceived reward r/`2, makespan κ can

be at most 2 · r/`.

110

7.4 Occasionally Unbiased Agents

7.4 Occasionally Unbiased Agents

Although MCCV-OPT most likely does not admit an algorithm that achieves a constant

approximation factor in polynomial time, we would like to end this chapter with an

interesting special case that can actually be solved optimally in polynomial time. The

only constraint we need to impose on MCCV-OPT to obtain this positive result is that

the present-bias set B contains the value 1. The interpretation of this setting in real-life

is that the agent may become temporarily unbiased at any given point in time. For this

reason we call such an agent occasionally unbiased.

The intuitive reason why incentives are easier to construct for an occasionally unbiased

agent than for a general agent is that the former may base her decisions on objectively

optimal plans from time to time, i.e., there is always a chance that she follows a cheapest

path to t. This observation is crucial as it allows us to reduce the decision version of

MCCV-OPT, which we call MCCV, to a simple structural analysis of the task graph G.

Definition 7.4.1 (MCCV). The problem of deciding if a task graph G = (V,E, c, r)

admits a cost configuration h that is motivating for any present-bias configuration β ∈ BV .

More precisely, it turns out that MCCV is feasible if and only if the task graph G

admits a node set W that contains s and satisfies the following two properties:

(a) Each node v ∈W can be associated with a path P to t that only uses nodes of W .

(b) The perceived cost of P with respect to the present-bias value minB is covered by

the promised reward, i.e. c̃(P,minB) ≤ minB · r.

Because of property (b) we also refer to W as a threshold set.

Proposition 7.4.1. Assuming that 1 ∈ B, MCCV has a solution if and only if G admits

a threshold set W such that s ∈W .

Proof. To prove the proposition, we first assume that G admits a threshold set W that

contains s. Our goal is to construct a cost configuration h that is motivating for all

β ∈ BV . For this purpose, let h assign an extra cost of h(v, w) = r+1 to all edges (v, w)

that leave W , i.e., all edges for which v ∈ W but w /∈ W . All other edges e of G are

free of charge, i.e., h(e) = 0. Note that the resulting cost configuration h discourages

the agent from ever leaving W . The reason is that the perceived extra cost for crossing

an edge (v, w) that exits W alone is already r + 1. Clearly, this is not covered by the

perceived reward of β(v) · r. To conclude the first part of the proof, it remains to show

111

7 A Variable Present-Bias

that no matter at which node v ∈ W \ {t} the agent is located, she always finds a

successor node w ∈W that she is motivated to visit next.

In order to prove the above statement, let v be an arbitrary node of W different from t.

Because W is a threshold set, a path P = v, w, . . . , t must exist that consists exclusively

of nodes from W . Furthermore, the perceived cost of P with respect to a present-bias

of minB can be at most minB · r. The perceived cost of P must therefore be less than

β(v) · r for any other present-bias β(v) ∈ B too since

c̃(P, β(v)) ≤ c(v, w) + β(v) ·
∑

e∈P\{v}

c(e) ≤ β(v)

minB
·
(
c(v, w) + minB ·

∑
e∈P\{v}

c(e)
)

=
β(v)

minB
· c̃(P,minB) ≤ β(v) · r.

Considering that c̃(P, β(v)) is an upper bound on c̃h(v, w, β(v)), we know that the agent

is motivated to cross the edge (v, w).

Next, assume that G admits a cost configuration h that is motivating for all present-

bias configurations β ∈ BV . Moreover, let W ′ be the set of all nodes that the agent

might visit on her walk from s to t. To complete the proof, we argue that W ′ is a critical

node set, i.e., W ′ satisfies the following two properties:

(a) Each node v ∈W ′ can be associated with a path P to t that only uses nodes of W ′.

(b) The perceived cost of P with respect to the present-bias value minB is at most

c̃(P,minB) ≤ minB · r.

