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Chapter 1

Introduction

Swarms of male fireflies blinking in unison have been observed [1]. Similar pendulum
clocks swing synchronously if mounted on a common support [2]. Everyone of us
has an internal, chemical clock with a period of roughly 24 hours that constantly
adapts to the light from the sun [3]. After long flights along longitudes, however,
this circadian clock is out of sync and needs a few days to readjust, which is the
reason for jetlag [4]. All these seemingly different examples are based on the same
principle: Some autonomous system - a firefly, a pendulum clock or the circadian
rhythm - shows self-sustained periodic behavior. These nonlinear oscillators then
adjust frequency and phase of their oscillation to match other oscillators or a periodic
signal: They synchronize.
Synchronization occurs in many scientific disciplines, with applications in engin-

eering, physics, chemistry, biology, medicine, and even in social sciences. The study
of synchronization has intensified in the last decades, with [5–12] summarizing the
state of the art.
Particularly intriguing, synchronization phenomena occur in neuroscience as well

[13]: Oscillations can be found at different length- and timescales in the nervous
system [14]. The synchronization of neural oscillators controls vital functions, but
is also responsible for some neural diseases such as epileptic seizures [15]. Synchron-
ization phenomena are also involved in cognition tasks of the brain [16].
Early attempts to understand the human brain also inspired the development of

artificial neural networks : Interaction of networks of small subunits, called “artificial
neurons”, have been studied for roughly 70 years now [17]. After recent improve-
ments in both algorithms (e.g. [18–20]) and computational power (e.g. GPU com-
puting), today these artificial neural networks are successfully applied in industry
for e.g. image and speech recognition, speech generation, or forecasting. In contrast
to nerve cells, conventional artificial neurons are simple functions of their inputs and
are evaluated at discrete points in time, emitting a single value. Admittedly, these
rough simplifications are necessary to allow for efficient computation on conventional
computers. If specialized hardware is considered, however, artificial neurons are not
limited to clocked evaluation on CPUs: Oscillators, for instance, can be regarded as
artificial neurons. Any coupling to another oscillator’s signal continuously promotes
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Chapter 1 Introduction

synchronization at some specific phase difference. Consequently, coupling many os-
cillators can lead to complex dynamics. Can synchronization of oscillators thus be
used for computation?
Indeed, inherent parallel architectures have been proposed for such networks of

oscillators. Continuous processing of signals and low power consumption of some
proposed nano-oscillators [21–23] promise fast and energy efficient hardware, which
could support conventional processors in specialized tasks. However, many problems
are still unsolved. This thesis specifically aims to construct a network of oscillators
acting as autoassociative memory, while at the same time mitigating or removing
shortcomings of earlier architectures.
When an autoassociative memory is presented with a defective and/or incomplete

piece of data, it recognizes and retrieves the correct data from a set of correct
candidates. From a different point of view, the defective input data are mapped
onto the most similar of the candidates. The ability to ”map” is also found in
complex physical systems: The trajectory of a system state will converge to an
attractor. If several attractors coexist, different sets of initial conditions, called
basins of attraction, will end up on different attractors. Therefore, the system ”maps”
all initial conditions within one basin onto its attractor. Note that few physical
systems are actually suitable as autoassociative memories: First, suitable mappings
of the defective data onto the initial conditions and from the attractors back onto
the correct patterns have to be found. Additionally, initial conditions as well as
attractors of a system need to be controlled, with the latter usually being difficult.
Finally, the initial defective data should be mapped onto the most similar correct
data candidate, which requires that the basins of attraction actually conform with
a sensible definition of similarity. The idea to use basins of attractions for pattern
recognition has originally been proposed by Hopfield for use in conventional neural
networks [24]. Contributions from mathematics, physics and neuroscience made it
possible to merge his ideas with the studies of coupled nonlinear oscillators. (See
the end of [25] for a summary.)
Networks of nonlinear oscillators have been shown to act as autoassociative

memory devices for binary patterns [26–33] according to the above-mentioned
principle. In the original architecture [26–28], identical Kuramoto oscillators [25]
are fully interconnected via programmable connections that can change sign and
strength of the coupling according to the Hebbian Rule [34]: With αmi being the
ith pixel of the mth memorized pattern, the coupling between oscillators i and j is
proportional to Sij =

∑M
m=1 α

m
i α

m
j . Here, each of the M correct pattern candidates

consists of N pixels. Specifically, the phase ϑi of the ith oscillator evolves according
to ϑ̇i = Ω − ε

N
Sij sin (ϑi − ϑj) with constants ε and Ω representing the coupling

strength and the angular frequency of the oscillator. In a frame of reference rotating
with Ω, this simplifies to ϕ̇i = ϑ̇i−Ω = −∑N

j=1
ε
N
Sij sin (ϕi − ϕj). Here, fixed points

are the only type of attractors, and defective input patterns as well as correct pattern
candidates can be mapped on two synchronized groups of oscillators whose phases
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differ by π. However, this design has two main disadvantages: First, no distinct,
well-separated fixed points exist for the memorized patterns [35]. Instead, there is
one global attractor consisting of lines of attractive fixed points with neutrally stable
eigendirections that connect every memorized pattern with every other. On short
timescales, pattern recognition still works: Starting at the defective pattern, the sys-
tem state quickly relaxes onto the global attractor close to the most similar pattern.
On the attractor, however, perturbations due to external noise or implementation
inaccuracies dominate and the system state drifts away from the correct pattern
on longer timescales. Additionally, recognition success cannot be guaranteed as no
well-defined basin of attraction exists for any single output pattern.
Second, the number of connections scales quadratically with the number of oscil-

lators, so no large networks can be implemented in hardware.
So far, no architecture that solves both issues has been proposed. How-

ever, separate solutions for each problem have been discussed: Nishikawa et
al. [32] showed that the degeneracy of the attractor can be lifted by adding
second order Fourier modes to the coupling, i.e. he explored dynamics ϕ̇i =∑N

j=1

(
−Sij sin (ϕi − ϕj)− γ

N
sin (2 [ϕi − ϕj])

)
with γ being a small parameter. A

similar network with third order Fourier modes has been proposed as well [33].
However, it is unclear how such a coupling could be implemented. Additionally,
the number of physical connections still scales quadratically with the number of
oscillators. A partial solution for the scaling problem has been proposed by Hop-
pensteadt and Izhikevich [29] and has been further advanced by Hölzel and Krischer
[30] and Kostorz et al. [31]: Oscillators of different frequencies are coupled to the
same global coupling that affects every oscillator differently. These architectures
require an external input of complex time-dependent functions, but the number
of connections scales with O(N). Although the coupling mechanism is different,
the effective dynamics ϕ̇i = ϑ̇i − Ωi = −∑N

j=1
ε
N
Sij sin (ϕi − ϕj) are identical to

the original architecture and thus, this approach inherits the unfavorable valleys of
neutrally stable fixed points.
In this thesis, a novel network architecture is designed that combines both isol-

ated attractors and minimal scaling of connection complexity without the need for
complex external input. In order to prove implementability in hardware, validate
our theoretical predictions and explore the limits of network parameters, we imple-
mented the architecture with electronic Van der Pol oscillators.
First, we will lay out some foundations of nonlinear dynamics and analog elec-

tronics in chapter 2. In chapter 3, the new network architecture is presented. It is
built on the aforementioned previous studies [29, 30] of globally coupled oscillatory
devices, but we introduced two peculiar features: Different temporal modulation of
the coupling strength and a replacement of the single network by two interconnected
subnetworks. The result is a robust autoassociative memory that can be readily read
out. Additionally, we can predict recognition success analytically. The implementa-
tion of the network in electronic circuits as well as the measurement environment are
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Chapter 1 Introduction

discussed in detail in chapter 4, before measurement results are outlined in chapter
5. Here, the automation of the network hardware allowed to gather statistics on
recognition success and recognition times in the presence of noise and inaccuracies.
Network performance, however, is close to ideal for a large range of parameters.
Finally, we summarize our results in chapter 6 and outline possible future research:
While both theoretical questions and unexplored improvement possibilities remain
open for our architecture itself, other applications in e.g. combinatorics can be
explored as well.

4



Chapter 2

Foundations

This thesis is interdisciplinary, thus touching or requiring selected topics from phys-
ics, information technology and electrical engineering. Consequently, the current
chapter aims to communicate the most necessary foundations from nonlinear dy-
namics and analog electronics, convey intuition and provide resources for further
reading. However, these excursions are kept simple on purpose and do not claim
to be fully sufficient for understanding all details of the following chapters. Both
the books Nonlinear Dynamics and Chaos [36] and The art of electronics [37] are
suitable as an introduction, but also cover fine details, edge cases and exceptions.

2.1 Nonlinear dynamics

As mentioned in the introduction, we aim to construct a network of oscillators with
several, separated attractors. Both internal dynamics of oscillators as well as their
collaborative behavior can be described with methods of nonlinear dynamics: First,
differential equations are rewritten as system of first order differential equations. If
we consider e.g. a single electrical oscillator, variables could be a voltage U and a
current I. Instead of focusing on individual trajectories as functions of time, the
system is then described in the space spanned by its variables. Consequently, a
single point in this phase space describes a possible state of the system. Over time,
the system state “flows” through phase space, with its velocity vector determined
by the time derivatives of the variables, which are in turn conveniently provided by
the differential equations. Finally, after some transient, the system state settles on
some structure in phase space and stays there for all future times. These structures,
called attractors, come in different shapes: Points, which correspond to a constant
system state, closed curves called limit cycles, which correspond to oscillations, and
other, more complicated shapes like tori or even fractals. Note that a dynamical
system can have several attractors, and all initial conditions that end up on one
attractor belong to its basin of attraction.

5
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(a) Periodic long-term behavior:
After an initial transient (not shown), vari-
ables describing an oscillator show periodic
motion. In this example, variables are a
voltage U and a current I, but generally,
they depend on the oscillator: For e.g. a
metronome, they could be position and ve-
locity of its tip, while the variables for a
firefly’s blinking are concentrations of chem-
icals inside their bodies. Note that although
we use oscillators with roughly sinusoidal
voltages, oscillations need not be sinusoidal
in general.
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(b) Limit cycle:
Variables describing a nonlinear oscil-
lator’s internal dynamics are plotted
against each other. Then, the periodic
motion is situated on a closed curve,
the so-called limit cycle.(black) Any
displacement of the variables quickly
settles on the limit cycle (red). If per-
turbations from the limit cycle are not
too large, the dynamic of the oscillator
can thus be described with a phase
ϑ ∈ [0, 2π[ only.

Figure 2.1: Exemplary dynamics of a nonlinear oscillator.
(Specifically, the data shown is from simulations of an electrical Van der Pol os-
cillator, which are also used in the prototype network. The simulated oscillator
had a capacitance C = 1 nF, an inductance L = 15,8 mH and an effective negative
resistance R′neg = −33 kΩ and oscillates with a frequency f ≈ 40 kHz. For further
simulation details, see Sec. 5.1.1.)
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2.1 Nonlinear dynamics

2.1.1 Nonlinear oscillators

The aforementioned principles will now be applied to a single nonlinear oscillator
and illustrated with simulation data of the oscillators used in our experiment: The
variables describing a nonlinear oscillator show periodic motion after a transient
(Fig. 2.1a). In the two-dimensional phase space (Fig. 2.1b), which is spanned by
these variables (e.g. U and I in our example), the dynamics of the system are much
more visible: All system states that belong to the periodic motion lie on a limit cycle
(black). Any trajectory, e.g. the red curve, does quickly end up on this attractor.
Consequently, the amplitude of the oscillation is constant after a transient. Note that
nonlinear oscillators strongly differ from linear, harmonic oscillators in this regard:
The amplitude of undamped harmonic oscillators is not fixed, but depends on their
total energy, which is conserved. Damped harmonic oscillations quickly die down -
their attractor is thus a fixed point - and thus their oscillations are not a long-term,
but only a transient phenomenon. On the other hand, nonlinear oscillators need an
energy source to stabilize the limit cycle against perturbation. On the limit cycle,
the system state can be described by a single variable: The phase ϑ ∈ [0, 2π[ of the
oscillation, which increases linearly with time. Actually, as close trajectories always
approach the attractor, the definition of the phase can be extended to any points in
the limit cycle’s basin of attraction [38, 39]. Furthermore, interactions of oscillators
can conveniently be described by their phases, if deviations from the limit cycle stay
sufficiently small [38].

2.1.2 Phase description

While an oscillator’s state can be described by a phase alone, any external sig-
nals first influence its internal variables. Imagine an external signal perturbing the
voltage of the exemplary oscillator in Fig. 2.1b: If e.g. ϑ ≈ 0 or π, the perturbation
in U is almost parallel to the limit cycle and directly increases or decreases phase.
However, for ϑ ≈ π

2
or 3π

2
, the perturbation is perpendicular to the limit cycle and

the phase remains the same. The phase change at an arbitrary phase to an internal
variable X is generally described with a phase response curve dϑ

dX and depends on
the shape of the limit cycle and its neighborhood [38]. The phase dynamics of a
single oscillator can then be summed up:

ϑ̇ = Ω +
∑
Xi

dϑ
dXi

∆Xi

Here, Ω = 2πf is the angular frequency of the oscillator. A phase response curve
for our exemplary oscillator is shown in Fig. 2.2. Simplifying, we restrict our further
analysis to oscillators that emit a sinusoidal signal (e.g. their voltage) and have a
sinusoidal phase response shifted by π

2
with respect to the oscillation. (Note that all
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Figure 2.2: Phase response curve dϑ
dU of the exemplary oscillator from Fig. 2.1.

Black dots show the simulated phase response to voltage perturbations. The red
curve is a cosine fit.

oscillators close to a Hopf-bifurcation [40] fulfill that requirement. Thus, the analysis
remains valid for a large class of oscillators independent of their exact differential
equations.)

2.1.3 Synchronization

Now, we couple two oscillators symmetrically, meaning that for each oscillator, an
internal variable is perturbed proportional to the other’s signal:

ϑ̇1 = Ω1 + ε cosϑ1 · sinϑ2

ϑ̇2 = Ω2 + ε cosϑ2 · sinϑ1

Here, ϑ1 and ϑ2 are the phases of the individual oscillators, Ω1 and Ω2 their angular
frequencies and the coupling strength ε is a constant encapsulating amplitudes of
signals and phase response curves as well as factors due to details of the coupling
mechanism. If both oscillators synchronize, their frequencies align. Then, the dif-
ference between their phases ∆ϑ = ϑ1 − ϑ2 must thus become constant or at least
be limited to a small range of values. Thus, we express the dynamics in ∆ϑ and
simplify with the trigonometric identity sinx cos y = 1

2
[sin (x− y) + sin (x+ y)]:

∆ϑ̇ = ϑ̇1 − ϑ̇2

= ∆Ω + ε (cosϑ1 · sinϑ2 − cosϑ2 · sinϑ1)

∆ϑ̇ = ∆Ω− ε sin ∆ϑ (2.1)
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2.1 Nonlinear dynamics

Now, the only variable describing our oscillator pair is the phase difference ∆ϑ and
the phase space of the system is thus on a line. If ∆ϑ grows without bound, the
frequencies cannot be equal. Consequently, for synchronization to occur an attractor
must exist. In a one-dimensional system, this can only be a stable fixed point [36]:
On a fixed point, the flow vanishes, so a trajectory starting on the fixed point remains
there for all times:

• For |∆Ω| > ε, the flow ∆ϑ̇ (Eq. (2.1)) is always larger than 0, so our oscillator
pair cannot synchronize.

• For |∆Ω| < ε, the flow intersects with 0 at two points. Regarding stability,
there is always one stable (attractive) and one unstable (repulsive) fixed point,
as ∆ϑ either flows towards the fixed point or away from it, as illustrated in
Fig. 2.3c. As no other attractors exist, the system moves to the stable fixed
point, where the oscillators are perfectly synchronized. Note that for ∆Ω = 0,
the stable fixed point is at a phase difference of 0. If |∆Ω| increases, the fixed
point moves away from zero till it annihilates with the unstable fixed point at
|∆Ω| = ε. Similarly, if the coupling had a negative prefactor, the sin ∆ϑ-term
would be inverted as well. Then, the fixed points had inverted stability and
the stable fixed point was close to π.

The synchronization of multiple oscillators with different frequencies - with every
oscillator being coupled to every other - is substantially more complex and has been
extensively studied by Kuramoto [41]. The main message, however, stays the same:
As long as the coupling is sufficiently larger than the frequency differences, the
oscillators synchronize.

2.1.4 Saddle-node bifurcations

In the last section, we discussed two symmetrically coupled oscillators. Particularly,
when ∆Ω ≈ ε, only minuscule changes to the angular frequency difference ∆Ω
were necessary to switch from synchronization and a phase-locked state to an ever
increasing phase difference. Such qualitative and substantial changes of a systems
behavior due to small parameter changes are called bifurcations. The behavioral
change coincides with a creation, change or annihilation of attractors, repellers or
saddles in phase space. (Saddles are attractive in at least one direction and repulsive
in at least another.) The bifurcation in our synchronization example is a saddle-
node bifurcation, where a pair of fixed points annihilates. This is illustrated in Fig.
2.3, where one stable and one unstable fixed point are created if |∆Ω| is reduced to
values smaller than ε, or annihilated if |∆Ω| is increased again. Note that saddle node
bifurcations arise in many systems and the exact shape of the flow is not critical:
As long as the flow close to the bifurcation can be approximated with a parabola -
more precisely, as long as the flow is topologically equivalent to Ẋ = r + X2 close
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∆ϑ

∆̇ϑ

π 2π0

∆Ω

(a) No fixed points:
As ∆Ω > ε, the flow of
∆ϑ is positive in the whole
phase space and one oscil-
lator will always pass the
other.

∆ϑ

∆̇ϑ

π 2π0

∆Ω

(b) One half-stable
fixed point: At ∆Ω = ε,
there is exactly one fixed
point ∆ϑ∗ = π

2 , where
∆ϑ̇ = 0. Everywhere else,
the flow is still positive
and ∆ϑ will increase until
it reaches the fixed point.
The fixed point, however,
is not stable: Any positive
perturbation in ∆ϑ will
grow.

∆ϑ

∆̇ϑ

π 2π0

∆Ω

(c) Fixed point pair:
For ∆Ω < ε, there are
two intersections of ∆ϑ̇
with the ∆ϑ-axis. The
flow on the phase space
line strictly flows to the
stable fixed point (black
circle), while it flows away
from the unstable fixed
point (white circle) on
both sides.

Figure 2.3: A fixed point pair emerges in a saddle-node bifurcation: Synchroniz-
ation of two oscillators requires a stable fixed point in the phase space spanned by
their phase difference ∆ϑ. As seen in Eq. (2.1), zeros of ∆ϑ̇ occur only for ∆Ω ≤ ε
and correspond to a half-stable fixed point or a stable and an unstable fixed point,
as can be seen in b) and c). The flow ∆ϑ̇ on the one-dimensional phase space is
additionally visualized with blue arrows.

to the bifurcation, with r being the bifurcation parameter - the structurally same
annihilation or creation of a fixed point pair will take place. In this thesis, saddle-
node bifurcations will appear more often, e.g. in the context of frequency annealing
(Sec. 3.6.2 and 4.1.3) or removal of spurious coupling (Sec. 4.1.4). Note that in
higher dimensions, saddle node bifurcations still occur. Stability of fixed points,
however, must be determined for as many directions as there are dimensions.

2.1.5 Stability

Admittedly, we did not define stability rigorously yet. Actually, several definitions
of stability exist [42]:

• Trajectories close to a Ljapunov stable attractor X∗ stay in a neighborhood of
X∗ for t→∞.

10



2.1 Nonlinear dynamics

• An asymptotically stable attractor is always Ljapunov stable, but trajectories
X(t) also approach it, so |X(t)−X∗| → 0 for t→∞.

• Exponentially stable attractors are again a special case of asymptotic stability:
Here, |X(t)−X∗| < e−at in a neighborhood of X∗ as t→∞.

Attractors that are only Ljapunov stable, but not asymptotically stable, are also
called neutrally stable. One example of neutrally stable structures are the potential
valleys in previous oscillatory neural networks [26–31], that were already mentioned
in the introduction: In a unperturbed system, the system state would move to
the closest attractor, which is part of a line of infinitely many neutrally stable fixed
points. When deviations of the systems or perturbations are considered - e.g. a “tilt”
of the potential function - we see that Ljapunov stable attractors are not desirable
for an attractor network: The attractors loose their stability and the system state
will move along the valleys.
In the oscillator network proposed in chapter 3, many fixed points exist, but

only a few fixed points are attractors. Stability analysis for a fixed point X∗ starts
with a linearization around the fixed point: First, we determine all components
Jij = dẊi

dXj
|X=X∗ of the Jacobian matrix J at the fixed point. They describe, how the

flow in the ith coordinate changes if we perturb the jth coordinate. In other words,
we approximate the dynamics around the fixed point with

Ẋi =
∑
j

Jij(Xj −X∗j ) .

In our one-dimensional synchronization example, this reduces to a single component:
The derivative of the flow ∆ϑ̇ with respect to ∆ϑ. If d∆ϑ̇

d∆ϑ
|∆ϑ=∆ϑ∗ < 0, the flow is

negative for ∆ϑ > ∆ϑ∗ and positive for ∆ϑ < ∆ϑ∗ and thus the fixed point is
stable and vice-versa, a positive slope of the flow indicates an unstable fixed point.
For a general Jacobian matrix with more than one dimension, perturbations in one
coordinate influence the flow in others, so the analysis is not as straightforward.
However, remembering linear algebra, we diagonalize J by solving the eigenvalue
equation Jv = λv for eigenvalues λ and eigenvectors v, which corresponds to a
coordinate change. (Specifically, eigenvalues are usually retrieved by solving the
characteristic polynomial det(J − λ1) = 0. Note that eigenvalues can be complex
numbers.) As J is symmetric, we can always do this. Furthermore, it is guaranteed
that the eigenvectors form an orthogonal base. In other words, any perturbations
along one eigendirection can be treated independent of the others. If we express the
dynamics around the fixed point in new coordinates X̃i along the eigendirections
and centered around X∗, the dynamics simplify:

˙̃Xi =
∑
j

J̃ijX̃j = λiX̃i

11
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⇒ X̃i = X̃0
i e
λit

Consequently, the eigenvalues λi directly specify the stability along the correspond-
ing eigendirection:

• Re(λ) < 0: stable eigendirection (exponentially stable).

• Re(λ) > 0: unstable eigendirection (exponentially unstable).

• Re(λ) = 0: The linear term of the flow is zero along the eigendirection, so our
linearization cannot decide on stability: Any non-zero higher order term will
change the sign of the flow, and other methods must be applied to determine
stability.

In chapter 3, a novel oscillator network for pattern recognition is presented, where
N pairs of oscillators represent pixels of a pattern. The dynamics are expressed in
phase differences ∆ϑi, attractors are exponentially stable fixed points, and analysis
in this N -dimensional phase space is based on the principles presented here. Prepar-
ing for chapter 4, which covers the implementation of the network with electronic
circuits, the next section outlines basics of analog electronics.

12



2.2 Electronic circuitry

2.2 Electronic circuitry

Any circuits and circuit components used in the experiment are well-known in elec-
tronics literature [37], but are probably unknown to readers with a pure physics
background. This section gives a short overview over electronic principles, circuit
components and subcircuits.

2.2.1 Circuit elements

Before presenting individual subcircuits, we first introduce single components. We
start with the operational amplifier, which is used in many circuits that utilize
feedback:

Operational amplifiers

An operational amplifier (op-amp) has one output and two inputs and needs to be
powered. The op-amp amplifies the difference of the input voltages with a very
high amplification factor (typically 105−106, ideally∞), but without exceeding the
positive or negative supply voltage. However, an op-amp is almost always used with
feedback, which means that the surrounding circuitry allows the output voltage to
influence the input voltages. Consequently, the feedback network must be considered
for the analysis of an op-amp’s behavior. Feedback to the inverting input (marked
with “−” in circuits) diminishes the voltage difference ∆U = U+ − U− between
the inputs and is thus called negative feedback. Positive feedback goes to the non-
inverting input (“+”) and enhances ∆U . If negative feedback is larger than positive
feedback, behavior of an ideal op-amp is described by the golden rules, as stated
in [37]:

1. “The output attempts to do whatever is necessary to make the voltage differ-
ence between the inputs zero.”

2. “The inputs draw no current.”

Op-amp circuits offer multiple advantages:

• First, the low output resistance of most op-amp circuits allows to consider
different parts of circuitry independently: Voltages provided by the op-amp
circuit do not depend on the input resistance of the following circuitry. Sim-
ilarly, circuit components leading to the inputs lose no current to the inputs
or lose a well-defined current to the feedback circuitry. Combining op-amp
circuits is thus straightforward and predictable.

• Second, the output almost exclusively depends on the feedback network.
Choosing precise components for the feedback network, combined with the
first point, allows for precise output.

13
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• Third, many different circuits are known and information on pitfalls and non-
ideal behavior is easily available.

• Forth, op-amps are inexpensive and integrated circuits (ICs) housing several
op-amps can be purchased, which diminishes layout complexity and space.

Consequently, op-amp circuits are used in abundance for the design of the experi-
mental network.

JFETs as voltage controlled resistors

JFETs are 3-terminal-devices with inputs called source, drain and gate and can
be used as voltage-controlled resistors with some additional circuitry. The gate
draws no current and controls the current between source and drain. If the voltage
difference VDS between source and drain is small, the current is

IDS = 2k[(UG − US − VGS,off )VDS −
V 2
DS

2
] .

Here, k and VGS,off are constants. Voltages V with two indices indicate voltage
differences between two points, while U with a single index is measured relative to
ground.
An ideal resistance would be constant for any change of drain or source voltage. In
other words, IDS should be exactly proportional to VDS. If we add parts of source
and drain voltage to a control voltage UC at the gate, the quadratic term and the
dependency on US can be removed:

UG
!

= UC + 0.5 · US + 0.5 · UD
⇒ ID = 2k · (UC − VGS,off )VDS

⇒ RJFET =
VDS
IS

=
1

2k · (UC − VGS,off )

In the experiment, we use the JFET 2N5486 (gate-source cutoff voltage VGS,off ∈
[−2 V,−6 V] ) as a voltage controlled resistor for frequency annealing of oscillator
pairs. (See Sec. 4.1.3) Note that the gate forms a semiconductor junction with the
channel connecting source and drain similar to a diode. In order to avoid unintended
diode conduction and thus any gate current for the the JFET 2N5486, UG − US ≤
+0,5 V and UG − UD ≤ +0,5 V must be ensured.

Integrated circuits

Frequently required circuits are produced on silicon wafers and can be bought as
chips, also called integrated circuits (ICs). ICs usually save cost, space, and avoid
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2.2 Electronic circuitry

implementation errors and we consequently used some for building the experimental
network:

• The ICs TL074 and TL072 contain 4 resp. 2 operational amplifiers which
perform well at the frequencies used.

• The Multiplier IC AD633 offers precise analog multiplication for all different
combination of input voltage signs. The AD633 offers two fully differential
inputs, an additional summation input and an output range of [±10 V]. It’s
output voltage W follows the function

W =
(X1 −X2)(Y1 − Y2)

10 V
+ Z .

Here, X1,X2,Y1 and Y2 are the input voltages and Z is the voltage at an
additional summation input. Note that the multiplication result is divided by
10 V.

If resistors RWZ and RZg form a voltage divider between the output W , the
summation input Z, and ground, the output is amplified: Voltage at the
summation input is Z =

RZg
RZg+RWZ

, which infers

W =
RZg +RWZ

RWZ

· (X1 −X2)(Y1 − Y2)

10 V
.

• The LF398 contains a “sample and hold” circuit. During “sampling”, the IC
passes voltages unchanged, but voltage levels are "recorded" on a capacitor.
When a logic signal switches the IC to “hold”-mode, the input is disconnected
and the output is set to the voltage on the capacitor, mirroring the last sampled
value. The capacitor is not part of the IC, but needs to be added on one pin
of the IC and can be selected for holding time or speed of sampling. If a serial
resistor is added to the capacitor, the sampled value is additionally low-passed.

• The ICs DG411 and DG412 contain 4 analog switches respectively. Each
analog switch can be opened / closed by changing the digital signal applied.

2.2.2 Subcircuits

Numerous subcircuits are used in the implementation of the network and the exper-
iment: Summations, amplifications, inversions and multiplications are necessary for
the construction of signals between the oscillators. Supporting circuitry for readout
of phase differences and frequency adjustment requires removal of frequency com-
ponents. Finally, electrical oscillators need to be implemented as well, with subcir-
cuits imitating coils and negative resistances. First, the inverting summer will be
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analyzed to illustrate the application of the golden rules on op-amp circuits. Other
simple op-amp circuits are only displayed together with their purpose, as accurate
descriptions can easily found in the literature [37]. Afterwards, filters and finally
Van der Pol oscillators will be discussed.

Inverting summer

The inverting summer (Fig. 2.4a) is used in most modules. It can be easily analyzed
by applying the golden rules:
Golden rule 1:

U− = U+ = 0 V

As U− is effectively grounded, any input voltage cannot influence the other inputs.
Due to golden rule 2, currents at the inverting input must cancel out:

Iin = −Iout (Ohm’s Law)
N∑
i=1

Ui − U−
Ri

= −Uout − U−
Rout

Uout = −
N∑
i=1

Rout

Ri

Ui (2.2)

Amplification factors for different inputs can be chosen with appropriate values for
Ri and Rout.
If the circuit has only one input, it is called “inverting amplifier” or “inverter”.

Another variation of this circuit is the addition of input voltages at the non-inverting
input, which are counted with positive sign. However, compensation resistors have
to be chosen appropriately in order to guarantee stable circuit performance.
Other often used subcircuits are shown in Fig. 2.4, 2.5 and 2.6. The analysis for

most of them is analog to the inverting summer.

Filters

At first sight, a network of oscillators requires no removal of frequencies: After all,
oscillators require the reception of the other oscillator’s signals for synchronization.
Frequencies sufficiently different from the oscillator’s intrinsic frequency do not in-
fluence its phase and thus need not be filtered as well.
There is, however, supporting circuitry that requires low-pass filtering:

• Voltages proportional to cos ∆ϑ can be constructed with multiplications and
low pass filters (Sec. 3.6.3 and 4.1.2). Compared to measurements of the
oscillator voltages, they are easier to measure and provide the phase difference
directly.
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−

+

Uout

Rout

RN

R2

R1

U1

U2

···
UN

(a) Inverting summer:
Uout = −∑N

i=1
Rout
Ri

Ui. Analysis of this
circuit is shown in Sec. 2.2.2 as an ex-
ample. If there is only one input, this
circuit is called inverting amplifier.

− +

−

+

−

+

Uout

R2R1

Uin

(b) Non-inverting amplifier:
Uout = R1+R2

R1
Uin

−

+

UoutUin

R1

R2

R1

(c) Conditional inverter / optional
inverter: If the switch is closed, this
circuit is an inverting amplifier with gain
1, inverting the input. If the switch is
open, U+ = Uin is mirrored by both U−
and Uout, passing the input unchanged.

Figure 2.4: Circuits used for summation, amplification and inversion

• Frequencies of oscillators differ in any experiment and can also drift. The
readout voltages can be fed into a feedback loop that adjusts frequencies auto-
matically (Sec. 3.6.2 and 4.1.3). The precision of this frequency annealing can
be further increased with a low pass filter.

