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Abstract

One of the breakthrough technologies of the last century is the availability of wide-spread
electrical power grids and their pervasive e�ect on appliances in households, o�ces, and
industry. In recent decades, conserving energy and producing less pollution go hand in
hand with renewable energy sources. In order to reduce energy consumption, one has
to be aware of consumers and the impact a single appliance can have on the personal
electrical energy footprint. Consumption data play a vital role in smart grids and smart
homes to understand energy usage characteristics in di�erent environments.

Conventional smart meters o�er �rst insights into consumption patterns, but lack the
detailed information about individual appliances and their interaction due to their coarse
metering interval. Sampling the voltage and current waveform requires high sampling
rates and dedicated data acquisition modules. High-frequency voltage and current data
contain valuable information used in power disaggregation and appliance identi�cation
tasks – which can help the user to analyze and change the personal consumption pro�le,
or in�uence operation procedures for industrial machinery and factories.

We develop methodologies for hard- and software architectures for data acquisition,
collection, and compression of long-term continuous measurements with a distributed
�eet of Internet of Things (IoT) sensors. The integrated approach covers analog signal
measurement, embedded systems design, and intelligent data processing in edge- and
cloud-computing paradigms. We derive architecture patterns (software blueprints and
guidelines) and present two IoT-style data acquisition systems, used for collecting mains
(aggregate) and per-appliance waveforms (ground truth), in conjunction with a cloud-
based data collection service to provide large-scale storage and analytics capabilities.

Our full-stack architecture patterns have been evaluated by collecting and processing the
newly introduced Building-Level O�ce eNvironment Dataset (BLOND), which contains
two long-term measurement series (213 and 50 days) using di�erent components and
strategies covered in our design guidelines, a 3-phase mains meter, and up to 90 monitored
per-appliance sockets. We provide an in-depth technical validation of the collected data,
including sampling rate precision, clock synchronization, and multiple per-�le data
checks. An appliance log was recorded to label each monitored socket with appliance
class, manufacturer, type, and nominal power information.
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Zusammenfassung

Eine der wichtigsten Errungenschaften des letzten Jahrhunderts ist die Verfügbarkeit von
groß�ächigen Stromnetzen und deren allgegenwärtige Auswirkung auf elektrische Geräte
in Haushalten, Büros, und Fabriken. Die Reduzierung des Stromverbrauchs und der damit
verbundenen Umweltverschmutzung sind in den letzten Jahrzehnten direkt an die Einfüh-
rung von erneuerbaren Energien geknüpft. Um Energieeinsparungen zu erzielen, müssen
Kunden und Nutzer über den Energieverbrauch einzelner Geräte informiert werden, mit
dem Ziel den persönlichen elektrischen Fußabdruck zu optimieren. Verbrauchsdaten
spielen eine wichtige Funktion in intelligenten Stromnetzen und Gebäuden um die
Charakteristiken des Energieverbrauchs in verschiedenen Umgebungen zu verstehen.

Übliche intelligente Stromzähler bieten einen ersten Einblick in die Verbrauchspro�le,
enthalten aber keine Informationen zu einzelnen Geräten und deren Zusammenspiel
aufgrund der groben Messintervalle. Das Messen von Spannung- und Stromwellenformen
erfordert hohe Abtastraten und spezialisierte Datenerfassungsmodule. Hochfrequente
Messdaten enthalten wertvolle Informationen zur Aufteilung des Energieverbrauchs und
Geräteerkennung. Diese Techniken können dem Nutzer bei der Analyse und Anpassung
des persönlichen Energieverbrauchspro�ls helfen und beein�ussen die Betriebsverfahren
von Industrieanlagen und Fabriken.

Wir erarbeiten Methodologien für Hard- und Software Architekturen zur Datenakquise,
Sammlung und Kompression von ununterbrochenen Langzeitmessungen mit einer verteil-
ten Flotte von „Internet der Dinge“ (IoT) Sensoren. Der vollintegrierte Ansatz umfasst die
analoge Signalmessung, eingebettete Systeme und intelligente Datenverarbeitung in Edge-
und Cloud-basierten Paradigmen. Wir de�nieren Entwurfsmuster (Softwarestruktur und
Regelwerk) stellen das Design und zwei IoT-basierten Datenerfassungssystemen vor,
welche zur Sammlung von Wellensignalen aus dem Stromnetz (aggregiert) und den
Einzelverbrauchern (ground truth) im Zusammenhang mit Cloud-basierten Datensamm-
lungsdiensten verwendet werden um großangelegte Speicherung und Analysefähigkeiten
bereitzustellen.

Unsere ganzheitlichen Architekturmuster wurden durch das Sammeln und Verarbeiten
von einem neu eingeführten Datensatz evaluiert: Building-Level O�ce eNvironment Data-
set (BLOND), welcher zwei Langzeitmessreihen beinhaltet (213 und 50 Tage), verschiedene
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Komponenten und Strategien verwendet, die wir in unseren Designvorgaben spezi�ziert
haben und ein 3-Phase Stromnetz mit bis zu 90 überwachten Einzelgerätesteckdosen
vermisst. Wir erstellen eine tief greifende technische Validierung der gesammelten
Daten, inklusive Präzision der Abtastrate, Zeitsynchronisierung und mehreren Daten-
überprüfungen pro Datei. Ein Geräteprotokoll wurde erstellt um die Basisinformation
wie Geräteklasse, Hersteller, Typ und nominale Leistung der überwachten Steckdose zu
erfassen.
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1

Introduction

Electrical energy metering (EEM) has experienced an in�ux of research activity in recent
years due to the shift from mechanical to electronic metering technology. Metering
devices used for measuring electrical energy consumption (EEC) and billing consumers
are subjected to increased scrutiny over accuracy and reliability. The migration to fully
digital EEM is often motivated by potential energy savings and higher comfort levels
for occupants. EEC pro�les can be generated in smaller time intervals (daily, hourly,
by minute), since smart meters allow automated meter readings. Recent studies into
the psychological e�ects of EEM feedback have shown that saving energy and actively
managing one’s EEC requires frequent feedback over long periods, ideally with an
appliance-speci�c breakdown [1]. However, this requires a signi�cant investment in
metering hardware, infrastructure, and reliable communication channels to collect the
data from a �eet of smaller meters.

Traditional energy measurement fails to provide support to consumers to make intelligent
decisions to save energy, due to the coarse reading intervals (monthly or yearly). Intrusive
load monitoring can be used for individual appliance metering by equipping each socket
or circuit with a non-intelligent meter. This allows the user to gain insights into the
EEC with high granularity, at the cost of additional complexity and costs for hardware,
installation, and maintenance. Non-intrusive load monitoring (NILM) attempts to solve
this by relying on single-point EEM, ideally utilizing an existing smart meter, to provide
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a disaggregated view of the whole-building EEC [2] (power consumption pro�les for
each appliance). Researchers make use of public datasets to study the characteristics
of appliances and to build models representing load pro�les and per-appliance usage.
This can be bene�cial for energy reduction [3, 4], pattern recognition [5, 6, 7, 8], energy
demand forecasting [9], and similar �elds of study. Modern machine learning approaches
(deep neural nets and reinforcement learning) are limited by the available feature space
and sampling rate of existing datasets.

In this work, we address the need for methodologies for acquisition and collection of
electrical energy data in a distributed �eet of energy sensors. First, we develop a low-cost
measurement architecture for high-frequency energy data. This data acquisition unit
can be used in a smart meter scenario (aggregated mains circuits) or to collect individual
appliance EEC pro�les (ground truth per-appliance). Second, we present a distributed
edge- and cloud-based data collection and processing architecture, speci�cally for long-
term continuous dataset collection. The software stack utilizes processing power of the
measurement units (network edge) to perform data processing tasks, or makes use of
cloud-based resources. A large �eet of sensors (and their compute platforms) can be
monitored and together form a measurement network with two data collection strategies.
Third, we introduce the Building-Level O�ce eNvironment Dataset (BLOND), a new long-
term continuous EEC dataset. The novel feature of the two sub-datasets is the availability
of waveform ground truth data for individual appliance EEC. This type of data source
was previously unavailable, as existing public datasets only provided low-frequency
root-mean-square (RMS) values of voltage and current signals. Fourth, we present a
novel study of �ve whole-building energy datasets with high sampling rates, their signal
entropy, and how a well-calibrated measurement can have a signi�cant e�ect on the
overall storage requirements. We show that existing datasets do not fully utilize the
available measurement precision, leaving potential accuracy and space savings untapped.
We benchmark a comprehensive list of 365 �le formats, transparent data transformations,
and lossless compression algorithms.
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1. INTRODUCTION

1.1 Motivation

Electronic smart meters are installed by a majority of developed countries, or plans are
currently formed to replace conventional electromechanical energy meters [10]. Utility
companies want to reduce costs for meter readings and billing, by relying on remote
meter reading and telemetry capabilities. The integrated processing and communication
devices can be used to acquire readings in shorter intervals, compared to the conventional
manual monthly or yearly reading.

Hart [2] �rst introduced the NILM approach in the 1980s: to measure the aggregate mains
voltage and current at the entry point into the building and extract information about
individual appliances to help the homeowner or user make informed decisions about
their devices. This metering requires higher sampling rates than what was previously
available, although recent approaches in this area show promising results [11].

The basic NILM approach did not gain traction due to limited processing power and
sensor accuracy of the available technology. In recent years, NILM received signi�cant
attention due to the advances in statistics, machine learning, and processing capabilities
[6, 12, 13, 14, 15, 16]. Energy saving and smart scheduling of appliance usage are the
main promises of NILM-based systems and can be targeted at di�erent stakeholders:
consumer, neighborhood, or utility companies. Smart homes and Internet of Things (IoT)
further motivated the need for power disaggregation and appliance identi�cation based
on non-intrusive EEM [17, 18, 19].

Understanding ones energy consumption can be done through a data analysis of voltage,
current, power, and other electrical metrics. NILM, together with electronic smart meters,
can further augment a monthly EEC bill by supplying a disaggregated view of the total
consumption. Individual appliances can be identi�ed from the live mains signals to
directly notify the user or log the activation and runtime period. Isolating appliance
transients (start and stop events) can be used for predictive maintenance and fault
monitoring [20].
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1.2. PROBLEM STATEMENT

1.2 Problem Statement

Most NILM tasks greatly bene�t from high sampling rates of voltage and current signals
to capture the sinusoidal waveform. Typical smart meter datasets only report one sample
per second (or less), which lacks all high-frequency signal information of the underlying
waveform. Although most NILM tasks rely heavily on such waveform measurement data,
publicly accessible datasets are still rare and biased towards household environments. A
meaningful waveform signal reconstruction requires sampling rates in the Kilo-Hertz
range [21]. Recent studies have shown that high sampling rates improve various NILM-
related tasks [5, 15]. Di�erences in power grid systems around the world include: 120 V
vs. 230 V, 3-phase vs. 2-phase grids, 50 Hz vs. 60 Hz mains frequencies, and phase shift
between the voltage legs. These di�erences make it di�cult to compare and use datasets
from Europe and North America for machine learning pipelines, because the underlying
waveform data does not match.

Publicly available datasets, such as REDD [22], BLUED [23], and UK-DALE [24], provide
voltage and current signals of aggregate mains signals. However, they lack individual
appliance signals (ground truth) with similar waveform data, and contain only low-
frequency ground truth data (1 sample per second or less). Supervised machine learning
requires a fully-labeled ground truth to �nd patterns in the data during training. Without
ground truth waveforms, the exact timestamp of appliance transients and events can
only be estimated based on the sampling rate.

The above mentioned datasets were designed for household environments and their
typical appliance types, such as fridges, hair dryers, and washing machines. Most modern
devices use switched-mode power supplies (SMPS) to transform the mains AC into DC
power. These appliances do not show typical pure-resistive characteristics, but contain
short pulses of current draw at very high frequencies, which requires high sampling rates
to accurately measure the current waveform signal. O�ce environments mostly contain
SMPS-driven appliances, such as computers, battery chargers, monitors, and networking
equipment. Collecting the ground truth waveform of such devices requires high sampling
rates.

Smart plugs with integrated measurement sensors, as used in existing datasets, can
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1. INTRODUCTION

only supply data at low sampling rates due to their limited processing power and
network connectivity. Data acquisition in o�ce environments with multiple rooms
at high sampling rates requires a distributed �eet of measurement units to collect voltage
and current signals for each appliance, perform local data processing, and access to
back-end infrastructure for future analysis.

The sampling rate and number of channels directly correlates to the required storage
space in a long-term continuous dataset. Collecting and processing raw data consumes
persistent storage, network bandwidth, and CPU resources depending on the bit depth
and sampling rate. Lossless compression, well-suited �le formats, and encoding schemes
can help to reduce the overhead and overall resource requirements to analyze a given
dataset. Recent datasets [24, 25] consist of close to 1 million individual �les, taking 39 TB
of storage space in its compressed form.

1.3 Approach

In this work, we leverage IoT design methodologies and combine them with requirements
from energy metering systems. We generalize fully-integrated hardware and software
architectures for EEM for multi-circuit aggregated mains and individual appliance ground
truth signals. First, we consider the problem of distributed data acquisition in the context
of NILM. We describe data collection strategies and transfer methods to reliably measure,
process, and store voltage and current waveform data. Second, we apply these procedures
to collect a novel long-term continuous dataset with high sampling rates of ground truth
waveforms combined with a fully-labeled appliance log for machine learning tasks in
power disaggregation and appliance identi�cation. Third, we address the challenge of
encoding, storing, and compressing such large-scale datasets based on common design
requirements for big data processing systems.
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1.3. APPROACH

1.3.1 Hardware and Software Architectures

In this approach, we present the physical requirements and the resulting design for a data
acquisition system to meter individual appliances (socket-level). The implemented system
was built and evaluated: MEDAL, a mobile energy data acquisition laboratory. Our work
utilizes an o�-the-shelf power strip with a voltage-sensing circuit, current sensors, and
a single-board PC as data aggregator. We develop a new architecture and evaluate the
system in real-world environments. The self-contained unit for six monitored outlets can
achieve up to 50 kSps for all signals simultaneously. A modular design and o�-the-shelf
components allow us to keep costs low. Equipping a building with our measurement
systems is more feasible compared to expensive existing solutions.

We formalized the underlying architecture patterns (design guidelines) and adapted them
to �t a electronic smart meter methodology as well as the individual appliance meter use
case. We introduced the Circuit-Level Appliance Radar (CLEAR) system [26] based on
these principles: a platform to collect voltage and current waveform signals of a 3-phase
power grid with up to 250 kSps per channel simultaneously for long-term continuous
data collection.

We introduce a fully-integrated hardware and software architecture to collect and process
raw measurements. Our system can operate in various modes to collect, store, and stream
real-time measurement data. We abstract design rules and strategies to allow for multiple
use cases: collection of long-term continuous datasets, real-time appliance monitoring,
or ground truth data collection. The core components are designed to be tolerant and
self-recovering in case of failures or network congestions.

1.3.2 Collection and Validation of the BLOND Datasets

In this approach, we present the BLOND datasets: BLOND-50 and BLOND-250. The
datasets are characterized by a strong focus on o�ce appliance and SMPS-driven power
supplies. We outline the measurement environment, data acquisition and collection
architecture, and waveform ground truth data stream. The previously introduced hard-
ware and software architecture, including the MEDAL and CLEAR measurement units
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1. INTRODUCTION

are used to collect and store the long-term continuous signal streams – 16 independent
measurement units operating as a distributed �eet of sensors.

The collected data was augmented with an appliance log, to gather metadata about the
running appliances on each monitored socket. The manufacturer, type, and nominal
power of each device was logged and periodically updated to maintain a valid mapping
between monitored socket and connected appliance.

The BLOND-50 dataset contains 213 days of continuous data with 50 kSps and 6.4 kSps
sampling rates. The BLOND-250 dataset contains 50 days of uninterrupted data with
250 kSps and 50 kSps sampling rates. In total, we recorded and measured 16 appliance
classes, 53 di�erent types, and 74 individual appliances.

1.3.3 Waveform Signal and Compression Study

Electrical energy datasets (suitable for NILM tasks) are covering longer time spans, contain
data with higher sampling rates, consist of multiple measurement units, and grow in
total storage size. While �rst datasets, such as REDD [22] and BLUED [23] started the
era of high-frequency long-term datasets within the NILM community, the signal quality
and calibration was not a primary concern until recently. With datasets exceeding tens of
terabytes, we found that storage space and data transfer rates become a challenge when
processing these datasets.

First, we evaluated �ve long-term continuous datasets based on the contained signal
entropy. We generated the histogram of each signal channel based on the raw mea-
surement values within the dataset. We found that similar measurement setups do not
yield the same type of entropy distribution in the published data. The main cause was
non-optimal signal calibration and non-matching analog front-ends (voltage probes and
current transformers).

Second, we de�ned a set of requirements for �le format and encoding scheme to be
used in electrical energy datasets. The primary goal is to reduce the overall dataset size
while maintaining an easy-to-use �le format and access API. General-purpose datasets
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should only be compressed with a lossless algorithm, due to the unknown nature of
analytics and feature extraction systems the NILM community might apply to the data.
Using a lossy compression masks or softens important characteristics necessary for NILM
tasks. We converted and re-encoded the whole datasets in 365 di�erent �le formats, data
representations, and compression algorithms. The resulting space saving and compression
ratio was recorded to compare each combination. We show that with careful selection of
�le format and encoding scheme, we can reduce the size of some datasets by up to 73%.

1.4 Contributions

The contributions made in this work a�ect three main topics: new hardware and software
architectures for distributed acquisition and collection of electrical energy data, the newly
introduced Building-Level O�ce eNvironment Dataset (BLOND), and a comprehensive
waveform signal entropy and compression study of whole-building energy datasets. In
the following we present our contributions for each topic:

The main contributions to distributed electrical energy data acquisition systems and
collection and processing architectures are:

i. We design the hardware platform for a new data acquisition system, capable of
collecting mains electricity data for voltage and current signals. The proposed
methodology and architecture was implemented and evaluated in the MEDAL and
CLEAR hardware.

ii. We propose a novel data acquisition topology, which provides a fully integrated
system from analog measurements up to data processing in a data center. Our systems
design combines edge-based processing with cloud-based data collection pipelines.

iii. We extend the topology with real-time data processing at the edge of the proposed
measurement network. We evaluate the feasibility of online event detection with
deep neural networks at the ground truth data acquisition units.

iv. We conduct extensive evaluations based on the requirements for long-term data
collection, as used in the BLOND datasets. We de�ne dataset requirements and
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characteristics important to the �elds of power disaggregation and appliance identi-
�cation.

The main contributions of the BLOND datasets are:

i. We published two datasets with electrical energy data: voltage and current waveforms
of a 3-phase mains circuit feeding an o�ce building, with individual appliance ground
truth measurements.

ii. We provide long-term continuous time series data: BLOND-50 with 213 days; BLOND-
250 with 50 days of uninterrupted measurements.

iii. We provide raw waveform data with high sampling rates for both the aggregate
and the per-appliance measurements: BLOND-50 uses 50 kSps and 6.4 kSps; and
BLOND-250 uses 250 kSps and 50 kSps.

iv. We conduct an extensive technical validation of the collected data: sanity checks
while collecting the data, per-�le data checks for signal characteristics, sampling rate
precision analysis, and clock synchronization veri�cation.

The main contributions to waveform signal entropy and compression study of whole-
building energy datasets are:

i. We provide a comprehensive evaluation of electrical energy datasets with regard to
their utilized and available measurement precision. We discuss signal calibration and
potential space savings that can result from a carefully selected signal conditioning
stage.

ii. We compare an extensive list of 365 �le formats, transparent data transformations,
and lossless compression algorithms. We propose best-practices to reduce the overall
dataset size while maintaining an easy-to-use �le format and access API.

iii. We analyze the impact of di�erent chunk sizes with regard to the achievable com-
pression ratio and space savings. We show the correlation between compression
parameters and the resulting size reduction over the whole data for each of the
examined dataset.
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Parts of the content and contributions of this work have been published in:

• T. Kriechbaumer, A. U. Haq, M. Kahl, and H.-A. Jacobsen. “MEDAL: A Cost-E�ective
High-Frequency Energy Data Acquisition System for Electrical Appliances.” In:
Proceedings of the 2017 ACM Eighth International Conference on Future Energy Sys-
tems. e-Energy ’17. Hong Kong, Hong Kong: ACM, 2017. isbn: 978-1-4503-5036-5.
doi: 10.1145/3077839.3077844

• T. Kriechbaumer, M. Kahl, D. Jorde, A. U. Haq, and H.-A. Jacobsen. “Large-Scale Data
Acquisition Systems Architecture for High-Frequency Electrical Energy Metering.”
Submitted to ACM Trans. Cyber-Phys. Syst. 2019

• T. Kriechbaumer and H.-A. Jacobsen. “BLOND, a building-level o�ce environ-
ment dataset of typical electrical appliances.” In: Scienti�c Data, an open-access
NatureResearch journal 5.180048 (2018). doi: 10.1038/sdata.2018.48

• T. Kriechbaumer and H.-A. Jacobsen. Waveform Signal Entropy and Compression
Study of Whole-Building Energy Datasets. 2018. arXiv: 1810.10887

Related work and additional contributions have been published in:

• M. Kahl, C. Goebel, A. Haq, T. Kriechbaumer, and H.-A. Jacobsen. “NoFaRe: A Non-
Intrusive Facility Resource Monitoring System.” In: Energy Informatics. Vol. 9424.
Lecture Notes in Computer Science. Springer International Publishing, 2015, pp. 59–
68. doi: 10.1007/978-3-319-25876-8_6

• A. U. Haq, T. Kriechbaumer, M. Kahl, and H.-A. Jacobsen. “CLEAR – A Circuit
Level Electric Appliance Radar for the Electric Cabinet.” In: 2017 IEEE International
Conference on Industrial Technology. ICIT ’17. Toronto, Canada, 2017, pp. 1130–1135.
isbn: 978-1-5090-5319-3. doi: 10.1109/ICIT.2017.7915521

• M. Kahl, T. Kriechbaumer, A. U. Haq, and H.-A. Jacobsen. “Appliance Classi�cation
Across Multiple High Frequency Energy Datasets.” In: 2017 IEEE International
Conference on Smart Grid Communications (SmartGridComm): Smart metering, De-
mand Response and Dynamic Pricing (SGC2017 Smart Metering). 2017. doi: 10.
1109/smartgridcomm.2017.8340664

10

https://doi.org/10.1145/3077839.3077844
https://doi.org/10.1038/sdata.2018.48
http://arxiv.org/abs/1810.10887
https://doi.org/10.1007/978-3-319-25876-8_6
https://doi.org/10.1109/ICIT.2017.7915521
https://doi.org/10.1109/smartgridcomm.2017.8340664
https://doi.org/10.1109/smartgridcomm.2017.8340664


1. INTRODUCTION

• M. Kahl, A. U. Haq, T. Kriechbaumer, and H.-A. Jacobsen. “A Comprehensive Feature
Study for Appliance Recognition on High Frequency Energy Data.” In: Proceedings
of the 2017 ACM Eighth International Conference on Future Energy Systems. e-
Energy ’17. Hong Kong, Hong Kong: ACM, 2017. isbn: 978-1-4503-5036-5. doi:
10.1145/3077839.3077845

• D. Jorde, T. Kriechbaumer, and H.-A. Jacobsen. “Electrical Appliance Classi�cation
using Deep Convolutional Neural Networks on High Frequency Current Mea-
surements.” In: 2018 IEEE International Conference on Communications, Control,
and Computing Technologies for Smart Grids (SmartGridComm) (IEEE SmartGrid-
Comm’18). Aalborg, Denmark, 2018

• M. Kahl, V. Krause, R. Hackenberg, A. U. Haq, A. Horn, H.-A. Jacobsen, T. Kriech-
baumer, M. Petzenhauser, M. Shamonin, and A. Udalzow. “Measurement System
and Dataset for In-Depth Analysis of Appliance Energy Consumption in Industrial
Environment.” In: tm - Technisches Messen (2018). doi: 10.1515/teme-
2018-0038

1.5 Organization

The rest of this work is organized as follows: Chapter 1 provides an introduction to
the problem and motivation for this thesis. Chapter 2 provides background information
on fundamentals in power grids, electrical parameters, and measurement values. In
Chapter 3, we discuss the related work in the �eld of NILM and how our work �ts into
the de�ned problem.

