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Computational modeling of patient-specific

cardiac mechanics with model reduction-based

parameter estimation and applications to novel

heart assist technologies

Marc Hirschvogel
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Abstract

Cardiovascular disease entities are the most prevalent ones in the industrialized world, and thera-

pies for patients suffering from heart failure are yet to be optimized or conclusively established.

Due to the shortage in donor organs, heart transplantation as gold standard heart failure therapy

fails to cover all needs, hence bridge-to-transplant or destination therapy vascular assist device

(VAD) applications often are considered. Novel concepts of assist devices such as cardiac com-

pression systems may promise better outcomes with reduced adverse event rates compared to

current continuous-flow pumping technologies, but are yet to be established as VAD standard.

The present thesis deals with computational modeling of patient-specific mechanics of the heart

and the vascular system, strategies for the efficient estimation of individual-specific parameters,

and the assessment of novel extravascular assist devices for patients suffering from congestive

heart failure from a computational mechanics modeling point of view.

The main and ultimate purpose of these in-silico models targets at investigating circumstances

that are not or only hardly assessable in an experimental (in-vivo) setup, optimizing design

variables of novel medical devices, and predicting their optimal operation point for the sake of the

patient’s benefit and quality of life. Ultimately, in-silico models may help to reduce the amount

of animal experiments that are currently however inevitably required for the secure and reliable

dimensioning of novel medical treatment strategies.

The heart is modeled as 3-dimensional (3D) anisotropic hyperelastic nonlinear solid with a

fiber strain-dependent active stress approach to account for the cardiac contraction and the

Frank-Starling mechanism (preload-dependent inotropy). Novel methods are developed to ef-

ficiently couple the finite element-discretized heart model to a closed-loop circulatory system

0-dimensional (0D) lumped-parameter model. A monolithic discretization and solution framework

for the 3D-0D coupled problem is implemented that makes use of existing block preconditioning

techniques to iteratively solve the linearized coupled system of equations on high-performance

computing architectures in one monolithic Newton scheme. Different types of 0D vascular net-

works are implemented and combined with gas transport and dissociation models. The outcome

is validated against standard physiological conditions, and reasonable results are obtained for

varying ventricular pre- and afterload situations, changes in inotropy, and some exemplary disease

events such as valve leakage or stenosis.

Furthermore, models for ventricular volumetric growth and remodeling (G&R) are implemented

using variants of existing anisotropic volumetric growth laws, and a novel multiscale-in-time

strategy is developed that allows to compute G&R phenomena for both volume and pressure over-

load conditions on a large time scale as consequence of an acute disease event happening on the

small time scale. Long-term changes in pressure-volume relations are simulated for mitral valve

regurgitation, aortic stenosis as well as myocardial infarction scenarios, and the results thereof

are shown to comply with the typical syndromes and characteristics of systolic and diastolic heart

failure. For the first time, an heuristic remodeling approach, hence a dependence of the tissue

passive elastic (or active) properties on the volumetric growth stretch is introduced in the context

of simulating ventricular growth, and reverse G&R phenomena are included in the analyses.

Ultimately, these G&R models may help to predict the long-term development of myocardial dis-

ease progression and to evaluate the efficiency of medical treatment strategies against heart failure.
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Methods for the computationally efficient and simultaneous estimation of homeostatic state

conditions and key parameters like ventricular contractility, afterload and preload are developed.

A novel multilevel strategy for the acceleration of a gradient-based optimization problem is

implemented that makes use of low-fidelity surrogate modeling techniques to reduce the com-

putational demand for optimizing the high-fidelity model. Different approaches such as coarse

spatial (and temporal) discretizations, spatial dimensional reduction, as well as projection-based

model order reduction are used to construct the surrogate models. For this purpose, model order

reduction using proper orthogonal decomposition for the first time is implemented and applied to a

monolithic 3D-0D coupled computational problem of the heart and the circulation, projecting the

3D heart governing equations to a lower dimensional subspace but maintaining the 0D circulation

model as is.

Parameters are fitted to volume as well as time-resolved left ventricular pressure data gained from

porcine in-vivo experiments for two different pharmacologically-induced heart failure scenarios,

namely a low-afterload and a high-afterload heart failure case. The different types of surrogate

models are compared with respect to their computational efficiency, and the calibrated states

comply well with physiological expectations for these kinds of medications. The model order

reduction surrogate thereby leads to the best performance with respect to the amount of iterations

required on the high-fidelity model.

Last but not least, the models and methods are applied to simulating a novel extravascular cardiac

augmentation device that is developed in close collaboration with an industrial partner. The novel

implant relies on the concept of cardiac compression. The prototype consists of three inflatable

thin-walled pads (pneumatic units) made out of polyurethan foil located inside and supported by

a patient-specific shell (carrier unit) which is implanted beneath the pericardium. It operates by

inflation of the pads exerting pulsatile pressure forces onto the epicardium, ECG-synchronized

with the native cardiac function.

The experimental setup for the device is replicated in-silico, and simulations with gradually

increasing ventricular augmentation pressures are performed. The in-silico results are in very good

agreement with the experimental measurements: Increases in stroke volume and peak ventricular

pressure are in the scatter range of the cohort of experiments, and qualitative deformation match

well with the motion CT data set that had been recorded during the experiment. Furthermore, the

in-silico models provide valuable insight into end-systolic wall stress and end-diastolic myofiber

strain which are non-assessable quantities in an experimental setup. The results give a hint on how

VADs may reduce driving forces that stimulate disease-related ventricular growth and remodeling,

but are yet to be combined with the respective G&R approaches and still need experimental

long-term studies to finally evaluate the VADs impact on reverse remodeling.

Finally, an optimization framework is introduced that allows to identify optimal design parameters

of the implant for a given objective function, and the optimal placement of the left ventricular

augmentation pads in order to maximize ventricular stroke work at given augmentation pressures

is found.
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Zusammenfassung

Erkrankungen des Herz-Kreislauf-Systems gehören zu den häufigsten in der modernen Welt, und

Therapien für Herzinsuffizienzpatienten weisen noch immer Optimierungspotential auf oder sind

noch nicht in letzter Konsequenz etabliert. Aufgrund der anhaltend geringen Verfügbarkeit von

Spenderorganen kann die Herztransplantation als Goldstandard zur Behandlung von Herzinsuf-

fizienz nicht alle Bedarfe decken, weshalb Herzunterstützungssysteme (engl. “vascular assist

device”, VAD) zur Überbrückungs- oder Dauertherapie weiterhin eingesetzt werden. Neuartige

Konzepte von Unterstützungssystemen wie ventrikuläre Kompressionsimplantate könnten bessere

Behandlungsergebnisse mit reduzierten Komplikationsraten liefern als gegenwärtig eingesetzte

kontinuierliche Flusspumpen, haben sich aber noch nicht als VAD-Standard etabliert.

Die vorliegende Arbeit behandelt die computergestützte patienten-spezifische Modellierung der

Mechanik des Herzens und des Blutkreislaufs, Strategien zur effizienten individuellen Parameter-

schätzung, sowie die Beurteilung neuartiger extravaskulärer Herzunterstützungssysteme aus Sicht

der computergestützten mechanischen Modellbildung.

Der primäre und schlussendliche Zweck dieser In-silico-Modelle zielt darauf ab, Gegebenheiten

zu analysieren, die in einem experimentellen (In-vivo-)Umfeld kaum oder gar nicht untersucht

werden können. Darüber hinaus können Design-Variablen neuer medizinischer Apparate opti-

miert und deren optimale Betriebsbedingungen zugunsten des Patienten und seiner Lebensqualität

vorhergesagt werden. Letztendlich könnten In-silico-Modelle dabei helfen, die Anzahl der Tierver-

suche, die gegenwärtig unabdingbar zur sicheren und verlässlichen Auslegung neuartiger medi-

zinischer Therapien gebraucht werden, zu reduzieren.

Das Herz wird als 3-dimensionaler (3D) anisotroper hyperelastischer nichtlinearer Festkörper mit

einem von der Faserdehnung abhängigen aktiven Spannungsansatz modelliert, um Muskelkontrak-

tion und den Frank-Starling-Mechanismus (vorlastabhängige Inotropie) abzubilden. Neuartige

Ansätze werden entwickelt, um das mit finiten Elementen diskretisierte Herz effizient an ein

0-dimensionales (0D) geschlossenes Kreislaufmodell bestehend aus konzentrierten Elementen zu

koppeln. Eine Umgebung zur monolithischen Diskretisierung und Lösung des 3D-0D-gekoppelten

Problems wird implementiert, die von existierenden Block-Vorkonditionierungsmethoden Ge-

brauch macht, um das linearisierte gekoppelte Gleichungssystem in einem einzigen monolithis-

chen Newton-Verfahren iterativ auf Höchstleistungsrechensystemen zu lösen.

Verschiedene 0D-Kreislaufansätze werden implementiert und mit Gastransport und -dissoziations-

modellen kombiniert. Die Ergebnisse werden mit physiologischen Bedingungen abgeglichen, und

realistische Resultate für verschiedene Zustände ventrikulärer Vor- und Nachlast, Änderungen

der Inotropie, und einigen beispielhaften Krankheitsbildern wie Herzklappeninsuffizienzen oder

-stenosen werden erhalten.

Darüber hinaus werden Modelle für ventrikuläres Wachstum und Remodellierung (engl. “growth

and remodeling”, G&R) unter Verwendung von Varianten bestehender anisotroper volumetrischer

Wachstumsgesetze implementiert, und eine neuartige Mehrskalenstrategie wird entwickelt, die

es erlaubt, G&R-Phänomene sowohl für Volumen- als auch Drucküberlastszenarien auf einer

großen Zeitskala als Konsequenz einer akuten Erkrankung auf der kleinen Zeitskala zu simulieren.

Langzeiteffekte auf die hämodynamischen Druck-Volumen-Kurven im Ventrikel werden für ver-

schiedene Krankheitsbilder wie Mitralklappeninsuffizienz, Aortenklappenstenose oder Myokardin-

farkt simuliert, und die Ergebnisse sind in guter Übereinstimmung mit typischen Syndromen
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und Charakteristiken systolischer und diastolischer Herzinsuffizienz. Zum ersten Mal wurde

ein heuristischer Remodellierungsansatz, d.h. eine Abhängigkeit der elastischen passiven (oder

aktiven) Gewebeeigenschaften von der volumetrischen Wachstumsdehnung eingeführt im Zusam-

menhang mit der Simulation von ventrikulärem Wachstum, und reversible G&R-Phänomene

werden in die Analysen miteinbezogen. Schlussendlich könnten diese G&R-Modelle Aufschluss

über die Langzeitentwicklung myokardialer Krankheitsbilder geben und die Effizient medizinis-

cher Therapien gegen Herzinsuffizienz bewerten.

Methoden für die rechnerisch effiziente und zeitgleiche Schätzung von homöostatischen Bedin-

gungen und Schlüsselparametern wie ventrikuläre Kontraktilität, Nachlast sowie Vorlast werden

entwickelt. Eine neuartige Mehrlevel-Strategie zur Beschleunigung eines gradienten-basierten

Optimierungsproblems wird implementiert, die den Rechenaufwand zur Optimierung eines fein

aufgelösten Modells hoher Güte mithilfe vergröberter Surrogat-Modelle geringer Güte reduziert.

Verschiedene Reduktionsansätze wie vergröberte räumliche (und zeitliche) Diskretisierung, räum-

liche Dimensionsreduktion, sowie projektionsbasierte Modellreduktionsstrategien (“Model Order

Reduction”) werden verwendet, um Surrogat-Modelle zu generieren. Zu diesem Zweck wurden

erstmalig Modellreduktionsansätze unter Zuhilfenahme von Singulärwertzerlegungen (“Proper

Orthogonal Decomposition”) für ein 3D-0D monolithisch gekoppeltes Herz-Kreislauf-Problem

implementiert und angewandt, indem die das 3D-Herz beschreibenden Gleichungen in einen

niedriger dimensionalen Unterraum projiziert werden, das 0D-Modell hingegen unverändert

bleibt.

Parameter werden an linksventrikuläre Volumen- als auch zeitlich aufgelöste Druck-Daten aus

In-vivo-Tierversuchen am Schwein kalibriert, jeweils zu zwei verschiedenen pharmakologisch

induzierten Herzinsuffizienzszenarien: ein Szenario mit geringer und eines mit erhöhter Nach-

last. Die verschiedenartigen Surrogat-Modelle werden bezüglich ihrer rechnerischen Effizienz

verglichen, und die kalibrierten Zustände sind in Einklang mit physiologischen Erwartungen

bei diesen Medikationen. Das auf Modellreduktion basierende Surrogat-Modell verhält sich am

besten in Bezug auf die Anzahl der benötigten Iterationen auf dem fein aufgelösten Modell hoher

Güte.

Schlussendlich werden die Modelle und Methoden angewandt auf die Simulation eines neuartigen

extravaskulären Herzunterstützungssystems, das in enger Kooperation mit einem industriellen

Partner entwickelt wird. Das neue Implantat beruht auf dem Konzept der ventrikulären Kompres-

sion. Der Prototyp besteht aus drei aufblasbaren dünnwandigen Kissen (pneumatischen Einheiten)

aus Polyurethan-Folie, die in einer unter das Perikardium implantierbaren die Ventrikel um-

fassenden patienten-spezifisch gestalteten Schale (Trägereinheit) angeordnet sind und von dieser

gehalten werden. Die Kissen werden inflatiert und üben pulsatilen Druck auf das Epikardium aus,

EKG-synchronisiert mit der ursprünglichen Herzfunktion.

Das experimentelle Szenario für das Implantat wird in-silico repliziert, und Simulationen mit

stufenweise erhöhtem ventrikulären Augmentationsdruck in den Kissen werden durchgeführt.

Die In-silico-Ergebnisse sind dabei in sehr gutem Einklang mit den experimentellen Messungen:

Erhöhungen des Schlagvolumens und des maximal generierten Ventrikeldrucks liegen in der

Streubreite der Kohorte an experimentellen Messungen, und eine gute qualitative Übereinstim-

mung der Deformation des Herzens mit den CT-Daten, die während des Experiments aufgezeich-

net wurden, wird gezeigt. Darüber hinaus erlauben die Modelldaten einen wertvollen Einblick in
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end-systolische Wandspannungen und end-diastolische Dehnungen der Herzmuskelfasern, die

durch Experimente alleine nicht gezeigt werden können. Die Modelle liefern einen Anhaltspunkt,

wie ventrikuläre Unterstützungssysteme Triebkräfte für krankheitsbezogenes Wachstum und

Remodellierung reduzieren könnten, müssen aber noch mit den entsprechenden G&R-Ansätzen

kombiniert und durch experimentelle Langzeitstudien abgesichert werden, um Effekte der Umkehr

der Remodellierung (engl. “reverse remodeling”) zu bestätigen.

Zu guter Letzt wird eine Optimierungsumgebung eingeführt, die es erlaubt, optimale das Im-

plantat beschreibende Parameter für eine gegebene Zielfunktion zu identifizieren, und die ideale

Positionierung der linksventrikulären Augmentationskissen zur Maximierung der Schlagarbeit

des Ventrikels bei gegebenem Augmentationsdruck wird ermittelt.
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IVf ≡ IV First anisotropic invariant relating to first fiber

IVs ≡ VI First anisotropic invariant relating to second fiber
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IXfs ≡ IX Anisotropic invariant relating to scalar product of first and second fiber direc-

tion

Kinetics, constitutive laws, balance equations

dr Infinitesimal resultant force vector

b̂0 Body force vector in reference (material) configuration

b̂ Body force vector in current (spatial) configuration

t Cauchy traction vector

t0 First Piola-Kirchhoff traction vector
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P , Pij First Piola-Kirchhoff stress tensor, and its coordinates

S, Sij Second Piola-Kirchhoff stress tensor, and its coordinates

τ Kirchhoff stress tensor

σ Spherical part of Cauchy stress tensor

σ̃ Deviatoric part of Cauchy stress tensor

IIσ̃ Second principal invariant of deviatoric stress tensor

σ Mean Cauchy stress

p Hydrostatic pressure

σvM Von Mises Cauchy stress

τmax Maximum Cauchy shear stress

Dint Mechanical dissipation

Ψ Strain energy function

Ψ̄ ,Ψvol Isochoric, volumetric part of strain energy function

❈❈❈ ,❈ijkl Elasticity (constitutive) tensor in reference (material) configuration, and its

coordinates

m Total mass

ρ0 Density in reference (material) configuration

ρ Density in current (spatial) configuration

φ Test function (weighting function)

δW Virtual work

Heart, VAD, active and passive myocardial material laws

nmat Number of materials (region-wise constitutive laws)

k Spring stiffness per unit reference surface area

c Dashpot viscosity per unit reference surface area

µ Shear modulus

❈ Elastic (Young’s) modulus

ν Poisson’s ratio

κ Bulk modulus

τa Active stress

σ0 Contractility

αmax, αmin Upstroke and relaxation rates

f̂ Normalized activation function

u Scaled activation function

K Activation function steepness

c1, c2 Activation function constants

a Dimensionless Frank-Starling contractility scaling factor

a0, af , as, afs Passive myocardial material stiffnesses

b0, bf , bs, bfs Dimensionless passive myocardial material parameters
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a Heart long axis (through left ventricular bottom lumen and aortic valve)

pℓ
lum Left ventricular bottom lumen point

pAV Aortic valve point

pMV Posterior mitral valve leaflet point

pdist Most distal left ventricular point within atrioventricular plane

ϕ, z Circumferential angular and axial coordinates for pad position description

dP Pad radial depth

dwallP Pad wall thickness

dS Shell thickness

hs
P Pad bellows inset

rcorP Pad corner radius

rs,iP , rs,oP Pad seam inner, outer blend radii

rrimP Pad rim blend radius

dbrdgP Pad bridge thickness (between two heart-oriented outer radii, two inner radii

and two shell-oriented outer radii)

tinfl,s, tinfl,e Begin, end of pad inflation

tdefl,s, tdefl,e Begin, end of pad deflation

lϕ, lz Monitored circumferential, longitudinal distance that pad has already been

moved

Dϕ, Dz Circumferential, longitudinal distance that pad should be moved

∆ϕ,∆z Circumferential, longitudinal increments

az User-specific blend parameter for longitudinal movement

Sepi Epicardial surface

xmid Pad surface midpoint

ξ, ξ̃ Pad node coordinate vector, and its projection onto epicardial surface

nAVP Normal of atrioventricular plane

nepi Normal of epicardial surface at projected node

nϕ,nz Tangent in circumferential, longitudinal direction at projected node

ñz Tangent in longitudinal direction at pad surface midpoint

n̄z Tangent in modified longitudinal direction at projected node

d, dmid Distance from pad node, pad surface midpoint to axis a

ncross Normal of cross-plane spanned by pad surface midpoint and axis a (at pad

surface midpoint)

Growth & remodeling

F g Growth deformation gradient

F e Elastic deformation gradient

Lg Growth velocity gradient

Ce Elastic right Cauchy-Green deformation tensor

ϑ Growth stretch

λe
myo Elastic myofiber stretch

Se Elastic second Piola-Kirchhoff stress tensor
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Nomenclature

Σ
e Elastic Mandel stress tensor

❈̌❈❈ Elastic part of constitutive tensor (in reference configuration)

❈̌❈❈
e

Elastic part of constitutive tensor (in intermediate configuration)

❈̃❈❈ Growth constitutive tensor

γ, γrev Growth, reverse growth nonlinearity

τ, τrev Growth, reverse growth time constant

k Growth function

Rϑ Growth residual (for local Newton iteration)

φ Fraction of non-grown (base) material

λ̂crit
myo Prescribed critical myofiber stretch

Σ̂
crit Prescribed critical volumetric Mandel stress

(λ̂crit
myo)↓ Minimum myofiber stretch threshold

(Σ̂ crit)↓ Minimum volumetric Mandel stress threshold

s Safety factor for growth threshold

N Growth cycle

tN Start time of growth cycle N
Tgrowth Growth cycle time

Tload Load ramp-up or ramp-down time

tdisease Acute disease initiation time

tgr,ecchom , tgr,conhom Time indicating homeostatic reference for eccentric, concentric growth

tgr,eccact , tgr,conact Time for evaluating overload state for eccentric, concentric growth

Contact mechanics

gn Gap function

nc Current unit outward normal at contact interface

x̌ Projected (mapped) point from one body surface to the other

tc Total traction vector in contact interface

pn Contact stress in normal direction

tt Tangential traction vector in contact interface

g Gap vector

Domains and boundaries

Ω0,Ω Reference (material), current (spatial) configuration

Ωg
0 Intermediate (grown) configuration

Ω̃0 Discretized reference (material) configuration

Ω
(e)
0 Finite element sub-domain

ΓD
0 ,Γ

D Reference (material), current (spatial) Dirichlet boundary

ΓN
0 ,Γ

N Reference (material), current (spatial) Neumann boundary

ΓR
0 Reference (material) Robin boundary

ΓR,e
0 Reference (material) Robin boundary at epicardium
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ΓR,b
0 Reference (material) Robin boundary at heart base

ΓR,ar
0 Reference (material) Robin boundary at arterial outlets

ΓR,ven
0 Reference (material) Robin boundary at venous inlets

Γlids
0 Reference (material) endocardial lids (closures for heart cavities) boundary

Γ0D
0 ,Γ0D Reference (material), current (spatial) coupling boundary

Γmt
0 Reference (material) tied contact (meshtying) boundary

Γc
0,Γ

c Reference (material), current (spatial) contact boundary

ΓD,x2

0 Reference (material) Dirichlet boundary in x2-direction (symmetry for 2D

heart model)

ΓD,x3

0 Reference (material) Dirichlet boundary in x3-direction (plane strain for 2D

heart model)

Reduced-dimensional blood flow

ν Kinematic viscosity

η Dynamic viscosity

ρ Density

r, z Coordinates for axisymmetric description of reduced flow through vessel

r0, l0 Vessel radius and length

vz Axial vessel velocity

(·)⋆ Non-dimensionalized quantity

J0, Y0 Zeroth-order Bessel functions

β1, β2, β3 First three roots of J0
λq, λp Relaxation, retardation time scales

R Resistance

R̃ Heart valve resistance (diode)

L Inertance

E Elastance

EA Elastance amplitude

C Compliance

Z (Arterial characteristic) impedance

ZR, ZL, ZC Impedance representation of resistance, inertance, compliance

ω Angular frequency

p Pressure

q Flow

V Volume

yat 0D atrial activation function

πar Auxiliary arterial pressure variable

τar Arterial windkessel time constant
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Gas transport and dissociation

pCO2 Carbon-dioxide partial pressure

pO2 Oxygen partial pressure

fCO2 Carbon-dioxide gas fraction

fO2 Oxygen gas fraction

cCO2 Blood carbon-dioxide concentration

cO2 Blood oxygen concentration

ctiss,CO2
Tissue carbon-dioxide concentration

ctiss,O2
Tissue oxygen concentration

cHb Blood hemoglobin concentration

SO2 Hemoglobin-oxygen dissociation curve

pwatervap,37 Vapor pressure of water at 37◦C

M̂CO2 Metabolic rate of carbon-dioxide production (organ-specific)

M̂O2 Metabolic rate of oxygen consumption (organ-specific)

M̂CO2,total Total metabolic rate of carbon-dioxide production

M̂O2,total Total metabolic rate of oxygen consumption

p50,O2 Partial pressure of oxygen at 50 % saturation

n Hill’s constant

κCO2 , κ̃CO2 Diffusion capacity for carbon dioxide in the lung

κO2 , κ̃O2 Diffusion capacity for oxygen in the lung

αCO2 Solubility constant for carbon dioxide in blood/tissue

αO2 Solubility constant for oxygen in blood/tissue

Vtiss Tissue volume

Ut Time-varying pleural pressure

Um Atmospheric pressure

ωb Respiration (breathing) frequency

VT Tidal volume

VD Dead space volume

Vlung Total lung volume

V̇t Total lung ventilation rate

Vm,gas Molar volume for an ideal gas at standard conditions

β Point where effective oxygen consumption is 50 % of the maximum one

Discretization and solution

nel Number of finite elements

nnd Number of nodes

ndim Number of dimensions

nstep Number of time steps

ncore Number of cores

ndof , n
3D
dof Number of structural degrees of freedom

n0D
dof Number of 0D model degrees of freedom
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Nomenclature

u(e) Finite element displacement vector

x
(e)
0 Finite element position vector

x̄
(e)
0 Finite element nodal coordinate vector

N(e), N k Finite element shape function matrix, and its entries

ξ1, ξ2 (2D) finite element parameter space coordinates

d(e), dk
i Finite element nodal displacement vector, and its entries

S(e) Finite element second Piola-Kirchhoff stresses

E(e) Finite element Green-Lagrange strains

b̂
(e)

0 Finite element body force vector

t̂
(e)

0 Finite element first Piola-Kirchhoff traction vector

t
(R)(e)
0 Finite element first Piola-Kirchhoff traction vector from Robin boundary

conditions

t
(0D)(e)
0 Finite element first Piola-Kirchhoff traction vector from 0D circulation

d Global nodal displacement vector

v Global nodal velocity vector

a Global nodal acceleration vector

p 0D circulation model state variable vector

f int, fext Global internal, external force vector

M Global mass matrix

D Global (Rayleigh) damping matrix

cM, cK Mass, stiffness Rayleigh damping coefficients

r, rS Structural residual vector

r0D 0D circulatory system residual vector

rS−0D Total 3D-0D residual vector

K,KS Structural dynamic effective tangential stiffness matrix

KT Tangential stiffness matrix

K0D 0D circulatory system stiffness matrix

K0D,S Off-diagonal stiffness matrix, dependence of 0D model on structure (for 3D-

0D coupled problem)

KS,0D Off-diagonal stiffness matrix, dependence of structure on 0D model (for 3D-

0D coupled problem)

Ã Inverse of SIMPLE preconditioner matrix

ᾱ SIMPLE blend parameter

Š Schur complement operator

kptc Pseudo-transient continuation parameter

γ, β Newmark time integration parameters

αm, αf Generalized-α time integration parameters

ρ∞ Spectral radius of Generalized-α time integration algorithm

θ Parameter of One-Step-θ time integration algorithm

(·)n Quantity from previous time step n
(·)n+1 Quantity from current time step n+ 1
(·)n+1−αm Quantity at generalized instance in time, n+ 1− αm

(·)n+1−αf
Quantity at generalized instance in time, n+ 1− αf

(·)n+θ Quantity at generalized instance in time, n+ θ
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Nomenclature

(·)i Quantity from previous iteration i (unless overridden by context)

(·)i+1 Quantity from current iteration i+ 1

Norms, tolerances, errors

ǫres, ǫ
S
res Structural residual norm tolerance for Newton scheme

ǫincr, ǫ
S
incr Displacement increment norm tolerance for Newton scheme

ǫ0Dres 0D circulation residual tolerance for Newton scheme

ǫ0Dincr 0D model variable increment tolerance for Newton scheme

Efnorm Simplex error norm

ǫgrad Gradient norm tolerance

Ecycl Cardiac cycle error norm

ǫcycl Cardiac cycle tolerance

Egrowth Growth cycle error norm

ǫgrowth Growth cycle tolerance

Parameter estimation, model order reduction

f Objective function

np Number of parameters

x Parameter vector

x⋆ Optimum

s Search direction

α Line search parameter

w Least-squares residual vector

wr, w̃r Model output, measurement value

J Jacobian matrix

λi Levenberg-Marquardt blend parameter in iteration i
S Simplex

F Facet of simplex S
λi Linear combination factors for simplex

x̂ Centroid of facet

xref , xexp, xcont Reflected, expanded, contracted point

xnew New simplex point

n Number of dimensions of simplex

γ, β, α Simplex reflection, expansion, contraction parameter

Ŝ Snapshot matrix

D̂, Ĉ Covariance matrices

Φ,Ψ Eigenvector matrices of D̂, Ĉ

φ,ψ Eigenvectors of D̂, Ĉ

Λ Diagonal matrix of eigenvalues

nsnap Number of snapshots

xxv



Nomenclature

rb Number of reduced bases

V Reduced-order basis matrix

p̃ Discrete vector of pressure measurements

bp, bV Pressure, volume residual weighting factor

bEF, bPVP, bEDP Ejection fraction, peak ventricular pressure, end-diastolic pressure residual

weighting factor

f General residual vector function

fc General coarse level residual vector function

fc General restricted (fixed) residual vector function

f̂c General coarse level (fixed) residual vector function (at coarse level iterate)

xc General restricted parameter vector

R,P Restriction, prolongation operator

Rw Least-squares residual restriction operator

nc Number of coarse level iterations

fc Coarse level objective function

xc Coarse level parameter vector

wc Coarse level least-squares residual vector

wc Restricted (fixed) least-squares residual vector

ŵc Coarse level (fixed) least-squares residual vector (at coarse level iterate)

sTTT
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1 Introduction

This thesis deals with computational modeling of patient-specific cardiac mechanics. It focuses on

the ventricular and vascular system mechanics, on gas transport kinetics, as well as on modeling

of heart failure disease entities like growth and remodeling phenomena. Furthermore, it presents

novel efficient parameter estimation procedures and applies the developed methods and models in

the context of novel heart assist technologies.

Here, a basic introduction to the scope of this thesis is presented. It starts with a motivation for

the work in sec. 1.1, and continues with medical fundamentals on cardiovascular mechanics in

sec. 1.2. The specific topic of heart failure as well as the medical treatment strategies thereof are

presented in sec. 1.3, including a short introduction to current vascular assist device technologies.

Finally, the research objective is detailed in sec. 1.4, and the outline of this thesis is presented in

sec. 1.5.

1.1 Motivation

Cardiovascular diseases are one of the most prevalent entities of malady worldwide and still

the leading cause of morbidity in the industrialized world [52, 130]. Amongst those, diseases

directly relating to the heart and its ability to provide the necessary amount of blood flow to the

body in order to maintain organ perfusion are the most abundant. Heart failure (HF) [99] with a

prevalence of 5.8 million in the USA and over 23 million worldwide [19, 173] is a serious health

problem and demands for tools and therapies that are effective, affordable, and beneficial for the

patient’s quality of life.

The reduced availability of donor hearts for patients suffering from end-stage congestive heart

failure (CHF) necessitates and drives the development of ventricular assist device (VAD) tech-

nologies [160], that either serve as a bridge-to-transplant solution or may be a permanent terminal

therapeutic strategy.

In order to overcome the deficiencies associated with current blood-pumping heart assist technolo-

gies, non-blood contacting extravascular ventricular support devices have been focus of research

and are continuously being dealt with [98, 136, 137, 142, 170].

The primary motivation for this thesis emerged from a close collaboration of academic and indus-

trial groups committed to the development of a novel extravascular biventricular augmentation

device for patients suffering from CHF.

The core aspect of the present thesis is the development and implementation of mathematical

and computational (in-silico) models and tools that serve to predictably assess the function,

efficiency and security of the aforementioned novel VAD technology during its interaction with

the patient-specific heart. The main motivation to do so lies in the belief that in-silico methods

are able to predict circumstances and optimal operating conditions that are hardly or not at all

1



1 Introduction

assessable in an experimental (in-vivo) setup. Hence, these methods at least enhance the insights

gained from experiments and allow to derive potential for optimization that would not have been

deducible from the in-vivo studies alone.

Ultimately, such computational approaches enable to judge the performance of a plenty of design

variants and operating conditions for these kinds of implants and eventually allow to reduce the

amount of in-vivo animal experiments that are currently inevitable for the reliable and secure

development of medical devices.

For this purpose, various computational tools for modeling of the beating heart and its interaction

with the vascular system are developed and implemented. They partly build upon recently

developed in-silico heart models by various research groups around the world, with a multitude

of novel extensions and integrative efforts as well as efficient solution and calibration strategies.

Additionally, a framework for modeling of the novel implant and its design variants is developed,

and predictive simulations of the interaction of the heart with the novel VAD technology are

presented.

1.2 Cardiovascular mechanics

A brief introduction to cardiovascular mechanics with focus on the heart cycle is given. In depth

treatments and physiological backgrounds may be found in [51].

The circulatory system in the body is mainly decomposed into two (sub-)circuits, namely the sys-

temic (body) and the pulmonary (lung) circulation. The vitally important oxygen that is taken up

from the lungs and binds to hemoglobin in the pulmonary capillary network has to be transported

to the body, where oxygen consumption and carbon dioxide production take place.

The heart is the driving force of the cardiovascular system and simultaneously pumps oxygenated

blood into the systemic circulation and deoxygenated as well as carbon dioxide-enriched blood

into the pulmonary one. It is constituted out of four cardiac chambers, namely the left and right

ventricle, and the left and right atrium. The ventricular cardiac chambers’ task is to continuously

supply both circulations with blood such that gas exchange and organ perfusion can happen. The

atrial chambers’ task basically is to guarantee uninterrupted non-pulsatile venous blood flow to

the heart during the ventricular ejection phase. Prior to ventricular contraction, the atria perform a

contraction themselves and actively complete ventricular filling. The heart and the circulatory

system are sketched in fig. 1.1.

A heart cycle at resting conditions takes about 1 s. The cycle is divided into two phases, the systole

and the diastole. The systole is the time period during which ventricular contraction happens and

blood is ejected into the aorta and the pulmonary artery, hence into the respective circuits. The

diastole is the time period during which the ventricles relax and eventually fill again. At standard

conditions, the diastole is about twice as long as the systole.

Four heart valves regulate the blood flow such that it remains unidirectional: The semilunar valves

(aortic and pulmonary valve) separate the ventricles from the arteries, and the atrioventricular

valves (mitral and tricuspid valve) regulate the flow between the atria and the ventricles. At

the beginning of the systole, contractile force is built up in the ventricles, leading to a closure

of mitral and tricuspid valve at end of the diastole. An isovolumic contraction phase follows

2
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Pulmonary circulation 

Systemic circulation 

Left ventricle 
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Left atrium 
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Figure 1.1: Schematic sketch of the cardiovascular system circulation with the heart as its driving

unit: In the systole, the left ventricle (LV) pumps oxygenated blood (red) into the

systemic circulation via the aorta, simultaneously to the RV delivering deoxygenated

blood (blue) to the pulmonary circulation via the pulmonary artery. Oxygen consump-

tion (carbon dioxide production) and re-oxygenation (carbon dioxide elimination) take

place in the capillary networks of the systemic and pulmonary circulation, respectively.

In the diastole, the ventricles relax and eventually fill through the left and right atrium

(LA, RA) which guarantee uninterrupted non-pulsatile venous return to the heart.
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(all valves closed) since aortic and pulmonary valve only open when left and right ventricular

pressures surpass the pressures in the respective arteries, and blood ejects. Vice versa, when

systole ends and ventricular relaxation starts, aortic and pulmonary valve close in order to avoid

blood regurgitation: The isovolumic relaxation starts since all valves are shut until the ventricular

pressure falls below the atrial one, eventually opening mitral and tricuspid valve such that the

diastolic filling phase can happen. A schematic ventricular pressure-volume relationship is shown

in fig. 1.2a, and fig. 1.2b shows the ventricular, atrial and arterial pressures over time t.

Schematic 

ventricular pressure-

volume curve for one 

cardiac cycle 

I 

II 

III 

IV 

Semilunar valve opening Semilunar valve 

closing 

Atrioventricular 

valve closing 
Atrioventricular 

valve opening 

I 

II 

isovolumic contraction phase 

ejection phase 

pv

Vv

EDVESV
SV

p

t

pv
par
pat

Semilunar valve 

closing 

Atrioventricular 

valve opening 

t

P 

Q 

R 

S 

T 

E
C

G
 [
m
V
]

(a) (b) 

(c) 

III 

IV 

isovolumic relaxation phase 

filling phase 

tested

II 

IV 

I III 

IV 

Figure 1.2: Schematic sketches of: (a) Ventricular pressure-volume relationship, pv over Vv, with

end-diastolic and end-systolic volumes EDV and ESV, respectively, and the stroke

volume SV (1.1) as the difference between the former and the latter. (b) Ventricular,

atrial and arterial pressures pv, pat and par over time t. (c) Electrocardiogram (ECG)

curve, typically measured in [mV]. End-diastolic and end-systolic timings denoted

with ted and tes, respectively.

The stroke volume SV determines the amount of blood that is pumped into the respective circula-

tion by either of the ventricles in one cardiac cycle. It is the difference between the end-diastolic

volume EDV and the end-systolic volume ESV:

SV = EDV − ESV. (1.1)

At a homeostatic state of the (healthy) circulatory system, left and right ventricular stroke volumes

coincide.
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1.3 Heart failure

A relative measure that determines the amount of ejected volume with respect to the end-diastolic

volume is the ejection fraction:

EF =
SV

EDV
. (1.2)

The cardiac output is defined as the amount of volume that is pumped per time:

CO = SV · HR, (1.3)

where HR [1/s] is the heart rate, i.e. the amount of heart beats per second.

A healthy individual at rest has a left ventricular ejection fraction of around EFℓ = 60 % and a

right ventricular ejection fraction of about EFr = 50 % [159]. Cardiac output is approximately

CO = 5 l/min. Note again that it coincides for both ventricles.

The contraction of the heart is initiated by an electrical impulse which is emitted by the sinoatrial

node, leading to a depolarization of the myocardial cells. This first so-called P-wave in the

electrocardiogram (ECG) curve results in contraction of the atria followed by electrical excitation

of the ventricles, the so-called QRS-complex in the ECG. The end of the ventricular systole is

marked by the T-wave in the ECG curve, representing the ventricles’ repolarization. An exemplary

ECG curve is sketched in fig. 1.2c.

Since the focus of this thesis is exclusively on the mechanics of the heart and the vascular system,

electrophysiological phenomena are not dealt with to a further extent.

One of the most important mechanisms that determine the heart muscle’s contractile dynamics is

the so-called Frank-Starling mechanism [193]. It is an autoregulatory response to a change in the

ventricular preload that increases (or lowers) contraction strength (contractility, or inotropy) of

the cardiac muscle depending on the amount of volume entering the ventricles during diastole.

If a larger amount of blood returns from the veins into one of the ventricles, a higher need in

blood delivery is sensed in order to maintain an equal left and right ventricular cardiac output

per stroke – inotropy rises. Vice versa, if the preload falls, the heart reacts to a reduced need in

blood delivery, and inotropy is decreased again. However, at very high preloads, the myofibers

become critically stretched and lose contractile ability again. The mechanism is used to maintain

or re-establish homeostasis by assuring equal left and right ventricular cardiac output even at a

sudden change in end-diastolic left or right ventricular volume.

1.3 Heart failure

Here, a short introduction to heart failure with its physiological mechanisms and therapeutic

treatments is given, with a focus on vascular assist devices (VAD). A review on heart failure may

be found in [99]. Section 1.3.1 briefly depicts the pathophysiology of heart failure, and VAD

concepts are presented in sec. 1.3.2.
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1.3.1 Pathophysiological mechanisms

Heart failure refers to symptoms of malfunction of the contractile performance of one or more

heart chambers. Consequently, this underperformance of the heart leads to reduced organ perfusion

and oxygen delivery to the body. Symptoms are shortness of breath, reduced ability of performing

exercise, possibly accompanied by edema and tissue congestion due to the reduced flow and

impaired circulation. The latter aspect is often referred to as congestive heart failure, which is

however often used simultaneously to the term “heart failure” alone.

In general, heart failure is a chronic and progressive condition and may be caused by a multitude

of pathophysiological mechanisms that are briefly highlighted here. Even though both, the left

as well as the right ventricle may suffer from heart failure syndromes, and right ventricular

failure as consequence of left ventricular malfunction eventually occurs, the focus here is set on

pathophysiological changes with the left ventricle as consequence of mechanical overload.

Two distinct types of heart failure are discriminated:

• systolic heart failure describes the heart’s disability to sufficient systolic performance, hence to

provide the adequate amount of blood flow to the body;

• diastolic heart failure refers to an impairment of the diastolic filling phase of the ventricles due

to increased stiffness of the ventricular wall.

LV 

RV 

Healthy heart Hypertrophic 

cardiomyopathy (HCM) 

“diastolic heart failure” 

Dilated cardiomyopathy 

(DCM) 

“systolic heart failure” 

End-systolic pressure 

overload 

End-diastolic volume 

overload 

(a) (c) (b) 

Figure 1.3: Ventricular myocardium with left (LV) and right (RV) ventricle. (a) Normal healthy

heart. (b) Dilated heart after eccentric growth as consequence of end-diastolic volume

overload, leading to systolic heart failure. (c) Thickened hypertrophied heart after con-

centric growth as consequence of end-systolic pressure overload, leading to diastolic

heart failure.

While in systolic heart failure, ejection fraction falls due to increased end-diastolic and reduced

stroke volume, it is virtually unaltered in diastolic heart failure due to greatly reduced end-diastolic

and slightly reduced stroke volume.
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1.3 Heart failure

Even though multiple mechanisms may cause either or both failure scenarios, a mechanistic

view is likely to discriminate between volume overload stimulating systolic failure and pressure

overload being the main driving force for the development of diastolic failure [175]. Figure 1.3

shows the two distinct types of overload and associated geometric changes of the (left) ventricle.

On the one hand, a state of volume overload occurs as the venous return to the heart at the end

of the diastole is elevated, leading to a critical myofiber stretch which the heart tends to reduce.

As consequence, additional sarcomeres are added in series which yields a reduction in strain but

is accompanied by a ventricular dilation, referred to as eccentric ventricular hypertrophy and a

dilated cardiomyopathy (DCM).

On the other hand, a state of pressure overload is present if the end-systolic cavity pressure is

chronically elevated above physiological standard. This yields a high state of wall stress inside the

myocardium, which is intended to be reduced by adding tissue in transverse myofiber direction.

Consequently, the ventricular wall thickness increases, referred to as concentric ventricular

hypertrophy and a hypertrophic cardiomyopathy (HCM).

Volume overload may be caused by acute events like aortic or mitral valve regurgitations (increas-

ing preload), while pressure overload is most likely to establish if the afterload increases, e.g. as

consequence of an aortic stenosis or hypertension.

The maladaptive changes in tissue that lead to the respective pathophysiology of DCM or HCM

are referred to as remodeling [11]. They are further explained in chap. 2, sec. 2.3, along with

approaches for modeling either one or the other phenomenon from a mechanical point of view.

1.3.2 Ventricular assist devices

Heart transplantation remains end-stage congestive heart failure’s most promising treatment

[160, 211]. However, due to the increasing organ demand, a continuous shortage in organ supply

becomes more and more remarkable. The number of heart transplants currently being performed

annually in the US ranges between 2000 and 2500 [106], while at any time, more than 3000

patients and rising are on the national waiting list for transplantation [75].

Due to that ever-present and constantly enlarging gap between supply and availability of donor

hearts, vascular (or ventricular) assist devices (VAD) have prevailed to a noticeable treatment

strategy of end-stage CHF for the last couple of decades. Even though the primary scopes of

these devices are bridge-to-transplant solutions [169], improvements in device technology with

reduction in adverse event rates qualify VADs for destination therapy [58, 180, 184, 212].

Assist devices for the left ventricle only are most common (LVADs) and are applied when right

ventricular performance is adequate, while RVADs are used when solely the right heart’s function

is impaired. For patients with biventricular heart failure, so-called BiVADs composed of two

separate assist devices are used.

Typical current VADs are made out of a continuous flow pumping unit that connects to the heart

and the aorta via in- and outflow cannulas. A driveline exits the skin and is connected to a system

controller that can be worn on a belt. First generation VADs were pulsatile flow pumps, which

however have proven to be inferior to the continuous flow technologies despite some additional

complications with respect to arterial pulsatility exhibited by the latter [40].
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Depending on the the severity of impairment of the cardiac function, a total artificial heart (TAH)

may be the only treatment option besides transplantation.

See [72, 185, 212] for more details on current mechanical circulatory assist devices, and especially

[185] for an overview over all complications associated with VAD applications.

Within the scope of this thesis, a novel extravascular biventricular augmentation technology is

investigated, which is developed by an industrial partner (AdjuCor R©GmbH). First experimental

results on this technology have been published by Jagschies et al. [98]. Its specific features and

function parameters are detailed in chap. 5.

The novel support implant relies on the concept of cardiac compression devices. Their essential

idea is not to partly bypass but to truly assist native ventricular function by exerting support

pressures onto the epicardial surface, hence compressing the ventricles without the need to

access a blood vessel. Therefore, any blood contact most often accompanied with increased

thromboembolic event rates and the need for anticoagulation treatment is avoided. See [157] for a

review on these kind of devices.

1.4 Research objective

This thesis aims at developing multiscale and multidimensional computational models for patient-

specific cardiovascular conditions. In the following (sec. 1.4.1), a specification of requirements

deduced from the motivational interlude in sec. 1.1 is derived. Thereafter, the specific contributions

in terms of a methodological overview are highlighted in sec. 1.4.2.

1.4.1 Specification of requirements

The computational models and methods to be used, developed and implemented should allow

the physiologically meaningful, parameterized, patient-specific, calibrated, validated, and com-

putationally efficient assessment of the function and optimization potential of a novel cardiac

extravascular augmentation technology interacting with the ventricular myocardium.

To date, none of the computational approaches for modeling of cardiac and vascular system

mechanics in the literature fulfills all of the following requirements, therefore novel methods and

models tailored for the specific problem at hand are needed.

Specifically, the models and methods for the heart and the assist device should comprise

• an accurate, patient-specific geometric representation of the ventricular myocardium, requiring

a rule-based segmentation procedure from imaging data as well as a finite element meshing

and input file preparation workflow applicable to arbitrary geometries;

• a reasonable consideration of boundary conditions, passive and active material behavior using

state-of-the-art hyperelastic constitutive laws accounting for the myocardium’s orthotropic

behavior, the application of a rule-based but realistic fiber and sheet direction, together with a

meaningful parameterization of the active contractile dynamics with time-controlled activation

and relaxation times allowing to simulate various patient-specific conditions (rest, exercise,

impaired relaxation, or similar);
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• a sophisticated consideration of the fluid pressure and flow relationships in terms of a closed

circulatory system that provides a physiological pressure loading condition for the heart on the

one side, and returns meaningful integral pressure-volume relationships on the other, hence

with the ability of linking local active or passive alterations in material behavior to global,

integral cardiac performance indicators like stroke work and ejection fraction, including the

meaningful assessment of homeostatic states of identical left and right ventricular cardiac

output;

• an efficient computational framework and strategy to calibrate distinct, identifiable parameters

of contraction strength, duration, and afterload to clinically relevant, observable measurements

like ventricular pressure or volume in order to reproduce a physiological validated baseline

condition;

• incorporation of growth and remodeling phenomena with considerations of the different time

scales of heart beat dynamics and remodeling occurrences, and the possibility to link an acute

event (infarction, valve disease) to long-term maladaptive changes in ventricular size and

material behavior;

• an automated patient-independent modeling and simulation workflow for the aforementioned

novel cardiac assist technology to efficiently compute design variants and allow for optimization

procedures to access the design parameters and generate model variants; and

• a robust integration of all the models and methods in order to capture the different types of

physical phenomena (solid mechanics with elastic and inelastic material behavior, multi-body

contact and tied contact, coupling with circulatory system flow models) simultaneously in one

monolithic computational setting on high-performance computing platforms.

1.4.2 Methodological overview

The above-mentioned requirements are fulfilled by developing modeling workflows, using and

extending existing computational models, developing and implementing novel methods such

as coupling schemes, parameter estimation procedures, and multiscale growth and remodeling

approaches, and finally by proving the feasibility of the methods by meaningful results and

validations with experimental data at hand.

A rule-based segmentation workflow for extracting the patient-specific ventricular geometry out

of (motion) CT data sets at a distinct point in time is generated, both for providing the input data

to a computational solid mechanics model of the ventricles (and the atria), as well as the core

data that serves as basis for the manufacturing process of the aforementioned novel ventricular

assist technology.

An automated model construction and finite element meshing workflow and pipeline is imple-

mented that communicates with a CAD and FEM meshing software; specifically:

• a workflow for solid mechanics finite element heart model generation including meshing and

making use of automated fiber and sheet direction incorporation methods, as well as
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• a pipeline for modeling and construction of the assist device implant according to the design

principles set by the industrial partner, readily providing the finite element discretized implant

model to be computed together with the heart.

State-of-the-art anisotropic hyperelastic passive material laws are used for modeling of the patient-

specific 3D heart, and an active stress material model used for the heart’s contraction is extended

to be capable of including strain-dependent behavior, hence the Frank-Starling mechanism, cf.

sec. 1.2. Robin boundary conditions using spring and dashpot elements are implemented allowing

for a realistic mechanical consideration of the truncated surrounding (at the atrioventricular base,

or at venous inlets).

Furthermore, reduced-dimensional lumped-parameter (0D) pressure-flow and gas transport mod-

els for the entire closed circulatory system are derived by combining previous approaches and

for the first time are implemented together with a monolithic 3D-0D coupled solution frame-

work. This allows for the simultaneous implicit solution of 3D solid and 0D flow models in one

monolithic Newton scheme, using available preconditioning techniques for the 3D-0D system of

equations to meet the requirements for the solution of large-scale problems on high-performance

computing (HPC) platforms.

Models for growth and remodeling are derived implementing and extending existing state-of-the-

art anisotropic volumetric growth constitutive laws, combined with phenomenological approaches

for remodeling in terms of growth-dependent changes in tissue passive elastic or active properties.

A novel multiscale-in-time strategy is implemented that allows to simulate growth and remodeling

phenomena on a large time scale as consequence of an acute disease event on the small time scale,

including previously proposed reverse growth models.

Additionally, novel strategies for estimating key parameters that govern heart work (ventricular

contractile properties, afterload, preload) are developed. An optimization framework is imple-

mented with novel multilevel optimization methods that estimate parameters on a high-fidelity

computational model by help of low-fidelity coarse surrogate models. Therefore, model order

reduction techniques for the 3D heart are implemented and incorporated into the optimizer, and

different types of reduced models are compared with respect to their computational performance.

Finally, all models and methods are applied to simulating a novel extravascular ventricular assist

technology, and a validation with in-vivo experiments that were conducted with this kind of im-

plant is performed. Last but not least, optimization algorithms for design and function parameters

of the novel implant are developed, and proposals to enhance their computational efficiency by

help of globalized model order reduction strategies are presented.

All computational models and solution schemes are implemented into the in-house multi-physics

finite element software package Baci [207] in C++ programming language. Model and finite

element input file generation scripts as well as optimization methods are implemented into a

Python programming language-based framework that communicates with Baci and the HPC

architecture, including an automated simulation processing and data handling chain.
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1.5 Outline

After having presented all introductory remarks, physiological backgrounds to certain phenomena,

as well as the research objective and the methodological approaches, the remainder of this thesis

is organized as follows.

Chapter 2 introduces all modeling-related aspects. It starts with the mathematical backgrounds

of continuum mechanics and reduced-dimensional flow models, and bridges over to the 3D-0D

coupled problem description of the heart and the vascular system, introducing all the governing

equations and modeling assumptions involved. Then, the models for myocardial growth and dis-

ease progression are introduced, including the time scale handling for both volume and pressure

overload-induced cardiomyopathy.

Chapter 3 treats all discretization- and solution-related aspects. It opens with fundamentals on

nonlinear finite element methods, finite difference schemes and nonlinear solution techniques, and

then presents the monolithic approach to 3D-0D coupled cardiovascular mechanics. Numerous

exemplary results for a patient-specific heart then are presented, i.e. pressure-volume relation-

ships at different cardiovascular conditions and gas transport kinetics. Furthermore, growth and

remodeling results for eccentric and concentric ventricular hypertrophy as consequence of an

acute event (infarction, valve stenosis or regurgitation) are shown.

Chapter 4 then presents model reduction-based optimization algorithms. At first, a general intro-

duction to nonlinear unconstrained optimization is given, before presenting model order reduction

techniques for the 3D-0D coupled problem. Thereafter, the novel algorithms for parameter es-

timation are presented and compared. Results for a patient-specific heart calibrated to in-vivo

measured pressure and volume data are shown.

Finally, chap. 5 addresses models for a novel heart assist technology developed in close collab-

oration with industrial partners. The previously developed methods and models are applied to

the specific problem of a porcine failing heart treated with the extravascular implant. Validation

with experimental data is performed, and optimization methods for functional parameters of the

implant are introduced.

11





2 Modeling of cardiac mechanics and

the vascular system

The mathematical and computational modeling of the cardiovascular system plays an ubiquitous

role in biomedical engineering and has been topic of numerous contributions for the last couple of

decades. Due to the huge biological complexity of the cardiovascular system and the manifoldness

of processes happening on different spatial and temporal scales, models naturally have to be

tailored towards a specific aspect and question at hand, while other phenomena with little or

negligible influence on the quantities of interest have to be simplified or omitted during model

design.

Amongst cardiovascular models, those concentrating on the mechanics and the electrophysiology

of the heart as the central driving organ of the cardiovascular system are continuously prevailing

and cover a vast field of research areas. An overview over a couple of recent models may be found

in Quarteroni [165]. Specific references to models in the literature will be given in the respective

sections of this thesis.

The models which are developed in this thesis focus on the mechanics of the heart and the vascular

system with the aim of describing, predicting and understanding the heart’s function, its diseases

(e.g. myocardial infarction and chronic left or right ventricular insufficiency), diseases progression

and impact of medical treatment thereof. Therefore, the myocardium (heart muscle) is modeled as

a 3-dimensionally resolved nonlinear anisotropic elastic solid with an active material component

in order to simulate the cardiac contraction. The geometry is patient-specific and extracted from

medical imaging data such as CT or MRI scans.

The vascular network is taken into account by using a reduced-dimensional lumped-parameter

model for the entire closed-loop circulatory system and hence links spatially resolved ventricular

contraction, material behavior as well as disease progression and remodeling phenomena to

integral hemodynamic quantities such as cardiac output, stroke work, and oxygen delivery.

Specifically end-diastolic and end-systolic homeostatic state volumes and pressures are impor-

tant stimuli for maladaptive growth and remodeling processes such as eccentric and concentric

ventricular cardiomyopathy. Both phenomena are extensively dealt with by a novel multiscale-

in-time approach in order to link short term changes in hemodynamics to long term growth and

remodeling effects.

The fundamentals of nonlinear solid mechanics and reduced-dimensional modeling of blood flow

are detailed in sec. 2.1. The novel models which are developed in this thesis are described in sec.

2.2, including all relevant aspects such as geometry construction, governing equations, boundary

conditions, specific material modeling and circulatory system properties.

Finally, sec. 2.3 deals with a novel multiscale-in-time approach for modeling myocardial growth

and disease progression for both eccentric and concentric ventricular cardiomyopathy.
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2 Modeling of cardiac mechanics and the vascular system

2.1 Fundamentals

2.1.1 Nonlinear solid mechanics

Here, basic governing equations of continuum mechanics are restated since they form the corner-

stone of all mechanical analyses performed in this work. Kinematic descriptors, concepts of stress,

balance equations and variational principles of initial boundary value problems are depicted.

While all kinematic and balance equations as well as the stress theorems hold for any type of

material behavior (fluids, elastic or inelastic solids), the specific kinetics and constitutive models

for isotropic and anisotropic hyperelastic solids are elaborated to a further extent. For a detailed

treatment of continuum mechanics with a focus on constitutive theories for solids, the reader is

referred to Holzapfel [88].
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Figure 2.1: Nonlinear continuum mechanics setting: Deformation of a continuum body from

reference (or material) to current (or spatial) configuration.

Figure 2.1 shows a generalized continuum mechanical setting in terms of the deformation of a

continuous body subject to the motion χ. It is assumed that the same right-handed orthogonal

reference frame for both, the reference or material, and the current or spatial configuration of the

body is used. That is, material basis vectors ê0,i and spatial basis vectors êi coincide, therefore

their further distinction is omitted and only re-established for demonstrative purposes.

The reference configuration is denoted with Ω0 ⊂ R3, which is the domain occupied by material

points x0 = x0,iêi at time instance t = 0. By analogy, the current configuration Ω ⊂ R3 is the

domain occupied by spatial points x = xiêi at a time instance t 6= 0.

The boundary of the body is Γ0 = ΓD
0 ∪ ΓN

0 , which may be decomposed into a Dirichlet boundary
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2.1 Fundamentals

with prescribed displacements u = û and a Neumann boundary with prescribed tractions t0 = t̂0.

The two types of boundaries are disjoint: ΓD
0 ∩ ΓN

0 = ∅. Furthermore, the body may be subject to

forces per unit undeformed volume b̂0, so-called body forces.

2.1.1.1 Kinematics

Let the motion (deformation map) χ carry a material point x0 into its spatial counterpart x for all

times t. It is assumed to be unique and invertible:

x = χ(x0, t), x0 = χ−1(x, t). (2.1)

Consequently, the (material) displacement of a material point from reference to current configura-

tion is the difference in position vectors,

u(x0, t) = x(x0, t)− x0, (2.2)

while the material point’s velocity and acceleration are the first and second time derivative of its

displacement, respectively:

v(x0, t) =
∂χ(x0, t)

∂t
=

∂u(x0, t)

∂t
= u̇(x0, t), (2.3)

a(x0, t) =
∂2χ(x0, t)

∂t2
=

∂v(x0, t)

∂t
=

∂2u(x0, t)

∂t2
= ü(x0, t). (2.4)

The displacement, velocity and acceleration fields may analogously be expressed in spatial

coordinates x:

u(x, t) = x− x0(x, t) = u[χ(x0, t), t] = u(x0, t), (2.5)

v(x, t) = v[χ(x0, t), t] = v(x0, t), (2.6)

a(x, t) = a[χ(x0, t), t] = a(x0, t). (2.7)

However, if, for example, the velocity field is formulated with respect to spatial coordinates, the

acceleration field emerges as its material time derivative, where the change of the current position

x has to be accounted for:

a(x, t) = v̇(x, t) =
dv(x, t)

dt
=

∂v(x, t)

∂t
+

∂v(x, t)

∂x

∂x

∂t
=

=
∂v(x, t)

∂t
+ (∇⊗ v)v. (2.8)

While a description with respect to the referential coordinates x0 is referred to as Lagrangian

description, formulating with respect to the current spatial coordinates x is known as Eulerian

description. A generalized descriptive concept with an independently moving observer is referred

to as Arbitrary Lagrangian-Eulerian (ALE) description, which is not detailed here.

The deformation gradient carries a material infinitesimal line element into its spatial counterpart

according to

dx = F dx0 (2.9)
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2 Modeling of cardiac mechanics and the vascular system

and therefore is defined as

F =
∂x(x0, t)

∂x0

= 1+∇0 ⊗ u = Fij êi ⊗ ê0,j. (2.10)

It is a so-called two-point tensor with one basis ê0,i belonging to the reference and the other basis

êi to the current frame.

The deformation gradient essentially captures rotations and stretches of line elements. The polar

decomposition of the deformation gradient (2.10) into a proper orthogonal rotation tensor Q

(obeying QT = Q−1 and detQ = 1) and a material (right) stretch tensor U = UT, or a spatial

(left) stretch tensor V = V T yields

F = QU = V Q. (2.11)

In order to derive a deformation measure which is irrespective of rigid-body motions, the material

right Cauchy-Green deformation tensor

C = F TF = FijFkl (ê0,j ⊗ êi)(êk ⊗ ê0,l) = FijFil ê0,j ⊗ ê0,l = Cjl ê0,j ⊗ ê0,l (2.12)

= (QU )T(QU ) = UQ−1QU = U 2

as well as the spatial left Cauchy-Green deformation tensor

B = FF T = FijFkl (êi ⊗ ê0,j)(ê0,l ⊗ êk) = FijFkj êi ⊗ êk = Bik êi ⊗ êk (2.13)

= (V Q)(V Q)T = V QQ−1V = V 2

are defined. As can be seen, both bases from C belong to the material frame, while the bases

from B are defined in the spatial frame. Note that B = QCQT.

While many strain measures may be defined, two popular definitions of strain are the material

Green-Lagrange strain tensor and the spatial Euler-Almansi strain tensor,

E =
1

2
(C − 1) and e =

1

2
(1−B−1). (2.14)

Inserting (2.10) into (2.14) yields E = 1
2

(
∇0 ⊗ u+ (∇0 ⊗ u)T + (∇0 ⊗ u)T∇0 ⊗ u

)
and e =

1
2

(
∇⊗ u+ (∇⊗ u)T − (∇⊗ u)T∇⊗ u

)
. One can show that both strain measures coincide

for the geometrically linear theory and yield the classical engineering strain as symmetric part of

the displacement gradient.

2.1.1.2 Kinetics and constitutive laws

If the body depicted in fig. 2.1 is imagined to be cut, continuity of forces over the cut boundary

has to hold. An infinitesimal resultant force dr that acts on a surface element da = dan may be

described either in the current cut configuration with spatial unit outward normal n, or with respect

to the reference configuration, where the surface element becomes dA = dAn0 = J−1F da
with material unit outward normal n0:

dr = t da = t0 dA. (2.15)
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2.1 Fundamentals

While t is called the (true) Cauchy traction vector describing the actual boundary stress, t0 is the

(nominal) first Piola-Kirchhoff traction vector, both being force measured per unit surface area

either in the current or in the reference configuration.

In order to quantify the full state of stress at a continuum point, three perpendicular cut planes

would be necessary, since the traction vector depends on the actual unit outward normal. Thus,

the full state of stress is characterized by a second-order tensor field relating the unit outward

normal to the traction vector. Cauchy’s stress theorem states

t(x, t,n) = σ(x, t)n, (2.16)

t0(x0, t,n0) = P (x0, t)n0, (2.17)

where

σ = σij êi ⊗ êj = σT and P = Pij êi ⊗ ê0,j (2.18)

are the Cauchy stress tensor and the first Piola-Kirchhoff stress tensor, respectively. While the

former is a spatial stress field, the latter, like the deformation gradient, is a two-point tensor with

one basis in the reference and the other one in the current configuration. Its transpose, P T, is

frequently referred to as the nominal stress tensor.