Most importantly, a perfect filter - corresponding to a step function in frequency
space - does not exist. In order to perfectly analyze and separate frequencies of a
signal, the whole signal, including it’s future evolution, must be known. Imagine
physicists who Fourier transform a partially known signal in order to remove higher
frequencies: They can approximate the correct solution with window functions or
continuation of the known part to both past and future, but they will get an imper-
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− +
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+

RII

33 nF

RI

RIII

RIV

U

−

+

−

+

(a) Gyrator: The gyrator cir-
cuit emulates an inductance L =
RIRIIRIV C/RIII . Compared to a
coil, the gyrator has greater thermal
stability and accuracy. Additionally,
the inductance can be changed by
varying a resistor. (See also [43], [37]
chapter 5.10.)

− +

−

+ −

+

Rneg = 6.19 kΩ

1kΩ

1kΩ

U

(b) Negative impedance con-
verter (NIC): Acts as a negat-
ive resistance by supplying neg-
ative current corresponding to
the supplied voltage U . The ab-
solute value of the negative res-
istance is equal to the value of
the resistor marked as Rneg.

Figure 2.5: Subcircuits of the Van der Pol oscillator

fect result. An electronic filter is similarly limited, but additionally it is supposed
to output the filtered signal at once. In practice, low-pass filters show non-ideal
characteristics and filter design is usually a trade-off for a specific use case:

• Real filters do not show a step-like frequency response at the cutoff-frequency
f3dB. Instead, they show a constant slope in a double-logarithmic plot of
amplification(“gain”) versus frequency (“Bode plot”) at high frequencies.

• At frequencies lower than f3dB (passband), the signal is approximately un-
damped.

• f3dB does not separate passband and the so-called stopband perfectly: There
is a transition region around f3dB, the “knee curve”.

• Ripples can exist in passband or stopband depending on low-pass type.
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− +

−

+
−

+

2.2 nF

17.4 kΩ17.4 kΩ

Uin

10.2 kΩ

17.4 kΩ

Uout

2.2 nF

Figure 2.6: Low pass: Removes higher frequency components from the input signal
with a cutoff frequency f3dB = 4,16 Hz. While many quantities like number of com-
ponents, steepness of frequency response, delay behavior etc. can be adjusted with
the filter design, this specific filter type is a solid compromise, a 2-pole Butterworth-
filter. This specific low pass circuit is called a voltage-controlled voltage-source
(VCVS) filter. The low-pass filter is optimized for the readout mechanism and the
frequency annealing implementation shown in Sec. 4.1.2 and 4.1.3.

• The filtered frequencies are delayed as well. The delay or the respective phase
shift depend on the frequency.

• Filters can be designed with a specific “response”, where trade-offs between
steepness of transition, ripples in pass- and/or stopband and delay behaviors
tailor a filter to fit a specific use case.

• Filter response in the time domain varies between filters as well.

• Additionally, there is the “order” of a filter: Filters of higher order need more
components, are more complex and have a larger signal delay, but they have
a steeper slope in the Bode plot.

The active low-pass used is the experiment is shown in Fig. 2.6. More details can
be found in [37] chapter 5, “active filters”, but are not essential for understanding
this thesis. Summing up, a low-pass cannot remove a high frequency perfectly.
Additionally, the signal will be slightly delayed, and response to fast changes in
time depends heavily on the filter. Finally, electric oscillator are required for any
network:
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2.2.3 Van der Pol oscillators

Electrical Van der Pol oscillators consist of an LC circuit and an active nonlinear
element.(Fig. 2.7a) The nonlinear element supplies energy at low voltages, which
sustains the oscillations. See [44] for an explanation of the oscillation mechanism
and Fig. 2.7b for a I-U curve of the nonlinear element used. Oscillations can be
both sinusoidal or relaxational depending on L,C, and Rneg. An extensive analysis of
parameter dependence is done in [45]. A circuit implementation with good frequency
stability, tunable frequencies and sinusoidal oscillations was published in [31, 45] and
is shown in Fig. 2.7c: The nonlinear element (red) is implemented with a negative
impedance converter (NIC; see Fig. 2.5b and [37], Chapter 5.03) and two diodes.
The NIC acts as a negative resistor, which means it supplies a current proportional
to the voltage, but with opposing sign. The diodes limit the negative resistance, so
the nonlinear element supplies power at low voltages, but damps at high voltages.
As coils are prone to temperature drifts and their inductance does not have high
precision, a gyrator circuit (blue) is used instead. Apart from a precisely defined
inductance, manual frequency tuning is enabled by placing a potentiometer inside
the gyrator circuit. The gyrator and its modifications will be discussed in more
detail in Sec. 4.1.3.
Now, with foundations in both nonlinear dynamics and analog circuitry, our novel

network architecture is presented and analyzed in the next chapter.
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U

N
L

(a) Idealized circuit:
A electrical Van der Pol
oscillator can be built by
adding a non-linear ele-
ment (NL) to a LC cir-
cuit. The non-linear ele-
ment ideally has a cubic
I-U-curve, thus showing
differential negative resist-
ance between the inflection
points [44].
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(b) I-U-curve of the nonlinear
element used (N-type). It con-
sists of a negative resistance
limited by two diodes. (Rneg =
−6,19 kΩ. Model and con-
stants for the diodes are from
[45])
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(c) Actual Van der Pol oscillator circuit used in [31, 45] and this thesis. The
coil in the idealized circuit 2.7a is replaced by a gyrator circuit, which offers
better precision and temperature stability and allows for frequency tuning. The
negative resistance consists of a negative impedance converter (NIC; See [37],
Chapter 5.03.) limited by two diodes. In [31, 45], RII = RIII = RIV = 1 kΩ,
RI consisted of a 1 kΩ potentiometer in series with a 100 Ω resistor. Necessary
modifications of the gyrator are described in Sec. 4.1.3. Note that the oscillators
lose energy to the coupling circuitry, so coupling resistors have to be comparable
to get similar oscillation shapes and phase response curves (Sec. 4.1.1).

Figure 2.7: Electrical Van der Pol oscillator 21





Chapter 3

Theoretical results

3.1 A new scalable architecture

The proposed architecture consists of two identical networks of N oscillators each
with equal frequency distribution. Oscillators within each of these “subnetworks” are
globally coupled and the coupling strength is additionally modulated in time. For
the first network, the coupling modulation1 is constructed from products of signals
of the second network’s oscillators and vice versa. Due to its symmetrical layout,
which is visualized in Fig. 3.1, we name the network the MONACO-Architecture:
Mirrored Oscillator Networks for Autoassociative COmputation.
Motivated by experiments with networks of electrical Van der Pol oscillators [30,

31], we assume that the oscillators are weakly coupled in one variable, have sinusoidal
signals and a phase response curve proportional to a cosine. Then, the recognition
dynamics can be reduced to a phase description [46]:

ϑ̇
[1]
i = Ω

[1]
i + cosϑ

[1]
i · a[2](t) · ε

N

N∑
j=1

sinϑ
[1]
j

ϑ̇
[2]
i = Ω

[2]
i + cosϑ

[2]
i · a[1](t) · ε

N

N∑
j=1

sinϑ
[2]
j

a[1](t) =
N∑

k,l=1

Skl sinϑ
[1]
k sinϑ

[1]
l

a[2](t) =
N∑

k,l=1

Skl sinϑ
[2]
k sinϑ

[2]
l

(3.1)

ϑ
[1]
i is the phase of the ith oscillator in the first network and Ω

[1]
i its natural frequency.

In the global signal a[2](t)·ε/N ·∑N
j=1 sinϑ

[1]
j , a[2](t) denotes the coupling modulation

1Note that coupling modulations were named “coupling functions” by Hölzel [30], but this term
is already used differently in the field.
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a[1](t) a[2](t)

MONACO

∆~ϑ0 ∆~ϑfinal

Figure 3.1: Schematics of our new MONACO-Architecture: Oscillators (depicted
as black circles surrounding a green sine-wave) are divided into two networks with
the same frequency distribution that are both globally coupled. Coupling strength
of both global couplings is modulated in time with functions a[1](t) / a[2](t) that
depend on physical signals of oscillators from the other network and patterns shown
in the middle.

generated from the second network’s signals and ε is a small parameter which will
be shown to be the effective coupling strength of the averaged dynamics. The
amplitude perturbation is converted into a change in phase by multiplying with the
phase response function cosϑ

[1]
i and the coupling matrix S controls attractors of the

system.
Note that the frequency distribution is ideally the same in both networks, so N

pairs of oscillators with approximately equal angular frequencies Ω
[1]
i ≈ Ω

[2]
i exist.

We will first assume Ω
[1]
i = Ω

[2]
i = Ωi for the main analysis. Afterwards, the influence

of frequency differences is outlined in Sec. 3.6.1. For sufficiently weak coupling
and specifically chosen frequencies, Sij only effectively connects oscillator pairs i
and j and the architecture can act as an autoassociative memory: Apart from
Ωi 6= Ωj ∀i 6= j, all frequencies Ωi must be larger than Ωmax/3 and all difference
frequencies ∆Ωij = Ωi −Ωj must be pairwise different as shown in Appendix A. As
we demonstrate below(Eq. (3.5)), these conditions allow for further simplification of
Eq. (3.1).
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As the oscillator pairs of equal frequency synchronize at phase differences ∆ϑi =
ϑ

[1]
i − ϑ[2]

i of either 0 or π (±2πn) in this setup, the ∆ϑi are easy to read out (e.g.
with one signal multiplication and a low-pass filter) and will be our “system state”
to be manipulated. The coupling matrix is chosen according to the Hebbian Rule
[34]:

Sij =
M∑
m=1

αmi α
m
j with αi ∈ {±1} (3.2)

Then attractors will exist for each memorized pattern αm and its inverse −αm
according to the following {∆ϑ 7→ α}-mapping(see also Sec. 3.2):

0 + 2πn 7→ +1
π + 2πn 7→ −1

(3.3)

When we talk about patterns “being attractive”, it is meant in the sense that at-
tractors in ∆ϑ exist according to this mapping.
Assume a defective pattern αd should be recognized as a pattern αm′ , which is

the most similar to αd out ofM correct pattern candidates αm. For the recognition,
αd is set as initial condition of the network according to Eq. (3.3) and the coupling
matrix Sij contains all correct pattern candidates as memorized patterns according
to Eq. (3.2). As the defective pattern is close to the correct pattern in phase space,
the system state will move to an attractor representing αm′ and can be read out.
Note that setting initial conditions is fast and easy in the MONACO-architecture:
As the system state is coded into phase differences, simply coupling oscillator pairs
with negative or positive sign according to ∆ϑi = −αdi · E sin ∆ϑi and E � ε for a
short time Tinit � 1/ε ensures a correct initialization.
If instead of an erroneous pattern only a small correct part of a pattern is known,

missing pixel in αd can be filled with +1 or −1 with equal probability. Afterwards,
recognition is performed as above.

Phase differences ∆ϑj from an exemplary simulation of the phase dynamics (Eq.
(3.1)) are shown in Fig. 3.3 for N = 49 oscillator pairs and 6 defective pixels. The
memorized patterns αm used are visualized in Fig. 3.2 and are not orthogonal in
the sense that 〈αm1 ,αm2〉 6= 0 ∀m1,m2 and m1 6= m2 (〈, 〉 denotes the standard
scalar product.). The erroneous phase differences change to represent the correct
♪-shaped output pattern.

However, the recognition process can fail if the number of erroneous pixels is too
large. A failed recognition is shown in Fig. 3.4: The system state moves to an
unknown attractor which corresponds to none of the αm. In order to predict recog-
nition success, a simple criterion is derived and tested in Sec. 3.3. Before analyzing
the dynamics, we want to point out that the coupling matrix S does not need to be
wired explicitly, which would require O(N2) connections. By rewriting both coup-
ling modulations as squares of scalar products instead, they can be generated with
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Figure 3.2: Non-orthogonal patterns with 49 pixels that were used as memorized
patterns αm in simulations for Fig. 3.3, Fig. 3.4 and the statistics in Sec. 3.3. αmi =
+1 is visualized as a black pixel and white pixels correspond to αmi = −1.

O(N ·M) connections only:

a[1/2](t) =
N∑

k,l=1

M∑
m=1

αmk α
m
l sinϑ

[1/2]
k sinϑ

[1/2]
l

=
M∑
m=1

( N∑
j=1

αmj sinϑ
[1/2]
j

)2

(3.4)

Whenever MONACO is used as an autoassociative memory as presented here, a[1](t)
and a[2](t) should therefore always be constructed according to Eq. (3.4) instead of
Eq. (3.1). Depending on usage, the αm can be hardwired or changed for each
recognition process.

3.2 Analysis of the dynamics

3.2.1 Simplification of the evolution equations

Prior to determining attractors, we simplify the phase equations (Eq. (3.1)) with
the technique of averaging [47]: The right hand sides of Eq. (3.1) consist of many
different frequency components. If the coupling strength ε is sufficiently small, larger
frequencies average out on times much smaller than the largest timescale and the
smallest frequencies dominate the dynamics:

ϑ̇
[1]
i ≈ Ωi +

εM

8N
sin
(
2∆ϑi

)
− ε

4N

N∑
j=1

Sij
[
sin
(
∆ϑi + ∆ϑj

)
+ sin

(
∆ϑi −∆ϑj

)]
ϑ̇

[2]
i ≈ Ωi −

εM

8N
sin
(
2∆ϑi

)
+

ε

4N

N∑
j=1

Sij
[
sin
(
∆ϑi + ∆ϑj

)
+ sin

(
∆ϑi −∆ϑj

)]
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t
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Figure 3.3: Successful Recognition: A binary pattern with 6 erroneous pixels
(framed) shown on the top left is correctly recognized as one of 3 memorized pat-
terns shown in Fig. 3.2. White pixels are mapped onto ∆ϑi = π and black pixels
correspond to ∆ϑi = 0 or 2π. Trajectories representing erroneous pixels (thick and
marked with stars) successfully change by π, which corresponds to an inversion of
the pixel. Trajectories corresponding to already correct pixels, however, do not
change. For simulation details, see Sec. 3.4.

The lengthy averaging calculation is shown in Appendix A and includes restric-
tions on the frequency distribution of the oscillators. Using the trigonometric the-
orem sinx cos y = 1/2(sin (x+ y) + sin (x− y)), we can express our equation system
with the phase differences ∆ϑi only:

∆ϑ̇i = ϑ̇
[1]
i − ϑ̇[2]

i ≈

− ε

2N

N∑
j=1

Sij
[
sin
(
∆ϑi + ∆ϑj

)
+ sin

(
∆ϑi −∆ϑj

)]
+
εM

4N
sin
(
2∆ϑi

)
∆ϑ̇i = − ε

N
sin ∆ϑi

( N∑
j=1

Sij cos ∆ϑj −
M

2
cos ∆ϑi

)
(3.5)

This is the main evolution equation that governs the dynamics of the architecture.
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t
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Figure 3.4: Recognition fails due to too many defects: A binary pattern with 11
erroneous pixels (framed) shown on the top left should be recognized as one of three
memorized patterns shown in Fig. 3.2. Trajectories representing erroneous pixels
(thick and marked with stars) are supposed to change. However, the recognition
fails: No trajectories corresponding to erroneous white pixels change from ∆ϑi = π
to ∆ϑi = 0 (or 2π). Likewise, only two trajectories representing erroneous black
pixels change by π, although seven should change to white. Additionally three
trajectories, corresponding to already correct pixels, change to wrong values (Both
pixels and trajectories are marked with arrows). The system settles at the pattern
shown on the top right, which is none of the memorized patterns. For simulation
details, see Sec. 3.4.

3.2.2 Fixed points and their stability

At fixed points ∆ϑ∗ of the dynamics, all velocity components ∆ϑ̇i must vanish.
Depending on which factor in Eq. (3.5) vanishes, pixel indices can be sorted into
two sets p and q:

• i ∈ p ⇔ sin ∆ϑ∗i = 0 ⇔ ∆ϑ∗i ∈ {0, π}+ 2πn

• i ∈ q ⇔
N∑
j=1

Sij cos ∆ϑ∗j −
M

2
cos ∆ϑ∗i = 0 (3.6)
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We show in Appendix B that all fixed points with indices in q are unstable. There-
fore, all attractors are well-separated fixed points with i ∈ p ∀i.

Only fixed points with sin ∆ϑ∗i = 0 ∀i and ∑N
j=1 Sij cos ∆ϑ∗j −M/2 cos ∆ϑ∗i 6= 0

remain as candidates for attractors.
The stability of fixed points can generally be examined by linearizing the dy-

namics around the fixed point by evaluating the eigenvalues of the Jacobian
Jik = ∂∆ϑ̇i/∂∆ϑk at the fixed point ∆ϑ∗:

Jik =− ε

N
cos ∆ϑiδik

(
N∑
j=1

Sij cos ∆ϑj −
M

2
cos ∆ϑi

)

− ε

N
sin ∆ϑi

(
− Sik sin ∆ϑk +

M

2
δik sin ∆ϑi

)

As i ∈ p ∀i implies sin ∆ϑ∗i = 0∀i, the second term vanishes:

Jik(∆ϑ
∗) = −δik

ε

N
cos ∆ϑ∗i

(
N∑
j=1

Sij cos ∆ϑ∗j −
M

2
cos ∆ϑ∗i

)

J is a diagonal matrix, therefore eigenvectors êi are the standard base with the
following eigenvalues:

λi = − ε

N
cos ∆ϑ∗i

(
N∑
j=1

Sij cos ∆ϑ∗j −
M

2
cos ∆ϑ∗i

)

We can simplify the analysis further by defining “pattern coordinates” α with
αi = cos ∆ϑi as generalization of Eq. (3.3) and inserting the definition of the coupling
matrix S:

λi = − ε

N

(
M∑
m=1

αmi α
∗
i

N∑
j=1

αmj α
∗
j −

M

2
α∗i

2

)

λi = − ε

N

(
M∑
m=1

αmi α
∗
i 〈αm,α∗〉 −

M

2

)
(3.7)

The signs of the eigenvalues determine the stability: Positive eigenvalues denote
growing perturbations along the corresponding eigendirection, while negative ei-
genvalues indicate decay. Therefore, all fixed points with λi < 0∀i are isolated
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attractors:

M∑
m=1

αmi α
∗
i 〈αm,α∗〉 >

M

2
∧ α∗i ∈ {±1} (3.8)

Memorized patterns map to isolated attractors, if inter-pattern scalar products
are sufficiently small. If patterns αm are orthogonal, inter-pattern scalar products
vanish completely:

λi(α
m′) = − ε

N

(
M∑
m=1

αmi α
m′

i

〈
αm,αm

′
〉
− M

2

)

= − ε

N

(
M∑
m=1

αmi α
m′

i δmm′N −
M

2

)

= −ε
(

1− M

2N

)
< 0 ∀i

⇔ M < 2N (3.9)

Not more than N orthogonal patterns can exist (span(αm) ≤ N , but span(αm) = M
for linear independent patterns.), so M < 2N is always fulfilled and orthogonal
patterns are guaranteed to be stable.
For general αm, we get

λi(α
m′)

!
< 0

−ε− ε

N

(
M∑

m 6=m′
αmi α

m′

i

〈
αm,αm

′
〉
− M

2

)
< 0

−
M∑

m 6=m′
αmi α

m′

i

〈
αm,αm

′
〉
< N − M

2
.

As we want a criterion to ensure that all memorized patterns are attractors, we must
exclude that any eigendirection of any pattern becomes unstable:

max
i,m′

(
−

M∑
m 6=m′

αmi α
m′

i

〈
αm,αm

′
〉)

< N − M

2

Σmax
!

= max
m′

(
M∑

m6=m′

∣∣∣〈αm,αm′〉∣∣∣) < N − M

2
(3.10)

Additionally, if the αm are attractors, their inverses will be attractors as well
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because their eigenvalues are identical:

λi(−αm
′
) = − ε

N

[
M∑
m=1

αmi (−αm′i )
〈
αm, (−αm′)

〉
− M

2

]

= − ε

N

(
M∑
m=1

αmi α
m′

i

〈
αm,αm

′
〉
− M

2

)
= λi(α

m′)

Moreover, there are further spurious attractors that do not represent one of the
αm, but they are difficult to describe. If the initial pattern does not start in the
basin of attraction of an αm, the output of the system will be one of these attractors.
Therefore, stability is not sufficient for recognition success and we have to derive
a criterion from the basins of attraction. However, first we derive a more com-
mon criterion for the network capacity that can be compared in different network
architectures.

3.2.3 Error-free capacity

The error-free capacity Mmax(N)/N is a measure for the amount of memorized
patterns αm that can be stored in a given network while any pattern can still be re-
trieved without errors. Specifically, we determine the maximum number of patterns
Mmax(N) so P (αm

′ is stable)→ 1 for M < Mmax(N) and P (αm
′ is stable)→ 0 for

M > Mmax(N). Similar to approaches for other architectures, we derive Mmax(N)
in a probabilistic manner for random memorized patterns with P (αmi = +1) =
P (αmi = −1) = 0.5 ∀m, i in the limes N →∞.
First, we simplify the rescaled Jacobian J̃ = J/ε at a memorized pattern αm′ :

J̃ik(α
m′) = −δik

1

N

(
M∑
m=1

αmi α
m′

i

N∑
j=1

αmj α
m′

j −
M

2
αm

′

i

2

)

= −δik
1

N

(
M∑

m=1
m6=m′

αmi α
m′

i

N∑
j=1

αmj α
m′

j +N − M

2

)

= −δik
1

N

(
M∑

m=1
m6=m′

N∑
j=1
j 6=i

αmi α
m′

i α
m
j α

m′

j

+(M − 1) +N − M

2

)
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J̃(αm
′
) = −

(
1 +

M − 2

2N

)
I + D

Here, I is the identity matrix and

Dik = −δik
1

N

M∑
m=1
m6=m′

N∑
j=1
j 6=i

αmi α
m′

i α
m
j α

m′

j .

As J̃, I and D are diagonal,

λmax(J̃) = −
(

1 +
M − 2

2N

)
+ λmax(D)

= −
(

1 +
M − 2

2N

)
+ max

i
Dii.

Then, the stability condition can be expressed as function of maxiDii alone:

λmax(J) < 0

⇔ λmax(J̃) < 0

⇔ max
i
Dii < 1 +

M − 2

2N
(3.11)

The following lemma concerning this largest eigenvalue λmax(D) = maxiDii has
been proven in [32] as Lemma 6 under the assumption that all pixels of all mem-
orized patterns αm are randomly chosen with probability P (+1) = P (−1) = 0.5:
(All occurring logarithms are natural.)

Lemma 1.
Let x > 0, and

β̄ = lim sup
N→∞

M(N) log (N)

N
, β

¯
= lim inf

N→∞

M(N) log (N)

N
.

If β̄ < x2/2, then P (maxiDii ≥ x)→ 0 as N →∞.
If β
¯
> x2/2, then P (maxiDii ≥ x)→ 1 as N →∞.

According to Eq. (3.11), αm′ is stable for N → ∞ and M > 1 if maxiDii < 1 is
fulfilled. Therefore, we are interested in the probability P (maxiDii ≥ 1) and choose
x = 1.
P (αm

′ stable) = 1 − P (maxiDii ≥ 1) → 1 if β̄ < 1/2 and P (αm
′ unstable) =
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Figure 3.5: The analytic criterion for the error-free capacity Eq. (3.12) is compared
to explicit evaluation of the patterns’ eigenvalues. For each data point, 1000 sets
of pattern were created randomly with P (αmi = +1) = P (αmi = −1) = 0.5 and the
stability of each pattern was determined with Eq. (3.8).

P (maxiDii ≥ 1)→ 1 if β
¯
> 1/2, which implies

Mmax(N) =
N

2 log (N)

⇔ Mmax(N)

N
=

1

2 log (N)
(3.12)

Note that other capacity measures exist, such as the loading rate, which describes
the fraction Mmax/N under the assumption that attractors for each pattern do ex-
ist, but might be shifted, so retrieved patterns might have some errors. Therefore,
the error-free capacity always is a lower bound on the loading rate. While these
probabilistic measures are useful for comparing architectures, their validity is con-
strained in reality: Real networks are of finite size and memorized patterns need not
be chosen randomly. Bounds on guaranteed stability were derived in Eq. (3.10) and
a criterion for guaranteed recognition is derived in Sec. 3.3.
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3.2.4 Intuitive explanation of the recognition mechanism

The results of the fixed point analysis allow a more intuitive view of Eq. (3.5) by
partially expressing the system state in pattern coordinates α with αi = cos ∆ϑi:

∆ϑ̇i = − ε

N
sin ∆ϑi

(
N∑
j=1

Sij cos ∆ϑj −
M

2
cos ∆ϑi

)

= − ε

N
sin ∆ϑi

(
N∑
j=1

M∑
m=1

αmi α
m
j αj −

M

2
αi

)

= − sin ∆ϑi ·
ε

N

(
M∑
m=1

αmi 〈αm,α〉 −
M

2
αi

)

Let αm′ be the memorized pattern the system state α is closest to:

∆ϑ̇i = − sin ∆ϑi · αm
′

i ·
ε

N
·

·
(〈

αm
′
,α
〉

+
M∑

m=1
m 6=m′

αm
′

i α
m
i 〈αm,α〉 −

M

2
αm

′

i αi

)

Now assume the system state α is sufficiently close to αm′ : Then 〈αm′ ,α〉 is larger
than the sum of all other terms in parentheses. Hence, the fixed points and their
stability are the same as in d/dt∆ϑi = −αm′i sin ∆ϑi. If αm

′
i = +1, ∆ϑ∗i = 0 is stable

and ∆ϑ∗i = π is unstable and vice-versa for αm′i = −1, so limt→∞ αi = cos ∆ϑ∗i = αm
′

i .
From another point of view, the system “defines” “relative closeness” to memorized

patterns by comparing their projections onto the system state α. This fails, however,
if the scalar products are of comparable size: Then the distribution of the αmi
matters for each pixel, which leads to spurious attractors unequal to all αm. Note
that the −Mαi/2-term does not really contribute to the recognition mechanism.
While it increases eigenvalues of all stable fixed points slightly, therefore reducing
stability (see Eq. (3.7)), it does not influence the basins of attraction much, as we
will illustrate in the next section.

3.3 Basins of attraction and guaranteed
recognition

We have a firm understanding of the system now and can guarantee that the chosen
patterns αm are attractive. However, we cannot guarantee recognition success yet:
The system state might relax to the additional unwanted attractors described by
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Eq. (3.8) or even worse, the basins of attraction of the αm might be malformed,
leading to a αm whose projection on the defective pattern is not the largest.

3.3.1 Lower bound on the basins of attraction

Matching success is guaranteed if the defective starting pattern is in the basin of
attraction of the correct memorized pattern αm′ . A lower bound on the basin of
attraction can be derived by proofing the following lemmata:

1. Surfaces of constant projection on the correct memorized pattern αm′ confine
the system state to larger projections if the initial projection is sufficiently
large.

2. αm′ is the only attractor inside this confined space.

As the system state cannot leave the confined space, it has to settle on αm′ as the
only attractor. Therefore, the confined space is part of αm′s basin of attraction.

Transformation to α-space

For our following discussion, we will transfer the ∆ϑi-dynamics (Eq. (3.5)) com-
pletely into the “ pattern coordinates ” α with αi = cos ∆ϑi, which are a generaliz-
ation of the mapping of the memorized patterns αm.

α̇i = ˙(cos ∆ϑi)

=
∂ cos ∆ϑi
∂∆ϑi

∂∆ϑi
∂t

= − sin ∆ϑi

[
− ε

N
sin ∆ϑi

(
N∑
j=1

Sij cos ∆ϑj −
M

2
cos ∆ϑi

)]

=
ε

N
sin2 ∆ϑi

(
N∑
j=1

M∑
m=1

αmi α
m
j cos ∆ϑj −

M

2
cos ∆ϑi

)

=
ε

N
(1− cos2 ∆ϑi)

(
N∑
j=1

M∑
m=1

αmi α
m
j cos ∆ϑj −

M

2
cos ∆ϑi

)

=
ε

N
(1− α2

i )

(
M∑
m=1

αmi

N∑
j=1

αmj αj −
M

2
αi

)

α̇i =
ε

N
(1− α2

i )

(
M∑
m=1

αmi 〈αm,α〉 −
M

2
αi

)
(3.13)
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Note that although the mapping between ∆ϑi and αi is not injective, the transform-
ation is still valid: Eq. (3.5) is mirror-symmetric to 0 + πn with n ∈ N, so space
can be divided into regions separated by ∆ϑi = [0, π] + 2πn or ∆ϑi = [π, 2π] + 2πn
in every i and flow lines in each region are mapped onto the same α-coordinates.
As the flow across the boundaries of these hypercubes is zero, it is not necessary
to consider the periodicity of the flow. From another point of view, the ambiguity
of attractors in ∆ϑ is removed in the α-coordinates. As the dynamics of α do not
depend on the sign or periodicity of ∆ϑ, it is a more natural coordinate for the
autoassociative memory.