Chapter 4 presents the data acquisition system MEDAL, which was used to collect
ground truth energy consumption data. We de�ne requirements for NILM-focused data
collection and integration into a �eet of distributed sensors. The hardware system with
analog measurements, data acquisition, and edge-based data processing is described and
evaluated for signal integrity and signal quality metrics.

Chapter 5 elaborates on the underlying design methodologies used for the design and
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requirements of MEDAL, CLEAR, and the subsequent collection of BLOND. Edge- and
cloud-based data processing paradigm are de�ned and evaluated with two collection
strategies utilizing compute resources of the measurement units if available. Monitoring
and best-e�ort work�ows are evaluated based on the two BLOND sub-datasets.

Chapter 6 covers the BLOND datasets, its measurement environment, the �eet of MEDAL
and CLEAR sensors, and the technical validation of the collected data. We have collected
and published two measurement time series: BLOND-50 and BLOND-250 with di�erent
sampling rates and time durations. We contribute an o�ce-focused environment with
typically SMPS-driven appliances. The most novel feature of the BLOND sub-datasets is
their waveform ground truth with high sampling rates (collected with MEDAL units) and
the appliance log to label each monitored socket to an appliance class and manufacturer
information.

Chapter 7 evaluates a comprehensive list of �le formats, compression algorithms and
their parameter space. The input data are the �ve largest long-term continuous datasets,
including our BLOND sub-datasets. The results show the best-performing compressors
based on the compression ratio and space saving for the whole dataset. A comparison of
contained entropy in the raw signal of each dataset was performed to extract reasons for
high or low compression ratios, caused by signal conditioning and data formatting.

In Chapter 8, we present uni�ed conclusions about the present topics; speci�cally about
the four main contributions regarding hard- and software architectures, datasets, and
their compression.
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2

Background

Smart metering of electrical energy consumption creates a constant data stream of not
only the measurements, but of metadata, events, and other types of information related
to the consumption characteristics of the building under observation (BUO). Meters
can be placed at the utility supply point (where the actual meter for billing purposes
is placed), or on various locations throughout the BUO, depending on the needs of the
customer. Applying the NILM methodology results in a single meter. One can also
utilize one meter per �oor or wing, to increase granularity. For industrial applications,
the facility manager would bene�t from an even �ner resolution, down to individual
assembly lines or manufacturing stages. For residential homes, NILM prevents installing
individual meters for each appliance, and therefore reduces costs and complexity. Smart
Home technology, such as smart plugs and switchable power outlets, can be used to
cost-e�ectively monitor the electricity consumption of a group of appliances.

Appliance identi�cation provides the user with information about transient events (switch-
on and switch-o�) and the corresponding appliance class, type, or model. Identi�cation
accuracy strongly depends on high sampling rates and features extracted from waveform
data [5, 15, 31, 34]. Event detection systems monitor the raw waveform data, and extract
a region of interest, which can be used for the classi�cation task [35, 36].

Power disaggregation de�nes the task of splitting the time series data of a single-point
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EEC measurement into the fundamental components (individual appliances). Various
techniques have been proposed to generate a per-appliance energy bill or consumption
metric [6, 20, 37, 38, 39]. Most of these approaches need to keep track of active (switched
on) and inactive (turned o�) appliances to correctly attribute portions of the energy to
each device.

Given a suitable NILM-capable measurement device, the �nal metering architecture will
consist of a small number of data acquisition systems, and possibly a communication
network to aggregate the data streams. However, for the purpose of collecting new
datasets, designed for providing valuable source material for research and machine
learning approaches, the number of total DAQ units will be vastly higher than any �nal
installation for day-to-day measurements.

Electrical energy has two physical signals that can be measured: voltage and current.
Multiple other metrics can be derived solely based on these two signals. Power, energy,
harmonics, power factor, and other relevant metrics are de�ned by voltage and current
�uctuations over time. The most commonly used parameters are root-mean-square (RMS)
voltage (Volt) and current (Ampere), together with instantaneous power (1Watt = 1Volt ∗
1Ampere).

The RMS for a repeating waveform signal S with N samples, is de�ned as SRMS =√
1/N ∑N

i=1 S[i]2. Such metrics can be given for a single period (sinusoidal mains waveform),
or longer segments (1 s, 1 min, 1 h). For longer time frames, the RMS has an “averaging”
e�ect on sub-period deviations from the pure-sine signal. Power grids with alternating
current (AC) most commonly use mains voltages of 120Vrms or 230Vrms with a mains
frequency of 60 Hz or 50 Hz, respectively. Therefore, the signal waveform peaks at
±169.7V or ±325.3V , and repeats itself in a sine-pattern. The fundamental frequency
is one of the most important health metrics in a power grid. Even small deviations can
cause a total collapse of the delicate supply-demand balance. Harmonics are higher-order
signals and typically strongly pronounced at multiples of the mains frequency. The
amplitude and distribution of these harmonics also give insights into the state of a power
grid. While the voltage follows a sinusoidal pattern, the current can signi�cantly deviate
from it, to the point of single bursts of current draw at each voltage peak.
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Liang, Ng, Kendall, and Cheng [34] categorized energy data based on the sampling
rate: micro level with more than 1 sample per cycle; macro level with less than 1
sample per cycle. Similarly, we de�ne low-frequency in the macro level, and high-
frequency in the micro level. Low-frequency measurements typically provide RMS values
of voltage, current, or power measurements. High-frequency measurements provide the
raw waveform signal for voltage and current. Sampling rate is described as samples per
second (Sps) or as frequency in Hertz (Hz). The value unit can optionally be given with
an SI-pre�x, e.g., 12.5 kSps or 12.5 kHz, 0.0125 MSps or 0.0125 MHz. For low-frequency
signals, a coarser unit can be used to de�ne the sampling rate, such as 1 min (equal to
1/60 Hz), or 1 h (equal to 1/3600 Hz).

The data acquisition must always happen in the high-frequency domain in order to
calculate RMS and other time-averaged metrics, such as phase shift, harmonics, or
distortion. Therefore, all electrical energy measurement systems capture the signal
waveform at a speci�c sampling rate, and then either report the raw values (high data
bandwidth), or perform the necessary calculations for a prede�ned list of metrics in an
embedded system before reporting these low-frequency values.

For data collection strategies (long-term continuous datasets), a "capture everything"
approach means that every measurement will be forwarded to a storage system for long-
term persistence. Smart meters and intelligent measurement systems aimed at consumer-
level consumption reporting do not require long-term storage facilities, which means
in-memory processing can be used to generate high-level metrics (RMS values or total
energy consumption per day). The type of metric de�nes the sampling rate requirement.
According to the Nyquist–Shannon sampling theorem [21], the sampling rate needs to
be twice the signal frequency one wants to reconstruct. Measuring and reporting the
ntℎ-order harmonic of the 50/60 Hz mains frequency requires a sampling rate of at least
2n ⋅ 50Hz. While this is the theoretical minimum sampling rate, actual implementations
typically use a 5-8× higher sampling rate. The measurement bandwidth, as commonly
de�ned for oscilloscopes, characterizes the required sampling rate to measure an analog
sine wave with an amplitude error of 3% [40]. Recording multiple channels with high
sampling rates requires oscilloscopes or specialized data acquisition systems as presented
in [26, 27, 33, 41]. Most signals are composed of multiple complex waveforms and require
a higher sampling rate to cover the entire desired frequency domain [42].
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Compressed sensing is a technique to reconstruct a signal by utilizing prior knowledge
about signal characteristics. While the Nyquist-Shannon limit is commonly known and
refers to a �xed sampling rate, Candès, Romberg, and Tao [43] proved that even fewer
samples are su�cient, assuming the signal’s sparsity is known. The newly introduced
technique achieves a signal reconstruction with a sparse (variable) sampling rate. This
optimization in data acquisition can be used for consumer-level intelligent measurement
systems, but is not applicable in general-purpose DAQ work�ows used for scienti�c
datasets, because the underlying prior knowledge cannot be guaranteed.
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3

Related Work

In this chapter, we present related work in the �eld of electrical energy metering and
data acquisition systems used for collection and processing of long-term continuous
datasets. We then cover these datasets, their requirements, design guidelines, and
measurement environments. NILM-related tasks, such as power disaggregation and
appliance identi�cation, are analyzed and examined with regard to the available data and
metadata in the publicly available datasets. Finally, we list the related work in the area
of data compression for waveform signals, low-frequency measurements, and appliance
transient events.

3.1 Data Acquisition Systems

Research in the �eld of NILM is primarily based on public datasets to analyze, evaluate,
and compare new algorithms and approaches [22, 23, 24, 44, 45, 46]. Multiple research
groups have created and published datasets, which can be categorized into low- and high-
frequency measurements [37, 47]. In recent years, high-frequency measurements have
become more popular in NILM, due to technological advances in the �eld of electronics,
while still requiring specialized and expensive hardware (costing thousands of Euros).
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Correct identi�cation of appliance transients and load signatures is a key step for power
disaggregation and appliance identi�cation [15, 34]. Di�erent appliance types can have
discriminating features hidden in the electricity waveforms. The extraction of these
features typically requires high sampling rates (Kilo-Hertz range) [14]. High-frequency
voltage and current data carry a vast amount of information depending on the appliance
type. Such information has been collected and visualized to compare di�erent appliance
types on various feature metrics [44, 45, 46].

A high-quality dataset for household energy consumption was provided in [24]. The
mains signal was provided with a sampling rate of 16 kHz. Appliance-level data (ground
truth) are available in 6 s intervals, which is a signi�cantly lower rate not suitable for
reconstructing the mains waveforms. This poses problems in the correct matching of
appliance transients (violation of the switch continuity principle) [12], a common concern
with many existing datasets [8, 22, 23].

Sensing voltage and current with a custom circuit board allows for a compact recording
device and provides con�gurable parameters for rated current and mains frequency [18].
However, this approach still requires an external analog-to-digital converter and is only
capable of monitoring a single appliance. Combining multiple monitored power outlets
into a single unit would improve cost e�ciency, reduce complexity of analog-to-digital
conversion, and allow for easier data collection and storage.

Controlling the turn-on and o� time instants based on the voltage zero-crossings was
introduced as measurement device in [41]. Using triacs to control the phase angle
at which an appliance transient occurs allows for a detailed introspection into angle-
correlated power consumption measurements. However, this system is neither portable
(no integrated processing unit) nor capable of recording data for a prolonged amount of
time (months to years).

There are two common current sensing techniques: using a shunt resistor to measure
the voltage drop (with a current transformer), or using the Hall-e�ect of a current
carrying conductor. Both approaches require precise knowledge about the measurement
architecture. A new approach allows the measurement of current using non-contact �eld
measurements without the need for precise sensor placement [48]. This has the bene�t
of being non-intrusive, since the circuit under measurement is uninterrupted and the
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sensor can be placed on the outside of the power cable.

Lights, refrigerators, printers, and other consumer electronics are not strict resistive
loads and generate di�erent patterns. Using an oscilloscope, it is possible to visualize
these patterns and analyze the data digitally [49]. However, most oscilloscopes are only
capable of displaying values with 8- or 10-bit resolutions for a low number of parallel
signals. Oscilloscopes have limited processing power and storage capacities, which is a
key requirement for long-term continuous recordings.

Household energy consumption data are an important source for smart grid solutions.
Using new forecasting algorithms and disaggregated energy data, these predictions can
be of great value to grid operators and expansion plans. Generating energy demand
forecasts for numerous households (thousands) is feasible on commodity hardware [17]
and can be accurate to a 15min time window [9].

3.2 Long-TermContinuous Electrical Energy Datasets

Existing electrical energy consumption datasets have been targeted at use cases involv-
ing load forecasting, demand response, and non-intrusive load monitoring. For these
purposes, the energy research community shifted to high sampling rates and long-term
continuous measurement series in recent years. The following datasets have inspired the
design presented in this work and the resulting Building-Level O�ce eNvironment Dataset
(BLOND [25]): The Reference Energy Disaggregation Data Set (REDD [22]), Building-Level
fUlly-labeled dataset for Electricity Disaggregation (BLUED [23]), UK Domestic Appliance-
Level Electricity dataset (UK-DALE [24]). Energy disaggregation and load forecasting
have been researched extensively with datasets provided by energy utilities and their
Smart Meter measurement architectures for remote meter reading. The resulting data is
exclusively available with low sampling rates, typically in the range of one aggregate
measurement per minute or hour. Such data does not match the requirements and use
cases of most non-intrusive load monitoring and appliance identi�cation tasks, which
work best with the raw waveform signal [5, 34].

REDD contains a total of 119 days of data with a sampling rate of 15 kHz for one voltage
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and two current signals in multiple residential buildings. The ground truth data was
collected at 0.5 Hz and 1 Hz intervals depending on the circuit and appliance type. The raw
high-frequency data was reduced with a lossy compression before publishing the dataset.
Although the authors claim to present "signal waveforms", the lossy data reduction
does not allow a meaningful waveform reconstruction for any given timeframe. The
measurement hardware consists of smart power strips for plug-level data, and a NI-
9239 data acquisition modules connected to a laptop to collect waveform data of three
signals (voltage and two current waveforms). The current signal was generated with a
current transformer by TED (split-core clamp-style) and a TA041 voltage probe by Pico.
The individual components are well-characterized by the vendors, however, the REDD
measurement architecture lacks proper signal calibration and range levels, leading to lost
precision.

BLUED contains a whole week with a sampling rate of 12 kHz for one voltage and two
current signals in a single-family home. The mains measurements were collected with
current transformers (split-core clamp-style) from TED and a Pico TA041 voltage probe
connected to a NI-6251 data acquisition module. The ground truth was collected at
roughly 1 Hz (RMS values) with plug-level FireFly sensors (smart plugs). The wireless
communication was centralized at a gateway device which aggregated all smart plug
data and added a NTP-based timestamp. All data was stored on a local computer. The
event labeling and signal synchronization was done by visual inspection.

UK-DALE [24] contains 655 days of data with a sampling rate of 16 kHz for a single mains
circuit with voltage and current measurements. The measurement hardware consists of a
USB sound card attached to an Atom-based general-purpose computer. The analog data
acquisition is handled by a simple circuit utilizing an AC-AC step-down transformer with
a voltage divider and signal diodes to generate a voltage signal. The current signal is
generated by a current transformer and an attached shunt resistor protected by the same
signal diode arrangement. The resulting analog signals are AUX-compatible voltage levels
and are fed directly into a USB sound card (a single stereo channel). The diodes in both
signal paths cause a clipping of the waveform to protect the AUX input. Unfortunately,
if the mains voltage exceeds the calibrated signal, the measurements will be skewed,
causing erroneous voltage readings. The UK-DALE measurement setup does not provide
any potentiometers or other forms of hardware calibration. This results in a degraded
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measurement performance, which can be observed in some parts of the UK-DALE dataset.
The digital data acquisition is handled by a general-purpose computer running a Python-
based recording application. The USB sound card provides OS-level APIs to read audio
data from the stereo input channel (left and right for voltage and current data). The
DAQ pipeline uses isochronous transfers on the USB interface, which do not provide
error detection, error correction, or reliable transfers (packet loss detection). If the
employed computer is busy with non-DAQ tasks, the sound card (or the USB subsystem)
can silently drop data, resulting in sudden signal jumps (non-continuous sinusoidal
waveform measurements). This behavior is mostly visible in the voltage data of the
dataset. The published dataset contains 16 kHz data which was downsampled from
44.1 kHz, although the sound card is capable of recording in 96 kHz, however, the authors
experienced even more data loss at this sampling rate due to the limited computational
resources of the host computer. The ground truth data was collected in 6 s intervals with
EcoManager smart plugs.

3.3 Data Compression and Encoding in Datasets with
High Sampling Rates

Low-frequency energy data can bene�t greatly from compression when applied to smart
meter data, as multiple recent works have shown [50, 51, 52, 53]. Electricity smart meters
can be a source of high data volume with measurement intervals of 1 s, 60 s, 15min,
or higher. Possible transmission and storage savings due to lossless compression have
been evaluated in [52]. While the achievable compression ratio increased with smaller
sampling intervals, the bene�ts of compression vanish quickly above 15min intervals.
Various encodings (ASCII- and binary-based) have been evaluated for such low-frequency
measurements, and in most cases, a binary encoding greatly outperforms an ASCII-based
encoding. The need for smart data compression was discussed in [54], which further
motivates in-depth research in this area. The main focus of the authors was smart meter
data with low temporal resolution from 10,000 meters or more. Various compression
techniques were presented and a fast-streaming di�erential compression algorithm was
evaluated: removing steady-state power measurements (ti+1 − ti = 0) can save on average
62% of required storage space.
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High-frequency energy data o�ers a signi�cantly larger potential for lossless compression,
due to the inherent repeating waveform signal. Tariq, Arshad, and Nabeel [55] utilized
general-purpose compressors, such as LZMA and bzip2, and achieved good compression
ratios on some datasets. Applying di�erential compression and omitting timestamps
can yield size reductions of up to 98% on smart grid data, however, these results are
not comparable as there is no generalized uniform data source. The presented results
use a single data channel and an ASCII-based data representation as a baseline for their
comparison, which contains an inherent encoding overhead. The SURF �le format [56]
was designed to store NILM datasets and provide an API to create and modify such
�les. The internal structure is based on wave-audio and augments it with new types
of metadata chunks. To the best of our knowledge, the SURF �le format didn’t gain
any traction due to its lack of support in common scienti�c computing frameworks.
The recently published EMD-DF �le format [57], by the same authors, relies on the
same wave-audio encoding, while extending it with more metadata and annotations.
Neither SURF nor EMD-DF provides any built-in support for compression. The power
grid community de�ned the PQDIF [58] (for power quality and quantity monitoring) and
COMTRADE [59] (for transient data in power systems) �le formats. Both speci�cations
outline a structured view of numerical data in the context of energy measurements. Raw
measurements are augmented with precomputed evaluations (statistical metrics), which
can cause a signi�cant overhead in required storage space. While PQDIF supports a
simple LZ compression, COMTRADE does not o�er such capabilities. To the best of our
knowledge, these �le formats never gained traction outside the power grid operations
community.

Lossy compression can achieve multiple magnitudes higher compression ratios than
lossless, with minimal loss of accuracy for certain use cases [53]. Using piecewise
polynomial regression, the authors achieved good compression ratios on three existing
smart grid scenarios. The compressed parametrical representation was stored in a
relational database system. However, this approach only applies if the use case and
expected data transformation is known before applying a lossy data reduction. A 2-
dimensional representation for power quality data was proposed in [36] and [60], which
then could be used to employ compression approaches from image processing and other
related �elds. While both approaches can be categorized as lossy compression due to
their numerical approximation using wavelets or trigonometric functions, they require a
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specialized encoder and decoder which is not readily available in scienti�c computing
frameworks.

The NilmDB project [13] provides a generalized user interface to access, query, and
analyze large time-series datasets in the context of power quality diagnostics and NILM.
A distributed architecture and a custom storage format were employed to work e�ciently
with “big data”. The underlying data persistence is organized hierarchically in the
�lesystem and utilizes tree-based structures to reduce storage overhead. This internal
data representation is capable of handling multiple streams and non-uniform data rates
but lacks support for data compression or more e�cient coding schemes. NILMTK [61], an
open-source NILM toolkit, provides an evaluation workbench for power disaggregation
and uses the HDF5 [62] �le format with a custom metadata structure. Most available
public datasets require a specialized converter to import them into a NILMTK-usable �le
format. While the documentation states that a zlib data compression is applied, some
converters currently use bzip2 or Blosc [63].
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4

Mobile Energy Data Acquisition
Laboratory

Electrical appliances are pervasive around the world. Due to an increased number of
household and o�ce appliances, it is infeasible to attach energy meters to each device.
Lately, non-intrusive load monitoring (NILM) has gained wide popularity due to its single
point sensing and user-friendly deployment. Appliance-level load pro�les allow the user
to make intelligent decisions in order to reduce the overall energy usage.

Usually, smart plugs are utilized to collect appliance-level measurements as ground truth
for larger datasets [17, 22, 23, 24]. Unfortunately, most of these low-cost smart plugs
support only low-frequency sampling rates and limited measurement capabilities [38, 64].
This makes it di�cult to reconstruct the actual current and voltage waveforms, which
can improve tracking of appliance on/o� events with higher precision [15].