In order to have a fully material stress measure, the so-called second Piola-Kirchhoff stress tensor

S = F−1P = JF−1σF−T = Sij ê0,i ⊗ ê0,j = ST (2.19)

is defined. Since both of its bases are defined with respect to the material configuration and due

to its symmetry, it represents a suitable quantity to define solid mechanics constitutive laws in a

Total Lagrangian setting.

Solving an eigenvalue problem allows to represent (2.18)1 in its spectral form

σ =
3∑

a=1

σa n̂a ⊗ n̂a, (2.20)

where σ1 ≥ σ2 ≥ σ3 are the eigenvalues (principal normal stresses) and n̂a the principal directions

of σ.

Furthermore, the state of stress may be additively split into a spherical (hydrostatic) part σ causing

change of volume and a deviatoric part σ̃ causing change of shape, with

σ = σ 1 =
1

3
trσ 1 and σ̃ = σ − σ. (2.21)

The quantity σ is commonly referred to as mean stress, while the scalar p = −σ is the hydrostatic

pressure. A state of pure shear stress (deviatoric stress) is given if σ = 0. While brittle materials

are most likely to fail if the maximum principal normal stress σ1, cf. (2.20), exceeds a certain

limit, ductile materials (especially ductile metals) rather fail if the deviatoric stress becomes

critical. Two common deviatoric scalar stress metrics are the maximum shear stress τmax and the
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2 Modeling of cardiac mechanics and the vascular system

von Mises stress σvM:

τmax =
1

2
|σ1 − σ3| and σvM =

√
3IIσ̃, (2.22)

where IIσ̃ = 1
2
σ̃ijσ̃ij is the second principal invariant of the deviatoric stress tensor σ̃ (note that

its first invariant vanishes per definition, Iσ̃ = trσ̃ = σ̃ii = 0).

A so-called constitutive law relates the state of stress to the state of deformation of the continuum

body, and essentially has to fulfill the second law of thermodynamics. This may be stated in terms

of the Clausius-Planck inequality, which for an isothermal process determines the mechanical

dissipation and for a closed system reads

Dint = P : Ḟ − Ψ̇ =

(
P − ∂Ψ(F )

∂F

)
: Ḟ ≥ 0, (2.23)

where Ψ is the Helmholtz free-energy function (energy per unit reference volume) or simply

the strain energy function when considering a purely mechanical process. For a hyperelastic

material, no dissipative effects (meaning no effects of viscosity, plasticity or damage) occur and

the mechanical process is reversible, i.e. Dint = 0. For the first and second Piola-Kirchhoff stress,

the following constitutive relations hold:

P =
∂Ψ

∂F
, S = 2

∂Ψ

∂C
=

∂Ψ

∂E
. (2.24)

The strain energy is a scalar-valued tensor function and has to satisfy the important properties

Ψ(1) = 0 (no energy in the undeformed state), Ψ(F ) ≥ 0 (positivity of energy), Ψ(QF ) =
Ψ(F ) (invariance of energy under rigid-body modes) and Ψ(F ) → ∞ if J = detF → ∞
or J = detF → 0 (infinite amount of energy required for an infinitely large expansion or

compression of the body).

For isotropic hyperelasticity and due to the fact that the scalar-valued tensor function Ψ remains in-

variant under rigid-body modes, it can be represented with the principal invariants of its argument,

for example in terms of the right Cauchy-Green deformation tensor C, Ψ = Ψ (IC , IIC , IIIC),
with

IC = trC = Cii,

IIC =
1

2

(
(trC)2 − tr(C2)

)
=

1

2
(C2

ii − CijCij),

IIIC = detC =
1

6
EijkElmnCilCjmCkn = J2,





(2.25)

where Eijk = (êi × êj) · êk are the coordinates of the well-known third-order Levi-Civita permu-

tation tensor E = Eijk êi ⊗ êj ⊗ êk.

The constitutive equation for the second Piola-Kirchhoff stress (2.24)2 then particularizes in

S = 2
∂Ψ

∂C
= 2

[(
∂Ψ

∂IC
+ IC

∂Ψ

∂IIC

)
1− ∂Ψ

∂IIC
C + IIIC

∂Ψ

∂IIIC
C−1

]
. (2.26)
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2.1 Fundamentals

If the material is meant to be incompressible, an additional constraint J = IIIC = 1 has to be

incorporated into the constitutive equations:

Ψ = Ψ (IC , IIC)−
1

2
p(IIIC − 1), S = −pC−1 + 2

(
∂Ψ

∂IC
+ IC

∂Ψ

∂IIC

)
1− 2

∂Ψ

∂IIC
C, (2.27)

where p is the Lagrange multiplier guaranteeing the constraint IIIC = 1 and may be identified as

the hydrostatic pressure.

Compressible isotropic hyperelasticity may be treated by a split of the deformation into an

isochoric and volumetric part, F = (J1/3
1)F̄ = J1/3F̄ and C = (J2/3

1)C̄ = J2/3C̄,

Ψ(C) = Ψ̄(C̄) +Ψvol(J),

Ψ (IC , IIC , IIIC) = Ψ̄(ĪC , Ī̄IC) +Ψvol(J), (2.28)

with the modified (isochoric) invariants

ĪC = J−2/3IC , Ī̄IC = J−4/3IIC and Ī̄ĪIC = 1. (2.29)

In contrast to the Lagrange multiplier approach (2.27) with strict enforcement of the incompress-

ibility constraint, (2.28) rather may be viewed as a penalty approach, where near-incompressible

behavior can be achieved with Ψvol being appropriately large.

When dealing with anisotropic hyperelasticity, the strain energy becomes a function of the

deformation and of one or more preferred directions, for example for two families of fibers with

directions f0 and s0 in the reference configuration:

Ψ = Ψ(C,f0 ⊗ f0, s0 ⊗ s0) = Ψ(QCQT,Qf0 ⊗ f0Q
T,Qs0 ⊗ s0Q

T). (2.30)

The strain energy Ψ is a scalar-valued isotropic tensor function obeying (2.30) if it is, additionally

to invariants (2.25), a function of the set of so-called pseudo-invariants

IVf = f0 ·Cf0 ≡ IV, IVs = s0 ·Cs0 ≡ VI,

Vf = f0 ·C2f0 ≡ V, Vs = s0 ·C2s0 ≡ VII,

VIIIfs = f0 ·Cs0 ≡ VIII, IXfs = (f0 · s0)2 ≡ IX.





(2.31)

The invariants IV and VI correspond to the squared stretches in fiber direction. The invariant

IX does not depend on the deformation and can be omitted for the formulation of strain energy

functions.

The constitutive equation for the second Piola-Kirchhoff stress then generalizes to

S = 2
∂Ψ

∂C
= 2

[(
∂Ψ

∂IC
+ IC

∂Ψ

∂IIC

)
1− ∂Ψ

∂IIC
C + IIIC

∂Ψ

∂IIIC
C−1+

+
∂Ψ

∂IV
f0 ⊗ f0 +

∂Ψ

∂V
(f0 ⊗Cf0 + f0C ⊗ f0) +

∂Ψ

∂VI
s0 ⊗ s0+

+
∂Ψ

∂VII
(s0 ⊗Cs0 + s0C ⊗ s0) +

1

2

∂Ψ

∂VIII
(f0 ⊗ s0 + s0 ⊗ f0)

]
. (2.32)
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2 Modeling of cardiac mechanics and the vascular system

If the matrix material is incompressible, IIIC ≡ 1, the constitutive equation for S has a similar

form to (2.27)2, with the additional derivatives with respect to the pseudo-invariants from (2.32).

For a compressible matrix material, here only the isotropic part Ψ (isotr) of the strain energy obeys

the volumetric-deviatoric split [181] 1

Ψ = Ψ̄
(isotr)(ĪC , Ī̄IC) +Ψ

(aniso)(IV, V, VI, VII, VIII) +Ψ
(isotr)
vol (J). (2.33)

The tangent to the stress-strain relationship may be seen as the material’s (deformation-dependent)

stiffness and plays an ubiquitous role when solving problems in the nonlinear realm with help of

Newton-type iterative methods, cf. sec. 3.1.3. It is represented by the fourth-order tensor

❈❈❈ = 2
∂S

∂C
=

∂S

∂E
= ❈ijkl êi ⊗ êj ⊗ êk ⊗ êl, (2.34)

also called the elasticity tensor in the material description. It always possesses so-called minor

symmetries ❈ijkl = ❈jikl = ❈ijlk.

If the constitutive equation for the stress relies on a strain energy density, i.e. if the material is of

hyperelastic nature (2.24), the elasticity tensor may be formulated as

❈❈❈ = 4
∂2
Ψ

∂C∂C
=

∂2
Ψ

∂E∂E
. (2.35)

In this case,❈❈❈ additionally possesses major symmetries ❈ijkl = ❈klij .

2.1.1.3 Balance equations

Conservation of mass For a closed mechanical system, the total mass m of the body is

conserved, yielding the conservation of mass written either in the current or material configuration:

dm

dt
=

d

dt

∫

Ω

ρ dv =

∫

Ω

(ρ̇+ ρ∇ · v)dv =
d

dt

∫

Ω0

ρ0 dV =

∫

Ω0

ρ̇0 dV = 0, (2.36)

where ρ is the spatial and ρ0 = Jρ the reference mass density. Since (2.36) has to hold for an

arbitrary volume, conservation of mass in its local forms has to hold identically:

ρ̇+ ρ∇ · v = 0 and ρ̇0 = 0. (2.37)

Balance of linear and angular momentum The balance of linear and angular momentum

in continuum mechanics are the generalized versions of Newton’s first and second law of motion.

They state that the rate of change of linear (angular) momentum has to equal the sum of external

1In contrast to decoupled representations for compressible anisotropic materials according to [88], where the

isochoric-voluemtric split is also applied to the pseudo-invariants (2.31), Sansour [181] concludes that for

anisotropic fiber-reinforced materials, the split should be applied to the matrix material only. This is due to the

fact that otherwise, the stress in the fibers would not contribute to the spherical part of the stress tensor (2.21)1.

This seems non-physical since a spherical state of stress causing deformation of the whole material should also

produce stresses in the fibers. Furthermore, fiber stresses are expected to be of one-dimensional nature, which

loses its validity when applying the split to the fibers, too.
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forces (moments) acting on the body.

The balance of linear momentum in spatial description yields

d

dt

∫

Ω

ρv dv =

∫

Ω

b̂ dv +

∫

Γ

t̂ da. (2.38)

After application of Cauchy’s theorem (2.16) and Gauss’ divergence theorem,

∫

Ω

ρa dv =

∫

Ω

(∇ · σ + b̂) dv (2.39)

is obtained. Analogously, (2.39) can be written with respect to the material configuration:

∫

Ω0

ρ0a dV =

∫

Ω0

(∇0 · P + b̂0) dV. (2.40)

Again, both expressions (2.39), (2.40) have to hold for an arbitrary volume, yielding their local

forms, known as Cauchy’s first law of motion:

ρv̇ = ∇ · σ + b̂ and ρ0v̇ = ∇0 · (FS) + b̂0, (2.41)

where (2.19) has been made use of.

The balance of angular momentum in spatial description with respect to a fixed origin 0 is

d

dt

∫

Ω

x× ρv dv =

∫

Ω

x× b̂ dv +

∫

Γ

x× t̂ da (2.42)

=

∫

Ω

x× b̂ dv +

∫

Γ

x× σn da

=

∫

Ω

x× b̂ dv +

∫

Ω

(
x× (∇ · σ) + E : σT

)
dv, (2.43)

having made use of the property
∫
a
w × An da =

∫
v

(
w × (∇ ·A) + E : (∇⊗w)AT

)
dv

where A is some second-order tensor, w an arbitrary vector field and n a unit outward normal.

Inserting (2.41)1 into re-arranged (2.43) leads to the local form particularizing in the symmetry of

the Cauchy stress tensor, also known as Cauchy’s second law of motion:

E : σT = 0 or Eijkσkj = 0, ⇒ σ = σT or σij = σji. (2.44)

For the sake of completeness, the balance of angular momentum in material description as

equivalence to (2.42) is stated and reads

d

dt

∫

Ω0

x× ρ0v dV =

∫

Ω0

x× b̂0 dV +

∫

Γ0

x× t̂0 dA. (2.45)
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Note that similar symmetry observations may be deduced from (2.45) by re-writing
∫
Γ0
x ×

t̂0 dA =
∫
Γ0
x × Pn0 dA =

∫
Ω0

(
x× (∇0 · P ) + E : (∇0 ⊗ x)P T

)
dV . After insertion of

(2.41)2 into the re-written form of (2.45), E : (∇0 ⊗ x)P T = E : (FP T) = 0 follows

analogously to (2.44)1, where the symmetry of the so-called Kirchhoff stress τ = PF T = Jσ
and thus that one of the Cauchy stress is shown equivalently to (2.43). Note further however that

the first Piola-Kirchhoff stress P is not symmetric.

Balance of mechanical energy For a purely mechanical system, the balance of energy is a

direct consequence of Cauchy’s first law of motion and is stated here for the sake of completeness,

however its local forms do not provide additional information compared to (2.41).

Its spatial representation reads

d

dt

∫

Ω

1

2
ρv2 dv +

∫

Ω

σ : γ dv =

∫

Γ

t̂ · v da+

∫

Ω

b̂ · v dv, (2.46)

with the symmetric part of the spatial velocity gradient

γ =
1

2

(
∇⊗ v + (∇⊗ v)T

)
. (2.47)

In material description, (2.46) is expressed as

d

dt

∫

Ω0

1

2
ρ0v

2 dV +

∫

Ω0

Jσ : γ dV =

∫

Γ0

t̂0 · v dA+

∫

Ω0

b̂0 · v dV. (2.48)

Note that the stress power or rate of internal mechanical work may be alternatively expressed:∫
Ω0

Jσ : γ dV =
∫
Ω0

P : Ḟ dV =
∫
Ω0

S : Ė dV =
∫
Ω0

S : 1
2
Ċ dV .

2.1.1.4 Initial boundary value problem and variational principles

In order to address problems in nonlinear continuum mechanics, the solution of an initial boundary

value problem in the time span t ∈ [0, T ] of the type

∇0 · P + b̂0 = ρ0ü in Ω0 × [0, T ], (2.49)

u = û on ΓD
0 × [0, T ], (2.50)

t0 = Pn0 = t̂0 on ΓN
0 × [0, T ], (2.51)

u(x0, 0) = û0(x0) in Ω0, (2.52)

u̇(x0, 0) = v̂0(x0) in Ω0, (2.53)

has to be found, here formulated with respect to the material (known) configuration, which is

common practice in solid mechanics. The partial differential equation (2.49), being the local

balance of linear momentum in the material description (2.41)2, is subject to initial and boundary

conditions (on the Dirichlet and Neumann boundaries ΓD
0 and ΓN

0 , cf. fig. 2.1). In order to close

the system, a constitutive equation connecting kinetic and kinematic quantities, here in terms of

P and u, is needed, for example (2.24), with the kinematics being described by some suitable
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deformation measure, e.g. (2.12). The set of equations (2.49)–(2.53) is called the strong form

of the initial boundary value problem, since it requires the point-wise fulfillment of the partial

differential equation (2.49).

Multiplying (2.49) by a smooth arbitrary so-called test function or weighting function φ = φ(x0)
with the property that it has to vanish on the boundary ΓD

0 , φ = 0, and integrating over the domain

Ω0, the weak form of Cauchy’s first law of motion with respect to the material configuration is

obtained: ∫

Ω0

(−∇0 · P − b̂0 + ρ0ü) · φ dV = 0, (2.54)

with the initial conditions
∫
Ω0

u(x0, 0) · φ dV =
∫
Ω0

û0(x0) · φ dV and
∫
Ω0

u̇(x0, 0) · φ dV =∫
Ω0

v̂0(x0) · φ dV . Since no special requirements but that for the Dirichlet boundary have been

set on the weighting function, φ may be identified as the first variation of the displacement field

u, denoted by δu = ũ−u = (u+ εw)−u = εw, where w is some new vector field yielding a

slightly perturbed configuration with respect to the actual displacement state u, and ε→ 0. Thus,

δu is arbitrary and infinitesimal and is called virtual displacement.

After insertion of Cauchy’s stress theorem (2.16), the relation for the second Piola-Kirchhoff

stress S (2.19), and application of Gauss’ divergence theorem, (2.54) yields the well-known

principle of virtual work in the material description:

δW :=

∫

Ω0

ρ0ü · δu dV +

∫

Ω0

S : δE dV −
∫

Ω0

b̂0 · δu dV −
∫

ΓN
0

t̂0 · δu dA = 0, ∀ δu, (2.55)

with the initial conditions
∫
Ω0

u(x0, 0) ·δu dV =
∫
Ω0

û0(x0) ·δu dV and
∫
Ω0

u̇(x0, 0) ·δu dV =∫
Ω0

v̂0(x0) · δu dV . Since the Neumann boundary conditions are already incorporated in (2.55),

they are often referred to as natural boundary conditions, while the Dirichlet conditions are

sometimes called essential boundary conditions. The differential equation associated with the

variational form (2.55) is called Euler-Lagrange equation.

As for the stress power, the internal virtual work of the stress field along the virtual deformation

field may be expressed alternatively:
∫
Ω0

S : δE dV =
∫
Ω0

P : δF dV =
∫
Ω
σ : δe dv. Stress

and strain pairs of which the double contraction yields work per undeformed reference or de-

formed current volume are said to be work-conjugate.

The principle of virtual work (2.55) may also be formulated with respect to the current spatial

configuration, which is omitted here. Furthermore, (2.55) may also be derived in a “top-down”

manner requiring the stationarity of potential energy (in the quasi-static case, where ü = u̇ = 0),

meaning its first variation with respect to its kinematic variable u has to vanish. However, that

approach would necessitate the existence of a potential both for the internal mechanical work

(hyperelastic material, cf. sec. 2.1.1.2) as well as the external one (conservative loading). In

contrast, the “bottom-up” derivation and therefore (2.55) holds for any class of materials and

external loading conditions, since no special constitutive equation has been assumed for S.
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The advantage of the weak form over the strong form comes into play when (approximate)

solutions of the initial boundary value problem, e.g. in the context of the finite element method are

searched. The requirement of point-wise fulfillment of a partial differential equation is replaced

by that of an integral weighted one, for which the differentiability requirements of the solution u

have been weakened: After insertion of constitutive and kinematic relations, second-order spatial

derivatives of the displacement are involved in (2.49), while (2.55) only captures first-order spatial

derivatives of u. Therefore, (2.55) is the starting point for a spatial discretization approach with

the finite element method, which will be detailed in sec. 3.1.1.

Since the only field of unknowns in (2.55) is the displacement field u, it is called a single-field

variational principle. However, more general multi-field variational principles may be introduced

with additional fields of unknowns, e.g. the hydrostatic pressure in the case of incompressible

material behavior, or some kinematic quantity like the strain field. For a further treatment of this

topic, the reader is referred to [88] and references therein.

2.1.1.5 Contact mechanics

A very brief introduction to contact and tied contact mechanics (“mesh tying”) is given since these

methods are applied in chap. 5 for the specific setting of a heart and a ventricular assist device.

Details on contact mechanics may be found in Wriggers [217]. The computational concepts and

methods that are used in this thesis here have been published by Popp et al. [162, 163], see also

the thesis by Popp [161].

Figure 2.2 depicts a continuum mechanical setting of two bodies Ω
[1]
0 and Ω

[2]
0 subject to the

motions χ[1] and χ[2], respectively. The focus is set exclusively on the contact problem – the

description of Neumann and Dirichlet boundaries is omitted, cf. fig. 2.1. Both bodies are required

to fulfill the continuum mechanics initial boundary value problem (2.49)–(2.53) presented in sec.

2.1.1.4.

In contact mechanics, the contact boundary of both bodies, Γ
c[1]
0 and Γ

c[2]
0 , is a priori unknown,

hence the actual contact happens in the current configuration with the current boundaries Γc[1]

and Γc[2] that meet. Thus, the determination of what part of the body comes into contact with

the other has to be performed during the nonlinear solution process and introduces an additional

source of nonlinearity to the problem.

A quantity that measures the distance from a point of body [1] to a normal projection of that point

onto the boundary of body [2] is the so-called gap function

gn = −nc · (x[1] − x̌[2]), (2.56)

where nc is a current unit outward normal at the contact interface.

Classical methods in computational contact mechanics determine the point x̌[2] by a closest point

projection (in the computational sense referred to as node-to-segment strategies), while in the

context of so-called mortar approaches, the point x̌[2] is determined by a smooth mapping onto

the surface Γc[2] (segment-to-segment approach). See [161] for details.

Balance of linear momentum requires that the tractions in the contact interface obey

tc[1] = −tc[2]. (2.57)
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Figure 2.2: Contact (tied contact) continuum setting.

The contact traction may be split into a normal and a tangential component:

tc[1] = pnn
c + tt, (2.58)

where pn is the stress in normal direction (in non-adhesive contact, pn ≤ 0) and tt the tangential

traction vector.

Throughout this thesis, only normal (frictionless) contact (with vanishing tangential components

in (2.58)), as well as tied contact are considered.

The (non-adhesive) normal contact constraint is formulated with the Karush-Kuhn-Tucker (KKT)

conditions, requiring

gn ≥ 0, pn ≤ 0, pnpn = 0, (2.59)

i.e. the gap (2.56) is either greater or equal to zero, while the normal traction is either zero or is

negative.

For the tied contact case, it is typically assumed that the two bodies already meet and are tied in

the reference configuration, deducing that Γ
c[1]
0 = Γ

c[2]
0 ≡ Γc

0. The constraint simply requires the

gap vector

g = x[1] − x̌[2] !
= 0 (2.60)

to vanish.

Weak formulations of the contact and tied contact problem as well as their discretization and

numerical solution strategies are omitted here with reference to the respective literature [161–

163, 217].
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2 Modeling of cardiac mechanics and the vascular system

2.1.2 Reduced-dimensional fluid models

Reduced-dimensional and lumped-parameter fluid dynamics models are a popular approach for

describing blood flow mechanics in arteries. Here, basic concepts of 0-dimensional pressure-flow

models are introduced since they form the backbone of all fluid mechanics analyses performed in

this work.

A special focus is put on the so-called windkessel effect that the blood flow from the heart

exhibits when entering the large arteries. In general, a windkessel may be viewed as a compliant

chamber that transforms a pulsatile into a rather continuous steady flow by damping the oscillatory

component of the wave to a certain extent. A classical example would be that of a pump and a

spout, where the fluctuating component of the pulsatile flow is damped by an air chamber, leading

to a regular flow at the outlet, cf. fig. 2.3a.

In physiology, the elastic arteries (“air chamber”) cause a comparable effect on the pulsatile blood

flow provided by the heart (“pump”), resulting in a steady flow in the peripheral parts of the body

(“spout”) guaranteeing non-interrupted organ perfusion. Figure 2.3b depicts the physiological

analogy to the windkessel effect.

elastic arteries 

(aorta) 

peripheral 

resistance 
heart veins 

windkessel pump canal spout (a) 

(b) 

Figure 2.3: Modified from Westerhof et al. (2009) “The arterial windkessel” [210] (with per-

mission). (a) Windkessel effect of an air chamber on the pulsatile flow of a pump,

resulting in a rather continuous flow at the outlet (spout). (b) Physiological analogy,

where the elastic arteries act as windkessel for the non-steady blood flow from the

heart, leading to a regular non-interrupted flow in the periphery.

Windkessel models of blood flow in large arteries were first described by Hales [80] in the

mid-18th and Frank [61] in the late 19th century. A recent overview of windkessel models used

for describing blood flow in arteries is found in Westerhof et al. [210].

Here, a short introduction to these types of models is given, starting with a derivation of a 0-

dimensional flow of incompressible fluid through a rigid vessel, with Poiseuille’s relation [198]

between pressure and flow as a special case thereof. The derivation follows a publication by

Olufsen and Nadim [154].
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2.1 Fundamentals

Afterwards, the concept of compliance is introduced to these models, essentially then adding the

actual windkessel effect by some assumption on the elasticity of the vessel. Some physiological

backgrounds and mathematical perspectives of compliance in arteries may be found in Keener

and Sneyd [102].

The 3-dimensional incompressible Navier-Stokes equations in Eulerian description follow from

(2.41)1 by use of (2.8) and read

ρ

(
∂v

∂t
+ (∇⊗ v)v

)
= ∇ · σ + b̂, (2.61)

∇ · v = 0, (2.62)

where (2.37)1 with ρ̇ = 0 has been made use of. The Cauchy stress for a Newtonian fluid with

kinematic viscosity ν is

σ = −p1+ 2νγ, (2.63)

with p as the pressure and the shear rate tensor (2.47).

Now, axisymmetric unidirectional (hence 1-dimensional) flow of dynamic viscosity η = ρν in

cylindrical coordinates r and z through a rigid straight vessel of length l0 and radius r0 shall be

considered, cf. fig. 2.4.

p(0, t)

r z
r0

l0 p(l0, t)

Figure 2.4: Rigid straight vessel of length l0 and radius r0.

After applying the coordinate transformation and the dimensional reduction to (2.61), the axisym-

metric 1-dimensional Navier-Stokes equations read

ρ
∂vz
∂t

+
∂p

∂z
− η

r

∂

∂r

(
r
∂vz
∂r

)
= 0, (2.64)

where the axial velocity vz has been introduced.

Assuming that the velocity profile is independent of the axial coordinate z yields a linearly varying

pressure over the length l0, which can be written as

−∂p

∂z
=

p(0, t)− p(l0, t)

l0
=

∆p

l0
p⋆. (2.65)

The non-dimensionalized pressure gradient is p⋆ and ∆p is the characteristic change in pressure.

27



2 Modeling of cardiac mechanics and the vascular system

Writing (2.64) in non-dimensionalized form with

t⋆ =
tν

r20
, r⋆ =

r

r0
and v⋆z(r

⋆, t⋆) =
vz(r0, t)l0η

∆pr20
(2.66)

yields
∂v⋆z
∂t⋆
− 1

r⋆
∂v⋆z
∂r⋆
− ∂2v⋆z

∂r⋆2
= p⋆(t⋆). (2.67)

This equation then can be solved by applying a Laplace transformation

L{v⋆z(r⋆, t⋆)} =
∞∫

0

v⋆z(r
⋆, t⋆)e−st⋆dt⋆ = v⋆z(r

⋆, s), (2.68)

yielding
d2v⋆z
dr⋆2

+
1

r⋆
dv⋆z
dr⋆

+ (i
√
s)2v⋆z = −p⋆(s) (2.69)

in the image domain. For no initial flow (v⋆z(r
⋆, 0) = 0), the general solution of (2.69) is

v⋆z(r
⋆, s) = c1J0(i r

⋆
√
s) + c2Y0(i r

⋆
√
s) +

p⋆(s)

s
, (2.70)

with arbitrary constants c1 and c2 and the zeroth-order Bessel functions J0 and Y0.

After exploiting the singularity of Y0 at r⋆ = 0 and applying no-slip boundary conditions

v⋆z(1, s) = 0, the solution in terms of the dimension-less flow rate q⋆(s) = 2π
∫ 1

0
v⋆z(r

⋆, s)r⋆dr⋆

reads

q⋆(s) =
πp⋆(s)

s

(
1− 2J1(i

√
s)

i
√
sJ0(i

√
s)

)
. (2.71)

Back-transformation of (2.71) to the time domain yields

q⋆(t⋆) =
π

8
p⋆(t⋆)− 4π

∞∑

n=1

fn(t
⋆)

β4
n

, (2.72)

with

fn(t
⋆) =

∫ t⋆

0

e−β2
n(t

⋆−t̃⋆)p⋆′(t̃⋆)dt̃⋆ (2.73)

and βn as the roots of the Bessel function J0(βn) = 0 (first three: β1 ≈ 2.40483, β2 ≈ 5.52008
and β3 ≈ 8.65373).

The amount of terms included in the sum of (2.72) determines the order of the model. Here,

exemplarily, only the 0th and 1st order solutions are presented.

For n = 0, the sum in (2.72) simply vanishes, and the dimensionless as well as re-dimensionalized

pressure-flow relationships

q⋆ =
π

8
p⋆ ⇒ q =

πr40
8ηl0

p (2.74)
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2.1 Fundamentals

are obtained. As can be seen, Poiseuille’s pressure-flow relation of laminar steady flow in a rigid

vessel, p = Rq, is recovered, where the fluid’s resistance can be identified as

R =
8ηl0
πr40

. (2.75)

If accounting for a 1st-order model, the following solution for n = 1 is obtained:

λq
dq⋆

dt⋆
+ q⋆ =

π

8

(
λp

dp⋆

dt⋆
+ p⋆

)
⇒ λqr

2
0

ν

dq

dt
+ q =

πr40
8ηl0

(
λpr

2
0

ν

dp

dt
+ p

)
, (2.76)

with λq = 1
β2
1
≈ 0.1729 being interpretable as a relaxation time and λp =

1− 32

β41

β2
1
≈ 0.0075 as a

retardation time. Since λp ≪ λq, the effect of change in pressure over time is significantly smaller

than that of the pressure itself. Consequently, if that time is neglected (λp → 0), (2.76)2 becomes

λqr
2
0

ν

dq

dt
+ q =

πr40
8ηl0

p. (2.77)

As can be seen compared to Poiseuille’s flow (2.74)2, a time dependence of the flow has been

introduced in (2.77). After re-arrangement isolating p, the factor in front of the time derivative

consequently can be interpreted as an inertance

L =
8λqρl0
πr20

. (2.78)

Re-writing (2.77) in terms of (2.75) and (2.78) yields a lumped-parameter balance of linear

momentum:

L
dq

dt
+Rq = p. (2.79)

Relation (2.79) is subsequently referred to as (0D) momentum balance and will be the basis of

the pressure-flow relations that are used for modeling of vascular networks. However, it should be

noted that either including λp in (2.76) or allowing for higher order solutions in (2.72) (n > 1),

reduced-dimensional pressure-flow models of greater complexity may be derived. Especially for

blood flow in vessels with a radius of r0 > 0.5 cm, Olufsen and Nadim [154] deduce that at least

a 2nd order model (n = 2) shall be used in order to adequately describe the temporal evolutions

of pressure and flow.

The inclusion of compliance into 0D pressure-flow models in general is not straightforward when

deriving the equations from basic fluid dynamics principles. There exist different concepts with a

couple of underlying assumptions, e.g. the leakage approach by Berger [20] or the one by Keener

and Sneyd [102], both being briefly discussed in [154].

To the contrary, 0D pressure-flow models have been derived from electrical circuit analogies

by simply adding a capacitor (in the mechanical analogy, a compliance) to the aforementioned

models. By viewing pressure as voltage and flow as current, the analogs of resistance and inertance

virtually become resistance and inductance, and the inclusion of a capacitor does not hinder the

consistent derivation of the corresponding electrical governing equations. Figure 2.5 shows the

hydraulic and electric circuit analogies for a couple of well-established models: the Poiseuille flow,
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2 Modeling of cardiac mechanics and the vascular system

the so-called 2-element windkessel with a capacitor in parallel to the resistance, the 3-element

windkessel with an additional resistance in series in front of the 2-element windkessel, as well as

the 4-element windkessel according to [195], where an inductor has been added in parallel to the

first resistance of the 3-element windkessel model.

The second resistance introduced in fig. 2.5c for the 3-element windkessel is often referred to as

“aortic characteristic resistance” or “aortic characteristic impedance”. Its introduction emerged

from the fact that the 2-element windkessel model originally proposed by Frank [61] was suitable

to describe aortic pressure decay in the diastole, but insufficiently approximated the systolic

pressure over time. The characteristic impedance can be computed by the quotient of wave speed

times blood density and the cross-sectional vessel area, hence it may be viewed as a link between

lumped model behavior and aspects of wave transmission. This is further discussed by Westerhof

et al. [210].

Stergiopulos et al. [195] concluded that an additional inductance in parallel to the aortic charac-

teristic resistance – denoted as “total arterial inertance” – leads to better estimates of total arterial

compliance.
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Figure 2.5: Hydraulic (left) and electric (right) circuit analogies of different lumped-parameter

models. (a) Poiseuille flow. (b) 2-element windkessel. (c) 3-element windkessel. (d)

4-element windkessel according to [195].
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The model in fig. 2.5a corresponds Poiseuille’s flow (2.74)2 and can be written as

p− pref
R

= q (2.80)

considering a reference pressure pref .

Here, compliance in the mechanical sense is introduced by combining the momentum equation

(2.79) with conservation of volume by allowing the volume V of the compartment (vessel) to

change over time (similar to Berger [20]):

dV

dt
= qin − q, (2.81)

where qin is the arriving (incoming) flux into the compartment. Now, a constitutive equation is

needed to link the volume change to the pressure. In good approximation, a linear relationship

between a change in volume ∆V as consequence of a change in pressure ∆p may be assumed,

∆V = C∆p, (2.82)

where C is the compliance of the vessel.

The 2-element windkessel equation (fig. 2.5b) then can be written as

C
dp

dt
+

p− pref
R

= q (2.83)

combining (2.81) and (2.82) with (2.79) for L = 0.

The equation for the 3-element windkessel (fig. 2.5c) reads

C
dp

dt
+

p− pref
R1

=

(
1 +

R2

R1

)
q +R2C

dq

dt
(2.84)

and can be derived by combining the 2-element windkessel (2.83) with conservation of volume

(2.81) with V̇ = 0 and momentum (2.79) with L = 0 applied to the additional R2-part.

Analogously, 4-element windkessel governing equations can be derived. The model according to

[195] (fig. 2.5d) with the inertance parallel to R2 yields

LC

R2

d2p

dt2
+

(
L

R1R2

+ C

)
dp

dt
+

p− pref
R1

= q +

(
L

R1

+
L

R2

)
dq

dt
+ LC

d2q

dt2
. (2.85)

However, if the inertance is in series to R2, the governing equation reads

C
dp

dt
+

p− pref
R1

=

(
1 +

R2

R1

)
q +

(
R2C +

L

R1

)
dq

dt
+ LC

d2q

dt2
. (2.86)
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2.2 3D-0D coupled cardiovascular mechanics

A model for the simulation of the patient-specific heart interacting with the systemic and pul-

monary circulation is developed. The primary, but not the exclusive driving force for the modeling

assumptions chosen here originated from the endeavor to formulate integrative mathematical

models and to establish state-of-the-art computational tools that serve the better understanding of

heart failure and medical treatments thereof, especially by novel ventricular assist technologies,

cf. chap. 5. This “application-driven” foundational research sets the scope for the requirements

on the model in terms of feasibility, accuracy, predictability, and computational robustness and

efficiency. Specifically, these are

• a patient-specific accurate 3-dimensional geometric representation of the myocardium account-

ing for anatomical particularities and rule-based generic but realistic fiber architecture, material

behavior, and the prestressed state of the heart [68];

• considerations of the surrounding tissue in terms of visco-elastic support boundary conditions

at the truncations from the body environmental tissue (arteries, veins, atrioventricular plane);

• a sophisticated accounting for the coupling of the heart to a closed systemic and pulmonary

circulation in order to link active ventricular contraction properties (strength, duration) to

relevant, experimentally observable, integral quantities such as cardiac output, pressures and

flows for the homeostatic state of the cardiovascular system, necessitating adequate (here

reduced-dimensional) flow models and a computational strategy to couple the different physics

and dimensions (3-dimensional solid mechanics, 0-dimensional fluid flow);

• a reasonable parameterization of the model in terms of quantities that are directly relatable to

physiological phenomena (contractile properties of the myocardium, resistive and compliant

features of the vasculature that govern the afterload), and that allow for a meaningful parameter

estimation procedure to be applied, cf. sec. 4; and

• a mathematical description that allows for robust and efficient computational coupling and

solution schemes, in terms of both the nonlinear solver and the solver used for the linear system

of equations that arises during Newton iteration, cf. chap. 3.

Especially the latter aspect is of uttermost importance since the mathematical modeling itself al-

ready has to look ahead and keep in mind the computational feasibility of addressing the problem

at hand. Therefore, the description in terms of field equations, boundary conditions and coupling

constraints should be derived in close interrelation with the development of the computational

modeling methods. Chapter 3 will cope with all discretization- and solution-related aspects in

order to solve the models presented here.

The combination of the above-mentioned items comprising a novel mathematical and subse-

quently, a computational model is elaborated in the following sections. The fundaments of the

presented models are published in Hirschvogel et al. [86].

Two model variants for the patient-specific heart are established and may be employed depending

on the specific question at hand:
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2.2 3D-0D coupled cardiovascular mechanics

• a 3D model of the left and right ventricular myocardium, which is truncated at a well-defined

atrioventricular plane, subsequently denoted as 3Dventr, and

• a 3D model comprising a structural resolution of all the four heart chambers, left and right

ventricular, and left and right atrial myocardium, in the following denoted as 3Datrioventr.

All modeling-related aspects, namely the segmentation of the heart from medical imaging, e.g.

CT data, the construction of the geometric representation, i.e. the mathematical solution domain,

and finally the formulation of the specific solid mechanical problem statement are dealt with in

sec. 2.2.1.

Three model variants of the closed-loop vascular network that build upon another are considered:

• a basic circulation model that accounts for the whole arterial and the entire venous compartment

of the systemic and pulmonary circulation by multi-element windkessel models, subsequently

denoted as 0Dsyspul;

• an extended circulation model that additionally takes into account the systemic and pulmonary

capillary network, in the following denoted as 0Dsyspulcap; and

• the extended capillary circulation model supplemented by a 0D oxygen and carbon dioxide

transport and dissociation model, named 0Dsyspulcaprespir.

The vasculature models are detailed in sec. 2.2.2.

The 3D heart and the 0D circulatory system are coupled in the sense that the circulation re-

ceives flow from the heart and returns pressure from the vasculature, which then acts onto the

endocardial cavity lumen of the respective heart chamber. In order to adequately describe the

coupling, the heart cavities have to allow for mathematical assessment of their volumes, hence

their respective lumen has to form an enclosed surface area with respect to the surrounding. The

coupling conditions between the 3D and the 0D model are expressed in sec. 2.2.3.

Figure 2.6 depicts the coupled model 3Dventr | 0Dsyspul, and fig. 2.7 shows the coupled model

3Datrioventr | 0Dsyspulcap. The models’ primary variables are the structural displacement field

u as well as vascular pressures p and fluxes q. Model 3Dventr | 0Dsyspul, besides slight technical

modifications, is published in Hirschvogel et. al [86].

Little literature to date describes the coupling of a closed-loop vascular model to a 3D patient-

specific heart, the only known by the author is from Kerckhoffs et al. [104], while a similar closed

circulation is coupled to some generic 3D heart model in Lumens et al. [131]. The models therein

essentially differ to the ones presented here with respect to the mathematical formulation and the

computational approach, which is detailed and discussed in chap. 3.

Also, closed-loop modeling of the cardiovascular system was addressed, for instance, by Neal et

al. [147] or Blanco et al. [23], however not including a 3D patient-specific heart geometry. Veress

et al. [206] coupled a systemic circulation as simplification of the model in [147] to a generic left

ventricular geometry, similar to [150] or a recent contribution by Shavik et al. [189]. However,

multiple models exist that couple single (non-connected) pre- and afterload 0D models to each
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Figure 2.6: Model 3Dventr | 0Dsyspul: Atria are modeled with time-varying elastances E(t);
circulation parameters are resistances R, compliances C, inertances L and impedances

Z; circulation variables are pressures p, π and fluxes q; superscripts ℓ and r: left and

right heart (ventricle, atrium); sys and pul: systemic and pulmonary circulation;

subscripts v, at, ar and ven: “ventricular”, “atrial”, “arterial” and “venous”.
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2.2 3D-0D coupled cardiovascular mechanics

the left and right ventricle of patient-specific hearts separately, cf. Sainte-Marie et al. [178] or

Fritz et al. [62].

Furthermore, this is the first approach to couple all four cardiac chambers of a patient-specific 3D

heart (3Datrioventr) to a closed circulation. Even though patient-specific 4-chamber geometries

have been used in the literature to date, cf. again Fritz et al. [62] or the growth models by Genet

et al. [71] which are to be discussed, these either use 0D pre- and afterload models for the

ventricles only [62] or simply do account for the influence of the circulation just in terms of

pressure boundary conditions [71]. Additionally, there are models with 4-chamber patient-specific

geometries which exclusively deal with the electrophysiology of the heart, cf. Schenone et al.

[183], which is not topic of this work here.

It should be noted that efforts also have been made modeling 3-dimensional fluid-structure

interaction phenomena in the heart, cf. Watanabe et al. [209], Nordsletten et al. [151, 152] or

Laadhari et al. [115]. Also models by Gao et al. [64, 65], Griffith et al. [76] and Astorino et al. [9]

present approaches for heart valve modeling by help of immersed boundary methods. However,

those approaches greatly increase the computational complexity and would violate the model

requirements which have been stated initially.

The inclusion of oxygen and carbon dioxide transport and dissociation, and hence the extension

of the 0Dsyspul circulation model to account for capillary pressures and flows (0Dsyspulcap) was

inspired by an integrative fully 0-dimensional model of the cardiorespiratory system by Trenhago

et al. [202]. The approach therein is adopted from Christiansen and Dræby [41, 42] as well as

from models by Ursino and Magosso [203, 204].

Due to the different time scales on the one hand of the cardiovascular mechanical and on the other

of the respiratory and transport models in order to achieve periodicity, here the one-way coupling

between these two models is exploited by a novel prescribed-dynamics approach to mimic the 3D

heart in every phase of the cardiac cycle making use of the precomputed periodic pressure-volume

data for each chamber. The one-way coupling and the prescribed-dynamics approach are dealt

with in sec. 2.2.3.

Finally, the importance of homeostatic state solutions is highlighted, and the requirements for

periodicity are stated in sec. 2.2.4.

2.2.1 3D (atrio-)ventricular solid mechanics model

2.2.1.1 Patient-specific segmentation and geometry construction

The heart is segmented from CT imaging data using MIMICS R© software (Materialise.com). The

time snapshot for segmentation is chosen to 80 % of the time span between two end-diastolic

time instances (denoted by ted), hence 0.2 · Tcycl prior to ventricular excitation (contraction), with

Tcycl being the duration of a complete cardiac cycle.

After segmentation and smoothing, three stereolithographic (STL) geometries are exported: the

whole (atrio-)ventricular contour as bulk body, as well as the left and the right (atrio-)ventricular
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Figure 2.7: Model 3Datrioventr | 0Dsyspulcap: Circulation parameters are resistances R, com-

pliances C, inertances L and impedances Z; circulation variables are pressures p,

π and fluxes q; superscripts ℓ and r: left and right heart (ventricle, atrium); sys
and pul: systemic and pulmonary circulation; primary subscripts v, at, ar, ven and

cap: “ventricular”, “atrial”, “arterial”, “venous” and “capillary”; secondary subscripts

peri, spl, espl, msc, cer and cor (for the systemic arterial capillaries): “peripheral”,

“splanchnic”, “extra-splanchnic”, “muscular”, “cerebral” and “coronary”.
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2.2 3D-0D coupled cardiovascular mechanics

lumina. Valves are not explicitly segmented. The process of model construction (and subsequent

finite element meshing) is performed using TRELIS R© software (csimsoft.com) with its respective

Python interface. The chain from STL import to model output (including finite element meshing

as well as the fiber incorporation, cf. the following section for the latter subject) is automatized

and applicable to arbitrary patient-specific heart geometries. A condensed version of the whole

process is depicted in fig. 2.8. When only accounting for the ventricular myocardium (3Dventr),

all three STLs are cut at the atrioventricular plane (AVP), cf. its definition in fig. 2.8d. At that cut,

covering lids are added and imprinted to the endocardium, and an extrusion of bulk material of

10 mm is performed at the heart base.

2.2.1.2 Idealized modeling of fiber and sheet directions

In order to adequately describe the heart muscle from a continuum mechanical point of view, it

is essential to incorporate its anisotropy into the model for the description of both the passive

and the active mechanical behavior. The muscle fiber, here denoted by the vector field f0, which

is responsible for generating active contraction force during ventricular systole has a distinct

alignment pattern that may differ significantly from one individual to the other. In general, the

muscle fiber changes its orientation throughout the ventricular wall. Typically, on the epicardium,

the muscle fiber has an inclination of −50◦ to −70◦ with respect to the circumference of the

ventricles, and rotates to about 50◦ to 70◦ on the endocardial wall.

Furthermore, the heart is considered to exhibit orthotropic passive material behavior [54, 89],

hence a second sheet direction that stands orthogonal to the muscle fiber direction is introduced,

here denoted by the vector field s0. The plane spanned by the two distinct directions is assumed

to be parallel to the vessel wall, even though this idealization does not strictly hold, cf. the

annotations in [89]. A more detailed characterization of the morphology of the heart may be

found in there and in [123]. Early experimental characterizations of the heart’s fiber architecture

were published by Streeter et al. [196].

Magnetic resonance tomography may be used to determine the patient-specific myocardial muscle

fiber orientations [93], and efforts have been made of incorporating that individual information

into computational heart models [145]. However, data is rare and the estimation procedures not

well-established, which is why a rule-based fiber model is used for all patient-specific heart

geometries throughout this thesis. Specifically, the fiber direction is assumed to vary from −60◦
on the epicardium to 60◦ on the endocardium with respect to the ventricles’ circumferential

direction. The sheet direction is assumed accordingly, however with an angular shift of +90◦ on

both surfaces.

Technically, the fiber and sheet angles are prescribed on the respective surfaces, and a Poisson

problem is solved on the then discretized heart in order to obtain a smooth transition throughout

the ventricular wall [145, 216]. Figures 2.9 and 2.10 depict an anterior and a posterior view,

respectively, each for both heart models 3Dventr and 3Datrioventr.

The muscle fiber direction f0 is shown in green, and the sheet direction s0 is shown in light-grey.

The myofiber orientation in the atria is rather complex and consists of multiple layers and bundles.

Even though there have been efforts to generate rule-based atria-specific fiber orientation patterns

for computational models focusing on the atrial electrophysiology [91, 92, 112], here these
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Figure 2.8: Model generation chain. (a) Bulk atrioventricular contour body. (b) Left atrioven-

tricular blood lumen. (c) Right atrioventricular blood lumen. (d) Superposition view

of all three bodies prior to boolean subtraction. (e),(f) Final geometry for model

3Datrioventr and 3Dventr (additional cut at atrioventricular plane AVP) after boolean

subtraction of the lumina from the full body, including the “artificial” lids serving

as closures for the cavities for adequate mathematical assessment of the enclosed

volume by surface integrals. This is the mathematical domain Ω0, devoid of any fiber

information. Meshing and subsequent fiber incorporation is performed directly after

geometry construction.
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2.2 3D-0D coupled cardiovascular mechanics

(a) (b)

Figure 2.9: Anterior coronary cut view. Muscle fiber direction f0 shown in green, sheet direction

s0 shown in light-grey. (a) 2-chamber anterior coronary cut view (model 3Dventr).

(b) 4-chamber anterior coronary cut view (model 3Datrioventr).

(a) (b)

Figure 2.10: Posterior view. Muscle fiber direction f0 shown in green, sheet direction s0 shown in

light-grey. (a) 2-chamber posterior view (model 3Dventr). (b) 4-chamber posterior

view (model 3Datrioventr).
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2 Modeling of cardiac mechanics and the vascular system

methods are not used but a continuous transition of fiber and sheet directions from the ventricles

to the atria is maintained.2

2.2.1.3 Initial boundary value problem

The 3D ventricular continuum mechanics models, 3Dventr and 3Datrioventr, are depicted in fig.

2.6 and fig. 2.7, respectively, coupled to the 0Dsyspul and 0Dsyspulcap circulations which will be

detailed in sec. 2.2.2.

The reference configuration, being ventricular (and atrial) myocardium (drawn in red) as well

as artificial lids used as closures for the volumes (drawn in orange and grey, respectively) is

Ω0 ⊂ R3.

Balance equations and boundary conditions The balance of linear momentum (2.49)

for nonlinear elastodynamics for the specific problem (no body forces) reads

∇0 · (FS) = ρ0ü in Ω0 × [t0, T ], (2.87)

where t0 denotes the initial time for the transient problem and T the total time. On the ventricular

(subscript v) and atrial (subscript at) “coupling” boundaries Γ0D,i
0,v , Γ0D,i

0,at (i = ℓ, r standing for

“left” and “right”, respectively), a so-called follower load, i.e. a pressure boundary condition

pointing in the direction of the current unit outward normal is enforced. Hence, the boundary

condition formulated with respect to the current configuration Ω is

t = σn = −pic n on Γ0D,i
c × [t0, T ], (2.88)

cf. Cauchy’s stress theorem (2.16). For convenience and since a Total Lagrangian description is

chosen for all mechanical analyses here, it is formulated with respect to the reference configuration

Ω0, cf. (2.17):

t0 = Pn0 = −pic JF−Tn0 on Γ0D,i
0,c × [t0, T ], (2.89)

with c = v (3Dventr), c = v, at (3Datrioventr). From the solid mechanics point of view, they may

be seen as Neumann boundary conditions, however note that the pressures pic are not prescribed

but result from a strong coupling between the heart and the vascular system. They are variables of

the 0D circulation that again implicitly depend upon the primary variable of the solid mechanics

problem, namely the displacement field u.

Furthermore, generalized so-called Robin boundary conditions [78] are introduced at locations

where the heart has been truncated from the body environment. These types of boundary conditions

explicitly depend upon the value of the primary variable at the boundary, hence the displacement

field or its time derivative (velocity). Therefore, they simply can be viewed as springs or dashpots

per unit reference surface area and intend to model the (visco-)elastic effects of the embedding

surrounding.

2It should be emphasized that this simplification naturally only allows for qualitative atrial mechanical behavior.

However, reasonable atrial pressure-volume relationships are obtained, and the physiologically meaningful effect

of atrial contraction on end-diastolic ventricular pressure and volume justifies the modeling assumptions. Refer

to the results and their discussion presented in chap. 3.
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2.2 3D-0D coupled cardiovascular mechanics

On the one hand, the pericardium that would cover the epicardial surface is not structurally

resolved, hence its influence is taken into account on the epicardial boundary ΓR,e
0 in form of

springs and dashpots that act in reference surface normal direction only:

t0 = −(n0 ⊗ n0) (keu+ ceu̇) on ΓR,e
0 × [0, T ]. (2.90)

On the other hand, model 3Dventr is truncated at the atrioventricular plane (heart base), denoted

by the boundary ΓR,b
0 , while model 3Datrioventr is truncated at arterial outlets and venous inlets,

denoted by the boundaries ΓR,ar
0 and ΓR,ven

0 , respectively.

For the heart base (model 3Dventr), it is assumed that a higher portion of stiffness acts normal to

the atrioventricular truncation than tangential to it, hence different heart base spring and dashpot

moduli for the perpendicular direction (b⊥) and the “all-direction” case (b) are introduced:

t0 = −kbu− cbu̇− (n0 ⊗ n0) (kb⊥u+ cb⊥u̇) on ΓR,b
0 × [0, T ]. (2.91)

For the boundaries at the arterial and venous truncations belonging to model 3Datrioventr, springs

and dashpots act on the “artificial” lids for cavity closure (outer grey portions of Ω0 in fig. 2.7):

t0 = −karu− caru̇ on ΓR,ar
0 × [0, T ], (2.92)

t0 = −kvenu− cvenu̇ on ΓR,ven
0 × [0, T ]. (2.93)

The parameters for the Robin boundary conditions are listed in tab. 2.1. Note that no Dirichlet

boundary conditions are present. Initial conditions for the displacement and velocity field at

t = t0 vanish and are of minor importance since the output of the model only is of relevance at its

periodic orbit being the homeostatic state of the cardiovascular system. Refer to sec. 2.2.4 for

further details on periodic state computation.

The continuum mechanical initial boundary value problem for the solid mechanics part in its

weak form, cf. (2.55), then yields for the model 3Dventr

∫

Ω0

ρ0ü · δu dV +

∫

Ω0

S : δE dV

+

∫

ΓR,e
0

(n0 ⊗ n0) (keu+ ceu̇) · δu dA+

∫

ΓR,b
0

[kbu+ cbu̇+ (n0 ⊗ n0) (kb⊥u+ cb⊥u̇)] · δu dA

+
∑

i=ℓ,r

∫

Γ0D,i
0,v

piv JF
−Tn0 · δu dA = 0, ∀ δu, (2.94)

41



2 Modeling of cardiac mechanics and the vascular system

and for the model 3Datrioventr

∫

Ω0

ρ0ü · δu dV +

∫

Ω0

S : δE dV

+

∫

ΓR,e
0

(n0 ⊗ n0) (keu+ ceu̇) · δu dA+
∑

j=ar,ven

∫

ΓR,j
0

(kju+ cju̇) · δu dA

+
∑

i=ℓ,r

∫

Γ0D,i
0,v

piv JF
−Tn0 · δu dA+

∑

i=ℓ,r

∫

Γ0D,i
0,at

piat JF
−Tn0 · δu dA = 0, ∀ δu. (2.95)

Constitutive equations: Passive material, active stress and the Frank-Starling

mechnanism In order to close the system, a constitutive equation for the second Piola-

Kirchhoff stress (2.19), S, has to be formulated, cf. sec. 2.1.1.2. Here, an additive decomposition

of the stress into a (hyperelastic) passive part and an active contribution, so-called active stress

[2], is performed:

S =
∂Ψ

∂E
+ τa(t)f0 ⊗ f0. (2.96)

The passive material stress response stems from a hyperelastic strain energy function Ψ . It

accounts for anisotropy in two distinct, locally orthogonal directions, the muscle fiber direction

f0 and the sheet direction s0 (green and grey directions in fig. 2.9, fig. 2.10, respectively), and

possesses an isotropic ground substance which the fibers are “embedded” into. The specific form

of the strain energy function was introduced by Holzapfel and Ogden [89] for myocardial tissue

and reads

Ψ =
a0
2b0

(
eb(ĪC−3) − 1

)
+
∑

i=f,s

ai
2bi

(
ebi(IVi−1)2 − 1

)
+

afs
2bfs

(
ebfsVIII

2
fs − 1

)
+
κ

2
(J−1)2, (2.97)

here making use of the isochoric-volumetric split of the deformation according to (2.33). The

modified invariant of the right Cauchy-Green deformation tensor (2.12) is defined according to

(2.29)1, and the anisotropic invariants are according to (2.31). Note, however, that the latter are

not subject to the isochoric-volumetric split [181]. The myocardium is assumed to behave nearly

incompressible, hence the bulk modulus κ for the volumetric part of the strain energy has to be

chosen appropriately large, cf. tab. 2.2 for the material parameters.

The “artificial” lids that serve as cavity closures are modeled with a “dummy” Neo-Hookean

material,

Ψ
lid =

µlid

2
(ĪC − 3) +

κlid

2
(J − 1)2. (2.98)

For model 3Dventr, parameters are µlid = 50 kPa and κlid = 10 kPa (low bulk stiffness); and for

model 3Datrioventr, ventricular lid parameters are µlid = 20 kPa and κlid = 1000 kPa, whereas

parameters for the atrial lids are set to µlid = 500 kPa and κlid = 25 000 kPa. Furthermore,

ventricular (atrial) lids exhibit the same active stress like the ventricles (atria) in order to support

ventricular (atrial) contraction, hence their constitutive equation is (2.96). For model 3Dventr, the
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2.2 3D-0D coupled cardiovascular mechanics

extrusion at the heart base, cf. sec. 2.2.1.1, is devoid of any active component.

The (time-dependent) active stress τa(t) acts along the muscle fiber direction f0. It stems from an

evolution equation, here a simplification of the law in Bestel et al. [21] following arguments in

[186]:

τ̇a = −|u|τa + a σ0|u|+, (2.99)

with |u| for the absolute value of u and |u|+ := max(0, u). The function u scales the activa-

tion function f̂(t) ∈ [0, 1] with the active stress upstroke and relaxation rates αmax and αmin,

respectively:

u = f̂(t) · αmax + (1− f̂(t)) · αmin. (2.100)

The normalized input activation function here has been developed to

f̂(t) = (K(t− c1) + 1) · H[K(t− c1) + 1]−K(t− c1) · H[K(t− c1)]

−K(t− c2) · H[K(t− c2)] + (K(t− c2)− 1) · H[K(t− c2)− 1], (2.101)

with

c1 = tcontr +
αmax

K(αmax − αmin)
(2.102)

and

c2 = trelax −
αmax

K(αmax − αmin)
(2.103)

as well as the Heaviside function

H[(·)] :=
{
0, (·) < 0,

1, (·) ≥ 0.
(2.104)

This specific choice of input activation function (2.101) allows for full control of begin and end

of muscle activation by setting the timing quantities tcontr and trelax as desired, e.g. taken from

ECG or pressure over time data.

Figure 2.11 exemplarily depicts the development of the active stress τa, the normalized input

activation f̂ as well as u, |u| and |u|+ over one cardiac cycle, t ∈ [0, Tcycl].

Note that if K →∞ in (2.101), f̂(t) degenerates to a Heaviside input function with value 1 for

tcontr ≤ t ≤ trelax and value 0 otherwise. However, if K is chosen too large, the kinks at active

stress initialization (at t = tcontr) and relaxation (at t = trelax) would become too pronounced and

may cause difficulties for the numerical solution schemes. Thus, throughout this thesis, K = 5 is

chosen.

The quantity σ0 in (2.99) is the contractility of the cardiac muscle and represents the asymptotic

value of the active stress τa. Its magnitude determines the strength of muscle contraction and

in “real-life” depends upon several biological conditions. The Frank-Starling mechanism, cf.

the introductory notes in chap. 1, sec. 1.2, is an important preload-dependent autoregulatory

mechanism of the heart that is used to maintain homeostasis, hence an equal left and right

ventricular stroke volume.

The Frank-Starling mechanism thereby is a local phenomenon that happens at the scale of cells,

which eventually sense the increased preload by their state of strain. Hence, in order to model that
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Figure 2.11: Exemplary development of the (ventricular) active stress τa (Backward Euler solution

of (2.99) with a ≡ 1), the normalized (ventricular) input activation f̂ as well as u,

|u| and |u|+ over one cardiac cycle.

phenomenon, a strain dependency has to be introduced into the active stress evolution equation

(2.99), here done in terms of the factor a = a(λmyo) being some function of the elastic myofiber

stretch

λmyo =
√

f0 ·Cf0. (2.105)

Here, a novel function for modeling the Frank-Starling law is introduced:

ȧ(λmyo) = ġ(λmyo) I|u|−>0, (2.106)

with |u|− := max(0,−u) and u according to (2.100). For the strain-dependent function g, an

expression of the type

g(λmyo) =





amin, λmyo ≤ λ̂thres,lo
myo ,

amin +
1
2
(amax − amin)

(
1− cos

π(λmyo−λ̂thres,lo
myo )

λ̂max,lo
myo −λ̂thres,lo

myo

)
, λ̂thres,lo

myo ≤ λmyo ≤ λ̂max,lo
myo ,

amax, λ̂max,lo
myo ≤ λmyo ≤ λ̂thres,hi

myo ,

amin +
1
2
(amax − amin)

(
1− cos

π(λmyo−λ̂max,hi
myo )

λ̂max,hi
myo −λ̂thres,hi

myo

)
, λ̂thres,hi

myo ≤ λmyo ≤ λ̂max,hi
myo ,

amin, λmyo ≥ λ̂max,hi
myo

(2.107)

is proposed. Therein, amin and amax are the minimum and maximum contractility scaling factors.

The constants λ̂thres,lo
myo and λ̂max,lo

myo are the lower threshold and maximum stretch between which

contractility is increased, while λ̂thres,hi
myo and λ̂max,hi

myo are the higher threshold and maximum stretch

between which contractility is decreased again. The actual strength of the heart to contract (a σ0)
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2.2 3D-0D coupled cardiovascular mechanics

at a given state of preload is also referred to as the heart’s inotropy.

Figure 2.12 plots the Frank-Starling factor a over the myofiber stretch λmyo. Expression (2.106)

represents some hysteresis which is passed through depending on the state of activation. While

a(λmyo) rises during ventricular filling (diastole) up to a certain maximum (lower) stretch value

and would drop again if surpassing the plateau beyond the (upper) stretch threshold, it remains

at the value it has taken right before ventricular contraction starts (t = tcontr). Otherwise, an

immediate fall-back to the baseline value would occur, since fibers shorten during ventricular

systole. Only when the activation is trespassed, the function may drop back to its baseline value

for the time branch t > trelax. It should be noted that (2.106) is constructed such that no jump in

τa occurs during ventricular relaxation.
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Figure 2.12: Frank-Starling factor a as function of the myofiber stretch λmyo.

A couple of different models for the Frank-Starling mechanism have been proposed in the litera-

ture to date, cf. the models by Chapelle [37], Caruel et al. [33] and Sainte-Marie et al. [178], all

basically relying on the active tissue model by Bestel et al. [21]. However, no explicit analytical

functional dependence of the Frank-Starling factor (here a) is proposed, and little data is available

to robustly calibrate (2.107).