For this purpose, let v be some node of W ′ and choose w as the immediate successor of

v that the agent visits should her present-bias be β(v) = minB. Furthermore, let P ′ be

a cheapest path from w to t with respect to h. By adding (v, w) to the initial node of

P ′, we obtain a suitable path P that satisfies (a) and (b).

We first show that P satisfies (b). Recall that by definition of w the agent is motivated

to cross (v, w) if her present-bias is minB, i.e., c̃h(v, w,minB) ≤ minB · r. The fact

that P ′ is a cheapest path from w to t with respect to h immediately implies that the

perceived cost of P with respect to minB is at most

c̃(P,minB) ≤ c̃h(P,minB) = c̃h(v, w,minB) ≤ minB · r.

We continue with (a). Assuming the agent is located at v, consider a present-bias

configuration β that assigns a value of β(v) = minB to v and β(v′) = 1 to all nodes

v′ 6= v located on paths from v to t. Because the value 1 is contained in B, it is possible

112

7.4 Occasionally Unbiased Agents

to construct such a present-bias configuration. By choice of (v, w) we also know that

the agent may actually cross (v, w) and end up at w. If she does, she then proceeds to

follow a cheapest path from w to t with respect to h. Since P ′ is such a cheapest path,

we conclude that the agent may visit any node of P . But this implies that all nodes of

P are contained in W ′.

As a result of the above theorem we can easily reduce the problem of constructing a

cost configuration that is motivating for an occasionally unbiased agent to the problem

finding a threshold set W in G. After all, the proof of the theorem suggests that W can

be converted to a motivating cost configuration by assigning an extra cost of h(e) = r+1

to all edges e that exit the set W . Alternatively, it is also possible to simply delete e.

The latter observation is quite remarkable as it implies that penalty fees and prohibitions

are equally powerful in the special case of occasionally unbiased agents.

The only missing piece in our attempt to construct an optimal cost configuration

for occasionally unbiased agents is an algorithm to compute a suitable threshold set W .

Clearly, it is not too difficult to come up with an implementation that solves this problem

in polynomial time. To give just one example, consider the following algorithm, which

we call ThresholdSet:

Algorithm 8: ThresholdSet

Input: Task graph G, present-bias set B
Output: Threshold set W

1 δ(t)← 0;
2 foreach v ∈ V \ {t} in reverse topological order do
3 U ← {w | c(v, w) + minB · δ(w) ≤ minB · r};
4 if U = ∅ then
5 δ(v)←∞;

6 else
7 δ(v)← min{c(v, w) + δ(w) | w ∈ U};

8 return {v | δ(v) <∞}

It is easy to see that ThresholdSet runs in polynomial time with respect to the

encoding length of G and B. Furthermore, it should be clear that the node set W

returned by ThresholdSet satisfies properties (a) and (b) of a threshold set. Together

with the observation that the algorithm adds nodes greedily and in a reverse topological

order to W , we may conclude that W is not only a threshold set, but a maximum

threshold set in the sense that no other threshold set contains nodes which are not also

contained in W . In particular this implies that W contains s whenever there exists some

113

7 A Variable Present-Bias

threshold set that contains s. As a result of Proposition 7.4.1, ThresholdSet therefore

allows us to construct a motivating reward configuration for occasionally unbiased agents

in polynomial time whenever such an incentive is possible. In particular, this implies

that MCCV can be decided in polynomial time for occasionally unbiased agents.

Proposition 7.4.2. MCCV can be solved in polynomial time whenever 1 ∈ B.

Proof. According to Proposition 7.4.1 and our analysis of ThresholdSet, it suffices to

run ThresholdSet on the given instance of G and B and check whether the returned

node set W contains s. This requires polynomial time at most.

114

8 Conclusions

Drawing on Kleinberg and Oren’s graphical model [16] we have designed and analyzed

behavioral economic incentives from an algorithmic perspective. The common idea be-

hind these incentives was to help present-biased people reach predefined long-term goals

in a way that is cost efficient for the designer of the incentive. In the following we present

a brief summary of the main results before we conclude with some suggestions for future

research that is particularly interesting in our opinion.