We proposes a new data acquisition system (DAQ) for energy monitoring and ground
truth collection: MEDAL – a Mobile Energy Data Acquisition Laboratory. Our system
can capture data continuously, while extracting start-up and switch-o� transients for
feature extraction, appliance identi�cation, and fault detection. The design is based on an
o�-the-shelf power strip, a single-board PC for data collection, a voltage-sensing circuit,
and current sensors to measure mains electricity signals of up to six appliances. The
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proposed hardware was implemented and actual devices were manufactured to evaluate
the design based on the the requirements in Table 4.0.1.

Table 4.0.1: Requirements for energy data acquistion hardware.

R1 high sampling rates R6 synchronized world clock
R2 long-term recordings R7 precise time-stamping
R3 common �le format R8 high resolution and accuracy
R4 data compression R9 retain measurement data
R5 low price per appliance R10 resources for data processing

This chapter is structured as follows: We introduce a new hardware architecture in
Section 4.1, and propose the software system in Section 4.2. Finally, we present results
and design evaluations in Section 4.3.

4.1 Hardware Architecture

MEDAL is designed as mobile cyber-physical system: hardware, software, and algorithms
working together in a single platform. The data collection is deeply integrated with an
analytics pipeline, either on the system itself, or on a remote server for post-processing
(public or private cloud). The measurement system is compact enough to be mobile, while
o�ering access to multiple communication networks. Two sensor types are integrated
to fully capture energy consumption data of appliances. This section gives an in-depth
description of individual architectural components and outlines the reasoning for speci�c
design decisions. The collection of new datasets can be managed using a �eet of MEDAL
units together with a central component to orchestrate large-scale energy measurements.
The proposed high-level architecture can be seen in Figure 4.1.1.

The design of physical components is based on an o�-the-shelf six-port power strip. The
power strip is used as foundation and center piece, with all components designed around
it. The current design and all prototypes make use of the Schuko socket/plug system used
in most EU countries.

The architecture for the DAQ system distinguishes between two main components,
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Figure 4.1.1: The architecture of the measurement unit shows the data �ow through multiple stages.

which are designed to �t together into a single assembly: sensor board and sampler
board. These are custom-made PCBs with analog signals and digital control circuitry.
The data acquisition is handled by a simple hardware module attached via USB. Voltage
and current signals are generated with an independent circuit board to isolate high- and
low-voltage domains. The main control unit is a single-board PC connected to the local
network via ethernet or WiFi.

The six-port power strip is implanted within a custom laser-cut enclosure (white acrylic
glass sheets) to protect and shield the electronics and to meet the physical safety require-
ments. A fully assembled MEDAL unit is compact, portable, and easily installable (R5,
Figure 4.1.2a). In order to interconnect with the current sensors on the sensor board, the
power bus bars are rewired and routed through the sensor, see Figure 4.1.2b.

4.1.1 Sensor Board

The sensor board is the only high-voltage component in the system. It contains current
sensors and circuitry for voltage sensing. The external power is used for a common
5VDC power rail used by all sensors, ICs, and the single-board PC.

The voltage signal is generated by an AC-AC transformer acting as galvanic isolator and
step-down converter. It is necessary to add a DC-o�set to produce a strictly positive
signal for the unipolar ADCs. The �nal signal has a mean of 2.5V, with peaks at 1.27V
and 3.39V.
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(a) The MEDAL system used to collect ground truth appliance energy consumption data. The
laser-cut acrylic enclosure contains a power strip and two boards to measure the voltage and
current of each connected appliance.

(b) Without the protective covers, the exposed sensor board at the bottom, and the single-board
PC with sampler board at the top-left.

Figure 4.1.2: The physical components of a MEDAL measurement unit.

Six independent current signals (one for each socket) are generated by Hall e�ect-based
sensors. The system can be equipped with ICs calibrated to di�erent sensitivity settings,
allowing sensing of currents from 5, 20, and 30Apeak. The selected sensor chip (Allegro
ACS712), yields 2.5V if no current is �owing, and ranges from 0.5V to 4.5V.
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Figure 4.1.3: The data �ow on the sensor board. All ADCs are connected via a single data bus to the
microcontroller.

4.1.2 Sampler Board

The sampler board converts the analog sensor output into digital data and transfers them
via USB to the single-board PC. The main components are: seven MCP3201 chips for
analog-to-digital conversion (12-bit, unipolar, 0V to 4.095V), an ATmega324PA micro-
controller for the control logic, an FTDI232H for USB data transfers, and a Raspberry Pi 3
for processing, bu�ering, and network connectivity, see Figure 4.1.3.

The ADCs treat each signal independently, while the digital output of all converters are
grouped into an 8-bit bus directly attached to the microcontroller (7 data bits + padding).
The ADC data packets are then transferred to the USB connectivity chip. Recorded
packets are received via USB bulk transfers in the Linux kernel.

Multiple MEDAL units can be time-synchronized using the Network Time Protocol (NTP),
which provides accuracy within a few milliseconds [65, 66]. Since MEDAL also supports
a stand-alone recording mode without access to an accurate clock master, the sampler
board contains a dedicated real-time clock (PCF2123) with a super-capacitor acting as
backup battery (R6).
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4.2 Software Architecture

Raw measurements are controlled by a microcontroller, which contains a static �rmware
(see Section 4.2.1). The sampler board is connected via a single USB socket and can be
controlled directly with a specialized software package (see Section 4.2.2).

Based on the recommendations of the NILMTK project [61], we support HDF5 as
storage format (R3), which is widely used and supports dataset-based compression
(R4). Depending on the optional scienti�c workload, MEDAL is capable of converting
the data into HDF5 and applying a simple compression scheme before storing the data
�le (R10). Each �le carries a list of attributes: timestamp (UNIX time with microsecond
precision), sampling rate (Hertz), a measurement unit identi�er (UUID), and a sequence
number (chunked data �les). Every signal stream (voltage and currents) is stored as
an individual dataset with corresponding attributes: calibration factor and removed
DC-o�set.

4.2.1 Microcontroller Firmware

The microcontroller runs a continuous loop that reads values from the ADCs and forwards
data to the USB interface chip. Since all ADCs are controlled via the same I/O bus, the
data conversion for all channels is triggered at the same time. This corresponds to a
single-shot ADC with multiple channels. This task could be managed by the single-board
PC; however, since a generic Linux system can �re system interrupts at any time, the
required precision can not be guaranteed.

The main loop runs on a interrupt timer based on the main clock frequency with a
pre-scaler and a precise crystal oscillator (14.7456MHz). The sampling rate can be set to
any integer value between 225 and 50,000. A slight o�set might occur, depending on the
pre-scaler and the oscillator frequency and can be determined as follows:

t = ⌊14745600/f − 1⌉

factual = 14745600/ (t + 1)
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All ADCs are read in parallel, while reading in the 12 bits sequentially. This means the
byte layout is not usable straightaway, and requires a simple bit-wise transformation.
This allows us to save additional shift registers or other external data latching to transpose
the input vector.

4.2.2 Energy DAQ Software

The single-board PC runs a generic Linux distribution, allowing us to make use of common
command and control patterns via USB bulk transfers. All software components run
as system service. Con�guration can be performed with command line switches or
environment variables.

After the initialization phase, a queue of USB bulk transfer requests is �lled up. If the
USB interface chip on the sampler board has a full bu�er, the data is sent to the Linux
kernel, which then triggers a callback in the DAQ software. The callback contains a bu�er
with the sample data. The raw data packet must be reformatted before it can be written
into a �le. The maximum �le size (chunk) can be con�gured depending on the expected
post-processing pipeline and sampling rate. Aligning the �le size to 15, 30, or 60 minutes
at a speci�c sampling rate, is commonly preferred.

Operating a MEDAL unit in a stand-alone mode persists all �les directly to a mass
storage device (R9), thus allowing the user to simply download them when needed. This
procedure is possible, since all required hard- and software initializations are performed
as soon as the unit receives mains power.

4.3 Evaluation

The above described MEDAL system is evaluated based on the de�ned requirements.
Multiple requirements are evaluated with experimental data collections to test the
accuracy and overall performance.
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We built 20 MEDAL units (designed for the power grid in Europe, 230V/50Hz) and have
been collecting energy data from more than 50 appliances over the last several months.
To accommodate various appliances (di�erent levels of power draw), we con�gured each
MEDAL with a mix of ACS712-05B and ACS712-30A current sensors.

4.3.1 High Sampling Rate

Capturing the signal waveform with very high temporal resolution (R1) is necessary to
measure harmonics and other high frequency characteristics [15]. The MEDAL system
fully supports sampling rates from 225Hz up to 50 kHz on all channels without data loss,
gaps, or bu�er over�ows. This allows us to capture a 50Hz mains signal with up to 1000
samples per mains cycle.

4.3.2 Resolution and Accuracy

We chose the MCP3201 as ADC, a successive-approximation ADC o�ering full 12-bit
resolution and a high enough bandwidth to ful�ll our target sampling rate of 50 kHz due
to its wide availability and simple integration.

The 12-bit vertical resolution yields a measurement step sizes of 5.4mApeak (ACS712-
05B), 15.15mApeak (ACS712-30A), and 0.25V for the mains voltage. This gives us a
minimal detectable power di�erence of 0.88W — less than 0.11% of the 815W maximum
measurement range (R8).

Measuring a 5VDC switched-mode power supply (SMPS) with a 5W resistive load
approaches the limits of MEDAL, see Figure 4.3.1. The signal trace was collected with
50 kHz, resulting in a sample timing precision of 20 µs (R7). Initially, no load is attached
to the power socket, and the data show the expected low-level channel noise. The sharp
transient at 500ms is caused by internal capacitors being charged up right after plugging
in the device. At 1500ms the SMPS has completed initialization and begins to power the
resistive load. The noise energy (16mArms) is near the actual load (67mArms) compared
to the maximum range of 3.5Arms.
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Figure 4.3.1: SMPS with a 5 W resistive load. A sharp transient is triggered by charging up the internal
capacitors of the SMPS.

4.3.3 Long-Term Recordings

MEDAL is designed for continuous measurements of energy data without interruptions
(R2). Given the data are collected and transmitted to a remote storage facility, MEDAL
can record inde�nitely. We have 15 fully operational MEDAL units in a real-world
environment recording data continuously for over 200 days without interruption or data
loss (R9).

A MEDAL unit was used to record in a typical o�ce environment, with a laptop and
monitor connected to the monitored sockets. The mains voltage and frequency changes
over a 24-hour period can be seen in Figure 4.3.2a. The current consumption of two
appliances in the same time window is depicted in Figures 4.3.2b and 4.3.2c. The recording
for the depicted time period consists of 96 �les, each 15min long, with an average �le
size of 30.2MB. Root-Mean-Square equivalents of voltage and current are computed over
60 s slices. The laptop is a MacBook Pro 13′′ with a 60W power adapter. The monitor is
a 27′′ Dell UP2716D with a nominal power of 45W.
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Table 4.3.1: Storage requirements for di�erent sampling rates.

Sampling
Rate

CPU
Usage

Raw Data
for 10min HDF5 Ratio

50,000 10.4% 401.0 MB 156.3 MB 38.99%
16,000 3.3% 128.2 MB 48.8 MB 38.07%
4,000 0.9% 32.1 MB 12.3 MB 38.34%

250 0.3% 2.0 MB 0.8 MB 39.91%

4.3.4 Measurement Range

A MEDAL unit can be assembled for di�erent mains environments: 120 or 230/240 V, 50
or 60Hz mains frequency. In addition, every socket can be equipped with a di�erent
current sensor rated for 5, 20, or 30Apeak. This allows us to measure a wide variety of
devices: from a small kitchen tool, desktop PCs, to heavy industrial appliances.

Measuring high harmonics allows us to track and monitor the power quality. The
measured current and its computed spectrum of a rotary multi-tool can be seen in
Figure 4.3.3. A discriminating feature for this appliance is the strong magnitude at
3600Hz to 3800Hz likely caused by the brushed motor (commutator bars).

4.3.5 Storage Requirements

Common oscilloscopes and data loggers have to �nd a trade o� between sampling
rate, resolution, and storage capacity [49]. MEDAL tries to overcome this limitation by
providing fast data acquisition for multiple channels while also capturing and uploading
the data stream continuously.

The comparison of �ve experimental measurement runs with a MEDAL unit and di�erent
sampling rates can be seen in Table 4.3.1. The CPU usage clearly shows that the system
is running underutilized during normal recording operations and is therefore capable of
performing additional scienti�c analysis in near real-time within the unit (R10). Of four
available cores, only one is dedicated at all times to the DAQ task. Data conversion and
compression is performed in bursts and frees up the CPU as soon as it �nishes (at least

34



4. MOBILE ENERGY DATA ACQUISITION LABORATORY

two full cores).

HDF5 provides a well-documented format speci�cation and a good compression by using
dataset �lters (data manipulation within a �le) (R3). The HDF5 data in Table 4.3.1 uses the
built-in gzip and Fletcher �lters to compress the data (R4). More advanced compression
techniques might further improve the overall ratio and storage savings.
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(b) Current consumption of a 13′′ laptop.
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(c) Current consumption of a 27′′ monitor.

Figure 4.3.2: A 24-hour recording of two appliances with MEDAL in an o�ce environment.
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(a) Rotary multi-tool startup with max. sampling rate. The motor speed control introduces ripples
throughout the transients.
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(b) Spectrum of a 1s steady-state signal (50 full mains periods). Strong harmonics are visible at
3600Hz to 3800Hz.

Figure 4.3.3: Waveform and spectral characteristics of a rotary multi-tool (50Hz power grid)
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5

Electrical Energy Data Collection
Architecture

In this chapter, we develop methodologies for electrical energy data collection with
purpose-built data acquisition systems, processing pipelines, and collection strategies.
The software stack and data �ow is closely aligned with the design requirements of
CLEAR [26] and MEDAL [27], targeting long-term continuous data collection without data
loss or interruptions. Compute resources at the edge of the measurement network are fully
integrated and supplement cloud-based infrastructure depending on the operation mode
and collection strategy. The BLOND datasets where collected with the methodologies
presented in this chapter.

Compared to other datasets with high sampling rates, the novel features of BLOND are
twofold: simultaneous 3-phase voltage and current measurements (previous datasets only
collected data from a single phase in a 3-phase grid, or a simpli�ed data collection in a
2-phase grid) and a comprehensive ground truth measurement with high sampling
rates (previous datasets only collected ground truth data as RMS values for 1 s or
6 s intervals). These unique characteristics of BLOND require a well-conceived data
acquisition architecture.

The DAQ systems and BLOND were speci�cally designed for long-term data collection.

39



5.1. DESIGN GOALS AND REQUIREMENTS

Strong focus was given to resilience against data loss throughout the DAQ data �ow chain.
From the earliest stage where digital samples are �rst available, the design guidelines
include bu�ers and timing schedules to guarantee a full data capture without loosing
samples. As a �nal veri�cation step, each �le is checked against a rule-based requirements
list.

This chapter is structured as follows: We introduce design goals and requirements for
long-term energy datasets in Section 5.1. We propose architectural patterns for data
acquisition in Section 5.2 and data processing techniques in Section 5.3. Section 5.4
introduces a pull-based data processing scheme, while Section 5.5 describes a push-based
strategy for the same task pipeline. Scalability and resilience in the context of long-term
continuous data collection is discussed in Section 5.6. Finally, we present an architecture
evaluation in Section 5.7 and a discussion of the methodologies in Section 5.8.

5.1 Design Goals and Requirements

Long-term continuous data collection of EEC data with mains waveforms started with
the REDD [22] and BLUED [23] datasets. These datasets contain multiple days of
uninterrupted data with high sampling rates. Measurement infrastructure for long-term
continuous datasets, such as BLOND [25] and UK-DALE [24] are designed for multiple
months of uninterrupted measurement series. The design goals and requirements on
hardware, software, and infrastructure must be oriented towards never-ending recordings.

We de�ne a set of goals and requirements to achieve long-term continuous data collection
with fully-integrated hardware, software, and infrastructure components:

DG1 – Flexible Signal Composition: EEC data collection, with individual appliance
meters and multi-phase mains meters, requires a heterogeneous number of signal
streams (multiple voltage and current channels) per DAQ system. CLEAR was
designed to meter a 3-phase power grid, resulting in 6 simultaneously measurement
channels. MEDAL was aimed at a cost-e�ective ground truth (individual appliance)
data collection by providing six monitored power sockets (current channels) and a
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shared voltage channel. The data collection pipeline must be capable of processing
such data streams independent of the number of signals or their type.

DG2 – Network Connectivity: EEC measurements in o�ce or industrial environment
can be physically distributed over multiple rooms and �oors within a monitored
building. Similarly, collecting data from entire neighborhoods and campus areas
requires a distributed �eet of DAQ systems that form a measurement network
to collect and process data �les. In larger areas, multiple data centers (collection
endpoints) can be used to provide additional fail-over domains with automatic
load balancing. Local communication links (WiFi or Ethernet network) need to be
available to reach a central data collection system. Network channels and compute
resources need to be managed to provide optimal uninterrupted service for data
collection and processing.

DG3 – Data Quality: While data corruption might be unavoidable, it must be detected
as early as possible. Corruption can occur at multiple levels, making �les either
unreadable, or scrambling individual measurement values. Both types need to be
considered during the publishing process of a dataset. The lack of data, due to an
outage or malfunction of the DAQ system, needs to be reported as well. In the case
of public scienti�c datasets, the accompanying documentation should list missing,
corrupted, or truncated data �les. Kelly and Knottenbelt [24] included a dedicated
plot with the release of the UK-DALE dataset, which documents up- and downtimes
of each measurement system (clearly marked regions of inactive data collection).
In addition to the above mentioned sudden signal jumps and discontinuous signals,
the dataset also contains 5 partially corrupt �les which are not publicly documented.
Similarly, BLUED [23] also contains 2 partially corrupt and undocumented �les.
For the creation of BLOND [25], we provided a comprehensive technical evaluation
of all data �les and fully documented the data coverage.

DG4 – Collection Reliability: Every outage, interruption, or power surge can result
in data loss or corruption. High availability (HA) infrastructure design principles
are well-known from data center operations and similar �elds. In the case of DAQ
systems, one typically has to make trade-o�s between redundancy and costs for
additional hardware, networking equipment, and storage bu�ers (similar to the
principle of locality). File formats, storage system, and I/O access should also
follow general HA principles: error detection or correction on a �lesystem level,
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fail-over architecture for data retrieval systems, continuous o�-site backups, and
decoupling data bu�ers at each communication layer. HA and reliability can be
described with the "principles of nines" – the percentage of time a service is fully
available in a �xed window (a year, month, or day). Four nines point �ve or 99.995%
allows less than 2.2 min per month (on average) of interrupted service (downtime
or unavailability).

DG5 – Online Recon�guration: Data collection networks are evolving over time: adding
and removing new measurement systems, adapting the collection strategy, or
continuous deployment of new software components must be possible without
downtime or service interruption. This allows us to evolve the code base and
implement new features while collecting data.

DG6 – Compute Locality: Edge-based compute resources should be used to reduce the
necessary infrastructure in the back-end (data centers). Each DAQ system should
be capable of performing local data processing tasks, including scienti�c workloads,
such as event detection and appliance identi�cation in real time.

5.2 Data Acquisition

5.2.1 Analog Data Acquisition

The measurement architecture developed for BLOND was implemented in CLEAR and
MEDAL and consists of the following main components: an analog-to-digital converter
(ADC), an embedded controller, a USB bridge, and a single-board computer (SBC) for the
�nal data processing, see main boxes in Figure 5.2.1. The data �ow starts at the signal
sensors to condition the measurement signals to be compatible with the ADC input range.
The ADC input channels are connected to one analog signal source and can be sampled
simultaneously. The digital values (data) are collected by an embedded controller and
then delivered to an SBC via a USB connection.

ADCs report an electric potential di�erence (voltage) as numerical value. The amplitude
resolution is de�ned by the bit depth and the safe voltage input range, yielding 2n bits
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Figure 5.2.1: The data acquisition �ow of analog signals from a 3-phase power grid (L1, L2, L3 circuits)
with voltage and current sensors into the ADC where the digital values are collected by the controller. The
embedded system operates as independent entity and communicates with the SBC via AT-commands.
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individually distinguishable integer values, with common resolutions in the range of
12-, 16-, or 24-bit. The signal-to-noise ratio (SNR) of an ADC describes the strength of
the desired signal compared to (random) background noise. SNR is typically de�ned in
decibels and uses a logarithmic scale. The performance characteristics of the ADC alone
is only of minor importance, because it is strongly a�ected by the signal conditioning
and external circuitry. In order to get a reliably SNR metric, the full DAQ system should
be characterized end-to-end.

A unipolar ADC can only report positive voltages: [0…Vmax], whereas a bipolar ADC
spreads the available value range symmetrically around 0: [−Vmax/2…0… + Vmax/2]. Common
input voltage ranges are up to ±2V , ±5V , or ±10V . The signal gain and expected SNR
depend on the input voltage range and need to be considered when designing and selecting
components.

Measuring electrical signals typically requires a signal conditioning step, which trans-
forms the raw signal into a suitable (voltage) range, which is compatible with the DAQ
hardware. Most systems operate on a low-voltage level (less than 48 V), which could be
damaged by directly feeding in mains signals (above 100 V). In the context of this work,
we consider the starting point of data acquisition to be the physical sensor for each signal
type.

Mains voltage, typically 120 V or 230 V, needs to be conditioned (step-down) to a safe
ADC input range. This can be achieved with a simple voltage transformer, or with active
di�erential measurement probes. An additional requirement for voltage sensor selection
is the available frequency bandwidth, especially high-frequency signals on the mains
voltage might be suppressed or eliminated by improper probing.

If the measurement system provides a conductive path via the mains circuit, the analog
signal should be galvanically isolated for safety. This breaks the direct current path
between mains and low-voltage elements. Means of isolation can be provided by isolation
transformers or optocouplers. An ADC-DAC bridge with optoisolators on the digital
signals can achieve the same safety rating, but introduces additional signal noise and
unwanted quantization artifacts.