The material tangent (2.34) for the passive-active constitutive heart muscle model then becomes

❈❈❈ = 2
∂S

∂C
= 4

∂2
Ψ

∂C∂C
+ 2

∂τa
∂C
⊗ f0 ⊗ f0 = 4

∂2
Ψ

∂C∂C
+ 2

∂τa
∂λmyo

∂λmyo

∂C
⊗ f0 ⊗ f0 =

= 4
∂2
Ψ

∂C∂C
+

∂τa
∂λmyo

1

λmyo

f0 ⊗ f0 ⊗ f0 ⊗ f0. (2.108)

It should be noted that the active stress only contributes to the material tangent if the Frank-

Starling mechanism is considered, thus ∂τa
∂C
6= 0. The time-discrete solution of the active stress

evolution equation (2.99) yielding the solution τa will be discussed in chapter 3.2.1.
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2 Modeling of cardiac mechanics and the vascular system

Figure 2.13 plots the driving forces for the 3D-0D coupled cardiovascular models. In case of model

3Dventr, the ventricular active stress and the atrial elastance are the external time-controlled

inputs (fig. 2.13a), and for model 3Datrioventr, ventricular as well as atrial active stress are

prescribed (fig. 2.13b).
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Figure 2.13: Prescribed driving forces of cardiovascular simulations: Exemplary development of

active stresses (Backward Euler solution of (2.99) with a ≡ 1) and atrial elastance

(2.112) over one cardiac cycle t ∈ [0, Tcycl]; atrial start of contraction is t = 0,

atrial start of relaxation is ted. (a) Model 3Dventr: Time-course of (3D) ventricular

active stress and (0D) atrial elastance. (b) Model 3Datrioventr: Time-course of (3D)

ventricular and atrial active stress.

Parameters The parameters of the 3D (atrio-)ventricular solid mechanics models, 3Dventr

and 3Datrioventr, are separated into ones that remain fixed for all computations carried out in

this thesis, and into ones that are considered for parameter estimation (cf. chap. 4) or are changed

depending on the “case study”.

The former group comprises all parameters for the Robin boundary conditions, cf. tab. 2.1, as well

as all passive parameters for the elastic behavior of the myocardium (ventricles and atria), which

are taken from Holzapfel and Ogden [89] and rely on experiments performed by Dokos et al.

[54]. They are listed in tab. 2.2, including the bulk modulus κ, which had been chosen such that a

Poisson’s ratio of approximately ν ≈ 0.49 is obtained, and the (reference) density ρ0, assumed to

that of water.

The latter parameter group (study-dependent ones) comprises those which relate to the active

contractile properties of ventricles and atria. These are the contractility σ0, the upstroke and

relaxation rates αmax and αmin, and the Frank-Starling factor a from the active stress evolution

equation, cf. (2.99), (2.100), (2.106), and (2.107), respectively. Additionally, the timings for the

beginning of ventricular (atrial) contraction tcontr, for the start of ventricular (atrial) relaxation

trelax, cf. (2.101), as well as the cardiac cycle time Tcycl govern the individual cardiac dynamics.

The base parameters are listed in tab. 2.3. If not stated otherwise, these base values are chosen

for the specific problem at hand. Here, due to the absence of reliable data but without loss of
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2.2 3D-0D coupled cardiovascular mechanics

Table 2.1: Parameters of embedding Robin boundary conditions: for 2-chamber model 3Dventr at

heart base (subscripts b, b⊥), for 4-chamber model 3Datrioventr at arterial and venous

in-/outlets (subscripts ar, ven), and at epicardium (subscript e) for both models

3Dventr kb [kPa
mm

] kb⊥ [kPa
mm

] ke [
kPa
mm

] cb [kPa·s
mm

] cb⊥ [kPa·s
mm

] ce [
kPa·s
mm

]
0.25 1.25 0.075 0.0005 0.0005 0.005

3Datrioventr kar [
kPa
mm

] kven [kPa
mm

] ke [
kPa
mm

] car [
kPa·s
mm

] cven [kPa·s
mm

] ce [
kPa·s
mm

]
0.5 0.25 0.075 0.0005 0.0005 0.005

Table 2.2: Passive myocardial material parameters according to Holzapfel and Ogden [89], density

ρ0 chosen to that of water, bulk modulus κ chosen such that a Poisson’s ratio of

approximately 0.49 is obtained (near-incompressibility)

a0 [kPa] af [kPa] as [kPa] afs [kPa] κ [kPa]
0.059 18.472 2.481 0.216 103

b0 [−] bf [−] bs [−] bfs [−] ρ0 [
kg

mm3 ]
8.023 16.026 11.120 11.436 10−6

generality, only the ventricles are assumed to obey the Frank-Starling mechanism for the model

3Datrioventr, even though atria may alter their contraction depending on their preload, too [6].

Furthermore, even if provided by the model, a contractility re-reduction at very high fiber strains

is not taken into account since the Frank-Starling model so far is not calibrated to experimental

data but only accounted for on a phenomenological basis, hence λ̂thres,hi
myo →∞ and λ̂max,hi

myo →∞
in (2.107). Also, the Frank-Starling mechanism is not considered for model 3Dventr but only for

the more recent 3Datrioventr model.

Prestressing Organs such as blood vessels or the myocardium usually are in a loaded state

at the time of medical imaging. Therefore, a computational model that makes use of geometries

that are gained from CT or MRI data via segmentation should take into account that the geome-

try is situated in a deformed state. This is especially important when specific constitutive laws

with experimentally obtained material parameters are used, since these experiments usually are

performed on unloaded tissue samples. Due to the inherent nonlinear stress-strain constitutive

behavior of soft tissue, it is of importance to perform computations on the right level of loading

in order to obtain reasonable deformations.

Prior to all transient 3D-0D coupled computations that are carried out, the patient-specific heart is

“prestressed” to the diastolic cavity pressures and to the initial active stress values that are present

at the time instance the geometry was segmented from CT imaging data, namely 0.2 · Tcycl prior

to ventricular contraction. A so-called Modified Updated Lagrangian Formulation (MULF) that

was proposed by Gee et al. [68] is used.

During this process, per definition happening in the time span t ∈ [0, t0], the quasi-static balance
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2 Modeling of cardiac mechanics and the vascular system

Table 2.3: Base parameters of the active contractile dynamics

3Dventr 3Datrioventr

ventricles atria

σ0 [kPa] 70.0 100.0 20.0 contractility

αmax [1/s] 10.0 10.0 5.0 upstroke rate

αmin [1/s] −30.0 −30.0 −20.0 relaxation rate

K [−] 5.0 5.0 5.0 activation function steepness

amax [−] 1.0 1.0 1.0 maximum contractility scaling factor

amin [−] 1.0 2/3 1.0 minimum contractility scaling factor

λ̂thres,lo
myo [−] →∞ 1.01 →∞ lower stretch threshold

λ̂max,lo
myo [−] →∞ 1.2 →∞ lower stretch limit

λ̂thres,hi
myo [−] →∞ →∞ →∞ upper stretch threshold

λ̂max,hi
myo [−] →∞ →∞ →∞ upper stretch limit

ted [s] 0.2 0.2 end-diastolic time

tes [s] 0.53 0.53 end-systolic time

Tcycl [s] 1.0 1.0 cardiac cycle time

tcontr [s] ted ted 0.0 contraction time

trelax [s] tes tes ted relaxation time

of linear momentum

∇0 · (FS) = 0 in Ω0 × [0, t0] (2.109)

instead of (2.87) is considered. The cavity pressures p̂ic = pic(t0) that will serve as initial conditions

for the 3D-0D coupled problem are prescribed on the endocardial surfaces, hence (2.89) becomes

t0 = Pn0 = −p̂ic JF−Tn0 on Γ0D,i
0,c × [0, t0]. (2.110)

Robin boundary conditions (2.90)–(2.93) remain the same as for the transient problem.

After the quasi-static prestressing phase, the deformation gradient (2.10) is stored in a history

deformation gradient, F̃ ← F (t0), while the displacement state is forgotten, u := 0. For the

subsequent transient problem, the deformation gradient F F̃ instead of F is used.

By analogy, the elastic springs in the Robin boundary conditions (2.90)–(2.93) are prestressed

as well. Their deflection ũ is stored prior to forgetting the displacement state and subsequently

added to the actual displacement during computation of the transient problem, u+ ũ. Note that

the dashpots do not contribute to the prestressed state.

2.2.2 0D circulation modeling

Here, the previously introduced circulation models 0Dsyspul, 0Dsyspulcap and 0Dsyspulcaprespir

are presented. The following subsections are subdivided into one part concentrating on blood flow

mechanics, sec. 2.2.2.1, and another part treating transport and dissociation of oxygen and carbon

dioxide, cf. sec. 2.2.2.2.
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2.2 3D-0D coupled cardiovascular mechanics

2.2.2.1 Blood flow mechanics

For the 2-chamber ventricular heart 3Dventr, the atria are considered by 0-dimensional so-called

elastance models [177]. These are reduced “chambers” which provide a simple relation between

atrial pressure piat and the atrial volume V i
at (i = ℓ for “left”, i = r for “right”). The pressure-

volume relation reads

piat = Ei
at(t) · (V i

at − V i
at,u), (2.111)

with V i
at,u being the unstressed dead volume of the chamber and the time varying atrial elastance

Ei
at(t) = Ei

at,A · yiat(t) + Ei
at,min, (2.112)

where Ei
at,A = Ei

at,max − Ei
at,min is the atrial elastance amplitude, while Ei

at,max and Ei
at,min

denote the maximum and minimum atrial elastance, respectively. The normalized atrial activation

function is

yiat(t) =

{
1
2

(
1− cos 2πt

∆tat,act

)
, t ≤ ∆tat,act,

0, t > ∆tat,act.
(2.113)

Therein, the duration of the atrial activation here is considered ∆tat,act = 2 (ted − t0), assuming

that atrial activation starts at t = t0 which is the time instance 0.2 · Tcycl prior to ventricular

activation (“80 %”, with “100 %” indicating the end of the diastole at t = ted).

For a coupling of the 0D circulatory system model the 4-chamber atrioventricular heart 3Datri-

oventr, atrial chamber volumes V i
at, like ventricular volumes, stem from the 3D solid mechanics

problem.

The heart valves are not modeled as structurally resolved entities but are considered in terms of

0-dimensional diodes that either oppose to flow by a very high resistance when closed, or give

way to flow by a very small resistance when opened. Hence, they are modeled by a Poiseuille-like

flow law (2.79) without inertance and with variable resistance depending on the difference in

pressures in front of and beyond the valve.

The semilunar valves of the heart relate left (i = ℓ) or right (i = r) ventricular out-flux qiv,out to

the difference in ventricular pressure piv and systemic or pulmonary arterial pressure psysar or ppular

(aortic or pulmonary valve, respectively). Thus, their pressure-flow relations read

qℓv,out =
1

R̃ℓ
v,out

(pℓv − psysar ), qrv,out =
1

R̃r
v,out

(prv − ppular ), (2.114)

with

R̃ℓ
v,out :=

{
Rℓ,max

v,out , pℓv < psysar ,

Rℓ,min
v,out , pℓv ≥ psysar ,

R̃r
v,out :=

{
Rr,max

v,out , prv < ppular ,

Rr,min
v,out , prv ≥ ppular .

(2.115)

The atrioventricular valves relate left or right ventricular in-flux qiv,in to the difference in ventricular

pressure piv and atrial pressure piat (mitral or tricuspid valve, respectively):

qℓv,in =
1

R̃ℓ
v,in

(pℓat − pℓv), qrv,in =
1

R̃r
v,in

(prat − prv), (2.116)
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with

R̃ℓ
v,in :=

{
Rℓ,min

v,in , pℓv ≤ pℓat,

Rℓ,max
v,in , pℓv > pℓat,

R̃r
v,in :=

{
Rr,min

v,in , prv ≤ prat,

Rr,max
v,in , prv > prat.

(2.117)

In (2.115) and (2.117), maximum resistances are orders of magnitudes greater than minimum

resistances, Ri,max
v,out ≫ Ri,min

v,out and Ri,max
v,in ≫ Ri,min

v,in .

In the following, a basic systemic and pulmonary circulation as depicted in fig. 2.6, and an

extended circulation including the capillary network, cf. fig. 2.7, are introduced. The parameters

and state variables are provided in the figures. Resistances and impedances are denoted with R
and Z 3, respectively, compliances with C, inertances with L, and elastances with E. The state

variables are pressures p and fluxes q. Auxiliary pressure variables π are condensed out of the

system of equations.

The governing equations are reduced-dimensional balances of mass (volume) and balances of

momentum, applied to each compartment of the circulatory system. The respective volume of

the compartment either stems from the law of compliance (2.82) or elastance (2.111), or as input

from the 3D heart model (ventricular and atrial chambers).

Basic systemic and pulmonary circulation The circulation model 0Dsyspul shown in fig.

2.6 is introduced. It is based on approaches in Kerckhoffs et al. [104] and Blanco et al. [23], and

in its specific form published in Hirschvogel et al. [86]. Preparatory work for the implementation

of the governing equations has been performed in the Master’s thesis by [16], also by usage of a

0D heart chamber model, and extension of the coupling to a 3D 4-chamber heart geometry has

been implemented in the Bachelor’s thesis by [144] (both supervised by the author of this work).

The systemic and pulmonary circulation each are divided into an arterial and a venous compart-

ment, both modeled as (windkessel) network with compliant, resistant, and inertant properties, cf.

sec. 2.1.2. The governing equations are combinations of (2.79), (2.81) and (2.82) and here are

written in terms of flux (volume over time):

left atrial mass
dV ℓ

at(u)

dt
− qpulven + qℓv,in = 0, (2.118)

mitral valve momentum
1

R̃ℓ
v,in

(pℓat − pℓv)− qℓv,in = 0, (2.119)

left ventricular mass
dV ℓ

v (u)

dt
− qℓv,in + qℓv,out = 0, (2.120)

aortic valve momentum
1

R̃ℓ
v,out

(pℓv − psysar )− qℓv,out = 0, (2.121)

systemic arterial mass Csys
ar

(
dpsysar

dt
− Zsys

ar

dqℓv,out
dt

)
− qℓv,out + qsysar = 0, (2.122)

3Note that the “aortic characteristic impedance” is conveniently denoted by Z, even though here it is nothing but a

resistor acting in front of the arterial compliance-resistance-inertance compartment. In the electrical analogy,

each circuit element has its impedance representation: for a compliance it is ZC = 1/(iωC), for an inertance

ZL = iωL and for a resistance simply ZR = R, where i :=
√
−1 is the imaginary unit and ω the angular

frequency.
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systemic arterial momentum
Lsys
ar

Rsys
ar

dqsysar

dt
+

1

Rsys
ar

(psysven − psysar + Zsys
ar q

ℓ
v,out) + qsysar = 0,

(2.123)

systemic venous mass Csys
ven

dpsysven

dt
− qsysar + qsysven = 0, (2.124)

systemic venous momentum
Lsys
ven

Rsys
ven

dqsysven

dt
+

1

Rsys
ven

(prat − psysven) + qsysven = 0, (2.125)

right atrial mass
dV r

at(u)

dt
− qsysven + qrv,in = 0, (2.126)

tricuspid valve momentum
1

R̃r
v,in

(prat − prv)− qrv,in = 0, (2.127)

right ventricular mass
dV r

v (u)

dt
− qrv,in + qrv,out = 0, (2.128)

pulmonary valve momentum
1

R̃r
v,out

(prv − ppular )− qrv,out = 0, (2.129)

pulmonary arterial mass Cpul
ar

(
dppular

dt
− Zpul

ar

dqrv,out
dt

)
− qrv,out + qpular = 0, (2.130)

pulmonary arterial momentum
Lpul
ar

Rpul
ar

dqpular

dt
+

1

Rpul
ar

(ppulven − ppular + Zpul
ar qrv,out) + qpular = 0,

(2.131)

pulmonary venous mass Cpul
ven

dppulven

dt
− qpular + qpulven = 0, (2.132)

pulmonary venous momentum
Lpul
ven

Rpul
ven

dqpulven

dt
+

1

Rpul
ven

(pℓat − ppulven) + qpulven = 0. (2.133)

Superscripts ℓ, r, sys and pul refer to “left”, “right”, “systemic” and “pulmonary”, respectively,

while subscripts at, v, ar and ven refer to “atrial”, “ventricular”, “arterial” and “venous”, respec-

tively.

Extended systemic and pulmonary circulation with capillaries In the following, the

circulation model 0Dsyspulcap shown in fig. 2.7 is presented. It is an extension to the above-

introduced 0Dsyspul model. Its main motivation emerges from the desire to compute transport

and dissociation of substances into a distinguished network of capillaries that consume oxygen

and produce carbon dioxide, hence act as source and sink with decidedly determinable production

and consumption rates. However, one step back, a transport and dissociation model of some grade

of detail (0Dsyspulcaprespir, which will be introduced later) necessitates a vascular network and

the respective blood compartments that provide transport ability and storage capacity. Therefore,

the circulation 0Dsyspulcap presented here up to now only accounts for the blood flow and is

a diversification of the previously stated model 0Dsyspul, where capillary pressures and flows

are considered as well. The fundaments of this extended blood circulation model are based on

Trenhago et al. [202] as well as on Ursino and Magosso [203, 204].

The systemic periphery is subdivided into “splanchnic”, “extra-splanchnic”, “muscular”, “cere-

bral” and “coronary” capillaries, denoted by secondary subscripts spl, espl, msc, cer and cor,
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2 Modeling of cardiac mechanics and the vascular system

respectively. Each, the arterial and venous capillaries (actually being arterioles and venules), are

modeled with a 2-element windkessel (2.83). Quantities relating to the whole systemic arterial

periphery carry the secondary subscript peri.
The whole pulmonary capillary bed is modeled with a single 2-element windkessel and is denoted

by the subscript cap. The governing equations are stated in the following, where the extension to

the basic circulation model is highlighted in grey:

left atrial mass
dV ℓ

at(u)

dt
− qpulven + qℓv,in = 0, (2.134)

mitral valve momentum
1

R̃ℓ
v,in

(pℓat − pℓv)− qℓv,in = 0, (2.135)

left ventricular mass
dV ℓ

v (u)

dt
− qℓv,in + qℓv,out = 0, (2.136)

aortic valve momentum
1

R̃ℓ
v,out

(pℓv − psysar )− qℓv,out = 0, (2.137)

systemic arterial mass Csys
ar

(
dpsysar

dt
− Zsys

ar

dqℓv,out
dt

)
− qℓv,out + qsysar = 0, (2.138)

systemic arterial momentum
Lsys
ar

Rsys
ar

dqsysar

dt
+

1

Rsys
ar

(psysar,peri − psysar + Zsys
ar q

ℓ
v,out) + qsysar = 0,

(2.139)

systemic capillary mass

(
∑

j=spl,espl,msc,cer,cor

Csys
ar,j

)
dpsysar,peri

dt
+

∑

j=spl,espl,msc,cer,cor

qsysar,j − qsysar = 0,

(2.140)

sys. cap. art. splanchnic mom.
1

Rsys
ar,spl

(psysven,spl − psysar,peri) + qsysar,spl = 0, (2.141)

sys. cap. art. splanchnic mom.
1

Rsys
ar,espl

(psysven,espl − psysar,peri) + qsysar,espl = 0, (2.142)

sys. cap. art. muscular mom.
1

Rsys
ar,msc

(psysven,msc − psysar,peri) + qsysar,msc = 0, (2.143)

sys. cap. art. cerebral mom.
1

Rsys
ar,cer

(psysven,cer − psysar,peri) + qsysar,cer = 0, (2.144)

sys. cap. art. coronary mom.
1

Rsys
ar,cor

(psysven,cor − psysar,peri) + qsysar,cor = 0, (2.145)

sys. cap. ven. splanchnic mass Csys
ven,spl

dpsysven,spl

dt
+ qsysven,spl − qsysar,spl = 0, (2.146)

sys. cap. ven. splanchnic mom.
1

Rsys
ven,spl

(psysven − psysven,spl) + qsysven,spl = 0, (2.147)

sys. cap. ven. extra-splnch. mass Csys
ven,espl

dpsysven,espl

dt
+ qsysven,espl − qsysar,espl = 0, (2.148)

sys. cap. ven. extra-splnch. mom.
1

Rsys
ven,espl

(psysven − psysven,espl) + qsysven,espl = 0, (2.149)
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sys. cap. ven. muscular mass Csys
ven,msc

dpsysven,msc

dt
+ qsysven,msc − qsysar,msc = 0, (2.150)

sys. cap. ven. muscular mom.
1

Rsys
ven,msc

(psysven − psysven,msc) + qsysven,msc = 0, (2.151)

sys. cap. ven. cerebral mass Csys
ven,cer

dpsysven,cer

dt
+ qsysven,cer − qsysar,cer = 0, (2.152)

sys. cap. ven. cerebral mom.
1

Rsys
ven,cer

(psysven − psysven,cer) + qsysven,cer = 0, (2.153)

sys. cap. ven. coronary mass Csys
ven,cor

dpsysven,cor

dt
+ qsysven,cor − qsysar,cor = 0, (2.154)

sys. cap. ven. coronary mom.
1

Rsys
ven,cor

(psysven − psysven,cor) + qsysven,cor = 0, (2.155)

systemic venous mass Csys
ven

dpsysven

dt
+ qsysven −

∑

j=spl,espl,msc,cer,cor

qsysven,j = 0, (2.156)

systemic venous mom.
Lsys
ven

Rsys
ven

dqsysven

dt
+

1

Rsys
ven

(prat − psysven) + qsysven = 0, (2.157)

right atrial mass
dV r

at(u)

dt
− qsysven + qrv,in = 0, (2.158)

tricuspid valve momentum
1

R̃r
v,in

(prat − prv)− qrv,in = 0, (2.159)

right ventricular mass
dV r

v (u)

dt
− qrv,in + qrv,out = 0, (2.160)

pulmonary valve momentum
1

R̃r
v,out

(prv − ppular )− qrv,out = 0, (2.161)

pulmonary arterial mass Cpul
ar

(
dppular

dt
− Zpul

ar

dqrv,out
dt

)
− qrv,out + qpular = 0, (2.162)

pulmonary arterial momentum
Lpul
ar

Rpul
ar

dqpular

dt
+

1

Rpul
ar

(ppulcap − ppular + Zpul
ar qrv,out) + qpular = 0,

(2.163)

pulmonary capillary mass Cpul
cap

dppulcap

dt
− qpular + qpulcap = 0, (2.164)

pulmonary capillary momentum
1

Rpul
cap

(ppulven − ppulcap) + qpulcap = 0, (2.165)

pulmonary venous mass Cpul
ven

dppulven

dt
− qpulcap + qpulven = 0, (2.166)

pulmonary venous momentum
Lpul
ven

Rpul
ven

dqpulven

dt
+

1

Rpul
ven

(pℓat − ppulven) + qpulven = 0. (2.167)

It should be noted that the pressure in the systemic arterial periphery, psysar,peri, is the same for all

five arterial capillary compartments (arterioles) due to continuity requirements.

53



2 Modeling of cardiac mechanics and the vascular system

Due to the large amount of parameters within this model on the one hand, and the desire of

determinability to a certain extent on the other, some considerations with regard to the distribution

of resistances and compliances are carried out.

The equivalent resistance in case of a parallel alignment is the inverse of the sum over the

reciprocal resistances, while for a serial alignment the sum of all resistances yields the equivalent

one.

In the systemic arterial periphery, the total peripheral resistance may be computed by the five

arteriole resistances in parallel:

Rsys
ar,peri =

(
1

Rsys
ar,spl

+
1

Rsys
ar,espl

+
1

Rsys
ar,msc

+
1

Rsys
ar,cer

+
1

Rsys
ar,cor

)−1

, (2.168)

and the total systemic arterial resistance then emerges from a serial alignment of the peripheral

and the proximal resistance:

Rsys
ar(total) = Rsys

ar,peri +Rsys
ar . (2.169)

For the systemic venules and veins, similar considerations hold:

Rsys
ven,peri =

(
1

Rsys
ven,spl

+
1

Rsys
ven,espl

+
1

Rsys
ven,msc

+
1

Rsys
ven,cer

+
1

Rsys
ven,cor

)−1

, (2.170)

and

Rsys
ven(total) = Rsys

ven,peri +Rsys
ven. (2.171)

In contrast to resistances, the equivalent compliances behave additively in parallel alignment and

reciprocally in serial alignment. However, here the connection of compliances always may be

viewed as a parallel one since no flux entering a capacitor is trespassed to another one. Hence, in

the systemic arterial capillaries, total peripheral compliance is

Csys
ar,peri = Csys

ar,spl + Csys
ar,espl + Csys

ar,msc + Csys
ar,cer + Csys

ar,cor, (2.172)

and total arterial compliance

Csys
ar(total) = Csys

ar,peri + Csys
ar . (2.173)

Again, the venous compartment behaves analogously:

Csys
ven,peri = Csys

ven,spl + Csys
ven,espl + Csys

ven,msc + Csys
ven,cer + Csys

ven,cor, (2.174)

and

Csys
ven(total) = Csys

ven,peri + Csys
ven. (2.175)

Total pulmonary arterial resistance and compliance then yield

Rpul
ar(total) = Rpul

ar +Rpul
cap and Cpul

ar(total) = Cpul
ar + Cpul

cap, (2.176)

while total pulmonary venous resistance and compliance remains unaltered with respect to model

0Dsyspul.
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Table 2.4: Model 0Dsyspulcap: Relative systemic arterial and venous peripheral resistances and

compliances with respect to the total peripheral ones (2.168), (2.170), (2.172) and

(2.174), respectively; weights according to Ursino and Magosso [203]

j spl espl msc cer cor
Rsys

ar,j/R
sys
ar,peri 3.35 3.56 4.54 6.65 19.95

Csys
ar,j/C

sys
ar,peri 0.55 0.18 0.14 0.11 0.03

Rsys
ven,j/R

sys
ven,peri 3.4 3.53 4.47 6.66 19.93

Csys
ven,j/C

sys
ven,peri 0.55 0.18 0.14 0.1 0.03

The resistance (compliance) fractions of the respective organs to the overall systemic peripheral

resistance (compliance) are chosen according to absolute values presented in Ursino and Magosso

[203] and are listed in tab. 2.4.

Furthermore, the distribution of peripheral with respect to total resistance and compliance is given

in tab. 2.5. However, only values indicated by ‡ are taken from Ursino and Magosso [203], while

the others are roughly estimated.4

Table 2.5: Model 0Dsyspulcap: Fractions of peripheral to total resistance and compliance, respec-

tively; values indicated by ‡ from Ursino and Magosso [203]

Rsys
ar,peri/R

sys
ar(total) Csys

ar,peri/C
sys
ar(total) Rsys

ven,peri/R
sys
ven(total) Csys

ven,peri/C
sys
ven(total)

0.94‡ 0.05 0.2 0.8

Rpul
cap/R

pul
ar(total) Cpul

cap/C
pul
ar(total)

0.5 0.5

Base parameters for the blood flow mechanics models Due to the relatively large

amount of parameters, a reasonable parameterization of the models in terms of a few, functionally

characteristic quantities is chosen. For example, the time constant τ sysar of the systemic arterial

windkessel model may be approximately estimated if only two pressure values, namely the

end-systolic and end-diastolic arterial pressure p̃sysar (tes) and p̃sysar (ted), respectively, are known,

i.e. obtained from basic non-invasive measurements. That time constant describes the speed of

pressure decay if no flux enters the windkessel model, and is the product of arterial compliance

and resistance:

τ sysar = Csys
ar(total)R

sys
ar(total) ≈

Tcycl − tes + ted

ln p̃sysar (tes)
p̃sysar (ted)

. (2.177)

4Ursino and Magosso [203] fractions indicate that a significant portion (93 %) of systemic arterial compliance

should lie in the periphery, which is doubted and produces unphysiological pressure curves. Furthermore, 72 %
of pulmonary arterial resistance and only 12 % of compliance should be proximal to the heart, which is also

doubted since the smaller capillaries should not be less resistive and more compliant than the larger proximal

vessels. Additionally, the authors do not have a proximal systemic venous compartment, such that those fractions

are roughly estimated.
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2 Modeling of cardiac mechanics and the vascular system

Typically, τ sysar has physiological values between 1.0 s ∼ 2.5 s, while the pulmonary arterial

time constant usually is much lower and remains rather constant regardless of the state of health

(τpular ≈ τ sysar /5 ∼ τ sysar /6 [182]). Hence, without loss of generality, it is chosen here to τpular = 0.3 s.
Supposing that the time constant and systemic arterial resistance, Rsys

ar(total), are considered as the

variable “inputs of choice”, the compliance results from (2.177) according to

Csys
ar(total) =

τ sysar

Rsys
ar(total)

. (2.178)

In contrast to systemic arterial compliance which is mainly located in the aorta and the big vessels,

pulmonary arterial compliance rather is distributed over the whole arterial tree. Pulmonary arterial

resistance is significantly lower than its systemic arterial counterpart, i.e. a little over a tenth of the

systemic one [182]. Hence, the following dependencies for the pulmonary arterial compartment

are assumed:

Rpul
ar(total) =

1

8
Rsys

ar(total) and Cpul
ar(total) =

τpular

Rpul
ar(total)

. (2.179)

Systemic veins have an extensive storage capacity and their compliance is about thirty times

higher than the systemic arterial one [69]. However, this does not hold equally for pulmonary

veins; their compliance can be considered only a little over twice the pulmonary arterial one [200].

Thus, the venous compliances are set to

Csys
ven(total) = 30 · Csys

ar(total) and Cpul
ven = 2.5 · Cpul

ar(total). (2.180)

The systemic venous resistance is significantly lower than the arterial one, while the pulmonary

venous resistance is approximately equal to its arterial counterpart [63]:

Csys
ven(total) =

1

5
Rsys

ar(total) and Rpul
ven = Rpul

ar(total). (2.181)

The systemic arterial impedance is only about 5–7 % of the systemic arterial resistance [210],

and pulmonary arterial impedance is neglected:

Zsys
ar =

1

20
Rsys

ar(total) and Zpul
ar = 0. (2.182)

The inertance of the systemic arterial system is set to Lsys
ar = 0.667 · 10−6 kPa·s2

mm3 , according to a

value estimated in [195]. Pulmonary arterial inertance as well as all venous inertances are set to

zero due to the lack of reliable data and the general difficulties to estimate them [210].

Base parameters for the blood flow models are shown in tab. 2.6. Other vascular parameters

(resistances, compliances) are, in general, assumed to depend on the (total) systemic arterial

resistance as well as on the systemic and pulmonary arterial windkessel time constant. These

above-introduced dependencies are summarized in tab. 2.7. Note that for the basic circulation

model 0Dsyspul, no distinction between parameters referring to the total tree and different

subgroups thereof is given, hence (·)(·)(·)(total) ≡ (·)(·)(·).
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2.2 3D-0D coupled cardiovascular mechanics

Table 2.6: Base parameters of the blood flow mechanics models

parameters for 0D atrial models (apply only to model 3Dventr)

∆tat,act [s] 2 (ted − t0) duration of 0D atrial activation

Eℓ
at,min [ kPa

mm3 ] 9 · 10−6 left atrial baseline elastance

Eℓ
at,A [ kPa

mm3 ] 20 · 10−6 left atrial elastance amplitude

Er
at,min [ kPa

mm3 ] 8 · 10−6 right atrial baseline elastance

Er
at,A [ kPa

mm3 ] 10 · 10−6 right atrial elastance amplitude

valve resistances

Rℓ,min
v,in [kPa·s

mm3 ] 10−6 opened mitral valve resistance

Rℓ,max
v,in [kPa·s

mm3 ] 101 closed mitral valve resistance

Rℓ,min
v,out [kPa·s

mm3 ] 10−6 opened aortic valve resistance

Rℓ,max
v,out [kPa·s

mm3 ] 101 closed aortic valve resistance

Rr,min
v,in [kPa·s

mm3 ] 10−6 opened tricuspid valve resistance

Rr,max
v,in [kPa·s

mm3 ] 101 closed tricuspid valve resistance

Rr,min
v,out [kPa·s

mm3 ] 10−6 opened pulmonary valve resistance

Rr,max
v,out [kPa·s

mm3 ] 101 closed pulmonary valve resistance

inertances

Lsys
ar [kPa·s

2

mm3 ] 0.667 · 10−6 systemic arterial inertance

Lsys
ven [kPa·s

2

mm3 ] 0 systemic venous inertance

Lpul
ar [kPa·s

2

mm3 ] 0 pulmonary arterial inertance

Lpul
ven [kPa·s

2

mm3 ] 0 pulmonary venous inertance

time constants and arterial resistances

τ sysar [s] 1.652 systemic arterial windkessel time constant (2.177)

τpular [s] 0.3 pulmonary arterial windkessel time constant

Rsys
ar(total) [kPa·s

mm3 ] 120 · 10−6 (total) systemic arterial resistance

Table 2.7: Vascular resistance, compliance, and impedance parameters dependent on the systemic

arterial resistance Rsys
ar(total)

i Ri
ar(total) C i

ar(total) Zi
ar Ri

ven(total) C i
ven(total)

sys Rsys
ar(total) τ sysar /Rsys

ar(total) Rsys
ar(total)/20 Rsys

ar(total)/5 30 · Csys
ar(total)

pul Rsys
ar(total)/8 8 · τpular /Rsys

ar(total) 0 Rsys
ar(total)/8 2.5 · Cpul

ar(total)
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2 Modeling of cardiac mechanics and the vascular system

2.2.2.2 Gas transport and dissociation

A model for oxygen and carbon dioxide transport and dissociation, including the oxygen uptake

and carbon dioxide elimination by the lungs in terms of gas-blood diffusion is proposed. At

the organ level, metabolic consumption of oxygen and production of carbon dioxide happens,

distinguished into five different organ levels: the “splanchnic” (spl), “extra-splanchnic” (espl),
“muscular” (msc), “cerebral” (cer) and “coronary” (cor) compartments.

The integrated cardiovascular-respiratory system model is abbreviated with 0Dsyspulcaprespir.

Its cardiovascular mechanics part is governed by equations (2.134)–(2.167). The model is based

on Trenhago et al. [202], which partly relies on the one proposed by Christiansen and Dræby

[41, 42]. However, here a different model for the lung mechanics is chosen, namely one according

to Ben-Tal [18]. Additionally, simplified dissociation rules [84] for oxygen and carbon dioxide

are chosen here in contrast to the models in [41, 42, 202]. Further reduced-dimensional models of

the cardiovascular and respiratory systems may be found in [17, 56, 122], while Broomé et al.

[30] propose a reduced-dimensional model for hemodynamics with a simplified oxygen transport

without gas uptake by the lungs.

Lung mechanics A 0-dimensional flexible lung model including gas exchange is considered

as it is presented by Ben-Tal [18]. Its mechanics are described – analogously to 0D flow models

– with an alveolar inertance Lalv, resistance Ralv and elastance Ealv. The mass and momentum

balances here are written as two first-order differential equations for the alveolar volume Valv and

alveolar flux qalv:

V̇alv − qalv = 0, (2.183)

Lalvq̇alv +Ralvqalv + Ealv(Valv − Valv,u)− palv + Ut = 0, (2.184)

with Valv,u as the unstressed volume of the lung.

The alveolar pressure palv in (2.184) is governed by the ordinary differential equation

ṗalv −
1

Valv

(
Um

[
Um − palv
Rairw

+ κ̃CO2(p
pul
CO2,cap

− fCO2,alvpalv)

+κ̃O2(p
pul
O2,cap

− fO2,alvpalv)
]
− palvqalv

)
= 0, (2.185)

where ppulCO2,cap
and ppulO2,cap

are the pulmonary capillary partial pressures of carbon dioxide (CO2)

and oxygen (O2), respectively. They are state variables of the transport equations that will be

introduced later.

The concentrations of carbon dioxide and oxygen (volume fractions) inside the alveolar com-

partments are fCO2,alv and fO2,alv, respectively. They are governed by the ordinary differential

equations

ḟCO2,alv −
1

Valv

[
κ̃CO2(p

pul
CO2,cap

− fCO2,alvpalv) + (fCO2,in − fCO2,alv)qin

−fCO2,alv

{
κ̃O2(p

pul
O2,cap

−fO2,alv(palv − pwatervap,37)) + κ̃CO2(p
pul
CO2,cap

−fCO2,alv(palv−pwatervap,37))
}]

=0

(2.186)
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Figure 2.14: Model PrescrHeart | 0Dsyspulcaprespir: Prescribed-dynamics heart together with

the cardio-respiratory system; all four heart chambers are 0-dimensional elastance

models with prescribed elastance functions Êi
c(t) (c = v, at, i = ℓ, r) according to

(2.221).
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2 Modeling of cardiac mechanics and the vascular system

and

ḟO2,alv −
1

Valv

[
κ̃O2(p

pul
O2,cap

− fO2,alvpalv) + (fO2,in − fO2,alv)qin

−fO2,alv

{
κ̃O2(p

pul
O2,cap

−fO2,alv(palv − pwatervap,37)) + κ̃CO2(p
pul
CO2,cap

−fCO2,alv(palv−pwatervap,37))
}]

=0,

(2.187)

stating that the rates of change of CO2 and O2 concentration in the lung have to balance the

leaving or incoming amount of gas due to transport (convection) and the change of gas quantities

as consequence of diffusion across the alveolar-capillary barrier. The vapor pressure of water at

37◦C is pwatervap,37 = 47.1 mmHg.

The inspired concentrations of carbon dioxide and oxygen are

fCO2,in =

{
fCO2,alv

VD+fCO2,ext
(VT−VD)

VT
, VT ≥ VD,

fCO2,alv, VT < VD

(2.188)

and

fO2,in =

{
fO2,alv

VD+fO2,ext
(VT−VD)

VT
, VT ≥ VD,

fO2,alv, VT < VD,
(2.189)

respectively, where VD is the dead space volume and VT the previously introduced tidal volume

(volume of inspired air per breath). The external atmospheric gas fractions (concentrations) of

carbon dioxide and oxygen are fCO2,ext = 0.0004 and fO2,ext = 0.21, respectively. The inspired

air flow in (2.186) and (2.187) is

qin =

{
Um−palv
Rairw

, Um > palv,

0, Um ≤ palv.
(2.190)

The time-varying pleural pressure Ut in (2.184) is an external input to the lung model and is given

by the function

Ut = Um −Rairw ωb
VT

2
sin(ωb t)− Ealv(Vlung −

VT

2
cos(ωb t)), (2.191)

with the external atmospheric pressure Um, the tidal volume VT, the total lung volume Vlung, and

the breathing frequency ωb.

The diffusion capacities for CO2 and O2 across the hemato-alveolar membrane are

κ̃CO2 = Vm,gas κCO2 and κ̃O2 = Vm,gas κO2 , (2.192)

either expressed in [mmol
s·kPa ] or [mm3

s·kPa ] with help of the molar volume of an ideal gas Vm,gas =

22.4 · 103 mm3

mmol
(at standard conditions for temperature and pressure).

The parameters for the 0D lung are summarized in tab. 2.8.
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2.2 3D-0D coupled cardiovascular mechanics

Transport model The gas transport model follows Trenhago et al. [202], essentially being a

modification of [41, 42] to allow for the unsteady realm. It relies on considerations of conservation

of the concentration ci of a species i within a compartment of volume V and flux q, and additional

conservation of the entire compartment volume, cf. (2.81):

d(ciV )

dt
= qinci,in − qci and

dV

dt
= qin − q, (2.193)

where qin and ci,in are the incoming (upstream) fluxes and concentrations, respectively. Combining

(2.193)1 and (2.193)2 then yields

V
dci
dt

= qin(ci,in − ci). (2.194)

The dissociation of gases in blood and tissue is of complex nature and depends upon multiple

biochemical and physical conditions. A gas dissociation model governs the amount of gas matter

ci that somehow is absorbed or released by the blood and the tissue. The blood dissociation

functions for carbon dioxide and oxygen, cCO2 and cO2 , respectively, are compartment-specific

and in general depend upon another. Here, they are written in terms of the partial pressures

of carbon dioxide and oxygen, pCO2 and pO2 , respectively, which are the state variables of the

transport model:

cCO2 = cCO2(pCO2 , pO2) and cO2 = cO2(pCO2 , pO2). (2.195)

The tissue dissociation functions are ctiss,CO2
and ctiss,O2

. They are assumed to be independent of

one another:

ctiss,CO2
= ctiss,CO2

(pCO2) and ctiss,O2
= ctiss,O2

(pO2). (2.196)

The specific dissociation laws are elaborated after having introduced the transport equations for

the closed circulation.

For two inter-dependent species CO2 and O2, the transport equations according to (2.194) can

be derived for each compartment of the vascular model, cf. fig. 2.14. For the sake of brevity, the

arguments of (2.195) and (2.196) are omitted in the following.

As for the mechanics model (2.134)–(2.167), the equations are introduced starting from the left

atrium. The left heart cavities represent pure transport compartments, yielding

V ℓ
at




∂cℓCO2,at

∂pℓCO2,at

∂cℓCO2,at

∂pℓO2,at

∂cℓO2,at

∂pℓCO2,at

∂cℓO2,at

∂pℓO2,at



[
ṗℓCO2,at

ṗℓO2,at

]
= qpulven

[
cpulCO2,ven

− cℓCO2,at

cpulO2,ven
− cℓO2,at

]
(2.197)

for the left atrium and

V ℓ
v




∂cℓCO2,v

∂pℓCO2,v

∂cℓCO2,v

∂pℓO2,v

∂cℓO2,v

∂pℓCO2,v

∂cℓO2,v

∂pℓO2,v



[
ṗℓCO2,v

ṗℓO2,v

]
= qℓv,in

[
cℓCO2,at

− cℓCO2,v

cℓO2,at
− cℓO2,v

]
(2.198)
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2 Modeling of cardiac mechanics and the vascular system

for left ventricle. Analogously, the large systemic arterial vessels transport the gas species down

to the organ level, thus the transport equation for the systemic arterial compartment reads

V sys
ar




∂csysCO2,ar

∂psysCO2,ar

∂csysCO2,ar

∂psysO2,ar

∂csysO2,ar

∂psysCO2,ar

∂csysO2,ar

∂psysO2,ar



[
ṗsysCO2,ar

ṗsysO2,ar

]
= qℓv,out

[
cℓCO2,v

− csysCO2,ar

cℓO2,v
− csysO2,ar

]
. (2.199)

At the splanchnic (spl), extra-splanchnic (espl), muscular (msc), cerebral (cer) and coronary (cor)
organ levels, additional oxygen and carbon dioxide dissociation in the organ tissue, denoted by

Vtiss,j and the dissociation functions (2.196) takes place. Furthermore, the organs consume oxygen

and produce carbon dioxide, taken into account by the organ-specific carbon dioxide production

and oxygen consumption metabolic rates M̂CO2,j and M̂O2,j , respectively. The transport equations

for the five organ compartments then read


V sys

ar,j




∂csysCO2,ar,j

∂psysCO2,ar,j

∂csysCO2,ar,j

∂psysO2,ar,j

∂csysO2,ar,j

∂psysCO2,ar,j

∂csysO2,ar,j

∂psysO2,ar,j


+ Vtiss,j




∂ctiss,CO2,j

∂psysCO2,ar,j
0

0
∂ctiss,O2,j

∂psysO2,ar,j





[
ṗsysCO2,ar,j

ṗsysO2,ar,j

]
=

= qsysar,j,in

[
csysCO2,ar

− csysCO2,ar,j

csysO2,ar
− csysO2,ar,j

]
+

[
M̂CO2,j

−M̂O2,j
ctiss,O2,j

β+ctiss,O2,j

]
, j = spl, espl,msc, cer, cor. (2.200)

Therein, the O2 consumption rate scales with the tissue oxygen saturation, and the constant β
defines when the effective oxygen consumption is 50 % of the imposed value M̂O2,j (Michaelis-

Menten kinetic form [139]).

The carbon dioxide consumption and oxygen production rates per organ are assumed to be

fractions of the total rates M̂CO2,total and M̂O2,total and are weighted according to the size of the

respective organ compartment [41]:

M̂CO2,j = M̂CO2,total
Vtiss,j∑
j Vtiss,j

and M̂O2,j = M̂O2,total
Vtiss,j∑
j Vtiss,j

, (2.201)

j = spl, espl,msc, cer, cor. (2.202)

Since flow from the main arterial vessels branches into five parallel compartments, care has to be

taken considering the organ in-fluxes qsysar,j,in from upstream, which is insufficiently clarified in

[202]. These fluxes are no primary variables of (2.134)–(2.167), hence auxiliary equations are

introduced to solve for them by considering mass (volume) balances for each single arterial organ

compartment, j = spl, espl,msc, cer, cor:

Csys
ar,j ṗ

sys
ar,peri − qsysar,j,in + qsysar,j = 0. (2.203)

Note, however, that the upstream concentrations washed into the organs are all identical, namely

that of the upstream main arterial compartment, csysCO2,ar
.
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2.2 3D-0D coupled cardiovascular mechanics

The organic venules compartments then continue transportation to the larger systemic venous

vessels according to

V sys
ven,j




∂csysCO2,ven,j

∂psysCO2,ven,j

∂csysCO2,ven,j

∂psysO2,ven,j

∂csysO2,ven,j

∂psysCO2,ven,j

∂csysO2,ven,j

∂psysO2,ven,j



[
ṗsysCO2,ven,j

ṗsysO2,ven,j

]
= qsysar,j

[
csysCO2,ar,j

− csysCO2,ven,j

csysO2,ar,j
− csysO2,ven,j

]
, (2.204)

j = spl, espl,msc, cer, cor.

At the junction to the larger systemic venous vessels, all flows from the five organic venules unite

again:

V sys
ven




∂csysCO2,ven

∂psysCO2,ven

∂csysCO2,ven

∂psysO2,ven

∂csysO2,ven

∂psysCO2,ven

∂csysO2,ven

∂psysO2,ven



[
ṗsysCO2,ven

ṗsysO2,ven

]
=
∑

j

qsysven,j




∑
j q

sys
ven,j c

sys
CO2,ven,j∑

j q
sys
ven,j

− csysCO2,ven
∑

j q
sys
ven,j c

sys
O2,ven,j∑

j q
sys
ven,j

− csysO2,ven


 . (2.205)

(summation index j = spl, espl,msc, cer, cor)

Due to the junction, the incoming upstream flux is a mixture of all venous organ fluxes
∑

j q
sys
ven,j ,

while the upstream concentrations washed into the venous compartment have to be weighted with

the amount flowing into the compartment,
∑

j q
sys
ven,j c

sys
ven,j∑

j q
sys
ven,j

. Again, [202] misses clarification; cf. [56].

The right atrium receives the flow from the systemic venous compartment,

V r
at




∂crCO2,at

∂prCO2,at

∂crCO2,at

∂prO2,at
∂crO2,at

∂prCO2,at

∂crO2,at

∂prO2,at



[
ṗrCO2,at

ṗrO2,at

]
= qsysven

[
csysCO2,ven

− crCO2,at

csysO2,ven
− crO2,at

]
, (2.206)

transporting to the right ventricle,

V r
v




∂crCO2,v

∂prCO2,v

∂crCO2,v

∂prO2,v
∂crO2,v

∂prCO2,v

∂crO2,v

∂prO2,v



[
ṗrCO2,v

ṗrO2,v

]
= qrv,in

[
crCO2,at

− crCO2,v

crO2,at
− crO2,v

]
, (2.207)

which in turn pumps into the pulmonary circulation for re-oxygenation. The balance equation for

the pulmonary arteries reads

V pul
ar




∂cpulCO2,ar

∂ppulCO2,ar

∂cpulCO2,ar

∂ppulO2,ar

∂cpulO2,ar

∂ppulCO2,ar

∂cpulO2,ar

∂ppulO2,ar



[
ṗpulCO2,ar

ṗpulO2,ar

]
= qrv,out

[
crCO2,v

− cpulCO2,ar

crO2,v
− cpulO2,ar

]
, (2.208)

which eventually passes the deoxygenated blood to the pulmonary capillary bed. There, the gas

exchange with the lung occurs, and the blood becomes re-oxygenated for the further supply to the

left heart and systemic circulation. Therefore, the pulmonary capillary balance equation yields

V pul
cap




∂cpulCO2,cap

∂ppulCO2,cap

∂cpulCO2,cap

∂ppulO2,cap

∂cpulO2,cap

∂ppulCO2,cap

∂cpulO2,cap

∂ppulO2,cap



[
ṗpulCO2,cap

ṗpulO2,cap

]
= qpular

[
cpulCO2,ar

− cpulCO2,cap

cpulO2,ar
− cpulO2,cap

]
+

+

[
κCO2(fCO2,alv (palv − pwatervap,37)− ppulCO2,cap

)

κO2(fO2,alv (palv − pwatervap,37)− ppulO2,cap
)

]
, (2.209)
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where fCO2,alv and fO2,alv are the alveolar carbon dioxide and oxygen gas fractions governed by

(2.186) and (2.187), respectively, and palv is the alveolar pressure, cf. (2.185).

The pulmonary veins then carry the oxygenated blood and feed it back to the left atrium, cf.

(2.197):

V pul
ven




∂cpulCO2,ven

∂ppulCO2,ven

∂cpulCO2,ven

∂ppulO2,ven

∂cpulO2,ven

∂ppulCO2,ven

∂cpulO2,ven

∂ppulO2,ven



[
ṗpulCO2,ven

ṗpulO2,ven

]
= qpulcap

[
cpulCO2,cap

− cpulCO2,ven

cpulO2,cap
− cpulO2,ven

]
. (2.210)

Note that all compartment volumes in (2.197)–(2.210) are not constant but are governed by the law

of compliance (2.82) or the specific elastic properties of the cardiac chambers. While the absolute

value of all 0D compartments is not of importance for the mechanical model (2.134)–(2.167)

since only fluxes enter the balance equations, the storage capacity of the models is of relevance

regarding the gas transport and dissociation laws. All 0D compliant compartment volumes thus

can be computed as function of their pressure p depending on the compliance C via

V (p) = Cp+ Vu, (2.211)

where Vu the unstressed volume of the compartment. Atrial 0D compartment volumes are cal-

culated from (2.218), cf. sec. 2.2.3.2 in the following. Unstressed volumes are listed in tab.

2.9.

Dissociation laws There exists a vast amount of laws describing the dissociation of oxygen

and carbon dioxide in the human body. The first pioneering works on the oxygen dissociation

curve of hemoglobin go back to the early 20th century, cf. the works by Hill [84] and Adair

[1]. Since then, a multitude of variants and diversifications of these models have been proposed,

cf. [47, 188] as well as references therein. A more complex mathematical model describing the

hemoglobin-oxygen dissociation curve as well as the carbon dioxide dissociation was proposed

by Siggaard-Andersen et al. [191], which was also adopted by [41, 42, 202].

For simplicity, here the dependencies of gas dissociation on the pH value and on the temperature

are neglected, similar to the dissociation functions used in Ellwein et al. [56]. Also, dependencies

of the oxygen concentration on the carbon dioxide partial pressure and vice versa (Haldane effect

[190]), as implied by (2.195), are not considered for the models here, even though a diversification

of the specific forms of dissociation functions is not inhibited by the respective formulations of

the transport equations. Hence, (2.197)–(2.210) remain valid regardless of the complexity and

interdependencies of cCO2 and cO2 .

For the solubility of carbon dioxide in blood and tissue, a simple linear relationship between the

concentration and the partial pressure according to Henry’s law is assumed:

cCO2 = αCO2 pCO2 and ctiss,CO2
= αCO2 pCO2 , (2.212)

where αCO2 is the solubility constant.
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2.2 3D-0D coupled cardiovascular mechanics

Regarding the oxygen solution in blood, only a rather small portion is physically solved (around

1.4 % [51]) according to Henry’s law, while the lion’s share binds to hemoglobin according to the

hemoglobin-oxygen dissociation curve SO2 . In tissue, oxygen solution is entirely governed by

Henry’s law. Hence, the dissociation functions read

cO2 = αO2 pO2 + cHb SO2(pO2) and ctiss,CO2
= αCO2 pCO2 . (2.213)

Therein, αO2 is the solubility constant of O2, and cHb is the hemoglobin concentration of the blood.

Here, the simplest form of the hemoglobin-oxygen dissociation curve according to Hill [84] is

chosen:

SO2 =

(
pO2

p50,O2

)n

1 +
(

pO2

p50,O2

)n , (2.214)

with Hill’s constant n and the partial pressure of O2 at 50 % saturation p50,O2 = 26.8 mmHg.

The constants and parameters are summarized in tab. 2.9.

Hill’s hemoglobin oxygen saturation curve (2.214) is depicted in fig. 2.15. The curve corresponds

well to the complex pH- and CO2 saturation-dependent hemoglobin oxygen saturation function

at a blood pH value of 7.4, which can be assumed as standard conditions [103].
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Figure 2.15: Hemoglobin oxygen saturation curve SO2 as function of the oxygen blood partial

pressure pO2 (2.214), according to Hill [84].

Parameters In the following, an overview of all parameters of the 0D lung as well as the gas

transport and dissociation model is given. The parameters are separated into “fixed” ones that

do not vary for a specific individual (only inter-patient variability), at least not on a short time

scale, and parameters that might be adjusted to the individual’s current cardiorespiratory state
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2 Modeling of cardiac mechanics and the vascular system

(intra-patient variability), e.g. rest or exercise conditions.

Table 2.8 lists all parameters associated to the lung model, eq. (2.183)–(2.187), and tab. 2.9

depicts all parameters that are associated to the gas transport equations, (2.197)–(2.210), as well

as the ones from the dissociation laws (2.212)–(2.214).

Table 2.8: Parameters of 0D lung model: separation into “fixed” parameters for a specific individ-

ual (inter-patient) and parameters that might be adjusted to specific conditions of that

individual (intra-patient)

fixed parameters:

Rairw [kPa·s
mm3 ] 1.33 · 10−7 overall resistance of the conducting airways [18]

Lalv [kPa·s
2

mm3 ] 9.87 · 10−10 alveolar inertance [171]

Ralv [kPa·s
mm3 ] 0 alveolar resistance [171]

Ealv [ kPa
mm3 ] 3.33 · 10−7 alveolar elastance [18]

Valv,u [mm3] 0 unstressed alveolar volume [18]

Um [kPa] 102 atmospheric air pressure

κCO2 [mmol
s·kPa ] 23.7 · 10−2 diffusion capacity for CO2 in the lung [18]

κO2 [mmol
s·kPa ] 11.7 · 10−2 diffusion capacity for O2 in the lung [18]

Vm,gas [ mm3

mmol
] 22.4 · 103 molar volume for an ideal gas at standard conditions

fCO2,ext [−] 0.0004 gas fraction of CO2 in the atmosphere

fO2,ext [−] 0.21 gas fraction of O2 in the atmosphere

pwatervap,37 [kPa] 6.279 vapor pressure of water at 37◦C
VD [mm3] 150 · 103 dead space lung volume [18]

Vlung [mm3] 5.0 · 106 total lung volume

parameters that may be adjusted to specific conditions (e.g. rest, exercise):

VT [mm3] 600 · 103 tidal volume (volume of inspired air per breath)

Tbreath [s] 4.5 time period of one breath

ωb [1
s
] 2π/Tbreath respiration (breathing) frequency

2.2.3 Coupling conditions

The heart and the vascular models are strongly coupled, meaning that the physics of the cardio-

vascular system affect the deformation and contraction pattern of the heart and vice versa. Hence,

this phenomenon has to be modeled as a two-way coupled mechanical problem. The specific

coupling conditions are stated below, sec. 2.2.3.1. The respective numerical solution is elaborated

in chap. 3.

In contrast, the cardiovascular and the respiratory problem exhibit a one-way coupling only: The

transport equations (2.197)–(2.210) hold information on fluxes and volumes of the cardiovascular

models, however the latter, (2.134)–(2.167), are independent of any respiratory state variables like

partial pressures or gas fractions. Therefore, and due to the fact that periodic orbit solutions of the

cardiorespiratory model require a significantly larger amount of heart beats than the mechanical

model alone, a novel prescribed-dynamics approach for the heart is introduced in order to allow an
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2.2 3D-0D coupled cardiovascular mechanics

Table 2.9: Parameters of 0D gas transport and dissociation model: separation into “fixed” parame-

ters for a specific individual (inter-patient) and parameters that might be adjusted to

specific conditions of that individual (intra-patient)

fixed parameters:

Vtiss,spl [mm3] 3243.0 · 103 splanchnic tissue volume (liver and kidney) [41]

Vtiss,espl [mm3] 217.0 · 103 extra-splanchnic tissue volume [41]

Vtiss,msc [mm3] 26773.0 · 103 muscular tissue volume [41]

Vtiss,spl [mm3] 1300.0 · 103 cerebral tissue volume [41]

Vtiss,spl [mm3] 307.0 · 103 coronary tissue volume [41]

V ℓ
at,u [mm3] 5.0 · 103 unstressed left atrial volume

V ℓ
v,u [mm3] 10.0 · 103 unstressed left ventricular volume

V sys
ar,u [mm3] 0 unstressed systemic arterial volume [203]

V sys
ar,spl,u [mm3] 274.4 · 103 unstressed systemic arterial splanchnic volume [203]

V sys
ar,espl,u [mm3] 134.6 · 103 unstressed systemic arterial extra-splanchnic volume [203]

V sys
ar,msc,u [mm3] 105.8 · 103 unstressed systemic arterial muscular volume [203]

V sys
ar,cer,u [mm3] 72.1 · 103 unstressed systemic arterial cerebral volume [203]

V sys
ar,cor,u [mm3] 24.0 · 103 unstressed systemic arterial coronary volume [203]

V sys
ven,spl,u [mm3] 1121.0 · 103 unstressed systemic venous splanchnic volume [203]

V sys
ven,espl,u [mm3] 550.0 · 103 unstressed systemic venous extra-splanchnic volume [203]

V sys
ven,msc,u [mm3] 432.1 · 103 unstressed systemic venous muscular volume [203]

V sys
ven,cer,u [mm3] 294.6 · 103 unstressed systemic venous cerebral volume [203]

V sys
ven,cor,u [mm3] 98.2 · 103 unstressed systemic venous coronary volume [203]

V sys
ven,u [mm3] 100.0 · 103 unstressed systemic venous volume

V r
at,u [mm3] 4.0 · 103 unstressed right atrial volume

V r
v,u [mm3] 8.0 · 103 unstressed right ventricular volume

V pul
ar,u [mm3] 0 unstressed pulmonary arterial volume [203]

V pul
cap,u [mm3] 123.0 · 103 unstressed pulmonary capillary volume [203]

V pul
ven,u [mm3] 120.0 · 103 unstressed pulmonary venous volume [203]

n [−] 2.7 Hill coefficient [84]

p50,O2 [kPa] 3.573 partial pressure of O2 at 50 % saturation [84]

αCO2 [ mmol
kPa·mm3 ] 24.75 · 10−8 CO2 solubility constant [18]

αO2 [ mmol
kPa·mm3 ] 1.05 · 10−8 O2 solubility constant [18]

cHb [mmol
mm3 ] 9.3 · 10−6 hemoglobin concentration of the blood [41]

parameters that may be adjusted to specific conditions (e.g. rest, exercise):

M̂CO2,total [mmol
s

] 0.193 total metabolic CO2 production rate

M̂O2,total [mmol
s

] 0.238 total metabolic O2 max. consumption rate

β [mmol
mm3 ] 10−8 point where effective O2 consumption is 50 % of max.
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2 Modeling of cardiac mechanics and the vascular system

efficient yet accurate representation of the heart by exploiting the precomputed pressure-volume

relations of each heart chamber. This approach is introduced in sec. 2.2.3.2.

2.2.3.1 Cardio-vascular coupling

The coupling conditions of the 3D heart and the 0D vascular system state the dependencies of the

model governing equations on the primary variables of the other model. The coupling variables

of the 0D circulatory system are the ventricular (and atrial) pressures piv (and piat). They act

as boundary traction onto the endocardial chamber cavity surfaces and hence contribute to the

external virtual work δWext, cf. the whole weak form (2.94) and (2.95), respectively.

In case of model 3Dventr, only the virtual work of the ventricular pressures has to be taken into

account,

δWext = −
∑

i=ℓ,r

∫

Γ0D,i
0,v

piv JF
−Tn0 · δu dA, (2.215)

while for model 3Datrioventr, ventricular and atrial cavity pressures contribute to the external

virtual work:

δWext = −
∑

i=ℓ,r

∫

Γ0D,i
0,v

piv JF
−Tn0 · δu dA−

∑

i=ℓ,r

∫

Γ0D,i
0,at

piat JF
−Tn0 · δu dA. (2.216)

Vice versa, the 3D solid mechanics state variable – the displacement field u – governs the rate of

change of ventricular and atrial cavity volumes that enter the mass balance equations of the 0D

model, cf. (2.118), (2.120), (2.126), (2.128) for model 0Dsyspul and (2.134), (2.136), (2.158),

(2.160) for model 0Dsyspulcap. They are computed as boundary integral over the coupling

surfaces Γ0D,i
0,c and the inner lid surfaces5 denoted by Γlids,i

0,c , cf. fig. 2.6 and fig. 2.7. Therefore, the

rate of change of the enclosed chamber volumes can be expressed as

dV i
c (u)

dt
=

d

dt



1

3

∫

Γ0D,i
c ∪Γlids,i

c

x · n da


 =

1

3

d

dt

∫

Γ0D,i
0,c ∪Γlids,i

0,c

(u+ x0) · JF−Tn0 dA, i = ℓ, r,

(2.217)

where c = v in case of model 3Dventr, and c = v, at in case of model 3Datrioventr.

