
Component-Oriented High-level Synthesis for Continuous-Flow

Microfluidics Considering Hybrid-Scheduling

Mengchu Li†▽, Tsun-Ming Tseng†, Bing Li†, Tsung-Yi Ho⋆✸, and Ulf Schlichtmann†

mengchu.li@campus.lmu.de, {tsun-ming.tseng, b.li, ulf.schlichtmann}@tum.de, tyho@cs.nthu.edu.tw
†Institute for Electronic Design Automation, Technical University of Munich, Arcisstraße 21, 80333 München, Germany

▽Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 München, Germany
⋆Department of Computer Science, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, 30013 Hsinchu, Taiwan

✸Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748 Garching, Germany

ABSTRACT

Technological innovations in continuous-flow microfluidics
require updated automated synthesis methods. As new mi-
crofluidic components and biochemical applications are con-
stantly introduced, the current functionality-based applic-
ation mapping methods and the fixed-time-slot scheduling
methods are insufficient to solve the new design challenges.
In this work, we propose a component-oriented general device
concept that enables precise description of operations and
devices, and adapts well to technological updates. Apply-
ing this concept, we propose a layering algorithm together
with a mathematical modeling method to synthesize bind-
ing and hybrid-scheduling solutions that support both fixed
schedule and real-time decisions. We also consider potential
chip layout and optimize the number of flow channels among
devices to save routing efforts. Experimental results demon-
strate that our solution fully utilizes the chip resources and
can handle operations with different requirements.

1 Introduction

Continuous-flow microfluidic biochips are the mainstream
microfluidic technology for cell-based applications includ-
ing cell sorting, single-cell analysis, and DNA amplification.
The rapid development of lab-on-a-chip technology involves
lots of design efforts and thus results in increasing demand
for design automation.
Most continuous-flow microfluidics comprises a combin-

able set of devices, which enables sophisticated bioassays
to be performed on a single chip within mature fabrication
technology [1]. An early automatic synthesis work [2] there-
fore proposed a fluidic instruction set, where operations and
devices were classified into several types according to their
functionality, such as mixing, heating, detecting, etc., and
the execution duration of operations was specified by exact
values. Also, operations could only be mapped to a device if
their types matched exactly. These specifications simplified
the scheduling and binding process and provided a basis for
later synthesis work [3, 4, 5, 6], which made it become the
accepted standard.
However, as lab-on-a-chip technology evolves, new micro-

fluidic components are constantly introduced, the integra-
tion of which broadens the bioassay scope and challenges
the conventional automatic synthesis standard.
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Figure 1: Micrograph of a chip designed for a gene expres-
sion profiling assay [7]. (a) Mixers integrated with cell-
separation modules. (b) Cell separation module.

Mixers, as one of the most important microfluidic devices,
are evolving. A mixer typically consists of a ring-shaped
channel segment and a peristaltic pump formed by valves.
Figure 1(a) shows a micrograph of a chip with three mix-
ers [7], where pumps are marked by green color. Unlike
conventional designs, the flow channels of the mixers are sep-
arated by black separation valves into two parts. When the
separation valves are open, the mixers serve as normal mix-
ers for mixing operations. But when the separation valves
are closed, the blue U-shaped parts of the flow channels
are separated from the original mixers and become cell-
separation modules for cell-isolation operations as shown
in Figure 1(b). Both the mixing and the cell-isolation op-
erations monopolize the ring-shaped flow-channel segments
during their execution. In other word, cell-isolation opera-
tions are bound to mixers in spite of the conventional type-
matching rules.

Besides cell-separation modules, current designs demon-
strate that mixers can easily be integrated with several other
microfluidic components and therefore be utilized by numer-
ous types of operations, such as detecting [7], heating [8],
washing [9], etc. Meanwhile, mixing operations are not
necessarily executed in mixers.