8.1 Summary of Results

The first part of this work focused on three different types of frequently used incentives

that are based on prohibition, penalty fees and intermediate rewards. The reason why

we were interested in these incentives was twofold. Our first goal was to quantify and

compare the conceptual power of different types of incentives. For this purpose we

considered the minimum motivating rewards µ∗prb(G, β), µ∗pnl(G, β) and µ∗rwd(G, β) with

respect to the three incentives as well as the minimal motivating reward µ(G, β) that

must be invested if no incentives are admissible. Based on these values, we showed that

1 ≤ µ∗(G, β)

µ∗prb(G, β)
≤ β−n+2, 1 ≤

µ∗prb(G, β)

µ∗pnl(G, β)
≤ 1

β
and 0 ≤

µ∗rwd(G, β)

µ∗pnl(G, β)
≤ β−n+2

for arbitrary choices of β and G. These results are tight. Furthermore, they imply that

penalty fees are more efficient than prohibition and prohibition is more efficient than

no incentive at all. Only intermediate rewards resist a classification in this hierarchy as

they are sometimes more and sometimes less powerful than prohibition based incentives.

Our second goal was to design actual instances of these incentives whose minimal mo-

tivating reward is as close to the theoretical optimum as possible. For all three types of

these incentives, we showed that this computational problem is NP-hard to solve opti-

mally. Furthermore, we showed that the design of an optimal prohibition based incentive

remains NP-hard even if the path of the agent with respect to an optimal solution is

known in advance. This result is contrasted by penalty based incentives, for which we

115

8 Conclusions

proved that similar information makes the design of almost optimal penalty fees feasible

in polynomial time. Since optimal designs are generally NP-hard for all three types of

incentives, we continued with a study of approximation techniques. In the case of prohi-

bition based incentives, we devised two simple algorithms with approximation ratios of

1/β and 1 +β ·n respectively. Combining these two algorithms yields a straight forward

(1 +
√
n)-approximation. To complement this result, we argued that any approximation

better than
√
n/3 is NP-hard. Next, we turned our attention to penalty based incentives

and presented a 2-approximation algorithm. Moreover, we showed that any approxima-

tion within a constant factor of 1.08192 is NP-hard. Finally, we argued that reward

based incentives on their own do not admit a polynomial time approximation within any

bounded ratio unless P = NP. However, when combined with prohibition and penalty

fees it is in fact possible to construct optimal incentives in polynomial time.

The second part of this work was concerned with the effects of heterogeneous and

variable present-biases on the design of efficient incentives. We first focused on a set-

ting in which incentives have to be designed in a way that motivates each member of

a population equally. The challenge was that people do not necessarily share the same

present-bias. Instead, each person has her own present-bias, which is drawn from a larger

set B ⊂ (0, 1]. The goal was to design an incentive that is motivating for each present-

bias of the set B. Based on these underlying assumptions, we considered the conceptual

cost of addressing the entire population with the same incentive rather than individual-

ized incentives. We called this cost the price of heterogeneity and defined it as the ratio

between the minimum motivating reward µ∗(G,B) required to motivate each person

with the same incentive and the minimum motivating reward max{µ∗(G, β) | β ∈ B}
required to motivate the most costly person with an individualized incentive. Using

penalty fees as our incentive of choice, we constructed a family of scenarios in which

the price of heterogeneity converges to 1.1. This proves that a true loss of efficiency is

sometimes unavoidable. However, we were also able to prove that the loss of efficiency

cannot be much greater than this. More precisely, we argued that the price of hetero-

geneity is at most 2 for penalty based incentives. To obtain this result, we adjusted the

2-approximation algorithm from the first part of this work and, in the process, devised

a 2-approximation algorithm for the heterogeneous setting.