2.2.3.2 One-way cardiovascular-respiratory coupling and prescribed-dynamics

heart

The time span until a stable homeostatic state of carbon dioxide and oxygen saturation is occu-

pied is of orders of magnitudes greater than that for a stable periodic mechanical state of the

cardiovascular system. While mechanical periodicity may already be obtained after 5–20 cardiac

5In order to mathematically assess the cavity volumes correctly by boundary integrals, it is mandatory that the

bounding surfaces fully enclose the volume. However, since the lids are “artificial” structures with “dummy”

(compliant) material properties, the coupling pressures are only exerted to the boundary belonging to the

myocardium, cf. (2.215) and (2.216), respectively.
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2.2 3D-0D coupled cardiovascular mechanics

cycles depending on the initial condition guess, transport and dissociation periodicity requires

cycle numbers of > 1000, cf. Trenhago et al. [202] requiring 20 cycles for the cardiovascular

system state variables and 15 000 cycles for the respiratory and gas partial pressure state variables

to exhibit periodicity.

Since the models in [41, 42, 56, 202] all are of 0-dimensional nature where the heart cavities

are modeled by time-varying elastances, hence no field equations with spatial derivatives are

involved, a numerical solution of the model equations on a physical time span of hours or days is

of acceptable computational cost. However, spatially resolved models often yield discretizations

where the number of spatial degrees of freedom (here for the heart only) is significantly greater

than the number of state variables describing the whole 0D model. Thus, the computational

burden is expected to be significant in order to compute a stable homeostatic state for the whole

cardiorespiratory system if a 3D heart is involved.

Due to the above-mentioned one-way coupling between the cardiovascular mechanical models

(2.134)–(2.167) and the respiratory (2.183)–(2.187) as well as gas transport kinetics (2.197)–

(2.210), the a priori computed homeostatic mechanical state of the heart can be used as input to

the respiratory and gas transport models.

As for the atria of model 3Dventr, each heart chamber c is replaced by a time-varying elastance

model, cf. (2.111), yielding a pressure-volume relation

pic = Êi
c(t) · (V i

c − V i
at,u). (2.218)

Hence, the left and right atrial mass balances, cf. (2.81), read

d

dt

(
pℓat

Êℓ
at

)
− qpulven + qℓv,in = 0 and

d

dt

(
prat

Êr
at

)
− qsysven + qrv,in = 0, (2.219)

which substitute (2.134) and (2.136), respectively. Analogously, the left and right ventricular mass

balances read

d

dt

(
pℓv

Êℓ
v

)
− qℓv,in + qℓv,out = 0 and

d

dt

(
prv

Êr
v

)
− qrv,in + qrv,out = 0, (2.220)

substituting (2.158) and (2.160), respectively

The prescribed time-varying elastance now makes use of the time course of the ventricular (and

atrial) pressures p̂ic(t) and volumes V̂ i
c (t) that stem from the precomputed homeostatic mechanical

state:

Êi
c(t) =

p̂ic(t)

V̂ i
c (t)− V i

c,u

. (2.221)

This approach prescribing the elastance instead of the primary variables and volumes may be seen

as a dimensional reduction that mimics the precomputed pressure-volume relation of the 3D heart

and maintains a smooth behavior of 0D pressure and flux variables at the transition from one

cardiac cycle to the other. This smoothness in terms of continuity of pressures and fluxes would

get lost if the primary variables of (2.134)–(2.167) were prescribed directly by values from the

precomputed homeostatic state, since periodicity is only fulfilled up to a certain tolerance (2.222).
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2 Modeling of cardiac mechanics and the vascular system

2.2.4 Evaluation of homeostatic states

The models that have been presented are closed circulations, and their solutions have to obey

some periodicity requirements in order to be viewed as reasonable or valid. Due to the respective

mathematical formulations, the cardiovascular models inherently will tend to a periodic orbit

regardless of their initial conditions. For the models 0Dsyspul and 0Dsyspulcap, a so-called

homeostatic state is considered achieved if some of the state variables and compartment volumes

become periodic, hence if their value at the beginning of the respective cardiac cycle at time tN
coincides up to a certain tolerance with their value at the end of that cycle, at time tN + Tcycl.

Additionally, for unidirectional flow through the cardiac cycle, left and right ventricular stroke

volumes SVi (i = ℓ, r) have to coincide, too. For this purpose, the so-called cycle error criterion

Ecycl =max

{∣∣∣∣
psysar (tN+Tcycl)− psysar (tN)

psysar (tN)

∣∣∣∣ ,
∣∣∣∣
ppular (tN+Tcycl)−ppular (tN)

ppular (tN)

∣∣∣∣ ,
∣∣∣∣
psysven(tN+Tcycl)−psysven(tN)

psysven(tN)

∣∣∣∣ ,
∣∣∣∣
ppulven(tN+Tcycl)− ppulven(tN)

ppulven(tN)

∣∣∣∣ ,
∣∣∣∣
V ℓ
v (tN+Tcycl)− V ℓ

v (tN)

V ℓ
v (tN)

∣∣∣∣ ,
∣∣∣∣
V r
v (tN+Tcycl)− V r

v (tN)

V r
v (tN)

∣∣∣∣ ,
∣∣∣∣
SVℓ − SVr

SVℓ

∣∣∣∣
}
≤ ǫcycl, (2.222)

is defined, where V ℓ
v and V r

v are left and right ventricular cavity volumes, respectively, and ǫcycl is

the cycle error tolerance.

Two scenarios for computing a homeostatic state are considered in this context:

• Homeostatic state initial conditions of the circulation are not known, and a prestressed homeo-

static state on the imaged configuration is desired;

• Some homeostatic state initial conditions have been precomputed or estimated, and a new

homeostatic state is searched after a perturbing event occurred, e.g. a myocardial infarction or

the application of a ventricular assist device.

For these purposes, the set of variables at a time instance t is defined,

I(t) = {(p)1(t), ..., (p)n0D
dof
(t), τa|(1)(t), ..., τa|(nmat)(t)}, (2.223)

where the initial active stress state is set region-wise, where nmat is the total number of constitutive

laws (one per region), e.g. allowing for a discrimination between atrial and ventricular material or

an infarction zone. Hence, the simplifying assumption is made that each material point belonging

to a distinct region possesses the same initial active stress state.

2.2.4.1 Prestressed homeostatic state on the imaged configuration

If the homeostatic state initial conditions of the circulation are not known, a semi-educated guess

has to be chosen and the following algorithmic pattern for the computation of a homeostatic state
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2.2 3D-0D coupled cardiovascular mechanics

on the prestressed imaged configuration has to be run through:

while Ecycl > ǫcycl do

i) prestress [68] heart to initial ventricular pressures pℓv(t0), p
r
v(t0) / atrial pressures pℓat(t0),

prat(t0), and to initial active stress states τa(t0) (may differ depending on chamber and

individual material law)

ii) compute one transient cardiac cycle with I(t0)

iii) evaluate end-cyclic 0D vascular variables and active stress state:

I(t0 + Tcycl) = {(p)1(t0 + Tcycl), ..., (p)n0D
dof
(t0 + Tcycl), τa|(1)(t0 + Tcycl), ..., τa|(nmat)(t0 +

Tcycl)}

iv) update initial conditions: I(t0)← I(t0 + Tcycl)

else

set homeostatic state initial conditions: I⋆ := I(t0 + Tcycl)
STOP.

2.2.4.2 Transient computation of alternating homeostatic state

If a set of homeostatic state initial conditions I⋆ is given, e.g. computed by the procedure in sec.

2.2.4.1 or estimated with help of the methods of chap. 4, a normal transient computation lasting

multiple cardiac cycles can be performed in order to compute a new homeostatic state after some

event has happened. The following algorithmic pattern can be run through:

set homeostatic initial conditions I(t0) := I⋆, prestress [68] heart to initial ventricular pres-

sures pℓ ⋆v , pr ⋆v / atrial pressures pℓ ⋆at , pr ⋆at , and to initial active stress states τ ⋆a (may differ

depending on chamber and individual material law)

while Ecycl > ǫcycl or not yet event do

compute transient cardiac cycles with I⋆

else

STOP.
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2 Modeling of cardiac mechanics and the vascular system

2.3 Multiscale modeling of myocardial growth and

disease progression

Understanding pathologies of growth and remodeling (G&R) in the heart is of uttermost impor-

tance for deriving effective medical treatment strategies against cardiomyopathy and end-stage

congestive heart failure (CHF). Amongst a multitude of causes for the development of CHF, a

critical state of mechanical loading is one prominent stimulus for cardiac G&R, ultimately leading

to systolic or diastolic heart failure.

The models presented here aim at quantifying the long-term maladaptive changes in the cardiac

tissue at the cell level as a consequence of an acute disease event, e.g. myocardial infarction,

mitral regurgitation or aortic stenosis. Depending on the type of event and the distinct location, a

critical mechanical overload state may arise, here strictly discriminated between volume overload

caused by an increased venous return at the end of the diastole, and pressure overload caused by

a sustained elevated ventricular cavity pressure during systole [175].

Both phenomena induce growth (cardiac hypertrophy) which may be distinguished into eccentric

hypertrophy in response to a state of chronic volume overload, and concentric hypertrophy as a

consequence of persistent pressure overload.

Volume overload leads to a dilation of the ventricles and a reduction in cardiac contractility,

thus its pathology is referred to as dilated cardiomyopathy (DCM), ultimately yielding systolic

heart failure. The pathology of pressure overload, to the contrary, is referred to as hypertrophic

cardiomyopathy (HCM), ultimately yielding diastolic heart failure due to an impairment of

ventricular relaxation and filling of the thickened and stiffened ventricular wall, while contractile

properties remain virtually unaltered [99]. Refer to chap. 1, sec. 1.3 for some pathophysiological

backgrounds to heart failure.

Remodeling of tissue describes the change of its morphology and structure as consequence of

some external stimulus. Here, focus is set on myocardial (ventricular) remodeling accompanying

the maladaptive changes in size and shape of the heart due to volumetric growth [11], triggered

by a state of sustained pressure or volume overload. Remodeling phenomena happen as result of

some injury of the heart muscle, e.g. a myocardial infarction, or other incidents that ultimate in

chronic overload scenarios that increase or invoke inflammatory processes leading to alterations

in the tissue’s microstructure and mechanical properties.

While there are physiologically desirable effects of ventricular remodeling, e.g. the in the athlete’s

heart [140], remodeling due to chronic hypertension or myocardial infarction are pathologic and

ultimately may lead to end-stage CHF.

In order to model the G&R phenomena described, the theory of volumetric growth as it first has

been introduced by Rodriguez et al. [172] is employed. However, it should be noted that even

though the terminus growth and remodeling (G&R) often is used to describe models that are

capturing growth phenomena, the aspect of remodeling, meaning a change in tissue constituents

and hence an alteration in its mechanical response characteristics, is per se not included in

volumetric growth constitutive models.

An alternative approach to the volumetric growth theory that inherently includes turnover of tissue
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constituents and thus may be viewed as a true G&R model is the constrained mixture theory

introduced by Humphrey and Rajagopal [94]. This approach is not considered within the scope of

this thesis.

However, here, a phenomenological remodeling model is introduced that makes the simplifying

assumption that the portion of grown matter may have different mechanical properties which are

continuously distributed.

Since growth and remodeling phenomena take place on a time scale of days to months compared

to the dynamics of the cardiovascular system that alter (periodically) within seconds, a model

owing to reasonably capture the long-term kinetics of G&R as a consequence of a short-term event

needs some considerations and assumptions with regards to the different time scales involved.

In the following, a novel multiscale-in-time approach is presented to model the two distinct types

of cardiomyopathy, volume overload-induced DCM and pressure overload-induced HCM. It

essentially combines short-term cardiovascular dynamics with long-term growth and remodeling

kinetics by using homeostatic states on the small time scale as stimulus for G&R on the large

time scale.

At first, the constitutive models used for growth, including a brief introduction to growth con-

tinuum mechanics, are introduced in sec. 2.3.1, and a phenomenological remodeling approach

depending on the state of growth is introduced in sec. 2.3.2. Then, the multiscale approach for

DCM and HCM is presented in sec. 2.3.3.

2.3.1 Anisotropic volumetric growth models

The concept of finite deformation mechanics of volumetric growth is briefly depicted and is

introduced as an extension to the continuum mechanical problem described in sec. 2.1.1. It relies

on a kinematical approach first introduced for finite strain elasto-plasticity by Lee [117] which

was adopted by Rodriguez et al. [172] in the context of isotropic growth of soft elastic tissue. A

further in-depth treatment of the topic, especially with focus on numerical implementation aspects,

may be found in Himpel et al. [85]. General growth constitutive models including orthotropic

growth are depicted in Lubarda and Hoger [129], with Liu et al. [128] focusing on the numerical

implementation aspects, while a good review of growth mechanics applied in the biomechanics

context is provided by Menzel et al. [138].

Within the theory of finite deformation volumetric growth, the deformation gradient (2.10)

is multiplicatively split into a growth part F g describing the stretches that occur solely as

consequence of some growth stimulus, and an elastic part F e capturing stretches and rigid-body

rotations as consequence of the mechanical loading on the one hand, and as consequence of

compatibility which potentially could have been violated during growth on the other:

F = F eF g(ϑ). (2.224)

Therein, the dependence of the growth deformation gradient on the growth stretch ϑ is introduced.

Figure 2.16 depicts the split of the overall deformation, introducing an intermediate or grown

configuration in addition to the classical concept of reference and current configuration (fig. 2.1).
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Ω
Ω0

reference 

or 

material 
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or 

spatial 
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Ωg
0

f0
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f

Figure 2.16: Growth continuum with multiplicative split of the deformation gradient F into

a growth part F g and an elastic part F e; intermediate (or grown) configuration

Ωg
0, additionally to the concept of reference and current configuration Ω0 and Ω,

respectively.

It should be highlighted that the specific order of execution of deformations is of importance,

i.e. F e is acting on the intermediate configuration and F g on the reference state. Thus, since the

growth deformation invokes a pure state of stretch, no re-orientation of directions (for example

a fiber direction f0) occurs from the reference to the intermediate configuration but is entirely

lumped into F e being executed after growth has happened. Furthermore, as stated above, the

intermediate configuration may, in general, be incompatible, which is indicated by the portion

of grown matter disjointed from the rest of the body. If growth produces an incompatible inter-

mediate state, additional elastic stresses will arise in the final current configuration to restore

compatibility.

In the intermediate configuration, the elastic right Cauchy-Green deformation tensor, cf. (2.12),

as well as the elastic second Piola-Kirchhoff stress, cf. (2.19), are defined:

Ce = F eTF e = F g−1

CF g−T

and Se = F gSF gT . (2.225)

The Clausius-Plack inequality (2.23) in presence of inelastic growth now becomes

Dint =

(
P − ∂Ψ(F )

∂F

)
: Ḟ +Σ

e : Lg ≥ 0, (2.226)

with the elastic Mandel stress tensor

Σ
e = CeSe (2.227)
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2.3 Multiscale modeling of myocardial growth and disease progression

defined in the intermediate grown configuration, which is work-conjugate to the growth velocity

gradient

Lg = Ḟ gF g−1

. (2.228)

The total second Piola-Kirchhoff stress (2.19) now is a function of the deformation (2.12) and of

the growth internal variable ϑ which itself is again dependent on the deformation:

S = S(C, ϑ(C)). (2.229)

The material tangent (2.34), written with respect to the reference state, then generalizes to

❈❈❈ = 2
∂S

∂C
+ 2

(
∂S

∂F g
:
∂F g

∂ϑ

)
⊗ ∂ϑ

∂C
= ❈̌❈❈ + ❈̃❈❈ , (2.230)

omitting the arguments of (2.229) for the sake of brevity.

The derivative of the second Piola-Kirchhoff stress S with respect to the growth deformation

gradient F g in (2.230) is independent of the specific choice of an evolution equation for ϑ, namely

the growth law, and particularizes in

∂S

∂F g
=

∂

∂F g

(
F g−1

SeF g−T
)
=

=
∂F g−1

∂F g
SeF g−T

+ F g−1

[
∂Se

∂Ce
:
∂Ce

∂F g

]
F g−T

+ F g−1

Se∂F
g−T

∂F g
=

=
∂F g−1

∂F g
SeF g−T

+ F g−1

Se∂F
g−T

∂F g
+ F g−1

[
1

2
❈̌❈❈

e
:

∂

∂F g

(
F g−T

CF g−1
)]

F g−T

=

=
∂F g−1

∂F g
SeF g−T

+ F g−1

Se∂F
g−T

∂F g
+

+ F g−1

[
1

2
❈̌❈❈

e
:

(
∂F g−T

∂F g
CF g−1

+ F g−T

C
∂F g−1

∂F g

)]
F g−T

=

= −
(
F g−1⊗S + S⊗F g−1

)
−
(
F g−1⊗F g−1

)
:
1

2
❈̌❈❈

e
:
(
F g−T⊗Ce +Ce⊗F g−T

)
,

(2.231)

with the dyadic products connecting two second-order tensors defined as

✶✶✶ = 1⊗1 = δikδjl êi ⊗ êj ⊗ êk ⊗ êl, (2.232)

✶̄✶✶ = 1⊗1 = δilδjk êi ⊗ êj ⊗ êk ⊗ êl, (2.233)

¯̄
✶✶✶ = 1⊗ 1 = δijδkl êi ⊗ êj ⊗ êk ⊗ êl, (2.234)

cf. [39, 107], where δij is the well-known Kronecker delta, taking the value 1 for i = j and 0
otherwise.6

6Equations (2.232) and (2.233) define the fourth-order identity and transposer tensors fulfilling the properties

✶✶✶ : A = A and ✶̄✶✶ : A = AT, respectively, while the fourth-order operator ¯̄✶✶✶ (2.234) acts on a second-order

tensor according to ¯̄
✶✶✶ : A = trA 1.
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2 Modeling of cardiac mechanics and the vascular system

In the following sections, specific growth laws suitable for modeling of dilated cardiomyopathy

(DCM), here meaning eccentric ventricular growth, and hypertrophic cardiomyopathy (HCM),

here meaning concentric ventricular growth, are introduced. They are closely related to anisotropic

growth laws in Göktepe et al. [73], Rausch et al. [167] and Genet et al. [71], however with the

option for reversal of growth according to Lee et al. [119]. Also, the combination of these growth

laws with electro-mechanical models has been proposed, cf. another work by Lee et al. [121].

Strain-based growth laws from [71] for both eccentric and concentric ventricular hypertrophy

have been implemented and applied to patient-specific geometries in the Bachelor’s thesis by [90]

(supervised by the author of this work).

Early theoretical models for ventricular growth have been proposed by Lin and Taber [127] as

well as Taber and Chabert [199], and Kroon et al. [111] applied growth to a simplified generic

left ventricular geometry with help of computational methods. Recent models of cardiac growth

may be found in another work by Genet et al. [70], where the focus lies on growth-induced

prestrain, and Kerckhoffs et al. [105], where some different growth evolution equations to the

above-mentioned are introduced. A specific application of growth as consequence of a ventricular

infarction is elaborated in Klepach et al. [108]. Finally, a good review for cardiac growth and

remodeling is found in Lee et al. [120], and some comparison of different growth laws for

myocardial hypertrophy has been performed by Witzenburg and Holmes [213].

2.3.1.1 Strain-driven eccentric growth

Dilated cardiomyopathy (DCM) as consequence of volume overload is triggered during the dias-

tolic filling phase of the heart. This phase is characterized by relatively low ventricular pressures

but large cavity volumes. It is assumed that volume overload is present if the myofibers exhibit a

sustained critical state of strain at the end of the diastole, hence a strain-driven growth law seems

adequate in order to model DCM.

Further, the typical pathological geometric changes associated with DCM are eccentric ventricular

hypertrophy, meaning that growth happens longitudinally in myofiber direction f0, cf. fig. 2.9 and

fig. 2.10. A myofiber stretch-driven growth law from Göktepe et al. [73] is used, with appropriate

extensions in order to allow for reversal in growth [119].

The growth deformation gradient for this law reads

F g = 1+ (ϑ− 1)f0 ⊗ f0, (2.235)

and the growth stretch ϑ is governed by the following evolution equation:

ϑ̇ = k(ϑ)
(
λe
myo − λ̂crit

myo

)
. (2.236)

Therein, λe
myo is the elastic myofiber stretch,

λe
myo =

1

ϑ
λmyo =

1

ϑ

√
f0 ·Cf0, (2.237)

which is the split (2.224) applied to the total myofiber stretch (2.105).
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The growth function here reads

k(ϑ) =





1
τ

(
ϑmax−ϑ

ϑmax−ϑmin

)γ
, λe

myo ≥ λ̂crit
myo,

1
τrev

(
ϑ−ϑmin

ϑmax−ϑmin

)γrev
, λe

myo < λ̂crit
myo,

(2.238)

where τ and τrev are growth and reversal growth time constants, and γ as well as γrev are growth

and reversal growth nonlinearities, respectively. Furthermore, ϑmax and ϑmin are used to restrict

growth and reversal growth to an upper and lower limit, respectively. Finally, λ̂crit
myo is a prescribed

critical myofiber stretch above which growth occurs or below which a reversal in growth may

happen.

The growth law-specific contributions to the material tangent❈❈❈ (2.230) are

∂F g

∂ϑ
= f0 ⊗ f0 (2.239)

and

∂ϑ

∂C
=

∂ϑ

∂λe
myo

∂λe
myo

∂C
=

∂ϑ

∂λe
myo

∂
(
1
ϑ
λmyo

)

∂C
=

∂ϑ

∂λe
myo

1

ϑ

∂
√
f0 ·Cf0

∂C
=

∂ϑ

∂λe
myo

1

2ϑλmyo

f0 ⊗ f0,

(2.240)

while the partial derivative of the solution ϑ with respect to the growth stimulus λe
myo only is

expressible after having applied a numerical solution algorithm to (2.236), since it is an ordinary

differential equation and nonlinear in ϑ. Refer to the following chapter, sec. 3.3.1.1, for the

numerical solution aspects.

2.3.1.2 Stress-governed concentric growth

Hypertrophic cardiomyopathy (HCM) as consequence of sustained pressure overload is rather

triggered in the systolic heart phase where the ventricles are exposed to high pressures at lowest

cavity volumes at a state where the muscle is contracted and the myofibers therefore are shortened.

Pressure overload is present if the afterload the heart has to work against during ejection is

critically high, leading to a persistently elevated end-systolic load onto the endocardium. Thus, a

critical state of wall stress is assumed to be the growth stimulus for this type of overload scenario.

The pathological geometric changes due to pressure overload are of concentrically thickened

ventricular walls, since adaptive growth processes seek at decreasing the wall stress by adding

tissue in transverse cross-fiber directions. Here, a similar stress-driven growth law to the one

used in Göktepe et al. [73] is chosen, however not with only-radial growth but with growth in all

directions but the myofiber direction f0, as it has been used in [71] in context of a strain-driven

concentric law. Again, adaptions for including reversal growth according to [119] are added.

For this law, the growth deformation gradient reads

F g = ϑ1+ (1− ϑ)f0 ⊗ f0, (2.241)

and the growth stretch ϑ is governed by the evolution equation

ϑ̇ = k(ϑ)(trΣ e − Σ̂
crit). (2.242)
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Therein, Σ e is the elastic Mandel stress tensor (2.227).

The growth function here reads

k(ϑ) =





1
τ

(
ϑmax−ϑ

ϑmax−ϑmin

)γ
, trΣ e ≥ Σ̂

crit,

1
τrev

(
ϑ−ϑmin

ϑmax−ϑmin

)γrev
, trΣ e < Σ̂

crit,
(2.243)

where τ and τrev again are growth and reversal growth time constants, and γ as well as γrev are

growth and reversal growth nonlinearities, respectively. Like for the stretch-driven growth, ϑmax

and ϑmin are used to restrict growth and reversal growth to an upper and lower limit, respectively.

Finally, Σ̂ crit is a prescribed critical Mandel stress above which growth occurs or below which a

reversal in growth may happen.

The growth law-specific contributions to the material tangent❈❈❈ (2.230) are

∂F g

∂ϑ
= 1− f0 ⊗ f0 (2.244)

and

∂ϑ

∂C
=

∂ϑ

∂trΣ e

∂trΣ e

∂C
=

∂ϑ

∂trΣ e

∂(Ce : Se)

∂C
=

∂ϑ

∂trΣ e

[
∂Ce

∂C
: Se +Ce :

∂Se

∂C

]
=

=
∂ϑ

∂trΣ e

[
∂

∂C

(
F g−T

CF g−1
)
: F gSF gT + F g−T

CF g−1

:
∂

∂C

(
F gSF gT

)]
=

=
∂ϑ

∂trΣ e

[
F g−T

✶✶✶ F g−1

: F gSF gT + F g−T

CF g−1

: F g ∂S

∂C
F gT

]
=

=
∂ϑ

∂trΣ e

[
F g−T

(
✶✶✶ : S +C :

1

2
❈̌❈❈

)
F gT

]
=

=
∂ϑ

∂trΣ e

[
S +C :

1

2
❈̌❈❈

]
, (2.245)

with ❈̌❈❈ = F g−1
F g−1

❈̌❈❈
e
F g−T

F g−T
being the pull-back of the elastic modulus in the intermediate

configuration to the reference configuration, and the fourth-order unity tensor ✶✶✶ according to

(2.232).

Again, the partial derivative of the solution ϑ with respect to the growth stimulus trΣ e in (2.245)

only is expressible after having applied a numerical solution algorithm to (2.242) due to the

nonlinearity in ϑ, cf. the next chapter, sec. 3.3.1.2.

2.3.2 Phenomenological remodeling

Mathematical and computational models for growth and, explicitly, remodeling of biological tis-

sue have been proposed in the literature to date [3]. A unified approach to growth and remodeling

is the constrained mixture theory [94] mentioned earlier which would be an alternative framework

to the volumetric growth theory, which itself is not able to capture remodeling phenomena.
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As mentioned in the introductory remarks to this section, the terminus G&R most often does not

strictly apply to the cardiac growth models presented in the literature to date, cf. sec. 2.3.1, since

an explicit change in passive or active mechanical tissue constituents and hence an alteration of

their mechanical properties is not considered. To date, no cardiac volumetric growth model was

extended to be capable of capturing “true” remodeling effects [120].

Here, a phenomenological approach to include remodeling into volumetric growth constitutive

models is chosen. In a slightly modified variant, it has been proposed by Thon et al. [201] and

relies on the assumption that the portion of grown matter exhibits different passive or active

mechanical properties than the (non-grown) “base” material.

Analogously to the isochoric-volumetric split in finite strain hyperelasticity, the elastic second

Piola-Kirchhoff stress (2.225)2 is additively decomposed into a part governing the non-grown base

material, Se
(base), and a part that governs the grown added material, Se

(grown). A growth-dependent

weighting φ = φ(ϑ) ∈ [0, 1] is introduced, being the fraction of the non-grown, healthy base

material:

Se = φ(ϑ)Se
(base) + (1− φ(ϑ))Se

(grown). (2.246)

For longitudinal (uni-axial) growth as assumed for eccentric strain-driven ventricular hypertrophy,

the fraction of non-grown material is

φ =
1

ϑ
, (2.247)

and for transversal (bi-axial) growth as assumed for concentric stress-driven ventricular hypertro-

phy, it becomes

φ =
1

ϑ2
. (2.248)

The elastic material tangent for the phenomenological remodeling law then yields

❈̌❈❈
e
= 2

(
φ
∂Se

(base)

∂Ce
+

∂φ

∂Ce
⊗ Se

(base) + (1− φ)
∂Se

(grown)

∂Ce
− ∂φ

∂Ce
⊗ Se

(grown)

)
=

= φ ❈̌❈❈
e

(base) + (1− φ) ❈̌❈❈
e

(grown) + 2
∂φ

∂ϑ

∂ϑ

∂Ce
⊗ (Se

(base) − Se
(grown)), (2.249)

where ∂ϑ/∂Ce is the elastic analog to either (2.240) or (2.245) depending on the specific growth

law.

It is worth mentioning that for the isochoric-volumetric split commonly used in finite strain hyper-

elasticity, an additive decomposition of the strain energy (2.28) yields an additive decomposition

of the second Piola-Kirchhoff stress, and no dependence on the specific energy functional but

only on its derivative with respect to strain invariants occurs in the constitutive model. However,

the mass fraction φ = φ(ϑ) in (2.246) depends on the deformation, since ϑ = ϑ(C). Hence,

an additive split according to (2.246) would not be equal to applying the same type of split to

the strain energy Ψ = φ(ϑ)Ψ(base) + (1− φ(ϑ))Ψ(grown). This approach is not chosen here since

otherwise the explicit form of the energy functional would enter the expression (2.246), and

questions would arise how to consider (partly) non-hyperelastic constitutive models like active

stress (2.96), or effects of viscosity, damage and plasticity.
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2.3.3 Multiscale-in-time approach for cardiac growth and

remodeling

A computational model that accounts for long-term growth and remodeling invoked by a short-

term event has to consider the different temporal scales of cardiovascular dynamics and G&R

kinetics. While a heart beat and alterations of the dynamics of the cardiovascular state take place

on a time scale of seconds to minutes, G&R phenomena in the heart occur on a time span of days

to months depending on the specific stimulus [44].

Here, a novel multiscale-in-time approach is presented that allows to model G&R on a large

time scale as result of a short time scale acute event. The essential feature of this approach is the

continuity of vascular pressures and the mechanical as well as the growth state inside the tissue

for all times. Hence, the final homeostatic grown configuration captures all residual stresses and

strains as well as the fraction of remodeled material that has developed during G&R.

The approach relies on a separation of time scales into a short one solving the 3D-0D coupled

cardiovascular mechanics problem, namely the 3D structural model (2.94) (3Dventr) or (2.95)

(3Datrioventr) coupled to the 0D vascular system (2.118)–(2.133) (0Dsyspul) or (2.134)–(2.167)

(0Dsyspulcap), and a large time scale solving the growth problem.

Figures 2.17 and 2.18 depict the multiscale approach for modeling eccentric strain-driven growth

for dilated cardiomyopathy and concentric stress-driven growth for hypertrophic cardiomyopathy,

respectively. The figures outline the time course of the ventricular and atrial pressures and active

stress throughout the multiscale problem and sketch the different time scale sub-problems that are

solved.

Per definition, the multiscale computation is initialized with precomputed homeostatic state initial

conditions, cf. sec. 2.2.4.1. Prestressing occurs during the time span [0, t0]. The very first cycle

fulfills (2.222) and is used to set the point-wise differing homeostatic state values of the critical

growth threshold. This guarantees that the critical value above which growth is initiated depends

on a healthy known state, hence G&R only occurs if this state is violated by some pathological

incident which only then, after the first cardiac cycle, is introduced at the time tdisease. This may

be a myocardial infarction in some distinct area, an alteration in valve behavior such as mitral

regurgitation or aortic stenosis, or some other event that is capable of producing overload scenarios

which eventually lead to ventricular G&R. Thereafter, the amount of heart cycles required to

re-fulfill (2.222) is computed, ending the first small time scale with a switch-over to the large one.

On the large time scale, the heart is decoupled from the vascular system, and a quasi-static balance

of linear momentum

∇0 · (FS) = 0 in Ω0 × [tN , tN + Tgrowth + 2Tload] (2.250)

is solved, where the current growth cycle is denoted with N ∈ [0,Ngrowth]. The net time for the

calculation of the growth kinetics is Tgrowth, which is the time span during which growth may

happen. The non-physical “artificial” time span Tload characterizes a “conditioning” of the model

to the growth stimulating state of load that has been extracted from the small time scale and a
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release thereof, happening before and after entering the net growth large time scale.7

The Robin boundary conditions (2.90)–(2.93) remain present throughout the whole multiscale

simulation.

However, after decoupling the vascular model, the cavity pressures p̂ic are prescribed with a

Neumann load:

t0 = Pn0 = −p̂ic JF−Tn0 on Γ0D,i
0,c × [tN , tN + Tgrowth], (2.251)

where the “conditioning” phase during the time spans [tN , tN + Tload] (“ramp-up”) and [tN +
Tgrowth, tN + Tgrowth + Tload] (“ramp-down”) is not described.

Additionally, the active stress τ̂a at the respective growth stimulating time instance is prescribed.

Hence, on the large time scale, the constitutive equation for the second Piola-Kirchhoff stress

(2.96) becomes

S =
∂Ψ

∂E
+ τ̂af0 ⊗ f0. (2.252)

In (2.251) and (2.252), the pressures p̂ic and the (point-wise varying) active stress τ̂a are no longer

variables but are prescribed quantities that remain fixed during the time span [tN , tN + Tgrowth].
They emerge from the growth stimulating time instance of the previous short time scale com-

putation and depend on the type of growth that is considered, eccentric growth for dilated

cardiomyopathy or concentric growth for hypertrophic cardiomyopathy.

Hence, the large time scale mechanical state may be seen as “frozen” with regards to the external

loads, capturing either the end-diastolic or end-systolic small time scale instance which stimu-

lates G&R. Note that, without loss of generality, the exact values of the external loads from the

growth-stimulating small time scale instance are used. However, one may also think of using

some time-averaged quantities to trigger G&R.

After finishing the large time scale computation, the small time scale is re-visited with the circula-

tion 0D state variable initial conditions I(tN⋆ + Tcycl), cf. (2.223), where tN⋆ denotes the time

when the homeostatic cycle N⋆ from the previous small time scale started.

The alternation between the time scales is continued until the so-called growth error Egrowth

fulfills a tolerance ǫgrowth:

Egrowth =max

{∣∣∣∣
EDVℓ(tN )− EDVℓ(tN−1)

EDVℓ(tN−1)

∣∣∣∣ ,
∣∣∣∣
EDVr(tN )− EDVr(tN−1)

EDVr(tN−1)

∣∣∣∣ ,
∣∣∣∣
ESVℓ(tN )− ESVℓ(tN−1)

ESVℓ(tN−1)

∣∣∣∣ ,
∣∣∣∣
ESVr(tN )− ESVr(tN−1)

ESVr(tN−1)

∣∣∣∣
}
≤ ǫgrowth, (2.253)

where EDVi and ESVi are the left (i = ℓ) and right (i = r) ventricular end-diastolic and

end-systolic volumes, respectively.

7In the computational sense, this time may be denoted as load ramp-up and ramp-down. However, since a quasi-static

problem is solved on the large time scale, the actual duration of Tload does not influence the solution.
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2.3.3.1 Dilated cardiomyopathy (DCM)

The specific particularities for the multiscale approach to strain-triggered DCM are highlighted,

cf. fig. 2.17. The underlying growth law is presented in sec. 2.3.1.1. After prestressing, the

first homeostatic healthy baseline state is computed, and at the end-diastolic time instance

tgr,ecchom = t0 + ted denoting the time governing the homeostatic reference state for eccentric

ventricular growth, the actual elastic myofiber stretch (2.237) is “recorded” and stored into the

point-wise differing critical baseline elastic myofiber stretch if it is greater than a lower bound

(λ̂crit
myo)↓:

λ̂crit
myo ←

{
s λe

myo, if λe
myo > (λ̂crit

myo)↓,

(λ̂crit
myo)↓, else,

(2.254)

which enters the growth law (2.236), using a safety factor s.
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Figure 2.17: Multiscale-in-time approach for eccentric strain-driven growth as consequence of

end-diastolic volume overload leading to dilated cardiomyopathy (DCM).
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2.3 Multiscale modeling of myocardial growth and disease progression

At the time instance tgr,eccact = tN⋆ + ted, which denotes the point at which the critical state of

volume overload is evaluated, being the end-diastolic point of the homeostatic cardiac cycle N⋆

starting at tN⋆ , the growth stimulating cavity pressures for all four cardiac chambers as well as

the active stress state at every material point are stored in order to be applied to the quasi-static

large time scale computation in (2.251) and (2.252), respectively:

p̂ic ← pic(t
gr,ecc
act ) and τ̂a ← τa(t

gr,ecc
act ). (2.255)

The cycling between small and large time scale is continued until (2.253) is met.

2.3.3.2 Hypertrophic cardiomyopathy (HCM)

t00

Tcycl Tgrowth

t
tN

τa

enter 

quasi-static large time scale 

heart decoupled from vasculature 

q
u

a
si

-s
ta

ti
c 

p
re

st
re

ss
in

g
 

enter 

dynamic small time-scale 

heart coupled to vascular system 

lo
a

d
in

g
 

u
n

lo
a

d
in

g
 

Egrowth

tdisease

τa

... 

piat

piv

Ecycl ≤ εcycl :if Ecycl ≤ εcycl :if ventricle 

atrium 

if Egrowth ≤ εgrowth :

STOP 

at material point: 

pure structural heart model 

prescribed cavity pressures 

and fixed (point-wise varying) 

active stress 

and 

return to 

small time 

scale 

return to 

large time 

scale 

p̂ic τ̂a

τ̂a

p̂`v

p̂`at
p̂rat

p̂rv

heart + 

vasculature 

model 

..
. 

hold at fixed 

end-systolic quantities 

hold 
..

. tgr,conhom tgr,conact tgr,conact

p̂ic ← pic(t
gr,con
act )

τ̂a ← τa(t
gr,con
act )

... 

R̃`
v,out

Csys
ar

Csys
ven

Rsys
ar

Rsys
ven

Lsys
ven

R̃r
v,in

R̃r
v,out

Cpul
ar Cpul

ven

Rpul
ar Rpul

ven

Lpul
ven

R̃`
v,in

Zsys
ar

Zpul
ar

Lpul
ar

Lsys
ar

Pulmonary circulation 

(capillaries) 

... 

... 

(capillaries) 

Systemic circulation 

heart + vasculature model 

3D-0D coupled model 

pure structural 

heart model 

..
. 

at material point: 

Σ̂
crit ←

8
><
>:

s trΣ e(tgr,conhom ),

trΣ e > (Σ̂ crit)↓,

(Σ̂ crit)↓,

p̂ic ← pic(t
gr,con
act )

at material point: 

τ̂a ← τa(t
gr,con
act )if 

else 

tN?
<latexit sha1_base64="gmkpYC+Wa/IYnxCm5jdgwzFsNvo="></latexit><latexit sha1_base64="gmkpYC+Wa/IYnxCm5jdgwzFsNvo="></latexit><latexit sha1_base64="gmkpYC+Wa/IYnxCm5jdgwzFsNvo="></latexit><latexit sha1_base64="gmkpYC+Wa/IYnxCm5jdgwzFsNvo="></latexit>

Figure 2.18: Multiscale-in-time approach for concentric stress-driven growth as consequence of

end-systolic pressure overload leading to hypertrophic cardiomyopathy (HCM).

Here, the characteristic features of the multiscale approach to stress-triggered HCM are high-

lighted, cf. fig. 2.18. The underlying growth law is presented in sec. 2.3.1.2. After prestressing,
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2 Modeling of cardiac mechanics and the vascular system

the first homeostatic healthy baseline state is computed, and at the end-systolic time instance

tgr,conhom = t0 + tes denoting the time governing the homeostatic reference state for concentric

ventricular growth, the actual trace of the elastic Mandel stress, cf. (2.227), is “recorded” and

stored into the point-wise differing critical baseline elastic volumetric Mandel stress if it is greater

than a lower bound (Σ̂ crit)↓:

Σ̂
crit ←

{
s trΣ e, if trΣ e > (Σ̂ crit)↓,

(Σ̂ crit)↓, else,
(2.256)

which enters the growth law (2.242), using a safety factor s.

At the time instance tgr,conact = tN⋆ + tes, which denotes the point at which the critical state of

pressure overload is evaluated, being the end-systolic point of the homeostatic cardiac cycle N⋆

starting at tN⋆ , the growth stimulating cavity pressures for all four cardiac chambers as well as

the active stress state at every material point are stored in order to be applied to the quasi-static

large time scale computation in (2.251) and (2.252), respectively:

p̂ic ← pic(t
gr,con
act ) and τ̂a ← τa(t

gr,con
act ). (2.257)

Again, the cycling between small and large time scale is continued until (2.253) is met.

84



3 Discretization and solution methods

for cardiovascular mechanics

Models capable of describing the complex mechanical behavior of the heart and its interaction

with the circulatory system as they have been introduced in chap. 2 require robust and efficient

computational discretization and solution strategies due to the coupling of sub-models with

different spatial and temporal scales.

While, for example, the myocardium is treated as 3-dimensionally resolved nonlinear elastic solid,

the vascular system is a 0-dimensional lumped-parameter model where the temporal scales have

been integrated, setting the requirements for the discretization methods in order to maintain the

intended physical behavior.

Furthermore, the heart and the vascular system strongly influence one another, thus robust cou-

pling schemes are required for the exchange of information between the 3D solid mechanics and

the 0D vascular model during the nonlinear solution process.

All spatially resolved entities, the only-ventricular heart model 3Dventr or the 4-chamber heart

model 3Datrioventr, are discretized in space using the displacement-based finite element method

in a Total Lagrangian frame. The resulting spatially discretized solid mechanics balance equations

as well as all other 0D models – circulation models 0Dsyspul, 0Dsyspulcap or the cardiorespira-

tory model 0Dsyspulcaprespir – are discretized in time using finite difference methods.

The strong coupling of the 3D heart to the 0D circulation here is performed by a novel monolithic

discretization and solution approach with consistent linearization such that the entire coupled

nonlinear problem can be solved in one monolithic Newton-Raphson scheme. For the linearized

system of equations, an existing preconditioner is used for the efficient iterative solution of the

block matrix system arising in each Newton iteration. For the solid mechanics part of the problem

state-of-the-art algebraic multigrid preconditioners are utilized, while the comparably small 0D

model block is inverted directly.

This chapter is organized as follows. The fundamentals of spatial and temporal discretization

strategies, here finite element and finite difference methods, are briefly depicted in sec. 3.1. The

novel monolithic discretization and solution strategy for the 3D-0D coupled problems as well as

various results for patient-specific heart-vascular mechanics and gas transport are presented in

sec. 3.2. Finally, the algorithmic treatment of the multiscale growth and remodeling approach

that has been presented in the previous chapter is presented in sec. 3.3, including the results for

volume overload-induced dilated cardiomyopathy and pressure overload-induced hypertrophic

cardiomyopathy.

Discussions on results and algorithmic aspects accompany the results presentations of the respec-

tive sections.
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3 Discretization and solution methods for cardiovascular mechanics

3.1 Fundamentals

3.1.1 Nonlinear finite element methods for solid mechanics

Since spatial discretizations throughout this thesis exclusively are performed using the finite

element method, a short introduction to its basic concept and the respective notations is given

here. Specifically, focus is set on the discretization of nonlinear solid mechanics (cf. sec. 2.1.1)

in a Total Lagrangian description. For an in-depth treatment of various aspects of the topic, the

reader is referred to Zienkiewicz [225, 226] and Wriggers [218].

The starting point of the (displacement-based) finite element method is the weak form of the

initial boundary value problem of finite deformation nonlinear solid mechanics (2.55), here stated

with respect to the (known) reference configuration. The basic idea is not to find some global

function for the displacement field u in order to satisfy (2.55) (which would render infeasible

for complex geometries), but to find solutions at discrete points (nodes) belonging to smaller

(interconnected) sub-domains which allow a unique mathematical description and interpolation

of the solution by so-called shape functions with only local support. Thus, the finite element

method can be seen as a discretization of the function space of the admissible solutions. The

whole domain Ω0 is split into sub-domains Ω
(e)
0 called finite elements:

Ω0 ≈
nel⋃

e=1

Ω
(e)
0 = Ω̃0, (3.1)

where the discretized overall domain is denoted with Ω̃0 and nel is the total number of finite

elements making up that domain.

The displacement vector of one finite element u(e) is a linear combination of shape functions

stored in the matrix N(e) and discrete nodal values denoted by d(e):

u(e)(x0, t) = N(e)(x0)d
(e)(t). (3.2)

Analogously, the geometry is approximated using the same set of shape functions (called the

isoparametric concept), mapping a finite element defined in some parameter space to the real

space. The finite element position vector thus yields

x
(e)
0 = N(e) x̄

(e)
0 , (3.3)

with the vector of nodal coordinates x̄
(e)
0 . The isoparametric concept in the 2-dimensional case is

depicted in fig. 3.1.

For a linear 2-dimensional quadrilateral element as indicated in fig. 3.1, (3.2) becomes

u(e) =

[
N 1 0 N 2 0 N 3 0 N 4 0
0 N 1 0 N 2 0 N 3 0 N 4

]




d1
1

d1
2

d2
1

d2
2

d3
1

d3
2

d4
1

d4
2




, (3.4)
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Figure 3.1: Exemplary (2-dimensional) quadrilaterial finite element: Isoparametric concept.

with the shape functions being e.g. Lagrangian polynomials like N 1 = 1
4
(1 − ξ1)(1 − ξ2),

N 2 = 1
4
(1 + ξ1)(1 − ξ2), N

3 = 1
4
(1 + ξ1)(1 + ξ2) and N 4 = 1

4
(1 − ξ1)(1 + ξ2). They take the

value 1 at their respective node and the value 0 at all other nodes. Furthermore, they fulfill the

so-called partition of unity, meaning that they sum up to 1 at every location inside the finite

element. Potentially, higher-order (Lagrangian) polynomials, e.g. quadratic ones, may be used,

indicated by the dashed lines in fig. 3.1, where additional nodes have to be introduced. The shape

functions however have to be at least linear in order meet the requirements for differentiability of

the displacement, cf. sec. 2.1.1.4.

The concept analogously transfers to the 3-dimensional case and to other types of elements

(besides quadrilateral also triangular elements in two dimensions, or hexahedral, tetrahedral,

wedge or pyramidal elements in three dimensions).

Now, the principle of virtual work (2.55) can be approximated by

δW ≈
nel∑

e=1



∫

Ω
(e)
0

δuT ρ0ü dV +

∫

Ω
(e)
0

δET S dV −

∫

Ω
(e)
0

δuT b̂0 dV −

∫

Γ
N(e)
0

δuT t̂0 dA




(e)

= 0, ∀ δu,

(3.5)

where the second Piola-Kirchhoff stress tensor as well as the (virtual) Green-Lagrange strain

tensor have been written as 6×1 arrays S and δE due to their symmetry. The weighing function

(virtual displacement) is analogously interpolated to (3.2):

δu(e)(x0) = N(e)(x0) δd
(e), (3.6)

which is referred to as Bubnov-Galerkin approach. An alternative treatment would be the Petrov-

Galerkin approach, where differing shape functions for the weighting function from those for the
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3 Discretization and solution methods for cardiovascular mechanics

primary variable are used.

Inserting (3.2) and (3.6) into (3.5), re-writing the equation and assembling the global system of

equations yields an expression of the type

δdT
(
Md̈+ f int(d)− fext

)
= 0, (3.7)

with the global discrete displacement vector d, the mass matrix M, the (nonlinear) internal force

vector f int (including all kinematic and constitutive contributions) and the external force vector

fext (including contributions of prescribed body forces and boundary tractions). 1

The discretized global principle of virtual work (3.7) has to hold for an arbitrary vector of virtual

displacements δd, yielding the final global balance of linear momentum as the system of nonlinear

equations

Md̈+ f int(d)− fext = 0. (3.8)

Its size depends on the overall number of finite element nodes nnd, where every node has ndim

unknowns, with ndim being the number of spatial dimensions (here, most often ndim = 3).

In order to add some damping to the system of equations without the necessity to incorporate it

into the constitutive equation, a common practice in engineering is the introduction of a damping

matrix D as a linear combination of cM times mass matrix and cK times initial tangential stiffness

matrix (3.21), with the two parameters cM [1/s] and cK [s]. The concept is known as Rayleigh

damping. Thus, (3.8) expands to

Md̈+D ḋ+ f int(d)− fext = 0. (3.9)

Now, the original (spatial and temporal) partial differential equation (explicitly, Cauchy’s first law

of motion, with Cauchy’s second law of motion being implicitly fulfilled) has been transformed

into an ordinary differential equation in time (3.9). In general, a temporal discretization has to

be carried out in order to find the transient solution d(t) of (3.9), which will be dealt with in the

following section.

3.1.2 Time discretization

In contrast to the finite element method, where a function space is discretized, time discretization

is performed using the finite difference method, meaning a discretization of the differential

operator in terms of d(·)/dt ≈ [(·)n+1 − (·)n]/∆t. The integer n denotes the time stepping index

and indicates the old, known state, while n + 1 indicates the actual step of which a solution is

searched for. Here, only one-step time integration schemes are considered, which solely require

information of the previous time step.

In general, one may differ between explicit and implicit time integration schemes: While the

former exclusively express the discretized differential operator as a function of the old, known

1Note that here, only the internal force vector is assumed to depend (nonlinearly) on the displacement state, while

all external (body and traction) forces are considered as “dead” not depending on the deformed state of the

geometry. However, this loses its validity if, for example, a pressure boundary loading (follower load, always

poiting into the current unit outward normal) is considered, which is ubiquitous in cardiac mechanics and many

other applications. This topic will be dealt with in the specific following sections.
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3.1 Fundamentals

state of the system at tn, [(·)n+1 − (·)n]/∆t = f [(·)n], the latter formulate with respect to the

unknown state at tn+1: [(·)n+1 − (·)n]/∆t = f [(·)n+1].
Implicit schemes can be constructed such that they are unconditionally stable, which means that

the solution (·)n+1 remains bounded for a limited increase of the time step size ∆t = tn+1 − tn,

provided that the “true” (if existent, the analytical) solution is bounded. Explicit schemes, to the

contrary, are not unconditionally stable and may produce unbounded unphysical solutions if the

time step size is not appropriately small [110].

However, in contrast to explicit algorithms, which directly can be re-arranged to achieve the

solution (·)n+1, implicit algorithms require a solution process, which may necessitate an iterative

numerical procedure depending on the degree of nonlinearity of f [(·)n+1].
In general, explicit schemes are preferred when high-frequency impact problems are dealt with,

while implicit schemes rather are applied in the low-frequency range where a comparably large

time step size can be used. Throughout this thesis, all time-dependent problems are discretized

using implicit one-step time integration schemes.

For the second-order ordinary differential equation in time (3.9) which is obtained after spatial

discretization of the solid mechanics problem, the Generalized-α time integration scheme [43] is

utilized. It relies on Newmark’s method [149] which directly integrates a second-order differential

equation by assuming a linear progression of the acceleration over one time step. The velocity

v = ḋ and acceleration a = d̈ are approximated according to

vn+1 =
γ

β∆t
(dn+1 − dn)−

γ − β

β
vn −

γ − 2β

2β
∆t an, (3.10)

an+1 =
1

β∆t2
(dn+1 − dn)−

1

β∆t
vn −

1− 2β

2β
an, (3.11)

with the parameters γ ∈ [0, 1] and β ∈ [0, 1
2
].

The Generalized-α method performs a linear combination of the discretized equation of motion

at time tn+1 (unknown state) and time tn (known, old state):

Man+1−αm +Dvn+1−αf
+ f int, n+1−αf

− fext, n+1−αf
= 0, (3.12)

where

vn+1−αf
= (1− αf)vn+1 + αfvn, (3.13)

an+1−αm = (1− αm)an+1 + αman, (3.14)

f int, n+1−αf
= (1− αf)f int, n+1 + αff int, n, (3.15)

fext, n+1−αf
= (1− αf)fext, n+1 + αffext, n, (3.16)

with αm, αf ∈ [0, 1].
The algorithm allows to add controllable numerical dissipation into the system without losing the

merits of unconditional stability and second-order accuracy for a specific choice of the parameters.

Introducing the so-called spectral radius ρ∞, which is the maximum eigenvalue of the algorithm’s

amplification matrix, the two conditions are satisfied for

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

, β =
1

4
(1− αm + αf)

2 and γ =
1

2
− αm + αf , (3.17)
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3 Discretization and solution methods for cardiovascular mechanics

where ρ∞ ∈ [0, 1]. Relation (3.17)4 asserts second-order accuracy, while dissipation in the

high-frequency domain is maximized if (3.17)3, hence minimizing dissipation in the important

low-frequency domain. A spectral radius of ρ∞ = 1 means no numerical dissipation, while

ρ∞ = 0 immediately annihilates high-frequency responses. See [43] for further details on this

algorithm.

All 0-dimensional models, namely reduced-order fluids and windkessel models (cf. sec. 2.1.2)

or transport equations, are written in terms of first-order differential equations in time and are

discretized with a One-Step-θ scheme [14, 197], according to

(·)n+1 − (·)n
∆t

= θf [(·)n+1] + (1− θ)f [(·)n], (3.18)

with θ ∈ ]0, 1]. Note that for θ = 0, an explicit scheme, namely the Forward-Euler method,

would be obtained, which is not considered here. Second-order accuracy is obtained for θ = 0.5
(trapezoidal rule), while θ = 1 yields the Backward-Euler method with a maximum of numerical

dissipation for this algorithm.

3.1.3 Nonlinear solution techniques

The space and time discrete momentum balance (3.12), abbreviated with r = r(dn+1), is nonlinear

in the discrete vector of unknowns dn+1 (nodal displacements) which has to be solved for. Hence,

an iterative solution technique has to be used to find an approximate solution within each time

step n+ 1. Here, solution schemes of Newton-type are employed, which require the linearization

of (3.12) with respect to the vector of unknowns, denoted as

Lin r(di
n+1) = r(di

n+1) +
∂r(dn+1)

∂dn+1

∣∣∣∣
i

∆di+1
n+1. (3.19)

For the Generalized-α time integration utilized here, the so-called dynamic effective tangential

stiffness matrix reads

K(di
n+1) =

∂r(dn+1)

∂dn+1

∣∣∣∣
i

=
1− αm

β∆t2
M+

(1− αf)γ

β∆t
D+ (1− αf)

∂f int(dn+1)

∂dn+1

∣∣∣∣
i

, (3.20)

which is a sparse matrix due to the locality of the finite element shape functions, cf. sec. 3.1.1.

The tangential stiffness matrix

KT(dn+1) =
∂f int(dn+1)

∂dn+1

(3.21)

includes geometric and material stiffness contributions from the finite elements, i.e. the discrete

representation of the material tangent (2.34).

Newton’s method searches for the root ∆di+1
n+1 of the linearized equation (3.19),

Lin r(di
n+1)

!
= 0, ⇒ K(di

n+1)∆di+1
n+1 = −r(di

n+1) (3.22)
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and updates the displacement successively after each iteration i,

di+1
n+1 = di

n+1 +∆di+1
n+1. (3.23)

The procedure of successive linear solution of (3.22) and iterative update (3.23) is carried on until

a stopping criterion is met, e.g. in terms of the 2-norm of both the residual and the displacement

increment vector,

||r(di
n+1)||2 ≤ ǫres and ||∆di+1

n+1||2 ≤ ǫincr, (3.24)

respectively. The values for the tolerances ǫres and ǫincr depend upon the particular problem at

hand (scaling, physical system of units), here for the solid mechanical problem having the units

of force and length, respectively.

Newton’s method obtains a quadratic convergence rate when its initial guess is sufficiently close

to the solution, however may diverge if physics change too drastically within the time step consid-

ered (for instance, a too steep increase of external loading, bifurcation problems, snap-through

phenomena, or non-smooth physical behavior such as contact or valve dynamics). Hence, the

method may be combined with line search algorithms or some other regularization techniques

such as pseudo-transient continuation (PTC) [67]. The latter will be dealt with in sec. 3.2.2 in

terms of a special adaptivity of the nonlinear solution strategy.

Note that in the geometrically and materially linearized theory, (3.21) is independent of the dis-

placement state, and the series of linear solves per time step within Newton’s method is replaced

by only one solve of a linear system of equations directly yielding the solution dn+1 for the

considered step.

3.2 Monolithic discretization and solution of 3D-0D

coupled cardiac dynamics

The heart is an inherent part of the circulatory system and its central driving unit. Hence, the

mechanics of the heart, i.e. its contractile kinetics, are tightly interconnected to the fluid dynamics

of the blood in the circulation. When the heart contracts, the blood pressure in its ventricles

rises while chamber volume remains virtually unaltered until semilunar valve opening and blood

ejection occurs. When the heart starts to relax, ventricular blood pressure drops while chamber

volume again stays constant at its minimum value until eventually atrioventricular valve opening

and filling of the heart occurs – and the cycle starts again, cf. chap. 1, sec. 1.2.

Therefore, at each time instance of the cardiac cycle, the mechanical dependencies of the variables

that describe the heart are strongly dependent on the state variables describing the blood pressures

and flows in the vascular system – and vice versa.

Due to this inherently strong coupling between the 3D solid mechanics model and the 0D fluid

circulation model, a unified monolithic discretization and solution strategy for the 3D-0D coupled

transient cardiovascular dynamics problem is proposed. To date, this is the first monolithic 3D-0D

coupled solution approach for a 3D patient-specific (atrio-)ventricular mechanical model coupled
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3 Discretization and solution methods for cardiovascular mechanics

to a closed-loop circulatory system model. The approach has been published in Hirschvogel et al.

[86] for the heart model 3Dventr.

Monolithic solution schemes of 3D-0D coupled solid-fluid cardiovascular problems have previ-

ously been presented in literature, e.g. by Sainte-Marie et al. [178]. Another approach is presented

by Fritz et al. [62]. There, a patient-specific 4-chamber heart is used, however only the ventricles

are coupled to a 0D model.

However, in both of these approaches, only the ventricles are coupled to single 0D pre- and

afterload models, and venous return from one ventricle into the other is not accounted for, hence

no closed complex circulation and with the ability to couple to four cardiac chambers has been

used. Further, a direct solver was applied to tackle the resulting linearized system of equations.

In nearly all other contributions where 3D solid mechanical heart models are coupled to circula-

tory system models, cf. for example Kerckhoffs et al. [104], presenting a closed-loop model that

is capable of venous return coupling to a ventricular patient-specific heart, partitioned coupling

schemes with a separation of solid mechanics and circulatory system solves are employed. While

these approaches are very promising with regard to their modularity, i.e. using different soft-

ware packages or modules and hence tailored nonlinear and linear solvers for each sub-problem

separately, they require staggered multiple nonlinear solution loops for each sub-problem with

interchange of state variables until an outer convergence is achieved. Additionally, special relax-

ation techniques are required for the isovolumic heart phases due to the classical balloon dilemma

[114] of a Dirichlet constrained incompressible fluid (the 0D blood when the ventricles’ valves

are closed).

Section 3.2.1 depicts the space and time discrete problem formulation, and the consistently

linearized system of equations including the linear solution process are shown in sec. 3.2.2.

Thereafter, various exemplary results for the 3D-0D coupled heart-vasculature model are shown

in sec. 3.2.3, including solutions of the gas transport cardiorespiratory model 0Dsyspulcaprespir.

Finally, the results as well as the algorithmic approaches are discussed in sec. 3.2.4.

3.2.1 Space and time discrete problem formulation

The 3D solid mechanics problem of the heart is spatially discretized using the finite element

method, cf. its fundamentals depicted in sec. 3.1.1. The principle of virtual work for the specific

problem, (2.94) for model 3Dventr and (2.95) for model 3Datrioventr, reads according to (3.5) in

its discretized form

δW ≈
nel∑

e=1



∫

Ω
(e)
0

δuT ρ0ü dV +

∫

Ω
(e)
0

δET S dV+

+
∑

j

∫

Γ
R,j(e)
0

δuT t
(R)
0 (u, u̇) dA+

∑

c

∑

i=ℓ,r

∫

Γ
0D,i(e)
0,c

δuT t
(0D)
0 (u, pic) dA




(e)

= 0, ∀ δu, (3.25)
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where t
(R)
0 is the discretized traction of the Robin boundary conditions (j = b, e for model

3Dventr and j = ar, ven, e for model 3Datrioventr), and t
(0D)
0 is the discretized follower load

traction stemming from the vascular system (c = v for model 3Dventr and c = v, at for model

3Datrioventr).

After assembly, the semi-discrete global balance of linear momentum according to (3.9) reads

Md̈+D ḋ+ f int(d, ḋ)− fext(d,p) = 0 in Ω̃0 × [t0, T ], (3.26)

where d is the vector of solid mechanics state variables (displacements) and p the vector contain-

ing the state variables of the 0D model (pressures and flows), while only a subset out of the latter,

namely the atrial and ventricular cavity pressures, enter (3.26).

Time discretization is performed using finite differences, cf. some fundamentals thereof in sec.

3.1.2. Specifically, the space-discrete balance of linear momentum (3.26) is discretized in time

with the Generalized-α method, and the fully discretized system of equations according to (3.12)

yields

rS = Man+1−αm +Dvn+1−αf
+ f int, n+1−αf

− fext, n+1−αf
, (3.27)

denoted as the solid mechanics residual rS.

At each material integration point, the evolution equation of the active stress constitutive model

(2.99) has to be solved, here done with a Backward-Euler method, (3.18) with θ = 1. Since the

evolution equation is linear in the active stress variable, it can be re-arranged directly yielding the

active stress τa,n+1 at the current time step n+ 1:

τa,n+1 − τa,n
∆t

= −|u|τa,n+1 + an+1σ0|u|+,

⇒ τa,n+1 =
τa,n + an+1 σ0 |u|+∆t

1 + |u|∆t
, (3.28)

where τa,n represents the old, known value of the previous time step n.

The Frank-Starling law (2.106) is discretized as follows:

if |u|− > 0:

an+1 = g(λmyo,n+1), (3.29)

else :

an+1 = an,

with g defined according to (2.107).