Mains current cannot be directly measured by an ADC and needs to be transformed into a
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proportional voltage �rst. There are two common sensor types: the Hall-e�ect [67] causes
a voltage di�erence due to the magnetic �eld of current �owing through a conductor,
while a burden resistor simply causes a small voltage drop across a high-precision resistor
in series with the mains circuit. A current transformer can step-down the current level
if the mains current exceeds the sensor rating. Special care must be taken when using
such a transformer, due to its high voltage danger during open-circuit faults. Rogowski
coils [68] can only measure AC and require an external integrator to generate a signal
proportional to the measured current, but they can be used in an open loop con�guration
and do not require an iron core.

The ADC conversion (sampling) is triggered by an external signal, which also de�nes the
sampling rate. After receiving the start-conversion trigger, the ADC needs a speci�ed
time to perform the sampling, before the digital measurement value can be read. In
the case of multi-channel ADCs, either one channel needs to be selected while sending
the start-conversation signal, or the ADC provides a single-shot functionality where
all channels are sampled simultaneously. Voltage and current signals must always be
measured simultaneously, otherwise the time delay between the samples causes a phase
shift. While such timing o�sets can be compensated with post-processing to some degree,
it is generally preferred to have identical measurement timestamps for each channel and
sample.

The ADC itself relies on a controlling device to handle all digital I/O functionality.
An FPGA or micro-controller connects via a logic bus with the data lines of the ADC.
The sampling rate is de�ned by an internal timer interrupt which generates the start-
conversion trigger. The measurement data can then be received via a bus protocol,
typically SPI, I2C, or similar interfaces. For single-shot measurements, the controller
needs to read #cℎannels × #bits_resolution/8 × sampling_rate bytes per second.

The precise timing for each start-conversion trigger is crucial to provide equidistant
sampling of the energy signal being measured. Most mathematical approaches for wave-
form analysis, including audio-based signal processing, require uniformly sampled data
points. If the measurement timing varies, the underlying signal cannot be reconstructed
because of the unknown timing o�set. This technique is commonly known as Pulse-Code
Modulation (PCM) and describes the uniformly-distributed sampling of analog signals
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into digital values. The signal strength (amplitude) is represented by a linear mapping
into the available bit depth. Measurements occur in a �xed interval after each other.

5.2.2 Digital Data Acquisition

The controlling device is the �rst entity to handle digital samples of the measured
electricity signals. Depending on the task at hand, various data processing tasks can
be implemented at this stage. However, certain real-time restrictions still apply. The
controller must respond to the start-conversation trigger signal and retrieve the samples
from the ADC. The time between polling the ADC can be used for data processing and
other management or communication tasks. A real-time operating system (RTOS) can
enforce these deadlines and prohibit data loss due to unavailable compute resources [69].
Depending on the task, a straight-forward bare-metal implementation can be su�cient
to retrieve the samples and forward them to a higher processing tier, while bu�ering data
into larger chunks. An FPGA architecture can be bene�cial, due to its multiple parallel
processing capabilities. Micro-controllers (or micro-processor) typically only provide a
single synchronized execution path.

CLEAR and MEDAL employ a similar architecture after the analog data acquisition
(DG1). The controller in CLEAR is a Lattice XO2 7000-HC FPGA, whereas MEDAL
uses a Microchip ATmega324PA micro-controller. The underlying architecture in both
systems forwards the collected samples to a USB bridge device (FTDI FT232H), which
is then polled by a Linux-based SBC. Direct forwarding of data imposes an elementary
real-time restriction: both communication channels to the ADC and the USB bridge must
be serviced before the next start-conversion trigger is scheduled. The packet layout is
determined by the bit depth of the ADC and the number of channels. CLEAR uses 6
channels with 16-bit each and a 2-byte counter for loss detection, resulting in 14-byte long
packets for each sampling. MEDAL uses 7 channels with 12-bit each and the same 2-byte
counter, also resulting in 14-byte long packets (DG1). The counter is a simple unsigned
short variable, monotonically increasing with every new start-conversion trigger, and
over�ows after 65536 packets and restarts at 0, which the unsigned arithmetic already
handles without further intervention. The SBC can use the counter to detect data loss if
the latest counter value is not consecutive with the previous packet.
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We chose USB as communication protocol between controller and the SBC due to its
versatility and high availability in dedicated bridge devices. Other bus interfaces to
provide bi-directional data transfer between systems include Ethernet, CAN bus-based
protocols, SPI, or I2C. While some of these protocols might already be available on the
employed integrated circuits, the achievable data rate, timing restrictions, and framing
complexity need to be considered. Transferring data between an embedded system
(RTOS) and a general-purpose computing device (Linux on an SBC) poses problems due
to asynchronous data handling. Bu�ers and decoupling processes are required to prevent
data loss or blocking bus access (congestion).

The USB bridge (an FTDI FT232H con�gured as FT245 style asynchronous FIFO interface)
provides a signal if the internal send- or receive-bu�ers are full. The controller checks
this signal before writing a new packet, or waits until the USB bridge accepts new write
operations. While waiting, a new start-conversion trigger might occur, and another
data packet becomes ready, therefore, all outgoing data packets are bu�ered in a FIFO
queue in the controller’s internal memory. While a short bu�ering can be handled, the
available memory limits the FIFO queue size and therefore the maximum duration of
USB congestion, after which data loss occurs (DG3).

5.3 Data Processing

The USB bridge, a fully self-contained integrated circuit, provides a full interface to
the USB protocol standard, which o�ers multiple transfer types to send or request data
chunks between the host (SBC) and slave device (USB bridge). The transfer type needs to
match the data rates and HA requirements de�ned by the DAQ speci�cation. Data is sent
to the USB bridge via a simple bus interface. Chunks are bu�ered into larger packets to
minimize transport protocol overhead.

USB supports multiple transfer types, which need to be requested and implemented by
the host device and driver software [70]. Interrupt transfers are not suitable for DAQ
due to its packet size limitation. Control transfers can be used for con�guration and
command communication, but are unsuitable for measurement data. Isochronous and
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bulk transfers are designed for large data packets and fast transmission speeds.

For isochronous transfers, the host requests a new communication pipe and the slave
device then periodically streams new data through it. This transfer type is commonly
used for audio, video, or other time-based multimedia data streams. While isochronous
pipes match the high-level task description of energy measurement DAQ systems, some
restrictions and caveats apply to this type of USB transfer mode. Bandwidth and latency
is guaranteed within a pipe, but also take precedent over data integrity. This means no
error correction or transfer retries are performed. If the non-real-time host is busy with
other tasks, the isochronous pipe might discard or stop sending new data.

For bulk transfers, the host needs to register a new bulk transfer request with the USB
subsystem of the operating system (Linux kernel). Once the slave is ready and signals
that it can ful�ll the request, all available data is transferred. After the request is serviced,
a new request can be processed. In the case of continuous measurement streams, multiple
active requests can be registered, to prevent a queue starvation of the USB subsystem.
The controller and the USB bridge only have limited memory dedicated for measurement
data bu�ering, therefore, the bulk transfer queue must always contain active requests
to prevent bus congestion (packet or data loss). The number of active requests depends
on the sampling rate, chunk size, and bu�er lengths. CLEAR and MEDAL units can be
con�gured to ensure reliable data transmission. During the BLOND-50 and BLOND-250
data collection series, we used a request queue length of 2048 (out of a maximal 4096).
In USB high-speed mode, a single bulk transfer can contain up to 512 bytes, with two
bytes being reserved for error checking. With this architecture, we can transfer 36 full
samples per USB bulk transfer using 14-byte packets from the controller through the
bridge to the SBC. CLEAR, with 6 channels and 16-bit resolution, can sustain a constant
throughput of 250,000 Sps or 3,500,000 B/s without any data loss. MEDAL, with 7 channels
and 12-bit resolution can achieve 50,000 Sps or 700,000 B/s without any data loss. The
limiting component in both systems is the maximum sampling rate per channel of the
ADC.

With these data rates and a queue of 2048 bulk transfers, the USB subsystem is busy
for at least 300 ms (CLEAR) and 1500 ms (MEDAL). The Linux kernel uses a preemption
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latency of 6 ms by default1, which gives the process scheduler enough time to call our
measurement process to process the data packets and re�ll the USB bulk transfer queue.

5.3.1 Single-Board Computer Measurement Governor

The Linux-based SBC needs to make the transition from embedded real-time into general-
purpose (non-real-time) processing. Some timing and memory restriction can be relaxed,
compared to the ADC control. We implemented a dedicated measurement governor that
communicates with the real-time components over USB bulk transfers and processes the
received data, see Figure 5.3.1. This allows us to decouple the responsibilities of data
acquisition and data processing.

The governor is implemented in C to make use of low-level control of memory and process
scheduling. It provides multiple con�guration options, including sampling rate, �le size,
and USB bulk transfer queue settings. These options can be passed as command-line
arguments, environment variables, or can be read from a human-readable �le. Default
values are supplied in the source code and can be adapted to �t the ADC and controller
speci�cations. The core communication is handled by a combination of libusb [71] and
libftdi [72] driver frameworks. Monitoring and auto-reset capabilities are provided by a
systemd service [73] integrated with the underlying operating system.

The command communication link between the governor and the embedded controller is
based on the structure of AT-commands (inspired by the Hayes command set [74]), which
can be used to con�gure the sampling rate and start or stop the data acquisition (start-
conversion interrupt timer). A few additional commands have been implemented for
debugging purposes to retrieve the �rmware version and status registers. After starting
the data collection process, the governor starts �lling the bulk transfer queue with the
con�gured number of requests and hands them o� to the USB subsystem. The kernel
now takes care of the direct memory access (DMA) for the USB subsystem and provides
a callback once a request is ful�lled. The governor sits idle until receiving the callback,
in which it copies the data packets from the completed bulk transfer into a queue for

1Linux v4.4.21, http://elixir.free-electrons.com/linux/v4.4.21/source/
kernel/sched/fair.c#L50
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Figure 5.3.1: The software architecture on a single-board computer with the Measurement Governor and
subsystems. Each service is managed and controlled by systemd and communicates via shared memory
regions.
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asynchronous processing. The completed bulk transfer can be reset and resubmitted to
prevent queue starvation. This process continuous inde�nitely until a user-issued stop
command is received.

Once the measurement data is available in the SBC main memory and the bulk request is
resubmitted, the remaining CPU time can be used for data processing, analytics, or sending
the data over the network. The governor can include processing instructions, which
are performed on every new data chunk, or it can write the data into a �le for external
processing. A multi-core SBC, such as a Raspberry Pi 3 (quad-core Broadcom BCM2837)
and LattePanda (quad-core Intel Cherry Trail Atom X5), o�er su�cient computational
power for local processing. USB bulk transfer callbacks, processing of data, and network
access can be modeled as individual tasks. The governor, with the help of the Linux
kernel, can pin certain tasks to a dedicated CPU core and assign a scheduling class and
priority. This can help to prevent queue starvation and other issues caused by blocked or
unavailable resources.

The governor provides two endpoints for measurement data: storing all raw data into
�les, and streaming calibrated measurement samples for all monitored channels into a
user-de�nable executable. The governor is started with an executable �lename, which is
automatically initialized before data collection begins. The executable receives metadata
from the governor via command line arguments. The data is streamed into a named-FIFO
pipe managed by the Linux kernel. The pipe provides a time-decoupling and can bu�er
multiple seconds if the analytics pipeline is busy.

5.3.2 Data Processing Modes

The governor and the data processing pipeline can be con�gured with two operation
modes: STORE and STREAM, see Figure 5.3.2. Both modes can be used independently or
simultaneously and are supported on CLEAR and MEDAL units.

STORE provides data collection functionality to collect long-term continuous measure-
ment series, see Section 5.3.3, as used for the two BLOND measurement series. This is the
primary operation mode and all decoupling methods are designed to maximize reliability.
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Figure 5.3.2: Governor used in STORE and STREAM data processing modes. Sample use cases are
long-term continuous data collection and real-time data analytics tasks.

The data acquisition via the USB subsystem does not stress the CPU signi�cantly, only
the �le conversion and compression engage the CPU.

STREAM is designed to provide real-time access to measurement data within the DAQ
unit for arbitrary analytics task (DG6). The signal stream contains ready-to-use calibrated
measurement values of voltage and current waveform data with the requested sampling
rate for each channel. A uni-directional communication layer between the governor and
a child process gets established via named pipes in the operating system. The amount
of decoupling bu�er can be con�gured to queue up data if the analytics task is busy.
The user is responsible to design and implement the analytics task within the available
resources. Excessive use of CPU (all cores for longer periods) or memory (swapping) can
cause data loss and system resets. While the DAQ unit "self-recovers", minor data loss
can occur.
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5.3.3 Data Collection for Long-Term Continuous Measurements

Collecting long-term measurement data with a "capture everything" approach results
in multiple continuous data streams. The required bandwidth and storage space per �le
can be determined based on the bit depth, sampling rate, and number of measurement
channels, and optional data compression. Time-series data are commonly stored in
equally-sized chunks (�les). Each �le contains a timestamp and sequence number to �nd
measurement data prior or after the current �le.

The governor bu�ers the collected data chunks in the main memory, before processing
them further. The individual processes of the governor share main memory via a memory-
mapped �lesystem (RAM disk). This provides a simplistic exchange mechanism through
the Linux kernel I/O module without the actual overhead of hardware-based I/O. For
the two time-series datasets BLOND-50 and BLOND-250 [25], we aggregated the data
into larger chunks based on the duration (2 min, 5 min, or 15 min) per measurement
unit. The BLOND environment, common to both datasets, utilized 15 MEDAL units
for ground truth data collection and one CLEAR system for aggregated building mains
measurements, resulting in the periodic creation of 16 new chunks. Once a chunk is
complete (reaches its de�ned maximum �le size), the governor hands o� the raw binary
blob to a processing pipeline and continues with the creation of a new chunk. The blob
is augmented with a timestamp, a sequence number, and additional metadata for the
processing pipeline.

5.3.4 Time Synchronization within a Fleet of DAQ Units

Collecting measurement data with a �eet of sensors requires some form of time synchro-
nization to re-align the individual time-series data chunks of di�erent measurement units
before analyzing them. Each unit generates its own start-conversion trigger based on the
internal oscillator that also drives the embedded system. These electronic oscillators are
typically precise enough for running micro-controllers and peripheral circuits. However,
they can drift when compared to other systems that are not connected. High precision
oscillator crystals can achieve an accuracy of less than 5ppm [75], which still drifts by
approx. 3 min per year. Temperature and input voltage �uctuations can have a negative
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e�ect as well.

Embedded controllers typically use a main oscillator for the CPU clock frequency and
to create timer interrupts. The clock frequency can be derived with an integer factor to
generate lower frequency, which are a multiple of the main oscillator frequency. This
prescaler value can be chosen to get a �ner granularity for the ADC start-conversion
timer. The selected sampling rate should match the mains frequency (50 Hz or 60 Hz) to
provide a stable number of samples for each mains period. If the sampling rate, oscillator
frequency, and prescaler do not match (integer ratio), aliasing e�ects might occur due to
roll-over of individual samples per mains period.

The e�ect of oscillator drift causes the start-conversion trigger to deviate from the selected
sampling rate. The MEDAL and CLEAR measurement units create new data �les based
on the number of contained samples. Assuming a wall time (the time an observer can
monitor on a clock hanging on the wall) of 1 min has elapsed, one unit could have
produced 2,999,995 samples, whereas another unit collected 3,000,005 samples. Each
data �le is combined with a timestamp to indicate the time of the �rst sample of this
�le. This time is taken from the operating system clock, which also drifts. In addition to
the expected drift, the wall time is also a�ected by daylight saving time (DST) and leap
seconds. While DST can be accounted for by using a Coordinated Universal Time (UTC)
timestamp, a leap second needs external input for correction. This correction is relevant
for BLOND-50 but not BLOND-250, due to the December 31, 2016, leap second of +1.

For these reasons, an external clock synchronization is required to ensure the individual
signals of di�erent measurement units can be aligned and analyzed as a single uni�ed
time series. The Network Time Protocol (NTP) [66] is commonly used in IT systems to
query, synchronize, and set the time of individual devices with millisecond accuracy [65].
While collecting the BLOND datasets, each measurement unit was synchronized to a
stratum-3 time server available on the same Ethernet connection, with periodic updates
and corrections. The overall accuracy of the synchronized clock is precise enough to
align two independent mains voltage signals based on their 50 Hz or 60 Hz fundamental
frequency, with a period length of 20 ms or 16.6̇ ms.

The Precision Time Protocol (PTP) is an NTP-alternative which o�ers a higher accuracy
in the sub-microsecond range without the need for external GPS receivers at each node
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or network segment [76]. The time information is synchronized in a master-slave
architecture, where each node (server computers and network devices) in a computer
network participates. The clock is distributed hierarchically, therefore each hop needs to
support PTP to maintain the precision. This renders PTP unusable for typical Internet-of-
Things environments with unknown network devices within the route between a "thing"
and the data center. While most enterprise-grade network devices (routers and switches)
o�er a PTP implementation, the SBC devices in MEDAL and CLEAR lack such support,
due to the missing hardware and �rmware implementations of the network interface
controllers. Although a software-based implementation exists, the promised accuracy of
PTP is only achievable with dedicated hardware support.

Clock synchronization is performed during normal runtime of the system. As such, time
information is only valid while the system is powered up and operational. During a power
outage or reboot, the synchronization is lost and needs to be reacquired. A real-time clock
(RTC) is a dedicated hardware clock with a backup battery to maintain an accurate clock
even when the system is without external power. Most SBCs lack such RTC modules and
backup batteries to save costs. We added a dedicated RTC module and super-capacitor
to MEDAL, which maintains the clock information for multiple weeks without external
power. The Atom-based SBC used in CLEAR already contains an RTC module and only
requires adding an external battery to power it.

When measuring a household, �oor, or building, the mains sine wave propagates at a
�xed speed from the distribution panel to the individual appliances and measurement
units. The speed of electricity can be approximated with the speed of light [77], and
therefore the distance between distribution panel and appliances can be disregarded
for sampling rates below 1 MHz and copper wire lengths of less than 100 m. For long
buildings, such as factories with assembly lines, the wire length can cause a phase delay
between the incoming and outgoing current.
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5.4 Pull-based Data Processing

The data collection architecture of BLOND-50 takes advantage of the edge computing
concept, which performs a majority of the data processing on the local measurement unit
themselves. The edge-based �eet of MEDAL and CLEAR measurement units is capable of
processing raw measurements, performing basic data veri�cation, and encoding the data
into a suitable �le format with compression and checksums. Cloud-based components
pull the �nal �les from each unit and archive them in a distributed data storage system.
The pull-based strategy utilizes a collector, running in the data center, which periodically
transfers data �les from each unit and performs a few housekeeping tasks, see Figure 5.4.1.

The governor on each measurement system is con�gured to create a new data �le every
15 min for MEDAL and 5 min for CLEAR (in BLOND-50). The local processing pipeline
on the measurement unit receives a full data �le from the governor and transforms the
raw data into HDF5 �les. Raw ADC values are encapsulated and split into individual
channels before assigning them to HDF5 datasets (a subgroup inside an HDF5 �le). This
encoding process runs independently (in parallel) of the governor to provide relaxed
timing requirements. The resulting HDF5 is stored in the in-memory �lesystem, while
the raw data chunks are discarded after successful conversion. The HDF5 �le format
o�ers built-in compression of all numerical data, which reduces the required bandwidth
by 50-60% on average. All these tasks are performed at the edge of the data collection
infrastructure, i.e., the CLEAR and MEDAL units (DG2).

The governor and the local processing pipeline are designed to use the main memory
as primary storage location. Keeping the collected data chunks and their processed
HDF5 �les in the main memory serves two main purposes: direct RAM access has a high
bandwidth and low latency, and it does not cause any I/O operations to the �ash memory.
Persistent �ash memory, such as used in USB thumb drives, SSDs, or SD cards, only
provides a limited number of write and erase cycles [78]. Exceeding the vendor-speci�ed
write cycles to individual �ash memory regions, the data integrity cannot be guaranteed,
resulting in possible data loss or corruption. Volatile main memory (SRAM and DRAM),
as used in all modern computer architectures, does not su�er from this issue, and can be
used for in�nite write and erase cycles, but does not retain data after loosing power.
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Figure 5.4.1: Pull-based Data Collection and Monitoring used for BLOND-50
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A memory watchdog periodically checks the available storage space and swaps older
�les to the larger persistent �ash memory, see Figure 5.3.1. The order in which �les can
be moved is determined by the pending operations. Raw data �les need to be converted
to HDF5 and cannot be moved while the conversion is running. HDF5 �les cannot be
moved while they are being �lled with data or transferred over the network.

The pull-based collector periodically checks if �les are ready to be transferred and copies
HDF5 �les one by one, see Figure 5.4.1. The cloud-based collector opens a persistent
SSH/SFTP connection to each measurement unit and downloads the list of available
�les for each storage location (RAM or �ash memory). During normal operation, the
collector only sees a single �le in RAM and transfers it into the data center. If there are
multiple �les in RAM, or any �les in the �ash memory, the cloud-based distributed data
collection system is not performing in its ideal state. The main objective in such a case is
to transfer all �les as soon as possible to catch up with the regularly scheduled arrival of
new �les. The measurement units need to be protected from performance bottlenecks,
which means the number of simultaneous �le transfers is limited to one, the maximum
network throughput is capped, and the collector inserts idle time in between �le transfers
to allow the non-real-time operating system to perform other tasks (re�lling the USB
bulk transfer request queue). All these parameters are tested and calibrated to achieve a
stable, fault-tolerant, and forgiving data collection system that can self-recover in case of
minor outages.

For every �le the collector transfers into the data center, three server-side pipelines are
triggered: veri�cation, storage, and statistics. Each �le is veri�ed with multiple integrity
and plausibility checks which could trigger an error noti�cation, as described in [25].
The �le is then copied and replicated into a distributed data storage system for long-term
storage (archive and backups). All operations touching data and �les are designed to
"fail safe", i.e., to not loose data or metadata. The full pipeline on the data center can be
resurrected in case of outages without loss of state or data. The main goal of BLOND
was a long-term uninterrupted data collection, therefore each measurement system and
�le transfer is logged to generate statistics and error noti�cations in case a transfer time
window passes without any new available �les (DG4). A human operator was tasked to
respond to these noti�cations within 48 hours. The �ash memory in each measurement
system can bu�er up to 100 hours on CLEAR and 200 hours on MEDAL. The worst case
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scenario would be a full �ash memory, causing data loss (new data not being stored, or
old data being overwritten). Neither BLOND-50 nor BLOND-250 su�ered from any such
situations. The su�ciently large bu�er sizes allow us to deploy new software packages
and data center services while collecting data.