Confinement by hypersurfaces of constant projection

Let’s consider a hypersurface of constant projection on the correct output pattern
αm

′ : In the pattern coordinates the equation 〈α,αm′〉 = C describes a hyperplane
that divides the N-dimensional hypercube of all possible patterns into patterns with
a projection larger or smaller than C. If projections on αm′ do not decrease for all
points on the surface, the system state can only move tangential to the hyperplane
or towards larger projections. (Movement tangential to the hyperplane is in fact
impossible with a slightly stricter condition, as shown further below.)

d
dt

1

|αm′ |
〈
α,αm

′〉 ≥ 0

d
dt
〈
α,αm

′〉
=
〈
α̇,αm

′〉 ≥ 0

N∑
i=1

(1− α2
i )α

m′

i

(
M∑
m=1

αmi 〈αm,α〉 −
M

2
αi

)
≥ 0 (3.14)

If Eq. (3.14) is fulfilled for all α on a hypersurface 〈α,αm′〉 = C, it confines the
system state. However, to exclude additional attractors besides αm′ in the confined
space is difficult with Eq. (3.14) and a good criterion for guaranteed recognition
should neither depend on the hyperplanes nor on the specific pixels of α or the
memorized patterns αm. Therefore, we employ a series of worst-case approximations
and upper bounds :
Eq. (3.14) is fulfilled if all single summands are greater than zero. Note that this

approximation also excludes movement tangential to the hypersurfaces: Without the
possibility for summands to cancel each other, d/dt

〈
α,αm

′〉
= 0 is only fulfilled if

α̇ = 0, so all remaining solutions are fixed points. Then the following inequalities
must hold ∀i and ∀α on the surface:

(1− α2
i )︸ ︷︷ ︸

≥0

αm
′

i

(
M∑
m=1

αmi 〈αm,α〉 −
M

2
αi

)
≥ 0
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αm
′

i

M∑
m=1

αmi 〈α,αm〉 −
M

2
αm

′

i αi ≥ 0

〈
α,αm

′〉 ≥ − M∑
m=1
m6=m′

αmi α
m′

i 〈α,αm〉+
M

2
αm

′

i αi

As the left hand side is constant on a hypersurface, the criterion needs to be
evaluated for a maximized right hand side only and the criterion for the surface can
be reduced to one single inequality:

〈
α,αm

′〉 ≥ max
i,α

(
−

M∑
m=1
m6=m′

αmi α
m′

i 〈α,αm〉+
M

2
αm

′

i αi

)

The sum is maximal in i for αmi = −αm′i sgn(〈α,αm〉) ∀m 6= m′, as all scalar
products add up. (If such an i always exists is not relevant here, as we look for a
worst case approximation independent of the αm.) The second term is generally
much smaller, but M/2 at most:

max
i,α

(
−

M∑
m=1
m6=m′

αmi α
m′

i 〈α,αm〉+
M

2
αm

′

i αi

)
≤ max

α

(
M∑

m=1
m6=m′

|〈α,αm〉|+ M

2

)

As the maximum of one single |〈α,αm〉| is much easier to calculate, we approximate
an upper bound:

max
α

(
M∑

m=1
m 6=m′

|〈α,αm〉|+ M

2

)
≤

M∑
m=1
m6=m′

max
α

(|〈α,αm〉|) +
M

2

In total, our criterion on the hypersurface has reduced to

C =
〈
α,αm

′〉≥ M∑
m=1
m 6=m′

max
α

(|〈α,αm〉|) +
M

2
. (3.15)

While any hyperplane that fulfills Eq. (3.15) confines the system state to larger
projections, it is still not trivial to evaluate due to the direct dependence on α.
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Removing direct dependence on α

maxα (|〈α,αm〉|) can be approximated as a function of 〈α,αm′〉 = C and inter-
pattern scalar products.
First, 〈α,αm′〉 is expressed with the difference vector ∆α = α−αm′ between α

and the closest memorized pattern αm′ :〈
α,αm

′〉
=
〈
α−αm′ ,αm′

〉
+
〈
αm

′
,αm

′〉
=
〈
∆α,αm

′〉
+N

=
N∑
i=1

∆αiα
m′

i +N

With sgn(∆αi) = sgn(αm′i (αiα
m′

i︸ ︷︷ ︸
≤1

−1)) = −αm′i we get:

〈
α,αm

′〉
= N −

N∑
i=1

|∆αi| (3.16)

⇒ max
α

(∣∣ 〈α,αm〉 ∣∣) = max
∆α

(∣∣〈∆α,αm〉+
〈
αm

′
,αm

〉∣∣)
< max

∆α

(∑
i

∆αiα
m
i

)
+
∣∣〈αm′ ,αm〉∣∣

=
∑
i

∣∣∆αi∣∣+
∣∣〈αm′ ,αm〉∣∣

= N −
〈
α,αm

′〉
+
∣∣〈αm′ ,αm〉∣∣

Volumes of growing projection

Finally, we can remove all direct dependence on α from Eq. (3.15):

〈
α,αm

′〉 ≥ M∑
m=1
m6=m′

max
α

(∣∣〈α,αm〉∣∣)+
M

2

〈
α,αm

′〉 ≥ M∑
m=1
m6=m′

(
N −

〈
α,αm

′〉
+
∣∣〈αm′ ,αm〉∣∣)+

M

2

M ·
〈
α,αm

′〉 ≥ (M − 1) ·N +
M∑

m=1
m6=m′

∣∣〈αm′ ,αm〉∣∣+
M

2
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〈
α,αm

′〉 ≥ M − 1

M
·N +

1

M

M∑
m=1
m 6=m′

∣∣〈αm′ ,αm〉∣∣+
1

2
(3.17)

This final criterion for a confining hyperplane does not depend on a point on the
surface.
Additionally, every surface

〈
α,αm

′〉
= Cmin that fulfills Eq. (3.17) defines a

volume of growing projection for larger C: As the right hand side of Eq. (3.17) is
constant, all hyperplanes with C > Cmin fulfill the criterion as well.
If several attractors existed in the confined space, however, no conclusion could

be made on the basins of attraction, as a confined system state could move to any
of them. Therefore, we exclude that any attractor besides αm′ exists in a volume of
growing projection:

αm
′ being the only attractor enclosed

Assume an attractor αa exists inside the region defined by Eq. (3.17). Now consider
a small perturbation around αa that increases 〈α,αm′〉, for example εαm′i · êi if
αai 6= αm

′
i . As d/dt〈α,αm′〉 ≥ 0 in the confined space, the system cannot relax back

to αa. No non-isolated attractor exists (see Sec. 3.2), so αa has at least one unstable
eigendirection which contradicts the assumption that αa is an attractor.

The only exception is the attractor αm′ itself: As it has the largest projection on
itself, all perturbations must lower 〈α,αm′〉.

Summing up: Every system state α that obeys Eq. (3.17) must be in the basin of
attraction of αm′ , as projection on αm′ increases monotonically along the trajectory
and αm′ is the only attractor for larger projections.

3.3.2 Guaranteed recognition

Recognition criteria

As any defective initialized pattern is binary, it can be characterized by the number
of defective pixels nf in which defective input pattern and correct memorized pattern
are different. Eq. (3.17) can be solved for nf with Eq. (3.16), as nf is a special case
of
∑

i |∆αi| /2:

N − 2nf >
M − 1

M
·N +

1

M

M∑
m=1
m 6=m′

∣∣〈αm′ ,αm〉∣∣+
1

2
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nf <
1

2M

(
N −

M∑
m=1
m 6=m′

∣∣〈αm′ ,αm〉∣∣)− 1

4
(3.18)

(The equality in Eq. (3.17) must be dropped here, as perturbations and higher
order terms neglected in Eq. (3.5) might push a defective pattern on the outermost
hyperplane out of the confined space.)
For pairwise orthogonal patterns, 〈αm′ ,αm〉 = 0 ∀m 6= m′ and Eq. (3.18) becomes:

nf <
N

2M
− 1

4
(3.19)

We now treat general patterns with 〈αm′ ,αm〉 6= 0. A criterion that does not
depend on the correct memorized pattern αm′ is obtained with the definition Σmax =
maxαm̃(

∑M
m=1,m 6=m̃ |〈αm̃,αm〉|) >

∑M
m=1,m 6=m′ |〈αm

′
,αm〉| from Sec. 3.2. Then the

worst case of Eq. (3.18) is

nf <
N − Σmax

2M
− 1

4
. (3.20)

Eq. (3.20) guarantees successful recognition for arbitrary patterns.

Consistency check

The basin of attraction has to vanish when the fixed point looses stability. Therefore,
we can regain stability criteria for the αm by minimizing the necessary extension of
the basin of attraction in Eq. (3.19) and Eq. (3.20), which corresponds to lim

nf→0
:

lim
nf→0

Eq. (3.19) : 0 <
N

2M
− 1

4

M < 2N

This coincides with our calculation that pairwise orthogonal patterns are always
stable: At most, N orthogonal patterns can exist, as they are linear independent
and dim(span({αm})) ≤ N , so M < 2N is always fulfilled.

lim
nf→0

Eq. (3.20) : 0 <
N − Σmax

2M
− 1

4

Σmax < N − M

2

This again reproduces our result for the stability of non-orthogonal patterns.
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3.4 Numerical simulations

3.4 Numerical simulations

In this section we validate our criterion for successful pattern recognition with sim-
ulations of the full phase dynamics Eq. (3.1).

3.4.1 Numerical methods and parameters

The equations have been implemented in C and integration was performed with the
classical Runge-Kutta method. A timestep dt = 1 · 10−4 and a coupling strength
ε = 0.1 were used. The angular frequencies were distributed according to Ωi =
1200 + 1800 ·Gi/GN , where Gi is the ith element of a Golomb ruler [48]. (See also
Appendix A.) The near optimal Golomb rulers used were both taken from [49]: {0,
17, 20, 86, 119, 140, 166, 227, 240, 255, 353, 430, 520, 559, 564, 565, 602, 675, 724,
781, 817, 833, 905, 929, 961, 970, 980, 1131, 1162, 1189, 1212, 1319, 1403, 1433,
1437, 1451, 1462, 1497, 1504, 1589, 1601, 1680, 1763, 1785, 1825, 1880, 1888, 1956,
1958} for N = 49 and {0, 34, 44, 91, 95, 147, 207, 278, 332, 364, 375, 405, 458, 520,
682, 698, 701, 710, 853, 868, 901, 946, 973, 1022, 1080, 1150, 1155, 1172, 1240, 1254,
1290, 1429, 1540, 1546, 1605, 1642, 1682, 1684, 1705, 1751, 1771, 1806, 1835, 1943,
1967, 2041, 2151, 2164, 2182, 2189, 2190, 2270} for N = 52.
For simulations in Fig. 3.3 and Fig. 3.4, defective patterns were chosen manu-

ally and memorized patterns are taken from Fig. 3.2. All pseudorandom numbers
(necessary for random distribution of erroneous pixels and construction of random
orthogonal patterns) were created using C’s standard random number generator
rand() from stdlib, which was seeded with the time in microseconds times the pro-
cess ID.

3.4.2 Testing criteria for guaranteed recognition

In order to test criteria Eq. (3.19) and (3.20), simulations were performed for both
the non-orthogonal patterns shown in Fig. 3.2 with N=49 pixels as well as for 3
random orthogonal patterns with N=52 pixels. Simulations started after setting the
initial conditions to a defective pattern similar to one of the memorized patterns
but different in exactly nf randomly distributed erroneous pixels. In order to save
simulation time, simulations were aborted if the system state reached one of the
memorized patterns, as they are proven to be attractors. In all other cases, sim-
ulations were continued until |αi| ≥ 0.9∀i for a period twait = 500. Recognition
success was tested by projecting the α-coordinates of the final system state on the
memorized patterns: If 〈α,αm′〉/N > 0.99, recognitions were counted as successful.
For the non-orthogonal patterns with M = 3, N = 49 and Σmax = 10, the recog-

nition criterion Eq. (3.20) predicts recognition success for nf < (N −Σmax)/(2M)−
0.25 = 6.25. 300 simulations were performed for nf ∈ {6..16} for each pattern and
results are summed up in Table 3.1. All recognitions were successful for nf ≤ 11 and
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nf 6-11 12 13 14 15 16
failed recognitions ♥ 0 0 0 1 5 13
failed recognitions ♪ 0 2 2 3 3 15
failed recognitions π 0 1 2 6 6 22

failure rate (%) 0 0.3 0.4 1.1 1.6 5.6

Table 3.1: Failed Recognitions with non-orthogonal patterns as shown in Fig. 3.2.
300 recognitions were performed for each pattern and each number of erroneous
pixels nf . Erroneous pixels were distributed randomly for each simulation.

nf 8-12 13 14 15 16 17
failed recognitions 0 1 1 4 13 29

failure rate (%) 0 0.1 0.1 0.4 1.3 2.9

Table 3.2: Failed Recognitions with random orthogonal patterns with N = 52 pixels.
1000 recognitions were performed for each number of erroneous pixels nf . Random
distribution of erroneous pixels and the construction of random orthogonal patterns
was repeated for each simulation.

the rate of failed recognitions grows slowly for larger nf . Obviously, our criterion
seems to be too strict.
Similarly, 1000 simulations were performed with orthogonal random patterns with

N = 52 and M = 3 for each nf ∈ {8..17}. Here, nf < N/(2M) − 0.25 = 8.42 is
predicted by Eq. (3.19). Random orthogonal patterns were constructed by using the
elementwise product ◦: As orthogonal patterns with αi ∈ ±1 differ in exactly N/2
pixels, a pattern α2 orthogonal to any pattern α1 can be easily found by creating
a “difference vector” d1,2, where N/2 +1- and −1-entries are randomly distributed.
Then α2 = α1 ◦ d1,2.
For 3 orthogonal patterns, α1, d1,2 and d1,3 were first chosen randomly. Then
|〈α2,α3〉| = |〈d1,2,d1,3〉| was minimized by switching 2 randomly selected pixels in
a randomly selected difference vector, if the absolute value of the scalar product
diminished.
Results are summed up in Table 3.2. Similar to the simulations with non-

orthogonal patterns, recognitions are always successful for nf ≤ 12, which is sig-
nificantly larger than predicted by the criterion for guaranteed recognition. For
even larger nf , the rate of failed recognitions stays small.

3.4.3 Failed recognitions are rare events

One might expect that the criterion for guaranteed recognition is not optimal for
both the orthogonal random patterns and our choice of non-orthogonal patterns, so
that 7 respectively 9 erroneous pixels or even more can always be correctly recognized
as well. However, failed recognitions are just rare for nf = 7 / nf = 9 instead. We
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3.5 Architecture discussion and comparison

now construct problematic starting patterns with nf = 7 for the non-orthogonal
memorized patterns that fail in the recognition process:
According to Eq. (3.15), recognition will fail if the scalar products between the

defective starting pattern and non-similar memorized patterns are extremized. Con-
sidering the scalar products

〈
α♥,απ

〉
= +5,

〈
α♥,α♪

〉
= −5, and

〈
απ,α♪

〉
= −1,

an erroneous heart-pattern is most likely to fail. Assume furthermore that the num-
ber of erroneous pixels nf is fixed. Then the right hand side of Eq. (3.15) can be
maximized by distributing the errors on positions where they increase the projec-
tion on the π- and decrease the projection on the ♪-pattern. 10 such “worst-case”
positions can be found for the ♥-pattern and ( 10

7 ) = 120 possible combinations exist
to distribute nf = 7 erroneous pixels on the “worst-case” positions.
Simulations were performed for all of these ”worst case patterns”. Recognition

failed for all simulations and the system state relaxed to an attractor with pro-
jections of 0.59, -0.51 and 0.51 on the ♥-, ♪- and π-pattern. Possible worst-case
positions for erroneous pixels and the irregular output pattern are shown in Fig.
3.6. Indeed, simulations with randomly distributed errors could not recognize this:

Figure 3.6: On the left side, an unperturbed ♥-pattern is shown. Erroneous pixels
on red-circled positions extremize the sum of inter-pattern scalar products. All
erroneous♥-patterns with 7 erroneous pixels on marked locations fail the recognition
process. Simulations of all such patterns resulted in the spurious attractor shown
on the right.

As there are ( 49
7 ) ≈ 8, 6 · 107 possibilities to distribute the erroneous pixel on the

pattern and only ( 10
7 ) = 120 worst case distributions can be found, the chance to

encounter a failing random starting pattern is almost negligible. Furthermore, all
( 10

6 ) = 210 worst-case-patterns for nf = 6 were successfully recognized as the ♥-
pattern in simulations, which again validates Eq. (3.20) as criterion for guaranteed
recognition. Similar calculations can be performed for the orthogonal case. This is a
good example that extracting basins of attractions in high-dimensional systems with
simulations can only give an approximation on the success rate but no guaranteed
criterion. From another point of view, failed recognitions are rare, so a higher nf is
acceptable if a non-perfect recognition rate is sufficient.

3.5 Architecture discussion and comparison

MONACO gains its distinctive properties from two design features:
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1. Two mirrored globally coupled subnetworks are used.
First of all, the use of two groups enables the internal generation of the coup-
ling modulations. Second, the effective coordinates of the network are phase
differences ∆ϑi of oscillators of equal frequency. Values of phase differences
can easily be read out by multiplying signals of an oscillator pair and using
a low-pass filter, gaining cos ∆ϑi. Similarly, setting the initial conditions re-
quires only positive or negative coupling between two oscillators forming a
pair. Third, the effective average coupling strength ε is doubled with two
subnetworks, enabling faster recognition (compare with Appendix A). The
fourth advantage is much subtle: In all architectures with externally gener-
ated coupling modulations, frequencies in the coupling modulation are fixed
to the natural frequencies of the uncoupled oscillators. However, the so-called
”acceleration effect” [50] changes the frequencies of even weakly coupled oscil-
lators. Any mismatches between oscillator frequency and coupling modulation
frequency components would further limit the coupling strength ε. As a higher
coupling strength reduces recognition time, we decided to avoid the problem
altogether: Since oscillators in both networks are affected symmetrically by the
coupling, the acceleration effect will be equal and frequencies in the coupling
modulations are adjusted automatically. It is noteworthy, that the coupling
between single oscillator pairs is above the Kuramoto threshold and thus fre-
quencies of the two oscillators adapt. Hence, the architecture allows for some
tolerance in the frequency mismatch of an oscillator pair.

2. Novel coupling modulations are used.
As shown in Eq. (3.4), the used coupling modulations can be constructed with
O(N · M) connections only. Note that there cannot be any better scaling,
as patterns consist of N ·M independent pixels. Additionally, this coupling
modulations introduce novel effective dynamics Eq. (3.5), where the only ex-
isting attractors are isolated fixed points with cos ∆ϑi ∈ {±1} (Section 3.2).
As every pixel settles at these binary values, the output is inherently digital,
which further simplifies readout and subsequent processing. All memorized
patterns are attractive if inter-pattern scalar products are not too large (see
Eq. (3.10) for guaranteed stability). As memorized patterns are no transient
phenomenon, but long-term stable, readout does not need to be exactly timed
and the output can be retrieved at a later time. Furthermore, the dynamics al-
low us to calculate a lower bound on the basins of attraction analytically (Sec.
3.3). This leads to a non-probabilistic criterion for guaranteed recognition that
includes finite-size effects, Eq. (3.20).

Note that the mirrored subnetwork structure should not be confused with ”layers”
from ”traditional” layered neural networks. MONACO is very similar to a continuous
version of the Hopfield model [24] (compare with Eq. (3.13) ): Each oscillator pair
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3.5 Architecture discussion and comparison

corresponds to an artificial neuron that ”stores” its phase difference ∆ϑi. The syn-
chronization process can be seen as continuous updating of the ∆ϑi. MONACO’s
subnetworks, however, change the properties of the ”neurons”, while the ideal ef-
fective dynamics Eq. (3.5) remain unchanged except for the coordinates they are
represented in. This is distinct from more ”traditional” layered neural networks,
where the layer structure is essential to the dynamics.
On the contrary, a design with two subnetworks is not necessary in order to ob-

tain the described dynamics including isolated attractors: A multiplicative coupling
modulation suffices; consider e.g. the following single-network-system:

ϑ̇i = Ωi + cosϑi · aext(t) ·
ε

N

N∑
j=1

sinϑj

aext(t) =
N∑

k,l=1

Skl sin Ωkt sin Ωlt

Here, the averaged dynamics would be the same as for MONACO, but in coordinates
ϕi(t) = ϑi(t)− Ωit (compare with Appendix A):

ϕ̇i = − ε

2N

(
N∑
j=1

Sij sinϕi cosϕj −
M

2
sinϕi cosϕi

)

Phase shifts ϕi must be used, as no oscillators with equal frequencies exist in this
setup and therefore, phase differences ∆ϑi are no useful coordinate. As discussed
below, tracking changes of the ϕi requires very precise frequency and time measure-
ments, which renders readout difficult and error-prone. Therefore, this exemplary
network is inferior to MONACO.
The MONACO-architecture will now be compared to other associative memories

consisting of phase oscillators. Distinctive features are compared in Table 3.3, while
schematics of are shown in Fig. 3.7. We discriminate between two types of networks:
In physically all-to-all connected networks (architectures (I) [26–28] and (III) [32]),
oscillators have the same frequencies and every oscillator is connected with every
other(see Fig. 3.7 a). Therefore, the number of connections scales with O(N2) in
these networks, which limits the networks’ size. As proposed in [29], oscillators of
different frequency can be all-to-all connected dynamically with only one physical
connection per oscillator if the oscillators’ coupling is modulated in time. In archi-
tecture (IIA) [29, 30], the oscillators are globally coupled to a sum of the oscillators’
signals with a single temporal modulation of the coupling (see Fig. 3.7 b). Due to
the global coupling, the number of connections scales with O(N) connections only.
Architecture (IIB) [29, 31] follows a slightly more complicated scheme, where

every oscillator receives the signals of all other oscillators, but each oscillator has its
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(a) all-to-all connected
networks (I) and (III)

aext(t)

(b) dynamically all-to-all
connected (IIA)

aext1 (t)

aext2 (t)aext3 (t)

aext4 (t)

aext5 (t)

aext6 (t) aext7 (t)

aext8 (t)

(c) dynamically all-to-all
connected (IIB)

Figure 3.7: Schematics of previous oscillatory neural network architectures that act
as autoassociative memories

own coupling modulation (see Fig. 3.7 c). Nevertheless, the scaling of the number
of connections is still O(N).
MONACO is a dynamically all-to-all connected network as well. Each subnetwork

is globally coupled similar to (IIA), albeit with a different coupling modulation (see
Fig. 3.1). The use of two mirrored subnetworks allows for the internal generation
of the global coupling modulations. In contrast, the hardware implementation for
architectures (IIA) and (IIB) introduced in [30, 31] was fed by computer-generated
coupling modulations. In MONACO, the scaling of the number of connections is
O(N · M) (see Eq. (3.4) for the coupling modulations and consider that global
coupling scales with O(N)). This scaling is optimal if the generation of the coupling
modulations is considered, as N ·M pixels have to be incorporated.
However, the reduction in the number of spatial connections is not for free: The

original complexity in space is transferred to a complexity in time with the number
of frequencies contained in the coupling modulation growing like O(N2) for archi-
tecture (IIA) and MONACO [29]. Frequency conditions for architecture (IIB) are
less restrictive and the number of frequencies scales with O(N ln 3/ ln 2) [31].
Now, coordinates of the network dynamics will be discussed, as they determine

how initial conditions can be enforced as well as how the system state can be read
out. In (I) and (III), the desired dynamics occur in oscillators’ phases ϑi = Ωt+ϕi,
so pixels of the same value have the same phase. An encoded pattern is then
represented by two groups of oscillators whose phases differ by π. Note that this
representation itself is ambiguous, as it is physically impossible to decide if a group
follows or precedes the other one. In other words, the physical state represents a
pattern as well as its inverse. In (IIA) and (IIB), equal pixels are represented by
equal phase shifts ϕi and different pixels differ by a phase shift difference of π. Note
that phase shifts are only unique up to a constant ϕ0

i = ϕi(t = 0). As a consequence,
only differences ϕi(t)− ϕi(t′) can be determined. In MONACO patterns are coded
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into phase differences ∆ϑi = ϑ
[1]
i −ϑ[2]

i of oscillators of equal frequencies. Each pixel
is mapped onto a phase difference with αi = cos ∆ϑi, so αi = +1 corresponds to
a synchronized oscillator pair and αi = −1 to a antisynchronized one. Therefore,
MONACO’s system state represents a pattern without ambiguity.
The different nature of the variables entail that also the setting of initial conditions

differs radically between architectures: Phase differences in MONACO are easily
manipulable: Oscillator pairs corresponding to +1 are directly coupled positively,
while pixels with −1 receive a negative coupling, resulting in synchronized pairs with
∆ϑi = 0 or ∆ϑi = π. Phases ϑi change quickly in time, so they are difficult to control
directly. However, initial conditions in (I) and (III) can be set similar to MONACO
by coupling all N oscillators in a row, where oscillators representing equal pixels are
coupled positively and unequal pixels interact via a negative coupling. In (IIA) and
(IIB), two main problems must be overcome to set initial conditions: First, phase
shifts cannot be manipulated directly and second, phase shifts are undefined without
a temporal reference. Hoppensteadt and Izhikevich [29] proposed to use the same
coupling circuitry as used for the recognition, but with a different coupling matrix
S: Sij = αdiα

d
j is used to initialize a defective pattern αd. Then, recognition is

performed with the usual coupling matrix Sij =
∑M

m=1 α
m
i α

m
j . By evaluating phase

shift changes between the introduced initial condition and the recognition, pixel
changes can be retrieved without the constants ϕ0

i . However, initialized patterns
are ambiguous: As Sij(−αd) = (−1)2αdiα

d
j = Sij(α

d), the inverse pattern −αd is
initialized half of the time. Additionally, as this method is limited by the averaging
condition similar to the recognition, this method is of timescale 1/ε and therefore
considerably slower than the direct coupling used for (I), (III) and MONACO.
Similarly, readout of the final pattern is easy in MONACO: As mentioned above,

cos ∆ϑi = αi can be read out directly from the corresponding oscillator pair.
Readout in (I) and (III) is analogue, but phase differences between different pixels
are determined, which again describes both a specific pattern and its inverse. For
(IIA) and (IIB), phase shifts have to be determined by comparing the phase of an
oscillator with an external reference2. Then, the difference of phase shifts between
final state and the initial conditions needs to be evaluated3. In refs. [30, 31], this
was done with a computer and analog-digital converter cards.
Ease of readout additionally depends on the effective dynamics of the architec-

tures: Traditional Kuramoto-type networks (I) employ a coupling that depends only
on the mutual phase differences of all oscillators (∝ sin (ϑi − ϑj)). While (IIA) and
(IIB) have a seemingly more complex structure due to their coupling modulations,
dynamics are effectively the same as in (I) after averaging (Compare with Table

2This should in principle be possible with precise reference oscillators, a precise clock and a
memory for the initialized phase shift values.

3As Readout in (IIA) and (IIB) only measures changes between initial values and thus the final
pattern can be constructed non-ambiguously from the initial defective pattern, the ambiguity
introduced in the setting of initial values is effectively removed.
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3.3), albeit in different coordinates. In these dynamics, the individual patterns are
not individual attractors, but part of one large attractor. More precisely, patterns
are connected by lines of attractive non-isolated fixed points [35]. Consequently, re-
cognition is only possible for short times, as the system state drifts on the attractor
due to implementation inaccuracies and higher order terms and readout must occur
immediately after the recognition is successful. Additionally, the system state does
only settle close to the correct memorized pattern, so the output values are not
inherently digital as the patterns are.
MONACO’s dynamics ( cf. Eq. (3.1)) take on a simple mathematical form after

averaging (Eq. (3.5) for the formulation in phase differences, Eq. (3.13) in pattern
space α). In these novel dynamics, binary memorized patterns are individual at-
tractors. In [32], yet another dynamics was introduced with architecture (III) (see
Table 3.3). Memorized patterns are isolated attractors here as well due to higher or-
der Fourier modes in the coupling function. Due to the isolated attractors, readout
does not need to be exactly timed and the output is inherently digital in MONACO
as well as in architecture (III). Additionally, the dynamics of (III) enable the exclu-
sion of spurious attractors for specific parameter ranges, while MONACO’s dynamics
allowed us to determine lower bounds on the basins of attraction, as discussed below
and in Section 3.3.
Concerning quantitative measures for associative networks, often the capacity or

loading rate of a network is used. It describes the maximum possible ratio of M
and N , where the system state still settles close to the correct memorized pattern.
Usually, it is computed for a set of random memorized patterns in the limes N →
∞. This definition, however, includes deviations from the memorized patterns,
so e.g. some bits may be erroneous at retrieval. Nishikawa et al. point out the
importance of error-free retrieval for engineering applications [32] and remind of the
error-free capacity (def. in Sec. 3.2.3) as a more meaningful quantity, as it is used for
traditional neural networks [55]. The error-free capacity of MONACO (Eq. (3.12))
is on a par with architecture (III) [32] and equal to the error-free capacity of the
Hopfield model [55] while memorized patterns are typically unstable in architectures
(I), (IIA) and (IIB) with an error-free capacity of 2/N [26, 32]. The loading rate
for architectures (I),(IIA) and (IIB) has been derived as 0.048 [52–54], while it has
not been calculated for neither architecture (III) nor MONACO yet. However, the
error-free capacities are lower bounds on the loading rates and may be larger than
the value for (I) - (IIB) similar to the error-free capacities.
While the loading rate and the error-free capacity are useful for comparing archi-

tectures, their probabilistic nature and the derivation for limN → ∞ impair their
significance for real networks: Specific sets of memorized patterns are possibly not
random and finite size effects might improve or impair pattern stability as well as
recognition success. Non-probabilistic criteria valid for all network sizes allow to
exactly evaluate performance of a network for a specific use case and enable the de-
velopment of more complex algorithms using the recognition process repeatedly. We
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derived such criteria for MONACO: Eq. (3.10) guarantees stability of all memorized
patterns if scalar products between memorized patterns are not too large. Eq. (3.20)
guarantees recognition success by giving a lower bound on the number of allowed
erroneous pixels nf . If a network stores a large number of patterns M , the minimal
size of the basins of attraction will be quite small and few erroneous pixels nf can be
guaranteed to be corrected. In many applications, however, the number of patterns
M is much smaller than N and the ability to correct larger errors is desired.
The last aspects to be discussed concern recognition time and oscillator accuracy.

In physically all-to-all connected networks (I) and (III), oscillator frequencies are
not restrictive, as long as they are similar enough to be well above the Kuramoto
transition. In contrast, frequency conditions in dynamically all-to-all connected net-
works limit the network size: Since in practice there will be only a certain frequency
interval available, the number of oscillators is limited by the accuracy of the fre-
quencies [30]. Recognition times have not been calculated analytically for any of
the oscillatory neural networks presented here. However, we assume that the fre-
quency restrictions present in (IIA), (IIB) and MONACO lead to slower recognition
times compared to (I) or (III). Nevertheless, the shift of frequency due to the ac-
celeration effect [50] present in the real dynamics of (IIA) and (IIB) [29, 30, 35]
does not interfere with the recognition process in MONACO since the change in fre-
quency is identical in each oscillator pair due to its mirrored structure. Additionally,
it is possible to introduce several coupling modulations per subnetwork similar to
the transition from architecture (IIA) to (IIB) for the MONACO-architecture (Sec.
3.7). In this improved network the scaling of necessary frequencies is reduced to
O(N ln(3)/ ln(2)).

3.6 Implementation considerations

Before actually designing the network’s circuitry, we outline difficulties and solutions
for the implementation. First, frequency deviations are discussed:

3.6.1 Influence of frequency deviations

The MONACO architecture and our previous analysis is based on two major as-
sumptions about the network’s frequencies:

1. Angular frequencies Ω
[1]
i = Ω

[2]
i = Ωi of oscillators in a pair are equal.

2. Angular frequencies Ωi of different pairs fulfill the frequency conditions derived
in Appendix A:

• Ωi−Ωj 6= Ωk−Ωl for pairwise different i,j,k,l or more precisely, frequency
differences must be sufficiently different: |(Ωi − Ωj)− (Ωk − Ωl)| �
0 ∀i, j, k, l.
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• Ωi > Ωmax/3 ∀i
An optimal distribution can be obtained by multiplying a minimal frequency
difference ∆Ωmin with a Golomb-ruler [48], a set of integers with non-equal
differences [30], and adding Ωmax/3.

In any real system, however, drifts or inaccuracies of components will lead to
deviations of the frequencies.

Violating the frequency conditions would create unwanted resonant terms that
would modify the coupling matrix S in the main evolution equation Eq. 3.5. In [30],
Hölzel et al. quantified permitted frequency deviations: If the oscillators in a pair
do not differ in frequency, deviations ∆ωi = Ωi−Ωi,ideal of their frequency from the
optimal distribution do not create additional perturbation terms if ∆ωi � ∆Ωmin ∝
1/N2. If a network is sufficiently small, this condition can be easily met.
If frequency conditions are fulfilled, differences ∆Ωi = Ω

[1]
i − Ω

[2]
i of angular fre-

quencies between oscillators in a pair still modify Eq. 3.5:

∆ϑ̇i = ∆Ωi −
ε

N
sin ∆ϑi

( N∑
j=1

Sij cos ∆ϑj −
M

2
cos ∆ϑi

)
(3.21)

This frequency mismatch between the oscillator pairs is much more critical: While
small mismatches only shift ∆ϑ∗i slightly, larger mismatches destabilize the attractors
till finally phase slips occur in the ith oscillator pair. With the assumption that
we start in the correct basin of attraction and worst-case approximations of Eq.
(3.21), we gain ∆Ωi � ε/(2N). (Note that Stefan Litzel analyzed synchronization
of oscillator pairs with frequency differences according to a Gaussian distribution
very thoroughly in his bachelor’s thesis [56]. However, he explored an architecture
variant with slightly different dynamics.)
As ε has to be sufficiently small to obtain Eq. (3.21) in the first place, the latter

condition seems to be difficult to fulfill with precise manufacturing alone. Therefore,
we chose to add an additional frequency annealing step before setting the initial
conditions, which is illustrated in the next section.