The 0D vascular system model, (2.118)–(2.133) for model 0Dsyspul or (2.134)–(2.167) for model

0Dsyspulcap, as well as (2.183)–(2.187) for the lung mechanics and (2.197)–(2.210) for the gas

transport kinetics of model 0Dsyspulcaprespir, is discretized in time using an implicit One-Step-θ
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3 Discretization and solution methods for cardiovascular mechanics

scheme, cf. (3.18). The time-discrete 0D model residual r0D for the vascular model 0Dsyspul thus

particularizes in

r0D =




V ℓ
at(dn+1)−V ℓ

at(dn)

∆t
− qpulven,n+θ + qℓv,in,n+θ

θ
R̃ℓ

v,in,n+1

(pℓat,n+1 − pℓv,n+1) +
1−θ

R̃ℓ
v,in,n

(pℓat,n − pℓv,n)− qℓv,in,n+θ

V ℓ
v (dn+1)−V ℓ

v (dn)
∆t

− qℓv,in,n+θ + qℓv,out,n+θ
θ

R̃ℓ
v,out,n+1

(pℓv,n+1 − psysar,n+1) +
1−θ

R̃ℓ
v,out,n

(pℓv,n − psysar,n)− qℓv,out,n+θ

Csys
ar

(
psysar,n+1−psysar,n

∆t
− Zsys

ar

qℓv,out,n+1−qℓv,out,n
∆t

)
− qℓv,out,n+θ + qsysar,n+θ

Lsys
ar

Rsys
ar

qsysar,n+1−qsysar,n

∆t
+ 1

Rsys
ar
(psysven,n+θ − psysar,n+θ + Zsys

ar q
ℓ
v,out,n+θ) + qsysar,n+θ

Csys
ven

psysven,n+1−psysven,n

∆t
− qsysar,n+θ + qsysven,n+θ

Lsys
ven

Rsys
ven

qsysven,n+1−qsysven,n

∆t
+ 1

Rsys
ven

(prat,n+θ − psysven,n+θ) + qsysven,n+θ
V r
at(dn+1)−V r

at(dn)

∆t
− qsysven,n+θ + qrv,in,n+θ

θ
R̃r

v,in,n+1

(prat,n+1 − prv,n+1) +
1−θ

R̃r
v,in,n

(prat,n − prv,n)− qrv,in,n+θ

V r
v (dn+1)−V r

v (dn)
∆t

− qrv,in,n+θ + qrv,out,n+θ
θ

R̃r
v,out,n+1

(prv,n+1 − ppular,n+1) +
1−θ

R̃r
v,out,n

(prv,n − ppular,n)− qrv,out,n+θ

Cpul
ar

(
ppular,n+1−ppular,n

∆t
− Zpul

ar

qrv,out,n+1−qrv,out,n
∆t

)
− qrv,out,n+θ + qpular,n+θ

Lpul
ar

Rpul
ar

qpular,n+1−qpular,n

∆t
+ 1

Rpul
ar
(ppulven,n+θ − ppular,n+θ + Zpul

ar qrv,out,n+θ) + qpular,n+θ

Cpul
ven

ppulven,n+1−ppulven,n

∆t
− qpular,n+θ + qpulven,n+θ

Lpul
ven

Rpul
ven

qpulven,n+1−qpulven,n

∆t
+ 1

Rpul
ven

(pℓat,n+θ − ppulven,n+θ) + qpulven,n+θ




(0Dsyspul)

, (3.30)

where a quantity (·) at time instance tn+θ is denoted with (·)n+θ := θ(·)n+1 + (1− θ)(·)n, cf. sec.

3.1.2. The vector of discrete state variables (of model 0Dsyspul) at the current time step n+ 1 is

pn+1 =
[
pℓat qℓv,in qℓv,out pℓv psysar qsysar psysven qsysven

prat qrv,in qrv,out prv ppular qpular ppulven qpulven

]T
(0Dsyspul)n+1

. (3.31)

Models 0Dsyspulcap and 0Dsyspulcaprespir are discretized analogously to (3.30), thus their

discrete representations are omitted. Note that atrial volumes V i
at are represented by the 0D

elastance models (2.111) in case of an only-ventricular 3D heart (model 3Dventr), thus they do

not depend on the (volume-describing subset of the) discrete structural displacement state dn+1 at

time instance tn+1. Furthermore, for the model 0Dsyspulcaprespir, atrial and ventricular volumes

are decoupled from the 3D problem and are treated with the prescribed-dynamics approach

detailed in sec. 2.2.3.2.

3.2.2 Consistent linearization and monolithic Newton iteration

The 3D solid mechanics problem (3.27) as well as the 0D model (3.30) are implicitly discretized

in time and formulated with respect to the unknown state variables dn+1 (sized n3D
dof) and pn+1
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(sized n0D
dof) of 3D and 0D model which has to be solved for. Hence, it is required that both residual

expressions vanish at the current time step n+ 1:

rS−0D =

[
rS(d,p)
r0D(p,d)

]

n+1

!
=

[
0

0

]
. (3.32)

Here, a Newton-Raphson scheme, cf. sec. 3.1.3, is applied to the coupled system of nonlinear

equations, requiring a simultaneous solution of both 3D and 0D problem in one monolithic

iterative process. The linearization (3.19) for the Newton scheme then has to account for both

variables dn+1 and pn+1 and reads

Lin rS−0D(di
n+1,p

i
n+1) = rS−0D(di

n+1,p
i
n+1)+

+
∂rS−0D(dn+1,pn+1)

∂dn+1

∣∣∣∣
i

∆di+1
n+1 +

∂rS−0D(dn+1,pn+1)

∂pn+1

∣∣∣∣
i

∆pi+1
n+1. (3.33)

Requiring (3.33) to vanish in each Newton iteration i, it can be re-written to the linearized

monolithic system of equations




KS KS,0D

K0D,S K0D




i

n+1



∆d

∆p



i+1

n+1

= −



rS

r0D



i

n+1

(3.34)

which has to be solved for ∆di+1
n+1 and ∆pi+1

n+1 prior to updating the solution according to

di+1
n+1 = di

n+1 +∆di+1
n+1 and pi+1

n+1 = pi
n+1 +∆pi+1

n+1 (3.35)

in each Newton iteration i until

||rS(di
n+1,p

i
n+1)||2 ≤ ǫSres and ||∆di

n+1||2 ≤ ǫSincr (3.36)

and

||r0D(pi
n+1,d

i
n+1)||2 ≤ ǫ0Dres and ||∆pi

n+1||2 ≤ ǫ0Dincr. (3.37)

Therein, the structural effective dynamic stiffness matrix KS ∈ Rn3D
dof×n3D

dof according to (3.20)

reads

KS
∣∣i
n+1

=
∂rS

∂d

∣∣∣∣
i

n+1

=

=
1− αm

β∆t2
M+

(1− αf)γ

β∆t
D+ (1− αf)

∂f int(d)

∂d

∣∣∣∣
i

n+1

− (1− αf)
∂fext(d,p)

∂d

∣∣∣∣
i

n+1

, (3.38)

where the dependence of the external force vector on the displacement state has to be accounted

for (follower pressure load).

The off-diagonal stiffness matrix KS,0D ∈ Rn3D
dof×n0D

dof , governing the dependence of the solid

mechanical problem on the 0D vascular model reads

KS,0D
∣∣i
n+1

=
∂rS

∂p

∣∣∣∣
i

n+1

= −(1− αf)
∂fext(d,p)

∂p

∣∣∣∣
i

n+1

. (3.39)
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Vice versa, the second off-diagonal stiffness block K0D,S ∈ Rn0D
dof×n3D

dof describes the dependence

of the 0D model on the structural displacement field and reads

K0D,S
∣∣i
n+1

=
∂r0D

∂d

∣∣∣∣
i

n+1

=

=
1

∆t

[
∂V ℓ

at(d)

∂d

T

0
∂V ℓ

v (d)

∂d

T

0 . . . 0
∂V r

at(d)

∂d

T

0
∂V r

v (d)

∂d

T

0 . . . 0

]i T

n+1

. (3.40)

The stiffness matrix K0D
∣∣i
n+1

= ∂r0D

∂p

∣∣∣
i

n+1
∈ Rn0D

dof×n0D
dof depends on the specific 0D model. For

the model 0Dsyspul with its discrete representation (3.30) and for the model 0Dsyspulcap, it is

straightforward due to only linear or piecewise-linear functions involved and therefore is omitted

here.

All 0D models as well as a 3D-0D monolithic solution framework are implemented into the

in-house multi-physics finite element software package Baci [207].

In order to solve the linear system of equations (3.34), a 2×2 block SIMPLE-like preconditioner

(Semi-Implicit Method for Pressure-Linked Equations) [57] within a parallel GMRES [176]

solver implemented in Trilinos [82] is used. The preconditioner that is applied to the global

system matrix is denoted as
(
Ã

i

n+1

)−1

. The matrix Ã reads




KS KS,0D

K0D,S K0D



i

n+1

≈ (3.41)

≈




1 0

K0D,S
(
KS
)−1

1



i

n+1



KS 0

0 −Š



i

n+1



1
(
diag

(
KS
))−1

KS,0D

0 ᾱ 1



i

n+1

= Ã
i

n+1, (3.42)

with ᾱ ∈ ]0, 1] and the Schur complement operator

Š
i

n+1 = K0D
∣∣i
n+1
− K0D,S

∣∣i
n+1

(
diag

(
KS
∣∣i
n+1

))−1

KS,0D
∣∣i
n+1

. (3.43)

For the inverse
(
KS
)−1

of the large structural block, an algebraic multigrid preconditioner is used,

while the small 0D block K0D is inverted directly using an LU solver.

There exist specific numerical problems with rapid changes in physical conditions from one time

step to another (e.g., types of problems that are dealt with in chap. 5: thin-walled structures under

time-varying loading, sudden contact phenomena, etc.) that challenge a Newton-type nonlinear

solution procedure. If these changes between two subsequent steps become too drastic, a Newton

scheme may fail to converge to the equilibrium solution. Hence, robust strategies are required that

prevent Newton’s method from diverging, or in case of divergence, that are capable of performing

the respective time step again with modified algorithmic settings.
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While a priori error estimators for the time integrator and subsequent adaptive time stepping

procedures are well-established tools in order to maintain a certain level of accuracy along with

savings in computation time [224], in many cases they most probably will not prevent Newton’s

method from diverging or the program running into floating point exceptions if a step beyond the

equilibrium point is performed.

Here, methods that detect problems in the linear solver or divergence at a fixed number of

nonlinear iterations are used, and the time step is stopped or repeated using a pseudo-transient

continuation (PTC) [67] technique on the structural block of the system matrix. Hence, in case

of detected problems in the linear or nonlinear solution process, the linear system of equations

(3.34) becomes 

KS + kptc1 KS,0D

K0D,S K0D



i

n+1



∆d

∆p



i+1

n+1

= −



rS

r0D



i

n+1

, (3.44)

with

ki
ptc := ki−1

ptc

||rS||i2
||rS||i−1

2

. (3.45)

In case of further divergence, i.e. if the initial value of (3.45) was not appropriately large, it is

doubled and the PTC solution is performed once again. Only after ten non-successful attempts,

the computation is finally stopped. In case of convergence of the nonlinear solver and successful

accomplishment of the time step, (3.45) is set to zero, hence a standard Newton scheme with the

system (3.34) is performed for the subsequent steps.

It should be noted that a similar strategy may be applied to the time step size ∆t, i.e. halving it

until convergence of the nonlinear solver is achieved. However, in case of snap-through, buckling

or large deflection phenomena (thin-walled pressure-loaded structures), a PTC adaption has

proven to work more robustly and more efficient than time step size reduction for the problems

addressed in this thesis.

3.2.3 Exemplary results for a patient-specific heart

Results for a patient-specific heart are presented, here using a porcine (atrio-)ventricular geometry

that is generated according to the procedure in sec. 2.2.1.1. Standard conditions are shown in sec.

3.2.3.1, and the model’s behavior under varying afterload, preload and inotropic states is presented

in sec. 3.2.3.2. Finally, a couple of valve diseases are simulated in sec. 3.2.3.3. Conclusively, gas

transport kinetics are dealt with in sec. 3.2.3.4. The results are validated to textbook physiology

for different alterations from the standard conditions.
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If not stated otherwise, the contraction dynamics and 0D circulation base parameters that are

listed in tab. 2.3 and tab. 2.6 are chosen. The 3D heart is meshed with linear displacement-based

tetrahedral elements with an average element edge length of h ≈ 1 mm (3Dventr) as well

as h ≈ 1.25 mm (3Datrioventr). The respective discretizations are denoted with tet4 1 and

tet4 1.25. Refer to appendix A.1.1.1 for further details and sketches of the meshes. For one

cardiac cycle, nstep = 500 time steps of equal size are used.

Gas transport and dissociation parameters are chosen according to tab. 2.8 and tab. 2.9.

Table 3.1 lists the algorithmic base parameters, i.e. time integration parameters, damping coeffi-

cients as well as tolerances for the Newton iteration.

Table 3.1: Algorithmic base parameters (0D model tolerances for Newton iteration are given

without unit and apply for residuals / increments formulated in fluxes or pressures)

nstep [−] 500 number of time steps

ρ∞ [−] 0.8 spectral radius of Generalized-α time integration

θ [−] 0.5 parameter for One-Step-θ time integration

cM [1/s] 0 Rayleigh damping mass factor

cK [s] 0.0001 Rayleigh damping stiffness factor

ǫSres [mN] 10−6 solid mechanics residual tolerance for Newton iteration

ǫ0Dres 10−6 0D model residual tolerance for Newton iteration

ǫSincr [mm] 10−8 solid mechanics increment tolerance for Newton iteration

ǫ0Dincr 10−6 0D model increment tolerance for Newton iteration

ǫcycl [−] 0.03 periodicity tolerance for cardiac cycle

3.2.3.1 Standard conditions

Standard conditions (subsequently referred to as “control”) for the cardiovascular system are

computed using a semi-educated guess of initial conditions for all circulation system variables

and applying the procedure outlined in sec. 2.2.4.1 in order to achieve a prestressed homeostatic

state on the initial geometric configuration.

Figure 3.2 shows pressures and pressure-volume relationships as well as the end-systolic deformed

configuration of the ventricular model 3Dventr coupled to the circulatory model 0Dsyspul (cf.

fig. 2.6), and tab. 3.2 the corresponding left and right ventricular function indicators in terms of

end-diastolic and end-systolic pressures and volumes as well as stroke work.

Figure 3.3 shows the results obtained for the atrioventricular model 3Datrioventr coupled to

the extended circulation 0Dsyspulcap (cf. fig. 2.7), and tab. 3.3 the corresponding left and right

ventricular function indicators in terms of end-diastolic and end-systolic pressures and volumes

as well as stroke work.
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Figure 3.2: Model 3Dventrtet4 1 | 0Dsyspul: Healthy baseline (control) state of a subject-specific

porcine ventricular geometry. (a) Left heart and systemic pressures over time. (b)

Right heart and pulmonary pressures over time. (c) Left (i = ℓ) and right (i = r)

ventricular pressure-volume loops. (d) Initial (light-gray, at t = t0) vs. periodic

end-systolic (colored, at t = t0 + tes) configuration: Displacement magnitude.

Table 3.2: Model 3Dventrtet4 1 | 0Dsyspul: Left (i = ℓ) and right (i = r) ventricular function

indicators end-diastolic volume EDV, stroke volume SV, ejection fraction EF, end-

diastolic pressure EDP, end-systolic pressure ESP, peak ventricular pressure PVP,

cardiac output CO, and stroke work SW

i EDVi [ml] SVi [ml] EFi [−] EDPi [kPa] ESPi [kPa] PVPi [kPa] COi [ l
min

] SWi [mJ]
ℓ 108.9 62.4 0.57 1.12 11.7 13.9 3.74 774.7
r 82.6 61.5 0.75 1.28 2.96 4.12 3.69 180.6

99



3 Discretization and solution methods for cardiovascular mechanics

(a)

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

p
[k
P
a]

p
[m

m
H
g
]

t [s]

pℓv
pℓat

psysar

psysar,peri

psysven,spl

psysven,espl

psysven,msc

psysven,cer

psysven,cor

psysven

(b)

0

2

4

6

8

10

12

14

16

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

p
[k
P
a]

p
[m

m
H
g
]

t [s]

prv prat ppular ppulcap ppulven

(c)

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

p
i v
[k
P
a]

p
i v
[m

m
H
g
]

V i
v [ml]

i = ℓ

i = r

(d)

0

0.5

1

1.5

2

2.5

35 40 45 50 55
0

5

10

15

20

p
i a
t
[k
P
a]

p
i a
t
[m

m
H
g
]

V i
at [ml]

i = ℓ

i = r

(e) 80 % 90 % 100 % 10 % 20 %

30 % 40 % 50 % 60 % 70 %

...

...

0
||u|| [mm]

17

Figure 3.3: Model 3Datrioventrtet4 1.25 | 0Dsyspulcap: Healthy baseline (control) state of a subject-

specific porcine ventricular geometry. (a) Left heart and systemic pressures over

time. (b) Right heart and pulmonary pressures over time. (c) Left (i = ℓ) and right

(i = r) ventricular pressure-volume loops. (d) Left (i = ℓ) and right (i = r) atrial

pressure-volume loops. (e) Deformation in percent of heart cycle: 100 % indicates

end of diastole (maximum filling), color is displacement magnitude.
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Table 3.3: Model 3Datrioventrtet4 1.25 | 0Dsyspulcap: Left (i = ℓ) and right (i = r) ventricular

function indicators end-diastolic volume EDV, stroke volume SV, ejection fraction

EF, end-diastolic pressure EDP, end-systolic pressure ESP, peak ventricular pressure

PVP, cardiac output CO, and stroke work SW

i EDVi [ml] SVi [ml] EFi [−] EDPi [kPa] ESPi [kPa] PVPi [kPa] COi [ l
min

] SWi [mJ]
ℓ 125.9 65.5 0.52 1.76 12.3 14.1 3.93 828.1
r 135.3 67.2 0.50 0.99 4.15 5.22 4.03 273.7

3.2.3.2 Changes in afterload, preload, and inotropy: End-systolic, end-diastolic,

diastatic pressure-volume relationships, and the Frank-Starling law

The performance of the models under varying conditions of preload and afterload is assessed. The

term preload refers to the maximum cavity volume at the end of the diastole, hence the maximum

state of stretch sensed by the myofibers. The term afterload is associated with the pressure the

heart has to work against during systole.

The so-called end-systolic pressure-volume relationship (ESPVR) defines the maximum pressure

that the ventricle can develop at any given left ventricular volume. Over a narrow range of loading

conditions, the ESPVR is linear, however becomes nonlinear over a wider range [101, 205]. It is

obtained by connecting the upper left points of ventricular pressure-volume relationships under

varying conditions of afterload, hence the pressure-volume pairs at the end of the systole. In

physiology, it represents a global index of contractility.

The end-diastolic pressure-volume relationship (EDPVR) determines the passive filling curve

of the ventricles and in general is curvilinear. At ideal quasi-static passive filling, changes in

preload occur along the EDPVR. The so-called diastatic pressure-volume relationship (D-PVR)

describes the passive filling curve before atrial contraction, which is in general not the same as the

EDPVR [223] since atrial contraction alters passive ventricular behavior. The slope of EDPVR

(and D-PVR) quantify the passive chamber stiffness.

Figure 3.4a presents the left ventricular pressure-volume relationships for four different inotropic

states (varying contractility σ0) of the model 3Datrioventr with circulation 0Dsyspulcap – each

state at 10 different afterloads. The afterload here is varied by exclusively changing the (total)

systemic arterial resistance Rsys
ar(total), hence without adapting the other vascular parameters ac-

cording to tab. 2.7 but assuming them to be calculated using the base total resistance (tab. 2.6).

Resistances are varied in the range Rsys
ar(total) ∈ [40 mPa·s

mm3 , 220
mPa·s
mm3 ] in increments of 20 mPa·s

mm3 . For

each of the 40 runs, circulation variable initial conditions of the afore-presented control case were

set, and the transient simulations were performed according to the procedure in sec. 2.2.4.2 until

(2.222) fell below 3 %.

ESPVR is sketched by the solid black lines connecting the upper left end-systolic pressure-volume

pairs, and regions of near-linearity are drawn by straight lines next to the respective “true” curves.

Curvilinearity tends to shift from higher to lower afterloads for decreasing contractility, and

steepness decreases at lower inotropic states. Volume axis intercepts are not drawn, but in general

are obtained by extrapolating ESPVR.
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Figure 3.4: Effects on left ventricular pressure-volume relationships for changes in afterload,

preload and inotropy. (a) Model 3Datrioventrtet4 1.25 | 0Dsyspulcap: End-systolic, end-

diastolic, diastatic pressure-volume relationships (ESPVR, EDPVR, D-PVR) under

different inotropic states (contractility σ0) as well as changes in afterload (total sys-

temic arterial resistance Rsys
ar(total)). (b) Textbook physiology on changes in afterload,

and (c) changes in inotropy, both taken from www.cyphysiology.com (with permis-

sion).
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3.2 Monolithic discretization and solution of 3D-0D coupled cardiac dynamics

EDPVR and D-PVR are indicated by solid black lines connecting the end-diastolic and end-

diastatic pressure-volume pairs, respectively. Both are curvilinear, with a slightly steeper slope of

D-PVR.

Figure 3.5a presents the left ventricular pressure-volume relationships for the base contrac-

tile state (σ0 = 100 kPa) for five different states of afterload (exclusively varying Rsys
ar(total) ∈

[40 mPa·s
mm3 , 200

mPa·s
mm3 ] in increments of 40 mPa·s

mm3 without change of other vascular parameters

according to tab. 2.7) – for impaired (no) atrial contraction as well as the respective control states

(intact atria). When ventricular filling is purely passive (impaired atria), EDPVR and D-PVR

coincide.
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Figure 3.5: (a) Model 3Datrioventrtet4 1.25 | 0Dsyspulcap: End-diastolic and diastatic left ven-

tricular pressure-volume relationship (EDPVR and D-PVR), and the Frank-Starling

mechanism: Control vs. impaired atrial contraction. (b) Textbook demonstration of the

Frank-Starling law, taken from www.cyphysiology.com (with permission): A higher

end-diastolic volume due to increased venous return leads to stronger contraction, and

stroke volume is increased by about the added return volume.

Effects of the Frank-Starling mechanism may be readily conceived: The portion of increased

preload by atrial contraction is added to the stroke volume, and the ventricles contract to the

same respective end-systolic volume as compared to the impaired atrium case. The Frank-Starling

effect is sketched in fig. 3.5b, taken from www.cyphysiology.com (with permission): The higher

end-diastolic volume due to elevated venous return yields a stroke volume that is increased by

about that additional return volume.

3.2.3.3 Valve diseases

Valve diseases are computed with respect to the control state which was calculated in sec. 3.2.3.1.

The disease is suddenly introduced after two cardiac cycles. The transient computation is carried

out according to the procedure in sec. 2.2.4.2. However, in case of valve regurgitations, absolute

left and right stroke volumes do not necessarily have to coincide at homeostatic state [7], thus a

modification of (2.222) neglecting the stroke volume error is considered for these cases. Results

are shown for model 3Dventr coupled to circulation 0Dsyspul.
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3 Discretization and solution methods for cardiovascular mechanics

Mitral valve diseases A mitral valve insufficiency or disease is simulated by changing its

resistive properties. Mitral valve regurgitation is simulated by reducing the valve’s maximum

resistance from the base value to Rℓ,max
v,in = 10−5 kPa·s

mm3 . A stenosis is mimicked by increasing the

valve’s minimum resistance to Rℓ,min
v,in = 2.5 · 10−5 kPa·s

mm3 .

Figure 3.6b and fig. 3.6d show textbook qualitative left ventricular pressure-volume relationships

(with permission from www.cvphysiology.com) with respect to a control state as they would

occur for mitral valve leakage (regurgitation) as well as for mitral valve stenosis, respectively.

The related simulation results are shown in fig. 3.6a and fig. 3.6c, respectively.
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Figure 3.6: Model 3Dventrtet4 1 | 0Dsyspul: Mitral valve diseases. (a) Simulated left ventricular

pressure-volume loop, control vs. mitral regurgitation, mitral valve’s maximum resis-

tance changed from its base value to Rℓ,max
v,in = 10−5 kPa·s

mm3 . (b) Schematic textbook left

ventricular pressure-volume loop, control (black) vs. mitral regurgitation (filled red),

taken from www.cvphysiology.com (with permission). (c) Simulated left ventricular

pressure-volume loop, control vs. mitral stenosis, mitral valve’s minimum resistance

changed from its base value to Rℓ,min
v,in = 2.5 · 10−5 kPa·s

mm3 . (d) Schematic textbook left

ventricular pressure-volume loop, control (black) vs. mitral stenosis (filled red), taken

from www.cvphysiology.com (with permission).
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In case of mitral valve regurgitation, the pressure-volume relation widens and flattens. End-

diastolic volume drastically increases (volume overload) to 141 ml. A significant amount of

stroke volume is not ejected into the aorta but back into the left atrium. Here, this so called

regurgitant fraction is 67 %. Net stroke volume and net ejection fraction fall to 34 ml and 24 %,

respectively. Total left and right ventricular stroke volume do not coincide at homeostasis [7].

A stenosis of the mitral valve, to the contrary, leads to a left shift of the pressure-volume rela-

tionship. Filling is impaired, and end-diastolic volume falls to 99 ml. Stroke volume and ejection

fraction are slightly reduced to 55 ml and 55 %, respectively.

Aortic valve diseases As for the mitral valve, a malperformance of the aortic valve is simu-

lated by altering the resistive properties. Aortic regurgitation is simulated by reducing the valve’s

maximum resistance from the base value to Rℓ,max
v,out = 5 · 10−5 kPa·s

mm3 . A stenosis of the aortic valve

is achieved by increasing the valve’s minimum resistance to Rℓ,min
v,out = 5 · 10−5 kPa·s

mm3 .

Figure 3.7b and fig. 3.7d show textbook qualitative left ventricular pressure-volume relationships

(with permission from www.cvphysiology.com) with respect to a control state as they would

occur for a leakage of the aortic valve (aortic valve regurgitation) as well as for an aortic valve

stenosis, respectively. The simulation results for these diseases are shown in fig. 3.7a and fig. 3.7c,

respectively.

Aortic regurgitation produces large end-diastolic volumes, here 138 ml (volume overload). Net

stroke volume and net ejection fraction are 42 ml and 30 %, with a regurgitant fraction of 55 %.

As for the mitral regurgitation, left and right ventricular stroke volumes do not coincide at home-

ostasis.

Aortic valve stenosis produces greatly increased systolic pressures the ventricle has to work

against (pressure overload). The pressure-volume relation shifts to the right, stroke volume and

ejection fraction fall to 50 ml and 36 %, respectively. End-diastolic and end-systolic pressures

rise to 3 kPa and 18 kPa, respectively. Aortic stenosis produces a secondary increase in end-

diastolic volume (fig. 3.7c) which is not directly distinguishable in the textbook fig. 3.7d but in

the associated fig. 3.4b (pressure-volume loop changes for varying afterload).

Flow distributions for valve diseases The solutions for the left heart and systemic vas-

cular flows (variables q) is studied for the four valve disease scenarios. Figure 3.8a shows the

(healthy) control state (solution for the second cardiac cycle using the initial conditions of the

model in fig. 3.3). The homeostatic state fluxes for aortic regurgitation are depicted in fig. 3.8b.

The uni-directionality (positivity) of ventricular out-flux gets lost, and qℓv,out becomes negative

during diastole. In case of mitral regurgitation (fig. 3.8d), ventricular in-flux qℓv,in is negative

during systole. If a stenosis of the aortic valve is present, qℓv,out gets diminished (fig. 3.8c), while

qℓv,in is reduced in case of a mitral valve stenosis (fig. 3.8e). The respective start time for the

homeostatic heart cycle is denoted with tN⋆ , which varies depending on the disease.
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Figure 3.7: Model 3Dventrtet4 1 | 0Dsyspul: Aortic valve diseases. (a) Simulated left ventricu-

lar pressure-volume loop, control vs. aortic regurgitation, aortic valve’s maximum

resistance changed from its base value to Rℓ,max
v,out = 5 · 10−5 kPa·s

mm3 . (b) Schematic

textbook left ventricular pressure-volume loop, control (black) vs. aortic regurgitation

(filled red), taken from www.cvphysiology.com (with permission). (c) Simulated left

ventricular pressure-volume loop, control vs. aortic stenosis, aortic valve’s minimum

resistance changed from its base value to Rℓ,min
v,out = 5 · 10−5 kPa·s

mm3 . (d) Schematic

textbook left ventricular pressure-volume loop, control (black) vs. aortic stenosis

(filled red), taken from www.cvphysiology.com (with permission).
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Figure 3.8: Model 3Dventrtet4 1 | 0Dsyspul: Left heart and systemic fluxes over time for control

and valve disease states; respective homeostatic cycle is denoted with N⋆. (a) Control,

second homeostatic cardiac cycle. (b) Aortic regurgitation. (c) Aortic stenosis. (d)

Mitral regurgitation. (e) Mitral stenosis.

107



3 Discretization and solution methods for cardiovascular mechanics

3.2.3.4 Gas transport and dissociation

The gas transport problem is computed with the prescribed-dynamics approach detailed in sec.

2.2.3.2. As input, the standard conditions from model 3Datrioventrtet4 1.25 | 0Dsyspulcap are used.

A total ventilation rate of V̇t = VT/Tbreath = 8 l/min (tidal volume per duration of one breath) is

achieved for the given parameters, cf. tab. 2.8.

Figure 3.9 depicts the mechanical pressure solutions for the last ten cycles as well as for the very

last periodic cycle (N⋆ = 10 000) for the standard conditions. Accordance between fig. 3.9c and

fig. 3.3a, as well as between fig. 3.9d and fig. 3.3b may be ascertained.
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Figure 3.9: Model PrescrHeart3Datrioventrtet4 1.25
| 0Dsyspulcaprespir: Prescribed-dynamics solution.

(a) Left heart and systemic pressures over the last ten cardiac cycles. (b) Right heart

and pulmonary pressures over the last ten cardiac cycles. (c) Left heart and systemic

pressures over the final cardiac cycle. (d) Right heart and pulmonary pressures over

the final cardiac cycle.

Figure 3.10a shows the compartment volumes, (2.211) or calculated from the elastance models

(2.218), for the last ten cycles including the sum
∑

V over all volumes. Total blood volume is

conserved, hence
∑

V is constant over all cycles. A more detailed (zoomed) view of the time

course of the compartment volumes (omitting the sum) is shown in fig. 3.10b.

Table 3.4 shows the averaged results over the last ten cycles of arterial and venous oxygen

and carbon dioxide partial pressures as well as the systemic arterial and mixed-venous oxygen
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Figure 3.10: Model PrescrHeart3Datrioventrtet4 1.25
| 0Dsyspulcaprespir: Prescribed-dynamics solution,

conservation of total blood volume. (a) Compartment volumes, including the sum∑
V over all volumes. (b) Detailed (zoomed) view of compartment volumes over

the last ten cardiac cycles.

saturation. Norm values are presented below the simulated results. All oxygen-related values are

within the range of the norm. Arterial carbon dioxide partial pressure is slightly underestimated,

and venous carbon dioxide partial pressure is overestimated by a factor of > 2.

Table 3.4: Model PrescrHeart3Datrioventrtet4 1.25
| 0Dsyspulcaprespir: Systemic arterial and venous

oxygen partial pressure psysO2,ar
and psysO2,ven

, systemic arterial oxygen saturation Ssys
O2,ar

,

mixed-venous oxygen saturation Spul
O2,ar

, systemic arterial and venous carbon diox-

ide partial pressure psysCO2,ar
and psysCO2,ven

. Simulation, and norm values according to

www.medicoconsult.de/blutgasanalyse and [45].

∅ psysO2,ar
[kPa] psysO2,ven

[kPa] Ssys
O2,ar

[%] Spul
O2,ar

[%] psysCO2,ar
[kPa] psysCO2,ven

[kPa]

simulation 11.96 5.07 96.3 72.0 4.14 15.85
norm 9.5–13.9 4.8–5.9 94–98 70–80 4.7–6.1 4.9–6.7

Figures 3.11a–d show the systemic arterial and venous oxygen partial pressures, the total alveolar

pressure, the alveolar carbon dioxide and oxygen partial pressures and gas fractions, as well as

the alveolar volume and flux over time, respectively.

Systemic arterial and venous oxygen partial pressures oscillate in small amplitudes slightly

below 12 kPa and slightly above 5 kPa (fig. 3.11a and fig. 3.11b), respectively. Alveolar

pressure (fig. 3.11c) hardly perceptibly oscillates around the prescribed atmospheric pressure

Um = 100 kPa = 1 bar (cf. tab. 2.8). Alveolar carbon dioxide and oxygen gas fractions oscillate

around 3 % and 15 %, respectively. The alveolar partial pressures of carbon dioxide and oxygen

are directly computable by multiplying the gas fractions with the total alveolar pressure and hence

are no primary variables of the model. Alveolar volume (fig. 3.11d) oscillates around total lung

volume Vlung slightly below the amplitude of the tidal volume VT. Alveolar flux qalv here is the

positive rate of change of alveolar volume (2.184).
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Figure 3.11: Model PrescrHeart3Datrioventrtet4 1.25
| 0Dsyspulcaprespir: Solutions of the gas transport

problem for the last ten cycles over time t. (a) Systemic arterial oxygen partial pres-

sure psysO2,ar
. (b) Systemic venous oxygen partial pressure psysO2,ven

. (c) Total alveolar

pressure palv, alveolar carbon dioxide and oxygen partial pressures as well as gas

fractions pCO2,alv and pO2,alv as well as fCO2,alv and fO2,alv, respectively. (d) Alveolar

volume Valv and flux qalv.
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3.2 Monolithic discretization and solution of 3D-0D coupled cardiac dynamics

3.2.4 Discussion

The models and methods presented for simulating physiological cardiovascular conditions are

tailored towards the patient-specific 3D resolution of the ventricular and atrial myocardium and

their mechanical behavior. Coupled to lumped-parameter closed-loop vascular network models,

homeostatic states of the cardio-circulatory system can be assessed, and a link between local

continuum mechanical behavior of the heart muscle to integral cardiac functionality indicators

such as cardiac output and stroke work can be drawn. This feature is considered essential for

the assessment of how growth and remodeling phenomena are triggered and vice versa affect

the cardiac work (cf. sec. 3.3), and becomes highly relevant for the prediction of function and

efficiency of novel cardiac compression-based ventricular assist devices (cf. chap. 5).

To date, this is the first model that includes a 3D resolution of all four cardiac chambers, their

interaction with a closed circulation, and a straightforward one-way coupling of the mechanical

solutions to gas transport and dissociation mechanisms, cf. sec. 2.2 of chap. 2 for some review of

other approaches from the contemporary literature.

However, limitations may be seen in the material (constitutive), boundary condition, and fiber

data, which do not rely on patient-specific measurements but are generic or rule-based. Especially

atrial fiber architecture does not correspond to a physiological pattern and would not be applicable

to models for atrial electrophysiology and excitation propagation [91, 92]. However, if only

accounting for the mechanical performance and its contribution to overall myocardial function,

non-physiological atrial fiber patterns may be sufficient, however might lack of accurately address-

ing the passive mechanical behavior in terms of atrial systolic deformation patterns, or stresses

and strains inside the tissue. Therefore, more complex and more realistic atrial fiber patterns

should be incorporated into these models, cf. the proposed methods by Krueger et al. [112], for

example.

To efficiently address the multi-dimensional coupling of 3D nonlinear solid mechanics and 0D

pressure-flow models, a monolithic discretization and solution framework is established and

implemented together with a time integration of all 0D governing equations. The monolithic

3D-0D coupling is considered superior to any partitioned coupling schemes (as, for instance,

presented by [104] for a 2-chamber patient-specific heart coupled to a 0D circulation), since

isovolumic heart phases naturally require a relaxation technique for partitioned approaches to

circumvent the classical balloon dilemma [114] in fluid-structure interaction in presence of a

Dirichlet-constrained fluid.

Furthermore, partitioned solutions have to be tightly 2-way coupled due to the strong interdepen-

dencies of 0D and 3D models, and hence a far greater amount of linear solves would be required

compared to the monolithic approach. However, it should be emphasized that the advantage of

partitioned schemes on the one hand lies in the choice of field-specific (independent 3D and 0D)

linear solvers and preconditioners that can be tailored towards the specific physical problem,

whereas an (implicit) monolithic approach always requires a preconditioning technique for the

global system of equations. On the other hand, partitioned algorithms may be designed highly

modularly, even by combining different software packages that address the respective physical

fields independently, while on the other hand monolithic schemes most often require an extra

implementation as well as linearization procedures for the field-interdependencies in order to

efficiently solve the coupled problem in one monolithic Newton algorithm.
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3 Discretization and solution methods for cardiovascular mechanics

As mentioned in the introductory remarks, little literature proposes monolithic coupling schemes

for 3D solid and 0D fluid mechanical models, cf. the contributions by Sainte-Marie et al. [178]

or Fritz et al. [62]. Therein, no circulatory system but only single pre- and afterload models

for the ventricles only are used. Additionally, the approach in Fritz et al. [62] seems to rely

on condensing out the pressure variables and directly incorporating the whole vascular model

into the solid mechanics balance equation. This approach is considered impracticable since it

increases the bandwidth of the system matrix and thus renders the linear solution more demanding.

Furthermore, [178] and [62] use direct linear solvers and hence are restricted to limited sizes of

the underlying forward problem.

The simulated standard conditions are physiologically realistic and could correspond to a healthy

individual at rest. All parameters are chosen either according to physiological considerations

(blood flow parameters, tab. 2.7 and tab. 2.6, as well as respiration, gas transport and dissoci-

ation parameters, tab. 2.8 and tab. 2.9), rely on state-of-the-art experimental data (myocardial

passive properties, tab. 2.2), or are result of well-educated guesses combined with reasonability

considerations for the case that no data exists (Robin boundary parameters, tab. 2.1). The driv-

ing parameters that govern the dynamical behavior of the myocardium (tab. 2.3) may be set to

individual requirements, i.e. with respect to heart rate, end-diastolic and end-systolic timings,

contraction speed and strength.

The performance of the model under varying preloads and afterloads is assessed by changing

the peripheral arterial resistance under different inotropic states (contractility), presented in fig.

3.4a. The end-systolic pressure-volume relationship (ESPVR) in physiology is used as index

of ventricular contractility, even though its independence on the afterload is still controversial

[24]. The model shows consistency of local cell-based contractile behavior to the global ESPVR

contractility index: A reduction in inotropy yields decreased ESPVR steepness and vice versa, cf.

the textbook pressure-volume loops of fig. 3.4b and fig. 3.4c. The results also comply with the

in-silico model results by Shavik et al. [189], who however couple a generic simplified only-left

ventricular finite element model to a closed-loop circulation. Results therein preen themselves on

showing load-independence and linearity of ESPVR, even though clear evidence is present that

ESPVR is nonlinear for a larger spectrum of load ranges [101, 205].

End-diastolic pressure-volume relationship (EDPVR) is an index of ventricular stiffness, and

passive filling occurs along that curve. However, evidence is given that the diastatic pressure-

volume relationship (D-PVR) is a better index of compliance since effects of atrial systole are

excluded [223]. The model 3Datrioventr here is capable of showing both EDPVR and D-PVR.

However, while D-PVR is usually less steep than EDPVR [223], here no significantly but slightly

steeper D-PVR curve compared to the EDPVR curve is obtained, cf. fig. 3.4a. Probably, this

effect may be explained by the assumed load-independence of atrial contraction, even though

atria also exhibit a Frank-Starling mechanism [6].

To the best of the author’s knowledge, this is the first model capable of showing distinguishable

EDPVR and D-PVR curves. Shavik et al. [189] again show passive filling perfectly occurring

along the EDPVR curve for varying preloads, which however is no surprise since a quasi-static

solid mechanics model was used. Effects of inertia and viscosity – which are included in the

present model – lead to tiny deviations of end-diastatic (end-diastolic) points from the D-PVR
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3.3 Multiscale growth and remodeling (G&R): Algorithmic aspects and results

(EDPVR for the impaired atrial contraction, cf. fig. 3.5a).

The effect of the Frank-Starling mechanism, namely the increase of contractile force at higher

preloads in order to empty that additional amount of added volume to the same end-systolic

volume may be conceived comparing the respective impaired atrial with the control pressure-

volume loops from fig. 3.5a. Higher atrial contractility leads to increased venous return and hence

higher end-diastolic volume. This is in good accordance to what is concluded from physiological

observations, cf. the textbook curves in fig. 3.5b.

Furthermore, the model’s behavior under different kinds of valve diseases is investigated and

compared to textbook pressure-volume relations. In case of all four abnormalities – mitral and

aortic valve regurgitation and stenosis – model output in terms of the general trend in pressure-

volume loop alterations complies very well to what is observed, cf. the textbook pressure-volume

loops in fig. 3.6 and fig. 3.7.

Gas transport and dissociation was computed for the standard conditions, and a good accordance

of all oxygen-related values to norm data (tab. 3.4) is ascertained. However, the slight underesti-

mation of arterial carbon dioxide content and the great overestimation (factor > 2) of the venous

CO2 partial pressure remains to be investigated and may be due to insufficient CO2 elimination

in the lung compartment.

Here, the alveolar ventilation rate (V̇alv) nearly corresponds to the total ventilation due to breath-

ing, V̇t = VT/Tbreath, since alveolar resistance was neglected and alveolar elastance and inertance

are small (tab. 2.8). However, these parameters from [171] might have to be resought in presence

of the fact that alveolar ventilation is only about 70 % of total ventilation [51].

The dissociation functions for carbon dioxide and oxygen are chosen as simple as possible and do

not include the respective interdependencies as in the models of [41, 191, 202]. Further studies

are needed to more robustly calibrate these models to distinct conditions in order to be able to

reliably assess the gas kinetics for a specific individual.

Furthermore, as the model of Trenhago et al. [202], no control and feedback control systems for

the whole cardiovascular-respiratory model are implemented yet, hence a perturbation of one

model parameter does not naturally induce adaptation mechanisms in a different branch of the

model. A classical example would be an exercise condition: This is accompanied not only by an

increase in heart rate but also a change in systolic-diastolic duration relationship, a fall of skeletal

muscle vascular resistance [87], a decrease in pulmonary vascular resistance [109, 168], as well

as an increase in cardiac contractility, lung ventilation, and metabolism. Therefore, a bunch of

parameters would have to be changed, and it remains unclear in which consecutive order such

that the desired output is achieved or still lies within physiological bounds.

3.3 Multiscale growth and remodeling (G&R):

Algorithmic aspects and results

The algorithmic and solution aspects of the multiscale growth and remodeling (G&R) models

presented in sec. 2.3 as well as the results are presented. Section 3.3.1 deals with the solution and
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implementation of the strain- and stress-based growth laws, and sec. 3.3.2 presents the results of

the multiscale computations for eccentric ventricular growth for dilated cardiomyopathy (DCM)

as well as for concentric ventricular growth for hypertrophic cardiomyopathy (HCM). Finally, the

algorithms and the results are discussed in sec. 3.3.3.

3.3.1 Return mapping schemes for volumetric growth constitutive

laws

During each outer Newton iteration in order to solve the global discretized system of equations

(3.32), the nonlinear growth evolution equation (2.236) or (2.242) has to be solved in order to

obtain a non-equilibrium solution ϑ with respect to the outer iteration. Here, a Backward-Euler

time integration scheme, being (3.18) with θ = 1 is chosen, yielding a time-discrete growth

evolution that is nonlinear in the current growth stretch ϑn+1 that belongs to the actual time step

n+ 1 which has to be solved for.

Hence, at frozen outer iteration state of the global Newton scheme, an integration point-wise local

Newton scheme has to be applied in order to solve the time-discrete nonlinear growth evolution

equation. When entering the local Newton scheme, only the accumulated growth stretch from

the previous time step is assumed to be present, hence the initial guess is an elastic deformation

(predictor) and the growth variable has to be integration point-wise iterated to obtain the true

elasto-plastic (elasto-growth) state (correction step). A scheme of this type is usually denoted as

return mapping scheme.

3.3.1.1 Strain-governed eccentric growth for dilated cardiomyopathy

The integration point-wise solution of the strain-driven growth law presented in sec. 2.3.1.1 suited

for modeling of eccentric ventricular growth due to end-diastolic volume overload is detailed.

The Backward-Euler time integration scheme applied to (2.236) yields the discretized version of

the evolution equation,

ϑn+1 − ϑn

∆t
= k(ϑn+1)

(
1

ϑn+1

λmyo − λ̂crit
myo

)
, (3.46)

where ϑn+1 is the current unknown state to be solved for, and ϑn is the old, known state from the

previous converged time step. Unfortunately, (3.46) is nonlinear in ϑn+1, on the one hand due

to the nonlinearity in the growth function k, (2.238), on the other due to the dependence of the

growth stimulating elastic myofiber stretch λe
myo, cf. (2.237).

The local Newton scheme in order to solve (3.46) then yields a residual expression of the type

Rϑ =
ϑn+1 − ϑn

∆t
− k(ϑn+1)

(
λmyo

ϑn+1

− λ̂crit
myo

)
!
= 0. (3.47)

The tangent reads

dRϑ

dϑn+1

=
1

∆t
+

dk(ϑn+1)

dϑn+1

(
λmyo

ϑn+1

− λ̂crit
myo

)
+ k(ϑn+1)

λmyo

ϑ2
n+1

, (3.48)
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with

dk(ϑn+1)

dϑn+1

=




−γ

τ

(
ϑmax−ϑn+1

ϑmax−ϑmin

)γ−1
1

ϑmax−ϑmin
, λe

myo ≥ λ̂crit
myo,

γrev
τrev

(
ϑn+1−ϑmin

ϑmax−ϑmin

)γrev−1
1

ϑmax−ϑmin
, λe

myo < λ̂crit
myo.

(3.49)

3.3.1.2 Stress-governed concentric growth for hypertrophic cardiomyopathy

Here, the integration point-wise solution of the stress-driven growth law presented in sec. 2.3.1.2

that was introduced in order to model concentric growth due to end-systolic pressure overload is

detailed.

The Backward-Euler time integration scheme applied to (2.242) yields the discretized version of

the evolution equation,

ϑn+1 − ϑn

∆t
= k(ϑn+1)

(
trΣ e(ϑn+1)− Σ̂

crit
)
, (3.50)

where again ϑn+1 is the current unknown state to be solved for, and ϑn is the old, known state

from the previous converged time step. Here also, (3.50) is nonlinear in ϑn+1, on the one hand

due to the nonlinearity in the growth function k, (2.243), on the other due to the dependence of

the growth stimulating volumetric component of the Mandel stress trΣ e, cf. (2.227).

The local Newton scheme in order to solve (3.50) then yields a residual expression of the type

Rϑ =
ϑn+1 − ϑn

∆t
− k(ϑn+1)

(
trΣ e(ϑn+1)− Σ̂

crit
)

!
= 0. (3.51)

The tangent reads

dRϑ

dϑn+1

=
1

∆t
+

dk(ϑn+1)

dϑn+1

(
trΣ e(ϑn+1)− Σ̂

crit
)
+ k(ϑn+1)

∂trΣ e(ϑn+1)

∂ϑn+1

(3.52)

with

dk(ϑn+1)

dϑn+1

=




−γ

τ

(
ϑmax−ϑn+1

ϑmax−ϑmin

)γ−1
1

ϑmax−ϑmin
, trΣ e ≥ Σ̂

crit,

γrev
τrev

(
ϑn+1−ϑmin

ϑmax−ϑmin

)γrev−1
1

ϑmax−ϑmin
, trΣ e < Σ̂

crit
(3.53)

and the derivative of the first invariant of the Mandel stress tensor unfortunately needing further

considerations:

∂trΣ e

∂ϑn+1

=
∂tr(CeSe)

∂ϑn+1

=
∂(Ce : Se)

∂ϑn+1

=
∂Ce

∂ϑn+1

: Se +Ce :
∂Se

∂ϑn+1

, (3.54)

where the derivatives of the elastic Cauchy-Green tensor (2.225)1 and the elastic second Piola-

Kirchhoff stress tensor (2.225)2 with respect to the current growth stretch are

∂Ce

∂ϑn+1

=
∂

∂ϑn+1

(
F g−T

CF g−1
)
=

=
∂F g−T

∂F gT
:
∂F gT

∂ϑn+1

CF g + F g−T

C
∂F g−1

∂F g
:
∂F g

∂ϑn+1

=

= −F g−T ∂F gT

∂ϑ
Ce −Ce∂F

g

∂ϑ
F g−1

(3.55)
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and

∂Se

∂ϑn+1

=
∂Se

∂Ce
:

∂Ce

∂ϑn+1

=
1

2
❈̌❈❈

e
:

∂Ce

∂ϑn+1

, (3.56)

respectively.

3.3.2 Results

Two exemplary scenarios of volume overload-induced dilated cardiomyopathy (DCM) and one

example of pressure overload-induced hypertrophic cardiomyopathy (HCM) are presented. Vol-

ume overload is induced by mitral regurgitation as well as left ventricular infarction, cf. sec.

3.3.2.1, and a state of pressure overload is achieved by assuming an aortic valve stenosis, cf. sec.

3.3.2.2. Furthermore, reverse growth and remodeling phenomena are presented in sec. 3.3.2.3 by

simulating a mitral valve repair after volume overload growth due to mitral regurgitation.

Without loss of generality, the large time scale period is set to Tgrowth = 106 s ≈ 11.6 d. Further

parameters for the growth laws are listed in 3.5.

Table 3.5: G&R parameters: Time constants τ and τrev have units “stretch times time” or “stress

times time” depending on the growth law

volume pressure

overload overload

Tgrowth [s] 106 large time scale duration per (outer) cycle

ϑmin [−] 1.0 minimum growth stretch

ϑmax [−] 3.0 2.0 maximum growth stretch

τ [s] / [kPa·s] 0.025·106 25·106 growth time constant

τrev [s] / [kPa·s] 0.025·106 25·106 reverse growth time constant

γ [−] 1.0 growth nonlinearity

γrev [−] 1.0 reverse growth nonlinearity

s [−] 1.001 1.01 threshold safety factor

(λ̂crit
myo)↓ [−] 1.02 − minimum myofiber stretch threshold

(Σ̂ crit)↓ [kPa] − 30.0 minimum volumetric stress threshold

G&R phenomena may take place everywhere in the ventricular and atrial myocardium except in

regions where an infarction is assumed. Additionally, G&R is disabled for the “dummy” lids that

are modeled by the strain energy (2.98).

Algorithmic parameters are chosen according to tab. 3.1, however with cK = 0 due to technical

reasons. The number of time steps per cardiac cycle is reduced to nstep = 200 for volume overload

and nstep = 300 for pressure overload, since a coarser spatial discretization (tet4 2, cf. appendix

A.1) is chosen for the sake of computational efficiency.

The tolerance for the error (2.253) in two subsequent grown small time scale states is chosen to

ǫgrowth = 1.5 %.
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3.3.2.1 Volume overload: Dilated cardiomyopathy

Here, volume overload G&R for two exemplary acute disease events is considered, namely mitral

regurgitation (MR) as well as apical infarction (AI). Both events are introduced after the first

homeostatic heart cycle. For simplicity, the remodeling of the portion of grown material only

shall affect the active stress (referred to as remod act), hence the constitutive equation for Se
(grown)

in (2.246) is (2.96) with τa ≡ 0 at all times, and the passive strain energy function remains (2.97).

Comparisons to growth without remodeling are carried out (referred to as noremod).

Mitral regurgitation A mitral valve insufficiency, here a mitral regurgitation (MR), is induced

by setting the mitral valve’s maximum resistance from its base value (cf. tab. 2.6) to Rℓ,max
v,in =

10−5 kPa·s
mm3 .

Figure 3.12 shows the multiscale results for MR-induced volume overload resulting in eccentric

ventricular hypertrophy. In fig. 3.12a, volume results per multiscale cycles N are shown: The

respective top plot shows the small time scale cavity volumes for all four cardiac chambers, the

bottom left plot the end-diastolic cavity volumes and the bottom right plot the relative wall volume

change on the large time scale as consequence of eccentric growth. Only the first two multiscale

cycles (N = 1 and N = 2) as well as the last one (N = 5) are shown. Small time scale cycles

(N ) and small time scale cycle errors (2.222) as well as the associated large scale error (2.253)

are depicted next to the upper left plots of fig. 3.12a.

Figure 3.12b shows the pressure-volume relationships for the control state, the MR base state

(homeostatic state after MR but prior to any G&R), and the converged grown state with active

remodeling (remod act) as well as without (noremod).

Figure 3.12c depicts the elastic myofiber stretch (2.237) on the end-diastolic configuration for the

control, MR base and MR grown remod act case. Finally, fig. 3.12d shows the growth stretch ϑ
as well as the remodeling factor (2.247) on the end-diastolic configuration of the final MR grown

remod act state.

Left ventricular function indicators are listed in tab. 3.6.

Table 3.6: Left ventricular function indicators end-diastolic volume EDVℓ, net stroke volume

SVℓ
net (total minus regurgitant volume), net ejection fraction EFℓ

net (net stroke per end-

diastolic volume), regurgitant fraction RFℓ, end-diastolic and end-systolic pressures

EDPℓ and ESPℓ, respectively; for control, MR base, MR grown remod act and MR

grown noremod state

EDVℓ [ml] SVℓ
net [ml] EFℓ

net [−] RFℓ [−] EDPℓ [kPa] ESPℓ [kPa]
control 124.7 64.1 0.51 − 1.83 11.9

MR base 140.8 44.3 0.31 0.54 2.95 4.92
MR grown remod act 182.2 47.4 0.26 0.59 2.65 8.04

MR grown noremod 179.1 49.1 0.27 0.58 2.57 7.19

MR leads to a reduction of peak ventricular pressure and a widening of the pressure-volume

relationship, without clear isovolumic phases. The regurgitant fraction is over 50 %, hence a
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Figure 3.12: Model 3Datrioventrtet4 2 | 0Dsyspulcap: Multiscale volume-overload computation

of eccentric growth after mitral regurgitation (MR). (a) Outer cycles N , cavity

volumes on small time scale (top plot), end-diastolic cavity volumes (bottom left

plot) and relative myocardial wall volume change (bottom right plot) on large time

scale. (b) Left-ventricular pressure-volume relationships: Control vs. MR base vs.

MR grown noremod vs. MR grown remod act. (c) End-diastolic elastic myofiber

stretch λe
myo (coronary cut view): Control vs. MR base vs. MR grown remod act. (d)

End-diastolic growth stretch ϑ and remodeling factor φ for MR grown remod act.
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3.3 Multiscale growth and remodeling (G&R): Algorithmic aspects and results

significant part of stroke volume is not ejected into the aorta but back into the atrium. G&R

leads to an increase in end-diastolic volume of 28 % (remod act) and 27 % (noremod). Ejection

fraction sinks significantly with acute MR and even more pronouncedly after G&R. As seen from

fig. 3.12b, EDPVR virtually remains unaltered after acute MR with respect to control, however

greatly decreases after G&R.

Left ventricular infarction A left ventricular apical infarction (AI) is induced by assuming

a portion of the left ventricle located at the apex to be devoid of any contractile behavior, hence

the contractility σ0 in (2.99) is set to zero. Thus, its constitutive equation is identical to that of the

grown matter. Per definition, the infarct region cannot grow.

Figure 3.13 shows the multiscale results for AI-induced volume overload resulting in eccentric

ventricular hypertrophy. In fig. 3.13a, volume results per multiscale cycles N are shown: The

respective top plot shows the small time scale cavity volumes for all four cardiac chambers, the

bottom left plot the end-diastolic cavity volumes and the bottom right plot the relative wall volume

change on the large time scale as consequence of eccentric growth. All three multiscale cycles

(N = 1, 2, 3) are shown. Small time scale cycles (N ) and small time scale cycle errors (2.222)

as well as the associated large scale error (2.253) are depicted next to the upper left plots of fig.

3.13a.

Figure 3.13b shows the pressure-volume relationships for the control state, the AI base state

(homeostatic state after AI but prior to any G&R), and the converged grown state with active

remodeling (remod act) as well as without (noremod).

Figure 3.13c depicts the elastic myofiber stretch (2.237) on the end-diastolic configuration for

the control, AI base and AI grown remod act case. Finally, fig. 3.13d shows the growth stretch ϑ
as well as the remodeling factor (2.247) on the end-diastolic configuration of the final AI grown

remod act state. Note that the infarct region a priori is assumed to behave as the diseased grown

material but itself cannot grow, hence φ = 0 and ϑ = 1 in this region.

Left ventricular function indicators are listed in tab. 3.7.

Table 3.7: Left ventricular function indicators end-diastolic volume EDVℓ, stroke volume SVℓ,

ejection fraction EFℓ, end-diastolic and end-systolic pressures EDPℓ and ESPℓ, re-

spectively; for control, AI base, AI grown remod act and AI grown noremod state

EDVℓ [ml] SVℓ [ml] EFℓ [−] EDPℓ [kPa] ESPℓ [kPa]
control 124.7 64.1 0.51 1.83 11.9
AI base 135.5 57.4 0.42 2.52 10.7

AI grown remod act 170.9 55.2 0.32 2.58 11.1
AI grown noremod 163.6 58.8 0.36 2.34 11.5

An apical infarction leads to a rightward shift in the pressure-volume curve. Stroke volume does

not drop substantially after acute AI. G&R leads to an increase in end-diastolic volume of 26 %
(remod act) and 21 % (noremod). Ejection fraction drops with acute AI, and significantly more

pronouncedly after G&R. EDPVR remains virtually unaltered.
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Figure 3.13: Model 3Datrioventrtet4 2 | 0Dsyspulcap: Multiscale volume-overload computation

of eccentric growth after apical infarct (AI). (a) Outer cycles N , cavity volumes

on small time scale (top plot), end-diastolic cavity volumes (bottom left plot) and

relative myocardial wall volume change (bottom right plot) on large time scale. (b)

Left-ventricular pressure-volume relationships: Control vs. AI base vs. AI grown

noremod vs. AI grown remod act. (c) End-diastolic elastic myofiber stretch λe
myo

(coronary cut view): Control vs. AI base vs. AI grown remod act. (d) End-diastolic

growth stretch ϑ and remodeling factor φ for AI grown remod act.
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3.3 Multiscale growth and remodeling (G&R): Algorithmic aspects and results

3.3.2.2 Pressure overload: Hypertrophic cardiomyopathy

A state of pressure overload is achieved by modeling of a stenosis of the aortic valve (AS). It

is induced by setting the aortic valve’s minimum resistance from its base value (cf. tab. 2.6) to

Rℓ,min
v,out = 5 · 10−5 kPa·s

mm3 after the first homeostatic cardiac cycle.

The remodeling of the portion of grown material here only shall affect the passive behavior

(referred to as remod pas), hence the constitutive equation for Se
(grown) in (2.246) is identical to

(2.96), however the strain energy of the grown material is assumed to be a simple Neo-Hookean

material of the form

Ψ
remod =

µremod

2
(ĪC − 3) +

κremod

2
(J − 1)2, (3.57)

instead of (2.97). The shear and bulk moduli are set to µremod = 60 kPa and κremod = 3000 kPa,

respectively. Again, comparisons to growth without remodeling are carried out (referred to as

noremod).

Figure 3.14 shows the multiscale results for AS-induced pressure overload resulting in concentric

ventricular hypertrophy. In fig. 3.14a, volume results per multiscale cycles N are shown: The

respective top plot shows the small time scale cavity volumes for all four cardiac chambers, the

bottom left plot the end-systolic cavity volumes and the bottom right plot the relative wall volume

change on the large time scale as consequence of concentric growth. Only the first two multiscale

cycles (N = 1 and N = 2) as well as the last one (N = 6) are shown. Small time scale cycles

(N ) and small time scale cycle errors (2.222) as well as the associated large scale error (2.253)

are depicted next to the upper left plots of fig. 3.14a.

Figure 3.14b shows the pressure-volume relationships for the control state, the AS base state

(homeostatic state after AS but prior to any G&R), and the converged grown state with passive

remodeling (remod pas) as well as without (noremod).

Figure 3.14c depicts the elastic volumetric Mandel stress (2.227) on the end-systolic configuration

for the control, AS base and AS grown remod pas case. Finally, fig. 3.14d shows the growth

stretch ϑ as well as the remodeling factor (2.248) on the end-systolic configuration of the final

AS grown remod pas state.

Left ventricular function indicators are listed in tab. 3.8.

Table 3.8: Left ventricular function indicators end-systolic volume ESVℓ, stroke volume SVℓ,

ejection fraction EFℓ, end-diastolic and end-systolic pressures EDPℓ and ESPℓ, re-

spectively; for control, AS base, AS grown remod pas and AS grown noremod state

ESVℓ [ml] SVℓ [ml] EFℓ [−] EDPℓ [kPa] ESPℓ [kPa]
control 60.6 64.1 0.51 1.83 11.9

AS base 96.3 52.1 0.35 3.58 19.1
AS grown remod pas 88.0 42.8 0.33 3.76 14.1

AS grown noremod 97.2 50.1 0.34 3.86 18.0

A stenosis of the aortic valve leads to greatly increased end-systolic left ventricular pressures,

accompanied by a rightward shift of the pressure-volume curve and secondary increase in end-
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Figure 3.14: Model 3Datrioventrtet4 2 | 0Dsyspulcap: Multiscale pressure-overload computation

of concentric growth after aortic valve stenosis (AS). (a) Outer cycles N , cavity

volumes on small time scale (top plot), end-systolic cavity volumes (bottom left

plot) and relative myocardial wall volume change (bottom right plot) on large time

scale. (b) Left-ventricular pressure-volume relationships: Control vs. AS base vs.