5.5 Push-based Data Processing

The BLOND-250 dataset was collected with a 5× higher sampling rate for CLEAR, and
7.8× for each MEDAL unit. The increased data bandwidth for each measurement stream
rendered the pull-based strategy unfeasible due to resource limitations of the SBC. While
basic data processing tasks can still be serviced, the remaining compute time was not
su�cient to convert and compress the data into HDF5 �les at the edge of the measurement
network. Therefore, we utilized a push-based data processing strategy, which performs
all resource-intensive tasks in the cloud, instead of doing them locally.

The governor performs the same tasks as previously, with a con�gured maximum �le
length of 2 min for CLEAR and MEDAL units. The data acquisition pipeline immediately
continues to write incoming new data to a new �le, while the just �nished �le is handed
o� to an upload stage, instead of being converted to HDF5. The upload stage uses the
same network transfer system of the pull-based strategy, however, the measurement unit
is now the initiating endpoint. The �le is uploaded into the data center, while handling
connection drops with automatic retries and exponential backo�s in case the data center
is unavailable. After successfully transmitting the �le, it is deleted from the measurement
unit.

Due to the increased sampling rate and the missing data compression, the �ash memory
in each measurement system can bu�er up to 10 hours on CLEAR and 13 hours on
MEDAL (DG4). While this would allow some minor outage of the cloud components to
be resolved without data loss, actually transferring the data once the data center becomes
available again would be limited by the network bandwidth cap. The human operator
tasked with responding to error noti�cations of the measurement infrastructure becomes
a higher priority with the reduced bu�er time in a push-based strategy.
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The main compute resources used in a push-based strategy are located in the cloud, as the
available performance at the edge is not su�cient for data collection and simultaneous
compression of completed �les. The collector, as depicted in Figure 5.4.1 for the pull-based
strategy, is replaced in the push-based strategy by a converter worker, which processes
and converts all incoming �les to HDF5 and compresses the raw data streams.

5.6 Scalability and Resilience

Main drivers for scalability in large distributed sensor networks are data transfer band-
width, compute power, and storage requirements. We evaluated the proposed architecture
with the collection of two long-term datasets: BLOND-50 and BLOND-250. Both datasets
make use of the outlined design principles regarding data acquisition and processing: from
the analog signal measurements, into embedded real-time computing devices, SBC edge
devices, and �nally cloud-based back-end systems for long-term storage. The BLOND
datasets use a CLEAR unit as single smart meter for a 3-phase power grid, to collect
the whole-building energy consumption. The ground truth energy consumption was
collected with 15 MEDAL units as per-appliance energy meters. The datasets consist of
93 current measurement streams and 18 voltage streams.

The measurement environment provides a common Layer-2 IP network, consisting of
1 Gb/s Ethernet LANs, joined via �ber-based uplinks into the data center. Each DAQ unit
is connected to the data center and periodically transmits (pull- or push strategy) data
�les, typically in short bursts as long as data is available. Over the course of collecting a
long-term dataset, the time drift of the units will distribute these burst transfers equally.
The averaged bandwidth requirement in BLOND-50 to transmit compressed data �les was
35 KiB/s for a single MEDAL unit, and 375 KiB/s for CLEAR. The increased sampling rate
and the non-compressed data transfers in BLOND-250 generated on average 265 KiB/s
for one MEDAL unit, and 1800 KiB/s for CLEAR.

The employed network infrastructure would therefore theoretically accommodate a �eet
of over 400 MEDAL units together with one CLEAR unit, all connected via a single
Ethernet port. However, in real-world environments, the �eet is distributed over a larger
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physical area (spanning �oors and rooms), which allows for even larger measurement
networks. We therefore conclude that network bandwidth is not a limiting factor for
scalability in this context.

While the SBC edge devices with quad-core CPUs do have memory and processing
power limitations, the workload and tasks during data collection and processing have
been allocated according to the data collection strategies. Scienti�c data analysis can be
implemented at the edge of the sensor network, however, the processing power scales
only vertically, based on the availability of SBCs with higher performance density (CPU
and RAM resources). The cloud (data center, either local or reachable via the Internet) can
provide virtually unlimited resources if required. This allows us to scale horizontally in
the data center to accommodate an increasing number of measurement devices without
introducing new complexity (DG2).

Limitations and real-time requirements have been introduced in Section 5.2.2 and the
compliance was validated with an extensive technical validation of all collected data
and metadata. We de�ne the main criterion as the resilience of a given data collection
network (�eet of sensors communication with the cloud) to power, network, or server
outages, as well as deployment of new client and server software packages. A resilient
system can cope and recover from any of these issues (within a prede�ned length or time
window).

5.7 Evaluation

The presented architecture and design guidelines were implemented and tested with the
creation of the BLOND datasets [25]. The achieved measurement coverage was 99.997%,
putting it well above the typical 99.99% cloud provider SLAs [79, 80, 81]. It has to be noted
that the uncovered regions are con�ned to the BLOND-50 sub-dataset, and their primary
cause was a direct result of non-conforming operation of the underlying infrastructure:
the �rst event was caused by a corrupt operating system upgrade which lead to a reboot
of the measurement unit, and the second event was caused by an improper network
�lesystem operation where the data was actually collected but erroneously overwritten.
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Figure 5.7.1: Analysis of software deployments and local bu�ering operations at each measurement unit.
Local bu�ering moves data from RAM onto the persistent �ash memory. Software services have been
continuously improved and deployed without interrupting the ongoing data collection.

During the collection of BLOND-50 and BLOND-250, the cloud-based software services
were re-deployed on 70 independent occasions, see Figure 5.7.1. These events where part
of a continuous deployment strategy to improve the software quality and feature set.
Various components received new functionality and bug�xes during each deployment.
Each cloud-based component preserves any intermediary state or operates stateless to
handle service restarts gracefully (DG5). The decoupling between data acquisition and
collection ensured that measurements are continuously collected, even during a network
or component outage. Each measurement unit keeps recently collected data �les in RAM
to save I/O access. If the collector does not retrieve the �les, and RAM utilization reaches
its limit, older �les are moved to the �ash memory – which occurred on multiple occasions
for CLEAR and two MEDAL units (No. 11 and 13), none of the other measurement units
had to make use of this. This safe guard was transparently handled by all components
and the system returned to a normal operating state. It can be noted that some of these
timestamps correlate with software deployments, which is expected, while others appear
to have no obvious trigger.

In the pull-based data collection strategy, each measurement unit performs local data
processing to convert the raw data into HDF5 �les and to apply internal compression,
before the collector can retrieve the �les. The edge-based compute power was fully
utilized, with one CPU core dedicated to this task (DG6). The processing duration for
each �le was recorded, see Figure 5.7.2. CLEAR shows the fastest task duration, due to its
superior CPU, although it had 2.2× more data to process than a MEDAL unit (90 million
samples vs. 40.32 million samples per �le).
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Figure 5.7.2: BLOND-50: Duration of edge-based data conversion and compression for each collected �le.
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Figure 5.7.3: Distribution of transfer time per �le from the measurement unit into the data center (pull-
based data collection). The boxplot shows the lower and upper quartile in the box, with a red line for the
median value, and whiskers range from 1-99%.

The transfer time per �le strongly depends on the overall network utilization and the
capped throughput (available bandwidth) for each measurement unit, see Figure 5.7.3.
The transfer duration is consistent over the majority of BLOND-50 and BLOND-250,
while a few outliers can be attributed to software deployments and local bu�ering. All
MEDAL units show identical distributions and spread. The CLEAR unit generated larger
�les, and therefore also has higher transfer times. Although one MEDAL unit (No. 11)
experienced an out of the ordinary conversion time, see Figure 5.7.2, the transfer time
was una�ected. The observed transfer duration only accounts for successful transfer
operations, failed and retried connections are not accounted for.
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5.7.1 Scalability and Deployment Strategies

The cloud services used while collecting BLOND-50 and BLOND-250 have evolved and
were updated frequently to improve usability and monitoring capabilities over the course
of the two measurement periods (DG5). In total, the individual components were re-
deployed 69 times to the data center without any interruption of the measurement time
series. On each occasion, the implemented safe guards and bu�ers performed as designed
and decoupled the analog and digital data acquisition from data collection tasks in the
data center. The underlying infrastructure (compute and storage servers used to host the
data collection services) received regular OS updates without prior knowledge.

5.7.2 Scienti�c Workload: Event Detection

The proposed architecture consists of a dedicated embedded system for analog and digital
data acquisition, a USB-based communication channel to an SBC, and the asynchronous
data processing with in-memory bu�ers. The governor, as well as the pull- and push-
based data collection strategies, have been thoroughly evaluated during the creation
of the BLOND datasets. One of the main goals of our DAQ architecture is to provide
su�cient processing power for scienti�c workloads (data analysis tasks) at the edge of the
sensor �eet network (DG6). We provide an easy-to-use programming interface to retrieve
measurement data and run experiments, processing pipelines, and machine learning
approaches directly on the DAQ system without the need for cloud-based aggregators or
additional hardware.

We evaluated the DAQ architecture on MEDAL, due to its reduced processing power
(compared to CLEAR). While both systems contain a quad-core CPU, the ARM processor
used in MEDAL is less performant than the 64-bit Intel Atom processor in CLEAR. In
the context of dataset collection, MEDAL was designed to measure the ground truth
electrical energy consumption (per-appliance consumption). Therefore, we implemented
an on-device event detection. The use case is a data collection task, combined with a
real-time event detection to generate annotated ground truth data (switch on/o� events).
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5.7.3 Event Detection with Deep Neural Networks

We use an arti�cial deep neural network to detect appliance switch events in a 12 s
time window and continuously evaluate the model prediction. The input data is directly
streamed from the governor into a Python-based data pipeline. While the governor
is written in the low-level language C, the event detection pipeline (data streaming)
is implemented in Python to utilize existing machine learning frameworks, such as
Numpy [82], Keras [83], and TensorFlow [84].

The current signals of all available sockets are transformed into sub-second RMS values.
The cumulative sum of these values is then fed into a denoising autoencoder for event
classi�cation (event vs. non-event). Our event detection model consists of a 4-layer
autoencoder, which uses recurrent layers to encode the input. The event detection
algorithm trains the model on non-event data and uses the reconstruction error to �nd
events in the data stream. This error metric increases when unforeseen change points
occur in the signal. The model has two encoding and two decoding layers, with the inner
most encoding layer being 100-dimensional. Hence, the high-dimensional input signal
(current RMS values) is represented in a low-dimensional space and reconstructed again.
After detecting signal windows that contain the events, we determine the exact change
points by using a simple threshold algorithm. The model has close to 1,600,000 learnable
parameters (10 RMS values per second, each 5 mains cycles, over 12 seconds of input data
with LSTM cells), making it a comparatively high computational load. The quad-core
CPU in MEDAL can process multiple sockets in parallel, making full use of the available
computational resources.

The model was trained with the fully-labeled events of phase B in BLUED [23], because
of the higher variance in appliances compared to phase A. Accuracy and F-score of the
implemented event detector are not relevant for the evaluation of our data acquisition
architecture, since the model and its parameters can be adapted easily. The critical metric
is computational performance, i.e., if the hard- and software architecture are capable of
handling on-device data analysis tasks in near real-time (without signi�cant delays or
o�ine processing).
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5.7.4 Event Detection with k-NN

An alternative event detection system was designed and implemented as multivariate
supervised binary classi�cation task. We use a k-NN classi�er to divide events and
non-events based on a 10 s time window. The current signals are streamed from the
governor into a model prediction pipeline using Octave [85].

The k-NN model relies on a large number of labeled events and non-events (supervised
approach). The temporal position of non-events in the model are implicitly known due
to the inverse relationship: all time windows without any labeled events can be used
as non-event windows. The cycle-wise cumulative sum of RMS values of each window
forms a 500-dimensional feature space. The neighborhood size N and the distance metric
de�ne the computational complexity of the model evaluation and can be adapted. It has
to be noted that we already achieved high event detection accuracy with N = 1 and the
cityblock metric.

5.8 Discussion

This work presents comprehensive methodologies for electrical energy data collection,
data acquisition architectures, and measurement networks. We de�ned a set of design
goals and requirements to support long-term continuous data collection in the context of
NILM with uninterrupted waveform data for voltage and current signals.

Our data acquisition and processing pipeline handles a heterogeneous number of signal
streams, as implemented in the CLEAR and MEDAL systems, with a uni�ed software
control stack. The edge- and cloud-based components are designed to ingest data streams
in arbitrary structure (multiple voltage or current signals) (DG1).

We collected two measurement series, BLOND-50 and BLOND-250, in an o�ce environ-
ment with multiple rooms using a distributed �eet of measurement systems. A central
communication network was used to transmit collected data from the DAQ units into
a data center for further processing and persistent storage. The measurement network

67



5.8. DISCUSSION

can be scaled to support a large �eet to cover entire buildings or campus areas without
network congestion or data loss. (DG2)

Uninterrupted data collection is an important feature for NILM-related datasets to provide
gap-less signal streams for power disaggregation and appliance identi�cation tasks. We
designed the BLOND measurement infrastructure to high availability requirements and
minimized outage and downtime e�ects. All data �les were validated and checked against
a comprehensive set of quality metrics to ensure no data corruption. We achieved an
overall data availability of 99.997%, which is higher than the standard SLA of cloud
infrastructure providers (DG3 and DG4).

The edge-based measurement governor, the cloud-based collector, and processing pipeline
are designed to queue incoming data and save all intermediary information to a persistent
storage location. We continuously improved our active edge and cloud components
and deployed new features and bug�xes without any downtime. All decoupling bu�ers,
queues, and temporary storage locations have been tested and were automatically engaged
if the system detected a congestion at one of the pipeline stages (DG5).

We provide two data collection strategies and two modes of operation to create a �exible
and con�gurable environment. Pull- and push-based strategies allow us to dynamically
use compute resources at the edge or in the cloud and de�ne active endpoints in the
communication channels. The STORE and STREAM modes allow us to operate the DAQ
systems with two di�erent use case scenarios. STORE can be used to collect long-term
continuous datasets, while STREAM can be used for real-time data analytics at the edge
of the measurement network with arbitrary scienti�c workloads for event detection,
power disaggregation, or appliance identi�cation tasks (DG6).
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6

Building-Level O�ce eNvironment
Dataset of Typical Electrical
Appliances

Energy metering has gained popularity as conventional meters are replaced by electronic
smart meters that promise energy savings and higher comfort levels for occupants.
Achieving these goals requires a deep understanding of consumption patterns to reduce
the energy footprint: load pro�le forecasting, power disaggregation, appliance identi�-
cation, and startup event detection. Publicly available datasets are used to test, verify,
and benchmark possible solutions to these problems. For this purpose, we present the
BLOND dataset: continuous energy measurements of a typical o�ce environment at
high sampling rates with common appliances and load pro�les. We provide voltage and
current readings for aggregated circuits and matching fully-labeled ground truth data
(individual appliance measurements).

This chapter is structured as follows: Section 6.1 gives the background and a summary
of the dataset conception. Section 6.2 describes the collection environment and setup,
while Section 6.3 covers the data, metadata, and structure of the published data descriptor.
Finally, we present a technical validation in Section 6.4.
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6.1 Background & Summary

Existing datasets predominately cover household and residential environments [19, 22,
23, 24, 86, 87, 88, 89, 90, 91, 92, 93, 94] due to the cost savings potential for their occupants.
Large appliances (space heating, HVAC, washing machines) are being targeted �rst to
achieve an immediate reduction in EEC since households typically contain a manageable
number of them. These devices are easier to detect than multiple smaller ones, therefore,
most datasets use measurement intervals of 1 sample per second (Sps), 1 minute, or
lower. Using sampling rates above 10 kSps is bene�cial to the total number and types of
distinguishable appliances in a circuit with NILM and appliance identi�cation research
questions [15]. The amount of information contained in electricity signals increases
steadily with sampling rates ranging up to 1MHz. Higher sampling rates can capture
subtle changes (high frequency ripples), which are useful for appliance identi�cation [5,
15, 18, 49]. Capturing the voltage and current waveforms allows energy disaggregation
algorithms such as BOLT [6] to extract patterns directly from the raw measurement
data. To the best of our knowledge, only the datasets in [22, 23, 24] provide aggregated
sampling rates above 10 kSps. In contrast to the aggregate measurements, the ground
truth is only available with low sampling rates, making it di�cult to correlate data of
individual appliances to the mains EEC with high timing accuracy (see Table 6.1.1).

Table 6.1.1: Overview of long-term energy datasets with high sampling rates. This includes only datasets
with long-term recordings of aggregate (above 10 kSps) and per-appliance measurements. In contrast to
existing datasets, BLOND also provides ground truth data with a high sampling rate.

Dataset REDD BLUED UK-DALE BLOND-50 BLOND-250

Aggregate 15 kSps 12 kSps 16 kSps 50 kSps 250 kSps
Ground Truth 1 Sps 1 Sps 0.16̇ Sps 6400 Sps 50 kSps
Circuits / Phases 2 2 1 3 3
Duration 119 days 7 days 655 days 213 days 50 days
Classes 8 9 16 16 16
Appliances 82 43 53 53 53

O�ce buildings have a large potential for EEC reduction since most o�ce workers are
unaware of the energy costs they cause [95]. Modern o�ce environments contain a
well-de�ned set of appliances equipped with switched-mode power supplies (SMPS).
Information and Communication Technology (ICT) devices, including computers, moni-
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tors, networking equipment, and battery chargers, mostly use direct current (DC) and
require a power supply module. Recently, �eld research and trials have been conducted
with buildings o�ering DC power sockets, removing the need for SMPSs [96, 97]. Recent
studies found that SMPSs can have a signi�cant e�ect on EEM accuracy and can cause
deviations of up to 582% when comparing smart meters to conventional meters [98].
This is primarily caused by magnetic interference due to non-linear and fast-switching
loads causing distortions in current sensor readings. A signi�cant portion of the reported
errors are caused by ripple currents in the frequency range of up to 150 kHz, which
is currently not covered by any dataset. The authors found a signi�cant correlation
between sensor type and their measurement accuracy. While Rogowski coil-based sensors
showed a positive deviation (higher readings), Hall e�ect-based sensors were found to
predominately return negative deviations, compared to conventional electromechanical
meters.

In order to study typical o�ce appliances, in particular, ICT devices equipped with
SMPSs, in the context of NILM and EEM, we present BLOND: a Building-Level O�ce
eNvironment Dataset. We provide long-term continuous measurements of voltage and
current waveforms in a 3-phase power grid of a typical o�ce environment collected
in Germany between October 2016 and May 2017. The dataset contains readings for
aggregated circuits (smart meter) and the matching fully-labeled ground truth waveform
of voltage and current with a high sampling rate for individual appliances. In total, 53
appliance types and 74 appliance instances, grouped into 16 classes, are distributed across
111 recorded channels. All signal traces are precisely timestamped with a globally syn-
chronized clock. The dataset consists of two measurement series in the same environment
with di�erent sampling rates. BLOND-50 contains 213 days of continuous readings of all 3
phases (aggregated) at 50 kSps, with ground truth data (individual appliances) at 6.4 kSps.
BLOND-250 contains 50 days at 250 kSps (aggregate) and 50 kSps (individual appliances).
The setup incorporates one data acquisition system for the aggregated circuits and 15
units to record individual appliances, each capable of measuring up to 6 appliances. We
also provide a precomputed 1-second data summary to enable research on data with
lower sampling rates.
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6.2 Methods

In order to create a new dataset focused on ICT devices equipped with SMPSs, which
provides a bene�t over existing public datasets, and applicable to NILM-related areas, we
de�ne the following requirements and desirable attributes:

High sampling rates are necessary to extract high-frequency features from SMPS and
other non-linear loads. Existing datasets (Table 6.1.1) cover the range between
10 to 20 kilosamples per second (kSps), only covering the lower region of the
sampling frequency bins described in [15]. New research questions can be posed
with higher sampling rates, which could lead to improved accuracy and new types
of algorithms.

Ground truth waveforms provide additional information compared to lower sampling
rates (e.g., one seconds mean values). Therefore, it is bene�cial to collect the per-
appliance EEC with sampling rates that are capable of representing the actual mains
waveform for voltage and current.

Raw data streams are useful if the desired information cannot easily be extracted
during data collection, either because the use case is not known yet or di�erent
algorithms and �lters might omit import data. This allows us to calibrate and
optimize the signal quality for a given task.

Long-term continuous recording results in a gap-less data capture of the entire elec-
trical circuit. Previously recorded datasets contain large gaps where simply no data
was recorded or received due to various reasons. While technical systems always
have a certain margin of error, integrity and completeness should be a high priority
when it comes to high-frequency energy datasets.

Clock synchronization allows for a precise matching between aggregate and ground
truth samples. The time-stamping accuracy is a side-e�ect of high sampling
rates. Since most dataset collections happen with a distributed �eet of sensors,
maintaining a precise world clock is crucial to the overall timing accuracy. Without
proper synchronization, some sensors might drift in time and blur the aggregate-
to-ground-truth relation.
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6.2.1 Environment

The BLOND dataset was collected at a typical o�ce building in Germany, with the main
occupants being academic institutes and their researchers. The measured circuits are
part of a single �oor with 9 dedicated o�ces and 160m2 of o�ce space with central
(non-electric) heating. The average weekday power density over the entire measurement
period was 11.7W/m2 – which �ts into the category of typical o�ce buildings of 9.5W/m2

to 13.5W/m2 [99]. Throughout the collection of the dataset the population working in
the monitored o�ces varied from 15 to 20 people.

Periods of occupancy are closely aligned with the o�ce work schedule in Germany:
Monday to Friday with a majority of occupants being present between 9:00 and 18:00.
Weekends show almost no usage of the o�ce spaces and therefore also no electricity
consumption. Major public holidays, such as Christmas and New Year, also show minimal
presence in the building, as well as personal vacation days taken by occupants individually.
This includes business trips, sick days, and other "out-of-o�ce" days. Due to privacy
restrictions, no such data were collected.