3.6.2 Frequency annealing mechanism

As shown in the last section, the network is sensitive to frequency differences ∆Ωi

between oscillator pairs. Manual adjustment of the frequencies with a potentiometer
(or several stacked potentiometers) is tedious. More importantly, thermal drifts
shift the oscillator frequencies, thus making recurrent adjustment necessary. Con-
sequently, an automatic adjustment method is required.
We propose a frequency annealing mechanism based on nonlinear dynamics: Both

oscillators of the ith pair can be described by the dynamics of their phases ϑ[1]
i and
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ϑ
[2]
i . If the phase difference between the oscillators does not change (d/dt(ϑ[1]

i −
ϑ

[2]
i ) = ∆ϑ̇i = 0), the frequencies must be equal. If we can thus construct a system

with stable fixed points in ∆ϑi, the phase difference must move to the fixed point
and the frequencies anneal.
In detail, we implement the following scheme: One oscillator of a pair is modified,
so that its frequency depends on a continuous, 2π-periodic function F of the pair’s
phase difference. (Note that e.g. any continuous function of our readout signal
∝ cos (∆ϑi) fulfills that requirement.) The other oscillator acts as a reference only,
so its dynamics remain unchanged:

ϑ̇
[1]
i = Ω

[1]
i − F (∆ϑi) ϑ̇

[2]
i = Ω

[2]
i

∆ϑ̇i = ∆Ωi − F (∆ϑi) (3.22)

Eq. (3.22) is an ordinary differential equation of first order. No complicated be-
havior like periodic orbits or chaos can exist in such a system, only fixed points
[36]. Frequencies of both oscillators are equal at any fixed points F (∆ϑi) = ∆Ωi,
as ∆ϑ̇i = 0. Stability of these fixed points is decided by the sign of the derivative
d∆ϑ̇i/dϑi = −dF/dϑi at the fixed point.

∆ϑi

F (∆ϑi)

∆Ωi

2π 4π0 ∆ϑ∗i

Figure 3.8: Frequency annealing mechanism: Any phase differences ∆ϑ∗i with
F (∆ϑ∗i ) = ∆Ωi are fixed points of Eq. (3.22). At any fixed point, the frequency dif-
ference ∆ϑ̇i is zero and thus the frequencies are equal. The slope ∂∆ϑ̇i

∂∆ϑi
= − ∂F

∂∆ϑi
< 0

indicates stable fixed points. If an unstable fixed point can be found, there must
be another stable fixed point where F returns, as F is periodic and continuous.
Consequently, if F intersects with ∆Ωi anywhere, a stable fixed point exists.

Fig. 3.8 illustrates that for every unstable fixed point another stable fixed point
must exist: As F is bounded, continuous and periodic, it has to cross ∆Ω again with
positive slope before the next period. Note that these fixed point pairs are created
in saddle-node bifurcations (Sec. 2.1.4). Summing up:

• If F (∆ϑ∗i ) = ∆Ωi for any phase difference ∆ϑ∗i , a stable fixed point exists.
Then, both frequencies anneal and the phase difference is locked at the fixed
point.

• If no point F (∆ϑ∗i ) = ∆Ωi exists, there is no fixed point and frequency anneal-
ing cannot work. Therefore, [min(F ),max(F )] defines the possible annealing
range. From another point of view, the bifurcation parameter −∆Ωi must
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move into the range of F to create fixed point pairs in saddle-node bifurca-
tions. In order to facilitate annealing, either the range of F can be increased
or the difference of natural frequencies can be diminished by other means, e.g.
manual adjustment.

• This frequency adjustment leaves the phase difference ∆ϑi locked at the fixed
point. However, ∆ϑi needs to move unhindered during initialization and re-
cognition. Therefore, we replaced the feedback loop after annealing with a
constant C = F (∆ϑ∗i ) before initialization.

Note that similar methods are used in electronic engineering under the name
“phase locked loop” (See e.g. [37] chapter 9.27.), but with a different point of view,
different applications and without cutting the feedback loop.

3.6.3 Phase difference readout mechanism

One issue of phase oscillator networks is the readout of the network state: If phases
and thus the oscillator signals are directly measured, the readout needs to be sig-
nificantly faster than the oscillator frequency, which in turn severely limits the os-
cillator frequencies. In contrast, phase differences ∆ϑi change on the timescale of
O(ε−1)� O(Ω−1) and knowledge of single phases is not required in our architecture.
Voltages which depend on ∆ϑi only can be constructed by multiplying two oscil-

lators’ signals and filtering them with a low pass:

A sin (ϑ
[1]
i ) · A sin (ϑ

[2]
i ) = A2 · 1

2

[
cos (ϑ

[1]
i − ϑ[2]

i ) + cos (ϑ
[1]
i + ϑ

[2]
i )
]

≈ A2 · 1

2
[cos (∆ϑi) + cos (2Ωit)]

After an ideal low pass, only A2

2
cos (∆ϑi) remains. As MONACO’s dynamics can

be expressed with αi = cos (∆ϑi) only (Eq. (3.13)), we gain complete information
on the current system state. With this direct method, readout circuitry needs to
sample faster than O(ε) only.

Note that the sign of the phase difference is lost due to the cosine, which might
be relevant for other architectures. In that case, one of the oscillator signals can
be integrated or differentiated prior to multiplication. Another possible readout
method is the addition of oscillator signals, which is followed by an rectifier and a
low pass, as proposed in [57]. This method is not used in this thesis, but might be
interesting if the amount of analog multiplications should be reduced. Frequency
range and accuracy pose another implementation challenge. In the next section,
we will propose a variant of MONACO with more physical connections but less
restrictive frequency conditions.
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3.7 A variant with different coupling modulations:
MONACO II

As mentioned in 3.6.1, any two frequency differences in the original MONACO
architecture must not be the same to avoid unwanted coupling terms. The necessary
frequency range then scales quadratically with the number of pixels N .
In [31], Kostorz et al. have demonstrated the use of separate coupling modulations

for each oscillator. As the modulations contain less frequencies each, less unwanted
coupling terms need to be negated with frequency conditions. We now combine
this idea with our mirrored structure and construct 2N coupling modulations from
oscillator signals:

ϑ̇
[1/2]
i = Ω

[1/2]
i + cosϑ

[1/2]
i · a[2/1]

i (t) · ε
N

N∑
j=1

sinϑ
[1/2]
j

a
[1/2]
i (t) =

M∑
m=1

αmi sinϑ
[1/2]
i

N∑
k=1

αmk sinϑ
[1/2]
k

(3.23)

Here, the ith oscillator of the second group receives all signals
∑

j sinϑ
[2]
j in the

second group modulated by its own private coupling modulation a[1]
i , which is con-

structed from signals of the first group. For the construction of the a[1]
i and a[2]

i , the

sums
N∑
k=1

αmk sinϑ
[1/2]
k can be reused between pixels.

The implementation of this variant, called MONACO II, was topic of the master’s
Thesis of Nicholas Pfifferling [58]. Averaging of Eq. (3.23) is analog to the original
MONACO architecture (MONACO I), with frequency conditions being the same as
Kostorz et al. derived in their work [31]:

Ωi 6= Ωj ∀i, j (3.24)

Ωi 6=
1

2
(Ωj − Ωk) i, j, k (3.25)

Ωi 6=
1

2
(Ωj + Ωk) i, j, k (3.26)

Similar to MONACO I, frequencies in a group have to be pairwise different. The
second condition can be fulfilled with Ωmin >

1
3
Ωmax, while the last criterion defines

the scaling properties. As derived in [31], the criterion is fulfilled by all integers which
do not contain any 2 in base-3 notation [59], which is a form of Cantor set. Angular
frequencies Ωi can be derived by multiplying the sequence with some minimal fre-
quency difference ∆Ωmin. The frequency space required grows with N

ln 3
ln 2 ≈ N1.58,

which is a significant improvement over the factor N2 in MONACO I. Finally, we
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gain the averaged dynamic equation for MONACO II [58]:

∆ϑ̇i = − ε

2N
sin ∆ϑi

( N∑
j=1

Sij cos ∆ϑj

)
(3.27)

Comparison of Eq. (3.27) with the averaged dynamics of MONACO I (Eq. 3.5)
reveals two major differences:

• The coupling strength prefactor is halved for MONACO II. We expect longer
recognition times at the same ε, but no statement about an upper limit of ε
and thus minimal recognition times can be made.

• The term ∝ M
2

sin ∆ϑi cos ∆ϑi is missing in MONACO II. In MONACO I, it
destabilizes both ∆ϑi = 0 and ∆ϑi = π. As it is small compared to the other
terms, the difference in dynamics should be small.

Derivations for stability or basins of attraction of MONACO II are not shown, as
they are completely analog to MONACO I with the only difference being the missing
term.

Focus of this thesis will remain on MONACO I, as only preliminary results exist
for MONACO II yet. In the next chapter, implementation of electronic circuitry
will be elaborated in detail for both architectures.
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Network Implementation

In this chapter, our implementation of MONACO will be discussed. The network
was designed for the following requirements:

• The network is supposed to be a proof-of-principle for the proposed architec-
ture. Therefore, it must mirror the full phase dynamics of MONACO (Eq.
(3.1)) as closely as possible.

• The influence of spurious attractors on the recognition process should be ex-
amined.

• The criterion for guaranteed recognition Eq. (3.20) should be verified.

• Measurements should be conducted with orthogonal as well as random mem-
orized patterns.

• The influence of different coupling strengths ε on both recognition times and
recognition success should be examined.

• External noise should be added to oscillator pairs to study resistance to per-
turbations and deviations of the recognition times.

• In addition, we want to examine a variant of MONACO that has individual
coupling modulations for each pixel, but less restricting frequency conditions.
(MONACO II; see Sec. 3.7.) The circuitry for MONACO I should be reusable
for MONACO II as much as possible.

All requirements can be fulfilled with a network of N = 8 oscillator pairs and
circuitry for M ≤ 3 patterns.
In contrast to previous approaches that include a time-dependent global coupling

[30, 31], coupling modulations are generated inside the network. Consequently, more
circuitry is required. In order to ease debugging, allow for changes of subcircuits
and enable sharing of circuitry between MONACO I and II, the circuitry is split
into modules:
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• 8 oscillator modules contain an oscillator pair of a specific angular frequency
Ωi as well as circuitry for the readout of αi = cos (∆ϑi) and for frequency
annealing of this pair.

• 8 pattern modules are used to input both the defective pattern as well as
the memorized, correct pattern candidates.

• 1 mainboard which connects modules and distributes power.

• 1 coupling voltage module for MONACO I. It generates the product of
coupling modulations with the sum of the oscillator signals. This coupling
voltage is coupled to oscillators during recognition.

• 1 summation module for MONACO II, which creates sums of oscillator
signals necessary for coupling voltage creation.

• 8 multiplication modules for MONACO II that create coupling voltages
for individual pixels.

The interaction between modules in MONACO I during the recognition step is
summarized in Fig. 4.1: Amplified oscillator signals are transferred to the pat-
tern modules, where they are multiplied with pattern pixels of memorized patterns.
Those are combined in the coupling voltage module and coupling voltages connect to
coupling resistors on the oscillator modules. The signal flow during the initialization
step is similar: Oscillator signals are multiplied with pixels of the defective pattern
on the pattern modules, then directly coupled to the other oscillator in a pair.
The network implementation is built to interface with external hardware for auto-

mation of measurements: Patterns for both initialization and recognition are sup-
plied as logic signals. Similarly, steps of the recognition process are switched with
logic signals as well. As the frequency annealing mechanism proposed in Sec. 3.6.2
needs additional steps prior to initialization, there are 4 steps in total:

• Annealing step: The feedback loop according to Eq. (3.22) is closed and the
fixed point of equal frequencies is quickly reached. Coupling voltages for both
initialization and recognition are not connected.

• Hold step: The feedback is replaced with the voltage at the fixed point. Fre-
quencies are still annealed, but uncoupled. Remaining frequency differences
can be measured and annealing failure can be identified. Coupling voltages
are still not connected.

• Initialization step: Initialization coupling voltage is connected. Oscillator pairs
synchronize at phase differences according to the pixels of the defective pattern.

• Recognition step: Initialization coupling is disconnected and recognition coup-
ling is simultaneously connected.
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mainboard:
connections

coupling
on/off

Arduino
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(PC)

coupling
voltage
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pattern
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oscillator
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M pixels αm
i

(+1=HIGH;-1=LOW)

coupling logic
(HIGH=on, LOW=off)

A sin (ϑ
[1]
i )

A sin (ϑ
[2]
i )

A sin (ϑ
[1/2]
i )

αm
i A sin (ϑ

[1/2]
i )

C · a[2/1](t) ·
∑

j

sin (ϑ
[1/2]
j )

×N pixels

MONACO I Recognition

Reference:
analog signal

digital signal

module

module component

external hardware

Figure 4.1: Diagram summarizing the signal flow between modules (blue) and ex-
ternal hardware (red) in MONACO I during the recognition process: Oscillators
on the oscillator module are coupled to a coupling voltage provided by the coup-
ling voltage module, which in turn receives oscillator voltages modulated by pattern
pixels from the pattern module. External hardware provides the memorized patterns
αmi as logic signals and enables/disables the recognition step by passing/blocking
the coupling voltage.

Stripboard layouts for all modules can be found in Appendix C. A short introduction
to electronic components and used subcircuits was given in Sec. 2.2. In the following
sections, each module will be described in detail, starting with the oscillator modules:

4.1 Oscillator modules

Previous electronic implementations of Van der Pol oscillators in our group (Sec.
2.2.3) showed sinusoidal oscillations and sinusoidal phase response curves shifted by
π
2
with respect to the oscillation [31]. Consequently, these oscillators qualify for a

correct implementation of the phase dynamics Eq. (3.1). An external voltage signal
can be coupled to such an oscillator by connecting it to the oscillator’s internal
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voltage via a coupling resistor. The resulting current then changes the internal
voltage, which in turn shifts the phase of the oscillator.
However, the mirrored structure and the internal coupling modulation generation

have additional requirements, which require modifications of the original circuit:

• The coupling strength ε needs to be varied between series of measurements.
As voltages in the circuit cannot exceed the supply voltages and small voltage
signals are sensitive to noise, we decided to vary coupling resistors instead.
The influence of this resistance variation on the oscillator dynamics has to be
compensated, as discussed in the next section.

• Circuitry for the readout of αi = cos (∆ϑi) as proposed in Sec. 3.6.3 has to be
included.

• Frequency differences between oscillator pairs have to be minimized. Manual
adjustment is not sufficient and we implement an automatic frequency anneal-
ing scheme as conceived in Sec. 3.6.2, which requires a frequency dependency
on some control voltage.

4.1.1 Coupling oscillators to external voltages via resistors

Let us consider connecting the idealized oscillator circuit 2.7a to an external coupling
voltage Uext with a resistor Rext (Fig. 4.2):

U̇ =
1

C
Q̇

=
1

C

(
−IL − Idiodes + IRneg − Iext

)
= − 1

C

(
IL + Idiodes −

U

Rneg

+
U − Uext
Rext

)
= −IL + Idiodes

C
+
U

C

(
1

Rneg

− 1

Rext

)
+

Uext
CRext

(4.1)

Here, IL, Idiodes and Iext are the currents through the inductance, the diodes and
the coupling resistor Rext, while Ineg is the current from the negative resistance.
Coupling to an external voltage Uext should not directly depend on the internal
voltage U . Additionally, the oscillator dynamics and thus the signal shape are
changed even if Uext is grounded. This strongly implies to split the influence of Rext

into a coupling part Uext
CRext

and an integral part of the oscillator circuit: The integral
part − U

CRext
acts as if the resistor was grounded, effectively decreasing the negative

resistance in the circuit:
1

R′neg
=

1

Rneg

− 1

Rext
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− +

−

+

C

U

IL

Rneg

Ineg Idiodes
Rext

Iext
Uext

Figure 4.2: Oscillator coupled to external voltage Uext. The oscillation is on average
diminished by currents IL and Idiodes, while the current Ineg from the negative resist-
ance always increase the absolute value of U . The influence of Rext can be divided
into a coupling contribution proportional to Uext and a reduction of the effective
negative resistance. (See Eq. (4.1).)

In [31], Kostorz et al. had sinusoidal oscillations with a coupling resistor Rcoupl =
100 kΩ and an additional resistor Rs = 8,25 kΩ to ground for an inverting summer,
resulting in R′neg,Kostorz = −33 kΩ.
For MONACO, we need separate coupling resistors for both initialization and re-
cognition, while any circuitry depending on the oscillator’s signal is separated from
the oscillator circuit with a non-inverting amplifier. Recognition coupling resistors
Rrecog are varied to study the effect of coupling strength variation. Nevertheless,
R′neg should be held constant for constant signal shape and comparison with [31].
Therefore, we introduce additional resistors Rcomp to ground as compensation to fix
R′neg to −33 kΩ:

1

R′neg
= − 1

33 kΩ
=

1

Rneg

− 1

Rrecog

− 1

Rinit

− 1

Rcomp

(4.2)

A summary of sets Rrecog, Rinit and Rcomp used is shown in Table 4.1.

4.1.2 Phase difference readout implementation

As mentioned in Sec. 3.6.3, we need to multiply signals of an oscillator pair and
remove the double frequency with a low pass to get a voltage proportional to
αi = cos (∆ϑi).
We used the multiplier IC AD633 for signal multiplication. (See Sec. 2.2.1 for a de-
scription.) Note that we arranged inputs such that one input voltage is inverted and
that we do not use the summation input on this module by grounding it. Summing
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Rrecog [kΩ] Rinit [MΩ]
calculated
Rcomp [kΩ]

available
Rcomp [kΩ] R′neg [kΩ]

10,2 10,0 30,2 30,0 -33,3
30,0 10,0 10,23 10,2 -33,3
62,0 10,0 8,70 8,66 -33,5
100 10,0 8,26 8,25 -33,1
243 10,0 7,87 7,87 -33,0
511 10,0 7,74 7,68 -34,2
1000 10,0 7,69 7,68 -33,1
243 0,10 8,54 8,45 -34,4

Table 4.1: Values of Rrecog, Rinit and Rcomp used for the experiment as well as
effective negative resistances R′neg are shown. Rneg = 6,19 kΩ was constant for all
experiments. Rcomp was calculated according to Eq. (4.2), then the next available
resistance value was chosen.

up, the voltage after the multiplier is

A sinϑ
[1]
i ·
(
− A sinϑ

[2]
i

)
10 V

=
−A2

20 V

[
cos ∆ϑi − cos (ϑ

[1]
i + ϑ

[2]
i )
]

≈ −A
2

20 V
[cos ∆ϑi + cos (2Ωit)] .

The selection of the low-pass filter turns out to be non-trivial: If we would only
care about the readout of cos ∆ϑi, the filter selection would not be critical, as phase
differences change on the timescale of O(ε−1) during recognition. However, we want
to use a function of cos ∆ϑi as feedback voltage in the frequency annealing circuitry
(See Sec. 4.1.3). As every causal filter induces delay and might show passband ripple,
F is a function of both ∆ϑi, ∆ϑ̇i and a phase shift τ , which violates our assumption
F = F (∆ϑi). Additionally, the feedback mechanism moves to the fixed point quite
fast, so the gain(F ) is not sufficient to describe the loop dynamics: Responses in
the time domain (e.g. response to pulses or step-functions) influence the dynamics
substantially. In order to derive an ideal filter type by theory, the filter’s transfer
function would have to be included into Eq. (3.22) yielding an integro-differential
equation that is difficult to solve and optimize.
In practice, frequency annealing performance of different filters was tested in

SPICE by Nicolas Pfifferling during his master’s thesis: A simple RC-circuit, which
is a filter of first order, did not remove the double frequency sufficiently. Frequency
annealing with a 2nd order Chebyshev filter showed damped oscillations towards
the fixed point, indicating a stable focus and thus complex eigenvalues. While the
frequency annealing worked, complex eigenvalues can only exist in systems with
2 or more dimensions. As our assumption is clearly violated and we thus cannot
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exclude other attractors, we rejected the Chebyshev out of caution. We finally chose
a 2nd order Butterworth filter with a voltage gain K = 1.586 and a cutoff frequency
f3dB = 4,16 Hz, which showed a non-oscillating trajectory towards the fixed point.
Fig. 2.6 shows the circuit used for the implementation of the Butterworth filter. We
gain a voltage

Uα =
−A2K

20 V
cos ∆ϑi . (4.3)

Finally, the output voltage must be readable by the external hardware, whose
analog input is limited to [0 V, 5 V]. Therefore, we shift and scale the voltage with an
inverting summer (Sec. 2.2.2) with Rout = 10 kΩ, U1 = Uα, R1 = 820 Ω, U2 = −15 V
and R2 = 59 kΩ. With Eq. (2.2) and K = 1.586, we gain the final readout voltage
U ′α:

U ′α = −
(
Rout

R2

(−15 V) +
Rout

R1

Uα

)
=
Rout

R2

(15 V) +
A2K

20 V

Rout

R1

cos (∆ϑi)

= 2,54 V +
A2

1,034 V
cos (∆ϑi)

As the value of A is not the same for all measurements, the prefactor in front
of αi = cos (∆ϑi) differs as well. Additionally, prefactor and shift vary between
oscillator pairs due to limited accuracy of A, resistors and capacitors. However, the
design considers sufficient margin so that the range [0 V, 5 V] is not exceeded. (For
e.g. A = 1,4 V, which was used most of the time, the prefactor is 1,9 V.) In order to
obtain precise values for αi = cos (∆ϑi), calibration measurements are taken with
fully synchronized pairs at ∆ϑi ∈ (0, π), which allows precise mapping of readout
voltages to αi = ±1.(See Sec. 5.4).

4.1.3 Frequency annealing implementation

Frequencies of the oscillator pairs in MONACO have to be very similar and manual
adjustment is not sufficient due to thermal drifts. In order to implement the auto-
matic frequency annealing method proposed in Sec. 3.6.2, the frequency of one
oscillator must depend on a continuous, periodic function F of the phase difference
∆ϑi. After the frequencies are annealed, the frequency of the annealed oscillator
must stay constant independent of ∆ϑi. Our implementation can be divided into
three steps:

• Finding a feedback voltage UF (∆ϑi):
The readout voltage U ′α (Sec. 4.1.2) can be reused as feedback signal UF : It
is a linear function of cos ∆ϑi in the range ]0 V, 5 V[ under ideal conditions.
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oscillator
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oscillator
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α = a · cos ∆ϑ + c
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U
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VCR

−
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+

Hold value

annealing logic

Figure 4.3: Scheme of the frequency annealing implementation: First, we require a
feedback voltage that is a function of the phase difference ∆ϑ: We use the readout
voltage U ′α, which is created by multiplying oscillator signals, low-passing the result
and adding an offset.(See also Sec. 4.1.2) Second, the feedback voltage must influence
the frequency of the annealed oscillator. For this purpose, we included a voltage
controlled resistor (VCR) into the gyrator, which acts as the oscillator’s inductance.
Third, the feedback loop must be disconnected after the frequencies are annealed,
as otherwise the phase difference ∆ϑ would remain fixed as well. Additionally, the
control voltage on the VCR must remain unchanged. This is facilitated by a Sample
and Hold IC, which passes the voltage and continuously samples its value. When a
logic signal is applied, the IC outputs the sampled value instead. This hold value
is additionally low-passed to reduce influence of noise and remnants of the doubled
frequency component from the creation of U ′α.
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4.1 Oscillator modules

In reality, however, small remnants of the doubled base frequency are still
present.

• Enabling/disabling feedback on the annealed oscillator:
Phase difference and feedback voltage change until the frequency is annealed
and stay constant afterwards. Replacing the feedback voltage with its con-
stant value allows ∆ϑi to change again, but keeps the frequency at the an-
nealed value. Luckily, there are so-called sample-and-hold circuits which do
exactly that: They allow an analog signal to pass until a logic signal changes.
Then, they output the last sampled value. We used the IC LF398 with a hold
capacitor 220 nF loaded through a serial 10 kΩ resistor.

• Finally, the frequency of the annealed oscillator must depend on UF , in par-
ticular ∆ϑ̇i = ∆Ωi − F (UF (∆ϑi)).

Out of the three main elements of a Van der Pol oscillator shown in Fig. 2.7a, the
inductance can be varied most easily: The nonlinear element does not change fre-
quency substantially and a voltage-controlled capacitance (available as “varactor”)
disturbs oscillation shape. Our inductance is implemented as an Antoniou gyrator
circuit (Fig. 2.5a) and a potentiometer is already used to roughly adjust the in-
ductance manually. Therefore, we decided to change the gyrator’s inductance L by
including a voltage-controlled resistor.
The inductance of the Antoniou gyrator is given as L = RIRIIRIV C

RIII
for ideal op-

amps. However, changes in phase response curve and signal shape can be observed
at high frequencies if the four resistor values are not sufficiently similar. These devi-
ations are lowest for RI , so the 1 kΩ potentiometer for manual adjustment with the
100 Ω serial resistor remains on this position. In order to keep the frequency anneal-
ing influence constant between pairs of different frequency, the voltage-controlled
resistor was not combined with the manual adjustment, but replaced resistor RII .
The implemented voltage-controlled resistor needs to be close to RV CR ≈ 1 kΩ in
order to make distortion negligible. RIII = RIV were adjusted to 1,1 kΩ to better
cover the frequency range.
The voltage controlled resistor was inserted into the gyrator of one oscillator, hence-
forth called annealed oscillator. The other oscillator of a pair, called reference os-
cillator, contains a fixed 1 kΩ resistor instead of the VCR.
An important design choice is the tradeoff between annealing range and annealing

accuracy: Annealing range is given as the range of F . Our readout signal, however,
contains remnants of the doubled frequency of the oscillators: Consequently, the
feedback loop slightly oscillates around the fixed point for an ideal F . As the sample-
and-hold circuit might pick any value during that oscillation, the amplitude of this
oscillation is a major source of frequency annealing uncertainty. This frequency
annealing error can be diminished by diminishing the influence of the feedback signal
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−

+

15 kΩ

61.9 kΩ U ′α

61.9 kΩ

30.1 kΩ

30.1 kΩ

174 Ω

909 Ω

Figure 4.4: Circuitry for the voltage-controlled resistor used in the gyrator to facilit-
ate frequency annealing. It’s base is the JFET 2N5486, whose resistance is controlled
by the voltage U ′α. A serial and a parallel resistor limit the total resistance to values
RV CR ∈ [909 Ω, 909 + 174 Ω]. As explained in Sec. 2.2.1, half of the JFET’s drain
and source voltages must be added to its gate to gain a well-defined resistance. This
addition is done with a full summer, which can be seen as a combination of an
inverting summer (Fig. 2.4a) and a non-inverting amplifier (Fig. 2.4b).

in the voltage controlled resistor which in turn also diminishes the range of F . Low-
passing the hold value of the sample-and-hold IC further removes influence of the
double base frequency without adding more delay to the feedback loop. The final
circuit for the voltage controlled resistor is shown in Fig. 4.4: The main component
is the JFET 2N5468, which is used as variable resistor as described in Sec. 2.2.1.
The control voltage UC ≈ −0.25U ′α is added to the halved drain and source voltages
in a full summer in order to obtain a resistor dependent on UC only.
In order to limit the resistance variation of the JFET, it is accompanied by a serial
resistor Rserial = 909 Ω and a parallel resistor Rparallel = 174 Ω. Consequently,
RV CR = Rserial + Rparallel = 1,08 kΩ for RJFET → ∞ and RV CR = Rserial for
RJFET → 0. In the context of frequency annealing, the maximal resistance variation
of ±5% translates to an inductance variation of ±5% which leads to an approximate
frequency variation of ±5%.
In Sec. 5.3.2, measurements verify that after annealing the remaining frequency

difference is ∆fi = ∆Ωi
2π

< 2 Hz, which corresponds to frequency deviations between
oscillator pairs of less than 0.1‰.
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4.1 Oscillator modules

4.1.4 Prevention of spurious coupling

In the first prototype circuits of oscillator pairs with frequency annealing, unwanted,
“spurious” coupling between oscillator pairs existed, which disturbed both frequency
annealing and recognition. As higher order terms average away, the relevant spurious
coupling can be described as a function G(∆ϑi) of the phase difference.
In order to approximate the amount of spurious coupling, we observed otherwise

uncoupled oscillator pairs: As ∆ϑ̇i = ∆Ωi +G(∆ϑi), the pairs synchronize if −∆Ωi

is in the range of G, and pass each other otherwise. (Pairs of isolated fixed points
emerge or annihilate at −∆Ωi = max (G) and −∆Ωi = min (G) in a saddle-node
bifurcation; see Sec. 2.1.4.) Consequently, we manually adjusted pair frequencies
until synchronization and noted the value of ∆fi = ∆Ωi/(2π) shortly before syn-
chronization, which must be close to the range of G.
During his master’s thesis, Nicolas Pfifferling measured ∆fi ≈ 20−60 Hz for single

oscillator modules of the first generation, and ∆fi ≈ 40−150 Hz if they were plugged
into the mainboard. (Note that the frequency difference is already diminished by
G before full synchronization occurs, as ∆ϑ̇i � ∆Ωi for some values of ∆ϑi and
the phase difference thus spends a long time in this bottleneck. Consequently , the
values we determined for the range of G can only be a lower limit on the real range
of G.) These deviations modify frequency annealing and recognition:

• In the frequency annealing process, coupling is modified to ∆ϑ̇i = ∆Ωi −
F (∆ϑi) + G(∆ϑi). In contrast to the ideal case F (∆ϑi

∗) = ∆Ωi, fixed points
∆̃ϑi

∗
are now determined by F (∆̃ϑi

∗
) = ∆Ωi + G(∆̃ϑi

∗
). Consequently, the

additional error during frequency annealing will be −G(∆̃ϑi
∗
) up to the full

range of G.

• Even with perfectly annealed oscillator pairs, a spurious coupling term favors
synchronization at a specific phase difference. Recognition coupling must be
increased to be much larger than the spurious coupling in order to make the
modification negligible. The frequency difference from the incorrect frequency
annealing, however, has to be overcome additionally and is much more critical
to the recognition process.

In order to reduce the spurious coupling between pairs, we considered the following
coupling causes:

• Signals from the oscillators can be carried on the power supply lines, as circuit
components draw power depending on the phase of the oscillation. In the
newer designs, we separated supply lines: Ferrite beads, which are inductors
that also have increased ohmic resistance at high frequencies, were placed on
the connections between common supply and oscillator supplies. Additionally,
bypass capacitors between the supply rails and ground decrease the voltage
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dips introduced by increased consumption and form a low pass with the Ferrite
beads, further decreasing high frequency signals on the supply.