AS grown noremod vs. AS grown remod pas. (c) End-systolic elastic first invariant

of Mandel stress trΣ e (coronary cut view): Control vs. AS base vs. AS grown

remod pas. (d) End-systolic growth stretch ϑ and remodeling factor φ for AS grown

remod pas.122



3.3 Multiscale growth and remodeling (G&R): Algorithmic aspects and results

diastolic volume and pressure. Ejection fraction drops due to acute AS but then remains nearly

the same even after G&R has occurred, regardless of considering remodeling or not. EDPVR

increases after G&R (remod pas) but remains nearly unaltered for acute AS or when remodeling

effects are not accounted for (noremod).

3.3.2.3 Reverse G&R after mitral valve repair

For demonstrative purposes, reverse G&R phenomena are simulated that eventually occur as

consequence of a relief of the acute disease event. Here, the case of volume overload due to

mitral regurgitation is considered, cf. sec. 3.3.2.1 and the results presented in fig. 3.12. After the

final converged grown state (N = 5), a mitral valve repair is performed by setting its maximum

resistance back to its base value (cf. tab. 2.6). Two different reverse growth kinetics governed by

the parameter τrev are considered: the base kinetics, cf. tab. 3.5, as well as accelerated kinetics

by setting τrev = 0.005 ·106 s (indicated by τrev ↓). Figure 3.15 shows the pressure-volume

relationships for the control, the MR base and the MR grown (remod act) state, as well as that

grown state just after mitral valve repair (MR repair), and the same state after reverse growth has

happened (MR reverse) – both for baseline (upper legend) and increased reverse growth kinetics

(lower legend, τrev ↓).
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Figure 3.15: Left ventricular pressure-volume relationships for reverse G&R after mitral valve re-

pair for two different reverse growth kinetics, base and reduced (τrev ↓): Comparison

of control, MR base, MR grown, MR repair and MR reverse (each remod act).

Reverse growth stagnates at some point using baseline reverse growth kinetics since changes per

large time scale become negligible and fall below the chosen tolerance for (2.253). Increasing the

kinetics by reducing τrev produces a more significant reversal of G&R phenomena, with the final

pressure-volume relation approximating the original control state.
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3.3.3 Discussion

The present approach for the first time incorporates a patient-specific 4-chamber heart model

coupled to a closed circulatory system into a multiscale analysis of ventricular growth and re-

modeling (G&R) using acute disease events happening on a global integrated scale to trigger

G&R phenomena on a local spatial scale. The multiscale-in-time strategy asserts continuity of

all local mechanical quantities, hence the residual growth strains are preserved throughout the

entire computation without the need to perform a relaxation of the grown state or to prescribe the

growth stimulating force on integration point level.

To date, the only growth model for a patient-specific biventricular heart geometry coupled to

a closed circuit system was presented by Kerckhoffs et al. [105]. Therein, comparable to here,

stimulating disease events like mitral regurgitation and aortic stenosis are used to generate the

respective overload scenarios, and a separation of time scales is performed for simulating cardio-

vascular and growth mechanics. In contrast to here, growth on the large time scale is prescribed

as function of the deviation between baseline and disease strain values.

A further ventricular growth model that makes use of a separation of time scales is the one by Lee

et al. [121], which additionally incorporates electromechanical effects. However, therein only a

left ventricular geometry coupled to a single pre- and afterload 0D model is used, and volume

overload is simply generated by modeling a myocardial infarction leading to myofiber overstretch

in healthy tissue due to impaired contractile performance of the infarcted region. Due to the

missing circulation, the model therein lacks of quantifying the (additional) volume overload that

arises due to increased venous return as consequence of left ventricular malfunction. Additionally,

the time scale separation therein relies on relaxing the residual growth stresses after each growth

update of the geometry, which however might be a valid modeling assumption given that these

residual stresses could play a minor role [156].

Other applications of growth models to ventricular geometries solely triggering growth by apply-

ing a prescribed load onto the ventricular endocardium are those by Göktepe et al. [73] (using

strain- and stress-based growth laws for volume and pressure overload), Rausch et al. [167] using

only stress-based growth laws for modeling of hypertension-induced growth, or Genet et al. [71]

with strain-based growth models for both eccentric and concentric hypertrophy, the latter also

making use of a patient-specific 4-chamber atrioventricular geometry. While the models from

these contributions excellently demonstrate how growth affects ventricular shape change, they

lack of linking global acute cardiovascular events to local maladaptive changes in ventricular

tissue due to the missing cardio-circulatory coupling.

Furthermore, as stated by the review of Lee et al. [120], no cardiac volumetric growth model to

date has truly incorporated effects of remodeling yet, even though the aforementioned publications

often refer to their approaches as G&R models. Hence, to the best of the author’s knowledge, this

is the first contribution to link the growth stretch in some way to changes in tissue passive elastic

or active properties.

The choice for end-diastolic strain as a stimulant for eccentric growth due to volume overload and

end-systolic stress as the trigger for concentric growth due to pressure overload is reasonable and

consistent with other established approaches [73]. However, Omens [155] primarily concludes

that the stimulus for cardiac hypertrophy, be it stress or strain, is simply not profoundly known,
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even though some evidence is stated that end-diastolic strain could be the stimulus for volume

overload eccentric ventricular hypertrophy. Kerckhoffs et al. [105] use a strain-based growth law

for modeling of both eccentric and concentric ventricular hypertrophy, also citing the work of

Omens [155] that strain in general would be the more reasonable growth stimulus, which however

is not stated to that clarity therein.

However, since volume overload happens at the end of the diastole where strains are highest and

stresses are rather low, and to the contrary pressure overload occurs during systole where wall

stresses are highest and myofiber tensile strains are virtually not present, strain as stimulant for

eccentric and stress as that for concentric growth are readily reasoned.

It should be noted that the current implementation of the growth models only allows for computing

either eccentric or concentric growth, hence both phenomena cannot be addressed. The remark in

[105] that no a priori choice of the type of growth should be undertaken but that this choice is

implicitly performed by the overload scenario certainly is valid. However, even though the aortic

stenosis also produces a state of volume overload (cf. fig. 3.14b), it is assumed that the pressure

overload is the more prominent driving factor for G&R and would reduce the end-diastolic

myofiber strain (hence the volume overload) due to wall thickening.

The present results obtained from volume and pressure overload-induced cardiomyopathy sim-

ulations only allow for limited comparisons to experimental data since no associated studies

on long-term maladaptive G&R progression were available for the specific porcine heart that is

considered here. Provided a meaningful baseline state (cf. sec. 3.2.3.1) as well as the modeling of

external G&R stimulants (valve diseases, myocardial infarction) to comply with physiological

observations (cf. sec. 3.2.3.3), the modeling of G&R phenomena with the present approach is

justified and allows for general observations and comparisons to textbook data.

Figure 3.16 depicts textbook pressure-volume loop sketches for systolic (fig. 3.16a) and diastolic

(fig. 3.16b) dysfunction with respect to the control state.

(a) (b)

Figure 3.16: Textbook pressure-volume loop changes, taken from www.cvphysiology.com (with

permission). (a) Pressure-volume loop change due to systolic dysfunction. (b)

Pressure-volume loop change due to diastolic dysfunction.

Mitral regurgitation has been modeled by a change in closed-valve resistive properties. It leads to

a regurgitation fraction comparable to what has been monitored with canine data (56 %± 18 %)

by Dell’Italia et al. [50], cf. the results in tab. 3.6. The increase in end-diastolic volume here
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is lower than reported in [50], however initial volumes are significantly different (factor 2) and

hence not comparable.

Ventricular stiffness in terms of end-diastolic pressure-volume relationship (EDPVR) remains

unaltered for acute MR and decreases for chronic MR as stated by Zile et al. [227], which is in

good accordance to the results presented here. Furthermore, Zile et al. [227] state an increase in

end-diastolic pressure for acute MR without a further increase for chronic MR, which also is in

accordance with the results presented here. Further experimental studies on MR may be found in

Young et al. [222].

The G&R-induced drop in ejection fraction is in accordance with typical syndromes of systolic

heart failure [38]. The change in pressure-volume loop from the acute MR to the chronic MR

case complies well with physiological observations, cf. fig. 3.12b and fig. 3.16a.

The myocardial infarction at the apex was modeled by deactivating the contractile performance

of the apical region, even though more sophisticated infarction models including a distinct border

zone as the one presented by Klepach et al. [108] or Lee et al. [121] may be considered. Here, the

infarction leads to a volume overload due to an increased venous return as consequence of left

ventricular malperformance. Even though stroke volume does not drop significantly after acute

infarction, the volume overload stimulates G&R and finally ultimates in a significant drop in

ejection fraction without a further remarkable decrease in stroke volume since the Frank-Starling

mechanism tries to partly maintain cardiac output at higher preloads. As for the regurgitation

case, the drop in ejection fraction complies with systolic heart failure syndromes [38].

Effects of left ventricular remodeling after myocardial infarction (MI) have been experimentally

investigated, for instance, by Angeli et al. [5] in a swine model. Figure 3.17 (with permission from

[5]) shows left ventricular pressure volume loops at baseline as well as one and six weeks after

myocardial infarction in a swine model. Even though a 1:1 comparison due to the significantly

different ventricular sizes is tedious, good qualitative agreement between fig. 3.13b and fig. 3.17

may be readily conceived – given the fact that no steps of calibration to any data have been

performed so far. Similar agreements between fig. 3.13b and fig. 3.16a with regards to the trends

of pressure-volume relationship changes can be stated.

A chronic aortic valve stenosis leads to a stiffened ventricle (higher EDPVR) with elevated end-

diastolic pressure, cf. Yarbrough et al. [220] and Mistiaen [141]. Ejection fraction due to G&R

remains virtually the same as for the acute aortic stenosis case, hence the typical preservation of

ejection fraction for diastolic heart failure and hypertrophic cardiomyopathy may be confirmed

[81], cf. also fig. 3.14b and fig. 3.16b.

G&R on the large time scale exhibits rapid myocardial wall volume increase without stagnation af-

ter Tgrowth has elapsed, cf. fig. 3.14a, bottom right plot of theN = 1 section. A return to the small

time scale however settles the growth kinetics for the subsequent cycle, where a slight correction

in terms of a reduction in wall volume occurs (bottom right plot of fig. 3.14a inN = 2 block) due

to identical forward and reverse growth kinetics. Consequently, since small and large time scales

are inherently coupled and mutually revisited until an outer convergence criterion (2.253) is met,

the multiscale algorithm is supposed to be independent of the duration of Tgrowth provided the

detectability of changes in terms of the given outer cycle tolerance. Hence, the fact that growth has

not yet settled on theN = 1 large time scale is of minor importance to the final grown settled state.
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Figure 3.17: Left ventricular pressure-volume relationships in a swine model at baseline (blue,

most left curve), one week after myocardial infarction (green curve, in the middle),

and six weeks thereafter (red, right curve), taken from [5] (with permission).

Reverse G&R phenomena are computed straightforwardly by assuming a sudden acute reversal

of mitral regurgitation, i.e. after a mitral valve repair. Reverse ventricular and atrial remodeling

are well-recognized processes, and some studies investigated the association of these effects with

mitral valve repair and improvements in mitral regurgitation [113, 194].

Here, different kinetics of reverse growth have been used: a scenario using the same time constant

τrev as for the forward growth, and the same setting but with reduced reverse growth time constant,

cf. fig. 3.15. In general, the growth laws used here are able to display asymptotic growth towards

the upper stretch threshold and asymptotic decay of the accumulated plastic growth deformation

towards the lower stretch threshold. Thus, a relief of the acute disease event, here performed by

restoring native mitral valve function, naturally will lead to a reversal of the accumulated growth

for Tgrowth →∞. However, true reverse growth kinetics are not certainly known, and are yet to

be more reliably determined in order to assess and quantify the dynamics of reverse G&R when

applying a certain treatment (valve repair, vascular assist device, other).
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order reduction for 3D-0D coupled

cardiac dynamics

An indispensable task in modeling is the adequate choice of model parameters in order to obtain

outcomes which are in accordance with the nature of the underlying physical problem. Most

often, these model parameters emerge from measurements or other kind of data extracted from

the “real-world problem” which is considered to be modeled, such as (elastic) material properties,

geometric features or magnitudes of specific boundary conditions, for example.

A computational process which deals with a (rule-based) determination of model parameters on

the basis of measurement samples is called parameter estimation. In general, only a subset of

model parameters may be qualified for parameter estimation purposes, namely those sensitive

to the underlying data, while others have to be chosen either as a result of reasonability consid-

erations, well-educated guesses or general prominence, i.e. a priori knowledge (e.g., the elastic

modulus of steel). The science that deals with the likelihood of model outcomes given the fact

that (some) parameters are not sufficiently known is referred to as uncertainty quantification,

which leaves the scope of this thesis.

In complex biological systems such as the cardiovascular system, inter- and intra-patient variabil-

ity of conditions plays an ubiquitous role and calls for robust data-based parameter estimation

processes in order to derive reliable computational models.

For models of the heart and the vascular system, loads of approaches for estimating diverse spa-

tially resolved or lumped-parameters have been proposed in the literature to date. Amongst those

there are models concentrating on the estimation of regionally varying properties of ventricular

contractility, cf. Chabiniok et al. [34–36], Sainte-Marie et al. [178] or Marchesseau et al. [134], or

approaches that also include the estimation of passive ventricular behavior, cf. Hadjicharalambous

et al. [79] and Asner et al. [8] or Avazmohammadi et al. [10].

Here, parameter estimation for the 3D-0D coupled cardiovascular model as detailed in chap. 2 is

considered. Novel procedures for parameter and initial condition estimation are proposed which

rely on techniques from nonlinear optimization and model order reduction, hence basic aspects

thereof are dealt with in the following section 4.1 in an introductory manner. Thereafter, the

concept of model order reduction, for the first time, is applied in the context of 3D-0D coupled

closed-loop cardiovascular dynamics problems, outlined in sec. 4.2. Then, the novel estimation

methods are presented in sec. 4.3 and their results for a patient-specific porcine heart at different

conditions of medication are outlined and discussed.
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4.1 Fundamentals

4.1.1 Nonlinear unconstrained optimization

In the following, a very brief introduction to nonlinear optimization is given, focusing on the min-

imization problem of a scalar-valued objective function f depending on a vector of np variables

(parameters) x = [x1 x2 . . . xnp ]
T not subject to constraints. For a detailed in-depth treatment

of various optimization techniques, the reader is referred to [158], for example.

The task is stated as

min
x∈Rnp

f(x). (4.1)

The function f is minimized by a set of “optimal” parameters x⋆ if the gradient at that point

vanishes and if its Hessian matrix is positive definite. Hence, the sufficient condition for a local

minimum can be expressed as

∇f(x⋆) =
∂f

∂x
(x⋆) = 0 and ∇2f(x⋆) =

∂2f

∂x ∂x
(x⋆) > 0. (4.2)

For all optimization problems dealt with in this thesis, the objective function is nonlinear in the

parameters and cannot be formulated as an analytical expression in terms of the parameter vector.

Since a vast bunch of different techniques may be applied to find a stationary point fulfilling

(4.2)1, only techniques which are applied in the context of problem types addressed in this thesis

are outlined. They are classified into algorithms which explicitly compute the gradient of the

objective function, ∇f , and so-called gradient-free algorithms, which try to fulfill (4.2) in an

approximate sense.

4.1.1.1 Gradient-based methods

A classical approach in order to find the minimizer x⋆ of the objective function f is the gradient-

descent method. It simply determines the search direction s as the negative gradient and updates

the parameters x as a scaling along that direction:

si = −∇f(xi) and xi+1 = xi + α si, (4.3)

where α > 0 should be determined by a line search method such that f(xi + α si)→ min. The

gradient-descent method may approach the “valley” region around the minimum fairly quickly

but slows down as the slope decreases, potentially necessitating a significant amount of iterations

to finally arrive at the stationary point if the valley is flat and long.

Alternatively, the stationary condition (4.2)1 can be considered as a nonlinear system of equations

to solve for the parameter vector x. Hence, Newton’s method, cf. sec. 3.1.3, may be applied,

requiring the linearization of the gradient at the current estimate xi which is nothing but the

Hessian matrix ∇2f . Analogously to (3.22)2 and (3.23), the Newton iteration and update rules

for the optimization problem then yield

∇2f(xi)∆xi+1 = −∇f(xi) and xi+1 = xi +∆xi+1. (4.4)
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In contrast to many applications in nonlinear mechanics, where a system most often is at its

equilibrium state (at rest) in the initial configuration, facilitating the task to find a neighboring

state of equilibrium for Newton’s method after a (sufficiently small) change in external conditions

from one time step to the next, an initial guess to (4.4) most probably will be far away from the

stationary point and out of scope of the convergence radius of a Newton-type strategy.

Hence, Newton’s method for nonlinear optimization most often will have to be combined with

globalization strategies such as line search methods in order to restrict the step lengths for points

that do not lie within the region of convergence. Therefore, a parameter α < 1 may be introduced

that reduces the step according to

∆xi+1 = −α
[
∇2f(xi)

]−1
∇f(xi). (4.5)

In each iteration, α is found by help of a line search method such as Armijo’s rule, for example.

An algorithm with an iteration rule like (4.5) is also referred to as damped Newton method.

For optimization problems where f cannot be expressed as an analytical function of the parameters

x, the gradient ∇f has to be computed in an approximate sense, i.e. with help of (forward) finite

differences:

∇f =

[
∂f

∂x1

. . .
∂f

∂xnp

]T
≈

≈
[
f(x1 + δx1, ..., xnp)− f(x1, ..., xnp)

δx1

. . .
f(x1, ..., xnp + δxnp)− f(x1, ..., xnp)

δxnp

]T
,

(4.6)

where δx1, . . . , δxnp are small perturbations of the respective parameters. In order to compute

(4.6), the function f has to be evaluated np + 1 times per iteration step of the optimization

algorithm.

Additionally, when using a Newton-type scheme, the computation of the Hessian matrix ∇2f with

help of further finite differencing of (4.6) may become an infeasible task in terms of computational

effort and accuracy, especially if a larger number of parameters is considered and the evaluation

of the objective function itself is of non-negligible computational cost.

Thus, a bunch of approximate formulas has been developed comprising the class of quasi-Newton

methods, which essentially approximate the inverse of the Hessian matrix in a suitable manner.

One of the most popular schemes amongst this class is the BFGS method, named after the initials

of its inventors (Broyden, Fletcher, Goldfarb, Shanno) [31, 60, 74, 187].

A special case of nonlinear optimization, a so-called least-squares problem, is present if the

objective function can be expressed as

f(x) =
1

2
w(x)Tw(x) ≡ 1

2
||w(x)||22 ≡ 1

2

m∑

i=1

w2
i (x), (4.7)

with

w(x) = [w1(x) . . . wm(x)]
T = [wr,1(x)− w̃r,1 . . . wr,m(x)− w̃r,m]

T
(4.8)
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as the least-squares residuals. Objective functions of type (4.7) are classical formulations for data

fitting purposes, where the deviation of a model value wr,k(x) to a respective “measurement” w̃r,k

is intended to become as small as possible. The gradient of f then yields

∇f =
1

2

(
∂w

∂x

)T

w +
1

2
wT∂w

∂x
=

(
∂w

∂x

)T

w = JTw, (4.9)

where the so-called Jacobian matrix is introduced, here approximated using forward finite

differences:

J =
∂w

∂x
=




∂w1

∂x1
. . . ∂w1

∂xnp

...
. . .

...
∂wm

∂x1
. . . ∂wm

∂xnp


 ≈

≈




w1(x1+δx1,...,xnp )−w1(x1,...,xnp )

δx1
. . .

w1(x1,...,xnp+δxnp )−w1(x1,...,xnp )

δxnp

...
. . .

...
wm(x1+δx1,...,xnp )−wm(x1,...,xnp )

δx1
. . .

wm(x1,...,xnp+δxnp )−wm(x1,...,xnp )

δxnp


 . (4.10)

The Hessian matrix becomes

∇2f = JTJ+
m∑

i=1

wi∇
2wi. (4.11)

In a region close to the minimum, the last term in (4.11) becomes small comparable to the first

term, and its negligence leads to the so-called Gauss-Newton algorithm, with the iteration rule

according to (4.4)1:

Ji
T

Ji∆xi+1 = −JiTwi. (4.12)

A very popular and robust scheme for nonlinear least-squares problems is (4.12) equipped with a

regularization technique, yielding the well-known Levenberg-Marquardt algorithm [124, 135]:
[
Ji

T

Ji + λi diag(Ji
T

Ji)
]
∆xi+1 = −JiTwi. (4.13)

If the regularization parameter λ→∞, (4.13) degenerates to a gradient-descent method (4.3),

while the Gauss-Newton method (4.12) is recovered for λ = 0. Thus, the merits of both algorithms

may be combined in (4.13) when initializing λ as sufficiently “large” and adapting its value to

tend to zero when approaching the valley of the objective function.

There exists a bunch of adaptive methods for the Levenberg-Marquardt algorithm, e.g. in terms of

a gradient norm scaling

λi := λi−1 ||∇f i||∞
||∇f i−1||∞

(4.14)

which will be used for least-squares problems dealt with in this thesis.

Finally, note that m ≥ np, i.e. the number of least-squares residuals m has to be greater or at

least equal to the number of parameters np. Otherwise, the Gauss-Newton tangent JTJ becomes

rank-deficient and the system of equations is underdetermined. If m = np, the Jacobian is a square

matrix and an “exact” solution fulfilling each least-squares residual can be obtained, since after

left-multiplication of (4.12) with J−T, a classical Newton method to find the root of w emerges.

Thus, the minimum of the objective function is f = 0.
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4.1.1.2 Gradient-free optimization: The Nelder-Mead simplex method

There exist cases in nonlinear unconstrained optimization where the computation of a gradient to

the objective function in terms of finite differencing (4.6) does not provide a sufficient amount of

accuracy or is of too great computational expense. Especially the former aspect is concomitant

if the underlying forward model for evaluation of the objective function f captures non-smooth

behavior, e.g. as a result of its discretization or inherent physics. One may think of an optimization

problem where a change in parameters x has influence on the spatial discrete representation of the

forward model, e.g. in structural shape optimization [208], where a tight link between the discrete

model for analysis and its original geometric representation is needed. A specific application in

the context of this thesis, cf. chap. 5, is the optimization of the location of pneumatic units for

ventricular “compression” devices, where the inherently non-smooth situation of contact between

two bodies (heart and implant) and its finite element discretization are not sufficiently sensitive

with respect to a finite perturbation δx in the location parameters. A further discussion of this

issue is carried out in sec. 5.4.

For these kinds of problem types, gradient-free methods may be an option of choice, amongst

which the Nelder-Mead simplex algorithm [148] is a very popular one. Further progresses and

algorithms of derivative-free optimization are discussed in [46].

The Nelder-Mead method, sometimes also known as (downhill) simplex method (not to be

confused with the simplex method in linear programming), produces a convex hull of affinely

independent vectors x0, . . . , xn ∈ Rn. Hence, x1 − x0, . . . , xn − x0 are linearly independent. The

simplex is denoted as

S =

{
n∑

i=0

λi xi |λi ≥ 0,
n∑

i=0

λi = 1

}
. (4.15)

The algorithm is depicted in fig. 4.1 for two dimensions. After the initial simplex is defined, the

objective function f is evaluated at each point, and the points are denoted according to their

function value, f(xmax) = max
i=0,...,n

f(xi) and f(xmin) = min
i=0,...,n

f(xi), and then sorted such that

xmax = x0.

First of all, the centroid x̂ of all points except the point with the maximum function value is

calculated, which is the centroid of the resulting facet F :

x̂ =
1

n

n∑

i=1

xi =
1

n

n∑

i=0

(xi − xmax) . (4.16)

The point with the maximum function value on the facet is denoted as f(xFmax) = max
i=1,...,n

f(xi).

The algorithm then starts finding a new simplex by a reflection of the point with the maximum

function value along the facet:

xref = x̂+ γ(x̂− xmax), 0 < γ ≤ 1. (4.17)

Three cases then are distinguished:
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x?

x1

x2

f(x1, x2)

...

initial simplex 

new simplex, if        

facet 

f(xref) < f(xmin) f(xexp) > f(xref)OR and 

f(xref) < f(xmin) and f(xexp) < f(xref)

and f(xcont) < f(xmax)

and f(xcont) < f(xmax) f(xref) > f(xmax)

xmax

xmin

x̂

xexp

xref

xcont

xcont

xfacmax simplex 

SF

f(xmin) < f(xref) < f(xFmax)

f(xmax) > f(xref) > f(xFmax)

Figure 4.1: Visualization of the Nelder-Mead simplex method in R2.

• The reflection yields a point with minimum function value f(xref) < f(xmin): Try an expansion

in order to see if a further point along that direction produces an even lower function value,

xexp = x̂+ β(xref − x̂), β > 1, (4.18)

and choose the new point according to

xnew =

{
xexp, if f(xexp) < f(xref),

xref , else.
(4.19)

• The reflection yields a point with maximum function value f(xref) > f(xFmax): A contraction

is performed in order to find a closer point along that direction with lower function value,

xcont =

{
x̂+ α(xmax − x̂), if f(xref) > f(xmax),

x̂+ α(xref − x̂), else,
0 < α < 1. (4.20)

The new point is set either to the contracted one, or a total contraction is performed, where all

corners of the simplex are re-set except of the one with minimum function value:

{
xnew = xcont, if f(xcont) < f(xmax),

xnew,i =
1
2
(xi + xmin) , i = 0, . . . , n, else.

(4.21)
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• The reflection yields a point with medium function value f(xmin) < f(xref) < f(xFmax), and

the reflected point may be set as the new one:

xnew = xref . (4.22)

Here, the algorithm is considered converged if

Efnorm =

√√√√
n∑

i=0

(f(xi)− f(xmin))
2

n
≤ ǫf . (4.23)

4.1.2 Projection-based model order reduction using proper

orthogonal decomposition

A brief introduction to model order reduction methods using proper orthogonal decomposition

(POD) is given. Model reduction strategies have widely been used in the scientific computing

and engineering community due to the impelling demand for in-time solutions of parameterized

(initial) boundary value problems while maintaining an acceptable accuracy for the problem at

hand [83, 166].

Here, POD-based model order reduction strategies applied in the context of nonlinear finite

element-discretized structural dynamics problems are considered. A recent contribution for these

specific applications is the one by Farhat et al. [59], with specific applications to contact mechan-

ics in [13]. Further applications, e.g. to blood flow or aeroelastic problems, are given by [4, 133].

A general overview of POD methods with applications to engineering problems is given by Liang

et al. [125, 126].

The process of model order reduction-based computing comprises an offline phase during which

one or multiple parametric instances of the full, subsequently called high-dimensional model

(HDM) are computed in order to generate a reduced-order basis (ROB), and an online phase

during which the reduced-order model (ROM) is solved. The ROM thereby is generated by

projecting the HDM to a lower dimensional subspace spanned by the ROB. In general, a ROM is

used in order to assess new parametric configurations for which no HDM solution is given – in a

fraction of the time that would be needed to solve the HDM. Depending on the problem, multiple

offline phases may be required in order to recompute or update the ROB if the interpolatory

abilities of the ROM are loosened.

The central part of POD-based model reduction is the collection of snapshots from the solution of

the underlying high-dimensional problem. These may be static solutions of multiple parametric

realizations of the HDM, or the HDM solution of a dynamic problem at different instances in

time.

Here, for transient nonlinear structural dynamics problems, the time-dependent discrete displace-

ment vector d(t) of the finite element- and finite difference-discretized HDM is used as snapshot

quantity. Hence, at nsnap discrete instances in time, the solution is stored into the snapshot matrix

Ŝ ∈ Rndof×nsnap :

Ŝ =
[
d1 . . . dnsnap

]
, (4.24)
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where ndof is the number of degrees of freedom of the underlying discretized HDM. The snapshot

matrix (4.24) here has full column rank.

Now, a proper orthonormal basis, the so-called POD basis of rank rb for the set of snapshots

spanned by the nsnap snapshot vectors is searched. However, instead of forming the symmetric

matrix D̂ ∈ Rndof×ndof ,

D̂ = ŜŜ
T
, (4.25)

which still is large since ndof is large, the symmetric covariance matrix Ĉ ∈ Rnsnap×nsnap of

significantly smaller dimension (provided nsnap ≪ ndof),

Ĉ = Ŝ
T
Ŝ, (4.26)

is used to solve the eigenvalue problem

Ĉψj = λj ψj, j = 1, . . . , nsnap, (4.27)

since the non-zero eigenvalues of D̂ are the same as those of Ĉ. The covariance matrix Ĉ is

symmetric and positive-semidefinite, hence its eigenvalues all are real and positive.

If rank(Ĉ) = rb, then the first rb POD modes are

φj =
1√
λj

Ŝψj, j = 1, . . . , rb. (4.28)

Let the eigenvectors of D̂ and Ĉ be

Φ =
[
φ1 . . . φrb

]
and Ψ =

[
ψ1 . . . ψrb

]
, (4.29)

respectively, with the property

Ψ
T
Ψ = 1rb . (4.30)

Consequently, Φ may be written as

Φ = ŜΨΛ
− 1

2 , (4.31)

with the diagonal matrix of eigenvalues

Λ =



λ1 (0)

. . .

(0) λrb


 . (4.32)

The columns of Φ are eigenvectors of D̂ ordered by decreasing eigenvalues, since

Φ
TD̂Φ = Ψ

TĈΨ = Λ. (4.33)

The optimal orthogonal basis of size k ≤ rb then is

V =
[
Φk Φrb−k

] [1k

0

]
. (4.34)
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Here, the model reduction process entirely operates at the fully discrete level, performing the

dimensional reduction on the linearized system of equations (3.22)2 yielding a reduced system

VTKi
n+1V∆d̃

i+1

n+1 = −VTrin+1 (4.35)

which has to be solved for the reduced displacement increment ∆d̃
i+1

n+1 in every Newton iteration

i. After each performed reduced linear solution of (4.35), the full displacement increment vector

is reconstructed,

∆di+1
n+1 = V∆d̃

i+1

n+1, (4.36)

and then updated according to (3.23). The termination criterion however is not (3.24) but

||VTr(di
n+1)||2 ≤ ǫres and ||∆d̃

i+1

n+1||2 ≤ ǫincr. (4.37)

4.2 3D-0D coupled model order reduction

The presented model order reduction techniques are applied to the 3D-0D coupled cardiovascular

mechanics problem, performing the reduction on the 3D heart without changing the 0D governing

equations. These techniques for the first time are applied in the context of modeling the heart

and the circulatory system, however already have been applied to a 3D-0D coupled problem in

the thesis of [116]. Therein, a heart coupled to single 0D pre- and afterload models is employed,

using the 3D-0D framework that has been developed and implemented here. Furthermore, model

reduction techniques applied to pure solid mechanics models of the heart have been presented,

for instance, in [164].

The reduced linear system of equations is presented in sec. 4.2.1, and exemplary results as well as

error estimates are shown in sec. 4.2.2. The results are briefly discussed in sec. 4.2.3.

4.2.1 Linear reduced monolithic system of equations

Model order reduction for the 3D-0D coupled problem addresses the computationally demanding

3D solid mechanics description of the heart. Therefore, the linearized 3D-0D coupled system of

equations (3.34) is reduced according to (4.35) and reads



VTKSV VTKS,0D

K0D,SV K0D



i

n+1



∆d̃

∆p



i+1

n+1

= −



VTrS

r0D



i

n+1

, (4.38)

with the recovered full displacement increment (4.36) and the reduced-order basis (4.34). It has to

be solved for ∆d̃
i+1

n+1 and ∆pi+1
n+1 prior to updating according to (3.35) until (4.37), (3.37)3 and

(3.37)4.

The respective reduction of (3.34) yielding (4.38) is implemented into the 3D-0D monolithic

solution framework that itself has been implemented into the in-house multi-physics finite element

software package Baci [207]. For the sake of computational efficiency, the reduced-order basis
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(4.34) is stored as an Epetra multi-vector [82] such that the cost for matrix-matrix or matrix-vector

products required to construct (4.38) is minimized.

The reduced system then can be solved with a direct linear solver (e.g. UMFPACK [48]) instead

of the 2×2 block-preconditioned GMRES (chap. 3, sec. 3.2.2).

In order to quantify the performance of the reduced order model, the a-posteriori error estimate

||rS(V d̃
i+1

n+1)||2 (4.39)

is used. Hence, the quality of the ROM is simply measured in terms of the full structural residual

2-norm evaluated with the reconstructed full displacement vector at the end of each time step.

4.2.2 Exemplary results and error estimations

A couple of numerical examples are presented and the performance of the ROM under varying

sizes of the reduced-order basis (ROB) (4.34), different amounts of snapshots (4.24), a reduction

in time steps, and at changed parametric configurations is presented.

As high-dimensional model (HDM), 3Dventrtet4 1 | 0Dsyspul is used, specifically the standard

conditions presented in sec. 3.2.3.1, fig. 3.2. The discretization (tet4 1) is presented in appendix

A.1.1.1 (fig. A.1). The HDM problem is solved on ncore = 112 Xeon Haswell cores with

nstep = 500 time steps for one cardiac cycle, and the displacement vector at each time step is

saved. Hence, a maximum of nsnap = 500 snapshots (displacement states) for the computation of

the ROB can be used, with the maximum theoretical number of reduced-basis vectors rb = nsnap.

For all ROM computations, the same amount of ncore = 112 Xeon Haswell cores is used even

though the direct linear solve operation is performed by UMFPACK in serial. However, besides

the linear solve, a great amount of computational effort lies in the construction of (4.38) and the

residual evaluations that are performed on the full-sized vector. Hence, all operations that happen

outside of the linear solve routine are as expensive as for the HDM, with even additional costs due

to the matrix-matrix and matrix-vector products for the reductional and displacement increment

reconstruction process.

Figure 4.2 shows the performance of the ROM under a varying number of reduced-basis vectors.

Each time, all available snapshots are used, and the number of time steps is fixed to nstep = 500
for all computations. The left and right ventricular pressure-volume relations are shown in fig.

4.2a and 4.2b, respectively, and the left and right ventricular volumes over time in fig. 4.2c and

4.2d, respectively. The ROM error (4.39) over time is shown in fig. 4.2e, and fig. 4.2f depicts

the overall wall time twall for the transient computation of the single cardiac cycle.1 This time

measures the start of the solution process (no setup) to final program termination, including the

proper orthogonal decomposition (POD) solving (4.27) at the very beginning. Prestressing, which

is performed as an extra computation prior to the transient simulations, is not included in twall.

1Since the homeostatic state initial conditions from the previously computed problem from sec. 3.2.3.1 are used,

the cycle error (2.222) most often is fulfilled by the ROMs.
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Figure 4.2: Model 3Dventrtet4 1 | 0Dsyspul: Performance of ROM under varying number of

reduced-basis vectors rb, using all snapshots (nsnap = 500). ⋆: not all 500 but only

486 reduced-basis vectors considered due to round-off errors. (a) Left ventricular

pressure-volume relation. (b) Right ventricular pressure-volume relation. (c) Left

ventricular volume over time. (d) Right ventricular volume over time. (e) ROM error

||rS||2 over time. (f) Total wall time for transient computation (one cardiac cycle,

prestressing excluded).

139



4 Parameter estimation and model order reduction for 3D-0D coupled cardiac dynamics

Table 4.1 depicts relative stroke work errors for both the left and the right ventricle as well as the

time step-averaged ROM error (4.39) with respect to the HDM for the case of varying numbers of

reduced-basis vectors rb.

Table 4.1: Relative errors in left (i = ℓ) and right (i = r) ventricular stroke work |SWi
ROM−

SWi
HDM|/SWi

HDM for the ROM with respect to the HDM, as well as time step-averaged

ROM error ∅||rS||2 [mN], for varying number of reduced-basis vectors rb using all

nsnap = 500 snapshots (⋆: not all 500 but only 486 reduced-basis vectors considered

due to round-off errors)

rb 500 ⋆ 256 128 64 32 16 8 4 2

|SWℓ
ROM−SWℓ

HDM|/SWℓ
HDM 0.00 3.00 · 10−5 3.00 · 10−5 2.60 · 10−4 8.50 · 10−4 2.10 · 10−4 2.53 · 10−2 0.13 0.17

|SWr
ROM−SWr

HDM|/SWr
HDM 0.00 3.00 · 10−5 5.00 · 10−5 1.00 · 10−4 7.00 · 10−4 4.12 · 10−3 6.41 · 10−2 8.01 · 10−2 0.21

∅||rS||2 [mN] 8.34 · 10−4 0.20 2.14 1.50 · 101 6.89 · 101 2.04 · 102 7.04 · 102 1.27 · 103 2.30 · 103

Figure 4.3 shows the ROM solutions for varying number of snapshots nsnap. Every (500/nsnap)th
snapshot is taken, each time however using all available rb = nsnap reduced-basis vectors. Left

and right ventricular pressure-volume relationships are shown in fig. 4.3a and fig. 4.3b, respec-

tively. The ROM error is plotted in fig. 4.3c.

Table 4.2 depicts relative stroke work errors for both the left and the right ventricle as well as the

time step-averaged ROM error (4.39) with respect to the HDM for the case of varying numbers of

snapshots nsnap.

Table 4.2: Relative errors in left (i = ℓ) and right (i = r) ventricular stroke work |SWi
ROM−

SWi
HDM|/SWi

HDM for the ROM with respect to the HDM, for varying number of

snapshots nsnap (only every (500/nsnap)th snapshot taken) using all rb = nsnap reduced-

basis vectors

nsnap 250 100 50 25 10 5

|SWℓ
ROM−SWℓ

HDM|/SWℓ
HDM 3.00 · 10−5 3.00 · 10−5 5.00 · 10−5 4.30 · 10−4 1.71 · 10−3 0.11

|SWr
ROM−SWr

HDM|/SWr
HDM 3.00 · 10−5 8.00 · 10−5 2.00 · 10−4 3.34 · 10−3 0.15 0.23

∅||rS||2 [mN] 0.88 9.26 3.72 · 101 1.53 · 102 5.63 · 102 2.02 · 103

Figure 4.4 depicts the performance of the ROM under varying number of time steps nstep. All

reduced-basis vectors and all snapshots are used. Left and right ventricular pressure-volume loops

are depicted in fig. 4.4a and fig. 4.4b, respectively, and the ROM error is shown in fig. 4.4c. The

wall times are depicted in fig. 4.4d. ROMs are always generated from the HDM with nstep = 500
time steps. The HDM does not allow a further reduction of time steps than 250, however the

ROM can handle significantly larger steps.

Table 4.3 depicts relative stroke work errors for both the left and the right ventricle as well as the

time step-averaged ROM error (4.39) with respect to the HDM for the case of varying numbers of

time steps nstep.
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Figure 4.3: Model 3Dventrtet4 1 | 0Dsyspul: Performance of ROM under varying number of snap-

shots nsnap (only every (500/nsnap)th snapshot taken) using all rb = nsnap reduced-

basis vectors. (a) Left ventricular pressure-volume relation. (b) Right ventricular

pressure-volume relation. (c) ROM error ||rS||2 over time.

Table 4.3: Relative errors in left (i = ℓ) and right (i = r) ventricular stroke work |SWi
ROM−

SWi
HDM|/SW

i
HDM for the ROM with respect to the HDM, for varying number of time

steps nstep using all nsnap = 500 snapshots and all rb = nsnap reduced-basis vectors

nstep 250 100 50

|SWℓ
ROM−SW

ℓ
HDM|/SW

ℓ
HDM 2.12 · 10−3 7.54 · 10−3 2.38 · 10−2

|SWr
ROM−SW

r
HDM|/SW

r
HDM 3.59 · 10−3 1.27 · 10−2 4.06 · 10−2

∅||rS||2 [mN] 7.27 2.56 · 101 4.8 · 101
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Figure 4.4: Model 3Dventrtet4 1 | 0Dsyspul: Performance of ROM under varying number of time

steps nstep using all nsnap = 500 snapshots and all rb = nsnap reduced-basis vectors.

(a) Left ventricular pressure-volume relation. (b) Right ventricular pressure-volume

relation. (c) ROM error ||rS||2 over time. (d) Total wall time for transient computation

(one cardiac cycle, prestressing excluded). Red cross means that HDM was not

computable with this number of time steps using a standard Newton as nonlinear

solver.
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Figure 4.5 shows the performance of the ROM under different parametric configurations. Specifi-

cally, the contractility σ0 is varied under base afterload (resistance Rsys
ar ), and then the resistance

Rsys
ar is varied under base inotropic state (contractility σ0), however without adjusting the other

vascular parameters according to tab. 2.7 but assuming them to be calculated using the base total

resistance (tab. 2.6). ROMs are all calculated from the HDM with base parameters (σ0 = 70 kPa,

Rsys
ar = 120 mPa·s

mm3 ).
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Figure 4.5: Model 3Dventrtet4 1 | 0Dsyspul: Performance of ROM under varying parametric con-

figuration using all nsnap = 500 snapshots and all rb = nsnap reduced-basis vectors

generated from the “control” HDM (base parameters from tab. 2.3 and tab. 2.6, namely

σ0 = 70 kPa and Rsys
ar = 120 mPa·s

mm3 ). (a) Left ventricular pressure-volume relation

under change in contractility (inotropy). (b) ROM error ||rS||2 over time under change

in contractility (inotropy). (c) Left ventricular pressure-volume relation under change

in afterload. (d) ROM error ||rS||2 over time under change in afterload.

Table 4.4 shows relative stroke work errors for both the left and the right ventricle as well as the

time step-averaged ROM error (4.39) with respect to the HDM for the case of varying parametric

configurations (change in afterload Rsys
ar , change in contractility σ0).
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Table 4.4: Relative errors in left (i = ℓ) and right (i = r) ventricular stroke work |SWi
ROM−

SWi
HDM|/SWi

HDM for the ROM with respect to the HDM, varying parametric con-

figuration using all nsnap = 500 snapshots and all rb = nsnap reduced-basis vectors

generated from the “control” HDM (base parameters from tab. 2.3 and tab. 2.6, namely

σ0 = 70 kPa and Rsys
ar = 120 mPa·s

mm3 )

Rsys
ar [mPa·s

mm3 ] σ0 [kPa]
40 80 160 200 50 110

|SWℓ
ROM−SWℓ

HDM|/SWℓ
HDM 1.26 · 10−2 6.96 · 10−3 1.08 · 10−2 1.42 · 10−3 3.42 · 10−3 5.52 · 10−3

|SWr
ROM−SWr

HDM|/SWr
HDM 6.18 · 10−3 4.01 · 10−3 3.54 · 10−3 2.42 · 10−2 4.07 · 10−2 7.00 · 10−3

∅||rS||2 [mN] 5.02 · 102 2.44 · 102 1.57 · 102 7.92 · 102 5.43 · 102 3.55 · 102

4.2.3 Discussion

As mentioned before, this is the first time that model order reduction techniques have been applied

to a monolithic 3D-0D coupled problem describing the 3D nonlinear solid mechanics of the heart

and the 0D pressure-flow relationships for the closed circulatory system.

The performance of the reduced-order model (ROM) was tested for a single (homeostatic) heart

cycle of a high-dimensional model (HDM) that was used as input for the proper orthogonal

decomposition (POD).

At first, its behavior with respect to a varying size of the reduced-order basis (ROB) is analyzed.

A reduction of the ROB from rb = 500 to rb = 16 reduced-basis vectors yielded visually

non-distinguishable pressure-volume relationships (relative stroke work errors below 1 %). Less

modes however lead to significantly greater errors and did not further decrease wall time (fig. 4.2,

tab. 4.1). The maximum measured wall time speedup with respect to the HDM for this case is 4.12.

Also, taking a reduced number of snapshots still allows for good accuracies. For example, using

only nsnap = 25 snapshots (hence every 20th) may be sufficient depending on the problem at hand,

with relative stroke work errors below 1 % (fig. 4.3, tab. 4.2). However, a too drastic increase of

the snapshot increment is not recommendable since important features of the cardiac cycle then

may be missed.

An important property of the ROM compared to the HDM is its tolerance for large time steps

when using a standard Newton scheme to solve the nonlinear problem (fig. 4.4, tab. 4.3). While

for the special case here the HDM still is computable with nstep = 250 instead of nstep = 500
(default), a further reduction leads to divergence of Newton’s method and would necessitate more

robust – hence more expensive – nonlinear solution techniques. However, the ROM still converges

well even for nstep = 50 time steps over one cardiac cycle, with little overall error compared to

the HDM using all nstep = 500 steps. Considering the ability of time step reduction, wall time

speedups become more remarkable (nROM
step = 50 vs. nHDM

step = 500: speedup 13.3; nROM
step = 50 vs.

nHDM
step = 250: speedup 7.4), and could be increased when combining time step and ROB size

reduction simultaneously.
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4.3 Multilevel parameter and homeostatic state estimation

Finally, the ROM’s performance under different parametric configurations is evaluated. Changes

in afterload and inotropy are computed on the ROM generated from the default HDM input data.

Even for large changes in these parameters, ROM pressure-volume data is visually only little

distinguishable to the respective HDM (fig. 4.5, tab. 4.4). Therefore, the ROM may be used even

if parameters differ from the underlying HDM, however a more general and robust quantification

of the ROM’s accuracy under different parametric configurations remains to be performed.

Furthermore, global ROMs performing the POD on HDM inputs from different parametric set-

tings may be constructed that lead to an even better interpolatory behavior of the ROM. Even

though this feature is implemented, it is yet to be evaluated, and its analysis leaves the scope of

this thesis.

The main limitation of the present model order reduction implementation is the need for evaluating

the full HDM problem in every Newton iteration in order to construct the reduced linear system

of equations (4.38) to be solved. Additionally, the processes of projection (matrix-matrix and

matrix-vector multiplication) themselves are time-consuming and depend on the size of the

underlying HDM. While the linear solve then is significantly faster than for the system (3.34),

the speedup is diminished by evaluation and projection operations, and the total amount of cores

used for computation is intended to be the same as for the HDM in order to achieve measurable

speedups.

In order to circumvent evaluating the whole n3D
dof×n3D

dof-sized HDM, hyper reduction techniques

have been proposed that essentially produce reduced nonlinear systems of equations, and in

combination with the POD yield significant speedups. For nonlinear structural dynamics problems

refer again to Farhat et al. [59] for comparisons of ROMs with and without hyper reduction.

However, this topic leaves the scope of this thesis and is subject of future investigations.

4.3 Multilevel parameter and homeostatic state

estimation

The focus here is set on the estimation of model parameters in cardiovascular dynamics such

that (time-resolved) measurements of left ventricular pressure and data on left ventricular stroke

volume (ejection fraction) are reproduced by the 3D-0D coupled computational model of the

heart and the vascular system as it is detailed in chap. 2.

The specific data was gathered from animal experiments on pigs which have been conducted for

experimental assessment of a novel extravascular ventricular assist technology, cf. chap. 5 and

[98]. Two cases of pharmacologically-induced heart failure models are considered, namely

• a low-afterload heart failure state, subsequently denoted as LA-HF, which was created by

injection of β1-blockade with vasodilatory effects [174] leading to widening of the arteries and

reduction of vascular resistance, ultimately causing a state of low heart rate, weak contractility

and hence reduced cardiac output; and

• a high-afterload heart failure scenario, in the following denoted as HA-HF, which was induced

by additional infusion of phenylephrine leading to a constriction of the peripheral arterioles and

therefore increased vascular resistance [192] and subsequently elevated ventricular contractility.
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4 Parameter estimation and model order reduction for 3D-0D coupled cardiac dynamics

Hence, parameters which are responsive to external medical treatment conditions and exhibit

short time-scale variability have been chosen for estimation, since the alteration of measured

ventricular data was on a time-scale of minutes after the medical treatment had been applied. A

qualified pair of parameters would be a systemic vascular compliance or resistance (Rsys
ar ), and

the heart’s autoregulatory response to a change of that quantity in terms of contractile force, i.e.

the contractility (σ0) as the asymptotic value of the active stress τa, cf. (2.99).

Given that information of the time-course of (left) ventricular pressure is present, the qualified

pair of parameters is enhanced by the muscle’s contraction and relaxation speeds that govern

the slope of the pressure build-up and decrease in isovolumic contraction and relaxation phases

(upstroke and relaxation rates αmax and αmin, respectively), cf. (2.100).

As an advancement to the procedure in [86], left atrial contractility (Eℓ
at,A in case of model

3Dventr, σ0(at) in case of model 3Datrioventr) is incorporated into the parameter estimation

process as it governs end-diastolic ventricular pressure which the other parameters are not directly

able to determine.

The vector of model parameters to be estimated thus reads

x =
[
σ0 αmax αmin Rsys

ar(total) Eℓ
at,A

]T
(3Dventr)

(4.40)

for the model 3Dventr and

x =
[
σ0 αmax αmin Rsys

ar(total) σ0(at)

]T
(3Datrioventr)

(4.41)

in case of the model 3Datrioventr.

The data of mp discrete left ventricular pressure measurements stemming from an eight-electrode

conductance catheter [12] equally distributed over one cardiac cycle with a sample rate of

tsampl = 0.01 s are stored in the discrete vector

p̃ = [p̃ℓ,1v . . . p̃ℓ,mp

v ]T, (4.42)

and its peak and end-diastolic values are denoted as

P̃VP
ℓ
= max(p̃) and ẼDP

ℓ
= p̃[ted/tsampl], (4.43)

respectively.

Finally, measured left ventricular ejection fraction

ẼF
ℓ
=

S̃V
ℓ

ẼDV
ℓ

(4.44)

stemming from CT volumetry analyses performed according to Simpsons’s rule [95] at the Clinic

of Diagnostic and Interventional Radiology in Ulm, Germany, is considered.2 Measured stroke

2Without loss of generality, ejection fraction instead of volume-over-time resolved data is considered, since complete

experimentally measured synchronized pressure-volume data was unavailable and the imaging data did not

provide the temporal resolution required. Furthermore, total model vs. motion CT estimated volume might differ

due to different atrioventricular offsets, thus ejection fraction as a relative measure seems the more reasonable

quantity to consider.
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4.3 Multilevel parameter and homeostatic state estimation

and end-diastolic volumes S̃V
ℓ

and ẼDV
ℓ

thus only implicitly enter the parameter estimation

process.

Given the data at hand, a least-squares objective function according to (4.7) of the type

f(x) =
1

2



( ||∆p(x)||2
||p̃||2

)2

+

(
∆PVPℓ(x)

P̃VP
ℓ

)2

+

(
∆EDPℓ(x)

ẼDP
ℓ

)2

+

(
∆EFℓ(x)

ẼF
ℓ

)2

+

+
∑

i=ℓ,r

(
∆V i

v(aux)(x)

V i
v (t0)

)2

 =

1

2
||w(x)||22 → min, (4.45)

is postulated, with

w(x) =

[
∆p(x)

||p̃||2
∆PVPℓ(x)

P̃VP
ℓ

∆EDPℓ(x)

ẼDP
ℓ

∆EFℓ(x)

ẼF
ℓ

∆V ℓ
v(aux)(x)

V ℓ
v (t0)

∆V r
v(aux)(x)

V r
v (t0)

]T

(4.46)

as the vector of non-dimensionalized least-squares residuals, cf. (4.8). The weighted residuals

(pressure weightings b
ip
p , ip = 1, ...,mp, ejection fraction weighting bEF, peak and end-diastolic

ventricular pressure weightings bPVP and bEDP, auxiliary volume weightings biV (i = ℓ, r)) are

∆p(x) =




b1p · (pℓ,1v (x, t0)− p̃ℓ,1v )
...

b
mp
p · (pℓ,mp

v (x, t0 + Tcycl)− p̃
ℓ,mp
v )


 ,

∆PVPℓ(x) = bPVP · (PVPℓ(x)− P̃VP
ℓ
),

∆EDPℓ(x) = bEDP · (EDPℓ(x)− ẼDP
ℓ
),

∆EFℓ(x) = bEF · (EFℓ(x)− ẼF
ℓ
),

∆V i
v(aux)(x) = biV · (V i

v (x, t0 + Tcycl)− V i
v (t0)), i = ℓ, r.





(4.47)

In order to solve the optimization problem (4.45), a Levenberg-Marquardt-type algorithm with the

iteration rule (4.13) and a regularization parameter update rule according to (4.14) is considered

the method of choice.

However, two major hurdles are to overcome:

• The result of the evaluation of (4.45) is governed by a transient solution of a coupled initial

boundary value problem, hence multiple solutions of the discrete nonlinear problem (3.32) in

a discretized time span [t0, tN⋆ ] for which the homeostatic state cycle N⋆ has to be found, cf.

(2.222). Therefore, an implicit dependence of the objective function on the problem’s initial

conditions requires some considerations.

• One evaluation of the objective function (4.45), meaning the computation of a single cardiac

cycle solving (3.32) in a discretized time span [tN , tN+Tcycl], is of non-negligible computational

cost itself.
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4 Parameter estimation and model order reduction for 3D-0D coupled cardiac dynamics

Considering these aspects and the fact that np + 1 (for the present case, the number of parameters

is np = 5) forward evaluations per optimization step are necessary if the Jacobian (4.10) is calcu-

lated using forward finite differences, cf. sec. 4.1.1, the computational expense and feasibility of

the overall parameter estimation process is expected to be not profitable from a computational

timing and resources point of view.

In order to address the above-mentioned challenges, a novel multilevel optimization approach

for the simultaneous estimation of model parameters and homeostatic state initial conditions is

presented. The core idea about this method is to construct some “coarse” reduced-dimensional

surrogate model (RDM) that captures information of the original “fine” high-dimensional model

(HDM), and to “outsource” a significant amount of optimization work to the computationally

cheap RDM.

The generic algorithmic pattern may be depicted as a V-cycle that denotes the switches between

the two models (levels) and the respective level operations, cf. fig. 4.7. Here, the term evaluation

means the computation of one cardiac cycle in order to determine the result of the objective

function, i.e. (4.45). The term solve refers to the solution of an optimization problem, here the

application of the Levenberg-Marquardt algorithm (4.13) or the Gauss-Newton method (4.12).

The interchange between the models is characterized by transfer operators TTT. The process is

called restriction if information is transferred from the HDM to the RDM, and prolongation

if information is passed from the RDM back to the HDM again. The restriction operator from

“fine” to “coarse” is denoted as TTTf
·c, and the “coarse” to “fine” prolongation operator is TTT ·f

c .

These operators can be seen as generalizations of the concept of restriction and prolongation as

known from multigrid algorithms [28, 29]. Their specific representations will be given in the

subsequent sections. Furthermore, “fine” to “fine” prolongations TTTff and sTTT
ff may be defined,

which characterize a transfer of information from the HDM of the previous V-cycle or previous

solve iteration to the HDM of the current one, e.g. a set of updated initial conditions I (2.223).

Three different types of RDMs are considered, namely

• a heavily coarsely discretized version of the underlying HDM, denoted as model C;

• a 2-dimensional plane strain representation of a bi-ventricular heart, denoted as model S (shown

in fig. 4.6);

• a reduced-order model of the heart by use of proper orthogonal decomposition, cf. sec. 4.2,

denoted as R.

It should be noted that all types of RDMs are coupled to the same 0D circulatory system as the

respective HDM, thus dimensional reduction addresses the spatially resolved only-ventricular or

atrioventricular heart model exclusively.

For other types of problems and with differing formulations of objective functions, nonlinear

multigrid algorithms for optimization have been proposed, for instance, by Nash [146], Bouman

et al. [27], Ye et al. [221] or Borcea [26], while a nice overview is given by Oh et al. [153]. In

contrast to some techniques addressed therein or classical multigrid methods for the solution

of discretized partial differential equations, where a coarsened grid smoothens the long-wave

error component in the solution vector and hence becomes beneficial for the fine grid solver, here
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Figure 4.6: 2D surrogate heart model S with systemic and pulmonary circulation

(2Dventr | 0Dsyspul); muscle fiber direction is in-plane and shown in green.

the same number of degrees of freedom (the parameters) as well as residual entries (number of

measurements) is present on both levels. Therefore, the present approach is rather denoted as

multilevel method.

In the following, two types of novel multilevel algorithms as specializations of the generic V-cycle

in fig. 4.7 are presented. They essentially differ with respect to the definitions of inter- and

intra-level transfer operators and the coarse level objective function.

The termination criterion of the V-cycle always is

Ecycl ≤ ǫcycl AND v ≥ 1, (4.48)

hence if the periodic (homeostatic) state is reached in terms of Ecycl (2.222) and if at least one

V-cycle iteration, meaning one visit of the “coarse” level solve has happened. Note that this

criterion does not include any information on the magnitude of the objective function (4.45)

on the HDM nor information on its gradient norm ||∇f ||∞, which never was computed during

V-cycling.

After finishing the V-cycle, the solution is expected to be sufficiently close to the true minimizer

of (4.45) on the HDM, hence the “fine” solve section is entered with the hope of very little further

optimization work to solve the HDM optimization problem.

For the two subsequently presented algorithms, the intra-level transfer operator for the last solve

step is defined as follows:

sTTT
ff :

{
I(i)(t0)← I

(v)(t0 + Tcycl), if Ecycl ≤ ǫcycl OR ||∇f ||∞ > ǫgrad,

I(i)(t0)← I
(i−1)(t0 + Tcycl), else.

(4.49)
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Figure 4.7: Generalized 2-level V-cycle: A high-dimensional model (HDM) optimization prob-

lem is accelerated by help of some reduced-dimensional model (RDM); model S:

“surrogate” 2D plane strain bi-ventricular heart, model R: reduced-order heart model

using proper orthogonal decomposition on the HDM, model C: coarsely discretized

version of the HDM; like the HDM, all reduced-dimensional models are coupled to

the 0D circulation (drawing neglected in figure for the sake of a better overview).
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4.3 Multilevel parameter and homeostatic state estimation

The first solve, i = 0, is entered by updating the initial conditions from the last V-cycle v. An

optimization algorithm, here the Gauss-Newton method (4.12), is applied until the gradient norm

tolerance is met and regardless of a potential violation of the cycle error tolerance. Only after

convergence in the gradient norm, a further initial condition update is executed for the case that

the cycle norm tolerance had been violated during optimization iterations.3

Ultimately, the “fine” level solve and thus the whole optimization procedure is considered

converged and stops if both conditions, for the cycle error and the HDM gradient norm,

Ecycl ≤ ǫcycl AND ||∇f ||∞ ≤ ǫgrad, (4.50)

are fulfilled.

4.3.1 Full approximation scheme least-squares algorithm FAS-lsq

Based upon the above generic V-cycle, a so-called full approximation scheme least-squares

algorithm, subsequently denoted as FAS-lsq, is developed. Despite slight technical modifications,

it corresponds to the 2-level optimization algorithm as it has been published in Hirschvogel et al.

[86].

Its name and some aspects are adopted from nonlinear multigrid techniques such as the full

approximation scheme (FAS) [28, 29, 66]. The basic concept of that approach consists of solving

the computationally expensive (fine) HDM nonlinear residual f(x) = 0 with help of a computa-

tionally cheap (coarse) RDM fc(xc). At some initial fine model guess x← x(0), the fine model

evaluation as well as the fine model guess are restricted to the coarse model,

fc := R f(x) and xc := R x, (4.51)

with a so-called restriction operator R. For the cheap RDM, a modified problem

fc(xc) + fc − f̂c → 0 (4.52)

is solved, with f̂c := fc(xc), while fc and f̂c are fixed quantities throughout the coarse model

iterations. Thereafter, the coarse model estimate xc is prolongated to the fine level via

x← x+ P (xc − xc) (4.53)

with the prolongation operator P.

Technically spoken, if R = 1 and P = 1, the modified problem (4.52) corresponds to shifting the

coarse model by its residual difference to the fine model at the current guess, obtaining a coarse

model solution which proves beneficial for the fine model solve. Depending on the problem at

hand, a hierarchy of different models might be used through recursive application of the above

procedure.

3A simultaneous initial condition and nonlinear gradient-based optimization iteration update is not recommended. It

has proven to significantly perturb the gradient calculation since a change in initial conditions essentially changes

the topology of the objective function and thus deteriorates convergence behavior of the algorithm.

151



4 Parameter estimation and model order reduction for 3D-0D coupled cardiac dynamics

A similar idea of applying such a method to (unconstrained) optimization problems has been

proposed by Nash [146]. Therein, a general optimization problem of the type (4.1) is stated

and a (line-search regularized) Newton method (4.4) is applied to solve it. The FAS residual

modification is applied to the right-hand side of (4.4)1, which essentially yields a correspondingly

modified coarse grid objective function to be minimized. For the case that the optimization

problem is non-convex, Nash proposes an additional modification of the objective function in

order to guarantee descent.

However, in order to construct the coarse grid optimization problem, a fine grid evaluation of

the Newton right-hand side in (4.4)1, hence of the gradient, is necessary, since (4.51)1 has to be

computed. For the problem at hand, an HDM evaluation, cf. fig. 4.7, would come along with a

computationally expensive finite differencing (4.6) for gradient calculation, i.e. np+1 evaluations

of the objective function.

The central and novel aspect constituting the FAS-lsq scheme is not to apply a (Newton right-hand

side) residual modification in terms of (4.52), but to apply the modification to the least-squares

residuals (4.7), or for the specific problem (4.46), yielding a modified objective function to be

minimized for the coarse level iterate xc which is initialized as restriction from the fine level

xc ← xc := Rx:

fc(xc) :=
1

2
||wc(xc) + (wc − ŵc) ||

2
2 → min . (4.54)

Therein, ŵc := wc(xc) and wc := Rww are the fixed quantities that remain unaltered during

coarse level optimization iterations.

The modified problem is solved until some gradient norm tolerance is met, here in terms of the

infinity norm:

||∇fc||∞ ≤ ǫgrad, (4.55)

and the new fine level iterate is updated according to (4.53).