All occupants perform light-duty o�ce work, utilizing personal computers, monitors,
and other electrical appliances typical for this environment. Individuals working in
this building spend the majority of their work time at the desk, with certain breaks for
meetings or other activities outside their assigned o�ces. Some occupants are involved
in academic work and teaching, giving weekly lectures or attending meetings.

The power system consists of a 50Hz mains with 3 circuits with a nominal phase shift
of 120◦ (typical 3-phase supply): L1, L2, and L3. Each o�ce room is connected to one or
two circuits, with neighboring o�ces being on alternating circuits (see Figure 6.2.1 and
Table 6.2.1). The building is not equipped with electric space heaters or air conditioning.
Therefore, the dataset only contains user-operated appliances and base loads.

In order to keep rewiring e�orts to a minimum, the existing independent circuits for
regular and emergency lighting was excluded from the measurements, and only the
user-accessible wall sockets were part of the measurements. The o�ces are electrically
grouped into two sectors, each with an independent 3-phase breaker switch, resulting in
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Figure 6.2.1: The measurement architecture of BLOND with physical placement of DAQ systems and
connected appliances. A CLEAR unit is used as an EEC meter at the mains input to measure all 3 circuits
in the electric cabinet. Multiple MEDAL units are placed in o�ce rooms and connected to di�erent circuits.
Each MEDAL can be used to measure up to six appliances simultaneously in a single phase. Only a subset
of MEDAL units is depicted; see Table 6.2.1 for a full circuit mapping.

6 circuits. Since the goal of this dataset is to collect aggregated mains EEC, every two
circuits per phase are combined for measurement purposes, allowing us to use a 3-phase
energy data acquisition system.

6.2.2 Aggregated Mains Measurements

Mains EEM was performed in the distribution board with a CLEAR unit [26], which was
designed to meet the BLOND requirements. CLEAR, a circuit-level energy appliance
radar, is a specialized data acquisition system capable of measuring voltage and current
waveforms with high sampling rates and bit-rate for a 3-phase power grid. The power
necessary to operate the sensors and the CLEAR system itself is drawn from a di�erent
circuit and not part of the measurement setup.

The CLEAR system (Figure 6.2.2) utilizes three Hall-e�ect based current sensors, installed
in the electric cabinet (Figure 6.2.3), and a measurement box in the adjacent room
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Table 6.2.1: Circuit mapping for each measurement system. Associating a MEDAL unit with its aggregated
circuit in the CLEAR data is �xed and does not change over time. This corresponds to the wiring of
individual o�ce rooms to use one (or more) of three di�erent phases.

CLEAR MEDAL

L1 1, 2, 3, 7, 12
L2 6, 10, 11, 13, 14
L3 4, 5, 8, 9, 15

Figure 6.2.2: The data acquisition and processing component of the CLEAR system. The laser-cut acrylic
enclosure contains three components: sensor board, DAQ board, and a Linux PC.

that contains all electronics and processing units. The electric cabinet and sensors
are connected to the measurement box via 2 CAT-6 cables to provide shielded signal
transmission and power. The voltage signals are directly tapped o� the incoming mains
line.

The employed analog-to-digital converter AD7656A samples all six channels (3 phases:
voltage and current) simultaneously with up to 250 kSps [100]. Each signal channel is
converted with 16-bit precision and bipolar value range, allowing for a direct mapping of
the AC mains waveform into a digital data stream.

The ADC is controlled by a Lattice XO2 7000-HC FPGA to trigger the single-shot and
read the data into memory for bu�ering. The resulting data packets are forwarded to
a USB interface chip to allow for direct communication with a single-board PC. The
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Figure 6.2.3: CLEAR current sensors installed in the electric cabinet. The open-loop Hall-e�ect sensors
employ multiple turns of the mains wiring to increase the usable output signal. A small connection board
distributes supply voltage and output signals. All changes and alterations were authorized and conducted
by certi�ed personnel.

Linux-based single-board PC receives the data and stores it into �les, which then can be
sent over the network into the data center for storage.

Each circuit in each room is protected by a 16A breaker; each mains phase is protected
by a 25A breaker. A preliminary check showed typically less than 16A per phase of
total EEC over the course of a single day. Using LEM HAL50-S current sensors, we can
utilize 3 primary turns to boost the e�ective signal bandwidth without exceeding the
primary nominal current of 50A per sensor [101]. The sensors come pre-calibrated and
the calibration factor (linear mapping) was computed according to the data sheet.

The voltage signal is generated by an AC-AC transformer, which depends only on the
open-circuit voltage and the minimal load during measurements. The calibration factor
for the voltage ADC signal was computed by taking multiple RMS readings of a calibrated
high-precision voltmeter and mapping it into the ADC signal.
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6.2.3 Individual Appliance Measurements

The individual appliance EEM was performed by a �eet of 15 MEDAL units [27] acting as
ground truth data for the aggregated mains measurements. MEDAL, a mobile energy data
acquisition laboratory, is an o�-the-shelf 6-port power strip, augmented with voltage and
current sensing infrastructure in a compact and portable enclosure. A single-board PC is
used to collect EEC data from the sensing hardware and to run the same software packages
as CLEAR. Therefore, the �eet of MEDAL systems and CLEAR behave identically during
setup and operation.

Each MEDAL unit measures up to 6 user appliances simultaneously with labeled sockets:
#1 to #6. All power sockets in the o�ces are directly connected to a MEDAL system, used
for base load equipment, or rendered unusable to prevent unmonitored appliances from
being used. All monitored energy consumption is included in the CLEAR measurements
and exactly one MEDAL data stream. MEDAL uses the same voltage sensing circuit and
calibration as CLEAR.

All sockets produce an independent current signal with a Hall-e�ect-based IC from the
Allegro ACS712 family, providing a range of 5 /20 /30 Apeak per socket. Due to the expected
ICT devices with SMPSs, we chose to con�gure each MEDAL unit with one high-power
socket (up to 3600W on socket #1), and 5 low-power sockets (up to 815W, sockets #2
through #6). The maximum safe wattage is properly marked on the enclosure next to
the socket. In case the plugged-in appliance exceeds that limit, the signal is limited to
the maximum value, while still being electrically safe to operate. The EEC of a MEDAL
system is less than 5W and not measured in the ground truth data.

Most commonly available ADCs that o�er simultaneous sampling of all channels can
be expensive and are not suitable for a large-scale DAQ system. Therefore, MEDAL
uses seven independent single-channel ADCs: MCP3201 with 12-bit resolution and up
to 50 kSps [102]. Precise timing and simultaneous sampling are achieved by using an
ATmega324PA microcontroller as command & control IC.
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6.2.4 Appliance Logs

An o�ce environment with a moving and size-varying population can be an ever-
changing setting to collect energy data. A list of observed appliances and their grouping
into classes is available in Table 6.2.2. Most of these devices are small and portable, which
means they can be moved around, plugged into di�erent sockets, or simply appear and
disappear on a daily basis. To prevent the incorrect labeling of appliance ground truth, a
mapping between MEDAL sockets and actually plugged in devices was recorded in the
appliance log: a spreadsheet containing timestamps, class name, appliance name, nominal
power consumption, and socket numbers. The full log for each MEDAL is available in a
JSON-based �le format and as a spreadsheet �le for easy printing and visual inspection.
Although the appliance log is mostly based on self-reporting and periodic checks by
trained professionals, a certain margin of error cannot be avoided. The curation of this
data was carried out to the best of our capabilities and with due skill, care, and diligence.

Monthly checks were conducted to update the appliance log. Occupants were instructed
to give notice about changes, so an update can be entered into the appliance log. An
in-depth evaluation of the daily EEC was conducted retroactively to further improve the
data quality. In cases a mismatch with the actual metered data was found, the appliance
log was augmented with additional entries. This was only applicable in cases where
a mismatch was deterministically resolvable by either using data from adjacent days,
or by questioning the occupant responsible for the MEDAL system. Sockets marked as
empty in the appliance log were manually veri�ed by inspecting the daily EEC of the
MEDAL system in question. If a mismatch was detected, the log was updated accordingly.
Entries in the log dedicate one socket to one speci�c appliance. This does not include
information about being turned on or being plugged in, but only serves as a booking.

6.2.5 Data Collection

BLOND aims for long-term continuous measurements, which requires some fault tol-
erance in the transmission layer; rendering wireless or mesh-based networks un�t for
this task. The building is equipped with spare Ethernet connections in each room, which
were used as a reliable transmission network to forward all data into a centralized storage
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system. Ethernet, IPv4, TCP, and SSH all provide mechanisms to ensure data integrity
and to automatically detect and retransmit faulty data with a very high probability.

BLOND-50 employed a pull-strategy, in which a single central server periodically pulled
new data �les from each measurement unit and moved them into a distributed storage
system. CLEAR and MEDAL convert the raw data into HDF5 �les and can bu�er data for
multiple hours or days if nobody collects new data. The central server only has to move
data between systems and also bu�ers data for up to 24 hours in case the storage system
is unavailable. This architecture decouples the various stages to allow for outages and
planned maintenance. Bu�er sizes and temporary storage devices were chosen carefully
to maximize the allowed time before data loss occurs.

BLOND-250 uses a signi�cant higher sampling rate, which renders a pull-strategy
unusable due to memory and compute performance limits. Therefore, a push-strategy
was used in which each measurement system directly sends raw data �les (chunked) to
the data center. The �les are then converted and moved to the storage system by the
server. Due to the higher sampling rate and �le sizes, the available bu�er time in each
stage is also reduced.

CLEAR and MEDAL are built with the same software stack, which enables us to reuse
large portions of the collection software and bu�ering strategies. Each measurement
system is capable of bu�ering multiple gigabytes of raw data to a local storage device
(SD-card or USB �ash storage) in case of network failures or data center errors. This
allows us to survive multiple days of data collection without any transmission capabilities.
Upon reestablishing network connectivity, all bu�ered �les are transmitted in bulk at
a limited rate to prevent network congestion. Additional actions to further increase
fault tolerance were implemented by using "RAM-�rst" bu�ering to keep I/O access to a
minimum and reduce the risk of memory wear (write endurance of NOR/NAND �ash
memory). Although the underlying hardware of CLEAR and MEDAL are general-purpose
computing devices, some low-level measurement tasks require real-time capabilities,
which have been implemented by carefully choosing data structures, in-memory bu�er
sizes, and I/O access patterns to guarantee error-free data collection.

All networked devices are connected to the same Ethernet and share a synchronized
clock via NTP. Two stratum-3 time servers are available on the same layer-2 Ethernet.
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The internal system clock is connected to a dedicated real-time clock chip with a backup
battery. A daemon process runs in the background to synchronize the system clock
continuously; CLEAR uses systemd-timesyncd and MEDAL uses ntpd.

6.2.6 Known Issues

• Only user-operated appliances are measured as ground truth. Some static appliances
(e.g., network switches and wireless access points) that are not user-operated are
directly connected to the wall socket and can be considered as base load or static
background in the CLEAR measurements (including MEDAL’s own energy draw).

• MEDAL uses a unipolar ADC that can cause a slight DC-bias in the signal due to
changes in the DC reference voltage. This can easily be accommodated for via
proper signal calibration and �ltering as part of a preprocessing stage.

• The appliance log was regularly updated and room-to-room checks were conducted.
However, there could still be gaps in the log for unknown activity by students
bringing their own devices for a short time period without entering the correct
details into the appliance log.

• All measurement units were calibrated at the start of the BLOND data collection.
Slight deviations in resistor value precision could cause a di�erence between CLEAR
and MEDAL units connected to the same circuit.

6.2.7 Code Availability

We have implemented most of the data collection, technical validation, data processing,
and utility tools in Python 3. The individual source �les are available under the MIT
license in the BLOND repository [103].

Due to the extensive amounts of data, processing is most reasonably done in a distributed
and parallelized approach. We provide usage examples that can be scaled up and run in a
distributed compute environment.
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Software to convert and collect measurement data from a �eet of DAQ units is provided
as it was used during the BLOND data collection. All steps in the Technical Validation
section can be reproduced with the supplied scripts. The 1-second data summary was
created from the raw measurements, and can be fully recreated.

6.3 Data Records

We provide raw voltage and current measurements of multiple circuits and appliances
with high sampling rates. Additionally, we derived a data summary by computing various
energy-related metrics into 1-second values.

6.3.1 BLOND Datasets

BLOND (Data Citation 1) contains two measurement series with di�erent sampling rates:

• BLOND-50 with 50 kSps (aggregate) and 6.4 kSps (ground truth) over 213 days from
September 30, 2016 to April 30, 2017

• BLOND-250 with 250 kSps (aggregate) and 50 kSps (ground truth) over 50 days
from May 12, 2017 to June 30, 2017

Raw data and metadata are stored in HDF5 �les that can be processed with a variety of
open source and commercially available tools. Voltage and current samples of aggregate
and ground truth measurements represent the waveform of the underlying electrical signal
and are stored as-is from the sensor input. No permanent data cleaning or preprocessing
was performed.

Metadata is embedded in each �le and accessible as HDF5 attributes, either directly in
the �le root, or on a speci�c HDF5-dataset, see Table 6.3.1. Value types are either short
integer, �oating point, or ASCII-encoded byte strings. Generic information from HDF5
attributes matches to individual parts of the �le name.
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The structure of each dataset is grouped by date, and unit name into sub-directories:
BLOND-50/2017-03-25/medal-6/ contains 96 �les of MEDAL-6 from March
25, 2017. Files of the BLOND-250 dataset can be found in the corresponding directory.
This hierarchy is also available in the associated Metadata Record (ISA-Tab). Each �le
name contains the unit name, date, timestamp of the �rst sample in the �le, a timezone
o�set, and a sequence number: medal-6-2017-03-25T17-22-09.499845T-
+0100-0016925.hdf5 contains data starting roughly at 17:22 on March 25, 2017,
with a timezone o�set of +1 hour, and this is the 16925th �le in this series of MEDAL-6.

All timestamps and date information are “local time”, therefore, special care must be given
to the timezone o�set during daylight saving time transitions: on 2016-10-30 at 3:00, DST
ends (backwards 1h), on 2017-03-26 at 2:00 DST, starts (forward 1h). On December 31,
2016, a leap second was observed, which shifts back all �le timestamps by one second.

Since �les typically don’t start at exactly 0:00 (midnight), the beginning and end of a day
can be found in the previous or following �le based on the sequence number.

Each measurement unit automatically splits data into chunks while the data acquisition
continuous uninterrupted. The size of each chunk (number of samples per �le) depends
on the sampling rate and type of the unit, see Table 6.3.2. In total, BLOND consists of
945,919 �les, amounting to 39 TB.

6.3.2 Appliance Log

The appliance log is available in two �le formats: appliance_log.{json,xlsx}.
Both �les contain the same information and can be used interchangeably. The XLSX
representation is human-readable and suitable for printing, whereas the JSON data is
intended as input for data processing tools.

The JSON �le was created from the XLSX data to provide a machine-readable format with
the appliance_log_json_converter.py script. It contains a list of entries
for each MEDAL unit. An entry consists of a timestamp and socket declarations (one
for each socket): class_name, appliance_name, and power. Every appliance
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instance from the appliance log is summarized in Table 6.2.2.

6.3.3 1-second Data Summary

Each dataset was augmented with a precomputed 1-second data summary: root-mean-
square of voltage and current, real power, apparent power, power factor, and mains fre-
quency. The resulting data was stored in one HDF5 �le per day per measurement unit, cov-
ering all raw data �les in each day folder (see one_second_data_summary.py).
This provides quick and easy access to gain an overview of certain daily characteristics,
without the need to download and process thousands of �les. The daily data �les
are accompanied by a corresponding PDF showing selected plots of time series data,
e.g., summary-2017-03-25-medal-6.hdf5 and summary-2017-03-25-
medal-6.pdf.

6.4 Technical Validation

All raw measurements included in the BLOND datasets are provided as-is, without any
post-processing, cleaning, or �ltering. This means the raw data must be calibrated and
prepared before using the values as input to an evaluation (see the Usage Notes section).
During the collection of BLOND, real world e�ects and noise are captured in the data.
The measurement setup (environment) allowed us to have a data coverage of over 99.997%
across 16 individual DAQ units during a combined period of 263 days. The missing data
amounts to 2.5 hours of uncovered EEC.

An example of the captured waveform of voltage and current signals in a 3-phase power
grid with CLEAR can be seen in Figure 6.4.1. A typical load pro�le (with individual
contributions of each measurement system) over the course of multiple hours can be
seen in Figure 6.4.2. The static base load was extracted from the day-to-day o�set of the
total consumption for each circuit. On small time scales (multiple hours), the base load
can be assumed constant; day-to-day changes can be accounted for by calibrating the
static o�set during the night or on weekends (constant load with no occupants). The sum
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Figure 6.4.1: Waveforms of CLEAR circuits for voltage and current. The 3-phase power grid is characterized
by a 120◦ phase shift between the circuits. The current consumption shows strong SMPS usage with sharp
increases at each cycle apex. The voltage shows a typical sinusoidal waveform.

of all MEDAL units matches the measured EEC with CLEAR with reasonable accuracy,
however, even small voltage drops or line noise can induce errors.

6.4.1 Data Collection Sanity Checks

While collecting data, each DAQ unit performs sanity checks for each new data chunk.
This includes a DAQ continuity and generic transmission error checks. Such errors
could be caused by internal queues �lling up, full USB transfer queues, or interrupted
communication between components. Each chunk contains a sequential identi�er that can
be validated to match its immediate predecessor and successor. In the case a mismatch is
detected, the acquisition stops, reinitializes all components and retries. These identi�ers
are available in every HDF5 �le for o�ine veri�cation (trigger ids). No errors were
detected during the collection of the BLOND datasets.

Complementing this low-level check, each newly created HDF5 �le gets assigned an
increasing sequence number, which marks a continuous uninterrupted series. BLOND-50
and BLOND-250 consist of a single long-term measurement series for each DAQ unit.
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Figure 6.4.2: The load pro�le over multiple hours of the BLOND environment on 2017-03-02. Each stack
plot shows the apparent power consumption of CLEAR (black line) with overlays for the contained MEDAL
sub-meters (colored areas). See Table 6.2.1 for the circuit mapping. The individual steps (appliance events)
match the overall load pro�le of the aggregate EEC. Each circuit shows a base load (gray area) which
accounts for static background consumers. The 1-second data summary was downsampled to 30 seconds
before plotting. Total consumption stays constant in the hours not shown. For visualization purposes, only
the sum of all MEDAL sockets was plotted, however, the data contains an appliance-speci�c breakdown.
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Only one interruption was detected: the CLEAR unit in BLOND-50 on 2016-10-18 (last
sequence number: 0005172), due to a manual reboot after installing security updates. The
gap covers only CLEAR measurements for 2 hours, 19 minutes, and 27 seconds. MEDAL
measurements were not a�ected.

6.4.2 Sampling Rate Precision

Each data acquisition system collects data with a �xed sampling rate. An internal
oscillator serves as a precise clock generator to trigger each analog-to-digital conversion.
Depending on environmental factors, this process experiences a small unpredictable
shift in speed. The actual average sampling rate was calculated based on the times-
tamps (with NTP precision) of the �rst and last data �le over a 24 hour period (see
average_sampling_rate.py) since all �les contain the same amount of data
(samples).

The average sampling rate per day shows an almost constant o�set of less than 0.5%, while
the actual variations are smaller than 1 Sps over the course of 24 hours, see Figure 6.4.3.

For BLOND-50, CLEAR has a nominal sampling rate of 50 000 Sps, mean of 49952.355,
and a standard deviation of 0.057. All MEDAL units combined have a nominal sampling
rate of 6400 Sps, mean of 6399.880, and a standard deviation of 0.013.

For BLOND-250, CLEAR has a nominal sampling rate of 250 000 Sps, mean of 248767.169,
and a standard deviation of 0.084. All MEDAL units have a nominal sampling rate of
50 000 Sps, mean of 49984.059, and a standard deviation of 0.092.

6.4.3 Clock Synchronization

All timestamps used for marking samples and the beginning of new �le chunks are derived
from the system clock of the single-board PC in each measurement unit (CLEAR and
MEDAL). The NTP precision as reported by ntpq -c rl is −20, yielding a theoretical
timing accuracy of 0.95 µs. The real-world delay, o�set, and jitter values of ntpq -p

86



6. BUILDING-LEVEL OFFICE ENVIRONMENT DATASET

CLEAR MEDAL CLEAR MEDAL
0.50

0.25

0.00

0.25

0.50

0.70

De
vi

at
io

n 
fro

m
 m

ea
n 

pe
r d

ay
 [s

am
pl

es
 p

er
 se

co
nd

]

BLOND-50 BLOND-250

Figure 6.4.3: Boxplot of sampling rate precision per day. This boxplot shows the distribution of average
sampling rates and its variation over 213 / 50 days for each measurement system. The whiskers depict the
minimum and maximum. The mean was subtracted from each entry to compare only the daily �uctuations.
The median is shown as line in the box.
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show an average of 1ms to 2ms.

The sampled values from the ADC are bu�ered and transmitted via USB bulk transfers.
The timestamp is added on the host device (single-board PC), which could add a short
delay between the actual sampling time and the time it gets timestamped. Using USB data
packets of 510 bytes containing 36 samples, the resulting average time jitter is 2.81ms at
6.4 kSps, and 0.72ms at 250 kSps. The preemption latency for CPU-bound tasks is de�ned
with 6ms (Linux kernel v4.4.21).

To verify these theoretical values, we used a space heater to generate a visible appliance
switch-on event in socket 1 of MEDAL-1 on 2017-06-12 at timestamp 11:10:58. The di�er-
ence of the sharp transient in the CLEAR to the MEDAL time series data was measured
with 6.8ms, which is within our estimation (see clock_synchronization.py).
This allows us to synchronize multiple data streams with sub-cycle precision on a 50Hz
mains.

6.4.4 Per-File Data Checks

The correctness of the sampled voltage and current signals was validated by analyzing
each data �le with 15 individual checks to assert various metrics and raw data streams
(see per_file_data_checks.py):

Dataset length is the amount of samples per signal in a given �le. This is de�ned by
the sampling rate and the �le size used for chunking. If the data acquisition is
brie�y interrupted, stopped, or the �le got truncated, the expected length does
not match. In BLOND-50, 4 individual �les were found that failed this check. The
data collection seems to have continued, however, these �les were either corrupted
during transmission or the storage system failed to persist the data. The �les in
question have a length of 0 bytes and are not valid HDF5 �les. MEDAL 6, 13, and
14 at sequence number 0016123, as well as CLEAR at 0043125 are a�ected.