For example, Figure 2(a) shows a micrograph of a chip de-
signed for a kinase activity assay, where mixing operations
are executed in the blue flow-channel segments controlled by
green sieve valves. Sieve valves are important microfluidic
components for cell-based operations. When a sieve valve
is closed, it leaves a narrow gap so that large particles are
blocked but small particles and fluids are allowed to flow
through. In this design, sieve valves are integrated to form
bead columns, which will be mixed with a large amount of
input samples to capture target peptide substrate. Because
of the large input volume, this operation can hardly be sup-
ported by a conventional fixed-volume mixer. However, as
shown in Figure 2(b)-(e), since beads are blocked by the
sieve valves while fluids are not, by performing a flow re-
versal protocol, input samples can easily pass through the
bead column in both directions. Beads are pushed from
one end to the other iteratively, and thus efficient mixing of
beads and samples is enabled without a classical mixer.

The dividing lines in the type-classification standards have
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(a)

Figure 2: (a) Micrograph of a chip designed for a kinase
activity assay [10]. (b)-(e) Flow reversal protocol enables
liquid samples to pass through the bead column in both
directions alternatively.

become increasingly blurred over time. A single device may
support various types of operations. Also, operations with
similar functionality may require totally different devices for
execution. Therefore, more precise descriptions for opera-
tions and devices, as well as more flexible operation-device
mapping methods are needed.
Besides, conventional scheduling methods are also chal-

lenged by the fact that the execution duration of some op-
erations cannot be specified as exact values. For example,
in single-cell capturing operations, the chance that a cell
trap captures exactly one cell is about 53% [11]. Therefore,
most of the time it is necessary to check the number of cells.
In [12], cells can be detected by fluorescent signals. When a
signal comes, an image will be taken and analyzed to count
the number of cells. If the number is not equal to one, this
cell capturing operation needs to be rerun. Therefore, the
exact duration of this operation cannot be confirmed until
its completion, and it is impossible to allocate this operation
to any fixed time slot in the scheduling results.
Cyberphysical integration has recently been considered

for digital microfluidics to deal with this indeterminacy by
making real-time decisions [13]. However, merely depend-
ing on real-time decisions can be time-consuming if there is
a large number of operations, especially when manual ob-
servation is involved, which is common in continuous-flow
microfluidic bioassay protocols. Besides, some operations
require precise time control, such as heating in quantitative
polymerase chain reaction (qPCR) applications [14]. For
these operations, a pre-generated schedule is important for
resource reservation. Therefore, a hybrid-scheduling method
that supports both pre-generated schedule and real-time de-
cisions is indispensable.
Another indeterminacy in automatic scheduling comes from

the reagent transportation time for sequential operations.
Reagent transportation time is closely related to the lengths
of flow channels, which are determined by the chip phys-
ical layout. However, previous work demonstrates that the
layout-generation should be carried out after the high-level
synthesis process to achieve optimal layout-solutions [4, 15,
16], which means that it is difficult to predict the transport-
ation time during scheduling.
In this work, we propose a component-oriented general

device concept that enables precise description of operations
and devices, and adapts well to technological updates. For
large assays involving operations with indeterminate execu-
tion duration, we propose a layering algorithm together with
a mathematical modeling method to generate binding and
hybrid-scheduling solutions.
Our contribution includes:
I We briefly review important microfluidic components,

some of which are discussed here for the first time in the
design automation field. Based on this review, we propose a
component-oriented general device concept, which can easi-
ly be extended and thus adapted to continuous biological
innovations.
II We propose a layering algorithm for large bioassays in-
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Figure 3: (a) Sieve valve [20]. (b) Single-cell isolation with
cell trap [21]. (c) U-shaped cell trap [22].

volving operations with indeterminate execution duration to
support cyberphysical integration. For each layer, we pro-
pose a mathematical modeling method to generate schedul-
ing and binding results. The results from different layers
are iteratively refined by a progressive re-synthesis process
to achieve a comprehensive optimization.