• Op-amps on the same IC had been shared between both oscillators, which
might have induced a thermal or voltage coupling. In newer designs, each IC
exclusively belongs to a single oscillator or other, unrelated circuitry.

• Signal lines running parallel to each other can transfer small amount of signals
through induction. Consequently, oscillator signal lines were cut short and
separated from the rest of the network with a non-inverting amplifier. This
required to move coupling resistors close to the oscillators as well.

• Oscillator frequencies in the readout signal might be fed back into the annealed
oscillator with the frequency annealing mechanism. We increased the filter
order of the low-pass filter to remove higher frequencies more thoroughly.

• We found that significant radiation coupling existed between oscillators.
Therefore, oscillators including coupling resistors, non-inverting amplifier and
frequency annealing mechanism were mounted on extra circuit boards. These
circuit boards were placed inside Faraday cages and connections to the net-
work were implemented via socket and pin strips that were fed through small
holes.

After implementing all standards and procedures mentioned above, uncoupled os-
cillator pairs cannot be synchronized with manual adjustment. Therefore, spurious
coupling must now be below the oscillators’ intrinsic frequency noise.

4.1.5 Oscillator module substructure

The final oscillator modules consist of a main module (Fig. C.2a) and two submod-
ules shielded with a grounded iron box:
One submodule contains the reference oscillator (Fig. C.2b) including resistors
Rrecog, Rinit and Rcomp and a non-inverting amplifier for separating the internal oscil-
lator voltage from the signal output. Potentiometers for adjustment of frequency and
amplitude amplification can be tuned during the experiment through small holes in
the Faraday cage. The other submodule (Fig. C.2c) contains the annealed oscillator.
In addition to all components of the reference, it contains the Sample-and-Hold IC
LF398 and the voltage controlled resistor (Fig. 4.4) for frequency annealing. The
oscillator module itself contains the circuitry for construction of the readout voltage
and routes voltages between the submodules and the mainboard. That includes
(filtered) power supply, oscillator signals, coupling voltages for both initialization
and recognition, readout voltage and annealing logic.
Note that copper lines without connection to a voltage source act as antenna.

As coupling voltage connections for initialization or recognition are disconnected
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4.2 Pattern modules

during other steps of the experiment, induced voltages could influence oscillators
via the coupling resistors. In order to avoid spurious coupling, coupling voltage
connections are grounded with a resistor R⊥ = 301 Ω. When the coupling voltages
are connected, this grounding resistor forms a voltage divider with the ON-resistance
rDS(ON) ≈ 25 Ω of the conducting switch, which in turn diminishes the coupling
voltage by a factor cvd = R⊥

R⊥+rDS(ON)
≈ 0.92.

In order to measure the influence of external noise, the grounding resistor R⊥ for
Uinit of the reference oscillator can be connected to a BNC connector with a jumper.
During experiments with external noise, the connector is set to ground during ini-
tialization as usual, but induces additional noise via Rinit during the recognition
step.

4.2 Pattern modules

In the coupling modulations Eq. (3.4) for the recognition process, correct pattern
candidates αm are included as signal prefactors in sums

∑
k α

m
k sin (ϑ

[1/2]
k ). Similarly,

oscillators 1/2 in the ith pair are coupled to the initialization coupling voltage
U

[1/2]
i,init = αdiA sin (ϑ

[2/1]
i ) during initialization. As pattern pixels are either 1 or −1,

the multiplication of pixel and signal is rather a conditional inversion of the oscillator
signals. Each pattern module conducts all conditional inversions for one oscillator
pair depending on external digital signals(Fig. 4.1). (Those are 8 in total: 3+1
pixels for the correct pattern candidates and the initial, defective pattern for both
oscillators of a pair.)
The pattern modules contain the circuit in Fig. 2.4c (See also [37], Chapter 4.09,

“optional inverter”) for each conditional inversion with the stripboard layout shown
in Fig. C.4. The operational amplifiers used are TL074 ICs, the analog switches are
DG411. In order to avoid non-idealities due to the input resistance of the op-amp
or the ON-resistance of the analog switch, we chose R1 = 20 kΩ and R2 = 10 kΩ for
the resistors. Additional to the optional inverter, the modules contains the input
resistors for the inverting summers on the coupling voltage module.

4.3 Coupling voltage module

This module constructs the final coupling voltages Urecog for the recognition coup-
ling. Oscillator signals A sin (ϑ

[1/2]
i ) and their product with memorized patterns

αmi A sin (ϑ
[1/2]
i ) are supplied by the pattern modules. The coupling voltages are

computed by combining inverting summers (Sec. 2.2.2 and Fig. 2.4a) and multiplic-
ation ICs AD633: (Sec. 2.2.1)

1a) Oscillator signals A sin (∆ϑ
[1/2]
i ) are summed across all pixel indices with an
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inverting summer. The inverted sums are also amplified by a scale factor
c = Rout

Rin
= 5,62 kΩ

10 kΩ
. Note that the input resistors Rin of the summers are

actually on the pattern modules.

1b) For each memorized pattern αm, products of oscillator signals and pattern
pixels αmi A sin (∆ϑ

[2/1]
i ) are summed analogously, but scaled with cα = Rout

Rin
=

6,81 kΩ
10 kΩ

.

2) Simple high passes with C = 1 µF and R = 243 kΩ remove any offsets from the
signal sums 1a) and 1b). As the cutoff frequency fc = 1/(2πRC) ≈ 0,65 Hz is
very low, phase and amplitude of the oscillators’ signals is preserved. While
offsets proved to be negligible, the high passes were still kept to protect the
multiplier ICs from shorts.

3) Sums of weighted oscillator signals 1b) are squared with multiplier ICs AD633.

4) Squares from 3) are summed over all patterns in another inverting summer
with cm = Rout

Rin
= 1 kΩ

2 kΩ
, which creates a voltage proportional to the coupling

modulations a[1/2].

5) Signal sums 1a) are modulated with the coupling modulation 4) through mul-
tiplication with another AD633.

U [1/2]
recog =

−cm M∑
m=1

1

10 V

[
−cα

N∑
k=1

αmk A sin (ϑ
[2/1]
k )

]2
 · 1

10 V
·
[
−c

N∑
j=1

A sin (ϑ
[1/2]
j )

]

U [1/2]
recog =

ccmcα
2A3

100 V2

M∑
m=1

[
N∑
k=1

αmk sin (ϑ
[2/1]
k )

]2 N∑
j=1

sin (ϑ
[1/2]
j ) (4.4)

A stripboard layout for the complete coupling voltage module is shown in Fig. C.5a.

4.4 Mainboard

The mainboard’s purpose is the distribution of logic control voltages and power sup-
ply as well as providing necessary interconnections between modules. Modules are
connected to the mainboard via pin-and-socket connectors and are arranged perpen-
dicular to the mainboard. Analog switch ICs DG412 connect coupling voltages to
oscillator modules depending on the logic signals for initialization and recognition
step.

For MONACO I, oscillator modules, pattern modules and the coupling voltage
module are plugged in.
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4.5 Coupling strength derivation: MONACO I

The architecture variant MONACO II reuses oscillator modules and pattern mod-
ules, but constructs individual voltages for each pixel with 1 summation module
and 8 multiplier modules. (See Sec. 4.6.) As multiplier modules are not needed for
MONACO I, small “bridging” modules (Fig. C.5b) connect coupling voltages across
the otherwise unused sockets. See Fig. C.3 for the mainboard layout.

4.5 Coupling strength derivation: MONACO I

The recognition coupling voltage Eq. (4.4) (diminished by cvd, see Sec. 4.1.5) affects
the internal voltage of single oscillators (Sec. 4.1.1) which in turn shifts their phases
via the phase response curves(Sec. 2.1.2):

ϑ̇
[1/2]
i = Ωi + APRC cosϑ

[1/2]
i · 1

CtotRrecog

· cvd · U [1/2]
recog

ϑ̇
[1/2]
i = Ωi +

APRCcvd
CtotRrecog

ccmc
2
αA

3

100 V2

· cosϑ
[1/2]
i

M∑
m=1

[
N∑
k=1

αmk sin (ϑ
[2/1]
k )

]2 N∑
j=1

sin (ϑ
[1/2]
j )

(4.5)

Note that the soldered capacitance C = 1,0 nF is replaced with the total capacitance
Ctot = C + Cpar = 1,2 nF, as measurement of phase response curves (Sec. 5.1.2)
revealed a parasitic capacitance Cpar in parallel to C.
Comparison with the full phase description Eq. (3.1) and Eq. (3.4) yields:

ε = N
APRCcvd
CtotRrecog

ccmc
2
αA

3

100 V2 (4.6)

Typical values for parameters in Eq. (4.6) are shown in Table 4.2. Table 4.3 shows
all values of ε used as well as coupling resistance and oscillator signal amplitudes.

4.5.1 Coupling strength error calculation

Most parameters in Eq. (4.6) show non-negligible deviations, which are shown in
Table 4.4.
Influence of these deviations ∆vi on ε are approximated with Taylor expansion and

combined with linear error propagation, as all of them are assumed to be systematic
and independent:

∆ε =
∑
i

∣∣∣∣ d εdvi
∆vi

∣∣∣∣
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parameter symbol typical value(s)

number of pixels N 8

amplitude of the phase response curve (Sec. 5.1.2) APRC 2,2 rad
V

soldered capacitance C 1,0 nF

total capacitance (Sec. 5.1.2) Ctot 1,2 nF

oscillator amplitude after amplification A 1,40 V

amplification in pure signal sums c 5,62 kΩ
10 kΩ

= 0.562

amplification in weighted signal sums cα
6,81 kΩ
10 kΩ

= 0.681

amplification in sum of squares cm
1,0 kΩ
2,0 kΩ

= 0.5

amplification voltage divider cvd
301 Ω

301 Ω+25 Ω
≈ 0.92

analog switch DG411DJZ ON-resistance rDS(ON) 25 Ω

grounding resistor R⊥ 301 Ω

Table 4.2: Typical values for deriving the coupling strength ε. Values for the coupling
resistance Rrecog, which were varied to alter ε, are not shown. In a few measurements,
the amplified oscillator amplitude A was additionally changed to 125 mV, 135 mV
and 145 mV.

Rrecog [kΩ] 1000 511 511 511 511 243 100 62 30 10,2

A [V] 1,4 1,25 1,35 1,4 1,45 1,4 1,4 1,4 1,4 1,4

ε
[

rad
s

]
48,3 67,2 84,7 94,4 105 199 483 778 1608 4730

Table 4.3: List of all used coupling strengths ε including the respective coupling
resistances Rrecog and amplified oscillator amplitudes A.

∆ε

ε
=

∣∣∣∣∆APRCAPRC

∣∣∣∣+

∣∣∣∣∆CC
∣∣∣∣+ 3

∣∣∣∣∆AA
∣∣∣∣︸ ︷︷ ︸

A≥125 mV

+9

∣∣∣∣∆RR
∣∣∣∣+

∣∣∣∣ rDS(ON)

R⊥ + rDS(ON)

· ∆R⊥
R⊥

∣∣∣∣︸ ︷︷ ︸
≈0.1|∆RR |≈0

+

∣∣∣∣ ∆rDS(ON)

R⊥ + rDS(ON)

∣∣∣∣
= 0.09 + 0.04 + 0.12 + 0.09 + 0.05

∆ε

ε
= 39% (4.7)

Note that the calculation above is an approximation: As factors cm, c and cα in Eq.
(4.5) each represent several resistor pairs in the summation circuitry, the deviations
of those pairs ought to be considered independently with factors cmm, cj and cαk.
In this case, however, Eq. (4.6) cannot be derived as shown, as the factors cannot
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4.6 Architecture variant with 2N coupling modulations: MONACO II

parameter vi error source error size ∆vi

metal film resistors production accuracy ∆R = 1%R

rDS(ON) production accuracy rDS(ON) ∈ [0 Ω, 35 Ω]

A thermal drifts ∆A = 5 mV

APRC f -dependence ∆APRC = 0,2 rad
V

Ctot production accuracy; Cpar ∆Ctot = 4%Ctot

Table 4.4: List of parameter uncertainties for determination of the coupling strength
uncertainty. Uncertainties for resistances were extracted from the respective data
sheets. Extraction of uncertainties for APRC and Ctot is covered in Sec. 5.1.2 and
Appendix D. Uncertainties for A are an upper bound on drifts observed during long
measurement series.

be put in front of the corresponding sums and ε is only well-defined for single signal
paths described by a tuple [m,k,j]. Eq. (4.7) describes the ε-deviation in such a signal
path. As deviations of the resistors are quite small compared to other deviations
and those are the same for all signal paths, Eq. (4.7) is a sufficient approximation
of the combined error. Implementation and coupling strength derivation is similar
for the architecture variant MONACO II (Sec. 3.7):

4.6 Architecture variant with 2N coupling
modulations: MONACO II

In MONACO II, oscillator modules and pattern modules can be used without any
changes. However, every pixel receives a different coupling modulation (Eq. (3.23))
and thus a different coupling voltage U [1/2]

recog,i. Consequently, it is useful to split
the construction of U [1/2]

recog,i into voltages required for all coupling voltages and the
individual deviations.

4.6.1 Summation module

The summation module receives oscillator signals A sin (ϑ
[1/2]
i ) and weighted signals

αmi A sin (ϑ
[1/2]
i ) from the pattern modules and sums them over all pixels. These

sums are required for each pixel’s coupling voltages. Analogous to MONACO I, the
sums are calculated with inverting summers, but with scaling factors c̃ = Rout

Rin
=

1 kΩ
10 kΩ

= 0.1 for pure signal sums and c̃α = Rout
Rin

= 8,25 kΩ
10 kΩ

= 0.825 for sums of weighted
oscillator signals. (See Fig. C.6a for a stripboard layout.) The calculated sum
voltages are transferred to all multiplier modules via the mainboard.
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4.6.2 Multiplier module

In the multiplier modules, individual coupling voltages are derived for each pixel:

1) First, weighted signal sums from the summation module and single weighted
signals from the ith pattern module are multiplied and summed to derive
individual coupling modulations a[1/2]

i : The summation input Z of M = 3
AD633 ICs is used to sum over the m multiplications and scale the output
with c̃m = 2 kΩ

1 kΩ
= 2 as described in Sec. 2.2.1, so no additional components are

necessary.

2) The sum of oscillator signals is modulated with the coupling modulation via
another multiplier IC without scaling, gaining the coupling voltages U [1/2]

recog,i:

U
[1/2]
recog,i =

[
M∑
m=1

c̃m

[
αmi A sin (ϑ

[2/1]
i )

]
· 1

10 V
·
[
−c̃α

N∑
k=1

αmk A sin (ϑ
[2/1]
k )

]]

· 1

10 V
·
[
−c̃

N∑
j=1

A sin (ϑ
[1/2]
j )

]

U
[1/2]
recog,i =

c̃mc̃αc̃A
3

100 V2

M∑
m=1

αmi sin (ϑ
[2/1]
i )

N∑
k=1

αmk sin (ϑ
[2/1]
k ) ·

N∑
j=1

sin (ϑ
[1/2]
j ) (4.8)

Fig. C.6b shows the stripboard layout for the multiplier module.

4.6.3 Coupling strength derivation: MONACO II

Analog to Sec. 4.5, we first derive the phase dynamics in the circuitry:

ϑ̇
[1/2]
i = Ωi + APRC cosϑ

[1/2]
i · 1

CRrecog

· cvd · U [1/2]
recog,i

ϑ̇
[1/2]
i = Ωi +

APRCcvd
CRrecog

c̃mc̃αc̃A
3

100 V2

M∑
m=1

αmi sin (ϑ
[2/1]
i )

N∑
k=1

αmk sin (ϑ
[2/1]
k ) ·

N∑
j=1

sin (ϑ
[1/2]
j )

(4.9)

We derive the coupling strength by comparing with MONACO II’s phase dynamics
Eq. (3.23):

ε = N
APRCcvd
CRrecog

c̃mc̃αc̃A
3

100 V2 (4.10)

Measurements for MONACO II have been made by Nicolas Pfifferling in the con-
text of his master’s thesis and are shown in Appendix E. As he had to use a previous
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4.7 Controlling the networks: Patterns and recognition procedure

parameter symbol typical value(s)

amplitude of the PRC (dependence on fi) APRC 1,0 rad
V
− 2,5 rad

V

oscillator amplitude after amplification A ≈ 1,6 V

amplification in pure signal sums c̃ 0.1

amplification in weighted signal sums c̃α 0.825

amplification in coupling modulation construction c̃m 2

Table 4.5: Parameter values for MONACO II. Oscillator modules used were prelim-
inary and thus phase response curves were not ideally sinusoidal and showed strong a
strong frequency dependence in APRC . Additionally, amplified oscillator amplitudes
A could not be adjusted during operation yet and thus have a larger, unknown error.
All parameters not mentioned were the same as in Table 4.2.

generation of oscillator modules, phase response curves showed strong deviations
from a cosine and amplitudes varied strongly. Additionally, oscillator amplitudes A
could not be adjusted during network operation and were thus susceptible to drifts.
Consequently, all results for MONACO II are only preliminary. Typical values for
parameters in Eq. (4.10) are summarized in Table 4.5. As uncertainties are so high,
coupling strengths are not calculated, and measurements are presented as function
of coupling resistors Rrecog instead. Both networks were measured and controlled
with the same measurement environment, which also supplied the patterns as digital
signals. It is presented in the next section.

4.7 Controlling the networks: Patterns and
recognition procedure

This section explains the procedure of a recognition process and outlines digital
signals and hardware necessary to control the network. In Fig. 4.5, a successful
recognition process is shown. It is subdivided into 4 steps, which are controlled via
3 digital signals, that need to be either LOW (0 V) or HIGH (5 V) in each step:

• Annealing step: Frequencies are annealed with a feedback loop as described
in Sec. 4.1.3. As the Sample-and-Hold ICs LF398 on the oscillator boards
(Sec. 4.1) need to pass the feedback signal, the annealing logic needs to be
HIGH. Both initialization coupling and recognition coupling are disconnected
at the mainboard by the analog switches DG412, so initialization logic and
recognition logic need to be LOW.

• Hold step: Annealing logic is switched to LOW between annealing and hold
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250 5000

2.5

5
U
[V

]

0

t [ms]

Annealing Hold
Initiali-
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Figure 4.5: Exemplary measurement of the readout voltages (Sec. 4.1.2) during a
successful recognition process of MONACO I (ε = 199 rad

s
, random memorized pat-

terns). Each colored trajectory corresponds to one of the N = 8 pixels. All steps of
a recognition process are shown: In the annealing step, oscillator pairs are coupled
in a feedback loop that decreases frequency differences ∆fi to approx. 0 at a fixed
voltage. At the beginning of the hold step, the feedback loop is removed and un-
coupled oscillators can be observed. Minor remaining frequency differences ∆fi show
up as approx. linear drifts. With the onset of initialization coupling, oscillator pairs
synchronize at phase differences 0 (large U) or π (small U) representing a pixel of
the defective pattern αdi . When the recognition step starts, initialization coupling is
removed and replaced with the recognition coupling, which has attractors for each
memorized pattern αm. Pixels move to the closest attractor, which is the memorized
pattern most similar to αd.

step. Thus, the Sample-and-Hold ICs output a constant voltage and the feed-
back is removed. All oscillators experience no coupling, and small remaining
frequency differences ∆fi are visible as drifts.

• Initialization step: The DG412 connects the initialization coupling voltage by
setting the initialization logic to HIGH. Consequently, oscillator pairs syn-
chronize at phase differences according to the pixels of the defective pattern.

• Recognition step: Initialization coupling is disconnected and recognition coup-
ling is simultaneously connected by setting the initialization logic to LOW
again and the recognition logic to HIGH.

In addition to controlling the steps, patterns need to be provided to the conditional
inverters on the pattern modules as digital signals as well: Here, a HIGH signal
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4.7 Controlling the networks: Patterns and recognition procedure

represent αi = +1, or black pixels, while a LOW signal equals αi = −1 / white
pixels. Summing up, digital signals have to be supplied for both the (M +1)N = 32
pattern pixels as well as the 3 control signals for the steps of the recognition process.
Additionally, we need to measure the N = 8 analog voltage signals that represent
αi. As the phase differences change slowly compared with the oscillator frequencies
and the patterns do only change between measurements, both do not need to be
fast. The control signals need to be faster than the ∆ϑ-dynamics, but are digital
output.
We selected the microcontroller board Arduino Mega 2560 with the 8-bit micro-

controller ATmega2560 from Atmel, which is clocked at 16 MHz. It provides 54
digital pins for input and output and 16 analog input pins with a 10-bit resolution
between 0 and 5 Volt. Additionally, it is comparably cheap and can be programmed
in C without additional equipment. Regarding limitations, the Arduino cannot dir-
ectly output analog signals (except with pulse-width-modulation, which is slow).
Additionally, analog sample rates are in the low kHz for standard settings and a
single signal, and are further reduced if several signals are measured, as the Arduino
has only a single, multiplexed AD-converter. Still, it is suitable for controlling the
network.
Some experiments, like the measurement of the phase response curves Z(ϑ) of

the oscillators, have more stringent requirements: A direct measurement of the
oscillator signals and precise fabrication of sharp voltage peaks is required. For
other measurements, high quality Gaussian white noise needs to be generated. All of
these tasks are beyond the capabilities of the Arduino and thus we needed additional
hardware.

4.7.1 Hardware for fast analog reads and analog signal
generation

The AD-conversion card Spectrum M2i.4032 was used for direct measurements of
fast analog signals, e.g. the oscillators’ voltages. It offers 4 analog input channels
with a 14-bit resolution, adjustment of the input voltage range and a sample rate
up to 50 MS/s.
The generation of fast analog signals, like noise generation or sharp Gaus-

sian peaks for the measurement of phase response curves, DA-conversion cards
Spectrum M2i.6021, M2i.6011 and M2i.6012 were used. They offer 2 (M2i.6021
and M2i.6011) or 4 analog output channels (M2i.6012) with 14-bit resolution and
20 MS/s (M2i.6011 and M2i.6012) or 60 MS/s (M2i.6021) maximum sample rate.

4.7.2 Measurement software

The measurement of pattern recognition processes is coordinated via a C++/Qt-
program, which directly controls all spectrum cards and communicates with the
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Arduino via a serial connection: The control program sends a “request”, and a C-
program on the Arduino reacts and sends a “response”. Different commands change
step durations, transfer new patterns, set digital pins according to the patterns or
start triggered or untriggered measurements. Additional commands for debugging
include setting a constant Hold or Annealing mode. As these commands can be read
from a script, measurement processes could be adjusted as necessary.
For the measurement of phase response curves, another C++/QT program con-

trols the spectrum cards M2i.4032 and M2i.6021. As further elaborated in Sec. 5.1.2,
the M2i.6021 creates sharp Gaussian peaks to perturb an oscillator. The oscillators’
signal as well as the peaks are measured with the M2i.4032.
Both programs were based on software written by Robert Hölzel.
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Experiments

We already presented a typical measurement of readout voltages and different steps
of a recognition process in Sec. 4.7. Now, we will discuss several experiments ana-
lyzing our networks and their components: First, basic properties of oscillators and
network circuitry, namely phase response curves Z(ϑ), frequency differences ∆fi
and coupling strength ε will be discussed. Second, we will evaluate the performance
of the network for different coupling strengths and pattern compositions: Recogni-
tion success as well as recognition times are derived and analyzed. Finally, we will
uncover the influence of noise on network dynamics and performance.

5.1 Phase response curves

In our implementation of MONACO, oscillators are coupled to the coupling voltages
via resistors, which in turn changes the internal voltages of the oscillators. The
oscillator’s phase changes as a reaction to the perturbations of its internal variables
(e.g. the voltage), which is described by phase response curves (PRCs, see Sec.
2.1.2).
Consequently, we need to determine the oscillators’ phase response to voltage

perturbations in order to derive the coupling strength ε in our network. Further-
more, we assumed a sinusoidal PRC shifted by π

2
with respect to the oscillation in

Chapter 3 and need to review that assumption for our implementation of Van der
Pol oscillators.
We slightly modify the method used in [30, 31]: The PRC Z(ϑ) = dϑ

dU can be
measured one point at a time by perturbing the internal voltage U with an in-
stantaneous, small shift ∆U and measuring the resulting phase shift ∆ϑ. Instead
of directly manipulating U , however, we couple an oscillator to an external voltage
Uext through a resistor Rext(See Sec. 4.1.1.):

ϑ̇ = Ω + Z(ϑ) · 1

RextCtot
Uext(t) (5.1)

Instantaneous voltage shifts ∆U can be induced by applying a delta-function in Uext
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at t = tp, which can be approximated by a sharp Gaussian peak:

Uext = Ape−
(t−tp)2

2σ2

Integrating Eq. (5.1) between times t1 and t2 before and after a perturbation, we
can assume Z(ϑ) = Z(ϑp) is constant during the short perturbation at t = tp:

ϑ(t2)− ϑ(t1) = Ω(t2 − t1) +

t2∫
t1

Z(ϑ) · 1

RextCtot
Uext(t) dt

= Ω(t2 − t1) + Z(ϑp)

t2∫
t1

1

RextCtot
Uext(t) dt

= Ω(t2 − t1) + Z(ϑp)∆U

The voltage perturbation ∆U is independent of the phase of the oscillator:

∆U =

t2∫
t1

1

RextCtot
Uext(t) dt

=

√
2πσAp

RextCtot

∆U =

√
π · FWHM ·Ap

2
√

ln 2RextCtot
(5.2)

Here, FWHM = 2
√

2 ln 2 ·σ is the Gauss peak’s full width at half maximum, Ap the
Gauss peak amplitude, Rext is the coupling resistor and Ctot the total capacitance
of the oscillator including soldered as well as parasitic capacitances.
After deriving ∆U , we need to determine the phases ϑp at the time tp of the

perturbation and the resulting phase shifts ∆ϑ.
It is advantageous to determine times when the voltage crosses 0 V with positive

slope and use them as reference for phase determination. Thus, we measured times
t1,t2 at zero-crossings before and after tp.
Then, ϑ(t2)− ϑ(t1) = 2π · n:

2π · n = Ω︸︷︷︸
2π
T

(t2 − t1) + Z(ϑp)∆U︸ ︷︷ ︸
∆ϑ

(5.3)

∆ϑ = −
(
t2 − t1
T

− n
)
· 2π with ϑp =

(
tp − t1
T

− ñ
)
· 2π (5.4)

Here, n is the number of actual traversed periods between t1 and t2, and ñ is the
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number of full periods before the perturbation. The period T is similarly derived
by comparing times between zero-crossings before the perturbation.
Note that it is unfavorable to choose zero-crossings directly before or after the

perturbation for t1 and t2 (as used in [30, 31]), as the Gaussian peak can disturb
the measurement of the crossings: In such measurements with n = 1 and ñ = 0 and
a positive Gaussian peak, the PRC shows a narrow, deep dip at 0 / 2π and a large
peak directly before the dip. The dip originates from Gaussian peaks slightly after a
zero-crossing, where the left tail of the peak had already increased phase before the
crossing occurred. If this crossing before the peak is used as time reference t1, ∆ϑ
is smaller and the PRC shows the dip. Similar deductions can be made for peaks
slightly before a zero-crossing, where the charge induced by the peak has not been
completely transferred yet, which would result in a dip as well. However, another
effect dominates the region before 2π: If a peak occurs shortly before a crossing,
the induced voltage perturbation briefly results in positive values of the oscillator
voltage, which is erroneously detected as a crossing. As the Gaussian occurs before
the real zero-crossing, the time difference in Eq. 5.4 is reduced, which results in
the PRC’s erroneous peak. Note that the PRC is shifted horizontally due to signal
delay, so the dip and the peak can be observed at lower phases than expected. By
using an earlier crossing as time reference t1, it cannot be shifted and the dip can
be avoided. Similarly, a crossing several periods after the Gaussian peak cannot be
confused with the perturbation. Note that the number of zero-crossings occurring
between t1 and t2 needs to be rectified, so crossings are counted only once if they
differ by a fraction of the period only.
We chose the 3rd positive zero-crossing after the perturbation and the 2nd one

before for the determination of ∆ϑ. T was derived from the 5th and the 2nd zero-
crossing before the perturbation. Additionally, Rext = 8,25 kΩ had to be matched
with an additional compensation resistor Rcomp = 100 kΩ parallel to the negat-
ive resistance Rneg = 6,19 kΩ to measure at the same effective negative resistance
R′neg = 34 kΩ as used in the experiment. The applied Gaussian peaks in Uext had
an amplitude Ap = 1500 mV and a full width at half maximum FWHM = 0,1 µs.
In order to discern behavior of the ideal circuit from non-ideal deviations we

conducted simulations in addition to direct measurements of the soldered oscillators.

5.1.1 PRC simulations

Phase response curves deviate from the ideal, sinusoidal shape depending on fre-
quency, non-ideal behavior of circuit components and measurement uncertainties.
We conducted simulations of voltage and current in order to identify the ideal

behavior of a Van der Pol oscillator with the non-linear element used: The capacitor
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and gyrator were modeled as ideal capacitance Ctot / inductance L:

U̇ =
1

Ctot
Q̇ = − 1

C
I

İL =
1

L
U

Here, I is the total current flowing away from U including current from the nonlinear
element, resistances and the inductance:

• The NIC-circuit in the nonlinear element is treated as ideal ohmic resistance
providing inverted current Ineg = −U/Rneg.

• Both diodes of the nonlinear element are modeled with the Shockley diode
equation ID(U) = IS

(
eU/UT − 1

)
[60]. Parameters IS = 8,235 nA and UT =

52,39 mV for the 1N4148 diode were taken from measurements in [45].

• Resistors Rcomp, Rext and Rcoupl were ideal ohmic resistances.

I = IL + ID(U)− ID(−U) + U ·
(

1

Rcoupl

+
1

Rcomp

+
1

Rext

− 1

Rneg

)
− Uext
Rcoupl

Simulated voltages, currents and times were tracked in mV, nA and ms. IL and U
are integrated with a simple Euler algorithm with a timestep dt = 10−7.
Exemplary simulation results for Ctot = 1,0 nF and a cosine fit are shown in Fig.

5.1:

• Phase response curves (black dots) have roughly the shape of a cosine as
expected.

• Deviations from the cosine increase with inductance L. As oscillation wave-
forms start to deviate from being purely sinusoidal at large L

R′neg
[45], accom-

panying deviations in the PRC are not surprising.

• Amplitudes of the fitted cosines are roughly constant at APRC = 2,4 rad
V
, but

deviate and fluctuate at large L, where the cosine does not fit well. (Fig. 5.2a)

• Zeros of the PRC are not shifted, but are always at ϑ = π
2
n.

• Deviations from the cosine fit(green dots) are rotational symmetric to π. Ad-
ditionally, they are negative for ϑ ≤ π and positive for ϑ ≥ π.
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Figure 5.1: Exemplary simulations of phase response curves with Ctot = 1,0 nF and a
cosine fit. Simulation results are plotted as black dots. The fit APRC cosϑ is shown
as red line. Green dots show the difference between the fit and the simulated data.