Mains frequency is expected to be 50Hz and should only deviate slightly. The mains
frequency was computed using Fast Fourier Transform and selecting the strongest
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bin. Erroneous readings would indicate a collapsing power grid or a malfunctioning
ADC trigger input (sampling rate). No such errors were found.

Voltage and current root-mean-squared expected values are based on the measure-
ment unit capabilities and can be used as a sanity check to check against unexpected
high or low values. Voltage values must be close to 230VRMS, have an almost zero
absolute mean, and the crest factor should be around 1.41. Current values must be
below the rated measurement limit of the DAQ unit, have an almost zero absolute
mean, and the crest factor must be greater than 1.2. No such errors were found.

Raw voltage value range and bandwidth is de�ned by the ADC bit-resolution. A 16-
bit ADC can yield up to 65536 di�erent measurement values. If the measurement
range was calibrated or con�gured incorrectly, not all values would be used,
resulting in degraded accuracy. We checked how many unique values are present
in each signal per �le and compared the maximum to the minimum, which must
be within certain threshold limits. No such errors were found.

Voltage bandwidth is de�ned by the power grid; for BLOND, we expect a nominal
voltage of ± 324Vpeak. Including a certain margin of deviation that is allowed during
normal operation of the grid, we checked the minimum and maximum voltage
values to be within certain threshold limits. No such errors were found.

Flat regions are de�ned as intervals with identical consecutive values. During initial
experiments and prototyping, we detected a malfunction in one of the traces on
a PCB. This led to a permanently pulled-low bit on a data bus. The DAQ unit
therefore only received the same value over and over again. We checked for �at
regions longer than a certain threshold by applying a linear convolution with a
�lter kernel (length of one mains period) to each signal per �le. No such errors
were found.

6.5 Usage Notes

The BLOND data �les are provided in HDF5 format, which is usable in most scienti�c
computing packages, e.g., Python (h5py/numpy/scipy), MATLAB (h5read), R (rhdf5),
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Mathematica (Import), and NILMTK [61]. The metadata (HDF5 attributes) is documented
in Table 6.3.1. Each HDF5 dataset was created with the following �lters: gzip compression
(reduces �le size), shu�e (improves compression ratio), and Fletcher (adds checksums to
detect data corruption). HDF5 o�ers a multitude of di�erent �lters with potentially better
compression, however, we wanted to retain compatibility with most software packages,
which typically lack support for 3rd-party �lters.

Multiple example use cases for data handling and calibration can be found in the provided
source code. We recommend performing a mean-o�set normalization for each mains
cycle before multiplying the signal with the calibration factor to remove any unwanted
DC-biases in MEDAL signals. We deliberately did not clean, back-�ll, or strip any of the
data. This allows us to retain and extract as much information as possible from seemingly
“empty” data (background noise, sampling artifacts, derived data).
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Table 6.2.2: List of appliances observed in the BLOND dataset. This list was extracted from the appliance
log and contains all devices used in the BLOND environment. A class label was assigned to group similar
appliances. The manufacturer, type, and power information was taken from an attached name plate (if
available) or the suppliers datasheet.

Class Manufacturer Type Power Count

Battery Charger Kraftmax BC4000 Pro 18 W 1
DJI Phantom 3 100 W 1

Daylight Philips HF3430 10 W 1

Desktop Computer

generic Intel Xeon E5-1640 v4, NVIDIA TITAN X 1200 W 1
Dell OptiPlex 7040 65 W 1
Dell OptiPlex 9020 65 W 2
Dell T3600 635 W 1

Dev Board
FPGA Xilinx ML505 30 W 1
FPGA Tegra Jetson 90 W 1
MEDAL Prototype 5 W 1

Electric Toothbrush generic inductive charging 5 W 1

Fan Eurom VS 16 45 W 1
VOV VTS-1641 50 W 1

Kettle Clatronic WK3445 2000 W 1
Severin WK3364 1800 W 1

Laptop Computer

Apple MacBook Air 13” Early-2014 45 W 1
Apple MacBook Pro 13” Mid-2014 60 W 3
Apple MacBook Pro 15” Mid-2014 85 W 2
ASUS N750JV 120 W 1
Dell E6540 130 W 1
Dell XPS13 45 W 1
Lenovo Carbon X1 90 W 1
Lenovo B560 65 W 1
Lenovo L540 90 W 1
Lenovo T420 90 W 1
Lenovo T450 65 W 1
Lenovo T530 90 W 1
Lenovo X230 i7 65 W 1
Lenovo X230 i5 170 W 1
Schenker W502 180 W 1
Sony Vaio VGN FW54M 92 W 1
generic SMPS, 19V 100 W 1

Monitor

Dell P2210 22 W 1
Dell U2711 133 W 6
Dell U2713Hb 130 W 8
Dell UP2716D 45 W 2
Fujitsu-Siemens P17-1 36 W 1

Multi-Tool Mannesmann M92577 135 W 1
Paper Shredder HSM Shredstar 250 W 1
Printer HP LaserJet Pro 400 425 W 1
Projector Epson EB-65950 450 W 1
Screen Motor Projecta DC 485 210 W 1
Space Heater Heller ASY 1507 1500 W 1

USB Charger

generic single USB power adapter 10 W 2
inateck UC2001 15 W 1
Aukru BS-522 20 W 1
Apple MD836ZM EU 12 W 1
Apple MD813ZM EU 5 W 2
Chromecast single USB power adapter 10 W 1
Hama 00091321 10 W 1
Samsung Travel 10 W 3
Sony single USB power adapter 10 W 1
Sony Ericsson EP 800 10 W 1
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Table 6.3.1: HDF5 dataset �le metadata. Each attribute is accessible via a HDF5-attribute-path. Values
are provided in base units (Volt, Ampere, Hertz). Some attributes are only available in the 1-second data
summary.

Path Attribute Description

/ name Name of the measurement unit
/ year Year of the �rst sample
/ month Month of the �rst sample
/ day Day of the �rst sample
/ hours Hours of the �rst sample
/ minutes Minutes of the �rst sample
/ seconds Seconds of the �rst sample
/ microseconds Microseconds of the �rst sample
/ sequence Sequence number in this series
/ timezone Timezone o�set (daylight saving time)
/ frequency Nominal sampling rate in Hz
/ first_trigger_id Internal trigger number to detect gaps
/ last_trigger_id Internal trigger number to detect gaps
/<dataset> calibration_factor Multiplication factor for calibration
/<dataset> removed_offset Removed DC-o�set of the signal
/ average_frequency Average sampling rate over 24h
/ delay_after_midnight Delay in seconds after 00:00

Table 6.3.2: File chunking and length. BLOND-50 and BLOND-250 use di�erent �le sizes to chunk the
continuous data stream. The size depends on the available computing resources in each DAQ unit and
the con�gured sampling rate. The �nal size of the HDF5 only depends on the number of samples and the
achievable compression ratio.

Dataset Unit Type Sampling Rate File Length Samples

BLOND-50 CLEAR 50 kSps 5min 15,000,000
MEDAL 6.4 kSps 15min 5,760,000

BLOND-250 CLEAR 250 kSps 2min 30,000,000
MEDAL 50 kSps 2min 6,000,000
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7

Waveform Signal Entropy and
Compression Study of
Whole-Building Energy Datasets

Home and building automation promise many bene�ts for the occupants and power
utilities. From increased user comfort levels to demand response and lower electricity
costs, Smart Homes o�er a variety of assistance and informational gains. Internet of
Things, a combination of sensors and actuators, can be intelligently controlled based on
sensor data or external triggers. Power monitoring and smart metering are a key step to
ful�ll these promises. The in�ux of renewable energies and the increased momentum
of changes in the power grid and its operations are a main driving factor for further
research in this area.

Non-intrusive load monitoring (NILM) can be one solution to identify and disaggregate
power consumers (appliances) from a single-point measurement in the building. Utilizing
a centralized data acquisition system saves costs for hardware and installation in the
electrical circuits under observation. The NILM community heavily relies on long-term
measurement data, in the form of public datasets, to craft new algorithms, train models,
and evaluate their accuracy on per-appliance energy consumption or appliance identi�ca-
tion. In recent years these datasets grew signi�cantly in size and sampling characteristics
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(temporal and amplitude resolution). Collecting, distributing, and managing large-scale
data storage facilities is an ongoing research topic [104, 105] and strongly depends on
the environment and systems architecture.

High sampling rates are particularly interesting for NILM to extract waveform information
from voltage and current signals [5]. Early datasets targeted at load disaggregation
and appliance identi�cation started with under 2GiB [22], whereas recently published
datasets reach nearly 100 TiB of raw data [25]. Working with such quantities requires
specialized storage and processing techniques which can be costly and maintenance-
heavy. Optimizing infrastructure costs for storage is part of ongoing research [106,
107].

The data quality requirements typically de�ne a �xed sampling rate and bit-resolution
for a static environment. Removing or augmenting measurements might impede further
research, therefore no �ltering or preprocessing steps are performed before releasing the
data.

Data compression techniques can be classi�ed as lossy or lossless [108]. Lossy algorithms
allow for some margin of error when encoding the data and typically give a metric
for the remaining accuracy or lost precision. For comparison, most audio, image, and
video compression algorithms remove information not detectible by a human ear or eye.
This allows for a data rate reduction in areas of the signal a user can’t detect or has a
reduced resolution due to a typical human physiology. Depending on the targeted use
case, certain aspects of the input signal are considered unimportant and might be not
reconstructable. Encoding only the amplitude and frequency of the signal can lead to vast
space savings, assuming phase alignment, harmonics, or other signal characteristics are
not required for future analysis. On the contrary, lossless encoding schemes guarantee
a 1:1 representation of all measurement data with a reversible data transformation. If
the intended use case or audience for a given dataset is not known or is very diverse in
their requirements, only lossless compression can be applied to keep all data accessible
for future use. Recent works pointed out an imbalance in the amount of research on
steady-state versus waveform-based compression of electricity signals [109].

Further consideration must be given to communication bandwidth (transmission to a
remote endpoint) and in-memory processing (SIMD computation). The e�cient use of

94



7. WAVEFORM SIGNAL ENTROPY AND COMPRESSION STUDY

network channels can be a key requirement for real-time monitoring of streaming data.
In the case of one-time transfers (or burst transmissions), chunking is used to split large
datasets into more manageable (smaller) �les. However, choosing a maximum �le size
depends on the available memory and CPU (instruction set and cache size). Distributing
large datasets as a single �le creates an unnecessary burden for researchers and required
infrastructure.

A suitable �le format must be considered for raw data storage, as well as easy access to
metadata, such as calibration factors, timestamps, and identi�er tags. None of the existing
datasets (NILM or related datasets with high sampling rates) share a common �le format,
chunk size, or signal sampling distribution. This heterogeneity makes it di�cult to apply
algorithms and evaluation pipelines on more than one dataset. Therefore, researchers
working with multiple datasets have to implement custom importer and converter stages,
which can be time-consuming and error-prone.

This work provides an in-depth analysis of public whole-building datasets, and gives a
comprehensive evaluation of best-practice storage techniques and signal conditioning in
the context of energy data collection. The key contributions of this work are:

1. A numerical analysis of signal entropy and measurement calibration of public
whole-building energy datasets by evaluating all signal channels with respect to
their available resolution and sample distribution over the entire measurement
period. The resulting entropy metrics further motivate our contributions and the
need for a well-calibrated measurement system.

2. An exhaustive benchmark of storage requirements and potential space savings with
a comprehensive collection of 365 �le formats, lossless compression techniques,
and reversible data transformations. We re-encode and normalize data from all
datasets to evaluate the e�ect of compression. We present the best-performing
combinations and their overall space savings. The full ranking can be used to
select the optimal �le format and compression for o�ine storage of large long-term
energy datasets.

3. A full-scale evaluation of increasingly larger data chunks per �le and their �nal
compression ratio. The dependency between input size and achievable compression
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ratio is evaluated up to 3072MiB per �le. The results provide an evidence-based
guideline for future selection of chunk sizes and possible environmental factors for
consideration.

We give an in-depth evaluation of �le formats and signal characteristics that directly
a�ect storage, encoding, and compression of such data. Each of the analyzed datasets
was created with a dedicated set of requirements, therefore, a single best option does not
exist. However, with this study, we want to help the community to better understand
the fundamental causes of compression performance in the �eld of waveform-based
whole-building energy datasets. We provide a de�nition of measurement calibration
and its e�ects on the storage requirements based on signal entropy. Published datasets
are self-contained and �nal, which allows us to prioritize the compression ratio and
achievable space saving over other common compression metrics (CPU load, throughput,
or latency). We de�ne the achievable space saving and compression ratio as the only
criterion when dealing with large (o�ine) datasets.

This chapter is structured as follows: We describe the evaluated datasets in Section 7.1,
which are then used in the experiments for entropy analysis in Sections 7.2, data rep-
resentation in Section 7.3, and chunk size impact in Section 7.4. Finally, we present
experimental results in Section 7.5.

7.1 Evaluated Datasets

While there is a vast pool of smart meter datasets [110], i.e., low sampling rates of
measurements every 1 s, 15min, or 1 h, a majority of the underlying information is already
lost (signal waveform) [15]. The raw signals are aggregated into single root-mean-squared
voltage and current readings, frequency spectrums, or other metrics accumulated over the
last measurement interval. This can be already classi�ed as a type of lossy compression.
For some use cases, this data source is su�cient to work with, while other �elds require
high sampling rates to extract more information from the signals.

All following experiments and evaluations were performed on publicly accessible datasets:
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The Reference Energy Disaggregation Data Set (REDD [22]), Building-Level fUlly-labeled
dataset for Electricity Disaggregation (BLUED [23]), UK Domestic Appliance-Level Electric-
ity dataset (UK-DALE [24]), and the Building-Level O�ce eNvironment Dataset (BLOND
[25]). We will refer to these datasets by their established acronyms: REDD, BLUED,
UK-DALE, and BLOND. Based on the energy dataset survey [110], these are all datasets of
long-term continuous measurements with voltage and current waveforms from selected
buildings or households. The data acquisition systems and data types are comparable to
warrant their use in this context, see Table 7.1.1.

Measurement systems and their analog-to-digital converters (ADC) always output a
unit-less integer number, either between [0, 2bits) for unipolar ADCs or [−2bits−1, 2bits−1)
for bipolar ADCs. During setup and calibration, a common factor is determined to convert
raw values into a voltage or current reading. Some datasets publish raw values and the
corresponding calibration factors, while others publish directly Volt- and Ampere-based
readings as �oat values. Datasets only available as �oating-point values are converted
back into their original integer representation without loss of precision by reversing the
calibration step from the analog-to-digital converter for each channel:

measurementi = ADCi ⋅ calibrationcℎannel
[Volts] = [steps] ⋅ [Volt/steps]

[Ampere] = [steps] ⋅ [Ampere/step]

Each of the mentioned datasets was published in a di�erent (compressed) �le format and
encoding scheme. To allow for comparisons between these datasets, we decompressed,
normalized, and re-encoded all data before analyzing them (raw binary encoding).

From REDD, we used the entire available High Frequency Raw Data: house_3 and house_5,
each with 3 channels: current_1, current_2, and voltage. The custom �le format encodes
a single channel per �le. In total, 1.4GiB of raw data from 126 �les were used.

From BLUED, we used all available waveform data (1 location, 16 sub-datasets) and 3
channels: current_a, current_b, voltage. The CSV-like text �les contain voltage and two
current channels and a dedicated measurement timestamp. In total, 41.1GiB of raw data
from 6430 �les were used.
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Table 7.1.1: Overview of evaluated datasets: long-term continuous measurements containing raw voltage
and current waveforms.

Dataset Current
Channels

Voltage
Channels

Sampling
Rate Values

REDD 2 1 15 kHz 24-bit
BLUED 2 1 12 kHz 16-bit
UK-DALE 1 1 16 kHz 24-bit
BLOND-50 3 3 50 kHz 16-bit
BLOND-250 3 3 250 kHz 16-bit

From UK-DALE, we selected house_1 from the most recent release (UK-DALE-2017-16kHz,
the longest continuous recording). The compressed FLAC �les contain 2 channels: current
and voltage. In total, 6259.1GiB of raw data from 19491 �les were used.

From BLOND, we selected the aggregated mains data of both sub-datasets: BLOND-50
and BLOND-250. The HDF5 �les with gzip compression contain 6 channels: current{1-3}
and voltage{1-3}. In total, 10 246.7GiB of raw data from 61125 �les of BLOND-50, and
11 899.0GiB of raw data from 35490 �les of BLOND-250 were used.

The data acquisition systems (DAQ) of all datasets produce a linear pulse-code modulated
(LPCM) stream. The analog signals are sampled in uniform intervals and converted to
digital values (Figure 7.2.1). The quantization levels are distributed linearly in a �xed
measurement range which requires a signal conditioning step in the DAQ system. ADCs
typically cannot directly measure mains voltage and require a step-down converter or
measurement probe. Mains current signals need to be converted into a proportional
voltage.

7.2 Entropy Analysis

DAQ units provide a way to collect digital values from analog systems. As such, the quality
of the data depends strongly on the correct calibration and selection of measurement
equipment. Mains electricity signals are typically not compatible with modern digital
systems, requiring an indirect measurement through step-down transformers or other
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metrics. Mains voltage can vary by up to ±10% during normal operation of the grid
[111, 112], making it necessary to design the measurement range with a safety margin.
The expected signal, plus any margin for spikes, should be equally distributed on the
available ADC resolution range. Leaving large areas of the available value range unused
can be prevented by carefully selecting input characteristics and signal conditioning
(step-down calibration). A rule of thumb for range calibration is that the expected signal
should occupy 80-90%, leaving enough bandwidth for unexpected measurements. Input
signals larger than the measurement range get recorded as the minimum/maximum value.
Grossly exceeding the rated input signal level could damage the ADC, unless a dedicated
signal conditioning and protection is employed.
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Figure 7.2.1: Linear pulse-code modulation stream of a sinusoidal waveform sampled with a 16-bit ADC.
The waveform corresponds to a 230 V mains voltage signal.

We extracted the probability mass function (PMF) of all evaluated datasets for the full
bit-range (16- or 24-bit). The value histogram is a structure mapping each possible
measurement value (integer) to the number of times this value was recorded. Ideally, the
region between the lowest and highest value contains a continuous value range without
gaps. However, the quantization level (step size) could cause a mismatch and results in
skipped values. We then normalize this histogram to obtain the PMF and compute the
signal entropy per channel, which gives an estimation of the actual information contained
in the raw data and provides a lower bound for the achievable compression ratio based
on the Kolmogorov complexity.

X =
{
−2bits−1, ..., 0, ..., 2bits−1 − 1

}

ℎist = ℎistogram(dataset, X )

fX = ℎist
∑x∈X ℎist[x]
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∀x ∈ X where fX (x) = 0 ∶ fX (x) = 1
H (x) = − ∑

x∈X
fX (x) ⋅ log2 (fX (x))

Each dataset is split into multiple �les, making it necessary to merge all histograms into
a total result at the end of the computing run. Since all histograms can be combined
with a simple summation, the process can be parallelized and computed without any
particular order. Computing and merging all histograms is, therefore, best accomplished
in a distributed compute cluster with multiple nodes or similar environments.

7.3 Data Representation

Choosing a suitable �le format for potentially large datasets involves multiple tradeo�s
and decisions, including supported platforms, scienti�c computing frameworks, metadata,
error correction, compression, and chunking. The available choices for data representa-
tion can range from CSV data (ASCII-parsable) to binary �le formats and custom encoding
schemes. From the energy dataset survey and the evaluated datasets, it can be noted, that
every dataset uses a di�erent �le format, encoding scheme, and optionally compression.

Publishing and distributing large datasets requires storage systems capable of providing
long-term archives of scienti�c measurement data. Lossless compression helps to mini-
mize storage costs and distribution e�orts. At the same time, other researchers accessing
the data bene�t from smaller �les and shorter access times to download the data.

Electricity signals (current and voltage) contain a repetitive waveform with some form
of distortion depending on the load. In an ideal power grid, the voltage would follow a
perfect sinusoidal waveform without any o�set or error. This would allow us to accurately
predict the next voltage measurement. However, constant �uctuations in the supply and
demand cause the signals to deviate. The fact that each signal is primarily continuous
(without sudden jumps) can be bene�cial to compression algorithms.

A delta encoding scheme only stores the numerical di�erence of neighboring elements in
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a time-series measurement vector. This can be useful for slow-changing signals because
the di�erence of a signal might require less bytes to encode than the absolute value:

∀i ∈ {1… n} ∶ di = vi − vi−1
d0 = v0

We compare the original data representation (format, compression, encoding) of each
dataset, reformat them into various �le formats, and evaluate their storage saving based
on a comprehensive list of lossless compression algorithms. This involves encoding
raw data in a more suitable representation to compare their compressed size: CS =
compressed_size/original_size ∗ 100%, and the resulting space saving: SS = 100% −
CS. We de�ne the main goal of reducing the overall required storage space for each
dataset, and deliberately do not consider compression or decompression speed. The
performance characteristics (throughput and speed) are well known for individual
compression techniques [113] and are of minor importance in the case of large static
datasets which require only a single compression step before distribution. Performance
metrics are important when dealing with repeated compression of raw data, which is not
the case for static energy datasets. Repeated decompression is however relevant because
researchers might want to read and parse the �les over and over again while analyzing
them (if in-memory processing is not feasible). As noted in [113], decompression speed
and throughput is typically not a performance bottleneck in data analytics tasks.

Building a novel data compression scheme for energy data is counter-productive, since
most scienti�c computing frameworks lack support and the idea su�ers from the "not
invented here" and "yet another standard" problematic, both common anti-patterns in the
�eld of engineering when developing new solutions, despite existing suitable approaches
[22, 53, 56]. Therefore, a key requirement is that each �le format must be supported in
common scienti�c computing systems to read (and possibly write) data �les.

We selected four format types: raw binary, HDF5 (data model and �le format for storing
and managing data), Zarr (chunked, compressed, N-dimensional arrays), and audio-based
PCM containers.