Inspired by the work of Gravin et al. [13] we then proceeded to a slightly modified

setting in which the present-bias of a person is drawn from a set B, but varies arbitrarily

over time. In this case, it is important that incentives are motivating independent of the

changes of the present-bias. As in the case of heterogeneity, we quantified the conceptual

loss of efficiency arising in such a setting in terms of the ratio between the minimum

116

8.2 Future Work

motivating reward µ∗(G,BV) required if the present-bias is variable and the minimum

motivating reward max{µ∗(G, β) | β ∈ B} required if the present-bias is fixed to a worst

case instance. We called this ratio the price of variability. In contrast to the price of

heterogeneity, which in the case of penalty fees is bounded by a constant, we were able to

construct a family of scenarios for which the price of variability converges to τ/2 as the

range τ = maxB/minB of B goes to infinity. This implies that the price of variability

for penalty fees generally depends on τ . To complement this result, we adjusted the

2-approximation of the first part of this work once more and obtained an upper bound

of τ+1 on the price of variability as well as a matching (τ+1)-approximation algorithm.

The gap between this approximation ratio and the NP-hard 1.08192-approximation ratio

following from our previous work is of course significant. To narrow this gap, we argued

that a constant approximation is impossible in polynomial time unless NP = ZPP.

Nevertheless, we identified a curious special case in which the construction of optimal

penalty fees is in fact feasible in polynomial time. The only requirement is that the value

1 is contained in B. In other words, it must be assumed that people occasionally lose

their present-bias.

8.2 Future Work

Kleinberg and Oren’s graphical model [16] has opened a fascinating research area at the

intersection between computer science and behavioral economics with many directions

for future work. In the light of our results, we would like to point out three specific

directions: First, there is the problem of improving the approximability results. So far

we have devised polynomial time algorithms for designing optimal prohibition based

and penalty based incentives with approximation ratios of 1 +
√
n and 2 respectively.

However, the corresponding NP-hardness results only apply to approximation ratios of
√
n/3 and 1.08192. An even wider gap still remains between the (τ + 1)-approximation

of optimal penalty fees in a setting with a variable present-bias and the impossibility of

a constant factor approximation unless NP = ZPP. It would be interesting to see these

upper and lower bounds tightened, either by devising new approximation algorithms or

by establishing stronger hardness results.

Secondly, a straight forward extension of our work is the design and analysis of other

types of incentives in the graphical model. Our choice of prohibitions, penalty fees and

intermediate rewards was primarily motivated by the generality of these three types of

incentives. However, more specific applications may justify the study of other types of

incentives in the graphical model. For instance, Kleinberg and Oren briefly consider a

117

8 Conclusions

setting in which a single task can be stretched over a period of time by dividing it into

a sequence of smaller tasks [16].

Finally, it would be worth the effort to consider more general versions of the graphical

model. Recall that at the beginning of this work, we made some simplifying assumptions.

The first assumption was that people have a discount rate of ρ = 0 at any point that

is t > 0 time units in the future. However, the standard notion of quasi-hyperbolic

discounting permits arbitrary non-negative discount rates. Thus, the question arises

how a discount rate of ρ > 0 affects the graphical model and the design of incentives.

Another assumption was that people behave naively in the sense that they are unaware

of their present-biased perception. Kleinberg, Oren and Raghavan address this issue

by extending the graphical model to agents who are fully or at least partially aware

of their present-bias [17]. Part of their work is focused on conceptual properties of

prohibition based incentives in this new model. It would be interesting to extend their

work to algorithmic consideration and introduce other incentives into this setting. The

last assumption was that no other cognitive bias except for the present-bias affects

a person’s behavior. However, designing robust incentives may sometimes require to

consider other aspects of human behavior as well. In another extension of the graphical

model, Kleinberg, Oren and Raghavan examine agents who suffer from different cognitive

biases [18]. More precisely, they look at agents whose decisions are simultaneously

influenced by a present-bias and a sunk-cost-bias. Designing incentives for this setting

or other settings with multiple cognitive biases may be a promising research direction.

118

Bibliography

[1] George A Akerlof. Procrastination and obedience. The American Economic Review,

81(2):1–19, 1991.