III We take potential chip layout into consideration and
optimize the number of flow channels among devices to save
routing efforts. We also estimate reagent transportation
time according to the synthesis results from the previous
iteration.

2 Component-oriented Synthesis Concept

2.1 Microfluidic Components
Instead of naming microfluidic devices according to their

functionality, we take a closer look at the microfluidic com-
ponents that constitute these devices. We start with a brief
review of important microfluidic components on continuous-
flow biochips, some of which have never been discussed in
previous design automation work. Based on the area cost
and processing cost of integrating these components in a
chip, we classify them into two categories: containers, and
accessories.

2.1.1 Containers

Containers are microfluidic components, the integration of
which requires both exclusive chip areas and processing costs.

Chamber is a segment of a flow channel separated by two
valves. Chambers can vary in length and width according to
different operation protocols. Diverse operations can be per-
formed in chambers, such as mixing [17], amplification [18],
heating [7], neutralization [12], and cell culturing [19].

Ring is a specialized chamber which is connected end to
end and thus enables circulation flow. It is mainly used to
perform highly efficient mixing operations.

2.1.2 Accessories

Accessories are microfluidic components with functional spe-
cialization. They can be integrated into containers and thus
require no area cost. However, the integration of accessories
involves additional processing costs, including mask fabrica-
tion, yield loss, testing costs, as well as the implementation
of extra chip ports and control channels.

Pump is a group of valves providing pressure for fluid
movement. Each valve can be assigned to an individual
pressure source or sequentially connected with other valves
driven by the same pressure source.

Heating pad consists of a heating layer and a heating
circuit, and is usually integrated under the flow layer to
support heating operations.

Optical system is a general term that refers to detec-
tion components consisting of a light source and a receiver
(detector).

Sieve valve is a specialized valve as shown in Figure 3(a),
which leaves a gap when it is closed. A closed sieve valve can
halt large particles while allowing small particles and fluids
to flow, and thus supports washing operations that increase
sample concentration by forming solid-phase support [7].



Cell trap is a passive microfluidic component used to
capture single cells. It has not been discussed in previ-
ous design automation work. There are two major single
cell isolation methods on continuous-flow microfluidic bio-
chips: one is to adjust cell concentration and flow rate to
obtain an optimal distance between two floating cells, so
that single cells can be captured in cell-separation modules
as mentioned in Section 1; the other is to apply cell traps
that can fit and hold single cells as shown in Figure 3(b),
which allows a large number of cell isolation operations to
be operated in parallel [21]. Cell traps vary in shapes and
sizes: some U-shaped Polydimethylsiloxane (PDMS) traps
are shown in Figure 3(c).

2.2 General Device and Component-oriented
Operation Definition

Based on the above catagories of microfluidic components,
instead of building fences between devices and distributing
them to dedicated types, we formulate a general device
concept to describe devices that are adaptable for various
microfluidic integration.
A general device is a general platform for operation exe-

cution. It consists of one container and a certain number of
accessories. All kinds of microfluidic devices can fit into this
concept. For example, a conventional rotary mixer can be
regarded as a general device with a ring as its container and
a pump as its accessory; and the flow-channel segment men-
tioned in Figure 2 can be regarded as a general device with
a chamber as its container and sieve valves as its accessories.
Similarly, instead of classifying biological operations into

different types, we introduce a component-oriented defini-
tion method to accurately describe the characteristics of op-
erations.
The definition of a component-oriented operation shall in-

clude the following attributes:
a. container (with specified capacity) and accessories re-

quired for execution;
b. execution duration, which can be an accurate value, or

specified as indeterminate with a minimum duration;
c. dependency: if an operation oc takes the outputs of

another operation op as its inputs, we specify oc as the child
operation of op, and op as the parent operation of oc.
According to this definition, an operation is allowed to

be bound to a device, if their containers match with each
other and the device includes the accessories required by
the operation. If the container type of an operation is not
specified, it can be bound to either a ring or a chamber of
corresponding size.
Our component-oriented synthesis concept allows opera-

tions of different types to be bound to the same microfluidic
device, which promotes the utilization of on-chip resources,
and adapts better to current fabrication technology.