Raw binary formats provide a baseline for comparison. All samples are encoded as integer
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values (16-bit or 24-bit) and are compressed with a general-purpose compressor: zlib/gzip,
LZMA, bzip2, and zstd, all with various parameter values. The input for each compressor
is either raw-integer or variable-length encoded data (LEB128S [114]), which is serialized
either row- or column-based from all channels (interweaving). The LEB128S encoding is
additionally evaluated with delta encoding of the input.

The Hierarchical Data Format 5 (HDF5) [62] provides structured metadata and data
storage, data transformations, and libraries for most scienti�c computing frameworks.
All data is organized in natively-typed arrays (multi-dimensional matrices) with various
�lters for data compression, checksumming, and other reversible transformations before
storing the data to a �le. The API transparently reverses these transformations and
compression �lters while reading data. HDF5 is popular in the scienti�c community and
used for various big-data-type applications [115, 116, 117, 118]. The public registry for
HDF5 �lters1 currently lists 21 data transformations, most of them compression-related.
Each HDF5 �le is evaluated with and without the shu�e �lter, zlib/gzip, lzf, MAFISC
[119] with LZMA, szip [120], Bitshu�e [121] with LZ4, zstd, and the full Blosc [63]
compression suite, again all with various parameter values.

Zarr [122] organizes all data in a �lesystem-like structure, which can be archived as
a single zip-archive �le or as tree-structure in the �lesystem. Each channel is stored
as a separate array (data stream) with optional chunk-based compression via zlib/gzip,
LZMA, bzip2, or Blosc (with shu�e, Bitshu�e, or no-shu�e �lter), again all with various
parameter values. Each Zarr �le is additionally evaluated with a delta �lter to reduce the
value range.

Audio-based formats use LPCM-type data encoding (PCM16 or PCM24) with a �xed
precision and sampling rate. All channels are encoded into a single container using
lossless compression formats: FLAC [123], ALAC [124], and WavPack [125]. These
formats do not provide tune-able parameters.

Calibration factors, timestamps, and labels can augment the raw data in a single �le
while providing a uni�ed API for accessing data and metadata. Raw binary formats lack
this type of integrated support and require additional tooling and encoding schemes for

1https://support.hdfgroup.org/services/filters.html
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metadata. Audio-based formats require a container format to store metadata, typically
designed for the needs of the music and entertainment industry. Out of these formats,
only HDF5 and Zarr provide support for encoding and storing arbitrary metadata objects
(complex types or matrices) together with measurement data.

Most audio-based formats support at most 8 signal channels, while general-purpose
formats such as HDF5 and Zarr have no restrictions on the total number of channels per
�le. The sampling rate can also be a limiting factor: FLAC supports at most 655.35 kHz and
ALAC only 384 kHz. ADC resolution (bit depth) is mostly bound by existing technological
limitations and will not exceed 32-bit in the foreseeable future. While these constraints
are within the requirements for all datasets under evaluation, they need to be considered
for future dataset collection and the design of measurement systems.

In total, we encoded the evaluated datasets with 365 di�erent data representation formats:
54 raw, 264 HDF5-based, 44 Zarr-based, and 3 audio-based and gathered their per-�le
compression size as a benchmark. The full analysis was performed in a distributed
computing environment and consumed approx. 1, 176, 000 CPU-core-hours (dual Intel
Xeon E5-2630v3 machines with 128GiB RAM and 10Gibit Ethernet interfaces).

7.4 Chunk Size Impact

Each dataset is provided in equally-sized �les, typically based on measurement duration.
Working with a single large �le can be cumbersome due to main memory restriction or
available local storage space. Assuming a typical desktop computer, with 8GiB of main
memory, is used for processing, a single �le from a dataset must be fully loaded into
memory before any computation can be done. Depending on the analysis and algorithms,
multiple copies might be required for intermediary results and temporary copies. This
means the main memory size is an upper bound for the maximum feasible chunk size.

Some �le formats and data types support internal chunking or streamed data access, in
which data can be read into memory sequentially or random-access. In such environments
other factors will limit the usable chunk size, such as �le system capabilities, network-
attached storage, or other operating system limitations.
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The evaluated datasets are distributed with the following chunk sizes of raw data: REDD:
11.4MiB or 4min, BLUED: 6.6MiB or 1.65min, UK-DALE: 329.2MiB or 60min, BLOND-
50: 171.7MiB or 5min, BLOND-250: 343.3MiB or 2min. Measurement duration and
�le size are not strictly linked, causing a slight variation in �le sizes across the entire
measurement period of each dataset. Observed real-world time does not a�ect any of
the compression algorithms under test and is therefore omitted. The sampling rate
and channel count directly a�ects the data rate (bytes per time unit) and explains the
non-uniform chunk sizes mentioned for each dataset.

We compare the best-performing data representation formats of each dataset from the
previous experiment, benchmark them with di�erent chunk sizes, and estimate their
e�ect on the overall compression ratio. For this evaluation, we de�ne the compression
ratio as CR = original_size/compressed_size. The chunk sizes range from 1, 2, 4, 8, 16,
32, 64, 128MiB, and then continue in steps of 128MiB up to 3072MiB. To reduce the
required computational e�ort, we greedily consume data from the �rst available dataset
�le, until the prede�ned chunk limit is ful�lled. The chunk size is determined using the
number of samples (across all channels) and their integer byte count (2 or 3 bytes); only
full samples for all channels are included in a chunk.

7.5 Experimental Results

7.5.1 Entropy Analysis

Entropy is based on the probability for a given measurement (signal value). The histogram
of an entire measurement channel shows the number of times a single measurement value
was seen in the dataset (Figure 7.5.2). The plots show the raw measurement bandwidth in
ADC value on the x-axis and a logarithmic y-axis for the number of occurrences of each
value. The raw ADC values are bipolar and centered on 0: −32768… 32767 for BLUED,
BLOND-50, and BLOND-250; −8388608… 8388607 for REDD and UK-DALE.

The voltage histogram shows a distinctive sinusoidal distribution (peaks at minimum
and maximum values). The current histogram would show a similar distribution if the
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power draw is constant (pure-linear or resistive loads), however, multiple levels of current
values can be observed, indicating high activity and �uctuations. REDD and BLUED
(Figures 7.5.2a and 7.5.2b) show a center-biased distribution, indicating a sub-optimal
calibration performance and unused measurement bandwidth. UK-DALE, BLOND-50,
and BLOND-250 (Figures 7.5.2c, 7.5.2d, 7.5.2e) show a wide range of highly used values,
with the voltage channels utilizing around 90% of the available bandwidth.

REDD and BLUED use only a small percentage of the available range, indicating a low
entropy based on the used data type. UK-DALE utilizes a reasonable slice, while BLOND
covers almost the entire possible range (Table 7.5.1). Assuming a well-calibrated data
acquisition system, the expected percentage should re�ect the expected measurement
values. Low range usage (REDD, BLUED) leads to lost precision which would have been
freely available with the given hardware, whereas high usage (UK-DALE, BLOND) means
almost all available measurement precision is re�ected in the raw data. Some datasets
utilize 100% of the available measurement range, while REDD only uses 5%. A high range
utilization does not result in a equally high usage, as the histogram can contain gaps
(ADC values with 0 occurrences in the datasets).

7.5.2 Data Representation

The evaluation compares the compressed size (CS, �nal �le size after compression and �le
format encapsulation in percent of uncompressed size) of 365 data representation formats.
For brevity reasons, only the 30 best-performing formats are shown in Figure 7.5.1. Each
of the 365 data representation was tested on all datasets. The following evaluation and
benchmark uses the raw data from each dataset as described in Section 7.1. In total, raw
data with 27.8 TiB was re-encoded 365 times.

HDF5 and Zarr are general-purpose �le formats for numerical data with a broad support
in scienti�c computing frameworks. As such, they only support 16-bit and 32-bit integer
values, which causes a 1-byte overhead for REDD and UK-DALE. The baseline used for
comparison is a raw concatenated byte string with dataset-native data types (16-bit and
24-bit). This allows us to obtain comparable evaluation results, while other published
benchmarks compared ASCII-like encodings against binary representations, skewing the
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Table 7.5.1: Entropy analysis of whole-building energy datasets with high sampling rates. The amount of
unique measurement values for each channel is extracted, which corresponds to a usage percentage over
the available measurement resolution. The lowest and highest observed value is used to give determine
the observed range.

Dataset Channel Values Usage Range H(x)

REDD
(24-bit)

current_1 87713 1% 4% 14.3
current_2 85989 1% 5% 14.9
voltage 2925155 17% 18% 21.1

BLUED
(16-bit)

current_a 5855 9% 10% 7.8
current_b 7684 12% 13% 9.7

voltage 11302 17% 18% 13.2
UK-DALE

(24-bit)
current 6981612 42% 81% 19.0
voltage 15135594 90% 100% 23.2

BLOND-50
(16-bit)

current1 51122 78% 100% 12.6
current2 49355 75% 100% 11.2
current3 48658 74% 100% 11.3
voltage1 58396 89% 92% 15.3
voltage2 57975 88% 91% 15.4
voltage3 59596 91% 95% 15.4

BLOND-250
(16-bit)

current1 52721 80% 100% 12.4
current2 51802 79% 100% 10.8
current3 50989 78% 100% 11.6
voltage1 58488 89% 91% 15.3
voltage2 57912 88% 92% 15.4
voltage3 59742 91% 94% 15.4
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results signi�cantly.

Overall, it can be noted that all three audio-based formats performed well, given their
inherent targeted nature of compressing waveforms with high temporal resolution. ALAC
and FLAC achieved the highest overall CS across all datasets, followed by HDF5+MAFISC
and HDF5+zstd, which can overcome the 1-byte overhead. Although the general-purpose
compressors and their individual data representation formats were intended to serve as a
baseline for comparison of the more advanced schemes (HDF5, Zarr, and audio-based),
one can conclude that even plain bzip2 or LZMA compression can achieve comparable
compression results. A tradeo� to consider is the lack of metadata and internal structure,
which might cause additional data handling overhead as easy-to-use import and parsing
tools are not available. Variable-length encoding using LEB128S is a suitable input for
the bzip2 and LZMA compressors when combined with a column-based storage format.
Delta encoding resulted in comparably good CS in certain combinations.

Some datasets are inherently more compressible than others. This is a result of the
entropy analysis and can be observed in the data representation evaluation as well.
Compressing BLUED consistently yields smaller �le sizes with most compressors than
any other dataset. The benchmark shows that higher entropy correlates strongly with
higher CS per dataset.

While the majority of tested data representation formats achieves a data reduction,
compared to the baseline, some formats are counter-productive and generate a larger
output (CS over 100%). This behavior a�ects most HDF5- and Zarr-based formats, because
of the 1-byte overhead (depending on the used compressor).

Choosing the best-performing data representation for each dataset, the following SS can
be achieved when applied to all data �les as compared against the raw binary encoding:
REDD: 48.3% or 0.7GiB, BLUED: 73.0% or 30.0GiB, UK-DALE: 40.5% or 2534.1GiB,
BLOND-50: 51.3% or 5252.3GiB, BLOND-250: 55.4% or 6590.8GiB. It can be noted
that REDD, UK-DALE, and both BLOND datasets perform at around 50-60% of CS, while
BLUED shows a signi�cantly smaller CS of below 30% CS, due to it’s very low signal
entropy (Table 7.5.1). Variable-length encoding (LEB128S) and Delta encoding yield the
largest space saving for such types of data (REDD and BLUED).
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Two out of the �ve evaluated datasets (REDD and BLUED) showed the highest space
savings with a general-purpose compressor (bzip2) and variable-length encoding. ALAC
and HDF5+MAFISC performed best on UK-DALE, BLOND-50, and BLOND-250, given
their higher signal entropy and value range utilization.

When comparing the raw space savings against the actually published dataset, which
typically is already compressed, we can achieve additional space savings: REDD: 61.2%
or 1.1GiB, BLUED: 96.4% or 295.5GiB, UK-DALE: -1.3% or −49.1GiB, BLOND-50: 23.3%
or 1519.7GiB, BLOND-250: 26.0% or 1867.9GiB. All datasets show space savings, except
for UK-DALE, which shows an insigni�cant increase in the overall dataset size. This
means the originally published FLAC �les are already compressed to a high extent; this
is supported by Figure 7.5.1, showing FLAC among the highest ranking formats in this
study. While an absolute space saving of 1.1GiB for REDD might be insigni�cant in most
use cases (desktop computing and data center), a more compelling reduction in storage
space of up to 1867.9GiB for BLOND-250 can be substantially bene�cial.

7.5.3 Chunk Size Impact

The chunk size evaluation (Figure 7.5.3) contains the averaged CR per chunk size for all
datasets except REDD, as it only contains 1438.4MiB of data and was therefore omitted.

The evaluated chunk size range starts with very small chunks, which would not be
recommended for large datasets because of the increased handling and container overhead.
As such, chunk sizes starting with 128MiB can be considered as viable storage strategy.
The resulting CR ramps up quickly for most formats until it levels o� between 32MiB to
64MiB. Above this mark, no signi�cant improvement in CR can be achieved by increasing
the chunk size. Some �le formats even show a slight linear decrease in CR with very
large chunk sizes (above approx. 1.5GiB). ALAC and FLAC compressors show a slight
improvement (2-3%) in CR with larger chunk sizes. In most use cases this size reduction
comes at a great cost in RAM requirement to process �les above 2048MiB. HDF5 has its
own concept of "chunks", used for I/O and the �lter pipeline, with a default size of 1MiB.
Internal limitations do not allow for HDF5-chunks larger than 2048MiB, however, HDF5,
in general, can be used for �les larger than this limit. The MAFISC �lter with LZMA

108



7. WAVEFORM SIGNAL ENTROPY AND COMPRESSION STUDY

compression experiences large �uctuations for neighboring chunk size steps and should,
therefore, be tuned separately. Overall, increasing the chunk size has a negligible e�ect
on the �nal compression ratio and only pushes up the RAM requirements for processing.

7.5.4 Summary and Recommendations

The entropy analysis shows a lack of measurement range calibration in some datasets.
This results in unutilized precision, that would have been available with the given
hardware DAQ units. The used range directly a�ects the contained entropy, and therefore
the achievable compression ratio. A well-calibrated measurement system is a key
requirement to achieve the best signal range and resolution.

Choosing a �le format for long-term whole-building energy datasets is a crucial compo-
nent, directly a�ecting the visibility and accessibility of the data by other researchers.
Using an unsupported encoding or requiring specialized tools to read the data is cum-
bersome and error-prone and should be avoided. We recommend using well-known �le
formats, such as HDF5 or FLAC, which are widely adopted and provide built-in support
for metadata, compression, and error-detection. While ALAC and FLAC already provide
internal compression, we recommend the MAFISC or zstd �lters for HDF5, due to their
superior compression ratio. The serialization orientation (row- or column-based) has
only a minor e�ect.

Large datasets should be split into multiple smaller �les to facilitate data handling,
reduce transfer speeds and loading times for short amounts of data. We have found that
compression algorithms (together with the above-described �le formats) yield higher
space savings with chunk sizes above 256MiB to 384MiB. Small �les show a modest
compression ratio, while larger �les require more transfer bandwidth and time before
the data can be analyzed.
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(a) REDD (24-bit) (b) BLUED (16-bit)

(c) UK-DALE (24-bit) (d) BLOND-50 (16-bit)

(e) BLOND-250 (16-bit)

Figure 7.5.2: Semi-logarithmic histogram of ADC values for each dataset and channel. Current signals
show distinct steps, corresponding to prolonged usage at certain power levels.
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7.5. EXPERIMENTAL RESULTS
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Figure 7.5.3: Chunk size impact of di�erent representations.
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8

Conclusions

8.1 Summary

Electrical energy consumption is a key component in the �ght against climate change.
Understanding the consumption characteristics of appliances and buildings requires
signi�cant hardware e�orts for metering infrastructure. O�ce environments are a key
energy consumer, where a majority of the daily inhabitants is unaware of their actual
energy consumption footprint. SMPS-driven appliances have various operations modes
(active, standby, deep-sleep) and can cause unexpected voltage and current spikes in the
local power supply.

NILM is a promising approach to provide details energy information without the need for
expensive meters and hard-to-maintain data collection systems. Power disaggregation
and appliance identi�cation from electrical energy signals, such as voltage and current,
are two tasks a NILM system promises. A data-based solution to these tasks requires data
acquisition systems and public datasets to model, train, and evaluate machine learning
strategies. Collecting ground truth data with high sampling rates provides insights into
the waveforms of SMPS-driven appliances, contrary to RMS-based consumption values
of existing datasets and DAQ systems.
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8.1. SUMMARY

In this work, we presented full-stack architecture patterns (software blueprints and
guidelines) for the distributed data acquisition and collection of electrical energy data.
Hardware and software methodologies have been developed and evaluated based on
the need for energy datasets with high sampling rates for aggregated and ground truth
signals. The resulting datasets BLOND-50 and BLOND-250 are focused on NILM-related
tasks, such as power disaggregation and appliance identi�cation, with general-purpose
design goals.

We have de�ned a set of design goals requirements for energy data acquisition systems
to be used in NILM and appliance identi�cation tasks. We showed a new system design
for high sampling rates and multiple monitored sockets. The proposed design was
implemented and a batch of DAQ systems was manufactured for evaluation purposes.
The MEDAL architecture proved successful and passed all experimental tests derived
from the requirements. We would like to encourage the use of a high-frequency ground
truth for future research and new datasets. This could improve data quality for various
NILM-related subtasks and similar research �elds based on high frequency data.

The analog and digital data acquisition methodologies have been formulated into in-
dependent stackable components to be used for long-term continuous data collection,
primarily targeted at datasets for power disaggregation and appliance identi�cation with
electrical waveform time series data. The proposed concepts were implemented and
evaluated by collecting the BLOND datasets: BLOND-50 and BLOND-250 with multiple
months of uninterrupted data collection and high sampling rates for aggregated and
ground truth signals. All time series data �les are validated against an extensive list of
metrics and technical rules to ensure the data is valid and usable. The data coverage of
99.997% is signi�cantly higher than any previously published dataset, while also providing
novel waveform data for individual appliance EEC. We shared these datasets, including
metadata and an appliance log with fully-labeled ground truth data, with the community
to extend the foundation and input variety of data-driven machine learning tasks.

We presented a comprehensive entropy analysis of public whole-building energy datasets
with waveform signals. Some datasets leave a majority of the available ADC range unused,
causing lost precision and accuracy. A well-calibrated measurement system maximizes
the achievable precision. Using 365 di�erent data representation formats, we showed that
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8. CONCLUSIONS

immense space savings of up to 73% are achievable by choosing a suitable �le format and
data transformation. Low entropy datasets show higher achievable compression ratios.
Audio-based �le formats perform considerably well, given the similarities to electricity
waveforms. Transparent data transformations are particularly bene�cial, such as MAFISC
and SHUFFLE-based approaches. The input size shows a mostly stable dependency to
the achievable compressed size, with variations of a few percentage points (limited by
RAM). Waveform data shows a nearly constant compression ratio, independent of the
input chunk size. Splitting large datasets into multiple smaller �les is important for data
handling, but insigni�cant in terms of space savings.

8.2 Future Work

Possible future work related to distributed data acquisition and collection includes:
a) investigating the behavior of the proposed data collection strategies in a multi-
building scenario (city neighborhood or campus area) with interconnected data acquisition
systems; b) supporting alternative data collection topologies with de-/centralized cloud
components to increase fault tolerance and HA metrics with multiple active collector
and processing services; c) adapting the proposed software guidelines to make use of
microservices and serverless architectural patterns [126, 127] to reduce deployment com-
plexity and maintenance periods by splitting the cloud components into fully independent
services with a de�ned communication interface and API versioning schemas to replace
and upgrade parts of the data collection system without disturbing an active measurement
series.

With the BLOND datasets, we have provided data of typical o�ce appliances with a strong
focus on SMPS-driven devices. Future work in the area of characterizing and measuring
other types of environments includes: a) establishing an extensive appliance taxonomy
to build a hierarchical model of electrical consumers and their energy consumption
patterns based on di�erent modes of operations, such as motors, heaters, and electronic
control modules; b) collecting extensive metadata and external sensor information of
the environment, such as room occupancy, temperature, humidity, motion, and available
WiFi devices, to augment the existing EEC ground truth data; c) supplying and measuring
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8.2. FUTURE WORK

the DC load (low-voltage side) of SMPS-driven appliance (instead of the AC mains load)
to revert the masking e�ect of AC-DC power supplies, increase the resolution, and reduce
the noise energy.

Finally, we would propose further research into data representation schemes, encoding,
and compression of EEC waveform data: a) analyzing the throughput and performance
of the best-performing compression schemes and evaluating them in common scenarios,
such as NILMTK [61] analytic pipelines or TensorFlow-based machine learning systems
which share the requirement for fast and repeated access to measurement data; b) de-
signing and evaluating edge-based compression schemes for low-level DAQ systems to
compress in real-time before transmitting the data to save bandwidth and reduce the
total transferred data size; c) raising awareness within the NILM and EEM community
about the need for a common data representation and compression layer in publicly
available datasets, while also improving the signal measurement range and the associated
space-e�cient value encoding.
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Glossary

AC Alternating Current

ADC Analog-to-Digital Converter

BLOND Building-Level O�ce eNvironment Dataset

BLUED Building-Level fUlly-labeled dataset for Electricity Disaggregation

CLEAR Circuit-Level Energy Appliance Radar

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DAQ Data Acquisition

DC Direct Current

DMA Direct Memory Access

EEC Electrical Energy Consumption

EEM Electrical Energy Metering

FPGA Field-Programmable Gate Array

HA High Availability

ICT Information and Communication Technology

MEDAL Mobile Energy Data Acquisition Laboratory
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Glossary

NIALM Non-Intrusive Appliance Load Monitoring

NILM Non-Intrusive Load Monitoring

RAM Random-Access Memory

REDD The Reference Energy Disaggregation Data Set

RMS Root-Mean Squared

RTC Real-Time Clock

RTOS Real-Time Operating System

SBC Single-Board Computer

SMPS Switch-Mode Power Supply

UK-DALE UK Domestic Appliance-Level Electricity dataset

USB Universal Serial Bus
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