[2] Susanne Albers and Dennis Kraft. Motivating time-inconsistent agents: A compu-

tational approach. In Proceedings of the 12th International Conference on Web and

Internet Economics, pages 309–323. Springer, 2016.

[3] Susanne Albers and Dennis Kraft. On the value of penalties in time-inconsistent

planning. In Proceedings of the 44th International Colloquium on Automata, Lan-

guages and Programming, pages 10:1–10:12. Schloss Dagstuhl Leibniz-Zentrum für

Informatik, 2017.

[4] Susanne Albers and Dennis Kraft. The price of uncertainty in present-biased plan-

ning. In Proceedings of the 13th International Conference on Web and Internet

Economics, pages 325–339. Springer, 2017.

[5] Dan Ariely and Klaus Wertenbroch. Procrastination, deadlines, and performance:

Self-control by precommitment. Psychological science, 13(3):219–224, 2002.

[6] Robert J Aumann. Rationality and bounded rationality. Games and Economic

Behavior, 21(1-2):2–14, 1997.

[7] Gharad Bryan, Dean Karlan, and Scott Nelson. Commitment devices. Annual

Review of Economics, 2(1):671–698, 2010.

[8] Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems.

SIAM Journal on Computing, 33(4):837–851, 2004.

[9] Stefano DellaVigna. Psychology and economics: Evidence from the field. Journal

of Economic Literature, 47(2):315–72, 2009.

[10] Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, 1987.

119

Bibliography

[11] Shane Frederick, George Loewenstein, and Ted O’donoghue. Time discounting and

time preference: A critical review. Journal of Economic Literature, 40(2):351–401,

2002.

[12] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., 1990.

[13] Nick Gravin, Nicole Immorlica, Brendan Lucier, and Emmanouil Pountourakis. Pro-

crastination with variable present bias. In Proceedings of the 17th ACM Conference

on Economics and Computation, pages 361–361. ACM, 2016.

[14] Leonard Green, Nathanael Fristoe, and Joel Myerson. Temporal discounting and

preference reversals in choice between delayed outcomes. Psychonomic Bulletin

Review, 1(3):383–389, 1994.

[15] Kris N. Kirby and Nino N. Maraković. Modeling myopic decisions: Evidence for

hyperbolic delay-discounting within subjects and amounts. Organizational Behavior

and Human Decision Processes, 64(1):22–30, 1995.

[16] Jon Kleinberg and Sigal Oren. Time-inconsistent planning: A computational prob-

lem in behavioral economics. In Proceedings of the 15th ACM Conference on Eco-

nomics and Computation, pages 547–564. ACM, 2014.

[17] Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning problems for sophis-

ticated agents with present bias. In Proceedings of the 17th ACM Conference on

Economics and Computation, pages 343–360. ACM, 2016.

[18] Jon Kleinberg, Sigal Oren, and Manish Raghavan. Planning with multiple biases.

In Proceedings of the 18th ACM Conference on Economics and Computation, pages

567–584. ACM, 2017.

[19] David Laibson. Golden eggs and hyperbolic discounting. The Quarterly Journal of

Economics, 112(2):443–478, 1997.

[20] James F. Lynch. The equivalence of theorem proving and the interconnection prob-

lem. ACM SIGDA Newsletter, 5(3):31–36, 1975.

[21] Ted O’Donoghue and Matthew Rabin. Doing it now or later. American Economic

Review, 89(1):103–124, 1999.

[22] Ted O’Donoghue and Matthew Rabin. Choice and procrastination. The Quarterly

Journal of Economics, 116(1):121–160, 2001.

120

Bibliography

[23] Pingzhong Tang, Yifeng Teng, Zihe Wang, Shenke Xiao, and Yichong Xu. Com-

putational issues in time-inconsistent planning. In Proceedings of the 31st AAAI

Conference on Artificial Intelligence, pages 3665–3671. AAAI, 2017.

[24] Richard Thaler. Some empirical evidence on dynamic inconsistency. Economics

Letters, 8(3):201–207, 1981.

121