3 Layering for Hybrid-Scheduling
Operations with indeterminate execution duration cannot

be allocated to fixed time slots in a schedule. However, a
pre-generated schedule is indispensable in many applications
for device reservation. In this section, we propose a hy-
brid synthesis method that not only provides pre-generated
schedules, but also supports real-time decisions.
In the rest of this paper, we call operations with indeter-

minate duration indeterminate operations for short.

3.1 Layering Algorithm
To support real-time control for indeterminate operations,

we divide an assay schedule into sequential sub-schedules, by
distributing operations in a complex assay into n∈N sequen-
tial layers. Each layer (except for the n-th) contains at least
one indeterminate operation, and all indeterminate opera-
tions are allocated to the end of their sub-schedules. In this
manner, cyberphysical integration only needs to be applied

Algorithm 1: Layering Algorithm

L1 L: a set of currently non-layered operations
L2 Li: the set of operations allocated to layer Li

L3 O: the set of indeterminate operations
L4 Doj

: the set of descendant operations of oj
L5 Aoj

: the set of ancestor operations of oj
L6 Roj

the set of to-be-removed operations resulted from the

removal of oj
L7 coj : the cost resulted from the removal of oj
L8 t: the constant representing the threshold number of

indeterminate operations in each layer

L9 Initialize L as the set of all operations; i=0;
L10 while |L| 6=0 do

L11 i++;
L12 /* dependency-based allocation */
L13 for oj ∈O

⋂
L do

L14 if Aoj

⋂
O

⋂
L=∅ then

L15 Li.insert(oj);
L16 L.remove(oj);
L17 for o∈Doj

do

L18 L.remove(o);
L19 end

L20 end

L21 end

L22 for o∈L do

L23 Li.insert(o);
L24 end

L25 /* resource-based allocation */
L26 while |O

⋂
Li|> t do

L27 for o∈O
⋂
Li do

L28 (co,Ro)← min cut(o);
L29 end

L30 find Ro with minimum co;
L31 for o∈Ro do

L32 Li.remove(o);
L33 end

L34 end

L35 Reset L;
L36 end

: indeterminate operation : operation with fixed duration

o1

o2 o3

o4

o5

o6 o7

o1
o5
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Li: {}

oa

ob

oc

o1

o4

o5

o6 o7

ob

oc
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Figure 4: Maximum independent set algorithm.

between layers for termination control, and the synthesis
problems for different layers can be solved separately.

Algorithm 1 shows the overall flow of our layering al-
gorithm, which consists of two phases: dependency-based al-
location and resource-based allocation. Some symbols defined
in Algorithm 1 are also used in the following.

Since partitioning the problem may trap solutions into lo-
cal optima, we reduce the number of layers by maximizing
the number of operations in each layer. As indeterminate op-
erations are allocated to the end of each sub-schedule, their
descendant operations need to be allocated to subsequent
layers. Therefore, we first perform a modified maximum
independent set algorithm based on operation dependency
(L12-L24).

As shown in Figure 4, we represent the non-layered opera-
tions as vertices and their dependency as edges. We first
randomly choose an indeterminate operation, which has no
indeterminate ancestor in L. Suppose that we choose oa.
Since oa cannot be reached from any other indeterminate
operation, we add oa to Li and remove oa and all its des-
cendant operations from the graph (L). Then we repeat the
above steps until no indeterminate operation remains in the
graph, and add all the remaining operations to Li.