The benefit of this approach is that the construction of (4.54) only needs one evaluation of the

HDM, meaning the computation of one heart cycle. Thus, the whole V-cycle does not require the

computation of an HDM gradient, which is only then needed in order to perform the “fine” solve

after having met (4.48).

The specific inter-level transfer operators for this algorithm are summarized as

TTTf
·c :





wc := Rww,

xc ← xc := Rx,

I(v)c (t0)← I(0)(t0)
and TTT ·f

c : x← x+ P(xc − xc). (4.56)

Without loss of generality, the residual and parameter restriction operators and the parameter

prolongation operator are set to identity: Rw = 1, R = 1, and P = 1.

On the RDM, the initial conditions I(v)c (t0) remain the same set of (semi-educatedly guessed)

initial values I(0)(t0) which have been set for initialization of the HDM (v = 0). Hence, the RDM

will not reach its homeostatic state throughout inter-level iterations.
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4.3 Multilevel parameter and homeostatic state estimation

The intra-level transfer operator that acts between HDMs of two successive V-cycles is

TTTff :

{
I(v)(t0)← I

(0)(t0), if v ≤ 1,

I(v)(t0)← I
(v−1)(t0 + Tcycl), else,

(4.57)

meaning that an initial condition update of the HDM happens only if v > 1. 4

4.3.2 Reduced-order model multilevel algorithm ROM-ml

The FAS-lsq algorithm as it is outlined in sec. 4.3.1 may be generalized to a so-called reduced-

order model multilevel algorithm, here denoted as ROM-ml, if the RDM is constructed directly

from the underlying HDM as reduced-order model (ROM) using proper orthogonal decomposition

(model R, cf. fig. 4.7).

Even though a ROM may be constructed once during V-cycle v = 0 after the first “fine” evaluate

and then subsequently be utilized as RDM in the FAS-lsq scheme, a cost-neutral generalization of

that scheme can be achieved if the RDM is simply updated after each V-cycle “fine” evaluate. If

done so, the “coarse” evaluate and the least-squares residual restriction in order to form ŵc and

wc in (4.54) may simply be omitted, yielding a RDM objective function of the type

fc(xc) :=
1

2
||wc(xc)||

2
2 → min . (4.58)

Hence, the delta in least-squares residual errors that has been introduced in (4.54) in order to

account for the delta in fine-to-coarse model behavior now is directly incorporated into the RDM

itself.

Additionally, one may think of an applicability of this more general approach to different types of

objective functions than to least-squares problems only, which is however not considered in this

context so far.

The inter-level transfer operators for this algorithm then yield

TTTf
·c :





xc ← x,

M(v)
RDM ← L(M(v)

HDM),

I(v)c (t0)← I(v)(t0)
and TTT ·f

c : x← xc. (4.59)

Therein,MRDM andMHDM denote the mathematical descriptors for the RDM and HDM, respec-

tively, and the operator L describes the process of model order reduction, cf. sec. 4.2.

The intra-level transfer operator TTTff remains identical to (4.57).

4.3.3 Results

The two algorithms are exemplified for the two LA-HF and HA-HF cases on a porcine ventricular

heart model (p1). The heart 3Dventr HDM is discretized using linear displacement-based tetrahe-

dral finite elements with an average edge length of h ≈ 1 mm (discretization tet4 1), hence the

4The reason for this simply lies in the presumption that I(0)(t0 + Tcycl) will be a poor guess if the initial parameter

estimate x(0) is poor, which most often is to be expected.
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4 Parameter estimation and model order reduction for 3D-0D coupled cardiac dynamics

model is denoted as 3Dventrtet4 1. For all computations, nstep = 500 time steps of equal size are

carried out for one cardiac cycle.

For the FAS-lsq scheme, two different types of RDMs are considered: the coarsely discretized

heart model C, which has an average element edge length h ≈ 8 mm (discretization tet4 8),

alternatively denoted as 3Dventrtet4 8, and the 2-dimensional plane strain heart model S (cf. fig.

4.6), which is discretized using trilinear displacement-based hexahedral finite elements5 with an

average in-plane element edge length of h ≈ 5 mm (2Dventrhex8 5). For model C, nstep = 200,

and for model S, nstep = 100 time steps of equal size are used for one cardiac cycle.

In case of the ROM-ml algorithm, the reduced-order basis (ROB) is computed by taking snapshots

of the HDM every 10th time-step, here resulting in nsnap = 50. All reduced-basis vectors are

used. On the ROM, nstep = 200 time steps of equal size over one cardiac cycle are used.

The models are all coupled to the same vascular model 0Dsyspul.

For details on the different spatial finite element discretizations of the patient-specific hearts

(snapshots, degrees of freedom, comparison), refer to appendix A.1.1. Sketches of the discretiza-

tions can be viewed in fig. A.1.

The gradient norm tolerance is chosen to ǫgrad = 0.003 { 1
kPa

, s, mm3

mPa·s ,
mm3

mPa
} (inf norm tolerance

of gradient, unit depending on largest absolute value). The tolerance for the homeostatic state

is chosen to ǫcycl = 5 %. The perturbation parameters for the gradient calculation are chosen to

δx1 = 10−6 kPa, δx2 = 10−6 1
s
, δx3 = 10−6 1

s
, δx4 = 10−6 mPa·s

mm3 and δx5 = 10−6 mPa
mm3 .

The weightings in (4.47) are to b
ip
p = 10 (ip = 1, ...,mp), bPVP = 10, bEDP = 10, bEF = 10,

bℓV = 5 and brV = 0.5. The Levenberg-Marquardt algorithm for the first “coarse” solve (relating to

v = 0) is initialized with λ0(0) = 15, while for the successive V-cycles, its initial value is updated

according to λ0(v) ← λ0(0)/(v + 1). Within the “coarse” solve, λ is updated according to (4.14).

For all optimizations, the same initial parameter guess

x(0) =
[
σ
(0)
0 α(0)

max α
(0)
min Rsys (0)

ar E
ℓ (0)
at,A

]T
=

=

[
100 kPa 30

1

s
− 20

1

s
140

mPa · s

mm3
20

mPa

mm3

]T
(4.60)

and some set of semi-educatedly guessed initial conditions I(0) are chosen.

Table 4.5a and tab. 4.5b show the LA-HF results for the algorithm FAS-lsq obtained after each

V-cycle iteration v as well as for the Gauss-Newton iterations i on the HDM with usage of

the surrogate model S (2Dventrhex8 5) and the coarse model C (3Dventrtet4 8), respectively. The

analogous results for the HA-HF case are shown in tab. 4.6.

5Of course, a 2-dimensional model would be discretized with 2-dimensional finite elements, e.g. quadrilaterals

(quad4). However, here a 3-dimensional model (mesh) with Dirichlet fixation of the out-of-plane direction is

chosen, which exactly corresponds to the 2-dimensional plane strain case.
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Table 4.5: FAS-lsq algorithm for model 3Dventrtet4 1 | 0Dsyspul, LA-HF: Iteration count v (HDM

evaluations); “pseudo” heart cycle Ñ ; Gauss-Newton iteration count i (HDM solves);

parameters σ0, αmax, αmin, Rsys
ar and Eℓ

at,A; objective function f and its gradient norm

||∇f ||∞; cycle error Ecycl on HDM; number of RDM solves nc (1 solve = 6 forward

calls); average and total net wall times ∅twall and twall, respectively, and net CPU time

tCPU (without prestressing, gradient runs and pre-/post-processing)

(a) HDM results obtained accelerated by surrogate model S (2Dventrhex8 5)

v Ñ σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]
f ||∇f ||∞ Ecycl [−] nc

0 1 100.00 30.00 −20.00 140.00 20.00 91.5475 − 0.3591 31
1 1 29.50 13.42 −20.65 88.35 25.40 2.0279 − 0.1856 12
2 2 32.96 20.73 −19.52 109.36 25.42 0.6770 − 0.0624 9
3 3 34.25 21.32 −19.20 116.51 27.49 0.4611 − 0.0514 9
4 4 35.03 18.78 −20.90 110.37 27.08 0.4383 − 0.0599 7
5 5 34.85 17.88 −22.14 106.14 26.11 0.4190 − 0.0465

∑
: 68

i Gauss-Newton solve on HDM:

0 6 34.85 17.88 −22.14 106.14 26.11 0.4665 0.0421 0.0235
1 6 34.57 23.14 −16.11 105.15 27.88 0.4053 0.0189 0.0324
2 6 34.22 30.40 −11.86 103.80 27.80 0.3573 0.0174 0.0535
3 6 34.02 36.36 −11.84 103.65 27.75 0.3262 0.0076 0.0501
4 6 33.95 39.80 −11.28 103.36 27.67 0.3205 0.0032 0.0594
5 6 33.91 41.03 −11.31 103.37 27.67 0.3198 0.0006 0.0582
6 7 33.92 41.14 −11.28 103.35 27.66 0.3384 0.1064 0.0287
7 7 34.61 42.38 −10.63 102.23 26.87 0.2974 0.0065 0.0496
8 7 34.53 43.45 −10.75 102.73 26.99 0.2962 0.0020 0.0449

∅tHDM
wall = 6.823 · 103 s ∅tRDM

wall = 0.138 · 103 s∑
tHDM
wall = 15 ·∅tHDM

wall = 102.342 · 103 s
∑

tRDM
wall = 68 ·∅tRDM

wall = 9.352 · 103 s

twall =
∑

tHDM
wall +

∑
tRDM
wall = 111.694 · 103 s tCPU = 112 ·

∑
tHDM
wall + 2 ·

∑
tRDM
wall = 11.481 · 106 s

(b) HDM results obtained accelerated by coarse model C (3Dventrtet4 8)

v Ñ σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]
f ||∇f ||∞ Ecycl [−] nc

0 1 100.00 30.00 −20.00 140.00 20.00 91.5475 − 0.3591 64∗

1 1 35.09 5.42 −14.98 57.85 19.76 5.5362 − 0.2545 12
2 2 32.90 19.50 −24.37 134.69 25.44 1.6246 − 0.2558 10
3 3 38.56 16.07 −22.97 118.03 26.21 1.0005 − 0.0789 8
4 4 34.93 17.39 −24.09 100.85 25.52 0.4395 − 0.0583 6
5 5 35.06 17.62 −23.81 100.45 24.54 0.5305 − 0.0260

∑
: 100

i Gauss-Newton solve on HDM:

0 6 35.06 17.62 −23.81 100.45 24.54 0.5447 0.0306 0.0085
1 6 34.83 22.66 −16.95 107.46 25.38 0.4364 0.0276 0.0255
2 6 34.59 29.75 −11.78 106.16 25.26 0.3804 0.0167 0.0491
3 6 34.30 36.56 −11.59 105.94 25.19 0.3408 0.0112 0.0480
4 6 34.25 40.12 −11.12 105.72 25.13 0.3331 0.0028 0.0564
5 7 34.21 41.53 −11.11 105.77 25.13 0.3513 0.1028 0.0223
6 7 34.75 43.73 −10.29 101.49 24.10 0.2994 0.0111 0.0481
7 7 34.70 43.96 −10.55 102.35 24.26 0.2976 0.0023 0.0394

∅tHDM
wall = 6.845 · 103 s ∅tRDM

wall = 0.070 · 103 s∑
tHDM
wall = 14 ·∅tHDM

wall = 95.824 · 103 s
∑

tRDM
wall = 100 ·∅tRDM

wall = 7.042 · 103 s

twall =
∑

tHDM
wall +

∑
tRDM
wall = 102.866 · 103 s tCPU = 112 ·

∑
tHDM
wall + 28 ·

∑
tRDM
wall = 10.929 · 106 s
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Table 4.6: FAS-lsq algorithm for model 3Dventrtet4 1 | 0Dsyspul, HA-HF: Iteration count v (HDM

evaluations); “pseudo” heart cycle Ñ ; Gauss-Newton iteration count i (HDM solves);

parameters σ0, αmax, αmin, Rsys
ar and Eℓ

at,A; objective function f and its gradient norm

||∇f ||∞; cycle error Ecycl on HDM; number of RDM solves nc (1 solve = 6 evalua-

tions); average and total net wall times ∅twall and twall, respectively, and net CPU time

tCPU (without prestressing, gradient runs and pre-/post-processing)

(a) HDM results obtained accelerated by surrogate model S (2Dventrhex8 5)

v Ñ σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]
f ||∇f ||∞ Ecycl [−] nc

0 1 100.00 30.00 −20.00 140.00 20.00 30.5241 − 0.4404 21
1 1 59.38 9.74 −14.97 223.16 10.90 2.0635 − 0.4279 15
2 2 65.22 10.15 −15.79 230.28 9.11 0.6856 − 0.1923 10
3 3 65.00 10.65 −15.64 233.92 7.93 0.5339 − 0.1616 8
4 4 65.50 10.13 −15.96 226.00 7.78 0.4890 − 0.1707 6
5 5 65.46 10.04 −16.20 224.27 7.68 0.4883 − 0.1566 4
6 6 65.45 10.14 −15.95 223.78 7.68 0.4887 − 0.1430 3
7 7 65.47 10.16 −16.01 223.45 7.69 0.4912 − 0.1279 4
8 8 65.51 10.21 −15.94 222.60 7.66 0.4908 − 0.1166 2
9 9 65.53 10.21 −16.05 222.32 7.65 0.4936 − 0.1040 4
10 10 65.59 10.24 −15.93 221.48 7.63 0.4929 − 0.0951 2
11 11 65.61 10.24 −16.05 221.26 7.64 0.4956 − 0.0843 4
12 12 65.67 10.26 −15.93 220.61 7.62 0.4953 − 0.0770 1
13 13 65.67 10.26 −15.93 220.61 7.62 0.4985 − 0.0673 5
14 14 65.77 10.20 −16.14 219.99 7.59 0.4989 − 0.0613 2
15 15 65.80 10.18 −16.34 219.78 7.59 0.5008 − 0.0549 2
16 16 65.81 10.23 −16.18 219.59 7.59 0.5011 − 0.0496

∑
: 93

i Gauss-Newton solve on HDM:

0 17 65.81 10.23 −16.18 219.59 7.59 0.5112 0.0471 0.0392
1 17 65.22 11.48 −14.78 217.26 7.78 0.4939 0.0079 0.0491
2 17 65.30 11.54 −15.02 217.35 7.78 0.4930 0.0002 0.0508
3 18 65.28 11.58 −14.98 217.35 7.78 0.4978 0.0322 0.0372
4 18 65.44 11.66 −14.89 216.70 7.92 0.4935 0.0005 0.0434

∅tHDM
wall = 6.754 · 103 s ∅tRDM

wall = 0.107 · 103 s∑
tHDM
wall = 22 ·∅tHDM

wall = 148.588 · 103 s
∑

tRDM
wall = 93 ·∅tRDM

wall = 9.930 · 103 s

twall =
∑

tHDM
wall +

∑
tRDM
wall = 158.518 · 103 s tCPU = 112 ·

∑
tHDM
wall + 2 ·

∑
tRDM
wall = 16.662 · 106 s

(b) HDM results obtained accelerated by coarse model C (3Dventrtet4 8)

v Ñ σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]
f ||∇f ||∞ Ecycl [−] nc

0 1 100.00 30.00 −20.00 140.00 20.00 30.5241 − 0.4404 21
1 1 64.48 8.32 −13.64 227.18 9.11 0.9061 − 0.4438 8
2 2 66.17 10.28 −16.59 228.12 8.98 0.8701 − 0.1908 10
3 3 65.48 10.50 −16.01 228.03 7.21 0.5357 − 0.1647 8
4 4 65.02 10.55 −15.98 223.49 7.87 0.4862 − 0.1677 6
5 5 65.17 10.56 −16.03 223.82 7.73 0.4839 − 0.1527 3
6 6 65.18 10.56 −16.02 223.75 7.72 0.4866 − 0.1375 2
7 7 65.23 10.58 −16.02 223.34 7.71 0.4884 − 0.1246 3
8 8 65.32 10.60 −16.04 222.32 7.69 0.4877 − 0.1144 3
9 9 65.36 10.59 −16.08 221.66 7.68 0.4892 − 0.1031 1
10 10 65.36 10.59 −16.08 221.66 7.68 0.4923 − 0.0913 2
11 11 65.42 10.62 −16.10 221.06 7.67 0.4926 − 0.0833 2
12 12 65.47 10.62 −16.10 220.61 7.67 0.4939 − 0.0751 2
13 13 65.51 10.61 −16.11 220.19 7.66 0.4950 − 0.0677 3
14 14 65.59 10.59 −16.12 219.61 7.63 0.4955 − 0.0615 2
15 15 65.60 10.58 −16.15 219.46 7.62 0.4973 − 0.0544 2
16 16 65.64 10.58 −16.16 219.22 7.61 0.4983 − 0.0487

∑
: 78

i Gauss-Newton solve on HDM:

0 17 65.64 10.58 −16.16 219.22 7.61 0.5053 0.0385 0.0390
1 17 65.16 11.66 −14.62 217.15 7.77 0.4943 0.0058 0.0473
2 17 65.29 11.57 −15.01 217.31 7.77 0.4935 0.0002 0.0484

∅tHDM
wall = 6.746 · 103 s ∅tRDM

wall = 0.070 · 103 s∑
tHDM
wall = 20 ·∅tHDM

wall = 134.921 · 103 s
∑

tRDM
wall = 78 ·∅tRDM

wall = 5.479 · 103 s

twall =
∑

tHDM
wall +

∑
tRDM
wall = 140.400 · 103 s tCPU = 112 ·

∑
tHDM
wall + 28 ·

∑
tRDM
wall = 15.265 · 106 s
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Table 4.7a shows the LA-HF results for the algorithm ROM-ml obtained after each V-cycle

iteration v as well as for the Gauss-Newton iterations i on the HDM, and tab. 4.7b shows the

analogous results for the HA-HF case.

Table 4.7: ROM-ml algorithm for model 3Dventrtet4 1 | 0Dsyspul: Iteration count v (HDM eval-

uations); “pseudo” heart cycle Ñ ; Gauss-Newton iteration count i (HDM solves);

parameters σ0, αmax, αmin, Rsys
ar and Eℓ

at,A; objective function f and its gradient norm

||∇f ||∞; cycle error Ecycl on HDM; number of RDM solves nc (1 solve = 6 forward

calls); average and total net wall times ∅twall and twall, respectively, and net CPU time

tCPU (without prestressing, gradient runs and pre-/post-processing)

(a) LA-HF

v Ñ σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]
f ||∇f ||∞ Ecycl [−] nc

0 1 100.00 30.00 −20.00 140.00 20.00 91.5475 − 0.3591 25
1 1 32.39 42.04 −13.74 107.90 25.78 0.3338 − 0.1909 7
2 2 32.43 40.10 −12.42 105.83 25.77 0.3485 − 0.1049 8
3 3 32.98 43.80 −12.04 105.71 24.99 0.4343 − 0.0762 8
4 4 33.38 48.06 −11.43 106.35 21.93 0.3200 − 0.0398

∑
: 48

i Gauss-Newton solve on HDM:

0 5 33.38 48.06 −11.43 106.35 21.93 0.3780 0.1253 0.0231
1 5 34.14 44.11 −10.25 103.81 23.03 0.2964 0.0263 0.0624
2 5 34.10 44.37 −10.78 104.63 23.17 0.2899 0.0026 0.0458

∅tHDM
wall = 6.753 · 103 s ∅tRDM

wall = 0.742 · 103 s∑
tHDM
wall = 8 ·∅tHDM

wall = 54.024 · 103 s
∑

tRDM
wall = 48 ·∅tRDM

wall = 35.616 · 103 s

twall =
∑

tHDM
wall +

∑
tRDM
wall = 89.640 · 103 s tCPU = 112 ·

∑
tHDM
wall + 112 ·

∑
tRDM
wall = 10.040 · 106 s

(b) HA-HF

v Ñ σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]
f ||∇f ||∞ Ecycl [−] nc

0 1 100.00 30.00 −20.00 140.00 20.00 30.5241 − 0.4404 22
1 1 63.51 12.86 −16.88 228.65 9.02 0.5471 − 0.4351 14
2 2 64.24 12.19 −15.93 227.77 9.00 0.5937 − 0.1970 9
3 3 64.35 12.04 −15.89 227.46 8.18 0.5079 − 0.1825 7
4 4 64.43 11.99 −15.78 225.15 7.89 0.4898 − 0.1728 6
5 5 64.46 11.99 −15.74 223.95 7.81 0.4883 − 0.1584 5
6 6 64.51 12.02 −15.69 223.18 7.76 0.4883 − 0.1437 3
7 7 64.55 12.06 −15.68 222.68 7.74 0.4897 − 0.1297 3
8 8 64.59 12.10 −15.64 222.05 7.72 0.4908 − 0.1172 3
9 9 64.64 12.14 −15.59 221.39 7.70 0.4917 − 0.1059 2
10 10 64.66 12.17 −15.57 221.05 7.70 0.4933 − 0.0947 3
11 11 64.72 12.20 −15.52 220.31 7.68 0.4940 − 0.0860 2
12 12 64.75 12.19 −15.62 220.03 7.67 0.4966 − 0.0767 3
13 13 64.80 12.23 −15.60 219.53 7.65 0.4975 − 0.0697 2
14 14 64.82 12.25 −15.60 219.31 7.65 0.4991 − 0.0621 2
15 15 64.85 12.27 −15.59 219.03 7.64 0.5003 − 0.0556 2
16 16 64.89 12.24 −15.65 218.74 7.63 0.5018 − 0.0497

∑
: 88

i Gauss-Newton solve on HDM:

0 17 64.89 12.24 −15.65 218.74 7.63 0.5038 0.0260 0.0399
1 17 65.05 12.10 −14.49 217.32 7.74 0.4947 0.0018 0.0454

∅tHDM
wall = 6.750 · 103 s ∅tRDM

wall = 0.748 · 103 s∑
tHDM
wall = 19 ·∅tHDM

wall = 128.257 · 103 s
∑

tRDM
wall = 88 ·∅tRDM

wall = 65.835 · 103 s

twall =
∑

tHDM
wall +

∑
tRDM
wall = 194.092 · 103 s tCPU = 112 ·

∑
tHDM
wall + 112 ·

∑
tRDM
wall = 21.738 · 106 s
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4 Parameter estimation and model order reduction for 3D-0D coupled cardiac dynamics

Figure 4.8 shows the final left heart and systemic pressures as well as the left and right ventricular

pressure-volume relationships obtained by the algorithm ROM-ml (converged FAS-lsq results

– regardless of the coarse model – are virtually the same). The measured time-resolved left

ventricular pressure is denoted by p̃ℓv (brown-dotted curves). Measured left ventricular ejection

fractions ẼF
ℓ

are shown in top left corner of the pressure-volume loops, along with the computed

values EFℓ.

The HA-HF case produces pressure amplitudes that are about a factor 2 greater that for the LA-HF

situation, however ejection fractions remain virtually the same.
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Figure 4.8: Model 3Dventrtet4 1 | 0Dsyspul: Outcome of the parameter estimation process, final

converged results using ROM-ml. (a) LA-HF: Left heart and systemic pressures over

time t, measured pressure is p̃ℓv (brown-dotted curve). (b) HA-HF: Left heart and

systemic pressures over time t, measured pressure is p̃ℓv (brown-dotted curve). (c) LA-

HF: Left (i = ℓ) and right (i = r) ventricular pressure-volume relationship, measured

left ventricular ejection fraction (ẼF
ℓ
) and simulated one (EFℓ) in top left corner.

(d) HA-HF: Left (i = ℓ) and right (i = r) ventricular pressure-volume relationship,

measured left ventricular ejection fraction (ẼF
ℓ
) and simulated one (EFℓ) in top left

corner.
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4.3 Multilevel parameter and homeostatic state estimation

4.3.4 Discussion

Novel multilevel (2-level) methods for the simultaneous estimation of stable homeostatic state

conditions and key parameters that govern heart work are developed and successfully applied to

a patient-specific 3D-0D heart and vascular model under two different types of artificial heart

failure conditions. The central idea of the multilevel approach is to reduce the computational

burden that would be associated with an optimization problem on a high-fidelity, high-dimensional

model (HDM) by help of a computationally inexpensive low-fidelity, reduced-dimensional model

(RDM). Here, the HDM has sufficiently fine spatial resolution such that spurious effects like

locking phenomena are minimal, cf. the comparisons of the discretizations in appendix sec. A.1.1.

A gradient-based nonlinear optimization problem is incorporated into a 2-level V-cycle-type

algorithm inspired from nonlinear multigrid techniques, with the essential idea to outsource the

gradient-based optimization work to a computationally cheap surrogate RDM. The RDM solve

of the optimization problem ultimately produces a set of parameters that is sufficiently close to

the true minimum on the HDM such that little computational effort is left to find the optimum.

Therefore, the HDM optimization problem is enhanced or accelerated by the 2-level algorithm

with the sake of saving computational effort.

The choice of global parameters that are not spatially resolved is reasoned by the type of mea-

surements that were available from the in-vivo experiments. Since at least a pair of measured

(end-systolic) pressure and volume (ejection fraction) was available, the calibration of contraction

strength (contractility) and afterload (resistance) is a natural choice. These parameters are quickly

responsive to medical treatment such as β1-blockade or phenylephrine. Thus, they exhibit short

time scale variability and therefore are prone to be estimated given the data and the experimental

setup (cf. Jagschies et al. [98] and the thesis by Jagschies [97] for further details on the in-vivo

studies). Passive elastic properties of the myocardium are assumed to remain unaltered during an

acute experiment and are not considered for estimation.

Furthermore, the left ventricular pressure measurements were time-resolved, which allowed to

additionally calibrate the ventricular upstroke and the relaxation rates, hence the speed of force

generation and relief. Finally, end-diastolic pressure was used to calibrate preload, here in terms

of left atrial contractility (elastance amplitude).

The calibration procedure is not restricted to these type of measurements or parameters, and would

be easily extendable or modifiable if complete synchronized time-resolved pressure-volume data

was available.

The problem of low identifiability of parameters [219] which is likely to arise if the parameter

space is too large or inappropriate with respect to the (portions of) measured data – meaning the

existence of an infinite amount of minima to the optimization problem – is extensively discussed

in Hirschvogel et al. [86], and the existence of a well-identifiable minimum is demonstrated

therein.

The FAS-lsq algorithm was a special variant of multigrid algorithms for optimization as they have

been presented, for instance, by Nash [146], and in its specific form requires a least-squares-type

of problem to be solved. As elucidated in sec. 4.3.1, choosing a modified coarse objective function

(4.54) instead of applying the FAS residual modification to the right-hand side of (4.4)1 is reasoned

by avoiding the computation of a gradient by finite differences on the HDM during the V-cycle
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iterations. Furthermore, the presented approach is applicable to non-convex problems without the

need to account for additional modifications of the coarse grid problem as done in Nash [146].

However, the FAS modification on the least-squares residuals at some point is heuristic and does

not necessarily guarantee to provide a close-minimum parameter set for the HDM.

Within this algorithm, two different types of RDMs are considered, namely the same patient-

specific heart geometry but heavily coarsely discretized in space (and time) (model C), as well

as a surrogate 2D plane strain generic heart model with very little degrees of freedom for the

efficient computation on a local machine (model S).

Both surrogate models yield similar results at the end of the V-cycle iteration for both the low-

afterload heart failure (LA-HF) and high-afterload heart failure (HA-HF) case, cf. tab 4.5 (v = 5)

and tab. 4.6 (v = 16). While contractility, resistance and elastance are generally close to the final

values, both models C and S yield rate parameters αmax and αmin that are only half or twice the

final converged values for the LA-HF case, but in general are close for the HA-HF case. This may

be reasoned that the least-squares residuals modification (4.54) is able to account for the delta

in model behavior with respect to the scaling of the deformation (i.e., model C would require a

far higher contractility value to achieve the same deformation as the HDM due to severe locking

phenomena exhibited by the former), but probably will struggle if the coarse model’s kinematic

nature differs too drastically, hence reduced or altered kinematic modes of model C or S cannot

capture the HDM modes sufficiently (i.e., the rate of upstroke or relaxation trigger different

distinct modes in the HDM than in the RDM). The better performance of the two models in the

HA-HF with respect to the rate parameters is not investigated but might be due to the significantly

higher base (prestressed) pressure level that somehow moves the models’ response upwards in

the stress-strain relationship.

However, despite the gaps between some end V-cycle and converged HDM parameters, the

objective function f is already close to the minimum (compared to the initial value), hence the

classical “valley” problem where large changes in some parameters have only tiny effects on the

cost function is observed.

Both, model C and S, produce comparable additional optimization work that has to be performed

on the HDM. Differences of 1–2 iterations are not directly associated to the type of RDM but

rather depend on the initial condition update (e.g., last Gauss-Newton iteration (i = 2) of tab.

4.6b is lucky to remain below the cycle tolerance, while the same iteration in tab. 4.6a slightly

violates it such that extra work has to be performed).

Wall and CPU timing-wise, model C exhibits slightly better performance, however model C is

computed on an HPC cluster and model S on a local machine. One iteration is accompanied with

the calculation of the gradient, hence six simultaneous simulations are performed with each being

assigned two cores which compromises objective time measurements on a local machine.

Projection-based model order reduction techniques have been used in order to generalize the

FAS-lsq scheme to non-least-squares problems and possibly to more complex (heart) models

(3Datrioventr) that do not allow for the simple construction of coarse discretizations (with stan-

dard meshing schemes, h ≈ 2 mm is the coarsest possible mesh size for model 3Datrioventr, cf.

appendix sec. A.1.1) or for dimensionality reductions in a straightforward manner.

The novel ROM-ml scheme (cf. sec. 4.3.2) does not need a FAS modification of the objective

function since the delta in model behavior is directly incorporated into the RDM, here being a

reduced-order model (ROM) generated by proper orthogonal decomposition (POD).
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End V-cycle parameters, cf. tab. 4.7a (LA-HF) and tab. 4.7b (HA-HF), are very close to the true

HDM optimum, and the additional Gauss-Newton HDM iterations are minimal and are needed to

correct for the final initial condition update that is performed when entering the Gauss-Newton

scheme.

Wall and CPU timing-wise, ROM-ml even performs better than FAS-lsq for the LA-HF case,

even though the ROM is computed on the same 112 cores as the HDM. However, for increasing

V-cycle iterations that are required for the HA-HF case, wall and CPU times for ROM-ml are

about a factor of 1.3 larger than for FAS-lsq, since the savings in HDM Gauss-Newton iterations

is less pronounced than for the LA-HF case, and single wall time for a ROM is larger than for

models C or S.

In general, the amount of V-cycle iterations strongly depends on the choice of initial conditions,

hence further modifications of the algorithms might be thought of. For example, the homeostatic

state may be directly computed exclusively on the ROM without the need to visit the HDM during

V-cycling.

Depending on the magnitude of certain parameters, the homeostatic state may be reached fairly

rapidly (v ≤ 5 iterations for the LA-HF case) or rather tediously (v = 16 iterations for the HA-HF

case). In general, high vascular resistances and low compliances (as for the latter case) seem to

slow down the blood distribution kinetics in the vascular system, hence more cycles are required

to reach homeostasis.
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5 Applications to ventricular assist

device engineering

Congestive heart failure (CHF) [99] as one of the most prevailing disease entities in modern

societies drives the development of novel technologies for heart assistance, since the availability

of donor organs for transplantation, being the gold standard for heart failure therapies, is continu-

ously reduced [160].

The computational models and parameter estimation methods that were developed in chap. 2–4

here are applied to assess the efficiency of a novel extravascular ventricular assist device (VAD) as

it currently is developed in close collaboration with industrial partners, cf. chap. 1 for introductory

remarks on vascular assist devices and the following sections for further in-depth explanations.

The main purpose of using computational (in-silico) models is to substantially enhance future pro-

cesses of individualized implant design and hence to contribute to further mechanistic understand-

ing of heart failure treatment strategies. By using experimental in-vivo data for model calibration

and personalization, computational modeling as a tool to describe and predict patient-specific

hemodynamic conditions under scenarios of extravascular ventricular support has predictive

potential with regard to optimal design and operating conditions of heart assistance implants.

At least three ultimate aims of such computational approaches may be formulated: In-silico

models may

• enable to consider a far higher amount of design variants and optimization loops than in-vivo

models alone would ever permit;

• allow to gain insights how a treatment influences physiological quantities like cardiac wall

stress and strain which are hardly or not at all assessable via experiments; and

• substitute or at least reduce the amount of animal (in-vivo) experiments needed for the reliable

and secure design of novel medical devices.

The former aspect is of great interest with regard to disease progression of CHF, as permanently

increased diastolic myofiber strain and systolic wall stress are considered the major driving

mechanisms of growth and remodeling, namely maladaptive changes in myocardial physiology

and morphology [96], cf. the computational models thereof presented in chap. 2, sec. 2.3.

Whereas current left ventricular assist device (LVAD) therapy leads to ventricular unloading and

reduction of myocardial stress, the impact on remodeling is subject to current research and still

not well understood [22, 25, 32, 55, 100, 118, 215].

This chapter is organized as follows. Section 5.1 presents the general concept of the novel implant

and heart assist technology, and sec. 5.2 briefly comments on the experimental in-vivo results that
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5 Applications to ventricular assist device engineering

were obtained from animal studies with the prototype of the implant. Section 5.3 then introduces

the computational approach for the interaction modeling of heart and implant, and sec. 5.4 outlines

an automated optimization workflow to address specific design questions, e.g. here the optimal

positioning of the pneumatic units to achieve a maximum in ventricular stroke work.

5.1 Concept and development of the AdjuCor R©

biventricular assist device (BiVAD)

The biventricular assist device (BiVAD) is developed in close collaboration with the company

AdjuCor R© GmbH. The implant is customized to the patient’s ventricular shape and size. It

consists of a wickerwork-like nitinol shell, a polyurethan sleeve covering the nitinol and three

thin-walled polyurethan inflatable pad-like pneumatic units facing the epicardial surface, cf. fig.

5.2. These pads are bellows-like such that high lift with small material straining is achieved when

being inflated. Within the manufacturing process, they may be sized and positioned at the anterior

and posterior left as well as at the right ventricular epicardial locations according to customized

needs of the patient (i.e. at infarct locations). They directly interact with the heart by exerting

contact forces onto the epicardial surface. The inflation of the three pads is ECG-controlled and

timed according to the QRS-signal (cf. fig. 1.2c for a schematic ECG curve). Support pressure

may be varied during systole length.

The individualized design of the shell originates from a CT imaging performed four weeks

prior to the in-vivo experiment (fig. 5.1a). Segmentation of the epicardial ventricular contour is

carried out at 80 % diastole (0.2 · Tcycl prior to end-diastolic time ted) using MIMICS R© software

(Materialise.com, fig. 5.1b). The obtained stereolithographic (STL) geometry is smoothed and cut

at the atrioventricular plane (fig. 5.1c), which is defined by help of the axis from the apex through

the aortic valve’s center with intercept at the posterior mitral valve leaflet. The positive mould

for the implant manufacturing process (fig. 5.1d) is obtained by taking a predefined enlargement

(offset) of the segmented ventricular portion of 4 mm such that the pneumatic units comfortably

fit between shell and epicardium without mechanical constraint. Figures 5.1e–g depict the design

of the final implant and fig. 5.1h–k the application to the patient via minimally invasive surgery.

5.2 In-vivo experiments on a porcine failing heart model

Here, three pigs from the in-vivo study described in Jagschies et al. [98] are considered, subse-

quently denoted as p1, p2 and p3. After application of anesthesia and placement of the respective

catheters for monitoring of pressures, flows and oxygen saturation, the implant was placed via a

lower partial sternotomy and partial pericardiotomy. Correct positioning of the individualized

implant was checked prior to closing the chest for further assessment of experimental data.

Baseline cardiac function parameters of the healthy heart as well as for two drug-induced heart

failure scenarios were recorded without VAD support. The first functional failing heart condition

was induced by β1-receptor blockade that reduced heart rate and contraction strength of the

ventricles. It was characterized by low cardiac output and low peripheral vascular resistance

leading to very low blood pressure values. In this state, referred to as low-afterload heart failure

(LA-HF), the hemodynamic effects of gradual increases of left ventricular augmentation pressure
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5.2 In-vivo experiments on a porcine failing heart model
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Figure 5.1: Processing chain of implant development and minimally invasive implantation proce-

dure. (a) CT image of the patient as basis for segmentation. (b) Segmentation of the

ventricular portion of the heart by help of MIMICS R© software (Materialise.com). (c)

Final smoothed segmented geometry, ventricular portion of the heart truncated at the

atrioventricular plane. (d) Enlarged positive mould for the manufacturing process. (e)–

(g) Final implant including the flexible wickerwork-like nitinol shell, the polyurethan

sleeve and the three pad-like pneumatic units as well as the connector cable to the

penumatic supply unit. (h),(i) Minimally invasive surgery and implantation of the

device into a pig. (j) Crimping of the device to 30 mm diameter. (k) Expansion of the

implant beneath the pericardium of the porcine heart.
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Figure 5.2: Conceptual function of the implant. (a) Implant with inflated pads acting on the

ventricles in end-systole (simulation, anterior view), schematic supply tubes (not

modeled). (b) Electro-pneumatic control unit with low- and high-pressure reservoirs,

battery, 24V power and implant connectors as well as a WiFi antenna. Pad inflation

is controlled via ECG electrodes (not shown) in order to achieve optimal support

synchronization with the heart’s contraction. (c) End-systolic (inflated pads) vs. end-

diastolic (deflated pads) configuration, axial slice (simulation).
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were assessed.

A similar protocol was conducted for a high-afterload heart failure (HA-HF) scenario, which

was induced by additional infusion of phenylephrine leading to a constriction of the peripheral

arterioles and therefore increased vascular resistance.

Refer also to chap. 4 for estimation of parameters that govern these two distinct states of

pharmacologically-induced heart failure.

5.3 Patient-specific modeling of the implant and its

ventricular interaction

5.3.1 Parameterized patient-specific implant modeling

The in-silico implant is generated by processing from the positive mould CAD model of the

patient-specific epicardial contour. A local ϕ, z coordinate system for parameterization of the pad

locations is introduced, with its origin being the intercept of the atrioventricular plane (AVP) with

the axis through the aortic valve and the apex, cf. fig. 5.3a,b. The three pads are denoted with

respect to their epicardial position, i.e. left anterior (ℓa), left posterior (ℓp) and right (r).

Additionally, the patient-specific in-silico implant is parameterized with respect to the pads’ wall

thickness dwallP , their (radial) depth dP, the bellows inset hs
P, the seam inner and outer radii rs,iP and

rs,oP , the corner radius rcorP , and the shell’s thickness dS, cf. fig. 5.3a,b and tab. 5.1 for the specific

values of these parameters.

A framework for modeling of the VAD is developed using Trelis R© software (csimsoft.com) and

Pyhton programming language-based scripting. The processing chain is depicted in fig. 5.4. It is

designed such that arbitrary ventricular shapes and individualized positions of the pads may be

specified, hence a maximum of flexibility with respect to the patient-specific ventricular geometry

and the locations of the pads is given.

The smoothed segmented ventricular contour is imported as STL (fig. 5.4a), enlarged by a uniform

offset of 4 mm (fig. 5.4b), and cut 10 mm above the AVP prior to extracting the outer surface

from the STL (fig. 5.4c). The surface then is duplicated, and sheets that describe the native squared

(non-blended) pad geometries are cut out of the duplicate (fig. 5.4d). These sheet positions thereby

are governed by their corner points described in the aforementioned ϕ, z coordinate system. Then,

the sheets are thickened, the bellows are created by insetting of a circumferential rim, and outer

corners as well as interior and exterior seam edges are blended with defined radii (fig. 5.4e).

Surface finite element meshing is performed using quadrilaterals, and mesh offsets of the pads

to the inside and of the shell to the outside yield a 3-dimensional hexahedral discretization (fig.

5.4f). Prior to the mesh offsets, the surface pad mesh is exported (fig. 5.4g) such that it may be

used as input to optimization algorithms, cf. sec. 5.4.

For the three animal studies presented here, the in-silico CAD model resembles its physical

counterpart (the prototype) in terms of functional geometry and positioning of the pads on the

epicardial ventricular surface. The in-silico model for this prototype that was established in the

year 2013 is denoted as VAD2013p.
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Figure 5.3: Model 3Dventr | 0Dsyspul |VAD2013p: Computational model of the 3D heart, the

3D VAD and the reduced-order 0D vascular system. (a) Anterior view onto the VAD

model with left anterior (ℓa), left posterior (ℓp) and right (r) pneumatic unit. (b) Axial

slice through the VAD model. (c) Anterior view onto the full computational model.

(d) Driving forces for the simulation plotted over one cardiac cycle t ∈ [0, Tcycl]:
Prescribed pressure curve p̂iP(t) in pads (top), solution τa(t) of the active stress

evolution equation for modeling ventricular contraction (prescribed parameterized

input function) (middle), prescribed time-varying elastance function Ei
at(t) for the

0D atrial models (bottom).
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Suface meshing of shell and 

pneumatic units 
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10 mm

Figure 5.4: Modeling pipeline for the VAD, geometric and discretized model are created in

one process. (a) Original segmented and smoothed geometry. (b) Enlargement by a

uniform offset of 4 mm. (c) Sheet geometry (surface) obtained after cut 10 mm above

atrioventricular plane (AVP) and at the apex, and extraction of the outer surface. (d)

Duplication of sheet surface, projection of pad corner points onto that surface and cut

of pad sheets out of the duplicated surface. (e) Thickening of sheet surfaces in radial

inner direction, bellow creation by insetting of rim of defined dimension, blending

of corner edges as well as interior and exterior circumferential edges at seams. (f)

Surface meshing of the pad geometries and the shell sheet; creation of 3-dimensional

mesh by insetting of pad surface mesh and offsetting of shell surface mesh obainting

hexahedral (3D) elements out of quadrilateral (2D) elements. (g) Export of surface

pad mesh for access of optimizer to mesh node locations.
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5 Applications to ventricular assist device engineering

Table 5.1: Model VAD2013p: Common geometrical parameters for the patient-specific biventricu-

lar augmentation device (BiVAD)

dP [mm] dwallP [mm] dS [mm] hs
P [mm] rcorP [mm] rs,iP [mm] rs,oP [mm]

3.5 0.19 1.5 6.5 8.0 0.25 0.6

5.3.2 Model setup and discretization aspects

The computational model for the interaction of the VAD with the heart and the vascular system is

presented. Governing equations, discretization methods and solution techniques for the 3D-0D

coupled heart-vascular problem are treated in chap. 2 and chap. 3, hence all heart and vascular

model-related aspects are not repeated but only sketched in terms of figures and diagrams.

The VAD model VAD2013p is decomposed into two mechanically distinct parts, namely the pads

(superscript [P] or subscript P) and the shell (superscript [S] or subscript S).

During prestressing happening in the time span [0, t0], cf. sec. 2.2.1.3, the implant remains at

rest, and no contact to the epicardium can happen. Thereafter, the transient 3D-0D coupled

heart-vascular-VAD problem is solved. Balance equations for the pads and the shell read

∇0 · (F
[P]S[P])− ρ0,Pü

[P] = 0 in Ω
[P]
0 × [t0, T ] (5.1)

and

∇0 · (F
[S]S[S])− ρ0,Sü

[S] = 0 in Ω
[S]
0 × [t0, T ], (5.2)

respectively. The implant is modeled with a hyperelastic material, hence the constitutive equations

for the second Piola-Kirchhoff stress are

S[P] = 2
∂Ψ [P]

∂C [P]
and S[S] = 2

∂Ψ [S]

∂C [S]
. (5.3)

The pads are made out of thin-walled polyurethan (wall thickness dwallP = 0.19 mm) and are

modeled by a nearly incompressible Neo-Hookean material law with an Ogden-type volumetric

part:

Ψ
[P] =

µP

2
(Ī

[P]
C − 3) +

κP

4
(J [P]2 − 2 ln J [P] − 1), (5.4)

with the shear modulus µP and the bulk modulus κP. The shell is modeled by a simple St.

Venant-Kirchhoff-type strain energy function,

Ψ
[S] =

νS❈S

2(1 + νS)(1− 2νS)
(trE[S])2 +

❈S

2(1 + νS)
tr(E[S]2), (5.5)

wherein ❈S the elastic (Young’s) modulus and νS Poisson’s ratio.

Uniaxial tensile experiments on thin-walled polyurethan samples were carried out in a small-strain

regime (uniaxial stretch λ ≤ 1.04). The results thereof are depicted in appendix A.2. A small-

strain analytical fit for the shear modulus µP was performed assuming perfect incompressibility.

However, in the numerical simulation, that constraint was relaxed by choosing an appropriately
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5.3 Patient-specific modeling of the implant and its ventricular interaction

large bulk modulus κP such that a Poisson’s ratio of 0.49 is obtained.

The delicate wickerwork-like nitinol architecture of the shell is not explicitly considered but

simplistically modeled by a bulk structure of homogeneous thickness. Attempts of simulating the

optimal expansion process of this wickerwork structure have been made in the term paper by [53].

The material parameters for the implant are summarized in tab. 5.2.

Table 5.2: Material parameters shear modulus µP, bulk modulus κP, reference density ρ0,P of

polyurethan pads; Young’s modulus ❈S, Poisson’s ratio νS, reference density ρ0,S of

shell

µP [kPa] κP [kPa] ρ0,P [ kg
mm3 ] ❈S [kPa] νS [−] ρ0,S [ kg

mm3 ]
9346 467.3 · 103 1.2 · 10−6 5 · 105 0.4 2 · 10−6

The inflation of the pads is achieved by a pressure Neumann boundary condition (follower load)

acting on their inner lumen (boundaries Γ
[P]N,i
0 ):

t
[P]
0 = −p̂iP(t)J

[P]F [P]−T

n
[P]
0 on Γ

[P]N,i
0 × [t0, T ], i = ℓa, ℓp, r. (5.6)

The pressure inside the pads is controlled by a smooth prescribed time curve, cf. fig. 5.3d (1st

plot):

p̂iP(t) =





0, t ≤ tinfl,s,
1
2
p̂i,max
P

(
1− cos

π(t−tinfl,s)

tinfl,e−tinfl,s

)
, tinfl,s ≤ t ≤ tinfl,e,

p̂i,max
P , tinfl,e ≤ t ≤ tdefl,s, i = ℓa, ℓp, r.

1
2

(
p̂i,max
P + p̂i,sucP

) (
1− cos

π(t−tdefl,e)

tdefl,e−tdefl,s

)
− p̂i,sucP , tdefl,s ≤ t ≤ tdefl,e,

1
2

(
−p̂i,sucP

) (
1− cos

π(t−Tcycl)

Tcycl−tdefl,e

)
, t ≥ tdefl,e,

(5.7)

It is parameterized with respect to the time when inflation starts and ends, tinfl,s and tinfl,e, when

deflation starts and ends, tdefl,s and tdefl,e, as well as with respect to the pad’s peak pressures p̂i,max
P

and the suction pressure for deflation, p̂i,sucP . Here, tinfl,s = ted (begin of ventricular contraction)

and tdefl,s = tes (begin of ventricular relaxation). Inflation durations are always assumed to be

0.1 s, thus tinfl,e = ted + 0.1 s and tdefl,e = tes + 0.1 s. The suction pressure for deflation is set to

p̂i,sucP = 0.2 p̂i,max
P .

At the bottom of the shell, denoted by the boundary Γ
[S]R
0 , a Robin condition is specified:

t
[S]
0 = −kSu

[S] on Γ
[S]R
0 × [0, T ]. (5.8)

The spring stiffness is chosen to kS = 103 kPa
mm

.
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5 Applications to ventricular assist device engineering

Between a subset of the pads’ backfaces and the shell (common boundary Γmt
0 ), matching is

enforced:

u[P] = u[S] on Γmt
0 × [t0, T ]. (5.9)

Finally, the implant and the heart may exchange contact forces, hence a contact condition is

enforced on all implant surfaces that are oriented towards the epicardium, being the boundary

Γ[P]c ∪ Γ[S]c:

gn ≥ 0, pn ≤ 0, pngn = 0 on Γ[P]c ∪ Γ[S]c × [t0, T ]. (5.10)

Therein, gn is the (normal) gap function (2.56) between the two bodies, and pn the (normal)

contact traction that is exchanged. Since no frictional nor adhesive forces are considered, pn ≤ 0.

Refer to sec. 2.1.1.5 for a short introduction to contact and tied contact mechanics.

The absolute model time is T = t0 +N⋆Tcycl, while N⋆ is that cycle number fulfilling (2.222)

according to sec. 2.2.4.2, where ǫcycl = 3 %.

The finite element and finite difference discretizations for the heart, the vascular system, and the

implant are carried out as detailed in chap. 3. The (frictionless) contact problem between device

and heart, eq. (5.10), as well as the meshtying problem between pads and shell, eq. (5.9), are

treated with a mortar approach [162]. Contact constraint enforcement is achieved by a penalty

law, avoiding the introduction of Lagrange multiplier-type degrees of freedom for the structural

problem. The meshtying constraint enforcement is carried out using a Dual Lagrangian multiplier

method [163], allowing for a computationally cheap condensation of the meshtying Lagrange

multiplier degrees of freedom (interface tractions required to guarantee connectivity) without

increasing the size of the resulting linearized system to be solved.

For the ventricular porcine geometry, discretization tet4 1 is used, cf. fig. A.1 in appendix A.1.1.1.

For the implant, discretization hex8 1 with F-bar element technology [49] is used, evaluating the

volumetric part of the deformation gradient at the element’s center in oder to bypass spurious

volumetric locking phenomena which may be introduced by the near-incompressible polyurethan

material model for the pads. The discretization is sketched in fig. A.7 in appendix A.1.1.2.

The discretized patient-specific augmentation device has 237 030 (p1), 228 888 (p2) and 222 684
(p3) degrees of freedom, respectively. The total problem size (including the heart) yields 1 157 151
(p1), 1 043 235 (p2) and 968 589 (p3) solid mechanics and 16 0D model unknowns, respectively.

The work load for the computations is distributed over ncore = 112 Xeon Haswell cores. One heart

cycle is computed with nstep = 500 time steps of constant size. The adaptive pseudo-transient

continuation (PTC) nonlinear solution technique that was introduced in sec. 3.2.2 is used on

the structural block of the system matrix for the case that large deflections of the thin-walled

pads, especially during deflation, may cause divergence of Newton’s method. Additionally, slight

perturbations of the contact penalty parameter are introduced in case of non-convergence of the

active contact set search which is executed within one semi-smooth monolithic Newton iteration

[162, 163]. Time to solution varies between 2 h (heart-only) and 18 h (heart and VAD) on this

hardware.
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5.3 Patient-specific modeling of the implant and its ventricular interaction

5.3.3 Results

The results for three pigs, subsequently referred to as p1 (filled red diamond), p2 (thick green

diamond) and p3 (thin blue diamond), are shown. Section 5.3.3.1 shows the validation with

experimental in-vivo data. On the one hand, the calibrated results to baseline heart in-vivo data

in absence of a functional VAD are shown, and on the other the comparison of simulations with

intact VAD to the experimental measurements that have been performed during the experiment.

Section 5.3.3.2 then deals with the effects of ventricular augmentation on stroke work, wall stress,

and myofiber strain.

The baseline state subsequently is referred to as BL , and four different augmentation scenarios are

analyzed, referred to as A1 (p̂ℓa,max
P = p̂

ℓp,max
P = p̂r,max

P = 20 mmHg), A2 (p̂ℓa,max
P = p̂

ℓp,max
P =

40 mmHg, p̂r,max
P = 20 mmHg), A3 (p̂ℓa,max

P = p̂
ℓp,max
P = 60 mmHg, p̂r,max

P = 20 mmHg), and

A4 (p̂ℓa,max
P = p̂

ℓp,max
P = 80 mmHg, p̂r,max

P = 20 mmHg).

5.3.3.1 Validation with experimental data

Calibration to in-vivo baseline data Ventricular 3D-0D heart models (3Dventr | 0Dsyspul)

stemming from the three different pigs, cf. fig. 5.5b,c for the initial ventricular and VAD geometry,

are calibrated to baseline measurements with help of the parameter estimation methods (FAS-lsq

scheme) from chap. 4. Low-afterload (LA-HF) and high-afterload (HA-HF) heart failure states

are considered for each animal. The hearts significantly differ in size and shape, cf. data on

myocardial wall volume V (Ω0) as well as left and right ventricular cavity volume V ℓ
v (t0) and

V r
v (t0) in fig. 5.5b.

Table 5.3: Cardiac cycle time Tcycl, end-diastolic time ted, end-systolic time tes, systemic arterial

windkessel time constant τ sysar , measured end-diastolic and end-systolic aortic pressures

p̃sysar (ted) and p̃sysar (tes)

Tcycl [s] ted [s] tes [s] τ
sys
ar [s] p̃sysar (ted) [kPa] p̃

sys
ar (tes) [kPa]

p1 LA-HF 1.19 0.26 0.75 1.17 4.53 8.27
HA-HF 1.06 0.23 0.67 0.83 9.07 19.2

p2 LA-HF 1.23 0.26 0.9 1.01 3.87 6.93
HA-HF 1.22 0.27 0.8 1.59 11.1 17.1

p3 LA-HF 0.98 0.2 0.67 0.68 3.6 7.6
HA-HF 1.02 0.2 0.65 0.71 6.53 14.5

The algorithm yields a set of parameters (ventricular contractility σ0, ventricular upstroke and

relaxation rates αmax and αmin, systemic arterial resistance Rsys
ar , left atrial elastance amplitude

Eℓ
at,A) and 0D model initial conditions that fulfill the homeostatic state criterion (2.222) and

minimize (4.45).

Table 5.3 shows patient-specific timing and arterial end-diastolic and end-systolic measurement

data which are part of the input to the optimization algorithm. The calibrated parameters (output)
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5 Applications to ventricular assist device engineering

are shown in tab. 5.4. 1 HA-HF states yield contractilities and resistances approximately twice as

high as compared to LA-HF states.

Simulated calibrated pressures over time end ejection fraction data for all three pigs for LA-HF

and HA-HF states are depicted in fig. 5.5a. Those results are subsequently referred to as baseline,

BL .
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Figure 5.5: Model 3Dventrtet4 1 | 0Dsyspul: Baseline ( BL ) LA-HF and HA-HF conditions for the

three animals as well as initial geometry of myocardium and assist device. (a) Simu-

lated left heart and systemic pressures over time, measured left ventricular pressure

p̃ℓv shown as brown dots, simulated and measured left ventricular ejection fraction

EFℓ and ẼF
ℓ
, calibrated baseline states with FAS-lsq, cf. sec. 4.3.1. (b) Ventricular

geometry (anterior view) with information on the myocardial wall volume V (Ω0) as

well as left and right ventricular chamber volume V ℓ
v (t0) and V r

v (t0), respectively. (c)

Initial geometry of the ventricular assist device (VAD), top view.

In-silico models show good quantitative and qualitative agreement to experimen-

tal data Computational results for the four augmentation scenarios A1–A4 are quantitatively

validated against the scatter range of the experimental observations. The comparison to the exper-

iments is shown in fig. 5.6. Furthermore, animal p1 with A3 augmentation is picked for direct

1The very attentive reader might note a slight difference between the p1 parameters compared to those from the

FAS-lsq fit presented in tab. 4.5a and tab. 4.6a of chap. 4. This difference stems from minor technical algorithmic

modifications that have been introduced prior to generating the (“newer”) chap. 4 results compared to the (“older”)

results presented in this chapter.
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5.3 Patient-specific modeling of the implant and its ventricular interaction

Table 5.4: Parameters ventricular contractilty σ0, ventricular upstroke and relaxation rates αmax

and αmin, systemic arterial resistance Rsys
ar as well as left atrial elastance amplitude

Eℓ
at,A, calibrated to baseline LA-HF and HA-HF states with FAS-lsq, cf. sec. 4.3.1

σ0 [kPa] αmax

[
1
s

]
αmin

[
1
s

]
Rsys

ar

[
mPa·s
mm3

]
Eℓ

at,A

[
mPa
mm3

]

p1 LA-HF 33.47 41.41 −11.29 103.49 24.78
HA-HF 64.92 11.73 −14.85 218.56 7.47

p2 LA-HF 26.27 20.29 −31.86 94.86 10.44
HA-HF 58.48 9.83 −18.06 224.82 13.26

p3 LA-HF 18.89 25.97 −14.01 118.17 3.74
HA-HF 37.36 10.05 −17.55 262.08 8.28

comparison of simulated and measured left ventricular pressure increase (fig. 5.6a,a’). Qualitative

direct comparison of simulated end-systolic ventricular deformation and CT data which was

recorded during the experiment is shown in fig. 5.6c,c’. Figure 5.6b,b’ depicts absolute changes

in left peak ventricular pressure (∆PVPℓ), end-diastolic pressure (∆EDPℓ) and stroke volume

(∆SVℓ) with respect to baseline for all animals p1, p2 and p3 compared to the scatter range of

the experimental data. Animal-averaged simulation results compared to median and interquartile

range are shown in tab. 5.5.

Especially peak left ventricular pressure increase ∆PVPℓ for the LA-HF case and left ventricular

stroke volume increase ∆SVℓ for the HA-HF case are remarkably close to the data’s median,

while a significant portion of in-silico results lies within or very close to the interquartile range

of the data. For the LA-HF case, continuous drop in left ventricular end-diastolic pressure can

only slightly be observed for p1, while p2 and p3 exhibit very slight increases above zero. For the

HA-HF case, p1 and p2 ∆EDPℓ decreases nearly linearly, while p3 remains around zero.

Table 5.5: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013phex8 1 F-bar: Absolute changes in left ventric-

ular stroke volume (∆SVℓ), left peak ventricular pressure (∆PVPℓ) and left end-

diastolic pressure (∆EDPℓ) with respect to baseline BL with increasing augmentation

scenarios A1–A4 for both LA-HF and HA-HF cases: measurement data are presented

as median (interquartile range), simulation results from the three porcine hearts are

presented as average

∆SVℓ [ml] ∆PVPℓ [mmHg] ∆EDPℓ [mmHg]
meas ∅ sim meas ∅ sim meas ∅ sim

L
A

-H
F

A1 0.26(−1.38; 4.35) 2.44 2.01(−1.73; 2.68) 3.11 −0.07(−0.14; 0.41) −5.52 · 10−2

A2 0.16(−1.44; 5.45) 4.07 5.37(−3.47; 8.09) 6.00 0.41(−0.83; 0.74) −0.13
A3 1.05(−0.76; 3.48) 4.80 8.49(6.92; 9.15) 8.24 −0.88(−4.30;−0.06) −0.11
A4 4.08(0.88; 8.94) 4.31 10.1(5.75; 12.37) 9.66 −1.84(−2.68;−0.95) 0.19

H
A

-H
F

A1 0.87(0.41; 1.57) 1.68 3.79(−4.33; 5.61) 3.61 0.33(−0.52; 1.63) −0.43
A2 2.17(−0.14; 2.79) 2.93 4.72(1.97; 11.71) 7.15 0.40(−0.34; 1.44) −0.84
A3 3.05(1.95; 3.83) 3.85 7.20(3.14; 9.49) 10.43 −0.80(−1.49; 0.04) −1.10
A4 3.13(−2.17; 5.31) 4.41 9.80(3.83; 12.62) 13.16 0.50(−0.40; 1.35) −1.29
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Figure 5.6: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013phex8 1 F-bar: Validation of simulation results

with respect to experimental data, each for LA-HF and HA-HF. (a, a’) p1: Left

heart and systemic pressures over time, baseline BL vs. A3 augmentation, BL
measurements are grey dots, A3 measurements are brown dots. (b, b’) Absolute

changes in left peak ventricular pressure (∆PVPℓ), end-diastolic pressure (∆EDPℓ)

and stroke volume (∆SVℓ) with respect to baseline with increasing augmentation

scenarios A1–A4: Boxplots show measured data from a series of different animal

experiments; simulated data is shown as filled red (p1), thick green (p2) and thin blue

(p3) diamonds. (c, c’) p1 A3: End-systolic qualitative comparison of simulation (red

contour) to motion CT data which was recorded during the experiment.176



5.3 Patient-specific modeling of the implant and its ventricular interaction

5.3.3.2 Effects on stroke work, wall stress, and myofiber strain

Ventricular augmentation increases left and right ventricular stroke work Figure

5.7a shows left (i = ℓ) and right (i = r) ventricular pressure-volume relationships for animal

p1 for baseline BL and increasing left ventricular augmentations A1–A4, fig. 5.7b depicts the

end-systolic deformed configuration for scenario A3 (color is magnitude of displacement u), and

fig. 5.7c shows relative changes in left (red bars, i = ℓ) and right (blue bars, i = r) ventricular

stroke work SWi =
∮
V i
v
piv dV for A1–A4 with respect to baseline BL .

Gradual increase of left ventricular augmentation from 20 mmHg (A1) to 80 mmHg (A4) yields

left and right ventricular stroke work changes up to 25.7 % (left) and 34.3 % (right) (A4 LA-HF),

as well as 23.1 % (left) and 16.9 % (right) (A4 HA-HF). Note the change in right stroke work

due to only left pad pressure increase, while right pad peak pressure remains at 20 mmHg.

Ventricular augmentation desirably increases afterload but descreases systolic

ventricular wall stress The effect of increasing left ventricular augmentation on end-systolic

ventricular function, i.e. cavity pressure and wall stress is exemplified for p1 at LA-HF and HA-HF

states.