• Integrating deviations over either
[
π
2
, 3π

2

]
(where the cosine is negative) or[

3π
2
, π

2

]
(cosϑ ≥ 0) yields 0 due to the rotational symmetry. Therefore, we can

expect that the deviations do not influence dynamics much and we can choose
the prefactor of the cosine as the correct amplitude for the calculation of the
coupling strength.

Unfortunately, using a cosine-fit for the measurement data is difficult: As delays will
introduce a shift in the ϑ-axis (See Sec. 5.1.2), the fit function needs to fit the shift
as parameter as well. The fits of the shifted cosine, however, align with the main
peaks and ignore the invariance of zeros of the PRC.
Consequently, we use a fit function g(ϑ) that correctly describes the cosine com-

ponent and preserves the position of zeros in the PRC while being capable to cor-
rectly fit any shift s induced by the measurements:

g(ϑ) = cos (ϑ− s)
[
APRC + β sin (2[ϑ− s]) + γ sin (4[ϑ− s])

]
(5.5)

cosϑ · sin 2ϑ has zeros at nπ
2
and concurs in both sign and rough peak shape with

the remainder of the cosine fit. While cosϑ · sin 4ϑ also preserves the position
of the zeros, it can fit slight asymmetries of deviation peaks. Exemplary fits of the
measurement data are shown in Fig. 5.3 and show excellent agreement. Additionally,
cosine components are reliably fitted at APRC = 2,4 rad

s
as seen in Fig. 5.2b with

significantly less variance than the amplitude of the pure cosine fit. Note, however,
that g(ϑ) was chosen based on observed features of the simulated PRCs and has no
theoretical motivation known to us.
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Figure 5.2: Fit parameters and the maximum value Amax of simulated phase response
curves with Ctot = 1,0 nF are shown for a cosine fit (a) as well as the heuristic fit
function Eq. (5.5) (b). Square roots of the covariance matrix are shown as error bars
if they are larger than symbol size. Shifts s ∈ [− 1

50
π, 0] have different units and are

thus omitted in Fig. 5.2b.
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Figure 5.3: Exemplary simulations of phase response curves with Ctot = 1,0 nF
and a heuristic fit. Simulation results are plotted as black dots. The fit g(ϑ) =

cos (ϑ− s)
[
APRC + β sin (2[ϑ− s]) + γ sin (4[ϑ− s])

]
is shown as red line. Green

dots show the difference between the fit and the simulated data.
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5.1.2 PRC measurement results

Oscillator voltages U were measured with the Spectrum M2i.4032 AD-conversion
card at 50 MS

s
. Uext was generated with a a Spectrum M2i.6021 DA-conversion card

at the same sampling rate. Both cards were controlled from a software written
in Qt/C++. Phase response curves were then derived as described in Sec. 5.1.
Additional considerations avoid systematic measurement uncertainties and automate
measurements:

• Reference oscillators were measured while being plugged into the oscillator
boards. Coupling resistors Rext were connected in place of the resistors for
initialization coupling and Uext was connected directly in front of Rext. Com-
pensation resistors were placed as for normal recognition; resistors for recogni-
tion coupling and grounding resistors on the coupling line were removed. The
measurements were conducted without closing the Faraday cage, but the an-
nealed oscillator was removed and its output voltage grounded. (Preliminary
measurements had shown no difference between the PRCs of reference and
annealed oscillators.)

• In order to check the generation of Uext, it was measured with the M2i.4032
cards as well. As both U and Uext are measured with the same card, delay
between both signals is minimal and times of the perturbations were extracted
from the measurement of Uext instead of relying on identical time zero points
for M2i.4032 and M2i.6021. Local maxima Uext,i in Uext were detected as peaks
if Uext,i > 0.9Ap and Uext,i−1 < Uext,i > Uext,i+1. Note that in the presence of
noise, this simple algorithm may detect a single peak multiple times. However,
all but the first peak between two zero crossings are ignored by the subsequent
computations. As the Gaussian peaks are very narrow, any deviations are
negligible.

• Capacitance and serial resistance of connector and cable change the oscillator’s
dynamics if connected directly to U . Consequently, U was measured after the
non-inverting amplifier, where the oscillator’s dynamic cannot be perturbed.
However, the non-inverting amplifier introduces a small delay which has to be
considered in the fit of the PRC.

First, phase response curves were derived under the assumption Ctot = 1,0 nF.
Exemplary measurements including fits to Eq. (5.5) are shown in Fig. 5.4, while
fitted parameters are shown in Fig 5.5a. While single PRCs match the simulations
qualitatively, fit parameters deviate significantly:

• Shifts s are non-zero as expected, as U is slightly delayed due to the non-
inverting amplifier.

• Amplitudes APRC are significantly smaller than simulations predict.
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(b) f = 70 kHz

Figure 5.4: Exemplary measurements of phase response curves derived with the
assumption Ctot = 1,0 nF. Measurements are plotted as black dots. The fit g(ϑ) =

cos (ϑ− s)
[
APRC + β sin (2[ϑ− s]) + γ sin (4[ϑ− s])

]
is shown as red line. Green

dots show the difference between the fit and the measured data.

• Amplitudes APRC are roughly constant at low frequencies, but decrease at
high frequencies.

However, deviations have to be expected: Although we soldered a capacitance
C = 1,0 nF into the circuit boards, Appendix D suggests the existence of a signific-
ant parasitic capacitance on soldered stripboards. If the capacitance Ctot is under-
estimated, Z(ϑ) ∝ Ctot is underestimated by the same factor. As APRC is roughly
constant at low f and average deviations from simulations are roughly a factor 1.2
at f = 27 kHz, it seems likely that a parasitic capacitance Cpar = 0,2 nF exists in
parallel to C. Consequently, we evaluated the measurements for Ctot = 1,2 nF and
compared them with new simulations with the same capacitance in Fig. 5.5b and
Fig. 5.6:

• At low frequencies, fit parameters APRC , β and γ do now match the fit para-
meters of the simulations.

• At high frequencies, deviations occur in all parameters: The measured APRC
is still lower than the value predicted by simulations. Parameters β and γ,
however, are larger than expected, so PRCs deviate more strongly from the
cosine at large f .

• Shifts of the simulated PRCs are smaller than π
90

and thus agree with our
assumption of zeros at ϑ = π

2
and 3π

2
.
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Figure 5.5: Fit parameters APRC , β and γ for the heuristic fit function Eq. (5.5).
Measured phase response curves (symbols) are compared to simulated PRCs (lines).
Measurements were conducted for different oscillators at 27 kHz and 70 kHz, while
measurements of the whole frequency range were conducted with a single oscillator
only.
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Figure 5.6: Fit parameters s for the heuristic fit function Eq. (5.5) are shown for
measured PRCs (symbols) and simulated PRCs (lines) at Ctot = 1,2 nF. Measure-
ments were conducted for different oscillators at 27 kHz and 70 kHz, while measure-
ments of the whole frequency range were conducted with a single oscillator only.
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• As expected, shifts of measurements and simulations differ, because measure-
ments are additionally delayed by the non-inverting amplifier.

The good agreement of fit parameters at low frequencies confirms, that the deviations
can indeed be attributed to a parasitic capacitance. The origin of the deviations
at high frequencies is currently unknown, but might be due to non-ideal behavior
of op-amps in either the gyrator or the negative resistance. In any case, further
research is required to fully explain the measured PRCs.
The derived PRCs differ between different oscillators or frequencies, thus coupling

strengths ε are not the same as well. We will consider these deviations by assigning
uncertainties to both Ctot and APRC :
As seen in Fig. 5.5b, PRCs deviate between oscillators of the same frequency.

Specifically, measured APRCs at both f = 27 kHz and f = 70 kHz deviate at most
4% from the average over all oscillators. As these relative deviations are the same
for both frequencies, we can attribute them to deviations of the total capacitance,
which suggests ∆Ctot ≈ 0,05 nF.
Average values of APRC are in the range

[
2,37 rad

V
, 2,04 rad

V

]
, decreasing from 27 kHz

to 70 kHz. For the deviation of coupling strengths ε, we use the mean APRC = 2,2 rad
V

of both extrema. Then, deviations amount to ∆APRC = 0,2 rad
V
.

Still, several questions remain unsolved: (For difficulties in previous measure-
ments, see [61].)

• Both ∆Ctot and ∆APRC are systematic uncertainties. Ctot could be derived
for each oscillator independently. After additionally uncovering the frequency
dependence of APRC , future implementations could compensate deviations in
both variables.

• Although a significant parasitic capacitance certainly exists, other, minor ef-
fects might additionally affect APRC . As the phase response measurement
alone is not sufficient to separate the influence of the capacitance from other
error sources - e.g. in the coupling resistance - it is desirable to measure Ctot
independently.

The amplitude of Z(ϑ) and the total capacitance Ctot affect the coupling strength ε.
As the coupling strength determines recognition times and deviations from the ideal
dynamics, it seems advisable to verify our values for ε. In addition, low frequency
differences ∆fi of the oscillator pairs after annealing are essential for the performance
of our network, but are difficult to calculate. Fortunately, we can obtain both ε and
the ∆fi from direct measurements of the recognition dynamics.
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5.2 Network preparation for recognition
experiments

Before any recognition measurements can be conducted, we must ensure that para-
meters of our MONACO prototype - e.g. the amplitude A or the frequencies fi -
are adjusted and remain stable. Here, we describe the exact procedure for meas-
urements of MONACO I: (For MONACO II, only preliminary measurements with
non-ideal oscillators have been conducted so far and the procedure could not be
followed exactly.)

1. Coupling resistors Rrecog and Rinit as well as compensation resistors Rcomp

cannot be changed while the network is operating, as they are positioned
inside the Faraday cages. Consequently, they were changed before assembling
the network.

2. After assembly, the power supply was connected and we waited at least ten
minutes for thermal drifts to settle. In order to ease the following manual
adjustment of frequencies fi, the feedback loop of the automatic frequency
adjustment circuit was activated (The network was set to the “Annealing Step”;
Sec. 4.7.).

Frequencies fi and amplitudes A can be adjusted during operation via potentiomet-
ers, which are accessible through holes in the Faraday cages that surround the
oscillator submodules. Here, the first potentiometer is part of the gyrator, which
changes the inductance and thus the frequency of the oscillator (Sec. 4.1.3). The
second potentiometer is part of a non-inverting amplifier, thus varying the ampli-
fication factor for the oscillator amplitude A. Specifically, we followed the following
procedure for each oscillator pair:

1. A Teledyne Lecroy HDO6034 oscilloscope is connected to the oscillator
voltages. The oscilloscope is first configured to display frequencies of the os-
cillators and average them over time for greater accuracy.

2. The frequency of the reference oscillator is adjusted first according to Table
5.1. The frequencies in Table 5.1 fulfill the necessary frequency conditions and

pixel 1 2 3 4 5 6 7 8
fi for MONACO I [kHz] 27.00 28.26 32.06 38.38 45.97 54.82 67.47 70.00
fi for MONACO II [kHz] 27.00 30.31 36.92 40.23 56.77 60.08 66.69 70.00

Table 5.1: Oscillator frequencies used in the experiment for both architecture variants
MONACO I and MONACO II. The fi fulfill the frequency conditions Eq. (A.1) for
MONACO I and Eq. (3.26) for MONACO II.
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can be handled by the Van der Pol oscillators we implemented. The frequency
accuracy |f ideali − fi| ≈ 0,05 kHz is mainly limited by the friction inside the
potentiometer, which then limits the minimal angle it can be turned.

3. The frequency of the annealed oscillator is adjusted afterwards. Although the
automatic frequency annealing readjusts this oscillator before each measure-
ment, the manual adjustment can maximize available annealing range: As the
frequency annealing feedback is active, frequency and phase difference ∆ϑi
lock as soon as the intrinsic frequency of the annealed oscillator is inside the
annealing range. However, the frequency was tuned further, till ∆ϑi ≈ π

2
. At

this point, cos ∆ϑi ≈ 0, centered between its extreme values. Future annealing
steps - necessary due to e.g. thermal drifts - have thus an optimally symmetric
annealing range.

4. Finally, the oscilloscope is configured to average over the oscillators’ amp-
litudes, which are adjusted with the potentiometers up to ∆A ≈ 0,01 V.

Drifts shift both the oscillator amplitudesA and the frequencies of both reference and
annealed oscillators. For measurements of MONACO I, parameters were checked
after each measurement set and readjusted if necessary. In total, amplitudes did
never deviate more than ∆A = 0,05 V, frequency of reference oscillators was exact
up to |f ideali − fi| ≈ 0,2 kHz.
Preliminary measurements for MONACO II were conducted with a previous gen-

eration of oscillators, whose amplitudes could not be adjusted for the assembled
network. Consequently, deviations are much higher.

5.3 Frequency deviations and coupling strength

The trajectory of a pixel depends on the coupling strength ε, the memorized patterns
αm and the frequency differences ∆fi that remain after the frequency annealing
process. From another point of view, both ε and ∆fi can be obtained from the slope
of such a trajectory if we carefully select the memorized patterns.
In order to acquire precise phases, we measure the oscillator signals during recog-

nitions with the M2i.4032 AD-card:

5.3.1 Mapping measured waveforms to phases

The M2i.4032 card returns times τ and voltages Uτ as integers with the τ being
indices of the 16-bit integer array describing the Uτ . Units of τ were 1 µs and the
Uτ correspond to voltages Uτ

213 · 5 V. The zero-crossings of the waveforms constitute
good reference points for the derivations of phases:
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5.3 Frequency deviations and coupling strength

1. All times t0j when the waveform crosses 0 V with positive slope were recorded:
If Uτ−1 < 0 and Uτ > 0, we linearly approximate the intersection of the t-axis
(intercept theorem):

t0j = τ − τ − (τ − 1)

Uτ − Uτ−1

Uτ

= τ − Uτ
Uτ − Uτ−1

2. Multiple crossings of the t-axis due to noise were excluded: First, the period
of the oscillator was roughly approximated as T̃ =

t0last−t
0
first

number of t0j
. Then, each t0j

was considered too close and excluded if tj − tj−1 < 5‰T̃ .

3. Phases at times τ were derived by comparing with the last and next unique
intersections of the t-axis:

ϕ(τ) = 2π
τ − t0before
t0next − t0before

5.3.2 Dynamics of a single changing pixel

In Sect. 4.5 , we calculated the coupling strength ε from the circuitry components
of the network. Here, we show that ε can be derived from the slope of trajectories,
which allows to verify our formula for ε and independently measure frequency dif-
ferences ∆fi between the oscillator pairs. The averaged dynamic equation including
differences of angular frequencies was already presented as Eq. (3.21):

∆ϑ̇i = ∆Ωi −
ε

N
sin ∆ϑi

( N∑
j=1

Sij cos ∆ϑj −
M

2
cos ∆ϑi

)
(5.6)

We restrict our analysis to trajectories with the following properties:

• Only the ith pixel is defective.

• All other pixels are stable and therefore will not switch.

• Noise is low compared to frequency differences of oscillator pairs.

In order to analyze the slope of the transitions, we must first modify the dynamic
equation for αi = cos (∆ϑi) (Eq. (3.13)) to include frequency differences. Afterwards,
we simplify Eq. (3.13) for transitions of a single pixel.
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Influence of frequency differences

First, we consider the influence of frequency differences ∆fi = ∆Ωi/2π on the ∆ϑi-
dynamics: The system starts on a fixed point in the ideal case ∆Ωi = 0, and
consequently the system state will move into regions with ∆ϑ̇i > 0 or ∆ϑ̇i < 0 de-
pending on the perturbation and stay in that domain. For ∆Ωi 6= 0, that symmetry
is broken: ∆Ωi is the main perturbation for low noise and consequently decides on
the ∆ϑi-region the system moves into. For ∆Ωi > 0, ∆ϑi grows till the pixel is
switched and vice-versa for ∆Ωi < 0. Consequently, ∆Ωi always accelerates a
pixel switch! We derive the contribution ∆̃Ωi to α̇i with the chain rule:

∆̃Ωi = ∆Ωi · sin (∆ϑi)

= |∆Ωi| |sin (∆ϑi)| · αm
′

i

= |∆Ωi|
√

1− α2
i · αm

′

i

Trajectory slope at the turning point

The dynamics of αi with inclusion of the non-zero frequency difference can then be
summarized as follows: (See also Sec. 3.3.1.)

α̇i = |∆Ωi|
√

1− α2
i · αm

′

i +
ε

N
(1− α2

i )

(
M∑
m=1

αmi 〈αm,α〉 −
M

2
αi

)
(5.7)

As only the ith pixel of the correct pattern αm′ is defective, we can simplify the
coupling term as well:

αi(t = 0) = αdi = −αm′i
α = αm

′
+ (αi − αm

′

i ) · êi
〈αm,α〉 =

〈
αm,αm

′
〉

+ αmi (αi − αm
′

i )

In Eq. (5.7):

α̇i = ∆̃Ωi +
ε

N
(1− α2

i )

(
M∑
m=1

αmi

(〈
αm,αm

′
〉

+ αmi (αi − αm
′

i )
)
− M

2
αi

)

= ∆̃Ωi +
ε

N
(1− α2

i )

(
αm

′

i N +
M∑

m6=m′
αmi

〈
αm,αm

′
〉

+
M∑
m=1

(
αi − αm

′

i

)
− M

2
αi

)

= |∆Ωi|
√

1− α2
i · αm

′

i +
ε

N
(1− α2

i )

(
αm

′

i (N −M) +
M

2
αi +

M∑
m6=m′

αmi

〈
αm,αm

′
〉)
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5.3 Frequency deviations and coupling strength

Halfway through the transition, the slope is approximately constant and depends
on angular frequency difference ∆Ωi, coupling strength ε and patterns αm only:

α̇i(αi = 0) = αm
′

i

|∆Ωi|+
ε

N

(
N −M +

M∑
m6=m′

αm
′

i α
m
i

〈
αm,αm

′〉)
︸ ︷︷ ︸

X

 (5.8)

If we can select suitable patterns with only the ith pixel switching, we can derive
|∆Ωi| and ε:

1. Transitions of a pixel are measured with different sets of patterns that
correspond to different values of the “pattern factor” X = N − M +∑M

m6=m′ α
m′
i α

m
i

〈
αm,αm

′〉. As the ∆fi are randomly distributed, several meas-
urements are necessary for each X.

2. A linear fit extracts the slopes α̇i(αi = 0) in each measurement.

3. The slopes are again sorted as a function of X, and fitted with s(X) = |∆Ωi|+
ε
N
·X.

Selection of suitable memorized patterns for single transitions

In order to get many different values of α̇i(0), X has to be varied, which is done by
choosing suitable sets of memorized patterns. Additionally, all pixels of the correct
memorized pattern as well all non-switching pixels k 6= i of the defective pattern
have to be stable.
The stability of αm′ is known from Sec. 3.2.2:

M∑
m 6=m′

αm
′

l α
m
l

〈
αm,αm

′
〉
> −

(
N − M

2

)
= −6.5 ∀l

Additionally, all non-switching pixels k 6= i of the defective pattern must be stable
as well:

λk(α
d) < 0

− ε

N

(
M∑
m=1

αmk α
d
k

〈
αm,αd

〉
− M

2

)
< 0

M∑
m 6=m′

αmk α
m′

k

〈
αm,αm

′〉
+N − 2

M∑
m=1

αmk α
m′

k α
m
i α

m′

i︸ ︷︷ ︸
≤M

−M
2
> 0
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M∑
m 6=m′

αmk α
m′

k

〈
αm,αm

′
〉
> −

(
N − 5M

2

)
M∑

m 6=m′
αmk α

m′

k

〈
αm,αm

′
〉
> −0.5

This last condition is much more restrictive than the criterion for stable memorized
patterns. Measurements were conducted with some sets of memorized patterns that
fulfill the equation and correspond to X ∈ [5, 21] :

• 3 orthogonal patterns: X = N −M = 5.

• 3 identical patterns αm′ : X = 3N −M = 21

• 2 identical patterns αm′ + 1 pattern with adjustable projection→ X = 2N −
M + αm

′
i α

m
i

〈
αm,αm

′〉. For simplicity, we choose αm′i αmi = +1.
〈
αm,αm

′〉
can then take values from -6 to +6.

Extracted coupling strengths and frequency differences

Measurements were performed at a calculated coupling strength ε = 94,4 rad
s

with
one set of memorized patterns for each pixel and value of X ∈ [5, 21]. Several
measurements were performed for each set of pixels and patterns, as the frequency
differences ∆f vary and some statistics is needed for a correct fit. The phases and αi
were extracted from measurements of the waveforms conducted with the Spectrum
card M2i.4032 as described in Sec. 5.3.1.
In practice, higher order phase terms oscillate around the average dynamics de-

scribed by Eq. (3.13). Consequently, these oscillations complicate useful fits of the
α̇i(αi = 0) and should thus be removed. At the coupling strength ε = 94,4 rad

s
, a

moving average with a window of 2 ms removed most of the oscillations without
decreasing the slope of the transition. The averaged trajectories were fitted with
a straight line in the range αi ∈ [−0.3,+0.3] to obtain the slope α̇i(αi = 0).(See
Fig. 5.7a.) Note that the standard error of the fit parameters is negligible compared
to the variance of ∆Ωi. The α̇i(αi = 0) in turn were then fitted as a function of
the “pattern factor” X, as shown in Fig. 5.7b, obtaining the slope ε

N
and the offset

|∆Ωi|. |∆fi| = 1
2π
|∆Ωi| and ε are shown in Fig. 5.7c and 5.7d.

The ∆fi are small and confirm the correct operation of the frequency annealing
circuitry. The measured coupling strengths ε, however, are strictly below the cal-
culated value for the coupling strength. While the additional decline of ε at high
frequencies reminds of the decline in APRC (Sec. 5.1.2), the decline is roughly two
times larger than expected from APRC alone. One possible error source might be
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(a) Exemplary fit of a trajectory
(X = 27, first pixel): The measured val-
ues of αi show oscillations around the av-
eraged dynamics. Removing these higher
order terms with a running average over
2 ms allows for a precise linear fit of the
slope in αi ∈ [−0.3,+0.3], which depends
on the coupling strength ε, the phase ve-
locity ∆Ωi and the memorized patterns.

(b) Exemplary fit of the slopes at
αi = 0: Slopes obtained as depicted in
Fig. 5.7a are fitted as function of X,
which in turn can be varied with the
memorized patterns. The coefficients ε

N
and |∆Ωi| of the linear fit are important
parameters of the network. Standard er-
rors were derived as square-roots of the
covariance matrix’s diagonal elements.
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(c) Frequency differences: |∆fi| =
|∆Ωi|

2π are shown for each pixel. The low
values prove the effectiveness of the fre-
quency annealing circuitry.
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(d) Coupling strengths: Measured
coupling strengths ε are shown for each
pixel and compared with the value expec-
ted from calculation. Deviations might
originate in the oscillator amplitudes A,
as ε ∝ A3 is strongly influenced even by
small ∆A.

Figure 5.7: Derivation of individual coupling strengths ε and frequency differences
∆fi from the slope of transitions. Fig. 5.7a and 5.7b present the analysis with
examples. Results are shown in Fig. 5.7c and 5.7d.
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the oscillator signal amplitude A. As it contributes to ε in the third power, even
small ∆A change ε significantly. While the maximum amplitude was adjusted to the
mentioned value A = 1,4 V, the amplitude of the sinusoidal contribution actually in-
fluences the other oscillators. Differences between these amplitude definitions could
be large enough to explain the difference in scale. The decline of ε up to higher pixel
numbers is difficult to analyze: As the deviations from an ideal sinus depend on
frequency and components, each oscillator emits a different effective amplitude A.
Consequently, each summand in the phase equation of the circuitry (Eq. (4.5)) has
a different combination of amplitudes. Due to these differences between summands,
the pattern pixels in each summand strongly influence the result, as they decide
how these terms add up. Our measurements have been conducted with one set of
memorized patterns for each pixel and value of X, which were not chosen randomly.
Future measurements could improve our results by measuring different sets of mem-
orized patterns for each X, which would randomize the effect of the patterns and
return a more meaningful, average coupling strength for each oscillator.
In the end, the deviations in ε cannot be explained completely and remain a valid

target for future research. The performance of the network, however, is high despite
the deviations, as we will illustrate in Sec. 5.6. First, however, we will conclude our
analysis of network components by verifying and calibrating readout voltages.

5.4 Calibration and verification of readout voltage
measurements

Phases and αi = cos ∆ϑi can be derived from measurements of the oscillator voltages.
(Sec. 5.3.1) However, high sampling rates and precision are necessary for this direct
measurement, and future integrated oscillatory neural networks cannot afford this
overhead. In contrast, readout voltages U ′α,i (See Sec. 4.1.2.) are created inside the
network, contain all necessary phase information and can be read cheaply at low
sampling rates. In our experiment, the U ′α,i are read with an Arduino Mega 2560
with 10 bit resolution. Voltage levels can be clearly separated and are viable for
practical applications. (See Fig. 5.8b.) As we want to extract cos ∆ϑi precisely for
our analysis, we add an additional calibration step:
The U ′α,i are supposed to be linear functions a·cos ∆ϑi+c, so system state variables

αi = cos ∆ϑi are easy to obtain:

cos ∆ϑi =
U ′α,i − c

a
= s · (U ′α,i − c) , (5.9)

In order to derive the αi, the scaling factor s and the shift c need to be precisely
known. However, these constants vary between pixels and drift with temperature,
so recurrent recalibration is necessary for an exact mapping:
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We measure two initializations with all negative and all positive pixels. As ini-
tialization coupling is strong enough that phase differences synchronize to phase
differences 0 or π with negligible error, we can assume cos ∆ϑi = ±1 and we read
voltages U ′α,i(0) and U ′α,i(π) with the Arduino:

+1 = s(U ′α,i(0)− c) −1 = s(U ′α,i(π)− c)

s =
2

U ′α,i(0)− U ′α,i(π)
c =

U ′α,i(0) + U ′α,i(π)

2

These calibration measurements were conducted before or after each set of re-
cognition measurements. U ′α,i(0) and U ′α,i(π) were averaged over time to increase
precision of s and c. Measurement data was then mapped according to Eq. (5.9).
See Fig. 5.8 for an exemplary application of the calibration procedure.
In Fig. 5.9, αi measurements with both Arduino and the AD-card Spectrum

M2i.4032 are compared: On average, both curves align. The measurement with
the AD-card, however, shows small regular oscillations in ∆ϑi around the averaged
trajectory, which correspond to higher order terms of the phase description. These
cannot be seen in the Arduino data due to the Arduino’s limited sampling rate. The
measurements of the Arduino are nevertheless sufficiently precise to derive statistics
about recognition success and recognition times, as is shown the next sections.

5.5 Removing noise from trajectories

Trajectories at high ε perform pattern recognition, but show a lot of delta-peak-
shaped noise deviating from an ideal trajectory. (See e.g. Fig. 5.10 and 5.11.)
In order to correctly extract statistics on recognition success and recognition times,
trajectories were smoothed with a median filter [62, 63]: Smoothed trajectories α̃i(t)
are derived by applying a median to all values within a symmetrical time window
tw = 30 ms on the system state data α after calibration (Sec. 5.4):

α̃i(t) = median([αi(t− 0.5tw), αi(t+ 0.5tw)])

Smoothed data points were derived each ∆t = tw
300

= 100 µs. Median filtering was
chosen over a running average for two reasons:

• Outliers are rejected. Peaks with a width d < 0.5tw are removed completely,
while a running average would still be shifted considerably.

• Edges are preserved. Specifically, all monotone curves are invariant under me-
dian filtering [64]. As an ideal switching transition is monotone, the smoothed
transition is not broadened and transition times can still be derived accurately
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(a) Exemplary calibration measurement: Two initializations with positive /
negative coupling map ∆ϑi = 0 / ∆ϑi = π to corresponding voltage levels.
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(b) Uncalibrated measurement (initialization and recognition): Voltage levels
of different pixels do not align due to temperature dependencies and limited com-
ponent precision.
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(c) Calibrated measurement: The voltage data from Fig. 5.8b has been
mapped to αi = cos ∆ϑi by using initialization voltage levels from Fig. 5.8a.

Figure 5.8: Calibration of Arduino readout voltage data. (Example at ε = 199 rad
s

and M = 3 orthogonal patterns.)
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Figure 5.9: A defective pixel is shown during the transition to its correct value at
a coupling strength ε = 199 rad

s
. αi = cos (∆ϑi) is compared for measurements with

both the Spectrum AD-card M2i.4032 and the Arduino Mega 2560.
The AD-card measurement shows small oscillations around the averaged dynamics,
which corresponds to higher order terms in the phase description. The measurement
of the readout voltages with the Arduino Mega displays the averaged dynamics
correctly, while the higher order phase terms cannot be resolved due the Arduino’s
limited sampling rate.

at high coupling strengths. (See Fig. 5.10 for an example of median filtering
at high ε.)

We define the final system state αfinal as the last value of the smoothed tra-
jectories α̃ and use it as a reference for the derivation of recognition times Trecog
(Sec. 5.7). Further, αout with αouti = sgnαfinali will be interpreted as the network’s
output for the derivation of recognition success (Sec. 5.6). In order to guarantee
that the recognition is finished when αfinal is extracted, we chose measurement
times far larger than typical recognition durations. Histograms of measured recog-
nition times are well inside the measured time frame despite their long tails, and
measured final states match theoretical expectations. Note that any practical ap-
plication of MONACO will probably use a similar procedure to detect the output
pattern: Coupling strengths would be high for short recognition times and noise
removal would thus be required. Additionally, the output pixels would be converted
to digital signals for further usage.

5.6 Recognition success

After measuring properties of single oscillator pairs and validating the readout
voltages in previous sections, we can finally assess the performance of MONACO
I. (For MONACO II, only preliminary measurements exist yet, which are shown in
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Figure 5.10: At high coupling strengths, noise consisting of sharp peaks dominates
trajectories. This plot shows a single trajectory of a measurement at ε = 4730 rad

s

with M = 2 random patterns. Applying a median filter with a symmetric time
window tw = 10 ms removes most noise, but does not shift or broaden the transition
of the pixel. A median with a larger window tw = 30 ms recovers an ideal transition
curve. In contrast, a running average with tw = 10 ms is strongly influenced by noise
and modifies the transition shape.
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Figure 5.11: Example of a switching between attractors at very high coupling
strengths ε = 4731 rad

s
and M = 2 patterns. Only the green trajectory is sup-

posed to switch for a correct recognition, which it first does successfully. However,
noise induces a second switch at t ≈ 75 ms, when 4 pixels (blue and green trajector-
ies; marked with stars) switch and change the correct output pattern to the other
attractor erroneously. Additionally, readout voltages (and thus, calculated values
for αi) exceed the values from initialization. As the cosine is already at extreme
values at initialization, the phase description is not sufficient to explain readout and
dynamics during recognition and amplitude effects are relevant.
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Appendix E.) In this section, we will focus on the success of the recognition process,
meaning that the final pattern is the most similar to the erroneous input pattern.
As discussed in Sec. 3.2.2, the network’s potential attractors are the memorized pat-
terns as well as their inverses and possibly unwanted, “spurious” attractors. We will
now present different sets of measurements with either 2 or 3 orthogonal or random
memorized patterns.
Let us first look at M = 2 orthogonal memorized patterns. The orthogonal

patterns (00001111) and (00110011) and their inverses are always attractors (Sec.
3.2.2), and no spurious attractors were found. We conducted measurements for
all 2N = 256 possible input patterns. If the final output pattern αout was one
of the memorized patterns and the erroneous input pattern αd was more similar
to αout = αm1 , i.e. |

〈
αd,αm1

〉
| ≥ |

〈
αd,αm2

〉
|, we counted that recognition as

successful. Note that for every attractive pattern, the inverse patterns −αm1 and
−αm2 are also attractors (See Sec. 3.2.2), and are handled equal to the original
memorized patterns.
In the whole range ε ∈ [48,3 rad

s
, 1608 rad

s
], the network successfully recognizes

every input pattern in all measurements (See Table 5.2), even if they were not
predicted to succeed by our criterion for guaranteed recognition (Eq. (3.19)). Qual-
itatively, these measurements are very similar to Fig. 5.8c.
At very high coupling strengths ε = 4731 rad

s
, recognition success drops, but an

upper limit of ε has to be expected: When we derived the ideal dynamics Eq.
(3.5), we neglected higher order phase terms, amplitude effects and assumed that
oscillators abide by the frequency conditions Eq. (A.1). At high coupling strengths
ε, none of these assumptions remain valid and deviations from the ideal dynamics
must exist. Inaccuracies further complicate an analysis of the dynamics. In total,
several deviation origins have to be considered:

• The phase dynamics Eq. (3.5) determined with averaging are only valid at low
ε. At high ε, higher order phase terms of the full, unaveraged phase equations
(Eq. (3.1)) become large.