As the last operations in each layer, indeterminate opera-
tions are mapped to different devices to allow parallel execu-
tion. Therefore, if the number of indeterminate operations
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Figure 5: (a)(b)(c) Selection process. Storage usage: 1, 2,
1; to be removed ancestor operations: 0, 0, 3. (d) Different
cut strategies.

in a layer surpasses a given threshold, we will perform a
modified minimum-cut algorithm based on resource usage
(L25-L34).
The idea of our resource-based allocation strategy can be

illustrated by some examples shown in Figure 5(a)(b)(c).
Suppose that o1, o2, and o3 are indeterminate operations,
which have ancestor operations allocated to both layer Li−1

and Li. If we remove o1, o2, or o3 from the current layer
due to resource limitation, and leave some of their ancestor
operations unmoved, the outputs of their unmoved ancestor
operations need to be stored, which will occupy 1, 2, or
1 storage, respectively. In order to minimize the storage
usage without removing too many operations, we tend to
remove indeterminate operations that involve less reagent
inheritance. Since o1 involves less storage usage than o2,
and results in removing fewer ancestor operations than o3,
we choose o1 to be removed from the current layer as our
first priority. The cost for removing each indeterminate op-
eration is formulated as a minimum-cut problem. As shown
in Figure 5(d), suppose that oj is an indeterminate opera-
tion in layer Li. We set oj as the sink, and create a virtual
operation ojv as the source, which is allocated to layer Li−1

and is the ancestor of all oj ’s ancestors in Li. c1, c2, and
c3 are three different cut strategies, among which c1 and c2
result in fewer crossing edges than c3. Since c2 puts fewer
vertices to the sink side than c1, we choose c2 as the final
cut solution for oj . We implement our min-cut algorithm
based on the Ford-Fulkerson algorithm [23].

3.2 Refinement by Progressive Re-synthesis
Applying our layering algorithm, we partition the high-

level synthesis problem for a complex bioassay into sequen-
tial sub-problems, which are solved separately by our mathe-
matical modeling method (details of this method will be
discussed in Section 4). In order not to trap our solutions
into local optima, we refine our solutions by a progressive
re-synthesis process.
In the first phase of our synthesis process, device usage of

operations in prior layers will be inherited by posterior layers
for resource re-utilization. For example, suppose that there
are two operations o1, o2, and the component-oriented re-
quirements of o1 and o2 are formulated as: Co1 ={ring},Ao1 =
{sieve valve, pump}, Co2 ={},Ao2 ={sieve valve}, where Co

represents the container specification of operation o, and
Ao represents the accessory specifications. Since Co2 ⊆Co1 ,
Ao2 ⊆Ao1 , o2 can be bound to a device that fulfills the re-
quirements of o1. If o1∈Li−1, o2∈Li, o1 is bound to a device
d, as shown in Figure 6(a), when performing synthesis for
Li, o2 can be bound to d, too, so that no extra device is
needed.
However, if o2 ∈Li−1, o1 ∈Li, as shown in Figure 6(b),

without information of device usage in Li, a device d′ will
be built for o2, as a chamber involves less area cost than a
ring. d′ cannot be re-utilized for the execution of o1, and
thus extra device integration cost is required.
Since we cannot foresee the device usage of posterior lay-

ers, potential waste of device integration cannot be avoided.
Therefore, we apply a progressive re-synthesis process to

(a) (b)

Li

Li−1

o2

o1

o1

o2

: sieve valve: control valve : pump valve

d

d

d′

Figure 6: Potential risk of unnecessary device integration.
(a) Device d is re-utilized in posterior layer. (b) Unnecessary
device integration due to lack of information.

obtain more information about device usage. After synthes-
izing once for all layers, we edit the device inheritance rule
and run the synthesis again.

In the first iteration, we let Di−1 be the set of all available
devices in layer Li−1. For operation o∈Li, we first search in
Di−1 for a suitable device to execute o, so that extra device
integration can be avoided. Therefore, device usage in Li

can be formulated as Di=Di−1∪D
′
i, where D′

i is the set of
devices that are newly integrated.

In the re-synthesis iterations, letD be the set of all devices
instantiated in the previous iteration. When dealing with
layer Li, D\D′

i will be inherited for binding, which means
that the device usage of operations in both previous and pos-
terior layers are available, and thus a more comprehensive
view can be achieved for better synthesis solutions.