Figure 5.8a shows volume-averaged maximum principal wall Cauchy stress, cf. (2.20), σ̂1 =
1

V (Ω)

∫
Ω
σ1 dv over the time course of the homeostatic cardiac cycle, and fig. 5.8b depicts the

maximum principal wall Cauchy stress σ1 at end-systole on a deformed coronary cut though the

ventricles comparing augmentation A3 with baseline BL. The shading indicates the myofiber

orientation that in most regions aligns with the principal direction of σ1, corresponding to the

passive stress the myofibers (and their embedding) sense during cardiac contraction. Figure 5.8c

shows the left ventricular cavity pressure over time.

Peak wall stresses and cavity pressures are about twice as high for the high-afterload as compared

to the low-afterload heart failure scenario.

The desirable increase in left ventricular systolic pressures (increased afterload) with increasing

augmentation comes along with a significant reduction of systolic ventricular wall stress.

Ventricular augmentation decreases preload by reducing end-diastolic volume

and myofiber stretch The effect of increasing left ventricular augmentation on end-diastolic

ventricular function, i.e. end-diastolic volume EDV and myofiber stretch (2.105) is exemplified

for p1 at LA-HF and HA-HF states.

Figure 5.9a shows volume-averaged myofiber stretch λ̂myo = 1
V (Ω)

∫
Ω
λmyo dv over the time

course of the homeostatic cardiac cycle, with detail view on the end-diastolic region. Figure 5.9b

depicts the myofiber stretch at end-diastole on a coronary cut through the ventricles, comparing

augmentation A3 to baseline BL. Finally, fig. 5.9c shows the relative change of left (red bars,

i = ℓ) and right (blue bars, i = r) ventricular end-diastolic volume with increasing augmentation

with respect to baseline.

With increasing left ventricular augmentation, end-diastolic myofiber stretches are reduced and

end-diastolic volumes decrease by −4 % (left) and −3.4 % (right) (A4 LA-HF), as well as

−5.1 % (left) and −1.8 % (right) (A4 HA-HF).
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Figure 5.7: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013phex8 1 F-bar: Ventricular pressure-volume re-

lationships, stroke works for all four augmentation scenarios A1–A4, as well as

snapshot of end-systolic deformation for augmentation A3 for p1, for both heart

failure cases LA-HF and HA-HF. (a) Left and right ventricular pressure-volume re-

lationships. (b) Deformation (magnitude of displacement vector u) at end-systole,

anterior view and axial slice, A3. (c) Relative changes in left (red bars) and right

(blue bars) ventricular stroke work SW with respect to baseline BL .
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(a) LA-HF HA-HF 

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

σ̂
1
[k
P
a]

σ̂
1
[m

m
H
g
]

t [s]

BL A1 A2 A3 A4

0

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

300

σ̂
1
[k
P
a]

σ̂
1
[m

m
H
g
]

t [s]

BL A1 A2 A3 A4

(b) 

A3 BL
−10 25

σ1 [kPa]

−10

σ1 [kPa]

50

A3 BL

end-systolic deformed 

coronary cut view 

end-systolic deformed 

coronary cut view 

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

p
` v
[k
P
a]

p
` v
[m

m
H
g
]

t [s]

BL A1 A2 A3 A4

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

p
` v
[k
P
a]

p
` v
[m

m
H
g
]

t [s]

BL A1 A2 A3 A4
(c) 

p1 

Figure 5.8: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013phex8 1 F-bar: Maximum principal wall Cauchy

stress for p1 for baseline BL and the four augmentation scenarios A1–A4 , as well as

left ventricular pressure, for both heart failure cases LA-HF and HA-HF. (a) Volume-

averaged maximum principal wall stress σ̂1 =
1

V (Ω)

∫
Ω
σ1 dv over cardiac cycle time,

significant decrease with increasing left ventricular augmentation. (b) Maximum

principal wall stress σ1 at end-systole, A3 vs. BL, coronary cut, shading shows

orientation of myofiber, which approximately aligns with the principal direction of

σ1. (c) Left ventricular pressure over time, significant increase with increasing left

ventricular augmentation.
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Figure 5.9: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013phex8 1 F-bar: Myofiber stretch (2.105) for

p1 for baseline BL and the four augmentation scenarios A1–A4, for both heart

failure cases LA-HF and HA-HF. (a) Volume-averaged myofiber stretch λ̂myo =
1

V (Ω)

∫
Ω
λmyo dv over cardiac cycle time, diastolic decrease with increasing left ven-

tricular augmentation. (b) Myofiber stretch λmyo at end-diastole, A3 vs. BL , coronary

cut, shading shows orientation of myofiber. (c) Relative changes in left (red bars) and

right (blue bars) ventricular end-diastolic volume EDV with respect to baseline BL .
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5.3.4 Discussion

The driving force for computational modeling of the VAD-heart interaction is to demonstrate that

in-silico models not only confirm the experimental results gained from in-vivo models and the

therapeutic insights extracted thereof, but also enhance the latter by means of quantities which

are not assessable by the experimental setup alone.

In addition, for the first time, it was shown in the in-vivo studies described in Jagschies et al. [98]

that a novel therapy of ventricular augmentation by an extravascular biventricular heart assist

device exerts direct effects on cardiovascular and ventricular function which may be assessed by

help of computational modeling.

The direct comparison of simulated and measured left ventricular pressure, as well as the quali-

tative comparison to the motion CT image at end-systole was conducted for p1 with A3 2. The

magnitude of left ventricular pressure increase due to augmentation is in very good agreement

to the catheter measurement for both LA-HF and HA-HF states. The heart’s dislocation at end-

systole qualitatively complies with the CT image, even though no further calibration of myocardial

constitutive laws or boundary parameters has been conducted. This underpins the well-educated

choice of the ventricular material law [89] and the reasonability of boundary parameters (tab. 2.2).

However, those values are generic and may be individualized if a higher degree of model fidelity,

i.e. with respect to ventricular motion and deformation, is required. Nonetheless, robust data and

algorithms for calibration then become crucial with increasing demand for model personalization,

naturally again requiring a trade-off between feasibility and model accuracy.

Pressure-volume relationships and stroke work (area enclosed by the pressure-volume curve) of

increasing left ventricular augmentation are exemplified for p1. Pressure-volume loops exhibit

a left- and upward-shift with increasing augmentation, meaning a desirable increase in systolic

perfusion pressures and stroke work as well as a reduction in end-diastolic ventricular volume

load for both left and right ventricle, even though right ventricular augmentation pressure remains

at p̂r,max
P = 20 mmHg. The effect of increasing right ventricular function with only-increase of

left ventricular augmentation may be explained by the specific locations of the left ventricular

pads and the relatively large rightward dislocation of the ventricles, inducing a right ventricular

compression even if that pneumatic unit was dysfunctional, cf. fig. 5.7b. and 5.6c,c’.

The three porcine in-silico heart models considered in this contribution were personalized to mea-

surements of time-resolved left ventricular pressure and integral left ventricular ejection fraction

data for two contrary states of drug-induced heart failure models: a low-afterload (LA-HF) and

a high-afterload (HA-HF) variant. Furthermore, the three hearts significantly differ in size and

shape, cf. data in fig. 5.5b. Thus, the computational model’s flexibility with respect to intra- and

inter-patient variability is demonstrated.

The calibration procedure, while only limited to integral data, has proven effective and reasonable,

since the parameters chosen for calibration are immediately responsive to pharmacological treat-

ment on a short time scale. Thus, specific integral hemodynamics can be reproduced according to

2As reported in [98], not all animals were subject to all variants of the experimental protocol. Specifically, p1 A3
was chosen since this was the highest augmentation scenario which complete pressure and motion CT data had

been recorded for.
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the measurements at hand, while remaining uncertain parameters of the cardiovascular system

had to be chosen relative to the ones estimated according to data from the literature. For further

discussion on the parameter estimation procedure and the outcome for those specific low- and

high-afterload heart failure cases, refer to [86] and chap. 4.

While computational systolic volume and pressure results remarkably well fit into the scatter

range of experimental data, course of end-diastolic pressure with increasing left ventricular

augmentation remains inconclusive for both data and model. For the LA-HF case, p1 EDPℓ drops

slightly with p2 and p3 virtually remaining unaltered, while the HA-HF case produces more

pronounced drops in p1 and p2 EDPℓ with hardly any change for p3.

Even though the whole mechanisms of blood redistribution in the cardiovascular system due

to ventricular augmentation are yet to be fully highlighted by both the computational and the

in-vivo models, in-silico parameters governing the venous return in diastolic filling (pulmonary

compliances, resistances) remain to be determined more accurately by help of a larger portion

of measurements than only left ventricular pressure and ejection fraction. However, an increase

in the parameter space will render the parameter estimation process more challenging, and a

trade-off between parameter identifiability and model fidelity naturally has to be conducted [219].

Despite a significant and desirable increase of systolic ventricular pressures, the wall stress inside

the myocardium at end-systole was monitored and it was shown that a remarkable reduction in

maximum principal stress with increasing augmentation is achieved. Thus, even if the (external)

afterload is increased, there is a reduction in the effective ventricular afterload since the VAD

carries are portion of the load the ventricle would have to bear on its own without support. Similar

in-silico results have been reported of for a different type of assist device [118].

Furthermore, the drop in end-diastolic volume with increasing augmentation follows a decrease

in end-diastolic myofiber stretch, complying with results of cardiac support-induced end-diastolic

unloading reported in [143, 179].

Conclusively, in-silico models give insight into mechanical quantities (stresses and strains) which

are non-assessable in any experimental setup and therefore are tailored to individualized implant

engineering for patients suffering from hypertrophic or dilated cardiomyopathy.

Finally, if combined with computational growth and remodeling methods, in-silico models ul-

timately may predict how reverse remodeling as consequence of ventricular support may be

initiated, i.e. how a VAD has to be engineered to achieve reversal or at least a significant reduction

of cardiac disease progression [32, 100, 215].

The implant model itself was dimensioned closely related to the prototype device that has been

applied in the respective in-vivo experiments in the year 2013. However, the model focuses on

the function of the implant and its effect onto the ventricular myocardium, but currently does

not allow for detailed stress analyses inside the pads and the splices between pads and shell

due to idealizations that have been undertaken in the modeling process (idealized radii, bellows

design, connection to the shell). Furthermore, frictional contact has been neglected for the sake of

computational efficiency and feasibility, hence tangential traction forces onto the epicardium and

their potential harmful effects are not modeled, but also have to be understood and investigated in

an experimental long-term setup prior to designing an elaborated model.

Additionally, the pad pressure is a prescribed function in time, thus no control or feedback control

182



5.4 Optimization methods for implant design and function

is modeled for the pad inflation process. For future assessment of the energy consumption that is

required to drive the implant at some operating point, the model should be extended towards the

pneumatic components and their control systems. First preliminary works thereof may be found

in the diploma thesis by [214].

5.4 Optimization methods for implant design and

function

Computational in-silico modeling aims at predicting circumstances that are non-assessable within

an experimental setup, or those for which an experimental frame has become obsolete due to the

proven validated predictability of the model itself. Hence, for a given reliability of the in-silico

approach, design variants and alternative operating concepts may be computed and used as input

for the engineering process of the “real-world” application.

With regard to the novel heart assist device which has been introduced within the scope of this

thesis, a multitude of open questions arise, e.g. the optimal operating pressures of pneumatic

units, the pads’ ideal shape, material, or location at the ventricular epicardium in order to achieve

a maximum in augmentation efficiency – ideally accompanied by a minimum in energy consump-

tion and without compromising the patient’s quality of life at any time.

Given the huge amount of operating and design parameters, and the plenty possibly contradictory

objectives to be pursued – from an engineering, medical and legal perspective – any formulation

of an optimization problem to assess improvements in implant design and function naturally has

to be performed in a careful manner and in close interrelation with industrial and medical partners.

Here, a methodological in-silico optimization workflow is presented using the example of optimal

circumferential placement of both left ventricular augmentation units (design parameters) in

order to achieve a maximum left ventricular stroke work (objective function) at given, fixed

augmentation pressures.

A more generalized VAD model for this purpose is presented in sec. 5.4.1, where the peculiarities

regarding the 2013 prototype implant have been omitted. The objective function and the workflow

are detailed in sec. 5.4.2.

One central part of the optimization procedure is the re-design of the in-silico model on the

basis of the finite element mesh, hence on its discretization. For this purpose, a mesh-preserving

design adaptation algorithm has been developed that allows for large deflection movement of pads

in tangential increments along the epicardial surface. This method as well as its superiority to

classical re-design and re-meshing approaches for certain applications are presented in sec. 5.4.3.

The results of the optimization problem are depicted in sec. 5.4.4, and a discussion of the outcome,

the methods and their implications is performed in sec. 5.4.5.

5.4.1 Generalized VAD model and interaction with the heart

The specific modeling approach for the VAD that was introduced in sec. 5.3.1 relied on the 2013

prototype implant described in sec. 5.1 (VAD2013p). Here, the peculiarities of this implant are
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omitted for the benefit of a more generalized and also simplified geometric representation: The

bellows-like structure of the augmentation units is replaced by a convex rim, and the shell is

replaced by a simple back-stabilizing spring (Robin boundary condition). This generalized implant

model is subsequently denoted as VADgen. It is created using the modeling pipeline depicted in fig.

5.4, however with appropriate modifications (no bellows, no shell). For subsequent computations,

the heart model 3Datrioventr of p1 together with the circulatory model 0Dsyspulcap is used.

Pad peak pressures are chosen to p̂ℓa,max
P = p̂

ℓp,max
P = 60 mmHg and p̂r,max

P = 20 mmHg.

Discretization tet4 2 is chosen for the sake of computational efficiency (cf. appendix A.1.1.1, fig.

A.4), and nstep = 300 time steps are performed over one cardiac cycle. For the VADgen model,

discretization hex8 1 with F-bar element technology is used (cf. appendix A.1.1.2, fig. A.7 for

VAD2013p for a comparable fineness). The whole model is depicted in fig. 5.10.
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Figure 5.10: Model 3Datrioventr | 0Dsyspulcap |VADgen: Generalized VAD model interacting

with the patient-specific heart. (a) Anterior view. (b) Axial slice view.

Prior to computing the heart-VAD problem, a reduced set of parameters is calibrated to data

from the aforementioned low-afterload heart failure case (LA-HF) with the methods presented

in chap. 4. Specifically, the rate parameters αmax and αmin in (4.41) are held constant, and only

ventricular and atrial contractility σ0 and σ0(at) as well as total systemic arterial resistance Rsys
ar(total)

are calibrated by requiring the minimization of (4.45). However, the pressure and auxiliary volume

weightings in (4.47) now are b
ip
p = 0 (∀ ip) and biV = 0 (∀ i), hence the model is only calibrated

to peak and end-diastolic left ventricular pressure as well as left ventricular ejection fraction. The

parameter estimation is performed using ROM-ml, cf. sec. 4.3.2.
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Base parameters are listed in tab. 2.3 and tab. 2.6, partly being overridden by the optimized ones

and by the specific timing parameters for the LA-HF of p1 that are listed in tab. 5.3.

ROM-ml converged to parameters σ0 = 68.84 kPa, Rsys
ar(total) = 76.61 mPa·s

mm3 and σ0(at) = 4.09 kPa
within 4 V-cycle and 3 fine level Gauss-Newton iterations with a cycle error of Ecycl = 0.023 and

an objective function value of f = 0 (“perfect fit”). Left heart and systemic pressures as well as

left and right ventricular pressure-volume relationships are shown in fig. 5.11.
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Figure 5.11: Model 3Datrioventrtet4 2 | 0Dsyspulcap: Fitted base results using ROM-ml to LA-

HF state of p1, without implant. (a) Left heart and systemic pressures over time,

measured left ventricular pressure p̃ℓv in brown dots. Note that calibration was

performed only to meet end-diastolic and peak ventricular pressure. (b) Left (i =
ℓ) and right (i = r) ventricular pressure-volume relationship, perfect match of

computed and measured left ventricular ejection fraction EFℓ and ẼF
ℓ
, respectively.

5.4.2 Objective function and design parameters

The optimal (circumferential) placement of both left anterior and left posterior augmentation

units in order to achieve a maximum in left ventricular stroke work is (exemplarily) investigated

as one possible option for design optimization of the implant.

The design variables are lengths Di
ϕ (and Di

z) that a certain augmentation unit (i = ℓa, i = ℓp,

i = r) moves along the circumferential (and the axial) direction of the epicardial surface – relative

to a base implant characterized by Di
ϕ = Di

z = 0.

The optimization task according to (4.1) is

min
x∈Rnp

−SWℓ(x). (5.11)

Without loss of generality, only the circumferential placement of the left augmentation units is

considered, hence the number of parameters is np = 2 and the parameter vector reads

x =
[
Dℓa

ϕ Dℓp
ϕ

]T
. (5.12)
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The stroke work is the enclosed area under the pressure-volume relationship and is computed as

SWℓ =

∮

V ℓ
v

pℓv dV. (5.13)

The gradient-free Nelder-Mead simplex algorithm that was introduced in sec. 4.1.1.2 is used in

order to solve (5.11).

A different implementation of this algorithm has been applied to a similar problem in the term

paper by [15] (supervised by the author of this work). Therein, a pure structural generic heart

model without circulation interacting with a prototype implant model has been used, and the

optimal pad placement for minimization of ventricular cavity volume under quasi-static pad

inflation has been investigated. The re-design of the implant there has been performed not on the

surface mesh but by re-setting the corner sheet points and re-running through the whole model

generation pipeline (fig. 5.4) in each iteration.

5.4.3 Mesh-preserving adaptation methods for the discretized

implant model

The re-design of the implant is performed on the surface mesh that is present prior to generating

the 3-dimensional discretization, cf. fig. 5.4g. This approach essentially has two main advantages

compared to re-setting the corner sheet points and re-executing the modeling script:

• the relocated pad has a nearly identical shape than the original one, since the dimensioning via

angular and axial coordinates (and hence a dependence from the center axis) is replaced by a

defined distance movement along the epicardial surface; and

• the re-designed implant has the same amount of nodes and hence the same degree of freedom

map than the original one, which opens the door for the application of projection-based model

order reduction techniques in order to increase the efficiency of the computation of design

variants.

The mesh-moving algorithm is depicted in the following. Its input are the lengths Dp
ϕ and Dp

z

that a certain pad denoted with p ∈ [ℓa, ℓp, r] should move along the epicardial surface in the

circumferential and the longitudinal directions, respectively. The algorithm operates by moving

small increments ∆ϕ and ∆z along a tangent plane to the epicardial surface. These increments

are recommended to be sufficiently small (≤ 1 mm) and here are chosen to ∆ϕ = ∆z = 1 mm.

The circumferential movement of a node happens along the tangential direction nϕ and is scaled

by the relation of its distance d to the axis a = pℓ
lum−pAV (cf. fig. 2.8 or fig. 5.4) and the distance

dmid of the pad midpoint x
p
mid to that axis.

Longitudinal movement of a node happens along the modified tangential direction n̄z that is a

blend of the longitudinal direction nz at that node and the one at the pad midpoint ñz (user-specific

blend parameter az ∈ [0, 1]). For az = 1, the direction nz is chosen, and the pad geometry would

collapse in the limit case that it is moved entirely towards the apex. Otherwise, for az = 0,

pad edges become increasingly longer as movement towards the apex takes place, since the

circumference gets shorter. Depending on the longitudinal distance, az = 0.5 may be a good
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choice, however for a more sophisticated movement, az may be designed variable depending on

the node distance to the heart axis a.

The following algorithm for the mesh movement is called:

input: Dℓa
ϕ , D

ℓa
z , D

ℓp
ϕ , D

ℓp
z , Dr

ϕ, D
r
z // total distances that the pads should be moved

lϕ := 0, lz := 0 // monitored distances that the pads have already been moved

for p ∈ [ℓa, ℓp, r] do // loop over pads to be moved

dmid =
||xpmid−pAV||×a

||a|| // distance of pad surface midpoint to axis a

compute normal np
cross at x

p
mid of cross-plane spanned by x

p
mid and axis a

// determine length of iteration

if ⌊|Dp
ϕ|⌋ > ⌊|D

p
z |⌋ then

liter = ⌊|D
p
ϕ/∆ϕ|⌋+ 1 // circumferential component

else

liter = ⌊|D
p
z/∆z|⌋+ 1 // longitudinal component

end if

// make increments negative for movement in negative direction

if Dp
ϕ < 0 then // circumferential component

∆ϕ ← −∆ϕ

end if

if Dp
z < 0 then // longitudinal component

∆z ← −∆z

end if

for j ∈ [0, liter] do // loop over discrete distance increments

// modify last iteration increments such that total lengths are hit

if j = ⌊|Dp
ϕ/∆ϕ|⌋ then // circumferential component

if Dp
ϕ > 0 then

∆ϕ ← Dp
ϕ/∆ϕ − ⌊D

p
ϕ/∆ϕ⌋

else

∆ϕ ← Dp
ϕ/∆ϕ − ⌈D

p
ϕ/∆ϕ⌉

end if

end if

if j = ⌊|Dp
z/∆z|⌋ then // longitudinal component

if Dp
z > 0 then

∆z ← Dp
z/∆z − ⌊D

p
z/∆z⌋

else

∆z ← Dp
z/∆z − ⌈D

p
z/∆z⌉

end if

end if

for i ∈ [0, np
nd] do // loop over nodes belonging to pad p

project node i with coordinates ξi onto epicardial surface Sepi, obtain ξ̃i

compute normal ni
epi of Sepi at ξ̃i

ni
ϕ = nAVP × ni

epi // circumferential tangent direction

ni
z = ni

ϕ×n
i
epi and ñi

z = np
cross×n

i
epi // current and midpoint long. tangent direction
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n̄i
z = azn

i
z +(1− az)ñ

i
z and normalize n̄i

z // modified longitudinal tangent direction

d = ||ξi−pAV||×a

||a|| // distance from node to axis a

if lϕ < |Dp
ϕ| then // update node location in circumferential direction

ξi ← ξi +∆ϕ
d

dmid
ni
ϕ

lϕ ← lϕ + ||∆ϕn
i
ϕ||/n

p
nd

end if

if lz < |D
p
z | then // update node location in longitudinal direction

ξi ← ξi +∆zn̄
i
z

lz ← lz + ||∆zn̄
i
z||/n

p
nd

end if

end for

end for

end for

After performing the relocation of the pads, the implant discretization is finalized (step in fig.

5.4f), and the input file for the computation is generated.

5.4.4 Results

Table 5.6 shows the iterations i of the Nelder-Mead simplex algorithm, together with the values

of the simplexes spanned by three points in the Dℓa
ϕ , D

ℓp
ϕ -plane, the action undertaken by the

algorithm, the value of the stroke work (5.13), as well as the error norm Efnorm (4.23).

In the last iteration, the pair Dℓa
ϕ [2] = −5.9947 mm, D

ℓp
ϕ [2] = 8.9998 mm produced the largest

stroke work value of SWℓ = 514.89625487 mJ and hence is considered as the optimum.

The iterations of the algorithm are visualized by plotting the simplexes in the Dℓa
ϕ , D

ℓp
ϕ -plane,

cf. fig. 5.12. Iterations i = 12 . . . 26 are visually non-distinguishable, thus the simplex tends to

shrink towards zero with increasing iterations as expected.

Figure 5.13 shows the left ventricular pressure-volume relations for the control state (no implant),

for the initial simplex, as well as at the optimum. All computations with implant are performed

on the first cardiac cycle only; a cycle error (2.222) of ∼ 6 % is obtained and tolerated here.

The deformed configurations are visualized in fig. 5.14. The color indicates the magnitude of the

displacement (2.2) ||u||. For better visualization, the implant pads are shown in black (grey). The

end-systolic axial views for the initial simplex are depicted in fig. 5.14a, and fig. 5.14b shows the

end-systolic axial view for the optimum Dℓa⋆
ϕ , D

ℓp⋆
ϕ . End-diastolic and end-systolic distal views

thereof are shown in fig. 5.14c.

Note that there is partial overlap of the left and right ventricular pads for the Dℓa
ϕ [1], D

ℓp
ϕ [1]

locations since the pads are “invisible” for one another and therefore per definition cannot come

into contact. This fact is of minor importance since such a constellation is purely algorithmic and

no valid design state.

5.4.5 Discussion

A generic framework for the optimization of functional design parameters of the ventricular assist

device implant is developed. The focus here is set on the determination of the optimal placement
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Table 5.6: Iterations i of Nelder-Mead simplex algorithm for model 3Datri-

oventrtet4 2 | 0Dsyspulcap |VADgenhex8 1 F-bar, simplex spanned by three points

in the Dℓa
ϕ , D

ℓp
ϕ -plane, optimum framed, action of Nelder-Mead algorithm (“cont cont”:

contraction, and contracted point chosen; “cont renew”: contraction, simplex renewed;

“exp exp”: expanded, and expanded point chosen; “exp refl”: expanded, but reflected

point chosen; “refl”: reflected point chosen), stroke work SWℓ (5.13), error norm

Efnorm (4.23), tolerance ǫf = 0.0005 mJ

i Dℓa
ϕ [0] [mm] D

ℓp
ϕ [0] [mm] Dℓa

ϕ [1] [mm] D
ℓp
ϕ [1] [mm] Dℓa

ϕ [2] [mm] D
ℓp
ϕ [2] [mm] action SWℓ [mJ] Efnorm [mJ]

0 22.5000 20.0000 35.0000 −45.0000 −25.0000 −17.5000 cont cont 504.61458719 20.78034125
1 22.5000 20.0000 −19.3750 24.3750 −25.0000 −17.5000 cont cont 509.65300569 5.06590580
2 0.1562 11.7188 −19.3750 24.3750 −25.0000 −17.5000 cont cont 513.96411492 7.28008694
3 0.1562 11.7188 −19.3750 24.3750 −17.3047 0.2734 cont cont 513.96411492 3.60016619
4 0.1562 11.7188 −3.1738 −3.1934 −17.3047 0.2734 cont cont 513.96411492 1.91529785
5 0.1562 11.7188 −3.1738 −3.1934 −9.4067 2.2681 exp refl 514.13872198 0.17516967
6 0.1562 11.7188 −6.0767 17.1802 −9.4067 2.2681 cont cont 514.33986118 0.30136542
7 −3.7927 10.7214 −6.0767 17.1802 −9.4067 2.2681 cont cont 514.72048914 0.49159469
8 −3.7927 10.7214 −6.0767 17.1802 −7.1707 8.1094 cont cont 514.85135164 0.37332793
9 −3.7927 10.7214 −5.1842 5.5331 −7.1707 8.1094 cont cont 514.85135164 0.11311332
10 −4.9851 8.7713 −5.1842 5.5331 −7.1707 8.1094 cont cont 514.86108588 0.07226649
11 −4.9851 8.7713 −6.5247 9.8941 −7.1707 8.1094 cont cont 514.87147465 0.01601346
12 −4.9851 8.7713 −6.5247 9.8941 −6.4628 8.7211 cont cont 514.87707858 0.01198271
13 −5.7394 9.0395 −6.5247 9.8941 −6.4628 8.7211 refl 514.88363524 0.00976908
14 −5.7394 9.0395 −5.6775 7.8665 −6.4628 8.7211 cont cont 514.88363524 0.00489475
15 −5.7394 9.0395 −5.6775 7.8665 −6.0856 8.5870 cont cont 514.88581433 0.00347119
16 −5.7394 9.0395 −6.0301 9.2866 −6.0856 8.5870 cont cont 514.89213904 0.00749389
17 −5.8986 8.9881 −6.0301 9.2866 −6.0856 8.5870 cont cont 514.89262331 0.00482266
18 −5.8986 8.9881 −6.0301 9.2866 −6.0250 8.8622 cont cont 514.89262331 0.00177862
19 −5.8986 8.9881 −6.0301 9.2866 −5.9947 8.9998 cont cont 514.89625487 0.00388166
20 −5.8986 8.9881 −5.9884 9.1403 −5.9947 8.9998 cont cont 514.89625487 0.00329892
21 −5.9451 9.0291 −5.9884 9.1403 −5.9947 8.9998 cont cont 514.89625487 0.00271498
22 −5.9451 9.0291 −5.9791 9.0773 −5.9947 8.9998 refl 514.89625487 0.00244069
23 −6.0287 9.0480 −5.9791 9.0773 −5.9947 8.9998 refl 514.89625487 0.00183452
24 −6.0287 9.0480 −6.0443 8.9705 −5.9947 8.9998 cont cont 514.89625487 0.00092968
25 −6.0241 9.0166 −6.0443 8.9705 −5.9947 8.9998 cont cont 514.89625487 0.00063488
26 −6.0241 9.0166 −6.0268 8.9893 −5.9947 8.9998 cont cont 514.89625487 0.00019236
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Figure 5.12: Plot of simplexes in the Dℓa
ϕ , D

ℓp
ϕ -plane produced by Nelder-Mead algorithm, color

bar shows iteration count i. Close-minimum simplex already reached after 12 iter-

ations. Convergence criterion (4.23) with tolerance ǫf = 0.0005 mJ met after 26
iterations.
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Figure 5.13: Model 3Datrioventrtet4 2 | 0Dsyspulcap |VADgenhex8 1 F-bar: Left ventricular pressure-

volume relationships for the control case (no implant), the initial simplex at

Dℓa
ϕ [0], D

ℓp
ϕ [0] (first), Dℓa

ϕ [1], D
ℓp
ϕ [1] (second), Dℓa

ϕ [2], D
ℓp
ϕ [2] (third), as well as at

the optimum Dℓa⋆
ϕ , D

ℓp⋆
ϕ .
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Figure 5.14: Model 3Datrioventrtet4 2 | 0Dsyspulcap |VADgenhex8 1 F-bar: Deformed configurations,

color indicates displacement magnitude ||u|| [mm]. (a) End-systolic axial cut

views for initial simplex Dℓa
ϕ [0], D

ℓp
ϕ [0] (first), Dℓa

ϕ [1], D
ℓp
ϕ [1] (second), Dℓa

ϕ [2], D
ℓp
ϕ [2]

(third). (b) End-systolic axial cut view on optimal locations Dℓa⋆
ϕ , D

ℓp⋆
ϕ . (c) End-

diastolic (left) and end-systolic (right) distal view for optimum Dℓa⋆
ϕ , D

ℓp⋆
ϕ .
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5 Applications to ventricular assist device engineering

of the augmentation pads in order to achieve a maximum in ventricular stroke work. Without loss

of generality and for demonstrative purposes, the analysis here is restricted to the left ventricular

pads and to the location around the ventricular circumference only. However, the framework, in

principle, is flexible with respect to the design variables and the objective function and may be

extended or modified depending on the requirements for the engineering process.

A gradient-free optimization algorithm is chosen since the underlying forward problem captures

non-smooth phenomena such as discretized contact formulations. It was experienced in prelim-

inary studies that the gradient to an objective function that depends on the pad location (be it

stroke volume, end-systolic volume, stroke work), hence on a discrete set of nodes that may or

may not come into contact, is difficult to compute using a finite difference approach. This may

be imagined in the sense that the discretization-dependent situation of contact not necessarily

is capable of resolving the difference between the original and a finitely perturbed pad location

with sufficient accuracy if that finite perturbation is significantly smaller than the surface mesh

size. However, further studies are needed in order to assess if stable smooth gradients may be

computed when choosing the finite difference perturbation in the same order of magnitude of the

mesh size, or whether a finer mesh may diminish these spurious effects.

The Nelder-Mead simplex algorithm performs as expected and reduces the simplex with increas-

ing iterations, ultimately shrinking it down close to the optimum. For demonstrative purposes, the

tolerance was chosen fairly tight and a high number of i = 26 iterations is required in order to ful-

fill it. However, in engineering practice, and especially here due to the relatively small sensitivity

of stroke work with respect to circumferential left ventricular pad location, the algorithm already

could have been terminated after i = 7 iterations as stroke work difference then only affected the

first decimal place for increasing iterations.

Currently, the present optimization approach is computationally demanding since it requires

to solve the full transient forward problem in most of the cases twice per Nelder-Mead itera-

tion (computation of reflection and potential subsequent action). However, a combination of

the present optimization task and method with the 2-level algorithms presented in chap. 4 is

straightforward and could increase the computational efficiency. Since the re-design of the implant

is entirely performed on the discretization with help of the mesh-moving algorithm presented in

sec. 5.4.3, each configuration possesses the same amount of degrees of freedom than the initial

one. Therefore, the implant with relocated pads may be computed from a reduced-order model

(ROM) that is generated from the initial implant configuration as high-dimensional model (HDM)

with help of proper orthogonal decomposition, cf. sec. 4.1.2, and the ROM-ml algorithm (sec.

4.3.2) may be chosen to solve the optimization problem. However, preliminary experiences with

this approach unveiled difficulties in approximating the adequate behavior using a ROM with

significantly differing pad locations generated from the initial implant solution. This is readily

reasoned considering the fact that the reduced-order basis (ROB) includes modes which are not

at all triggered when computing a configuration with relocated pads, and vice versa the new

configuration requires deformation modes which the ROB is devoid of. Hence, globalized ROMs

that are generated from multiple HDMs yielding a global ROB may lead to improved ROM

behavior, since a larger spectrum of modes are included that enhance the interpolatory abilities

of the ROM. However, preliminary studies in this direction still unveiled difficulties to compute
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stable interpolations, and the required size of the ROB or different methods of interpolations

between HDM solutions in order to obtain a certain accuracy remain to be investigated.
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6 Summary and Outlook

Within this thesis, novel computationally efficient and robust patient-specific models for the heart

and the circulatory system have been developed. They allow for physiologically meaningful

simulations of homeostatic cardiovascular conditions. Their ultimate aim is to be applicable to a

wide range of questions that arise in surgery planning, medical intervention, treatment strategies,

and here are applied to investigate the impact of a novel extravascular ventricular assist device

(VAD) on heart failure scenarios developed in close collaboration with an industrial partner.

A 3-dimensionally (3D) resolved patient-specific geometry of the ventricles (and the atria) is

coupled to a 0-dimensional (0D) lumped-parameter closed-loop circulation model. A monolithic

computational coupling scheme together with a time-integration of all 0D model governing

equations was implemented, and a block-preconditioned GMRES solver was used to efficiently

solve the linear 3D-0D coupled system of equations in one monolithic Newton algorithm.

A segmentation workflow for the extraction of the 3D heart geometry out of CT/MRI data as well

as an automated process for model generation and finite element meshing that is applicable to

arbitrary myocardial geometries has been implemented.

Different types of circulation models are presented, and a gas exchange and dissociation model is

straightforwardly incorporated that allows to assess oxygen saturations distributed to different

organ compartments.

The model is validated against numerous textbook physiological observations and shows good

agreements in behavior for changes in preload, afterload, inotropy, and in presence of valve

diseases.

However, for a robust application to different types of cardiovascular conditions, control and

feedback control systems should be incorporated into the models, and carbon dioxide and oxygen

dissociation functions should be extended to more complex relationships in oder to include the

Bohr and Haldane effects as well as temperature dependencies.

The presented 3D-0D model allows to link local phenomena happening on cell scale to global,

integral quantities like stroke work and cardiac output and hence is tailored towards the evaluation

of the effects that lead to heart failure and possible medical treatment strategies thereof. Growth

and remodeling (G&R) models were incorporated by implementing variants of contemporary

anisotropic volumetric growth models enhanced by a phenomenological remodeling approach that

connects the growth stretch to passive elastic or active tissue properties. The outcome of volume

or pressure overload-induced maladaptive changes that arise from a sudden disease event (valve

leakage, stenosis, myocardial infarction) was computed by help of a novel multiscale-in-time

strategy. Within this algorithm, heart beat and growth time scales are separated and mutually

revisited until an outer equilibrium is reached. Reasonable physiological conclusions can be

drawn from the presented results, and the G&R models’ applicability to investigate possible

reverse G&R phenomena after VAD application was not yet shown but readily provided.

For the future, these models should be calibrated using long-term data on myocardial disease
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progression, and then could be combined in investigating the aforementioned reversal G&R

potential of vascular assist devices.

Novel multilevel parameter estimation methods have been implemented using surrogate mod-

eling techniques and model order reduction by proper orthogonal decomposition. Model order

reduction techniques for the first time have been applied to 3D-0D heart-circulation problems,

and the performance of the reduced-order model (ROM) with respect to different parametric

configurations and sizes of the reduced-order basis was investigated. Stable homeostatic states

calibrated to integral volume and time-resolved left ventricular pressure data were obtained in

total for three different specific porcine heart geometries and sets of measurements.

However, as discussed, the model order reduction methods still are of some computational ex-

pense, and so-called hyper reduction techniques as they recently have been proposed should be

incorporated into the ROM framework in order to achieve significant speedups compared to the

high-dimensional model.

The calibrated stable homeostatic states were used as input to investigating a novel cardiac

compression-based extravascular assist device. A model generation and finite element meshing

workflow was established that generates a prototype of the implant according to the design

principles set by the industrial partner such that different ventricular shapes and design variants

may be easily realized.

The experimental protocols of the acute in-vivo studies then have been replicated in-silico, and

a very good agreement of the simulation results to the experimental measurements was shown.

Furthermore, the simulation provided access to quantities that are non-assessable in an experimen-

tal in-vivo setup: It was shown that gradually increasing left ventricular augmentation pressures

reduced end-diastolic myofiber strain and end-systolic wall stress. These results readily give

rise to questions how a VAD may reduce G&R stimulants or even initiate reverse G&R after

long-term application. However, these findings remain to be ascertained and enhanced both by

computational and experimental studies, but have the potential of stimulating further research in

this direction.

Furthermore, an optimization framework was proposed that allows to assess the optimal placement

of the augmentation pads of the implant in order to achieve a maximum in ventricular stroke work.

For this purpose, a mesh-moving algorithm has been developed and a gradient-free optimization

algorithm (Nelder-Mead simplex method) was used in order to circumvent difficulties in numeri-

cal finite difference gradient calculation in presence of non-smooth computational contact forward

problems. An optimal circumferential placement of the left ventricular pads for a maximum in

left ventricular stroke work was found, however not without some computational expense of the

overall optimization problem.

Therefore, model order reduction techniques as they already have been implemented for the

3D-0D heart-vasculature problem could be a method of choice for the heart-vasculature-VAD

model, together with the aforementioned multilevel algorithms that have been developed for

parameter estimation. However, current problems that have been encountered using a ROM not

only for varying parametric but entirely different structural configurations (varying pad locations

essentially mean a different kind of implant with different deformation modes) must be overcome,

which could be achieved using global ROMs that are calculated using different realizations of the
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implant.

The presented models and methods allow for multiple extensions and enhancements both from

a methodological and modeling point of view. Depending on the question at hand, the mechan-

ical models may be readily combined with electrophysiological scalar transport models, and

an electro-mechanical coupling would allow to extend the possible applications to questions

regarding the excitation-contraction behavior, ventricular or atrial arrhythmia, resynchronization

therapies, or similar.

Furthermore, model calibration may be improved and performed with help of measurements

stemming from CT or MRI data sets, such as motion tracking or fiber orientation data from diffu-

sion tensor imaging. This could help to identify passive elastic or boundary stiffness parameters

as well as fiber directions on an individualized basis and may help to more reliably predict 3D

atrioventricular function.
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A Appendix

A.1 Integral error analyses of discretizations

Here, integral error analyses for the spatial finite element and temporal finite difference discretiza-

tions are performed. Since no analytical solution of the nonlinear 3D-0D forward problem exists,

no comparison to a “true” solution but only relative comparisons between different discretizations

can be undertaken. These comparisons imply that for decreasing finite element edge length

(h → 0 mm) and decreasing finite difference time step size (∆t → 0 s), a “true” solution is

approximated which is devoid of any discretization-related errors. Strictly speaking, however,

there may exist so-called singularity points in the 3D discretized domain (e.g. locations with sharp

edges) where the primary variable – the displacement field u (2.2) – may converge, however

the derived quantities (stresses and strains) may increase proportional to the mesh refinement,

along with a decreasing area of the singularity zone. A prominent example would be a one-sided

clamped straight cantilever (uniformly) discretized with solid finite elements and subject to

bending forces. At the clamped location, bending around an infinitely small radius happens, hence

stresses will tend to infinity at that location for h→ 0 mm. Thus, for accurate analyses of stresses

and strains, the mesh has to be sufficiently smooth and fine at the locations of interest.

Different discretizations and their influence on integral pressure-volume relationships as well

as volume-averaged field data like stresses and strains are shown. However, the discretization

procedure always has to consider the specific problem at hand and naturally will be a trade-off

between computational feasibility and an expected level of accuracy.

The influence of the spatial discretization is studied in sec. A.1.1, both for the heart and for the

ventricular assist device (VAD) implant. The temporal resolution is studied in sec. A.1.2 and only

for the prescribed-dynamics heart, hence the 0D model, since large time steps are in general not

tolerated for the 3D resolved heart.

A.1.1 Spatial finite element discretizations

Different spatial discretizations are considered for the 3D-0D forward problem, both for the heart

(sec. A.1.1.1) and for the VAD models (sec. A.1.1.2). Tetrahedral elements are denoted with

tet4 (4-node linear shape functions) and tet10 (10-node quadratic shape functions). Hexahedral

elements are abbreviated with hex8 (8-node trilinear shape functions). Quadratic shape functions

are not considered for hexahedral elements. A discretization is denoted with the type of finite

element plus a number indicating the element edge length in [mm], e.g. tet10 4 stands for

a discretization with quadratic 10-node tetrahedral elements with an element edge length of

h ≈ 4 mm.
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A.1.1.1 Heart models

The heart is exclusively discretized with displacement-based tetrahedral finite elements of ap-

proximately uniform edge length throughout the whole computational domain Ω̃0. Due to the

complex patient-specific geometry, other types of elements (e.g. hexahedral ones) are in general

not applicable using state-of-the-art meshing software. All computations are carried out using the

algorithmic base parameters in tab. 3.1.

For the heart model 3Dventr, four different levels of finite element edge lengths are considered

(h ≈ 8 mm, h ≈ 4 mm, h ≈ 2 mm, h ≈ 1 mm), each with two different polynomial orders

of the finite element ansatz functions (linear 4-node tetrahedral elements, quadratic 10-node

tetrahedral elements). Whereas linear 4-node tetrahedral elements in general are known to be

prone to severe locking phenomena especially in presence of nearly incompressible material

behavior, quadratic 10-node tetrahedrals have significantly better approximation abilities but

come along with increased computational effort due to a larger number of degrees of freedom

and an increased bandwidth of the tangent matrix. The four discretizations with varying edge

lengths are sketched in fig. A.1. Homeostatic state initial conditions have been computed for

discretization tet4 2 according to the procedure described in sec. 2.2.4.1 and then were used to

compute one cardiac cycle for all the eight discretizations. Hence, no dependence of the solution

on the initial conditions is given. The base parameters from tab. 2.3 and tab. 2.6 are chosen.

Integral results for model 3Dventr coupled to model 0Dsyspul are shown for the eight different

discretizations tet4 8, tet4 4, tet4 2, tet4 1, tet10 8, tet10 4, tet10 2 and tet10 1: The left and

right ventricular pressure-volume relations are shown in fig. A.2; the volume-averaged volumet-

ric (mean, cf. (2.21)1) and deviatoric (von Mises, cf. (2.22)2) stresses, σ̂ = 1
V (Ω)

∫
Ω
σ dv and

σ̂vM = 1
V (Ω)

∫
Ω
σvM dv, are depicted in fig. A.3a and fig. A.3b, respectively; fig. A.3c shows the

volume-averaged myofiber stretch λ̂myo =
1

V (Ω)

∫
Ω
λmyo dv; and the relative wall volume change

V (Ω)/V (Ω0) is depicted in fig. A.3d.

Table A.1 shows the left, right, and total ventricular stroke work SWℓ, SWr, and
∑

i=ℓ,r SW
i,

respectively, as well as the cycle error Ecycl (2.222), the number of solid mechanics degrees of

freedom n3D
dof , and the number of cores ncore that were used for the computation – for the eight

discretizations of model 3Dventr | 0Dsyspul.

Discretizations tet4 8, tet4 4 and tet10 8 yield integral results that significantly differ and hence

may not be considered for a reliable analysis. However, increasing mesh or polynomial order

refinement yields pressure-volume relationships (stroke works), volume-averaged stresses and

myofiber strains of acceptable accuracy.

For the heart model 3Datrioventr, two different levels of finite element edge lengths are considered

(h ≈ 2 mm, h ≈ 1.25 mm), both again with linear 4-node tetrahedral elements and quadratic

10-node tetrahedral elements. Due to the even more complex geometry of the 4-chamber heart

model compared to the only-ventricular model, (uniform) coarser meshing than h ≈ 2 mm was

not possible considering the delicate atrial structures. The two discretizations with varying edge
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tet4(10)_8 tet4(10)_4 

tet4(10)_1 tet4(10)_2 

Figure A.1: Model 3Dventr with the four different spatial discretizations tet4(10) 1, tet4(10) 2,

tet4(10) 4 and tet4(10) 8; either for linear 4-node tetrahedral elements (tet4) or

quadratic 10-node tetrahedrals (tet10).
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Figure A.2: Model 3Dventr | 0Dsyspul: Pressure-volume relationships for the eight discretizations

tet4 8, tet4 4, tet4 2, tet4 1, tet10 8, tet10 4, tet10 2 and tet10 1. (a) Left ventricle.

(b) Right ventricle.
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Figure A.3: Model 3Dventr | 0Dsyspul: Integral volume-averaged data for the eight discretizations

tet4 8, tet4 4, tet4 2, tet4 1, tet10 8, tet10 4, tet10 2 and tet10 1 over one cardiac

cycle t ∈ [0, 1 s]. (a) Volume-averaged volumetric Cauchy stress (mean stress, cf.

(2.21)1), σ̂ = 1
V (Ω)

∫
Ω
σ dv. (b) Volume-averaged deviatoric Cauchy stress (von Mises

stress (2.22)2), σ̂vM = 1
V (Ω)

∫
Ω
σvM dv. (c) Volume-averaged myofiber stretch, λ̂myo =

1
V (Ω)

∫
Ω
λmyo dv. (d) Relative change of wall volume with respect to undeformed

configuration, V (Ω)/V (Ω0).
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Table A.1: Model 3Dventr | 0Dsyspul: Left, right, and total ventricular stroke work SWℓ, SWr,

and
∑

i=ℓ,r SW
i, respectively; cycle error Ecycl (2.222), number of 3D solid mechanics

degrees of freedom n3D
dof , and number of cores ncore used for computation (not less

than 28, since 1 node on the cluster possesses 28 cores); all computations carried out

with homeostatic state initial conditions from tet4 2 mesh for comparability; sorted in

ascending order with increasing degrees of freedom

SWℓ [mJ] SWr [mJ]
∑

i=ℓ,r SW
i [mJ] Ecycl [−] n3D

dof ncore

tet4 8 521.0 86.3 607.3 0.138 3558 28
tet4 4 642.1 143.0 785.1 0.039 18 582 28

tet10 8 705.0 143.8 848.8 0.085 22 755 28
tet4 2 725.7 169.1 894.8 0.010 126 102 28

tet10 4 739.7 181.7 921.4 0.021 126 501 28
tet10 2 761.4 192.4 953.8 0.035 919 953 168
tet4 1 765.5 182.0 947.5 0.018 920 121 112

tet10 1 779.5 193.8 973.3 0.037 7 017 330 672

lengths are sketched in fig. A.4.

As for model 3Dventr, homeostatic state initial conditions have been computed for discretization

tet4 2 according to the procedure described in sec. 2.2.4.1 and then were used to compute one

cardiac cycle for all the four discretizations in order to exclude dependencies of the solution

on the initial conditions. The base parameters from tab. 2.3 and tab. 2.6 are chosen, however

without considering the Frank-Starling mechanism, thus choosing ventricular amin = 1 (instead

of amin = 2/3) and ventricular σ0 = 70 kPa (instead of σ0 = 100 kPa) such that inotropy is not

affected by the preload.

Integral results for model 3Datrioventr coupled to model 0Dsyspulcap are shown for the four

different discretizations tet4 2, tet4 1.25, tet10 2 and tet10 1.25: The left and right ventricular as

well as left and right atrial pressure-volume relations are shown in fig. A.5; the volume-averaged

volumetric (mean, cf. (2.21)1) and deviatoric (von Mises, cf. (2.22)2) stresses, σ̂ = 1
V (Ω)

∫
Ω
σ dv

and σ̂vM = 1
V (Ω)

∫
Ω
σvM dv, are depicted in fig. A.6a and fig. A.6b, respectively; fig. A.6c shows

the volume-averaged myofiber stretch λ̂myo = 1
V (Ω)

∫
Ω
λmyo dv; and the relative wall volume

change V (Ω)/V (Ω0) is depicted in fig. A.6d.

Table A.2 shows the left, right, and total ventricular stroke work SWℓ, SWr, and
∑

i=ℓ,r SW
i,

respectively, as well as the cycle error Ecycl (2.222), the number of solid mechanics degrees of

freedom n3D
dof , and the number of cores ncore that were used for the computation – for the four

discretizations of model 3Datrioventr | 0Dsyspulcap.

The four discretizations all yield integral results that are in a close range to one another. Atrial

pressure-volume relationships for the quadratic tet10 discretizations exhibit a leftward location

compared to the linear tet4 ones. Ventricular pressure-volume relationships (stroke works),

volume-averaged stresses and myofiber strains of acceptable accuracy are obtained for the four

meshes.
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tet4(10)_1.25 tet4(10)_2 

Figure A.4: Model 3Datrioventr with the two different spatial discretizations tet4(10) 1.25 and

tet4(10) 2; either for linear 4-node tetrahedral elements (tet4) or quadratic 10-node

tetrahedrals (tet10).

Table A.2: Model 3Datrioventr | 0Dsyspulcap: Left, right, and total ventricular stroke work SWℓ,

SWr, and
∑

i=ℓ,r SW
i, respectively; cycle error Ecycl (2.222), number of 3D solid

mechanics degrees of freedom n3D
dof , and number of cores ncore used for computation

(not less than 28, since 1 node on the cluster possesses 28 cores); all computations car-

ried out with homeostatic state initial conditions from tet4 2 mesh for comparability;

sorted in ascending order with increasing degrees of freedom

SWℓ [mJ] SWr [mJ]
∑

i=ℓ,r SW
i [mJ] Ecycl [−] n3D

dof ncore

tet4 2 771.1 259.7 1030.8 0.020 174 876 28
tet4 1.25 816.2 269.1 1085.3 0.019 660 555 112

tet10 2 832.4 266.8 1099.2 0.029 1 262 682 168
tet10 1.25 854.5 276.1 1130.6 0.033 4 937 724 700
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Figure A.5: Model 3Datrioventr | 0Dsyspulcap: Pressure-volume relationships for the four dis-

cretizations tet4 2, tet4 1.25, tet10 2 and tet10 1.25. (a) Left ventricle. (b) Right

ventricle. (c) Left atrium. (d) Right atrium.
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Figure A.6: Model 3Datrioventr | 0Dsyspulcap: Integral volume-averaged data for the four

discretizations tet4 2, tet4 1.25, tet10 2 and tet10 1.25 over one cardiac cycle

t ∈ [0, 1 s]. (a) Volume-averaged volumetric Cauchy stress (mean stress, cf.

(2.21)1), σ̂ = 1
V (Ω)

∫
Ω
σ dv. (b) Volume-averaged deviatoric Cauchy stress (von

Mises stress (2.22)2), σ̂vM = 1
V (Ω)

∫
Ω
σvM dv. (c) Volume-averaged myofiber stretch,

λ̂myo = 1
V (Ω)

∫
Ω
λmyo dv. (d) Relative change of wall volume with respect to unde-

formed configuration, V (Ω)/V (Ω0).

206



A.1 Integral error analyses of discretizations

A.1.1.2 VAD models

The VAD model VAD2013p is used for the comparison of different discretizations and element

technologies. It is entirely discretized using trilinear hexahedral finite elements (hex8). Three

different mesh sizes that relate to the pad in-plane element edge length are chosen: h ≈ 2 mm
(hex8 2), h ≈ 1 mm (hex8 1) and h ≈ 0.5 mm (hex8 0.5). Over the pad thickness dwallP , 1
element is used. Along the radii rs,iP and rs,oP , element intervals are 2, 4 and 8 for the discretizations

hex8 2, hex8 1 and hex8 0.5, respectively. Additionally, 1 element is used along the bridges

between the two heart-oriented outer radii, the two inner radii and the two shell-oriented outer

radii, each having a length of dbrdgP = 1
3

(
dP − 4rs,oP − 2rs,iP

)
. Over the shell thickness dS, 1

element is used. The in-plane mesh size for the shell is twice as large as for the pads. Refer to tab.

5.1 and fig. 5.3a,b for the dimensions of the implant.

The three different spatial discretizations are depicted in fig. A.7.

hex8_0.5 hex8_1 

hex8_2 

Figure A.7: Model VAD2013p with the three different spatial discretizations hex8 0.5, hex8 1,

hex8 2.
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Furthermore, two different types of finite element technologies are considered. One the one hand,

the so-called F-bar technology [49] is used, which evaluates the volumetric part of the deforma-

tion gradient at the element’s center in order to avoid spurious volumetric locking phenomena.

On the other, elements relying on the so-called enhanced assumed strain (EAS) technology

are considered, cf. [218] and references therein. The EAS formulation essentially relies on a

multi-field variational principe (Hu-Washizu principle) which introduces additional degrees of

freedom for the strain field. The specific element formulation allows to perform a condensation of

these additional variables at the element level such that the size of the global system of equations

remains unaltered. This element technology promises to combat volumetric as well as shear

locking phenomena.

One transient cardiac cycle is computed using the heart and vascular model 3Dventrtet4 1 | 0Dsyspul

with calibrated homeostatic state conditions and parameters for the low-afterload heart failure

scenario (cf. chap. 4). Peak pad pressures in (5.7) are p̂ℓa,max
P = p̂

ℓp,max
P = 60 mmHg and

p̂r,max
P = 20 mmHg. The pads were deflated without additional suction, hence p̂i,sucP = 0.

The left and right ventricular pressure-volume relationships as well as the pad volumes V i
P(t)

(i = ℓa, ℓp, r) over time t are shown in fig. A.8 for the three different spatial resolutions using

F-bar technology, and for discretization hex8 1 using standard and EAS elements.

Table A.3 lists total ventricular stroke work
∑

i=ℓ,r SW
i, peak (end-systolic) pad volumes V i,max

P

(i = ℓa, ℓp, r), the number of VAD degrees of freedom n
3D(VAD)
dof , as well as the number of cores

ncore used for the computation.

Table A.3: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013p: Total ventricular stroke work
∑

i=ℓ,r SW
i,

peak left anterior, left posterior, and right pad volume V ℓa,max
P , V

ℓp,max
P , and V r,max

P ,

respectively, number of 3D solid mechanics degrees of freedom of the VAD n
3D(VAD)
dof ,

and number of cores ncore used for computation

∑
i=ℓ,r SW

i [mJ] V ℓa,max
P [ml] V

ℓp,max
P [ml] V r,max

P [ml] n
3D(VAD)
dof ncore

hex8 2 F-bar 635.2 28.7 28.2 10.1 61 614 112
hex8 1 F-bar 643.6 30.0 29.3 10.5 237 030 112

hex8 0.5 F-bar 645.3 30.4 29.6 11.3 931 152 168
hex8 1 std 612.9 25.0 24.5 11.4 237 030 112

hex8 1 EAS 644.1 29.9 29.2 11.6 237 030 112

End-systolic ventricular volumes are not that sensitive to the VAD discretization, even though

peak pad volume is remarkably lower when using hexahedral elements devoid of any technology.

The hex8 1 discretization with F-bar technology yields peak pad volumes comparable to the finer

discretization or to that of the same fineness but with EAS technology.

Pad deflation behavior is significantly influenced by the respective discretization (cf. pad volume

decays in fig. A.8c–e). Fine resolutions and element technologies allow to resolve more distinct

modes in the deformation pattern that however may lead to spurious solutions of the deflated

configurations that may compromise ventricular filling. These deflation patterns are most probably

not representative for the real-world behavior due to the model idealizations that have been

undertaken, cf. chap 5. Hence, if not known better from the experimental data, a deflation process
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Figure A.8: Model 3Dventrtet4 1 | 0Dsyspul |VAD2013p: Ventricular pressure-volume relation-

ships as well as pad volumes over time t for the three different VAD discretizations

hex8 2, hex8 1 and hex8 0.5, as well as comparisons between different element

technologies: “std” for standard elements, “F-bar” for the so-called F-bar element

technology [49], “EAS” for the enhanced assumed strain technology; all applied to

the same heart discretization tet4 1. (a) Left ventricular pressure-volume loops. (b)

Right ventricular pressure-volume loops. (c) Left anterior pad volume V ℓa
P . (d) Left

posterior pad volume V
ℓp
P . (e) Right pad volume V r

P .
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that minimizes impairment of ventricular filling should be pursued, which is why the suction

pressure p̂i,sucP in (5.7) was introduced (however note that is was omitted for this convergence

study).

A.1.2 Temporal finite difference discretizations

The influence of the time step size ∆t (hence the number of performed time steps nstep per cardiac

cycle) on the solution is studied for the prescribed-dynamics heart (cf. sec. 2.2.3.2). For this

purpose, the homeostatic state solution of model 3Datrioventrtet4 2 | 0Dsyspulcap is used as input.

Figure A.9 shows the left and right ventricular pressure-volume relationships, and tab. A.4 shows

left, right and total ventricular stroke works SWℓ, SWr and
∑

i=ℓ,r SW
i, respectively, for the

different temporal discretizations with increasing number of time steps nstep = 8 . . . 2048 over

one cardiac cycle.
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Figure A.9: Model PrescrHeart3Datrioventrtet4 2
| 0Dsyspulcap: Ventricular pressure-volume relation-

ships for different numbers of time steps nstep. (a) Left ventricle. (b) Right ventricle.

Table A.4: Model PrescrHeart3Datrioventrtet4 2
| 0Dsyspulcap: Left, right, and total ventricular stroke

work SWℓ, SWr, and
∑

i=ℓ,r SW
i for different numbers of time steps nstep

nstep SWℓ [mJ] SWi [mJ]
∑

i=ℓ,r SW
i [mJ]

8 546.4 198.7 745.1
16 676.7 227.5 904.3
32 733.5 238.5 971.9
64 755.0 246.7 1001.7
128 764.0 249.9 1013.9
256 767.8 251.2 1019.0
512 769.6 251.9 1021.5
1024 770.5 252.2 1022.7
2048 770.9 252.3 1023.3

Pressure-volume relationships visually are hardly distinguishable for nstep > 100, hence changes

in stroke work become minor for a further reduction in time step size.
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A.2 Small-strain calibration of material parameters for

polyurethan

Uniaxial tensile tests have been performed on thin-walled samples of polyurethan in order to

determine the mechanical properties of the augmentation pads of the ventricular assist device

(VAD) prototype that has been introduced in chap. 5. A nonlinear hyperelastic stress-strain

relationship should be derived such that reliable modeling and simulation of the interaction of

VAD and heart can be undertaken. Testing was performed similar to a protocol described in the

thesis of Maier [132].

The solid red curve in fig. A.10 shows the uniaxial first Piola-Kirchhoff stress P (engineering

stress, measured force per measured undeformed cross-sectional area) plotted over the axial

stretch λ. Testing results unveiled a strong softening behavior of the material for (engineering)

strains ≥ 4 %.

λ [−]

P
[k
P
a]

measured 

analytical fit 

Figure A.10: Uniaxial tensile test on a polyurethan material sample: Uniaxial first Piola-Kirchhoff

stress P over uniaxial stretch λ, small-strain analytical fit valid within λ ∈ [1, 1.04].

Since under standard operating conditions the maximum straining of the polyurethan pads was

assumed to be “small” (despite undergoing large deflections), softening behavior (which can be

associated to effects of visco-plasticity) was neglected. Furthermore, since polyurethan behaves

nearly incompressible, a simplifying perfectly incompressible analytical small-strain fit using a

Neo-Hookean material has been performed.

Incompressibility requires the third invariant (2.25)3 of the right Cauchy-Green deformation

tensor, or equally the determinant J of the deformation gradient to obey

J = λ1λ2λ3
!
= 1, (A.1)

where λ1 ≡ λ is the stretch in the axial loading direction and λ2 = λ3 = 1√
λ

are the lateral

stretches. This means that Poisson’s ratio is ν = 0.5, hence the bulk modulus of the material is
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κ→∞.

Plugging in the incompressibility constraint into the Neo-Hookean strain energy function yields

Ψ =
µ

2

(
λ2
1 + λ2

2 + λ2
3 − 3

) J=1

|
=

µ

2

(
λ2 +

2

λ
− 3

)
, (A.2)

and the first Piola-Kirchhoff stress according to (2.24)1 then reads

P =
∂Ψ

∂λ
= µ

(
λ− 1

λ2

)
. (A.3)

The material stiffness, hence the uniaxial component of the elasticity tensor (2.34) is

❈ =
∂P

∂λ
= µ

(
1 +

2

λ3

)
. (A.4)

For the small-strain limit case (λ→ 1) the elasticity modulus becomes

❈ = 3µ, (A.5)

which corresponds to the relation between Young’s modulus and the shear modulus for incom-

pressible small-strain elasticity [77].

An analytical fit of the shear modulus was performed, cf. the green dashed curve in fig. A.10,

yielding a value of

µ = 9346 kPa. (A.6)

In order to use this data in a displacement-based finite element formulation, the incompressibility

constraint has to be relaxed, and a Poisson’s ratio of ν = 0.49 is assumed. The bulk modulus then

can be calculated via

κ =
µ

1− 2ν
= 467.3 · 103 kPa. (A.7)

For the numerical simulation, the split formulation of the strain energy (2.28) with an Ogden-type

volumetric part [88] is used together with the parameters (A.6) and (A.7).
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