• At even higher ε, the phase of each oscillator is not sufficient to describe the
dynamics of the oscillator: Perturbations of an oscillators internal dynamics
cannot be considered independently anymore, so the deviations of the oscil-
lator’s amplitude have to be considered as well.

• Deviations from the frequency conditions Eq. (A.1) are not critical at low
coupling strength, but might become important.

• Any electronic circuit carries some noise, which can have multiple origins, e.g.
thermal motion of charge carriers or induced external signals. This noise is
always present in the coupling voltage.
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ε [ rad
s
] success rate [%]

(input: all patterns)

success rate [%]
(input: theoretically
guaranteed only)

48.3 100.0 100.0
94.4 100.0 100.0
198.6 100.0 100.0
482.5 100.0 100.0
778.2 100.0 100.0
1608.4 100.0 100.0
4730.5 89.5 75.0

Table 5.2: Success rates for 2 orthogonal patterns. For each coupling strength ε,
256 measurements were conducted with the memorized patterns (00001111) and
(00110011). No spurious attractors were found. Recognitions were regarded as suc-
cessful, if the output was the closest memorized pattern. 14 % of these measurements
are predicted to succeed according to Eq. (3.19).

Due to multiple possible origins of deviations, a theoretical analysis seems daunt-
ing. First work has been done by Alexander Sparber in his bachelor’s thesis [65]:
He analyzed the full phase dynamics for M = 1 memorized pattern and perfect
frequencies. At high ε, he found two competing effects: Oscillations around the
averaged dynamics occur in ∆ϑi, increase in amplitude and distribute in Fourier
space. Finally, phase slips occur due to these noisy oscillations, meaning that the
phase differences jump by 2π. Another effect is the synchronization between differ-
ent oscillator pairs: Frequencies of different pairs align, so frequency conditions are
strongly violated. As coupling terms are then received from additional, unintended
oscillators, the network’s attractors are modified. Both effects depend heavily on
the number of pixels, the memorized patterns and even initial conditions.
In our experiment, however, amplitude effects, electronic noise, frequency devi-

ations and the existence of several memorized patterns further modify the dynamics.
Consequently, we expect an upper limit for the coupling strength ε, but neither the
critical value of ε nor the limiting effect can be deduced beforehand and might change
with parameters.
Returning to our measurements with M = 2 orthogonal patterns, recognition

success drops only at very high coupling strengths ε = 4731 rad
s
: Here, the measure-

ments predicted to succeed (Eq. (3.19)) are affected as well, which proves that Eq.
(3.5) is not valid anymore.
Fig. 5.11 shows an example of noisy dynamics at very high coupling strengths.

Specifically, large irregular deviations from the fixed points induce a switching
between the two memorized patterns in this example, which invalidates the recog-
nition process. Additionally, the readout voltages during recognition exceed values
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ε [ rad
s
] 1st memorized

pattern (or inverse)
2nd memorized

pattern (or inverse)
48.3 110 146
94.4 107 149
198.6 123 133
482.5 157 99
778.2 159 97
1608.4 148 108
4730.5 214 42

Table 5.3: Distribution of output patterns for 2 orthogonal memorized patterns. For
each coupling strength ε, 256 measurements were conducted with the memorized
patterns (00001111) and (00110011).

from initialization, when the cosine was already extremized by phase differences 0
and π. Consequently, the phase description is not sufficient at this value of ε and
amplitude deviations affect both readout and dynamics of the network.
Note that the Arduino cannot resolve the noise well enough for an accurate ana-

lysis. Future research will be required to separate different origins of deviations and
estimate their magnitude.
Next, the distribution of output patterns should be analyzed. Note that for

some erroneous input patterns αd, both candidates α1 and α2 are correct out-
put patterns: If the distances of αd to each output pattern are equal, meaning〈
αd,α1

〉
=
〈
αd,α2

〉
, both output patterns are the closest to αd. In an ideal net-

work, this case would be decided by initial, random perturbations on αd. In contrast,
any real network has deviations in coupling strength, frequency or oscillator amp-
litudes, which influence the departure from ambiguous initial patterns and finally
lead to an imbalance in pattern distribution.
The distribution of final patterns for the two orthogonal patterns at different

coupling strengths is shown in Table 5.3. The counts for both memorized patterns
(including their inverses) differ as expected, but are roughly equal. At very high
coupling strengths ε = 4731 rad

s
, however, the first memorized pattern is significantly

more frequent as final pattern than the second.
This change of stability can also be observed if we increase the number of ortho-

gonal patterns to M = 3: We measured orthogonal memorized patterns (00001111),
(00110011) and (01010101) and show the distribution of output patterns in Table
5.4. Similarly to M = 2, the distribution of memorized patterns shows some vari-
ance due to ambiguous input patterns, but each pattern is roughly equally frequent.
At high coupling strength, stability changes again, but for M = 3, only one of
the memorized patterns remains stable. This abnormal behavior might be due to
synchronization of different oscillator pairs: Oscillators inside a group have differ-
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ε [ rad
s
] mem.

pat. [%]
spur.

pat. [%]
1st

mem.
2nd

mem.
3rd

mem.
1st

spur.
2nd

spur.
3rd

spur.
4th

spur.
48.3 85.5 14.5 65 85 68 8 11 9 9
67.2 78.0 22.0 56 77 66 12 10 21 13
84.7 83.1 16.9 61 82 69 9 13 13 8
104.9 82.4 17.6 68 81 62 10 10 13 12
198.6 82.0 18.0 68 73 69 11 13 13 9
482.5 87.1 12.9 90 66 67 7 8 8 10
778.2 83.9 16.1 89 57 68 8 10 13 10
1608.4 91.0 9.0 110 66 56 6 10 0 7
4730.5 100.0 0.0 256 0 0 0 0 0 0

Table 5.4: Distribution of output patterns for 3 orthogonal patterns. For each
coupling strength ε, 256 measurements were conducted with the memorized pat-
terns (00001111), (00110011) and (01010101). Spurious attractors were (00010111),
(01110001), (01001101), (11010100) and their inverses. Listed counts represent both
a pattern and its inverse.

ε [ rad
s
]

success rate [%]
(input: all patterns;
correct: memorized)

success rate [%]
(input: all patterns;

correct: all attractors)

success rate [%]
(input: theoretically
guaranteed only)

48.3 85.5 100.0 100.0
67.2 78.0 100.0 100.0
84.7 83.1 100.0 100.0
104.9 82.4 100.0 100.0
198.6 82.0 99.6 100.0
482.5 87.1 100.0 100.0
778.2 83.9 100.0 100.0
1608.4 91.0 96.1 100.0
4730.5 67.2 57.0 33.3

Table 5.5: Success rates for 3 orthogonal patterns. For each coupling strength ε, 256
measurements were conducted with the memorized patterns (00001111), (00110011)
and (01010101). Spurious attractors were (00010111), (01110001), (01001101),
(11010100) and their inverses. Two definitions of recognition success are shown
in the table: Either recognition was only counted as successful, if the output was
the closest memorized pattern (or one of their inverses), or the output being closest
attractor to the initial pattern was sufficient. 21 % of these measurements are pre-
dicted to succeed according to Eq. (3.19).
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ent frequencies and only phase differences to the other group are supposed to be
influenced by the coupling modulations. However, oscillators can synchronize to
other frequency components in the coupling voltage intended for another oscillator,
if the coupling is stronger than the frequency difference. As the minimal angular
frequency difference ∆Ωmin = 2πfmin = 2π · 1,26 kHz = 7,92 krad

s
is exceeded by

some coupling contributions with ε ·M ≈ 14 krad
s
, this seems viable. Concomitantly

to the frequency adjustment of an oscillator, the coupling voltage components for
its partner in the other group also change. At the same time, the partner oscillator
and the neighboring oscillator pair see an increasingly narrower frequency differ-
ence, leading to a total synchronization of both pairs. Although it is not visible as
prominently, these synchronization effects probably also influence the network with
M = 2 orthogonal patterns, which sees an increase of stability for the first pattern
as well.
In contrast to M = 2, however, several spurious attractors occur; namely

(00010111), (01110001), (01001101), (11010100) and their inverses, which consti-
tute a considerable percentage of final patterns. Looking closer at each pixel of the
first spurious pattern αsp1 , we see that αsp1

i concurs with the most frequent value
of the ith s pixels of the memorized patterns αmi . Explicitly, the first pixels of all 3
memorized patterns are 0, so αsp1

1 = 0 as well. The second pixels are 0,1 and 0, and
αsp1

2 = 0 coincides with the most frequent value again. This is true for all pixels of
αsp1 .
Similarly, we gain the other spurious attractors by inverting some of the memor-

ized patterns and then taking the most frequent pixel values for each index. These
types of spurious attractors, called “symmetric mixture solutions” [66], also occur in
other attractor networks, like the Hopfield network [24]. Specifically, these attractors
are described by the majority rule:

αspi = sgn

(∑
m∈A

smαmi

)
(5.10)

Here, prefactors sm ∈ {±1} denote that either a pattern or its inverse is used for the
construction of a spurious attractor αsp. Any subset of A ⊂ {1, ...,M} can be used
to construct a candidate for a spurious attractor, but stability is not guaranteed and
needs to be verified with our stability criterion Eq. (3.10). In other networks, for
example, using any even number of memorized patterns for construction results in
unstable fixed points [66] and we could not detect any spurious patterns for M = 2
as well.
Unsurprisingly, spurious attractors influence recognition success as well. As seen

in Table 5.5, the success rate for M = 3 orthogonal patterns is diminished, if we
allow only memorized patterns (00001111), (00110011) and (01010101) and their
inverses as possible correct candidates. If we, however, add spurious attractors as
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ε [ rad
s
]

success rate [%]
(input: all patterns;
correct: memorized)

success rate [%]
(input: theoretically
guaranteed only)

48.3 98.1 99.1
198.6 99.4 100.0
482.5 98.9 100.0
778.2 98.2 100.0
1608.4 96.4 100.0
4730.5 65.8 57.5

Table 5.6: Success rates for 2 random patterns. A list of 1000 sets of random
memorized patterns with random input patterns was constructed and measured for
each coupling strength ε. No spurious attractors exist for 2 patterns. Recognitions
were regarded as successful, if the output was the closest memorized pattern. 11 %
of these measurements are predicted to succeed according to Eq. (3.20).

acceptable final patterns and define success as αout being the closest attractor to
the erroneous input pattern, we regain our high success rates.
Depending on the application, the memorized patterns may not be orthogonal.

Therefore, we discuss 2 random memorized patterns next: Pixels of the initial, erro-
neous pattern as well as the memorized patterns were selected with 50% probability
for each value. M = 2 random patterns are not accompanied by spurious attract-
ors, as suggested by the majority rule Eq. (5.10). Rates of recognition success are
close to 100% again, as shown in Fig. 5.6, and drop at very high coupling strength.
(Probably, reasons for the decline are the same as for M = 2 and M = 3 orthogonal
patterns.) Additionally, a slight decline in the success rate of predicted recognitions
occurs at very small coupling strengths ε = 48,3 rad

s
. This hints at the lower limit of

ε, where frequency differences ∆fi become relevant. (See Eq. (3.21).) At medium
values of the coupling strength, the coupling term is much larger than differences
of angular frequencies ∆Ωi = 2π∆fi and the dynamics remain unaffected. If the
coupling between oscillators in a pair gets close to ∆Ωi = 2π∆fi, stability of pixels
will be diminished. This can lead to noise-induced transitions or even loss of syn-
chronization in a pair, so phase slips occur. Exemplary measurements showing these
phenomena are shown in Fig. 5.12, but they are still rare at this value of the coupling
strength.
Finally, we measured M = 3 random patterns. All spurious attractors found are

predicted by the majority rule Eq. (5.10). On the other hand, neither spurious nor
memorized patterns need to be attractors (See e.g. Eq. (3.7): If two memorized
patterns are similar, they can destabilize the third memorized pattern.).
Success statistics are summarized in Table 5.7. Obviously,M = 3 random patterns

exceed the capacity of the small network: While success rates for memorized patterns
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Figure 5.12: At low coupling strengths, the coupling sometimes cannot compensate
frequency differences ∆fi and electronic noise. Exemplary measurements of a noise-
induced transition and phase slips are shown in a) and b) for ε = 48,3 rad

s
andM = 2

random patterns. However, these measurements are still rare at ε = 48,3 rad
s

and
recognitions are successful most of the time.

are at roughly 70 %, the success rates for all attractors are lower, and guaranteed
recognitions are not all successful.
The decline in the rate of predicted success shows that some non-ideal deviation

must contribute to the low success rates. As the rate is diminished for all values
of ε, frequency differences ∆fi, higher order phase terms or amplitude effects can
be excluded as main contribution: They are only relevant for especially low or high
values of the coupling strength. Electronic noise scales with ε and is thus relevant
for all coupling strengths. If electronic noise was the main non-ideality, however,
measurements for M = 2 should probably be diminished more. Whatever the un-
derlying cause, the capacity of our network implementation is exceeded for M = 3
memorized patterns with N = 8 pixels. Summing up, the network maps erroneous
pattern onto the most similar attractor very reliably, if its capacity is not exceeded or
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ε [ rad
s
]

success rate [%]
(input: all patterns;
correct: memorized)

success rate [%]
(input: all patterns;
correct: memorized
+ spurious cand.)

success rate [%]
(input: theoretically
guaranteed only)

48.3 73.7 60.1 90.6
94.4 74.9 62.1 90.6
198.6 76.4 66.0 96.2
482.5 72.9 61.1 93.8
778.2 73.3 60.5 93.8
1608.4 67.6 55.5 90.6

Table 5.7: Success rates for 3 random patterns. A list of 1000 sets of random mem-
orized patterns with random input patterns was constructed and measured for each
coupling strength ε. For ε = 199 rad

ε
, additional 2000 sets of random patterns were

measured. Spurious patterns exist according to the majority rule, but spurious
patterns and even memorized patterns can be unstable. On the other hand, any at-
tractor found was either a memorized pattern or a spurious pattern. Two definitions
of recognition success are shown in the table: Either recognition was only counted
as successful, if the output was the closest memorized pattern, or the output being
closest memorized or spurious pattern to the initial pattern was sufficient. Only 3 %
of these measurements are predicted to succeed according to Eq. (3.20).

extreme values of the coupling strength are chosen. In any implementation, the time
necessary for the recognition process is an important property as well. Recognition
times Trecog are thus discussed in the next sections.
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5.7 Recognition times

After a time Trecog, the system state will come to rest in an isolated minimum of the
potential function and the recognition will be finished. This recognition time Trecog,
however, is not constant and dependencies on ε, patterns and noise are unknown.
The following algorithm was used to derive Trecog even for noisy measurements:

1. First, smoothed trajectories α̃ are derived with a median filter as described in
Sec. 5.5.

2. We use the criterion

α̃i(t) · sgn (αfinali ) ≥ 0.5 · |αfinali | (5.11)

to determine if the ith pixel has switched. Here, αfinal is the last smoothed
system state of the measurement. In other words, the pixels α-value needs
the right sign and be significantly different from 0. At low ε and low external
noise, |αfinali | = |αouti | = 1 and the criterion recognizes pixels whose switching
process is 75% complete. This is not necessarily true for very high ε, however,
as αfinali is shifted due to amplitude effects and has a high uncertainty due to
higher order terms and electronic noise, which is corrected by the smoothing
procedure and the scaling to |αfinali |.

3. The recognition time Trecog is then defined as the time difference between the
beginning of the recognition process and the time t{N} when all N pixels fulfill
Eq. (5.11) the first time.

Note that pixels do not switch simultaneously every time: Often, a small eigenvalue
might prolong the departure of a pixel from the input pattern compared to others
(See e.g. Fig. 5.13) or some pixel might become unstable only during the other
pixels’ transitions. On the other hand, scalar products 〈α,αm〉 are the same for
each pixel. If pixels have equal prefactors for the scalar products, they show very
similar, basically simultaneous transitions. (Compare with the dynamic equation for
the system state Eq. (3.13) and again Fig. 5.13.) This peculiar separation between
different switching pixels often carries the system state α close to unstable fixed
points, where a description with eigenvalues is viable. These “intermediate patterns”
can thus be used to infer from the eigenvalues of the intermediates on the dynamics
of the system state. (This will be further discussed in Sec. 5.7.5.)
We keep track of intermediate patterns αint by deriving αinti = sgn α̃i each time

the switching criterion Eq. (5.11) is fulfilled for a pixel. If the intermediate changes
by several pixels at evaluation of the switching criterion, this means pixels switching
simultaneously and we count it as one joint switching transition.
In Fig. 5.13, detection of the last and the second last pixel switches is marked

in an exemplary measurement. Recognition times can differ greatly and are spread
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Figure 5.13: Detection of recognition times Trecog. Vertical lines mark important
points in time as detected by the algorithm for recognition time detection (Sec.
5.7): The start of the recognition step, the end of the last, simultaneous switch of
two pixels, and the second last pixel switch are shown. As the last switch ends the
recognition process, the time difference between the start of the recognition step and
the last switch equals the recognition time. The second last pixel switch is important
for the derivation of intermediate patterns. The measurement was conducted at a
coupling strength ε = 778 rad

s
with M = 3 random memorized patterns.

over a large range of different values. First, the typical shape of recognition time
distributions are discussed.

5.7.1 Distribution characteristics

Exemplary histograms of the distribution of the recognition times Trecog (Fig. 5.14
and 5.15) show characterizing features:

• Distributions span a large range of values.

• Distributions may have distinct subpeaks.

• Distributions may have a long, sparsely populated tail.

• Recognitions with an already correct initial pattern form a peak at Trecog =
0 ms.
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Figure 5.14: Characterizing features of the distributions of the recognition time Trecog
for both orthogonal and random output patterns. (M = 3 output patterns, coupling
strength ε = 199 rad

s
. Bins have a size of 10 ms.)
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Figure 5.15: Enlarged features of the distribution of the recognition time Trecog for 3
random output patterns from Fig. 5.14b. (Coupling strength ε = 199 rad

s
. Bins have

a size of 10 ms.)
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Figure 5.16: Medians µ1/2 of the recognition times Trecog plotted against the inverse
coupling strength 1

ε
. Error bars of the median denote a confidence interval of 95%.

5.7.2 Typical recognition times

Typical recognition times are contained in the head of a distribution f , which can
be characterized by measures of central tendency: The mean is skewed by large
outliers of a distribution and the mode depends on the binning and might not be
unique. Therefore, the median µ1/2 of the recognition time distributions is suited
best as measure of typical recognition times. Additionally, confidence intervals of
the median can be derived without assumptions about the distribution [67].
We expect recognition times Trecog to be inversely proportional to the coupling

strength ε in an ideal system.(See Sec. 3.1.) Fig. 5.16 shows the medians µ1/2 of
the recognition times for all combinations of 2 or 3 random or orthogonal output
patterns αm:

• µ1/2(Trecog) is approximately proportional to 1
ε
as predicted. Deviations occur

at small ε only, where frequency differences ∆Ωi affect the dynamics more
strongly. (See Sec. 3.6.1 and 5.8.)

• Medians are similar for orthogonal/random patterns and different M .

Most importantly, typical recognition times can be reduced by increasing the coup-
ling strength ε.

5.7.3 Influence of the number of switching pixels

Inspired by the peak at Trecog = 0, which corresponds to already correct patterns,
we examine the influence of the number of switching pixels nswitch on the recognition
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times. nswitch is defined as the number of pixels, in which the final pattern and the
initial defective pattern differ.
In Fig. 5.17 and 5.18, histograms for measurements with specific numbers of

switching pixels nswitch are shown for ε = 199 rad
s
:

• Distributions shift to higher values of Trecog with growing nswitch. Con-
sequently, the median increases as well, as shown in Fig. 5.19.

• Differences of nswitch partially explain the distribution substructure present
for orthogonal output patterns: Contributions from nswitch ∈ [1, 2] form a
first peak , while the second peak is mainly consists of measurements with
nswitch ∈ [3, 4], but also some with nswitch = 2.

• The distributions for individual nswitch, however, show a substructure them-
selves for orthogonal output patterns. Ultimately, the origin of these substruc-
tures may stem from the stability of single pixels: If eigenvalues for several
pixels are positive and equal, they switch together at roughly the same speed.
In contrast, some pixels may only loose stability after some other pixels have
already switched, which results in the second and possibly more peaks.

• For random output patterns, distributions are much broader and subpeaks are
not distinctive. While the order and concurrence of pixel switches probably
still affects recognition, there are much more possible absolute values of the
eigenvalues of initial patterns, which broadens subpeaks.

The role of eigenvalues of intermediate patterns will be more closely discussed in
Sec. 5.7.5. First, tails of the distributions will be examined.

5.7.4 Rare events: Analysis of sparsely populated tails

In practical applications of MONACO, readout of the output pattern will likely be
performed at a fixed point in time. However, recognition times show a long, sparsely
populated tail for some sets of parameters. Then, readout will either cut the tail of
the distribution - possibly reading a pattern before the recognition is finished - or
the recognition process might take a long time. Consequently, analysis of the tails
is essential.
Standard deviations of the distributions are shows in Fig. 5.20 for different coup-

ling strengths ε. As the standard deviation is larger for distributions well spread
out, long tails coincide with large standard deviation.

• σ is larger for random patterns than for orthogonal patterns. This reflects
the fact that Trecog of random output patterns show a tail at all measured ε,
while the recognition time distributions with orthogonal output patterns miss
a tail for all but the highest coupling strengths. See Appendix F for plots of
all measured distributions.
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Figure 5.17: Histograms of the recognition times Trecog for different number of switch-
ing pixels nswitch and the combined histogram for all values of nswitch. (ε = 199 rad

s
,

orthogonal output patterns, bin size is 7,5 ms.)

0 50 100 150 200
Trecog [ms]

0

50

100

150

200

250

300

co
un

ts

all values
nswitch = 1
nswitch = 2
nswitch = 3
nswitch = 4

(a) 3 random patterns

0 50 100 150 200
Trecog [ms]

0

25

50

75

100

125

150

co
un

ts

all values
nswitch = 1
nswitch = 2
nswitch = 3
nswitch = 4

(b) 2 random patterns

Figure 5.18: Histograms of the recognition times Trecog for different number of switch-
ing pixels nswitch and the combined histogram for all values of nswitch. The sparsely
populated tails are cut at Trecog = 200 ms. (ε = 199 rad

s
, random output patterns,

bin size is 7,5 ms.)
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Figure 5.19: Median of the recognition times Trecog for a subsets of measurements
characterized by the number of switching pixels nswitch. All measurements were
conducted at ε = 199 rad

s
. Error bars of the median denote a confidence interval of

95%.
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Figure 5.20: Standard deviation σ of the recognition times Trecog plotted against the
coupling strength ε. (No error bars are shown for σ, as calculations of confidence
intervals usually assume normal distributions and thus cannot be applied.)

• For orthogonal output patterns, σ decreases roughly proportional to 1
ε
for

small till medium coupling strength. At high coupling strength, tails appear
(ε ≥ 1608 rad

s
for M = 3, ε ≥ 4730 rad

s
for M = 2), which are accompanied by

a sharp rise in σ and coincide with drops in recognition success shown in Sec.
5.6.

• For random output patterns, σ has a minimum at medium coupling strengths
as well.

115



Chapter 5 Experiments

Most importantly, σ increases with ε only at very large coupling strengths. The
increase in σ thus coincides with the decline of recognition success. Consequently,
optimizing for both recognition success and diminished tails is possible without
tradeoffs. From another point of view, the increase σ and the loss of stability might
originate from the same deviations from the ideal dynamics. As illustrated in the
next section, eigenvalues of intermediate patterns are connected to the distribution
tails as well.

5.7.5 Long tails revisited: Diffusion over potential barriers

As proposed in Sec. 5.7.3, the eigenvalue spectrum of initial and intermediate pat-
terns might define the distribution of recognition times Trecog.
Eigenvalues describe the linearized behavior around a fixed point, so a pixel should

leave an unstable fixed point faster for a larger corresponding eigenvalue. As the
deviation from the fixed point is in turn the slowest part of the switching process,
recognition times should depend on the eigenvalues of the initial, defective pattern,
which is an unstable fixed point.
As mentioned already at the beginning of Sec. 5.7, the system gets close to other

unstable fixed points during the recognition process. As the phase space close
to these “intermediate patterns” does not change abruptly, dynamics of α should
depend on the eigenvalues of the intermediates. Specifically, both the dynamic
equation in system coordinates Eq. (3.13) and the eigenvalues Eq. (3.7) contain a
weighted sum of scalar products of the current system state with the memorized
patterns. While the sum in Eq. (3.13) changes depending on the distance to the
fixed point, the overall change is small, as few of the N pixels change. Consequently,
large eigenvalues of the intermediate imply a large accelerating factor in the dynam-
ics, and only eigenvalues of small absolute value allow a stability change of the pixel
anywhere near the intermediate. Consequently, we expect the largest eigenvalue of
an intermediate pattern to be positive, as that seems to be a prerequisite for switch-
ing. (From another point of view, the intermediate would not be an intermediate if
it would attract the system state in all eigendirections. It would then be the final
output pattern.) If a pixel takes a long time to switch, it will probably be the last
to finish the switching process. ( If the switch renders other pixels unstable upon
completion, it will not be the last switch. However, this is rare.) Therefore, the
largest eigenvalue of the last switch should be strongly correlated with recognition
time. Consequently, we examine the largest eigenvalues for the last intermediate
pattern.
Note that the system state might be far from a detected intermediate in a few

measurements. In these rare cases, the calculated eigenvalues have little meaning
for the dynamics and might be negative.
Fig. 5.21 and 5.22 show the the occurrence of largest eigenvalues before the final

pixel switch of a measurement. The eigenvalues at the intermediate are calculated
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Figure 5.21: Distribution of largest eigenvalues maxi λi before the last pixel switch.
(Orthogonal patterns, 256 measurements for each coupling strength and pattern
number.)
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Figure 5.22: Occurrence of largest eigenvalues maxi λi before the last pixel
switch.(Random patterns, 3000 measurements for M = 3 random patterns at
ε = 199 rad

s
and 1000 measurements for all other coupling strengths and pattern

numbers.)
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Chapter 5 Experiments

with Eq. (3.7), thus assuming an ideal network. (Eigenvalues λi are rescaled to
emphasize the discrete nature of the eigenvalue spectrum: 2λN

ε
are even or odd

whole numbers depending on M . See Eq. (3.7) in Sec. 3.2.2.)

• The spectrum of largest eigenvalues is restricted to few values for orthogonal
patterns. At ε = 199 rad

s
, almost all eigenvalues are positive, with the negative

ones belonging to measurements without well-defined intermediate patterns.
At high coupling strengths, however, a significant fraction of the calculated
largest eigenvalues is negative.

• For random patterns, the eigenvalue spectrum contains many possible values,
which explains the absence of a substructure for recognition time histograms,
where the multitude of eigenvalues lead to significant broadening of possible
subpeaks.

• For a significant fraction of measurements for random patterns, maxi λi < 0.
While this only occurs at high coupling strengths for M = 2, measurements
with M = 3 random patterns show negative largest eigenvalues at all coupling
strengths. In an ideal system described by Eq. (3.5), such intermediates should
be stable.

• In Fig. 5.23, median and standard deviation sum up the dependence on the
largest calculated eigenvalue of the last intermediate: Both median and stand-
ard deviation are much larger for negative largest eigenvalues of the last inter-
mediate patterns, so these measurements contribute substantially more to the
tail of the full distribution.

Several possible deviations from Eq. (3.5) might be responsible for the switching
despite negative eigenvalues:

• Inaccuracies ∆Ωi of the pair frequencies in principle destabilize all eigendir-
ections.(See Sec. 3.6.1) At low ε, ∆Ωi affect the dynamics the most, so they
seem irrelevant for the measurements shown.

• Coupling strength deviations due to component uncertainties alter the real
eigenvalues present in the system (Sec. 5.1.2). As this effect would be constant
∀ε, it does not explain the rise at high ε

• At high ε, higher order terms in the phase description lead to oscillations
around the fixed points of the averaged dynamics and might destabilize eigen-
directions with negative eigenvalues of small absolute value. At even higher
ε, the phase description is no longer sufficient and amplitude perturbations
disturb the ideal dynamics.
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5.8 External noise can improve performance
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Figure 5.23: Median and standard deviation as function of largest eigenvalues maxi λi
before the last pixel switch (ε = 199 rad

s
). (No error bars are shown for σ, as

calculations of confidence intervals usually assume normal distributions and thus
cannot be applied.)

• Additionally, electronic noise on the signal can enable a diffusive behavior over
the remaining potential barrier. As coupling strength is varied with different
coupling resistors directly in front of the oscillators, the signal’s prefactor and
any noise on the signal will be scaled as well. Consequently, the influence
of coupling strength deviations and electronic noise should be independent of
coupling strength.

All effects described either decrease the potential barrier, or induce a diffusive
behavior that enables crossing of that barrier. Fig. 5.24 shows a typical measurement
with maxi λi = −0.5 ε

N
for the last switch. The diffusive behavior shown is visible

in all manually observed measurements with extraordinary long recognition times.
The electronic noise and the inaccuracies in Ωi and ε are not sufficient to destabil-

ize negative eigenvalues for orthogonal patterns, as no tails occur for low and medium
coupling strength. Whether the emergence of tails at high ε is due to higher order
phase terms or amplitude effects remains unclear and might be tackled in future
research. As recognition time distributions for random patterns show tails at all
coupling strengths and an increase of tails for both low and high ε, none of the de-
scribed effects seems completely negligible for the case of random output patterns.