This progressive re-synthesis process will be repeated until
no further significant improvement is obtained anymore.

4 Mathematical Modeling Method

We propose an integer-linear-programming (ILP) model
to synthesize scheduling and binding solutions for each layer.
The inputs of our model include:

a. a set O, which is a collection of component-oriented
definitions of biological operations in the current layer;

b. a set D indicating the usage of general devices, the car-
dinality of which represents the maximal number of devices
allowed to be integrated on the chip, and is given by the
user. D is shared among all models for different layers and
is edited according to the inheritance rule as mentioned in
Section 3.2.

The notations of variables in our model are listed in Table 1.

4.1 Preparation: Transportation Estimation
As mentioned in Section 3.1, sequential operations may

require reagent inheritance. If the child operation is bound
to a different device other than its parent operation, reagent
transportation between devices must be considered. How-
ever, transportation time is closely related to the lengths of
flow channels, which usually remain undetermined during
the scheduling process.

Our progressive re-synthesis method enables us to esti-
mate the transportation time of different operations accord-
ing to potential chip layout. We assume that if sequential
operations are bound to two devices d and d′, a flow-channel
path must be integrated to connect d with d′. Since devices
may be re-utilized, paths between devices may also be used
more than once. If a path pa is used more often than another
path pb, to promote transportation efficiency, the channel
length of pa should be designed shorter than the channel
length of pb. As a result, the transportation time of opera-
tions utilizing pa should also be shorter than the transport-
ation time of operations utilizing pb.

In this work, we first assign a constant t, which can be
defined by the user, to all operations as their transporta-
tion time. Then we ask the user to define an arithmetic
progression to represent different potential transportation
times, and specify the minimum and maximum term, as well
as the number of terms. After we run the synthesis process
once for all layers, we refine the transportation time for each



operation as one of the terms in the pre-defined arithmetic
progression based on the binding solutions. If sequential op-
erations are bound to the same device, the transportation
time will be set to 0. Each time we start a new iteration of
our progressive re-synthesis process, the transportation time
will be refined based on the latest results.

4.2 Model Construction
Device Configuration: according to our general device

concept, every dj ∈D has exactly one container, which is
either a ring or a chamber. We formulate this constraint as:

∀dj ∈D, dj,r+dj,ch=1. (1)

To support operations with different reagent volumes, we
define four different capacities for containers: large, medium,
small and tiny. Then we introduce the following constraint
to specify the volume for a certain container:

∀dj ∈D, dj,cl+dj,cm+dj,cs+dj,ct =1. (2)

Since the capacity of a ring is usually larger than the capa-
city of a chamber, we define that the capacity of a ring may
vary among large, medium and small, and the capacity of a
chamber may vary among medium, small and tiny, which is
formulated as:

∀dj ∈D, dj,cl+dj,cm+dj,cs =dj,r, (3)

dj,cm+dj,cs+dj,ct =dj,ch. (4)

Component-oriented Consistence: in order to model
the binding behavior among operations and devices, we in-
troduce an operation-device-mapping variable o di,j for each
operation oi and device dj to represent whether oi is bound
to dj . Then we introduce the following constraint to ensure
that each operation is bound to exactly one device, the con-
tainer type and accessories integration of which fulfill the
corresponding requirements:

∀oi∈O,dj ∈D,x∈{r,ch},y∈{p,h,o,s,c},z∈{cl,cm,cs,ct}
∑

dj∈D

o di,j =1, (5)

dj,x−o di,j+1≥oi,x, (6)

dj,y−o di,j+1≥oi,y, (7)

dj,z−o di,j+1≥oi,z. (8)

Operation Dependency: since a child operation can
only start after collecting all its inputs from its parent op-
erations, we introduce the following constraint:

∀op∈O, oc∈{child operations of op},

oc,st≥op,st+op,dur+tp, (9)

where tp indicates the transportation time of op. Note that
indeterminate operations have no child operation in the same
layer, thus cannot be specified as op.
Device Conflicts Prevention: operations with over-

lapping execution time must be bound to different devices,
since an operation needs to monopolize a certain device dur-
ing its execution. We prevent device conflicts by applying
the following constraints:

∀oa,ob∈O,dj ∈D :

oa,st+q0 ·M≥ob,st+ob,dur+tb, (10)

oa,st+oa,dur+ta−q1 ·M≤ob,st, (11)

o da,j+o db,j−q2≤1, (12)

q0+q1+q2≤2, (13)

where M is an extremely large auxiliary constant, {q0,q1,q2}
are auxiliary variables, at least one of which has to be set to
0 according to (13).

Table 1: Notation of Variables

Binary Variables
Operation Device
oi-related dj-related

ring (r) oi,r dj,r

chamber (ch) oi,ch dj,ch

Container large (l) oi,cl dj,cl

Specification Capacity medium (m) oi,cm dj,cm

small (s) oi,cs dj,cs

tiny (t) oi,ct dj,ct

pump (p) oi,p dj,p

Accessory heating pad (h) oi,h dj,h

Specification optical system (o) oi,o dj,o

sieve valve (s) oi,s dj,s

cell trap (c) oi,c dj,c

Transportation Path (between d and d′) pd,d′

Operation-Device-Mapping o di,j

Auxiliary Variable q0, q1, q2
Integer Variables

Operation Start Time (st) oi,st
Operation Duration (dur) oi,dur

toal execution duration sumt

area ring (r) suma,r

cost chamber (ch) suma,ch

Results toal area cost suma

Summation processing container (con) sumpr,con

cost accessory (acc) summ,acc

total processing cost sumpr

total transportation paths sump

Indeterminate Execution: for each indeterminate op-
eration oi, we introduce the following constraint to ensure
that it is allocated to the end of the corresponding sub-
schedule:

∀oa∈O, oa,st≤oi,st+oi,dur, (14)

where oi,dur represents the minimum duration of oi.

4.3 Objective Configuration
The objective of our modeling method is the minimization

of total assay execution time, chip area cost, chip processing
cost, and the number of transportation paths.

Total Assay Execution Time is decided by the last
completed operation in this assay, which can be formulated
as follows:

∀oi∈O, sumt≥oi,st+oi,dur. (15)

Chip Area Cost is decided by the integration of con-
tainers. We introduce the following constraints to model
the area cost of different containers:

suma,r=
∑

dj∈D,dj,r=1

∑

x∈{cl,cm,cs}

Ax ·dj,x (16)

suma,ch=
∑

d′
j
∈D,d′

j,ch
=1

∑

y∈{cm,cs,ct}

A
′
y ·dj′,y, (17)

suma=suma,r+suma,ch, (18)

where Ax∈{cl,cm,cs} and A′
y∈{cm,cs,ct}

are constants indica-
ting the area cost of a ring and a chamber with different
capacity.

Chip Processing Cost is decided by the integration of
containers and accessories. The processing cost of containers
sumpr,con are decided by their types and capacities in a sim-
ilar manner as above, and the processing cost of accessories
can be formulated as:

sumpr,acc=
∑

dj∈D

∑

z∈{p,h,o,s,c}

Prz ·dj,z, (19)

where Prz∈{p,h,o,s,c} are constants indicating the processing
cost of different accessories. The total processing cost can
therefore be formulated as:

sumpr=sumpr,con+sumpr,acc, (20)



Table 2: Synthesis Results for Bioassays.

Testcase Exe. Time #D. #P. Runtime
1 #Op 16 Conv. 225m 3 3 5.531s

[10] #Ind.Op 0 Our 220m 2 2 8.412s
2 #Op 70 Conv. 277m+I1 24 82 5m12s
[7] #Ind.Op 10 Our 244m+I1 21 33 5m10s
3 #Op 120 Conv. 603m+I1+I2 24 95 10m1s

[17] #Ind.Op 20 Our 492m+I1+I2 24 85 10m5s

Exe.Time column shows the execution duration of the assay.
#D, #P columns show the number of applied devices and paths.
Runtime column shows program runtime. Conv. and Our. rows
show the results applying conventional synthesis method and our
method, respectively. I1, I2 indicate the extra execution time of in-
determinate operations in Layer 1 and Layer 2, the maximal number
of devices (|D|) is set to 25, the maximal number of indeterminate
operations in each layer is set to 10. m and s are time units repres-
enting minute (m) and second (s).

Transportation Paths can be counted by the following
constraints:

∀oi∈O,oj ∈{child operations of oi},d,d
′∈D,

o di,d+o dj,d′−pd,d′ ≤1, sump=
∑

d,d′∈D

pd,d′ . (21)

Objective Configuration: with the above configura-
tions, we can formulate the objective of our model as the
following:

Minimize: Ct ·sumt+Ca ·suma+Cpr ·sumpr+Cp ·sump,

where Ct, Ca, Cpr, and Cp are adjustable weight coefficients
that can be defined by users.

5 Experimental Results

We use C++ to implement our synthesis method and solve
our ILP model with the ILP solver Gurobi [24] on a com-
puter with a 2.67GHz CPU.
We generate scheduling and binding solutions for three

assays from [7, 10, 17]. To demonstrate the ability of our
method to handle large cases, we introduce replicated opera-
tions with the same protocol of the original assay, so that
the number of operations in each assay are 16, 70, and 120,
respectively. Our solutions are compared with the solutions
generated by a modified conventional synthesis method.
Since the conventional synthesis method cannot support

many up-to-date applications, we modify it by classifying
operations and devices according to their component re-
quirements instead of functionality. To enable the conven-
tional scheduling method to support indeterminate opera-
tions, we integrate our layering algorithm and progressive
re-synthesis process to the conventional method, too.
As shown in Table 2, our solutions show advantages in

execution time reduction, device reduction and transporta-
tion path reduction. Our method avoids unnecessary device
integration and balances the usage of chip resources, so that
more operations can be executed in parallel. In case 1
and case 2, we achieve the time reduction even with fewer
devices, since the reduction of transportation paths also re-
sults in the reduction of transportation time. In case 3,
compared with the solutions generated by the modified con-
ventional method, we reduce the assay execution time to
81.7% without increasing the number of devices.
Case 2 and case 3 include operations with indeterminate

execution duration, we thus apply our layering algorithm to
synthesize hybrid-scheduling solutions for them. The initial
results are further refined by our progressive re-synthesis
process. If the improvement compared with former results
is larger than 10%, we will run another iteration. Table 3
shows the effectiveness of our progressive re-synthesis pro-
cess: without increasing the usage of devices, we achieve
circa 20% improvement in assay execution time.

Table 3: Improvement from Progressive Re-Synthesis.

Testcase Initial 1st Ite. Improve 2nd Ite. Improve
2 Exe.Time 295m 247m 16.27% 244m 1.21%
[7] #D. 21 21 0% 21 0%
3 Exe.Time 641m 530m 17.32% 492m 7.17%

[17] #D. 24 24 0% 24 0%

6 Conclusion
Continuous-flowmicrofluidics evolves rapidly. The innova-

tion of microfluidic components and bioassay protocols chal-
lenges conventional design automation approaches. In this
work, we take a closer look at the characteristics and re-
quirements of devices and operations, based on which we
propose a component-oriented high-level synthesis method,
which improves the utilization of chip resources and better
adapts to technological developments. For assays involving
indeterminate operations, we propose a layering algorithm
and a mathematical modeling method to generate binding
and hybrid-scheduling solutions, and thus turn a new page
on high-level synthesis of continuous-flow microfluidics.
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