5.8 External noise can improve performance

At the beginning of the recognition step, the system state must first depart from
the input pattern, which is an unstable fixed point. As perturbations are small, this
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Figure 5.24: Noise can induce transitions from seemingly stable patterns. In this
measurement, the system first settles on one of the spurious attractors. Before the
last switch, largest eigenvalue maxi λi = −0.5 ε

N
was calculated to be negative, but

close to zero. Then, the pixel changes very slowly on a noisy trajectory. This
seemingly diffusive transition might originate from a noise-induced diffusion over a
potential barrier or a loss of stability due to non-ideal effects. The measurement
was done at ε = 199 rad

s
with M = 3 random memorized patterns.

departure adds significantly to the recognition times. From another point of view,
recognition times should diminish if perturbations were increased, which in practice
could be realized by adding noise. Possibly, the noise might additionally destabilize
spurious attractors, while memorized patterns remain stable. This destabilization
could in turn lead to a better control over the recognition results. Thus, we artifi-
cially induced noise to explore system behavior.
Gaussian noise was applied to the reference oscillator in order to apply a noise

component to the phase differences ∆ϑi. The noise was created with the Spectrum
DA converter boards M2i.6011, M2i.6012 and M2i.6021: Emitted voltages consist
of Gaussian random variables with variance σU that were changed every ∆t = 1 µs.
These voltages were applied to the initialization resistor of the reference, but only
during the recognition step. Histograms of recognition times with different σU of
the applied noise are compared in Fig. 5.25, while medians and standard deviation
of the distributions are shown in Fig. 5.26: The heads of the distributions are of
similar shape. At high noise, however, the distributions gain sparsely populated
tails similar to measurements at high coupling strengths or 3 random patterns.
Consequently, the standard deviation rises sharply for σU ≥ 200 mV. As expected,
medians decrease significantly with σU . However, it is not evident at first sight why
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Figure 5.25: Histograms of the recognition times Trecog for different standard devi-
ations σU of externally applied Gaussian white noise. (ε = 199 rad

s
, 3 orthogonal

output patterns, bin size is 7,5 ms.)

the effect is not even larger: Trajectories spend a lot of time close to the initial fixed
point, and noise in the αi-variables should carry the system state away from the fixed
point quickly. The noise in the αi, however, is unfortunately strongly dependent on
the average value of phase differences ∆ϑi: At the fixed point, dαi

d∆ϑi
= 0, so any

noise in ϑrefi (and thus ∆ϑi) will influence αi in second order only. Still, supplying
noise with σU = 100 mV reduces recognition times by more than 10%. Finally, we
examine the influence of Gaussian noise on recognition success and pattern stability.
As visible in Table 5.8 and 5.9, stability of spurious attractors is reduced slightly.
Concomitantly, recognition rates of the memorized patterns rise slightly. Notably,
the success rate for memorized patterns is almost 95% at the highest noise level.
Summing up, external Gaussian noise can increase recognition success and reduce
recognition time. In the future, different types of noise could be examined to further
increase the effect: By using a noise distribution with larger tails, e.g. a Laplace
distribution, noise should affect the dynamics more strongly at the fixed points,
without leading to increased deviations during the transition.

5.9 Discussion

Summing up, our implementation of MONACO recognizes M = 2 orthogonal or
random patterns without error. For M = 3 orthogonal memorized patterns, spuri-
ous attractors occur according to the majority rule Eq. (5.10), but more than 80 % of
all possible input patterns are still mapped to the most similar memorized patterns.
Indeed, the system state always moves to the closest attractor, and spurious attract-
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Figure 5.26: Median and standard deviation of recognition times Trecog for 3 ortho-
gonal patterns, ε = 199 rad

s
and varying standard deviations σU of externally applied

Gaussian white noise. (No error bars are shown for the standard deviations, as
calculations of confidence intervals usually assume normal distributions and thus
cannot be applied.)

σ [rad]

success rate [%]
(input: all

patterns; correct:
memorized)

success rate [%]
(input: all

patterns; correct:
all attractors)

success rate [%]
(input: theoretically
guaranteed only)

unknown
final

pattern

0.0 82.0 99.6 100.0 0
480.3 84.4 99.6 100.0 0
960.6 84.6 99.2 98.1 0
1440.9 94.9 88.3 94.4 1

Table 5.8: Success rates for 3 orthogonal patterns at ε = 199 rad
ε

with influ-
ence of externally applied Gaussian white noise. For different standard de-
viations σ of the noise, 256 measurements were conducted with the memor-
ized patterns (00001111),(00110011) and (01010101). Spurious attractors were
(00010111),(01110001),(01001101),(11010100) and their inverses. Two definitions
of recognition success are shown in the table: Either recognition was only counted
as successful, if the output was the closest memorized pattern, or the output being
closest attractor to the initial pattern was sufficient. 21 % of these measurements
are predicted to succeed according to Eq. (3.19).
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5.9 Discussion

σ [rad] mem.
pat. [%]

spur.
pat. [%]

1st

mem.
2nd

mem.
3rd

mem.
1st

spur.
2nd

spur.
3rd

spur.
4th

spur.
0.0 82.0 18.0 68 73 69 11 13 13 9

480.3 84.4 15.6 79 59 78 8 12 11 9
960.6 84.6 15.4 72 66 77 6 16 9 8
1440.9 96.5 3.1 79 83 85 1 5 0 2

Table 5.9: Distribution of output patterns for 3 orthogonal patterns at ε = 199 rad
ε

with influence of externally applied Gaussian white noise. 256 measurements were
conducted with the memorized patterns (00001111),(00110011) and (01010101).
Spurious attractors were (00010111),(01110001),(01001101),(11010100) and their in-
verses.

ors might be used to denote input patterns which are similar to several memorized
patterns. The capacity of the small network is only exceeded at M = 3 random
pattern, where recognition rates drop to 70 %.
Typical recognition times can be reduced by increasing the coupling strength ε.

Recognition times additionally vary with memorized and initial patterns, so the
resulting distributions may show subpeaks and long, sparsely populated tails. As
large recognition times are rare, however, reading output patterns directly after a
distribution’s head would influence recognition success only slightly.
At the upper limit of the coupling strength ε, recognition success drops and the

tails of recognition time distributions increase in length and density. Stability of
patterns is modified and noise promotes transitions between remaining attractors.
While these deviations could originate from several different sources, both effects
might be induced by higher order phase terms, which can create noisy oscillations
around the averaged dynamics and promote unfavorable synchronization between
different oscillator pairs. If the higher order terms are indeed the main cause for the
deviations, the architecture variant MONACO II should provide even higher coup-
ling strengths without errors, as less higher order terms are created and frequency
conditions allow a more even distribution of oscillator frequencies.
Finally, both recognition rates for memorized patterns as well as recognition times

of the network can be improved by adding Gaussian noise to the oscillators: Spurious
attractors destabilize, which leads to an increase in correctly recognized memorized
patterns. Additionally, the noise assists in the system state’s departure from the
input pattern, which reduces recognition times. As the effect of Gaussian noise is
strongly diminished at fixed points, future research may test different noise distri-
butions for a stronger effect.
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Chapter 6

Summary and outlook

In this thesis, we devised a network of oscillators that acts as an autoassociative
memory. Main differences to previous architectures [29, 30] are a novel, multiplicat-
ive temporal modulation of the coupling and a symmetric structure containing two
oscillator groups. Oscillators in each group are globally coupled and the coupling is
modulated with a function of the other group’s signals. As a result, memorized pat-
terns are isolated attractors of the network and coordinates are phase differences,
which can easily be read out. In contrast to previous networks with modulated
coupling, no external, time-dependent signals need to be supplied. Inspired by the
symmetrical layout, we named the new architecture MONACO: Mirrored Oscillator
Networks for Autoassociative COmputation. By deriving lower bounds on the basins
of attraction, an analytic criterion for recognition success was derived and simula-
tions validated our analysis. Additionally, we presented an architecture variant with
a different frequency-connection tradeoff that assigned each oscillator an individual
coupling modulation.
As any theoretical proposal can miss substantial practical obstacles for implement-

ation, we built a network of 8 oscillator pairs in hardware as proof of principle: The
implementation is based on previous networks of electronic Van der Pol oscillators
[30, 31]. One major challenge was spurious coupling of oscillator pairs, which was
mitigated with a mixture of various techniques, e.g. low-pass filtering of the voltage
supply, spatial separation, and small Faraday cages. Frequency differences between
oscillators of a pair proved to be critical as well: As manual adjustment takes too
long to compensate for drifts, an automatic frequency annealing method based on
nonlinear dynamics was conceived. Implementation required major changes to the
oscillators, but frequency differences were reduced to less than 0.1 ‰.
The final network matches theoretical predictions very well: Isolated attractors

as well as oscillations around the averaged dynamics occur as expected. Automa-
tion of the measurement process allowed to derive statistics on recognition events
and recognition times for different coupling strengths, pattern numbers and both
orthogonal and random patterns: The small network could perfectly discriminate
2 orthogonal or random memorized patterns. For 3 orthogonal patterns, spurious
attractors could be observed. Still, more than 80 % of recognitions retrieved mem-
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Chapter 6 Summary and outlook

orized patterns correctly. If spurious attractors were included as possible correct
output states, the perfect recognition rates of 100 % could be regained. In applic-
ations, the spurious attractors could e.g. be used to sort out patterns that are
similar to several memorized patterns. If we exceed the capacity of the network
by memorizing 3 random patterns, recognition rates drop, but are still larger than
70 %.
Deviations of the network dynamics are expected at extreme values of the coupling

strength ε: At very low ε < 48,3 rad
s
, the network is limited by remaining frequency

differences. However, this lower bound was not found in the measured data. As
large coupling strengths in principle decrease recognition times, however, the upper
limit at very high ε ≥ 1608 rad

s
is much more important: Here, changes in stability

as well as a reduction in recognition success can be observed. While higher order
phase terms as well as amplitude effects occur there, synchronization of different
oscillator pairs is also possible. Over a large range of coupling strengths, however,
the network performs nearly perfect.
Recognition times decrease with ε and typical recognition times of 16 ms are

reached at ε = 778 rad
s

without impairing recognition success. Generally, the re-
cognition times follow a non-Gaussian distribution that has a sparsely populated
tail for random patterns and shows significant substructure for orthogonal patterns.
However, tails are so sparsely populated that retrieving the final pattern early does
not decrease recognition success recognizably.
Trajectories remain close to the initial, defective pattern for a considerable portion

of the recognition time, as the pattern is an unstable fixed point. In order to quicken
the departure of the system state, the network was exposed to Gaussian white noise
at medium ε and 3 orthogonal memorized patterns: Some amount of noise was able
to reduce recognition times and slightly destabilize spurious patterns, leading to
increased recognition success.
Regarding MONACO, many other questions are worth exploring: First, synchron-

ization of a single oscillator pair with a frequency difference is well-understood. In
our network, however, already synchronized oscillator pairs promote synchronization
in other pairs. The critical coupling strength for synchronization might be derived
with the same approach as presented in [56]. Second, the architecture itself might
be improved further: We already presented the architecture variation MONACO
II with less strict frequency conditions, whose physical connections scale similarly
to the original architecture with O(NM). In both MONACO I and II, frequency
conditions are used to remove undesirable resonant terms. If another architecture
variant would avoid creating such unnecessary coupling terms, frequency conditions
could be further simplified. Third, destabilization of spurious attractors with noise
probably depends heavily on the distribution. Switching from a Gaussian noise
source to a heavy-tailed distribution - therefore increasing the diffusion away from
the fixed points - promises more effective suppression of spurious attractors without
loss of already correct recognitions. Finally, regarding implementation, recognition
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times and power consumption can be greatly reduced by switching to other oscillator
types like e.g. transition metal oxide (TMO) nano-oscillators [21]. At these high
frequencies, signal delays might influence network performance and compensation
of these effects might be necessary.
In addition, our improved dynamics open the way to more diverse oscillatory

neural network architectures and applications: Mixing usual Kuramoto-like dynam-
ics with MONACO’s dynamics, the terms stabilizing both phase differences 0 and π
can be tuned. This tradeoff might be another path to destabilize spurious attractors,
as Nishikawa et. al. present a similar approach in [32]. Additionally, MONACO’s dy-
namics seem very similar to continuous Hopfield networks [17]. It might be possible
to directly map the dynamics of MONACO or a similar architecture to the dynam-
ics of the continuous Hopfield network, or at least transfer some results. Such a
mapping would e.g. allow different learning algorithms proposed for the Hopfield
network to be investigated: Our current architecture uses constant coefficients ac-
cording to the Hebbian rule and “real”, incremented learning of patterns has not
been used. While this is possible in Hopfield networks, application of learning is
essential for other neural network types. Furthermore, as Hopfield networks can
be used to solve combinatorics like the traveling salesman problem [17], oscillatory
neural networks could solve those as well. Finally, Boltzmann machines are neural
networks closely related to Hopfield networks. In addition to “visible” units, where
patterns are initialized or retrieved, they also have “hidden” units not directly re-
lated to input or output. Furthermore, noise is added to the system to avoid local
potential minima resp. spurious attractors. Both differences can be easily included
in oscillatory neural networks. If incremental learning can be implemented in hard-
ware (or weights can be transferred from mapped Boltzmann machines), oscillatory
neural networks can contribute to the commercial success of neural networks in
industry, where restricted Boltzmann machines and deep Boltzmann machines are
used for feature representation or object and speech recognition.
In conclusion, we provide ways to remedy several major flaws of oscillatory neural

networks. While some questions remain open, the dream of powerful, yet energy-
saving neural network hardware seems to come in reach.
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Appendix A

Averaging and frequency
restrictions

In this Appendix, we apply the method of averaging [47] to the phase description Eq.
(3.1). Therefore, we first expand the products in Eq. (3.1) with the trigonometric
equalities sinx cos y = [sin (x− y) + sin (x+ y)]/2 and sinx sin y = [cos (x− y) −
cos (x+ y)]/2 to obtain all frequency components:
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As ϑ[1/2]

i ≈ Ωit + O(ε), each of the sin-terms might oscillate with frequencies of
O(Ωi) or O(∆Ωij).(∆Ωij = Ωi − Ωj) As the characteristic timescales O(Ωi

−1) and
O(∆Ωij

−1) are much smaller than ε−1, the time average of these oscillating terms
vanishes on times O(ε−1) � O(∆Ωij

−1). If frequencies in the argument cancel
each other out, however, the argument is constant on timescales O(ε−1) and all
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Appendix A Averaging and frequency restrictions

oscillating terms are negligible. Depending on the signs in the sin-argument, there
can be different possibilities how constant terms can arise:
In the first term, for example, frequencies cancel if Ωl + Ωk = Ωi + Ωj. That is

always true for l = i ∧ k = j or l = j ∧ k = i, imposing an interaction between the
ith and jth oscillators in both networks depending on Sij. However, frequencies
might also cancel if the frequency distribution is chosen poorly, which would wrongly
connect oscillators with different numbers i, j, k, l only dependent on Slk. Therefore,
we require Ωl + Ωk 6= Ωm + Ωn ∀ pairwise different l, k,m, n.
Similarly, the lowest order is obtained in the third term for Ωl = Ωi + Ωj + Ωk. In

order to avoid interaction between the ith and jth oscillators based on Slk again,
the frequency distribution must obey Ωl 6= Ωm + Ωn + Ωk ∀l, k,m, n and the third
term becomes negligible as well as the fourth, fifth and sixth term.
While the eighth term averages out without further conditions, we get identical

contributions from the second and the seventh term. This can be seen by renaming
indices l and k and using Slk = Skl:
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Final simplifications can be obtained by introducing the phase difference of oscillat-
ors with identical frequency ∆ϑi = ϑ

[1]
i −ϑ[2]

i and using Sji = Sij as well as Sii = M .
For ϑ̇[2]

i , the calculation is the same with inverted upper indices:
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Remark:
As shown in [30], both conditions on the frequency distribution can be simplified
further:(l, k,m, n are still pairwise different.)

Ωl + Ωk 6= Ωm + Ωn

Ωl − Ωn 6= Ωm − Ωk

∆Ωln 6= ∆Ωmk

(A.1)

All difference frequencies have to be different to each other. This can be fulfilled
by multiplying the minimal difference frequency ∆Ωmin with a Golomb-ruler [48],
a set of integers with non-equal differences. Similarly, the second condition can be
simplified to Ωl − Ωm = ∆Ωlm 6= Ωn + Ωk ∀l, k,m, n. This last inequality is always
fulfilled if Ωmin > Ωmax/3.
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Appendix B

Ljapunov function and unstable
fixed point sets

In this Appendix, we derive a Ljapunov function for Eq. (3.5). We use it to show
that all fixed points with at least one index i that fulfills Eq. (3.6) are unstable.

Ljapunov function

First, we express Eq. (3.5) as a gradient system with potential U , where ∆ϑ̇i =
−∂U/∂∆ϑi ∀i:

U = − ε

2N

N∑
l=1

(
N∑
k=1

Skl cos ∆ϑk cos ∆ϑl −
M

2
cos2 ∆ϑl

)
(B.1)

This is equivalent to the overdamped motion of a particle in an energy landscape,
where v̇ ∝ −∇E. Therefore, U decreases along trajectories and is a Ljapunov-
function, which ensures that fixed points are the only attractors possible in Eq.
(3.5).

Unstable fixed points

In order to prove that all fixed points with some i ∈ q are unstable, we express the
system state in pattern coordinates α with αi = cos ∆ϑi and insert the coupling
matrix Sij =

∑M
m=1 α

m
i α

m
j into our potential function U :

U = − ε

2N

N∑
l=1

(
N∑
k=1

Skl cos ∆ϑk cos ∆ϑl −
M

2
cos2 ∆ϑl

)

= − ε

2N

N∑
k,l=1

(
M∑
m=1

αmk α
m
l αkαl −

M

2
δklα

2
l

)
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= − ε

2N

(
M∑
m=1

〈αm,α〉2 − M

2
〈α,α〉

)

Now consider a small perturbation γêi from a fixed point α∗ where i ∈ q:

U(α∗ + γêi) =

= − ε

2N

[
M∑
m=1

(
〈αm,α∗〉+ 〈αm, γêi〉︸ ︷︷ ︸

=γαmi

)2 − M

2

(
〈α∗,α∗〉+ 2 〈α∗, γêi〉+ 〈γêi, γêi〉

)]

= U(α∗)− εγ

N

(
M∑
m=1

αmi 〈αm,α∗〉 −
M

2
α∗i

)
︸ ︷︷ ︸

=0, as i∈q.(see Eq. (3.6))

− ε

2N

(
M∑
m=1

γ2 (αmi )2︸ ︷︷ ︸
=+1

−M
2
γ2

)

= U(α∗)− εM

4N
γ2

As U decreases close to α∗, there must be an unstable eigendirection and the fixed
point must be unstable if at least one i with

∑N
j=1 Sij cos ∆ϑ∗j − M

2
cos ∆ϑ∗i = 0

exists.(i.e. i ∈ q)
Therefore, only the isolated fixed points with sin ∆ϑ∗i = 0 ∀i and Sik sin ∆ϑ∗l −

M/2δik sin ∆ϑ∗i 6= 0∀i can be attractors.
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Appendix C

Stripboard layouts

In this Appendix we show the stripboard layouts of the final modules used for
measurements of MONACO I. Common components are labeled in Fig. C.1. In
addition to showing bare components, some color coding was used: Red, black and
blue wires or copper strips correspond to the power supply’s 15 V, 0 V and −15 V.
On the oscillator submodules, some pins are colored gray: These pins do not transfer
power or signal, but provide mechanical support only.

A
1 2 3

A
1 2 3

copper strip

interrupted copper strip:
trace cut

wire

pin or socket for 
 inter-module connection

resistor
integrated circuit
( DIP socket )

diode
ceramic capacitor

electrolythic capacitor

film capacitor
potentiometer

Figure C.1: Legend for most frequently used components.
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(a) Oscillator module
Copper strips below the multiplier AD633 are broken between all pin pairs except
6-3. All copper strips below the operational amplifier IC TL072 are broken
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(b) Reference oscillator submodule
Copper strips below the operational amp-
lifier IC TL074 are broken between all pin
pairs except 3-12. The copper strip is also
broken below the southernmost pin of the
1 kΩ-Potentiometer and the pin is not con-
nected.
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(c) Annealed oscillator submodule
Copper strips below all ICs are broken
between all pin pairs except below pin pair
5-10 of the operational amplifier IC TL074.
The copper strip is also broken below the
northernmost pin of the 1 kΩ-Potentiometer
and the pin is not connected.

Figure C.2: Stripboard layouts for the oscillator modules and the submodules for
reference oscillators and annealed oscillators.
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Appendix C Stripboard layouts

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

AK

AL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9
1K

0,
1u

F

0,
1u

F0,
1u

F

22
0u

F

22
0u

F

O1
O2

alpha

U_Init for O2
U_Init for O1

U_Recog for O2

HIGH: INIT coupling ON
HIGH: anneal frequency

HIGH: RECOG coupling ON

U_Recog for O1
U_Init for O1

D
G

41
2

2K

0,
1u

F

lo
g

ic
p

o
w

e
r

MONACO I:

MONACO II:

repeat for each pixel

module

bridging

     oscillator module
summation module

coupling voltage
module module

multiplier module
pattern

Figure C.3: Stripboard layout for the mainboard. Copper strips below the analog
switch DG412 are broken between all pin pairs except 1-16 and 8-9. Module place-
ment for the two architecture variations MONACO I and MONACO II is shown at
the top.

136



A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

AK

AL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

20
K

10
K

1

2

3

4

5

6

7

14

13

12

11

10

9

8

20
K

20
K

20
K

20
K

1

2

3

4

5

6

7

14

13

12

11

10

9

8

20
K 20

K
20

K

10K
10K

10
K

10
K

10
K

10
K

10
K

10
K 10

K

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

10K
10K

10K
10K

10K
10K

U_Init for O2 ->

<-  O2
<-  O1

M1_i*O1 ->

U_Init for O1 ->

M1_i*O2 ->
M2_i*O1 ->
M2_i*O2 ->
M3_i*O1 ->
M3_i*O2 ->

V+
GND
V-

HIGH = +1 = non-inverted
 LOW =  -1 = inverted

Logic: Init
Logic: M1
Logic: M2
Logic: M3

M1
M1

Init Init

M3
M3

M2 M2

O1

O1

O1
O2

O2

O2

TL
07

4
TL

07
4

D
G

41
1D

JZ
D

G
41

1D
JZ

20K

20K

20K 20K

20K20K

20K 20K

20K20K

10K

10K

co
lu

m
n 

m
is

si
ng

 fo
r 

so
m

e 
bo

ar
ds

 (
cu

tti
ng

 m
is

ta
ke

)

Figure C.4: Stripboard layout for the pattern modules. Copper strips below the
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Figure C.5: Stripboard layouts for modules exclusively used for architecture variant
MONACO I: coupling voltage module and bridging modules.

138



A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

AK

AL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

2

3

4

5

6

7

14

13

12

11

10

9

8

1

2

3

4

5

6

7

14

13

12

11

10

9

8

8.25K

8.25K

8.25K

8.25K 8.25K

8.25K

1K

1K

V-
GND
V+

<- M1_i*O1_i
<- M1_i*O2_i
<- M2_i*O1_i
<- M2_i*O2_i
<- M3_i*O1_i
<- M3_i*O2_i
<- O1_i
<- O2_i

-SUM(M1_i*O1_i) ->
-SUM(M1_i*O2_i) ->
-SUM(M2_i*O1_i) ->
-SUM(M2_i*O2_i) ->
-SUM(M3_i*O1_i) ->
-SUM(M3_i*O2_i) ->

-SUM(O1_i) ->
-SUM(O2_i) ->

TL
07

4
TL

07
4

input
currents:

output
voltages:

(a) Summation module
Copper strips are broken below all op-
erational amplifier ICs TL074 except
between pin pairs 3-12 and 5-10.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

AA

AB

AC

AD

AE

AF

AG

AH

AI

AJ

AK

AL

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

1

2

3

4

8

7

6

5

1

2

3

4

8

7

6

5

1

2

3

4

8

7

6

5

1K 1K

1

2

3

4

8

7

6

5

1

2

3

4

8

7

6

5

1

2

3

4

8

7

6

5

1K

1K 1K

1

2

3

4

8

7

6

5

1

2

3

4

8

7

6

5

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

0.
1u

F
0.

1u
F

Double click to edit text
Double click to edit text

A
D

63
3J

N

A
D

63
3J

N

A
D

63
3J

N

A
D

63
3J

N
A

D
63

3J
N

A
D

63
3J

N

A
D

63
3J

N

A
D

63
3J

N1K 1K 1K

1K
1K

1K 1K

O1
O2

alpha
M1_i*O1
M2_i*O1
M3_i*O1

M1_i*O2
M2_i*O2
M3_i*O2

U_recog for O1
U_recog for O2

V-
GND
V+

-SUM(O1_i)
-SUM(O2_i)

-SUM(M1_i*O1_i)
-SUM(M1_i*O2_i)
-SUM(M2_i*O1_i)
-SUM(M2_i*O2_i)
-SUM(M3_i*O1_i)
-SUM(M3_i*O2_i)

(b) Multiplier module
Copper strips are broken below all ICs.

Figure C.6: Stripboard layouts for modules exclusively used for architecture variant
MONACO II: multiplier modules and summation module.
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Appendix D

Deviations of the capacitors used
in the oscillators

As the capacitors used as capacitance of the Van der Pol oscillators did not have a
tolerance marking, the capacitance deviations were measured manually.
The measurement circuitry shown in figure D.1 can be described by the voltage

over in the combined capacitance Ctot = C + Cpar:

CtotU = Q

U̇ =
1

Ctot
Q̇

=
1

Ctot

(
Uin − U
Rin

− U

Rin,osci

)
=

1

Ctot

(
Uin
Rin

−
[

1

Rin

+
1

Rin,osci

]
U

)
!

=
1

Ctot

Ut=∞ − U
R′in

This is a simple capacitor charge equation with 1
R′in

= 1
Rin

+ 1
Rin,osci

and an effective

input voltage Ut=∞ = Uin
Rin,osci

Rin,osci+Rin
with the solution U = Ut=∞(1− exp (− t

R′inCtot
))

if U(t = 0) = 0 V.
The time constant of the whole circuit τ = R′inCtot was measured as time difference

between the positive slope of a slow square wave(f = 100 Hz, Uin ∈ [0 V, 10 V]) and
the time when (1 − 1/e)Ut=∞ was reached in the measured voltage response. As
C ≈ 1 nF, a large Rin = 243 kΩ was used to get a large enough τ . First, the
parasitic capacitance Cpar was determined by omitting C, resulting in Cpar = τ

R′in
=

23,12 µs
195,5 kΩ

= 0,118 nF. Afterwards, 18 capacitors were measured as C = τ
R′in
− Cpar.

The resulting mean 1,001 nF is close to the ideal value of 1 nF which verifies our
measurement method. The standard deviation is 0,018 nF. For the propagation of
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Figure D.1: Circuitry for determining capacitance C by measuring the time constant
τ . Rin = 243 kΩ is a large resistance and capacitors were in the range of 1 nF.
Additionally, the parasitic capacitance of the circuitry Cpar = 0,118 nF and the
input resistance Rin,osci = 1 MΩ had to be considered in the derivation of C. A
slow square wave with f = 100 Hz with Uin ∈ [0 V, 10 V] was applied at Rin, and
an effective time constant τ was taken as time difference between the positive slope
of the square wave and the time when the measured voltage reached the fraction
1 − 1/e ≈ 63, 21% of Ut=∞ =

Rin,osci
Rin,osci+Rin

= 8,05 V. Cpar was determined with the
same method, but without connecting an additional capacitance C.

uncertainty of ε, we will use the 95%-confidence interval / 2 standard deviations as
deviation of the used capacitors, which results in deviations ∆C

C
≈ 4%.
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Appendix E

Preliminary measurements of
MONACO II

Measurements of the architecture variant MONACO II (Sec. 3.7 and 4.6.) have been
conducted by Nicolas Pfifferling as part of his master’s thesis. As older oscillator
modules were used, phase response curve amplitudes vary strongly with frequency
and amplified oscillator amplitudes could not be adjusted during operation, which
makes them susceptible to drifts. Consequently, measurements of MONACO II are
only preliminary. Success rates for 3 memorized orthogonal patterns and are shown
in Fig. E.1. Overall, the preliminary measurements strongly indicate improved per-
formance compared to MONACO I:

• Success rates for memorized patterns surpass MONACO I.

• No upper limit of network performance could be found, although coupling
resistors were decreased down to the limits of the circuitry. Consequently,
significantly smaller recognition times can be reached.

• The absence of a performance drop at high frequencies also implies that sta-
bility of patterns is not shifted as strongly at high coupling strengths.

Summing up, MONACO II promises to be a lot more stable and performant than
MONACO I, as even preliminary measurements with large inaccuracies surpass
measurements of MONACO I with optimized oscillator modules.
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Rrecog [kΩ]
success
rate [%]

(memorized)

mem.
pat.

spur.
pat.

number of
measurements

1000 86.2 227 19 246

511 87.4 226 29 255

243 89.8 230 26 256

133 88.6 217 28 245

100 91.4 234 22 256

82.5 92.6 237 19 256

62 92.2 236 20 256

30 93.3 239 17 256

10.2 92.6 237 19 256

7.68 91.8 235 21 256

Table E.1: Success rates for three orthogonal patterns (MONACO II). For each
coupling strength ε, 256 measurements were conducted with the memorized pat-
terns (00001111), (00110011) and (01010101). Spurious attractors were (00010111),
(01110001), (01001101), (11010100) and their inverses. Recognitions were counted
as successful, if the output was the closest memorized pattern (or one of their in-
verses). For some recognition resistances (1 MΩ, 511 kΩ and 133 kΩ), some measure-
ments had to be excluded as manual frequency adjustment was not precise enough
and led to failure of the automatic frequency annealing.
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Appendix F

Recognition time histograms
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Figure F.1: Recognition time distributions for three orthogonal patterns at low coup-
ling strengths ε. Measurements were conducted for all 256 possible input patterns.
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Figure F.2: Recognition time distributions for three orthogonal patterns at high coup-
ling strengths ε. Measurements were conducted for all 256 possible input patterns.
For ε = 1608 rad

s
and ε = 4730 rad

s
, the distributions have a sparsely populated tail,

which is not shown.
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Figure F.3: Recognition time distributions for two orthogonal patterns at low coup-
ling strengths ε. Measurements were conducted for all 256 possible input patterns.
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Appendix F Recognition time histograms
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Figure F.4: Recognition time distributions for two orthogonal patterns at high coup-
ling strengths ε. Measurements were conducted for all 256 possible input patterns.
For ε = 4730 rad

s
, the distribution has a sparsely populated tail, which is not shown.
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Figure F.5: Three random patterns: Recognition time distributions heads. For
ε = 199 rad

s
, 3000 measurements were used, for all other coupling strengths 1000

measurements were conducted. Each distribution has a sparsely populated tail which
is not shown.
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Appendix F Recognition time histograms
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Figure F.6: Three random patterns: Full recognition time distributions, probability
axis log-scaled for better visibility of long tails. For ε = 199 rad

s
, 3000 measurements

were used, for all other coupling strengths 1000 measurements were conducted.
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Figure F.7: Two random patterns: Recognition time distributions heads. 1000 meas-
urements were conducted for each histogram shown. Each distribution has a sparsely
populated tail which is not shown.
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Appendix F Recognition time histograms
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Figure F.8: Two random patterns: Full recognition time distributions, probability
axis log-scaled for better visibility of long tails. 1000 measurements were conducted
for each histogram shown.
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